Sample records for t-cell-mediated tumor control

  1. Antigen localization controls T cell-mediated tumor immunity.

    PubMed

    Zeelenberg, Ingrid S; van Maren, Wendy W C; Boissonnas, Alexandre; Van Hout-Kuijer, Maaike A; Den Brok, Martijn H M G M; Wagenaars, Jori A L; van der Schaaf, Alie; Jansen, Eric J R; Amigorena, Sebastian; Théry, Clotilde; Figdor, Carl G; Adema, Gosse J

    2011-08-01

    Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response.

  2. A novel T cell receptor single-chain signaling complex mediates antigen-specific T cell activity and tumor control

    PubMed Central

    Stone, Jennifer D.; Harris, Daniel T.; Soto, Carolina M.; Chervin, Adam S.; Aggen, David H.; Roy, Edward J.; Kranz, David M.

    2014-01-01

    Adoptive transfer of genetically modified T cells to treat cancer has shown promise in several clinical trials. Two main strategies have been applied to redirect T cells against cancer: 1) introduction of a full-length T cell receptor (TCR) specific for a tumor-associated peptide-MHC, or 2) introduction of a chimeric antigen receptor (CAR), including an antibody fragment specific for a tumor cell surface antigen, linked intracellularly to T cell signaling domains. Each strategy has advantages and disadvantages for clinical applications. Here, we present data on the in vitro and in vivo effectiveness of a single-chain signaling receptor incorporating a TCR variable fragment as the targeting element (referred to as TCR-SCS). This receptor contained a single-chain TCR (Vβ-linker-Vα) from a high-affinity TCR called m33, linked to the intracellular signaling domains of CD28 and CD3ζ. This format avoided mispairing with endogenous TCR chains, and mediated specific T cell activity when expressed in either CD4 or CD8 T cells. TCR-SCS-transduced CD8-negative cells showed an intriguing sensitivity, compared to full-length TCRs, to higher densities of less stable pepMHC targets. T cells that expressed this peptide-specific receptor persisted in vivo, and exhibited polyfunctional responses. Growth of metastatic antigen-positive tumors was significantly inhibited by T cells that expressed this receptor, and tumor cells that escaped were antigen loss variants. TCR-SCS receptors represent an alternative targeting receptor strategy that combines the advantages of single-chain expression, avoidance of TCR chain mispairing, and targeting of intracellular antigens presented in complex with MHC proteins. PMID:25082071

  3. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition

    PubMed Central

    Cherkassky, Leonid; Morello, Aurore; Villena-Vargas, Jonathan; Feng, Yang; Dimitrov, Dimiter S.; Jones, David R.; Sadelain, Michel; Adusumilli, Prasad S.

    2016-01-01

    Following immune attack, solid tumors upregulate coinhibitory ligands that bind to inhibitory receptors on T cells. This adaptive resistance compromises the efficacy of chimeric antigen receptor (CAR) T cell therapies, which redirect T cells to solid tumors. Here, we investigated whether programmed death-1–mediated (PD-1–mediated) T cell exhaustion affects mesothelin-targeted CAR T cells and explored cell-intrinsic strategies to overcome inhibition of CAR T cells. Using an orthotopic mouse model of pleural mesothelioma, we determined that relatively high doses of both CD28- and 4-1BB–based second-generation CAR T cells achieved tumor eradication. CAR-mediated CD28 and 4-1BB costimulation resulted in similar levels of T cell persistence in animals treated with low T cell doses; however, PD-1 upregulation within the tumor microenvironment inhibited T cell function. At lower doses, 4-1BB CAR T cells retained their cytotoxic and cytokine secretion functions longer than CD28 CAR T cells. The prolonged function of 4-1BB CAR T cells correlated with improved survival. PD-1/PD-1 ligand [PD-L1] pathway interference, through PD-1 antibody checkpoint blockade, cell-intrinsic PD-1 shRNA blockade, or a PD-1 dominant negative receptor, restored the effector function of CD28 CAR T cells. These findings provide mechanistic insights into human CAR T cell exhaustion in solid tumors and suggest that PD-1/PD-L1 blockade may be an effective strategy for improving the potency of CAR T cell therapies. PMID:27454297

  4. Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts.

    PubMed

    Bhattacharyya, Sankar; Md Sakib Hossain, Dewan; Mohanty, Suchismita; Sankar Sen, Gouri; Chattopadhyay, Sreya; Banerjee, Shuvomoy; Chakraborty, Juni; Das, Kaushik; Sarkar, Diptendra; Das, Tanya; Sa, Gaurisankar

    2010-07-01

    Immune dysfunction is well documented during tumor progression and likely contributes to tumor immune evasion. CD8(+) cytotoxic T lymphocytes (CTLs) are involved in antigen-specific tumor destruction and CD4(+) T cells are essential for helping this CD8(+) T cell-dependent tumor eradication. Tumors often target and inhibit T-cell function to escape from immune surveillance. This dysfunction includes loss of effector and memory T cells, bias towards type 2 cytokines and expansion of T regulatory (Treg) cells. Curcumin has previously been shown to have antitumor activity and some research has addressed the immunoprotective potential of this plant-derived polyphenol in tumor-bearing hosts. Here we examined the role of curcumin in the prevention of tumor-induced dysfunction of T cell-based immune responses. We observed severe loss of both effector and memory T-cell populations, downregulation of type 1 and upregulation of type 2 immune responses and decreased proliferation of effector T cells in the presence of tumors. Curcumin, in turn, prevented this loss of T cells, expanded central memory T cell (T(CM))/effector memory T cell (T(EM)) populations, reversed the type 2 immune bias and attenuated the tumor-induced inhibition of T-cell proliferation in tumor-bearing hosts. Further investigation revealed that tumor burden upregulated Treg cell populations and stimulated the production of the immunosuppressive cytokines transforming growth factor (TGF)-beta and IL-10 in these cells. Curcumin, however, inhibited the suppressive activity of Treg cells by downregulating the production of TGF-beta and IL-10 in these cells. More importantly, curcumin treatment enhanced the ability of effector T cells to kill cancer cells. Overall, our observations suggest that the unique properties of curcumin may be exploited for successful attenuation of tumor-induced suppression of cell-mediated immune responses.

  5. NF-κB functions as a molecular link between tumor cells and Th1/Tc1 T cells in the tumor microenvironment to exert radiation-mediated tumor suppression

    PubMed Central

    Simon, Priscilla S.; Bardhan, Kankana; Chen, May R.; Paschall, Amy V.; Lu, Chunwan; Bollag, Roni J.; Kong, Feng-Chong; Jin, JianYue; Kong, Feng-Ming; Waller, Jennifer L.; Pollock, Raphael E.; Liu, Kebin

    2016-01-01

    Radiation modulates both tumor cells and immune cells in the tumor microenvironment to exert its anti-tumor activity; however, the molecular connection between tumor cells and immune cells that mediates radiation-exerted tumor suppression activity in the tumor microenvironment is largely unknown. We report here that radiation induces rapid activation of the p65/p50 and p50/p50 NF-κB complexes in human soft tissue sarcoma (STS) cells. Radiation-activated p65/p50 and p50/p50 bind to the TNFα promoter to activate its transcription in STS cells. Radiation-induced TNFα induces tumor cell death in an autocrine manner. A sublethal dose of Smac mimetic BV6 induces cIAP1 and cIAP2 degradation to increase tumor cell sensitivity to radiation-induced cell death in vitro and to enhance radiation-mediated suppression of STS xenografts in vivo. Inhibition of caspases, RIP1, or RIP3 blocks radiation/TNFα-induced cell death, whereas inhibition of RIP1 blocks TNFα-induced caspase activation, suggesting that caspases and RIP1 act sequentially to mediate the non-compensatory cell death pathways. Furthermore, we determined in a syngeneic sarcoma mouse model that radiation up-regulates IRF3, IFNβ, and the T cell chemokines CCL2 and CCL5 in the tumor microenvironment, which are associated with activation and increased infiltration of Th1/Tc1 T cells in the tumor microenvironment. Moreover, tumor-infiltrating T cells are in their active form since both the perforin and FasL pathways are activated in irradiated tumor tissues. Consequently, combined BV6 and radiation completely suppressed tumor growth in vivo. Therefore, radiation-induced NF-κB functions as a molecular link between tumor cells and immune cells in the tumor microenvironment for radiation-mediated tumor suppression. PMID:27014915

  6. Heat shock protein 90-mediated peptide-selective presentation of cytosolic tumor antigen for direct recognition of tumors by CD4(+) T cells.

    PubMed

    Tsuji, Takemasa; Matsuzaki, Junko; Caballero, Otavia L; Jungbluth, Achim A; Ritter, Gerd; Odunsi, Kunle; Old, Lloyd J; Gnjatic, Sacha

    2012-04-15

    Tumor Ag-specific CD4(+) T cells play important functions in tumor immunosurveillance, and in certain cases they can directly recognize HLA class II-expressing tumor cells. However, the underlying mechanism of intracellular Ag presentation to CD4(+) T cells by tumor cells has not yet been well characterized. We analyzed two naturally occurring human CD4(+) T cell lines specific for different peptides from cytosolic tumor Ag NY-ESO-1. Whereas both lines had the same HLA restriction and a similar ability to recognize exogenous NY-ESO-1 protein, only one CD4(+) T cell line recognized NY-ESO-1(+) HLA class II-expressing melanoma cells. Modulation of Ag processing in melanoma cells using specific molecular inhibitors and small interfering RNA revealed a previously undescribed peptide-selective Ag-presentation pathway by HLA class II(+) melanoma cells. The presentation required both proteasome and endosomal protease-dependent processing mechanisms, as well as cytosolic heat shock protein 90-mediated chaperoning. Such tumor-specific pathway of endogenous HLA class II Ag presentation is expected to play an important role in immunosurveillance or immunosuppression mediated by various subsets of CD4(+) T cells at the tumor local site. Furthermore, targeted activation of tumor-recognizing CD4(+) T cells by vaccination or adoptive transfer could be a suitable strategy for enhancing the efficacy of tumor immunotherapy.

  7. CD4+ T cell-mediated rejection of MHC class II-positive tumor cells is dependent on antigen secretion and indirect presentation on host APCs.

    PubMed

    Haabeth, Ole Audun Werner; Fauskanger, Marte; Manzke, Melanie; Lundin, Katrin U; Corthay, Alexandre; Bogen, Bjarne; Tveita, Anders Aune

    2018-05-11

    Tumor-specific CD4+ T cells have been shown to mediate efficient anti-tumor immune responses against cancer. Such responses can occur through direct binding to MHC class II (MHC II)-expressing tumor cells or indirectly via activation of professional antigen-presenting cells (APC) that take up and present the tumor antigen. We have previously shown that CD4+ T cells reactive against an epitope within the Ig light chain variable region of a murine B cell lymphoma can reject established tumors. Given the presence of MHC II molecules at the surface of lymphoma cells, we investigated whether MHC II-restricted antigen presentation on tumor cells alone was required for rejection. Variants of the A20 B lymphoma cell line that either secreted or intracellularly retained different versions of the tumor-specific antigen revealed that antigen secretion by the MHC II-expressing tumor cells was essential both for the priming and effector phase of CD4+ T cell-driven anti-tumor immune responses. Consistent with this, genetic ablation of MHC II in tumor cells, both in the case of B lymphoma and B16 melanoma, did not preclude rejection of tumors by tumor antigen-specific CD4+ T cells in vivo. These findings demonstrate that MHC class II expression on tumor cells themselves is not required for CD4+ T cell-mediated rejection, and that indirect display on host APC is sufficient for effective tumor elimination. These results support the importance of tumor-infiltrating APC as mediators of tumor cell killing by CD4+ T cells. Copyright ©2018, American Association for Cancer Research.

  8. Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing

    PubMed Central

    Liang, Hua; Deng, Liufu; Chmura, Steven; Burnette, Byron; Liadis, Nicole; Darga, Thomas; Beckett, Michael A.; Lingen, Mark W.; Witt, MaryEllyn; Weichselbaum, Ralph R.; Fu, Yang-Xin

    2013-01-01

    Local failures following radiation therapy are multifactorial and the contributions of the tumor and the host are complex. Current models of tumor equilibrium suggest that a balance exists between cell birth and cell death due to insufficient angiogenesis, immune effects, or intrinsic cellular factors. We investigated whether host immune responses contribute to radiation induced tumor equilibrium in animal models. We report an essential role for immune cells and their cytokines in suppressing tumor cell regrowth in two experimental animal model systems. Depletion of T cells or neutralization of interferon-gamma reversed radiation-induced equilibrium leading to tumor regrowth. We also demonstrate that PD-L1 blockade augments T cell responses leading to rejection of tumors in radiation induced equilibrium. We identify an active interplay between tumor cells and immune cells that occurs in radiation-induced tumor equilibrium and suggest a potential role for disruption of the PD-L1/PD-1 axis in increasing local tumor control. PMID:23630355

  9. Transfer of allogeneic CD4+ T cells rescues CD8+ T cells in anti-PD-L1–resistant tumors leading to tumor eradication

    PubMed Central

    Arina, Ainhoa; Karrison, Theodore; Galka, Eva; Schreiber, Karin; Weichselbaum, Ralph R.; Schreiber, Hans

    2017-01-01

    Adoptively transferred CD8+ T cells can stabilize the size of solid tumors over long periods of time by exclusively recognizing antigen cross-presented on tumor stroma. However, these tumors eventually escape T cell–mediated growth control. The aim of this study was to eradicate such persistent cancers. In our model, the SIYRYYGL antigen is expressed by cancer cells that lack the MHC-I molecule Kb needed for direct presentation, but the antigen is picked up and cross-presented by tumor stroma. A single injection of antigen-specific 2C CD8+ T cells caused long-term inhibition of tumor growth, but without further intervention, tumors started to progress after approximately 3 months. Escape was associated with reduced numbers of circulating 2C cells. Tumor-infiltrating 2C cells produced significantly less TNFα and expressed more of the “exhaustion” markers PD-1 and Tim-3 than T cells from lymphoid organs. High-dose local ionizing radiation, depletion of myeloid-derived suppressor cells, infusions of additional 2C cells, and antibodies blocking PD-L1 did not prevent tumor escape. In contrast, adoptive transfer of allogeneic CD4+ T cells restored the numbers of circulating Ag-specific CD8+ T cells and their intratumoral function, resulting in tumor eradication. These CD4+ T cells had no antitumor effects in the absence of CD8+ T cells and recognized the alloantigen cross-presented on tumor stroma. CD4+ T cells might also be effective in cancer patients when PD1/PD-L1 blockade does not rescue intratumoral CD8+ T-cell function and tumors persist. PMID:28077434

  10. CXCR5+CD8+ T cells present elevated capacity in mediating cytotoxicity toward autologous tumor cells through interleukin 10 in diffuse large B-cell lymphoma.

    PubMed

    Tang, Jiahong; Zha, Jie; Guo, Xutao; Shi, Pengcheng; Xu, Bing

    2017-09-01

    Diffuse large B-cell lymphoma (DLBCL) is a common and aggressive subtype of non-Hodgkin's lymphomas, with limited treatment options in refractory and relapsed patients. Growing evidence supports the notion that CD8 + T cell immunity could be utilized to eliminate B cell lymphomas. CXCR5 + CD8 + T cell is a novel cell subtype and share CXCR5 expression with CD19 + tumor cells. In this study, we investigated the frequency and function of existing CXCR5 + CD8 + T cells in DLBCL patients. We found that DLBCL patients as a group demonstrated significantly higher level of CXCR5 + CD8 + T cells than healthy individuals, with huge variability in each patient. Using anti-CD3/CD28-stimulated CD8 + T cells as effector (E) cells and autologous CD19 + tumor cells as target (T) cells, at high E:T ratio, no difference between the intensities of CXCR5 + CD8 + T cell- and CXCR5 - CD8 + T cell-mediated cytotoxicity were observed. However, at intermediate and low E:T ratios, the CXCR5 + CD8 + T cells presented stronger cytotoxicity than CXCR5 - CD8 + T cells. The expressions of granzyme A, granzyme B, and perforin were significantly higher in CXCR5 + CD8 + T cells than in CXCR5 - CD8 + T cells, with no significant difference in the level of degranulation. Tumor cells in DLBCL were known to secrete high level of interleukin 10 (IL-10). We therefore blocked the IL-10/IL-10R pathway, and found that the expressions of granzyme A, granzyme B, and perforin by CXCR5 + CD8 + T cells were significantly elevated. Together, these results suggest that CXCR5 + CD8 + T cells are potential candidates of CD8 + T cell-based immunotherapies, could mediate elimination of autologous tumor cells in DLBCL patients, but are also susceptible to IL-10-mediated suppression. Copyright © 2017. Published by Elsevier B.V.

  11. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    PubMed

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  12. Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice.

    PubMed

    Liu, Chengwen; Lou, Yanyan; Lizée, Gregory; Qin, Hong; Liu, Shujuan; Rabinovich, Brian; Kim, Grace J; Wang, Yi-Hong; Ye, Yang; Sikora, Andrew G; Overwijk, Willem W; Liu, Yong-Jun; Wang, Gang; Hwu, Patrick

    2008-03-01

    A prerequisite for strong adaptive antiviral immunity is the robust initial activation of the innate immune system, which is frequently mediated by TLR-activated plasmacytoid DCs (pDCs). Natural antitumor immunity is often comparatively weak, potentially due to the lack of TLR-mediated activation signals within the tumor microenvironment. To assess whether pDCs are capable of directly facilitating effective antitumor immune responses, mice bearing established subcutaneous B16 melanoma tumors were administered TLR9-activated pDCs directly into the tumor. We found that TLR9-activated pDCs induced robust, spontaneous CTL cross-priming against multiple B16 tumor antigens, leading to the regression of both treated tumors and untreated tumors at distant contralateral sites. This T cell cross-priming was mediated by conventional DCs (cDCs) and was completely dependent upon the early recruitment and activation of NK cells at the tumor site. NK cell recruitment was mediated by CCR5 via chemokines secreted by pDCs, and optimal IFN-gamma production by NK cells was mediated by OX40L expressed by pDCs. Our data thus demonstrated that activated pDCs are capable of initiating effective and systemic antitumor immunity through the orchestration of an immune cascade involving the sequential activation of NK cells, cDCs, and CD8(+) T cells.

  13. HBV-specific CD4+ cytotoxic T cells in hepatocellular carcinoma are less cytolytic toward tumor cells and suppress CD8+ T cell-mediated antitumor immunity.

    PubMed

    Meng, Fanzhi; Zhen, Shoumei; Song, Bin

    2017-08-01

    In East Asia and sub-Saharan Africa, chronic infection is the main cause of the development of hepatocellular carcinoma, an aggressive cancer with low survival rate. Cytotoxic T cell-based immunotherapy is a promising treatment strategy. Here, we investigated the possibility of using HBV-specific CD4 + cytotoxic T cells to eliminate tumor cells. The naturally occurring HBV-specific cytotoxic CD4 + and CD8 + T cells were identified by HBV peptide pool stimulation. We found that in HBV-induced hepatocellular carcinoma patients, the HBV-specific cytotoxic CD4 + T cells and cytotoxic CD8 + T cells were present at similar numbers. But compared to the CD8 + cytotoxic T cells, the CD4 + cytotoxic T cells secreted less cytolytic factors granzyme A (GzmA) and granzyme B (GzmB), and were less effective at eliminating tumor cells. In addition, despite being able to secrete cytolytic factors, CD4 + T cells suppressed the cytotoxicity mediated by CD8 + T cells, even when CD4 + CD25 + regulator T cells were absent. Interestingly, we found that interleukin 10 (IL-10)-secreting Tr1 cells were enriched in the cytotoxic CD4 + T cells. Neutralization of IL-10 abrogated the suppression of CD8 + T cells by CD4 + CD25 - T cells. Neither the frequency nor the absolute number of HBV-specific CD4 + cytotoxic T cells were correlated with the clinical outcome of advanced stage hepatocellular carcinoma patients. Together, this study demonstrated that in HBV-related hepatocellular carcinoma, CD4 + T cell-mediated cytotoxicity was present naturally in the host and had the potential to exert antitumor immunity, but its capacity was limited and was associated with immunoregulatory properties. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  14. ME-10TUMOR MICROENVIRONMENT INFILTRATING MYELOID DERIVED SUPPRESSOR CELLS INHIBIT ANTI-TUMOR T CELL RESPONSES

    PubMed Central

    Kamran, Neha; Ayala, Mariela; Li, Youping; Assi, Hikmat; Candolfi, Marianela; Dzaman, Marta; Lowenstein, Pedro; Castro, Maria

    2014-01-01

    MDSCs represent a population of immature myeloid cells at various stages of differentiation that inhibit anti-tumor T cell-mediated responses. We demonstrate the accumulation of MDSCs in GL26 induced glioma and B16 melanoma bearing mice. Absolute numbers of Ly-6G+ (Gr-1high) MDSCs showed a 200 fold increase within the tumor microenvironment (TME) 28 days post-tumor implantation. The numbers of Ly-6C+ (Gr-1low) MDSCs also showed a similar trend within the TME. While this massive influx of MDSCs was noted within intracranial tumors, MDSC levels did not increase in the dLNs, spleen or bone marrow (BM) of intracranial tumor bearing mice. MDSCs numbers were significantly elevated in the blood of GL26 intracranial tumor bearing mice at 28 days. Mice bearing B16 tumors in the flank showed a ∼5 fold increased influx of Ly-6G+ MDSCs while the Ly6C+ MDSCs increased marginally by 1.1 fold within the tumor mass. Levels of circulating MDSCs also increased by ∼10 fold, while the levels of splenic MDSCs did not change. While both Ly-6G+ and Ly6C+ MDSCs isolated from the brain TME of GL26 intracranial tumor bearing mice inhibited antigen-specific T cell proliferation, Ly6C+ MDSC were found to be more efficient. Ly6G+ or Ly6C+ MDSCs from the bone marrow of intracranial tumor bearing mice failed to suppress antigen-specific T cell proliferation. Splenic and bone marrow MDSCs from naïve mice also did not inhibit antigen-specific T cell proliferation suggesting that TME derived factors may activate MDSCs to exert their immune-suppressive properties. Microarray analysis of glioma cell lines showed elevated levels of CXCL1 mRNA and splenic MDSCs from GL26 tumor mice showed upregulation of the CXCR2 mRNA. Preliminary experiments indicate that CXCR2 signaling mediates MDSC chemotaxis. Overall, our data suggests that strategies that inhibit MDSC recruitment to the TME and/or block their activity could enhance the T cell mediated tumor clearance.

  15. Tumor-associated mesenchymal stem cells inhibit naïve T cell expansion by blocking cysteine export from dendritic cells.

    PubMed

    Ghosh, Tithi; Barik, Subhasis; Bhuniya, Avishek; Dhar, Jesmita; Dasgupta, Shayani; Ghosh, Sarbari; Sarkar, Madhurima; Guha, Ipsita; Sarkar, Koustav; Chakrabarti, Pinak; Saha, Bhaskar; Storkus, Walter J; Baral, Rathindranath; Bose, Anamika

    2016-11-01

    Mesenchymal stem cells (MSCs) represent an important cellular constituent of the tumor microenvironment, which along with tumor cells themselves, serve to regulate protective immune responses in support of progressive disease. We report that tumor MSCs prevent the ability of dendritic cells (DC) to promote naïve CD4(+) and CD8(+) T cell expansion, interferon gamma secretion and cytotoxicity against tumor cells, which are critical to immune-mediated tumor eradication. Notably, tumor MSCs fail to prevent DC-mediated early T cell activation events or the ability of responder T cells to produce IL-2. The immunoregulatory activity of tumor MSCs is IL-10- and STAT3-dependent, with STAT3 repressing DC expression of cystathionase, a critical enzyme that converts methionine-to-cysteine. Under cysteine-deficient priming conditions, naïve T cells exhibit defective cellular metabolism and proliferation. Bioinformatics analyses as well as in vitro observations suggest that STAT3 may directly bind to a GAS-like motif within the cystathionase promoter (-269 to -261) leading to IL-10-STAT3 mediated repression of cystathionase gene transcription. Our collective results provide evidence for a novel mechanism of tumor MSC-mediated T cell inhibition within tumor microenvironment. © 2016 UICC.

  16. Effect of Aerva lanata on cell-mediated immune responses and cytotoxic T-lymphocyte generation in normal and tumor-bearing mice.

    PubMed

    Siveen, K S; Kuttan, Girija

    2012-01-01

    Cell-mediated immunity offers protection against virus-infected cells and tumor cells, involves activation of natural killer (NK) cells, production of antigen-specific cytotoxic T-lymphocytes, and release of various cytokines in response to an antigen. Administration of an ethanolic extract of Aerva lanata was found to stimulate cell-mediated immunological responses in normal and tumor-bearing BALB/c mice. A significant enhancement in NK cell activity in both normal and tumor-bearing hosts was observed after administration of A. lanata. Antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent complement-mediated cytotoxicity (ACC) were significantly enhanced as well in both sets of treated hosts. In addition, in vivo production of IL-2 and IFNg were each significantly enhanced by extract treatment. The stimulatory effect of A. lanata on cytotoxic T-lymphocyte (CTL) production was determined by Winn's neutralization assay using CTL-sensitive EL4 thymoma cells. A. lanata treatment caused a significant increase in CTL production in both in vivo and in vitro models, in each case as indicated by a significant increase in the life-spans of tumor-injected mice. Taken together, all of these results in the murine model indicate that administration of an ethanolic extract of A. lanata could enhance the cell-mediated anti-tumor response.

  17. Antigen specific T-cell responses against tumor antigens are controlled by regulatory T cells in patients with prostate cancer.

    PubMed

    Hadaschik, Boris; Su, Yun; Huter, Eva; Ge, Yingzi; Hohenfellner, Markus; Beckhove, Philipp

    2012-04-01

    Immunotherapy is a promising approach in an effort to control castration resistant prostate cancer. We characterized tumor antigen reactive T cells in patients with prostate cancer and analyzed the suppression of antitumor responses by regulatory T cells. Peripheral blood samples were collected from 57 patients with histologically confirmed prostate cancer, 8 patients with benign prostatic hyperplasia and 16 healthy donors. Peripheral blood mononuclear cells were isolated and antigen specific interferon-γ secretion of isolated T cells was analyzed by enzyme-linked immunospot assay. T cells were functionally characterized and T-cell responses before and after regulatory T-cell depletion were compared. As test tumor antigens, a panel of 11 long synthetic peptides derived from a total of 8 tumor antigens was used, including prostate specific antigen and prostatic acid phosphatase. In patients with prostate cancer we noted a 74.5% effector T-cell response rate compared with only 25% in patients with benign prostatic hyperplasia and 31% in healthy donors. In most patients 2 or 3 tumor antigens were recognized. Comparing various disease stages there was a clear increase in the immune response against prostate specific antigens from intermediate to high risk tumors and castration resistant disease. Regulatory T-cell depletion led to a significant boost in effector T-cell responses against prostate specific antigen and prostatic acid phosphatase. Tumor specific effector T cells were detected in most patients with prostate cancer, especially those with castration resistant prostate cancer. Since effector T-cell responses against prostate specific antigens strongly increased after regulatory T-cell depletion, our results indicate that immunotherapy efficacy could be enhanced by decreasing regulatory T cells. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor.

    PubMed

    Zhao, Yangbing; Moon, Edmund; Carpenito, Carmine; Paulos, Chrystal M; Liu, Xiaojun; Brennan, Andrea L; Chew, Anne; Carroll, Richard G; Scholler, John; Levine, Bruce L; Albelda, Steven M; June, Carl H

    2010-11-15

    Redirecting T lymphocyte antigen specificity by gene transfer can provide large numbers of tumor-reactive T lymphocytes for adoptive immunotherapy. However, safety concerns associated with viral vector production have limited clinical application of T cells expressing chimeric antigen receptors (CAR). T lymphocytes can be gene modified by RNA electroporation without integration-associated safety concerns. To establish a safe platform for adoptive immunotherapy, we first optimized the vector backbone for RNA in vitro transcription to achieve high-level transgene expression. CAR expression and function of RNA-electroporated T cells could be detected up to a week after electroporation. Multiple injections of RNA CAR-electroporated T cells mediated regression of large vascularized flank mesothelioma tumors in NOD/scid/γc(-/-) mice. Dramatic tumor reduction also occurred when the preexisting intraperitoneal human-derived tumors, which had been growing in vivo for >50 days, were treated by multiple injections of autologous human T cells electroporated with anti-mesothelin CAR mRNA. This is the first report using matched patient tumor and lymphocytes showing that autologous T cells from cancer patients can be engineered to provide an effective therapy for a disseminated tumor in a robust preclinical model. Multiple injections of RNA-engineered T cells are a novel approach for adoptive cell transfer, providing flexible platform for the treatment of cancer that may complement the use of retroviral and lentiviral engineered T cells. This approach may increase the therapeutic index of T cells engineered to express powerful activation domains without the associated safety concerns of integrating viral vectors. Copyright © 2010 AACR.

  19. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor

    PubMed Central

    Zhao, Yangbing; Moon, Edmund; Carpenito, Carmine; Paulos, Chrystal M.; Liu, Xiaojun; Brennan, Andrea L; Chew, Anne; Carroll, Richard G.; Scholler, John; Levine, Bruce L.; Albelda, Steven M.; June, Carl H.

    2010-01-01

    Redirecting T lymphocyte antigen specificity by gene transfer can provide large numbers of tumor reactive T lymphocytes for adoptive immunotherapy. However, safety concerns associated with viral vector production have limited clinical application of T cells expressing chimeric antigen receptors (CARs). T lymphocytes can be gene modified by RNA electroporation without integration-associated safety concerns. To establish a safe platform for adoptive immunotherapy, we first optimized the vector backbone for RNA in vitro transcription to achieve high level transgene expression. CAR expression and function of RNA-electroporated T cells could be detected up to a week post electroporation. Multiple injections of RNA CAR electroporated T cells mediated regression of large vascularized flank mesothelioma tumors in NOD/scid/γc(−/−) mice. Dramatic tumor reduction also occurred when the pre-existing intraperitoneal human-derived tumors, that had been growing in vivo for over 50 days, were treated by multiple injections of autologous human T cells electroporated with anti-mesothelin CAR mRNA. This is the first report using matched patient tumor and lymphocytes demonstrating that autologous T cells from cancer patients can be engineered to provide an effective therapy for a disseminated tumor in a robust preclinical model. Multiple injections of RNA engineered T cells are a novel approach for adoptive cell transfer, providing flexible platform for the treatment of cancer that may complement the use of retroviral and lentiviral engineered T cells. This approach may increase the therapeutic index of T cells engineered to express powerful activation domains without the associated safety concerns of integrating viral vectors. PMID:20926399

  20. The signaling symphony: T cell receptor tunes cytokine-mediated T cell differentiation

    PubMed Central

    Huang, Weishan; August, Avery

    2015-01-01

    T cell development, differentiation, and maintenance are orchestrated by 2 key signaling axes: the antigen-specific TCR and cytokine-mediated signals. The TCR signals the recognition of self- and foreign antigens to control T cell homeostasis for immune tolerance and immunity, which is regulated by a variety of cytokines to determine T cell subset homeostasis and differentiation. TCR signaling can synergize with or antagonize cytokine-mediated signaling to fine tune T cell fate; however, the latter is less investigated. Murine models with attenuated TCR signaling strength have revealed that TCR signaling can function as regulatory feedback machinery for T cell homeostasis and differentiation in differential cytokine milieus, such as IL-2-mediated Treg development; IL-7-mediated, naïve CD8+ T cell homeostasis; and IL-4-induced innate memory CD8+ T cell development. In this review, we discuss the symphonic cross-talk between TCR and cytokine-mediated responses that differentially control T cell behavior, with a focus on the negative tuning by TCR activation on the cytokine effects. PMID:25525115

  1. Knockdown of HMGB1 in tumor cells attenuates their ability to induce regulatory T cells and uncovers naturally acquired CD8 T cell-dependent antitumor immunity.

    PubMed

    Liu, Zuqiang; Falo, Louis D; You, Zhaoyang

    2011-07-01

    Although high mobility group box 1 (HMGB1) in tumor cells is involved in many aspects of tumor progression, its role in tumor immune suppression remains elusive. Host cell-derived IL-10 suppressed a naturally acquired CD8 T cell-dependent antitumor response. The suppressive activity of tumor-associated Foxp3(+)CD4(+)CD25(+) regulatory T cells (Treg) was IL-10 dependent. Neutralizing HMGB1 impaired tumor cell-promoted IL-10 production by Treg. Short hairpin RNA-mediated knockdown of HMGB1 (HMGB1 KD) in tumor cells did not affect tumor cell growth but uncovered naturally acquired long-lasting tumor-specific IFN-γ- or TNF-α-producing CD8 T cell responses and attenuated their ability to induce Treg, leading to naturally acquired CD8 T cell- or IFN-γ-dependent tumor rejection. The data suggest that tumor cell-derived HMGB1 may suppress naturally acquired CD8 T cell-dependent antitumor immunity via enhancing Treg to produce IL-10, which is necessary for Treg-mediated immune suppression.

  2. B and T lymphocyte attenuator mediates inhibition of tumor-reactive CD8+ T cells in patients after allogeneic stem cell transplantation.

    PubMed

    Hobo, Willemijn; Norde, Wieger J; Schaap, Nicolaas; Fredrix, Hanny; Maas, Frans; Schellens, Karen; Falkenburg, J H Frederik; Korman, Alan J; Olive, Daniel; van der Voort, Robbert; Dolstra, Harry

    2012-07-01

    Allogeneic stem cell transplantation (allo-SCT) can cure hematological malignancies by inducing alloreactive T cell responses targeting minor histocompatibility antigens (MiHA) expressed on malignant cells. Despite induction of robust MiHA-specific T cell responses and long-term persistence of alloreactive memory T cells specific for the tumor, often these T cells fail to respond efficiently to tumor relapse. Previously, we demonstrated the involvement of the coinhibitory receptor programmed death-1 (PD-1) in suppressing MiHA-specific CD8(+) T cell immunity. In this study, we investigated whether B and T lymphocyte attenuator (BTLA) plays a similar role in functional impairment of MiHA-specific T cells after allo-SCT. In addition to PD-1, we observed higher BTLA expression on MiHA-specific CD8(+) T cells compared with that of the total population of CD8(+) effector-memory T cells. In addition, BTLA's ligand, herpes virus entry mediator (HVEM), was found constitutively expressed by myeloid leukemia, B cell lymphoma, and multiple myeloma cells. Interference with the BTLA-HVEM pathway, using a BTLA blocking Ab, augmented proliferation of BTLA(+)PD-1(+) MiHA-specific CD8(+) T cells by HVEM-expressing dendritic cells. Notably, we demonstrated that blocking of BTLA or PD-1 enhanced ex vivo proliferation of MiHA-specific CD8(+) T cells in respectively 7 and 9 of 11 allo-SCT patients. Notably, in 3 of 11 patients, the effect of BTLA blockade was more prominent than that of PD-1 blockade. Furthermore, these expanded MiHA-specific CD8(+) T cells competently produced effector cytokines and degranulated upon Ag reencounter. Together, these results demonstrate that BTLA-HVEM interactions impair MiHA-specific T cell functionality, providing a rationale for interfering with BTLA signaling in post-stem cell transplantation therapies.

  3. LYSOPHOSPHATIDIC ACID INHIBITS CD8 T CELL ACTIVATION AND CONTROL OF TUMOR PROGRESSION

    PubMed Central

    Oda, Shannon K.; Strauch, Pamela; Fujiwara, Yuko; Al-Shami, Amin; Oravecz, Tamas; Tigyi, Gabor; Pelanda, Roberta; Torres, Raul M.

    2013-01-01

    CD8 T lymphocytes are able to eliminate nascent tumor cells through a process referred to as immune surveillance. However, multiple inhibitory mechanisms within the tumor microenvironment have been described that impede tumor rejection by CD8 T cells, including increased signaling by inhibitory receptors. Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that has been shown repeatedly to promote diverse cellular processes benefiting tumorigenesis. Accordingly, the increased expression of LPA and LPA receptors is a common feature of diverse tumor cell lineages and can result in elevated systemic LPA levels. LPA is recognized by at least 6 distinct G-protein-coupled receptors and several of which are expressed by T cells, although the precise role of LPA signaling in CD8 T cell activation and function has not been defined. Here, we demonstrate that LPA signaling via the LPA5 receptor expressed by CD8 T cells suppresses antigen receptor signaling, cell activation and proliferation in vitro and in vivo. Importantly, in a mouse melanoma model tumor-specific CD8 T cells that are LPA5-deficient are able to control tumor growth significantly better than wild-type tumor-specific CD8 T cells. Together, these data suggest that the production of LPA by tumors serves not only in an autocrine manner to promote tumorigenesis but also as a mechanism to suppress adaptive immunity and highlights a potential novel target for cancer treatment. PMID:24455753

  4. The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression.

    PubMed

    Ghiringhelli, Francois; Ménard, Cédric; Martin, Francois; Zitvogel, Laurence

    2006-12-01

    Tumor immunosurveillance relies on cognate immune effectors [lymphocytes and interferon-gamma (IFN-gamma)] and innate immunity [natural killer (NK) cells, natural killer group 2, member D (NKG2D) ligands, perforin/granzyme, and tumor necrosis factor-related apoptosis-inducing ligand]. In parallel, tumor cells promote the expansion of CD4(+)CD25(+) regulatory T cells (Tregs) that counteract T-cell-based anti-tumor immunity. Moreover, accumulating evidence points to a critical role for Tregs in dampening NK cell immune responses. This review summarizes the findings showing that Tregs suppress NK cell effector functions in vitro and in vivo, i.e. homeostatic proliferation, cytotoxicity, and interleukin-12-mediated IFN-gamma production. The molecular mechanism involve selective expression of membrane-bound transforming growth factor-beta on Tregs, which downregulate NKG2D expression on NK cells in vitro and in vivo. The regulatory events dictating NK cell suppression by Tregs have been studied and are discussed. The pathological relevance of the Treg-NK cell interaction has been brought up in tumor models and in patients with cancer. Consequently, inhibition of Tregs through pharmacological interventions should be considered during NK-cell-based immunotherapy of cancer.

  5. Autocrine Complement Inhibits IL10-Dependent T-Cell Mediated Antitumor Immunity to Promote Tumor Progression

    PubMed Central

    Wang, Yu; Sun, Sheng-Nan; Liu, Qing; Yu, Yang-Yang; Guo, Jian; Wang, Kun; Xing, Bao-Cai; Zheng, Qing-Feng; Campa, Michael J.; Patz, Edward F.; Li, Shi-You; He, You-Wen

    2016-01-01

    In contrast to its inhibitory effects on many cells, IL-10 activates CD8+ tumor infiltrating lymphocytes (TILs) and enhances their antitumor activity. However, CD8+ TILs do not routinely express IL-10 as autocrine complement C3 inhibits IL-10 production through complement receptors C3aR and C5aR. CD8+ TILs from C3-deficient mice, however, express IL-10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T cell- and IL-10-dependent manner; human TILs expanded with IL-2 plus IL-10 increase the killing of primary tumors in vitro compared to IL-2 treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the PD-1/PD-L1 immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8+ TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL-10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy. PMID:27297552

  6. RIG-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8+ T cells

    PubMed Central

    Duewell, P; Steger, A; Lohr, H; Bourhis, H; Hoelz, H; Kirchleitner, S V; Stieg, M R; Grassmann, S; Kobold, S; Siveke, J T; Endres, S; Schnurr, M

    2014-01-01

    Pancreatic cancer is characterized by a microenvironment suppressing immune responses. RIG-I-like helicases (RLH) are immunoreceptors for viral RNA that induce an antiviral response program via the production of type I interferons (IFN) and apoptosis in susceptible cells. We recently identified RLH as therapeutic targets of pancreatic cancer for counteracting immunosuppressive mechanisms and apoptosis induction. Here, we investigated immunogenic consequences of RLH-induced tumor cell death. Treatment of murine pancreatic cancer cell lines with RLH ligands induced production of type I IFN and proinflammatory cytokines. In addition, tumor cells died via intrinsic apoptosis and displayed features of immunogenic cell death, such as release of HMGB1 and translocation of calreticulin to the outer cell membrane. RLH-activated tumor cells led to activation of dendritic cells (DCs), which was mediated by tumor-derived type I IFN, whereas TLR, RAGE or inflammasome signaling was dispensable. Importantly, CD8α+ DCs effectively engulfed apoptotic tumor material and cross-presented tumor-associated antigen to naive CD8+ T cells. In comparison, tumor cell death mediated by oxaliplatin, staurosporine or mechanical disruption failed to induce DC activation and antigen presentation. Tumor cells treated with sublethal doses of RLH ligands upregulated Fas and MHC-I expression and were effectively sensitized towards Fas-mediated apoptosis and cytotoxic T lymphocyte (CTL)-mediated lysis. Vaccination of mice with RLH-activated tumor cells induced protective antitumor immunity in vivo. In addition, MDA5-based immunotherapy led to effective tumor control of established pancreatic tumors. In summary, RLH ligands induce a highly immunogenic form of tumor cell death linking innate and adaptive immunity. PMID:25012502

  7. Pivotal roles of CD4+ effector T cells in mediating agonistic anti-GITR mAb-induced-immune activation and tumor immunity in CT26 tumors.

    PubMed

    Zhou, Pengfei; L'italien, Lawrence; Hodges, Douglas; Schebye, Xiao Min

    2007-12-01

    Glucocorticoid-induced TNF receptor family related protein (GITR) is a member of the TNFR superfamily. Previous studies have shown that in vivo administration of a GITR agonistic Ab (DTA-1) is able to overcome tolerance and induce tumor rejection in several murine syngeneic tumor models. However, little is known about the in vivo targets and the mechanisms of how this tolerance is overcome in a tumor-bearing host, nor is much known about how the immune network is regulated to achieve this antitumor response. In this study, we demonstrate that the in vivo ligation of GITR on CD4(+) effector T cells renders them refractory to suppression by regulatory T (T(reg)) cells in the CT26 tumor-bearing mouse. GITR engagement on T(reg) cells does not appear to directly abrogate their suppressive function; rather, it increases the expansion of T(reg) cells and promotes IL-10 production, a cytokine important for their suppressive function. Moreover, CD4(+) effector T cells play a crucial role in mediating DTA-1-induced immune activation and expansion of CD8(+), NK, and B cells in the tumor-draining lymph nodes. This includes increased CD69 expression on all of these subsets. In addition, NK and tumor-specific CD8(+) T cells are generated that are cytolytic, which show increased intracellular IFN-gamma production and CD107a mobilization, the latter a hallmark of cytolytic activities that lead to tumor killing.

  8. Regulatory role of Vγ1 γδ T cells in tumor immunity through IL-4 production.

    PubMed

    Hao, Jianlei; Dong, Siyuan; Xia, Siyuan; He, Weifeng; Jia, Hao; Zhang, Song; Wei, Jun; O'Brien, Rebecca L; Born, Willi K; Wu, Zhenzhou; Wang, Puyue; Han, Jihong; Hong, Zhangyong; Zhao, Liqing; Yin, Zhinan

    2011-11-15

    It has been demonstrated that the two main subsets of peripheral γδ T cells, Vγ1 and Vγ4, have divergent functions in many diseases models. Recently, we reported that Vγ4 γδ T cells played a protective role in tumor immunity through eomesodermin-controlled mechanisms. However, the precise roles of Vγ1 γδ T cells in tumor immunity, especially whether Vγ1 γδ T cells have any interaction with Vγ4 γδ T cells, remain unknown. We demonstrated in this paper that Vγ1 γδ T cells suppressed Vγ4 γδ T cell-mediated antitumor function both in vitro and in vivo, and this suppression was cell contact independent. Using neutralizing anti-IL-4 Ab or IL-4(-/-) mice, we determined the suppressive factor derived from Vγ1 γδ T cells was IL-4. Indeed, treatment of Vγ4 γδ T cells with rIL-4 significantly reduced expression levels of NKG2D, perforin, and IFN-γ. Finally, Vγ1 γδ T cells produced more IL-4 and expressed significantly higher level of GATA-3 upon Th2 priming in comparison with Vγ4 γδ T cells. Therefore, to our knowledge, our results established for the first time a negative regulatory role of Vγ1 γδ T cells in Vγ4 γδ T cell-mediated antitumor immunity through cell contact-independent and IL-4-mediated mechanisms. Selective depletion of this suppressive subset of γδ T cells may be beneficial for tumor immune therapy.

  9. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing.

    PubMed

    Pan, Deng; Kobayashi, Aya; Jiang, Peng; Ferrari de Andrade, Lucas; Tay, Rong En; Luoma, Adrienne M; Tsoucas, Daphne; Qiu, Xintao; Lim, Klothilda; Rao, Prakash; Long, Henry W; Yuan, Guo-Cheng; Doench, John; Brown, Myles; Liu, X Shirley; Wucherpfennig, Kai W

    2018-02-16

    Many human cancers are resistant to immunotherapy, for reasons that are poorly understood. We used a genome-scale CRISPR-Cas9 screen to identify mechanisms of tumor cell resistance to killing by cytotoxic T cells, the central effectors of antitumor immunity. Inactivation of >100 genes-including Pbrm1 , Arid2 , and Brd7 , which encode components of the PBAF form of the SWI/SNF chromatin remodeling complex-sensitized mouse B16F10 melanoma cells to killing by T cells. Loss of PBAF function increased tumor cell sensitivity to interferon-γ, resulting in enhanced secretion of chemokines that recruit effector T cells. Treatment-resistant tumors became responsive to immunotherapy when Pbrm1 was inactivated. In many human cancers, expression of PBRM1 and ARID2 inversely correlated with expression of T cell cytotoxicity genes, and Pbrm1 -deficient murine melanomas were more strongly infiltrated by cytotoxic T cells. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression

    PubMed Central

    Santoro, Stephen P.; Kim, Soorin; Motz, Gregory T.; Alatzoglou, Dimitrios; Li, Chunsheng; Irving, Melita; Powell, Daniel J.; Coukos, George

    2014-01-01

    Aberrant blood vessels enable tumor growth, provide a barrier to immune infiltration, and serve as a source of pro-tumorigenic signals. Targeting tumor blood vessels for destruction, or tumor vascular disruption therapy, can therefore provide significant therapeutic benefit. Here we describe the ability of chimeric antigen receptor (CAR)-bearing T cells to recognize human prostate-specific membrane antigen (hPSMA) on endothelial targets in vitro as well as in vivo. CAR T cells were generated using the anti-PSMA scFv, J591, and the intracellular signaling domains: CD3ζ, CD28, and/or CD137/4-1BB. We found that all anti-hPSMA CAR T cells recognized and eliminated PSMA+ endothelial targets in vitro, regardless of the signaling domain. T cells bearing the 3rd generation anti-hPSMA CAR, P28BBζ, were able to recognize and kill primary human endothelial cells isolated from gynecologic cancers. In addition, the P28BBζ CAR T cells mediated regression of hPSMA-expressing vascular neoplasms in mice. Finally, in murine models of ovarian cancers populated by murine vessels expressing hPSMA, the P28BBζ CAR T cells were able to ablate PSMA+ vessels, cause secondary depletion of tumor cells, and reduce tumor burden. Taken together, these results provide strong rationale for the use of CAR T cells as agents of tumor vascular disruption, specifically those targeting PSMA. PMID:25358763

  11. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice.

    PubMed

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-06-01

    The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcomes compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of preinvasive foci. We investigated the effects of radiation therapy in p48(Cre);LSL-Kras(G12D) (KC) and p48(Cre);LSLKras(G12D);LSL-Trp53(R172H) (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony-stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2 to 12 Gy and analyzed by flow cytometry. Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from radiation treated invasive and preinvasive pancreatic tumors had an immune-suppressive, M2-like phenotype compared with control mice. Pancreata from mice exposed to radiation had fewer CD8(+) T cells than controls, and greater numbers of CD4(+) T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. A neutralizing antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Radiation treatment causes macrophages

  12. Adoptive immunotherapy for B-cell malignancies with autologous chimeric antigen receptor modified tumor targeted T cells.

    PubMed

    Park, Jae H; Brentjens, Renier J

    2010-04-01

    Chemotherapy-resistant B-cell hematologic malignancies may be cured with allogeneic hematopoietic stem cell transplantation (HSCT), demonstrating the potential susceptibility of these tumors to donor T-cell mediated immune responses. However, high rates of transplant-related morbidity and mortality limit this approach. For this reason, there is an urgent need for less-toxic forms of immune-based cellular therapy to treat these malignancies. Adoptive transfer of autologous T cells genetically modified to express chimeric antigen receptors (CARs) targeted to specific tumor-associated antigens represents an attractive means of overcoming the limitations of conventional HSCT. To this end, investigators have generated CARs targeted to various antigens expressed by B-cell malignancies, optimized the design of these CARs to enhance receptor mediated T cell signaling, and demonstrated significant anti-tumor efficacy of the resulting CAR modified T cells both in vitro and in vivo mouse tumor models. These encouraging preclinical data have justified the translation of this approach to the clinical setting with currently 12 open clinical trials and one completed clinical trial treating various B-cell malignancies utilizing CAR modified T cells targeted to either the CD19 or CD20 B-cell specific antigens.

  13. Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment.

    PubMed

    Yeku, Oladapo O; Purdon, Terence J; Koneru, Mythili; Spriggs, David; Brentjens, Renier J

    2017-09-05

    Chimeric antigen receptor (CAR) T cell therapy has shown limited efficacy for the management of solid tumor malignancies. In ovarian cancer, this is in part due to an immunosuppressive cytokine and cellular tumor microenvironment which suppresses adoptively transferred T cells. We engineered an armored CAR T cell capable of constitutive secretion of IL-12, and delineate the mechanisms via which these CAR T cells overcome a hostile tumor microenvironment. In this report, we demonstrate enhanced proliferation, decreased apoptosis and increased cytotoxicity in the presence of immunosuppressive ascites. In vivo, we show enhanced expansion and CAR T cell antitumor efficacy, culminating in improvement in survival in a syngeneic model of ovarian peritoneal carcinomatosis. Armored CAR T cells mediated depletion of tumor associated macrophages and resisted endogenous PD-L1-induced inhibition. These findings highlight the role of the inhibitory microenvironment and how CAR T cells can be further engineered to maintain efficacy.

  14. CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation.

    PubMed

    Bajgain, Pradip; Tawinwung, Supannikar; D'Elia, Lindsey; Sukumaran, Sujita; Watanabe, Norihiro; Hoyos, Valentina; Lulla, Premal; Brenner, Malcolm K; Leen, Ann M; Vera, Juan F

    2018-05-10

    The adoptive transfer of T cells redirected to tumor via chimeric antigen receptors (CARs) has produced clinical benefits for the treatment of hematologic diseases. To extend this approach to breast cancer, we generated CAR T cells directed against mucin1 (MUC1), an aberrantly glycosylated neoantigen that is overexpressed by malignant cells and whose expression has been correlated with poor prognosis. Furthermore, to protect our tumor-targeted cells from the elevated levels of immune-inhibitory cytokines present in the tumor milieu, we co-expressed an inverted cytokine receptor linking the IL4 receptor exodomain with the IL7 receptor endodomain (4/7ICR) in order to transform the suppressive IL4 signal into one that would enhance the anti-tumor effects of our CAR T cells at the tumor site. First (1G - CD3ζ) and second generation (2G - 41BB.CD3ζ) MUC1-specific CARs were constructed using the HMFG2 scFv. Following retroviral transduction transgenic expression of the CAR±ICR was assessed by flow cytometry. In vitro CAR/ICR T cell function was measured by assessing cell proliferation and short- and long-term cytotoxic activity using MUC1+ MDA MB 468 cells as targets. In vivo anti-tumor activity was assessed using IL4-producing MDA MB 468 tumor-bearing mice using calipers to assess tumor volume and bioluminescence imaging to track T cells. In the IL4-rich tumor milieu, 1G CAR.MUC1 T cells failed to expand or kill MUC1+ tumors and while co-expression of the 4/7ICR promoted T cell expansion, in the absence of co-stimulatory signals the outgrowing cells exhibited an exhausted phenotype characterized by PD-1 and TIM3 upregulation and failed to control tumor growth. However, by co-expressing 2G CAR.MUC1 (signal 1 - activation + signal 2 - co-stimulation) and 4/7ICR (signal 3 - cytokine), transgenic T cells selectively expanded at the tumor site and produced potent and durable tumor control in vitro and in vivo. Our findings demonstrate the feasibility of targeting breast

  15. Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta.

    PubMed

    Liu, Victoria C; Wong, Larry Y; Jang, Thomas; Shah, Ali H; Park, Irwin; Yang, Ximing; Zhang, Qiang; Lonning, Scott; Teicher, Beverly A; Lee, Chung

    2007-03-01

    CD4+CD25+ T regulatory (T(reg)) cells were initially described for their ability to suppress autoimmune diseases in animal models. An emerging interest is the potential role of T(reg) cells in cancer development and progression because they have been shown to suppress antitumor immunity. In this study, CD4+CD25- T cells cultured in conditioned medium (CM) derived from tumor cells, RENCA or TRAMP-C2, possess similar characteristics as those of naturally occurring T(reg) cells, including expression of Foxp3, a crucial transcription factor of T(reg) cells, production of low levels of IL-2, high levels of IL-10 and TGF-beta, and the ability to suppress CD4+CD25- T cell proliferation. Further investigation revealed a critical role of tumor-derived TGF-beta in converting CD4+CD25- T cells into T(reg) cells because a neutralizing Ab against TGF-beta, 1D11, completely abrogated the induction of T(reg) cells. CM from a nontumorigenic cell line, NRP-152, or irradiated tumor cells did not convert CD4+CD25- T cells to T(reg) cells because they produce low levels of TGF-beta in CM. Finally, we observed a reduced tumor burden in animals receiving 1D11. The reduction in tumor burden correlated with a decrease in tumor-derived TGF-beta. Treatment of 1D11 also reduced the conversion of CD4+ T cells into T(reg) cells and subsequent T(reg) cell-mediated suppression of antitumor immunity. In summary, we have demonstrated that tumor cells directly convert CD4+CD25- T cells to T(reg) cells through production of high levels of TGF-beta, suggesting a possible mechanism through which tumor cells evade the immune system.

  16. Increased Soluble CD226 in Sera of Patients with Cutaneous T-Cell Lymphoma Mediates Cytotoxic Activity against Tumor Cells via CD155.

    PubMed

    Takahashi, Naomi; Sugaya, Makoto; Suga, Hiraku; Oka, Tomonori; Kawaguchi, Makiko; Miyagaki, Tomomitsu; Fujita, Hideki; Inozume, Takashi; Sato, Shinichi

    2017-08-01

    Immune checkpoint therapy, which targets regulatory pathways in T cells to enhance antitumor immune responses, has led to important clinical advances. CD155 is expressed in various types of cancer, and this surface molecule on tumor cells functions either as a co-stimulatory molecule or a co-inhibitory molecule, depending on its receptor. CD226, a CD155 ligand, is mainly expressed on natural killer cells and CD8 + T cells, playing important roles in natural killer cell-mediated cytotoxicity. In this study, we investigated the expression and function of CD155 and CD226 in cutaneous T-cell lymphoma (CTCL). CD155 was strongly expressed on tumor cells and CD155 mRNA expression levels were increased in CTCL lesional skin. CD226 expression on natural killer cells and CD8 + cells in peripheral blood of CTCL patients was decreased. On the other hand, serum CD226 levels were significantly elevated in CTCL patients, strongly reflecting disease activity, suggesting that soluble CD226 in sera was generated by shedding of its membrane form. Recombinant CD226 itself showed cytotoxic activity against CD155-expressing CTCL cells in vitro. These data suggest that soluble CD226 elevated in sera of CTCL patients would be important for tumor immunity by interacting with CD155 on tumor cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Tumor Regression and Delayed Onset Toxicity Following B7-H4 CAR T Cell Therapy

    PubMed Central

    Smith, Jenessa B; Lanitis, Evripidis; Dangaj, Denarda; Buza, Elizabeth; Poussin, Mathilde; Stashwick, Caitlin; Scholler, Nathalie; Powell, Daniel J

    2016-01-01

    B7-H4 protein is frequently overexpressed in ovarian cancer. Here, we engineered T cells with novel B7-H4-specific chimeric antigen receptors (CARs) that recognized both human and murine B7-H4 to test the hypothesis that B7-H4 CAR T cell therapy can be applied safely in preclinical models. B7-H4 CAR T cells specifically secreted IFN-γ and lysed B7-H4(+) targets. In vivo, B7-H4 CAR T cells displayed antitumor reactivity against B7-H4(+) human ovarian tumor xenografts. Unexpectedly, B7-H4 CAR T cell treatment reproducibly showed delayed, lethal toxicity 6–8 weeks after therapy. Comprehensive assessment of murine B7-H4 protein distribution uncovered expression in ductal and mucosal epithelial cells in normal tissues. Postmortem analysis revealed the presence of widespread histologic lesions that correlated with B7-H4(+) expression, and were inconsistent with graft versus host disease. Lastly, expression patterns of B7-H4 protein in normal human tissue were comparable to distribution in mice, advancing our understanding of B7-H4. We conclude that B7-H4 CAR therapy mediates control of cancer outgrowth. However, long-term engraftment of B7-H4 CAR T cells mediates lethal, off-tumor toxicity that is likely due to wide expression of B7-H4 in healthy mouse organs. This model system provides a unique opportunity for preclinical evaluation of safety approaches that limit CAR-mediated toxicity after tumor destruction in vivo. PMID:27439899

  18. Adoptively transferred immune T cells eradicate established tumors in spite of cancer-induced immune suppression

    PubMed Central

    Arina, Ainhoa; Schreiber, Karin; Binder, David C.; Karrison, Theodore; Liu, Rebecca B.; Schreiber, Hans

    2014-01-01

    Myeloid-derived CD11b+Gr1+ suppressor cells (MDSC) and tumor-associated macrophages (TAM) are considered a major obstacle for effective adoptive T cell therapy. Myeloid cells suppress naive T cell proliferation ex vivo and can prevent the generation of T cell responses in vivo. We find, however, that immune T cells adoptively transferred eradicate well-established tumors in the presence of MDSC and TAM which are strongly immunosuppressive ex vivo. These MDSC and TAM were comparable in levels and immunosuppression among different tumor models. Longitudinal microscopy of tumors in vivo revealed that after T cell transfer tumor vasculature and cancer cells disappeared simultaneously. During T-cell mediated tumor destruction, the tumor stroma contained abundant myeloid cells (mainly TAM) that retained their suppressive properties. Preimmunized but not naive mice resisted immune suppression caused by an unrelated tumor-burden supporting the idea that in vivo, myeloid immunosuppressive cells can suppress naive but not memory T cell responses. PMID:24367029

  19. FasL Mediates T-Cell Eradication of Tumor Cells Presenting Low Levels of Antigens | Center for Cancer Research

    Cancer.gov

    One approach to cancer immunotherapy, as opposed to therapeutic vaccination, is the transfusion of large numbers of tumor-specific killer T cells (cytotoxic T cells or CTLs) into patients. The body’s own defense killer T cells are a subgroup of T lymphocytes (a type of white blood cells) that are capable of inducing death in tumor cells. CTLs can cause the death of target cells either by releasing granules containing toxic molecules including perforin, or by producing a membrane protein called Fas ligand (FasL) which on interaction with the tumor cell results in cell death.

  20. Surface receptor Toso controls B cell-mediated regulation of T cell immunity.

    PubMed

    Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee

    2018-05-01

    The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.

  1. Longitudinal confocal microscopy imaging of solid tumor destruction following adoptive T cell transfer

    PubMed Central

    Schietinger, Andrea; Arina, Ainhoa; Liu, Rebecca B; Wells, Sam; Huang, Jianhua; Engels, Boris; Bindokas, Vytas; Bartkowiak, Todd; Lee, David; Herrmann, Andreas; Piston, David W; Pittet, Mikael J; Lin, P Charles; Zal, Tomasz; Schreiber, Hans

    2013-01-01

    A fluorescence-based, high-resolution imaging approach was used to visualize longitudinally the cellular events unfolding during T cell-mediated tumor destruction. The dynamic interplay of T cells, cancer cells, cancer antigen loss variants, and stromal cells—all color-coded in vivo—was analyzed in established, solid tumors that had developed behind windows implanted on the backs of mice. Events could be followed repeatedly within precisely the same tumor region—before, during and after adoptive T cell therapy—thereby enabling for the first time a longitudinal in vivo evaluation of protracted events, an analysis not possible with terminal imaging of surgically exposed tumors. T cell infiltration, stromal interactions, and vessel destruction, as well as the functional consequences thereof, including the elimination of cancer cells and cancer cell variants were studied. Minimal perivascular T cell infiltrates initiated vascular destruction inside the tumor mass eventually leading to macroscopic central tumor necrosis. Prolonged engagement of T cells with tumor antigen-crosspresenting stromal cells correlated with high IFNγ cytokine release and bystander elimination of antigen-negative cancer cells. The high-resolution, longitudinal, in vivo imaging approach described here will help to further a better mechanistic understanding of tumor eradication by T cells and other anti-cancer therapies. PMID:24482750

  2. T cells enhance gold nanoparticle delivery to tumors in vivo.

    PubMed

    Kennedy, Laura C; Bear, Adham S; Young, Joseph K; Lewinski, Nastassja A; Kim, Jean; Foster, Aaron E; Drezek, Rebekah A

    2011-04-04

    Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.

  3. T cells enhance gold nanoparticle delivery to tumors in vivo

    NASA Astrophysics Data System (ADS)

    Kennedy, Laura C.; Bear, Adham S.; Young, Joseph K.; Lewinski, Nastassja A.; Kim, Jean; Foster, Aaron E.; Drezek, Rebekah A.

    2011-12-01

    Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.

  4. The mediator subunit Med23 contributes to controlling T-cell activation and prevents autoimmunity.

    PubMed

    Sun, Yang; Zhu, Xiaoyan; Chen, Xufeng; Liu, Haifeng; Xu, Yu; Chu, Yajing; Wang, Gang; Liu, Xiaolong

    2014-10-10

    T-cell activation is critical for successful immune responses and is controlled at multiple levels. Although many changes of T-cell receptor-associated signalling molecules affect T-cell activation, the transcriptional mechanisms that control this process remain largely unknown. Here we find that T cell-specific deletion of the mediator subunit Med23 leads to hyperactivation of T cells and aged Med23-deficient mice exhibit an autoimmune syndrome. Med23 specifically and consistently promotes the transcription of multiple negative regulators of T-cell activation. In the absence of Med23, the T-cell activation threshold is lower, which results in enhanced antitumour T-cell function. Cumulatively, our data suggest that Med23 contributes to controlling T-cell activation at the transcriptional level and prevents the development of autoimmunity.

  5. Adoptive immunotherapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors.

    PubMed

    Fujiwara, Hiroshi

    2014-12-15

    Accumulating clinical evidence suggests that adoptive T-cell immunotherapy could be a promising option for control of cancer; evident examples include the graft-vs-leukemia effect mediated by donor lymphocyte infusion (DLI) and therapeutic infusion of ex vivo-expanded tumor-infiltrating lymphocytes (TIL) for melanoma. Currently, along with advances in synthetic immunology, gene-modified T cells retargeted to defined tumor antigens have been introduced as "cellular drugs". As the functional properties of the adoptive immune response mediated by T lymphocytes are decisively regulated by their T-cell receptors (TCRs), transfer of genes encoding target antigen-specific receptors should enable polyclonal T cells to be uniformly redirected toward cancer cells. Clinically, anticancer adoptive immunotherapy using genetically engineered T cells has an impressive track record. Notable examples include the dramatic benefit of chimeric antigen receptor (CAR) gene-modified T cells redirected towards CD19 in patients with B-cell malignancy, and the encouraging results obtained with TCR gene-modified T cells redirected towards NY-ESO-1, a cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. This article overviews the current status of this treatment option, and discusses challenging issues that still restrain the full effectiveness of this strategy, especially in the context of hematological malignancy.

  6. Forced LIGHT expression in prostate tumors overcomes Treg mediated immunosuppression and synergizes with a prostate tumor therapeutic vaccine by recruiting effector T lymphocytes

    PubMed Central

    Yan, Lisa; Da Silva, Diane M.; Verma, Bhavna; Gray, Andrew; Brand, Heike E.; Skeate, Joseph G.; Porras, Tania B.; Kanodia, Shreya; Kast, W. Martin

    2014-01-01

    Background LIGHT, a ligand for lymphotoxin-β receptor (LTβR) and herpes virus entry mediator, is predominantly expressed on activated immune cells and LTβR signaling leads to the recruitment of lymphocytes. The interaction between LIGHT and LTβR has been previously shown in a virus induced tumor model to activate immune cells and result in tumor regression, but the role of LIGHT in tumor immunosuppression or in a prostate cancer setting, where self antigens exist, has not been explored. We hypothesized that forced expression of LIGHT in prostate tumors would shift the pattern of immune cell infiltration, would inhibit T regulatory cells (Tregs) and would induce prostate cancer tumor associated antigen (TAA) specific T cells that would eradicate tumors. Methods Real Time PCR was used to evaluate expression of forced LIGHT and various other genes in prostate tumors samples. Adenovirus encoding murine LIGHT was injected intratumorally into TRAMP C2 prostate cancer cell tumor bearing mice for in vivo studies. Chemokine and cytokine concentrations were determined by multiplex ELISA. Flow cytometry was used to phenotype tumor infiltrating lymphocytes and expression of LIGHT on the tumor cell surface. Tumor specific lymphocytes were quantified via an ELISpot assay. Treg induction and Treg suppression assays determined Treg functionality after LIGHT treatment. Results LIGHT expression peaked within 48 hours of infection, recruited effector T cells into the tumor microenvironment that recognized mouse prostate stem cell antigen (PSCA) and inhibited the infiltration of Tregs. Tregs isolated from tumor draining lymph nodes had impaired suppressive capability after LIGHT treatment. LIGHT in combination with a therapeutic vaccine, PSCA TriVax, reduced tumor burden. Conclusion Forced LIGHT treatment combined with PSCA TriVax therapeutic vaccination delays prostate cancer progression in mice by recruiting effector T lymphocytes to the tumor and inhibiting Treg mediated

  7. FasL Mediates T-Cell Eradication of Tumor Cells Presenting Low Levels of Antigens | Center for Cancer Research

    Cancer.gov

    One approach to cancer immunotherapy, as opposed to therapeutic vaccination, is the transfusion of large numbers of tumor-specific killer T cells (cytotoxic T cells or CTLs) into patients. The body’s own defense killer T cells are a subgroup of T lymphocytes (a type of white blood cells) that are capable of inducing death in tumor cells. CTLs can cause the death of target

  8. Collaboration between tumor-specific CD4+ T cells and B cells in anti-cancer immunity.

    PubMed

    Guy, Thomas V; Terry, Alexandra M; Bolton, Holly A; Hancock, David G; Zhu, Erhua; Brink, Robert; McGuire, Helen M; Shklovskaya, Elena; Fazekas de St. Groth, Barbara

    2016-05-24

    The role of B cells and antibodies in anti-tumor immunity is controversial, with both positive and negative effects reported in animal models and clinical studies. We developed a murine B16.F10 melanoma model to study the effects of collaboration between tumor-specific CD4+ T cells and B cells on tumor control. By incorporating T cell receptor transgenic T cells and B cell receptor isotype switching B cells, we were able to track the responses of tumor-reactive T and B cells and the development of anti-tumor antibodies in vivo. In the presence of tumor-specific B cells, the number of tumor-reactive CD4+ T cells was reduced in lymphoid tissues and the tumor itself, and this correlated with poor tumor control. B cells had little effect on the Th1 bias of the CD4+ T cell response, and the number of induced FoxP3+ regulatory cells (iTregs) generated from within the original naive CD4+ T cell inoculum was unrelated to the degree of B cell expansion. In response to CD4+ T cell help, B cells produced a range of isotype-switched anti-tumor antibodies, principally IgG1, IgG2a/c and IgG2b. In the absence of CD4+ T cells, B cells responded to agonistic anti-CD40 administration by switching to production of IgG2a/c and, to a lesser extent, IgG1, IgG3, IgA and IgE, which reduced the number of lung metastases after i.v. tumor inoculation but had no effect on the growth of subcutaneous tumors.

  9. Co-Introduced Functional CCR2 Potentiates In Vivo Anti-Lung Cancer Functionality Mediated by T Cells Double Gene-Modified to Express WT1-Specific T-Cell Receptor

    PubMed Central

    Asai, Hiroaki; Fujiwara, Hiroshi; An, Jun; Ochi, Toshiki; Miyazaki, Yukihiro; Nagai, Kozo; Okamoto, Sachiko; Mineno, Junichi; Kuzushima, Kiyotaka; Shiku, Hiroshi; Inoue, Hirofumi; Yasukawa, Masaki

    2013-01-01

    Background and Purpose Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR) or chimeric antigen receptor (CAR) has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. Methodology/Principal Findings Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1), and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1235–243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3+ T cells both in vitro and in vivo. Double gene-modified CD3+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modifiedCD3+ T cells. Conclusion/Significance Introduction of the CCL2/CCR2 axis successfully potentiated in vivo anti-lung cancer

  10. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning

    PubMed Central

    Pegram, Hollie J.; Lee, James C.; Hayman, Erik G.; Imperato, Gavin H.; Tedder, Thomas F.; Sadelain, Michel

    2012-01-01

    Adoptive cell therapy with tumor-targeted T cells is a promising approach to cancer therapy. Enhanced clinical outcome using this approach requires conditioning regimens with total body irradiation, lymphodepleting chemotherapy, and/or additional cytokine support. However, the need for prior conditioning precludes optimal application of this approach to a significant number of cancer patients intolerant to these regimens. Herein, we present preclinical studies demonstrating that treatment with CD19-specific, chimeric antigen receptor (CAR)–modified T cells that are further modified to constitutively secrete IL-12 are able to safely eradicate established disease in the absence of prior conditioning. We demonstrate in a novel syngeneic tumor model that tumor elimination requires both CD4+ and CD8+ T-cell subsets, autocrine IL-12 stimulation, and subsequent IFNγ secretion by the CAR+ T cells. Importantly, IL-12–secreting, tumor-targeted T cells acquire intrinsic resistance to T regulatory cell–mediated inhibition. Based on these preclinical data, we anticipate that adoptive therapy using CAR-targeted T cells modified to secrete IL-12 will obviate or reduce the need for potentially hazardous conditioning regimens to achieve optimal antitumor responses in cancer patients. PMID:22354001

  11. Increased T-helper 17 cell differentiation mediated by exosome-mediated microRNA-451 redistribution in gastric cancer infiltrated T cells.

    PubMed

    Liu, Feng; Bu, Zhouyan; Zhao, Feng; Xiao, Daping

    2018-01-01

    MicroRNA (miR)-451 is a cell metabolism-related miRNA that can mediate cell energy-consuming models by several targets. As miR-451 can promote mechanistic target of rapamycin (mTOR) activity, and increased mTOR activity is related to increased differentiation of T-helper 17 (Th17) cells, we sought to investigate whether miR-451 can redistribute from cancer cells to infiltrated T cells and enhance the distribution of Th17 cells through mTOR. Real-time PCR was used for detecting expression of miR-451 in gastric cancer, tumor infiltrated T cells and exosomes, and distribution of Th17 was evaluated by both flow cytometry and immunohistochemistry (IHC). Immunofluorescence staining was used in monitoring the exosome-enveloped miR-451 from cancer cells to T cells with different treatments, and signaling pathway change was analyzed by western blot. miR-451 decreased significantly in gastric cancer (GC) tissues but increased in infiltrated T cells and exosomes; tumor miR-451 was negatively related to infiltrated T cells and exosome miR-451. Exosome miR-451 can not only serve as an indicator for poor prognosis of post-operation GC patients but is also related to increased Th17 distribution in gastric cancer. miR-451 can redistribute from cancer cells to T cells with low glucose treatment. Decreased 5' AMP-activated protein kinase (AMPK) and increased mTOR activity was investigated in miR-451 redistributed T cells and the Th17 polarized differentiation of these T cells were also increased. Exosome miR-451 derived from tumor tissues can serve as an indicator for poor prognosis and redistribution of miR-451 from cancer cells to infiltrated T cells in low glucose treatment can enhance Th17 differentiation by enhancing mTOR activity. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  12. Forced LIGHT expression in prostate tumors overcomes Treg mediated immunosuppression and synergizes with a prostate tumor therapeutic vaccine by recruiting effector T lymphocytes.

    PubMed

    Yan, Lisa; Da Silva, Diane M; Verma, Bhavna; Gray, Andrew; Brand, Heike E; Skeate, Joseph G; Porras, Tania B; Kanodia, Shreya; Kast, W Martin

    2015-02-15

    LIGHT, a ligand for lymphotoxin-β receptor (LTβR) and herpes virus entry mediator, is predominantly expressed on activated immune cells and LTβR signaling leads to the recruitment of lymphocytes. The interaction between LIGHT and LTβR has been previously shown to activate immune cells and result in tumor regression in a virally-induced tumor model, but the role of LIGHT in tumor immunosuppression or in a prostate cancer setting, where self antigens exist, has not been explored. We hypothesized that forced expression of LIGHT in prostate tumors would shift the pattern of immune cell infiltration toward an anti-tumoral milieu, would inhibit T regulatory cells (Tregs) and would induce prostate cancer tumor associated antigen (TAA) specific T cells that would eradicate tumors. Real Time PCR was used to evaluate expression of forced LIGHT and other immunoregulatory genes in prostate tumors samples. For in vivo studies, adenovirus encoding murine LIGHT was injected intratumorally into TRAMP-C2 prostate cancer cell tumor bearing mice. Chemokine and cytokine concentrations were determined by multiplex ELISA. Flow cytometry was used to phenotype tumor infiltrating lymphocytes and expression of LIGHT on the tumor cell surface. Tumor-specific lymphocytes were quantified via ELISpot assay. Treg induction and Treg suppression assays determined Treg functionality after LIGHT treatment. LIGHT in combination with a therapeutic vaccine, PSCA TriVax, reduced tumor burden. LIGHT expression peaked within 48 hr of infection, recruited effector T cells that recognized mouse prostate stem cell antigen (PSCA) into the tumor microenvironment, and inhibited infiltration of Tregs. Tregs isolated from tumor draining lymph nodes had impaired suppressive capability after LIGHT treatment. Forced LIGHT treatment combined with PSCA TriVax therapeutic vaccination delays prostate cancer progression in mice by recruiting effector T lymphocytes to the tumor and inhibiting Treg mediated

  13. Electroporation driven delivery of both an IL-12 expressing plasmid and cisplatin synergizes to inhibit B16 melanoma tumor growth through an NK cell mediated tumor killing mechanism.

    PubMed

    Kim, Ha; Sin, Jeong-Im

    2012-11-01

    Combined therapy using chemotherapeutic drugs and immunotherapeutics offers some promise for treating patients with cancer. In this study, we evaluated whether cisplatin delivered by intratumoral (IT)-electroporation (EP) might enhance antitumor activity against established B16 melanoma and whether further addition of intramuscular (IM)-EP of IL-12 cDNA to IT-EP of cisplatin might augment antitumor therapeutic activity, with a focus on the underlining antitumor mechanism(s). When tumor (7 mm)-bearing animals were treated locally with cisplatin by IT-EP, they showed tumor growth inhibition significantly more than those without IT-EP. Moreover, IL-12 cDNA delivered by IM-EP was also able to inhibit tumor growth significantly more than control vector delivery. This tumor growth inhibition was mediated by NK cells, but not CD4+ T or CD8+ T cells, as determined by immune cell subset depletion and IFN-γ induction. Moreover, concurrent therapy using IT-EP of cisplatin plus IM-EP of IL-12 cDNA displayed antitumor therapeutic synergy. This therapeutic synergy appeared to be mediated by increased sensitivity of cisplatin-treated tumors to NK cell-mediated tumor killing. Taken together, these data support that cisplatin delivery by IT-EP plus IL-12 gene delivery by IM-EP are more effective at inducing antitumor therapeutic responses through increased sensitivity of cisplatin-treated tumors to NK cell-mediated tumor killing. This combined approach might have some implication for treating melanoma in patients.

  14. Vaccine of engineered tumor cells secreting stromal cell-derived factor-1 induces T-cell dependent antitumor responses.

    PubMed

    Shi, Meiqing; Hao, Siguo; Su, Liping; Zhang, Xueshu; Yuan, Jinying; Guo, Xuling; Zheng, Changyu; Xiang, Jim

    2005-08-01

    The CXC chemokine SDF-1 has been characterized as a T-cell chemoattractant both in vitro and in vivo. To determine whether SDF-1 expression within tumors can influence tumor growth, we transfected an expression vector pCI-SDF-1 for SDF-1 into J558 myeloma cells and tested their ability to form tumors in BALB/c. Production of biologically active SDF-1 (1.2 ng/mL) was detected in the culture supernatants of cells transfected with the expression vector pCI-SDF-1. J558 cells gave rise to a 100% tumor incidence, whereas SDF-1-expressing J558/SDF-1 tumors invariably regressed in BALB/c mice and became infiltrated with CD4(+) and CD8(+) T cells. Regression of the J558/SDF-1 tumors was dependent on both CD4(+) and CD8(+) T-cells. Our data also indicate that TIT cells containing both CD4(+) and CD8(+) T-cells within J558/SDF-1 tumors express the SDF-1 receptor CXCR4, and that SDF-1 specifically chemoattracts these cells in vitro. Furthermore, immunization of mice with engineered J558/SDF-1 cells elicited the most potent protective immunity against 0.5 x 10(6) cells J558 tumor challenge in vivo, compared to immunization with the J558 alone, and this antitumor immunity mediated by J558/SDF-1 tumor cell vaccination in vivo appeared to be dependent on CD8(+) CTL. Thus, SDF-1 has natural adjuvant activities that may augment antitumor responses through their effects on T-cells and thereby could be important in gene transfer immunotherapies for some cancers.

  15. Type I IFN gene delivery suppresses regulatory T cells within tumors.

    PubMed

    Hashimoto, H; Ueda, R; Narumi, K; Heike, Y; Yoshida, T; Aoki, K

    2014-12-01

    Type I interferon (IFN) is a pleiotropic cytokine regulating the cancer cell death and immune response. IFN-α can, as we have also reported, effectively induce an antitumor immunity by the activation of tumor-specific T cells and maturation of dendritic cells in various animal models. Unknown, however, is how the type I IFN alters the immunotolerant microenvironment in the tumors. Here, we found that intratumoral IFN-α gene transfer significantly decreased the frequency of regulatory T cells (Tregs) per CD4(+) T cells in tumors. The concentration of a Treg-inhibitory cytokine, interleukin (IL)-6, was correlated with the IFN-α expression level in tumors, and intratumoral CD11c(+) cells produced IL-6 in response to IFN-α stimulation. To confirm the role of IL-6 in the suppression of Tregs in tumors, an anti-IL-6 receptor antibody was administered in IFN-α-treated mice. The antibody increased the frequency of Tregs in the tumors, and attenuated systemic tumor-specific immunity induced by IFN-α. Furthermore, the IFN-α-mediated IL-6 production increased the frequency of Th17 cells in the tumors, which may be one of the mechanisms for the reduction of Tregs. The study demonstrated that IFN-α gene delivery creates an environment strongly supporting the enhancement of antitumor immunity through the suppression of Tregs.

  16. Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth

    PubMed Central

    Yin, Yuan; Cai, Xing; Chen, Xi; Liang, Hongwei; Zhang, Yujing; Li, Jing; Wang, Zuoyun; Chen, Xiulan; Zhang, Wen; Yokoyama, Seiji; Wang, Cheng; Li, Liang; Li, Limin; Hou, Dongxia; Dong, Lei; Xu, Tao; Hiroi, Takachika; Yang, Fuquan; Ji, Hongbin; Zhang, Junfeng; Zen, Ke; Zhang, Chen-Yu

    2014-01-01

    An increased population of CD4+CD25highFoxp3+ regulatory T cells (Tregs) in the tumor-associated microenvironment plays an important role in cancer immune evasion. However, the underlying mechanism remains unclear. Here we observed an increased secretion of miR-214 in various types of human cancers and mouse tumor models. Tumor-secreted miR-214 was sufficiently delivered into recipient T cells by microvesicles (MVs). In targeted mouse peripheral CD4+ T cells, tumor-derived miR-214 efficiently downregulated phosphatase and tensin homolog (PTEN) and promoted Treg expansion. The miR-214-induced Tregs secreted higher levels of IL-10 and promoted tumor growth in nude mice. Furthermore, in vivo studies indicated that Treg expansion mediated by cancer cell-secreted miR-214 resulted in enhanced immune suppression and tumor implantation/growth in mice. The MV delivery of anti-miR-214 antisense oligonucleotides (ASOs) into mice implanted with tumors blocked Treg expansion and tumor growth. Our study reveals a novel mechanism through which cancer cell actively manipulates immune response via promoting Treg expansion. PMID:25223704

  17. Antitumor Effects of Chimeric Receptor Engineered Human T Cells Directed to Tumor Stroma

    PubMed Central

    Kakarla, Sunitha; Chow, Kevin KH; Mata, Melinda; Shaffer, Donald R; Song, Xiao-Tong; Wu, Meng-Fen; Liu, Hao; Wang, Lisa L; Rowley, David R; Pfizenmaier, Klaus; Gottschalk, Stephen

    2013-01-01

    Cancer-associated fibroblasts (CAFs), the principle component of the tumor-associated stroma, form a highly protumorigenic and immunosuppressive microenvironment that mediates therapeutic resistance. Co-targeting CAFs in addition to cancer cells may therefore augment the antitumor response. Fibroblast activation protein-α (FAP), a type 2 dipeptidyl peptidase, is expressed on CAFs in a majority of solid tumors making it an attractive immunotherapeutic target. To target FAP-positive CAFs in the tumor-associated stroma, we genetically modified T cells to express a FAP-specific chimeric antigen receptor (CAR). The resulting FAP-specific T cells recognized and killed FAP-positive target cells as determined by proinflammatory cytokine release and target cell lysis. In an established A549 lung cancer model, adoptive transfer of FAP-specific T cells significantly reduced FAP-positive stromal cells, with a concomitant decrease in tumor growth. Combining these FAP-specific T cells with T cells that targeted the EphA2 antigen on the A549 cancer cells themselves significantly enhanced overall antitumor activity and conferred a survival advantage compared to either alone. Our study underscores the value of co-targeting both CAFs and cancer cells to increase the benefits of T-cell immunotherapy for solid tumors. PMID:23732988

  18. Autocrine Complement Inhibits IL10-Dependent T-cell-Mediated Antitumor Immunity to Promote Tumor Progression.

    PubMed

    Wang, Yu; Sun, Sheng-Nan; Liu, Qing; Yu, Yang-Yang; Guo, Jian; Wang, Kun; Xing, Bao-Cai; Zheng, Qing-Feng; Campa, Michael J; Patz, Edward F; Li, Shi-You; He, You-Wen

    2016-09-01

    In contrast to its inhibitory effects on many cells, IL10 activates CD8(+) tumor-infiltrating lymphocytes (TIL) and enhances their antitumor activity. However, CD8(+) TILs do not routinely express IL10, as autocrine complement C3 inhibits IL10 production through complement receptors C3aR and C5aR. CD8(+) TILs from C3-deficient mice, however, express IL10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T-cell- and IL10-dependent manner; human TILs expanded with IL2 plus IL10 increase the killing of primary tumors in vitro compared with IL2-treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8(+) TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy. Our data suggest novel strategies to enhance immunotherapies: a combined blockade of complement signaling by antagonists to C3aR, C5aR, and anti-PD-1 to enhance anti-PD-1 efficacy; a targeted IL10 delivery to CD8(+) TILs using anti-PD-1-IL10 or anti-CTLA4-IL10 fusion proteins; and the addition of IL10 in TIL expansion for adoptive cellular therapy. Cancer Discov; 6(9); 1022-35. ©2016 AACR.See related commentary by Peng et al., p. 953This article is highlighted in the In This Issue feature, p. 932. ©2016 American Association for Cancer Research.

  19. Membrane-bound Dickkopf-1 in Foxp3+ regulatory T cells suppresses T-cell-mediated autoimmune colitis.

    PubMed

    Chae, Wook-Jin; Park, Jong-Hyun; Henegariu, Octavian; Yilmaz, Saliha; Hao, Liming; Bothwell, Alfred L M

    2017-10-01

    Induction of tolerance is a key mechanism to maintain or to restore immunological homeostasis. Here we show that Foxp3 + regulatory T (Treg) cells use Dickkopf-1 (DKK-1) to regulate T-cell-mediated tolerance in the T-cell-mediated autoimmune colitis model. Treg cells from DKK-1 hypomorphic doubleridge mice failed to control CD4 + T-cell proliferation, resulting in CD4 T-cell-mediated autoimmune colitis. Thymus-derived Treg cells showed a robust expression of DKK-1 but not in naive or effector CD4 T cells. DKK-1 expression in Foxp3 + Treg cells was further increased upon T-cell receptor stimulation in vitro and in vivo. Interestingly, Foxp3 + Treg cells expressed DKK-1 in the cell membrane and the functional inhibition of DKK-1 using DKK-1 monoclonal antibody abrogated the suppressor function of Foxp3 + Treg cells. DKK-1 expression was dependent on de novo protein synthesis and regulated by the mitogen-activated protein kinase pathway but not by the canonical Wnt pathway. Taken together, our results highlight membrane-bound DKK-1 as a novel Treg-derived mediator to maintain immunological tolerance in T-cell-mediated autoimmune colitis. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  20. Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression.

    PubMed

    Stephen, Tom L; Rutkowski, Melanie R; Allegrezza, Michael J; Perales-Puchalt, Alfredo; Tesone, Amelia J; Svoronos, Nikolaos; Nguyen, Jenny M; Sarmin, Fahmida; Borowsky, Mark E; Tchou, Julia; Conejo-Garcia, Jose R

    2014-09-18

    Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the upregulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8⁺ T cells from proliferating and upregulating Granzyme-B and interferon-γ in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors and promoted protection against tumor rechallenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in preactivated CD8⁺ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy

    PubMed Central

    Powell, Daniel J.; Dudley, Mark E.; Robbins, Paul F.; Rosenberg, Steven A.

    2007-01-01

    In humans, the pathways of memory T-cell differentiation remain poorly defined. Recently, adoptive cell transfer (ACT) of tumor-reactive T lymphocytes to metastatic melanoma patients after nonmyeloablative chemotherapy has resulted in persistence of functional, tumor-reactive lymphocytes, regression of disease, and induction of melanocyte-directed autoimmunity in some responding patients. In the current study, longitudinal phenotypic analysis was performed on melanoma antigen–specific CD8+ T cells during their transition from in vitro cultured effector cells to long-term persistent memory cells following ACT to 6 responding patients. Tumor-reactive T cells used for therapy were generally late-stage effector cells with a CD27Lo CD28Lo CD45RA− CD62 ligand− (CD62L−) CC chemokine receptor 7− (CCR7−) interleukin-7 receptor αLo (IL-7RαLo) phenotype. After transfer, rapid up-regulation and continued expression of IL-7Rα in vivo suggested an important role for IL-7R in immediate and long-term T-cell survival. Although the tumor antigen–specific T-cell population contracted between 1 and 4 weeks after transfer, stable numbers of CD27+ CD28+ tumor-reactive T cells were maintained, demonstrating their contribution to the development of long-term, melanoma-reactive memory CD8+ T cells in vivo. At 2 months after transfer, melanoma-reactive T cells persisted at high levels and displayed an effector memory phenotype, including a CD27+ CD28+ CD62L− CCR7− profile, which may explain in part their ability to mediate tumor destruction. PMID:15345595

  2. TNFR2-deficient memory CD8 T cells provide superior protection against tumor cell growth.

    PubMed

    Kim, Edward Y; Teh, Soo-Jeet; Yang, Jocelyn; Chow, Michael T; Teh, Hung-Sia

    2009-11-15

    TNF receptor-2 (TNFR2) plays a critical role in promoting the activation and survival of naive T cells during the primary response. Interestingly, anti-CD3 plus IL-2 activated TNFR2(-/-) CD8 T cells are highly resistant to activation-induced cell death (AICD), which correlates with high expression levels of prosurvival molecules such as Bcl-2, survivin, and CD127 (IL-7Ralpha). We determined whether the resistance of activated TNFR2(-/-) CD8 T cells to AICD contributes to more effective protection against tumor cell growth. We found that during a primary tumor challenge, despite initial inferiority in controlling tumor cell growth, TNFR2(-/-) mice were able to more effectively control tumor burden over time compared with wild-type (WT) mice. Furthermore, vaccination of TNFR2(-/-) mice with recombinant Listeria monocytogenes that express OVA confers better protection against the growth of OVA-expressing E.G7 tumor cells relative to similarly vaccinated WT mice. The enhanced protection against tumor cell growth was not due to more effective activation of OVA-specific memory CD8 T cells in vaccinated TNFR2(-/-) mice. In vitro studies indicate that optimally activated OVA-specific TNFR2(-/-) CD8 T cells proliferated to the same extent and possess similar cytotoxicity against E.G7 tumor cells as WT CD8 T cells. However, relative to WT cells, activated OVA-specific TNFR2(-/-) CD8 T cells were highly resistant to AICD. Thus, the enhanced protection against E.G7 in TNFR2(-/-) mice is likely due to the recruitment and activation of OVA-specific memory TNFR2(-/-) CD8 T cells and their prolonged survival at the tumor site.

  3. Uptake routes of tumor-antigen MAGE-A3 by dendritic cells determine priming of naïve T-cell subtypes.

    PubMed

    Moeller, Ines; Spagnoli, Giulio C; Finke, Jürgen; Veelken, Hendrik; Houet, Leonora

    2012-11-01

    Induction of tumor-antigen-specific T cells in active cancer immunotherapy is generally difficult due to the very low anti-tumoral precursor cytotoxic T cells. By improving tumor-antigen uptake and presentation by dendritic cells (DCs), this problem can be overcome. Focusing on MAGE-A3 protein, frequently expressed in many types of tumors, we analyzed different DC-uptake routes after additional coating the recombinant MAGE-A3 protein with either a specific monoclonal antibody or an immune complex formulation. Opsonization of the protein with antibody resulted in increased DC-uptake compared to the uncoated rhMAGE-A3 protein. This was partly due to Fcγ receptor-dependent internalization. However, unspecific antigen internalization via macropinocytosis also played a role. When analyzing DC-uptake of MAGE-A3 antigen expressed in multiple myeloma cell line U266, pretreatment with proteasome inhibitor bortezomib resulted in increased apoptosis compared to γ-irradiation. Bortezomib-mediated immunogenic apoptosis, characterized by elevated surface expression of hsp90, triggered higher phagocytosis of U266 cells by DCs involving specific DC-derived receptors. We further investigated the impact of antigen delivery on T-cell priming. Induction of CD8(+) T-cell response was favored by stimulating naïve T cells with either antibody-opsonized MAGE-A3 protein or with the bortezomib-pretreated U266 cells, indicating that receptor-mediated uptake favors cross-presentation of antigens. In contrast, CD4(+) T cells were preferentially induced after stimulation with the uncoated protein or protein in the immune complex, both antigen formulations were preferentially internalized by DCs via macropinocytosis. In summary, receptor-mediated DC-uptake mechanisms favored the induction of CD8(+) T cells, relevant for clinical anti-tumor response.

  4. T cell-recruiting triplebody 19-3-19 mediates serial lysis of malignant B-lymphoid cells by a single T cell

    PubMed Central

    Roskopf, Claudia C.; Schiller, Christian B.; Braciak, Todd A.; Kobold, Sebastian; Schubert, Ingo A.; Fey, Georg H.; Hopfner, Karl-Peter; Oduncu, Fuat S.

    2014-01-01

    Triplebody 19-3-19, an antibody-derived protein, carries three single chain fragment variable domains in tandem in a single polypeptide chain. 19-3-19 binds CD19-bearing lymphoid cells via its two distal domains and primary T cells via its CD3-targeting central domain in an antigen-specific manner. Here, malignant B-lymphoid cell lines and primary cells from patients with B cell malignancies were used as targets in cytotoxicity tests with pre-stimulated allogeneic T cells as effectors. 19-3-19 mediated up to 95% specific lysis of CD19-positive tumor cells and, at picomolar EC50 doses, had similar cytolytic potency as the clinically successful agent BlinatumomabTM. 19-3-19 activated resting T cells from healthy unrelated donors and mediated specific lysis of both autologous and allogeneic CD19-positive cells. 19-3-19 led to the elimination of 70% of CD19-positive target cells even with resting T cells as effectors at an effector-to-target cell ratio of 1 : 10. The molecule is therefore capable of mediating serial lysis of target cells by a single T cell. These results highlight that central domains capable of engaging different immune effectors can be incorporated into the triplebody format to provide more individualized therapy tailored to a patient’s specific immune status. PMID:25115385

  5. Interruption of the Sequential Release of Small and Large Molecules from Tumor Cells by Low Temperature During Cytolysis Mediated by Immune T-Cells or Complement

    PubMed Central

    Martz, Eric; Burakoff, Steven J.; Benacerraf, Baruj

    1974-01-01

    Specific lysis of tumor cells by thymus-derived lymphocytes from alloimmunized mice (T-effector specific lysis) was studied with target cells labeled with isotopes attached to both small (14C-labeled nicotinamide) and large (51Cr-labeled) molecules. The results confirm and extend previous reports that target cells release small molecules considerably earlier than large molecules during T-effector specific lysis. After interruption of T-effector specific lysis by specific antibody and complement directed against the killer cells, or by ethylenediaminetetraacetic acid, release of both isotopes continued, eventually reaching identical levels of specific release, the value of which represents the fraction of the target cell population which had been committed to die at the time these treatments were applied. On the other hand, release of both isotopes during T-effector specific lysis stops immediately when the cultures are cooled to 0°. Thus, while ethylenediaminetetraacetic acid or specific complement-mediated lysis of the killer cells merely prevents the initiation of any new damage to target cells, cooling to 0° also stops the lytic process in already-damaged target cells. The colloid osmotic phase of target cell lysis induced by specific antibody and complement was similarly stopped at 0° in tumor cells, but not in erythrocytes. Thus, in tumor target cells, both T-effector specific lysis and complement cause a sequential release of progressively larger molecules which can be immediately stopped at any point by cooling to 0°. PMID:4359327

  6. How Do CD4+ T Cells Detect and Eliminate Tumor Cells That Either Lack or Express MHC Class II Molecules?

    PubMed Central

    Haabeth, Ole Audun Werner; Tveita, Anders Aune; Fauskanger, Marte; Schjesvold, Fredrik; Lorvik, Kristina Berg; Hofgaard, Peter O.; Omholt, Hilde; Munthe, Ludvig A.; Dembic, Zlatko; Corthay, Alexandre; Bogen, Bjarne

    2014-01-01

    CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR) transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor-specific antigen by host antigen-presenting cells (APCs) appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315), where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR-transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-γ stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed. PMID:24782871

  7. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies

    PubMed Central

    Rodgers, David T.; Mazagova, Magdalena; Hampton, Eric N.; Cao, Yu; Ramadoss, Nitya S.; Hardy, Ian R.; Schulman, Andrew; Du, Juanjuan; Wang, Feng; Singer, Oded; Ma, Jennifer; Nunez, Vanessa; Shen, Jiayin; Woods, Ashley K.; Wright, Timothy M.; Schultz, Peter G.; Kim, Chan Hyuk; Young, Travis S.

    2016-01-01

    Chimeric antigen receptor T (CAR-T) cell therapy has produced impressive results in clinical trials for B-cell malignancies. However, safety concerns related to the inability to control CAR-T cells once infused into the patient remain a significant challenge. Here we report the engineering of recombinant antibody-based bifunctional switches that consist of a tumor antigen-specific Fab molecule engrafted with a peptide neo-epitope, which is bound exclusively by a peptide-specific switchable CAR-T cell (sCAR-T). The switch redirects the activity of the bio-orthogonal sCAR-T cells through the selective formation of immunological synapses, in which the sCAR-T cell, switch, and target cell interact in a structurally defined and temporally controlled manner. Optimized switches specific for CD19 controlled the activity, tissue-homing, cytokine release, and phenotype of sCAR-T cells in a dose-titratable manner in a Nalm-6 xenograft rodent model of B-cell leukemia. The sCAR–T-cell dosing regimen could be tuned to provide efficacy comparable to the corresponding conventional CART-19, but with lower cytokine levels, thereby offering a method of mitigating cytokine release syndrome in clinical translation. Furthermore, we demonstrate that this methodology is readily adaptable to targeting CD20 on cancer cells using the same sCAR-T cell, suggesting that this approach may be broadly applicable to heterogeneous and resistant tumor populations, as well as other liquid and solid tumor antigens. PMID:26759369

  8. c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals.

    PubMed

    Nishimura, Christopher D; Brenner, Daniel A; Mukherjee, Malini; Hirsch, Rachel A; Ott, Leah; Wu, Meng-Fen; Liu, Hao; Dakhova, Olga; Orange, Jordan S; Brenner, Malcolm K; Lin, Charles Y; Arber, Caroline

    2017-12-21

    Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL + polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents. © 2017 by The American Society of Hematology.

  9. Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma

    PubMed Central

    Quezada, Sergio A.; Peggs, Karl S.; Simpson, Tyler R.; Shen, Yuelei; Littman, Dan R.; Allison, James P.

    2008-01-01

    Interference with inhibitory immunological checkpoints controlling T cell activation provides new opportunities to augment cancer immunotherapies. Whereas cytotoxic T lymphocyte–associated antigen-4 blockade has shown promising preclinical and clinical results, therapeutic CD4+CD25+ T reg cell depletion has failed to consistently enhance immune-based therapies. Using B16/BL6, a transplantable murine melanoma model, we show a dichotomy between the effects of T reg cell depletion on tumor rejection dependent on whether depletion occurs before (prophylactic) or after (therapeutic) tumor engraftment. Failure to promote rejection with therapeutic depletion is not related to lack of T reg cell depletion, to elimination of CD25+ effector T cells, or to a failure to enhance systemic antitumor T cell responses, but correlates with failure of effector cells to infiltrate the tumor and increase the intratumor ratio of effector T cell/T reg cell. Finally, systemic antitumor responses generated upon therapeutic T reg cell depletion are significantly stronger than those generated in the presence of T reg cells, and are capable of eliciting rejection of established tumors after transfer into immunoablated recipients receiving combination immunotherapy. The data demonstrate a dissociation between measurable systemic responses and tumor rejection during CD25-directed T reg cell depletion, and suggest an alternative, clinically applicable strategy for the treatment of established tumors. PMID:18725522

  10. Improving CART-Cell Therapy of Solid Tumors with Oncolytic Virus-Driven Production of a Bispecific T-cell Engager.

    PubMed

    Wing, Anna; Fajardo, Carlos Alberto; Posey, Avery D; Shaw, Carolyn; Da, Tong; Young, Regina M; Alemany, Ramon; June, Carl H; Guedan, Sonia

    2018-05-01

    T cells expressing chimeric antigen receptors (CART) have shown significant promise in clinical trials to treat hematologic malignancies, but their efficacy in solid tumors has been limited. Oncolytic viruses have the potential to act in synergy with immunotherapies due to their immunogenic oncolytic properties and the opportunity of incorporating therapeutic transgenes in their genomes. Here, we hypothesized that an oncolytic adenovirus armed with an EGFR-targeting, bispecific T-cell engager (OAd-BiTE) would improve the outcome of CART-cell therapy in solid tumors. We report that CART cells targeting the folate receptor alpha (FR-α) successfully infiltrated preestablished xenograft tumors but failed to induce complete responses, presumably due to the presence of antigen-negative cancer cells. We demonstrated that OAd-BiTE-mediated oncolysis significantly improved CART-cell activation and proliferation, while increasing cytokine production and cytotoxicity, and showed an in vitro favorable safety profile compared with EGFR-targeting CARTs. BiTEs secreted from infected cells redirected CART cells toward EGFR in the absence of FR-α, thereby addressing tumor heterogeneity. BiTE secretion also redirected CAR-negative, nonspecific T cells found in CART-cell preparations toward tumor cells. The combinatorial approach improved antitumor efficacy and prolonged survival in mouse models of cancer when compared with the monotherapies, and this was the result of an increased BiTE-mediated T-cell activation in tumors. Overall, these results demonstrated that the combination of a BiTE-expressing oncolytic virus with adoptive CART-cell therapy overcomes key limitations of CART cells and BiTEs as monotherapies in solid tumors and encourage its further evaluation in human trials. Cancer Immunol Res; 6(5); 605-16. ©2018 AACR . ©2018 American Association for Cancer Research.

  11. CXCL16-positive dendritic cells enhance invariant natural killer T cell-dependent IFNγ production and tumor control

    PubMed Central

    Veinotte, Linnea; Gebremeskel, Simon; Johnston, Brent

    2016-01-01

    ABSTRACT Crosstalk interactions between dendritic cells (DCs) and invariant natural killer T (iNKT) cells are important in regulating antitumor responses elicited by glycolipid antigens. iNKT cells constitutively express the chemokine receptor CXCR6, while cytokine-activated DCs upregulate the transmembrane chemokine ligand, CXCL16. This study examined the co-stimulatory role of CXCR6/CXCL16 interactions in glycolipid-dependent iNKT cell activation and tumor control. Spleen and liver DCs in wild-type mice, but not iNKT cell deficient (Jα18−/−) mice, transiently upregulated surface CXCL16 following in vivo administration of the glycolipid antigen α-galactosylceramide. Recombinant CXCL16 did not directly induce iNKT cell activation in vitro but enhanced interferon (IFN)-γ production when mouse or human iNKT cells were stimulated with plate-bound anti-CD3. Compared with glycolipid-loaded CXCL16neg DCs, CXCL16hi DCs induced higher levels of IFNγ production in iNKT cell cultures and following adoptive transfer in vivo. The number of IFNγ+ iNKT cells and expansion of T-bet+ iNKT cells were reduced in vivo when CXCL16−/− DCs were used to activate iNKT cells. Enhanced IFNγ production in vivo was not dependent on CXCR6 expression on natural killer (NK) cells. Adoptive transfer of glycolipid-loaded CXCL16hi DCs provided superior protection against tumor metastasis compared to CXCL16neg DC transfers. Similarly, wild-type DCs provided superior protection against metastasis compared with CXCL16−/− DCs. These experiments implicate an important role for CXCR6/CXCL16 interactions in regulating iNKT cell IFNγ production and tumor control. The selective use of CXCL16hi DCs in adoptive transfer immunotherapies may prove useful for enhancing T helper (Th) type 1 responses and clinical outcomes in cancer patients. PMID:27471636

  12. Role of LAP+CD4+ T cells in the tumor microenvironment of colorectal cancer.

    PubMed

    Zhong, Wu; Jiang, Zhi-Yuan; Zhang, Lei; Huang, Jia-Hao; Wang, Shi-Jun; Liao, Cun; Cai, Bin; Chen, Li-Sheng; Zhang, Sen; Guo, Yun; Cao, Yun-Fei; Gao, Feng

    2017-01-21

    To investigate the abundance and potential functions of LAP + CD4 + T cells in colorectal cancer (CRC). Proportions of LAP + CD4 + T cells were examined in peripheral blood and tumor/paratumor tissues of CRC patients and healthy controls using flow cytometry. Expression of phenotypic markers such as forkhead box (Fox)p3, cytotoxic T-lymphocyte-associated protein (CTLA)-4, chemokine CC receptor (CCR)4 and CCR5 was measured using flow cytometry. LAP - CD4 + and LAP + CD4 + T cells were isolated using a magnetic cell-sorting system and cell purity was analyzed by flow cytometry. Real-time quantitative polymerase chain reaction was used to measure expression of cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β. The proportion of LAP + CD4 + T cells was significantly higher in peripheral blood from patients (9.44% ± 3.18%) than healthy controls (1.49% ± 1.00%, P < 0.001). Among patients, the proportion of LAP + CD4 + T cells was significantly higher in tumor tissues (11.76% ± 3.74%) compared with paratumor tissues (3.87% ± 1.64%, P < 0.001). We also observed positive correlations between the proportion of LAP + CD4 + T cells and TNM stage ( P < 0.001), distant metastasis ( P < 0.001) and serum level of carcinoembryonic antigen ( P < 0.05). Magnetic-activated cell sorting gave an overall enrichment of LAP + CD4 + T cells (95.02% ± 2.87%), which was similar for LAP - CD4 + T cells (94.75% ± 2.76%). In contrast to LAP - CD4 + T cells, LAP + CD4 + T cells showed lower Foxp3 expression but significantly higher levels of CTLA-4, CCR4 and CCR5 ( P < 0.01). LAP + CD4 + T cells expressed significantly larger amounts of IL-10 and TGF-β but lower levels of IL-2, IL-4, IL-17 and interferon-γ, compared with LAP - CD4 + T cells. LAP + CD4 + T cells accumulated in the tumor microenvironment of CRC patients and were involved in immune evasion mediated by IL-10 and TGF-β.

  13. Primed tumor-reactive multifunctional CD62L+ human CD8+T-cells for immunotherapy

    PubMed Central

    Wölfl, Matthias; Merker, Katharina; Morbach, Henner; Van Gool, Stefaan W.; Eyrich, Matthias; Greenberg, Philip D.; Schlegel, Paul G.

    2011-01-01

    T-cell mediated immunotherapy against malignancies has been shown to be effective for certain types of cancer. However ex vivo expansion of tumor-reactive T-cells has been hindered by the low precursor frequency of such cells, often requiring multiple rounds of stimulation, resulting in full differentiation, loss of homing receptors and potential exhaustion of the expanded T-cells. Here we show that when using highly purified naïve CD8+ T-cells, a single stimulation with peptide pulsed, IFNγ/LPS-matured dendritic cells in combination with the sequential use of IL-21, IL-7 and IL-15 is sufficient for extensive expansion of antigen-specific T-cells. Short-term expanded T-cells were tumor-reactive, multifunctional and retained a central memory-like phenotype (CD62L+, CCR7+, CD28+). The procedure is highly reproducible and robust as demonstrated for different healthy donors and for cancer patients. Such short-term tumor-antigen-primed, multifunctional T-cells may therefore serve as a platform to target different malignancies accessible to immunotherapy. PMID:20972785

  14. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma.

    PubMed

    Chmielewski, Markus; Hombach, Andreas A; Abken, Hinrich

    2014-01-01

    Adoptive T-cell therapy recently achieved impressive efficacy in early phase trials, in particular in hematologic malignancies, strongly supporting the notion that the immune system can control cancer. A current strategy of favor is based on ex vivo-engineered patient T cells, which are redirected by a chimeric antigen receptor (CAR) and recognize a predefined target by an antibody-derived binding domain. Such CAR T cells can substantially reduce the tumor burden as long as the targeted antigen is present on the cancer cells. However, given the tremendous phenotypic diversity in solid tumor lesions, a reasonable number of cancer cells are not recognized by a given CAR, considerably reducing the therapeutic success. This article reviews a recently described strategy for overcoming this shortcoming of the CAR T-cell therapy by modulating the tumor stroma by a CAR T-cell-secreted transgenic cytokine like interleukin-12 (IL-12). The basic process is that CAR T cells, when activated by their CAR, deposit IL-12 in the targeted tumor lesion, which in turn attracts an innate immune cell response toward those cancer cells that are invisible to CAR T cells. Such TRUCKs, T cells redirected for universal cytokine-mediated killing, exhibited remarkable efficacy against solid tumors with diverse cancer cell phenotypes, suggesting their evaluation in clinical trials. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Tumor-targeted IL-2 amplifies T cell-mediated immune response induced by gene therapy with single-chain IL-12

    PubMed Central

    Lode, Holger N.; Xiang, Rong; Duncan, Steven R.; Theofilopoulos, Argyrios N.; Gillies, Stephen D.; Reisfeld, Ralph A.

    1999-01-01

    Induction, maintenance, and amplification of tumor-protective immunity after cytokine gene therapy is essential for the clinical success of immunotherapeutic approaches. We investigated whether this could be achieved by single-chain IL-12 (scIL-12) gene therapy followed by tumor-targeted IL-2 using a fusion protein containing a tumor-specific recombinant anti-ganglioside GD2 antibody and IL-2 (ch14.18-IL-2) in a poorly immunogenic murine neuroblastoma model. Herein, we demonstrate the absence of liver and bone marrow metastases after a lethal challenge with NXS2 wild-type cells only in mice (five of six animals) vaccinated with scIL-12-producing NXS2 cells and given a booster injection of low-dose ch14.18-IL-2 fusion protein. This tumor-protective immunity was effective 3 months after initial vaccination, in contrast to control animals treated with a nonspecific fusion protein or an equivalent mixture of antibody and IL-2. Only vaccinated mice receiving the tumor-specific ch14.18-IL-2 fusion protein revealed a reactivation of CD8+ T cells and subsequent MHC class I-restricted tumor target cell lysis in vitro. The sequential increase in the usage of TCR chains Vβ11 and -13 in mouse CD8+ T cells after vaccination and amplification with ch14.18-IL-2 suggests that the initial polyclonal CD8+ T cell response is effectively boosted by targeted IL-2. In conclusion, we demonstrate that a successful boost of a partially protective memory T cell immune response that is induced by scIL-12 gene therapy could be generated by tumor-specific targeting of IL-2 with a ch14.18-IL-2 fusion protein. This approach could increase success rates of clinical cancer vaccine trials. PMID:10411920

  16. SATB1 Expression Governs Epigenetic Repression of PD-1 in Tumor-Reactive T Cells.

    PubMed

    Stephen, Tom L; Payne, Kyle K; Chaurio, Ricardo A; Allegrezza, Michael J; Zhu, Hengrui; Perez-Sanz, Jairo; Perales-Puchalt, Alfredo; Nguyen, Jenny M; Vara-Ailor, Ana E; Eruslanov, Evgeniy B; Borowsky, Mark E; Zhang, Rugang; Laufer, Terri M; Conejo-Garcia, Jose R

    2017-01-17

    Despite the importance of programmed cell death-1 (PD-1) in inhibiting T cell effector activity, the mechanisms regulating its expression remain poorly defined. We found that the chromatin organizer special AT-rich sequence-binding protein-1 (Satb1) restrains PD-1 expression induced upon T cell activation by recruiting a nucleosome remodeling deacetylase (NuRD) complex to Pdcd1 regulatory regions. Satb1 deficienct T cells exhibited a 40-fold increase in PD-1 expression. Tumor-derived transforming growth factor β (Tgf-β) decreased Satb1 expression through binding of Smad proteins to the Satb1 promoter. Smad proteins also competed with the Satb1-NuRD complex for binding to Pdcd1 enhancers, releasing Pdcd1 expression from Satb1-mediated repression, Satb1-deficient tumor-reactive T cells lost effector activity more rapidly than wild-type lymphocytes at tumor beds expressing PD-1 ligand (CD274), and these differences were abrogated by sustained CD274 blockade. Our findings suggest that Satb1 functions to prevent premature T cell exhaustion by regulating Pdcd1 expression upon T cell activation. Dysregulation of this pathway in tumor-infiltrating T cells results in diminished anti-tumor immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Regulatory T Cells and Myeloid-Derived Suppressor Cells in the Tumor Microenvironment Undergo Fas-Dependent Cell Death during IL-2/αCD40 Therapy

    PubMed Central

    Weiss, Jonathan M.; Subleski, Jeff J.; Back, Tim; Chen, Xin; Watkins, Stephanie K.; Yagita, Hideo; Sayers, Thomas J.; Murphy, William J.

    2014-01-01

    Fas ligand expression in certain tumors has been proposed to contribute to immunosuppression and poor prognosis. However, immunotherapeutic approaches may elicit the Fas-mediated elimination of immunosuppressive regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) within tumors that represent major obstacles for cancer immunotherapy. Previously, we showed that IL-2 and agonistic CD40 Ab (αCD40) elicited synergistic antitumor responses coincident with the efficient removal of Tregs and MDSCs. We demonstrate in this study in two murine tumor models that Treg and MDSC loss within the tumor microenvironment after IL-2/αCD40 occurs through a Fas-dependent cell death pathway. Among tumor-infiltrating leukocytes, CD8+ T cells, neutrophils, and immature myeloid cells expressed Fas ligand after treatment. Fas was expressed by tumor-associated Tregs and immature myeloid cells, including MDSCs. Tregs and MDSCs in the tumor microenvironment expressed active caspases after IL-2/αCD40 therapy and, in contrast with effector T cells, Tregs significantly downregulated Bcl-2 expression. In contrast, Tregs and MDSCs proliferated and expanded in the spleen after treatment. Adoptive transfer of Fas-deficient Tregs or MDSCs into wild-type, Treg-, or MDSC-depleted hosts resulted in the persistence of Tregs or MDSCs and the loss of antitumor efficacy in response to IL-2/αCD40. These results demonstrate the importance of Fas-mediated Treg/MDSC removal for successful antitumor immunotherapy. Our results suggest that immunotherapeutic strategies that include exploiting Treg and MDSC susceptibility to Fas-mediated apoptosis hold promise for treatment of cancer. PMID:24808361

  18. S1PR1 is crucial for accumulation of regulatory T cells in tumors via STAT3

    PubMed Central

    Priceman, Saul J.; Shen, Shudan; Wang, Lin; Deng, Jiehui; Yue, Chanyu; Kujawski, Maciej; Yu, Hua

    2014-01-01

    Summary S1PR1 signaling has been shown to restrain the number and function of Tregs in the periphery under physiological conditions and in colitis models, but its role in regulating tumor-associated T cells is unknown. Here, we show that S1PR1 signaling in T cells drives Treg accumulation in tumors, limits CD8+ T cell recruitment and activation, and promotes tumor growth. S1PR1 intrinsic in T cells affects Tregs, but not CD8+ T cells, as demonstrated by adoptive transfer models and transient pharmacological S1PR1 modulation. We further investigated the molecular mechanism(s) underlying S1PR1-mediated Treg accumulation in tumors, showing that increasing S1PR1 in CD4+ T cells promotes STAT3 activation and JAK/STAT3-dependent Treg tumor migration. Furthermore functionally ablating STAT3 in T cells diminishes tumor-associated Treg accumulation and tumor growth. Our study demonstrates a stark contrast of the consequences by the same signaling receptor, namely S1PR1, in regulating Tregs in the periphery and in tumors. PMID:24630990

  19. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    PubMed

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  20. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Zhao, Jun; Tian, Mei; Song, Shaoli; Zhang, Rui; Gupta, Sanjay; Tan, Dongfeng; Shen, Haifa; Ferrari, Mauro; Li, Chun

    2015-11-01

    Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and have demonstrated promising application in the clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([64Cu]CuS NPs) could suppress breast tumor metastasis through eradication of TICs. Positron electron tomography (PET) imaging and biodistribution studies showed that more than 90% of [64Cu]CuS NPs was retained in subcutaneously grown BT474 breast tumor 24 h after intratumoral (i.t.) injection, indicating the NPs are suitable for the combination therapy. Combined RT/PTT therapy resulted in significant tumor growth delay in the subcutaneous BT474 breast cancer model. Moreover, RT/PTT treatment significantly prolonged the survival of mice bearing orthotopic 4T1 breast tumors compared to no treatment, RT alone, or PTT alone. The RT/PTT combination therapy significantly reduced the number of tumor nodules in the lung and the formation of tumor mammospheres from treated 4T1 tumors. No obvious side effects of the CuS NPs were noted in the treated mice in a pilot toxicity study. Taken together, our data support the feasibility of a therapeutic approach for the suppression of tumor metastasis through localized RT/PTT therapy.Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and have demonstrated promising application in the clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([64Cu]CuS NPs) could suppress

  1. Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice

    PubMed Central

    Hu, Zheng; Xia, Jinxing; Fan, Wei; Wargo, Jennifer; Yang, Yong-Guang

    2016-01-01

    A major factor hindering the exploration of adoptive immunotherapy in preclinical settings is the limited availability of tumor-reactive human T cells. Here we developed a humanized mouse model that permits large-scale production of human T cells expressing the engineered melanoma antigen MART-1-specific TCR. Humanized mice, made by transplantation of human fetal thymic tissue and CD34+ cells virally-transduced with HLA class I-restricted melanoma antigen (MART-1)-specific TCR gene, showed efficient development of MART-1-TCR+ human T cells with predominantly CD8+ cells. Importantly, MART-1-TCR+CD8+ T cells developing in these mice were capable of mounting antigen-specific responses in vivo, as evidenced by their proliferation, phenotypic conversion and IFN-γ production following MART-1 peptide immunization. Moreover, these MART-1-TCR+CD8+ T cells mediated efficient killing of melanoma cells in an HLA/antigen-dependent manner. Adoptive transfer of in vitro expanded MART-1-TCR+CD8+ T cells induced potent antitumor responses that were further enhanced by IL-15 treatment in melanoma-bearing recipients. Finally, a short incubation of MART-1-specific T cells with rapamycin acted synergistically with IL-15, leading to significantly improved tumor-free survival in recipients with metastatic melanoma. These data demonstrate the practicality of using humanized mice to produce potentially unlimited source of tumor-specific human T cells for experimental and preclinical exploration of cancer immunotherapy. This study also suggests that pretreatment of tumor-reactive T cells with rapamycin in combination with IL-15 administration may be a novel strategy to improve the efficacy of adoptive T cell therapy. PMID:26824989

  2. Adoptive T-cell Therapy Using Autologous Tumor-infiltrating Lymphocytes for Metastatic Melanoma: Current Status and Future Outlook

    PubMed Central

    Wu, Richard; Forget, Marie-Andree; Chacon, Jessica; Bernatchez, Chantale; Haymaker, Cara; Chen, Jie Qing; Hwu, Patrick; Radvanyi, Laszlo

    2012-01-01

    Immunotherapy using autologous T-cells has emerged to be a powerful treatment option for patients with metastatic melanoma. These include the adoptive transfer of autologous tumor-infiltrating lymphocytes (TIL), T-cells transduced with high-affinity T-cell receptors (TCR) against major melanosomal tumor antigens, and T cells transduced with chimeric antigen receptors (CAR) composed of hybrid immunoglobulin light chains with endo-domains of T-cell signaling molecules. Among these and other options for T-cell therapy, TIL together with high-dose IL-2 has had the longest clinical history with multiple clinical trials in centers across the world consistently demonstrating durable clinical response rates near 50% or more. A distinct advantage of TIL therapy making it still the T-cell therapy of choice is the broad nature of the T-cell recognition against both defined as well as un-defined tumors antigens against all possible MHC, rather than the single specificity and limited MHC coverage of the newer TCR and CAR transduction technologies. In the past decade, significant inroads have been made in defining the phenotypes of T cells in TIL mediating tumor regression. CD8+ T cells are emerging to be critical, although the exact subset of CD8+ T cells exhibiting the highest clinical activity in terms of memory and effector markers is still controversial. We present a model in which both effector-memory and more differentiated effector T cells ultimately may need to cooperate to mediate long-term tumor control in responding patients. Although TIL therapy has shown great potential to treat metastatic melanoma, a number of issues have emerged that need to be addressed to bring it more into the mainstream of melanoma care. First, we have a reached the point where a pivotal phase II or phase III trials are needed in an attempt to gain regulatory approval of TIL as standard-of-care. Second, improvements in how we expand TIL for therapy are needed, that minimize the time the T-cells

  3. Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas.

    PubMed

    Zhou, Guoying; Sprengers, Dave; Boor, Patrick P C; Doukas, Michail; Schutz, Hannah; Mancham, Shanta; Pedroza-Gonzalez, Alexander; Polak, Wojciech G; de Jonge, Jeroen; Gaspersz, Marcia; Dong, Haidong; Thielemans, Kris; Pan, Qiuwei; IJzermans, Jan N M; Bruno, Marco J; Kwekkeboom, Jaap

    2017-10-01

    Ligand binding to inhibitory receptors on immune cells, such as programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte associated protein 4 (CTLA4), down-regulates the T-cell-mediated immune response (called immune checkpoints). Antibodies that block these receptors increase antitumor immunity in patients with melanoma, non-small-cell lung cancer, and renal cell cancer. Tumor-infiltrating CD4 + and CD8 + T cells in patients with hepatocellular carcinoma (HCC) have been found to be functionally compromised. We analyzed HCC samples from patients to determine if these inhibitory pathways prevent T-cell responses in HCCs and to find ways to restore their antitumor functions. We collected HCC samples from 59 patients who underwent surgical resection from November 2013 through May 2017, along with tumor-free liver tissues (control tissues) and peripheral blood samples. We isolated tumor-infiltrating lymphocytes (TIL) and intra-hepatic lymphocytes. We used flow cytometry to quantify expression of the inhibitory receptors PD-1, hepatitis A virus cellular receptor 2 (TIM3), lymphocyte activating 3 (LAG3), and CTLA4 on CD8 + and CD4 + T cells from tumor, control tissue, and blood; we studied the effects of antibodies that block these pathways in T-cell activation assays. Expression of PD-1, TIM3, LAG3, and CTLA4 was significantly higher on CD8 + and CD4 + T cells isolated from HCC tissue than control tissue or blood. Dendritic cells, monocytes, and B cells in HCC tumors expressed ligands for these receptors. Expression of PD-1, TIM3, and LAG3 was higher on tumor-associated antigen (TAA)-specific CD8 + TIL, compared with other CD8 + TIL. Compared with TIL that did not express these inhibitory receptors, CD8 + and CD4 + TIL that did express these receptors had higher levels of markers of activation, but similar or decreased levels of granzyme B and effector cytokines. Antibodies against CD274 (PD-ligand1 [PD-L1]), TIM3, or LAG3 increased proliferation of CD8 + and CD4 + TIL

  4. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing

    PubMed Central

    Gameiro, Sofia R.; Jammed, Momodou L.; Wattenberg, Max M.; Tsang, Kwong Y.; Ferrone, Soldano; Hodge, James W.

    2014-01-01

    Radiation therapy (RT) is used for local tumor control through direct killing of tumor cells. Radiation-induced cell death can trigger tumor antigen-specific immune responses, but these are often noncurative. Radiation has been demonstrated to induce immunogenic modulation (IM) in various tumor types by altering the biology of surviving cells to render them more susceptible to T cell-mediated killing. Little is known about the mechanism(s) underlying IM elicited by sub-lethal radiation dosing. We have examined the molecular and immunogenic consequences of radiation exposure in breast, lung, and prostate human carcinoma cells. Radiation induced secretion of ATP and HMGB1 in both dying and surviving tumor cells. In vitro and in vivo tumor irradiation induced significant upregulation of multiple components of the antigen-processing machinery and calreticulin cell-surface expression. Augmented CTL lysis specific for several tumor-associated antigens was largely dictated by the presence of calreticulin on the surface of tumor cells and constituted an adaptive response to endoplasmic reticulum stress, mediated by activation of the unfolded protein response. This study provides evidence that radiation induces a continuum of immunogenic alterations in tumor biology, from immunogenic modulation to immunogenic cell death. We also expand the concept of immunogenic modulation, where surviving tumor cells recovering from radiation-induced endoplasmic reticulum stress become more sensitive to CTL killing. These observations offer a rationale for the combined use of radiation with immunotherapy, including for patients failing RT alone. PMID:24480782

  5. Adoptive transfer of natural killer cells promotes the anti-tumor efficacy of T cells.

    PubMed

    Goding, Stephen R; Yu, Shaohong; Bailey, Lisa M; Lotze, Michael T; Basse, Per H

    2017-04-01

    The density of NK cells in tumors correlates positively with prognosis in many types of cancers. The average number of infiltrating NK cells is, however, quite modest (approximately 30 NK cells/sq.mm), even in tumors deemed to have a "high" density of infiltrating NK cells. It is unclear how such low numbers of tumor-infiltrating NK cells can influence outcome. Here, we used ovalbumin-expressing tumor cell lines and TCR transgenic, OVA-specific cytotoxic T lymphocytes (OT-I-CTLs) to determine whether the simultaneous attack by anti-tumor CTLs and IL-2-activated NK (A-NK) cells synergistically increases the overall tumor cell kill and whether upregulation of tumor MHC class-I by NK cell-derived interferon-gamma (IFNγ) improves tumor-recognition and kill by anti-tumor CTLs. At equal E:T ratios, A-NK cells killed OVA-expressing tumor cells better than OT-I-CTLs. The cytotoxicity against OVA-expressing tumor cells increased by combining OT-I-CTLs and A-NK cells, but the increase was additive rather than synergistic. A-NK cells adenovirally-transduced to produce IL-12 (A-NK IL-12 ) produced high amounts of IFNγ. The addition of a low number of A-NK IL-12 cells to OT-I-CTLs resulted in a synergistic, albeit modest, increase in overall cytotoxicity. Pre-treatment of tumor cells with NK cell-conditioned medium increased tumor MHC expression and sensitivity to CTL-mediated killing. Pre-treatment of CTLs with NK cell-conditioned medium had no effect on CTL cytotoxicity. In vivo, MHC class-I expression by OVA-expressing B16 melanoma lung metastases increased significantly within 24-48h after adoptive transfer of A-NK IL-12 cells. OT-I-CTLs and A-NK IL-12 cells localized selectively and equally well into OVA-expressing B16 lung metastases and treatment of mice bearing 7-days-old OVA-B16 lung metastases with both A-NK IL-12 cells and OT-I-CTLs lead to a significant prolongation of survival. Thus, an important function of tumor-infiltrating NK cells may be to increase tumor

  6. Strategies for enhancing adoptive T-cell immunotherapy against solid tumors using engineered cytokine signaling and other modalities.

    PubMed

    Shum, Thomas; Kruse, Robert L; Rooney, Cliona M

    2018-05-04

    Cancer therapy has been transformed by the demonstration that tumor-specific T-cells can eliminate tumor cells in a clinical setting with minimal long-term toxicity. However, significant success in the treatment of leukemia and lymphoma with T-cells using native receptors or redirected with chimeric antigen receptors (CARs) has not been recapitulated in the treatment of solid tumors. This lack of success is likely related to the paucity of costimulatory and cytokine signaling available in solid tumors, in addition to a range of inhibitory mechanisms. Areas covered: We summarize the latest developments in engineered T-cell immunotherapy, describe the limitations of these approaches in treating solid tumors, and finally highlight several strategies that may be useful in mediating solid tumor responses in the future, while also ensuring safety of engineered cells. Expert opinion: CAR-T therapies require further engineering to achieve their potential against solid tumors. Facilitating cytokine signaling in CAR T-cells appears to be essential in achieving better responses. However, the engineering of T-cells with potentially unchecked proliferation and potency raises the question of whether the simultaneous combination of enhancements will prove safe, necessitating continued advancements in regulating CAR-T activity at the tumor site and methods to safely switch off these engineered cells.

  7. iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo

    PubMed Central

    Bassiri, Hamid; Das, Rupali; Guan, Peng; Barrett, David M.; Brennan, Patrick J.; Banerjee, Pinaki P.; Wiener, Susan J.; Orange, Jordan S.; Brenner, Michael B.; Grupp, Stephan A.; Nichols, Kim E.

    2013-01-01

    Invariant natural killer T (iNKT) cells comprise a lineage of CD1d-restricted glycolipid-reactive T lymphocytes with important roles in host immunity to cancer. iNKT cells indirectly participate in antitumor responses by inducing dendritic cell maturation and producing cytokines that promote tumor clearance by CD8+ T and NK cells. Although iNKT cells thereby act as potent cellular adjuvants, it is less clear whether they directly control the growth of tumors. To gain insights into the direct contribution of iNKT cells to tumor immune surveillance, we developed in vitro and in vivo systems to selectively examine the antitumor activity of iNKT cells in the absence of other cytolytic effectors. Using the EL4 T-lymphoma cell line as a model, we find that iNKT cells exert robust and specific lysis of tumor cells in vitro in a manner that is differentially-induced by iNKT cell agonists of varying TCR affinities, such as OCH, α-galactosyl ceramide and PBS44. In vitro blockade of CD1d-mediated lipid antigen presentation, disruption of T cell receptor (TCR) signaling, or loss of perforin expression significantly reduce iNKT cell killing. Consistent with these findings, iNKT cell reconstitution of T, B, and NK cell-deficient mice slows EL4 growth in vivo via TCR-CD1d and perforin-dependent mechanisms. Together, these observations establish that iNKT cells are sufficient to control the growth of T-lymphoma in vitro and in vivo. They also suggest that the induction of iNKT cell cytotoxic responses in situ might serve as a more effective strategy to prevent and/or treat CD1d+ cancers, such as T-lymphoma. PMID:24563871

  8. Selective inhibition of KCa3.1 channels mediates adenosine regulation of the motility of human T cells.

    PubMed

    Chimote, Ameet A; Hajdu, Peter; Kucher, Vladimir; Boiko, Nina; Kuras, Zerrin; Szilagyi, Orsolya; Yun, Yeo-Heung; Conforti, Laura

    2013-12-15

    Adenosine, a purine nucleoside, is present at high concentrations in tumors, where it contributes to the failure of immune cells to eliminate cancer cells. The mechanisms responsible for the immunosuppressive properties of adenosine are not fully understood. We tested the hypothesis that adenosine's immunosuppressive functions in human T lymphocytes are in part mediated via modulation of ion channels. The activity of T lymphocytes relies on ion channels. KCa3.1 and Kv1.3 channels control cytokine release and, together with TRPM7, regulate T cell motility. Adenosine selectively inhibited KCa3.1, but not Kv1.3 and TRPM7, in activated human T cells. This effect of adenosine was mainly mediated by A2A receptors, as KCa3.1 inhibition was reversed by SCH58261 (selective A2A receptor antagonist), but not by MRS1754 (A2B receptor antagonist), and it was mimicked by the A2A receptor agonist CGS21680. Furthermore, it was mediated by the cAMP/protein kinase A isoform (PKAI) signaling pathway, as adenylyl-cyclase and PKAI inhibition prevented adenosine effect on KCa3.1. The functional implication of the effect of adenosine on KCa3.1 was determined by measuring T cell motility on ICAM-1 surfaces. Adenosine and CGS21680 inhibited T cell migration. Comparable effects were obtained by KCa3.1 blockade with TRAM-34. Furthermore, the effect of adenosine on cell migration was abolished by pre-exposure to TRAM-34. Additionally, adenosine suppresses IL-2 secretion via KCa3.1 inhibition. Our data indicate that adenosine inhibits KCa3.1 in human T cells via A2A receptor and PKAI, thereby resulting in decreased T cell motility and cytokine release. This mechanism is likely to contribute to decreased immune surveillance in solid tumors.

  9. iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo .

    PubMed

    Bassiri, Hamid; Das, Rupali; Guan, Peng; Barrett, David M; Brennan, Patrick J; Banerjee, Pinaki P; Wiener, Susan J; Orange, Jordan S; Brenner, Michael B; Grupp, Stephan A; Nichols, Kim E

    2014-01-01

    Invariant natural killer T (iNKT) cells comprise a lineage of CD1d-restricted glycolipid-reactive T lymphocytes with important roles in host immunity to cancer. iNKT cells indirectly participate in antitumor responses by inducing dendritic cell maturation and producing cytokines that promote tumor clearance by CD8+ T and NK cells. Although iNKT cells thereby act as potent cellular adjuvants, it is less clear whether they directly control the growth of tumors. To gain insights into the direct contribution of iNKT cells to tumor immune surveillance, we developed in vitro and in vivo systems to selectively examine the antitumor activity of iNKT cells in the absence of other cytolytic effectors. Using the EL4 T-lymphoma cell line as a model, we found that iNKT cells exert robust and specific lysis of tumor cells in vitro in a manner that is differentially induced by iNKT cell agonists of varying T-cell receptor (TCR) affinities, such as OCH, α-galactosyl ceramide, and PBS44. In vitro blockade of CD1d-mediated lipid antigen presentation, disruption of TCR signaling, or loss of perforin expression significantly reduce iNKT cell killing. Consistent with these findings, iNKT cell reconstitution of T, B, and NK cell–deficient mice slows EL4 growth in vivo via TCR-CD1d and perforin-dependent mechanisms. Together, these observations establish that iNKT cells are sufficient to control the growth of T lymphoma in vitro and in vivo. They also suggest that the induction of iNKT cell cytotoxic responses in situ might serve as a more effective strategy to prevent and/or treat CD1d+ cancers, such as T lymphoma. ©2013 AACR.

  10. Feasibility of controlling CD38-CAR T cell activity with a Tet-on inducible CAR design

    PubMed Central

    Poels, Renée; Mulders, Manon J.; van de Donk, Niels W. C. J.; Themeli, Maria; Lokhorst, Henk M.; Mutis, Tuna

    2018-01-01

    Recent clinical advances with chimeric antigen receptor (CAR) T cells have led to the accelerated clinical approval of CD19-CARs to treat acute lymphoblastic leukemia. The CAR T cell therapy is nevertheless associated with toxicities, especially if the CARs are not entirely tumor-specific. Therefore, strategies for controlling the CAR T cell activity are required to improve their safety profile. Here, by using the multiple myeloma (MM)-associated CD38 molecule as target molecule, we tested the feasibility and utility of a doxycycline (DOX) inducible Tet-on CD38-CAR design to control the off-target toxicities of CAR T cells. Using CARs with high affinity to CD38, we demonstrate that this strategy allows the proper induction of CD38-CARs and CAR-mediated T cell cytotoxicity in a DOX-dose dependent manner. Especially when the DOX dose was limited to 10ng/ml, its removal resulted in a relatively rapid decay of CAR- related off-tumor effects within 24 hours, indicating the active controllability of undesired CAR activity. This Tet-on CAR design also allowed us to induce the maximal anti-MM cytotoxic activity of affinity-optimized CD38-CAR T cells, which already display a low toxicity profile, hereby adding a second level of safety to these cells. Collectively, these results indicate the possibility to utilize this DOX inducible CAR-design to actively regulate the CAR-mediated activities of therapeutic T cells. We therefore conclude that the Tet-on system may be more advantageous above suicide-genes to control the potential toxicities of CAR T cells without the need to destroy them permanently. PMID:29847570

  11. Caspase-1 from Human Myeloid-Derived Suppressor Cells Can Promote T Cell-Independent Tumor Proliferation.

    PubMed

    Zeng, Qi; Fu, Juan; Korrer, Michael; Gorbounov, Mikhail; Murray, Peter J; Pardoll, Drew; Masica, David L; Kim, Young J

    2018-05-01

    Immunosuppressive myeloid-derived suppressive cells (MDSCs) are characterized by their phenotypic and functional heterogeneity. To better define their T cell-independent functions within the tumor, sorted monocytic CD14 + CD11b + HLA-DR low/- MDSCs (mMDSC) from squamous cell carcinoma patients showed upregulated caspase-1 activity, which was associated with increased IL1β and IL18 expression. In vitro studies demonstrated that mMDSCs promoted caspase-1-dependent proliferation of multiple squamous carcinoma cell lines in both human and murine systems. In vivo , growth rates of B16, MOC1, and Panc02 were significantly blunted in chimeric mice adoptively transferred with caspase-1 null bone marrow cells under T cell-depleted conditions. Adoptive transfer of wild-type Gr-1 + CD11b + MDSCs from tumor-bearing mice reversed this antitumor response, whereas caspase-1 inhibiting thalidomide-treated MDSCs phenocopied the antitumor response found in caspase-1 null mice. We further hypothesized that MDSC caspase-1 activity could promote tumor-intrinsic MyD88-dependent carcinogenesis. In mice with wild-type caspase-1, MyD88-silenced tumors displayed reduced growth rate, but in chimeric mice with caspase-1 null bone marrow cells, MyD88-silenced tumors did not display differential tumor growth rate. When we queried the TCGA database, we found that caspase-1 expression is correlated with overall survival in squamous cell carcinoma patients. Taken together, our findings demonstrated that caspase-1 in MDSCs is a direct T cell-independent mediator of tumor proliferation. Cancer Immunol Res; 6(5); 566-77. ©2018 AACR . ©2018 American Association for Cancer Research.

  12. Abscopal Effects With Hypofractionated Schedules Extending Into the Effector Phase of the Tumor-Specific T-Cell Response.

    PubMed

    Zhang, Xuanwei; Niedermann, Gabriele

    2018-05-01

    Hypofractionated radiation therapy (hRT) combined with immune checkpoint blockade can induce T-cell-mediated local and abscopal antitumor effects. We had previously observed peak levels of tumor-infiltrating lymphocytes (TILs) between days 5 and 8 after hRT. Because TILs are regarded as radiosensitive, hRT schedules extending into this period might be less immunogenic, prompting us to compare clinically relevant, short and extended schedules with equivalent biologically effective doses combined with anti-programmed cell death 1 (PD1) antibody treatment. In mice bearing 2 B16-CD133 melanoma tumors, the primary tumor was irradiated with 3 × 9.18 Gy in 3 or 5 days or with 5 × 6.43 Gy in 10 days; an anti-PD1 antibody was given weekly. The mice were monitored for tumor growth and survival. T-cell responses were determined on days 8 and 15 of treatment. The role of regional lymph nodes was studied by administering FTY720, which blocks lymph node egress of activated T cells. Tumor growth measurements after combination treatment using short or extended hRT and control treatment were also performed in the wild-type B16 melanoma and 4T1 breast carcinoma models. In the B16-CD133 model, growth inhibition of irradiated primary and nonirradiated secondary tumors and overall survival were similar with all 3 hRT/anti-PD1 combinations, superior to hRT and anti-PD1 monotherapy, and was strongly dependent on CD8 + T cells. TIL infiltration and local and systemic tumor-specific CD8 + T-cell responses were also similar, regardless of whether short or extended hRT was used. Administration of FTY720 accelerated growth of both primary and secondary tumors, strongly reduced their TIL infiltration, and increased tumor-specific CD8 + T cells in the lymph nodes draining the irradiated tumor. In the 4T1 model, local and abscopal tumor control was also similar, regardless of whether short or extended hRT was used, although the synergy between hRT and anti-PD1 was weaker. No

  13. Axl acts as a tumor suppressor by regulating LIGHT expression in T lymphoma

    PubMed Central

    Young, Kon-Ji; Park, A-Reum; Choi, Ha-Rim; Lee, Hwa-Youn; Kim, Su-Man; Chung, Byung Yeoup; Park, Chul-Hong; Choi, Hyo Jin; Ko, Young-Hyeh; Bai, Hyoung-Woo; Kang, Hyung-Sik

    2017-01-01

    Axl is an oncogenic receptor tyrosine kinase that plays a role in many cancers. LIGHT (Lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpesvirus entry mediator on T cells) is a ligand that induces robust anti-tumor immunity by enhancing the recruitment and activation of effector immune cells at tumor sites. We observed that mouse EL4 and human Jurkat T lymphoma cells that stably overexpressed Axl also showed high expression of LIGHT. When Jurkat-Axl cells were treated with Gas6, a ligand for Axl, LIGHT expression was upregulated through activation of the PI3K/AKT signaling pathway and transcriptional induction by Sp1. The lytic activity of cytotoxic T lymphocytes and natural killer cells was enhanced by EL4-Axl cells. In addition, tumor volume and growth were markedly reduced due to enhanced apoptotic cell death in EL4-Axl tumor-bearing mice as compared to control mice. We also observed upregulated expression of CCL5 and its receptor, CCR5, and enhanced intratumoral infiltration of cytotoxic T lymphocytes and natural killer cells in EL4-Axl-bearing mice as compared to mock controls. These data strongly suggested that Axl exerts novel tumor suppressor effects by inducing upregulation of LIGHT in the tumor microenvironment of T lymphoma. PMID:28423548

  14. Axl acts as a tumor suppressor by regulating LIGHT expression in T lymphoma.

    PubMed

    Lee, Eun-Hee; Kim, Eun-Mi; Ji, Kon-Young; Park, A-Reum; Choi, Ha-Rim; Lee, Hwa-Youn; Kim, Su-Man; Chung, Byung Yeoup; Park, Chul-Hong; Choi, Hyo Jin; Ko, Young-Hyeh; Bai, Hyoung-Woo; Kang, Hyung-Sik

    2017-03-28

    Axl is an oncogenic receptor tyrosine kinase that plays a role in many cancers. LIGHT (Lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpesvirus entry mediator on T cells) is a ligand that induces robust anti-tumor immunity by enhancing the recruitment and activation of effector immune cells at tumor sites. We observed that mouse EL4 and human Jurkat T lymphoma cells that stably overexpressed Axl also showed high expression of LIGHT. When Jurkat-Axl cells were treated with Gas6, a ligand for Axl, LIGHT expression was upregulated through activation of the PI3K/AKT signaling pathway and transcriptional induction by Sp1. The lytic activity of cytotoxic T lymphocytes and natural killer cells was enhanced by EL4-Axl cells. In addition, tumor volume and growth were markedly reduced due to enhanced apoptotic cell death in EL4-Axl tumor-bearing mice as compared to control mice. We also observed upregulated expression of CCL5 and its receptor, CCR5, and enhanced intratumoral infiltration of cytotoxic T lymphocytes and natural killer cells in EL4-Axl-bearing mice as compared to mock controls. These data strongly suggested that Axl exerts novel tumor suppressor effects by inducing upregulation of LIGHT in the tumor microenvironment of T lymphoma.

  15. Early detection of tumor cells by innate immune cells leads to T(reg) recruitment through CCL22 production by tumor cells.

    PubMed

    Faget, Julien; Biota, Cathy; Bachelot, Thomas; Gobert, Michael; Treilleux, Isabelle; Goutagny, Nadège; Durand, Isabelle; Léon-Goddard, Sophie; Blay, Jean Yves; Caux, Christophe; Ménétrier-Caux, Christine

    2011-10-01

    In breast carcinomas, patient survival seems to be negatively affected by the recruitment of regulatory T cells (T(reg)) within lymphoid aggregates by CCL22. However, the mechanisms underpinning this process, which may be of broader significance in solid tumors, have yet to be described. In this study, we determined how CCL22 production is controlled in tumor cells. In human breast carcinoma cell lines, CCL22 was secreted at low basal levels that were strongly increased in response to inflammatory signals [TNF-α, IFN-γ, and interleukin (IL)-1β], contrasting with CCL17. Primary breast tumors and CD45(+) infiltrating immune cells appeared to cooperate in driving CCL22 secretion, as shown clearly in cocultures of breast tumor cell lines and peripheral blood mononuclear cells (PBMC) or their supernatants. We determined that monocyte-derived IL-1β and TNF-α are key players as monocyte depletion or neutralization of these cytokines attenuated secretion of CCL22. However, when purified monocytes were used, exogenous human IFN-γ was also required to generate this response suggesting a role for IFN-γ-producing cells within PBMCs. In this setting, we found that human IFN-γ could be replaced by the addition of (i) IL-2 or K562-activated natural killer (NK) cells or (ii) resting NK cells in the presence of anti-MHC class I antibody. Taken together, our results show a dialogue between NK and tumor cells leading to IFN-γ secretion, which in turn associates with monocyte-derived IL-1β and TNF-α to drive production of CCL22 by tumor cells and subsequent recruitment of T(reg). As one validation of this conclusion in primary breast tumors, we showed that NK cells and macrophages tend to colocalize within tumors. In summary, our findings suggest that at early times during tumorigenesis, the detection of tumor cells by innate effectors (monocytes and NK cells) imposes a selection for CCL22 secretion that recruits T(reg) to evade this early antitumor immune response.

  16. In vivo electroporation enhances vaccine-mediated therapeutic control of human papilloma virus-associated tumors by the activation of multifunctional and effector memory CD8+ T cells.

    PubMed

    Sales, Natiely S; Silva, Jamile R; Aps, Luana R M M; Silva, Mariângela O; Porchia, Bruna F M M; Ferreira, Luís Carlos S; Diniz, Mariana O

    2017-12-19

    In vivo electroporation (EP) has reignited the clinical interest on DNA vaccines as immunotherapeutic approaches to control different types of cancer. EP has been associated with increased immune response potency, but its capacity in influencing immunomodulation remains unclear. Here we evaluated the impact of in vivo EP on the induction of cellular immune responses and therapeutic effects of a DNA vaccine targeting human papillomavirus-induced tumors. Our results demonstrate that association of EP with the conventional intramuscular administration route promoted a more efficient activation of multifunctional and effector memory CD8 + T cells with enhanced cytotoxic activity. Furthermore, EP increased tumor infiltration of CD8 + T cells and avoided tumor recurrences. Finally, our results demonstrated that EP promotes local migration of antigen presenting cells that enhances with vaccine co-delivery. Altogether the present evidences shed further light on the in vivo electroporation action and its impact on the immunogenicity of DNA vaccines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Regulatory T cells as suppressors of anti-tumor immunity: Role of metabolism.

    PubMed

    De Rosa, Veronica; Di Rella, Francesca; Di Giacomo, Antonio; Matarese, Giuseppe

    2017-06-01

    Novel concepts in immunometabolism support the hypothesis that glucose consumption is also used to modulate anti-tumor immune responses, favoring growth and expansion of specific cellular subsets defined in the past as suppressor T cells and currently reborn as regulatory T (Treg) cells. During the 1920s, Otto Warburg and colleagues observed that tumors consumed high amounts of glucose compared to normal tissues, even in the presence of oxygen and completely functioning mitochondria. However, the role of the Warburg Effect is still not completely understood, particularly in the context of an ongoing anti-tumor immune response. Current experimental evidence suggests that tumor-derived metabolic restrictions can drive T cell hyporesponsiveness and immune tolerance. For example, several glycolytic enzymes, deregulated in cancer, contribute to tumor progression independently from their canonical metabolic activity. Indeed, they can control apoptosis, gene expression and activation of specific intracellular pathways, thus suggesting a direct link between metabolic switches and pro-tumorigenic transcriptional programs. Focus of this review is to define the specific metabolic pathways controlling Treg cell immunobiology in the context of anti-tumor immunity and tumor progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Increased Coexpression of PD-1, TIGIT, and KLRG-1 on Tumor-Reactive CD8+ T Cells During Relapse after Allogeneic Stem Cell Transplantation.

    PubMed

    Hutten, Tim J A; Norde, Wieger J; Woestenenk, Rob; Wang, Ruo Chen; Maas, Frans; Kester, Michel; Falkenburg, J H Frederik; Berglund, Sofia; Luznik, Leo; Jansen, Joop H; Schaap, Nicolaas; Dolstra, Harry; Hobo, Willemijn

    2018-04-01

    Allogeneic stem cell transplantation (allo-SCT) can be a curative treatment for patients with a hematologic malignancy due to alloreactive T cell responses recognizing minor histocompatibility antigens (MiHA). Yet tumor immune escape mechanisms can cause failure of T cell immunity, leading to relapse. Tumor cells display low expression of costimulatory molecules and can up-regulate coinhibitory molecules that inhibit T cell functionality on ligation with their counter-receptors on the tumor-reactive T cells. The aim of this explorative study was to evaluate immune checkpoint expression profiles on T cell subsets and on cytomegalovirus (CMV)- and/or MiHA-reactive CD8 + T cells of allo-SCT recipients using a 13-color flow cytometry panel, and to correlate these expression patterns to clinical outcomes. MiHA-reactive CD8 + T cells exhibited an early differentiated CD27 ++ /CD28 ++ phenotype with low KLRG-1 and CD57 expression. These T cells also displayed increased expression of PD-1, TIM-3, and TIGIT compared with total effector memory T cells and CMV-specific CD8 + T cells in healthy donors and allo-SCT recipients. Remarkably, high coexpression of PD-1, TIGIT, and KLRG-1 on MiHA-reactive CD8 + T cells was associated with relapse after allo-SCT. Taken together, these findings indicate that MiHA-specific CD8 + T cells of relapsed patients have a distinctive coinhibitory expression signature compared with patients who stay in remission. This phenotype may serve as a potential monitoring tool in patients. Moreover, these findings suggest that PD-1 and TIGIT play important roles in regulating T cell-mediated tumor control, providing a rationale for immunotherapy with blocking antibodies to treat relapse after allo-SCT. Copyright © 2017 The American Society for Blood and Marrow Transplantation. All rights reserved.

  19. Lmo2 expression defines tumor cell identity during T-cell leukemogenesis.

    PubMed

    García-Ramírez, Idoia; Bhatia, Sanil; Rodríguez-Hernández, Guillermo; González-Herrero, Inés; Walter, Carolin; González de Tena-Dávila, Sara; Parvin, Salma; Haas, Oskar; Woessmann, Wilhelm; Stanulla, Martin; Schrappe, Martin; Dugas, Martin; Natkunam, Yasodha; Orfao, Alberto; Domínguez, Verónica; Pintado, Belén; Blanco, Oscar; Alonso-López, Diego; De Las Rivas, Javier; Martín-Lorenzo, Alberto; Jiménez, Rafael; García Criado, Francisco Javier; García Cenador, María Begoña; Lossos, Izidore S; Vicente-Dueñas, Carolina; Borkhardt, Arndt; Hauer, Julia; Sánchez-García, Isidro

    2018-06-07

    The impact of LMO2 expression on cell lineage decisions during T-cell leukemogenesis remains largely elusive. Using genetic lineage tracing, we have explored the potential of LMO2 in dictating a T-cell malignant phenotype. We first initiated LMO2 expression in hematopoietic stem/progenitor cells and maintained its expression in all hematopoietic cells. These mice develop exclusively aggressive human-like T-ALL In order to uncover a potential exclusive reprogramming effect of LMO2 in murine hematopoietic stem/progenitor cells, we next showed that transient LMO2 expression is sufficient for oncogenic function and induction of T-ALL The resulting T-ALLs lacked LMO2 and its target-gene expression, and histologically, transcriptionally, and genetically similar to human LMO2-driven T-ALL We next found that during T-ALL development, secondary genomic alterations take place within the thymus. However, the permissiveness for development of T-ALL seems to be associated with wider windows of differentiation than previously appreciated. Restricted Cre-mediated activation of Lmo2 at different stages of B-cell development induces systematically and unexpectedly T-ALL that closely resembled those of their natural counterparts. Together, these results provide a novel paradigm for the generation of tumor T cells through reprogramming in vivo and could be relevant to improve the response of T-ALL to current therapies. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Myeloid Cell COX-2 deletion reduces mammary tumor growth through enhanced cytotoxic T-lymphocyte function

    PubMed Central

    Chen, Edward P.; Markosyan, Nune; Connolly, Emma; Lawson, John A.; Li, Xuanwen; Grant, Gregory R.; Grosser, Tilo; FitzGerald, Garret A.; Smyth, Emer M.

    2014-01-01

    Cyclooxygenase-2 (COX-2) expression is associated with poor prognosis across a range of human cancers, including breast cancer. The contribution of tumor cell-derived COX-2 to tumorigenesis has been examined in numerous studies; however, the role of stromal-derived COX-2 is ill-defined. Here, we examined how COX-2 in myeloid cells, an immune cell subset that includes macrophages, influences mammary tumor progression. In mice engineered to selectively lack myeloid cell COX-2 [myeloid-COX-2 knockout (KO) mice], spontaneous neu oncogene-induced tumor onset was delayed, tumor burden reduced, and tumor growth slowed compared with wild-type (WT). Similarly, growth of neu-transformed mammary tumor cells as orthotopic tumors in immune competent syngeneic myeloid-COX-2 KO host mice was reduced compared with WT. By flow cytometric analysis, orthotopic myeloid-COX-2 KO tumors had lower tumor-associated macrophage (TAM) infiltration consistent with impaired colony stimulating factor-1-dependent chemotaxis by COX-2 deficient macrophages in vitro. Further, in both spontaneous and orthotopic tumors, COX-2-deficient TAM displayed lower immunosuppressive M2 markers and this was coincident with less suppression of CD8+ cytotoxic T lymphocytes (CTLs) in myeloid-COX-2 KO tumors. These studies suggest that reduced tumor growth in myeloid-COX-2 KO mice resulted from disruption of M2-like TAM function, thereby enhancing T-cell survival and immune surveillance. Antibody-mediated depletion of CD8+, but not CD4+ cells, restored tumor growth in myeloid-COX-2 KO to WT levels, indicating that CD8+ CTLs are dominant antitumor effectors in myeloid-COX-2 KO mice. Our studies suggest that inhibition of myeloid cell COX-2 can potentiate CTL-mediated tumor cytotoxicity and may provide a novel therapeutic approach in breast cancer therapy. PMID:24590894

  1. Peptide vaccines prevent tumor growth by activating T cells that respond to native tumor antigens.

    PubMed

    Jordan, Kimberly R; McMahan, Rachel H; Kemmler, Charles B; Kappler, John W; Slansky, Jill E

    2010-03-09

    Peptide vaccines enhance the response of T cells toward tumor antigens and represent a strategy to augment antigen-independent immunotherapies of cancer. However, peptide vaccines that include native tumor antigens rarely prevent tumor growth. We have assembled a set of peptide variants for a mouse-colon tumor model to determine how to improve T-cell responses. These peptides have similar affinity for MHC molecules, but differ in the affinity of the peptide-MHC/T-cell receptor interaction with a tumor-specific T-cell clone. We systematically demonstrated that effective antitumor responses are generated after vaccination with variant peptides that stimulate the largest proportion of endogenous T cells specific for the native tumor antigen. Importantly, we found some variant peptides that strongly stimulated a specific T-cell clone in vitro, but elicited fewer tumor-specific T cells in vivo, and were not protective. The T cells expanded by the effective vaccines responded to the wild-type antigen by making cytokines and killing target cells, whereas most of the T cells expanded by the ineffective vaccines only responded to the peptide variants. We conclude that peptide-variant vaccines are most effective when the peptides react with a large responsive part of the tumor-specific T-cell repertoire.

  2. Regulatory T cells decrease invariant natural killer T cell-mediated pregnancy loss in mice.

    PubMed

    Li, L; Tu, J; Jiang, Y; Zhou, J; Schust, D J

    2017-05-01

    Pregnancy loss is the commonest complication of pregnancy. The causes of pregnancy loss are poorly understood. It has been reported that stimulation of invariant natural killer T (iNKT) cells using α-galactosylceramide (αGC) induces pregnancy loss in mice. Here we investigated the mechanisms, especially the role of regulatory T (Treg) cells, in iNKT cell-mediated pregnancy loss. We found that injection of αGC rapidly induced fetal resorption, activated decidual iNKT cells, decreased the percentage of decidual Treg cells and their interleukin (IL)-10 and transforming growth factor (TGF)-β production, and upregulated the levels of interferon (IFN)-γ, tumor necrosis factor-α, IL-4, and IL-10 in serum. Adoptive transfer of iNKT cells from wild-type (WT) and IL-4 -/- mice but not IFN-γ -/- mice into αGC-treated iNKT cell-deficient Jα18 -/- mice restored αGC-induced pregnancy loss. Adoptive transfer of Treg cells downregulated α-GC-induced pregnancy loss in WT mice. Finally, co-culture with αGC-stimulated decidual iNKT cells decreased the production of IL-10 and TGF-β in decidual Treg cells and inhibited their suppressive activity. These findings suggest that activation of iNKT cells induces pregnancy loss in mice in an IFN-γ-dependent manner. In addition, inhibition of the function of decidual Treg cells has an important role in iNKT cell-mediated pregnancy loss.

  3. The immunization site of cytokine-secreting tumor cell vaccines influences the trafficking of tumor-specific T lymphocytes and antitumor efficacy against regional tumors.

    PubMed

    Chang, Chun-Jung; Tai, Kuo-Feng; Roffler, Steve; Hwang, Lih-Hwa

    2004-11-15

    Tumor cells engineered to secrete cytokines, referred to as tumor cell vaccines, can often generate systemic antitumor immunity and, in many cases, cause tumor regression. We compared the efficacy of s.c. immunization or intrahepatic immunization of GM-CSF-expressing tumor cell vaccines on the growth of s.c. or orthotopic liver tumors. A chemically transformed hepatic epithelial cell line, GP7TB, derived from Fischer 344 rats, was used to generate tumor models and tumor cell vaccines. Our results demonstrated that two s.c. injections of an irradiated tumor cell vaccine significantly controlled the growth of s.c. tumors, but was completely ineffective against orthotopic liver tumors. Effector cell infiltration in liver tumors was markedly reduced compared with s.c. tumors. Enhanced apoptosis of some effector cells was observed in the liver tumors compared with the s.c. tumors. Furthermore, the T cells induced by s.c. immunization preferentially migrated to s.c. tumor sites, as demonstrated by adoptive transfer experiments. In contrast, intrahepatic immunization, using parental tumor cells admixed with adenoviruses carrying the GM-CSF gene, yielded significantly better therapeutic effects on the liver tumors than on the s.c. tumors. Adoptive transfer experiments further confirmed that the T cells induced by liver immunization preferentially migrated to the liver tumor sites. Our results demonstrate that distinct T cell populations are induced by different immunization routes. Thus, the homing behavior of T cells depends on the route of immunization and is an important factor determining the efficacy of immunotherapy for regional tumors.

  4. PLAC1-specific TCR-engineered T cells mediate antigen-specific antitumor effects in breast cancer

    PubMed Central

    Li, Qiongshu; Liu, Muyun; Wu, Man; Zhou, Xin; Wang, Shaobin; Hu, Yuan; Wang, Youfu; He, Yixin; Zeng, Xiaoping; Chen, Junhui; Liu, Qubo; Xiao, Dong; Hu, Xiang; Liu, Weibin

    2018-01-01

    Placenta-specific 1 (PLAC1), a novel cancer-testis antigen (CTA), is expressed in a number of different human malignancies. It is frequently produced in breast cancer, serving a function in tumorigenesis. Adoptive immunotherapy using T cell receptor (TCR)-engineered T cells against CTA mediates objective tumor regression; however, to the best of our knowledge, targeting PLAC1 using engineered T cells has not yet been attempted. In the present study, the cDNAs encoding TCRα- and β-chains specific for human leukocyte antigen (HLA)-A*0201-restricted PLAC1 were cloned from a cytotoxic T-lymphocyte, generated by in vitro by the stimulation of CD8+ T cells using autologous HLA-A2+ dendritic cells loaded with a PLAC1-specific peptide (p28-36, VLCSIDWFM). The TCRα/β-chains were linked by a 2A peptide linker (TCRα-Thosea asigna virus-TCRβ), and the constructs were cloned into the lentiviral vector, followed by transduction into human cytotoxic (CD8+) T cells. The efficiency of transduction was up to 25.16%, as detected by PLAC1 multimers. TCR-transduced CD8+ T cells, co-cultured with human non-metastatic breast cancer MCF-7 cells (PLAC1+, HLA-A2+) and triple-negative breast cancer MDAMB-231 cells (PLAC1+, HLA-A2+), produced interferon γ and tumor necrosis factor α, suggesting TCR activation. Furthermore, the PLAC1 TCR-transduced CD8+ T cells efficiently and specifically identified and annihilated the HLA-A2+/PLAC1+ breast cancer cell lines in a lactate dehydrogenase activity assay. Western blot analysis demonstrated that TCR transduction stimulated the production of mitogen-activated protein kinase signaling molecules, extracellular signal-regulated kinases 1/2 and nuclear factor-κB, through phosphoinositide 3-kinase γ-mediated phosphorylation of protein kinase B in CD8+ T cells. Xenograft mouse assays revealed that PLAC1 TCR-transduced CD8+T cells significantly delayed the tumor progression in mice-bearing breast cancer compared with normal saline or negative

  5. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein–Barr virus associated nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogg, Mark; Murphy, John R.; Lorch, Jochen

    Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, asmore » well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. - Highlights: • Viral proteins are tumor antigens in Epstein–Barr virus associated Nasopharyngeal Carcinoma. • CD8+ T cell responses against EBV proteins EBNA-1 and LMP2 are suppressed in NPC patients. • T regulatory cells are responsible for suppressing EBV immunity in NPC patients. • Depletion of Tregs with Ontak can rescue EBV-specific CD8+ T cell responses in NPC patients. • This clinically approved drug may be effective for enhancing anti-tumor immunity in NPC patients.« less

  6. Development of tumor-reactive T cells after nonmyeloablative allogeneic hematopoietic stem cell transplant for chronic lymphocytic leukemia.

    PubMed

    Nishida, Tetsuya; Hudecek, Michael; Kostic, Ana; Bleakley, Marie; Warren, Edus H; Maloney, David; Storb, Rainer; Riddell, Stanley R

    2009-07-15

    Allogeneic nonmyeloablative hematopoietic stem cell transplant (NM-HSCT) can result in durable remission of chronic lymphocytic leukemia (CLL). It is thought that the efficacy of NM-HSCT is mediated by recognition of tumor cells by T cells in the donor stem cell graft. We evaluated the development of CTLs specific for CLL after NM-HSCT to determine if their presence correlated with antitumor efficacy. Peripheral blood mononuclear cells obtained from 12 transplant recipients at intervals after NM-HSCT were stimulated in vitro with CLL cells. Polyclonal T-cell lines and CD8(+) T-cell clones were derived from these cultures and evaluated for lysis of donor and recipient target cells including CLL. The presence and specificity of responses was correlated with clinical outcomes. Eight of the 12 patients achieved remission or a major antitumor response and all 8 developed CD8(+) and CD4(+) T cells specific for antigens expressed by CLL. A clonal analysis of the CD8(+) T-cell response identified T cells specific for multiple minor histocompatibility (H) antigens expressed on CLL in six of the responding patients. A significant fraction of the CD8(+) T-cell response in some patients was also directed against nonshared tumor-specific antigens. By contrast, CLL-reactive T cells were not detected in the four patients who had persistent CLL after NM-HSCT, despite the development of graft-versus-host disease. The development of a diverse T-cell response specific for minor H and tumor-associated antigens expressed by CLL predicts an effective graft-versus-leukemia response after NM-HSCT.

  7. Surgical Stress Abrogates Pre-Existing Protective T Cell Mediated Anti-Tumor Immunity Leading to Postoperative Cancer Recurrence

    PubMed Central

    Lansdell, Casey; Alkayyal, Almohanad A.; Baxter, Katherine E.; Angka, Leonard; Zhang, Jiqing; Tanese de Souza, Christiano; Stephenson, Kyle B.; Parato, Kelley; Bramson, Jonathan L.; Bell, John C.; Lichty, Brian D.; Auer, Rebecca C.

    2016-01-01

    Anti-tumor CD8+ T cells are a key determinant for overall survival in patients following surgical resection for solid malignancies. Using a mouse model of cancer vaccination (adenovirus expressing melanoma tumor-associated antigen (TAA)—dopachrome tautomerase (AdDCT) and resection resulting in major surgical stress (abdominal nephrectomy), we demonstrate that surgical stress results in a reduction in the number of CD8+ T cell that produce cytokines (IFNγ, TNFα, Granzyme B) in response to TAA. This effect is secondary to both reduced proliferation and impaired T cell function following antigen binding. In a prophylactic model, surgical stress completely abrogates tumor protection conferred by vaccination in the immediate postoperative period. In a clinically relevant surgical resection model, vaccinated mice undergoing a positive margin resection with surgical stress had decreased survival compared to mice with positive margin resection alone. Preoperative immunotherapy with IFNα significantly extends survival in surgically stressed mice. Importantly, myeloid derived suppressor cell (MDSC) population numbers and functional impairment of TAA-specific CD8+ T cell were altered in surgically stressed mice. Our observations suggest that cancer progression may result from surgery-induced suppression of tumor-specific CD8+ T cells. Preoperative immunotherapies aimed at targeting the prometastatic effects of cancer surgery will reduce recurrence and improve survival in cancer surgery patients. PMID:27196057

  8. Indolyl-quinuclidinols inhibit ENOX activity and endothelial cell morphogenesis while enhancing radiation-mediated control of tumor vasculature

    PubMed Central

    Geng, Ling; Rachakonda, Girish; Morré, D. James; Morré, Dorothy M.; Crooks, Peter A.; Sonar, Vijayakumar N.; Roti, Joseph L. Roti; Rogers, Buck E.; Greco, Suellen; Ye, Fei; Salleng, Kenneth J.; Sasi, Soumya; Freeman, Michael L.; Sekhar, Konjeti R.

    2009-01-01

    There is a need for novel strategies that target tumor vasculature, specifically those that synergize with cytotoxic therapy, in order to overcome resistance that can develop with current therapeutics. A chemistry-driven drug discovery screen was employed to identify novel compounds that inhibit endothelial cell tubule formation. Cell-based phenotypic screening revealed that noncytotoxic concentrations of (Z)-(±)-2-(1-benzenesulfonylindol-3-ylmethylene)-1-azabicyclo[2. 2.2]octan-3-ol (analog I) and (Z)-(±)-2-(1-benzylindol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-ol (analog II) inhibited endothelial cell migration and the ability to form capillary-like structures in Matrigel by ≥70%. The ability to undergo neoangiogenesis, as measured in a window-chamber model, was also inhibited by 70%. Screening of biochemical pathways revealed that analog II inhibited the enzyme ENOX1 (EC50 = 10 μM). Retroviral-mediated shRNA suppression of endothelial ENOX1 expression inhibited cell migration and tubule formation, recapitulating the effects observed with the small-molecule analogs. Genetic or chemical suppression of ENOX1 significantly increased radiation-mediated Caspase3-activated apoptosis, coincident with suppression of p70S6K1 phosphorylation. Administration of analog II prior to fractionated X-irradiation significantly diminished the number and density of tumor microvessels, as well as delayed syngeneic and xenograft tumor growth compared to results obtained with radiation alone. Analysis of necropsies suggests that the analog was well tolerated. These results suggest that targeting ENOX1 activity represents a novel therapeutic strategy for enhancing the radiation response of tumors.—Geng, L., Rachakonda, G., Morré, D. J., Morré, D. M., Crooks, P. A., Sonar, V. N., Roti Roti, J. L., Rogers, B. E., Greco, S., Ye, F., Salleng, K. J., Sasi, S., Freeman, M. L., Sekhar, K. R. Indolyl-quinuclidinols inhibit ENOX activity and endothelial cell morphogenesis while

  9. Cancer vaccine enhanced, non-tumor-reactive CD8(+) T cells exhibit a distinct molecular program associated with "division arrest anergy".

    PubMed

    Beyer, Marc; Karbach, Julia; Mallmann, Michael R; Zander, Thomas; Eggle, Daniela; Classen, Sabine; Debey-Pascher, Svenja; Famulok, Michael; Jäger, Elke; Schultze, Joachim L

    2009-05-15

    Immune-mediated tumor rejection relies on fully functional T-cell responses and neutralization of an adverse tumor microenvironment. In clinical trials, we detected peptide-specific but non-tumor-reactive and therefore not fully functional CD8(+) T cells post-vaccination against tumor antigens. Understanding the molecular mechanisms behind nontumor reactivity will be a prerequisite to overcome this CD8(+) T-cell deviation. We report that these non-tumor-reactive CD8(+) T cells are characterized by a molecular program associated with hallmarks of "division arrest anergy." Non-tumor-reactive CD8(+) T cells are characterized by coexpression of CD7, CD25, and CD69 as well as elevated levels of lck(p505) and p27(kip1). In vivo quantification revealed high prevalence of non-tumor-reactive CD8(+) T cells with increased levels during cancer vaccination. Furthermore, their presence was associated with a trend toward shorter survival. Dynamics and frequencies of non-target-reactive CD8(+) T cells need to be further addressed in context of therapeutic vaccine development in cancer, chronic infections, and autoimmune diseases.

  10. Human CD34+ cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand target both tumor cells and tumor vasculature.

    PubMed

    Lavazza, Cristiana; Carlo-Stella, Carmelo; Giacomini, Arianna; Cleris, Loredana; Righi, Marco; Sia, Daniela; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Francolini, Maura; Gloghini, Annunziata; Carbone, Antonino; Formelli, Franca; Gianni, Alessandro M

    2010-03-18

    Adenovirus-transduced CD34+ cells expressing membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34-TRAIL+ cells) exert potent antitumor activity. To further investigate the mechanism(s) of action of CD34-TRAIL+ cells, we analyzed their homing properties as well as antitumor and antivascular effects using a subcutaneous myeloma model in immunodeficient mice. After intravenous injection, transduced cells homed in the tumor peaking at 48 hours when 188 plus or minus 25 CD45+ cells per 10(5) tumor cells were detected. Inhibition experiments showed that tumor homing of CD34-TRAIL+ cells was largely mediated by vascular cell adhesion molecule-1 and stromal cell-derived factor-1. Both CD34-TRAIL+ cells and soluble (s)TRAIL significantly reduced tumor volume by 40% and 29%, respectively. Computer-aided analysis of TdT-mediated dUTP nick end-labeling-stained tumor sections demonstrated significantly greater effectiveness for CD34-TRAIL+ cells in increasing tumor cell apoptosis and necrosis over sTRAIL. Proteome array analysis indicated that CD34-TRAIL+ cells and sTRAIL activate similar apoptotic machinery. In vivo staining of tumor vasculature with sulfosuccinimidyl-6-(biotinamido) hexanoate-biotin revealed that CD34-TRAIL+ cells but not sTRAIL significantly damaged tumor vasculature, as shown by TdT-mediated dUTP nick end-labeling+ endothelial cells, appearance of hemorrhagic areas, and marked reduction of endothelial area. These results demonstrate that tumor homing of CD34-TRAIL+ cells induces early vascular disruption, resulting in hemorrhagic necrosis and tumor destruction.

  11. Potentiation of T-cell mediated immunity by levamisole.

    PubMed Central

    Renoux, G; Renoux, M; Teller, M N; McMahon, S; Guillaumin, J M

    1976-01-01

    Cell-mediated immunity is a requirement for recognition and elimination of cells and for prevention or treatment of a variety of diseases. Therefore, the development of a product potentially active in increasing immunity involves its testing in assays specific for cell-mediated immunity. The effectiveness of a single administration of levamisole was demonstrated in the rejection of isografts in a male to female C57BL/6 system, and on the enhancement of levels of the delayed type hypersensitivity (DTH) to sheep red cells (SRBC). Indeed, in five on nine tests, an injection of 25 mg/kg of levamisole to female recipients either on the day of grafting or 7 days after grafting resulted in a RT50% rejection time of 25 days, compared with 46 days in untreated controls. Levamisole administered at the time of immunization with various doses of SRBC elicited earlier, higher and more sustained DTH levels than in untreated controls. Such induction of T-cell activation was accompanied by a switch on anti-SRBC antibodies from IgM to IgG. These findings confirm and extend data evidencing the ability of levamisole to recruit and activate T cells for an increased or restored cell-mediated immunity. PMID:782749

  12. Adenovirus-mediated interleukin-18 mutant in vivo gene transfer inhibits tumor growth through the induction of T cell immunity and activation of natural killer cell cytotoxicity.

    PubMed

    Hwang, Kyung-Sun; Cho, Won-Kyung; Yoo, Jinsang; Seong, Young Rim; Kim, Bum-Kyeng; Kim, Samyong; Im, Dong-Soo

    2004-06-01

    We report here that gene transfer using recombinant adenoviruses encoding interleukin (IL)-18 mutants induces potent antitumor activity in vivo. The precursor form of IL-18 (ProIL-18) is processed by caspase-1 to produce bioactive IL-18, but its cleavage by caspase-3 (CPP32) produces an inactive form. To prepare IL-18 molecules with an effective antitumor activity, a murine IL-18 mutant with the signal sequence of murine granulocyte-macrophage (GM)- colony stimulating factor (CSF) at the 5'-end of mature IL-18 cDNA (GMmIL-18) and human IL-18 mutant with the prepro leader sequence of trypsin (PPT), which is not cleaved by caspase-3 (PPThIL-18CPP32-), respectively, were constructed. Adenovirus vectors carrying GMmIL-18 or PPThIL-18CPP32- produced bioactive IL-18. Ad.GMmIL-18 had a more potent antitumor effect than Ad.mProIL-18 encoding immature IL-18 in renal cell adenocarcinoma (Renca) tumor-bearing mice. Tumor-specific cytotoxic T lymphocytes, the induction of Th1 cytokines, and an augmented natural killer (NK) cell activity were detected in Renca tumor-bearing mice treated with Ad.GMmIL-18. An immunohistological analysis revealed that CD4+ and CD8+ T cells abundantly infiltrated into tumors of mice treated with Ad.GMmIL-18. Huh-7 human hepatoma tumor growth in nude mice with a defect of T cell function was significantly inhibited by Ad.PPThIL-18CPP32- compared with Ad.hProIL-18 encoding immature IL-18. Nude mice treated with Ad.PPThIL-18CPP32- contained NK cells with increased cytotoxicity. The results suggest that the release of mature IL-18 in tumors is required for achieving an antitumor effect including tumor-specific cellular immunity and augmented NK cell-mediated cytotoxicity. These optimally designed IL-18 mutants could be useful for improving the antitumor effectiveness of wild-type IL-18. Copyright 2004 Nature Publishing Group

  13. CD4 T cell-mediated masking effects of the immunogenicity of tumor-associated antigens are qualitatively and quantitatively different depending on the individual antigens.

    PubMed

    Okano, Shinji; Matsumoto, Yoshihiro; Yoshiya, Shohei; Yamashita, Yo-ichi; Harimoto, Norifumi; Ikegami, Toru; Shirabe, Ken; Harada, Mamoru; Yoshikai, Yasunobu; Maehara, Yoshihiko

    2013-01-01

    The use of cancer immunotherapy as part of multidisciplinary therapies for cancer is a promising strategy for the cure of advanced cancer patients. In cancer immunotherapy, the effective priming of tumor-associated antigen (TAA)-specific CD8+ T cells is essential, and therefore, the appropriate selection of the best peptide for targeting the cancer is a most important concern. One criticism in the selection of a TAA is the immunogenicity of the TAA, the vaccination of which effectively elicits clinical responses. However, the critical basic immunological factors that affect the differences in the immunogenicity of TAAs remain to be elucidated. Here we found that CD4 T-cell responses suppressed the immunogenicity of the concomitant TAA in a murine melanoma model in which intratumoral activated dendritic therapy (ITADT) was used for treatment of the established cancer, and we observed that the antitumor effects were largely dependent on the CD8 T-cell response. CD4 T-cell depletion simply enhanced the tyrosinase-related protein (TRP)-2(180-188) peptide-specific cytotoxic T-cell (CTL) responses, and CD4 T-cell depletion provided immunogenicity for mgp100(25-33) peptide, to which a CTL response could not be detected at all in CD4 T-cell-intact mice in the early therapeutic phase. Further, the mgp100(25-33) peptide-specific CTL response again became undetectable after the recovery of CD4 T cells in previously CD4-depleted, tumor-eradicated mice, whereas the TRP-2(180-188) peptide-specific CTL response was still much stronger in CD4-depleted mice than in CD4-intact mice. These findings suggest that the CD4 T cell-mediated masking effects of the immunogenicity of tumor-associated antigens are qualitatively and quantitatively different depending on the individual antigens.

  14. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity

    PubMed Central

    Adusumilli, Prasad S.; Cherkassky, Leonid; Villena-Vargas, Jonathan; Colovos, Christos; Servais, Elliot; Plotkin, Jason; Jones, David R.; Sadelain, Michel

    2015-01-01

    Translating the recent success of chimeric antigen receptor (CAR) T cell therapy for hematological malignancies to solid tumors will necessitate overcoming several obstacles, including inefficient T cell tumor infiltration and insufficient functional persistence. Taking advantage of an orthotopic model that faithfully mimics human pleural malignancy, we evaluated two routes of administration of mesothelin-targeted T cells using the M28z CAR. We found that intra-pleurally administered CAR T cells vastly out-performed systemically infused T cells, requiring 30-fold fewer M28z T cells to induce long-term complete remissions. Following intrapleural T cell administration, prompt in vivo antigen-induced T cell activation allowed robust CAR T cell expansion and effector differentiation, resulting in enhanced anti-tumor efficacy and functional T cell persistence for 200 days. Regional T cell administration also promoted efficient elimination of extrathoracic tumor sites. This therapeutic efficacy was dependent on early CD4+ T cell activation associated with a higher intra-tumoral CD4/CD8 cell ratios and CD28-dependent CD4+ T cell-mediated cytotoxicity. In contrast, intravenously delivered CAR T cells, even when accumulated at equivalent numbers in the pleural tumor, did not achieve comparable activation, tumor eradication or persistence. The remarkable ability of intrapleurally administered T cells to circulate and persist supports the concept of delivering optimal CAR T cell therapy through “regional distribution centers.” Based on these results, we are opening a phase I clinical trial to evaluate the safety of intrapleural administration of mesothelin-targeted CAR T cells in patients with primary or secondary pleural malignancies. PMID:25378643

  15. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities

    PubMed Central

    Xia, An-Liang; Wang, Xiao-Chen; Lu, Yi-Jun; Lu, Xiao-Jie; Sun, Beicheng

    2017-01-01

    Chimeric antigen receptor (CAR)-engineered T cells (CAR-T cells) have been shown to have unprecedented efficacy in B cell malignancies, most notably in B cell acute lymphoblastic leukemia (B-ALL) with up to a 90% complete remission rate using anti-CD19 CAR-T cells. However, CAR T-cell therapy for solid tumors currently is faced with numerous challenges such as physical barriers, the immunosuppressive tumor microenvironment and the specificity and safety. The clinical results in solid tumors have been much less encouraging, with multiple cases of toxicity and a lack of therapeutic response. In this review, we will discuss the current stats and challenges of CAR-T cell therapy for solid tumors, and propose possibl e solutions and future perspectives. PMID:29163850

  16. BCL2 expression in CD105 positive neoangiogenic cells and tumor progression in angioimmunoblastic T-cell lymphoma.

    PubMed

    Ratajczak, Philippe; Leboeuf, Christophe; Wang, Li; Brière, Josette; Loisel-Ferreira, Irmine; Thiéblemont, Catherine; Zhao, Wei-Li; Janin, Anne

    2012-06-01

    The angiogenic microenvironment has been known to be a component of angioimmunoblastic T-cell lymphoma since its initial characterization. We have shown that angioimmunoblastic T-cell lymphoma endothelial cells produce vascular endothelial growth factor-A (VEGFA), and participate in lymphoma progression. In squamous cell carcinoma, endothelial BCL2 expression induces a crosstalk with tumor cells through VEGFA, a major mediator of tumoral angiogenesis. In the present study, we analyzed BCL2 and VEGFA in 30 angioimmunoblastic T-cell lymphomas, using triple immunofluorescence to identify protein coexpression in well-characterized lymphoma cells and microenvironment neoangiogenic endothelial cells. Using quantitative real-time PCR, we assessed mRNA expression levels in laser-microdissected endothelial and lymphoma cells. In lymphoma cells, as in endothelial cells, BCL2 and VEGFA proteins were coexpressed. BCL2 was expressed only in neoangiogenic CD34(+)CD105(+) endothelial cells. In laser-microdissected cells, mRNA studies showed a significant relationship between BCL2 and VEGFA levels in CD34(+) endothelial cells, but not in CD3(+)CD10(+)lymphoma cells, or in CD34(+) endothelial cells from lymph node hyperplasia. Further study showed that, in AITL, BCL2 mRNA levels in CD34(+)CD105(+) neoangiogenic endothelial cells also correlated with microvessel density, International Prognostic Index, Ann Arbor stage, bone marrow involvement and elevated LDH. BCL2 expression by CD105(+) neoangiogenic endothelial cells is related to tumor progression in angioimmunoblastic T-cell lymphoma.

  17. Viral Infection of Tumors Overcomes Resistance to PD-1-immunotherapy by Broadening Neoantigenome-directed T-cell Responses

    PubMed Central

    Woller, Norman; Gürlevik, Engin; Fleischmann-Mundt, Bettina; Schumacher, Anja; Knocke, Sarah; Kloos, Arnold M; Saborowski, Michael; Geffers, Robert; Manns, Michael P; Wirth, Thomas C; Kubicka, Stefan; Kühnel, Florian

    2015-01-01

    There is evidence that viral oncolysis is synergistic with immune checkpoint inhibition in cancer therapy but the underlying mechanisms are unclear. Here, we investigated whether local viral infection of malignant tumors is capable of overcoming systemic resistance to PD-1-immunotherapy by modulating the spectrum of tumor-directed CD8 T-cells. To focus on neoantigen-specific CD8 T-cell responses, we performed transcriptomic sequencing of PD-1-resistant CMT64 lung adenocarcinoma cells followed by algorithm-based neoepitope prediction. Investigations on neoepitope-specific T-cell responses in tumor-bearing mice demonstrated that PD-1 immunotherapy was insufficient whereas viral oncolysis elicited cytotoxic T-cell responses to a conserved panel of neoepitopes. After combined treatment, we observed that PD-1-blockade did not affect the magnitude of oncolysis-mediated antitumoral immune responses but a broader spectrum of T-cell responses including additional neoepitopes was observed. Oncolysis of the primary tumor significantly abrogated systemic resistance to PD-1-immunotherapy leading to improved elimination of disseminated lung tumors. Our observations were confirmed in a transgenic murine model of liver cancer where viral oncolysis strongly induced PD-L1 expression in primary liver tumors and lung metastasis. Furthermore, we demonstrated that combined treatment completely inhibited dissemination in a CD8 T-cell-dependent manner. Therefore, our results strongly recommend further evaluation of virotherapy and concomitant PD-1 immunotherapy in clinical studies. PMID:26112079

  18. Viral Infection of Tumors Overcomes Resistance to PD-1-immunotherapy by Broadening Neoantigenome-directed T-cell Responses.

    PubMed

    Woller, Norman; Gürlevik, Engin; Fleischmann-Mundt, Bettina; Schumacher, Anja; Knocke, Sarah; Kloos, Arnold M; Saborowski, Michael; Geffers, Robert; Manns, Michael P; Wirth, Thomas C; Kubicka, Stefan; Kühnel, Florian

    2015-10-01

    There is evidence that viral oncolysis is synergistic with immune checkpoint inhibition in cancer therapy but the underlying mechanisms are unclear. Here, we investigated whether local viral infection of malignant tumors is capable of overcoming systemic resistance to PD-1-immunotherapy by modulating the spectrum of tumor-directed CD8 T-cells. To focus on neoantigen-specific CD8 T-cell responses, we performed transcriptomic sequencing of PD-1-resistant CMT64 lung adenocarcinoma cells followed by algorithm-based neoepitope prediction. Investigations on neoepitope-specific T-cell responses in tumor-bearing mice demonstrated that PD-1 immunotherapy was insufficient whereas viral oncolysis elicited cytotoxic T-cell responses to a conserved panel of neoepitopes. After combined treatment, we observed that PD-1-blockade did not affect the magnitude of oncolysis-mediated antitumoral immune responses but a broader spectrum of T-cell responses including additional neoepitopes was observed. Oncolysis of the primary tumor significantly abrogated systemic resistance to PD-1-immunotherapy leading to improved elimination of disseminated lung tumors. Our observations were confirmed in a transgenic murine model of liver cancer where viral oncolysis strongly induced PD-L1 expression in primary liver tumors and lung metastasis. Furthermore, we demonstrated that combined treatment completely inhibited dissemination in a CD8 T-cell-dependent manner. Therefore, our results strongly recommend further evaluation of virotherapy and concomitant PD-1 immunotherapy in clinical studies.

  19. Establishment of anti-tumor memory in humans using in vitro-educated CD8+ T cells

    PubMed Central

    Butler, Marcus O.; Friedlander, Philip; Milstein, Matthew I.; Mooney, Mary M.; Metzler, Genita; Murray, Andrew P.; Tanaka, Makito; Berezovskaya, Alla; Imataki, Osamu; Drury, Linda; Brennan, Lisa; Flavin, Marisa; Neuberg, Donna; Stevenson, Kristen; Lawrence, Donald; Hodi, F. Stephen; Velazquez, Elsa F.; Jaklitsch, Michael T.; Russell, Sara E.; Mihm, Martin; Nadler, Lee M.; Hirano, Naoto

    2013-01-01

    While advanced stage melanoma patients have a median survival of less than a year, adoptive T cell therapy can induce durable clinical responses in some patients. Successful adoptive T cell therapy to treat cancer requires engraftment of anti-tumor T lymphocytes that not only retain specificity and function in vivo but also display an intrinsic capacity to survive. To date, adoptively transferred anti-tumor CD8+ T lymphocytes (CTL) have had limited life spans unless the host has been manipulated. To generate CTL that possess an intrinsic capacity to persist in vivo, we developed a human artificial antigen presenting cell system that can educate anti-tumor CTL to acquire both a central memory and effector memory phenotype as well as the capacity to survive in culture for prolonged periods of time. In the present report, we examined whether anti-tumor CTL generated using this system could function and persist in patients. Here, we showed that MART1-specific CTL, educated and expanded using our artificial antigen presenting cell system, could survive for prolonged periods in advanced stage melanoma patients without previous conditioning or cytokine treatment. Moreover, these CTL trafficked to the tumor, mediated biological and clinical responses, and established anti-tumor immunologic memory. Therefore, this approach may broaden the availability of adoptive cell therapy to patients both alone and in combination with other therapeutic modalities. PMID:21525398

  20. Bone sialoprotein mediates the tumor cell-targeted prometastatic activity of TGF-β in a mouse model of breast cancer.

    PubMed Central

    Nam, Jeong-Seok; Suchar, Adam M.; Kang, Mi-Jin; Stuelten, Christina H.; Tang, Binwu; Michalowska, Aleksandra M.; Fisher, Larry W.; Fedarko, Neal S.; Jain, Alka; Pinkas, Jan; Lonning, Scott; Wakefield, Lalage M.

    2006-01-01

    Transforming growth factor-βs (TGF-βs) play a dual role in carcinogenesis, functioning as tumor suppressors early in the process, and then switching to act as pro-metastatic factors in late-stage disease. We have previously shown that high molecular weight TGF-β antagonists can suppress metastasis without the predicted toxicities (Yang et al., J. Clin. Invest. (2002) 109:1607-1615). To address the underlying mechanisms, we have used the 4T1 syngeneic mouse model of metastatic breast cancer. Treatment of mice with a monoclonal anti-TGF-β antibody (1D11) significantly suppressed metastasis of 4T1 cells to the lungs. When metastatic 4T1 cells were recovered from lungs of 1D11-treated and control mice, the most differentially expressed gene was found to be bone sialoprotein (Bsp). Immunostaining confirmed the loss of Bsp protein in 1D11-treated lung metastases, and TGF-β was shown to regulate and correlate with Bsp expression in vitro. Functionally, knockdown of Bsp in 4T1 cells reduced the ability of TGF-β to induce local collagen degradation and invasion in vitro, and treatment with recombinant BSP protected 4T1 cells from complement-mediated lysis. Finally, suppression of Bsp in 4T1 cells reduced metastasis in vivo. We conclude that Bsp is a plausible mediator of at least some of the tumor cell-targeted prometastatic activity of TGF-β in this model, and that Bsp expression in metastases can be successfully suppressed by systemic treatment with anti-TGF-β antibodies. PMID:16778210

  1. Novel cancer vaccines prepared by anchoring cytokines to tumor cells avoiding gene transfection

    NASA Astrophysics Data System (ADS)

    Nizard, Philippe; Gross, David-Alexandre; Chenal, Alexandre; Beaumelle, Bruno; Kosmatopoulos, Konstadinos; Gillet, Daniel

    2002-06-01

    Cytokines have a strong potential for triggering anticancer immunity if released in the tumor microenvironment. Successful vaccines have been engineered using tumor cells genetically modified to secrete the cytokines. Unfortunately, this approach remains difficult and hazardous to perform in the clinic. We describe a new way of combining cytokines with tumor cells to prepare anticancer vaccines. This consists in anchoring recombinant cytokines to the membrane of killed tumor cells. Attachment is mediated by a fragment of diphtheria toxin (T) genetically connected to the cytokine. It is triggered by an acid pH pulse. The method was applied to IL-2, a potent anti-tumor cytokine. IL-2 anchored to the surface of tumor cells by the T anchor retained its IL-2 activity and remained exposed several days. Interestingly, vaccination of mice with these modified tumor cells induced a protective anti-tumor immunity mediated by tumor-specific cytotoxic T lymphocytes. This procedure presents several advantages as compared to the conventional approaches based on the transfection of tumor cells with cytokine genes. It does not require the culture of tumor cells from the patients and eliminates the safety problems connected with viral vectors while allowing the control of the amount of cytokines delivered with the vaccine.

  2. Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice.

    PubMed

    Chinnasamy, Dhanalakshmi; Yu, Zhiya; Kerkar, Sid P; Zhang, Ling; Morgan, Richard A; Restifo, Nicholas P; Rosenberg, Steven A

    2012-03-15

    We investigated the feasibility of delivering the proinflammatory cytokine interleukin (IL)-12 into tumor using T cells genetically engineered to express a chimeric antigen receptor (CAR) against the VEGF receptor-2 (VEGFR-2). Two different strains of mice bearing five different established subcutaneous tumors were treated with syngeneic T cells cotransduced with an anti-VEGFR-2 CAR and a constitutively expressed single-chain murine IL-12 or an inducible IL-12 gene after host lymphodepletion. Tumor regression, survival of mice, and persistence of the transferred cells were evaluated. Adoptive transfer of syngeneic T cells cotransduced with an anti-VEGFR-2 CAR and a constitutively expressing single-chain IL-12 resulted in the regression of five different established tumors of different histologies without the need for IL-2 administration. T cells transduced with either anti-VEGFR-2 CAR or single-chain IL-12 alone did not alter the tumor growth indicating that both of them had to be expressed in the same cell to mediate tumor regression. Anti-VEGFR-2 CAR and IL-12-cotransduced T cells infiltrated the tumors, expanded, and persisted for prolonged periods. The antitumor effect did not require the presence of host T and B cells but was dependent on host IL-12R-expressing cells. The anti-VEGFR-2 CAR changed the immunosuppressive tumor environment by altering/reducing both the systemic and the intratumoral CD11b(+)Gr1(+) myeloid suppressor cell subsets that expressed VEGFR-2. These results suggest that targeted delivery of IL-12 into the tumor environment with T cells redirected against VEGFR-2 is a promising approach for treating patients with a variety of solid tumor types.

  3. Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor

    PubMed Central

    Jena, Bipulendu; Dotti, Gianpietro

    2010-01-01

    Infusions of antigen-specific T cells have yielded therapeutic responses in patients with pathogens and tumors. To broaden the clinical application of adoptive immunotherapy against malignancies, investigators have developed robust systems for the genetic modification and characterization of T cells expressing introduced chimeric antigen receptors (CARs) to redirect specificity. Human trials are under way in patients with aggressive malignancies to test the hypothesis that manipulating the recipient and reprogramming T cells before adoptive transfer may improve their therapeutic effect. These examples of personalized medicine infuse T cells designed to meet patients' needs by redirecting their specificity to target molecular determinants on the underlying malignancy. The generation of clinical grade CAR+ T cells is an example of bench-to-bedside translational science that has been accomplished using investigator-initiated trials operating largely without industry support. The next-generation trials will deliver designer T cells with improved homing, CAR-mediated signaling, and replicative potential, as investigators move from the bedside to the bench and back again. PMID:20439624

  4. B cells are critical to T-cell-mediated antitumor immunity induced by a combined immune-stimulatory/conditionally cytotoxic therapy for glioblastoma.

    PubMed

    Candolfi, Marianela; Curtin, James F; Yagiz, Kader; Assi, Hikmat; Wibowo, Mia K; Alzadeh, Gabrielle E; Foulad, David; Muhammad, A K M G; Salehi, Sofia; Keech, Naomi; Puntel, Mariana; Liu, Chunyan; Sanderson, Nicholas R; Kroeger, Kurt M; Dunn, Robert; Martins, Gislaine; Lowenstein, Pedro R; Castro, Maria G

    2011-10-01

    We have demonstrated that modifying the tumor microenvironment through intratumoral administration of adenoviral vectors (Ad) encoding the conditional cytotoxic molecule, i.e., HSV1-TK and the immune-stimulatory cytokine, i.e., fms-like tyrosine kinase 3 ligand (Flt3L) leads to T-cell-dependent tumor regression in rodent models of glioblastoma. We investigated the role of B cells during immune-mediated glioblastoma multiforme regression. Although treatment with Ad-TK+Ad-Flt3L induced tumor regression in 60% of wild-type (WT) mice, it completely failed in B-cell-deficient Igh6(-/-) mice. Tumor-specific T-cell precursors were detected in Ad-TK+Ad-Flt3L-treated WT mice but not in Igh6(-/-) mice. The treatment also failed in WT mice depleted of total B cells or marginal zone B cells. Because we could not detect circulating antibodies against tumor cells and the treatment was equally efficient in WT mice and in mice with B-cell-specific deletion of Prdm 1 (encoding Blimp-1), in which B cells are present but unable to fully differentiate into antibody-secreting plasma cells, tumor regression in this model is not dependent on B cells' production of tumor antigen-specific immunoglobulins. Instead, B cells seem to play a role as antigen-presenting cells (APCs). Treatment with Ad-TK+Ad-Flt3L led to an increase in the number of B cells in the cervical lymph nodes, which stimulated the proliferation of syngeneic T cells and induced clonal expansion of antitumor T cells. Our data show that B cells act as APCs, playing a critical role in clonal expansion of tumor antigen-specific T cells and brain tumor regression.

  5. Chimeric antigen receptor T cells: a novel therapy for solid tumors.

    PubMed

    Yu, Shengnan; Li, Anping; Liu, Qian; Li, Tengfei; Yuan, Xun; Han, Xinwei; Wu, Kongming

    2017-03-29

    The chimeric antigen receptor T (CAR-T) cell therapy is a newly developed adoptive antitumor treatment. Theoretically, CAR-T cells can specifically localize and eliminate tumor cells by interacting with the tumor-associated antigens (TAAs) expressing on tumor cell surface. Current studies demonstrated that various TAAs could act as target antigens for CAR-T cells, for instance, the type III variant epidermal growth factor receptor (EGFRvIII) was considered as an ideal target for its aberrant expression on the cell surface of several tumor types. CAR-T cell therapy has achieved gratifying breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. The third generation of CAR-T demonstrates increased antitumor cytotoxicity and persistence through modification of CAR structure. In this review, we summarized the preclinical and clinical progress of CAR-T cells targeting EGFR, human epidermal growth factor receptor 2 (HER2), and mesothelin (MSLN), as well as the challenges for CAR-T cell therapy.

  6. Tumor associated antigen specific T-cell populations identified in ex vivo expanded TIL cultures.

    PubMed

    Junker, Niels; Kvistborg, Pia; Køllgaard, Tania; Straten, Per thor; Andersen, Mads Hald; Svane, Inge Marie

    2012-01-01

    Ex vivo expanded tumor infiltrating lymphocytes (TILs) from malignant melanoma (MM) and head & neck squamous cell carcinoma (HNSCC) share a similar oligoclonal composition of T effector memory cells, with HLA class I restricted lysis of tumor cell lines. In this study we show that ex vivo expanded TILs from MM and HNSCC demonstrate a heterogeneous composition in frequency and magnitude of tumor associated antigen specific populations by Elispot IFNγ quantitation. TILs from MM and HNSCC shared reactivity towards NY ESO-1, cyclin B1 and Bcl-x derived peptides. Additionally we show that dominating T-cell clones and functionality persists through out expansion among an oligoclonal composition of T-cells. Our findings mirror prior results on the oligoclonal composition of TIL cultures, further indicating a potential for a broader repertoire of specific effector cells recognizing the heterogeneous tumors upon adoptive transfer; increasing the probability of tumor control by minimizing immune evasion by tumor cell escape variants. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Mechanisms regulating enhanced HLA class II-mediated CD4+ T cell recognition of human B-cell lymphoma by resveratrol

    PubMed Central

    RADWAN, FAISAL F. Y.; ZHANG, LIXIA; HOSSAIN, AZIM; DOONAN, BENTLY P.; GOD, JASON; HAQUE, AZIZUL

    2015-01-01

    Malignant B-cells express measurable levels of HLA class II proteins, but often escape immune recognition by CD4+ T cells. Resveratrol (Resv) has been the focus of numerous investigations due to its potential chemopreventive and anti-cancer effects, but it has never been tested in the regulation of immune components in B-cell tumors. Here, we show for the first time that Resv treatment enhances HLA class II-mediated immune detection of B-cell lymphomas by altering immune components and class II presentation in tumor cells. Resv treatment induced an upregulation of both classical and non-classical HLA class II proteins (DR and DM) in B-lymphoma cells. Resv also altered endolysosomal cathepsins (Cat S, B and D) and a thiol reductase (GILT), increasing HLA class II-mediated antigen (Ag) processing in B-cell lymphomas and their subsequent recognition by CD4+ T cells. Mechanistic study demonstrated that Resv treatment activated the recycling class II pathway of Ag presentation through upregulation of Rab 4B protein expression in B-lymphoma cells. These findings suggest that HLA class II-mediated immune recognition of malignant B-cells can be improved by Resv treatment, thus encouraging its potential use in chemoimmunotherapy of B-cell lymphoma. PMID:21854084

  8. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein–Barr virus associated nasopharyngeal carcinoma

    PubMed Central

    Fogg, Mark; Murphy, John R.; Lorch, Jochen; Posner, Marshall; Wang, Fred

    2013-01-01

    Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, as well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. PMID:23601786

  9. CD4+ T-cells Contribute to the Remodeling of the Microenvironment Required for Sustained Tumor Regression upon Oncogene Inactivation

    PubMed Central

    Rakhra, Kavya; Bachireddy, Pavan; Zabuawala, Tahera; Zeiser, Robert; Xu, Liwen; Kopelman, Andrew; Fan, Alice C.; Yang, Qiwei; Braunstein, Lior; Crosby, Erika; Ryeom, Sandra; Felsher, Dean W.

    2010-01-01

    Summary Oncogene addiction is thought to occur cell autonomously. Immune effectors are implicated in the induction and restraint of tumorigenesis, but their role in oncogene inactivation mediated tumor regression is unclear. Here, we show that an intact immune system, specifically CD4+ T-cells, is required for the induction of cellular senescence, shut down of angiogenesis and chemokine expression resulting in sustained tumor regression upon inactivation of the MYC or BCR-ABL oncogenes in mouse models of T-cell acute lymphoblastic lymphoma and pro-B-cell leukemia, respectively. Moreover, immune effectors knocked out for thrombospondins failed to induce sustained tumor regression. Hence, CD4+ T-cells are required for the remodeling of the tumor microenvironment through the expression of chemokines, such as thrombospondins, in order to elicit oncogene addiction. PMID:21035406

  10. EGFR-targeted granzyme B expressed in NK cells enhances natural cytotoxicity and mediates specific killing of tumor cells.

    PubMed

    Oberoi, Pranav; Jabulowsky, Robert A; Bähr-Mahmud, Hayat; Wels, Winfried S

    2013-01-01

    Natural killer (NK) cells are highly specialized effectors of the innate immune system that hold promise for adoptive cancer immunotherapy. Their cell killing activity is primarily mediated by the pro-apoptotic serine protease granzyme B (GrB), which enters targets cells with the help of the pore-forming protein perforin. We investigated expression of a chimeric GrB fusion protein in NK cells as a means to augment their antitumoral activity. For selective targeting to tumor cells, we fused the epidermal growth factor receptor (EGFR) peptide ligand transforming growth factor α (TGFα) to human pre-pro-GrB. Established human NKL natural killer cells transduced with a lentiviral vector expressed this GrB-TGFα (GrB-T) molecule in amounts comparable to endogenous wildtype GrB. Activation of the genetically modified NK cells by cognate target cells resulted in the release of GrB-T together with endogenous granzymes and perforin, which augmented the effector cells' natural cytotoxicity against NK-sensitive tumor cells. Likewise, GrB-T was released into the extracellular space upon induction of degranulation with PMA and ionomycin. Secreted GrB-T fusion protein displayed specific binding to EGFR-overexpressing tumor cells, enzymatic activity, and selective target cell killing in the presence of an endosomolytic activity. Our data demonstrate that ectopic expression of a targeted GrB fusion protein in NK cells is feasible and can enhance antitumoral activity of the effector cells.

  11. Optimized T-cell receptor-mimic chimeric antigen receptor T cells directed toward the intracellular Wilms Tumor 1 antigen

    PubMed Central

    Rafiq, S; Purdon, TJ; Daniyan, AF; Koneru, M; Dao, T; Liu, C; Scheinberg, DA; Brentjens, RJ

    2017-01-01

    CD19-directed chimeric antigen receptor (CAR) T cells are clinically effective in a limited set of leukemia patients. However, CAR T-cell therapy thus far has been largely restricted to targeting extracellular tumor-associated antigens (TAA). Herein, we report a T-cell receptor-mimic (TCRm) CAR, termed WT1-28z, that is reactive to a peptide portion of the intracellular onco-protein Wilms Tumor 1(WT1), as it is expressed on the surface of the tumor cell in the context of HLA-A*02:01. T cells modified to express WT1-28z specifically targeted and lysed HLA-A*02:01+ WT1+ tumors and enhanced survival of mice engrafted with HLA-A*02:01+, WT1+ leukemia or ovarian tumors. This in vivo functional validation of TCRm CAR T cells provides the proof-of-concept necessary to expand the range of TAA that can be effectively targeted for immunotherapy to include attractive intracellular targets, and may hold great potential to expand on the success of CAR T-cell therapy. PMID:27924074

  12. Strategies for the identification of T cell-recognized tumor antigens in hematological malignancies for improved graft-versus-tumor responses after allogeneic blood and marrow transplantation.

    PubMed

    Zilberberg, Jenny; Feinman, Rena; Korngold, Robert

    2015-06-01

    Allogeneic blood and marrow transplantation (allo-BMT) is an effective immunotherapeutic treatment that can provide partial or complete remission for patients with hematological malignancies. Mature donor T cells in the donor inoculum play a central role in mediating graft-versus-tumor (GVT) responses by destroying residual tumor cells that persist after conditioning regimens. Alloreactivity towards minor histocompatibility antigens (miHA), which are varied tissue-related self-peptides presented in the context of major histocompatibility complex (MHC) molecules on recipient cells, some of which may be shared on tumor cells, is a dominant factor for the development of GVT. Potentially, GVT can also be directed to tumor-associated antigens or tumor-specific antigens that are more specific to the tumor cells themselves. The full exploitation of allo-BMT, however, is greatly limited by the development of graft-versus-host disease (GVHD), which is mediated by the donor T cell response against the miHA expressed in the recipient's cells of the intestine, skin, and liver. Because of the significance of GVT and GVHD responses in determining the clinical outcome of patients, miHA and tumor antigens have been intensively studied, and one active immunotherapeutic approach to separate these two responses has been cancer vaccination after allo-BMT. The combination of these two strategies has an advantage over vaccination of the patient without allo-BMT because his or her immune system has already been exposed and rendered unresponsive to the tumor antigens. The conditioning for allo-BMT eliminates the patient's existing immune system, including regulatory elements, and provides a more permissive environment for the newly developing donor immune compartment to selectively target the malignant cells. Utilizing recent technological advances, the identities of many human miHA and tumor antigenic peptides have been defined and are currently being evaluated in clinical and basic

  13. cells targeting a neuronal paraneoplastic antigen mediate tumor rejection and trigger CNS autoimmunity with humoral activation.

    PubMed

    Blachère, Nathalie E; Orange, Dana E; Santomasso, Bianca D; Doerner, Jessica; Foo, Patricia K; Herre, Margaret; Fak, John; Monette, Sébastien; Gantman, Emily C; Frank, Mayu O; Darnell, Robert B

    2014-11-01

    Paraneoplastic neurologic diseases (PND) involving immune responses directed toward intracellular antigens are poorly understood. Here, we examine immunity to the PND antigen Nova2, which is expressed exclusively in central nervous system (CNS) neurons. We hypothesized that ectopic expression of neuronal antigen in the periphery could incite PND. In our C57BL/6 mouse model, CNS antigen expression limits antigen-specific CD4+ and CD8+ T-cell expansion. Chimera experiments demonstrate that this tolerance is mediated by antigen expression in nonhematopoietic cells. CNS antigen expression does not limit tumor rejection by adoptively transferred transgenic T cells but does limit the generation of a memory population that can be expanded upon secondary challenge in vivo. Despite mediating cancer rejection, adoptively transferred transgenic T cells do not lead to paraneoplastic neuronal targeting. Preliminary experiments suggest an additional requirement for humoral activation to induce CNS autoimmunity. This work provides evidence that the requirements for cancer immunity and neuronal autoimmunity are uncoupled. Since humoral immunity was not required for tumor rejection, B-cell targeting therapy, such as rituximab, may be a rational treatment option for PND that does not hamper tumor immunity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bone sialoprotein mediates the tumor cell-targeted prometastatic activity of transforming growth factor beta in a mouse model of breast cancer.

    PubMed

    Nam, Jeong-Seok; Suchar, Adam M; Kang, Mi-Jin; Stuelten, Christina H; Tang, Binwu; Michalowska, Aleksandra M; Fisher, Larry W; Fedarko, Neal S; Jain, Alka; Pinkas, Jan; Lonning, Scott; Wakefield, Lalage M

    2006-06-15

    Transforming growth factor betas (TGF-beta) play a dual role in carcinogenesis, functioning as tumor suppressors early in the process, and then switching to act as prometastatic factors in late-stage disease. We have previously shown that high molecular weight TGF-beta antagonists can suppress metastasis without the predicted toxicities. To address the underlying mechanisms, we have used the 4T1 syngeneic mouse model of metastatic breast cancer. Treatment of mice with a monoclonal anti-TGF-beta antibody (1D11) significantly suppressed metastasis of 4T1 cells to the lungs. When metastatic 4T1 cells were recovered from lungs of 1D11-treated and control mice, the most differentially expressed gene was found to be bone sialoprotein (Bsp). Immunostaining confirmed the loss of Bsp protein in 1D11-treated lung metastases, and TGF-beta was shown to regulate and correlate with Bsp expression in vitro. Functionally, knockdown of Bsp in 4T1 cells reduced the ability of TGF-beta to induce local collagen degradation and invasion in vitro, and treatment with recombinant Bsp protected 4T1 cells from complement-mediated lysis. Finally, suppression of Bsp in 4T1 cells reduced metastasis in vivo. We conclude that Bsp is a plausible mediator of at least some of the tumor cell-targeted prometastatic activity of TGF-beta in this model and that Bsp expression in metastases can be successfully suppressed by systemic treatment with anti-TGF-beta antibodies.

  15. The pan-ErbB tyrosine kinase inhibitor canertinib induces caspase-mediated cell death in human T-cell leukemia (Jurkat) cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trinks, Cecilia, E-mail: Cecilia.trinks@liu.se; Severinsson, Emelie A., E-mail: Emelie.severinsson@liu.se; Holmlund, Birgitta, E-mail: Birgitta.holmlund@lio.se

    2011-07-08

    Highlights: {yields} Canertinib induces caspase-mediated apoptosis in T-cell leukemia cells in vitro. {yields} Canertinib mediates activation of the intrinsic apoptotic pathway. {yields} Canertinib induces apoptosis in an ErbB receptor independent manner. {yields} Lymphocyte specific proteins as well as survival kinases are inhibited. {yields} Canertinib may act as a multi-kinase inhibiting drug in human T-cell malignancies. -- Abstract: Canertinib is a novel ErbB-receptor inhibitor currently in clinical development for the treatment of solid tumors overexpressing ErbB-receptors. We have recently demonstrated that canertinib displays anti-proliferative and pro-apoptotic effects in human myeloid leukemia cells devoid of ErbB-receptors. The mechanism mediating these effects aremore » however unknown. In this study, we show that canertinib is able to act as a multi-kinase inhibitor by inhibition of several intracellular kinases involved in T-cell signaling such as Akt, Erk1/2 and Zap-70, and reduced Lck protein expression in the human T-cell leukemia cell line Jurkat. Treatment with canertinib at a concentration of 2 {mu}M caused accumulation of Jurkat cells in the G{sub 1} cell cycle phase and increased doses induced apoptosis in a time-dependent manner. Apoptotic signs of treated cells were detected by Annexin V staining and cleavage of PARP, caspase-3, -8, -9, -10 and Bid. A subset of the pro-apoptotic signals mediated by canertinib could be significantly reduced by specific caspase inhibitors. Taken together, these results demonstrate the dual ability of canertinib to downregulate important signaling pathways and to activate caspase-mediated intrinsic apoptosis pathway in human T-cell leukemia cells.« less

  16. Strategy for eliciting antigen-specific CD8+ T cell-mediated immune response against a cryptic CTL epitope of merkel cell polyomavirus large T antigen

    PubMed Central

    2012-01-01

    Background Merkel cell carcinoma (MCC) is a relatively new addition to the expanding category of oncovirus-induced cancers. Although still comparably rare, the number of cases has risen dramatically in recent years. Further complicating this trend is that MCC is an extremely aggressive neoplasm with poor patient prognosis and limited treatment options for advanced disease. The causative agent of MCC has been identified as the merkel cell polyomavirus (MCPyV). The MCPyV-encoded large T (LT) antigen is an oncoprotein that is theorized to be essential for virus-mediated tumorigenesis and is therefore, an excellent MCC antigen for the generation of antitumor immune responses. As a foreign antigen, the LT oncoprotein avoids the obstacle of immune tolerance, which normally impedes the development of antitumor immunity. Ergo, it is an excellent target for anti-MCC immunotherapy. Since tumor-specific CD8+ T cells lead to better prognosis for MCC and numerous other cancers, we have generated a DNA vaccine that is capable of eliciting LT-specific CD8+ T cells. The DNA vaccine (pcDNA3-CRT/LT) encodes the LT antigen linked to a damage-associated molecular pattern, calreticulin (CRT), as it has been demonstrated that the linkage of CRT to antigens promotes the induction of antigen-specific CD8+ T cells. Results The present study shows that DNA vaccine-induced generation of LT-specific CD8+ T cells is augmented by linking CRT to the LT antigen. This is relevant since the therapeutic effects of the pcDNA3-CRT/LT DNA vaccine is mediated by LT-specific CD8+ T cells. Mice vaccinated with the DNA vaccine produced demonstrably more LT-specific CD8+ T cells. The DNA vaccine was also able to confer LT-specific CD8+ T cell-mediated protective and therapeutic effects to prolong the survival of mice with LT-expressing tumors. In the interest of determining the LT epitope which most MCC-specific CD8+ T cells recognize, we identified the amino acid sequence of the immunodominant LT epitope

  17. The Tol2 transposon system mediates the genetic engineering of T-cells with CD19-specific chimeric antigen receptors for B-cell malignancies.

    PubMed

    Tsukahara, T; Iwase, N; Kawakami, K; Iwasaki, M; Yamamoto, C; Ohmine, K; Uchibori, R; Teruya, T; Ido, H; Saga, Y; Urabe, M; Mizukami, H; Kume, A; Nakamura, M; Brentjens, R; Ozawa, K

    2015-02-01

    Engineered T-cell therapy using a CD19-specific chimeric antigen receptor (CD19-CAR) is a promising strategy for the treatment of advanced B-cell malignancies. Gene transfer of CARs to T-cells has widely relied on retroviral vectors, but transposon-based gene transfer has recently emerged as a suitable nonviral method to mediate stable transgene expression. The advantages of transposon vectors compared with viral vectors include their simplicity and cost-effectiveness. We used the Tol2 transposon system to stably transfer CD19-CAR into human T-cells. Normal human peripheral blood lymphocytes were co-nucleofected with the Tol2 transposon donor plasmid carrying CD19-CAR and the transposase expression plasmid and were selectively propagated on NIH3T3 cells expressing human CD19. Expanded CD3(+) T-cells with stable and high-level transgene expression (~95%) produced interferon-γ upon stimulation with CD19 and specifically lysed Raji cells, a CD19(+) human B-cell lymphoma cell line. Adoptive transfer of these T-cells suppressed tumor progression in Raji tumor-bearing Rag2(-/-)γc(-/-) immunodeficient mice compared with control mice. These results demonstrate that the Tol2 transposon system could be used to express CD19-CAR in genetically engineered T-cells for the treatment of refractory B-cell malignancies.

  18. Simultaneous targeting of tumor antigens and the tumor vasculature using T lymphocyte transfer synergize to induce regression of established tumors in mice.

    PubMed

    Chinnasamy, Dhanalakshmi; Tran, Eric; Yu, Zhiya; Morgan, Richard A; Restifo, Nicholas P; Rosenberg, Steven A

    2013-06-01

    Most systemic cancer therapies target tumor cells directly, although there is increasing interest in targeting the tumor stroma that can comprise a substantial portion of the tumor mass. We report here a synergy between two T-cell therapies, one directed against the stromal tumor vasculature and the other directed against antigens expressed on the tumor cell. Simultaneous transfer of genetically engineered syngeneic T cells expressing a chimeric antigen receptor targeting the VEGF receptor-2 (VEGFR2; KDR) that is overexpressed on tumor vasculature and T-cells specific for the tumor antigens gp100 (PMEL), TRP-1 (TYRP1), or TRP-2 (DCT) synergistically eradicated established B16 melanoma tumors in mice and dramatically increased the tumor-free survival of mice compared with treatment with either cell type alone or T cells coexpressing these two targeting molecules. Host lymphodepletion before cell transfer was required to mediate the antitumor effect. The synergistic antitumor response was accompanied by a significant increase in the infiltration and expansion and/or persistence of the adoptively transferred tumor antigen-specific T cells in the tumor microenvironment and thus enhanced their antitumor potency. The data presented here emphasize the possible beneficial effects of combining antiangiogenic with tumor-specific immunotherapeutic approaches for the treatment of patients with cancer. ©2013 AACR.

  19. A critical role for transcription factor Smad4 in T cell function independent of transforming growth factor beta receptor signaling

    PubMed Central

    Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A.; Wan, Yisong Y.

    2014-01-01

    Summary Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. While Smad4 was dispensable for T cell generation, homeostasis and effector function, it was essential for T cell proliferation following activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity and anti-tumor immunity. PMID:25577439

  20. Cell mediated therapeutics for cancer treatment: Tumor homing cells as therapeutic delivery vehicles

    NASA Astrophysics Data System (ADS)

    Balivada, Sivasai

    Many cell types were known to have migratory properties towards tumors and different research groups have shown reliable results regarding cells as delivery vehicles of therapeutics for targeted cancer treatment. Present report discusses proof of concept for 1. Cell mediated delivery of Magnetic nanoparticles (MNPs) and targeted Magnetic hyperthermia (MHT) as a cancer treatment by using in vivo mouse cancer models, 2. Cells surface engineering with chimeric proteins for targeted cancer treatment by using in vitro models. 1. Tumor homing cells can carry MNPs specifically to the tumor site and tumor burden will decrease after alternating magnetic field (AMF) exposure. To test this hypothesis, first we loaded Fe/Fe3O4 bi-magnetic NPs into neural progenitor cells (NPCs), which were previously shown to migrate towards melanoma tumors. We observed that NPCs loaded with MNPs travel to subcutaneous melanoma tumors. After alternating magnetic field (AMF) exposure, the targeted delivery of MNPs by the NPCs resulted in a mild decrease in tumor size (Chapter-2). Monocytes/macrophages (Mo/Ma) are known to infiltrate tumor sites, and also have phagocytic activity which can increase their uptake of MNPs. To test Mo/Ma-mediated MHT we transplanted Mo/Ma loaded with MNPs into a mouse model of pancreatic peritoneal carcinomatosis. We observed that MNP-loaded Mo/Ma infiltrated pancreatic tumors and, after AMF treatment, significantly prolonged the lives of mice bearing disseminated intraperitoneal pancreatic tumors (Chapter-3). 2. Targeted cancer treatment could be achieved by engineering tumor homing cell surfaces with tumor proteases cleavable, cancer cell specific recombinant therapeutic proteins. To test this, Urokinase and Calpain (tumor specific proteases) cleavable; prostate cancer cell (CaP) specific (CaP1 targeting peptide); apoptosis inducible (Caspase3 V266ED3)- rCasp3V266ED3 chimeric protein was designed in silico. Hypothesized membrane anchored chimeric protein (rCasp3V

  1. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti–CTLA-4 therapy against melanoma

    PubMed Central

    Simpson, Tyler R.; Li, Fubin; Montalvo-Ortiz, Welby; Sepulveda, Manuel A.; Bergerhoff, Katharina; Arce, Frederick; Roddie, Claire; Henry, Jake Y.; Yagita, Hideo; Wolchok, Jedd D.; Peggs, Karl S.; Ravetch, Jeffrey V.

    2013-01-01

    Treatment with monoclonal antibody specific for cytotoxic T lymphocyte–associated antigen 4 (CTLA-4), an inhibitory receptor expressed by T lymphocytes, has emerged as an effective therapy for the treatment of metastatic melanoma. Although subject to debate, current models favor a mechanism of activity involving blockade of the inhibitory activity of CTLA-4 on both effector (T eff) and regulatory (T reg) T cells, resulting in enhanced antitumor effector T cell activity capable of inducing tumor regression. We demonstrate, however, that the activity of anti–CTLA-4 antibody on the T reg cell compartment is mediated via selective depletion of T reg cells within tumor lesions. Importantly, T reg cell depletion is dependent on the presence of Fcγ receptor–expressing macrophages within the tumor microenvironment, indicating that T reg cells are depleted in trans in a context-dependent manner. Our results reveal further mechanistic insight into the activity of anti-CTLA-4–based cancer immunotherapy, and illustrate the importance of specific features of the local tumor environment on the final outcome of antibody-based immunomodulatory therapies. PMID:23897981

  2. Enhancement of Tumor-Specific T Cell–Mediated Immunity in Dendritic Cell–Based Vaccines by Mycobacterium tuberculosis Heat Shock Protein X

    PubMed Central

    Jung, In Duk; Shin, Sung Jae; Lee, Min-Goo; Kang, Tae Heung; Han, Hee Dong; Lee, Seung Jun; Kim, Woo Sik; Kim, Hong Min; Park, Won Sun; Kim, Han Wool; Yun, Cheol-Heui; Lee, Eun Kyung; Wu, T.-C.

    2014-01-01

    Despite the potential for stimulation of robust antitumor immunity by dendritic cells (DCs), clinical applications of DC-based immunotherapy are limited by the low potency in generating tumor Ag-specific T cell responses. Therefore, optimal conditions for generating potent immunostimulatory DCs that overcome tolerance and suppression are key factors in DC-based tumor immunotherapy. In this study, we demonstrate that use of the Mycobacterium tuberculosis heat shock protein X (HspX) as an immunoadjuvant in DC-based tumor immunotherapy has significant potential in therapeutics. In particular, the treatment aids the induction of tumor-reactive T cell responses, especially tumor-specific CTLs. The HspX protein induces DC maturation and proinflammatory cytokine production (TNF-α, IL-1β, IL-6, and IFN-β) through TLR4 binding partially mediated by both the MyD88 and the TRIF signaling pathways. We employed two models of tumor progression and metastasis to evaluate HspX-stimulated DCs in vivo. The administration of HspX-stimulated DCs increased the activation of naive T cells, effectively polarizing the CD4+ and CD8+ T cells to secrete IFN-γ, as well as enhanced the cytotoxicity of splenocytes against HPV-16 E7 (E7)–expressing TC-1 murine tumor cells in therapeutic experimental animals. Moreover, the metastatic capacity of B16-BL6 melanoma cancer cells toward the lungs was remarkably attenuated in mice that received HspX-stimulated DCs. In conclusion, the high therapeutic response rates with tumor-targeted Th1-type T cell immunity as a result of HspX-stimulated DCs in two models suggest that HspX harnesses the exquisite immunological power and specificity of DCs for the treatment of tumors. PMID:24990079

  3. Tumor Cells Surviving Exposure to Proton or Photon Radiation Share a Common Immunogenic Modulation Signature, Rendering Them More Sensitive to T Cell–Mediated Killing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gameiro, Sofia R.; Malamas, Anthony S.; Bernstein, Michael B.

    Purpose: To provide the foundation for combining immunotherapy to induce tumor antigen–specific T cells with proton radiation therapy to exploit the activity of those T cells. Methods and Materials: Using cell lines of tumors frequently treated with proton radiation, such as prostate, breast, lung, and chordoma, we examined the effect of proton radiation on the viability and induction of immunogenic modulation in tumor cells by flow cytometric and immunofluorescent analysis of surface phenotype and the functional immune consequences. Results: These studies show for the first time that (1) proton and photon radiation induced comparable up-regulation of surface molecules involved in immune recognition (histocompatibilitymore » leukocyte antigen, intercellular adhesion molecule 1, and the tumor-associated antigens carcinoembryonic antigen and mucin 1); (2) proton radiation mediated calreticulin cell-surface expression, increasing sensitivity to cytotoxic T-lymphocyte killing of tumor cells; and (3) cancer stem cells, which are resistant to the direct cytolytic activity of proton radiation, nonetheless up-regulated calreticulin after radiation in a manner similar to non-cancer stem cells. Conclusions: These findings offer a rationale for the use of proton radiation in combination with immunotherapy, including for patients who have failed radiation therapy alone or have limited treatment options.« less

  4. Tumor-derived microvesicles mediate human breast cancer invasion through differentially glycosylated EMMPRIN

    PubMed Central

    Menck, Kerstin; Scharf, Christian; Bleckmann, Annalen; Dyck, Lydia; Rost, Ulrike; Wenzel, Dirk; Dhople, Vishnu M.; Siam, Laila; Pukrop, Tobias; Binder, Claudia; Klemm, Florian

    2015-01-01

    Tumor cells secrete not only a variety of soluble factors, but also extracellular vesicles that are known to support the establishment of a favorable tumor niche by influencing the surrounding stroma cells. Here we show that tumor-derived microvesicles (T-MV) also directly influence the tumor cells by enhancing their invasion in a both autologous and heterologous manner. Neither the respective vesicle-free supernatant nor MV from benign mammary cells mediate invasion. Uptake of T-MV is essential for the proinvasive effect. We further identify the highly glycosylated form of the extracellular matrix metalloproteinase inducer (EMMPRIN) as a marker for proinvasive MV. EMMPRIN is also present at high levels on MV from metastatic breast cancer patients in vivo. Anti-EMMPRIN strategies, such as MV deglycosylation, gene knockdown, and specific blocking peptides, inhibit MV-induced invasion. Interestingly, the effect of EMMPRIN-bearing MV is not mediated by matrix metalloproteinases but by activation of the p38/MAPK signaling pathway in the tumor cells. In conclusion, T-MV stimulate cancer cell invasion via a direct feedback mechanism dependent on highly glycosylated EMMPRIN. PMID:25503107

  5. Preclinical Assessment of CAR T-Cell Therapy Targeting the Tumor Antigen 5T4 in Ovarian Cancer

    PubMed Central

    Owens, Gemma L.; Sheard, Victoria E.; Kalaitsidou, Milena; Blount, Daniel; Lad, Yatish; Cheadle, Eleanor J.; Edmondson, Richard J.; Kooner, Gurdeep; Gilham, David E.

    2018-01-01

    Chimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome both quantitative and qualitative shortfalls of the host immune system relating to the detection and subsequent destruction of tumors. The identification of antigens expressed specifically on the surface of tumor cells is a critical first step in the ability to utilize CAR T cells for the treatment of cancer. The 5T4 is a tumor-associated antigen which is expressed on the cell surface of most solid tumors including ovarian cancer. Matched blood and tumor samples were collected from 12 patients with ovarian cancer; all tumors were positive for 5T4 expression by immunohistochemistry. Patient T cells were effectively transduced with 2 different anti-5T4 CAR constructs which differed in their affinity for the target antigen. Co-culture of CAR T cells with matched autologous tumor disaggregates resulted in antigen-specific secretion of IFN-gamma. Furthermore, assessment of the efficacy of anti-5T4 CAR T cells in a mouse model resulted in therapeutic benefit against established ovarian tumors. These results demonstrate proof of principle that 5T4 is an attractive target for immune intervention in ovarian cancer and that patient T cells engineered to express a 5T4-specific CAR can recognize and respond physiologically to autologous tumor cells. PMID:29239915

  6. Engineering Chimeric Antigen Receptor T-Cells for Racing in Solid Tumors: Don’t Forget the Fuel

    PubMed Central

    Irving, Melita; Vuillefroy de Silly, Romain; Scholten, Kirsten; Dilek, Nahzli; Coukos, George

    2017-01-01

    T-cells play a critical role in tumor immunity. Indeed, the presence of tumor-infiltrating lymphocytes is a predictor of favorable patient prognosis for many indications and is a requirement for responsiveness to immune checkpoint blockade therapy targeting programmed cell death 1. For tumors lacking immune infiltrate, or for which antigen processing and/or presentation has been downregulated, a promising immunotherapeutic approach is chimeric antigen receptor (CAR) T-cell therapy. CARs are hybrid receptors that link the tumor antigen specificity and affinity of an antibody-derived single-chain variable fragment with signaling endodomains associated with T-cell activation. CAR therapy targeting CD19 has yielded extraordinary clinical responses against some hematological tumors. Solid tumors, however, remain an important challenge to CAR T-cells due to issues of homing, tumor vasculature and stromal barriers, and a range of obstacles in the tumor bed. Protumoral immune infiltrate including T regulatory cells and myeloid-derived suppressor cells have been well characterized for their ability to upregulate inhibitory receptors and molecules that hinder effector T-cells. A critical role for metabolic barriers in the tumor microenvironment (TME) is emerging. High glucose consumption and competition for key amino acids by tumor cells can leave T-cells with insufficient energy and biosynthetic precursors to support activities such as cytokine secretion and lead to a phenotypic state of anergy or exhaustion. CAR T-cell expansion protocols that promote a less differentiated phenotype, combined with optimal receptor design and coengineering strategies, along with immunomodulatory therapies that also promote endogenous immunity, offer great promise in surmounting immunometabolic barriers in the TME and curing solid tumors. PMID:28421069

  7. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation.

    PubMed

    Daley, Donnele; Zambirinis, Constantinos Pantelis; Seifert, Lena; Akkad, Neha; Mohan, Navyatha; Werba, Gregor; Barilla, Rocky; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu Raj Kumar; Avanzi, Antonina; Tippens, Daniel; Narayanan, Rajkishen; Jang, Jung-Eun; Newman, Elliot; Pillarisetty, Venu Gopal; Dustin, Michael Loran; Bar-Sagi, Dafna; Hajdu, Cristina; Miller, George

    2016-09-08

    Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. DNA Methylation Mediated Control of Gene Expression Is Critical for Development of Crown Gall Tumors

    PubMed Central

    Kneitz, Susanne; Weber, Dana; Fuchs, Joerg; Hedrich, Rainer; Deeken, Rosalia

    2013-01-01

    Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA–encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA–mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene

  9. DNA methylation mediated control of gene expression is critical for development of crown gall tumors.

    PubMed

    Gohlke, Jochen; Scholz, Claus-Juergen; Kneitz, Susanne; Weber, Dana; Fuchs, Joerg; Hedrich, Rainer; Deeken, Rosalia

    2013-01-01

    Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA-encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA-mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene

  10. Cell intrinsic abrogation of TGFβ signaling delays but does not prevent dysfunction of self/tumor specific CD8 T cells in a murine model of autochthonous prostate cancer

    PubMed Central

    Chou, Cassie K.; Schietinger, Andrea; Liggitt, H. Denny; Tan, Xiaoxia; Funk, Sarah; Freeman, Gordon J.; Ratliff, Timothy L.; Greenberg, Norman M.; Greenberg, Philip D.

    2012-01-01

    Adoptive T cell therapy (ACT) for the treatment of established cancers is actively being pursued in clinical trials. However, poor in vivo persistence and maintenance of anti-tumor activity of transferred T cells remain major problems. Transforming growth factor beta (TGFβ) is a potent immunosuppressive cytokine that is often expressed at high levels within the tumor microenvironment, potentially limiting T cell mediated anti-tumor activity. Here, we used a model of autochthonous murine prostate cancer to evaluate the effect of cell intrinsic abrogation of TGFβ signaling in self/tumor specific CD8 T cells used in ACT to target the tumor in situ. We found that persistence and anti-tumor activity of adoptively transferred effector T cells deficient in TGFβ signaling was significantly improved in the cancerous prostate. However, over time, despite persistence in peripheral lymphoid organs, the numbers of transferred cells in the prostate decreased and the residual prostate infiltrating T cells were no longer functional. These findings reveal that TGFβ negatively regulates the accumulation and effector function of transferred self/tumor specific CD8 T cells and highlight that, when targeting a tumor antigen that is also expressed as a self-protein, additional substantive obstacles are operative within the tumor microenvironment, potentially hampering the success of ACT for solid tumors. PMID:22984076

  11. CD8+ T-cell responses rapidly select for antigen-negative tumor cells in the prostate.

    PubMed

    Bak, S Peter; Barnkob, Mike Stein; Wittrup, K Dane; Chen, Jianzhu

    2013-12-01

    Stimulation of patients' immune systems for the treatment of solid tumors is an emerging therapeutic paradigm. The use of enriched autologous T cells for adoptive cell therapy or vaccination with antigen-loaded dendritic cells have shown clinical efficacy in melanoma and prostate cancer, respectively. However, the long-term effects of immune responses on selection and outgrowth of antigen-negative tumor cells in specific tumor types must be determined to understand and achieve long-term therapeutic effects. In this study, we have investigated the expression of a tumor-specific antigen in situ after treatment with tumor-specific CD8(+) T cells in an autochthonous mouse model of prostate cancer. After T-cell treatment, aggregates of dead antigen-positive tumor cells were concentrated in the lumen of the prostate gland and were eventually eliminated from the prostate tissue. Despite the elimination of antigen-positive tumor cells, prostate tumor continued to grow in T-cell-treated mice. Interestingly, the remaining tumor cells were antigen negative and downregulated MHC class I expression. These results show that CD8(+) T cells are effective in eliminating antigen-bearing prostate tumor cells but they also can select for the outgrowth of antigen-negative tumor cells. These findings provide insights into the requirements for an effective cancer immunotherapy within the prostate that not only induces potent immune responses but also avoids selection and outgrowth of antigen-negative tumor cells. ©2013 AACR.

  12. Measuring T cell-mediated cytotoxicity using fluorogenic caspase substrates.

    PubMed

    Chahroudi, A; Silvestri, G; Feinberg, M B

    2003-10-01

    Cytotoxic T lymphocytes (CTLs) play a major role in the immune response against viruses and other intracellular pathogens. In addition, CTLs are implicated in the control of tumor cells in certain settings. Accurate measures of CTL function are of critical importance to study the pathogenesis of infectious diseases and to evaluate the efficacy of new vaccines and immunotherapies. To this end, we have recently developed a flow cytometry-based CTL (FCC) assay that measures the CTL-induced caspase activation within target cells using cell permeable fluorogenic caspase substrates. This novel assay reliably detects, by flow cytometry or fluorescence/confocal microscopy, antigen-specific CTLs in a wide variety of human and murine systems, and is safer and more informative than the standard 51Cr-release assay. In addition, the flow cytometric CTL (FCC) assay provides an alternative method that is often more sensitive and physiologically informative when compared to previously described FCC assays, as it measures a biological indicator of apoptosis within the target cell. The FCC assay may thus represent a useful tool to further understand the molecular and cellular mechanisms that underlie CTL-mediated killing during tumorigenesis or following infection with viruses or other intracellular pathogens.

  13. Toll-like receptor agonist imiquimod facilitates antigen-specific CD8+ T-cell accumulation in the genital tract leading to tumor control through IFNγ.

    PubMed

    Soong, Ruey-Shyang; Song, Liwen; Trieu, Janson; Knoff, Jayne; He, Liangmei; Tsai, Ya-Chea; Huh, Warner; Chang, Yung-Nien; Cheng, Wen-Fang; Roden, Richard B S; Wu, T-C; Trimble, Cornelia L; Hung, Chien-Fu

    2014-11-01

    Imiquimod is a Toll-like receptor 7 agonist used topically to treat external genital warts and basal cell carcinoma. We examined the combination of topical imiquimod with intramuscular administration of CRT/E7, a therapeutic human papillomavirus (HPV) vaccine comprised of a naked DNA vector expressing calreticulin fused to HPV16 E7. Using an orthotopic HPV16 E6/E7(+) syngeneic tumor, TC-1, as a model of high-grade cervical/vaginal/vulvar intraepithelial neoplasia, we assessed if combining CRT/E7 vaccination with cervicovaginal deposition of imiquimod could result in synergistic activities promoting immune-mediated tumor clearance. Imiquimod induced cervicovaginal accumulation of activated E7-specific CD8(+) T cells elicited by CRT/E7 vaccination. Recruitment was not dependent upon the specificity of the activated CD8(+) T cells, but was significantly reduced in mice lacking the IFNγ receptor. Intravaginal imiquimod deposition induced upregulation of CXCL9 and CXCL10 mRNA expression in the genital tract, which are produced in response to IFNγ receptor signaling and attract cells expressing their ligand, CXCR3. The T cells attracted by imiquimod to the cervicovaginal tract expressed CXCR3 as well as CD49a, an integrin involved in homing and retention of CD8(+) T cells at mucosal sites. Our results indicate that intramuscular CRT/E7 vaccination in conjunction with intravaginal imiquimod deposition recruits antigen-specific CXCR3(+) CD8(+) T cells to the genital tract. Several therapeutic HPV vaccination clinical trials using a spectrum of DNA vaccines, including vaccination in concert with cervical imiquimod, are ongoing. Our study identifies a mechanism by which these strategies could provide therapeutic benefit. Our findings support accumulating evidence that manipulation of the tumor microenvironment can enhance the therapeutic efficacy of strategies that induce tumor-specific T cells. ©2014 American Association for Cancer Research.

  14. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets.

    PubMed

    Muller, Laurent; Mitsuhashi, Masato; Simms, Patricia; Gooding, William E; Whiteside, Theresa L

    2016-02-04

    Tumor cell-derived exosomes (TEX) suppress functions of immune cells. Here, changes in the gene profiles of primary human T lymphocytes exposed in vitro to exosomes were evaluated. CD4(+) Tconv, CD8(+) T or CD4(+) CD39(+) Treg were isolated from normal donors' peripheral blood and co-incubated with TEX or exosomes isolated from supernatants of cultured dendritic cells (DEX). Expression levels of 24-27 immune response-related genes in these T cells were quantified by qRT-PCR. In activated T cells, TEX and DEX up-regulated mRNA expression levels of multiple genes. Multifactorial data analysis of ΔCt values identified T cell activation and the immune cell type, but not exosome source, as factors regulating gene expression by exosomes. Treg were more sensitive to TEX-mediated effects than other T cell subsets. In Treg, TEX-mediated down-regulation of genes regulating the adenosine pathway translated into high expression of CD39 and increased adenosine production. TEX also induced up-regulation of inhibitory genes in CD4(+) Tconv, which translated into a loss of CD69 on their surface and a functional decline. Exosomes are not internalized by T cells, but signals they carry and deliver to cell surface receptors modulate gene expression and functions of human T lymphocytes.

  15. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    PubMed

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  16. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    PubMed Central

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  17. CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide vaccination.

    PubMed

    Casares, Noelia; Arribillaga, Laura; Sarobe, Pablo; Dotor, Javier; Lopez-Diaz de Cerio, Ascensión; Melero, Ignacio; Prieto, Jesús; Borrás-Cuesta, Francisco; Lasarte, Juan J

    2003-12-01

    CD25(+) regulatory T (T reg) cells suppress the activation/proliferation of other CD4(+) or CD8(+) T cells in vitro. Also, down-regulation of CD25(+) T reg cells enhance antitumor immune responses. In this study, we show that depletion of CD25(+) T reg cells allows the host to induce both CD4(+) and CD8(+) antitumoral responses following tumor challenge. Simultaneous depletion of CD25(+) and CD8(+) cells, as well as adoptive transfer experiments, revealed that tumor-specific CD4(+) T cells, which emerged in the absence of CD25(+) T reg cells, were able to reject CT26 colon cancer cells, a MHC class II-negative tumor. The antitumoral effect mediated by CD4(+) T cells was dependent on IFN-gamma production, which exerted a potent antiangiogenic activity. The capacity of the host to mount this antitumor response is lost once the number of CD25(+) T reg cells is restored over time. However, CD25(+) T reg cell depletion before immunization with AH1 (a cytotoxic T cell determinant from CT26 tumor cells) permits the induction of a long-lasting antitumoral immune response, not observed if immunization is conducted in the presence of regulatory cells. A study of the effect of different levels of depletion of CD25(+) T reg cells before immunization with the peptide AH1 alone, or in combination with a Th determinant, unraveled that Th cells play an important role in overcoming the suppressive effect of CD25(+) T reg on the induction of long-lasting cellular immune responses.

  18. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors.

    PubMed

    Smith, Tyrel T; Moffett, Howell F; Stephan, Sirkka B; Opel, Cary F; Dumigan, Amy G; Jiang, Xiuyun; Pillarisetty, Venu G; Pillai, Smitha P S; Wittrup, K Dane; Stephan, Matthias T

    2017-06-01

    Therapies using T cells that are programmed to express chimeric antigen receptors (CAR T cells) consistently produce positive results in patients with hematologic malignancies. However, CAR T cell treatments are less effective in solid tumors for several reasons. First, lymphocytes do not efficiently target CAR T cells; second, solid tumors create an immunosuppressive microenvironment that inactivates T cell responses; and third, solid cancers are typified by phenotypic diversity and thus include cells that do not express proteins targeted by the engineered receptors, enabling the formation of escape variants that elude CAR T cell targeting. Here, we have tested implantable biopolymer devices that deliver CAR T cells directly to the surfaces of solid tumors, thereby exposing them to high concentrations of immune cells for a substantial time period. In immunocompetent orthotopic mouse models of pancreatic cancer and melanoma, we found that CAR T cells can migrate from biopolymer scaffolds and eradicate tumors more effectively than does systemic delivery of the same cells. We have also demonstrated that codelivery of stimulator of IFN genes (STING) agonists stimulates immune responses to eliminate tumor cells that are not recognized by the adoptively transferred lymphocytes. Thus, these devices may improve the effectiveness of CAR T cell therapy in solid tumors and help protect against the emergence of escape variants.

  19. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells

    PubMed Central

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression. PMID:28107450

  20. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells.

    PubMed

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla; Gri, Giorgia

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.

  1. Armed oncolytic adenovirus expressing PD-L1 mini-body enhances anti-tumor effects of chimeric antigen receptor T-cells in solid tumors

    PubMed Central

    Tanoue, Kiyonori; Shaw, Amanda Rosewell; Watanabe, Norihiro; Porter, Caroline; Rana, Bhakti; Gottschalk, Stephen; Brenner, Malcolm; Suzuki, Masataka

    2017-01-01

    Chimeric antigen receptor-modified T cells (CAR T-cells) produce pro-inflammatory cytokines that increase expression of T cell checkpoint signals such as PD-L1, which may inhibit their functionality against solid tumors. In this study, we evaluated in human tumor xenograft models the pro-inflammatory properties of an oncolytic adenovirus (Onc.Ad) with a helper-dependent Ad (HDAd) that expresses a PD-L1 blocking mini-antibody (mini-body) (HDPDL1), as a strategy to enhance CAR T-cell killing. Co-administration of these agents (CAd-VECPDL1) exhibited oncolytic effects with production of PD-L1 mini-body locally at the tumor site. On their own, HDPDL1 exhibited no anti-tumor effect and CAd-VECPDL1 alone reduced tumors only to volumes comparable to Onc.Ad treatment. However, combining CAd-VECPDL1 with HER2.CAR T-cells enhanced anti-tumor activity compared to treatment with either HER2.CAR T-cells alone, or HER2.CAR T-cells plus Onc.Ad. The benefits of locally produced PD-L1 mini-body by CAd-VECPDL1 could not be replicated by infusion of anti-PD-L1 IgG plus HER2.CAR T-cells and co-administration of Onc.Ad in a HER2+ prostate cancer xenograft model. Overall, our data document the superiority of local production of PD-L1 mini-body by CAd-VECPDL1 combined with administration of tumor-directed CAR T-cells to control the growth of solid tumors. PMID:28235763

  2. Type17 T-cells in Central Nervous System Autoimmunity and Tumors

    PubMed Central

    Okada, Hideho; Khoury, Samia J.

    2012-01-01

    Interleukin-17 (IL-17) producing Type17 T-cells, specifically T-helper (Th)17 cells reactive to central nervous system (CNS) autoantigens, manifest a higher migratory capability to the CNS parenchyma compared with other T-cell subpopulations due to their ability to penetrate the blood brain barrier (BBB). In the field of cancer immunotherapy, there are now a number of cell therapy approaches including early studies using T-cells transduced with chimeric antigen receptors in hematologic malignancy, suggesting that the use of T-cells or genetically modified T-cells could have a significant role in effective cancer therapy. However, the successful application of this strategy in solid tumors, such as CNS tumors, requires careful consideration of critical factors to improve the tumor-homing of T-cells. The current review is dedicated to discuss recent findings on the role of Type17 T-cells in CNS autoimmunity and cancer. The insight gained from these findings may lead to the development of novel therapeutic and prophylactic strategies for CNS autoimmunity and tumors. PMID:22454247

  3. Recognition and killing of brain tumor stem-like initiating cells by CD8+ cytolytic T cells.

    PubMed

    Brown, Christine E; Starr, Renate; Martinez, Catalina; Aguilar, Brenda; D'Apuzzo, Massimo; Todorov, Ivan; Shih, Chu-Chih; Badie, Behnam; Hudecek, Michael; Riddell, Stanley R; Jensen, Michael C

    2009-12-01

    Solid tumors contain a subset of stem-like cells that are resistant to the cytotoxic effects of chemotherapy/radiotherapy, but their susceptibility to cytolytic T lymphocyte (CTL) effector mechanisms has not been well characterized. Using a panel of early-passage human brain tumor stem/initiating cell (BTSC) lines derived from high-grade gliomas, we show that BTSCs are subject to immunologic recognition and elimination by CD8(+) CTLs. Compared with serum-differentiated CD133(low) tumor cells and established glioma cell lines, BTSCs are equivalent with respect to expression levels of HLA class I and ICAM-1, similar in their ability to trigger degranulation and cytokine synthesis by antigen-specific CTLs, and equally susceptible to perforin-dependent CTL-mediated cytolysis. BTSCs are also competent in the processing and presentation of antigens as evidenced by the killing of these cells by CTL when antigen is endogenously expressed. Moreover, we show that CTLs can eliminate all BTSCs with tumor-initiating activity in an antigen-specific manner in vivo. Current models predict that curative therapies for many cancers will require the elimination of the stem/initiating population, and these studies lay the foundation for developing immunotherapeutic approaches to eradicate this tumor population.

  4. Human Follicular Lymphoma CD39+-Infiltrating T Cells Contribute to Adenosine-Mediated T Cell Hyporesponsiveness1

    PubMed Central

    Hilchey, Shannon P.; Kobie, James J.; Cochran, Mathew R.; Secor-Socha, Shelley; Wang, Jyh-Chiang E.; Hyrien, Ollivier; Burack, W. Richard; Mosmann, Tim R.; Quataert, Sally A.; Bernstein, Steven H.

    2010-01-01

    Our previous work has demonstrated that human follicular lymphoma (FL) infiltrating T cells are anergic, in part due to suppression by regulatory T cells. In this study, we identify pericellular adenosine, interacting with T cell-associated G protein-coupled A2A/B adenosine receptors (AR), as contributing to FL T cell hyporesponsiveness. In a subset of FL patient samples, treatment of lymph node mononuclear cells (LNMC) with specific A2A/B AR antagonists results in an increase in IFN-γ or IL-2 secretion upon anti-CD3/CD28 Ab stimulation, as compared with that seen without inhibitors. In contrast, treatment with an A1 AR antagonist had no effect on cytokine secretion. As the rate limiting step for adenosine generation from pericellular ATP is the ecto-ATPase CD39, we next show that inhibition of CD39 activity using the inhibitor ARL 67156 partially overcomes T cell hyporesponsiveness in a subset of patient samples. Phenotypic characterization of LNMC demonstrates populations of CD39-expressing CD4+ and CD8+ T cells, which are overrepresented in FL as compared with that seen in normal or reactive nodes, or normal peripheral blood. Thirty percent of the FL CD4+CD39+ T cells coexpress CD25high and FOXP3 (consistent with regulatory T cells). Finally, FL or normal LNMC hydrolyze ATP in vitro, in a dose- and time-dependent fashion, with the rate of ATP consumption being associated with the degree of CD39+ T cell infiltration. Together, these results support the finding that the ATP-ectonucleotidase-adenosine system mediates T cell anergy in a human tumor. In addition, these studies suggest that the A2A/B AR as well as CD39 are novel pharmacological targets for augmenting cancer immunotherapy. PMID:19864600

  5. Phosphoproteomics Reveals Regulatory T Cell-Mediated DEF6 Dephosphorylation That Affects Cytokine Expression in Human Conventional T Cells

    PubMed Central

    Joshi, Rubin N.; Binai, Nadine A.; Marabita, Francesco; Sui, Zhenhua; Altman, Amnon; Heck, Albert J. R.; Tegnér, Jesper; Schmidt, Angelika

    2017-01-01

    Regulatory T cells (Tregs) control key events of immune tolerance, primarily by suppression of effector T cells. We previously revealed that Tregs rapidly suppress T cell receptor (TCR)-induced calcium store depletion in conventional CD4+CD25− T cells (Tcons) independently of IP3 levels, consequently inhibiting NFAT signaling and effector cytokine expression. Here, we study Treg suppression mechanisms through unbiased phosphoproteomics of primary human Tcons upon TCR stimulation and Treg-mediated suppression, respectively. Tregs induced a state of overall decreased phosphorylation as opposed to TCR stimulation. We discovered novel phosphosites (T595_S597) in the DEF6 (SLAT) protein that were phosphorylated upon TCR stimulation and conversely dephosphorylated upon coculture with Tregs. Mutation of these DEF6 phosphosites abrogated interaction of DEF6 with the IP3 receptor and affected NFAT activation and cytokine transcription in primary Tcons. This novel mechanism and phosphoproteomics data resource may aid in modifying sensitivity of Tcons to Treg-mediated suppression in autoimmune disease or cancer. PMID:28993769

  6. Mast Cells Condition Dendritic Cells to Mediate Allograft Tolerance

    PubMed Central

    de Vries, Victor C.; Pino-Lagos, Karina; Nowak, Elizabeth C.; Bennett, Kathy A.; Oliva, Carla; Noelle, Randolph J.

    2013-01-01

    SUMMARY Peripheral tolerance orchestrated by regulatory T cells, dendritic cells (DCs), and mast cells (MCs) has been studied in several models including skin allograft tolerance. We now define a role for MCs in controlling DC behavior (“conditioning”) to facilitate tolerance. Under tolerant conditions, we show that MCs mediated a marked increase in tumor necrosis factor (TNFα)-dependent accumulation of graft-derived DCs in the dLN compared to nontolerant conditions. This increase of DCs in the dLN is due to the local production of granulocyte macrophage colony-stimulating factor (GM-CSF) by MCs that induces a survival advantage of graft-derived DCs. DCs that migrated to the dLN from the tolerant allograft were tolerogenic; i.e., they dominantly suppress T cell responses and control regional immunity. This study underscores the importance of MCs in conditioning DCs to mediate peripheral tolerance and shows a functional impact of peripherally produced TNFα and GM-CSF on the migration and function of tolerogenic DCs. PMID:22035846

  7. A critical role for transcription factor Smad4 in T cell function that is independent of transforming growth factor β receptor signaling.

    PubMed

    Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A; Wan, Yisong Y

    2015-01-20

    Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. Although Smad4 was dispensable for T cell generation, homeostasis, and effector function, it was essential for T cell proliferation after activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity, and anti-tumor immunity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Acute virus control mediated by licensed NK cells sets primary CD8+ T cell dependence on CD27 costimulation1,2,3

    PubMed Central

    Teoh, Jeffrey J.; Gamache, Awndre E.; Gillespie, Alyssa L.; Stadnisky, Michael D.; Yagita, Hideo; Bullock, Timothy N.J.; Brown, Michael G.

    2016-01-01

    Natural killer (NK) cells represent a critical first-line of immune defense against a bevy of viral pathogens, and infection can provoke them to mediate both supportive and suppressive effects on virus-specific adaptive immunity. In mice expressing MHC I Dk, a major MCMV resistance factor and self-ligand of the inhibitory Ly49G2 (G2) receptor, licensed G2+ NK cells provide essential host resistance against murine (M)CMV infection. Additionally G2+ NK cell responses to MCMV increase the rate and extent of dendritic cell (DC) recovery, as well as early priming of CD8+ T-cell effectors in response to MCMV. However, relatively little is known about the NK-cell effect on co-stimulatory ligand patterns displayed by DCs, or ensuing effector and memory T-cell responses. Here we found that CD27-dependent CD8+ T-cell priming and differentiation is shaped by the efficiency of NK responses to virus infection. Surprisingly, differences in specific NK responses to MCMV in Dk-disparate mice failed to distinguish early DC co-stimulatory patterns. Nonetheless, while CD27 deficiency did not impede licensed NK-mediated resistance, both CD70 and CD27 were required to efficiently prime and regulate effector CD8+ T-cell differentiation in response to MCMV, which eventually resulted in biased memory T-cell precursor formation in Dk mice. In contrast, CD8+ T-cells accrued more slowly in non-Dk mice, and eventually differentiated into terminal effector cells regardless of CD27 stimulation. Disparity in this requirement for CD27 signaling indicates that specific virus control mediated by NK cells can shape DC co-stimulatory signals needed to prime CD8+ T cells and eventual T-cell fate decisions. PMID:27798162

  9. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors

    PubMed Central

    Smith, Tyrel T.; Moffett, Howell F.; Stephan, Sirkka B.; Opel, Cary F.; Dumigan, Amy G.; Jiang, Xiuyun; Pillarisetty, Venu G.; Pillai, Smitha P. S.; Wittrup, K. Dane; Stephan, Matthias T.

    2017-01-01

    Therapies using T cells that are programmed to express chimeric antigen receptors (CAR T cells) consistently produce positive results in patients with hematologic malignancies. However, CAR T cell treatments are less effective in solid tumors for several reasons. First, lymphocytes do not efficiently target CAR T cells; second, solid tumors create an immunosuppressive microenvironment that inactivates T cell responses; and third, solid cancers are typified by phenotypic diversity and thus include cells that do not express proteins targeted by the engineered receptors, enabling the formation of escape variants that elude CAR T cell targeting. Here, we have tested implantable biopolymer devices that deliver CAR T cells directly to the surfaces of solid tumors, thereby exposing them to high concentrations of immune cells for a substantial time period. In immunocompetent orthotopic mouse models of pancreatic cancer and melanoma, we found that CAR T cells can migrate from biopolymer scaffolds and eradicate tumors more effectively than does systemic delivery of the same cells. We have also demonstrated that codelivery of stimulator of IFN genes (STING) agonists stimulates immune responses to eliminate tumor cells that are not recognized by the adoptively transferred lymphocytes. Thus, these devices may improve the effectiveness of CAR T cell therapy in solid tumors and help protect against the emergence of escape variants. PMID:28436934

  10. Constitutive Signaling from an Engineered IL7 Receptor Promotes Durable Tumor Elimination by Tumor-Redirected T Cells.

    PubMed

    Shum, Thomas; Omer, Bilal; Tashiro, Haruko; Kruse, Robert L; Wagner, Dimitrios L; Parikh, Kathan; Yi, Zhongzhen; Sauer, Tim; Liu, Daofeng; Parihar, Robin; Castillo, Paul; Liu, Hao; Brenner, Malcolm K; Metelitsa, Leonid S; Gottschalk, Stephen; Rooney, Cliona M

    2017-11-01

    Successful adoptive T-cell immunotherapy of solid tumors will require improved expansion and cytotoxicity of tumor-directed T cells within tumors. Providing recombinant or transgenic cytokines may produce the desired benefits but is associated with significant toxicities, constraining clinical use. To circumvent this limitation, we constructed a constitutively signaling cytokine receptor, C7R, which potently triggers the IL7 signaling axis but is unresponsive to extracellular cytokine. This strategy augments modified T-cell function following antigen exposure, but avoids stimulating bystander lymphocytes. Coexpressing the C7R with a tumor-directed chimeric antigen receptor (CAR) increased T-cell proliferation, survival, and antitumor activity during repeated exposure to tumor cells, without T-cell dysfunction or autonomous T-cell growth. Furthermore, C7R-coexpressing CAR T cells were active against metastatic neuroblastoma and orthotopic glioblastoma xenograft models even at cell doses that had been ineffective without C7R support. C7R may thus be able to enhance antigen-specific T-cell therapies against cancer. Significance: The constitutively signaling C7R system developed here delivers potent IL7 stimulation to CAR T cells, increasing their persistence and antitumor activity against multiple preclinical tumor models, supporting its clinical development. Cancer Discov; 7(11); 1238-47. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 1201 . ©2017 American Association for Cancer Research.

  11. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells

    PubMed Central

    Tone, Masahide; Tone, Yukiko; Adams, Elizabeth; Yates, Stephen F.; Frewin, Mark R.; Cobbold, Stephen P.; Waldmann, Herman

    2003-01-01

    Recently, agonist antibodies to glucocorticoid-induced tumor necrosis factor receptor (GITR) (tumor necrosis factor receptor superfamily 18) have been shown to neutralize the suppressive activity of CD4+CD25+ regulatory T cells. It was anticipated that this would be the role of the physiological ligand. We have identified and expressed the gene for mouse GITR ligand and have confirmed that its interaction with GITR reverses suppression by CD4+CD25+ T cells. It also, however, provides a costimulatory signal for the antigen-driven proliferation of naïve T cells and polarized T helper 1 and T helper 2 clones. RT-PCR and mAb staining revealed mouse GITR ligand expression in dendritic cells, macrophages, and B cells. Expression was controlled by the transcription factor NF-1 and potentially by alternative splicing of mRNA destabilization sequences. PMID:14608036

  12. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival.

    PubMed

    Curiel, Tyler J; Coukos, George; Zou, Linhua; Alvarez, Xavier; Cheng, Pui; Mottram, Peter; Evdemon-Hogan, Melina; Conejo-Garcia, Jose R; Zhang, Lin; Burow, Matthew; Zhu, Yun; Wei, Shuang; Kryczek, Ilona; Daniel, Ben; Gordon, Alan; Myers, Leann; Lackner, Andrew; Disis, Mary L; Knutson, Keith L; Chen, Lieping; Zou, Weiping

    2004-09-01

    Regulatory T (T(reg)) cells mediate homeostatic peripheral tolerance by suppressing autoreactive T cells. Failure of host antitumor immunity may be caused by exaggerated suppression of tumor-associated antigen-reactive lymphocytes mediated by T(reg) cells; however, definitive evidence that T(reg) cells have an immunopathological role in human cancer is lacking. Here we show, in detailed studies of CD4(+)CD25(+)FOXP3(+) T(reg) cells in 104 individuals affected with ovarian carcinoma, that human tumor T(reg) cells suppress tumor-specific T cell immunity and contribute to growth of human tumors in vivo. We also show that tumor T(reg) cells are associated with a high death hazard and reduced survival. Human T(reg) cells preferentially move to and accumulate in tumors and ascites, but rarely enter draining lymph nodes in later cancer stages. Tumor cells and microenvironmental macrophages produce the chemokine CCL22, which mediates trafficking of T(reg) cells to the tumor. This specific recruitment of T(reg) cells represents a mechanism by which tumors may foster immune privilege. Thus, blocking T(reg) cell migration or function may help to defeat human cancer.

  13. Adoptive transfer of gene-engineered CD4+ helper T cells induces potent primary and secondary tumor rejection.

    PubMed

    Moeller, Maria; Haynes, Nicole M; Kershaw, Michael H; Jackson, Jacob T; Teng, Michele W L; Street, Shayna E; Cerutti, Loretta; Jane, Stephen M; Trapani, Joseph A; Smyth, Mark J; Darcy, Phillip K

    2005-11-01

    Because CD4+ T cells play a key role in aiding cellular immune responses, we wanted to assess whether increasing numbers of gene-engineered antigen-restricted CD4+ T cells could enhance an antitumor response mediated by similarly gene-engineered CD8+ T cells. In this study, we have used retroviral transduction to generate erbB2-reactive mouse T-cell populations composed of various proportions of CD4+ and CD8+ cells and then determined the antitumor reactivity of these mixtures. Gene-modified CD4+ and CD8+ T cells were shown to specifically secrete Tc1 (T cytotoxic-1) or Tc2 cytokines, proliferate, and lyse erbB2+ tumor targets following antigen ligation in vitro. In adoptive transfer experiments using severe combined immunodeficient (scid) mice, we demonstrated that injection of equivalent numbers of antigen-specific engineered CD8+ and CD4+ T cells led to significant improvement in survival of mice bearing established lung metastases compared with transfer of unfractionated (largely CD8+) engineered T cells. Transferred CD4+ T cells had to be antigen-specific (not just activated) and secrete interferon gamma (IFN-gamma) to potentiate the antitumor effect. Importantly, antitumor responses in these mice correlated with localization and persistence of gene-engineered T cells at the tumor site. Strikingly, mice that survived primary tumor challenge could reject a subsequent rechallenge. Overall, this study has highlighted the therapeutic potential of using combined transfer of antigen-specific gene-modified CD8+ and CD4+ T cells to significantly enhance T-cell adoptive transfer strategies for cancer therapy.

  14. [Experimental study of glioma stem cell-mediated immune tolerance in tumor microenvironment].

    PubMed

    Xie, T; Ma, J W; Liu, B; Dong, J; Huang, Q

    2017-11-23

    Objective: To investigate the tumor microenvironment of immune tolerance induced by glioma stem cells (GSC). Methods: Human GSC SU3 cells transfected with red fluorescent protein (SU3-RFP) gene were implanted into the brain, subcutis (armpit and foot), liver and abdominal cavity of transgenic green fluorescence protein (GFP) nude mice to establish RFP(+) /GFP(+) dual fluorescence solid tumor model. The re-cultured cells derived from implanted tumor tissues, SU3-RFP cells co-cultured with peritoneal fluid of transgenic GFP nude mice and malignant ascites of tumor-bearing mice were observed by fluorescence microscopy and real-time video image tracing to analyze the microenvironment of immune tolerance mediated by RFP(+) /GFP(+) implanted tumor. Results: Dual fluorescence labeled frozen section showed that all of cells in the tumor microenvironment were GFP(+) , while the pressed tissue-patch showed that the tumor blood vessels exhibited a RFP(+) /GFP(+) double-positioning yellow. In the GFP single fluorescence labeled tumor tissue, all of cells in the microenvironment were green, including tumor edge, necrotic foci and blood vessel. Among them, CD68(+) , F4/80(+) , CD11c(+) , CD11b(+) and CD80(+) cells were observed. In the dual fluorescence labeled co-cultured cells, the phagocytosis and fusion between green host cells and red tumor cells were also observed, and these fusion cells might transfer to the malignant dendritic cells and macrophages. Conclusions: The tumor microenvironment of immune tolerance induced by GSC is not affected by the tissue types of tumor-inoculated sites, and the immune tolerance mediated by inflammatory cells is associated with the inducible malignant transformation, which may be driven by cell fusion.

  15. NF-κB RelA renders tumor-associated macrophages resistant to and capable of directly suppressing CD8+ T cells for tumor promotion.

    PubMed

    Li, Liwen; Han, Lei; Sun, Fan; Zhou, Jingjiao; Ohaegbulam, Kim C; Tang, Xudong; Zang, Xingxing; Steinbrecher, Kris A; Qu, Zhaoxia; Xiao, Gutian

    2018-01-01

    Activation of the inflammatory transcription factor NF-κB in tumor-associated macrophages (TAMs) is assumed to contribute to tumor promotion. However, whether and how NF-κB drives the antitumor macrophages to become pro-tumorigenic have not been determined in any cancer type yet. Similarly, how TAMs repress CD8 + cytotoxic T lymphocytes (CTLs) remains largely unknown, although their importance in regulatory T (Treg) cell regulation and tumor promotion has been well appreciated. Here, using an endogenous lung cancer model we uncover a direct crosstalk between TAMs and CTLs. TAMs suppress CTLs through the T-cell inhibitory molecule B7x (B7-H4/B7S1) in a cell-cell contact manner, whereas CTLs kill TAMs in a tumor antigen-specific manner. Remarkably, TAMs secrete the known T-cell suppressive cytokine interleukin-10 (IL-10) to activate, but not to repress, CTLs. Notably, one major role of cell-intrinsic NF-κB RelA is to drive TAMs to suppress CTLs for tumor promotion. It induces B7x expression in TAMs directly, and restricts IL-10 expression indirectly by repressing expression of the NF-κB cofactor Bcl3 and subsequent Bcl3/NF-κB1-mediated transcription of IL-10. It also renders TAMs resistant to CTLs by up-regulating anti-apoptotic genes. These studies help understand how immunity is shaped in lung tumorigenesis, and suggest a RelA-targeted immunotherapy for this deadliest cancer.

  16. Mesenchymal Stem Cell-Mediated Effects of Tumor Support or Suppression

    PubMed Central

    Rhee, Ki-Jong; Lee, Jong In; Eom, Young Woo

    2015-01-01

    Mesenchymal stem cells (MSCs) can exhibit a marked tropism towards site of tumors. Many studies have reported that tumor progression and metastasis increase by MSCs. In contrast, other studies have shown that MSCs suppress growth of tumors. MSCs contribute to tumor growth promotion by several mechanisms: (1) transition to tumor-associated fibroblasts; (2) suppression of immune response; (3) promotion of angiogenesis; (4) stimulation of epithelial-mesenchymal transition (EMT); (5) contribution to the tumor microenvironment; (6) inhibition of tumor cell apoptosis; and (7) promotion of tumor metastasis. In contrast to the tumor-promoting properties, MSCs inhibit tumor growth by increasing inflammatory infiltration, inhibiting angiogenesis, suppressing Wnt signaling and AKT signaling, and inducing cell cycle arrest and apoptosis. In this review, we will discuss potential mechanisms by which MSC mediates tumor support or suppression and then the possible tumor-specific therapeutic strategies using MSCs as delivery vehicles, based on their homing potential to tumors. PMID:26694366

  17. Autocrine IL-6 mediates pituitary tumor senescence

    PubMed Central

    Fuertes, Mariana; Ajler, Pablo; Carrizo, Guillermo; Cervio, Andrés; Sevlever, Gustavo; Stalla, Günter K.; Arzt, Eduardo

    2017-01-01

    Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells. In a cell autonomous fashion, IL-6 participates in oncogene-induced senescence in transduced human melanocytes. Here we prove that autocrine IL-6 participates in pituitary tumor senescence. Endogenous IL-6 inhibition in somatotroph MtT/S shRNA stable clones results in decreased SA-β-gal activity and p16INK4a but increased pRb, proliferation and invasion. Nude mice injected with IL-6 silenced clones develop tumors contrary to MtT/S wild type that do not, demonstrating that clones that escape senescence are capable of becoming tumorigenic. When endogenous IL-6 is silenced, cell cultures derived from positive SA-β-gal human tumor samples decrease the expression of the senescence marker. Our results establish that IL-6 contributes to maintain senescence by its autocrine action, providing a natural model of IL-6 mediated benign adenoma senescence. PMID:27902467

  18. Ganglioside GM2 mediates migration of tumor cells by interacting with integrin and modulating the downstream signaling pathway.

    PubMed

    Kundu, Manjari; Mahata, Barun; Banerjee, Avisek; Chakraborty, Sohini; Debnath, Shibjyoti; Ray, Sougata Sinha; Ghosh, Zhumur; Biswas, Kaushik

    2016-07-01

    The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Inhibition of phosphoantigen-mediated gammadelta T-cell proliferation by CD4+ CD25+ FoxP3+ regulatory T cells.

    PubMed

    Kunzmann, Volker; Kimmel, Brigitte; Herrmann, Thomas; Einsele, Hermann; Wilhelm, Martin

    2009-02-01

    Tumour growth promotes the expansion of CD4(+) CD25(+) FoxP3(+) regulatory T cells (Tregs) which suppress various arms of immune responses and might therefore contribute to tumour immunosurveillance. In this study, we found an inverse correlation between circulating Treg frequencies and phosphoantigen-induced gammadelta T-cell proliferation in cancer patients, which prompted us to address the role of Tregs in controlling the gammadelta T-cell arm of innate immune responses. In vitro, human Treg-peripheral blood mononuclear cell (PBMC) co-cultures strongly inhibited phosphoantigen-induced proliferation of gammadelta T cells and depletion of Tregs restored the impaired phosphoantigen-induced gammadelta T-cell proliferation of cancer patients. Tregs did not suppress other effector functions of gammadelta T cells such as cytokine production or cytotoxicity. Our experiments indicate that Tregs do not mediate their suppressive activity via a cell-cell contact-dependent mechanism, but rather secrete a soluble non-proteinaceous factor, which is independent of known soluble factors interacting with amino acid depletion (e.g. arginase-diminished arginine and indolamine 2,3-dioxygenase-diminished tryptophan) or nitric oxide (NO) production. However, the proliferative activity of alphabeta T cells was not affected by this cell-cell contact-independent suppressive activity induced by Tregs. In conclusion, these findings indicate a potential new mechanism by which Tregs can specifically suppress gammadelta T cells and highlight the strategy of combining Treg inhibition with subsequent gammadelta T-cell activation to enhance gammadelta T cell-mediated immunotherapy.

  20. Manipulating the tumor microenvironment ex vivo for enhanced expansion of tumor-infiltrating lymphocytes for adoptive cell therapy

    PubMed Central

    Chacon, Jessica Ann; Sarnaik, Amod A; Chen, Jie Qing; Creasy, Caitlin; Kale, Charuta; Robinson, John; Weber, Jeffrey; Hwu, Patrick; Pilon-Thomas, Shari; Radvanyi, Laszlo

    2014-01-01

    Purpose Cultured tumor fragments from melanoma metastases have been used for years as a source of tumor-infiltrating lymphocytes (TIL) for adoptive cell therapy. The expansion of tumor-reactive CD8+ T cells with IL-2 in these early cultures is critical in generating clinically active TIL infusion products, with a population of activated 4-1BB CD8+ T cells recently found to constitute the majority of tumor-specific T cells. Experimental Design We used an agonistic anti-4-1BB antibody added during the initial tumor fragment cultures to provide in situ 4-1BB co-stimulation. Results We found that addition of an agonistic anti-4-1BB antibody could activate 4-1BB signaling within early cultured tumor fragments and accelerated the rate of memory CD8+ TIL outgrowth that were highly enriched for melanoma antigen specificity. This was associated with NFκB activation and the induction of T-cell survival and memory genes, as well as enhanced IL-2 responsiveness, in the CD8+ T cells in the fragments and emerging from the fragments. Early provision of 4-1BB co-stimulation also affected the dendritic cells (DC) by activating NFκB in DC and promoting their maturation inside the tumor fragments. Blocking HLA class I prevented the enhanced outgrowth of CD8+ T cells with anti-4-1BB, suggesting that an ongoing HLA class I-mediated antigen presentation in early tumor fragment cultures plays a role in mediating tumor-specific CD8+ TIL outgrowth. Conclusions Our results highlight a previously unrecognized concept in TIL adoptive cell therapy that the tumor microenvironment can be dynamically regulated in the initial tumor fragment cultures to regulate the types of T cells expanded and their functional characteristics. PMID:25472998

  1. Tumor-derived microvesicles mediate human breast cancer invasion through differentially glycosylated EMMPRIN.

    PubMed

    Menck, Kerstin; Scharf, Christian; Bleckmann, Annalen; Dyck, Lydia; Rost, Ulrike; Wenzel, Dirk; Dhople, Vishnu M; Siam, Laila; Pukrop, Tobias; Binder, Claudia; Klemm, Florian

    2015-04-01

    Tumor cells secrete not only a variety of soluble factors, but also extracellular vesicles that are known to support the establishment of a favorable tumor niche by influencing the surrounding stroma cells. Here we show that tumor-derived microvesicles (T-MV) also directly influence the tumor cells by enhancing their invasion in a both autologous and heterologous manner. Neither the respective vesicle-free supernatant nor MV from benign mammary cells mediate invasion. Uptake of T-MV is essential for the proinvasive effect. We further identify the highly glycosylated form of the extracellular matrix metalloproteinase inducer (EMMPRIN) as a marker for proinvasive MV. EMMPRIN is also present at high levels on MV from metastatic breast cancer patients in vivo. Anti-EMMPRIN strategies, such as MV deglycosylation, gene knockdown, and specific blocking peptides, inhibit MV-induced invasion. Interestingly, the effect of EMMPRIN-bearing MV is not mediated by matrix metalloproteinases but by activation of the p38/MAPK signaling pathway in the tumor cells. In conclusion, T-MV stimulate cancer cell invasion via a direct feedback mechanism dependent on highly glycosylated EMMPRIN. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  2. A Trichostatin A (TSA)/Sp1-mediated mechanism for the regulation of SALL2 tumor suppressor in Jurkat T cells.

    PubMed

    Hepp, Matías I; Escobar, David; Farkas, Carlos; Hermosilla, Viviana; Álvarez, Claudia; Amigo, Roberto; Gutiérrez, José L; Castro, Ariel F; Pincheira, Roxana

    2018-05-17

    SALL2 is a transcription factor involved in development and disease. Deregulation of SALL2 has been associated with cancer, suggesting that it plays a role in the disease. However, how SALL2 is regulated and why is deregulated in cancer remain poorly understood. We previously showed that the p53 tumor suppressor represses SALL2 under acute genotoxic stress. Here, we investigated the effect of Histone Deacetylase Inhibitor (HDACi) Trichostatin A (TSA), and involvement of Sp1 on expression and function of SALL2 in Jurkat T cells. We show that SALL2 mRNA and protein levels were enhanced under TSA treatment. Both, TSA and ectopic expression of Sp1 transactivated the SALL2 P2 promoter. This transactivation effect was blocked by the Sp1-binding inhibitor mithramycin A. Sp1 bound in vitro and in vivo to the proximal region of the P2 promoter. TSA induced Sp1 binding to the P2 promoter, which correlated with dynamic changes on H4 acetylation and concomitant recruitment of p300 or HDAC1 in a mutually exclusive manner. Our results suggest that TSA-induced Sp1-Lys703 acetylation contributes to the transcriptional activation of the P2 promoter. Finally, using a CRISPR/Cas9 SALL2-KO Jurkat-T cell model and gain of function experiments, we demonstrated that SALL2 upregulation is required for TSA-mediated cell death. Thus, our study identified Sp1 as a novel transcriptional regulator of SALL2, and proposes a novel epigenetic mechanism for SALL2 regulation in Jurkat-T cells. Altogether, our data support SALL2 function as a tumor suppressor, and SALL2 involvement in cell death response to HDACi. Copyright © 2018. Published by Elsevier B.V.

  3. Cytomegalovirus vector expressing RAE-1γ induces enhanced anti-tumor capacity of murine CD8+ T cells.

    PubMed

    Tršan, Tihana; Vuković, Kristina; Filipović, Petra; Brizić, Ana Lesac; Lemmermann, Niels A W; Schober, Kilian; Busch, Dirk H; Britt, William J; Messerle, Martin; Krmpotić, Astrid; Jonjić, Stipan

    2017-08-01

    Designing CD8 + T-cell vaccines, which would provide protection against tumors is still considered a great challenge in immunotherapy. Here we show the robust potential of cytomegalovirus (CMV) vector expressing the NKG2D ligand RAE-1γ as CD8 + T cell-based vaccine against malignant tumors. Immunization with the CMV vector expressing RAE-1γ, delayed tumor growth or even provided complete protection against tumor challenge in both prophylactic and therapeutic settings. Moreover, a potent tumor control in mice vaccinated with this vector can be further enhanced by blocking the immune checkpoints TIGIT and PD-1. CMV vector expressing RAE-1γ potentiated expansion of KLRG1 + CD8 + T cells with enhanced effector properties. This vaccination was even more efficient in neonatal mice, resulting in the expansion and long-term maintenance of epitope-specific CD8 + T cells conferring robust resistance against tumor challenge. Our data show that immunomodulation of CD8 + T-cell responses promoted by herpesvirus expressing a ligand for NKG2D receptor can provide a powerful platform for the prevention and treatment of CD8 + T-cell sensitive tumors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Reproducible Immunopotency Assay to Measure Mesenchymal Stromal Cell Mediated T cell Suppression

    PubMed Central

    Bloom, Debra D.; Centanni, John M.; Bhatia, Neehar; Emler, Carol A.; Drier, Diana; Leverson, Glen E.; McKenna, David H.; Gee, Adrian P.; Lindblad, Robert; Hei, Derek J.; Hematti, Peiman

    2014-01-01

    Background The T cell suppressive property of bone marrow derived mesenchymal stromal cells (MSCs) has been considered a major mode of action and basis for their utilization in a number of human clinical trials. However, there is no well-established reproducible assay to measure MSC-mediated T cell suppression. Methods At the University of Wisconsin-Madison Production Assistance for Cellular Therapy (PACT) Center we developed an in vitro quality control T cell suppression immunopotency assay (IPA) which utilizes anti-CD3 and anti-CD28 antibodies to stimulate T cell proliferation. We measured MSC-induced suppression of CD4+ T cell proliferation at various effector to target cell ratios using defined peripheral blood mononuclear cells and in parallel compared to a reference standard MSC product. We calculated an IPA value for suppression of CD4+ T cells for each MSC product. Results Eleven MSC products generated at three independent PACT centers were evaluated for cell surface phenotypic markers and T cell suppressive properties. Flow cytometry results demonstrated typical MSC cell surface marker profiles. There was significant variability in the level of suppression of T cell proliferation with IPA values ranging from 27% to 88%. However, MSC suppression did not correlate with HLA-DR expression. Discussion We have developed a reproducible immunopotency assay to measure allogeneic MSC-mediated suppression of CD4+ T cells. Additional studies may be warranted to determine how these in vitro assay results may correlate with other immunomodulatory properties of MSCs, in addition to evaluating the ability of this assay to predict in vivo efficacy. PMID:25455739

  5. Tumor exosomes block dendritic cells maturation to decrease the T cell immune response.

    PubMed

    Ning, Yongling; Shen, Kai; Wu, Qiyong; Sun, Xiao; Bai, Yu; Xie, Yewen; Pan, Jie; Qi, Chunjian

    2018-07-01

    Tumors can induce the generation and accumulation of immunosuppression in a tumor microenvironment, contributing to the tumor's escape from immunological surveillance. Although tumor antigen-pulsed dendritic cell can improve anti-tumor immune responses, tumor associated regulatory dendritic cells are involved in the induction of immune tolerance. The current study sought to investigate whether exosomes produced by tumor cells had any effect on DCs in immune suppression. In this study, we examined the effect of tumor exosomes on DCs and found that exosomes from LLC Lewis lung carcinoma or 4T1 breast cancer cell blocked the differentiation of myeloid precursor cells into CD11c + DCs and induced cell apoptosis. Tumor exosome treatment inhibited the maturation and migration of DCs and promoted the immune suppression of DCs. The treatment of tumor exosomes drastically decreased CD4 + IFN-γ + Th1 differentiation but increased the rates of regulatory T (Treg) cells. The immunosuppressive ability of tumor exosome-treated DCs were partially restored with PD-L1 blockage. These data suggested that PD-L1 played a role in tumor exosome-induced DC-associated immune suppression. Copyright © 2018 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  6. Manipulating the tumor microenvironment ex vivo for enhanced expansion of tumor-infiltrating lymphocytes for adoptive cell therapy.

    PubMed

    Chacon, Jessica Ann; Sarnaik, Amod A; Chen, Jie Qing; Creasy, Caitlin; Kale, Charuta; Robinson, John; Weber, Jeffrey; Hwu, Patrick; Pilon-Thomas, Shari; Radvanyi, Laszlo

    2015-02-01

    Cultured tumor fragments from melanoma metastases have been used for years as a source of tumor-infiltrating lymphocytes (TIL) for adoptive cell therapy (ACT). The expansion of tumor-reactive CD8(+) T cells with interleukin-2 (IL2) in these early cultures is critical in generating clinically active TIL infusion products, with a population of activated 4-1BB CD8(+) T cells recently found to constitute the majority of tumor-specific T cells. We used an agonistic anti-4-1BB antibody added during the initial tumor fragment cultures to provide in situ 4-1BB costimulation. We found that addition of an agonistic anti-4-1BB antibody could activate 4-1BB signaling within early cultured tumor fragments and accelerated the rate of memory CD8(+) TIL outgrowth that were highly enriched for melanoma antigen specificity. This was associated with NFκB activation and the induction of T-cell survival and memory genes, as well as enhanced IL2 responsiveness, in the CD8(+) T cells in the fragments and emerging from the fragments. Early provision of 4-1BB costimulation also affected the dendritic cells (DC) by activating NFκB in DC and promoting their maturation inside the tumor fragments. Blocking HLA class I prevented the enhanced outgrowth of CD8(+) T cells with anti-4-1BB, suggesting that an ongoing HLA class I-mediated antigen presentation in early tumor fragment cultures plays a role in mediating tumor-specific CD8(+) TIL outgrowth. Our results highlight a previously unrecognized concept in TIL ACT that the tumor microenvironment can be dynamically regulated in the initial tumor fragment cultures to regulate the types of T cells expanded and their functional characteristics. ©2014 American Association for Cancer Research.

  7. B cells promote tumor progression in a mouse model of HPV-mediated cervical cancer.

    PubMed

    Tang, Alexandre; Dadaglio, Gilles; Oberkampf, Marine; Di Carlo, Selene; Peduto, Lucie; Laubreton, Daphné; Desrues, Belinda; Sun, Cheng-Ming; Montagutelli, Xavier; Leclerc, Claude

    2016-09-15

    Enhancing anti-tumor immunity and preventing tumor escape are efficient strategies to increase the efficacy of therapeutic cancer vaccines. However, the treatment of advanced tumors remains difficult, mainly due to the immunosuppressive tumor microenvironment. Regulatory T cells and myeloid-derived suppressor cells have been extensively studied, and their role in suppressing tumor immunity is now well established. In contrast, the role of B lymphocytes in tumor immunity remains unclear because B cells can promote tumor immunity or display regulatory functions to control excessive inflammation, mainly through IL-10 secretion. Here, in a mouse model of HPV-related cancer, we demonstrate that B cells accumulated in the draining lymph node of tumor-bearing mice, due to a prolonged survival, and showed a decreased expression of MHC class II and CD86 molecules and an increased expression of Ly6A/E, PD-L1 and CD39, suggesting potential immunoregulatory properties. However, B cells from tumor-bearing mice did not show an increased ability to secrete IL-10 and a deficiency in IL-10 production did not impair tumor growth. In contrast, in B cell-deficient μMT mice, tumor rejection occurred due to a strong T cell-dependent anti-tumor response. Genetic analysis based on single nucleotide polymorphisms identified genetic variants associated with tumor rejection in μMT mice, which could potentially affect reactive oxygen species production and NK cell activity. Our results demonstrate that B cells play a detrimental role in anti-tumor immunity and suggest that targeting B cells could enhance the anti-tumor response and improve the efficacy of therapeutic cancer vaccines. © 2016 UICC.

  8. Therapeutic limitations in tumor-specific CD8+ memory T cell engraftment

    PubMed Central

    Bathe, Oliver F; Dalyot-Herman, Nava; Malek, Thomas R

    2003-01-01

    Background Adoptive immunotherapy with cytotoxic T lymphocytes (CTL) represents an alternative approach to treating solid tumors. Ideally, this would confer long-term protection against tumor. We previously demonstrated that in vitro-generated tumor-specific CTL from the ovalbumin (OVA)-specific OT-I T cell receptor transgenic mouse persisted long after adoptive transfer as memory T cells. When recipient mice were challenged with the OVA-expressing E.G7 thymoma, tumor growth was delayed and sometimes prevented. The reasons for therapeutic failures were not clear. Methods OT-I CTL were adoptively transferred to C57BL/6 mice 21 – 28 days prior to tumor challenge. At this time, the donor cells had the phenotypical and functional characteristics of memory CD8+ T cells. Recipients which developed tumor despite adoptive immunotherapy were analyzed to evaluate the reason(s) for therapeutic failure. Results Dose-response studies demonstrated that the degree of tumor protection was directly proportional to the number of OT-I CTL adoptively transferred. At a low dose of OT-I CTL, therapeutic failure was attributed to insufficient numbers of OT-I T cells that persisted in vivo, rather than mechanisms that actively suppressed or anergized the OT-I T cells. In recipients of high numbers of OT-I CTL, the E.G7 tumor that developed was shown to be resistant to fresh OT-I CTL when examined ex vivo. Furthermore, these same tumor cells no longer secreted a detectable level of OVA. In this case, resistance to immunotherapy was secondary to selection of clones of E.G7 that expressed a lower level of tumor antigen. Conclusions Memory engraftment with tumor-specific CTL provides long-term protection against tumor. However, there are several limitations to this immunotherapeutic strategy, especially when targeting a single antigen. This study illustrates the importance of administering large numbers of effectors to engraft sufficiently efficacious immunologic memory. It also

  9. Dacarbazine-mediated upregulation of NKG2D ligands on tumor cells activates NK and CD8 T cells and restrains melanoma growth.

    PubMed

    Hervieu, Alice; Rébé, Cédric; Végran, Frédérique; Chalmin, Fanny; Bruchard, Mélanie; Vabres, Pierre; Apetoh, Lionel; Ghiringhelli, François; Mignot, Grégoire

    2013-02-01

    Dacarbazine (DTIC) is a cytotoxic drug widely used for melanoma treatment. However, the putative contribution of anticancer immune responses in the efficacy of DTIC has not been evaluated. By testing how DTIC affects host immune responses to cancer in a mouse model of melanoma, we unexpectedly found that both natural killer (NK) and CD8(+) T cells were indispensable for DTIC therapeutic effect. Although DTIC did not directly affect immune cells, it triggered the upregulation of NKG2D ligands on tumor cells, leading to NK cell activation and IFNγ secretion in mice and humans. NK cell-derived IFNγ subsequently favored upregulation of major histocompatibility complex class I molecules on tumor cells, rendering them sensitive to cytotoxic CD8(+) T cells. Accordingly, DTIC markedly enhanced cytotoxic T lymphocyte antigen 4 inhibition efficacy in vivo in an NK-dependent manner. These results underscore the immunogenic properties of DTIC and provide a rationale to combine DTIC with immunotherapeutic agents that relieve immunosuppression in vivo.

  10. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells.

    PubMed

    Gao, Xin; Wang, Xuefeng; Yang, Qianting; Zhao, Xin; Wen, Wen; Li, Gang; Lu, Junfeng; Qin, Wenxin; Qi, Yuan; Xie, Fang; Jiang, Jingting; Wu, Changping; Zhang, Xueguang; Chen, Xinchun; Turnquist, Heth; Zhu, Yibei; Lu, Binfeng

    2015-01-01

    Cancer immunotherapy has shown great promise as a new standard cancer therapeutic modality. However, the response rates are limited for current approach that depends on enhancing spontaneous antitumor immune responses. Therefore, increasing tumor immunogenicity by expressing appropriate cytokines should further improve the current immunotherapy. IL-33 is a member of the IL-1 family of cytokines and is released by necrotic epithelial cells or activated innate immune cells and is thus considered a "danger" signal. The role of IL-33 in promoting type 2 immune responses and tissue inflammation has been well established. However, whether IL-33 drives antitumor immune responses is controversial. Our previous work established that IL-33 promoted the function of CD8(+) T cells. In this study, we showed that the expression of IL-33 in two types of cancer cells potently inhibited tumor growth and metastasis. Mechanistically, IL-33 increased numbers and IFN-γ production by CD8(+) T and NK cells in tumor tissues, thereby inducing a tumor microenvironment favoring tumor eradication. Importantly, IL-33 greatly increased tumor Ag-specific CD8(+) T cells. Furthermore, both NK and CD8(+) T cells were required for the antitumor effect of IL-33. Moreover, depletion of regulatory T cells worked synergistically with IL-33 expression for tumor elimination. Our studies established "alarmin" IL-33 as a promising new cytokine for tumor immunotherapy through promoting cancer-eradicating type 1 immune responses. Copyright © 2014 by The American Association of Immunologists, Inc.

  11. Peptidases released by necrotic cells control CD8+ T cell cross-priming

    PubMed Central

    Gamrekelashvili, Jaba; Kapanadze, Tamar; Han, Miaojun; Wissing, Josef; Ma, Chi; Jaensch, Lothar; Manns, Michael P.; Armstrong, Todd; Jaffee, Elizabeth; White, Ayla O.; Citrin, Deborah E.; Korangy, Firouzeh; Greten, Tim F.

    2013-01-01

    Cross-priming of CD8+ T cells and generation of effector immune responses is pivotal for tumor immunity as well as for successful anticancer vaccination and therapy. Dead and dying cells produce signals that can influence Ag processing and presentation; however, there is conflicting evidence regarding the immunogenicity of necrotic cell death. We used a mouse model of sterile necrosis, in which mice were injected with sterile primary necrotic cells, to investigate a role of these cells in priming of CD8+ T cells. We discovered a molecular mechanism operating in Ag donor cells that regulates cross-priming of CD8+ T cells during primary sterile necrosis and thereby controls adaptive immune responses. We found that the cellular peptidases dipeptidyl peptidase 3 (DPP-3) and thimet oligopeptidase 1 (TOP-1), both of which are present in nonimmunogenic necrotic cells, eliminated proteasomal degradation products and blocked Ag cross-presentation. While sterile necrotic tumor cells failed to induce CD8+ T cell responses, their nonimmunogenicity could be reversed in vitro and in vivo by inactivation of DPP-3 and TOP-1. These results indicate that control of cross-priming and thereby immunogenicity of primary sterile necrosis relies on proteasome-dependent oligopeptide generation and functional status of peptidases in Ag donor cells. PMID:24216478

  12. Peptidases released by necrotic cells control CD8+ T cell cross-priming.

    PubMed

    Gamrekelashvili, Jaba; Kapanadze, Tamar; Han, Miaojun; Wissing, Josef; Ma, Chi; Jaensch, Lothar; Manns, Michael P; Armstrong, Todd; Jaffee, Elizabeth; White, Ayla O; Citrin, Deborah E; Korangy, Firouzeh; Greten, Tim F

    2013-11-01

    Cross-priming of CD8+ T cells and generation of effector immune responses is pivotal for tumor immunity as well as for successful anticancer vaccination and therapy. Dead and dying cells produce signals that can influence Ag processing and presentation; however, there is conflicting evidence regarding the immunogenicity of necrotic cell death. We used a mouse model of sterile necrosis, in which mice were injected with sterile primary necrotic cells, to investigate a role of these cells in priming of CD8+ T cells. We discovered a molecular mechanism operating in Ag donor cells that regulates cross-priming of CD8+ T cells during primary sterile necrosis and thereby controls adaptive immune responses. We found that the cellular peptidases dipeptidyl peptidase 3 (DPP-3) and thimet oligopeptidase 1 (TOP-1), both of which are present in nonimmunogenic necrotic cells, eliminated proteasomal degradation products and blocked Ag cross-presentation. While sterile necrotic tumor cells failed to induce CD8+ T cell responses, their nonimmunogenicity could be reversed in vitro and in vivo by inactivation of DPP-3 and TOP-1. These results indicate that control of cross-priming and thereby immunogenicity of primary sterile necrosis relies on proteasome-dependent oligopeptide generation and functional status of peptidases in Ag donor cells.

  13. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment.

    PubMed

    Kryczek, Ilona; Wei, Shuang; Zou, Linhua; Altuwaijri, Saleh; Szeliga, Wojciech; Kolls, Jay; Chang, Alfred; Zou, Weiping

    2007-06-01

    Th17 cells play an active role in inflammation and autoimmune diseases. However, the nature and regulation of Th17 in the context of tumor immunity remain unknown. In this study, we show that parallel to regulatory T (Treg) cells, IL-17(+) CD4(+) and CD8(+) T cells are kinetically induced in multiple tumor microenvironments in mice and humans. Treg cells play a crucial role in tumor immune pathogenesis and temper immune therapeutic efficacy. IL-2 is crucial for the production and function of Treg cells. We now show that IL-2 reduces IL-17(+) T cell differentiation in the tumor microenvironment accompanied with an enhanced Treg cell compartment in vitro and in vivo. Altogether, our work demonstrates a dynamic differentiation of IL-17(+) T cells in the tumor microenvironment, reveals a novel role for IL-2 in controlling the balance between IL-17(+) and Treg cells, and provides new insight of IL-17(+) T cells in tumor immune pathology and therapy.

  14. Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth

    PubMed Central

    Hutzler, Marina; Abel, Simone; Alter, Christina; Stockmann, Christian; Kliche, Stefanie; Albert, Juliane; Sparwasser, Tim; Sakaguchi, Shimon; Westendorf, Astrid M.; Schadendorf, Dirk; Buer, Jan; Helfrich, Iris

    2012-01-01

    Infiltration of Foxp3+ regulatory T (T reg) cells is considered to be a critical step during tumor development and progression. T reg cells supposedly suppress locally an effective anti-tumor immune response within tumor tissues, although the precise mechanism by which T reg cells infiltrate the tumor is still unclear. We provide evidence that Neuropilin 1 (Nrp-1), highly expressed by Foxp3+ T reg cells, regulates the immunological anti-tumor control by guiding T reg cells into the tumor in response to tumor-derived vascular endothelial growth factor (VEGF). We demonstrate for the first time that T cell–specific ablation of Nrp-1 expression results in a significant breakdown in tumor immune escape in various transplantation models and in a spontaneous, endogenously driven melanoma model associated with strongly reduced tumor growth and prolonged tumor-free survival. Strikingly, numbers of tumor-infiltrating Foxp3+ T reg cells were significantly reduced accompanied by enhanced activation of CD8+ T cells within tumors of T cell–specific Nrp-1–deficient mice. This phenotype can be reversed by adoptive transfer of Nrp-1+ T reg cells from wild-type mice. Thus, our data strongly suggest that Nrp-1 acts as a key mediator of Foxp3+ T reg cell infiltration into the tumor site resulting in a dampened anti-tumor immune response and enhanced tumor progression. PMID:23045606

  15. CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells

    PubMed Central

    Herrmann, Andreas; Priceman, Saul J.; Kujawski, Maciej; Xin, Hong; Cherryholmes, Gregory A.; Zhang, Wang; Zhang, Chunyan; Lahtz, Christoph; Kowolik, Claudia; Forman, Steve J.; Kortylewski, Marcin; Yu, Hua

    2014-01-01

    Intracellular therapeutic targets that define tumor immunosuppression in both tumor cells and T cells remain intractable. Here, we have shown that administration of a covalently linked siRNA to an aptamer (apt) that selectively binds cytotoxic T lymphocyte–associated antigen 4 (CTLA4apt) allows gene silencing in exhausted CD8+ T cells and Tregs in tumors as well as CTLA4-expressing malignant T cells. CTLA4 expression was upregulated in CD8+ T cells in the tumor milieu; therefore, CTLA4apt fused to a STAT3-targeting siRNA (CTLA4apt–STAT3 siRNA) resulted in internalization into tumor-associated CD8+ T cells and silencing of STAT3, which activated tumor antigen–specific T cells in murine models. Both local and systemic administration of CTLA4apt–STAT3 siRNA dramatically reduced tumor-associated Tregs. Furthermore, CTLA4apt–STAT3 siRNA potently inhibited tumor growth and metastasis in various mouse tumor models. Importantly, CTLA4 expression is observed in T cells of patients with blood malignancies, and CTLA4apt–STAT3 siRNA treatment of immunodeficient mice bearing human T cell lymphomas promoted tumor cell apoptosis and tumor growth inhibition. These data demonstrate that a CTLA4apt-based siRNA delivery strategy allows gene silencing in both tumor-associated T cells and tumor cells and inhibits tumor growth and metastasis. PMID:24892807

  16. Precision cancer immunotherapy: optimizing dendritic cell-based strategies to induce tumor antigen-specific T-cell responses against individual patient tumors.

    PubMed

    Osada, Takuya; Nagaoka, Koji; Takahara, Masashi; Yang, Xiao Yi; Liu, Cong-Xiao; Guo, Hongtao; Roy Choudhury, Kingshuk; Hobeika, Amy; Hartman, Zachary; Morse, Michael A; Lyerly, H Kim

    2015-05-01

    Most dendritic cell (DC)-based vaccines have loaded the DC with defined antigens, but loading with autologos tumor-derived antigens would generate DCs that activate personalized tumor-specific T-cell responses. We hypothesized that DC matured with an optimized combination of reagents and loaded with tumor-derived antigens using a clinically feasible electroporation strategy would induce potent antitumor immunity. We first studied the effects on DC maturation and antigen presentation of the addition of picibanil (OK432) to a combination of zoledronic acid, tumor necrosis factor-α, and prostaglandin E2. Using DC matured with the optimized combination, we tested 2 clinically feasible sources of autologous antigen for electroloading, total tumor mRNA or total tumor lysate, to determine which stimulated more potent antigen-specific T cells in vitro and activated more potent antitumor immunity in vivo. The combination of tumor necrosis factor-α/prostaglandin E2/zoledronic acid/OK432 generated DC with high expression of maturation markers and antigen-specific T-cell stimulatory function in vitro. Mature DC electroloaded with tumor-derived mRNA [mRNA electroporated dendritic cell (EPDC)] induced greater expansion of antigen-specific T cells in vitro than DC electroloaded with tumor lysate (lysate EPDC). In a therapeutic model of MC38-carcinoembryonic antigen colon cancer-bearing mice, vaccination with mRNA EPDC induced the most efficient anti-carcinoembryonic antigen cellular immune response, which significantly suppressed tumor growth. In conclusion, mature DC electroloaded with tumor-derived mRNA are a potent cancer vaccine, especially useful when specific tumor antigens for vaccination have not been identified, allowing autologous tumor, and if unavailable, allogeneic cell lines to be used as an unbiased source of antigen. Our data support clinical testing of this strategy.

  17. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T-lymphocytes

    PubMed Central

    Caruana, Ignazio; Savoldo, Barbara; Hoyos, Valentina; Weber, Gerrit; Liu, Hao; Kim, Eugene S.; Ittmann, Michael M.; Marchetti, Dario; Dotti, Gianpietro

    2015-01-01

    Adoptive transfer of chimeric antigen receptor (CAR)-redirected T lymphocytes (CAR-T cells) has had less striking effects in solid tumors1–3 than in lymphoid malignancies4, 5. Although active tumor-mediated immunosuppression may play a role in limiting efficacy6, functional changes in T lymphocytes following their ex vivo manipulation may also account for cultured CAR-T cells’ reduced ability to penetrate stroma-rich solid tumors. We therefore studied the capacity of human in vitro-cultured CAR-T cells to degrade components of the extracellular matrix (ECM). In contrast to freshly isolated T lymphocytes, we found that in vitro-cultured T lymphocytes lack expression of the enzyme heparanase (HPSE) that degrades heparan sulphate proteoglycans, which are main components of ECM. We found that HPSE mRNA is down regulated in in vitro-expanded T cells, which may be a consequence of p53 binding to the HPSE gene promoter. We therefore engineered CAR-T cells to express HPSE and showed improved capacity to degrade ECM, which promoted tumor T-cell infiltration and antitumor activity. Employing this strategy may enhance the activity of CAR-T cells in individuals with stroma-rich solid tumors. PMID:25849134

  18. Silencing Hsp25/Hsp27 gene expression augments proteasome activity and increases CD8+ T-cell-mediated tumor killing and memory responses.

    PubMed

    Nagaraja, Ganachari M; Kaur, Punit; Neumann, William; Asea, Edwina E; Bausero, María A; Multhoff, Gabriele; Asea, Alexzander

    2012-01-01

    Relatively high expression of Hsp27 in breast and prostate cancer is a predictor of poor clinical outcome. This study elucidates a hitherto unknown mechanism by which Hsp27 regulates proteasome function and modulates tumor-specific T-cell responses. Here, we showed that short-term silencing of Hsp25 or Hsp27 using siRNA or permanent silencing of Hsp25 using lentivirus RNA interference technology enhanced PA28α mRNA expression, PA28α protein expression, and proteasome activity; abrogated metastatic potential; induced the regression of established breast tumors by tumor-specific CD8(+) T cells; and stimulated long-lasting memory responses. The adoptive transfer of reactive CD8(+) T cells from mice bearing Hsp25-silenced tumors efficiently induced the regression of established tumors in nontreated mice which normally succumb to tumor burden. The overexpression of Hsp25 and Hsp27 resulted in the repression of normal proteasome function, induced poor antigen presentation, and resulted in increased tumor burden. Taken together, this study establishes a paradigm shift in our understanding of the role of Hsp27 in the regulation of proteasome function and tumor-specific T-cell responses and paves the way for the development of molecular targets to enhance proteasome function and concomitantly inhibit Hsp27 expression in tumors for therapeutic gain. ©2011 AACR.

  19. Silencing hsp25/hsp27 gene expression augments proteasome activity and increases CD8+ T cell-mediated tumor killing and memory responses

    PubMed Central

    Nagaraja, Ganachari M.; Kaur, Punit; Neumann, William; Asea, Edwina E.; Bausero, María A.; Multhoff, Gabriele; Asea, Alexzander

    2011-01-01

    Relatively high expression of Hsp27 in breast and prostate cancer is a predictor of poor clinical outcome. This study elucidates a hitherto unknown mechanism by which Hsp27 regulates proteasome function and modulates tumor-specific T cell responses. Here we demonstrated that short term silencing of Hsp25 or Hsp27 using siRNA or permanent silencing of Hsp25 using lentivirus-RNAi technology enhanced PA28α mRNA expression, PA28α protein expression, proteasome activity, abrogated metastatic potential, induced the regression of established breast tumors by tumor-specific CD8+ T cells and stimulated long-lasting memory responses. The adoptive transfer of reactive CD8+ T cells from mice bearing Hsp25-silenced tumors efficiently induced the regression of established tumors in non-treated mice which normally succumb to tumor burden. The overexpression of Hsp25 and Hsp27 resulted in the repression of normal proteasome function, induced poor antigen presentation and resulted in increased tumor burden. Taken together, this study establishes a paradigm shift in our understanding of the role of Hsp27 in the regulation of proteasome function and tumor-specific T cell responses and paves the way for the development of molecular targets to enhance proteasome function and concomitantly inhibit Hsp27 expression in tumors for therapeutic gain. PMID:22185976

  20. Merkel Cell Polyomavirus Small T Antigen Initiates Merkel Cell Carcinoma-like Tumor Development in Mice.

    PubMed

    Verhaegen, Monique E; Mangelberger, Doris; Harms, Paul W; Eberl, Markus; Wilbert, Dawn M; Meireles, Julia; Bichakjian, Christopher K; Saunders, Thomas L; Wong, Sunny Y; Dlugosz, Andrzej A

    2017-06-15

    Merkel cell carcinoma (MCC) tumor cells express several markers detected in normal Merkel cells, a nonproliferative population of neuroendocrine cells that arise from epidermis. MCCs frequently contain Merkel cell polyomavirus (MCPyV) DNA and express viral transforming antigens, sT and tLT, but the role of these putative oncogenes in MCC development, and this tumor's cell of origin, are unknown. Using a panel of preterm transgenic mice, we show that epidermis-targeted coexpression of sT and the cell fate-determinant atonal bHLH transcription factor 1 (ATOH1) leads to development of widespread cellular aggregates, with histology and marker expression mimicking that of human intraepidermal MCC. The MCC-like tumor phenotype was dependent on the FBXW7-binding domain of sT, but not the sT-PP2A binding domain. Coexpression of MCPyV tLT did not appreciably alter the phenotype driven by either sT or sT combined with ATOH1. MCPyV sT, when coexpressed with ATOH1, is thus sufficient to initiate development of epidermis-derived MCC-like tumors in mice. Cancer Res; 77(12); 3151-7. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma.

    PubMed

    Miao, Hongsheng; Choi, Bryan D; Suryadevara, Carter M; Sanchez-Perez, Luis; Yang, Shicheng; De Leon, Gabriel; Sayour, Elias J; McLendon, Roger; Herndon, James E; Healy, Patrick; Archer, Gary E; Bigner, Darell D; Johnson, Laura A; Sampson, John H

    2014-01-01

    Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and is uniformly lethal. T-cell-based immunotherapy offers a promising platform for treatment given its potential to specifically target tumor tissue while sparing the normal brain. However, the diffuse and infiltrative nature of these tumors in the brain parenchyma may pose an exceptional hurdle to successful immunotherapy in patients. Areas of invasive tumor are thought to reside behind an intact blood brain barrier, isolating them from effective immunosurveillance and thereby predisposing the development of "immunologically silent" tumor peninsulas. Therefore, it remains unclear if adoptively transferred T cells can migrate to and mediate regression in areas of invasive GBM. One barrier has been the lack of a preclinical mouse model that accurately recapitulates the growth patterns of human GBM in vivo. Here, we demonstrate that D-270 MG xenografts exhibit the classical features of GBM and produce the diffuse and invasive tumors seen in patients. Using this model, we designed experiments to assess whether T cells expressing third-generation chimeric antigen receptors (CARs) targeting the tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, would localize to and treat invasive intracerebral GBM. EGFRvIII-targeted CAR (EGFRvIII+ CAR) T cells demonstrated in vitro EGFRvIII antigen-specific recognition and reactivity to the D-270 MG cell line, which naturally expresses EGFRvIII. Moreover, when administered systemically, EGFRvIII+ CAR T cells localized to areas of invasive tumor, suppressed tumor growth, and enhanced survival of mice with established intracranial D-270 MG tumors. Together, these data demonstrate that systemically administered T cells are capable of migrating to the invasive edges of GBM to mediate antitumor efficacy and tumor regression.

  2. Monoclonal TCR-redirected tumor cell killing.

    PubMed

    Liddy, Nathaniel; Bossi, Giovanna; Adams, Katherine J; Lissina, Anna; Mahon, Tara M; Hassan, Namir J; Gavarret, Jessie; Bianchi, Frayne C; Pumphrey, Nicholas J; Ladell, Kristin; Gostick, Emma; Sewell, Andrew K; Lissin, Nikolai M; Harwood, Naomi E; Molloy, Peter E; Li, Yi; Cameron, Brian J; Sami, Malkit; Baston, Emma E; Todorov, Penio T; Paston, Samantha J; Dennis, Rebecca E; Harper, Jane V; Dunn, Steve M; Ashfield, Rebecca; Johnson, Andy; McGrath, Yvonne; Plesa, Gabriela; June, Carl H; Kalos, Michael; Price, David A; Vuidepot, Annelise; Williams, Daniel D; Sutton, Deborah H; Jakobsen, Bent K

    2012-06-01

    T cell immunity can potentially eradicate malignant cells and lead to clinical remission in a minority of patients with cancer. In the majority of these individuals, however, there is a failure of the specific T cell receptor (TCR)–mediated immune recognition and activation process. Here we describe the engineering and characterization of new reagents termed immune-mobilizing monoclonal TCRs against cancer (ImmTACs). Four such ImmTACs, each comprising a distinct tumor-associated epitope-specific monoclonal TCR with picomolar affinity fused to a humanized cluster of differentiation 3 (CD3)-specific single-chain antibody fragment (scFv), effectively redirected T cells to kill cancer cells expressing extremely low surface epitope densities. Furthermore, these reagents potently suppressed tumor growth in vivo. Thus, ImmTACs overcome immune tolerance to cancer and represent a new approach to tumor immunotherapy.

  3. Persistence of Multiple Tumor-Specific T-Cell Clones Is Associated with Complete Tumor Regression in a Melanoma Patient Receiving Adoptive Cell Transfer Therapy

    PubMed Central

    Zhou, Juhua; Dudley, Mark E.; Rosenberg, Steven A.; Robbins, Paul F.

    2007-01-01

    Summary The authors recently reported that adoptive immunotherapy with autologous tumor-reactive tumor infiltrating lymphocytes (TILs) immediately following a conditioning nonmyeloablative chemotherapy regimen resulted in an enhanced clinical response rate in patients with metastatic melanoma. These observations led to the current studies, which are focused on a detailed analysis of the T-cell antigen reactivity as well as the in vivo persistence of T cells in melanoma patient 2098, who experienced a complete regression of all metastatic lesions in lungs and soft tissues following therapy. Screening of an autologous tumor cell cDNA library using transferred TILs resulted in the identification of novel mutated growth arrest-specific gene 7 (GAS7) and glyceral-dehyde-3-phosphate dehydrogenase (GAPDH) gene transcripts. Direct sequence analysis of the expressed T-cell receptor beta chain variable regions showed that the transferred TILs contained multiple T-cell clonotypes, at least six of which persisted in peripheral blood for a month or more following transfer. The persistent T cells recognized both the mutated GAS7 and GAPDH. These persistent tumor-reactive T-cell clones were detected in tumor cell samples obtained from the patient following adoptive cell transfer and appeared to be represented at higher levels in the tumor sample obtained 1 month following transfer than in the peripheral blood obtained at the same time. Overall, these results indicate that multiple tumor-reactive T cells can persist in the peripheral blood and at the tumor site for prolonged times following adoptive transfer and thus may be responsible for the complete tumor regression in this patient. PMID:15614045

  4. Peptide-loaded Langerhans cells, despite increased IL15 secretion and T cell activation in vitro, elicit anti-tumor T cell responses comparable to peptide-loaded monocyte-derived dendritic cells in vivo

    PubMed Central

    Romano, Emanuela; Rossi, Marco; Ratzinger, Gudrun; de Cos, Maria-Angeles; Chung, David J.; Panageas, Katherine S.; Wolchok, Jedd D.; Houghton, Alan N.; Chapman, Paul B.; Heller, Glenn; Yuan, Jianda; Young, James W.

    2013-01-01

    Purpose We compared the efficacy of human Langerhans cells (LCs) as tumor immunogens in vivo with monocyte-derived DCs (moDCs) and investigated how IL15 supports optimal DC-stimulated antitumor immunity. Experimental Design AJCC stage III/IV melanoma patients participated in this first clinical trial comparing melanoma peptide-pulsed LC with moDC vaccines (NCT00700167,www.ClinicalTrials.gov). Correlative studies evaluated mechanisms mediating IL15 support of DC-stimulated antitumor immunity. Results Both DC vaccines were safe and immunogenic for melanoma antigens. LC-based vaccines stimulated significantly greater tyrosinase-HLA-A*0201 tetramer reactivity than did moDC-based vaccines. The two DC subtypes were otherwise statistically comparable, in contrast to extensive prior data in vitro demonstrating LC superiority. LCs synthesize much more IL15 than moDCs and stimulate significantly more antigen-specific lymphocytes with a cytolytic IFN-gamma profile even without exogenous IL15. When supplemented by low dose IL15, instead of IL2, moDCs stimulate 5-6 logs more tumor antigen-specific effector memory T-cells (TEMRA) over 3-4 weeks in vitro. IL2 and IL15 can be synergistic in moDC stimulation of cytolytic T-cells. IL15 promotes T-cell expression of the antiapoptotic bcl-2 and inhibits candidate regulatory T-cell (Treg) expansion after DC stimulation, countering two effects of IL2 that do not foster tumor immunity. Conclusions MoDC-based vaccines will require exogenous IL15 to achieve clinical efficacy. Alternatively, LCs can couple the endogenous production of IL15 with potent T-cell stimulatory activity. Optimization of full length tumor antigen expression for processing into multiple immunogenic peptides for presentation by both class I and II MHC therefore merits emphasis to support more effective antitumor immunity stimulated by LCs. PMID:21355077

  5. Tumor-Derived Microvesicles Modulate Antigen Cross-Processing via Reactive Oxygen Species-Mediated Alkalinization of Phagosomal Compartment in Dendritic Cells.

    PubMed

    Battisti, Federico; Napoletano, Chiara; Rahimi Koshkaki, Hassan; Belleudi, Francesca; Zizzari, Ilaria Grazia; Ruscito, Ilary; Palchetti, Sara; Bellati, Filippo; Benedetti Panici, Pierluigi; Torrisi, Maria Rosaria; Caracciolo, Giulio; Altieri, Fabio; Nuti, Marianna; Rughetti, Aurelia

    2017-01-01

    Dendritic cells (DCs) are the only antigen-presenting cells able to prime naïve T cells and cross-prime antigen-specific CD8 + T cells. Their functionality is a requirement for the induction and maintenance of long-lasting cancer immunity. Albeit intensively investigated, the in vivo mechanisms underlying efficient antigen cross-processing and presentation are not fully understood. Several pieces of evidence indicate that antigen transfer to DCs mediated by microvesicles (MVs) enhances antigen immunogenicity. This mechanism is also relevant for cross-presentation of those tumor-associated glycoproteins such as MUC1 that are blocked in HLA class II compartment when internalized by DCs as soluble molecules. Here, we present pieces of evidence that the internalization of tumor-derived MVs modulates antigen-processing machinery of DCs. Employing MVs derived from ovarian cancer ascites fluid and established tumor cell lines, we show that MV uptake modifies DC phagosomal microenvironment, triggering reactive oxygen species (ROS) accumulation and early alkalinization. Indeed, tumor MVs carry radical species and the MV uptake by DCs counteracts the chemically mediated acidification of the phagosomal compartment. Further pieces of evidence suggest that efficacious antigen cross-priming of the MUC1 antigen carried by the tumor MVs results from the early signaling induced by MV internalization and the function of the antigen-processing machinery of DCs. These results strongly support the hypothesis that tumor-derived MVs impact antigen immunogenicity by tuning the antigen-processing machinery of DCs, besides being carrier of tumor antigens. Furthermore, these findings have important implications for the exploitation of MVs as antigenic cell-free immunogen for DC-based therapeutic strategies.

  6. Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice

    PubMed Central

    Liu, Xiaojun; Jiang, Shuguang; Fang, Chongyun; Yang, Shiyu; Olalere, Devvora; Pequignot, Edward C.; Cogdill, Alexandria P.; Li, Na; Ramones, Melissa; Granda, Brian; Zhou, Li; Loew, Andreas; Young, Regina M.; June, Carl H.; Zhao, Yangbing

    2015-01-01

    Target-mediated toxicity is a major limitation in the development of chimeric antigen T cell receptors (CAR) for adoptive cell therapy of solid tumors. In this study, we developed a strategy to adjust the affinities of the scFv component of CAR to discriminate tumors overexpressing the target from normal tissues which express it at physiologic levels. A CAR-expressing T cell panel was generated with target antigen affinities varying over three orders of magnitude. High-affinity cells recognized target expressed at any level, including at levels in normal cells that were undetectable by flow cytometry. Affinity-tuned cells exhibited robust antitumor efficacy similar to high-affinity cells, but spared normal cells expressing physiologic target levels. The use of affinity-tuned scFvs offers a strategy to empower wider use of CAR T cells against validated targets widely overexpressed on solid tumors, including those considered undruggable by this approach. PMID:26330166

  7. Providence of CD25+ KIR+ CD127- FOXP3- CD8+ T cell subset determines the dynamics of tumor immune surveillance.

    PubMed

    Chakraborty, Sreeparna; Bhattacharjee, Pushpak; Panda, Abir K; Kajal, Kirti; Bose, Sayantan; Sa, Gaurisankar

    2018-05-16

    CD8 + T-regulatory cells are progressively emerging as crucial components of immune system. The previous report suggests the presence of FOXP3-positive CD8 + Treg cells, similar to CD4 + Tregs, in cancer patients which produce high levels of IL10 and TGFβ for its immunosuppressive activities. At an early stage of tumor development, we have identified a subset of FOXP3-negative CD8 + CD25 + KIR + CD127 - a Treg-like subset which is essentially IFNγ-positive. However, this early induced CD8 + CD25 + CD127 - T cell subset certainly distinct from the IFNγ + CD8 + T-effecter cells. This CD8 + CD25 + CD127 - T cells are equipped with other FOXP3 - CD8 + Treg cell signature markers and can selectively suppress HLA-E-positive T FH cells in autoimmune condition as well as tumor-induced CD4 + Treg cells. Contrasting to FOXP3-positive CD8 + Tregs, this subset does not inhibit effector T cell proliferation or their functions as they are HLA-E-negative. Adoptive transfer of this early-CD8 + Treg-like subset detained tumor growth and inhibited CD4 + Treg generation that obstacles the immune surveillance and impairs cancer immunotherapy. At the late stage of tumor development, when CD4 + Treg cells dominate tumor-microenvironment, CD4 + Tregs mediate the clonal deletion of this tumor-suppressive FOXP3 - IFNγ + CD8 + CD25 + CD127 - T cells and ensures tumor immune evasion. Our findings suggest that at an early stage of the tumor, this tumor-induced IFNγ-producing FOXP3-negative CD8 + CD25 + CD127 - T cell subset can potentiate immune surveillance by targeting HLA-E-restricted CD4 + Treg cells whereas leaving the effector T cell population unaffected, and hence maneuvering their profile can open up a new avenue in cancer immunotherapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: Challenges and Clinical Applications.

    PubMed

    Mirzaei, Hamid R; Rodriguez, Analiz; Shepphird, Jennifer; Brown, Christine E; Badie, Behnam

    2017-01-01

    Adoptive cellular immunotherapy (ACT) employing engineered T lymphocytes expressing chimeric antigen receptors (CARs) has demonstrated promising antitumor effects in advanced hematologic cancers, such as relapsed or refractory acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma, supporting the translation of ACT to non-hematological malignancies. Although CAR T cell therapy has made remarkable strides in the treatment of patients with certain hematological cancers, in solid tumors success has been limited likely due to heterogeneous antigen expression, immunosuppressive networks in the tumor microenvironment limiting CAR T cell function and persistence, and suboptimal trafficking to solid tumors. Here, we outline specific approaches to overcome barriers to CAR T cell effectiveness in the context of the tumor microenvironment and offer our perspective on how expanding the use of CAR T cells in solid tumors may require modifications in CAR T cell design. We anticipate these modifications will further expand CAR T cell therapy in clinical practice.

  9. Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response.

    PubMed

    Ueda, Norihiro; Uemura, Yasushi; Zhang, Rong; Kitayama, Shuichi; Iriguchi, Shoichi; Kawai, Yohei; Yasui, Yutaka; Tatsumi, Minako; Ueda, Tatsuki; Liu, Tian-Yi; Mizoro, Yasutaka; Okada, Chihiro; Watanabe, Akira; Nakanishi, Mahito; Senju, Satoru; Nishimura, Yasuharu; Kuzushima, Kiyotaka; Kiyoi, Hitoshi; Naoe, Tomoki; Kaneko, Shin

    2018-06-05

    CD4 + T helper (Th) cell activation is essential for inducing cytotoxic T lymphocyte (CTL) responses against malignancy. We reprogrammed a Th clone specific for chronic myelogenous leukemia (CML)-derived b3a2 peptide to pluripotency and re-differentiated the cells into original TCR-expressing T-lineage cells (iPS-T cells) with gene expression patterns resembling those of group 1 innate lymphoid cells. CD4 gene transduction into iPS-T cells enhanced b3a2 peptide-specific responses via b3a2 peptide-specific TCR. iPS-T cells upregulated CD40 ligand (CD40L) expression in response to interleukin-2 and interleukin-15. In the presence of Wilms tumor 1 (WT1) peptide, antigen-specific dendritic cells (DCs) conditioned by CD4-modified CD40L high iPS-T cells stimulated WT1-specific CTL priming, which eliminated WT1 peptide-expressing CML cells in vitro and in vivo. Thus, CD4 modification of CD40L high iPS-T cells generates innate lymphoid helper-like cells inducing bcr-abl-specific TCR signaling that mediates effectiveanti-leukemic CTL responses via DC maturation, showing potential for adjuvant immunotherapy against leukemia. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. CD163(+) M2-type tumor-associated macrophage support the suppression of tumor-infiltrating T cells in osteosarcoma.

    PubMed

    Han, Qinglin; Shi, Hongguang; Liu, Fan

    2016-05-01

    Osteosarcoma is one of the most common childhood cancers with high numbers of cancer-related deaths. Progress in conventional therapies is showing limited improvement. An adaptive T cell-based immunotherapy represents a promising new therapeutic option, but to improve its efficacy, regulatory mechanisms in osteosarcoma need further elucidation. Here, to evaluate the regulatory effect of tumor microenvironment of T cells in osteosarcoma, we examined the peripheral blood (PB) and tumor infiltrating (TI) T cells, and their correlations with PB and tumor immune characteristics. We found that TI T cells contained significantly higher levels of TIM-3(+)PD-1(-) and TIM-3(+)PD-1(+) cells than their PB counterparts. Similar to that in chronic HIV and HCV infections, these TIM-3(+)PD-1(-) and TIM-3(+)PD-1(+) T cells presented reduced proliferation and proinflammatory cytokine secretion in response to stimulation. Presence of M2-type (CD163(+)) macrophages exacerbated T cell immunosuppression, since frequencies of CD163(+) tumor-associated macrophages were directly correlated with the frequencies of suppressed TIM-3(+)PD-1(+) T cells. Moreover, depletion of CD163(+) macrophages significantly improved T cell proliferation and proinflammatory cytokine production. Overall, our data presented an intratumoral T cell-specific immunosuppression that was amplified by M2-type tumor-associated macrophages. Copyright © 2016. Published by Elsevier B.V.

  11. Genetically modified T cells targeting neovasculature efficiently destroy tumor blood vessels, shrink established solid tumors and increase nanoparticle delivery.

    PubMed

    Fu, Xinping; Rivera, Armando; Tao, Lihua; Zhang, Xiaoliu

    2013-11-15

    Converting T cells into tumor cell killers by grafting them with a chimeric antigen receptor (CAR) has shown promise as a cancer immunotherapeutic. However, the inability of these cells to actively migrate and extravasate into tumor parenchyma has limited their effectiveness in vivo. Here we report the construction of a CAR containing an echistatin as its targeting moiety (eCAR). As echistatin has high binding affinity to αvβ3 integrin that is highly expressed on the surface of endothelial cells of tumor neovasculature, T cells engrafted with eCAR (T-eCAR) can efficiently lyse human umbilical vein endothelial cells and tumor cells that express αvβ3 integrin when tested in vitro. Systemic administration of T-eCAR led to extensive bleeding in tumor tissues with no evidence of damage to blood vessels in normal tissues. Destruction of tumor blood vessels by T-eCAR significantly inhibited the growth of established bulky tumors. Moreover, when T-eCAR was codelivered with nanoparticles in a strategically designed temporal order, it dramatically increased nanoparticle deposition in tumor tissues, pointing to the possibility that it may be used together with nanocarriers to increase their capability to selectively deliver antineoplastic drugs to tumor tissues. Copyright © 2013 UICC.

  12. Tumor immune evasion arises through loss of TNF sensitivity.

    PubMed

    Kearney, Conor J; Vervoort, Stephin J; Hogg, Simon J; Ramsbottom, Kelly M; Freeman, Andrew J; Lalaoui, Najoua; Pijpers, Lizzy; Michie, Jessica; Brown, Kristin K; Knight, Deborah A; Sutton, Vivien; Beavis, Paul A; Voskoboinik, Ilia; Darcy, Phil K; Silke, John; Trapani, Joseph A; Johnstone, Ricky W; Oliaro, Jane

    2018-05-18

    Immunotherapy has revolutionized outcomes for cancer patients, but the mechanisms of resistance remain poorly defined. We used a series of whole-genome clustered regularly interspaced short palindromic repeat (CRISPR)-based screens performed in vitro and in vivo to identify mechanisms of tumor immune evasion from cytotoxic lymphocytes [CD8 + T cells and natural killer (NK) cells]. Deletion of key genes within the tumor necrosis factor (TNF) signaling, interferon-γ (IFN-γ) signaling, and antigen presentation pathways provided protection of tumor cells from CD8 + T cell-mediated killing and blunted antitumor immune responses in vivo. Deletion of a number of genes in the TNF pathway also emerged as the key mechanism of immune evasion from primary NK cells. Our screens also identified that the metabolic protein 2-aminoethanethiol dioxygenase (Ado) modulates sensitivity to TNF-mediated killing by cytotoxic lymphocytes and is required for optimal control of tumors in vivo. Remarkably, we found that tumors delete the same genes when exposed to perforin-deficient CD8 + T cells, demonstrating that the dominant immune evasion strategy used by tumor cells is acquired resistance to T cell-derived cytokine-mediated antitumor effects. We demonstrate that TNF-mediated bystander killing is a potent T cell effector mechanism capable of killing antigen-negative tumor cells. In addition to highlighting the importance of TNF in CD8 + T cell- and NK cell-mediated killing of tumor cells, our study also provides a comprehensive picture of the roles of the TNF, IFN, and antigen presentation pathways in immune-mediated tumor surveillance. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. A subset of IL-10-producing gammadelta T cells protect the liver from Listeria-elicited, CD8(+) T cell-mediated injury.

    PubMed

    Rhodes, Katherine A; Andrew, Elizabeth M; Newton, Darren J; Tramonti, Daniela; Carding, Simon R

    2008-08-01

    Although gammadelta T cells play a role in protecting tissues from pathogen-elicited damage to bacterial, viral and parasitic pathogens, the mechanisms involved in the damage and in the protection have not been clearly elucidated. This has been addressed using a murine model of listeriosis, which in mice lacking gammadelta T cells (TCRdelta(-/-)) is characterised by severe and extensive immune-mediated hepatic necrosis. We show that these hepatic lesions are caused by Listeria-elicited CD8(+) T cells secreting high levels of TNF-alpha that accumulate in the liver of Listeria-infected TCRdelta(-/-) mice. Using isolated populations of gammadelta T cells from wild-type and cytokine-deficient strains of mice to reconstitute TCRdelta(-/-) mice, the TCR variable gene 4 (Vgamma4)(+) subset of gammadelta T cells was shown to protect against liver injury. Hepatoprotection was dependent upon their ability to produce IL-10 after TCR-mediated interactions with Listeria-elicited macrophages and CD8(+) T cells. IL-10-producing Vgamma4(+) T cells also contribute to controlling CD8(+) T cell expansion and to regulating and reducing TNF-alpha secretion by activated CD8(+) T cells. This effect on TNF-alpha production was directly attributed to IL-10. These findings identify a novel mechanism by which pathogen-elicited CD8(+) T cells are regulated via interactions with, and activation of, IL-10-producing hepatoprotective gammadelta T cells.

  14. Intra-tumoral delivery of CXCL11 via a vaccinia virus, but not by modified T cells, enhances the efficacy of adoptive T cell therapy and vaccines.

    PubMed

    Moon, Edmund K; Wang, Liang-Chuan S; Bekdache, Kheng; Lynn, Rachel C; Lo, Albert; Thorne, Stephen H; Albelda, Steven M

    2018-01-01

    T cell trafficking into tumors depends on a "match" between chemokine receptors on effector cells (e.g., CXCR3 and CCR5) and tumor-secreted chemokines. There is often a chemokine/chemokine receptor "mismatch", with tumors producing minute amounts of chemokines, resulting in inefficient targeting of effectors to tumors. We aimed to alter tumors to produce higher levels of CXCL11, a CXCR3 ligand, to attract more effector cells following immunotherapy. Mice bearing established subcutaneous tumors were studied. In our first approach, we used modified chimeric antigen receptor (CAR)-transduced human T cells to deliver CXCL11 (CAR/CXCL11) into tumors. In our second approach, we intravenously (iv) administered a modified oncolytic vaccinia virus (VV) engineered to produce CXCL11 (VV.CXCL11). The effect of these treatments on T cell trafficking into the tumors and anti-tumor efficacy after subsequent CAR T cell injections or anti-tumor vaccines was determined. CAR/CXCL11 and VV.CXCL11 significantly increased CXCL11 protein levels within tumors. For CAR/CXCL11, injection of a subsequent dose of CAR T cells did not result in increased intra-tumoral trafficking, and appeared to decrease the function of the injected CAR T cells. In contrast, VV.CXCL11 increased the number of total and antigen-specific T cells within tumors after CAR T cell injection or vaccination and significantly enhanced anti-tumor efficacy. Both approaches were successful in increasing CXCL11 levels within the tumors; however, only the vaccinia approach was successful in recruiting T cells and augmenting anti-tumor efficacy. VV.CXCL11 should be considered as a potential approach to augment adoptive T cell transfer or vaccine immunotherapy.

  15. Unimpaired Autoreactive T-Cell Traffic Within the Central Nervous System During Tumor Necrosis Factor Receptor-Mediated inhibition of Experimental Autoimmune Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Korner, Heinrich; Goodsall, Anna L.; Lemckert, Frances A.; Scallon, Bernard J.; Ghrayeb, John; Ford, Andrew L.; Sedgwick, Jonathon D.

    1995-11-01

    The critical role of tumor necrosis factor (TNF) as a mediator in autoimmune inflammatory processes is evident from in vivo studies with TNF-blocking agents. However, the mechanisms by which TNF, and possibly also its homologue lymphotoxin α, contributes to development of pathology in rheumatoid arthritis and Crohn disease and in animal models like experimental autoimmune encephalomyelitis is unclear. Possibilities include regulation of vascular adhesion molecules enabling leukocyte movement into tissues or direct cytokine-mediated effector functions such as mediation of tissue damage. Here we show that administration of a TNF receptor (55 kDa)-IgG fusion protein prevented clinical signs of actively induced experimental autoimmune encephalomyelitis. Significantly, the total number of CD4^+ T lymphocytes isolated from the central nervous system of clinically healthy treated versus diseased control animals was comparable. By using a CD45 congenic model of passively transferred experimental autoimmune encephalomyelitis to enable tracking of myelin basic protein-specific effector T lymphocytes, prevention of clinical signs of disease was again demonstrated in treated animals but without quantitative or qualitative impediment to the movement of autoreactive T lymphocytes to and within the central nervous system. Thus, despite the uninterrupted movement of specific T lymphocytes into the target tissue, subsequent disease development was blocked. This provides compelling evidence for a direct effector role of TNF/lymphotoxin α in autoimmune tissue damage.

  16. 6-Thioguanine-loaded polymeric micelles deplete myeloid-derived suppressor cells and enhance the efficacy of T cell immunotherapy in tumor-bearing mice

    DOE PAGES

    Jeanbart, Laura; Kourtis, Iraklis C.; van der Vlies, André J.; ...

    2015-05-16

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that suppress effector T cell responses and can reduce the efficacy of cancer immunotherapies. We previously showed that ultra-small polymer nanoparticles efficiently drain to the lymphatics after intradermal injection and target antigen-presenting cells, including Ly6c hi Ly6g ₋monocytic MDSCs (Mo-MDSCs), in skin-draining lymph nodes (LNs) and spleen. Here, we developed ultra-small polymer micelles loaded with 6-thioguanine (MC-TG), a cytotoxic drug used in the treatment of myelogenous leukemia, with the aim of killing Mo-MDSCs in tumor-bearing mice and thus enhancing T cell-mediated anti-tumor responses. We found that 2 daysmore » post-injection in tumor-bearing mice (B16-F10 melanoma or E.G7-OVA thymoma), MC-TG depleted Mo-MDSCs in the spleen, Ly6c lo Ly6g + granulocytic MDSCs (G-MDSCs) in the draining LNs, and Gr1 int Mo-MDSCs in the tumor. In both tumor models, MC-TG decreased the numbers of circulating Mo- and G-MDSCs, as well as of Ly6c hi macrophages, for up to 7 days following a single administration. MDSC depletion was dose dependent and more effective with MC-TG than with equal doses of free TG. Finally, we tested whether this MDSC-depleting strategy might enhance cancer immunotherapies in the B16-F10 melanoma model. We found that MC-TG significantly improved the efficacy of adoptively transferred, OVA-specific CD8 + T cells in melanoma cells expressing OVA. Ultimately, these findings highlight the capacity of MC-TG in depleting MDSCs in the tumor microenvironment and show promise in promoting anti-tumor immunity when used in combination with T cell immunotherapies.« less

  17. 6-Thioguanine-loaded polymeric micelles deplete myeloid-derived suppressor cells and enhance the efficacy of T cell immunotherapy in tumor-bearing mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeanbart, Laura; Kourtis, Iraklis C.; van der Vlies, André J.

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that suppress effector T cell responses and can reduce the efficacy of cancer immunotherapies. We previously showed that ultra-small polymer nanoparticles efficiently drain to the lymphatics after intradermal injection and target antigen-presenting cells, including Ly6c hi Ly6g ₋monocytic MDSCs (Mo-MDSCs), in skin-draining lymph nodes (LNs) and spleen. Here, we developed ultra-small polymer micelles loaded with 6-thioguanine (MC-TG), a cytotoxic drug used in the treatment of myelogenous leukemia, with the aim of killing Mo-MDSCs in tumor-bearing mice and thus enhancing T cell-mediated anti-tumor responses. We found that 2 daysmore » post-injection in tumor-bearing mice (B16-F10 melanoma or E.G7-OVA thymoma), MC-TG depleted Mo-MDSCs in the spleen, Ly6c lo Ly6g + granulocytic MDSCs (G-MDSCs) in the draining LNs, and Gr1 int Mo-MDSCs in the tumor. In both tumor models, MC-TG decreased the numbers of circulating Mo- and G-MDSCs, as well as of Ly6c hi macrophages, for up to 7 days following a single administration. MDSC depletion was dose dependent and more effective with MC-TG than with equal doses of free TG. Finally, we tested whether this MDSC-depleting strategy might enhance cancer immunotherapies in the B16-F10 melanoma model. We found that MC-TG significantly improved the efficacy of adoptively transferred, OVA-specific CD8 + T cells in melanoma cells expressing OVA. Ultimately, these findings highlight the capacity of MC-TG in depleting MDSCs in the tumor microenvironment and show promise in promoting anti-tumor immunity when used in combination with T cell immunotherapies.« less

  18. Selective bispecific T cell recruiting antibody and antitumor activity of adoptive T cell transfer.

    PubMed

    Kobold, Sebastian; Steffen, Julius; Chaloupka, Michael; Grassmann, Simon; Henkel, Jonas; Castoldi, Raffaella; Zeng, Yi; Chmielewski, Markus; Schmollinger, Jan C; Schnurr, Max; Rothenfußer, Simon; Schendel, Dolores J; Abken, Hinrich; Sustmann, Claudio; Niederfellner, Gerhard; Klein, Christian; Bourquin, Carole; Endres, Stefan

    2015-01-01

    One bottleneck for adoptive T cell therapy (ACT) is recruitment of T cells into tumors. We hypothesized that combining tumor-specific T cells, modified with a marker antigen and a bispecific antibody (BiAb) that selectively recognizes transduced T cells and tumor cells would improve T cell recruitment to tumors and enhance therapeutic efficacy. SV40 T antigen-specific T cells from T cell receptor (TCR)-I-transgenic mice were transduced with a truncated human epidermal growth factor receptor (EGFR) as a marker protein. Targeting and killing by combined ACT and anti-EGFR-anti-EpCAM BiAb therapy was analyzed in C57Bl/6 mice (n = six to 12 per group) carrying subcutaneous tumors of the murine gastric cancer cell line GC8 (SV40(+) and EpCAM(+)). Anti-EGFR x anti-c-Met BiAb was used for targeting of human tumor-specific T cells to c-Met(+) human tumor cell lines. Differences between experimental conditions were analyzed using the Student's t test, and differences in tumor growth with two-way analysis of variance. Overall survival was analyzed by log-rank test. All statistical tests were two-sided. The BiAb linked EGFR-transduced T cells to tumor cells and enhanced tumor cell lysis. In vivo, the combination of ACT and Biab produced increased T cell infiltration of tumors, retarded tumor growth, and prolonged survival compared with ACT with a control antibody (median survival 95 vs 75 days, P < .001). In human cells, this strategy enhanced recruitment of human EGFR-transduced T cells to immobilized c-Met and recognition of tyrosinase(+) melanoma cells by TCR-, as well as of CEA(+) colon cancer cells by chimeric antigen receptor (CAR)-modified T cells. BiAb recruitment of tumor-specific T cells transduced with a marker antigen to tumor cells may enhance efficacy of ACT. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. CD4 cells can be more efficient at tumor rejection than CD8 cells.

    PubMed

    Perez-Diez, Ainhoa; Joncker, Nathalie T; Choi, Kyungho; Chan, William F N; Anderson, Colin C; Lantz, Olivier; Matzinger, Polly

    2007-06-15

    Researchers designing antitumor treatments have long focused on eliciting tumor-specific CD8 cytotoxic T lymphocytes (CTL) because of their potent killing activity and their ability to reject transplanted organs. The resulting treatments, however, have generally been surprisingly poor at inducing complete tumor rejection, both in experimental models and in the clinic. Although a few scattered studies suggested that CD4 T "helper" cells might also serve as antitumor effectors, they have generally been studied mostly for their ability to enhance the activity of CTL. In this mouse study, we compared monoclonal populations of tumor-specific CD4 and CD8 T cells as effectors against several different tumors, and found that CD4 T cells eliminated tumors that were resistant to CD8-mediated rejection, even in cases where the tumors expressed major histocompatibility complex (MHC) class I molecules but not MHC class II. MHC class II expression on host tissues was critical, suggesting that the CD4 T cells act indirectly. Indeed, the CD4 T cells partnered with NK cells to obtain the maximal antitumor effect. These findings suggest that CD4 T cells can be powerful antitumor effector cells that can, in some cases, outperform CD8 T cells, which are the current "gold standard" effector cell in tumor immunotherapy.

  20. Dendritic cell internalization of α-galactosylceramide from CD8 T cells induces potent antitumor CD8 T-cell responses.

    PubMed

    Choi, Dong Hoon; Kim, Kwang Soon; Yang, Se Hwan; Chung, Doo Hyun; Song, Boyeong; Sprent, Jonathan; Cho, Jae Ho; Sung, Young Chul

    2011-12-15

    Dendritic cells (DC) present α-galactosylceramide (αGalCer) to invariant T-cell receptor-expressing natural killer T cells (iNKT) activating these cells to secrete a variety of cytokines, which in turn results in DC maturation and activation of other cell types, including NK cells, B cells, and conventional T cells. In this study, we showed that αGalCer-pulsing of antigen-activated CD8 T cells before adoptive transfer to tumor-bearing mice caused a marked increase in donor T-cell proliferation, precursor frequency, and cytotoxic lymphocyte activity. This effect was interleukin (IL)-2 dependent and involved both natural killer T cells (NKT) and DCs, as mice lacking IL-2, NKTs, and DCs lacked any enhanced response to adoptively transferred αGalCer-loaded CD8 T cells. iNKT activation was mediated by transfer of αGalCer from the cell membrane of the donor CD8 T cells onto the αGalCer receptor CD1d which is present on host DCs. αGalCer transfer was increased by prior activation of the donor CD8 T cells and required AP-2-mediated endocytosis by host DCs. In addition, host iNKT cell activation led to strong IL-2 synthesis, thereby increasing expansion and differentiation of donor CD8 T cells. Transfer of these cells led to improved therapeutic efficacy against established solid tumors in mice. Thus, our findings illustrate how αGalCer loading of CD8 T cells after antigen activation in vitro may leverage the therapeutic potential of adoptive T-cell therapies.

  1. NKT Cells as an Ideal Anti-Tumor Immunotherapeutic

    PubMed Central

    Fujii, Shin-ichiro; Shimizu, Kanako; Okamoto, Yoshitaka; Kunii, Naoki; Nakayama, Toshinori; Motohashi, Shinichiro; Taniguchi, Masaru

    2013-01-01

    Human natural killer T (NKT) cells are characterized by their expression of an invariant T cell antigen receptor α chain variable region encoded by a Vα24Jα18 rearrangement. These NKT cells recognize α-galactosylceramide (α-GalCer) in conjunction with the MHC class I-like CD1d molecule and bridge the innate and acquired immune systems to mediate efficient and augmented immune responses. A prime example of one such function is adjuvant activity: NKT cells augment anti-tumor responses because they can rapidly produce large amounts of IFN-γ, which acts on NK cells to eliminate MHC negative tumors and also on CD8 cytotoxic T cells to kill MHC positive tumors. Thus, upon administration of α-GalCer-pulsed DCs, both MHC negative and positive tumor cells can be effectively eliminated, resulting in complete tumor eradication without tumor recurrence. Clinical trials have been completed in a cohort of 17 patients with advanced non-small cell lung cancers and 10 cases of head and neck tumors. Sixty percent of advanced lung cancer patients with high IFN-γ production had significantly prolonged median survival times of 29.3 months with only the primary treatment. In the case of head and neck tumors, 10 patients who completed the trial all had stable disease or partial responses 5 weeks after the combination therapy of α-GalCer-DCs and activated NKT cells. We now focus on two potential powerful treatment options for the future. One is to establish artificial adjuvant vector cells containing tumor mRNA and α-GalCer/CD1d. This stimulates host NKT cells followed by DC maturation and NK cell activation but also induces tumor-specific long-term memory CD8 killer T cell responses, suppressing tumor metastasis even 1 year after the initial single injection. The other approach is to establish induced pluripotent stem (iPS) cells that can generate unlimited numbers of NKT cells with adjuvant activity. Such iPS-derived NKT cells produce IFN-γ in vitro and in vivo upon

  2. Rapamycin Promotes Mouse 4T1 Tumor Metastasis that Can Be Reversed by a Dendritic Cell-Based Vaccine

    PubMed Central

    Lin, Tien-Jen; Liang, Wen-Miin; Hsiao, Pei-Wen; M. S, Pradeep; Wei, Wen-Chi; Lin, Hsin-Ting; Yin, Shu-Yi; Yang, Ning-Sun

    2015-01-01

    Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan’s National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine. PMID:26426423

  3. Depletion of FAP+ cells reduces immunosuppressive cells and improves metabolism and functions CD8+T cells within tumors

    PubMed Central

    Zhang, Ying; Ertl, Hildegund C.J.

    2016-01-01

    The tumor stroma, which is essential to support growth and metastasis of malignant cells, provides targets for active immunotherapy of cancer. Previous studies have shown that depleting fibroblast activation protein (FAP)-expressing stromal cells reduces tumor progression and concomitantly increases tumor antigen (TA)-specific T cell responses. However the underlying pathways remain ill defined. Here we identify that immunosuppressive cells (ISCs) from tumor-bearing mice impose metabolic stress on CD8+T cells, which is associated with increased expression of the co-inhibitor PD-1. In two mouse melanoma models, depleting FAP+ stroma cells from the tumor microenvironment (TME) upon vaccination with an adenoviral-vector reduces frequencies and functions of ISCs. This is associated with changes in the cytokine/chemokine milieu in the TME and decreased activity of STAT6 signaling within ISCs. Decreases in ISCs upon FAP+stromal cell depletion is associated with reduced metabolic stress of vaccine-induced tumor infiltrating CD8+T cells and their delayed progression towards functional exhaustion, resulting in prolonged survival of tumor-bearing mice. PMID:26943036

  4. Depletion of FAP+ cells reduces immunosuppressive cells and improves metabolism and functions CD8+T cells within tumors.

    PubMed

    Zhang, Ying; Ertl, Hildegund C J

    2016-04-26

    The tumor stroma, which is essential to support growth and metastasis of malignant cells, provides targets for active immunotherapy of cancer. Previous studies have shown that depleting fibroblast activation protein (FAP)-expressing stromal cells reduces tumor progression and concomitantly increases tumor antigen (TA)-specific T cell responses. However the underlying pathways remain ill defined. Here we identify that immunosuppressive cells (ISCs) from tumor-bearing mice impose metabolic stress on CD8+T cells, which is associated with increased expression of the co-inhibitor PD-1. In two mouse melanoma models, depleting FAP+ stroma cells from the tumor microenvironment (TME) upon vaccination with an adenoviral-vector reduces frequencies and functions of ISCs. This is associated with changes in the cytokine/chemokine milieu in the TME and decreased activity of STAT6 signaling within ISCs. Decreases in ISCs upon FAP+stromal cell depletion is associated with reduced metabolic stress of vaccine-induced tumor infiltrating CD8+T cells and their delayed progression towards functional exhaustion, resulting in prolonged survival of tumor-bearing mice.

  5. Capacity of tumor necrosis factor to augment lymphocyte-mediated tumor cell lysis of malignant mesothelioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, R.V.; Manning, L.S.; Davis, M.R.

    1991-01-01

    Recombinant human tumor necrosis factor (rHuTNF) was evaluated both for direct anti-tumor action against human malignant mesothelioma and for its capacity to augment the generation and lytic phases of lymphocyte-mediated cytotoxicity against this tumor. rHuTNF was directly toxic by MTT assay to one of two mesothelioma cell lines evaluated, but had no effect on susceptibility to subsequent lymphocyte-mediated lysis of either line. TNF alone was incapable of generating anti-mesothelioma lymphokine-activated killer cell (LAK) activity. Furthermore, it did not augment the degree or LAK activity produced by submaximal interleukin-2 (IL-2) concentrations nor did it augment lysis of mesothelioma cells by naturalmore » killer (NK) or LAK effector cells during the 4-hr 51chromium release cytolytic reaction. The studies also suggest that mesothelioma targets are less responsive to TNF plus submaximal IL-2 concentrations than the standard LAK sensitive target Daudi, raising the possibility that intermediate LAK sensitive tumors such as mesothelioma may require separate and specific evaluation in immunomodulation studies. This in vitro study indicates that use of low-dose rHuTNF and IL-2 is unlikely to be an effective substitute for high-dose IL-2 in generation and maintenance of LAK activity in adoptive immunotherapy for mesothelioma.« less

  6. Challenges and prospects of chimeric antigen receptor T cell therapy in solid tumors.

    PubMed

    Jindal, Vishal; Arora, Ena; Gupta, Sorab

    2018-05-05

    Chimeric antigen receptor (CAR) T cell therapy is a novel and innovative immunotherapy. CAR-T cells are genetically engineered T cells, carrying MHC independent specific antigen receptor and co-stimulatory molecule which can activate an immune response to a cancer specific antigen. This therapy showed great results in hematological malignancies but were unable to prove their worth in solid tumors. Likely reasons for their failure are lack of antigens, poor trafficking, and hostile tumor microenvironment. Excessive amount of research is going on to improve the efficacy of CAR T cell therapy in solid tumors. In this article, we will discuss the challenges faced in improving the outcome of CAR T cell therapy in solid tumors and various strategies adopted to curb them.

  7. Tumor Lysing Genetically Engineered T Cells Loaded with Multi-Modal Imaging Agents

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Parijat; Alauddin, Mian; Bankson, James A.; Kirui, Dickson; Seifi, Payam; Huls, Helen; Lee, Dean A.; Babakhani, Aydin; Ferrari, Mauro; Li, King C.; Cooper, Laurence J. N.

    2014-03-01

    Genetically-modified T cells expressing chimeric antigen receptors (CAR) exert anti-tumor effect by identifying tumor-associated antigen (TAA), independent of major histocompatibility complex. For maximal efficacy and safety of adoptively transferred cells, imaging their biodistribution is critical. This will determine if cells home to the tumor and assist in moderating cell dose. Here, T cells are modified to express CAR. An efficient, non-toxic process with potential for cGMP compliance is developed for loading high cell number with multi-modal (PET-MRI) contrast agents (Super Paramagnetic Iron Oxide Nanoparticles - Copper-64; SPION-64Cu). This can now be potentially used for 64Cu-based whole-body PET to detect T cell accumulation region with high-sensitivity, followed by SPION-based MRI of these regions for high-resolution anatomically correlated images of T cells. CD19-specific-CAR+SPIONpos T cells effectively target in vitro CD19+ lymphoma.

  8. Tumor relapse prevented by combining adoptive T cell therapy with Salmonella typhimurium

    PubMed Central

    Binder, David C.; Arina, Ainhoa; Wen, Frank; Tu, Tony; Zhao, Ming; Hoffman, Robert M.; Wainwright, Derek A.; Schreiber, Hans

    2016-01-01

    ABSTRACT We recently reported that therapeutic vaccination with live tumor antigen-producing Salmonella typhimurium rescues dysfunctional endogenous T cell responses and eradicates long-established tumors refractory to αCTLA-4 and αPD-L1 checkpoint inhibitor blockade. Here, we show that live intravenously injected or heat-killed (HK) intratumorally injected Salmonella typhimurium, even when not producing tumor antigen, synergize with adoptive T cell therapy to eradicate tumors. These data demonstrate that the combination of adoptive T cell transfer with the injection of live or dead Salmonella typhimurium is a promising approach for cancer treatment. PMID:27471609

  9. Interleukin 2 and interleukin 10 function synergistically to promote CD8+ T cell cytotoxicity, which is suppressed by regulatory T cells in breast cancer.

    PubMed

    Li, Xiaogang; Lu, Ping; Li, Bo; Zhang, Wanfu; Yang, Rong; Chu, Yan; Luo, Kaiyuan

    2017-06-01

    The precise role of interleukin (IL)-10 in breast cancer is not clear. Previous studies suggested a tumor-promoting role of IL-10 in breast cancer, whereas recent discoveries that IL-10 activated and expanded tumor-resident CD8 + T cells challenged the traditional view. Here, we investigated the role of IL-10 in HLA-A2-positive breast cancer patients with Grade III, Stage IIA or IIB in-situ and invasive ductal carcinoma, and compared it with that of IL-2, the canonical CD8 + T cell growth factor. We first observed that breast cancer patients presented higher serum levels of IL-2 and IL-10 than healthy controls. Upon prolonged TCR stimulation, peripheral blood CD8 + T cells from breast cancer patients tended to undergo apoptosis, which could be prevented by the addition of IL-2 and/or IL-10. The cytotoxicity of TCR-activated CD8 + T cells was also enhanced by exogenous IL-2 and/or IL-10. Interestingly, IL-2 and IL-10 demonstrated synergistic effects, since the enhancement in CD8 + T cell function when both cytokines were added was greater than the sum of the improvements mediated by each individual cytokine. IL-10 by itself could not promote the proliferation of CD8 + T cells but could significantly enhance IL-2-mediated promotion of CD8 + T cell proliferation. In addition, the cytotoxicity of tumor-infiltrating CD8 + T cells in breast tumor was elevated when both IL-2 and IL-10 were present but not when either one was absent. This synergistic effect was stopped by CD4 + CD25 + regulatory T cells (Treg), which depleted IL-2 in a cell number-dependent manner. Together, these results demonstrated that IL-2 and IL-10 could work synergistically to improve the survival, proliferation, and cytotoxicity of activated CD8 + T cells, an effect suppressible by CD4 + CD25 + Treg cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A new effect of IL-4 on human γδ T cells: promoting regulatory Vδ1 T cells via IL-10 production and inhibiting function of Vδ2 T cells.

    PubMed

    Mao, Yujia; Yin, Shanshan; Zhang, Jianmin; Hu, Yu; Huang, Bo; Cui, Lianxian; Kang, Ning; He, Wei

    2016-03-01

    Interleukin 4 (IL-4) has a variety of immune functions, including helper T-cell (Th-cell) differentiation and innate immune-response processes. However, the impact of IL-4 on gamma delta (γδ) T cells remains unclear. In this study, we investigate the effects of IL-4 on the activation and proliferation of γδ T cells and the balance between variable delta 1 (Vδ1) and Vδ2 T cells in humans. The results show that IL-4 inhibits the activation of γδ T cells in the presence of γδ T-cell receptor (TCR) stimulation in a STAT6-dependent manner. IL-4 promoted the growth of activated γδ T cells and increased the levels of Vδ1 T cells, which in turn inhibited Vδ2 T-cell growth via significant IL-10 secretion. Vδ1 T cells secreted significantly less interferon gamma (IFNγ) and more IL-10 relative to Vδ2. Furthermore, Vδ1 T cells showed relatively low levels of Natural Killer Group 2D (NKG2D) expression in the presence of IL-4, suggesting that Vδ1 T cells weaken the γδ T cell-mediated anti-tumor immune response. For the first time, our findings demonstrate a negative regulatory role of IL-4 in γδ T cell-mediated anti-tumor immunity.

  11. Immunotherapy targeting HER2 with genetically modified T cells eliminates tumor-initiating cells in osteosarcoma.

    PubMed

    Rainusso, N; Brawley, V S; Ghazi, A; Hicks, M J; Gottschalk, S; Rosen, J M; Ahmed, N

    2012-03-01

    Despite radical surgery and multi-agent chemotherapy, less than one third of patients with recurrent or metastatic osteosarcoma (OS) survive. The limited efficacy of current therapeutic approaches to target tumor-initiating cells (TICs) may explain this dismal outcome. The purpose of this study was to assess the impact of modified T cells expressing a human epidermal growth factor receptor (HER2)-specific chimeric antigen receptor in the OS TIC compartment of human established cell lines. Using the sarcosphere formation assay, we found that OS TICs were resistant to increasing methotrexate concentrations. In contrast, HER2-specific T cells decreased markedly sarcosphere formation capacity and the ability to generate bone tumors in immunodeficient mice after orthotopic transplantation. In vivo, administration of HER2-specific T cells significantly reduced TICs in bulky tumors as judged by decreased sarcosphere forming efficiency in OS cells isolated from explanted tumors. We demonstrate that HER2-specific T cells target drug resistant TICs in established OS cell lines, suggesting that incorporating immunotherapy into current treatment strategies for OS has the potential to improve outcomes.

  12. OX40 ligand-transduced tumor cell vaccine synergizes with GM-CSF and requires CD40-Apc signaling to boost the host T cell antitumor response.

    PubMed

    Gri, Giorgia; Gallo, Elena; Di Carlo, Emma; Musiani, Piero; Colombo, Mario P

    2003-01-01

    Efficient T cell priming by GM-CSF and CD40 ligand double-transduced C26 murine colon carcinoma is not sufficient to cure metastases in a therapeutic setting. To determine whether a cellular vaccine that interacts directly with both APC and T cells in vivo might be superior, we generated C26 carcinoma cells transduced with the T cell costimulatory molecule OX40 ligand (OX40L) either alone (C26/OX40L) or together with GM-CSF (C26/GM/OX40L), which is known to activate APC. Mice injected with C26/OX40L cells displayed only a delay in tumor growth, while the C26/GM/OX40L tumor regressed in 85% of mice. Tumor rejection required granulocytes, CD4+, CD8+ T cells, and APC-mediated CD40-CD40 ligand cosignaling, but not IFN-gamma or IL-12 as shown using subset-depleted and knockout (KO) mice. CD40KO mice primed with C26/GM/OX40L cells failed to mount a CTL response, and T cells infiltrating the C26/GM/OX40L tumor were OX40 negative, suggesting an impairment in APC-T cell cross-talk in CD40KO mice. Indeed, CD4+ T cell-depleted mice failed to mount any CTL activity against the C26 tumor, while treatment with agonistic mAb to CD40, which acts on APC, bypassed the requirement for CD4+ T cells and restored CTL activation. C26/GM/OX40L cells cured 83% of mice bearing lung metastases, whereas C26/OX40L or C26/GM vaccination cured only 28 and 16% of mice, respectively. These results indicate the synergistic activity of OX40L and GM-CSF in a therapeutic setting.

  13. PTPROt maintains T cell immunity in the microenvironment of hepatocellular carcinoma.

    PubMed

    Hou, Jiajie; Deng, Lei; Zhuo, Han; Lin, Zhe; Chen, Yun; Jiang, Runqiu; Chen, Dianyu; Zhang, Xudong; Huang, Xingxu; Sun, Beicheng

    2015-08-01

    Intratumoral T cells play a central role in anti-tumor immunity, and the balance between T effector cells (Teff) and regulatory T cells (Treg) affects the prognosis of cancer patients. However, educated by tumor microenvironment, T cells frequently fail in their responsibility. In this study, we aimed to investigate the role of truncated isoform of protein tyrosine phosphatase receptor-type O (PTPROt) in T cell-mediated anti-tumor immunity. We recruited 70 hepatocellular carcinoma (HCC) patients and 30 healthy volunteers for clinical investigation, and analyzed cellular tumor immunity by using ptpro(-/-) C57BL/6 mice and NOD/SCID mice. PTPROt expression was significantly downregulated in human HCC-infiltrating T cells due to the hypoxia microenvironment; PTPROt expression highly correlated with the intratumoral Teff/Treg ratio and clinicopathologic characteristics. Moreover, PTPROt deficiency attenuated T cell-mediated anti-tumor immunity and remarkably promoted mouse HCC growth. Mechanistically, deletion of PTPROt decreased Teff quantity and quality through phosphorylation of lymphocyte-specific tyrosine kinase, but increased Treg differentiation through phosphorylation of signal transducer and activator of transcription 5. In support of the Teff/Treg homeostasis, PTPROt serves as an important tumor suppressor in HCC microenvironment. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  14. Antigen-Specific T-Cell Activation Independently of the MHC: Chimeric Antigen Receptor-Redirected T Cells

    PubMed Central

    Chmielewski, Markus; Hombach, Andreas A.; Abken, Hinrich

    2013-01-01

    Adoptive T-cell therapy has recently shown promise in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T-cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC) expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient’s T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR) which consists in the extracellular part of an antibody-derived domain for binding with a “tumor-associated antigen” and in the intracellular part of a T-cell receptor (TCR)-derived signaling moiety for T-cell activation. The specificity of CAR-mediated T-cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T-cell targeting by an engineered CAR in comparison to TCR modified T cells and the impact of the CAR activation threshold on redirected T-cell activation. Finally we review most significant progress recently made in early stage clinical trials to treat cancer. PMID:24273543

  15. Antigen-Specific T-Cell Activation Independently of the MHC: Chimeric Antigen Receptor-Redirected T Cells.

    PubMed

    Chmielewski, Markus; Hombach, Andreas A; Abken, Hinrich

    2013-01-01

    Adoptive T-cell therapy has recently shown promise in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T-cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC) expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient's T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR) which consists in the extracellular part of an antibody-derived domain for binding with a "tumor-associated antigen" and in the intracellular part of a T-cell receptor (TCR)-derived signaling moiety for T-cell activation. The specificity of CAR-mediated T-cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T-cell targeting by an engineered CAR in comparison to TCR modified T cells and the impact of the CAR activation threshold on redirected T-cell activation. Finally we review most significant progress recently made in early stage clinical trials to treat cancer.

  16. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL.

    PubMed

    Della Gatta, Giusy; Palomero, Teresa; Perez-Garcia, Arianne; Ambesi-Impiombato, Alberto; Bansal, Mukesh; Carpenter, Zachary W; De Keersmaecker, Kim; Sole, Xavier; Xu, Luyao; Paietta, Elisabeth; Racevskis, Janis; Wiernik, Peter H; Rowe, Jacob M; Meijerink, Jules P; Califano, Andrea; Ferrando, Adolfo A

    2012-02-26

    The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL.

  17. Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery.

    PubMed

    Volak, Adrienn; LeRoy, Stanley G; Natasan, Jeya Shree; Park, David J; Cheah, Pike See; Maus, Andreas; Fitzpatrick, Zachary; Hudry, Eloise; Pinkham, Kelsey; Gandhi, Sheetal; Hyman, Bradley T; Mu, Dakai; GuhaSarkar, Dwijit; Stemmer-Rachamimov, Anat O; Sena-Esteves, Miguel; Badr, Christian E; Maguire, Casey A

    2018-05-16

    The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.

  18. Human T-cell leukemia virus type 1 Tax oncoprotein represses the expression of the BCL11B tumor suppressor in T-cells

    PubMed Central

    Takachi, Takayuki; Takahashi, Masahiko; Takahashi-Yoshita, Manami; Higuchi, Masaya; Obata, Miki; Mishima, Yukio; Okuda, Shujiro; Tanaka, Yuetsu; Matsuoka, Masao; Saitoh, Akihiko; Green, Patrick L; Fujii, Masahiro

    2015-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia (ATL), which is an aggressive form of T-cell malignancy. HTLV-1 oncoproteins, Tax and HBZ, play crucial roles in the immortalization of T-cells and/or leukemogenesis by dysregulating the cellular functions in the host. Recent studies show that HTLV-1-infected T-cells have reduced expression of the BCL11B tumor suppressor protein. In the present study, we explored whether Tax and/or HBZ play a role in downregulating BCL11B in HTLV-1-infected T-cells. Lentiviral transduction of Tax in a human T-cell line repressed the expression of BCL11B at both the protein and mRNA levels, whereas the transduction of HBZ had little effect on the expression. Tax mutants with a decreased activity for the NF-κB, CREB or PDZ protein pathways still showed a reduced expression of the BCL11B protein, thereby implicating a different function of Tax in BCL11B downregulation. In addition, the HTLV-2 Tax2 protein reduced the BCL11B protein expression in T-cells. Seven HTLV-1-infected T-cell lines, including three ATL-derived cell lines, showed reduced BCL11B mRNA and protein expression relative to an uninfected T-cell line, and the greatest reductions were in the cells expressing Tax. Collectively, these results indicate that Tax is responsible for suppressing BCL11B protein expression in HTLV-1-infected T-cells; Tax-mediated repression of BCL11B is another mechanism that Tax uses to promote oncogenesis of HTLV-1-infected T-cells. PMID:25613934

  19. TNF-alpha induction of GM2 expression on renal cell carcinomas promotes T cell dysfunction.

    PubMed

    Raval, Gira; Biswas, Soumika; Rayman, Patricia; Biswas, Kaushik; Sa, Gaurisankar; Ghosh, Sankar; Thornton, Mark; Hilston, Cynthia; Das, Tanya; Bukowski, Ronald; Finke, James; Tannenbaum, Charles S

    2007-05-15

    Previous studies from our laboratory demonstrated the role of tumor-derived gangliosides as important mediators of T cell apoptosis, and hence, as one mechanism by which tumors evade immune destruction. In this study, we report that TNF-alpha secreted by infiltrating inflammatory cells and/or genetically modified tumors augments tumor-associated GM2 levels, which leads to T cell death and immune dysfunction. The conversion of weakly apoptogenic renal cell carcinoma (RCC) clones to lines that can induce T cell death requires 3-5 days of TNF-alpha pretreatment, a time frame paralleling that needed for TNF-alpha to stimulate GM2 accumulation by SK-RC-45, SK-RC-54, and SK-RC-13. RCC tumor cell lines permanently transfected with the TNF-alpha transgene are similarly toxic for T lymphocytes, which correlates with their constitutively elevated levels of GM2. TNF-alpha increases GM2 ganglioside expression by enhancing the mRNA levels encoding its synthetic enzyme, GM2 synthase, as demonstrated by both RT-PCR and Southern analysis. The contribution of GM2 gangliosides to tumor-induced T cell death was supported by the finding that anti-GM2 Abs significantly blocked T cell apoptosis mediated by TNF-alpha-treated tumor cells, and by the observation that small interfering RNA directed against TNF-alpha abrogated GM2 synthase expression by TNF-transfected SK-RC-45, diminished its GM2 accumulation, and inhibited its apoptogenicity for T lymphocytes. Our results indicate that TNF-alpha signaling promotes RCC-induced killing of T cells by stimulating the acquisition of a distinct ganglioside assembly in RCC tumor cells.

  20. Characterization of tumor-associated T-lymphocyte subsets and immune checkpoint molecules in head and neck squamous cell carcinoma

    PubMed Central

    Thelen, Martin; Reuter, Sabrina; Zentis, Peter; Shimabukuro-Vornhagen, Alexander; Theurich, Sebastian; Wennhold, Kerstin; Garcia-Marquez, Maria; Tharun, Lars; Quaas, Alexander; Schauss, Astrid; Isensee, Jörg; Hucho, Tim; Huebbers, Christian

    2017-01-01

    The composition of tumor-infiltrating lymphocytes (TIL) reflects biology and immunogenicity of cancer. Here, we characterize T-cell subsets and expression of immune checkpoint molecules in head and neck squamous cell carcinoma (HNSCC). We analyzed TIL subsets in primary tumors (n = 34), blood (peripheral blood mononuclear cells (PBMC); n = 34) and non-cancerous mucosa (n = 7) of 34 treatment-naïve HNSCC patients and PBMC of 15 healthy controls. Flow cytometry analyses revealed a highly variable T-cell infiltration mainly of an effector memory phenotype (CD45RA−/CCR7−). Naïve T cells (CD45RA+/CCR7+) were decreased in the microenvironment compared to PBMC of patients, while regulatory T cells (CD4+/CD25+/CD127low and CD4+/CD39+) were elevated. Furthermore, we performed digital image analyses of entire cross sections of HNSCC to define the ‘Immunoscore’ (CD3+ and CD8+ cell infiltration in tumor core and invasive margin) and quantified MHC class I expression on tumor cells by immunohistochemistry. Immune checkpoint molecules cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death 1 (PD-1) and programmed cell death 1 ligand 1 (PD-L1) were increased in TILs compared to peripheral T cells in flow-cytometric analysis. Human papillomavirus (HPV) positive tumors showed higher numbers of TILs, but a similar composition of T-cell subsets and checkpoint molecule expression compared to HPV negative tumors. Taken together, the tumor microenvironment of HNSCC is characterized by a strong infiltration of regulatory T cells and high checkpoint molecule expression on T-cell subsets. In view of increasingly used immunotherapies, a detailed knowledge of TILs and checkpoint molecule expression on TILs is of high translational relevance. PMID:28574843

  1. Merkel cell polyomavirus small T antigen initiates Merkel cell carcinoma-like tumor development in mice

    PubMed Central

    Verhaegen, Monique E.; Mangelberger, Doris; Harms, Paul W.; Eberl, Markus; Wilbert, Dawn M.; Meireles, Julia; Bichakjian, Christopher K.; Saunders, Thomas L.; Wong, Sunny Y.; Dlugosz, Andrzej A.

    2017-01-01

    Merkel cell carcinoma (MCC) tumor cells express several markers detected in normal Merkel cells, a non-proliferative population of neuroendocrine cells which arise from epidermis. MCCs frequently contain Merkel cell polyomavirus (MCPyV) DNA and express viral transforming antigens, sT and tLT, but the role of these putative oncogenes in MCC development, and this tumor’s cell of origin, are unknown. Using a panel of pre-term transgenic mice, we show that epidermis-targeted co-expression of sT and the cell fate determinant atonal bHLH transcription factor 1 (Atoh1) leads to development of widespread cellular aggregates with histology and marker expression mimicking that of human intraepidermal MCC. The MCC-like tumor phenotype was dependent on the FBXW7-binding domain of sT, but not the sT-PP2A binding domain. Co-expression of MCPyV tLT did not appreciably alter the phenotype driven by either sT or sT combined with Atoh1. MCPyV sT, when co-expressed with Atoh1, is thus sufficient to initiate development of epidermis-derived MCC-like tumors in mice. PMID:28512245

  2. Viral infection of implanted meningeal tumors induces antitumor memory T-cells to travel to the brain and eliminate established tumors.

    PubMed

    Gao, Yanhua; Whitaker-Dowling, Patricia; Barmada, Mamdouha A; Basse, Per H; Bergman, Ira

    2015-04-01

    Leptomeningeal metastases occur in 2%-5% of patients with breast cancer and have an exceptionally poor prognosis. The blood-brain and blood-meningeal barriers severely inhibit successful chemotherapy. We have developed a straightforward method to induce antitumor memory T-cells using a Her2/neu targeted vesicular stomatitis virus. We sought to determine whether viral infection of meningeal tumor could attract antitumor memory T-cells to eradicate the tumors. Meningeal implants in mice were studied using treatment trials and analyses of immune cells in the tumors. This paper demonstrates that there is a blood-meningeal barrier to bringing therapeutic memory T-cells to meningeal tumors. The barrier can be overcome by viral infection of the tumor. Viral infection of the meningeal tumors followed by memory T-cell transfer resulted in 89% cure of meningeal tumor in 2 different mouse strains. Viral infection produced increased infiltration and proliferation of transferred memory T-cells in the meningeal tumors. Following viral infection, the leukocyte infiltration in meninges and tumor shifted from predominantly macrophages to predominantly T-cells. Finally, this paper shows that successful viral therapy of peritoneal tumors generates memory CD8 T-cells that prevent establishment of tumor in the meninges of these same animals. These results support the hypothesis that a virally based immunization strategy can be used to both prevent and treat meningeal metastases. The meningeal barriers to cancer therapy may be much more permeable to treatment based on cells than treatment based on drugs or molecules. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Transfer of in vitro expanded T lymphocytes after activation with dendritomas prolonged survival of mice challenged with EL4 tumor cells.

    PubMed

    Li, Jinhua; Theofanous, Leigh; Stickel, Sara; Bouton-Verville, Hilary; Burgin, Kelly E; Jakubchak, Susan; Wagner, Thomas E; Wei, Yanzhang

    2007-07-01

    Adoptive T cell transfer after in vitro expansion represents an attractive cancer immunotherapy. The majority of studies so far have been focusing on the expansion of tumor infiltrated lymphocytes (TIL) and some have shown very encouraging results. Recently, we have developed a unique tumor immune response activator, dendritomas, by fusion of dendritic cells and tumor cells. Animal studies and early clinical trials have shown that dendritomas are able to activate tumor specific immune responses. In this study, we hypothesized that naïve T cells can be primed with dendritomas and expanded in vitro to develop an adoptive transfer therapy for patients who do not have solid tumors, such as leukemia. T cells were isolated and purified from lymph nodes of mice. The cells were then incubated with dendritomas made from syngeneic DCs and tumor cells and expanded in vitro using Dynabeads mouse CD3/CD28 T cell expander for approximately three weeks. The in vitro primed and expanded T cells showed tumor cell specific CTL activity and increased secretion of IFN-gamma. Tumor bearing mice receiving the in vitro expanded T cells survived significantly longer than control mice. Furthermore, the depletion of regulator T cells enhanced the survival of the mice that received the adoptive transfer therapy.

  4. Blimp-1–mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis

    PubMed Central

    Cobb, Dustin A.; Bhadra, Rajarshi

    2016-01-01

    CD8, but not CD4, T cells are considered critical for control of chronic toxoplasmosis. Although CD8 exhaustion has been previously reported in Toxoplasma encephalitis (TE)–susceptible model, our current work demonstrates that CD4 not only become exhausted during chronic toxoplasmosis but this dysfunction is more pronounced than CD8 T cells. Exhausted CD4 population expressed elevated levels of multiple inhibitory receptors concomitant with the reduced functionality and up-regulation of Blimp-1, a transcription factor. Our data demonstrates for the first time that Blimp-1 is a critical regulator for CD4 T cell exhaustion especially in the CD4 central memory cell subset. Using a tamoxifen-dependent conditional Blimp-1 knockout mixed bone marrow chimera as well as an adoptive transfer approach, we show that CD4 T cell–intrinsic deletion of Blimp-1 reversed CD8 T cell dysfunction and resulted in improved pathogen control. To the best of our knowledge, this is a novel finding, which demonstrates the role of Blimp-1 as a critical regulator of CD4 dysfunction and links it to the CD8 T cell dysfunctionality observed in infected mice. The critical role of CD4-intrinsic Blimp-1 expression in mediating CD4 and CD8 T cell exhaustion may provide a rational basis for designing novel therapeutic approaches. PMID:27481131

  5. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health

    PubMed Central

    Kubinak, Jason L.; Petersen, Charisse; Stephens, W. Zac; Soto, Ray; Bake, Erin; O’Connell, Ryan M.; Round, June L.

    2015-01-01

    SUMMARY Altered commensal communities are associated with human disease. IgA mediates intestinal homeostasis and regulates microbiota composition. Intestinal IgA is produced at high levels as a result of T follicular helper cell (TFH) and B cell interactions in germinal centers. However, the pathways directing host IgA responses towards the microbiota remain unknown. Here, we report that signaling through the innate adaptor MyD88 in gut T cells coordinates germinal center responses, including TFH and IgA+ B cell development. TFH development is deficient in germfree mice and can be restored by feeding TLR2 agonists that activate T cell intrinsic MyD88 signaling. Loss of this pathway diminishes high affinity IgA targeting of the microbiota and fails to control the bacterial community, leading to worsened disease. Our findings identify that T cells converge innate and adaptive immune signals to coordinate IgA against the microbiota, constraining microbial community membership to promote symbiosis. PMID:25620548

  6. Susceptibility to cytotoxic T cell lysis of cancer stem cells derived from cervical and head and neck tumor cell lines.

    PubMed

    Liao, Tian; Kaufmann, Andreas M; Qian, Xu; Sangvatanakul, Voramon; Chen, Chao; Kube, Tina; Zhang, Guoyou; Albers, Andreas E

    2013-01-01

    To explore cancer stem cell susceptibility to a host's cytotoxic T lymphocyte (CTL)-mediated immune response. We compared the susceptibility of putative CSC generated from cancer cell lines to immunologic recognition and killing by alloantigen-specific CD8(+) CTL. CSC-enriched spheroid culture-derived cells (SDC) exhibited higher expression of ALDH, ICAM1 and of stem/progenitor cell markers on all 3 tumor cell lines investigated and lower MHC class I on the cervical cancer cell line as compared to their monolayer-derived cells (MDC). The expression of ICAM1 and MHCI was upregulated by IFN-γ treatment. CSC populations were less sensitive to MHC class I-restricted alloantigen-specific CD8(+) CTL lysis as compared to matched MDC. IFN-γ pretreatment resulted in over-proportionally enhanced lysis of SDC. Finally, the subset of ALDH(high) expressing SDC presented more sensitivity toward CD8(+) CTL killing than the ALDH(low) SDC. Tumor therapy resistance has been attributed to cancer stem cells (CSC). We show in vitro susceptibility of CSC to CTL-mediated lysis. Immunotherapy targeting of ALDH(+) CSC may therefore be a promising approach. Our results and method may be helpful for the development and optimization of adjuvants, as here exemplified for INF-γ, for CSC-targeted vaccines, independent of the availability of CSC-specific antigens.

  7. Acid sphingomyelinase mediates human CD4+ T-cell signaling: potential roles in T-cell responses and diseases

    PubMed Central

    Bai, Aiping; Guo, Yuan

    2017-01-01

    Acid sphingomyelinase (ASM) is a lipid hydrolase. By generating ceramide, ASM had been reported to have an important role in regulating immune cell functions inclusive of macrophages, NK cells, and CD8+ T cells, whereas the role of ASM bioactivity in regulation of human CD4+ T-cell functions remained uncertain. Recent studies have provided novel findings in this field. Upon stimulation of CD3 and/or CD28, ASM-dependent ceramide signaling mediates intracellular downstream signal cascades of CD3 and CD28, and regulates CD4+ T-cell activation and proliferation. Meanwhile, CD39 and CD161 have direct interactions with ASM, which mediates downstream signals inclusive of STAT3 and mTOR and thus defines human Th17 cells. Intriguingly, ASM mediates Th1 responses, but negatively regulates Treg functions. In this review, we summarized the pivotal roles of ASM in regulation of human CD4+ T-cell activation and responses. ASM/sphingolipid signaling may be a novel target for the therapy of human autoimmune diseases. PMID:28749465

  8. Macrophages control vascular stem/progenitor cell plasticity through tumor necrosis factor-α-mediated nuclear factor-κB activation.

    PubMed

    Wong, Mei Mei; Chen, Yikuan; Margariti, Andriani; Winkler, Bernhard; Campagnolo, Paola; Potter, Claire; Hu, Yanhua; Xu, Qingbo

    2014-03-01

    Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process. We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α-mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation. Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α-mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.

  9. Tumor-Mediated Suppression of Dendritic Cell Vaccines

    DTIC Science & Technology

    2005-03-01

    presence of 10 ng/ml of TGF-P for 6 days. (A) DCs were incubated with 2x10 5 splenic T cells isolated from C57/ BL6 mice for 5 days with the addition...intensity (MFI) at 37°C minus 4°C. D, DCs were incubated with 2 X 105 splenic T cells isolated from C57/ BL6 mice for 5 days with the addition of [3H...or MCA-106 fibrosarcoma 1863 TGF-13 NEUTRALIZING ANTIBODY AND DCs yields equally effective vaccines against B16 tumors in mice. J. Surg., 68: 79-91, 20

  10. Empowering gamma delta T cells with antitumor immunity by dendritic cell-based immunotherapy

    PubMed Central

    Van Acker, Heleen H; Anguille, Sébastien; Van Tendeloo, Viggo F; Lion, Eva

    2015-01-01

    Gamma delta (γδ) T cells are the all-rounders of our immune-system with their major histocompatibility complex-unrestricted cytotoxicity, capacity to secrete immunosti-mulatory cytokines and ability to promote the generation of tumor antigen-specific CD8+ and CD4+ T cell responses. Dendritic cell (DC)-based vaccine therapy has the prospective to harness these unique features of the γδ T cells in the fight against cancer. In this review, we will discuss our current knowledge on DC-mediated γδ T cell activation and related opportunities for tumor immunologists. PMID:26405575

  11. Established T-cell inflamed tumors rejected after adaptive resistance was reversed by combination STING activation and PD-1–pathway blockade

    PubMed Central

    Moore, Ellen; Clavijo, Paul E.; Davis, Ruth; Cash, Harrison; Van Waes, Carter; Kim, Young; Allen, Clint

    2016-01-01

    Patients with head and neck squamous cell carcinoma harbor T-cell inflamed and non-T-cell inflamed tumors. Despite this, only 20% of patients respond to checkpoint inhibitor immunotherapy. Lack of induction of innate immunity through pattern-recognition receptors such as the stimulator of interferon (IFN) genes (STING) receptor may represent a significant barrier to the development of effective antitumor immunity. Here, we demonstrate robust control of a T-cell inflamed (MOC1), but not non-T-cell inflamed (MOC2), model of head and neck cancer by activation of the STING pathway with the synthetic cyclic dinucleotide RP,RP dithio-c-di-GMP. Rejection or durable tumor control of MOC1 tumors was dependent upon a functional STING receptor and CD8 T lymphocytes. STING activation resulted in increased tumor microenvironment type 1 and type 2 IFN and greater expression of PD-1–pathway components in vivo. Established MOC1 tumors were rejected and distant tumors abscopally controlled, after adaptive immune resistance had been reversed by the addition of PD-L1 mAb. These findings suggest that PD-1-pathway blockade may reverse adaptive immune resistance following cyclic dinucleotide treatment, enhancing both local and systemic antitumor immunity. PMID:27821498

  12. Cytotoxicity of Tumor Antigen Specific Human T Cells Is Unimpaired by Arginine Depletion

    PubMed Central

    Knies, Diana; Medenhoff, Sergej; Wabnitz, Guido; Luckner-Minden, Claudia; Feldmeyer, Nadja; Voss, Ralf-Holger; Kropf, Pascale; Müller, Ingrid; Conradi, Roland; Samstag, Yvonne; Theobald, Matthias; Ho, Anthony D.; Goldschmidt, Hartmut; Hundemer, Michael

    2013-01-01

    Tumor-growth is often associated with the expansion of myeloid derived suppressor cells that lead to local or systemic arginine depletion via the enzyme arginase. It is generally assumed that this arginine deficiency induces a global shut-down of T cell activation with ensuing tumor immune escape. While the impact of arginine depletion on polyclonal T cell proliferation and cytokine secretion is well documented, its influence on chemotaxis, cytotoxicity and antigen specific activation of human T cells has not been demonstrated so far. We show here that chemotaxis and early calcium signaling of human T cells are unimpaired in the absence of arginine. We then analyzed CD8+ T cell activation in a tumor peptide as well as a viral peptide antigen specific system: (i) CD8+ T cells with specificity against the MART-1aa26–35*A27L tumor antigen expanded with in vitro generated dendritic cells, and (ii) clonal CMV pp65aa495–503 specific T cells and T cells retrovirally transduced with a CMV pp65aa495–503 specific T cell receptor were analyzed. Our data demonstrate that human CD8+ T cell antigen specific cytotoxicity and perforin secretion are completely preserved in the absence of arginine, while antigen specific proliferation as well as IFN-γ and granzyme B secretion are severely compromised. These novel results highlight the complexity of antigen specific T cell activation and demonstrate that human T cells can preserve important activation-induced effector functions in the context of arginine deficiency. PMID:23717444

  13. TIL therapy broadens the tumor-reactive CD8+ T cell compartment in melanoma patients

    PubMed Central

    Kvistborg, Pia; Shu, Chengyi Jenny; Heemskerk, Bianca; Fankhauser, Manuel; Thrue, Charlotte Albæk; Toebes, Mireille; van Rooij, Nienke; Linnemann, Carsten; van Buuren, Marit M.; Urbanus, Jos H.M.; Beltman, Joost B.; thor Straten, Per; Li, Yong F.; Robbins, Paul F.; Besser, Michal J.; Schachter, Jacob; Kenter, Gemma G.; Dudley, Mark E.; Rosenberg, Steven A.; Haanen, John B.A.G.; Hadrup, Sine Reker; Schumacher, Ton N.M.

    2012-01-01

    There is strong evidence that both adoptive T cell transfer and T cell checkpoint blockade can lead to regression of human melanoma. However, little data are available on the effect of these cancer therapies on the tumor-reactive T cell compartment. To address this issue we have profiled therapy-induced T cell reactivity against a panel of 145 melanoma-associated CD8+ T cell epitopes. Using this approach, we demonstrate that individual tumor-infiltrating lymphocyte cell products from melanoma patients contain unique patterns of reactivity against shared melanoma-associated antigens, and that the combined magnitude of these responses is surprisingly low. Importantly, TIL therapy increases the breadth of the tumor-reactive T cell compartment in vivo, and T cell reactivity observed post-therapy can almost in full be explained by the reactivity observed within the matched cell product. These results establish the value of high-throughput monitoring for the analysis of immuno-active therapeutics and suggest that the clinical efficacy of TIL therapy can be enhanced by the preparation of more defined tumor-reactive T cell products. PMID:22754759

  14. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients.

    PubMed

    Kvistborg, Pia; Shu, Chengyi Jenny; Heemskerk, Bianca; Fankhauser, Manuel; Thrue, Charlotte Albæk; Toebes, Mireille; van Rooij, Nienke; Linnemann, Carsten; van Buuren, Marit M; Urbanus, Jos H M; Beltman, Joost B; Thor Straten, Per; Li, Yong F; Robbins, Paul F; Besser, Michal J; Schachter, Jacob; Kenter, Gemma G; Dudley, Mark E; Rosenberg, Steven A; Haanen, John B A G; Hadrup, Sine Reker; Schumacher, Ton N M

    2012-07-01

    There is strong evidence that both adoptive T cell transfer and T cell checkpoint blockade can lead to regression of human melanoma. However, little data are available on the effect of these cancer therapies on the tumor-reactive T cell compartment. To address this issue we have profiled therapy-induced T cell reactivity against a panel of 145 melanoma-associated CD8(+) T cell epitopes. Using this approach, we demonstrate that individual tumor-infiltrating lymphocyte cell products from melanoma patients contain unique patterns of reactivity against shared melanoma-associated antigens, and that the combined magnitude of these responses is surprisingly low. Importantly, TIL therapy increases the breadth of the tumor-reactive T cell compartment in vivo, and T cell reactivity observed post-therapy can almost in full be explained by the reactivity observed within the matched cell product. These results establish the value of high-throughput monitoring for the analysis of immuno-active therapeutics and suggest that the clinical efficacy of TIL therapy can be enhanced by the preparation of more defined tumor-reactive T cell products.

  15. Depletion of regulatory T cells by anti-ICOS antibody enhances anti-tumor immunity of tumor cell vaccine in prostate cancer.

    PubMed

    Mo, Lijun; Chen, Qianmei; Zhang, Xinji; Shi, Xiaojun; Wei, Lili; Zheng, Dianpeng; Li, Hongwei; Gao, Jimin; Li, Jinlong; Hu, Zhiming

    2017-10-13

    ICOS + Treg cells exert important immunosuppressive effects in tumor immunity. We adopt a combination approach of ICOS + Treg cells depletion with tumor cell vaccine to evaluate anti-tumor immunity in mouse prostate cancer model. Streptavidin (SA)-mGM-CSF surface-modified RM-1 cells were prepared as the vaccine and the mouse subcutaneous prostate tumor model was used to evaluate the immunity. Tumor growth, flow cytometry, immunohistochemistry, immunofluorescence and enzyme linked immunosorbent assay (ELISA) were performed to evaluate the therapeutic effects. Our results demonstrated that SA-mGM-CSF vaccine was prepared successfully and tumor growth was inhibited. The tumor size in the combination group was much smaller than that in the vaccine with IgG mAb group. The portions of dendritic cells, CD8 + and CD4 + T cells in the mice blood and tumor tissues were increased after treatment with vaccine. There were more immune-suppressing Tregs infiltrated into tumor after treatment with tumor cell vaccine, and ICOS blocking could deplete the infiltrated Tregs, and T lymphocytes increased more dramatically in the combination therapy group. The concentrations of interferon-γ were increased in all vaccine group, the concentrations of Interleukin-10 and Interleukin-4 were much lower in the combination group. Our study demonstrated that ICOS blocking could deplete the tumor-infiltrated ICOS + Treg cells. Combining GM-CSF surface-modified RM-1 cell vaccine with Anti-ICOS antibody could induce better antitumor immunity than a vaccine alone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer

    PubMed Central

    Priceman, Saul J.; Gerdts, Ethan A.; Tilakawardane, Dileshni; Kennewick, Kelly T.; Murad, John P.; Park, Anthony K.; Jeang, Brook; Yamaguchi, Yukiko; Urak, Ryan; Weng, Lihong; Chang, Wen-Chung; Wright, Sarah; Pal, Sumanta; Reiter, Robert E.; Brown, Christine E.; Forman, Stephen J.

    2018-01-01

    ABSTRACT Advancing chimeric antigen receptor (CAR)-engineered adoptive T cells for the treatment of solid cancers is a major focus in the field of immunotherapy, given impressive recent clinical responses in hematological malignancies. Prostate cancer may be amenable to T cell-based immunotherapy since several tumor antigens, including prostate stem-cell antigen (PSCA), are widely over-expressed in metastatic disease. While antigen selectivity of CARs for solid cancers is crucial, it is problematic due to the absence of truly restricted tumor antigen expression and potential safety concerns with “on-target off-tumor” activity. Here, we show that the intracellular co-stimulatory signaling domain can determine a CAR's sensitivity for tumor antigen expression. A 4-1BB intracellular co-stimulatory signaling domain in PSCA-CARs confers improved selectivity for higher tumor antigen density, reduced T cell exhaustion phenotype, and equivalent tumor killing ability compared to PSCA-CARs containing the CD28 co-stimulatory signaling domain. PSCA-CARs exhibit robust in vivo anti-tumor activity in patient-derived bone-metastatic prostate cancer xenograft models, and 4-1BB-containing CARs show superior T cell persistence and control of disease compared with CD28-containing CARs. Our study demonstrates the importance of co-stimulation in defining an optimal CAR T cell, and also highlights the significance of clinically relevant models in developing solid cancer CAR T cell therapies. PMID:29308300

  17. Identification of a regulatory T cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression.

    PubMed

    Wang, Rui; Wan, Qi; Kozhaya, Lina; Fujii, Hodaka; Unutmaz, Derya

    2008-07-16

    Regulatory T (T(reg)) cells control immune activation and maintain tolerance. How T(regs) mediate their suppressive function is unclear. Here we identified a cell surface molecule, called GARP, (or LRRC32), which within T cells is specifically expressed in T(regs) activated through the T cell receptor (TCR). Ectopic expression of GARP in human naïve T (T(N)) cells inhibited their proliferation and cytokine secretion upon TCR activation. Remarkably, GARP over-expression in T(N) cells induced expression of T(reg) master transcription factor Foxp3 and endowed them with a partial suppressive function. The extracellular but not the cytoplasmic region of GARP, was necessary for these functions. Silencing Foxp3 in human T(reg) cells reduced expression of GARP and attenuated their suppressive function. However, GARP function was not affected when Foxp3 was downregulated in GARP-overexpressing cells, while silencing GARP in Foxp3-overexpressing cells reduced their suppressive activity. These findings reveal a novel cell surface molecule-mediated regulatory mechanism, with implications for modulating aberrant immune responses.

  18. Human T-cell leukemia virus type 1 Tax oncoprotein represses the expression of the BCL11B tumor suppressor in T-cells.

    PubMed

    Takachi, Takayuki; Takahashi, Masahiko; Takahashi-Yoshita, Manami; Higuchi, Masaya; Obata, Miki; Mishima, Yukio; Okuda, Shujiro; Tanaka, Yuetsu; Matsuoka, Masao; Saitoh, Akihiko; Green, Patrick L; Fujii, Masahiro

    2015-04-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia (ATL), which is an aggressive form of T-cell malignancy. HTLV-1 oncoproteins, Tax and HBZ, play crucial roles in the immortalization of T-cells and/or leukemogenesis by dysregulating the cellular functions in the host. Recent studies show that HTLV-1-infected T-cells have reduced expression of the BCL11B tumor suppressor protein. In the present study, we explored whether Tax and/or HBZ play a role in downregulating BCL11B in HTLV-1-infected T-cells. Lentiviral transduction of Tax in a human T-cell line repressed the expression of BCL11B at both the protein and mRNA levels, whereas the transduction of HBZ had little effect on the expression. Tax mutants with a decreased activity for the NF-κB, CREB or PDZ protein pathways still showed a reduced expression of the BCL11B protein, thereby implicating a different function of Tax in BCL11B downregulation. In addition, the HTLV-2 Tax2 protein reduced the BCL11B protein expression in T-cells. Seven HTLV-1-infected T-cell lines, including three ATL-derived cell lines, showed reduced BCL11B mRNA and protein expression relative to an uninfected T-cell line, and the greatest reductions were in the cells expressing Tax. Collectively, these results indicate that Tax is responsible for suppressing BCL11B protein expression in HTLV-1-infected T-cells; Tax-mediated repression of BCL11B is another mechanism that Tax uses to promote oncogenesis of HTLV-1-infected T-cells. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  19. Normalization of Tumor Microenvironment by Neem Leaf Glycoprotein Potentiates Effector T Cell Functions and Therapeutically Intervenes in the Growth of Mouse Sarcoma

    PubMed Central

    Barik, Subhasis; Banerjee, Saptak; Mallick, Atanu; Goswami, Kuntal Kanti; Roy, Soumyabrata; Bose, Anamika; Baral, Rathindranath

    2013-01-01

    We have observed restriction of the murine sarcoma growth by therapeutic intervention of neem leaf glycoprotein (NLGP). In order to evaluate the mechanism of tumor growth restriction, here, we have analyzed tumor microenvironment (TME) from sarcoma bearing mice with NLGP therapy (NLGP-TME, in comparison to PBS-TME). Analysis of cytokine milieu within TME revealed IL-10, TGFβ, IL-6 rich type 2 characters was switched to type 1 microenvironment with dominance of IFNγ secretion within NLGP-TME. Proportion of CD8+ T cells was increased within NLGP-TME and these T cells were protected from TME-induced anergy by NLGP, as indicated by higher expression of pNFAT and inhibit related downstream signaling. Moreover, low expression of FasR+ cells within CD8+ T cell population denotes prevention from activation induced cell death. Using CFSE as a probe, better migration of T cells was noted within TME from NLGP treated mice than PBS cohort. CD8+ T cells isolated from NLGP-TME exhibited greater cytotoxicity to sarcoma cells in vitro and these cells show higher expression of cytotoxicity related molecules, perforin and granzyme B. Adoptive transfer of NLGP-TME exposed T cells, but not PBS-TME exposed cells in mice, is able to significantly inhibit the growth of sarcoma in vivo. Such tumor growth inhibition by NLGP-TME exposed T cells was not observed when mice were depleted for CD8+ T cells. Accumulated evidences strongly suggest NLGP mediated normalization of TME allows T cells to perform optimally to inhibit the tumor growth. PMID:23785504

  20. Adenosine A(2B) receptor antagonist PSB603 suppresses tumor growth and metastasis by inhibiting induction of regulatory T cells.

    PubMed

    Kaji, Wakako; Tanaka, Satomi; Tsukimoto, Mitsutoshi; Kojima, Shuji

    2014-04-01

    Regulatory T cells (Treg) play a role in suppression of immune response, including anti-tumor immunity. We have recently reported that treatment of naïve CD4 T cells with adenosine A(2B) receptor antagonist PSB603 under Treg-skewing conditions inhibits expression of Foxp3, a marker of differentiation to Treg, without blocking IL-2 production or CD25 expression, which are activation markers, in CD4 T cells. We hypothesized that PSB603 suppresses cancer growth and metastasis by inhibiting induction of Treg, thereby facilitating anti-tumor immunity. In this study, we first examined the effect of PSB603 on tumor growth in B16 melanoma-bearing C57BL/6 mice. Administration of PSB603 significantly suppressed the increase of tumor volume as well as the increase of Treg population in these mice. The populations of CD4 and CD8 T cells were higher and splenic lymphocyte-mediated cytotoxicity towards B16 melanoma was significantly increased in PSB603-treated mice. We confirmed that PSB603 did not reduce the viability of B16 melanoma cells in vitro. Moreover, we also examined the effect of PSB603 on tumor metastasis in pulmonary metastasis model mice intravenously injected with B16 melanoma cells. The metastasis was also suppressed in PSB603-treated mice, in which the population of Treg was significantly lower. Overall, our results suggest that A(2B) receptor antagonist PSB603 enhances anti-tumor immunity by inhibiting differentiation to Treg, resulting in a delay of tumor growth and a suppression of metastasis.

  1. Analysis of the t(3;8) of Hereditary Renal Cell Carcinoma: A Palindrome-Mediated Translocation

    PubMed Central

    Kato, Takema; Franconi, Colleen P.; Sheridan, Molly B.; Hacker, April M.; Inagakai, Hidehito; Glover, Thomas W.; Arlt, Martin F.; Drabkin, Harry A.; Gemmill, Robert M.; Kurahashi, Hiroki; Emanuel, Beverly S.

    2014-01-01

    It has emerged that palindrome-mediated genomic instability generates DNA-based rearrangements. The presence of palindromic AT-rich repeats (PATRRs) at the translocation breakpoints suggested a palindrome-mediated mechanism in the generation of several recurrent constitutional rearrangements: the t(11;22), t(17;22) and t(8;22). To date, all reported PATRR mediated translocations include the PATRR on chromosome 22 (PATRR22) as a translocation partner. Here, the constitutional rearrangement, t(3;8)(p14.2;q24.1), segregating with renal cell carcinoma in two families, is examined. The chromosome 8 breakpoint lies in PATRR8 in the first intron of the RNF139 (TRC8) gene while the chromosome 3 breakpoint is located in an AT-rich palindromic sequence in intron 3 of the FHIT gene (PATRR3). Thus, the t(3;8) is the first PATRR-mediated, recurrent, constitutional translocation that does not involve PATRR22. Furthermore, similar to the t(11;22) and t(8;22), we detect de novo translocations involving PATRR3 in normal sperm. The breakpoint on chromosome 3 is in proximity to FRA3B, the most common fragile site in the human genome and a site of frequent deletions in tumor cells. However, the lack of involvement of PATRR3 sequence in numerous FRA3B-related deletions suggests that there are several different DNA sequence based etiologies responsible for chromosome 3p14.2 genomic rearrangements. PMID:24813807

  2. Enhanced antitumor reactivity of tumor-sensitized T cells by interferon alfa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vander Woude, D.L.; Wagner, P.D.; Shu, S.

    Tumor-draining lymph node cells from mice bearing the methylcholanthrene-induced MCA 106 tumors can be sensitized in vitro to acquire antitumor reactivity. We examined the effect of interferon alfa on the function of cells that underwent in vitro sensitization in adoptive immunotherapy. Interferon alfa increased the antitumor reactivity of in vitro sensitized cells in the treatment of MCA 106 pulmonary metastases. This effect was evident in irradiated mice, indicating that a host response to the interferon alfa was not required. Interferon alfa treatment increased class I major histocompatibility complex antigen expression on tumor cells and increased their susceptibility to lysis bymore » in vitro sensitized cells. These results suggest that interferon alfa enhancement of adoptive immunotherapy was mediated by its effect on tumor cells. Interferon alfa may be a useful adjunct to the adoptive immunotherapy of human cancer.« less

  3. TCR hypervariable regions expressed by T cells that respond to effective tumor vaccines.

    PubMed

    Jordan, Kimberly R; Buhrman, Jonathan D; Sprague, Jonathan; Moore, Brandon L; Gao, Dexiang; Kappler, John W; Slansky, Jill E

    2012-10-01

    A major goal of immunotherapy for cancer is the activation of T cell responses against tumor-associated antigens (TAAs). One important strategy for improving antitumor immunity is vaccination with peptide variants of TAAs. Understanding the mechanisms underlying the expansion of T cells that respond to the native tumor antigen is an important step in developing effective peptide-variant vaccines. Using an immunogenic mouse colon cancer model, we compare the binding properties and the TCR genes expressed by T cells elicited by peptide variants that elicit variable antitumor immunity directly ex vivo. The steady-state affinity of the natural tumor antigen for the T cells responding to effective peptide vaccines was higher relative to ineffective peptides, consistent with their improved function. Ex vivo analysis showed that T cells responding to the effective peptides expressed a CDR3β motif, which was also shared by T cells responding to the natural antigen and not those responding to the less effective peptide vaccines. Importantly, these data demonstrate that peptide vaccines can expand T cells that naturally respond to tumor antigens, resulting in more effective antitumor immunity. Future immunotherapies may require similar stringent analysis of the responding T cells to select optimal peptides as vaccine candidates.

  4. Tailored chemokine receptor modification improves homing of adoptive therapy T cells in a spontaneous tumor model.

    PubMed

    Garetto, Stefano; Sardi, Claudia; Martini, Elisa; Roselli, Giuliana; Morone, Diego; Angioni, Roberta; Cianciotti, Beatrice Claudia; Trovato, Anna Elisa; Franchina, Davide Giuseppe; Castino, Giovanni Francesco; Vignali, Debora; Erreni, Marco; Marchesi, Federica; Rumio, Cristiano; Kallikourdis, Marinos

    2016-07-12

    In recent years, tumor Adoptive Cell Therapy (ACT), using administration of ex vivo-enhanced T cells from the cancer patient, has become a promising therapeutic strategy. However, efficient homing of the anti-tumoral T cells to the tumor or metastatic site still remains a substantial hurdle. Yet the tumor site itself attracts both tumor-promoting and anti-tumoral immune cell populations through the secretion of chemokines. We attempted to identify these chemokines in a model of spontaneous metastasis, in order to "hijack" their function by expressing matching chemokine receptors on the cytotoxic T cells used in ACT, thus allowing us to enhance the recruitment of these therapeutic cells. Here we show that this enabled the modified T cells to preferentially home into spontaneous lymph node metastases in the TRAMP model, as well as in an inducible tumor model, E.G7-OVA. Due to the improved homing, the modified CD8+ T cells displayed an enhanced in vivo protective effect, as seen by a significant delay in E.G7-OVA tumor growth. These results offer a proof of principle for the tailored application of chemokine receptor modification as a means of improving T cell homing to the target tumor, thus enhancing ACT efficacy. Surprisingly, we also uncover that the formation of the peri-tumoral fibrotic capsule, which has been shown to impede T cell access to tumor, is partially dependent on host T cell presence. This finding, which would be impossible to observe in immunodeficient model studies, highlights possible conflicting roles that T cells may play in a therapeutic context.

  5. Colorectal cancer prognosis depends on T-cell infiltration and molecular characteristics of the tumor.

    PubMed

    Dahlin, Anna M; Henriksson, Maria L; Van Guelpen, Bethany; Stenling, Roger; Oberg, Ake; Rutegård, Jörgen; Palmqvist, Richard

    2011-05-01

    The aim of this study was to relate the density of tumor infiltrating T cells to cancer-specific survival in colorectal cancer, taking into consideration the CpG island methylator phenotype (CIMP) and microsatellite instability (MSI) screening status. The T-cell marker CD3 was stained by immunohistochemistry in 484 archival tumor tissue samples. T-cell density was semiquantitatively estimated and scored 1-4 in the tumor front and center (T cells in stroma), and intraepithelially (T cells infiltrating tumor cell nests). Total CD3 score was calculated as the sum of the three CD3 scores (range 3-12). MSI screening status was assessed by immunohistochemistry. CIMP status was determined by quantitative real-time PCR (MethyLight) using an eight-gene panel. We found that patients whose tumors were highly infiltrated by T cells (total CD3 score ≥7) had longer survival compared with patients with poorly infiltrated tumors (total CD3 score ≤4). This finding was statistically significant in multivariate analyses (multivariate hazard ratio, 0.57; 95% confidence interval, 0.31-1.00). Importantly, the finding was consistent in rectal cancer patients treated with preoperative radiotherapy. Although microsatellite unstable tumor patients are generally considered to have better prognosis, we found no difference in survival between microsatellite unstable and microsatellite stable (MSS) colorectal cancer patients with similar total CD3 scores. Patients with MSS tumors highly infiltrated by T cells had better prognosis compared with intermediately or poorly infiltrated microsatellite unstable tumors (log rank P=0.013). Regarding CIMP status, CIMP-low was associated with particularly poor prognosis in patients with poorly infiltrated tumors (multivariate hazard ratio for CIMP-low versus CIMP-negative, 3.07; 95% confidence interval, 1.53-6.15). However, some subset analyses suffered from low power and are in need of confirmation by independent studies. In conclusion, patients whose

  6. Fighting Viral Infections and Virus-Driven Tumors with Cytotoxic CD4+ T Cells

    PubMed Central

    Muraro, Elena; Merlo, Anna; Martorelli, Debora; Cangemi, Michela; Dalla Santa, Silvia; Dolcetti, Riccardo; Rosato, Antonio

    2017-01-01

    CD4+ T cells have been and are still largely regarded as the orchestrators of immune responses, being able to differentiate into distinct T helper cell populations based on differentiation signals, transcription factor expression, cytokine secretion, and specific functions. Nonetheless, a growing body of evidence indicates that CD4+ T cells can also exert a direct effector activity, which depends on intrinsic cytotoxic properties acquired and carried out along with the evolution of several pathogenic infections. The relevant role of CD4+ T cell lytic features in the control of such infectious conditions also leads to their exploitation as a new immunotherapeutic approach. This review aims at summarizing currently available data about functional and therapeutic relevance of cytotoxic CD4+ T cells in the context of viral infections and virus-driven tumors. PMID:28289418

  7. Dihydroartemisinin inhibits the mammalian target of rapamycin-mediated signaling pathways in tumor cells

    PubMed Central

    Huang, Shile

    2014-01-01

    Dihydroartemisinin (DHA), an antimalarial drug, has previously unrecognized anticancer activity, and is in clinical trials as a new anticancer agent for skin, lung, colon and breast cancer treatment. However, the anticancer mechanism is not well understood. Here, we show that DHA inhibited proliferation and induced apoptosis in rhabdomyosarcoma (Rh30 and RD) cells, and concurrently inhibited the signaling pathways mediated by the mammalian target of rapamycin (mTOR), a central controller for cell proliferation and survival, at concentrations (<3 μM) that are pharmacologically achievable. Of interest, in contrast to the effects of conventional mTOR inhibitors (rapalogs), DHA potently inhibited mTORC1-mediated phosphorylation of p70 S6 kinase 1 and eukaryotic initiation factor 4E binding protein 1 but did not obviously affect mTORC2-mediated phosphorylation of Akt. The results suggest that DHA may represent a novel class of mTORC1 inhibitor and may execute its anticancer activity primarily by blocking mTORC1-mediated signaling pathways in the tumor cells. PMID:23929438

  8. Characterization of CD4+ T cell-mediated cytotoxicity in patients with multiple myeloma.

    PubMed

    Zhang, Xiaole; Gao, Lei; Meng, Kai; Han, Chunting; Li, Qiang; Feng, Zhenjun; Chen, Lei

    2018-05-01

    Multiple myeloma (MM) is an incurable cancer characterized by the development of malignant plasma cells. The CD8 T cell-mediated cytotoxicity is considered a major player in antitumor immunity, but in MM patients, the CD8 T cells displayed senescence markers and were functionally impaired. To investigate whether cytotoxic CD4 T cells could act as a treatment alternative in MM, we examined the frequency and function of naturally occurring cytotoxic CD4 T cells in MM patients. The cytotoxic CD4 T cells were identified as granzyme-A, granzyme B-, and perforin-expressing CD4 T cells, and their frequencies were significantly upregulated in MM patients when compared with healthy controls. The frequencies of cytotoxic CD4 T cells in MM patients were not associated with the frequencies of cytotoxic CD8 T cells, but were negatively associated with disease severity. Interestingly, the expression levels of inhibitory molecules, including PD-1 and CTLA-4, were significantly lower in cytotoxic CD4 T cells than in cytotoxic CD8 T cells. When co-incubated with autologous CD38 + CD138 + plasma cells, CD4 T cells were capable of eliminating plasma cells with varying degrees of efficacy. In MM patients, the frequency of circulating plasma cells was negatively correlated with the frequency of cytotoxic CD4 T cells. Therefore, CD4 T cell-mediated cytotoxicity existed naturally in MM patients and could potentially act as an option in antitumor therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Augmentation of immune cell activity against tumor cells by Rauwolfia radix.

    PubMed

    Jin, Guang-Bi; Hong, Tie; Inoue, Satoshi; Urano, Tomohiko; Cho, Shigefumi; Otsu, Koji; Kitahara, Maya; Ouchi, Yasuyoshi; Cyong, Jong-Chol

    2002-08-01

    In this study, we investigated the effect of Rauwolfia radix on heat shock protein (HSP) 70 expression and cytotoxicity against tumor cells in activated human T cells. When activated T cells were cultured with Rauwolfia radix for 18 h, HSP70 expression after heat shock was remarkably increased, and cytotoxicity against T98G tumor cells was augmented. Moreover, Rauwolfia radix also enhanced the cytotoxicity of heat shocked activated T cells against Molt-4 and T98G tumor cells. Secretions of interferon-gamma (IFN-gamma) and tumor necrosis alpha (TNF-alpha), due to Concanavalin A (Con A) stimulation, were increased by Rauwolfia radix in activated T cells. To investigate the antitumor effect in vivo, EL-4 tumor-bearing mice were administered with Rauwolfia radix in drinking water. The survival period of the Rauwolfia radix treatment group was significantly prolonged compared with that of the control group. Reserpine, the major active ingredient of Rauwolfia radix, also enhanced the cytotoxicity of activated T cells against Molt-4 and T98G tumor cells, and prolonged the survival period of EL-4 tumor-bearing mice. Taken together, our results suggest that Rauwolfia radix can enhance the activity of immune cells against tumor cells.

  10. Stimulation of Natural Killer Cell-Mediated Tumor Immunity by an IL15/TGFβ-Neutralizing Fusion Protein.

    PubMed

    Ng, Spencer; Deng, Jiusheng; Chinnadurai, Raghavan; Yuan, Shala; Pennati, Andrea; Galipeau, Jacques

    2016-10-01

    The clinical efficacy of immune cytokines used for cancer therapy is hampered by elements of the immunosuppressive tumor microenvironment such as TGFβ. Here we demonstrate that FIST15, a recombinant chimeric protein composed of the T-cell-stimulatory cytokine IL15, the sushi domain of IL15Rα and a TGFβ ligand trap, can overcome immunosuppressive TGFβ to effectively stimulate the proliferation and activation of natural killer (NK) and CD8 + T cells with potent antitumor properties. FIST15-treated NK and CD8 + T cells produced more IFNγ and TNFα compared with treatment with IL15 and a commercially available TGFβ receptor-Fc fusion protein (sTβRII) in the presence of TGFβ. Murine B16 melanoma cells, which overproduce TGFβ, were lysed by FIST15-treated NK cells in vitro at doses approximately 10-fold lower than NK cells treated with IL15 and sTβRII. Melanoma cells transduced to express FIST15 failed to establish tumors in vivo in immunocompetent murine hosts and could only form tumors in beige mice lacking NK cells. Mice injected with the same cells were also protected from subsequent challenge by unmodified B16 melanoma cells. Finally, mice with pre-established B16 melanoma tumors responded to FIST15 treatment more strongly compared with tumors treated with control cytokines. Taken together, our results offer a preclinical proof of concept for the use of FIST15 as a new class of biological therapeutics that can coordinately neutralize the effects of immunosuppressive TGFβ in the tumor microenvironment while empowering tumor immunity. Cancer Res; 76(19); 5683-95. ©2016 AACR. ©2016 American Association for Cancer Research.

  11. CD4+CD25+ T-Cells Control Autoimmunity in the Absence of B-Cells

    PubMed Central

    Mariño, Eliana; Villanueva, Jeanette; Walters, Stacey; Liuwantara, David; Mackay, Fabienne; Grey, Shane T.

    2009-01-01

    OBJECTIVE Tumor necrosis factor ligand family members B-cell–activating factor (BAFF) and a proliferation-inducing ligand (APRIL) can exert powerful effects on B-cell activation and development, type 1 T-helper cell (Th1) immune responses, and autoimmunity. We examined the effect of blocking BAFF and APRIL on the development of autoimmune diabetes. RESEARCH DESIGN AND METHODS Female NOD mice were administered B-cell maturation antigen (BCMA)-Fc from 9 to 15 weeks of age. Diabetes incidence, islet pathology, and T- and B-cell populations were examined. RESULTS BCMA-Fc treatment reduced the severity of insulitis and prevented diabetes development in NOD mice. BCMA-Fc–treated mice showed reduced follicular, marginal-zone, and T2MZ B-cells. B-cell reduction was accompanied by decreased frequencies of pathogenic CD4+CD40+ T-cells and reduced Th1 cytokines IL-7, IL-15, and IL-17. Thus, T-cell activation was blunted with reduced B-cells. However, BCMA-Fc–treated mice still harbored detectable diabetogenic T-cells, suggesting that regulatory mechanisms contributed to diabetes prevention. Indeed, BCMA-Fc–treated mice accumulated increased CD4+CD25+ regulatory T-cells (Tregs) with age. CD4+CD25+ cells were essential for maintaining euglycemia because their depletion abrogated BCMA-Fc–mediated protection. BCMA-Fc did not directly affect Treg homeostasis given that CD4+CD25+Foxp3+ T-cells did not express TACI or BR3 receptors and that CD4+CD25+Foxp3+ T-cell frequencies were equivalent in wild-type, BAFF−/−, TACI−/−, BCMA−/−, and BR3−/− mice. Rather, B-cell depletion resulted in CD4+CD25+ T-cell–mediated protection from diabetes because anti-CD25 monoclonal antibody treatment precipitated diabetes in both diabetes-resistant NOD.μMT−/− and BCMA-Fc–treated mice. CONCLUSIONS BAFF/APRIL blockade prevents diabetes. BCMA-Fc reduces B-cells, subsequently blunting autoimmune activity and allowing endogenous regulatory mechanisms to preserve a

  12. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    PubMed Central

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  13. Differential expression of Mediator complex subunit MED15 in testicular germ cell tumors.

    PubMed

    Klümper, Niklas; Syring, Isabella; Offermann, Anne; Shaikhibrahim, Zaki; Vogel, Wenzel; Müller, Stefan C; Ellinger, Jörg; Strauß, Arne; Radzun, Heinz Joachim; Ströbel, Philipp; Brägelmann, Johannes; Perner, Sven; Bremmer, Felix

    2015-09-17

    Testicular germ cell tumors (TGCT) are the most common cancer entities in young men with increasing incidence observed in the last decades. For therapeutic management it is important, that TGCT are divided into several histological subtypes. MED15 is part of the multiprotein Mediator complex which presents an integrative hub for transcriptional regulation and is known to be deregulated in several malignancies, such as prostate cancer and bladder cancer role, whereas the role of the Mediator complex in TGCT has not been investigated so far. Aim of the study was to investigate the implication of MED15 in TGCT development and its stratification into histological subtypes. Immunohistochemical staining (IHC) against Mediator complex subunit MED15 was conducted on a TGCT cohort containing tumor-free testis (n = 35), intratubular germ cell neoplasia unclassified (IGCNU, n = 14), seminomas (SEM, n = 107) and non-seminomatous germ cell tumors (NSGCT, n = 42), further subdivided into embryonic carcinomas (EC, n = 30), yolk sac tumors (YST, n = 5), chorionic carcinomas (CC, n = 5) and teratomas (TER, n = 2). Quantification of MED15 protein expression was performed through IHC followed by semi-quantitative image analysis using the Definiens software. In tumor-free seminiferous tubules, MED15 protein expression was absent or only low expressed in spermatogonia. Interestingly, the precursor lesions IGCNU exhibited heterogeneous but partly very strong MED15 expression. SEM weakly express the Mediator complex subunit MED15, whereas NSGCT and especially EC show significantly enhanced expression compared to tumor-free testis. In conclusion, MED15 is differentially expressed in tumor-free testis and TGCT. While MED15 is absent or low in tumor-free testis and SEM, NSGCT highly express MED15, hinting at the diagnostic potential of this marker to distinguish between SEM and NSGCT. Further, the precursor lesion IGCNU showed increased nuclear MED15

  14. Genetic engineering with T cell receptors.

    PubMed

    Zhang, Ling; Morgan, Richard A

    2012-06-01

    In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers. Published by Elsevier B.V.

  15. Intratumoral CpG-B promotes anti-tumoral neutrophil, cDC, and T cell cooperation without reprograming tolerogenic pDC.

    PubMed

    Humbert, Marion; Guery, Leslie; Brighouse, Dale; Lemeille, Sylvain; Hugues, Stephanie

    2018-03-27

    Cancer immunotherapies utilize distinct mechanisms to harness the power of the immune system to eradicate cancer cells. Therapeutic vaccines, aimed at inducing active immune responses against an existing cancer, are highly dependent on the immunological microenvironment, where many immune cell types display high levels of plasticity and, depending on the context, promote very different immunological outcomes. Among them, plasmacytoid dendritic cells (pDC), known to be highly immunogenic upon inflammation, are maintained in a tolerogenic state by the tumor microenvironment. Here we report that intratumoral (i.t.) injection of established solid tumors with CpG oligonucleotides-B (CpG-B) inhibits tumor growth. Interestingly, control of tumor growth was independent of tumor-associated (TA) pDC, which remained refractory to CpG-B stimulation and whose depletion did not alter the efficacy of the treatment. Instead, tumor growth inhibition subsequent to i.t. CpG-B injection depended on the recruitment of neutrophils into the milieu, resulting in the activation of conventional dendritic cells (cDC), subsequent increased anti-tumor T cell priming in draining lymph nodes, and enhanced effector T cell infiltration in the tumor microenvironment. These results reinforce the concept that intratumoral delivery of TLR9 agonists alters the tumor microenvironment by improving the anti-tumor activity of both innate and adaptive immune cells. Copyright ©2018, American Association for Cancer Research.

  16. CD8(+) T-cell Cytotoxic Capacity Associated with Human Immunodeficiency Virus-1 Control Can Be Mediated through Various Epitopes and Human Leukocyte Antigen Types.

    PubMed

    Migueles, Stephen A; Mendoza, Daniel; Zimmerman, Matthew G; Martins, Kelly M; Toulmin, Sushila A; Kelly, Elizabeth P; Peterson, Bennett A; Johnson, Sarah A; Galson, Eric; Poropatich, Kate O; Patamawenu, Andy; Imamichi, Hiromi; Ober, Alexander; Rehm, Catherine A; Jones, Sara; Hallahan, Claire W; Follmann, Dean A; Connors, Mark

    2015-01-01

    Understanding natural immunologic control over Human Immunodeficiency Virus (HIV)-1 replication, as occurs in rare long-term nonprogressors/elite controllers (LTNP/EC), should inform the design of efficacious HIV vaccines and immunotherapies. Durable control in LTNP/EC is likely mediated by highly functional virus-specific CD8(+) T-cells. Protective Human Leukocyte Antigen (HLA) class I alleles, like B*27 and B*57, are present in most, but not all LTNP/EC, providing an opportunity to investigate features shared by their HIV-specific immune responses. To better understand the contribution of epitope targeting and conservation to immune control, we compared the CD8(+) T-cell specificity and function of B*27/57(neg) LTNP/EC (n = 23), B*27/57(pos) LTNP/EC (n = 23) and B*27/57(neg) progressors (n = 13). Fine mapping revealed 11 previously unreported immunodominant responses. Although B*27/57(neg) LTNP/EC did not target more highly conserved epitopes, their CD8(+) T-cell cytotoxic capacity was significantly higher than progressors. Similar to B*27/57(pos) LTNP/EC, this superior cytotoxicity was mediated by preferential expansion of immunodominant responses and lysis through the predicted HLA. These findings suggest that increased CD8(+) T-cell cytotoxic capacity is a common mechanism of control in most LTNP/EC regardless of HLA type. They also suggest that potent cytotoxicity can be mediated through various epitopes and HLA molecules and could, in theory, be induced in most people.

  17. Tumor infiltrating BRAFV600E-specific CD4 T cells correlated with complete clinical response in melanoma. | Office of Cancer Genomics

    Cancer.gov

    T cells specific for neoantigens encoded by mutated genes in cancers are increasingly recognized as mediators of tumor destruction after immune checkpoint inhibitor therapy or adoptive cell transfer. Unfortunately, most neoantigens result from random mutations and are patient specific, and some cancers contain few mutations to serve as potential antigens. We describe a patient with stage IV acral melanoma who obtained a complete response following adoptive transfer of tumor infiltrating lymphocytes (TIL).

  18. Involvement of NK cells against tumors and parasites.

    PubMed

    Papazahariadou, M; Athanasiadis, G I; Papadopoulos, E; Symeonidou, I; Hatzistilianou, M; Castellani, M L; Bhattacharya, K; Shanmugham, L N; Conti, P; Frydas, S

    2007-01-01

    Host resistance against pathogens depends on a complex interplay of innate and adaptive immune mechanisms. Acting as an early line of defence, the immune system includes activation of neutrophils, tissue macrophages, monocytes, dendritic cells, eosinophils and natural killer (NK) cells. NK cells are lymphoid cells that can be activated without previous stimulation and are therefore like macrophages in the first line of defence against tumor cells and a diverse range of pathogens. NK cells mediate significant activity and produce high levels of proinflammatory cytokines in response to infection. Their cytotoxicity production is induced principally by monocyte-, macrophage- and dendritic cell-derived cytokines, but their activation is also believed to be cytokine-mediated. Recognition of infection by NK cells is accomplished by numerous activating and inhibitory receptors on the NK cells' surface that selectively trigger the cytolytic activity in a major histocompability complex-independent manner. NK cells have trypanocidal activity of fibroblast cells and mediate direct destruction of extracellular epimastigote and trypomastigote forms of T. cruzi and T. lewisi in vitro; moreover, they kill plasmodia-infected erythrocytes directly through cell-cell interaction. This review provides a more detailed analysis of how NK cells recognize and respond to parasites and how they mediate cytotoxicity against tumor cells. Also the unique role of NK cells in innate immunity to infection and the relationship between parasites and carcinogenesis are discussed.

  19. Identification of T-cell Receptors Targeting KRAS-mutated Human Tumors

    PubMed Central

    Wang, Qiong J.; Yu, Zhiya; Griffith, Kayla; Hanada, Ken-ichi; Restifo, Nicholas P.; Yang, James C.

    2015-01-01

    KRAS is one of the most frequently mutated proto-oncogenes in human cancers. The dominant oncogenic mutations of KRAS are single amino acid substitutions at codon 12, in particular G12D and G12V present in 60–70% of pancreatic cancers and 20–30% of colorectal cancers. The consistency, frequency, and tumor specificity of these “neo-antigens” make them attractive therapeutic targets. Recent data associates T cells that target mutated antigens with clinical immunotherapy responses in patients with metastatic melanoma, lung cancer, or cholangiocarcinoma. Using HLA-peptide prediction algorithms, we noted that HLA-A*11:01 could potentially present mutated KRAS variants. By immunizing HLA-A*11:01 transgenic mice, we generated murine T cells and subsequently isolated T-cell receptors (TCRs) highly reactive to the mutated KRAS variants G12V and G12D. Peripheral blood lymphocytes (PBLs) transduced with these TCRs could recognize multiple HLA-A*11:01+ tumor lines bearing the appropriate KRAS mutations. In a xenograft model of large established tumor, adoptive transfer of these transduced PBLs reactive with an HLA-A*11:01, G12D-mutated pancreatic cell line could significantly reduce its growth in NSG mice (P = 0.002). The success of adoptive transfer of TCR-engineered T cells against melanoma and other cancers support clinical trials with these T cells that recognize mutated KRAS in patients with a variety of common cancer types. PMID:26701267

  20. Solitomab, an epithelial cell adhesion molecule/CD3 bispecific antibody (BiTE), is highly active against primary chemotherapy-resistant ovarian cancer cell lines in vitro and fresh tumor cells ex vivo.

    PubMed

    English, Diana P; Bellone, Stefania; Schwab, Carlton L; Roque, Dana M; Lopez, Salvatore; Bortolomai, Ileana; Cocco, Emiliano; Bonazzoli, Elena; Chatterjee, Sudeshna; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Rutherford, Thomas J; Santin, Alessandro D

    2015-02-01

    Solitomab is a novel, bispecific, single-chain antibody that targets epithelial cell adhesion molecule (EpCAM) on tumor cells and also contains a cluster of differentiation 3 (CD3) (T-cell coreceptor) binding region. The authors evaluated the in vitro activity of solitomab against primary chemotherapy-resistant epithelial ovarian carcinoma cell lines as well as malignant cells in ascites. EpCAM expression was evaluated by flow cytometry in 5 primary ovarian cancer cell lines and in 42 fresh ovarian tumor cell cultures in ascites from patients with mainly advanced or recurrent, chemotherapy-resistant disease. The potential activity of solitomab against EpCAM-positive tumor cells was evaluated by flow cytometry, proliferation, and 4-hour chromium-release, cell-mediated cytotoxicity assays. EpCAM expression was detected by flow cytometry in approximately 80% of the fresh ovarian tumors and primary ovarian tumor cell lines tested. EpCAM-positive, chemotherapy-resistant cell lines were identified as resistant to natural killer cell-mediated or T-cell-mediated killing after exposure to peripheral blood lymphocytes in 4-hour chromium-release assays (mean±standard error of the mean, 3.6%±0.7% of cells killed after incubation of EpCAM-positive cell lines with control bispecific antibody). In contrast, after incubation with solitomab, EpCAM-positive, chemotherapy-resistant cells became highly sensitive to T-cell cytotoxicity (mean±standard error of the mean, 28.2%±2.05% of cells killed; P<.0001) after exposure to peripheral blood lymphocytes. Ex vivo incubation of autologous tumor-associated lymphocytes with EpCAM-expressing malignant cells in ascites with solitomab resulted in a significant increase in T-cell activation markers and a reduction in the number of viable ovarian tumor cells in ascites (P<.001). Solitomab may represent a novel, potentially effective agent for the treatment of chemotherapy-resistant ovarian cancers that overexpress EpCAM. © 2014 American

  1. Tumor-targeting domains for chimeric antigen receptor T cells.

    PubMed

    Bezverbnaya, Ksenia; Mathews, Ashish; Sidhu, Jesse; Helsen, Christopher W; Bramson, Jonathan L

    2017-01-01

    Immunotherapy with chimeric antigen receptor (CAR) T cells has been advancing steadily in clinical trials. Since the ability of engineered T cells to recognize intended tumor-associated targets is crucial for the therapeutic success, antigen-binding domains play an important role in shaping T-cell responses. Single-chain antibody and T-cell receptor fragments, natural ligands, repeat proteins, combinations of the above and universal tag-specific domains have all been used in the antigen-binding moiety of chimeric receptors. Here we outline the advantages and disadvantages of different domains, discuss the concepts of affinity and specificity, and highlight the recent progress of each targeting strategy.

  2. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus

    PubMed Central

    Shuda, Masahiro; Feng, Huichen; Kwun, Hyun Jin; Rosen, Steven T.; Gjoerup, Ole; Moore, Patrick S.; Chang, Yuan

    2008-01-01

    Merkel cell polyomavirus (MCV) is a virus discovered in our laboratory at the University of Pittsburgh that is monoclonally integrated into the genome of ≈80% of human Merkel cell carcinomas (MCCs). Transcript mapping was performed to show that MCV expresses transcripts in MCCs similar to large T (LT), small T (ST), and 17kT transcripts of SV40. Nine MCC tumor-derived LT genomic sequences have been examined, and all were found to harbor mutations prematurely truncating the MCV LT helicase. In contrast, four presumed episomal viruses from nontumor sources did not possess this T antigen signature mutation. Using coimmunoprecipitation and origin replication assays, we show that tumor-derived virus mutations do not affect retinoblastoma tumor suppressor protein (Rb) binding by LT but do eliminate viral DNA replication capacity. Identification of an MCC cell line (MKL-1) having monoclonal MCV integration and the signature LT mutation allowed us to functionally test both tumor-derived and wild type (WT) T antigens. Only WT LT expression activates replication of integrated MCV DNA in MKL-1 cells. Our findings suggest that MCV-positive MCC tumor cells undergo selection for LT mutations to prevent autoactivation of integrated virus replication that would be detrimental to cell survival. Because these mutations render the virus replication-incompetent, MCV is not a “passenger virus” that secondarily infects MCC tumors. PMID:18812503

  3. Co-Expansion of Cytokine-Induced Killer Cells and Vγ9Vδ2 T Cells for CAR T-Cell Therapy

    PubMed Central

    Chen, Can; Tan, Wee-Kiat; Chi, Zhixia; Xu, Xue-Hu; Wang, Shu

    2016-01-01

    Gamma delta (γδ) T cells and cytokine-induced killer (CIK) cells, which are a heterogeneous population of T lymphocytes and natural killer T (NKT) cells, have been separately expanded ex vivo and shown to be capable of targeting and mediating cytotoxicity against various tumor cells in a major histocompatibility complex-unrestricted manner. However, the co-expansion and co-administration of these immune cells have not been explored. In this study we describe an efficient method to expand simultaneously both CIK and Vγ9Vδ2 T cells, termed as CIKZ cells, from human peripheral blood mononuclear cells (PBMCs) using Zometa, interferon-gamma (IFN-γ), interleukin 2 (IL-2), anti-CD3 antibody and engineered K562 feeder cells expressing CD64, CD137L and CD86. A 21-day culture of PBMCs with this method yielded nearly 20,000-fold expansion of CIKZ cells with γδ T cells making up over 20% of the expanded population. The expanded CIKZ cells exhibited antitumor cytotoxicity and could be modified to express anti-CD19 chimeric antigen receptor (CAR), anti-CEA CAR, and anti-HER2 CAR to enhance their specificity and cytotoxicity against CD19-, CEA-, or HER2-positive tumor cells. The tumor inhibitory activity of anti-CD19 CAR-modified CIKZ cells was further demonstrated in vivo in a Raji tumor mouse model. The findings herein substantiate the feasibility of co-expanding CIK and γδ cells for adoptive cellular immunotherapy applications such as CAR T-cell therapy against cancer. PMID:27598655

  4. Comparison of cytotoxic T lymphocyte responses against pancreatic cancer induced by dendritic cells transfected with total tumor RNA and fusion hybrided with tumor cell

    PubMed Central

    Chen, Jiang; Li, Hong-Yu; Wang, Di; Shao, Xiao-Dong

    2015-01-01

    Pancreatic cancer (PC) is a deadly human malignancy. Dendritic cell (DC)-based immunotherapy with whole tumor antigens demonstrates potential efficiency in cancer treatment. Tumor RNA and tumor fusion hybrid cells are sources of whole tumor antigens for preparing DC tumor vaccines. However, the efficacy of these sources in eliciting immune responses against PC has not yet to be directly compared. In the present study, patient-derived PC cells and DCs were fused (DC–tumor hybrids) and primary cultured PC cell-derived total RNA was electroporated into autologous DCs (DC–tumor RNA). The antitumor immune responses induced by DC–tumor hybrids and DC–tumor RNA were compared directly. The results showed that both RNA and hybrid methodologies could induce tumor-specific cytotoxic T lymphocyte (CTL) responses, but pulsing DCs with total tumor RNA could induce a higher frequency of activated CTLs and T-helper cells than fusing DCs with autologous tumor cells. In addition, DC–tumor RNA triggered stronger autologous tumor cell lysis than DC–tumor hybrids. It could be concluded that DCs pulsed with whole tumor RNA are superior to those fused with tumor cells in priming anti-PC CTL responses. Electroporation with total tumor RNA may be more suitable for DC-based PC vaccination. PMID:25736302

  5. Elevation of c-MYC Disrupts HLA Class II-mediated Immune Recognition of Human B-cell Tumors1

    PubMed Central

    God, Jason M.; Cameron, Christine; Figueroa, Janette; Amria, Shereen; Hossain, Azim; Kempkes, Bettina; Bornkamm, Georg W.; Stuart, Robert K.; Blum, Janice S.; Haque, Azizul

    2014-01-01

    Elevated levels of the transcription factor c-myc are strongly associated with various cancers, and in particular B-cell lymphomas. While many of c-MYC’s functions have been elucidated, its effect on the presentation of antigen (Ag) through the HLA class II pathway has not previously been reported. This is an issue of considerable importance, given the low immunogenicity of many c-MYC-positive tumors. We report here that increased c-MYC expression has a negative effect on the ability of B-cell lymphomas to functionally present Ags/peptides to CD4+ T cells. This defect was associated with alterations in the expression of distinct co-factors as well as interactions of antigenic peptides with class II molecules required for the presentation of class II-peptide complexes and T cell engagement. Using early passage Burkitt’s lymphoma (BL) tumors and transformed cells, we show that compared to B-lymphoblasts, BL cells express decreased levels of the class II editor HLA-DM, lysosomal thiol-reductase GILT, and a 47kDa enolase-like protein. Functional Ag presentation was partially restored in BL cells treated with a c-MYC inhibitor, demonstrating the impact of this oncogene on Ag recognition. This restoration of HLA class II-mediated Ag presentation in early passage BL tumors/cells was linked to enhanced HLA-DM expression and a concurrent decrease in HLA-DO in BL cells. Taken together, these results reveal c-MYC exerts suppressive effects at several critical checkpoints in Ag presentation which contribute to the immunoevasive properties of BL tumors. PMID:25595783

  6. Discovery of NKT cells and development of NKT cell-targeted anti-tumor immunotherapy

    PubMed Central

    TANIGUCHI, Masaru; HARADA, Michishige; DASHTSOODOL, Nyambayar; KOJO, Satoshi

    2015-01-01

    Natural Killer T (NKT) cells are unique lymphocytes characterized by their expression of a single invariant antigen receptor encoded by Vα14Jα18 in mice and Vα24Jα18 in humans, which recognizes glycolipid antigens in association with the monomorphic CD1d molecule. NKT cells mediate adjuvant activity to activate both CD8T cells to kill MHC-positive tumor cells and NK cells to eliminate MHC-negative tumor at the same time in patients, resulting in the complete eradication of tumors without relapse. Therefore, the NKT cell-targeted therapy can be applied to any type of tumor and also to anyone individual, regardless of HLA type. Phase IIa clinical trials on advanced lung cancers and head and neck tumors have been completed and showed significantly prolonged median survival times with only the primary treatment. Another potential treatment option for the future is to use induced pluripotent stem cell (iPS)-derived NKT cells, which induced adjuvant effects on anti-tumor responses, inhibiting in vivo tumor growth in a mouse model. PMID:26194854

  7. PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma

    PubMed Central

    Beldi-Ferchiou, Asma; Lambert, Marion; Dogniaux, Stéphanie; Vély, Frédéric; Vivier, Eric; Olive, Daniel; Dupuy, Stéphanie; Levasseur, Frank; Zucman, David; Lebbé, Céleste; Sène, Damien; Hivroz, Claire; Caillat-Zucman, Sophie

    2016-01-01

    Programmed Death-1 (PD-1), an inhibitory receptor expressed by activated lymphocytes, is involved in regulating T- and B-cell responses. PD-1 and its ligands are exploited by a variety of cancers to facilitate tumor escape through PD-1-mediated functional exhaustion of effector T cells. Here, we report that PD-1 is upregulated on Natural Killer (NK) cells from patients with Kaposi sarcoma (KS). PD-1 was expressed in a sub-population of activated, mature CD56dimCD16pos NK cells with otherwise normal expression of NK surface receptors. PD-1pos NK cells from KS patients were hyporesponsive ex vivo following direct triggering of NKp30, NKp46 or CD16 activating receptors, or short stimulation with NK cell targets. PD-1pos NK cells failed to degranulate and release IFNγ, but exogenous IL-2 or IL-15 restored this defect. That PD-1 contributed to NK cell functional impairment and was not simply a marker of dysfunctional NK cells was confirmed in PD-1-transduced NKL cells. In vitro, PD-1 was induced at the surface of healthy control NK cells upon prolonged contact with cells expressing activating ligands, i.e. a condition mimicking persistent stimulation by tumor cells. Thus, PD-1 appears to plays a critical role in mediating NK cell exhaustion. The existence of this negative checkpoint fine-tuning NK activation highlights the possibility that manipulation of the PD-1 pathway may be a strategy for circumventing tumor escape not only from the T cell-, but also the NK-cell mediated immune surveillance. PMID:27662664

  8. Local HPV Recombinant Vaccinia Boost Following Priming with an HPV DNA Vaccine Enhances Local HPV-Specific CD8+ T Cell Mediated Tumor Control in the Genital Tract

    PubMed Central

    Sun, Yun-Yan; Peng, Shiwen; Han, Liping; Qiu, Jin; Song, Liwen; Tsai, Yachea; Yang, Benjamin; Roden, Richard B.S.; Trimble, Cornelia L.; Hung, Chien-Fu; Wu, T-C

    2015-01-01

    Purpose Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164). Experimental Design Here we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than IM delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16+ cervical cancer (TC-1 luc). Results We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8+ T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8+ T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8+ T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8+ T cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract. Conclusions Our results support future clinical translation using cervicovaginal TA-HPV vaccination. PMID:26420854

  9. Local HPV Recombinant Vaccinia Boost Following Priming with an HPV DNA Vaccine Enhances Local HPV-Specific CD8+ T-cell-Mediated Tumor Control in the Genital Tract.

    PubMed

    Sun, Yun-Yan; Peng, Shiwen; Han, Liping; Qiu, Jin; Song, Liwen; Tsai, Yachea; Yang, Benjamin; Roden, Richard B S; Trimble, Cornelia L; Hung, Chien-Fu; Wu, T-C

    2016-02-01

    Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high-grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T-cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164). Here, we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than intramuscular (IM) delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16(+) cervical cancer (TC-1 luc). We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8(+) T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8(+) T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8(+) T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8(+) T-cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract. Our results support future clinical translation using cervicovaginal TA-HPV vaccination. ©2015 American Association for Cancer Research.

  10. Effective adoptive transfer of haploidentical tumor-specific T cells in B16-melanoma bearing mice.

    PubMed

    Cui, Nai-peng; Xie, Shao-jian; Han, Jin-sheng; Ma, Zhen-feng; Chen, Bao-ping; Cai, Jian-hui

    2012-03-01

    Adoptive transfer of allogeneic tumor-specific T cells often results in severe graft-versus-host disease (GVHD). Here, we sought to maximize graft-versus-tumor and minimize GVHD by using haploidentical T cells in pre-irradiated B16-melanoma bearing mice. C57BL/6 mice bearing B16-melanoma tumors were irradiated with 0, 5, or 7 Gy total body irradiation (TBI), or 7 Gy TBI plus bone marrow transplantation. Tumor areas were measured every 3 days to assess the influence of irradiation treatment on tumor regression. B16-melanoma bearing mice were irradiated with 7 Gy TBI; sera and spleens were harvested at days 1, 3, 5, 7, 9, 11, and 13 after irradiation. White blood cell levels were measured and transforming growth factor β1 (TGF-b1) and interleukin 10 (IL-10) levels in serum were detected using enzyme-linked immunosorbent assay (ELISA) kits. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry were performed to test TGF-b1, IL-10 and Foxp3 mRNA levels and the proportion of CD4+CD25+Foxp3+ T-regulatory cells (Tregs) in spleens. B16-melanoma bearing C57BL/6 mice were irradiated with 7 Gy TBI followed by syngeneic (Syn1/Syn2) or haploidentical (Hap1/Hap2), dendritic cell-induced cytotoxic T lymphocytes (DC-CTLs) treatment, tumor areas and system GVHD were observed every 3 days. Mice were killed 21 days after the DC-CTLs adoptive transfer; histologic analyses of eyes, skin, liver, lungs, and intestine were then performed. Irradiation with 7 Gy TBI on the B16-melanoma-bearing mice did not influence tumor regression compared to the control group; however, it down-regulated the proportion of Tregs in spleens and the TGF-b1 and IL-10 levels in sera and spleens, suggesting inhibition of autoimmunity and intervention of tumor microenvironment. Adoptive transfer of haploidentical DC-CTLs significantly inhibited B16-melanoma growth. GVHD assessment and histology analysis showed no significant difference among the groups. Adoptive transfer of

  11. Antigen-specific and nonspecific mediators of T cell/B cell cooperation. III. Characterization of the nonspecific mediator(s) from different sources.

    PubMed

    Harwell, L; Kappler, J W; Marrack, P

    1976-05-01

    T cell-containing lymphoid populations produce a nonantigen-specific mediator(s) (NSM) which can replace T cell helper function in vitro in the response of B cells to sheep red blood cells (SRBC), but not to the hapten-protein conjugate, trinitrophenyl-keyhole limpet hemocyanin, (TNP-KLH). NSM produced under three conditions: 1) stimulation of KLH-primed cells with KLH; 2) allogeneic stimulation of normal spleen cells; and 3) stimulation of normal spleen cells with Con A (but not PHA) are indistinguishable on the basis of their biologic activity and m.w., estimated as 30 to 40,000 daltons by G-200 chromatography. Production of NSM is dependent on the presence of T cells. The action of NSM on B cells responding to SRBC in the presence of 2-mercaptoethanol is unaffected by severe macrophage depletion. Extensive absorption of NSM with SRBC failed to remove its activity, confirming its nonantigen-specific nature.

  12. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity.

    PubMed

    Wang, Dongrui; Aguilar, Brenda; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R; Forman, Stephen J; Brown, Christine E

    2018-05-17

    Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.

  13. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity

    PubMed Central

    Wang, Dongrui; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R.; Forman, Stephen J.; Brown, Christine E.

    2018-01-01

    Chimeric antigen receptor–modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy. PMID:29769444

  14. Panax Notoginseng Saponin Controls IL-17 Expression in Helper T Cells

    PubMed Central

    Wei, Jia-Ru; Wen, Xiaofeng; Bible, Paul W.; Li, Zhiyu; Nussenblatt, Robert B.

    2017-01-01

    Abstract Purpose: Panax Notoginseng, a traditional Chinese medicine, is known as an anti-inflammatory herb. However, the molecular mechanism by which it controls helper T cell mediated immune responses is largely unknown. Methods: Naive CD4+ T cells isolated from healthy donors, patients with Behcet's disease, and C57BL/6 mice were polarized into Th1, Th17, and Treg cells. Proliferation and cytokine expression were measured in these cells with the presence or absence of Panax Notoginseng saponins (PNS). Genomewide expression profiles of Th1, Th17, and Treg cells were assessed using Affymetrix microarray analysis. Results: We found that PNS control the proliferation and differentiation of Th17 cells by globally downregulating the expression of inflammatory cytokines and cell cycle genes. Conclusions: These findings demonstrated that PNS function as an anti-inflammatory agent through directly targeting Th17 cell mediated immune response. PMID:28051353

  15. CARs: Driving T-cell specificity to enhance anti-tumor immunity

    PubMed Central

    Kebriaei, Partow; Kelly, Susan S.; Manuri, Pallavi; Jena, Bipulendu; Jackson, Rineka; Shpall, Elizabeth; Champlin, Richard; Cooper, Laurence J. N.

    2013-01-01

    Adoptive transfer of antigen-specific T cells is a compelling tool to treat cancer. To overcome issues of immune tolerance which limits the endogenous adaptive immune response to tumor-associated antigens, robust systems for the genetic modification and characterization of T cells expressing chimeric antigen receptors (CARs) to redirect specificity have been produced. Refinements with regards to persistence and trafficking of the genetically modified T cells are underway to help improve the potency of genetically modified T cells. Clinical trials utilizing this technology demonstrate feasibility, and increasingly, antitumor activity, paving the way for multi-center trials to establish the efficacy of this novel T-cell therapy. PMID:22202074

  16. CD8+ T-cell Cytotoxic Capacity Associated with Human Immunodeficiency Virus-1 Control Can Be Mediated through Various Epitopes and Human Leukocyte Antigen Types

    PubMed Central

    Migueles, Stephen A.; Mendoza, Daniel; Zimmerman, Matthew G.; Martins, Kelly M.; Toulmin, Sushila A.; Kelly, Elizabeth P.; Peterson, Bennett A.; Johnson, Sarah A.; Galson, Eric; Poropatich, Kate O.; Patamawenu, Andy; Imamichi, Hiromi; Ober, Alexander; Rehm, Catherine A.; Jones, Sara; Hallahan, Claire W.; Follmann, Dean A.; Connors, Mark

    2014-01-01

    Understanding natural immunologic control over Human Immunodeficiency Virus (HIV)-1 replication, as occurs in rare long-term nonprogressors/elite controllers (LTNP/EC), should inform the design of efficacious HIV vaccines and immunotherapies. Durable control in LTNP/EC is likely mediated by highly functional virus-specific CD8+ T-cells. Protective Human Leukocyte Antigen (HLA) class I alleles, like B*27 and B*57, are present in most, but not all LTNP/EC, providing an opportunity to investigate features shared by their HIV-specific immune responses. To better understand the contribution of epitope targeting and conservation to immune control, we compared the CD8+ T-cell specificity and function of B*27/57neg LTNP/EC (n = 23), B*27/57pos LTNP/EC (n = 23) and B*27/57neg progressors (n = 13). Fine mapping revealed 11 previously unreported immunodominant responses. Although B*27/57neg LTNP/EC did not target more highly conserved epitopes, their CD8+ T-cell cytotoxic capacity was significantly higher than progressors. Similar to B*27/57pos LTNP/EC, this superior cytotoxicity was mediated by preferential expansion of immunodominant responses and lysis through the predicted HLA. These findings suggest that increased CD8+ T-cell cytotoxic capacity is a common mechanism of control in most LTNP/EC regardless of HLA type. They also suggest that potent cytotoxicity can be mediated through various epitopes and HLA molecules and could, in theory, be induced in most people. PMID:26137533

  17. Apoptosis triggered by pyropheophorbide-α methyl ester-mediated photodynamic therapy in a giant cell tumor in bone

    NASA Astrophysics Data System (ADS)

    Li, K.-T.; Zhang, J.; Duan, Q.-Q.; Bi, Y.; Bai, D.-Q.; Ou, Y.-S.

    2014-06-01

    A giant cell tumor in bone is the common primary bone tumor with aggressive features, occurring mainly in young adults. Photodynamic therapy is a new therapeutic technique for tumors. In this study, we investigated the effects of Pyropheophorbide-α methyl ester (MPPa)-mediated photodynamic therapy on the proliferation of giant cell tumor cells and its mechanism of action. Cell proliferation was evaluated using an MTT assay. Cellular apoptosis was detected by Hoechst nuclear staining, and flow cytometric assay. Mitochondrial membrane potential changes and cytochrome c, caspase-9, caspase-3, and Bcl-2 expression was assessed. Finally, we found that MPPa-mediated photodynamic therapy could effectively suppress the proliferation of human giant cell tumor cells and induce apoptosis. The mitochondrial pathway was involved in the MPPa-photodynamic therapy-induced apoptosis.

  18. Tumor-Infiltrating Merkel Cell Polyomavirus-Specific T Cells Are Diverse and Associated with Improved Patient Survival. | Office of Cancer Genomics

    Cancer.gov

    Tumor-infiltrating CD8+ T cells are associated with improved survival of patients with Merkel cell carcinoma (MCC), an aggressive skin cancer causally linked to Merkel cell polyomavirus (MCPyV). However, CD8+ T-cell infiltration is robust in only 4% to 18% of MCC tumors. We characterized the T-cell receptor (TCR) repertoire restricted to one prominent epitope of MCPyV (KLLEIAPNC, "KLL") and assessed whether TCR diversity, tumor infiltration, or T-cell avidity correlated with clinical outcome.

  19. Genetic modification of T cells improves the effectiveness of adoptive tumor immunotherapy.

    PubMed

    Jakóbisiak, Marek; Gołab, Jakub

    2010-10-01

    Appropriate combinations of immunotherapy and gene therapy promise to be more effective in the treatment of cancer patients than either of these therapeutic approaches alone. One such treatment is based on the application of patients' cytotoxic T cells, which can be activated, expanded, and genetically engineered to recognize particular tumor-associated antigens (TAAs). Because T cells recognizing TAAs might become unresponsive in the process of tumor development as a result of tumor evasion strategies, immunogenic viral antigens or alloantigens could be used for the expansion of cytotoxic T cells and then redirected through genetic engineering. This therapeutic approach has already demonstrated promising results in melanoma patients and could be used in the treatment of many other tumors. The graft-versus-leukemia, or more generally graft-versus-tumor, reaction based on the application of a donor lymphocyte infusion can also be ameliorated through the incorporation of suicide genes into donor lymphocytes. Such lymphocytes could be safely and more extensively used in tumor patients because they could be eliminated should a severe graft-versus-host reaction develop.

  20. Individual motile CD4+ T cells can participate in efficient multi-killing through conjugation to multiple tumor cells

    PubMed Central

    Liadi, Ivan; Singh, Harjeet; Romain, Gabrielle; Rey-Villamizar, Nicolas; Merouane, Amine; Adolacion, Jay R T.; Kebriaei, Partow; Huls, Helen; Qiu, Peng; Roysam, Badrinath; Cooper, Laurence J.N.; Varadarajan, Navin

    2015-01-01

    T cells genetically modified to express a CD19-specific chimeric antigen receptor (CAR) for the investigational treatment of B-cell malignancies comprise a heterogeneous population, and their ability to persist and participate in serial killing of tumor cells is a predictor of therapeutic success. We implemented Timelapse Imaging Microscopy In Nanowell Grids (TIMING) to provide direct evidence that CD4+CAR+ T cells (CAR4 cells) can engage in multi-killing via simultaneous conjugation to multiple tumor cells. Comparisons of the CAR4 cells and CD8+CAR+ T cells (CAR8 cells) demonstrate that while CAR4 cells can participate in killing and multi-killing, they do so at slower rates, likely due to the lower Granzyme B content. Significantly, in both sets of T cells, a minor sub-population of individual T cells identified by their high motility, demonstrated efficient killing of single tumor cells. By comparing both the multi-killer and single killer CAR+ T cells it appears that the propensity and kinetics of T-cell apoptosis was modulated by the number of functional conjugations. T cells underwent rapid apoptosis, and at higher frequencies, when conjugated to single tumor cells in isolation and this effect was more pronounced on CAR8 cells. Our results suggest that the ability of CAR+ T cells to participate in multi-killing should be evaluated in the context of their ability to resist activation induced cell death (AICD). We anticipate that TIMING may be utilized to rapidly determine the potency of T-cell populations and may facilitate the design and manufacture of next-generation CAR+ T cells with improved efficacy. PMID:25711538

  1. Chimeric Antigen Receptor-Engineered T Cells for Immunotherapy of Cancer

    PubMed Central

    Cartellieri, Marc; Bachmann, Michael; Feldmann, Anja; Bippes, Claudia; Stamova, Slava; Wehner, Rebekka; Temme, Achim; Schmitz, Marc

    2010-01-01

    CD4+ and CD8+ T lymphocytes are powerful components of adaptive immunity, which essentially contribute to the elimination of tumors. Due to their cytotoxic capacity, T cells emerged as attractive candidates for specific immunotherapy of cancer. A promising approach is the genetic modification of T cells with chimeric antigen receptors (CARs). First generation CARs consist of a binding moiety specifically recognizing a tumor cell surface antigen and a lymphocyte activating signaling chain. The CAR-mediated recognition induces cytokine production and tumor-directed cytotoxicity of T cells. Second and third generation CARs include signal sequences from various costimulatory molecules resulting in enhanced T-cell persistence and sustained antitumor reaction. Clinical trials revealed that the adoptive transfer of T cells engineered with first generation CARs represents a feasible concept for the induction of clinical responses in some tumor patients. However, further improvement is required, which may be achieved by second or third generation CAR-engrafted T cells. PMID:20467460

  2. Downregulation of BTLA on NKT Cells Promotes Tumor Immune Control in a Mouse Model of Mammary Carcinoma

    PubMed Central

    Sekar, Divya; Govene, Luisa; del Río, María-Luisa; Sirait-Fischer, Evelyn; Fink, Annika F.

    2018-01-01

    Natural Killer T cells (NKT cells) are emerging as critical regulators of pro- and anti-tumor immunity, both at baseline and in therapeutic settings. While type I NKT cells can promote anti-tumor immunity, their activity in the tumor microenvironment may be limited by negative regulators such as inhibitory immune checkpoints. We observed dominant expression of B- and T-lymphocyte attenuator (BTLA) on type I NKT cells in polyoma middle T oncogene-driven (PyMT) murine autochthonous mammary tumors. Other immune checkpoint receptors, such as programmed cell death 1 (PD-1) were equally distributed among T cell populations. Interference with BTLA using neutralizing antibodies limited tumor growth and pulmonary metastasis in the PyMT model in a therapeutic setting, correlating with an increase in type I NKT cells and expression of cytotoxic marker genes. While therapeutic application of an anti-PD-1 antibody increased the number of CD8+ cytotoxic T cells and elevated IL-12 expression, tumor control was not established. Expression of ZBTB16, the lineage-determining transcription factor of type I NKT cells, was correlated with a favorable patient prognosis in the METABRIC dataset, and BTLA levels were instrumental to further distinguish prognosis in patents with high ZBTB16 expression. Taken together, these data support a role of BTLA on type I NKT cells in limiting anti-tumor immunity. PMID:29518903

  3. Downregulation of BTLA on NKT Cells Promotes Tumor Immune Control in a Mouse Model of Mammary Carcinoma.

    PubMed

    Sekar, Divya; Govene, Luisa; Del Río, María-Luisa; Sirait-Fischer, Evelyn; Fink, Annika F; Brüne, Bernhard; Rodriguez-Barbosa, José I; Weigert, Andreas

    2018-03-07

    Natural Killer T cells (NKT cells) are emerging as critical regulators of pro- and anti-tumor immunity, both at baseline and in therapeutic settings. While type I NKT cells can promote anti-tumor immunity, their activity in the tumor microenvironment may be limited by negative regulators such as inhibitory immune checkpoints. We observed dominant expression of B- and T-lymphocyte attenuator (BTLA) on type I NKT cells in polyoma middle T oncogene-driven (PyMT) murine autochthonous mammary tumors. Other immune checkpoint receptors, such as programmed cell death 1 (PD-1) were equally distributed among T cell populations. Interference with BTLA using neutralizing antibodies limited tumor growth and pulmonary metastasis in the PyMT model in a therapeutic setting, correlating with an increase in type I NKT cells and expression of cytotoxic marker genes. While therapeutic application of an anti-PD-1 antibody increased the number of CD8+ cytotoxic T cells and elevated IL-12 expression, tumor control was not established. Expression of ZBTB16, the lineage-determining transcription factor of type I NKT cells, was correlated with a favorable patient prognosis in the METABRIC dataset, and BTLA levels were instrumental to further distinguish prognosis in patents with high ZBTB16 expression. Taken together, these data support a role of BTLA on type I NKT cells in limiting anti-tumor immunity.

  4. miR-2909-mediated regulation of KLF4: a novel molecular mechanism for differentiating between B-cell and T-cell pediatric acute lymphoblastic leukemias

    PubMed Central

    2014-01-01

    Background microRNAs (miRNAs) play both oncogenic and oncostatic roles in leukemia. However, the molecular details underlying miRNA-mediated regulation of their target genes in pediatric B- and T-cell acute lymphoblastic leukemias (ALLs) remain unclear. The present study investigated the relationship between miR-2909 and Kruppel-like factor 4 (KLF4), and its functional relevance to cell cycle progression and immortalization in patients with pediatric ALL. Methods Elevated levels of miR-2909 targeted the tumor suppressor gene KLF4 in pediatric B-cell, but not pediatric T-cell ALL, as detected by pMIR-GFP reporter assay. Expression levels of genes including apoptosis-antagonizing transcription factor (AATF), MYC, B-cell lymphoma (BCL3), P21 CIP , CCND1 and SP1 in B- and T-cells from patients with pediatric ALL were compared with control levels using real-time quantitative reverse transcription polymerase chain reaction, western blotting, and reporter assays. Results We identified two novel mutations in KLF4 in pediatric T-ALL. A mutation in the 3′ untranslated region of the KLF4 gene resulted in loss of miR-2909-mediated regulation, while mutation in its first or third zinc-finger motif (Zf1/Zf3) rendered KLF4 transcriptionally inactive. This mutation was a frameshift mutation resulting in alteration of the Zf3 motif sequence in the mutant KLF4 protein in all pediatric T-ALL samples. Homology models, docking studies and promoter activity of its target gene P21 CIP confirmed the lack of function of the mutant KLF4 protein in pediatric T-ALL. Moreover, the inability of miR-2909 to regulate KLF4 and its downstream genes controlling cell cycle and apoptosis in T-cell but not in B-ALL was verified by antagomiR-2909 transfection. Comprehensive sequence analysis of KLF4 identified the predominance of isoform 1 (~55 kDa) in most patients with pediatric B-ALL, while those with pediatric T-ALL expressed isoform 2 (~51 kDa). Conclusions This study identified a novel mi

  5. Chimeric Antigen Receptor T Cell Therapy in Hematology.

    PubMed

    Ataca, Pınar; Arslan, Önder

    2015-12-01

    It is well demonstrated that the immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation. Adoptive T cell transfer has been improved to be more specific and potent and to cause less off-target toxicity. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR) and chimeric antigen receptor (CAR) modified T cells. On 1 July 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the benefits of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical and clinical studies, and the effectiveness and drawbacks of this strategy.

  6. Time to Akt: Superior tumor-reactive T cells for adoptive immunotherapy.

    PubMed

    van der Waart, Anniek B; Hobo, Willemijn; Dolstra, Harry

    2015-05-01

    T cells are crucial players in the protection against cancer, and can be used in adoptive cell therapy to prevent or treat relapse. However, their state of differentiation determines their effectiveness, with early memory cells being the most favorable. Here, we discuss restraining of differentiation to engineer the ultimate tumor-reactive T cell.

  7. IDO and galectin-3 hamper the ex vivo generation of clinical grade tumor-specific T cells for adoptive cell therapy in metastatic melanoma.

    PubMed

    Melief, Sara M; Visser, Marten; van der Burg, Sjoerd H; Verdegaal, Els M E

    2017-07-01

    Adoptive T cell transfer (ACT) with ex vivo-expanded tumor-reactive T cells proved to be successful for the treatment of metastatic melanoma patients. Mixed lymphocyte tumor cell cultures (MLTC) can be used to generate tumor-specific T cells for ACT; however, in a number of cases tumor-reactive T cell, expansion is far from optimal. We hypothesized that this is due to tumor intrinsic and extrinsic factors and aimed to identify and manipulate these factors so to optimize our clinical, GMP-compliant MLTC protocol. We found that the tumor cell produced IDO and/or galectin-3, and the accumulation of CD4 + CD25 hi FoxP3 + T cells suppressed the expansion of tumor-specific T cells in the MLTC. Strategies to eliminate CD4 + CD25 hi FoxP3 + T cells during culture required the depletion of the whole CD4 + T cell population and were found to be undesirable. Blocking of IDO and galectin-3 was feasible and resulted in improved efficiency of the MLTC. Implementation of these findings in clinical protocols for ex vivo expansion of tumor-reactive T cells holds promise for an increased therapeutic potential of adoptive cell transfer treatments with tumor-specific T cells.

  8. F-Box Protein FBXO22 Mediates Polyubiquitination and Degradation of CD147 to Reverse Cisplatin Resistance of Tumor Cells

    PubMed Central

    Wu, Bo; Liu, Zhen-Yu; Cui, Jian; Yang, Xiang-Min; Jing, Lin; Zhou, Yang; Chen, Zhi-Nan; Jiang, Jian-Li

    2017-01-01

    Drug resistance remains a major clinical obstacle to successful treatment of cancer. As posttranslational modification is becoming widely recognized to affect the function of oncoproteins, targeting specific posttranslational protein modification provides an attractive strategy for anticancer drug development. CD147 is a transmembrane glycoprotein contributing to chemo-resistance of cancer cells in a variety of human malignancies. Ubiquitination is an important posttranslational modification mediating protein degradation. Degradation of oncoproteins, CD147 included, emerges as an attractive alternative for tumor inhibition. However, the ubiquitination of CD147 remains elusive. Here in this study, we found that deletion of the CD147 intracellular domain (CD147-ICD) prolonged the half-life of CD147 in HEK293T cells, and we identified that CD147-ICD interacts with FBXO22 using mass spectrometry and Western blot. Then, we demonstrated that FBXO22 mediates the polyubiquitination and degradation of CD147 by recognizing CD147-ICD. While knocking down of FBXO22 prolonged the half-life of CD147 in HEK293T cells, we found that FBXO22 regulates CD147 protein turnover in SMMC-7721, Huh-7 and A549 cells. Moreover, we found that the low level of FBXO22 contributes to the accumulation of CD147 and thereafter the cisplatin resistance of A549/DDP cells. To conclude, our study demonstrated that FBXO22 mediated the polyubiquitination and degradation of CD147 by interacting with CD147-ICD, and CD147 polyubiquitination by FBXO22 reversed cisplatin resistance of tumor cells. PMID:28117675

  9. F-Box Protein FBXO22 Mediates Polyubiquitination and Degradation of CD147 to Reverse Cisplatin Resistance of Tumor Cells.

    PubMed

    Wu, Bo; Liu, Zhen-Yu; Cui, Jian; Yang, Xiang-Min; Jing, Lin; Zhou, Yang; Chen, Zhi-Nan; Jiang, Jian-Li

    2017-01-20

    Drug resistance remains a major clinical obstacle to successful treatment of cancer. As posttranslational modification is becoming widely recognized to affect the function of oncoproteins, targeting specific posttranslational protein modification provides an attractive strategy for anticancer drug development. CD147 is a transmembrane glycoprotein contributing to chemo-resistance of cancer cells in a variety of human malignancies. Ubiquitination is an important posttranslational modification mediating protein degradation. Degradation of oncoproteins, CD147 included, emerges as an attractive alternative for tumor inhibition. However, the ubiquitination of CD147 remains elusive. Here in this study, we found that deletion of the CD147 intracellular domain (CD147-ICD) prolonged the half-life of CD147 in HEK293T cells, and we identified that CD147-ICD interacts with FBXO22 using mass spectrometry and Western blot. Then, we demonstrated that FBXO22 mediates the polyubiquitination and degradation of CD147 by recognizing CD147-ICD. While knocking down of FBXO22 prolonged the half-life of CD147 in HEK293T cells, we found that FBXO22 regulates CD147 protein turnover in SMMC-7721, Huh-7 and A549 cells. Moreover, we found that the low level of FBXO22 contributes to the accumulation of CD147 and thereafter the cisplatin resistance of A549/DDP cells. To conclude, our study demonstrated that FBXO22 mediated the polyubiquitination and degradation of CD147 by interacting with CD147-ICD, and CD147 polyubiquitination by FBXO22 reversed cisplatin resistance of tumor cells.

  10. Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression

    PubMed Central

    DuPage, Michel; Cheung, Ann; Mazumdar, Claire; Winslow, Monte M.; Bronson, Roderick; Schmidt, Leah M.; Crowley, Denise; Chen, Jianzhu; Jacks, Tyler

    2010-01-01

    SUMMARY Neoantigens derived from somatic mutations in tumors may provide a critical link between the adaptive immune system and cancer. Here we describe a system to introduce exogenous antigens into genetically engineered mouse lung cancers to mimic tumor neoantigens. We show that endogenous T cells respond to and infiltrate tumors, significantly delaying malignant progression. Despite continued antigen expression, T cell infiltration does not persist and tumors ultimately escape immune attack. Transplantation of cell lines derived from these lung tumors or prophylactic vaccination against the autochthonous tumors, however, results in rapid tumor eradication or selection of tumors that lose antigen expression. These results provide insight into the dynamic nature of the immune response to naturally arising tumors. PMID:21251614

  11. HSP90 inhibitor 17-DMAG enhances EphA2+ tumor cell recognition by specific CD8+ T cells

    PubMed Central

    Kawabe, Mayumi; Mandic, Maja; Taylor, Jennifer L.; Vasquez, Cecilia A.; Wesa, Amy K.; Neckers, Leonard M.; Storkus, Walter J.

    2009-01-01

    EphA2, a member of the receptor tyrosine kinase (RTK) family, is commonly expressed by a broad range of cancer types, where its level of (over)expression correlates with poor clinical outcome. Since tumor cell expressed EphA2 is a non-mutated “self” protein, specific CD8+ T cells are subject to self-tolerance mechanisms and typically exhibit only moderate-to-low functional avidity, rendering them marginally competent to recognize EphA2+ tumor cells in vitro or in vivo. We have recently reported that the ability of specific CD8+ T cells to recognize EphA2+ tumor cells can be augmented after the cancer cells are pretreated with EphA2 agonists that promote proteasomal degradation and upregulated expression of EphA2/class I complexes on the tumor cell membrane (Wesa et al., J. Immunol. 2008;181:7721-7). In the current study we show that treatment of EphA2+ tumor cells with the irreversible HSP90 inhibitor, 17-DMAG, similarly enhances their recognition by EphA2-specific CD8+ T cell lines and clones in vitro via a mechanism that is dependent on proteasome and TAP function, as well as, the retrotranslocation of EphA2 into the tumor cytoplasm. When 17-DMAG and agonist anti-EphA2 mAb are co-applied, T cell recognition of tumor cells is further increased over that observed for either agent alone. These studies suggest that EphA2 represents a novel HSP90 client protein and that the treatment of cancer patients with 17-DMAG-based “pulse” therapy may improve the anti-tumor efficacy of CD8+ T effector cells reactive against EphA2-derived epitopes. PMID:19690146

  12. FAS system deregulation in T-cell lymphoblastic lymphoma

    PubMed Central

    Villa-Morales, M; Cobos, M A; González-Gugel, E; Álvarez-Iglesias, V; Martínez, B; Piris, M A; Carracedo, A; Benítez, J; Fernández-Piqueras, J

    2014-01-01

    The acquisition of resistance towards FAS-mediated apoptosis may be required for tumor formation. Tumors from various histological origins exhibit FAS mutations, the most frequent being hematological malignancies. However, data regarding FAS mutations or FAS signaling alterations are still lacking in precursor T-cell lymphoblastic lymphomas (T-LBLs). The available data on acute lymphoblastic leukemia, of precursor origin as well, indicate a low frequency of FAS mutations but often report a serious reduction in FAS-mediated apoptosis as well as chemoresistance, thus suggesting the occurrence of mechanisms able to deregulate the FAS signaling pathway, different from FAS mutation. Our aim at this study was to determine whether FAS-mediated apoptotic signaling is compromised in human T-LBL samples and the mechanisms involved. This study on 26 T-LBL samples confirms that the FAS system is impaired to a wide extent in these tumors, with 57.7% of the cases presenting any alteration of the pathway. A variety of mechanisms seems to be involved in such alteration, in order of frequency the downregulation of FAS, the deregulation of other members of the pathway and the occurrence of mutations at FAS. Considering these results together, it seems plausible to think of a cumulative effect of several alterations in each T-LBL, which in turn may result in FAS/FASLG system deregulation. Since defective FAS signaling may render the T-LBL tumor cells resistant to apoptotic cell death, the correct prognosis, diagnosis and thus the success of anticancer therapy may require such an in-depth knowledge of the complete scenario of FAS-signaling alterations. PMID:24603338

  13. Nanoparticle Delivery of Artesunate Enhances the Anti-tumor Efficiency by Activating Mitochondria-Mediated Cell Apoptosis

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Yu, Xiwei; Su, Chang; Shi, Yijie; Zhao, Liang

    2017-06-01

    Artemisinin and its derivatives were considered to exert a broad spectrum of anti-cancer activities, and they induced significant anti-cancer effects in tumor cells. Artemisinin and its derivatives could be absorbed quickly, and they were widely distributed, selectively killing tumor cells. Since low concentrations of artesunate primarily depended on oncosis to induce cell death in tumor cells, its anti-tumor effects were undesirable and limited. To obtain better anti-tumor effects, in this study, we took advantage of a new nanotechnology to design novel artesunate-loaded bovine serum albumin nanoparticles to achieve the mitochondrial accumulation of artesunate and induce mitochondrial-mediated apoptosis. The results showed that when compared with free artesunate's reliance on oncotic death, artesunate-loaded bovine serum albumin nanoparticles showed higher cytotoxicity and their significant apoptotic effects were induced through the distribution of artesunate in the mitochondria. This finding indicated that artesunate-loaded bovine serum albumin nanoparticles damaged the mitochondrial integrity and activated mitochondrial-mediated cell apoptosis by upregulating apoptosis-related proteins and facilitating the rapid release of cytochrome C.

  14. Tyrosine isomers mediate the classical phenomenon of concomitant tumor resistance.

    PubMed

    Ruggiero, Raúl A; Bruzzo, Juan; Chiarella, Paula; di Gianni, Pedro; Isturiz, Martín A; Linskens, Susana; Speziale, Norma; Meiss, Roberto P; Bustuoabad, Oscar D; Pasqualini, Christiane D

    2011-11-15

    Concomitant tumor resistance (CR) is a phenomenon originally described in 1906 in which a tumor-bearing host is resistant to the growth of secondary tumor implants and metastasis. Although recent studies have indicated that T-cell-dependent processes mediate CR in hosts bearing immunogenic small tumors, manifestations of CR induced by immunogenic and nonimmunogenic large tumors have been associated with an elusive serum factor. In this study, we identify this serum factor as tyrosine in its meta and ortho isoforms. In three different murine models of cancer that generate CR, both meta-tyrosine and ortho-tyrosine inhibited tumor growth. In addition, we showed that both isoforms of tyrosine blocked metastasis in a fourth model that does not generate CR but is sensitive to CR induced by other tumors. Mechanistic studies showed that the antitumor effects of the tyrosine isoforms were mediated, in part, by early inhibition of mitogen-activated protein/extracellular signal-regulated kinase pathway and inactivation of STAT3, potentially driving tumor cells into a state of dormancy. By revealing a molecular basis for the classical phenomenon of CR, our findings may stimulate new generalized approaches to limit the development of metastases that arise after resection of primary tumors, an issue of pivotal importance to oncologists and their patients. ©2011 AACR

  15. Mutated PPP1R3B is recognized by T cells used to treat a melanoma patient who experienced a durable complete tumor regression

    PubMed Central

    Lu, Yong-Chen; Yao, Xin; Li, Yong F.; El-Gamil, Mona; Dudley, Mark E.; Yang, James C.; Almeida, Jorge R.; Douek, Daniel C.; Samuels, Yardena; Rosenberg, Steven A.; Robbins, Paul F.

    2013-01-01

    Adoptive cell therapy with tumor infiltrating lymphocytes (TILs) represents an effective treatment for patients with metastatic melanoma. However, most of the antigen targets recognized by effective melanoma reactive TILs remain elusive. In this study, patient 2369 experienced a complete response, including regressions of bulky liver tumor masses ongoing beyond seven years following adoptive TILs transfer. The screening of a cDNA library generated from the autologous melanoma cell line resulted in the isolation of a mutated PPP1R3B (protein phosphatase 1, regulatory (inhibitor) subunit 3B) gene product. The mutated PPP1R3B peptide represents the immunodominant epitope recognized by tumor reactive T cells in TIL 2369. Five years following adoptive transfer, peripheral blood T lymphocytes obtained from patient 2369 recognized the mutated PPP1R3B epitope. These results demonstrate that adoptive T cell therapy targeting a tumor-specific antigen can mediate long-term survival for a patient with metastatic melanoma. This study also provides an impetus to develop personalized immunotherapy targeting tumor-specific, mutated antigens. PMID:23690473

  16. Adoptive therapy with CAR redirected T cells: the challenges in targeting solid tumors.

    PubMed

    Abken, Hinrich

    2015-01-01

    Recent spectacular success in the adoptive cell therapy of leukemia and lymphoma with chimeric antigen receptor (CAR)-modified T cells raised the expectations that this therapy may be efficacious in a wide range of cancer entities. The expectations are based on the predefined specificity of CAR T cells by an antibody-derived binding domain that acts independently of the natural T-cell receptor, recognizes targets independently of presentation by the major histocompatibility complex and allows targeting toward virtually any cell surface antigen. We here discuss that targeting CAR T cells toward solid tumors faces certain circumstances critical for the therapeutic success. Targeting tumor stroma and taking advantage of TRUCK cells, in other words, CAR T cells with inducible release of a transgenic payload, are some strategies envisaged to overcome current limitations in the near future.

  17. Immunotherapy expands and maintains the function of high affinity tumor infiltrating CD8 T cells in situ

    PubMed Central

    Moran, Amy E.; Polesso, Fanny; Weinberg, Andrew D.

    2016-01-01

    Cancer cells harbor high affinity tumor-associated antigens capable of eliciting potent anti-tumor T cell responses yet detecting these polyclonal T cells is challenging. Therefore, surrogate markers of T cell activation such as CD69, CD44, and PD-1 have been used. We report here that in mice, expression of activation markers including PD-1 is insufficient in the tumor microenvironment to identify tumor-antigen specific T cells. Using the Nur77GFP T cell affinity reporter mouse, we highlight that PD-1 expression can be induced independent of TCR ligation within the tumor. Given this, we characterized the utility of the Nur77GFP model system in elucidating mechanisms of action of immunotherapies independent of PD-1 expression. Co-expression of Nur77GFP and OX40 identifies a polyclonal population of high affinity tumor-associated antigen-specific CD8+ T cells, which produce more IFNγ in situ than OX40 negative and doubles in quantity with anti-OX40 and anti-CTLA4 mAb therapy but not with anti-PD-1 or PD-L1. Moreover, expansion of these high affinity CD8 T cells prolongs survival of tumor bearing animals. Upon chronic stimulation in tumors and after adoptive cell therapy, CD8 TCR signaling and Nur77GFP induction is impaired and tumors progress. However, this can be reversed and overall survival significantly enhanced after adoptive cell therapy with agonist OX40 immunotherapy. Therefore, we propose that OX40 agonist immunotherapy can maintain functional TCR signaling of chronically stimulated tumor resident CD8 T cells thereby increasing the frequency of cytolytic, high affinity, tumor-associated antigen-specific cells. PMID:27503208

  18. Gastrodin stimulates anticancer immune response and represses transplanted H22 hepatic ascitic tumor cell growth: Involvement of NF-κB signaling activation in CD4 + T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Guangwen; Yang, Tianming; Wang, Chaoyuan

    2013-06-15

    Gastrodia elata Blume (G. elata) is a famous restorative food in East Asia. It can be used as an auxiliary reagent in hepatocellular carcinoma (HCC) treatment. Previous studies unveiled that G. elata exhibited immunomodulatory activities. To explore the active ingredients contributing to its immunomodulatory activities, gastrodin, vanillin, and parishin B were purified from G. elata and their anti-HCC effects were assessed in vivo. Among these compounds, only gastrodin was capable of repressing transplanted H22 ascitic hepatic tumor cell growth in vivo with low toxicity. Further investigations were designed to explore the effects of gastrodin on the immune system of tumor-bearingmore » mice and potential molecular mechanisms underlying these effects. Our data showed that gastrodin ameliorated tumor cell transplantation-induced activation of endogenous pro-apoptotic pathway in CD4 + T cells and abnormalities in serum cytokine profiles in host animals. These events enhanced cytotoxic activities of natural killer and CD8 + T cells against H22 hepatic cancer cells. Gastrodin administration specifically upregulated mRNA levels of several nuclear factor κB (NF-κB) responsive genes in CD4 + T cells but not in CD8 + T cells. Chromatin immunoprecipitation assay showed that gastrodin increased the association of NF-κB p65 subunit to the promoter regions of IL-2 and Bcl-2 encoding genes in CD4 + T cells. Our investigations demonstrated that gastrodin is the main active ingredient contributing to the anticancer immunomodulatory properties of G. elata. Promoting NF-κB-mediated gene transcription in CD4 + T cells is implicated in its immunomodulatory activity. - Highlights: • Gastrodin stimulates anticancer immune response. • Gastrodin represses tumor transplantation-induced CD4 + T cell apoptosis. • Gastrodin activates NF-κB activity in CD4 + T cells.« less

  19. Depressed immune surveillance against cancer: role of deficient T cell: extracellular matrix interactions.

    PubMed

    Górski, A; Castronovo, V; Stepień-Sopniewska, B; Grieb, P; Ryba, M; Mrowiec, T; Korczak-Kowalska, G; Wierzbicki, P; Matysiak, W; Dybowska, B

    1994-07-01

    Although T cells infiltrate malignant tumors, the local immune response is usually inefficient and tumors escape destruction. While extracellular matrix proteins strongly costimulate T cell responses in normal individuals, our studies indicate that peripheral blood T cells from cancer patients and tumor infiltrating cells respond poorly or are resistant to stimulative signals mediated by collagen I and IV and fibronectin. Moreover, the adhesive properties of cancer T cells are markedly depressed. Those functional deficiencies are paralleled by variable deficits in integrin and non-integrin T cell receptors for extracellular matrix. Immunotherapy with BCG causes a dramatic but transient increase in T cell: ECM interactions.

  20. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells.

    PubMed

    Noessner, Elfriede; Gastpar, Robert; Milani, Valeria; Brandl, Anna; Hutzler, Peter J S; Kuppner, Maria C; Roos, Miriam; Kremmer, Elisabeth; Asea, Alexzander; Calderwood, Stuart K; Issels, Rolf D

    2002-11-15

    Our study demonstrates that tumor-derived heat shock protein (HSP)70 chaperones a tyrosinase peptide and mediates its transfer to human immature dendritic cells (DCs) by receptor-dependent uptake. Human tumor-derived HSP70 peptide complexes (HSP70-PC) thus have the immunogenic potential to instruct DCs to cross-present endogenously expressed, nonmutated, and tumor antigenic peptides that are shared among tumors of the melanocytic lineage for T cell recognition. T cell stimulation by HSP70-instructed DCs is dependent on the Ag bound to HSP70 in that only DCs incubated with HSP70-PC purified from tyrosinase-positive (HSP70-PC/tyr(+)) but not from tyrosinase-negative (HSP70-PC/tyr(-)) melanoma cells resulted in the specific activation of the HLA-A*0201-restricted tyrosinase peptide-specific cytotoxic T cell clone. HSP70-PC-mediated T cell stimulation is very efficient, delivering the tyrosinase peptide at concentrations as low as 30 ng/ml of HSP70-PC for T cell recognition. Receptor-dependent binding of HSP70-PC and active cell metabolism are prerequisites for MHC class I-restricted cross-presentation and T cell stimulation. T cell stimulation does not require external DC maturation signals (e.g., exogenously added TNF-alpha), suggesting that signaling DC maturation is an intrinsic property of the HSP70-PC itself and related to receptor-mediated binding. The cross-presentation of a shared human tumor Ag together with the exquisite efficacy are important new aspects for HSP70-based immunotherapy in clinical anti-cancer vaccination strategies, and suggest a potential extension of HSP70-based vaccination protocols from a patient-individual treatment modality to its use in an allogeneic setting.

  1. An early history of T cell-mediated cytotoxicity.

    PubMed

    Golstein, Pierre; Griffiths, Gillian M

    2018-04-16

    After 60 years of intense fundamental research into T cell-mediated cytotoxicity, we have gained a detailed knowledge of the cells involved, specific recognition mechanisms and post-recognition perforin-granzyme-based and FAS-based molecular mechanisms. What could not be anticipated at the outset was how discovery of the mechanisms regulating the activation and function of cytotoxic T cells would lead to new developments in cancer immunotherapy. Given the profound recent interest in therapeutic manipulation of cytotoxic T cell responses, it is an opportune time to look back on the early history of the field. This Timeline describes how the early findings occurred and eventually led to current therapeutic applications.

  2. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity.

    PubMed

    Feyerabend, Thorsten B; Weiser, Anne; Tietz, Annette; Stassen, Michael; Harris, Nicola; Kopf, Manfred; Radermacher, Peter; Möller, Peter; Benoist, Christophe; Mathis, Diane; Fehling, Hans Jörg; Rodewald, Hans-Reimer

    2011-11-23

    Immunological functions of mast cells remain poorly understood. Studies in Kit mutant mice suggest key roles for mast cells in certain antibody- and T cell-mediated autoimmune diseases. However, Kit mutations affect multiple cell types of both immune and nonimmune origin. Here, we show that targeted insertion of Cre-recombinase into the mast cell carboxypeptidase A3 locus deleted mast cells in connective and mucosal tissues by a genotoxic Trp53-dependent mechanism. Cre-mediated mast cell eradication (Cre-Master) mice had, with the exception of a lack of mast cells and reduced basophils, a normal immune system. Cre-Master mice were refractory to IgE-mediated anaphylaxis, and this defect was rescued by mast cell reconstitution. This mast cell-deficient strain was fully susceptible to antibody-induced autoimmune arthritis and to experimental autoimmune encephalomyelitis. Differences comparing Kit mutant mast cell deficiency models to selectively mast cell-deficient mice call for a systematic re-evaluation of immunological functions of mast cells beyond allergy. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Optimization of Dendritic Cell-Mediated Cytotoxic T-Cell Activation by Tracking of Dendritic Cell Migration Using Reporter Gene Imaging.

    PubMed

    Lee, Hongje; Lee, Ho Won; La Lee, You; Jeon, Yong Hyun; Jeong, Shin Young; Lee, Sang-Woo; Lee, Jaetae; Ahn, Byeong-Cheol

    2018-06-01

    Thy1.1 gene in the second and the third injection groups. The number of tumor-specific CD8 + T-cells in the spleen significantly increased, as the number of DC injections increases. Successful optimization of DC-mediated cytotoxic T-cell activation in living mice using reporter gene imaging and flow cytometric analysis was achieved. The optimization of DC-mediated cytotoxic T-cell activation could be applied for the future DC-based immunotherapy.

  4. T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors.

    PubMed

    Manzo, Teresa; Sturmheit, Tabea; Basso, Veronica; Petrozziello, Elisabetta; Hess Michelini, Rodrigo; Riba, Michela; Freschi, Massimo; Elia, Angela R; Grioni, Matteo; Curnis, Flavio; Protti, Maria Pia; Schumacher, Ton N; Debets, Reno; Swartz, Melody A; Corti, Angelo; Bellone, Matteo; Mondino, Anna

    2017-02-01

    Donor-derived allogeneic T cells evoke potent graft versus tumor (GVT) effects likely due to the simultaneous recognition of tumor-specific and host-restricted minor histocompatibility (H) antigens. Here we investigated whether such effects could be reproduced in autologous settings by TCR gene-engineered lymphocytes. We report that T cells redirected either to a broadly expressed Y-encoded minor H antigen or to a tumor-associated antigen, although poorly effective if individually transferred, when simultaneously administered enabled acute autochthonous tumor debulking and resulted in durable clinical remission. Y-redirected T cells proved hyporesponsive in peripheral lymphoid organs, whereas they retained effector function at the tumor site, where in synergy with tumor-redirected lymphocytes, they instructed TNFα expression, endothelial cell activation, and intratumoral T-cell infiltration. While neutralizing TNFα hindered GVT effects by the combined T-cell infusion, a single injection of picogram amounts of NGR-TNF, a tumor vessel-targeted TNFα derivative currently in phase III clinical trials, substituted for Y-redirected cells and enabled tumor debulking by tumor-redirected lymphocytes. Together, our results provide new mechanistic insights into allogeneic GVT, validate the importance of targeting the tumor and its associated stroma, and prove the potency of a novel combined approach suitable for immediate clinical implementation. Cancer Res; 77(3); 658-71. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. 5-epi-Sinuleptolide induces cell cycle arrest and apoptosis through tumor necrosis factor/mitochondria-mediated caspase signaling pathway in human skin cancer cells.

    PubMed

    Liang, Chia-Hua; Wang, Guey-Horng; Chou, Tzung-Han; Wang, Shih-Hao; Lin, Rong-Jyh; Chan, Leong-Perng; So, Edmund Cheung; Sheu, Jyh-Horng

    2012-07-01

    Skin cancers are reportedly increasing worldwide. Developing novel anti-skin cancer drugs with minimal side effects is necessary to address this public health issue. Sinuleptolide has been demonstrated to possess anti-cancer cell activities; however, the mechanisms underlying the anti-skin cancer effects of 5-epi-sinuleptolide and sinuleptolide remain poorly understood. Apoptosis cell, cell-cycle-related regulatory factors, and mitochondria- and death receptor-dependent caspase pathway in 5-epi-sinuleptolide-induced cell apoptosis were examined using SCC25 cells. 5-epi-Sinuleptolide inhibited human skin cancer cell growth more than did sinuleptolide. Treatment of SCC25 cells with 5-epi-sinuleptolide increased apoptotic body formation, and induced cell-cycle arrest during the G2/M phase. Notably, 5-epi-sinuleptolide up-regulated p53 and p21 expression and inhibited G2/M phase regulators of cyclin B1 and cyclin-dependent kinease 1 (CDK1) in SCC25 cells. Additionally, 5-epi-sinuleptolide induced apoptosis by mitochondria-mediated cytochrome c and Bax up-expression, down-regulated Bcl-2, and activated caspase-9 and -3. 5-epi-Sinuleptolide also up-regulated tBid, which is associated with up-regulation of tumor necrosis factor-α (TNF-α) and Fas ligand (FasL) and their cognate receptors (i.e., TNF-RI, TNF-R2 and Fas), downstream adaptor TNF-R1-associated death domain (TRADD) and Fas-associated death domain (FADD), and activated caspase-8 in SCC25 cells. The analytical results indicate that the death receptor- and mitochondria-mediated caspase pathway is critical in 5-epi-sinuleptolide-induced apoptosis of skin cancer cells. This is the first report suggesting that the apoptosis mediates the anti-tumor effect of 5-epi-sinuleptolide. The results of this study might provide useful suggestions for designing of anti-tumor drugs for skin cancer patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Adenovirus-mediated truncated Bid overexpression induced by the Cre/LoxP system promotes the cell apoptosis of CD133+ ovarian cancer stem cells.

    PubMed

    Long, Qifang; Yang, Ru; Lu, Weixian; Zhu, Weipei; Zhou, Jundong; Zheng, Cui; Zhou, Dongmei; Yu, Ling; Wu, Jinchang

    2017-01-01

    Cancer stem cells are a small subset of cancer cells that contribute to cancer progression, metastasis, chemoresistance and recurrence. CD133-positive (CD133+) ovarian cancer cells have been identified as ovarian cancer stem cells. Adenovirus-mediated gene therapy is an innovative therapeutic method for cancer treatment. In the present study, we aimed to develop a new gene therapy to specifically eliminate CD133+ ovarian cancer stem cells by targeting CD133. We used the Cre/LoxP system to augment the selective expression of the truncated Bid (tBid) gene as suicide gene therapy in CD133+ ovarian cancer stem cells. The adenovirus (Ad)-CD133-Cre expressing Cre recombinase under the control of the CD133 promoter and Ad-CMV-LoxP-Neo-LoxP-tBid expressing tBid under the control of the CMV promoter were successfully constructed using the Cre/LoxP switching system. The co-infection of Ad-CMV-LoxP-Neo-LoxP-tBid and Ad-CD133-Cre selectively induced tBid overexpression, which inhibited cell growth and triggered the cell apoptosis of CD133+ ovarian cancer stem cells. The Cre/LoxP system-mediated tBid overexpression activated the pro-apoptotic signaling pathway and augmented the cytotoxic effect of cisplatin in CD133+ ovarian cancer stem cells. Furthermore, in xenograft experiments, co-infection with the two recombinant adenoviruses markedly suppressed tumor growth in vivo and promoted cell apoptosis in tumor tissues. Taken together, the present study provides evidence that the adenovirus-mediated tBid overexpression induced by the Cre/LoxP system can effectively eliminate CD133+ ovarian cancer stem cells, representing a novel therapeutic strategy for the treatment of ovarian cancer.

  7. Bortezomib Improves Adoptive T-cell Therapy by Sensitizing Cancer Cells to FasL Cytotoxicity.

    PubMed

    Shanker, Anil; Pellom, Samuel T; Dudimah, Duafalia F; Thounaojam, Menaka C; de Kluyver, Rachel L; Brooks, Alan D; Yagita, Hideo; McVicar, Daniel W; Murphy, William J; Longo, Dan L; Sayers, Thomas J

    2015-12-15

    Cancer immunotherapy shows great promise but many patients fail to show objective responses, including in cancers that can respond well, such as melanoma and renal adenocarcinoma. The proteasome inhibitor bortezomib sensitizes solid tumors to apoptosis in response to TNF-family death ligands. Because T cells provide multiple death ligands at the tumor site, we investigated the effects of bortezomib on T-cell responses in immunotherapy models involving low-avidity antigens. Bortezomib did not affect lymphocyte or tissue-resident CD11c(+)CD8(+) dendritic cell counts in tumor-bearing mice, did not inhibit dendritic cell expression of costimulatory molecules, and did not decrease MHC class I/II-associated antigen presentation to cognate T cells. Rather, bortezomib activated NF-κB p65 in CD8(+) T cells, stabilizing expression of T-cell receptor CD3ζ and IL2 receptor-α, while maintaining IFNγ secretion to improve FasL-mediated tumor lysis. Notably, bortezomib increased tumor cell surface expression of Fas in mice as well as human melanoma tissue from a responsive patient. In renal tumor-bearing immunodeficient Rag2(-/-) mice, bortezomib treatment after adoptive T-cell immunotherapy reduced lung metastases and enhanced host survival. Our findings highlight the potential of proteasome inhibitors to enhance antitumor T-cell function in the context of cancer immunotherapy. ©2015 American Association for Cancer Research.

  8. CD38-NAD+Axis Regulates Immunotherapeutic Anti-Tumor T Cell Response.

    PubMed

    Chatterjee, Shilpak; Daenthanasanmak, Anusara; Chakraborty, Paramita; Wyatt, Megan W; Dhar, Payal; Selvam, Shanmugam Panneer; Fu, Jianing; Zhang, Jinyu; Nguyen, Hung; Kang, Inhong; Toth, Kyle; Al-Homrani, Mazen; Husain, Mahvash; Beeson, Gyda; Ball, Lauren; Helke, Kristi; Husain, Shahid; Garrett-Mayer, Elizabeth; Hardiman, Gary; Mehrotra, Meenal; Nishimura, Michael I; Beeson, Craig C; Bupp, Melanie Gubbels; Wu, Jennifer; Ogretmen, Besim; Paulos, Chrystal M; Rathmell, Jeffery; Yu, Xue-Zhong; Mehrotra, Shikhar

    2018-01-09

    Heightened effector function and prolonged persistence, the key attributes of Th1 and Th17 cells, respectively, are key features of potent anti-tumorcells. Here, we established ex vivo culture conditions to generate hybrid Th1/17 cells, which persisted long-term in vivo while maintaining their effector function. Using transcriptomics and metabolic profiling approaches, we showed that the enhanced anti-tumor property of Th1/17 cells was dependent on the increased NAD + -dependent activity of the histone deacetylase Sirt1. Pharmacological or genetic inhibition of Sirt1 activity impaired the anti-tumor potential of Th1/17 cells. Importantly, T cells with reduced surface expression of the NADase CD38 exhibited intrinsically higher NAD + , enhanced oxidative phosphorylation, higher glutaminolysis, and altered mitochondrial dynamics that vastly improved tumor control. Lastly, blocking CD38 expression improved tumor control even when using Th0 anti-tumorcells. Thus, strategies targeting the CD38-NAD + axis could increase the efficacy of anti-tumor adoptive T cell therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. In vivo programming of tumor antigen-specific T lymphocytes from pluripotent stem cells to promote cancer immunosurveillance.

    PubMed

    Lei, Fengyang; Zhao, Baohua; Haque, Rizwanul; Xiong, Xiaofang; Budgeon, Lynn; Christensen, Neil D; Wu, Yuzhang; Song, Jianxun

    2011-07-15

    Adoptive T-cell immunotherapy has garnered wide attention, but its effective use is limited by the need of multiple ex vivo manipulations and infusions that are complex and expensive. In this study, we show how highly reactive antigen (Ag)-specific CTLs can be generated from induced pluripotent stem (iPS) cells to provide an unlimited source of functional CTLs for adoptive immunotherapy. iPS cell-derived T cells can offer the advantages of avoiding possible immune rejection and circumventing ethical and practical issues associated with other stem cell types. iPS cells can be differentiated into progenitor T cells in vitro by stimulation with the Notch ligand Delta-like 1 (DL1) overexpressed on bone marrow stromal cells, with complete maturation occurring upon adoptive transfer into Rag1-deficient mice. Here, we report that these iPS cells can be differentiated in vivo into functional CTLs after overexpression of MHC I-restricted Ag-specific T-cell receptors (TCR). In this study, we generated murine iPS cells genetically modified with ovalbumin (OVA)-specific and MHC-I restricted TCR (OT-I) by retrovirus-mediated transduction. After their adoptive transfer into recipient mice, the majority of OT-I/iPS cells underwent differentiation into CD8+ CTLs. TCR-transduced iPS cells developed in vivo responded in vitro to peptide stimulation by secreting interleukin 2 and IFN-γ. Most importantly, adoptive transfer of TCR-transduced iPS cells triggered infiltration of OVA-reactive CTLs into tumor tissues and protected animals from tumor challenge. Taken together, our findings offer proof of concept for a potentially more efficient approach to generate Ag-specific T lymphocytes for adoptive immunotherapy. ©2011 AACR.

  10. Susceptibility to T cell-mediated liver injury is enhanced in asialoglycoprotein receptor-deficient mice.

    PubMed

    McVicker, Benita L; Thiele, Geoffrey M; Casey, Carol A; Osna, Natalia A; Tuma, Dean J

    2013-05-01

    T cell activation and associated pro-inflammatory cytokine production is a pathological feature of inflammatory liver disease. It is also known that liver injury is associated with marked impairments in the function of many hepatic proteins including a hepatocyte-specific binding protein, the asialoglycoprotein receptor (ASGPR). Recently, it has been suggested that hepatic ASGPRs may play an important role in the physiological regulation of T lymphocytes, leading to our hypothesis that ASGPR defects correlate with inflammatory-mediated events in liver diseases. Therefore, in this study we investigated whether changes in hepatocellular ASGPR expression were related to the dysregulation of intrahepatic T lymphocytes and correlate with the development of T-cell mediated hepatitis. Mice lacking functional ASGPRs (receptor-deficient, RD), and wild-type (WT) controls were intravenously injected with T-cell mitogens, Concanavalin A (Con A) or anti-CD3 antibody. As a result of T cell mitogen treatment, RD mice lacking hepatic ASGPRs displayed enhancements in liver pathology, transaminase activities, proinflammatory cytokine expression, and caspase activation compared to that observed in normal WT mice. Furthermore, FACS analysis demonstrated that T-cell mitogen administration resulted in a significant rise in the percentage of CD8+ lymphocytes present in the livers of RD animals versus WT mice. Since these two mouse strains differ only in whether they express the hepatic ASGPR, it can be concluded that proper ASGPR function exerts a protective effect against T cell mediated hepatitis and that impairments to this hepatic receptor could be related to the accumulation of cytotoxic T cells that are observed in inflammatory liver diseases. Published by Elsevier B.V.

  11. Programmed death 1-mediated T cell exhaustion during visceral leishmaniasis impairs phagocyte function.

    PubMed

    Esch, Kevin J; Juelsgaard, Rachel; Martinez, Pedro A; Jones, Douglas E; Petersen, Christine A

    2013-12-01

    Control of Leishmania infantum infection is dependent upon Th1 CD4(+) T cells to promote macrophage intracellular clearance of parasites. Deficient CD4(+) T cell effector responses during clinical visceral leishmaniasis (VL) are associated with elevated production of IL-10. In the primary domestic reservoir of VL, dogs, we define occurrence of both CD4(+) and CD8(+) T cell exhaustion as a significant stepwise loss of Ag-specific proliferation and IFN-γ production, corresponding to increasing VL symptoms. Exhaustion was associated with a 4-fold increase in the population of T cells with surface expression of programmed death 1 (PD-1) between control and symptomatic populations. Importantly, exhausted populations of CD8(+) T cells and to a lesser extent CD4(+) T cells were present prior to onset of clinical VL. VL-exhausted T cells did not undergo significant apoptosis ex vivo after Ag stimulation. Ab block of PD-1 ligand, B7.H1, promoted return of CD4(+) and CD8(+) T cell function and dramatically increased reactive oxygen species production in cocultured monocyte-derived phagocytes. As a result, these phagocytes had decreased parasite load. To our knowledge, we demonstrate for the first time that pan-T cell, PD-1-mediated, exhaustion during VL influenced macrophage-reactive oxygen intermediate production. Blockade of the PD-1 pathway improved the ability of phagocytes isolated from dogs presenting with clinical VL to clear intracellular parasites. T cell exhaustion during symptomatic canine leishmaniasis has implications for the response to vaccination and therapeutic strategies for control of Leishmania infantum in this important reservoir species.

  12. T Cell Receptors that Recognize the Tyrosinase Tumor Antigen | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute, Surgery Branch, Tumor Immunology Section, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize T Cells Attacking Cancer: T Cell Receptors that Recognize the Tyrosinase Tumor Antigen

  13. Young T Cells Age During a Redirected Anti-Tumor Attack: Chimeric Antigen Receptor-Provided Dual Costimulation is Half the Battle.

    PubMed

    Hombach, Andreas A; Abken, Hinrich

    2013-01-01

    Adoptive therapy with chimeric antigen receptor (CAR)-redirected T cells showed spectacular efficacy in the treatment of leukemia in recent early phase trials. Patient's T cells were ex vivo genetically engineered with a CAR, amplified and re-administered to the patient. While T cells mediating the primary response were predominantly of young effector and central memory phenotype, repetitive antigen engagement irreversible triggers T cell maturation leaving late memory cells with the KLRG1(+) CD57(+) CD7(-) CCR7(-) phenotype in the long-term. These cells preferentially accumulate in the periphery, are hypo-responsive upon TCR engagement and prone to activation-induced cell death. A recent report indicates that those T cells can be rescued by CAR provided CD28 and OX40 (CD134) stimulation. We discuss the strategy with respect to prolong the anti-tumor response and to improve the over-all efficacy of adoptive cell therapy.

  14. CSF1/CSF1R Blockade Reprograms Tumor-Infiltrating Macrophages and Improves Response to T Cell Checkpoint Immunotherapy in Pancreatic Cancer Models

    PubMed Central

    Zhu, Yu; Knolhoff, Brett L.; Meyer, Melissa A.; Nywening, Timothy M.; West, Brian L.; Luo, Jingqin; Wang-Gillam, Andrea; Goedegebuure, S Peter; Linehan, David C.; DeNardo, David G.

    2014-01-01

    Cancer immunotherapy generally offers limited clinical benefit without coordinated strategies to mitigate the immunosuppressive nature of the tumor microenvironment. Critical drivers of immune escape in the tumor microenvironment include tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC), which not only mediate immune suppression but also promote metastatic dissemination and impart resistance to cytotoxic therapies. Thus, strategies to ablate the effects of these myeloid cell populations may offer great therapeutic potential. In this report, we demonstrate in a mouse model of pancreatic ductal adenocarcinoma (PDAC) that inhibiting signaling by the myeloid growth factor receptor CSF1R can functionally reprogram macrophage responses that enhance antigen presentation and productive anti-tumor T cell responses. Investigations of this response revealed that CSF1R blockade also upregulated T cell checkpoint molecules, including PDL1 and CTLA4, thereby restraining beneficial therapeutic effects. We found that PD1 and CTLA4 antagonists showed limited efficacy as single agents to restrain PDAC growth, but that that combining these agents with CSF1R blockade potently elicited tumor regressions, even in larger established tumors. Taken together, our findings provide a rationale to reprogram immunosuppressive myeloid cell populations in the tumor microenvironment under conditions that can significantly empower the therapeutic effects of checkpoint-based immunotherapeutics. PMID:25082815

  15. Qualitative features of the HIV-specific CD8+ T-cell response associated with immunologic control.

    PubMed

    Hersperger, Adam R; Migueles, Stephen A; Betts, Michael R; Connors, Mark

    2011-05-01

    Over the past 2 years, a clearer picture has emerged regarding the properties of HIV-specific CD8+ T cells associated with immunologic control of HIV replication. These properties represent a potential mechanism by which rare patients might control HIV replication in the absence of antiretroviral therapy. This review addresses the background and recent findings that have lead to our current understanding of these mechanism(s). Patients with immunologic control of HIV are not distinguished by targeted specificities, or greater numbers or breadth of their HIV-specific CD8+ T-cell response. For this reason, recent work has focused greater attention on qualitative features of this response. The qualitative features most closely associated with immunologic control of HIV are related to the granule-exocytosis-mediated elimination of HIV-infected CD4 T cells. The ability of HIV-specific CD8+ T cells to increase their contents of proteins known to mediate cytotoxicity, such as granzyme B and perforin, appears to be a critical means by which HIV-specific cytotoxic capacity is regulated. Investigation from multiple groups has now focused upon HIV-specific CD8+ T-cell granule-exocytosis-mediated cytotoxicity as a correlate of immunologic control of HIV. In the near future, a more detailed understanding of the qualities associated with immunologic control may provide critical insights regarding the necessary features of a response that should be stimulated by immunotherapies or T-cell-based vaccines.

  16. Hypoxia and hypoxia-inducible factor (HIF) downregulate antigen-presenting MHC class I molecules limiting tumor cell recognition by T cells

    PubMed Central

    Nguyen, Thao; Hatfield, Stephen M.; Ohta, Akio; Sitkovsky, Michail V.

    2017-01-01

    Human cancers are known to downregulate Major Histocompatibility Complex (MHC) class I expression thereby escaping recognition and rejection by anti-tumor T cells. Here we report that oxygen tension in the tumor microenvironment (TME) serves as an extrinsic cue that regulates antigen presentation by MHC class I molecules. In support of this view, hypoxia is shown to negatively regulate MHC expression in a HIF-dependent manner as evidenced by (i) lower MHC expression in the hypoxic TME in vivo and in hypoxic 3-dimensional (3D) but not 2-dimensional (2D) tumor cell cultures in vitro; (ii) decreased MHC in human renal cell carcinomas with constitutive expression of HIF due to genetic loss of von Hippel-Lindau (VHL) function as compared with isogenically paired cells with restored VHL function, and iii) increased MHC in tumor cells with siRNA-mediated knockdown of HIF. In addition, hypoxia downregulated antigen presenting proteins like TAP 1/2 and LMP7 that are known to have a dominant role in surface display of peptide-MHC complexes. Corroborating oxygen-dependent regulation of MHC antigen presentation, hyperoxia (60% oxygen) transcriptionally upregulated MHC expression and increased levels of TAP2, LMP2 and 7. In conclusion, this study reveals a novel mechanism by which intra-tumoral hypoxia and HIF can potentiate immune escape. It also suggests the use of hyperoxia to improve tumor cell-based cancer vaccines and for mining novel immune epitopes. Furthermore, this study highlights the advantage of 3D cell cultures in reproducing hypoxia-dependent changes observed in the TME. PMID:29155844

  17. Inferring the Impact of Regulatory Mechanisms that Underpin CD8+ T Cell Control of B16 Tumor Growth In vivo Using Mechanistic Models and Simulation.

    PubMed

    Klinke, David J; Wang, Qing

    2016-01-01

    A major barrier for broadening the efficacy of immunotherapies for cancer is identifying key mechanisms that limit the efficacy of tumor infiltrating lymphocytes. Yet, identifying these mechanisms using human samples and mouse models for cancer remains a challenge. While interactions between cancer and the immune system are dynamic and non-linear, identifying the relative roles that biological components play in regulating anti-tumor immunity commonly relies on human intuition alone, which can be limited by cognitive biases. To assist natural intuition, modeling and simulation play an emerging role in identifying therapeutic mechanisms. To illustrate the approach, we developed a multi-scale mechanistic model to describe the control of tumor growth by a primary response of CD8+ T cells against defined tumor antigens using the B16 C57Bl/6 mouse model for malignant melanoma. The mechanistic model was calibrated to data obtained following adenovirus-based immunization and validated to data obtained following adoptive transfer of transgenic CD8+ T cells. More importantly, we use simulation to test whether the postulated network topology, that is the modeled biological components and their associated interactions, is sufficient to capture the observed anti-tumor immune response. Given the available data, the simulation results also provided a statistical basis for quantifying the relative importance of different mechanisms that underpin CD8+ T cell control of B16F10 growth. By identifying conditions where the postulated network topology is incomplete, we illustrate how this approach can be used as part of an iterative design-build-test cycle to expand the predictive power of the model.

  18. Adoptive Immunotherapy for Epithelial Ovarian Cancer Using T Cells Simultaneously Targeted to Tumor and Tumor-Associated Macrophages

    DTIC Science & Technology

    2012-11-01

    CD28 expander beads. It was originally planned to deliver four CARs to separate T-cell populations using the SFG retroviral vector and retronectin...IL-4Rα has been coupled to the signaling domain of IL-2/15Rβ. Consequently, IL-4 (which is a weak T-cell mitogen) delivers a potent growth signal...symptoms develop, or in the event of progressive tumor growth (indicated by increasing bioluminescence signal intensity). If tumor rejection occurs

  19. Protection by universal influenza vaccine is mediated by memory CD4 T cells.

    PubMed

    Valkenburg, Sophie A; Li, Olive T W; Li, Athena; Bull, Maireid; Waldmann, Thomas A; Perera, Liyanage P; Peiris, Malik; Poon, Leo L M

    2018-07-05

    There is a diverse array of influenza viruses which circulate between different species, reassort and drift over time. Current seasonal influenza vaccines are ineffective in controlling these viruses. We have developed a novel universal vaccine which elicits robust T cell responses and protection against diverse influenza viruses in mouse and human models. Vaccine mediated protection was dependent on influenza-specific CD4 + T cells, whereby depletion of CD4 + T cells at either vaccination or challenge time points significantly reduced survival in mice. Vaccine memory CD4 + T cells were needed for early antibody production and CD8 + T cell recall responses. Furthermore, influenza-specific CD4 + T cells from vaccination manifested primarily Tfh and Th1 profiles with anti-viral cytokine production. The vaccine boosted H5-specific T cells from human PBMCs, specifically CD4 + and CD8 + T effector memory type, ensuring the vaccine was truly universal for its future application. These findings have implications for the development and optimization of T cell activating vaccines for universal immunity against influenza. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. In vitro immunization of patient T cells with autologous bone marrow antigen presenting cells pulsed with tumor lysates.

    PubMed

    Coulon, V; Ravaud, A; Gaston, R; Delaunay, M; Pariente, J L; Verdier, D; Scrivante, V; Gualde, N

    2000-12-01

    Presentation of cell-associated antigen to T cells is a critical event in the initiation of an anti-tumor immune response but it appears to often be deficient or limiting. Here we report an experimental system for stimulation of human T lymphocytes using autologous antigen presenting cells (APCs) and autologous tumor cells. Two types of APCs were prepared from human bone marrow: MC and DC. MC were produced by using GM-CSF and SCF. DC were obtained with the same cytokines plus IL-4. DC and MC were generated in parallel from the same patients and their phenotypes and capacities to prime T lymphocytes were analyzed and compared. MC were CD14+, CD1a-, CD33+ and HLA-DR+. Two populations of DC were defined: immature DC were uniformly CD1a-; mature DC expressed CD1a, CD80, CD86, HLA-DR, CD54 and CD58 but lacked surface CD14. Stimulation of autologous T lymphocytes was studied by measuring their proliferation and cytotoxic function. In more than 80% of our experiments the proliferation of autologous T lymphocytes cocultured with APC pulsed or not with tumor cell lysates was higher than that of T cells cultured alone. DC were more effective than MC in stimulating proliferation of lymphocytes. The capacity of a patient's autologous bone marrow-derived APC to stimulate T cells when exposed to autologous tumor cell lysates suggest that such antigen-exposed APC may be useful in specific anti-tumor immunotherapy protocols. Copyright 2000 Wiley-Liss, Inc.

  1. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor

    PubMed Central

    Wu, Chia-Yung; Roybal, Kole T.; Puchner, Elias M.; Onuffer, James; Lim, Wendell A.

    2016-01-01

    There is growing promise in using engineered cells as therapeutic agents. For example, synthetic Chimeric Antigen Receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, excessive activity and poor control over such engineered T cells can cause severe toxicities. We present the design of “ON-switch” CARs that enable small molecule-control over T cell therapeutic functions, while still retaining antigen specificity. In these split receptors, antigen binding and intracellular signaling components only assemble in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate both cell autonomous recognition and user control. PMID:26405231

  2. 2-methoxyestradiol-mediated anti-tumor effect increases osteoprotegerin expression in osteosarcoma cells.

    PubMed

    Benedikt, Michaela B; Mahlum, Eric W; Shogren, Kristen L; Subramaniam, Malayannan; Spelsberg, Thomas C; Yaszemski, Michael J; Maran, Avudaiappan

    2010-04-01

    Osteosarcoma is a bone tumor that frequently develops during adolescence. 2-Methoxyestradiol (2-ME), a naturally occurring metabolite of 17beta-estradiol, induces cell cycle arrest and cell death in human osteosarcoma cells. To investigate whether the osteoprotegrin (OPG) protein plays a role in 2-ME actions, we studied the effect of 2-ME treatment on OPG gene expression in human osteosarcoma cells. 2-ME treatment induced OPG gene promoter activity and mRNA levels. Also, Western blot analysis showed that 2-ME treatment increased OPG protein levels in MG63, KHOS, 143B and LM7 osteosarcoma cells by 3-, 1.9-, 2.8-, and 2.5-fold, respectively, but did not affect OPG expression in normal bone cells. In addition, increases in OPG protein levels were observed in osteosarcoma cell culture media after 3 days of 2-ME treatment. The effect of 2-ME on osteosarcoma cells was ligand-specific as parent estrogen, 17beta-estradiol and a tumorigenic estrogen metabolite, 16alpha-hydroxyestradiol, which do not affect osteosarcoma cell cycle and cell death, had no effect on OPG protein expression. Furthermore, co-treating osteosarcoma cells with OPG protein did not further enhance 2-ME-mediated anti-tumor effects. OPG-released in 2-ME-treated cultures led to an increase in osteoblastic activity and a decrease in osteoclast number, respectively. These findings suggest that OPG is not directly involved in 2-ME-mediated anti-proliferative effects in osteosarcoma cells, but rather participates in anti-resorptive functions of 2-ME in bone tumor environment. Copyright 2010 Wiley-Liss, Inc.

  3. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch.

    PubMed

    Brown, Deborah M; Dilzer, Allison M; Meents, Dana L; Swain, Susan L

    2006-09-01

    The mechanisms whereby CD4 T cells contribute to the protective response against lethal influenza infection remain poorly characterized. To define the role of CD4 cells in protection against a highly pathogenic strain of influenza, virus-specific TCR transgenic CD4 effectors were generated in vitro and transferred into mice given lethal influenza infection. Primed CD4 effectors conferred protection against lethal infection over a broad range of viral dose. The protection mediated by CD4 effectors did not require IFN-gamma or host T cells, but did result in increased anti-influenza Ab titers compared with untreated controls. Further studies indicated that CD4-mediated protection at high doses of influenza required B cells, and that passive transfer of anti-influenza immune serum was therapeutic in B cell-deficient mice, but only when CD4 effectors were present. Primed CD4 cells also acquired perforin (Pfn)-mediated cytolytic activity during effector generation, suggesting a second mechanism used by CD4 cells to confer protection. Pfn-deficient CD4 effectors were less able to promote survival in intact BALB/c mice and were unable to provide protection in B cell-deficient mice, indicating that Ab-independent protection by CD4 effectors requires Pfn. Therefore, CD4 effectors mediate protection to lethal influenza through at least two mechanisms: Pfn-mediated cytotoxicity early in the response promoted survival independently of Ab production, whereas CD4-driven B cell responses resulted in high titer Abs that neutralized remaining virus.

  4. Blocking IL-2 Signal In Vivo with an IL-2 Antagonist Reduces Tumor Growth through the Control of Regulatory T Cells.

    PubMed

    Carmenate, Tania; Ortíz, Yaquelín; Enamorado, Michel; García-Martínez, Karina; Avellanet, Janet; Moreno, Ernesto; Graça, Luis; León, Kalet

    2018-05-15

    IL-2 is critical for peripheral tolerance mediated by regulatory T (Treg) cells, which represent an obstacle for effective cancer immunotherapy. Although IL-2 is important for effector (E) T cell function, it has been hypothesized that therapies blocking IL-2 signals weaken Treg cell activity, promoting immune responses. This hypothesis has been partially tested using anti-IL-2 or anti-IL-2R Abs with antitumor effects that cannot be exclusively attributed to lack of IL-2 signaling in vivo. In this work, we pursued an alternative strategy to block IL-2 signaling in vivo, taking advantage of the trimeric structure of the IL-2R. We designed an IL-2 mutant that conserves the capacity to bind to the αβ-chains of the IL-2R but not to the γ c -chain, thus having a reduced signaling capacity. We show our IL-2 mutein inhibits IL-2 Treg cell-dependent differentiation and expansion. Moreover, treatment with IL-2 mutein reduces Treg cell numbers and impairs tumor growth in mice. A mathematical model was used to better understand the effect of the mutein on Treg and E T cells, suggesting suitable strategies to improve its design. Our results show that it is enough to transiently inhibit IL-2 signaling to bias E and Treg cell balance in vivo toward immunity. Copyright © 2018 by The American Association of Immunologists, Inc.

  5. Role of curcumin-dependent modulation of tumor microenvironment of a murine T cell lymphoma in altered regulation of tumor cell survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishvakarma, Naveen Kumar; Kumar, Anjani; Singh, Sukh Mahendra, E-mail: sukhmahendrasingh@yahoo.com

    2011-05-01

    Using a murine model of a T cell lymphoma, in the present study, we report that tumor growth retarding action of curcumin involves modulation of some crucial parameters of tumor microenvironment regulating tumor progression. Curcumin-administration to tumor-bearing host caused an altered pH regulation in tumor cells associated with alteration in expression of cell survival and apoptosis regulatory proteins and genes. Nevertheless, an alteration was also observed in biophysical parameters of tumor microenvironment responsible for modulation of tumor growth pertaining to hypoxia, tumor acidosis, and glucose metabolism. The study thus sheds new light with respect to the antineoplastic action of curcuminmore » against a tumor-bearing host with progressively growing tumor of hematological origin. This will help in optimizing application of the drug and anticancer research and therapy. - Graphical Abstract: Display Omitted« less

  6. Enhanced tumor control with combination mTOR and PD-L1 inhibition in syngeneic oral cavity cancers

    PubMed Central

    Moore, Ellen C.; Cash, Harrison A.; Caruso, Andria M.; Uppaluri, Ravindra; Hodge, James W.; Van Waes, Carter; Allen, Clint T.

    2016-01-01

    Significant subsets of patients with oral cancer fail to respond to single-agent programmed death (PD) blockade. Syngeneic models of oral cancer were used to determine if blocking oncogenic signaling improved in vivo responses to PD-L1 monoclonal antibody (mAb). Anti-PD-L1 enhanced durable primary tumor control and survival when combined with mTOR (rapamycin), but not in combination with MEK inhibition (PD901) in immunogenic MOC1 tumors. Conversely, PD-L1 mAb did not enhance tumor control in poorly immunogenic MOC2 tumors. Rapamycin enhanced expansion of peripheral antigen-specific CD8 T cells and IFNγ production following ex vivo antigen stimulation. More CD8 T cells infiltrated and were activated after PD-L1 mAb treatment in mice with immunogenic MOC1 tumors, which was stable or increased by the addition of rapamycin, but suppressed when PD901 was added. Rapamycin increased IFNγ production capacity in peripheral and tumor-infiltrating CD8 T cells. In vivo antibody depletion revealed a CD8 T cell, and not NK cell, -dependent mechanism of tumor growth inhibition after treatment with rapamycin and PD-L1 mAb, ruling out significant effects from NK cell–mediated antibody-dependent cellular cytotoxicity. Rapamycin also enhanced IFNγ or PD-L1 mAb treatment–associated induction of MHC class I expression on MOC1 tumor cells, an effect abrogated by depleting infiltrating CD8 T cells from the tumor microenvironment. This data conflicts with traditional views of rapamycin as a universal immunosuppressant, and when combined with evidence of enhanced antitumor activity with the combination of rapamycin and PD-L1 mAb, suggests that this treatment combination deserves careful evaluation in the clinical setting. PMID:27076449

  7. Reprogramming tumor-infiltrating dendritic cells for CD103+CD8+ mucosal T cell differentiation and breast cancer rejection

    PubMed Central

    Wu, Te-Chia; Xu, Kangling; Banchereau, Romain; Marches, Florentina; Yu, Chun I; Martinek, Jan; Anguiano, Esperanza; Pedroza-Gonzalez, Alexander; Snipes, G. Jackson; O’Shaughnessy, Joyce; Nishimura, Stephen; Liu, Yong-Jun; Pascual, Virginia; Banchereau, Jacques; Oh, Sangkon; Palucka, Karolina

    2014-01-01

    Our studies showed that tumor-infiltrating dendritic cells (DC) in breast cancer drive inflammatory T helper 2 (iTh2) cells and protumor inflammation. Here we show that intratumoral delivery of the β-glucan curdlan, a ligand of dectin-1, blocks the generation of iTh2 cells, and prevents breast cancer progression in vivo. Curdlan reprograms tumor-infiltrating DC via the ligation of dectin-1, enabling the DC to become resistant to cancer-derived thymic stromal lymphopoietin (TSLP), to produce IL12p70, and to favor the generation of T helper 1 (Th1) cells. DC activated via dectin-1, but not those activated with TLR-7/8 ligand or poly IC, induce CD8+ T cells to express CD103 (αE integrin), a ligand for cancer cells E-cadherin. Generation of these mucosal CD8+ T cells is regulated by DC-derived integrin αvβ8 and TGF-β activation in a dectin-1-dependent fashion. These CD103+CD8+ mucosal T cells accumulate in the tumors thereby increasing cancer necrosis and inhibiting cancer progression in vivo in a humanized mouse model of breast cancer. Importantly, CD103+CD8+ mucosal T cells elicited by reprogrammed DC can reject established cancer. Thus, reprogramming tumor-infiltrating DC represents a new strategy for cancer rejection. PMID:24795361

  8. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients

    PubMed Central

    Romano, Emanuela; Kusio-Kobialka, Monika; Foukas, Periklis G.; Baumgaertner, Petra; Meyer, Christiane; Ballabeni, Pierluigi; Michielin, Olivier; Weide, Benjamin; Romero, Pedro; Speiser, Daniel E.

    2015-01-01

    Enhancing immune responses with immune-modulatory monoclonal antibodies directed to inhibitory immune receptors is a promising modality in cancer therapy. Clinical efficacy has been demonstrated with antibodies blocking inhibitory immune checkpoints such as cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) or PD-1/PD-L1. Treatment with ipilimumab, a fully human CTLA-4–specific mAb, showed durable clinical efficacy in metastatic melanoma; its mechanism of action is, however, only partially understood. This is a study of 29 patients with advanced cutaneous melanoma treated with ipilimumab. We analyzed peripheral blood mononuclear cells (PBMCs) and matched melanoma metastases from 15 patients responding and 14 not responding to ipilimumab by multicolor flow cytometry, antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and immunohistochemistry. PBMCs and matched tumor biopsies were collected 24 h before (i.e., baseline) and up to 4 wk after ipilimumab. Our findings show, to our knowledge for the first time, that ipilimumab can engage ex vivo FcγRIIIA (CD16)-expressing, nonclassical monocytes resulting in ADCC-mediated lysis of regulatory T cells (Tregs). In contrast, classical CD14++CD16− monocytes are unable to do so. Moreover, we show that patients responding to ipilimumab display significantly higher baseline peripheral frequencies of nonclassical monocytes compared with nonresponder patients. In the tumor microenvironment, responders have higher CD68+/CD163+ macrophage ratios at baseline and show decreased Treg infiltration after treatment. Together, our results suggest that anti–CTLA-4 therapy may target Tregs in vivo. Larger translational studies are, however, warranted to substantiate this mechanism of action of ipilimumab in patients. PMID:25918390

  9. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab.

    PubMed

    Fujii, Rika; Friedman, Eitan R; Richards, Jacob; Tsang, Kwong Y; Heery, Christopher R; Schlom, Jeffrey; Hodge, James W

    2016-06-07

    Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC.

  10. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab

    PubMed Central

    Fujii, Rika; Friedman, Eitan R.; Richards, Jacob; Tsang, Kwong Y.; Heery, Christopher R.; Schlom, Jeffrey; Hodge, James W.

    2016-01-01

    Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC. PMID:27172898

  11. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors.

    PubMed

    Ahmed, Nabil; Salsman, Vita S; Kew, Yvonne; Shaffer, Donald; Powell, Suzanne; Zhang, Yi J; Grossman, Robert G; Heslop, Helen E; Gottschalk, Stephen

    2010-01-15

    Glioblastoma multiforme (GBM) is the most aggressive human primary brain tumor and is currently incurable. Immunotherapies have the potential to target GBM stem cells, which are resistant to conventional therapies. Human epidermal growth factor receptor 2 (HER2) is a validated immunotherapy target, and we determined if HER2-specific T cells can be generated from GBM patients that will target autologous HER2-positive GBMs and their CD133-positive stem cell compartment. HER2-specific T cells from 10 consecutive GBM patients were generated by transduction with a retroviral vector encoding a HER2-specific chimeric antigen receptor. The effector function of HER2-specific T cells against autologous GBM cells, including CD133-positive stem cells, was evaluated in vitro and in an orthotopic murine xenograft model. Stimulation of HER2-specific T cells with HER2-positive autologous GBM cells resulted in T-cell proliferation and secretion of IFN-gamma and interleukin-2 in a HER2-dependent manner. Patients' HER2-specific T cells killed CD133-positive and CD133-negative cells derived from primary HER2-positive GBMs, whereas HER2-negative tumor cells were not killed. Injection of HER2-specific T cells induced sustained regression of autologous GBM xenografts established in the brain of severe combined immunodeficient mice. Gene transfer allows the reliable generation of HER2-specific T cells from GBM patients, which have potent antitumor activity against autologous HER2-positive tumors including their putative stem cells. Hence, the adoptive transfer of HER2-redirected T cells may be a promising immunotherapeutic approach for GBM.

  12. Redox sensor CtBP mediates hypoxia-induced tumor cell migration

    PubMed Central

    Zhang, Qinghong; Wang, Su-Yan; Nottke, Amanda C.; Rocheleau, Jonathan V.; Piston, David W.; Goodman, Richard H.

    2006-01-01

    The rapid growth and poor vascularization of solid tumors expose cancer cells to hypoxia, which promotes the metastatic phenotype by reducing intercellular adhesion and increasing cell motility and invasiveness. In this study, we found that hypoxia increased free NADH levels in cancer cells, promoting CtBP recruitment to the E-cadherin promoter. This effect was blocked by pyruvate, which prevents the NADH increase. Furthermore, hypoxia repressed E-cadherin gene expression and increased tumor cell migration, effects that were blocked by CtBP knockdown. We propose that CtBP senses levels of free NADH to control expression of cell adhesion genes, thereby promoting tumor cell migration under hypoxic stress. PMID:16740659

  13. Adoptive Transfer of Tumor-Specific Th2 Cells Eradicates Tumors by Triggering an In Situ Inflammatory Immune Response.

    PubMed

    Lorvik, Kristina Berg; Hammarström, Clara; Fauskanger, Marte; Haabeth, Ole Audun Werner; Zangani, Michael; Haraldsen, Guttorm; Bogen, Bjarne; Corthay, Alexandre

    2016-12-01

    Adoptive cell therapy (ACT) trials to date have focused on transfer of autologous tumor-specific cytotoxic CD8 + T cells; however, the potential of CD4 + T helper (Th) cells for ACT is gaining interest. While encouraging results have been reported with IFNγ-producing Th1 cells, tumor-specific Th2 cells have been largely neglected for ACT due to their reported tumor-promoting properties. In this study, we tested the efficacy of idiotype-specific Th2 cells for the treatment of mice with MHC class II-negative myeloma. Th2 ACT efficiently eradicated subcutaneous myeloma in an antigen-specific fashion. Transferred Th2 cells persisted in vivo and conferred long-lasting immunity. Cancer eradication mediated by tumor-specific Th2 cells did not require B cells, natural killer T cells, CD8 + T cells, or IFNγ. Th2 ACT was also curative against B-cell lymphoma. Upon transfer, Th2 cells induced a type II inflammation at the tumor site with massive infiltration of M2-type macrophages producing arginase. In vivo blockade of arginase strongly inhibited Th2 ACT, consistent with a key role of arginase and M2 macrophages in myeloma elimination by Th2 cells. These results illustrate that cancer eradication may be achieved by induction of a tumor-specific Th2 inflammatory immune response at the tumor site. Thus, ACT with tumor-specific Th2 cells may represent a highly efficient immunotherapy protocol against cancer. Cancer Res; 76(23); 6864-76. ©2016 AACR. ©2016 American Association for Cancer Research.

  14. CD155T/TIGIT Signaling Regulates CD8+ T-cell Metabolism and Promotes Tumor Progression in Human Gastric Cancer.

    PubMed

    He, Weiling; Zhang, Hui; Han, Fei; Chen, Xinlin; Lin, Run; Wang, Wei; Qiu, Haibo; Zhuang, Zhenhong; Liao, Qi; Zhang, Weijing; Cai, Qinbo; Cui, Yongmei; Jiang, Wenting; Wang, Han; Ke, Zunfu

    2017-11-15

    The T-cell surface molecule TIGIT is an immune checkpoint molecule that inhibits T-cell responses, but its roles in cancer are little understood. In this study, we evaluated the role TIGIT checkpoint plays in the development and progression of gastric cancer. We show that the percentage of CD8 T cells that are TIGIT + was increased in gastric cancer patients compared with healthy individuals. These cells showed functional exhaustion with impaired activation, proliferation, cytokine production, and metabolism, all of which were rescued by glucose. In addition, gastric cancer tissue and cell lines expressed CD155, which bound TIGIT receptors and inactivated CD8 T cells. In a T cell-gastric cancer cell coculture system, gastric cancer cells deprived CD8 T cells of glucose and impaired CD8 T-cell effector functions; these effects were neutralized by the additional glucose or by TIGIT blockade. In gastric cancer tumor cells, CD155 silencing increased T-cell metabolism and IFNγ production, whereas CD155 overexpression inhibited T-cell metabolism and IFNγ production; this inhibition was neutralized by TIGIT blockade. Targeting CD155/TIGIT enhanced CD8 T-cell reaction and improved survival in tumor-bearing mice. Combined targeting of TIGIT and PD-1 further enhanced CD8 T-cell activation and improved survival in tumor-bearing mice. Our results suggest that gastric cancer cells inhibit CD8 T-cell metabolism through CD155/TIGIT signaling, which inhibits CD8 T-cell effector functions, resulting in hyporesponsive antitumor immunity. These findings support the candidacy of CD155/TIGIT as a potential therapeutic target in gastric cancer. Cancer Res; 77(22); 6375-88. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models.

    PubMed

    Zhu, Yu; Knolhoff, Brett L; Meyer, Melissa A; Nywening, Timothy M; West, Brian L; Luo, Jingqin; Wang-Gillam, Andrea; Goedegebuure, S Peter; Linehan, David C; DeNardo, David G

    2014-09-15

    Cancer immunotherapy generally offers limited clinical benefit without coordinated strategies to mitigate the immunosuppressive nature of the tumor microenvironment. Critical drivers of immune escape in the tumor microenvironment include tumor-associated macrophages and myeloid-derived suppressor cells, which not only mediate immune suppression, but also promote metastatic dissemination and impart resistance to cytotoxic therapies. Thus, strategies to ablate the effects of these myeloid cell populations may offer great therapeutic potential. In this report, we demonstrate in a mouse model of pancreatic ductal adenocarcinoma (PDAC) that inhibiting signaling by the myeloid growth factor receptor CSF1R can functionally reprogram macrophage responses that enhance antigen presentation and productive antitumor T-cell responses. Investigations of this response revealed that CSF1R blockade also upregulated T-cell checkpoint molecules, including PDL1 and CTLA4, thereby restraining beneficial therapeutic effects. We found that PD1 and CTLA4 antagonists showed limited efficacy as single agents to restrain PDAC growth, but that combining these agents with CSF1R blockade potently elicited tumor regressions, even in larger established tumors. Taken together, our findings provide a rationale to reprogram immunosuppressive myeloid cell populations in the tumor microenvironment under conditions that can significantly empower the therapeutic effects of checkpoint-based immunotherapeutics. ©2014 American Association for Cancer Research.

  16. Non-Invasive Radiofrequency Field Treatment of 4T1 Breast Tumors Induces T-cell Dependent Inflammatory Response.

    PubMed

    Newton, Jared M; Flores-Arredondo, Jose H; Suki, Sarah; Ware, Matthew J; Krzykawska-Serda, Martyna; Agha, Mahdi; Law, Justin J; Sikora, Andrew G; Curley, Steven A; Corr, Stuart J

    2018-02-22

    Previous work using non-invasive radiofrequency field treatment (RFT) in cancer has demonstrated its therapeutic potential as it can increase intratumoral blood perfusion, localization of intravenously delivered drugs, and promote a hyperthermic intratumoral state. Despite the well-known immunologic benefits that febrile hyperthermia can induce, an investigation of how RFT could modulate the intra-tumoral immune microenvironment had not been studied. Thus, using an established 4T1 breast cancer model in immune competent mice, we demonstrate that RFT induces a transient, localized, and T-cell dependent intratumoral inflammatory response. More specifically we show that multi- and singlet-dose RFT promote an increase in tumor volume in immune competent Balb/c mice, which does not occur in athymic nude models. Further leukocyte subset analysis at 24, 48, and 120 hours after a single RFT show a rapid increase in tumoral trafficking of CD4+ and CD8+ T-cells 24 hours post-treatment. Additional serum cytokine analysis reveals an increase in numerous pro-inflammatory cytokines and chemokines associated with enhanced T-cell trafficking. Overall, these data demonstrate that non-invasive RFT could be an effective immunomodulatory strategy in solid tumors, especially for enhancing the tumoral trafficking of lymphocytes, which is currently a major hindrance of numerous cancer immunotherapeutic strategies.

  17. Young T Cells Age During a Redirected Anti-Tumor Attack: Chimeric Antigen Receptor-Provided Dual Costimulation is Half the Battle

    PubMed Central

    Hombach, Andreas A.; Abken, Hinrich

    2013-01-01

    Adoptive therapy with chimeric antigen receptor (CAR)-redirected T cells showed spectacular efficacy in the treatment of leukemia in recent early phase trials. Patient’s T cells were ex vivo genetically engineered with a CAR, amplified and re-administered to the patient. While T cells mediating the primary response were predominantly of young effector and central memory phenotype, repetitive antigen engagement irreversible triggers T cell maturation leaving late memory cells with the KLRG1+ CD57+ CD7− CCR7− phenotype in the long-term. These cells preferentially accumulate in the periphery, are hypo-responsive upon TCR engagement and prone to activation-induced cell death. A recent report indicates that those T cells can be rescued by CAR provided CD28 and OX40 (CD134) stimulation. We discuss the strategy with respect to prolong the anti-tumor response and to improve the over-all efficacy of adoptive cell therapy. PMID:23761793

  18. Macrophage-mediated trogocytosis leads to death of antibody-opsonized tumor cells

    PubMed Central

    Velmurugan, Ramraj; Challa, Dilip K.; Ram, Sripad; Ober, Raimund J.; Ward, E. Sally

    2016-01-01

    Understanding the complex behavior of effector cells such as monocytes or macrophages in regulating cancerous growth is of central importance for cancer immunotherapy. Earlier studies using CD20-specific antibodies have demonstrated that the Fcγ receptor (FcγR)-mediated transfer of the targeted receptors from tumor cells to these effector cells through trogocytosis can enable escape from antibody therapy, leading to the viewpoint that this process is pro-tumorigenic. In the current study we demonstrate that persistent trogocytic attack results in the killing of HER2-overexpressing breast cancer cells. Further, antibody engineering to increase FcγR interactions enhances this tumoricidal activity. These studies extend the complex repertoire of activities of macrophages to trogocytic-mediated cell death of HER2-overexpressing target cells and have implications for the development of effective antibody-based therapies. PMID:27226489

  19. Extracellular microvesicles and invadopodia mediate non-overlapping modes of tumor cell invasion

    PubMed Central

    Sedgwick, Alanna E.; Clancy, James W.; Olivia Balmert, M.; D’Souza-Schorey, Crislyn

    2015-01-01

    Tumor cell invasion requires the molecular and physical adaptation of both the cell and its microenvironment. Here we show that tumor cells are able to switch between the use of microvesicles and invadopodia to facilitate invasion through the extracellular matrix. Invadopodia formation accompanies the mesenchymal mode of migration on firm matrices and is facilitated by Rac1 activation. On the other hand, during invasion through compliant and deformable environments, tumor cells adopt an amoeboid phenotype and release microvesicles. Notably, firm matrices do not support microvesicle release, whereas compliant matrices are not conducive to invadopodia biogenesis. Furthermore, Rac1 activation is required for invadopodia function, while its inactivation promotes RhoA activation and actomyosin contractility required for microvesicle shedding. Suppression of RhoA signaling blocks microvesicle formation but enhances the formation of invadopodia. Finally, we describe Rho-mediated pathways involved in microvesicle biogenesis through the regulation of myosin light chain phosphatase. Our findings suggest that the ability of tumor cells to switch between the aforementioned qualitatively distinct modes of invasion may allow for dissemination across different microenvironments. PMID:26458510

  20. The genetic locus NRC-1 within chromosome 3p12 mediates tumor suppression in renal cell carcinoma independently of histological type, tumor microenvironment, and VHL mutation.

    PubMed

    Lovell, M; Lott, S T; Wong, P; El-Naggar, A; Tucker, S; Killary, A M

    1999-05-01

    Human chromosome 3p cytogenetic abnormalities and loss of heterozygosity have been observed at high frequency in the nonpapillary form of sporadic renal cell carcinoma (RCC). The von Hippel-Lindau (VHL) gene has been identified as a tumor suppressor gene for RCC at 3p25, and functional studies as well as molecular genetic and cytogenetic analyses have suggested as many as two or three additional regions of 3p that could harbor tumor suppressor genes for sporadic RCC. We have previously functionally defined a novel genetic locus nonpapillary renal carcinoma-1 (NRC-1) within chromosome 3p12, distinct from the VHL gene, that mediates tumor suppression and rapid cell death of RCC cells in vivo. We now report the suppression of tumorigenicity of RCC cells in vivo after the transfer of a defined centric 3p fragment into different histological types of RCC. Results document the functional involvement of NRC-1 in not only different cell types of RCC (i.e., clear cell, mixed granular cell/clear cell, and sarcomatoid types) but also in papillary RCC, a less frequent histological type of RCC for which chromosome 3p LOH and genetic aberrations have only rarely been observed. We also report that the tumor suppression observed in functional genetic screens was independent of the microenvironment of the tumor, further supporting a role for NRC-1 as a more general mediator of in vivo growth control. Furthermore, this report demonstrates the first functional evidence for a VHL-independent pathway to tumorigenesis in the kidney via the genetic locus NRC-1.

  1. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor.

    PubMed

    Wu, Chia-Yung; Roybal, Kole T; Puchner, Elias M; Onuffer, James; Lim, Wendell A

    2015-10-16

    There is growing interest in using engineered cells as therapeutic agents. For example, synthetic chimeric antigen receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, these engineered T cells can exhibit excessive activity that is difficult to control and can cause severe toxicity. We designed "ON-switch" CARs that enable small-molecule control over T cell therapeutic functions while still retaining antigen specificity. In these split receptors, antigen-binding and intracellular signaling components assemble only in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate cell-autonomous recognition and user control. Copyright © 2015, American Association for the Advancement of Science.

  2. Targeting Fibroblast Activation Protein in Tumor Stroma with Chimeric Antigen Receptor T Cells Can Inhibit Tumor Growth and Augment Host Immunity Without Severe Toxicity

    PubMed Central

    Wang, Liang-Chuan S; Lo, Albert; Scholler, John; Sun, Jing; Majumdar, Rajrupa S; Kapoor, Veena; Antzis, Michael; Cotner, Cody E.; Johnson, Laura A; Durham, Amy C; Solomides, Charalambos C.; June, Carl H; Puré, Ellen; Albelda, Steven M

    2013-01-01

    The majority of chimeric antigen receptor (CAR) T cell research has focused on attacking cancer cells. Here we show that targeting the tumor-promoting, non-transformed stromal cells using CAR T cells may offer several advantages. We developed a retroviral CAR construct specific for the mouse fibroblast activation protein (FAP), comprising a single chain Fv FAP (mAb 73.3) with the CD8α hinge and transmembrane regions, and the human CD3ζ and 4-1BB activation domains. The transduced muFAP-CAR mouse T cells secreted IFNγ and killed FAP-expressing 3T3 target cells specifically. Adoptively transferred 73.3-FAP-CAR mouse T cells selectively reduced FAPhi stromal cells and inhibited the growth of multiple types of subcutaneously transplanted tumors in wild-type, but not FAP-null immune-competent syngeneic mice. The antitumor effects could be augmented by multiple injections of the CAR T cells, by using CAR T cells with a deficiency in diacylglycerol kinase, or by combination with a vaccine. A major mechanism of action of the muFAP-CAR T cells was the augmentation of the endogenous CD8+ T cell antitumor responses. Off-tumor toxicity in our models was minimal following muFAP-CAR T cell therapy. In summary, inhibiting tumor growth by targeting tumor stroma with adoptively transferred CAR T cells directed to FAP can be safe and effective suggesting that further clinical development of anti-human FAP-CAR is warranted. PMID:24778279

  3. Optimization Manufacture of Virus- and Tumor-Specific T Cells

    PubMed Central

    Lapteva, Natalia; Vera, Juan F.

    2011-01-01

    Although ex vivo expanded T cells are currently widely used in pre-clinical and clinical trials, the complexity of manufacture remains a major impediment for broader application. In this review we discuss current protocols for the ex vivo expansion of virus- and tumor-specific T cells and describe our experience in manufacture optimization using a gas-permeable static culture flask (G-Rex). This innovative device has revolutionized the manufacture process by allowing us to increase cell yields while decreasing the frequency of cell manipulation and in vitro culture time. It is now being used in good manufacturing practice (GMP) facilities for clinical cell production in our institution as well as many others in the US and worldwide. PMID:21915183

  4. Detecting T-cell reactivity to whole cell vaccines

    PubMed Central

    Brusic, Ana; Hainz, Ursula; Wadleigh, Martha; Neuberg, Donna; Su, Mei; Canning, Christine M.; DeAngelo, Daniel J.; Stone, Richard M.; Lee, Jeng-Shin; Mulligan, Richard C.; Ritz, Jerome; Dranoff, Glenn; Sasada, Tetsuro; Wu, Catherine J.

    2012-01-01

    BCR-ABL+ K562 cells hold clinical promise as a component of cancer vaccines, either as bystander cells genetically modified to express immunostimulatory molecules, or as a source of leukemia antigens. To develop a method for detecting T-cell reactivity against K562 cell-derived antigens in patients, we exploited the dendritic cell (DC)-mediated cross-presentation of proteins generated from apoptotic cells. We used UVB irradiation to consistently induce apoptosis of K562 cells, which were then fed to autologous DCs. These DCs were used to both stimulate and detect antigen-specific CD8+ T-cell reactivity. As proof-of-concept, we used cross-presented apoptotic influenza matrix protein-expressing K562 cells to elicit reactivity from matrix protein-reactive T cells. Likewise, we used this assay to detect increased anti-CML antigen T-cell reactivity in CML patients that attained long-lasting clinical remissions following immunotherapy (donor lymphocyte infusion), as well as in 2 of 3 CML patients vaccinated with lethally irradiated K562 cells that were modified to secrete high levels of granulocyte macrophage colony-stimulating factor (GM-CSF). This methodology can be readily adapted to examine the effects of other whole tumor cell-based vaccines, a scenario in which the precise tumor antigens that stimulate immune responses are unknown. PMID:23170257

  5. Activated natural killer cell-mediated immunity is required for the inhibition of tumor metastasis by dendritic cell vaccination.

    PubMed

    Kim, Aeyung; Noh, Young-Woock; Kim, Kwang Dong; Jang, Yong-Suk; Choe, Yong-Kyung; Lim, Jong-Seok

    2004-10-31

    Immunization with dendritic cells (DCs) pulsed with tumor antigen can activate tumor-specific cytotoxic T lymphocytes (CTL), which is responsible for tumor protection and regression. In this study, we examined whether DCs pulsed with necrotic tumor lysates can efficiently prevent malignant melanoma tumor cell metastasis to the lung. DCs derived from mouse bone marrow were found to produce remarkably elevated levels of IL-12 after being pulsed with the tumor lysates. Moreover, immunization with these DCs induced CTL activation and protected mice from metastasis development by intravenously inoculated tumor cells. In addition, these DCs activated NK cells in vitro in a contact-dependent manner, and induced NK activities in vivo. Furthermore, NK cell depletion before DC vaccination significantly reduced the tumor-specific CTL activity, IFN-gamma production, and IFN-gamma- inducible gene expression, and eventually interfered with the antitumor effect of tumor-pulsed DCs. Finally, similar findings with respect to NK cell dependency were obtained in the C57BL/ 6J-bg/bg mice, which have severe deficiency in cytolytic activity of NK cells. These data suggest that the antitumor effect elicited by DC vaccination, at least in a B16 melanoma model, requires the participation of both cytolytic NK and CD8(+) T cells. The findings of this study would provide important data for the effective design of DC vaccines for cancer immunotherapy.

  6. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape

    PubMed Central

    Mukherjee, Malini; Grada, Zakaria; Pignata, Antonella; Landi, Daniel; Navai, Shoba A.; Wakefield, Amanda; Bielamowicz, Kevin; Chow, Kevin K.H.; Brawley, Vita S.; Byrd, Tiara T.; Krebs, Simone; Gottschalk, Stephen; Wels, Winfried S.; Baker, Matthew L.; Dotti, Gianpietro; Mamonkin, Maksim; Brenner, Malcolm K.

    2016-01-01

    In preclinical models of glioblastoma, antigen escape variants can lead to tumor recurrence after treatment with CAR T cells that are redirected to single tumor antigens. Given the heterogeneous expression of antigens on glioblastomas, we hypothesized that a bispecific CAR molecule would mitigate antigen escape and improve the antitumor activity of T cells. Here, we created a CAR that joins a HER2-binding scFv and an IL13Rα2-binding IL-13 mutein to make a tandem CAR exodomain (TanCAR) and a CD28.ζ endodomain. We determined that patient TanCAR T cells showed distinct binding to HER2 or IL13Rα2 and had the capability to lyse autologous glioblastoma. TanCAR T cells exhibited activation dynamics that were comparable to those of single CAR T cells upon encounter of HER2 or IL13Rα2. We observed that TanCARs engaged HER2 and IL13Rα2 simultaneously by inducing HER2-IL13Rα2 heterodimers, which promoted superadditive T cell activation when both antigens were encountered concurrently. TanCAR T cell activity was more sustained but not more exhaustible than that of T cells that coexpressed a HER2 CAR and an IL13Rα2 CAR, T cells with a unispecific CAR, or a pooled product. In a murine glioblastoma model, TanCAR T cells mitigated antigen escape, displayed enhanced antitumor efficacy, and improved animal survival. Thus, TanCAR T cells show therapeutic potential to improve glioblastoma control by coengaging HER2 and IL13Rα2 in an augmented, bivalent immune synapse that enhances T cell functionality and reduces antigen escape. PMID:27427982

  7. Rethinking the role of myeloid-derived suppressor cells in adoptive T-cell therapy for cancer

    PubMed Central

    Arina, Ainhoa

    2014-01-01

    The expansion of cancer-induced myeloid cells is thought to be one of the main obstacles to successful immunotherapy. Nevertheless, in murine tumors undergoing immune-mediated destruction by adoptively transferred T cells, we have recently shown that such cells maintain their immunosuppressive properties. Therefore, adoptive T-cell therapy can, under certain conditions, overcome myeloid cell immunosuppression. PMID:25050213

  8. T-dependent activation of resting B cells mediated by concanavalin A.

    PubMed

    Ratcliffe, M J; Julius, M H

    1984-03-01

    In cultures containing long-term cultured lines of antigen-specific helper T (Th) cells, normal unprimed B cells and concanavalin A (Con A), induction of B cells to immunoglobulin secretion and DNA synthesis was observed. The plaque-forming cell (PFC) response was large (frequently greater than 75 000 PFC/10(6) input B cells) demonstrating the polyspecific nature of the response. Con A-mediated maturation and induction to DNA synthesis of responding B cells was completely Th cell dependent and inhibited with methyl-alpha-D-mannoside. Both resting and blasted B cells, separated by Percoll density centrifugation, were induced to DNA synthesis and immunoglobulin secretion. Responses were completely unrestricted by the B cell major histocompatibility complex, even at the level of the resting B cell. The polyclonal nature of the response taken together with the Con A-mediated bypassing of T cell specificity and restricting haplotype indicates that this response is analogous to lectin-mediated cytotoxicity.

  9. SU-E-T-429: Uncertainties of Cell Surviving Fractions Derived From Tumor-Volume Variation Curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, A

    2014-06-01

    Purpose: To evaluate uncertainties of cell surviving fraction reconstructed from tumor-volume variation curves during radiation therapy using sensitivity analysis based on linear perturbation theory. Methods: The time dependent tumor-volume functions V(t) have been calculated using a twolevel cell population model which is based on the separation of entire tumor cell population in two subpopulations: oxygenated viable and lethally damaged cells. The sensitivity function is defined as S(t)=[δV(t)/V(t)]/[δx/x] where δV(t)/V(t) is the time dependent relative variation of the volume V(t) and δx/x is the relative variation of the radiobiological parameter x. The sensitivity analysis was performed using direct perturbation method wheremore » the radiobiological parameter x was changed by a certain error and the tumor-volume was recalculated to evaluate the corresponding tumor-volume variation. Tumor volume variation curves and sensitivity functions have been computed for different values of cell surviving fractions from the practically important interval S{sub 2}=0.1-0.7 using the two-level cell population model. Results: The sensitivity functions of tumor-volume to cell surviving fractions achieved a relatively large value of 2.7 for S{sub 2}=0.7 and then approached zero as S{sub 2} is approaching zero Assuming a systematic error of 3-4% we obtain that the relative error in S{sub 2} is less that 20% in the range S2=0.4-0.7. This Resultis important because the large values of S{sub 2} are associated with poor treatment outcome should be measured with relatively small uncertainties. For the very small values of S2<0.3, the relative error can be larger than 20%; however, the absolute error does not increase significantly. Conclusion: Tumor-volume curves measured during radiotherapy can be used for evaluation of cell surviving fractions usually observed in radiation therapy with conventional fractionation.« less

  10. Strategies for the Identification of T Cell–Recognized Tumor Antigens in Hematological Malignancies for Improved Graft-versus-Tumor Responses after Allogeneic Blood and Marrow Transplantation

    PubMed Central

    Zilberberg, Jenny; Feinman, Rena; Korngold, Robert

    2015-01-01

    Allogeneic blood and marrow transplantation (allo-BMT) is an effective immunotherapeutic treatment that can provide partial or complete remission for patients with hematological malignancies. Mature donor T cells in the donor inoculum play a central role in mediating graft-versus-tumor (GVT) responses by destroying residual tumor cells that persist after conditioning regimens. Alloreactivity towards minor histocompatibility antigens (miHA), which are varied tissue-related self-peptides presented in the context of major histocompatibility complex (MHC) molecules on recipient cells, some of which may be shared on tumor cells, is a dominant factor for the development of GVT. Potentially, GVT can also be directed to tumor-associated antigens or tumor-specific antigens that are more specific to the tumor cells themselves. The full exploitation of allo-BMT, however, is greatly limited by the development of graft-versus-host disease (GVHD), which is mediated by the donor T cell response against the miHA expressed in the recipient’s cells of the intestine, skin, and liver. Because of the significance of GVT and GVHD responses in determining the clinical outcome of patients, miHA and tumor antigens have been intensively studied, and one active immunotherapeutic approach to separate these two responses has been cancer vaccination after allo-BMT. The combination of these two strategies has an advantage over vaccination of the patient without allo-BMT because his or her immune system has already been exposed and rendered unresponsive to the tumor antigens. The conditioning for allo-BMT eliminates the patient’s existing immune system, including regulatory elements, and provides a more permissive environment for the newly developing donor immune compartment to selectively target the malignant cells. Utilizing recent technological advances, the identities of many human miHA and tumor antigenic peptides have been defined and are currently being evaluated in clinical and basic

  11. Epitope diversification driven by non-tumor epitope-specific Th1 and Th17 mediates potent antitumor reactivity.

    PubMed

    Ichikawa, Kosuke; Kagamu, Hiroshi; Koyama, Kenichi; Miyabayashi, Takao; Koshio, Jun; Miura, Satoru; Watanabe, Satoshi; Yoshizawa, Hirohisa; Narita, Ichiei

    2012-09-21

    MHC class I-restricted peptide-based vaccination therapies have been conducted to treat cancer patients, because CD8⁺ CTL can efficiently induce apoptosis of tumor cells in an MHC class I-restricted epitope-specific manner. Interestingly, clinical responders are known to demonstrate reactivity to epitopes other than those used for vaccination; however, the mechanism underlying how antitumor T cells with diverse specificity are induced is unclear. In this study, we demonstrated that dendritic cells (DCs) that engulfed apoptotic tumor cells in the presence of non-tumor MHC class II-restricted epitope peptides, OVA(323-339), efficiently presented tumor-associated antigens upon effector-dominant CD4⁺ T cell balance against regulatory T cells (Treg) for the OVA(323-339) epitope. Th1 and Th17 induced tumor-associated antigens presentation of DC, while Th2 ameliorated tumor-antigen presentation for CD8⁺ T cells. Blocking experiments with anti-IL-23p19 antibody and anti-IL-23 receptor indicated that an autocrine mechanism of IL-23 likely mediated the diverted tumor-associated antigens presentation of DC. Tumor-associated antigens presentation of DC induced by OVA(323-339) epitope-specific CD4⁺ T cells resulted in facilitated antitumor immunity in both priming and effector phase in vivo. Notably, this immunotherapy did not require pretreatment to reduce Treg induced by tumor. This strategy may have clinical implications for designing effective antitumor immunotherapies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Mitochondrial control by DRP1 in brain tumor initiating cells.

    PubMed

    Xie, Qi; Wu, Qiulian; Horbinski, Craig M; Flavahan, William A; Yang, Kailin; Zhou, Wenchao; Dombrowski, Stephen M; Huang, Zhi; Fang, Xiaoguang; Shi, Yu; Ferguson, Ashley N; Kashatus, David F; Bao, Shideng; Rich, Jeremy N

    2015-04-01

    Brain tumor initiating cells (BTICs) co-opt the neuronal high affinity glucose transporter, GLUT3, to withstand metabolic stress. We investigated another mechanism critical to brain metabolism, mitochondrial morphology, in BTICs. BTIC mitochondria were fragmented relative to non-BTIC tumor cell mitochondria, suggesting that BTICs increase mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), showed activating phosphorylation in BTICs and inhibitory phosphorylation in non-BTIC tumor cells. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and targeting AMPK rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca(2+)-calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTIC tumor cells, suggesting that tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlated with poor prognosis in glioblastoma, suggesting that mitochondrial dynamics may represent a therapeutic target for BTICs.

  13. Differences and Similarities in TRAIL- and Tumor Necrosis Factor-Mediated Necroptotic Signaling in Cancer Cells

    PubMed Central

    Philipp, Stephan; Fuchslocher Chico, Johaiber; Saggau, Carina; Fritsch, Jürgen; Föll, Alexandra; Plenge, Johannes; Arenz, Christoph; Pinkert, Thomas; Kalthoff, Holger; Trauzold, Anna; Schmitz, Ingo; Schütze, Stefan; Adam, Dieter

    2016-01-01

    Recently, a type of regulated necrosis (RN) called necroptosis was identified to be involved in many pathophysiological processes and emerged as an alternative method to eliminate cancer cells. However, only a few studies have elucidated components of TRAIL-mediated necroptosis useful for anticancer therapy. Therefore, we have compared this type of cell death to tumor necrosis factor (TNF)-mediated necroptosis and found similar signaling through acid and neutral sphingomyelinases, the mitochondrial serine protease HtrA2/Omi, Atg5, and vacuolar H+-ATPase. Notably, executive mechanisms of both TRAIL- and TNF-mediated necroptosis are independent of poly(ADP-ribose) polymerase 1 (PARP-1), and depletion of p38α increases the levels of both types of cell death. Moreover, we found differences in signaling between TNF- and TRAIL-mediated necroptosis, e.g., a lack of involvement of ubiquitin carboxyl hydrolase L1 (UCH-L1) and Atg16L1 in executive mechanisms of TRAIL-mediated necroptosis. Furthermore, we discovered indications of an altered involvement of mitochondrial components, since overexpression of the mitochondrial protein Bcl-2 protected Jurkat cells from TRAIL- and TNF-mediated necroptosis, and overexpression of Bcl-XL diminished only TRAIL-induced necroptosis in Colo357 cells. Furthermore, TRAIL does not require receptor internalization and endosome-lysosome acidification to mediate necroptosis. Taken together, pathways described for TRAIL-mediated necroptosis and differences from those for TNF-mediated necroptosis might be unique targets to increase or modify necroptotic signaling and eliminate tumor cells more specifically in future anticancer approaches. PMID:27528614

  14. Specific CD8+ T Cell Responses Correlate with Control of Simian Immunodeficiency Virus Replication in Mauritian Cynomolgus Macaques

    PubMed Central

    Budde, Melisa L.; Greene, Justin M.; Chin, Emily N.; Ericsen, Adam J.; Scarlotta, Matthew; Cain, Brian T.; Pham, Ngoc H.; Becker, Ericka A.; Harris, Max; Weinfurter, Jason T.; O'Connor, Shelby L.; Piatak, Michael; Lifson, Jeffrey D.; Gostick, Emma; Price, David A.; Friedrich, Thomas C.

    2012-01-01

    Specific major histocompatibility complex (MHC) class I alleles are associated with an increased frequency of spontaneous control of human and simian immunodeficiency viruses (HIV and SIV). The mechanism of control is thought to involve MHC class I-restricted CD8+ T cells, but it is not clear whether particular CD8+ T cell responses or a broad repertoire of epitope-specific CD8+ T cell populations (termed T cell breadth) are principally responsible for mediating immunologic control. To test the hypothesis that heterozygous macaques control SIV replication as a function of superior T cell breadth, we infected MHC-homozygous and MHC-heterozygous cynomolgus macaques with the pathogenic virus SIVmac239. As measured by a gamma interferon enzyme-linked immunosorbent spot assay (IFN-γ ELISPOT) using blood, T cell breadth did not differ significantly between homozygotes and heterozygotes. Surprisingly, macaques that controlled SIV replication, regardless of their MHC zygosity, shared durable T cell responses against similar regions of Nef. While the limited genetic variability in these animals prevents us from making generalizations about the importance of Nef-specific T cell responses in controlling HIV, these results suggest that the T cell-mediated control of virus replication that we observed is more likely the consequence of targeting specificity rather than T cell breadth. PMID:22573864

  15. Manufacture of tumor- and virus-specific T lymphocytes for adoptive cell therapies

    PubMed Central

    Wang, X; Rivière, I

    2015-01-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TILs) and genetically engineered T lymphocytes expressing chimeric antigen receptors (CARs) or conventional alpha/beta T-cell receptors (TCRs), collectively termed adoptive cell therapy (ACT), is an emerging novel strategy to treat cancer patients. Application of ACT has been constrained by the ability to isolate and expand functional tumor-reactive T cells. The transition of ACT from a promising experimental regimen to an established standard of care treatment relies largely on the establishment of safe, efficient, robust and cost-effective cell manufacturing protocols. The manufacture of cellular products under current good manufacturing practices (cGMPs) has a critical role in the process. Herein, we review current manufacturing methods for the large-scale production of clinical-grade TILs, virus-specific and genetically modified CAR or TCR transduced T cells in the context of phase I/II clinical trials as well as the regulatory pathway to get these complex personalized cellular products to the clinic. PMID:25721207

  16. Manufacture of tumor- and virus-specific T lymphocytes for adoptive cell therapies.

    PubMed

    Wang, X; Rivière, I

    2015-03-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TILs) and genetically engineered T lymphocytes expressing chimeric antigen receptors (CARs) or conventional alpha/beta T-cell receptors (TCRs), collectively termed adoptive cell therapy (ACT), is an emerging novel strategy to treat cancer patients. Application of ACT has been constrained by the ability to isolate and expand functional tumor-reactive T cells. The transition of ACT from a promising experimental regimen to an established standard of care treatment relies largely on the establishment of safe, efficient, robust and cost-effective cell manufacturing protocols. The manufacture of cellular products under current good manufacturing practices (cGMPs) has a critical role in the process. Herein, we review current manufacturing methods for the large-scale production of clinical-grade TILs, virus-specific and genetically modified CAR or TCR transduced T cells in the context of phase I/II clinical trials as well as the regulatory pathway to get these complex personalized cellular products to the clinic.

  17. Nanoparticles that reshape the tumor milieu create a therapeutic window for effective T cell therapy in solid malignancies.

    PubMed

    Zhang, Fan; Stephan, Sirkka B; Ene, Chibawanye I; Smith, Tyrel T; Holland, Eric C; Stephan, Matthias T

    2018-05-14

    A major obstacle to the success rate of chimeric antigen receptor (CAR-) T cell therapy against solid tumors is the microenvironment antagonistic to T cells that solid tumors create. Conventional checkpoint blockade can silence lymphocyte anti-survival pathways activated by tumors, but because they are systemic, these treatments disrupt immune homeostasis and induce autoimmune side effects. Thus, new technologies are required to remodel the tumor milieu without causing systemic toxicities. Here we demonstrate that targeted nanocarriers that deliver a combination of immune-modulatory agents can remove pro-tumor cell populations and simultaneously stimulate anti-tumor effector cells. We administered repeated infusions of lipid nanoparticles coated with the tumor-targeting peptide iRGD and loaded with a combination of a PI3K inhibitor to inhibit immune-suppressive tumor cells and an alpha-GalCer agonist of therapeutic T cells to synergistically sway the tumor microenvironment of solid tumors from suppressive to stimulatory. This treatment created a therapeutic window of two weeks, enabling tumor-specific CAR-T cells to home to the lesion, undergo robust expansion, and trigger tumor regression. CAR-T cells administered outside this therapeutic window had no curative effect. The lipid nanoparticles we used are easy to manufacture in substantial amounts, and we demonstrate that repeated infusions of them are safe. Our technology may therefore provide a practical and low-cost strategy to potentiate many cancer immunotherapies used to treat solid tumors, including T cell therapy, vaccines, and BITE platforms. Copyright ©2018, American Association for Cancer Research.

  18. Lack of FasL-mediated killing leads to in vivo tumor promotion in mouse Lewis lung cancer.

    PubMed

    Lee, J-K; Sayers, T J; Back, T C; Wigginton, J M; Wiltrout, R H

    2003-03-01

    Lewis lung carcinoma (3LL) cells were constitutively resistant to Fas-mediated apoptosis, but overexpression of Fas on 3LL cells allowed Fas-mediated apoptosis after crosslinking with agonist anti-Fas antibody (Jo2) in vitro. Surprisingly, Fas-overexpressing 3LL cells showed enhanced in vivo tumor progression, whereas no promotion of in vivo tumor growth was observed for dominant negative (DN) Fas-overexpressing 3LL transfectants in which the cytoplasmic death domain was deleted. In addition, the promotion of in vivo tumor growth by Fas-overexpression was reduced in gld (FasL-mutation) mice compared to normal mice. These data indicate that intact Fas/FasL cell signaling is required for the promotion of in vivo tumor growth by Fas overexpression in 3LL cells. In contrast to the efficient Fas-mediated killing induced in vitro by crosslinking with anti-Fas antibody, Fas-overexpressing 3LL cells were resistant in vitro to Fas-mediated apoptosis by activated T cells or transient FasL transfection. These data suggest that agonist anti-Fas antibody and natural FasL can transmit qualitatively different signals, and crosslinking of Fas with natural FasL on 3LL cells does not deliver the expected death signal. Thus, our results demonstrate that in some cases overexpression of Fas can result in a survival advantage for tumor cells in vivo.

  19. A pan-inhibitor of DASH family enzymes induces immune-mediated regression of murine sarcoma and is a potent adjuvant to dendritic cell vaccination and adoptive T-cell therapy.

    PubMed

    Duncan, Brynn B; Highfill, Steven L; Qin, Haiying; Bouchkouj, Najat; Larabee, Shannon; Zhao, Peng; Woznica, Iwona; Liu, Yuxin; Li, Youhua; Wu, Wengen; Lai, Jack H; Jones, Barry; Mackall, Crystal L; Bachovchin, William W; Fry, Terry J

    2013-10-01

    Multimodality therapy consisting of surgery, chemotherapy, and radiation will fail in approximately 40% of patients with pediatric sarcomas and result in substantial long-term morbidity in those who are cured. Immunotherapeutic regimens for the treatment of solid tumors typically generate antigen-specific responses too weak to overcome considerable tumor burden and tumor suppressive mechanisms and are in need of adjuvant assistance. Previous work suggests that inhibitors of DASH (dipeptidyl peptidase IV activity and/or structural homologs) enzymes can mediate tumor regression by immune-mediated mechanisms. Herein, we demonstrate that the DASH inhibitor, ARI-4175, can induce regression and eradication of well-established solid tumors, both as a single agent and as an adjuvant to a dendritic cell (DC) vaccine and adoptive cell therapy (ACT) in mice implanted with the M3-9-M rhabdomyosarcoma cell line. Treatment with effective doses of ARI-4175 correlated with recruitment of myeloid (CD11b) cells, particularly myeloid DCs, to secondary lymphoid tissues and with reduced frequency of intratumoral monocytic (CD11bLy6-CLy6-G) myeloid-derived suppressor cells. In immunocompetent mice, combining ARI-4175 with a DC vaccine or ACT with tumor-primed T cells produced significant improvements in tumor responses against well-established M3-9-M tumors. In M3-9-M-bearing immunodeficient (Rag1) mice, ACT combined with ARI-4175 produced greater tumor responses and significantly improved survival compared with either treatment alone. These studies warrant the clinical investigation of ARI-4175 for treatment of sarcomas and other malignancies, particularly as an adjuvant to tumor vaccines and ACT.

  20. Targeting Tumor Vasculature with TNF Leads Effector T Cells to the Tumor and Enhances Therapeutic Efficacy of Immune Checkpoint Blockers in Combination with Adoptive Cell Therapy.

    PubMed

    Elia, Angela Rita; Grioni, Matteo; Basso, Veronica; Curnis, Flavio; Freschi, Massimo; Corti, Angelo; Mondino, Anna; Bellone, Matteo

    2018-05-01

    Purpose: Irregular blood flow and endothelial cell anergy, which characterize many solid tumors, hinder tumor infiltration by cytotoxic T lymphocytes (CTL). This confers resistance to cancer immunotherapy with monoclonal antibodies directed against regulatory pathways in T lymphocytes (i.e., immune checkpoint blockade, ICB). We investigated whether NGR-TNF, a TNF derivative capable of targeting the tumor vasculature, and improving intratumor infiltration by activated CTLs, could sensitize tumors to ICB with antibodies specific for the PD-1 and CTLA-4 receptors. Experimental Design: Transgenic adenocarcinoma of the mouse prostate (TRAMP) mice with autochthonous prostate cancer and C57BL/6 mice with orthotopic B16 melanoma were treated with NGR-TNF, adoptive T-cell therapy (ACT), and ICB, and monitored for immune surveillance and disease progression. Results: The combination of ACT, NGR-TNF, and ICB was the most effective in delaying disease progression, and in improving overall survival of mice bearing ICB-resistant prostate cancer or melanoma. Mechanistically, the therapeutic effects were associated with potent tumor infiltration, especially by endogenous but also by adoptively transferred PD-1 + , granzyme B + , and interferon-γ + CTLs. The therapeutic effects were also associated with favorable T-effector/regulatory T cell ratios. Conclusions: Targeting the tumor vasculature with low-dose TNF in association with ACT may represent a novel strategy for enhancing T-cell infiltration in tumors and overcoming resistance to immune checkpoint blockers. Clin Cancer Res; 24(9); 2171-81. ©2018 AACR . ©2018 American Association for Cancer Research.

  1. T cell infiltration into Ewing sarcomas is associated with local expression of immune-inhibitory HLA-G.

    PubMed

    Spurny, Christian; Kailayangiri, Sareetha; Altvater, Bianca; Jamitzky, Silke; Hartmann, Wolfgang; Wardelmann, Eva; Ranft, Andreas; Dirksen, Uta; Amler, Susanne; Hardes, Jendrik; Fluegge, Maike; Meltzer, Jutta; Farwick, Nicole; Greune, Lea; Rossig, Claudia

    2018-01-19

    Ewing sarcoma (EwS) is an aggressive mesenchymal cancer of bones or soft tissues. The mechanisms by which this cancer interacts with the host immune system to induce tolerance are not well understood. We hypothesized that the non-classical, immune-inhibitory HLA-molecule HLA-G contributes to immune escape of EwS. While HLA-G pos suppressor T cells were not increased in the peripheral blood of EwS patients, HLA-G was locally expressed on the tumor cells and/or on infiltrating lymphocytes in 16 of 47 pretherapeutic tumor biopsies and in 4 of 12 relapse tumors. HLA-G expression was not associated with risk-related patient variables or response to standard chemotherapy, but with significantly increased numbers of tumor-infiltrating CD3+ T cells compared to HLA-G neg EwS biopsies. In a mouse model, EwS xenografts after adoptive therapy with tumor antigen-specific CAR T cells strongly expressed HLA-G whereas untreated control tumors were HLA-G neg . IFN-γ stimulation of EwS cell lines in vitro induced expression of HLA-G protein. We conclude that EwS cells respond to tumor-infiltrating T cells by upregulation of HLA-G, a candidate mediator of local immune escape. Strategies that modulate HLA-G expression in the tumor microenvironment may enhance the efficacy of cellular immunotherapeutics in this cancer.

  2. Interluekin-12 enhances the function and anti-tumor activity in murine and human CD8+ T cells

    PubMed Central

    Rubinstein, Mark P.; Su, Ee Wern; Suriano, Samantha; Cloud, Colleen A.; Andrijauskaite, Kristina; Kesarwani, Pravin; Schwartz, Kristina M.; Williams, Katelyn; Johnson, C. Bryce; Li, Mingli; Scurti, Gina M.; Salem, Mohamed L.; Paulos, Chrystal M.; Garrett-Mayer, Elizabeth; Mehrotra, Shikhar; Cole, David J.

    2016-01-01

    Mouse CD8+ T cells conditioned with Interleukin (IL)-12 ex vivo mediate the potent regression of established melanoma when transferred into lymphodepleted mice. However, the quantitative and qualitative changes induced by IL-12 in the responding mouse CD8+ T cells have not been well defined. Moreover, the mechanisms by which IL-12-conditioning impacts human CD8+ T cells, and how such cells might be expanded prior to infusion into patients is not known. We found that ex vivo IL-12-conditioning of mouse CD8+ T cells led to a 10- to 100-fold increase in persistence and anti-tumor efficacy upon adoptive transfer into lymphodepleted mice. The enhancing effect of IL-12 was associated with maintenance of functional avidity. Importantly, in the context of ongoing ACT clinical trials, human CD8+ T cells genetically modified with a tyrosinase-specific T-cell receptor exhibited significantly enhanced functional activity when conditioned with IL-12 as indicated by heightened granzyme B expression and elevated peptide-specific CD107a degranulation. This effect was sustainable despite the 20 days of in vitro cellular expansion required to expand cells over 1,000-fold allowing adequate cell numbers for administration to cancer patients. Overall, these findings support the efficacy and feasibility of ex vivo IL-12-conditioning of TCR-modified human CD8+ T cells for adoptive transfer and cancer therapy. PMID:25676709

  3. JNK signaling mediates EPHA2-dependent tumor cell proliferation, motility, and cancer stem cell-like properties in non-small cell lung cancer

    PubMed Central

    Song, Wenqiang; Ma, Yufang; Wang, Jialiang; Brantley-Sieders, Dana; Chen, Jin

    2014-01-01

    Recent genome-wide analyses in human lung cancer revealed that EPHA2 receptor tyrosine kinase is overexpressed in non-small cell lung cancer (NSCLC), and high levels of EPHA2 correlate with poor clinical outcome. However, the mechanistic basis for EPHA2-mediated tumor promotion in lung cancer remains poorly understood. Here we show that the JNK/c-JUN signaling mediates EPHA2-dependent tumor cell proliferation and motility. A screen of phospho-kinase arrays revealed a decrease in phospho-c-JUN levels in EPHA2 knockdown cells. Knockdown of EPHA2 inhibited p-JNK and p-c-JUN levels in approximately 50% of NSCLC lines tested. Treatment of parental cells with SP600125, a JNK inhibitor, recapitulated defects in EPHA2-deficient tumor cells; whereas constitutively activated JNK mutants were sufficient to rescue phenotypes. Knockdown of EPHA2 also inhibited tumor formation and progression in xenograft animal models in vivo. Furthermore, we investigated the role of EPHA2 in cancer stem-like cells. RNAi-mediated depletion of EPHA2 in multiple NSCLC lines decreased the ALDH positive cancer stem-like population and tumor spheroid formation in suspension. Depletion of EPHA2 in sorted ALDH positive populations markedly inhibited tumorigenicity in nude mice. Furthermore, analysis of a human lung cancer tissue microarray revealed a significant, positive association between EPHA2 and ALDH expression, indicating an important role for EPHA2 in human lung cancer stem-like cells. Collectively, these studies revealed a critical role of JNK signaling in EPHA2-dependent lung cancer cell proliferation and motility and a role for EPHA2 in cancer stem-like cell function, providing evidence for EPHA2 as a potential therapeutic target in NSCLC. PMID:24607842

  4. Adoptive T-cell therapy for cancer: The era of engineered T cells.

    PubMed

    Bonini, Chiara; Mondino, Anna

    2015-09-01

    Tumors originate from a number of genetic events that deregulate homeostatic mechanisms controlling normal cell behavior. The immune system, devoted to patrol the organism against pathogenic events, can identify transformed cells, and in several cases cause their elimination. It is however clear that several mechanisms encompassing both central and peripheral tolerance limit antitumor immunity, often resulting into progressive diseases. Adoptive T-cell therapy with either allogeneic or autologous T cells can transfer therapeutic immunity. To date, genetic engineering of T cells appears to be a powerful tool for shaping tumor immunity. In this review, we discuss the most recent achievements in the areas of suicide gene therapy, and TCR-modified T cells and chimeric antigen receptor gene-modified T cells. We provide an overview of current strategies aimed at improving the safety and efficacy of these approaches, with an outlook on prospective developments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. CTLA-4 blockade plus adoptive T cell transfer promotes optimal melanoma immunity in mice

    PubMed Central

    Mahvi, David A.; Meyers, Justin V.; Tatar, Andrew J.; Contreras, Amanda; Suresh, M.; Leverson, Glen E.; Sen, Siddhartha; Cho, Clifford S.

    2014-01-01

    Immunotherapeutic approaches to the treatment of advanced melanoma have relied on strategies that augment the responsiveness of endogenous tumor-specific T cell populations (e.g., CTLA-4 blockade-mediated checkpoint inhibition) or introduce exogenously-prepared tumor-specific T cell populations (e.g., adoptive cell transfer). Although both approaches have shown considerable promise, response rates to these therapies remain suboptimal. We hypothesized that a combinatorial approach to immunotherapy using both CTLA-4 blockade and non-lymphodepletional adoptive cell transfer could offer additive therapeutic benefit. C57BL/6 mice were inoculated with syngeneic B16F10 melanoma tumors transfected to express low levels of the lymphocytic choriomeningitis virus peptide GP33 (B16GP33), and treated with no immunotherapy, CTLA-4 blockade, adoptive cell transfer, or combination immunotherapy of CTLA-4 blockade with adoptive cell transfer. Combination immunotherapy resulted in optimal control of B16GP33 melanoma tumors. Combination immunotherapy promoted a stronger local immune response reflected by enhanced tumor-infiltrating lymphocyte populations, as well as a stronger systemic immune responses reflected by more potent tumor antigen-specific T cell activity in splenocytes. In addition, whereas both CTLA-4 blockade and combination immunotherapy were able to promote long-term immunity against B16GP33 tumors, only combination immunotherapy was capable of promoting immunity against parental B16F10 tumors as well. Our findings suggest that a combinatorial approach using CTLA-4 blockade with non-lymphodepletional adoptive cell transfer may promote additive endogenous and exogenous T cell activities that enable greater therapeutic efficacy in the treatment of melanoma. PMID:25658614

  6. Hypoxia-Mediated Epigenetic Regulation of Stemness in Brain Tumor Cells.

    PubMed

    Prasad, Pankaj; Mittal, Shivani Arora; Chongtham, Jonita; Mohanty, Sujata; Srivastava, Tapasya

    2017-06-01

    Activation of pluripotency regulatory circuit is an important event in solid tumor progression and the hypoxic microenvironment is known to enhance the stemness feature of some cells. The distinct population of cancer stem cells (CSCs)/tumor initiating cells exist in a niche and augment invasion, metastasis, and drug resistance. Previously, studies have reported global hypomethylation and site-specific aberrant methylation in gliomas along with other epigenetic modifications as important contributors to genomic instability during glioma progression. Here, we have demonstrated the role of hypoxia-mediated epigenetic modifications in regulating expression of core pluripotency factors, OCT4 and NANOG, in glioma cells. We observe hypoxia-mediated induction of demethylases, ten-eleven-translocation (TET) 1 and 3, but not TET2 in our cell-line model. Immunoprecipitation studies reveal active demethylation and direct binding of TET1 and 3 at the Oct4 and Nanog regulatory regions. Tet1 and 3 silencing assays further confirmed induction of the pluripotency pathway involving Oct4, Nanog, and Stat3, by these paralogues, although with varying degrees. Knockdown of Tet1 and Tet3 inhibited the formation of neurospheres in hypoxic conditions. We observed independent roles of TET1 and TET3 in differentially regulating pluripotency and differentiation associated genes in hypoxia. Overall, this study demonstrates an active demethylation in hypoxia by TET1 and 3 as a mechanism of Oct4 and Nanog overexpression thus contributing to the formation of CSCs in gliomas. Stem Cells 2017;35:1468-1478. © 2017 AlphaMed Press.

  7. The tumor microenvironment: An irreplaceable element of tumor budding and epithelial-mesenchymal transition-mediated cancer metastasis

    PubMed Central

    Li, Hui; Xu, Fangying; Li, Si; Zhong, Anjing; Meng, Xianwen; Lai, Maode

    2016-01-01

    ABSTRACT Tumor budding occurs at the invasive front of cancer; the tumor cells involved have metastatic and stemness features, indicating a poor prognosis. Tumor budding is partly responsible for cancer metastasis, and its initiation is based on the epithelial-mesenchymal transition (EMT) process. The EMT process involves the conversion of epithelial cells into migratory and invasive cells, and is a profound event in tumorigenesis. The EMT, associated with the formation of cancer stem cells (CSCs) and resistance to therapy, results from a combination of gene mutation, epigenetic regulation, and microenvironmental control. Tumor budding can be taken to represent the EMT in vivo. The EMT process is under the influence of the tumor microenvironment as well as tumor cells themselves. Here, we demonstrate that the tumor microenvironment dominates EMT development and impacts cancer metastasis, as well as promotes CSC formation and mediates drug resistance. In this review, we mainly discuss components of the microenvironment, such as the extracellular matrix (ECM), inflammatory cytokines, metabolic products, and hypoxia, that are involved in and impact on the acquisition of tumor-cell motility and dissemination, the EMT, metastatic tumor-cell formation, tumor budding and CSCs, and cancer metastasis, including subsequent chemo-resistance. From our point of view, the tumor microenvironment now constitutes a promising target for cancer therapy. PMID:26743180

  8. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia

    PubMed Central

    Paszkiewicz, Paulina J.; Fräßle, Simon P.; Srivastava, Shivani; Sommermeyer, Daniel; Hudecek, Michael; Sadelain, Michel; Liu, Lingfeng; Jensen, Michael C.; Riddell, Stanley R.; Busch, Dirk H.

    2016-01-01

    The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells. Previously, we developed a truncated version of the epidermal growth factor receptor (EGFRt) that is coexpressed with the CAR on the T cell surface. Here, we show that targeting EGFRt with the IgG1 monoclonal antibody cetuximab eliminates CD19 CAR T cells both early and late after adoptive transfer in mice, resulting in complete and permanent recovery of normal functional B cells, without tumor relapse. EGFRt can be incorporated into many clinical applications to regulate the survival of gene-engineered cells. These results support the concept that EGFRt represents a promising approach to improve safety of cell-based therapies. PMID:27760047

  9. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia.

    PubMed

    Paszkiewicz, Paulina J; Fräßle, Simon P; Srivastava, Shivani; Sommermeyer, Daniel; Hudecek, Michael; Drexler, Ingo; Sadelain, Michel; Liu, Lingfeng; Jensen, Michael C; Riddell, Stanley R; Busch, Dirk H

    2016-11-01

    The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells. Previously, we developed a truncated version of the epidermal growth factor receptor (EGFRt) that is coexpressed with the CAR on the T cell surface. Here, we show that targeting EGFRt with the IgG1 monoclonal antibody cetuximab eliminates CD19 CAR T cells both early and late after adoptive transfer in mice, resulting in complete and permanent recovery of normal functional B cells, without tumor relapse. EGFRt can be incorporated into many clinical applications to regulate the survival of gene-engineered cells. These results support the concept that EGFRt represents a promising approach to improve safety of cell-based therapies.

  10. Gene Targets in Prostate Tumor Cells that Mediate Aberrant Growth and Invasiveness

    DTIC Science & Technology

    2005-02-01

    Craig A. Hauser , Ph.D. Gabriele Foos, Ph.D. CONTRACTING ORGANIZATION: The Burnham Institute La Jolla, California 92037 REPORT DATE: February 2005 TYPE...NUMBERS Gene Targets in Prostate Tumor Cells that Mediate DAMD17-02-1-0019 Aberrant Growth and Invasiveness 6. AUTHOR(S) Craig A. Hauser , Ph.D. Gabriele...REPORTABLE OUTCOMES Foos G, Hauser CA (2004) The role of Ets transcription factors in mediating cellular transformation. In: Handbook of Experimental

  11. IL-12p40 impairs mesenchymal stem cell-mediated bone regeneration via CD4+ T cells

    PubMed Central

    Xu, Jiajia; Wang, Yiyun; Li, Jing; Zhang, Xudong; Geng, Yiyun; Huang, Yan; Dai, Kerong; Zhang, Xiaoling

    2016-01-01

    Severe or prolonged inflammatory response caused by infection or biomaterials leads to delayed healing or bone repair failure. This study investigated the important roles of the proinflammatory cytokines of the interleukin-12 (IL-12) family, namely, IL-12 and IL-23, in the inflammation-mediated inhibition of bone formation in vivo. IL-12p40−/− mice lacking IL-12 and IL-23 exhibited enhanced bone formation. IL-12 and IL-23 indirectly inhibited bone marrow mesenchymal stem cell (BMMSC) differentiation by stimulating CD4+ T cells to increase interferon γ (IFN-γ) and IL-17 levels. Mechanistically, IL-17 synergistically enhanced IFN-γ-induced BMMSC apoptosis. Moreover, INF-γ and IL-17 exerted proapoptotic effects by upregulating the expression levels of Fas and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), as well as by activating the caspase cascade in BMMSCs. IL-12p40 depletion in mice could promote ectopic bone formation. Thus, IL-12p40 is an attractive therapeutic target to overcome the inflammation-mediated inhibition of bone formation in vivo. PMID:27472064

  12. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells

    PubMed Central

    Catalán, Elena; Charni, Seyma; Jaime, Paula; Aguiló, Juan Ignacio; Enríquez, José Antonio; Naval, Javier; Pardo, Julián; Villalba, Martín; Anel, Alberto

    2015-01-01

    Tumor cells have a tendency to use glucose fermentation to obtain energy instead of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this phenotype correlated with loss of ERK5 expression and with reduced MHC class I expression. Consequently, tumor cells could evade cytotoxic T lymphocyte (CTL)-mediated immune surveillance, but also increase their sensitivity to natural killer (NK) cells. These outcomes were evaluated using two cellular models: leukemic EL4 cells and L929 transformed fibroblasts and their derived ρ° cell lines, which lack mitochondrial DNA. We have also used a L929 cell sub-line that spontaneously lost matrix attachment (L929dt), reminiscent of metastasis generation, that also downregulated MHC-I and ERK5 expression. MHC-I expression is lower in ρ° cells than in the parental cell lines, but they were equally sensitive to CTL. On the contrary, ρ° cells were more sensitive to activated NK cells than parental cells. On the other hand, L929dt cells were resistant to CTL and NK cells, showed reduced viability when forced to perform OXPHOS, and surviving cells increased MHC-I expression and became sensitive to CTL. The present results suggest that when the reduction in MHC-I levels in tumor cells due to glycolytic metabolism is partial, the increase in sensitivity to NK cells seems to predominate. However, when tumor cells completely lose MHC-I expression, the combination of treatments that increase OXPHOS with CTL-mediated immunotherapy could be a promising therapeutic approach. PMID:25949869

  13. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells.

    PubMed

    Catalán, Elena; Charni, Seyma; Jaime, Paula; Aguiló, Juan Ignacio; Enríquez, José Antonio; Naval, Javier; Pardo, Julián; Villalba, Martín; Anel, Alberto

    2015-01-01

    Tumor cells have a tendency to use glucose fermentation to obtain energy instead of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this phenotype correlated with loss of ERK5 expression and with reduced MHC class I expression. Consequently, tumor cells could evade cytotoxic T lymphocyte (CTL)-mediated immune surveillance, but also increase their sensitivity to natural killer (NK) cells. These outcomes were evaluated using two cellular models: leukemic EL4 cells and L929 transformed fibroblasts and their derived ρ° cell lines, which lack mitochondrial DNA. We have also used a L929 cell sub-line that spontaneously lost matrix attachment (L929dt), reminiscent of metastasis generation, that also downregulated MHC-I and ERK5 expression. MHC-I expression is lower in ρ° cells than in the parental cell lines, but they were equally sensitive to CTL. On the contrary, ρ° cells were more sensitive to activated NK cells than parental cells. On the other hand, L929dt cells were resistant to CTL and NK cells, showed reduced viability when forced to perform OXPHOS, and surviving cells increased MHC-I expression and became sensitive to CTL. The present results suggest that when the reduction in MHC-I levels in tumor cells due to glycolytic metabolism is partial, the increase in sensitivity to NK cells seems to predominate. However, when tumor cells completely lose MHC-I expression, the combination of treatments that increase OXPHOS with CTL-mediated immunotherapy could be a promising therapeutic approach.

  14. Adoptive immunotherapy mediated by ex vivo expanded natural killer T cells against CD1d-expressing lymphoid neoplasms.

    PubMed

    Bagnara, Davide; Ibatici, Adalberto; Corselli, Mirko; Sessarego, Nadia; Tenca, Claudya; De Santanna, Amleto; Mazzarello, Andrea; Daga, Antonio; Corvò, Renzo; De Rossi, Giulio; Frassoni, Francesco; Ciccone, Ermanno; Fais, Franco

    2009-07-01

    CD1d is a monomorphic antigen presentation molecule expressed in several hematologic malignancies. Alpha-galactosylceramide (alpha-GalCer) is a glycolipid that can be presented to cytotoxic CD1d-restricted T cells. These reagents represent a potentially powerful tool for cell mediated immunotherapy. We set up an experimental model to evaluate the use of adoptively transferred cytotoxic CD1d-restricted T cells and alpha-GalCer in the treatment of mice engrafted with CD1d(+) lymphoid neoplastic cells. To this end the C1R cell line was transfected with CD1c or CD1d molecules. In addition, upon retroviral infection firefly luciferase was expressed on C1R transfected cell lines allowing the evaluation of tumor growth in xenografted immunodeficient NOD/SCID mice. The C1R-CD1d cell line was highly susceptible to specific CD1d-restricted T cell cytotoxicity in the presence alpha-GalCer in vitro. After adoptive transfer of CD1d-restricted T cells and alpha-GalCer to mice engrafted with both C1R-CD1c and C1R-CD1d, a reduction in tumor growth was observed only in CD1d(+) masses. In addition, CD1d-restricted T-cell treatment plus alpha-GalCer eradicated small C1R-CD1d(+) nodules. Immunohistochemical analysis revealed that infiltrating NKT cells were mainly observed in CD1d nodules. Our results indicate that ex vivo expanded cytotoxic CD1d-restricted T cells and alpha-GalCer may represent a new immunotherapeutic tool for treatment of CD1d(+) hematologic malignancies.

  15. Evolution of Antibody-Drug Conjugate Tumor Disposition Model to Predict Preclinical Tumor Pharmacokinetics of Trastuzumab-Emtansine (T-DM1).

    PubMed

    Singh, Aman P; Maass, Katie F; Betts, Alison M; Wittrup, K Dane; Kulkarni, Chethana; King, Lindsay E; Khot, Antari; Shah, Dhaval K

    2016-07-01

    A mathematical model capable of accurately characterizing intracellular disposition of ADCs is essential for a priori predicting unconjugated drug concentrations inside the tumor. Towards this goal, the objectives of this manuscript were to: (1) evolve previously published cellular disposition model of ADC with more intracellular details to characterize the disposition of T-DM1 in different HER2 expressing cell lines, (2) integrate the improved cellular model with the ADC tumor disposition model to a priori predict DM1 concentrations in a preclinical tumor model, and (3) identify prominent pathways and sensitive parameters associated with intracellular activation of ADCs. The cellular disposition model was augmented by incorporating intracellular ADC degradation and passive diffusion of unconjugated drug across tumor cells. Different biomeasures and chemomeasures for T-DM1, quantified in the companion manuscript, were incorporated into the modified model of ADC to characterize in vitro pharmacokinetics of T-DM1 in three HER2+ cell lines. When the cellular model was integrated with the tumor disposition model, the model was able to a priori predict tumor DM1 concentrations in xenograft mice. Pathway analysis suggested different contribution of antigen-mediated and passive diffusion pathways for intracellular unconjugated drug exposure between in vitro and in vivo systems. Global and local sensitivity analyses revealed that non-specific deconjugation and passive diffusion of the drug across tumor cell membrane are key parameters for drug exposure inside a cell. Finally, a systems pharmacokinetic model for intracellular processing of ADCs has been proposed to highlight our current understanding about the determinants of ADC activation inside a cell.

  16. Chimeric Antigen Receptor-Modified T Cells for Solid Tumors: Challenges and Prospects

    PubMed Central

    Guo, Yelei; Wang, Yao; Han, Weidong

    2016-01-01

    Recent studies have highlighted the successes of chimeric antigen receptor-modified T- (CART-) cell-based therapy for B-cell malignancies, and early phase clinical trials have been launched in recent years. The few published clinical studies of CART cells in solid tumors have addressed safety and feasibility, but the clinical outcome data are limited. Although antitumor effects were confirmed in vitro and in animal models, CART-cell-based therapy still faces several challenges when directed towards solid tumors, and it has been difficult to achieve the desired outcomes in clinical practice. Many studies have struggled to improve the clinical responses to and benefits of CART-cell treatment of solid tumors. In this review, the status quo of CART cells and their clinical applications for solid tumors will be summarized first. Importantly, we will suggest improvements that could increase the therapeutic effectiveness of CART cells for solid tumors and their future clinical applications. These interventions will make treatment with CART cells an effective and routine therapy for solid tumors. PMID:26998495

  17. An integrated view of suppressor T cell subsets in immunoregulation

    PubMed Central

    Jiang, Hong; Chess, Leonard

    2004-01-01

    The immune system evolved to protect organisms from a virtually infinite variety of disease-causing agents but to avoid harmful responses to self. Because immune protective mechanisms include the elaboration of potent inflammatory molecules, antibodies, and killer cell activation — which together can not only destroy invading microorganisms, pathogenic autoreactive cells, and tumors, but also mortally injure normal cells — the immune system is inherently a “double-edged sword” and must be tightly regulated. Immune response regulation includes homeostatic mechanisms intrinsic to the activation and differentiation of antigen-triggered immunocompetent cells and extrinsic mechanisms mediated by suppressor cells. This review series will focus on recent advances indicating that distinct subsets of regulatory CD4+ and CD8+ T cells as well as NK T cells control the outgrowth of potentially pathogenic antigen-reactive T cells and will highlight the evidence that these suppressor T cells may play potentially important clinical roles in preventing and treating immune-mediated disease. Here we provide a historical overview of suppressor cells and the experimental basis for the existence of functionally and phenotypically distinct suppressor subsets. Finally, we will speculate on how the distinct suppressor cell subsets may function in concert to regulate immune responses. PMID:15520848

  18. Novel Therapy for Glioblastoma Multiforme by Restoring LRRC4 in Tumor Cells: LRRC4 Inhibits Tumor-Infitrating Regulatory T Cells by Cytokine and Programmed Cell Death 1-Containing Exosomes

    PubMed Central

    Li, Peiyao; Feng, Jianbo; Liu, Yang; Liu, Qiang; Fan, Li; Liu, Qing; She, Xiaoling; Liu, Changhong; Liu, Tao; Zhao, Chunhua; Wang, Wei; Li, Guiyuan; Wu, Minghua

    2017-01-01

    Glioblastoma multiforme (GBM) is a heterogeneous malignant brain tumor, the pathological incidence of which induces the accumulation of tumor-infiltrating lymphocytes (TILs). As a tumor suppressor gene, LRRC4 is absent in GBM cells. Here, we report that the recovery of LRRC4 in GBM cells inhibited the infiltration of tumor-infiltrating regulatory T cells (Ti-Treg), promoted the expansion of tumor-infiltrating effector T (Ti-Teff) cells and CD4+CCR4+ T cells, and enhanced the chemotaxis of CD4+CCR4+ T cells in the GBM immune microenvironment. LRRC4 was not transferred into TILs from GBM cells through exosomes but mainly exerted its inhibiting function on Ti-Treg cell expansion by directly promoting cytokine secretion. GBM cell-derived exosomes (cytokine-free and programmed cell death 1 containing) also contributed to the modulation of LRRC4 on Ti-Treg, Ti-Teff, and CD4+CCR4+ T cells. In GBM cells, LRRC4 directly bound to phosphoinositide-dependent protein kinase 1 (PDPK1), phosphorylated IKKβser181, facilitated NF-κB activation, and promoted the secretion of interleukin-6 (IL-6), CCL2, and interferon gamma. In addition, HSP90 was required to maintain the interaction between LRRC4 and PDPK1. However, the inhibition of Ti-Treg cell expansion and promotion of CD4+CCR4+ T cell chemotaxis by LRRC4 could be blocked by anti-IL-6 antibody or anti-CCL2 antibody, respectively. miR-101 is a suppressor gene in GBM. Our previous studies have shown that EZH2, EED, and DNMT3A are direct targets of miR-101. Here, we showed that miR-101 reversed the hypermethylation of the LRRC4 promoter and induced the re-expression of LRRC4 in GBM cells by directly targeting EZH2, EED, and DNMT3A. Our results reveal a novel mechanism underlying GBM microenvironment and provide a new therapeutic strategy using re-expression of LRRC4 in GBM cells to create a permissive intratumoral environment. PMID:29312296

  19. Adoptive transfer of CD8+ T cells generated from induced pluripotent stem cells triggers regressions of large tumors along with immunological memory

    PubMed Central

    Saito, Hidehito; Okita, Keisuke; Chang, Alfred E.; Ito, Fumito

    2016-01-01

    Current approaches to adoptive T cell therapy are limited by the difficulty of obtaining sufficient numbers of T cells against targeted antigens with useful in vivo characteristics. Theoretically, this limitation could be overcome by using induced pluripotent stem cells (iPSCs) that could provide an unlimited source of autologous T cells. However, the therapeutic efficacy of iPSC-derived regenerated T cells remains to be demonstrated. Here we report the first successful reprogramming of T-cell receptor (TCR) transgenic CD8+ T cells into pluripotency. As part of the work, we established a syngeneic mouse model for evaluating in vitro and in vivo antitumor reactivity of regenerated T cells from iPSCs bearing a rearranged TCR of known antigen specificity. Stably TCR retained T cell-derived iPSCs differentiated into CD4+CD8+ T cells that expressed CD3 and the desired TCR in vitro. Stimulation of iPSC-derived CD4+CD8+ T cells with the cognate antigen in the presence of IL-7 and IL-15 followed by expansion with IL-2, IL-7 and IL-15 generated large numbers of less-differentiated CD8+ T cells with antigen-specific potent cytokine production and cytolytic capacity. Furthermore, adoptively transferred iPSC-derived CD8+ T cells escaped immune rejection, mediated effective regression of large tumors, improved survival, and established antigen-specific immunological memory. Our findings illustrate the translational potential of iPSCs to provide an unlimited number of phenotypically defined, functional, and expandable autologous antigen-specific T cells with the characteristics needed to enable in vivo effectiveness. PMID:27197199

  20. CD4+ CD25+ Regulatory T Cells Impair HIV-1-Specific CD4 T Cell Responses by Upregulating Interleukin-10 Production in Monocytes

    PubMed Central

    Kwon, Douglas S.; Angin, Mathieu; Hongo, Tomoyuki; Law, Kenneth M.; Johnson, Jessica; Porichis, Filippos; Hart, Meghan G.; Pavlik, David F.; Tighe, Daniel P.; Kavanagh, Daniel G.; Streeck, Hendrik; Addo, Marylyn M.

    2012-01-01

    T cell dysfunction in the presence of ongoing antigen exposure is a cardinal feature of chronic viral infections with persistent high viremia, including HIV-1. Although interleukin-10 (IL-10) has been implicated as an important mediator of this T cell dysfunction, the regulation of IL-10 production in chronic HIV-1 infection remains poorly understood. We demonstrated that IL-10 is elevated in the plasma of individuals with chronic HIV-1 infection and that blockade of IL-10 signaling results in a restoration of HIV-1-specific CD4 T cell proliferation, gamma interferon (IFN-γ) secretion, and, to a lesser extent, IL-2 production. Whereas IL-10 blockade leads to restoration of IFN-γ secretion by HIV-1-specific CD4 T cells in all categories of subjects investigated, significant enhancement of IL-2 production and improved proliferation of CD4 T helper cells are restricted to viremic individuals. In peripheral blood mononuclear cells (PBMCs), this IL-10 is produced primarily by CD14+ monocytes, but its production is tightly controlled by regulatory T cells (Tregs), which produce little IL-10 directly. When Tregs are depleted from PBMCs of viremic individuals, the effect of the IL-10 signaling blockade is abolished and IL-10 production by monocytes decreases, while the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), increases. The regulation of IL-10 by Tregs appears to be mediated primarily by contact or paracrine-dependent mechanisms which involve IL-27. This work describes a novel mechanism by which regulatory T cells control IL-10 production and contribute to dysfunctional HIV-1-specific CD4 T cell help in chronic HIV-1 infection and provides a unique mechanistic insight into the role of regulatory T cells in immune exhaustion. PMID:22496237

  1. Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells.

    PubMed

    Shen, Haifa; Sun, Tong; Hoang, Hanh H; Burchfield, Jana S; Hamilton, Gillian F; Mittendorf, Elizabeth A; Ferrari, Mauro

    2017-12-01

    Cancer immunotherapy has become arguably the most promising advancement in cancer research and therapy in recent years. The efficacy of cancer immunotherapy is critically dependent on specific physiological and physical processes - collectively referred to as transport barriers - including the activation of T cells by antigen presenting cells, T cells migration to and penetration into the tumor microenvironment, and movement of nutrients and other immune cells through the tumor microenvironment. Nanotechnology-based approaches have great potential to help overcome these transport barriers. In this review, we discuss the ways that nanotechnology is being leveraged to improve the efficacy and potency of various cancer immunotherapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Phenotype and function of T cells infiltrating visceral metastases from gastrointestinal cancers and melanoma: implications for adoptive cell transfer therapy.

    PubMed

    Turcotte, Simon; Gros, Alena; Hogan, Katherine; Tran, Eric; Hinrichs, Christian S; Wunderlich, John R; Dudley, Mark E; Rosenberg, Steven A

    2013-09-01

    Adoptive cell transfer of tumor-infiltrating lymphocytes (TILs) can mediate cancer regression in patients with metastatic melanoma, but whether this approach can be applied to common epithelial malignancies remains unclear. In this study, we compared the phenotype and function of TILs derived from liver and lung metastases from patients with gastrointestinal (GI) cancers (n = 14) or melanoma (n = 42). Fewer CD3(+) T cells were found to infiltrate GI compared with melanoma metastases, but the proportions of CD8(+) cells, T cell differentiation stage, and expression of costimulatory molecules were similar for both tumor types. Clinical-scale expansion up to ~50 × 10(9) T cells on average was obtained for all patients with GI cancer and melanoma. From GI tumors, however, TIL outgrowth in high-dose IL-2 yielded 22 ± 1.4% CD3(+)CD8(+) cells compared with 63 ± 2.4% from melanoma (p < 0.001). IFN-γ ELISA demonstrated MHC class I-mediated reactivity of TIL against autologous tumor in 5 of 7 GI cancer patients tested (9% of 188 distinct TIL cultures) and in 9 of 10 melanoma patients (43% of 246 distinct TIL cultures). In these assays, MHC class I-mediated up-regulation of CD137 (4-1BB) expression on CD8(+) cells suggested that 0-3% of TILs expanded from GI cancer metastases were tumor-reactive. This study implies that the main challenge to the development of TIL adoptive cell transfer for metastatic GI cancers may not be the in vitro expansion of bulk TILs, but the ability to select and enrich for tumor-reactive T cells.

  3. Phenotype and Function of T Cells Infiltrating Visceral Metastases from Gastrointestinal Cancers and Melanoma: Implications for Adoptive Cell Transfer Therapy

    PubMed Central

    Turcotte, Simon; Gros, Alena; Hogan, Katherine; Tran, Eric; Hinrichs, Christian S.; Wunderlich, John R.; Dudley, Mark E.

    2013-01-01

    Adoptive cell transfer of tumor-infiltrating lymphocytes (TILs) can mediate cancer regression in patients with metastatic melanoma, but whether this approach can be applied to common epithelial malignancies remains unclear. In this study, we compared the phenotype and function of TILs derived from liver and lung metastases from patients with gastrointestinal (GI) cancers (n = 14) or melanoma (n = 42). Fewer CD3+ T cells were found to infiltrate GI compared with melanoma metastases, but the proportions of CD8+ cells, T cell differentiation stage, and expression of costimulatory molecules were similar for both tumor types. Clinical-scale expansion up to ∼50 × 109 T cells on average was obtained for all patients with GI cancer and melanoma. From GI tumors, however, TIL outgrowth in high-dose IL-2 yielded 22 ± 1.4% CD3+CD8+ cells compared with 63 ± 2.4% from melanoma (p < 0.001). IFN-γ ELISA demonstrated MHC class I–mediated reactivity of TIL against autologous tumor in 5 of 7 GI cancer patients tested (9% of 188 distinct TIL cultures) and in 9 of 10 melanoma patients (43% of 246 distinct TIL cultures). In these assays, MHC class I–mediated up-regulation of CD137 (4-1BB) expression on CD8+ cells suggested that 0–3% of TILs expanded from GI cancer metastases were tumor-reactive. This study implies that the main challenge to the development of TIL adoptive cell transfer for metastatic GI cancers may not be the in vitro expansion of bulk TILs, but the ability to select and enrich for tumor-reactive T cells. PMID:23904171

  4. A requirement of dendritic cell-derived interleukin-27 for the tumor infiltration of regulatory T cells.

    PubMed

    Xia, Siyuan; Wei, Jun; Wang, Jingya; Sun, Huayan; Zheng, Wenting; Li, Yangguang; Sun, Yanbo; Zhao, Huiyuan; Zhang, Song; Wen, Ti; Zhou, Xinglong; Gao, Jian-Xin; Wang, Puyue; Wu, Zhenzhou; Zhao, Liqing; Yin, Zhinan

    2014-05-01

    Tregs (Foxp3 + CD4 + ) are enriched in tumors to foster a tolerant microenvironment that inhibits antitumor immune response. IL-27 is reported to regulate the development and function of Tregs in vitro and in vivo; however, the effects of endogenous IL-27 on Tregs in the tumor microenvironment remain elusive. We demonstrated that in the absence of DC-derived IL-27, Tregs were decreased significantly in transplanted B16 melanoma, transplanted EL-4 lymphoma, and MCA-induced fibrosarcoma by using IL-27p28 conditional KO mice. Further studies revealed that IL-27 promoted the expression of CCL22, which is established to mediate the recruitment of peripheral Tregs into tumors. Tumor-associated DCs were identified as the major source of CCL22 in tumor sites, and IL-27 could induce CCL22 expression in an IL-27R-dependent manner. Intratumoral reconstitution of rmCCL22 or rmIL-27, but not rmIL-27p28, significantly restored the tumor infiltration of Tregs in IL-27p28 KO mice. Correlated with a decreased number of Tregs, tumor-infiltrating CD4 T cells were found to produce much more IFN-γ in IL-27p28 KO mice, which highlighted the physiological importance of Tregs in suppressing an antitumor immune response. Overall, our results identified a novel mechanism of action of IL-27 on Tregs in the context of cancers. © 2014 Society for Leukocyte Biology.

  5. Pancreatic cancer counterattack: MUC4 mediates Fas-independent apoptosis of antigen-specific cytotoxic T lymphocyte.

    PubMed

    Zhu, Yi; Zhang, Jing-Jing; Liang, Wen-Biao; Zhu, Rong; Wang, Bin; Miao, Yi; Xu, Ze-Kuan

    2014-04-01

    Tumor-associated MUC4 mucin has considerable potential as an immunotherapy target for pancreatic cancer. In previous studies, we developed dendritic cell (DC) vaccines which elicited MUC4 antigen-specific cytotoxic T lymphocyte (MS-CTL) response against tumor cells in vitro. Due to the observation that MS-CTL apoptotic rate increased significantly when co-cultured with MUC4+ tumor cells compared with T2 cells, we investigated whether high expression levels of MUC4 in pancreatic cancer cells would have an effect on the significant increase of apoptosis rate of MS-CTLs. First, the adverse influence of regulatory T cells (Tregs) was eliminated by CD8+ T lymphocyte sorting before the induction of MS-CTLs. Then, we constructed clonal MUC4-knockdown HPAC pancreatic cancer sublines with different MUC4 expression for co-incubation system. By utilizing appropriate control to rule out the possible apoptosis-induced pathway of intrinsic activated cell-autonomous death (ACAD) and analogous antigen-dependent apoptosis of CTL (ADAC) in our study system, further analysis of the effect of MUC4 membrane-expression, supernatants and blockade of CTL surface Fas receptor on MS-CTL apoptosis was carried out. The results demonstrated that the level of MUC4 membrane expression strongly positively correlated with MS-CTL apoptosis and the influence of supernatants and Fas-blockade did not significantly correlate with MS-CTL apoptosis. This evidence suggested that there may be a novel counterattack pathway of pancreatic cancer cells, which is a MUC4-mediated, cell contact-dependent and Fas-independent process, to induce CTL apoptosis. Therefore, further exploration and understanding of the potential counterattack mechanisms is beneficial to enhance the efficacy of MUC4 specific tumor vaccines.

  6. Reprogramming tumor-infiltrating dendritic cells for CD103+ CD8+ mucosal T-cell differentiation and breast cancer rejection.

    PubMed

    Wu, Te-Chia; Xu, Kangling; Banchereau, Romain; Marches, Florentina; Yu, Chun I; Martinek, Jan; Anguiano, Esperanza; Pedroza-Gonzalez, Alexander; Snipes, G Jackson; O'Shaughnessy, Joyce; Nishimura, Stephen; Liu, Yong-Jun; Pascual, Virginia; Banchereau, Jacques; Oh, Sangkon; Palucka, Karolina

    2014-05-01

    Our studies showed that tumor-infiltrating dendritic cells (DC) in breast cancer drive inflammatory Th2 (iTh2) cells and protumor inflammation. Here, we show that intratumoral delivery of the β-glucan curdlan, a ligand of dectin-1, blocks the generation of iTh2 cells and prevents breast cancer progression in vivo. Curdlan reprograms tumor-infiltrating DCs via the ligation of dectin-1, enabling the DCs to become resistant to cancer-derived thymic stromal lymphopoietin (TSLP), to produce IL-12p70, and to favor the generation of Th1 cells. DCs activated via dectin-1, but not those activated with TLR-7/8 ligand or poly I:C, induce CD8+ T cells to express CD103 (αE integrin), a ligand for cancer cells, E-cadherin. Generation of these mucosal CD8+ T cells is regulated by DC-derived integrin αvβ8 and TGF-β activation in a dectin-1-dependent fashion. These CD103+ CD8+ mucosal T cells accumulate in the tumors, thereby increasing cancer necrosis and inhibiting cancer progression in vivo in a humanized mouse model of breast cancer. Importantly, CD103+ CD8+ mucosal T cells elicited by reprogrammed DCs can reject established cancer. Thus, reprogramming tumor-infiltrating DCs represents a new strategy for cancer rejection.

  7. Adoptive cell therapy of prostate cancer using female mice-derived T cells that react with prostate antigens

    PubMed Central

    Yi, Huanfa; Yu, Xiaofei; Guo, Chunqing; Manjili, Masoud H.; Repasky, Elizabeth A.; Wang, Xiang-Yang

    2011-01-01

    In this study, we report a novel treatment strategy that could potentially be used to improve efficacy of adoptive cell therapy for patients with prostate cancer. We show that female C57BL/6 mice are able to effectively reject two syngeneic prostate tumors (TRAMP-C2 and RM1) in a T cell-dependent manner. The protective antitumor immunity appears to primarily involve T cell responses reactive against general prostate tumor/tissue antigens, rather than simply to male-specific H-Y antigen. For the first time we show that adoptive transfer of lymphocytes from TRAMP-C2-primed or naive female mice effectively control prostate tumor growth in male mice, when combined with host pre-conditioning (i.e., non-myeloablative lymphodepletion) and IL-2 administration. No pathological autoimmune response was observed in the treated tumor-bearing male mice. Our studies provide new insights regarding the immune-mediated recognition of male-specific tissue, such as the prostate, and may offer new immunotherapy treatment strategies for advanced prostate cancer. PMID:21088965

  8. Antibody-Dependent Cell-Mediated Cytotoxicity Effector-Enhanced EphA2 Agonist Monoclonal Antibody Demonstrates Potent Activity against Human Tumors1

    PubMed Central

    Bruckheimer, Elizabeth M; Fazenbaker, Christine A; Gallagher, Sandra; Mulgrew, Kathy; Fuhrmann, Stacy; Coffman, Karen T; Walsh, William; Ready, Shannon; Cook, Kim; Damschroder, Melissa; Kinch, Michael; Kiener, Peter A; Woods, Rob; Gao, Changshou; Dall'Acqua, William; Wu, Herren; Coats, Steven

    2009-01-01

    EphA2 is a receptor tyrosine kinase that has been shown to be overexpressed in a variety of human tumor types. Previous studies demonstrated that agonist monoclonal antibodies targeting EphA2 induced the internalization and degradation of the receptor, thereby abolishing its oncogenic effects. In this study, the in vitro and in vivo antibody-dependent cell-mediated cytotoxicity (ADCC) activity of EphA2 effector-enhanced agonist monoclonal antibodies was evaluated. With tumor cell lines and healthy human peripheral blood monocytes, the EphA2 antibodies demonstrated ∼80% tumor cell killing. In a dose-dependent manner, natural killer (NK) cells were required for the in vitro ADCC activity and became activated as demonstrated by the induction of cell surface expression of CD107a. To assess the role of NK cells on antitumor efficacy in vivo, the EphA2 antibodies were evaluated in xenograft models in severe compromised immunodeficient (SCID) mice (which have functional NK cells and monocytes) and SCID nonobese diabetic (NOD) mice (which largely lack functional NK cells and monocytes). Dosing of EphA2 antibody in the SCID murine tumor model resulted in a 6.2-fold reduction in tumor volume, whereas the SCID/nonobese diabetic model showed a 1.6-fold reduction over the isotype controls. Together, these results demonstrate that the anti-EphA2 monoclonal antibodies may function through at least two mechanisms of action: EphA2 receptor activation and ADCC-mediated activity. These novel EphA2 monoclonal antibodies provide additional means by which host effector mechanisms can be activated for selective destruction of EphA2-expressing tumor cells. PMID:19484140

  9. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer

    PubMed Central

    Tan, Marcus C. B.; Goedegebuure, Peter S.; Belt, Brian A.; Flaherty, Brian; Sankpal, Narendra; Gillanders, William E.; Eberlein, Timothy J.; Hsieh, Chyi-Song; Linehan, David C.

    2013-01-01

    Tumors evade immune destruction by actively inducing immune tolerance through the recruitment of CD4+CD25+Foxp3+ regulatory T cells (Treg). We have previously described increased prevalence of these cells in pancreatic adenocarcinoma, but it remains unclear what mechanisms are involved in recruiting Treg into the tumor microenvironment. Here, we postulated that chemokines might direct Treg homing to tumor. We show, in both human pancreatic adenocarcinoma and a murine pancreatic tumor model (Pan02), that tumor cells produce increased levels of ligands for the CCR5 chemokine receptor, and, reciprocally, that CD4+ Foxp3+ Treg, compared with CD4+ Foxp3− effector T cells, preferentially express CCR5. When CCR5/CCL5 signaling is disrupted, either by reducing CCL5 production by tumor cells or by systemic administration of a CCR5 inhibitor (TAK-779), Treg migration to tumors is reduced and tumors are smaller than in control mice. Thus, this study demonstrates the importance of Treg in immune evasion by tumors, how blockade of Treg migration may inhibit tumor growth, and, specifically in pancreatic adenocarcinoma, the role of CCR5 in the homing of tumor-associated Treg. Selective targeting of CCR5/CCL5 signaling may represent a novel immunomodulatory strategy for the treatment of cancer. PMID:19155524

  10. Regulatory T cells control HIV replication in activated T cells through a cAMP-dependent mechanism

    PubMed Central

    Moreno-Fernandez, Maria E.; Rueda, Cesar Mauricio; Rusie, Laura K.

    2011-01-01

    We hypothesized that regulatory T cells (Tregs) could play a beneficial role during HIV infection by controlling HIV replication in conventional T cells (Tcons). Purified Tregs and Tcons from healthy donors were activated separately. Tcons were infected with the X4 or R5 HIV strains and cultured with or without autologous Tregs. Coculture of Tcons and Tregs resulted in a dose-dependent inhibition of Tcon infection, which was significant when a 1:1 Treg:Tcon ratio was used. Treg suppression of HIV infection was largely mediated by contact-dependent mechanisms. Blockage of cytotoxic T-lymphocyte–associated antigen-4 did not significantly reduce Treg function. In contrast, Tregs acted through cAMP-dependent mechanisms, because the decrease of cAMP levels in Tregs, the blockade of gap junction formation between Tregs and Tcons, the blockage of CD39 activity, and the blockage of protein kinase A in Tcons all abolished Treg-mediated suppression of HIV replication. Our data suggest a complex role for Tregs during HIV infection. Although Tregs inhibit specific immune responses, their inhibition of HIV replication in Tcons may play a beneficial role, particularly during early HIV infection, when the effector immune cells are not yet activated. Such a protective role of Tregs could have a profound impact on infection outcome. PMID:21436067

  11. Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity

    NASA Astrophysics Data System (ADS)

    Liang, Hong; Wu, Ying; Ou, Xiang-Yu; Li, Jing-Ying; Li, Juan

    2017-11-01

    Hypoxic tumor microenvironment (TME) is closely linked to tumor progression, heterogeneity and immune suppression. Therefore, the development of effective methods to overcome hypoxia and substantially enhance the immunotherapy efficacy remains a desirable goal. Herein, we engineered a biocompatible Au core/Pt shell nanoparticles (Au@Pt NPs) to reoxygenate the TME by reacting with endogenous H2O2. Treatment with Au@Pt NPs appeared to improve oxygen in intracellular environments and decrease hypoxia-inducible factor-1α expression. Furthermore, the integration of high catalytic efficiency of Au@Pt NPs with cytokine-induced killer (CIK) cell immunotherapy, could lead to significantly improve the effect of CIK cell-mediated cytotoxicity. These results suggest great potential of Au@Pt NPs for regulation of the hypoxic TME and enhance immune cell mediated anti-tumor immunity.

  12. Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells

    PubMed Central

    Saito, Hidehito; Okita, Keisuke; Fusaki, Noemi; Sabel, Michael S.; Chang, Alfred E.; Ito, Fumito

    2016-01-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients hold great promise for autologous cell therapies. One of the possible applications of iPSCs is to use them as a cell source for producing autologous lymphocytes for cell-based therapy against cancer. Tumor-infiltrating lymphocytes (TILs) that express programmed cell death protein-1 (PD-1) are tumor-reactive T cells, and adoptive cell therapy with autologous TILs has been found to achieve durable complete response in selected patients with metastatic melanoma. Here, we describe the derivation of human iPSCs from melanoma TILs expressing high level of PD-1 by Sendai virus-mediated transduction of the four transcription factors, OCT3/4, SOX2, KLF4, and c-MYC. TIL-derived iPSCs display embryonic stem cell-like morphology, have normal karyotype, express stem cell-specific surface antigens and pluripotency-associated transcription factors, and have the capacity to differentiate in vitro and in vivo. A wide variety of T cell receptor gene rearrangement patterns in TIL-derived iPSCs confirmed the heterogeneity of T cells infiltrating melanomas. The ability to reprogram TILs containing patient-specific tumor-reactive repertoire might allow the generation of patient- and tumor-specific polyclonal T cells for cancer immunotherapy. PMID:27057178

  13. Protein Kinase C-θ (PKC-θ) in Natural Killer Cell Function and Anti-Tumor Immunity

    PubMed Central

    Anel, Alberto; Aguiló, Juan I.; Catalán, Elena; Garaude, Johan; Rathore, Moeez G.; Pardo, Julián; Villalba, Martín

    2012-01-01

    The protein kinase C-θ (PKCθ), which is essential for T cell function and survival, is also required for efficient anti-tumor immune surveillance. Natural killer (NK) cells, which express PKCθ, play a prominent role in this process, mainly by elimination of tumor cells with reduced or absent major histocompatibility complex class-I (MHC-I) expression. This justifies the increased interest of the use of activated NK cells in anti-tumor immunotherapy in the clinic. The in vivo development of MHC-I-deficient tumors is much favored in PKCθ−/− mice compared with wild-type mice. Recent data offer some clues on the mechanism that could explain the important role of PKCθ in NK cell-mediated anti-tumor immune surveillance: some studies show that PKCθ is implicated in signal transduction and anti-tumoral activity of NK cells elicited by interleukin (IL)-12 or IL-15, while others show that it is implicated in NK cell functional activation mediated by certain killer-activating receptors. Alternatively, the possibility that PKCθ is involved in NK cell degranulation is discussed, since recent data indicate that it is implicated in microtubule-organizing center polarization to the immune synapse in CD4+ T cells. The implication of PKC isoforms in degranulation has been more extensively studied in cytotoxic T lymphocyte, and these studies will be also summarized. PMID:22783260

  14. C2-streptavidin mediates the delivery of biotin-conjugated tumor suppressor protein p53 into tumor cells.

    PubMed

    Fahrer, Jörg; Schweitzer, Brigitte; Fiedler, Katja; Langer, Torben; Gierschik, Peter; Barth, Holger

    2013-04-17

    We have previously generated a recombinant C2-streptavidin fusion protein for the delivery of biotin-labeled molecules of low molecular weight into the cytosol of mammalian cells. A nontoxic moiety of Clostridium botulinum C2 toxin mediates the cellular uptake, whereas the streptavidin unit serves as a binding platform for biotin-labeled cargo molecules. In the present study, we used the C2-streptavidin transporter to introduce biotin-conjugated p53 protein into various mammalian cell lines. The p53 tumor suppressor protein is inactivated in many human cancers by multiple mechanisms and therefore the restoration of its activity in tumor cells is of great therapeutic interest. Recombinant p53 was expressed in insect cells and biotin-labeled. Biotin-p53 retained its specific high-affinity DNA-binding as revealed by gel-shift analysis. Successful conjugation of biotin-p53 to the C2-streptavidin transporter was monitored by an overlay blot technique and confirmed by real-time surface plasmon resonance, providing a KD-value in the low nM range. C2-streptavidin significantly enhanced the uptake of biotin-p53 into African Green Monkey (Vero) epithelial cells as shown by flow cytometry. Using cell fractionation, the cytosolic translocation of biotin-p53 was detected in Vero cells as well as in HeLa cervix carcinoma cells. In line with this finding, confocal microscopy displayed cytoplasmic staining of biotin-p53 in HeLa and HL60 leukemia cells. Internalized biotin-p53 partially colocalized with early endosomes, as confirmed by confocal microscopy. In conclusion, our results demonstrate the successful conjugation of biotin-p53 to C2-streptavidin and its subsequent receptor-mediated endocytosis into different human tumor cell lines.

  15. Fibrin facilitates both innate and T cell-mediated defense against Yersinia pestis.1

    PubMed Central

    Luo, Deyan; Lin, Shiuan; Parent, Michelle A.; Kanevsky, Isis Mullarky; Szaba, Frank M.; Kummer, Lawrence W.; Duso, Debra K.; Tighe, Michael; Hill, Jim; Gruber, Andras; Mackman, Nigel; Gailani, David; Smiley, Stephen T.

    2013-01-01

    The gram-negative bacterium Yersinia pestis causes plague, a rapidly progressing and often fatal disease. The formation of fibrin at sites of Y. pestis infection supports innate host defense against plague, perhaps by providing a non-diffusible spatial cue that promotes the accumulation of inflammatory cells expressing fibrin-binding integrins. This report demonstrates that fibrin is an essential component of T cell-mediated defense against plague but can be dispensable for antibody-mediated defense. Genetic or pharmacologic depletion of fibrin abrogated innate and T cell-mediated defense in mice challenged intranasally with Y. pestis. The fibrin-deficient mice displayed reduced survival, increased bacterial burden, and exacerbated hemorrhagic pathology. They also showed fewer neutrophils within infected lung tissue and reduced neutrophil viability at sites of liver infection. Depletion of neutrophils from wild type mice weakened T cell-mediated defense against plague. The data suggest that T cells combat plague in conjunction with neutrophils, which require help from fibrin in order to withstand Y. pestis encounters and effectively clear bacteria. PMID:23487423

  16. Chimeric antigen receptor-modified T cells for the treatment of solid tumors: Defining the challenges and next steps☆

    PubMed Central

    Beatty, Gregory L.; O’Hara, Mark

    2016-01-01

    Chimeric antigen receptor (CAR) T cell therapy has shown promise in CD19 expressing hematologic malignancies, but how to translate this success to solid malignancies remains elusive. Effective translation of CAR T cells to solid tumors will require an understanding of potential therapeutic barriers, including factors that regulate CAR T cells expansion, persistence, trafficking, and fate within tumors. Herein, we describe the current state of CAR T cells in solid tumors; define key barriers to CAR T cell efficacy and mechanisms underlying these barriers, outline potential avenues for overcoming these therapeutic obstacles, and discuss the future of translating CAR T cells for the treatment of patients with solid malignancies. PMID:27373504

  17. APC/β-catenin-rich complexes at membrane protrusions regulate mammary tumor cell migration and mesenchymal morphology

    PubMed Central

    2013-01-01

    Background The APC tumor suppressor is mutated or downregulated in many tumor types, and is prominently localized to punctate clusters at protrusion tips in migratory cells, such as in astrocytes where it has been implicated in directed cell motility. Although APC loss is considered an initiating event in colorectal cancer, for example, it is less clear what role APC plays in tumor cell motility and whether loss of APC might be an important promoter of tumor progression in addition to initiation. Methods The localization of APC and β-catenin was analyzed in multiple cell lines, including non-transformed epithelial lines treated with a proteasome inhibitor or TGFβ to induce an epithelial-to-mesenchymal transition (EMT), as well as several breast cancer lines, by immunofluorescence. APC expression was knocked down in 4T07 mammary tumor cells using lentiviral-mediated delivery of APC-specific short-hairpin (sh) RNAs, and assessed using quantitative (q) reverse-transcriptase (RT)-PCR and western blotting. Tumor cell motility was analyzed by performing wound-filling assays, and morphology via immunofluorescence (IF) and phase-contrast microscopy. Additionally, proliferation was measured using BrdU incorporation, and TCF reporter assays were performed to determine β-catenin/TCF-mediated transcriptional activity. Results APC/β-catenin-rich complexes were observed at protrusion ends of migratory epithelial cells treated with a proteasome inhibitor or when EMT has been induced and in tumor cells with a mesenchymal, spindle-like morphology. 4T07 tumor cells with reduced APC levels were significantly less motile and had a more rounded morphology; yet, they did not differ significantly in proliferation or β-catenin/TCF transcriptional activity. Furthermore, we found that APC/β-catenin-rich complexes at protrusion ends were dependent upon an intact microtubule cytoskeleton. Conclusions These findings indicate that membrane protrusions with APC/β-catenin-containing puncta

  18. Modulation of let-7 miRNAs controls the differentiation of effector CD8 T cells

    PubMed Central

    Wells, Alexandria C; Daniels, Keith A; Angelou, Constance C; Fagerberg, Eric; Burnside, Amy S; Markstein, Michele; Alfandari, Dominique; Welsh, Raymond M; Pobezinskaya, Elena L; Pobezinsky, Leonid A

    2017-01-01

    The differentiation of naive CD8 T cells into effector cytotoxic T lymphocytes upon antigen stimulation is necessary for successful antiviral, and antitumor immune responses. Here, using a mouse model, we describe a dual role for the let-7 microRNAs in the regulation of CD8 T cell responses, where maintenance of the naive phenotype in CD8 T cells requires high levels of let-7 expression, while generation of cytotoxic T lymphocytes depends upon T cell receptor-mediated let-7 downregulation. Decrease of let-7 expression in activated T cells enhances clonal expansion and the acquisition of effector function through derepression of the let-7 targets, including Myc and Eomesodermin. Ultimately, we have identified a novel let-7-mediated mechanism, which acts as a molecular brake controlling the magnitude of CD8 T cell responses. DOI: http://dx.doi.org/10.7554/eLife.26398.001 PMID:28737488

  19. Production of interferon-gamma by in vivo tumor-sensitized T cells: Association with active antitumor immunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bursuker, I.; Pearce, M.T.

    1990-02-01

    The state of active immunity to Meth A fibrosarcoma in mice immunized with an admixture of Meth A cells and Propionibacterium acnes is associated with possession by the host of spleen cells capable of producing interferon-gamma (IFN-gamma) upon in vitro restimulation with irradiated tumor cells. The ability of spleen cells from immunized mice to produce IFN-gamma in response to irradiated Meth A cells decays as active antitumor immunity is replaced by a state of immunological memory. The IFN-producing cells are L3T4+Ly2+, cyclophosphamide-sensitive and radiosensitive T cells, as determined by their sensitivity to corresponding monoclonal antibodies and complement. The induction ofmore » IFN-gamma production by in vivo tumor-sensitized T cells is tumor specific, in that spleen cells from mice immunized against Meth A fibrosarcoma can produce IFN in response to irradiated Meth A cells but not in response to another syngeneic tumor M109 lung carcinoma.« less

  20. Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Zhanshan; Qian, Guangfang; Zang, Yan

    Diffuse large B cell lymphoma (DLBCL) is a common and aggressive cancer caused by the malignant transformation of B cells. Although it has been established that the follicular helper T (Tfh) cells play a central role in B cell development, little information is available on their involvement in DLBCL pathogenesis. We studied the role of the peripheral Tfh equivalent, the CXCR5{sup +} CD4{sup +} T cells, in DLBCL. Data showed that compared to CXCR5{sup -} CD4{sup +} T cells, CXCR5{sup +} CD4{sup +} T cells were significantly more effective at promoting the proliferation as well as inhibiting the apoptosis ofmore » primary autologous DLBCL tumor cells. Surprisingly, we found that at equal cell numbers, CXCR5{sup +} CD4{sup +} T cells in DLBCL patients secreted significantly less interleukin (IL)-21 than CXCR5{sup -} CD4{sup +} T cells, while the level of IL-10 secretion was significant elevated in the CXCR5{sup +} compartment compared to the CXCR5{sup -} compartment. Neutralization of IL-10 in the primary DLBCL-CXCR5{sup +} CD4{sup +} T cell coculture compromised the CXCR5{sup +} CD4{sup +} T cell-mediated pro-tumor effects, in a manner that was dependent on the concentration of anti-IL-10 antibodies. The CXCR5{sup +} compartment also contained significantly lower frequencies of cytotoxic CD4{sup +} T cells than the CXCR5{sup -} compartment. In conclusion, our investigations discovered a previously unknown pro-tumor role of CXCR5-expressing circulating CD4{sup +} T cells, which assisted the survival and proliferation of primary DLBCL cells through IL-10. - Highlights: • We studied the role of the peripheral Tfh in DLBCL. • Tfh were effective at promoting the proliferation of primary DLBCL tumor cells. • Tfh were effective at inhibiting the apoptosis of primary DLBCL tumor cells. • IL-10 secretion in Tfh was significant elevated in DLBCL. • Neutralization of IL-10 compromised Tfh-mediated pro-tumor effects.« less

  1. Enhancement in Specific CD8+ T cell Recognition of EphA2+ Tumors In Vitro and In Vivo After Treatment with Ligand Agonists1

    PubMed Central

    Wesa, Amy K.; Herrem, Christopher J.; Mandic, Maja; Taylor, Jennifer L.; Vasquez, Cecilia; Kawabe, Mayumi; Tatsumi, Tomohide; Leibowitz, Michael S.; Finke, James H.; Bukowski, Ronald M.; Bruckheimer, Elizabeth; Kinch, Michael S.; Storkus, Walter J.

    2012-01-01

    The EphA2 receptor tyrosine kinase (RTK) is an attractive therapeutic target that is commonly overexpressed on solid tumors, with the degree of overexpression associated with disease progression, metastatic potential and poor prognosis. Agonistic monoclonal antibodies or ligand (ephrinA1)-Fc fusion protein are capable of inducing EphA2 internalization and degradation, thereby (at least transiently) eliminating the influence of this oncoprotein. We and others have also shown that EphA2 contains multiple peptide epitopes that can be recognized by effector CD4+ and CD8+ T cells isolated from tumor-bearing patients. Herein, we show that “agonist” reagents that trigger the proteasome-dependent degradation of tumor cell EphA2 result in the improved presentation of peptides derived from (both the extracellular and intracellular domains of) EphA2 in MHC class I complexes expressed on the tumor cell membrane for at least 48h, as manifest by increased recognition by EphA2-specific CD8+ T cells in vitro. We also observed that while delivery of ephrinA1-Fc fusion protein or agonist mAb into EphA2+ tumor lesions promotes EphA2 degradation in situ, this single administration of agent does not dramatically alter tumor progression in a Hu-SCID model. However, when combined with the adoptive transfer of normally non-therapeutic (human) anti-EphA2 CD8+ cytotoxic T lymphocytes (CTL), this dual agent regimen results in complete tumor eradication. These results suggest that strategies targeting the conditional proteasome-mediated destruction of tumor cell EphA2 may enable EphA2-specific CD8+ T cells (of modest functional avidity) to realize improved therapeutic potential. PMID:19017961

  2. CDC20 maintains tumor initiating cells

    PubMed Central

    Xie, Qi; Wu, Qiulian; Mack, Stephen C.; Yang, Kailin; Kim, Leo; Hubert, Christopher G.; Flavahan, William A.; Chu, Chengwei; Bao, Shideng; Rich, Jeremy N.

    2015-01-01

    Glioblastoma is the most prevalent and lethal primary intrinsic brain tumor. Glioblastoma displays hierarchical arrangement with a population of self-renewing and tumorigenic glioma tumor initiating cells (TICs), or cancer stem cells. While non-neoplastic neural stem cells are generally quiescent, glioblastoma TICs are often proliferative with mitotic control offering a potential point of fragility. Here, we interrogate the role of cell-division cycle protein 20 (CDC20), an essential activator of anaphase-promoting complex (APC) E3 ubiquitination ligase, in the maintenance of TICs. By chromatin analysis and immunoblotting, CDC20 was preferentially expressed in TICs relative to matched non-TICs. Targeting CDC20 expression by RNA interference attenuated TIC proliferation, self-renewal and in vivo tumor growth. CDC20 disruption mediated its effects through induction of apoptosis and inhibition of cell cycle progression. CDC20 maintains TICs through degradation of p21CIP1/WAF1, a critical negative regulator of TICs. Inhibiting CDC20 stabilized p21CIP1/WAF1, resulting in repression of several genes critical to tumor growth and survival, including CDC25C, c-Myc and Survivin. Transcriptional control of CDC20 is mediated by FOXM1, a central transcription factor in TICs. These results suggest CDC20 is a critical regulator of TIC proliferation and survival, linking two key TIC nodes – FOXM1 and p21CIP1/WAF1 — elucidating a potential point for therapeutic intervention. PMID:25938542

  3. Rapid obtention of stable, bioluminescent tumor cell lines using a tCD2-luciferase chimeric construct

    PubMed Central

    2011-01-01

    Background Bioluminescent tumor cell lines are experimental tools of major importance for cancer investigation, especially imaging of tumors in xenografted animals. Stable expression of exogenous luciferase in tumor cells combined to systemic injection of luciferin provides an excellent signal/background ratio for external optical imaging. Therefore, there is a need to rationalize and speed up the production of luciferase-positive tumor cell lines representative of multiple tumor phenotypes. For this aim we have designed a fusion gene linking the luciferase 2 protein to the c-terminus of a truncated form of the rat CD2 protein (tCD2-luc2). To allow simultaneous assessment of the wild-type luciferase 2 in a context of tCD2 co-expression, we have made a bicistronic construct for concomitant but separate expression of these two proteins (luc2-IRES-tCD2). Both the mono- and bi-cistronic constructs were transduced in lymphoid and epithelial cells using lentiviral vectors. Results The tCD2-luc2 chimera behaves as a type I membrane protein with surface presentation of CD2 epitopes. One of these epitopes reacts with the OX34, a widely spread, high affinity monoclonal antibody. Stably transfected cells are sorted by flow cytometry on the basis of OX34 staining. In vitro and, moreover, in xenografted tumors, the tCD2-luc2 chimera retains a substantial and stable luciferase activity, although not as high as the wild-type luciferase expressed from the luc2-IRES-tCD2 construct. Expression of the tCD2-luc2 chimera does not harm cell and tumor growth. Conclusion Lentiviral transduction of the chimeric tCD2-luc2 fusion gene allows selection of cell clones with stable luciferase expression in less than seven days without antibiotic selection. We believe that it will be helpful to increase the number of tumor cell lines available for in vivo imaging and assessment of novel therapeutic modalities. On a longer term, the tCD2-luc2 chimera has the potential to be expressed from multi

  4. Treatment of solid tumors with chimeric antigen receptor-engineered T cells: current status and future prospects.

    PubMed

    Di, Shengmeng; Li, Zonghai

    2016-04-01

    Chimeric antigen receptors (CARs) are artificial recombinant receptors that generally combine the antigen-recognition domain of a monoclonal antibody with T cell activation domains. Recent years have seen great success in clinical trials employing CD19-specific CAR-T cell therapy for B cell leukemia. Nevertheless, solid tumors remain a major challenge for CAR-T cell therapy. This review summarizes the preclinical and clinical studies on the treatment of solid tumors with CAR-T cells. The major hurdles for the success of CAR-T and the novel strategies to address these hurdles have also been described and discussed.

  5. CD1d-Expressing Breast Cancer Cells Modulate NKT Cell-Mediated Antitumor Immunity in a Murine Model of Breast Cancer Metastasis

    PubMed Central

    Hix, Laura M.; Shi, Yihui H.; Brutkiewicz, Randy R.; Stein, Paul L.; Wang, Chyung-Ru; Zhang, Ming

    2011-01-01

    Background Tumor tolerance and immune suppression remain formidable obstacles to the efficacy of immunotherapies that harness the immune system to eradicate breast cancer. A novel syngeneic mouse model of breast cancer metastasis was developed in our lab to investigate mechanisms of immune regulation of breast cancer. Comparative analysis of low-metastatic vs. highly metastatic tumor cells isolated from these mice revealed several important genetic alterations related to immune control of cancer, including a significant downregulation of cd1d1 in the highly metastatic tumor cells. The cd1d1 gene in mice encodes the MHC class I-like molecule CD1d, which presents glycolipid antigens to a specialized subset of T cells known as natural killer T (NKT) cells. We hypothesize that breast cancer cells, through downregulation of CD1d and subsequent evasion of NKT-mediated antitumor immunity, gain increased potential for metastatic tumor progression. Methodology/Principal Findings In this study, we demonstrate in a mouse model of breast cancer metastasis that tumor downregulation of CD1d inhibits iNKT-mediated antitumor immunity and promotes metastatic breast cancer progression in a CD1d-dependent manner in vitro and in vivo. Using NKT-deficient transgenic mouse models, we demonstrate important differences between type I and type II NKT cells in their ability to regulate antitumor immunity of CD1d-expressing breast tumors. Conclusions/Significance The results of this study emphasize the importance of determining the CD1d expression status of the tumor when tailoring NKT-based immunotherapies for the prevention and treatment of metastatic breast cancer. PMID:21695190

  6. A fully human chimeric antigen receptor with potent activity against cancer cells but reduced risk for off-tumor toxicity

    PubMed Central

    Song, De-Gang; Ye, Qunrui; Poussin, Mathilde; Liu, Lin; Figini, Mariangela; Powell, Daniel J.

    2015-01-01

    Chimeric antigen receptors (CARs) can redirect T cells against antigen-expressing tumors in an HLA-independent manner. To date, various CARs have been constructed using mouse single chain antibody variable fragments (scFvs) of high affinity that are immunogenic in humans and have the potential to mediate “on-target” toxicity. Here, we developed and evaluated a fully human CAR comprised of the human C4 folate receptor-alpha (αFR)-specific scFv coupled to intracellular T cell signaling domains. Human T cells transduced to express the C4 CAR specifically secreted proinflammatory cytokine and exerted cytolytic functions when cultured with αFR-expressing tumors in vitro. Adoptive transfer of C4 CAR T cells mediated the regression of large, established human ovarian cancer in a xenogeneic mouse model. Relative to a murine MOv19 scFv-based αFR CAR, C4 CAR T cells mediated comparable cytotoxic tumor activity in vitro and in vivo but had lower affinity for αFR protein and exhibited reduced recognition of normal cells expressing low levels of αFR. Thus, T cells expressing a fully human CAR of intermediate affinity can efficiently kill antigen-expressing tumors in vitro and in vivo and may overcome issues of transgene immunogenicity and “on-target off-tumor” toxicity that plague trials utilizing CARs containing mouse-derived, high affinity scFvs. PMID:26101914

  7. Modulation of cytotoxic T lymphocyte, natural killer cell, antibody-dependent cellular cytotoxicity, and antibody-dependent complement-mediated cytotoxicity by Vernonia cinerea L. and vernolide-A in BALB/c mice via enhanced production of cytokines IL-2 and IFN-γ.

    PubMed

    Pratheeshkumar, Poyil; Kuttan, Girija

    2012-02-01

    Effect of Vernonia cinerea L. and vernolide-A on cell-mediated immune (CMI) response was studied in normal as well as tumor-bearing BALB/c mice. Administration of V. cinerea and vernolide-A significantly enhanced natural killer (NK) cell activity in both normal as well as tumor-bearing animals, and the activity was observed earlier than in tumor-bearing control animals. Antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent complement-mediated cytotoxicity (ACC) were also enhanced significantly in both normal as well as tumor-bearing animals after V. cinerea and vernolide-A administration compared with untreated control tumor-bearing animals. Extract and vernolide-A showed a significant increase in cytotoxic T lymphocyte (CTL) production in both the in vivo and in vitro models. The level of cytokines such as interleukin (IL)-2 and interferon (IFN)-γ were also enhanced by the treatment of V. cinerea and vernolide-A in both normal as well as tumor-bearing animals. This study demonstrated that V. cinerea extract and vernolide-A stimulate the CTL, NK cell, ADCC, and ADCC through enhanced secretion of IL-2 and IFN-γ.

  8. Blocking the recruitment of naive CD4+ T cells reverses immunosuppression in breast cancer

    PubMed Central

    Su, Shicheng; Liao, Jianyou; Liu, Jiang; Huang, Di; He, Chonghua; Chen, Fei; Yang, LinBing; Wu, Wei; Chen, Jianing; Lin, Ling; Zeng, Yunjie; Ouyang, Nengtai; Cui, Xiuying; Yao, Herui; Su, Fengxi; Huang, Jian-dong; Lieberman, Judy; Liu, Qiang; Song, Erwei

    2017-01-01

    The origin of tumor-infiltrating Tregs, critical mediators of tumor immunosuppression, is unclear. Here, we show that tumor-infiltrating naive CD4+ T cells and Tregs in human breast cancer have overlapping TCR repertoires, while hardly overlap with circulating Tregs, suggesting that intratumoral Tregs mainly develop from naive T cells in situ rather than from recruited Tregs. Furthermore, the abundance of naive CD4+ T cells and Tregs is closely correlated, both indicating poor prognosis for breast cancer patients. Naive CD4+ T cells adhere to tumor slices in proportion to the abundance of CCL18-producing macrophages. Moreover, adoptively transferred human naive CD4+ T cells infiltrate human breast cancer orthotopic xenografts in a CCL18-dependent manner. In human breast cancer xenografts in humanized mice, blocking the recruitment of naive CD4+ T cells into tumor by knocking down the expression of PITPNM3, a CCL18 receptor, significantly reduces intratumoral Tregs and inhibits tumor progression. These findings suggest that breast tumor-infiltrating Tregs arise from chemotaxis of circulating naive CD4+ T cells that differentiate into Tregs in situ. Inhibiting naive CD4+ T cell recruitment into tumors by interfering with PITPNM3 recognition of CCL18 may be an attractive strategy for anticancer immunotherapy. PMID:28290464

  9. TNFα and IFNγ but not perforin are critical for CD8 T cell-mediated protection against pulmonary Yersinia pestis infection.

    PubMed

    Szaba, Frank M; Kummer, Lawrence W; Duso, Debra K; Koroleva, Ekaterina P; Tumanov, Alexei V; Cooper, Andrea M; Bliska, James B; Smiley, Stephen T; Lin, Jr-Shiuan

    2014-05-01

    Septic pneumonias resulting from bacterial infections of the lung are a leading cause of human death worldwide. Little is known about the capacity of CD8 T cell-mediated immunity to combat these infections and the types of effector functions that may be most effective. Pneumonic plague is an acutely lethal septic pneumonia caused by the Gram-negative bacterium Yersinia pestis. We recently identified a dominant and protective Y. pestis antigen, YopE69-77, recognized by CD8 T cells in C57BL/6 mice. Here, we use gene-deficient mice, Ab-mediated depletion, cell transfers, and bone marrow chimeric mice to investigate the effector functions of YopE69-77-specific CD8 T cells and their relative contributions during pulmonary Y. pestis infection. We demonstrate that YopE69-77-specific CD8 T cells exhibit perforin-dependent cytotoxicity in vivo; however, perforin is dispensable for YopE69-77-mediated protection. In contrast, YopE69-77-mediated protection is severely impaired when production of TNFα and IFNγ by CD8 T cells is simultaneously ablated. Interestingly, TNFα is absolutely required at the time of challenge infection and can be provided by either T cells or non-T cells, whereas IFNγ provided by T cells prior to challenge appears to facilitate the differentiation of optimally protective CD8 T cells. We conclude that cytokine production, not cytotoxicity, is essential for CD8 T cell-mediated control of pulmonary Y. pestis infection and we suggest that assays detecting Ag-specific TNFα production in addition to antibody titers may be useful correlates of vaccine efficacy against plague and other acutely lethal septic bacterial pneumonias.

  10. Cytotoxic human peripheral blood-derived γδT cells kill glioblastoma cell lines: implications for cell-based immunotherapy for patients with glioblastoma.

    PubMed

    Nakazawa, Tsutomu; Nakamura, Mitsutoshi; Park, Young Soo; Motoyama, Yasushi; Hironaka, Yasuo; Nishimura, Fumihiko; Nakagawa, Ichiro; Yamada, Shuichi; Matsuda, Ryosuke; Tamura, Kentaro; Sugimoto, Tadashi; Takeshima, Yasuhiro; Marutani, Akiko; Tsujimura, Takahiro; Ouji, Noriko; Ouji, Yukiteru; Yoshikawa, Masahide; Nakase, Hiroyuki

    2014-01-01

    Glioblastoma (GBM) is a highly aggressive brain tumor for which novel therapeutic approaches, such as immunotherapy, are urgently needed. Zoledronate (ZOL), an inhibitor of osteoclastic activity, is known to stimulate peripheral blood-derived γδT cells and sensitize tumors to γδT cell-mediated killing. To investigate the feasibility of γδT cell-based immunotherapy for patients with GBM, we focused on the killing of GBM cell lines by γδT cells and the molecular mechanisms involved in these cell-cell interactions. Peripheral blood mononuclear cells were expanded in ZOL and interleukin (IL)-2 for 14 days, and γδT cells were enriched in the expanded cells by the immunomagnetic depletion of αβT cells. Gliomas are resistant to NK cells but susceptible to lymphokine-activated killer cells and some cytotoxic T lymphocytes. When the γδT cell-mediated killing of three GBM cell lines (U87MG, U138MG and A172 cells) and an NK-sensitive leukemia cell line (K562 cells) were tested, 32% U87MG, 15% U138MG, 1% A172, and 50% K562 cells were killed at an effector:target ratio of 5:1. The γδT cell-mediated killing of all three GBM cell lines was significantly enhanced by ZOL and this ZOL-enhanced killing was blocked by an anti-T cell receptor (TcR) antibody. These results indicated that TcR γδ is crucial for the recognition of ZOL-treated GBM cells by γδT cells. Since the low level killing of GBM cells by the γδT cells was enhanced by ZOL, γδT cell-targeting therapy in combination with ZOL treatment could be effective for patients with GBM.

  11. Adoptive immunotherapy mediated by ex vivo expanded natural killer T cells against CD1d-expressing lymphoid neoplasms

    PubMed Central

    Bagnara, Davide; Ibatici, Adalberto; Corselli, Mirko; Sessarego, Nadia; Tenca, Claudya; De Santanna, Amleto; Mazzarello, Andrea; Daga, Antonio; Corvò, Renzo; De Rossi, Giulio; Frassoni, Francesco; Ciccone, Ermanno; Fais, Franco

    2009-01-01

    Background CD1d is a monomorphic antigen presentation molecule expressed in several hematologic malignancies. Alpha-galactosylceramide (α-GalCer) is a glycolipid that can be presented to cytotoxic CD1d-restricted T cells. These reagents represent a potentially powerful tool for cell mediated immunotherapy. Design and Methods We set up an experimental model to evaluate the use of adoptively transferred cytotoxic CD1d-restricted T cells and α-GalCer in the treatment of mice engrafted with CD1d+ lymphoid neoplastic cells. To this end the C1R cell line was transfected with CD1c or CD1d molecules. In addition, upon retroviral infection firefly luciferase was expressed on C1R transfected cell lines allowing the evaluation of tumor growth in xenografted immunodeficient NOD/SCID mice. Results The C1R-CD1d cell line was highly susceptible to specific CD1d-restricted T cell cytotoxicity in the presence α-GalCer in vitro. After adoptive transfer of CD1d-restricted T cells and α-GalCer to mice engrafted with both C1R-CD1c and C1R-CD1d, a reduction in tumor growth was observed only in CD1d+ masses. In addition, CD1d-restricted T-cell treatment plus α-GalCer eradicated small C1R-CD1d+ nodules. Immunohistochemical analysis revealed that infiltrating NKT cells were mainly observed in CD1d nodules. Conclusions Our results indicate that ex vivo expanded cytotoxic CD1d-restricted T cells and α-GalCer may represent a new immunotherapeutic tool for treatment of CD1d+ hematologic malignancies. PMID:19454494

  12. In vitro priming of adoptively transferred T cells with a RORγ agonist confers durable memory and stemness in vivo.

    PubMed

    Hu, Xiao; Majchrzak, Kinga; Liu, Xikui; Wyatt, Megan M; Spooner, Chauncey; Moisan, Jacques; Zou, Weiping; Carter, Laura L; Paulos, Chrystal M

    2018-05-16

    Adoptive T cell transfer therapy is an FDA-approved treatment for leukemia that relies on the ex vivo expansion and re-infusion of a patient's immune cells, which can be engineered with a chimeric antigen receptor (CAR) for more efficient tumor recognition. Type 17 T cells, controlled transcriptionally by RORγ, have been reported to mediate potent anti-tumor effects superior to those observed with conventionally expanded T cells. Here we demonstrate that addition of a synthetic, small molecule RORγ agonist during ex vivo expansion potentiates the anti-tumor activity of human Th17 and Tc17 cells redirected with a CAR. Likewise, ex vivo use of this agonist bolstered the anti-tumor properties of murine tumor-specific CD4+ and CD8+ T cells. Expansion in the presence of the RORγ agonist enhanced IL-17A production without compromising IFN-γ secretion in vitro. In vivo, cytokine neutralization studies revealed that IFN-γ and IL-17A were required to regress murine melanoma tumors. The enhanced anti-tumor effect of RORγ agonist treatment was associated with recovery of more donor T cells in the tumor and spleen; these cells produced elevated levels of cytokines months after infusion and expressed markers of long-lived stem and central memory cells such as Tcf7 and CD62L. Conversely, untreated cells mainly exhibited effector phenotypes in the tumor. Cured mice previously treated with agonist-primed T cells were protected from tumor re-challenge. Collectively, our work reveals that in vitro treatment with a RORγ agonist generates potent anti-tumor Type 17 effector cells that persist as long-lived memory cells in vivo. Copyright ©2018, American Association for Cancer Research.

  13. Apoptosis of T lymphocytes invading glioblastomas multiforme: a possible tumor defense mechanism.

    PubMed

    Didenko, Vladimir V; Ngo, Hop N; Minchew, Candace; Baskin, David S

    2002-03-01

    The goal of this study was to investigate whether apoptosis occurs in T lymphocytes that invade Fas ligand (FasL)-expressing glioblastomas multiforme (GBMs) and if its induction could be mediated by Fas. Apoptotic T lymphocytes were detected in GBMs by using detection of cell-type markers combined with active caspase-3 immunohistochemical analysis, a recently introduced apoptosis-specific in situ ligation assay, as well as by examining morphological criteria. Apoptotic T cells expressed Fas and were localized in the vicinity or in direct contact with FasL-expressing tumor cells. The T lymphocytes were undergoing apoptosis in spite of Bcl-2 expression. Expression of Bax was also detected in dying T cells, which can explain the absence of the protective effect of Bcl-2. because Bax inhibits Bcl-2 death-repressor activity. On the basis of the data presented in this paper, the authors suggest that GBM cells that express FasL can induce apoptosis in invading immune cells. This phenomenon may play an important role in these tumors' maintenance of immune privilege and evasion of immune attacks. Awareness of this phenomenon should be helpful for the development of novel strategies for treatment of malignant gliomas.

  14. Adoptive T-cell therapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors.

    PubMed

    Fujiwara, Hiroshi

    2014-02-01

    The functional properties of the adoptive immune response mediated by effector T lymphocytes are decisively regulated by their T-cell receptors (TCRs). Transfer of genes encoding target antigen-specific receptors enables polyclonal T cells to redirect toward cancer cells and virally infected cells expressing those defined antigens. Using this technology, a large population of redirected T cells displaying uniform therapeutic properties has been produced, powerfully advancing their clinical application as "cellular drugs" for adoptive immunotherapy against cancer. Clinically, anticancer adoptive immunotherapy using these genetically engineered T cells has an impressive and proven track record. Notable examples include the dramatic benefit of chimeric antigen receptor gene-modified T cells redirected towards B-cell lineage antigen CD19 in patients with chronic lymphocytic leukemia, and the impressive outcomes in the use of TCR gene-modified T cells redirected towards NY-ESO-1, a representative cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. In this review, we briefly overview the current status of this treatment option in the context of hematological malignancy, and discuss a number of challenges that still pose an obstacle to the full effectiveness of this strategy.

  15. Blockade of LAG3 enhances responses of tumor-infiltrating T cells in mismatch repair-proficient liver metastases of colorectal cancer

    PubMed Central

    Noordam, Lisanne; Sprengers, Dave; Boor, Patrick P. C.; Mancham, Shanta; Menon, Anand G.; Lange, Johan F.; Burger, Pim J. W. A.; Brandt, Alexandra; Galjart, Boris; Kwekkeboom, Jaap; Bruno, Marco J.

    2018-01-01

    ABSTRACT Purpose: Liver metastasis develops in >50% of patients with colorectal cancer (CRC), and is a leading cause of CRC-related mortality. We aimed to identify which inhibitory immune checkpoint pathways can be targeted to enhance functionality of intra-tumoral T-cells in mismatch repair-proficient liver metastases of colorectal cancer (LM-CRC). Methodology: Intra-tumoral expression of multiple inhibitory molecules was compared among mismatch repair-proficient LM-CRC, peritoneal metastases of colorectal cancer (PM-CRC) and primary CRC. Expression of inhibitory molecules was also analyzed on leukocytes isolated from paired resected metastatic liver tumors, tumor-free liver tissues, and blood of patients with mismatch repair-proficient LM-CRC. The effects of blocking inhibitory pathways on tumor-infiltrating T-cell responses were studied in ex vivo functional assays. Results: Mismatch repair-proficient LM-CRC showed higher expression of inhibitory receptors on intra-tumoral T-cells and contained higher proportions of CD8+ T-cells, dendritic cells and monocytes than mismatch repair-proficient primary CRC and/or PM-CRC. Inhibitory receptors LAG3, PD-1, TIM3 and CTLA4 were higher expressed on CD8+ T-cells, CD4+ T-helper and/or regulatory T-cells in LM-CRC tumors compared with tumor-free liver and blood. Antibody blockade of LAG3 or PD-L1 increased proliferation and effector cytokine production of intra-tumoral T-cells isolated from LM-CRC in response to both polyclonal and autologous tumor-specific stimulations. Higher LAG3 expression on intra-tumoral CD8+ T-cells associated with longer progression-free survival of LM-CRC patients. Conclusion: Mismatch repair-proficient LM-CRC may be more sensitive to immune checkpoint inhibitors than mismatch repair-proficient primary CRC. Blocking LAG3 enhances tumor-infiltrating T-cell responses of mismatch repair-proficient LM-CRC, and therefore may be a new promising immunotherapeutic target for LM-CRC.

  16. [The role of regulatory T cells in the modulation of anti-tumor immune response].

    PubMed

    Radosavljević, Gordana D; Jovanović, Ivan P; Kanjevac, Tatjana V; Arsenijević, Nebojsa N

    2013-01-01

    Regulatory T cells (Treg) represent a subset of CD4+T cells whose function is to suppress immune responses. Treg lymphocytes can be divided into two subsets: natural nTreg lymphocytes that are developed in the thymus and inducible iTreg lymphocytes, which originate from conventional T lymphocytes on the periphery.The majority of Treg lymphocytes express high levels of interleukin-2 (IL-2) receptor a chain (CD25) and transcription factor FoxP3 (critical for the development and suppressor activity of iTreg lymphocytes). Cancer cells can modulate anti-tumor immune response indirectly, through the activation of Treg lymphocytes. It has been shown that the loss of regulatory function by depletion of tumor-induced Treg lymphocytes may enhance effectors response, resulting in tumor rejection, while the increased number of Treg lymphocytes effectively prevents tumor destruction. nTreg lymphocytes express increasingly CTLA-4 and membrane-bound TGF-beta, which inhibits cytokine production and responses of effectors lymphocytes.iTreg lymphocytes secrete immunosuppressive cytokines such as ILreg-10 and TGF-beta.Treg lymphocytes represent one of important obstruction in anti-tumor immunity.

  17. CD49a promotes T-cell-mediated hepatitis by driving T helper 1 cytokine and interleukin-17 production

    PubMed Central

    Chen, Yonglin; Peng, Hui; Chen, Yongyan; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2014-01-01

    It is becoming increasingly clear that the T-cell-mediated immune response is important in many diseases. In this study, we used concanavalin A (Con A) -induced hepatitis to investigate the role of CD49a in the molecular and cellular mechanism of the T-cell-mediated immune response. We found that CD49a−/− mice had significantly reduced levels of serum alanine aminotransferase and were protected from Con A-induced hepatitis. CD49a deficiency led to decreased production of interferon-γ (IFN-γ) and interleukin-17A (IL-17A) after Con A injection. Furthermore, we found that hepatic CD4+ T cells and invariant natural killer T cells up-regulated CD49a expression, along with enhanced activation after Con A injection, leading to production of inflammatory cytokines by these T cells. Blockade of CD49a in vivo ameliorated Con A-induced hepatitis with reduced production of IFN-γ and IL-17A. Hence, CD49a promoted Con A-induced hepatitis through enhancing inflammatory cytokine production (IFN-γ and IL-17A) by CD4+ T and invariant natural killer T cells. The protective effect of CD49a blockade antibody suggested a new target therapeutic molecule for intervention of T-cell-mediated liver injury. PMID:24164540

  18. Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy.

    PubMed

    Tang, Xiang-Jun; Sun, Xu-Yong; Huang, Kuan-Ming; Zhang, Li; Yang, Zhuo-Shun; Zou, Dan-Dan; Wang, Bin; Warnock, Garth L; Dai, Long-Jun; Luo, Jie

    2015-12-29

    Chimeric antigen receptor (CAR)-based T-cell adoptive immunotherapy is a distinctively promising therapy for cancer. The engineering of CARs into T cells provides T cells with tumor-targeting capabilities and intensifies their cytotoxic activity through stimulated cell expansion and enhanced cytokine production. As a novel and potent therapeutic modality, there exists some uncontrollable processes which are the potential sources of adverse events. As an extension of this impactful modality, CAR-T cell-derived exosomes may substitute CAR-T cells to act as ultimate attackers, thereby overcoming some limitations. Exosomes retain most characteristics of parent cells and play an essential role in intercellular communications via transmitting their cargo to recipient cells. The application of CAR-T cell-derived exosomes will make this cell-based therapy more clinically controllable as it also provides a cell-free platform to diversify anticancer mediators, which responds effectively to the complexity and volatility of cancer. It is believed that the appropriate application of both cellular and exosomal platforms will make this effective treatment more practicable.

  19. Methionine enkephalin (MENK) inhibits tumor growth through regulating CD4+Foxp3+ regulatory T cells (Tregs) in mice.

    PubMed

    Li, Xuan; Meng, Yiming; Plotnikoff, Nicolas P; Youkilis, Gene; Griffin, Noreen; Wang, Enhua; Lu, Changlong; Shan, Fengping

    2015-01-01

    Methionine enkephalin (MENK), an endogenous neuropeptide, plays an crucial role in both neuroendocrine and immune systems. CD4+Foxp3+ regulatory T cells (Tregs) are identified as a major subpopulation of T lymphocytes in suppressing immune system to keep balanced immunity. The aim of this research work was to elucidate the mechanisms via which MENK interacts with Tregs in cancer situation. The influence of MENK on transforming growth factor-β (TGF-β) mediated conversion from naïve CD4+CD25- T cells to CD4+CD25+ Tregs was determined and the data from flow cytometry (FCM) analysis indicated that MENK effectively inhibited the expression of Foxp3 during the process of TGF-βinduction. Furthermore, this inhibiting process was accompanied by diminishing phosphorylation and nuclear translocation of Smad2/3, confirmed by western blot (WB) analysis and immunofluorescence (IF) at molecular level. We established sarcoma mice model with S180 to investigate whether MENK could modulate Tregs in tumor circumstance. Our findings showed that MENK delayed the development of tumor in S180 tumor bearing mice and down-regulated level of Tregs. Together, these novel findings reached a conclusion that MENK could inhibit Tregs activity directly and retard tumor development through down-regulating Tregs in mice. This work advances the deepening understanding of the influence of MENK on Tregs in cancer situation, and relation of MENK with immune system, supporting the implication of MENK as a new strategy for cancer immunotherapy.

  20. Cetuximab-activated natural killer (NK) and dendritic cells (DC) collaborate to trigger tumor antigen-specific T cell immunity in head and neck cancer patients

    PubMed Central

    Srivastava, Raghvendra M.; Lee, Steve C.; Filho, Pedro A. Andrade; Lord, Christopher A.; Jie, Hyun-bae; Davidson, H. Carter; López-Albaitero, Andrés; Gibson, Sandra P.; Gooding, William E.; Ferrone, Soldano; Ferris, Robert L.

    2013-01-01

    Purpose Tumor antigen (TA)-specific monoclonal antibodies (mAb) block oncogenic signaling and induce Fcγ receptor (FcγR)-mediated cytotoxicity. However, the role of CD8+ cytotoxic T lymphocyte (CTL) and FcγR in initiating innate and adaptive immune responses in mAb-treated human cancer patients is still emerging. Experimental Design FcγRIIIa codon 158 polymorphism was correlated with survival in 107 cetuximab-treated head and neck cancer (HNC) patients. Flow cytometry was performed to quantify EGFR-specific T cells in cetuximab-treated HNC patients. The effect of cetuximab on NK cell, dendritic cell (DC), and T cell activation was measured using IFN-γ release assays and flow cytometry. Results FcγR IIIa polymorphism did not predict clinical outcome in cetuximab-treated HNC patients, however elevated circulating EGFR -specific CD8+ 853-861 T cells were found in cetuximab-treated HNC patients (p<0.005). Cetuximab promoted EGFR-specific cellular immunity through the interaction of EGFR+ tumor cells and FcγRIIIa on NK cells, but not on the polymorphism per se. Cetuximab-activated NK cells induced IFN-γ dependent expression of DC maturation markers, antigen presentation machinery (APM) components such as TAP-1/2, and Th1 chemokines through NKG2D/MICA binding. Cetuximab initiated adaptive immune responses via NK-cell induced DC maturation, which enhanced cross-presentation to CTL specific for EGFR as well as another TA, MAGE-3. Conclusion Cetuximab-activated NK cells promote DC maturation and CD8+ T cell priming, leading to TA spreading and Th1 cytokine release through ‘NK-DC cross-talk.’ FcγRIIIa polymorphism did not predict clinical response to cetuximab, but was necessary for NK-DC interaction and mAb induced cross-presentation. EGFR-specific T cells in cetuximab treated HNC patients may contribute to clinical response. PMID:23444227

  1. Chimeric PD-1:28 Receptor Upgrades Low-Avidity T cells and Restores Effector Function of Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy.

    PubMed

    Schlenker, Ramona; Olguín-Contreras, Luis Felipe; Leisegang, Matthias; Schnappinger, Julia; Disovic, Anja; Rühland, Svenja; Nelson, Peter J; Leonhardt, Heinrich; Harz, Hartmann; Wilde, Susanne; Schendel, Dolores J; Uckert, Wolfgang; Willimsky, Gerald; Noessner, Elfriede

    2017-07-01

    Inherent intermediate- to low-affinity T-cell receptors (TCR) that develop during the natural course of immune responses may not allow sufficient activation for tumor elimination, making the majority of T cells suboptimal for adoptive T-cell therapy (ATT). TCR affinity enhancement has been implemented to provide stronger T-cell activity but carries the risk of creating undesired cross-reactivity leading to potential serious adverse effects in clinical application. We demonstrate here that engineering of low-avidity T cells recognizing a naturally processed and presented tumor-associated antigen with a chimeric PD-1:28 receptor increases effector function to levels seen with high-avidity T cells of identical specificity. Upgrading the function of low-avidity T cells without changing the TCR affinity will allow a large arsenal of low-avidity T cells previously thought to be therapeutically inefficient to be considered for ATT. PD-1:28 engineering reinstated Th1 function in tumor-infiltrating lymphocytes that had been functionally disabled in the human renal cell carcinoma environment without unleashing undesired Th2 cytokines or IL10. Involved mechanisms may be correlated to restoration of ERK and AKT signaling pathways. In mouse tumor models of ATT, PD-1:28 engineering enabled low-avidity T cells to proliferate stronger and prevented PD-L1 upregulation and Th2 polarization in the tumor milieu. Engineered T cells combined with checkpoint blockade secreted significantly more IFNγ compared with T cells without PD-1:28, suggesting a beneficial combination with checkpoint blockade therapy or other therapeutic strategies. Altogether, the supportive effects of PD-1:28 engineering on T-cell function make it an attractive tool for ATT. Cancer Res; 77(13); 3577-90. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Two photon microscopy intravital study of DC-mediated anti-tumor response of NK cells

    NASA Astrophysics Data System (ADS)

    Caccia, Michele; Gorletta, Tatiana; Sironi, Laura; Zanoni, Ivan; Salvetti, Cristina; Collini, Maddalena; Granucci, Francesca; Chirico, Giuseppe

    2010-02-01

    Recent studies have demonstrated that dendritic cells (DCs) play a crucial role in the activation of Natural Killer cells (NKs) that are responsible for anti-tumor innate immune responses. The focus of this report is on the role of pathogen associated molecular pattern (PAMP) activated-DCs in inducing NK cell-mediated anti-tumor responses. Mice transplanted sub-cute (s.c.) with AK7 cells, a mesothelioma cell line sensitive to NK cell responses, are injected with fluorescent NK cells and DC activation is then induced by s.c. injection of Lipopolysaccharide (LPS). Using 4 dimensional tracking we follow the kinetic behavior of NK cells at the Draining Lymph-Node (DLN). As control, noninflammatory conditions are also evaluated. Our data suggest that NK cells are recruited to the DLN where they can interact with activated-DCs with a peculiar kinetic behavior: short lived interactions interleaved by rarer longer ones. We also found that the changes in the NK dynamic behavior in inflammatory conditions clearly affect relevant motility parameters such as the instantaneous and average velocity and the effective diffusion coefficient. This observation suggests that NK cells and activated-DCs might efficiently interact in the DLN, where cells could be activated. Therefore the interaction between activated-DCs and NK cells in DLN is not only a reality but it may be also crucial for the start of the immune response of the NKs.

  3. Stimulatory role of interleukin 10 in CD8+ T cells through STATs in gastric cancer.

    PubMed

    Xi, Jianjun; Xu, Mingzheng; Song, Zongchang; Li, Hongqiang; Xu, Shumin; Wang, Chunmei; Song, Haihan; Bai, Jianwen

    2017-05-01

    CD8 + T cells are considered to be critical in tumor surveillance and elimination. Increased CD8 + T cell frequency and function is associated with better prognosis in cancer patients. Interleukin 10 is a cytokine with controversial roles in CD8 + T cell-mediated anti-tumor immunity. We therefore examined the interleukin 10 expression and consumption in CD8 + T cells harvested from the peripheral blood and resected tumors of gastric cancer patients of stages II-IV. We found that the gastric cancer patients presented significantly elevated frequencies of interleukin 10-expressing cells in both CD4 + and CD8 + T cells compared to healthy controls. But distinctive from the interleukin 10-expressing CD4 + T cells, which increased in frequency in advanced cancer, the interleukin 10-expressing CD8 + T cells did not increase with cancer stage in the peripheral blood and actually decreased with cancer stage in resected tumor. Interleukin 10 and interleukin 10 receptor expression was also enriched in interferon gamma-expressing activated CD8 + T cells. Compared to interleukin 10-nonexpressing CD8 + T cells, interleukin 10 receptor-expressing CD8 + T cells secreted significantly elevated interferon gamma levels. Treatment of anti-CD3/CD28-stimulated, purified CD8 + T cells with interleukin 10 alone could significantly enhance CD8 + T cell survival, an effect dependent on interleukin 10 receptor expression. Interleukin 10 also increased CD8 + T cell proliferation synergistically with interferon gamma but not alone. Analysis of downstream signal transducer and activator of transcription molecules showed that interleukin 10 treatment significantly increased the phosphorylation of signal transducer and activator of transcription 3 and signal transducer and activator of transcription 1 to lesser extent. Together, these results demonstrate that interleukin 10 possessed stimulatory roles in activated CD8 + T cells from gastric cancer patients.

  4. Breast cancer instructs dendritic cells to prime interleukin 13–secreting CD4+ T cells that facilitate tumor development

    PubMed Central

    Aspord, Caroline; Pedroza-Gonzalez, Alexander; Gallegos, Mike; Tindle, Sasha; Burton, Elizabeth C.; Su, Dan; Marches, Florentina; Banchereau, Jacques; Palucka, A. Karolina

    2007-01-01

    We previously reported (Bell, D., P. Chomarat, D. Broyles, G. Netto, G.M. Harb, S. Lebecque, J. Valladeau, J. Davoust, K.A. Palucka, and J. Banchereau. 1999. J. Exp. Med. 190: 1417–1426) that breast cancer tumors are infiltrated with mature dendritic cells (DCs), which cluster with CD4+ T cells. We now show that CD4+ T cells infiltrating breast cancer tumors secrete type 1 (interferon γ) as well as high levels of type 2 (interleukin [IL] 4 and IL-13) cytokines. Immunofluorescence staining of tissue sections revealed intense IL-13 staining on breast cancer cells. The expression of phosphorylated signal transducer and activator of transcription 6 in breast cancer cells suggests that IL-13 actually delivers signals to cancer cells. To determine the link between breast cancer, DCs, and CD4+ T cells, we implanted human breast cancer cell lines in nonobese diabetic/LtSz-scid/scid β2 microglobulin–deficient mice engrafted with human CD34+ hematopoietic progenitor cells and autologous T cells. There, CD4+ T cells promote early tumor development. This is dependent on DCs and can be partially prevented by administration of IL-13 antagonists. Thus, breast cancer targets DCs to facilitate its development. PMID:17438063

  5. Comparative proteomics of exosomes secreted by tumoral Jurkat T cells and normal human T cell blasts unravels a potential tumorigenic role for valosin-containing protein.

    PubMed

    Bosque, Alberto; Dietz, Lisa; Gallego-Lleyda, Ana; Sanclemente, Manuel; Iturralde, María; Naval, Javier; Alava, María Angeles; Martínez-Lostao, Luis; Thierse, Hermann-Josef; Anel, Alberto

    2016-05-17

    We have previously characterized that FasL and Apo2L/TRAIL are stored in their bioactive form inside human T cell blasts in intraluminal vesicles present in multivesicular bodies. These vesicles are rapidly released to the supernatant in the form of exosomes upon re-activation of T cells. In this study we have compared for the first time proteomics of exosomes produced by normal human T cell blasts with those produced by tumoral Jurkat cells, with the objective of identify proteins associated with tumoral exosomes that could have a previously unrecognized role in malignancy. We have identified 359 and 418 proteins in exosomes from T cell blasts and Jurkat cells, respectively. Interestingly, only 145 (around a 40%) are common. The major proteins in both cases are actin and tubulin isoforms and the common interaction nodes correspond to these cytoskeleton and related proteins, as well as to ribosomal and mRNA granule proteins. We detected 14 membrane proteins that were especially enriched in exosomes from Jurkat cells as compared with T cell blasts. The most abundant of these proteins was valosin-containing protein (VCP), a membrane ATPase involved in ER homeostasis and ubiquitination. In this work, we also show that leukemic cells are more sensitive to cell death induced by the VCP inhibitor DBeQ than normal T cells. Furthermore, VCP inhibition prevents functional exosome secretion only in Jurkat cells, but not in T cell blasts. These results suggest VCP targeting as a new selective pathway to exploit in cancer treatment to prevent tumoral exosome secretion.

  6. T Lymphocyte Inhibition by Tumor-Infiltrating Dendritic Cells Involves Ectonucleotidase CD39 but Not Arginase-1.

    PubMed

    Trad, Malika; Gautheron, Alexandrine; Fraszczak, Jennifer; Alizadeh, Darya; Larmonier, Claire; LaCasse, Collin J; Centuori, Sara; Audia, Sylvain; Samson, Maxime; Ciudad, Marion; Bonnefoy, Francis; Lemaire-Ewing, Stéphanie; Katsanis, Emmanuel; Perruche, Sylvain; Saas, Philippe; Bonnotte, Bernard

    2015-01-01

    T lymphocytes activated by dendritic cells (DC) which present tumor antigens play a key role in the antitumor immune response. However, in patients suffering from active cancer, DC are not efficient at initiating and supporting immune responses as they participate to T lymphocyte inhibition. DC in the tumor environment are functionally defective and exhibit a characteristic of immature phenotype, different to that of DC present in nonpathological conditions. The mechanistic bases underlying DC dysfunction in cancer responsible for the modulation of T-cell responses and tumor immune escape are still being investigated. Using two different mouse tumor models, we showed that tumor-infiltrating DC (TIDC) are constitutively immunosuppressive, exhibit a semimature phenotype, and impair responder T lymphocyte proliferation and activation by a mechanism involving CD39 ectoenzyme.

  7. CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism.

    PubMed

    Dai, Zhenhua; Li, Qi; Wang, Yinong; Gao, Ge; Diggs, Lonnette S; Tellides, George; Lakkis, Fadi G

    2004-01-01

    CD4(+)CD25(+) regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft rejection mediated by memory CD8(+) T cells. Suppression was allospecific, as Treg cells induced by third-party antigens did not delay allograft rejection. In vivo and in vitro analyses revealed that the apoptosis of allospecific memory CD8(+) T cells is significantly increased in the presence of antigen-induced Treg cells, while their proliferation remains unaffected. Importantly, neither suppression of allograft rejection nor enhanced apoptosis of memory CD8(+) T cells was observed when Treg cells lacked CD30 or when CD30 ligand-CD30 interaction was blocked with anti-CD30 ligand Ab. This study therefore provides direct evidence that pathogenic memory T cells are amenable to suppression in an antigen-specific manner and identifies CD30 as a molecule that is critical for the regulation of memory T cell responses.

  8. CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism

    PubMed Central

    Dai, Zhenhua; Li, Qi; Wang, Yinong; Gao, Ge; Diggs, Lonnette S.; Tellides, George; Lakkis, Fadi G.

    2004-01-01

    CD4+CD25+ regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft rejection mediated by memory CD8+ T cells. Suppression was allospecific, as Treg cells induced by third-party antigens did not delay allograft rejection. In vivo and in vitro analyses revealed that the apoptosis of allospecific memory CD8+ T cells is significantly increased in the presence of antigen-induced Treg cells, while their proliferation remains unaffected. Importantly, neither suppression of allograft rejection nor enhanced apoptosis of memory CD8+ T cells was observed when Treg cells lacked CD30 or when CD30 ligand–CD30 interaction was blocked with anti–CD30 ligand Ab. This study therefore provides direct evidence that pathogenic memory T cells are amenable to suppression in an antigen-specific manner and identifies CD30 as a molecule that is critical for the regulation of memory T cell responses. PMID:14722622

  9. An inducible transgenic mouse breast cancer model for the analysis of tumor antigen specific CD8+ T-cell responses

    PubMed Central

    Bruns, Michael; Wanger, Jara; Utermöhlen, Olaf; Deppert, Wolfgang

    2015-01-01

    In Simian virus 40 (SV40) transgenic BALB/c WAP-T mice tumor development and progression is driven by SV40 tumor antigens encoded by inducible transgenes. WAP-T mice constitute a well characterized mouse model for breast cancer with strong similarities to the corresponding human disease. BALB/c mice mount only a weak cellular immune response against SV40 T-antigen (T-Ag). For studying tumor antigen specific CD8+ T-cell responses against transgene expressing cells, we created WAP-TNP mice, in which the transgene additionally codes for the NP118–126-epitope contained within the nucleoprotein of lymphocytic choriomeningitis virus (LCMV), the immune-dominant T-cell epitope in BALB/c mice. We then investigated in WAP-TNP mice the immune responses against SV40 tumor antigens and the NP-epitope within the chimeric T-Ag/NP protein (T-AgNP). Analysis of the immune-reactivity against T-Ag in WAP-T and of T-AgNP in WAP-TNP mice revealed that, in contrast to wild type (wt) BALB/c mice, WAP-T and WAP-TNP mice were non-reactive against T-Ag. However, like wtBALB/c mice, WAP-T as well as WAP-TNP mice were highly reactive against the immune-dominant LCMV NP-epitope, thereby allowing the analysis of NP-epitope specific cellular immune responses in WAP-TNP mice. LCMV infection of WAP-TNP mice induced a strong, LCMV NP-epitope specific CD8+ T-cell response, which was able to specifically eliminate T-AgNP expressing mammary epithelial cells both prior to tumor formation (i.e. in cells of lactating mammary glands), as well as in invasive tumors. Elimination of tumor cells, however, was only transient, even after repeated LCMV infections. Further studies showed that already non-infected WAP-TNP tumor mice contained LCMV NP-epitope specific CD8+ T-cells, albeit with strongly reduced, though measurable activity. Functional impairment of these ‘endogenous’ NP-epitope specific T-cells seems to be caused by expression of the programmed death-1 protein (PD1), as anti-PD1 treatment of

  10. Recognition of Live Phosphatidylserine-Labeled Tumor Cells by Dendritic Cells: A Novel Approach to Immunotherapy of Skin Cancer

    PubMed Central

    Shurin, Michael R.; Potapovich, Alla I.; Tyurina, Yulia Y.; Tourkova, Irina L.; Shurin, Galina V.; Kagan, Valerian E.

    2014-01-01

    Dendritic cells (DC) loaded with tumor antigens from apoptotic/necrotic tumor cells are commonly used as vaccines for cancer therapy. However, the use of dead tumor cells may cause both tolerance and immunity, making the effect of vaccination unpredictable. To deliver live tumor “cargoes” into DC, we developed a new approach based on the “labeling” of tumors with a phospholipid “eat-me” signal, phosphatidylserine. Expression of phosphatidylserine on live tumor cells mediated their recognition and endocytosis by DC resulting in the presentation of tumor antigens to antigen-specific T cells. In mice, topical application of phosphatidylserine-containing ointment over melanoma induced tumor-specific CTL, local and systemic antitumor immunity, and inhibited tumor growth. Thus, labeling of tumors with phosphatidylserine is a promising strategy for cancer immunotherapy. PMID:19276376

  11. FAM13A is associated with non-small cell lung cancer (NSCLC) progression and controls tumor cell proliferation and survival

    PubMed Central

    Heim, Lisanne; Trump, Sonja; Mittler, Susanne; Sopel, Nina; Andreev, Katerina; Ferrazzi, Fulvia; Ekici, Arif B.; Rieker, Ralf; Springel, Rebekka; Assmann, Vera L.; Lechmann, Matthias; Koch, Sonja; Engelhardt, Marina; Trufa, Denis I.; Sirbu, Horia; Hartmann, Arndt; Finotto, Susetta

    2017-01-01

    ABSTRACT Genome-wide association studies (GWAS) associated Family with sequence similarity 13, member A (FAM13A) with non-small cell lung cancer (NSCLC) occurrence. Here, we found increased numbers of FAM13A protein expressing cells in the tumoral region of lung tissues from a cohort of patients with NSCLC. Moreover, FAM13A inversely correlated with CTLA4 but directly correlated with HIF1α levels in the control region of these patients. Consistently, FAM13A RhoGAP was found to be associated with T cell effector molecules like HIF1α and Tbet and was downregulated in immunosuppressive CD4+CD25+Foxp3+CTLA4+ T cells. TGFβ, a tumor suppressor factor, as well as siRNA to FAM13A, suppressed both isoforms of FAM13A and inhibited tumor cell proliferation. RNA-Seq analysis confirmed this finding. Moreover, siRNA to FAM13A induced TGFβ levels. Finally, in experimental tumor cell migration, FAM13A was induced and TGFβ accelerated this process by inducing cell migration, HIF1α, and the FAM13A RhoGAP isoform. Furthermore, siRNA to FAM13A inhibited tumor cell proliferation and induced cell migration without affecting HIF1α. In conclusion, FAM13A is involved in tumor cell proliferation and downstream of TGFβ and HIF1α, FAM13A RhoGAP is associated with Th1 gene expression and lung tumor cell migration. These findings identify FAM13A as key regulator of NSCLC growth and progression. PMID:28197372

  12. Low-dose controlled release of mTOR inhibitors maintains T cell plasticity and promotes central memory T cells.

    PubMed

    Gammon, Joshua M; Gosselin, Emily A; Tostanoski, Lisa H; Chiu, Yu-Chieh; Zeng, Xiangbin; Zeng, Qin; Jewell, Christopher M

    2017-10-10

    An important goal for improving vaccine and immunotherapy technologies is the ability to provide further control over the specific phenotypes of T cells arising from these agents. Along these lines, frequent administration of rapamycin (Rapa), a small molecule inhibitor of the mammalian target of rapamycin (mTOR), exhibits a striking ability to polarize T cells toward central memory phenotypes (T CM ), or to suppress immune function, depending on the concentrations and other signals present during administration. T CM exhibit greater plasticity and proliferative capacity than effector memory T cells (T EFF ) and, therefore, polarizing vaccine-induced T cells toward T CM is an intriguing strategy to enhance T cell expansion and function against pathogens or tumors. Here we combined biodegradable microparticles encapsulating Rapa (Rapa MPs) with vaccines composed of soluble peptide antigens and molecular adjuvants to test if this approach allows polarization of differentiating T cells toward T CM . We show Rapa MPs modulate DC function, enhancing secretion of inflammatory cytokines at very low doses, and suppressing function at high doses. While Rapa MP treatment reduced - but did not stop - T cell proliferation in both CD4 + and CD8 + transgenic T cell co-cultures, the expanding CD8 + T cells differentiated to higher frequencies of T CM at low doses of MP Rapa MPs. Lastly, we show in mice that local delivery of Rapa MPs to lymph nodes during vaccination either suppresses or enhances T cell function in response to melanoma antigens, depending on the dose of drug in the depots. In particular, at low Rapa MP doses, vaccines increased antigen-specific T CM , resulting in enhanced T cell expansion measured during subsequent booster injections over at least 100days. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. T cell leukemia control via Ras-Raf pathway inhibition with peptides.

    PubMed

    Marin, G H; Rebollo, A; Bruzzoni-Giovanelli, H; Schinella, G; Piazzon, I; Duarte, A; Errecalde, J

    2017-01-01

    RAS-RAF-MEK-ERK pathway has been considered a promising target for anticancer therapy. However, tumor cells may develop resistance against such drugs via hyperactivation of N-Ras, which explains why novel therapeut-ic approaches. In this sense, the Institute Curie- Université Pierre et Marie Curie (Paris 6) designed peptides in order to disturb Ras/Raf interaction which showed pro-apoptotic properties. These peptides were patented as WO2015001045 A2 (PCT/EP2014/064243)5. In order to check the anti-tumoral action of WO2015001045 A2 peptides in a very aggressive BALB/c mice spontaneous leukemia called LB, we performed the present study. 50 BALB/c mice inoculated with 106 LB tumor cells were randomly assigned either to control (placebo) or treatment group (that daily received 3 mg of peptide per kg of mice) during 30 days. By day 15 only 24% of the control group was alive vs. 100% of the treatment group. The average survival in treated group was 20,27 days while in control group the mean survival was 15,48 days. Either bone marrow, spleen or axillary nodes demonstrated a higher level of malignant T cell presence compare with treated group (89,78% ; 95,64% & 77,68% versus 72,45%, 80,23% & 63.44% respectively for each organ inspected. Our study demonstrated an improvement in survival curves in mice model affected by spontaneous T lymphoid leukemia when peptides WO2015001045 A2 were used. These peptides might be a valid option to become part of the therapeutic armory for malignant lymphoproliferative diseases control.

  14. Tadalafil Reduces Myeloid-Derived Suppressor Cells and Regulatory T Cells and Promotes Tumor Immunity in Patients with Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Vella, Jennifer L.; Reis, Isildinha M.; De la fuente, Adriana C.; Gomez, Carmen; Sargi, Zoukaa; Nazarian, Ronen; Califano, Joseph; Borrello, Ivan

    2015-01-01

    Purpose Myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) play a key role in the progression of head and neck squamous cell carcinoma (HNSCC). On the basis of our preclinical data demonstrating that phosphodiesterase-5 (PDE5) inhibition can modulate these cell populations, we evaluated whether the PDE5 inhibitor tadalafil can revert tumor-induced immunosuppression and promote tumor immunity in patients with HNSCC. Experimental Design First, we functionally and phenotypically characterized MDSCs in HNSCCs and determined, retrospectively, whether their presence at the tumor site correlates with recurrence. Then, we performed a prospective single-center, double-blinded, randomized, three-arm study in which patients with HNSCC undergoing definitive surgical resection of oral and oropharyngeal tumors were treated with tadalafil 10 μg/day, 20 μg/day, or placebo for at least 20 days preoperatively. Blood and tumor MDSC and Treg presence and CD8+ T-cell reactivity to tumor antigens were evaluated before and after treatment. Results MDSCs were characterized in HNSCC and their intratumoral presence significantly correlates with recurrence. Tadalafil treatment was well tolerated and significantly reduced both MDSCs and Treg concentrations in the blood and in the tumor (P < 0.05). In addition, the concentration of blood CD8+ T cells reactive to autologous tumor antigens significantly increased after treatment (P < 0.05). Tadalafil immunomodulatory activity was maximized at an intermediate dose but not at higher doses. Mechanistic analysis suggests a possible off-target effect on PDE11 at high dosages that, by increasing intracellular cAMP, may negatively affect antitumor immunity. Conclusions Tadalafil seems to beneficially modulate the tumor micro- and macro-environment in patients with HNSCC by lowering MDSCs and Tregs and increasing tumor-specific CD8+ T cells in a dose-dependent fashion. PMID:25320361

  15. Checkpoint Antibodies but not T Cell-Recruiting Diabodies Effectively Synergize with TIL-Inducing γ-Irradiation.

    PubMed

    Hettich, Michael; Lahoti, Jayashree; Prasad, Shruthi; Niedermann, Gabriele

    2016-08-15

    T cell-recruiting bispecific antibodies (bsAb) show promise in hematologic malignancies and are also being evaluated in solid tumors. In this study, we investigated whether T cell-recruiting bsAbs synergize with hypofractionated tumor radiotherapy (hRT) and/or blockade of the programmed death-1 (PD-1) immune checkpoint, both of which can increase tumor-infiltrating lymphocyte (TIL) numbers. Unexpectedly, large melanomas treated with hRT plus bsAb (AC133×CD3) relapsed faster than those treated with hRT alone, accompanied by massive TIL apoptosis. This fast relapse was delayed by the further addition of anti-PD-1. Mechanistic investigations revealed restimulation-induced cell death mediated by BIM and FAS as an additional cause of bsAb-mediated TIL depletion. In contrast, the double combination of hRT and anti-PD-1 strongly increased TIL numbers, and even very large tumors were completely eradicated. Our study reveals the risk that CD3-engaging bsAbs can induce apoptotic TIL depletion followed by rapid tumor regrowth, reminiscent of tolerance induction by CD3 mAb-mediated T-cell depletion, warranting caution in their use for the treatment of solid tumors. Our findings also argue that combining radiotherapy and anti-PD-1 can be quite potent, including against very large tumors. Cancer Res; 76(16); 4673-83. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Resveratrol analog, HS-1793 enhance anti-tumor immunity by reducing the CD4+CD25+ regulatory T cells in FM3A tumor bearing mice.

    PubMed

    Jeong, Min Ho; Yang, Kwang Mo; Choi, Yoo Jin; Kim, Sung Dae; Yoo, Young Hyun; Seo, Su Yeong; Lee, Sang Hwa; Ryu, Seong Ryul; Lee, Chang Min; Suh, Hong suk; Jo, Wol Soon

    2012-11-01

    Natural agents with the immunomodulating property have been gaining traction to be employed in the complementary therapy of cancer because the ineffectiveness of numerous therapeutic strategies may be related in part to the tumor-induced immunosuppressive phenotypes, especially regulatory T (Treg) cells found in the tumor microenvironment. The present study was undertaken to examine whether HS-1793, synthetic resvertrol analog free from the restriction of metabolic instability and high dose requirement of resveratrol, induces an in vivo anti-tumor effect in FM3A tumor bearing mice through the suppression of Treg cells, which contribute to an increase in tumor specific cytotoxic T cell responses. Intraperitoneal injections of HS-1793 showed not only therapeutic benefits on established tumors, but also preventive anti-tumor effects. Treg cells (CD4+CD25+Foxp3+ cells) were significantly reduced in the total splenocytes as well as tumor tissues from HS-1793-administered mice, and the production of TGF-β inducing Treg showed a similar pattern. On the contrary, the administration of HS-1793 increased IFN-γ-expressing CD8+ T cells, upregulated IFN-γ production, and enhanced the cytotoxicity of splenocytes against FM3A tumor cells both in therapeutic and preventive experimental animals. These results demonstrated the suppressive role of HS-1793 on the function of Treg cells contributing to tumor specific cytotoxic T lymphocyte responses in tumor-bearing mice, which explained the underlying mechanism of the anti-tumor immunity of HS-1793. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. T-cell-mediated immune response to respiratory coronaviruses

    PubMed Central

    Channappanavar, Rudragouda; Zhao, Jincun; Perlman, Stanley

    2014-01-01

    Emerging respiratory coronaviruses such as the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV) pose potential biological threats to humans. SARS and MERS are manifested as severe atypical pneumonia associated with high morbidity and mortality in humans. The majority of studies carried out in SARS-CoV-infected humans and animals attribute a dysregulated/exuberant innate response as a leading contributor to SARS-CoV-mediated pathology. A decade after the 2002–2003 SARS epidemic, we do not have any approved preventive or therapeutic agents available in case of re-emergence of SARS-CoV or other related viruses. A strong neutralizing antibody response generated against the spike (S) glycoprotein of SARS-CoV is completely protective in the susceptible host. However, neutralizing antibody titers and the memory B cell response are short-lived in SARS-recovered patients and the antibody will target primary homologous strain. Interestingly, the acute phase of SARS in humans is associated with a severe reduction in the number of T cells in the blood. Surprisingly, only a limited number of studies have explored the role of the T cell-mediated adaptive immune response in respiratory coronavirus pathogenesis. In this review, we discuss the role of anti-virus CD4 and CD8 T cells during respiratory coronavirus infections with a special emphasis on emerging coronaviruses. PMID:24845462

  18. Gene delivery of TIPE2 inhibits breast cancer development and metastasis via CD8+ T and NK cell-mediated antitumor responses.

    PubMed

    Zhang, Zhenhua; Liu, Li; Cao, Shousong; Zhu, Yizhun; Mei, Qibing

    2017-05-01

    Breast cancer is the second leading cause of cancer-related deaths in the female patients which was mainly caused by metastasis. Development of target gene therapy for breast cancer to suppress tumor progress and metastasis will improve the therapeutic options and be of great benefit to the patients. Tumor necrosis factor-alpha-induced protein 8-like 2 is a novel molecule for maintaining immune homeostasis and is involved in cancer development. In the present study, we overexpressed TIPE2 in breast cancer cells to investigate the role of TIPE2 in the development of breast cancer. Our results showed that overexpression of TIPE2 significantly inhibited the proliferation of 4T1 cells in vitro and in vivo. We constructed a non-viral targeted gene therapeutic system by using the minicircle plasmids expressing TIPE2. We found that the growth and metastasis of breast cancer was significantly inhibited by hydrodynamic gene delivery of TIPE2 plasmids in vivo. Mechanistically, TIPE2 increased T and NK cells, and decreased MDSCs. Gene delivery of TIPE2 up-regulated the production of IFN-γ and TNF-α by CD8 + T and NK cells in spleens and tumor microenvironment, and enhanced the cytotoxic activity of CD8 + T and NK cells. Taken together, TIPE2 inhibited breast cancer development and metastasis possibly via promoting CD8 + T and NK cell-mediated antitumor immune responses. Thus, the results indicate that TIPE2 may be a potential therapeutic target for breast cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Higher Numbers of T-Bet+ Tumor-Infiltrating Lymphocytes Associate with Better Survival in Human Epithelial Ovarian Cancer.

    PubMed

    Xu, Yun; Chen, Lujun; Xu, Bin; Xiong, Yuqi; Yang, Min; Rui, Xiaohui; Shi, Liangrong; Wu, Changping; Jiang, Jingting; Lu, Binfeng

    2017-01-01

    T-bet, a member of the T-box family of transcription factors, is a key marker of type I immune response within the tumor microenvironment, and has been previously reported by us to serve as an important prognostic indicator for human gastric cancer patients and a potential biomarker for immunotherapy. In the present study, we aimed to assess the clinical significance and prognostic value of T-bet+ tumor-infiltrating lymphocytes in human epithelial ovarian cancer. The immunohistochemistry was used to analyze the infiltration density of T-bet+ lymphoid cells in human epithelial ovarian cancer tissues, and the flow cytometry analysis was used to further analyze the presence of T-bet+ tumor-infiltrating lymphocytes subgroups in cancer tissues. Our immunohistochemistry analysis showed increased number of T-bet+ lymphoid cells in the human epithelial ovarian cancer tissues, and the flow cytometry analysis further demonstrated the presence of T-bet+ tumor-infiltrating lymphocytes subgroups including CD4+ , CD8+ T cells and NK cells. In addition, we also observed a significant association of T-bet+ tumor-infiltrating lymphocytes density in the tumor nest of cancer with not only serum CA125 levels but also with distant metastasis. However no association was observed with other characteristics like patients' age, pathological type, FIGO stage, tumor site and tumor size. Furthermore, the survival analysis showed that higher density of T-bet+ tumor-infiltrating lymphocytes both in tumor nest and tumor stroma of cancer tissues was significantly associated with better patient survival. In addition, the density of T-bet+ tumor-infiltrating lymphocytes in tumor nest appeared to be an independent risk factor for predicting patients' postoperative prognoses. Our data indicated that the key transcription factor T-bet might play an important role in the type I immune cells mediated antitumor response, and the density of T-bet+ lymphocytes in human epithelial ovarian cancer tissues

  20. Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles

    PubMed Central

    Ma, Jingwei; Zhang, Yi; Tang, Ke; Zhang, Huafeng; Yin, Xiaonan; Li, Yong; Xu, Pingwei; Sun, Yanling; Ma, Ruihua; Ji, Tiantian; Chen, Junwei; Zhang, Shuang; Zhang, Tianzhen; Luo, Shunqun; Jin, Yang; Luo, Xiuli; Li, Chengyin; Gong, Hongwei; Long, Zhixiong; Lu, Jinzhi; Hu, Zhuowei; Cao, Xuetao; Wang, Ning; Yang, Xiangliang; Huang, Bo

    2016-01-01

    Developing novel approaches to reverse the drug resistance of tumor-repopulating cells (TRCs) or stem cell-like cancer cells is an urgent clinical need to improve outcomes of cancer patients. Here we show an innovative approach that reverses drug resistance of TRCs using tumor cell-derived microparticles (T-MPs) containing anti-tumor drugs. TRCs, by virtue of being more deformable than differentiated cancer cells, preferentially take up T-MPs that release anti-tumor drugs after entering cells, which in turn lead to death of TRCs. The underlying mechanisms include interfering with drug efflux and promoting nuclear entry of the drugs. Our findings demonstrate the importance of tumor cell softness in uptake of T-MPs and effectiveness of a novel approach in reversing drug resistance of TRCs with promising clinical applications. PMID:27167569

  1. Human T cells engineered to express a programmed death 1/28 costimulatory retargeting molecule display enhanced antitumor activity.

    PubMed

    Ankri, Chen; Shamalov, Katerina; Horovitz-Fried, Miryam; Mauer, Shmuel; Cohen, Cyrille J

    2013-10-15

    Adoptive transfer of T cells genetically modified to express cancer-specific receptors can mediate impressive tumor regression in terminally ill patients. However, T cell function and persistence over time could be hampered by the activation of inhibitory costimulatory pathways, such as programmed death 1 (PD1)/programmed death ligand 1, leading to T cell exhaustion and providing tumor cells with an escape mechanism from immunosurveillance. In addition, the lack of positive costimulation at the tumor site can further dampen T cell response. Thus, as T cell genetic engineering has become clinically relevant, we aimed at enhancing T cell antitumor activity by genetically diverting T cell-negative costimulatory signals into positive ones using chimeric costimulatory retargeting molecules and which are composed of the PD1 extracellular domain fused to the signaling domains of positive costimulatory molecules such as CD28 and 4-1BB. After characterizing the optimal PD1 chimera, we designed and optimized a tripartite retroviral vector that enables the simultaneous expression of this chimeric molecule in conjunction with a cancer-specific TCR. Human T cells, transduced to express a PD1/28 chimeric molecule, exhibited enhanced cytokine secretion and upregulation of activation markers upon coculture with tumor cells. These engineered cells also proliferated better compared with control cells. Finally, we tested the function of these cells in two xenograft models of human melanoma tumors and show that PD1/28-engineered human T cells demonstrated superior antitumor function. Overall, we propose that engineering T cells with a costimulatory retargeting molecule can enhance their function, which bears important implications for the improvement of T cell immunotherapy.

  2. Repeated cycles of 5-fluorouracil chemotherapy impaired anti-tumor functions of cytotoxic T cells in a CT26 tumor-bearing mouse model.

    PubMed

    Wu, Yanhong; Deng, Zhenling; Wang, Huiru; Ma, Wenbo; Zhou, Chunxia; Zhang, Shuren

    2016-09-20

    Recently, the immunostimulatory roles of chemotherapeutics have been increasingly revealed, although bone marrow suppression is still a common toxicity of chemotherapy. While the numbers and ratios of different immune subpopulations are analyzed after chemotherapy, changes to immune status after each cycle of treatment are less studied and remain unclear. To determine the tumor-specific immune status and functions after different cycles of chemotherapy, we treated CT26 tumor-bearing mice with one to four cycles of 5-fluorouracil (5-FU). Overall survival was not improved when more than one cycle of 5-FU was administered. Here we present data concerning the immune statuses after one and three cycles of chemotherapy. We analyzed the amount of spleen cells from mice treated with one and three cycles of 5-FU as well as assayed their proliferation and cytotoxicity against the CT26 tumor cell line. We found that the absolute numbers of CD8 T-cells and NK cells were not influenced significantly after either one or three cycles of chemotherapy. However, after three cycles of 5-FU, proliferated CD8 T-cells were decreased, and CT26-specific cytotoxicity and IFN-γ secretion of spleen cells were impaired in vitro. After one cycle of 5-FU, there was a greater percentage of tumor infiltrating CD8 T-cells. In addition, more proliferated CD8 T-cells, enhanced tumor-specific cytotoxicity as well as IFN-γ secretion of spleen cells against CT26 in vitro were observed. Given the increased expression of immunosuppressive factors, such as PD-L1 and TGF-β, we assessed the effect of early introduction of immunotherapy in combination with chemotherapy. We found that mice treated with cytokine induced killer cells and PD-L1 monoclonal antibodies after one cycle of 5-FU had a better anti-tumor performance than those treated with chemotherapy or immunotherapy alone. These data suggest that a single cycle of 5-FU treatment promoted an anti-tumor immune response, whereas repeated chemotherapy

  3. Tumor-penetrating Peptide Conjugated and Doxorubicin Loaded T1-T2 Dual Mode MRI Contrast Agents Nanoparticles for Tumor Theranostics

    PubMed Central

    Gao, Lipeng; Yu, Jing; Liu, Yang; Zhou, Jinge; Sun, Lei; Wang, Jing; Zhu, Jianzhong; Peng, Hui; Lu, Weiyue; Yu, Lei; Yan, Zhiqiang; Wang, Yiting

    2018-01-01

    The conventional chemotherapeutics could not be traced in vivo and provide timely feedback on the clinical effectiveness of drugs. Methods: In this study, a tumor-penetrating peptide RGERPPR (RGE) modified, Gd-DTPA conjugated, and doxorubicin (DOX) loaded Fe3O4@SiO2@mSiO2 nanoparticle drug delivery system (Fe3O4@SiO2@mSiO2/DOX-(Gd-DTPA)-PEG-RGE NPs) was prepared for tumor theranostics. Results: The Fe3O4@SiO2@mSiO2/DOX-(Gd-DTPA)-PEG-RGE NPs showed a z-average hydrodynamic diameter of about 90 nm, and a pH-sensitive DOX release profile. The 3 T MRI results confirmed the relaxivity of the NPs (r1 = 6.13 mM-1S-1, r2 = 36.89 mM-1S-1). The in vitro cellular uptake and cytotoxicity assays on U87MG cells confirmed that the conjugation of RGERPPR played a significant role in increasing the cellular uptake and cytotoxicity of the NPs. The near-infrared fluorescence in vivo imaging results showed that the NPs could be significantly accumulated in the U87MG tumor tissue, which should result from the mediation of the tumor-penetrating peptide RGERPPR. The MRI results showed that the NPs offered a T1-T2 dual mode contrast imaging effect which would lead to a more precise diagnosis. Compared with unmodified NPs, the RGE-modified NPs showed significantly enhanced MR imaging signal in tumor tissue and antitumor effect, which should also be attributed to the tumor penetrating ability of RGERPPR peptide. Furthermore, the Hematoxylin and Eosin (H&E) staining and TUNEL assay proved that the NPs produced obvious cell apoptosis in tumor tissue. Conclusions: These results indicated that Fe3O4@SiO2@mSiO2/DOX-(Gd-DTPA)-PEG-RGE NPs are an effective targeted delivery system for tumor theranostics, and should have a potential value in the personalized treatment of tumor. PMID:29290795

  4. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor.

    PubMed

    Boissonnas, Alexandre; Fetler, Luc; Zeelenberg, Ingrid S; Hugues, Stéphanie; Amigorena, Sebastian

    2007-02-19

    Although the immune system evolved to fight infections, it may also attack and destroy solid tumors. In most cases, tumor rejection is initiated by CD8(+) cytotoxic T lymphocytes (CTLs), which infiltrate solid tumors, recognize tumor antigens, and kill tumor cells. We use a combination of two-photon intravital microscopy and immunofluorescence on ordered sequential sections to analyze the infiltration and destruction of solid tumors by CTLs. We show that in the periphery of a thymoma growing subcutaneously, activated CTLs migrate with high instantaneous velocities. The CTLs arrest in close contact to tumor cells expressing their cognate antigen. In regions where most tumor cells are dead, CTLs resume migration, sometimes following collagen fibers or blood vessels. CTLs migrating along blood vessels preferentially adopt an elongated morphology. CTLs also infiltrate tumors in depth, but only when the tumor cells express the cognate CTL antigen. In tumors that do not express the cognate antigen, CTL infiltration is restricted to peripheral regions, and lymphocytes neither stop moving nor kill tumor cells. Antigen expression by tumor cells therefore determines both CTL motility within the tumor and profound tumor infiltration.

  5. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor

    PubMed Central

    Boissonnas, Alexandre; Fetler, Luc; Zeelenberg, Ingrid S.; Hugues, Stéphanie; Amigorena, Sebastian

    2007-01-01

    Although the immune system evolved to fight infections, it may also attack and destroy solid tumors. In most cases, tumor rejection is initiated by CD8+ cytotoxic T lymphocytes (CTLs), which infiltrate solid tumors, recognize tumor antigens, and kill tumor cells. We use a combination of two-photon intravital microscopy and immunofluorescence on ordered sequential sections to analyze the infiltration and destruction of solid tumors by CTLs. We show that in the periphery of a thymoma growing subcutaneously, activated CTLs migrate with high instantaneous velocities. The CTLs arrest in close contact to tumor cells expressing their cognate antigen. In regions where most tumor cells are dead, CTLs resume migration, sometimes following collagen fibers or blood vessels. CTLs migrating along blood vessels preferentially adopt an elongated morphology. CTLs also infiltrate tumors in depth, but only when the tumor cells express the cognate CTL antigen. In tumors that do not express the cognate antigen, CTL infiltration is restricted to peripheral regions, and lymphocytes neither stop moving nor kill tumor cells. Antigen expression by tumor cells therefore determines both CTL motility within the tumor and profound tumor infiltration. PMID:17261634

  6. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudás, József, E-mail: jozsef.dudas@i-med.ac.at; Fullár, Alexandra, E-mail: fullarsz@gmail.com; 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factormore » κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.« less

  7. Definitive Radiotherapy for T1-T2 Squamous Cell Carcinoma of Pyriform Sinus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabbani, Anna; Amdur, Robert J.; Mancuso, Anthony A.

    2008-10-01

    Purpose: To report the long-term results after definitive radiotherapy (RT) for T1-T2 pyriform sinus squamous cell carcinoma. Patients and Methods: The data from 123 patients with T1-T2 pyriform sinus squamous cell carcinoma treated with RT with or without neck dissection between November 1964 and June 2003 were analyzed. The median follow-up for all patients was 3.2 years, and the median follow-up for living patients was 10.7 years. Results: The 5-year local control, locoregional control, freedom from distant metastasis, cause-specific survival, and overall survival rate was 85%, 70%, 75%, 61%, and 35%, respectively. The ultimate local control rate, including successful salvagemore » of RT failure, for T1 and T2 cancer patients was 96% and 94%, respectively. The overall local control rate with a functional larynx was 83%. Pretreatment computed tomography tumor volume data were available for 55 patients. The median computed tomography tumor volume was 4.2 cm{sup 3} (range, 0-22.4). Local control was worse for patients with a tumor volume >6.5 cm{sup 3} compared with those with a smaller tumor volume. Of the 123 patients, 16% developed moderate to severe acute (2%), late (9%), or postoperative (5%) complications. Conclusions: Local control with larynx preservation after definitive RT for T1-T2 pyriform sinus squamous cell carcinoma likely results in local control and survival similar to that after total laryngectomy or larynx-conserving surgery. Two-thirds of our living patients retained a functional larynx.« less

  8. The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor-endothelial cell interactions.

    PubMed

    Rezaei, Maryam; Cao, Jiahui; Friedrich, Katrin; Kemper, Björn; Brendel, Oliver; Grosser, Marianne; Adrian, Manuela; Baretton, Gustavo; Breier, Georg; Schnittler, Hans-Joachim

    2018-01-01

    The cadherin switch has profound consequences on cancer invasion and metastasis. The endothelial-specific vascular endothelial cadherin (VE-cadherin) has been demonstrated in diverse cancer types including breast cancer and is supposed to modulate tumor progression and metastasis, but underlying mechanisms need to be better understood. First, we evaluated VE-cadherin expression by tissue microarray in 392 cases of breast cancer tumors and found a diverse expression and distribution of VE-cadherin. Experimental expression of fluorescence-tagged VE-cadherin (VE-EGFP) in undifferentiated, fibroblastoid and E-cadherin-negative MDA-231 (MDA-VE-EGFP) as well as in differentiated E-cadherin-positive MCF-7 human breast cancer cell lines (MCF-VE-EGFP), respectively, displayed differentiation-dependent functional differences. VE-EGFP expression reversed the fibroblastoid MDA-231 cells to an epithelial-like phenotype accompanied by increased β-catenin expression, actin and vimentin remodeling, increased cell spreading and barrier function and a reduced migration ability due to formation of VE-cadherin-mediated cell junctions. The effects were largely absent in both MDA-VE-EGFP and in control MCF-EGFP cell lines. However, MCF-7 cells displayed a VE-cadherin-independent planar cell polarity and directed cell migration that both developed in MDA-231 only after VE-EGFP expression. Furthermore, VE-cadherin expression had no effect on tumor cell proliferation in monocultures while co-culturing with endothelial cells enhanced tumor cell proliferation due to integration of the tumor cells into monolayer where they form VE-cadherin-mediated cell contacts with the endothelium. We propose an interactive VE-cadherin-based crosstalk that might activate proliferation-promoting signals. Together, our study shows a VE-cadherin-mediated cell dynamics and an endothelial-dependent proliferation in a differentiation-dependent manner.

  9. Enhancing adoptive cancer immunotherapy with Vγ2Vδ2 T cells through pulse zoledronate stimulation.

    PubMed

    Nada, Mohanad H; Wang, Hong; Workalemahu, Grefachew; Tanaka, Yoshimasa; Morita, Craig T

    2017-01-01

    Human γδ T cells expressing Vγ2Vδ2 T cell receptors monitor foreign- and self-prenyl pyrophosphate metabolites in isoprenoid biosynthesis to mediate immunity to microbes and tumors. Adoptive immunotherapy with Vγ2Vδ2 T cells has been used to treat cancer patients with partial and complete remissions. Most clinical trials and preclinical studies have used continuous zoledronate exposure to expand Vγ2Vδ2 cells where zoledronate is slowly diluted over the course of the culture. Zoledronate inhibits farnesyl diphosphate synthase (FDPS) in monocytes causing isopentenyl pyrophosphate to accumulate that then stimulates Vγ2Vδ2 cells. Because zoledronate inhibition of FDPS is also toxic for T cells, we hypothesized that a short period of exposure would reduce T cell toxicity but still be sufficient for monocytes uptake. Additionally, IL-15 increases the anti-tumor activity of murine αβ T cells in mice but its effect on the in vivo anti-tumor activity of human Vγ2Vδ2 cells has not been assessed. Human Vγ2Vδ2 T cells were expanded by pulse or continuous zoledronate stimulation with IL-2 or IL-15. Expanded Vγ2Vδ2 cells were tested for their expression of effector molecules and killing of tumor cells as well as their in vivo control of human prostate cancer tumors in immunodeficient NSG mice. Pulse zoledronate stimulation with either IL-2 or IL-15 resulted in more uniform expansion of Vγ2Vδ2 cells with higher purity and cell numbers as compared with continuous exposure. The Vγ2Vδ2 cells had higher levels of CD107a and perforin and increased tumor cytotoxicity. Adoptive immunotherapy with Vγ2Vδ2 cells derived by pulse stimulation controlled human PC-3 prostate cancer tumors in NSG mice significantly better than those derived by continuous stimulation, halting tumor growth. Although pulse zoledronate stimulation with IL-15 preserved early memory subsets, adoptive immunotherapy with IL-15-derived Vγ2Vδ2 cells equally inhibited PC-3 tumor growth as those

  10. T Lymphocyte Inhibition by Tumor-Infiltrating Dendritic Cells Involves Ectonucleotidase CD39 but Not Arginase-1

    PubMed Central

    Trad, Malika; Gautheron, Alexandrine; Fraszczak, Jennifer; Larmonier, Claire; LaCasse, Collin J.; Centuori, Sara; Audia, Sylvain; Samson, Maxime; Ciudad, Marion; Bonnefoy, Francis; Lemaire-Ewing, Stéphanie; Katsanis, Emmanuel; Perruche, Sylvain; Saas, Philippe; Bonnotte, Bernard

    2015-01-01

    T lymphocytes activated by dendritic cells (DC) which present tumor antigens play a key role in the antitumor immune response. However, in patients suffering from active cancer, DC are not efficient at initiating and supporting immune responses as they participate to T lymphocyte inhibition. DC in the tumor environment are functionally defective and exhibit a characteristic of immature phenotype, different to that of DC present in nonpathological conditions. The mechanistic bases underlying DC dysfunction in cancer responsible for the modulation of T-cell responses and tumor immune escape are still being investigated. Using two different mouse tumor models, we showed that tumor-infiltrating DC (TIDC) are constitutively immunosuppressive, exhibit a semimature phenotype, and impair responder T lymphocyte proliferation and activation by a mechanism involving CD39 ectoenzyme. PMID:26491691

  11. Dual-Affinity Re-Targeting proteins direct T cell–mediated cytolysis of latently HIV-infected cells

    PubMed Central

    Sung, Julia A.M.; Pickeral, Joy; Liu, Liqin; Stanfield-Oakley, Sherry A.; Lam, Chia-Ying Kao; Garrido, Carolina; Pollara, Justin; LaBranche, Celia; Bonsignori, Mattia; Moody, M. Anthony; Yang, Yinhua; Parks, Robert; Archin, Nancie; Allard, Brigitte; Kirchherr, Jennifer; Kuruc, JoAnn D.; Gay, Cynthia L.; Cohen, Myron S.; Ochsenbauer, Christina; Soderberg, Kelly; Liao, Hua-Xin; Montefiori, David; Moore, Paul; Johnson, Syd; Koenig, Scott; Haynes, Barton F.; Nordstrom, Jeffrey L.; Margolis, David M.; Ferrari, Guido

    2015-01-01

    Enhancement of HIV-specific immunity is likely required to eliminate latent HIV infection. Here, we have developed an immunotherapeutic modality aimed to improve T cell–mediated clearance of HIV-1–infected cells. Specifically, we employed Dual-Affinity Re-Targeting (DART) proteins, which are bispecific, antibody-based molecules that can bind 2 distinct cell-surface molecules simultaneously. We designed DARTs with a monovalent HIV-1 envelope-binding (Env-binding) arm that was derived from broadly binding, antibody-dependent cellular cytotoxicity–mediating antibodies known to bind to HIV-infected target cells coupled to a monovalent CD3 binding arm designed to engage cytolytic effector T cells (referred to as HIVxCD3 DARTs). Thus, these DARTs redirected polyclonal T cells to specifically engage with and kill Env-expressing cells, including CD4+ T cells infected with different HIV-1 subtypes, thereby obviating the requirement for HIV-specific immunity. Using lymphocytes from patients on suppressive antiretroviral therapy (ART), we demonstrated that DARTs mediate CD8+ T cell clearance of CD4+ T cells that are superinfected with the HIV-1 strain JR-CSF or infected with autologous reservoir viruses isolated from HIV-infected–patient resting CD4+ T cells. Moreover, DARTs mediated CD8+ T cell clearance of HIV from resting CD4+ T cell cultures following induction of latent virus expression. Combined with HIV latency reversing agents, HIVxCD3 DARTs have the potential to be effective immunotherapeutic agents to clear latent HIV-1 reservoirs in HIV-infected individuals. PMID:26413868

  12. CD8+CD28+ T cells might mediate injury of cardiomyocytes in acute myocardial infarction.

    PubMed

    Zhang, Lili; Wang, Zhiyan; Wang, Di; Zhu, Jumo; Wang, Yi

    2018-06-07

    CD8 + T cells accumulate in the necrotic myocardium of acute myocardial infarction (AMI). It is unclear whether CD8 + CD28 + T cells, a specific subset of CD8 + T cells, contribute to myocardial injury. In this study, 92 consecutive patients with AMI and 28 healthy control subjects were enrolled. The frequency of CD8 + CD28 + T cells in peripheral blood samples was assayed by flow cytometry. Plasma cardiac troponin I (TNI) and left ventricular ejection fraction (LVEF) were determined. Long-term prognosis of the patients was evaluated by major adverse cardiac and cerebrovascular events (MACCE) over a 12-month follow-up period. Our findings indicated that patients with AMI who presented with high numbers of CD8 + CD28 + T cells had an increased infarction size and aggravated ventricular function. We proposed that cytotoxic CD8 + CD28 + T cell-mediated myocardial necrosis may act as a novel and alternative pathway of AMI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Antibody-targeted interleukin 2 stimulates T-cell killing of autologous tumor cells.

    PubMed Central

    Gillies, S D; Reilly, E B; Lo, K M; Reisfeld, R A

    1992-01-01

    A genetically engineered fusion protein consisting of a chimeric anti-ganglioside GD2 antibody (ch14.18) and interleukin 2 (IL2) was tested for its ability to enhance the killing of autologous GD2-expressing melanoma target cells by a tumor-infiltrating lymphocyte line (660 TIL). The fusion of IL2 to the carboxyl terminus of the immunoglobulin heavy chain did not reduce IL2 activity as measured in a standard proliferation assay using either mouse or human T-cell lines. Antigen-binding activity was greater than that of the native chimeric antibody. The ability of resting 660 TIL cells to kill their autologous GD2-positive target cells was enhanced if the target cells were first coated with the fusion protein. This stimulation of killing was greater than that of uncoated cells in the presence of equivalent or higher concentrations of free IL2. Such antibody-cytokine fusion proteins may prove useful in targeting the biological effect of IL2 and other cytokines to tumor cells and in this way stimulate their immune destruction. Images PMID:1741398

  14. Tumor vessel-injuring ability improves antitumor effect of cytotoxic T lymphocytes in adoptive immunotherapy.

    PubMed

    Kanagawa, N; Yanagawa, T; Nakagawa, T; Okada, N; Nakagawa, S

    2013-01-01

    Angiogenesis is required for normal physiologic processes, but it is also involved in tumor growth, progression and metastasis. Here, we report the development of an immune-based antiangiogenic strategy based on the generation of T lymphocytes that possess killing specificity for cells expressing vascular endothelial growth factor receptor 2 (VEGFR2). To target VEGFR2-expressing cells, we engineered cytotoxic T lymphocyte (CTL) expressing chimeric T-cell receptors (cTCR-CTL) comprised of a single-chain variable fragment (scFv) against VEGFR2 linked to an intracellular signaling sequence derived from the CD3ζ chain of the TCR and CD28 by retroviral gene transduction methods. The cTCR-CTL exhibited efficient killing specificity against VEGFR2 and a tumor-targeting function in vitro and in vivo. Reflecting such abilities, we confirmed that the cTCR-CTL strongly inhibited the growth of a variety of syngeneic tumors after adoptive transfer into tumor-bearing mice without consequent damage to normal tissue. In addition, CTL expressing both cTCR and tumor-specific TCR induced complete tumor regression due to enhanced tumor infiltration by the CTL and long-term antigen-specific function. These findings provide evidence that the tumor vessel-injuring ability improved the antitumor effect of CTLs in adoptive immunotherapy for a broad range of cancers by inducing immune-mediated destruction of the tumor neovasculature.

  15. Neonatal Fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer.

    PubMed

    Baker, Kristi; Rath, Timo; Flak, Magdalena B; Arthur, Janelle C; Chen, Zhangguo; Glickman, Jonathan N; Zlobec, Inti; Karamitopoulou, Eva; Stachler, Matthew D; Odze, Robert D; Lencer, Wayne I; Jobin, Christian; Blumberg, Richard S

    2013-12-12

    Cancers arising in mucosal tissues account for a disproportionately large fraction of malignancies. Immunoglobulin G (IgG) and the neonatal Fc receptor for IgG (FcRn) have an important function in the mucosal immune system that we have now shown extends to the induction of CD8(+) T cell-mediated antitumor immunity. We demonstrate that FcRn within dendritic cells (DCs) was critical for homeostatic activation of mucosal CD8(+) T cells that drove protection against the development of colorectal cancers and lung metastases. FcRn-mediated tumor protection was driven by DCs activation of endogenous tumor-reactive CD8(+) T cells via the cross-presentation of IgG complexed antigens (IgG IC), as well as the induction of cytotoxicity-promoting cytokine secretion, particularly interleukin-12, both of which were independently triggered by the FcRn-IgG IC interaction in murine and human DCs. FcRn thus has a primary role within mucosal tissues in activating local immune responses that are critical for priming efficient anti-tumor immunosurveillance. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Notch Signaling in Myeloid Cells as a Regulator of Tumor Immune Responses

    PubMed Central

    Hossain, Fokhrul; Majumder, Samarpan; Ucar, Deniz A.; Rodriguez, Paulo C.; Golde, Todd E.; Minter, Lisa M.; Osborne, Barbara A.; Miele, Lucio

    2018-01-01

    Cancer immunotherapy, which stimulates or augments host immune responses to treat malignancies, is the latest development in the rapidly advancing field of cancer immunology. The basic principles of immunotherapies are either to enhance the functions of specific components of the immune system or to neutralize immune-suppressive signals produced by cancer cells or tumor microenvironment cells. When successful, these approaches translate into long-term survival for patients. However, durable responses are only seen in a subset of patients and so far, only in some cancer types. As for other cancer treatments, resistance to immunotherapy can also develop. Numerous research groups are trying to understand why immunotherapy is effective in some patients but not others and to develop strategies to enhance the effectiveness of immunotherapy. The Notch signaling pathway is involved in many aspects of tumor biology, from angiogenesis to cancer stem cell maintenance to tumor immunity. The role of Notch in the development and modulation of the immune response is complex, involving an intricate crosstalk between antigen-presenting cells, T-cell subpopulations, cancer cells, and other components of the tumor microenvironment. Elegant studies have shown that Notch is a central mediator of tumor-induced T-cell anergy and that activation of Notch1 in CD8 T-cells enhances cancer immunotherapy. Tumor-infiltrating myeloid cells, including myeloid-derived suppressor cells, altered dendritic cells, and tumor-associated macrophages along with regulatory T cells, are major obstacles to the development of successful cancer immunotherapies. In this article, we focus on the roles of Notch signaling in modulating tumor-infiltrating myeloid cells and discuss implications for therapeutic strategies that modulate Notch signaling to enhance cancer immunotherapy.

  17. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    PubMed

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J; Korangy, Firouzeh; Greten, Tim F

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  18. Tumor Induced Hepatic Myeloid Derived Suppressor Cells Can Cause Moderate Liver Damage

    PubMed Central

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J.; Korangy, Firouzeh; Greten, Tim F.

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage. PMID:25401795

  19. CD147 stimulates hepatoma cells escaping from immune surveillance of T cells by interaction with Cyclophilin A.

    PubMed

    Ren, Yi-Xin; Wang, Shu-Jing; Fan, Jian-Hui; Sun, Shi-Jie; Li, Xia; Padhiar, Arshad Ahmed; Zhang, Jia-Ning

    2016-05-01

    T cells play an important role in tumor immune surveillance. CD147 is a member of immunoglobulin superfamily present on the surface of many tumor cells and mediates malignant cell behaviors. Cyclophilin A (CypA) is an intracellular protein promoting inflammation when released from cells. CypA is a natural ligand for CD147. In this study, CD147 specific short hairpin RNAs (shRNA) were transfected into murine hepatocellular carcinoma Hepa1-6 cells to assess the effects of CD147 on hepatoma cells escaping from immune surveillance of T cells. We found extracellular CypA stimulated cell proliferation through CD147 by activating ERK1/2 signaling pathway. Downregulation of CD147 expression on Hepa1-6 cells significantly suppressed tumor progression in vivo, and decreased cell viability when co-cultured with T cells in vitro. Importantly, knockdown of CD147 on Hepa1-6 cells resulted in significantly increased T cells chemotaxis induced by CypA both in vivo and in vitro. These findings provide novel mechanisms how tumor cells escaping from immune surveillance of T cells. We provide a potential therapy for hepatocellular carcinoma by targeting CD147 or CD147-CypA interactions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Fasting suppresses T cell-mediated immunity in female Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Xu, De-Li; Wang, De-Hua

    2010-01-01

    Immune defense is important for organisms' survival and fitness. Small mammals in temperate zone often face seasonal food shortages. Generally fasting can suppress immune function in laboratory rodents and little information is available for wild rodents. The present study tested the hypothesis that Mongolian gerbils (Meriones unguiculatus) could inhibit T cell-mediated immunity to adapt to acute fasting. Forty-two females were divided into the fed and fasted groups, in which the latter was deprived of food for 3days. After 66h fasting, half of the gerbils in each group were injected with phosphate buffered saline or phytohaemagglutinin (PHA) solution. T cell-mediated immunity assessed by PHA response was suppressed in the fasted gerbils compared with the fed gerbils. The fasted gerbils had lower body fat mass, wet and dry thymus mass, dry spleen mass, white blood cells, serum leptin and blood glucose concentrations, but higher corticosterone concentrations than those of the controls. Moreover, PHA response was positively correlated with body fat mass and serum leptin levels in the immunochallenged groups. Taken together, acute fasting leads to immunosuppression, which might be caused by low body fat mass and low serum leptin concentrations in female Mongolian gerbils.

  1. Frequent mutations in the p53 tumor suppressor gene in human leukemia T-cell lines.

    PubMed Central

    Cheng, J; Haas, M

    1990-01-01

    Human T-cell leukemia and T-cell acute lymphoblastic leukemia cell lines were studied for alterations in the p53 tumor suppressor gene. Southern blot analysis of 10 leukemic T-cell lines revealed no gross genomic deletions or rearrangements. Reverse transcription-polymerase chain reaction analysis of p53 mRNA indicated that all 10 lines produced p53 mRNA of normal size. By direct sequencing of polymerase chain reaction-amplified cDNA, we detected 11 missense and nonsense point mutations in 5 of the 10 leukemic T-cell lines studied. The mutations are primarily located in the evolutionarily highly conserved regions of the p53 gene. One of the five cell lines in which a mutation was detected possesses a homozygous point mutation in both p53 alleles, while the other four cell lines harbor from two to four different point mutations. An allelic study of two of the lines (CEM, A3/Kawa) shows that the two missense mutations found in each line are located on separate alleles, thus both alleles of the p53 gene may have been functionally inactivated by two different point mutations. Since cultured leukemic T-cell lines represent a late, fully tumorigenic stage of leukemic T cells, mutation of both (or more) alleles of the p53 gene may reflect the selection of cells possessing an increasingly tumorigenic phenotype, whether the selection took place in vivo or in vitro. Previously, we have shown that the HSB-2 T-cell acute lymphoblastic leukemia cell line had lost both alleles of the retinoblastoma tumor suppressor gene. Taken together, our data show that at least 6 of 10 leukemic T-cell lines examined may have lost the normal function of a known tumor suppressor gene, suggesting that this class of genes serves a critical role in the generation of fully tumorigenic leukemic T cells. Images PMID:2144611

  2. Bim regulates alloimmune-mediated vascular injury through effects on T-cell activation and death.

    PubMed

    von Rossum, Anna; Enns, Winnie; Shi, Yu P; MacEwan, Grace E; Malekesmaeli, Mehrnoush; Brinkman, Ryan; Choy, Jonathan C

    2014-06-01

    Bim is a proapoptotic Bcl-2 protein known to downregulate immune responses and to also be required for antigen-induced T-cell activation. However, it is not known how the effect of Bim on these offsetting processes determines the outcome of allogeneic immune responses. We have defined the role of Bim in regulating alloantigen-driven T-cell responses in a model of vascular rejection. Bim was required for proliferation of CD4 and CD8 T cells, and for interleukin-2 production, in T cells stimulated with alloantigen in vitro. Moreover, a partial reduction in Bim expression was sufficient to attenuate T-cell activation, whereas a complete elimination of Bim was required to prevent CD4 T-cell death in response to cytokine withdrawl. When alloimmune-mediated vascular rejection was examined using an aortic interposition model, there was significantly less intimal thickening in Bim(+/-), but not Bim(-/-), graft recipients. T-cell proliferation in response to allograft arteries was significantly reduced in both Bim(+/-) and Bim(-/-) mice, but cell death was attenuated only in Bim(-/-) animals. Bim controls both T-cell activation and death in response to alloantigen stimulation. These processes act cooperatively to determine the outcome of immune responses in allograft arteries. © 2014 American Heart Association, Inc.

  3. Curcumin Inhibits CD4+ T Cell Activation, but Augments CD69 Expression and TGF-β1-Mediated Generation of Regulatory T Cells at Late Phase

    PubMed Central

    Kim, Girak; Jang, Mi Seon; Son, Young Min; Seo, Min Ji; Ji, Sang Yun; Han, Seung Hyun; Jung, In Duk; Park, Yeong-Min; Jung, Hyun Jung; Yun, Cheol-Heui

    2013-01-01

    Background Curcumin is a promising candidate for a natural medicinal agent to treat chronic inflammatory diseases. Although CD4+ T cells have been implicated in the pathogenesis of chronic inflammation, whether curcumin directly regulates CD4+ T cells has not been definitively established. Here, we showed curcumin-mediated regulation of CD2/CD3/CD28-initiated CD4+ T cell activation in vitro. Methodology/Principal Findings Primary human CD4+ T cells were stimulated with anti-CD2/CD3/CD28 antibody-coated beads as an in vitro surrogate system for antigen presenting cell-T cell interaction and treated with curcumin. We found that curcumin suppresses CD2/CD3/CD28-initiated CD4+ T cell activation by inhibiting cell proliferation, differentiation and cytokine production. On the other hand, curcumin attenuated the spontaneous decline of CD69 expression and indirectly increased expression of CCR7, L-selectin and Transforming growth factor-β1 (TGF-β1) at the late phase of CD2/CD3/CD28-initiated T cell activation. Curcumin-mediated up-regulation of CD69 at late phase was associated with ERK1/2 signaling. Furthermore, TGF-β1 was involved in curcumin-mediated regulation of T cell activation and late-phase generation of regulatory T cells. Conclusions/Significance Curcumin not merely blocks, but regulates CD2/CD3/CD28-initiated CD4+ T cell activation by augmenting CD69, CCR7, L-selectin and TGF-β1 expression followed by regulatory T cell generation. These results suggest that curcumin could directly reduce T cell-dependent inflammatory stress by modulating CD4+ T cell activation at multiple levels. PMID:23658623

  4. Gamma-Secretase Inhibitor RO4929097 in Treating Young Patients With Relapsed or Refractory Solid Tumors, CNS Tumors, Lymphoma, or T-Cell Leukemia

    ClinicalTrials.gov

    2014-11-04

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood Infratentorial Ependymoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Gonadotroph Adenoma; Pituitary Basophilic Adenoma; Pituitary Chromophobe Adenoma; Pituitary Eosinophilic Adenoma; Prolactin Secreting Adenoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent Pituitary Tumor; Recurrent/Refractory Childhood Hodgkin Lymphoma; T-cell Childhood Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia; TSH Secreting Adenoma; Unspecified Childhood Solid Tumor, Protocol Specific

  5. A chimeric switch-receptor targeting PD1 augments the efficacy of second generation CAR T-Cells in advanced solid tumors

    PubMed Central

    Liu, Xiaojun; Ranganathan, Raghuveer; Jiang, Shuguang; Fang, Chongyun; Sun, Jing; Kim, Soyeon; Newick, Kheng; Lo, Albert; June, Carl H.; Zhao, Yangbing; Moon, Edmund K.

    2015-01-01

    Chimeric antigen receptor (CAR)-modified adoptive T-cell therapy (ATC) has been successfully applied to the treatment of hematologic malignancies, but faces many challenges in solid tumors. One major obstacle is the immune-suppressive effects induced in both naturally-occurring and genetically-modified tumor infiltrating lymphocytes (TILs) by inhibitory receptors (IRs), namely PD1. We hypothesized that interfering with PD1 signaling would augment CAR T cell activity against solid tumors. To address this possibility, we introduced a genetically-engineered switch receptor construct, comprising the truncated extracellular domain of PD1 and the transmembrane and cytoplasmic signaling domains of CD28, into CAR T-cells. We tested the effect of this supplement, “PD1CD28”, on human CAR T-cells targeting aggressive models of human solid tumors expressing relevant tumor antigens. Treatment of mice bearing large, established solid tumors with PD1CD28 CAR T-cells led to significant regression in tumor volume due to enhanced CAR TIL infiltrate, decreased susceptibility to tumor-induced hypofunction, and attenuation of IR expression compared to treatments with CAR T-cells alone or PD1 antibodies. Taken together, our findings suggest that the application of PD1CD28 to boost CAR T-cell activity is efficacious against solid tumors via a variety of mechanisms, prompting clinical investigation of this potentially promising treatment modality. PMID:26979791

  6. Stress-mediated translational control in cancer cells.

    PubMed

    Leprivier, Gabriel; Rotblat, Barak; Khan, Debjit; Jan, Eric; Sorensen, Poul H

    2015-07-01

    Tumor cells are continually subjected to diverse stress conditions of the tumor microenvironment, including hypoxia, nutrient deprivation, and oxidative or genotoxic stress. Tumor cells must evolve adaptive mechanisms to survive these conditions to ultimately drive tumor progression. Tight control of mRNA translation is critical for this response and the adaptation of tumor cells to such stress forms. This proceeds though a translational reprogramming process which restrains overall translation activity to preserve energy and nutrients, but which also stimulates the selective synthesis of major stress adaptor proteins. Here we present the different regulatory signaling pathways which coordinate mRNA translation in the response to different stress forms, including those regulating eIF2α, mTORC1 and eEF2K, and we explain how tumor cells hijack these pathways for survival under stress. Finally, mechanisms for selective mRNA translation under stress, including the utilization of upstream open reading frames (uORFs) and internal ribosome entry sites (IRESes) are discussed in the context of cell stress. This article is part of a Special Issue entitled: Translation and Cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Tumor and Endothelial Cell-Derived Microvesicles Carry Distinct CEACAMs and Influence T-Cell Behavior

    PubMed Central

    Muturi, Harrison T.; Dreesen, Janine D.; Nilewski, Elena; Jastrow, Holger; Giebel, Bernd; Ergun, Suleyman; Singer, Bernhard B.

    2013-01-01

    Normal and malignant cells release a variety of different vesicles into their extracellular environment. The most prominent vesicles are the microvesicles (MVs, 100-1 000 nm in diameter), which are shed of the plasma membrane, and the exosomes (70-120 nm in diameter), derivates of the endosomal system. MVs have been associated with intercellular communication processes and transport numerous proteins, lipids and RNAs. As essential component of immune-escape mechanisms tumor-derived MVs suppress immune responses. Additionally, tumor-derived MVs have been found to promote metastasis, tumor-stroma interactions and angiogenesis. Since members of the carcinoembryonic antigen related cell adhesion molecule (CEACAM)-family have been associated with similar processes, we studied the distribution and function of CEACAMs in MV fractions of different human epithelial tumor cells and of human and murine endothelial cells. Here we demonstrate that in association to their cell surface phenotype, MVs released from different human epithelial tumor cells contain CEACAM1, CEACAM5 and CEACAM6, while human and murine endothelial cells were positive for CEACAM1 only. Furthermore, MVs derived from CEACAM1 transfected CHO cells carried CEACAM1. In terms of their secretion kinetics, we show that MVs are permanently released in low doses, which are extensively increased upon cellular starvation stress. Although CEACAM1 did not transmit signals into MVs it served as ligand for CEACAM expressing cell types. We gained evidence that CEACAM1-positive MVs significantly increase the CD3 and CD3/CD28-induced T-cell proliferation. All together, our data demonstrate that MV-bound forms of CEACAMs play important roles in intercellular communication processes, which can modulate immune response, tumor progression, metastasis and angiogenesis. PMID:24040308

  8. BCL11B is frequently downregulated in HTLV-1-infected T-cells through Tax-mediated proteasomal degradation.

    PubMed

    Permatasari, Happy Kurnia; Nakahata, Shingo; Ichikawa, Tomonaga; Morishita, Kazuhiro

    2017-08-26

    Human T-cell leukemia virus type 1 (HTLV-1) is a causative agent of adult T-cell leukemia-lymphoma (ATLL). The HTLV-1-encoded protein Tax plays important roles in the proliferation of HTLV-1-infected T-cells by affecting cellular proteins. In this study, we showed that Tax transcriptionally and post-transcriptionally downregulates the expression of the tumor suppressor gene B-cell leukemia/lymphoma 11B (BCL11B), which encodes a lymphoid-related transcription factor. BCL11B expression was downregulated in HTLV-1-infected T-cell lines at the mRNA and protein levels, and forced expression of BCL11B suppressed the proliferation of these cells. The proteasomal inhibitor MG132 increased BCL11B expression in HTLV-1-infected cell lines, and colocalization of Tax with BCL11B was detected in the cytoplasm of HTLV-1-infected T-cells following MG132 treatment. shRNA knock-down of Tax expression also increased the expression of BCL11B in HTLV-1-infected cells. Moreover, we found that Tax physically binds to BCL11B protein and induces the polyubiquitination of BCL11B and proteasome-dependent degradation of BCL11B. Thus, inactivation of BCL11B by Tax protein may play an important role in the Tax-mediated leukemogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A theranostic nanoplatform: magneto-gold@fluorescence polymer nanoparticles for tumor targeting T1&T2-MRI/CT/NIR fluorescence imaging and induction of genuine autophagy mediated chemotherapy.

    PubMed

    Wang, Guannan; Qian, Kun; Mei, Xifan

    2018-06-14

    Multifunctional nanoparticles, bearing low toxicity and tumor-targeting properties, coupled with multifunctional diagnostic imaging and enhanced treatment efficacy, have drawn tremendous attention due to their enormous potential for medical applications. Herein, we report a new kind of biocompatible and tumor-targeting magneto-gold@fluorescent polymer nanoparticle (MGFs-LyP-1), which is based on ultra-small magneto-gold (Fe 3 O 4 -Au) nanoparticles and NIR emissive fluorescent polymers by a solvent-mediated method. This kind of nanoparticle could be taken up efficiently and simultaneously serve for in vivo tumor targeting T 1 &T 2 -MRI/CT/near infrared (NIR) fluorescence bioimaging. Furthermore, the nanoparticles exhibit small size, higher tumor targeting accumulation, excellent cytocompatibility for long-term tracking, and no disturbing cell proliferation and differentiation. Moreover, clear and convincing evidence proves that as-synthesized MGFs-LyP-1 could elicit genuine autophagy via inducing autophagosome formation, which offers a definite synergistic effect to enhance cancer therapy with doxorubicin (DOX) at a nontoxic concentration through enhancement of the autophagy flux. Meanwhile, the as-prepared nanoparticles could be rapidly cleared from mice without any obvious organ impairment. The results indeed reveal a promising prospect of an MGFs-LyP-1 contrast agent with low toxicity and high efficiency for promising application in biomedicine.

  10. CARbodies: Human Antibodies Against Cell Surface Tumor Antigens Selected From Repertoires Displayed on T Cell Chimeric Antigen Receptors

    PubMed Central

    Alonso-Camino, Vanesa; Sánchez-Martín, David; Compte, Marta; Nuñez-Prado, Natalia; Diaz, Rosa M; Vile, Richard; Alvarez-Vallina, Luis

    2013-01-01

    A human single-chain variable fragment (scFv) antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs). The repertoire was fused to a first-generation T cell receptor ζ (TCRζ)-based chimeric antigen receptor (CAR). We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2) bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR) and the selection context (cell synapse), which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells. PMID:23695536

  11. Asparagine deprivation mediated by Salmonella asparaginase causes suppression of activation-induced T cell metabolic reprogramming.

    PubMed

    Torres, AnnMarie; Luke, Joanna D; Kullas, Amy L; Kapilashrami, Kanishk; Botbol, Yair; Koller, Antonius; Tonge, Peter J; Chen, Emily I; Macian, Fernando; van der Velden, Adrianus W M

    2016-02-01

    Salmonellae are pathogenic bacteria that induce immunosuppression by mechanisms that remain largely unknown. Previously, we showed that a putative type II l-asparaginase produced by Salmonella Typhimurium inhibits T cell responses and mediates virulence in a murine model of infection. Here, we report that this putative L-asparaginase exhibits L-asparagine hydrolase activity required for Salmonella Typhimurium to inhibit T cells. We show that L-asparagine is a nutrient important for T cell activation and that L-asparagine deprivation, such as that mediated by the Salmonella Typhimurium L-asparaginase, causes suppression of activation-induced mammalian target of rapamycin signaling, autophagy, Myc expression, and L-lactate secretion. We also show that L-asparagine deprivation mediated by the Salmonella Typhimurium L-asparaginase causes suppression of cellular processes and pathways involved in protein synthesis, metabolism, and immune response. Our results advance knowledge of a mechanism used by Salmonella Typhimurium to inhibit T cell responses and mediate virulence, and provide new insights into the prerequisites of T cell activation. We propose a model in which l-asparagine deprivation inhibits T cell exit from quiescence by causing suppression of activation-induced metabolic reprogramming. © Society for Leukocyte Biology.

  12. S1PR1 is crucial for accumulation of regulatory T cells in tumors via STAT3.

    PubMed

    Priceman, Saul J; Shen, Shudan; Wang, Lin; Deng, Jiehui; Yue, Chanyu; Kujawski, Maciej; Yu, Hua

    2014-03-27

    S1PR1 signaling has been shown to restrain the number and function of regulatory T (Treg) cells in the periphery under physiological conditions and in colitis models, but its role in regulating tumor-associated T cells is unknown. Here, we show that S1PR1 signaling in T cells drives Treg accumulation in tumors, limits CD8(+) T cell recruitment and activation, and promotes tumor growth. T-cell-intrinsic S1PR1 affects Treg cells, but not CD8(+) T cells, as demonstrated by adoptive transfer models and transient pharmacological S1PR1 modulation. An increase in S1PR1 in CD4(+) T cells promotes STAT3 activation and JAK/STAT3-dependent Treg tumor migration, whereas STAT3 ablation in T cells diminishes tumor-associated Treg accumulation and tumor growth. Our study demonstrates a stark contrast between the consequences of S1PR1 signaling in Treg cells in the periphery versus tumors. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Osthole promotes anti-tumor immune responses in tumor-bearing mice with hepatocellular carcinoma.

    PubMed

    Zhang, Lurong; Jiang, Guorong; Yao, Fei; Liang, Guoqiang; Wang, Fei; Xu, Heng; Wu, Yan; Yu, Xiao; Liu, Haiyan

    2015-06-01

    Osthole, a natural coumarin derivative, has been shown to have anti-tumor and anti-inflammatory activity. However, the effect of osthole on anti-tumor immune responses in tumor-bearing mice has not yet been reported. In the present study, osthole treatment did not affect the weight and the coefficient of thymus and spleen in tumor-bearing mice with hepatocellular carcinoma (HCC). However, osthole administration significantly elevated the proportion and number of the splenic CD8(+) T cells, the proportion of CD4(+) T and CD8(+) T cells in tumor tissues, and the levels of IL-2 and TNF-α in the serum of HCC tumor-bearing mice. Our results suggested that osthole could promote the activation of the tumor-infiltrating CD4(+) T and CD8(+) T cells, and elevate the proportion of CD4(+) and CD8(+) effector T cells. Osthole treatment also significantly decreased the proportion of CD4(+)CD25(+)Foxp3(+) regulatory T cells in the spleen. Taken together, osthole could enhance the T cell mediated anti-tumor immune responses in the tumor-bearing mice with HCC.

  14. Gene therapy of uterine leiomyomas: adenovirus-mediated expression of dominant negative estrogen receptor inhibits tumor growth in nude mice.

    PubMed

    Al-Hendy, Ayman; Lee, Eun J; Wang, Hui Q; Copland, John A

    2004-11-01

    Leiomyomas (fibroids) are common estrogen-dependent uterine tumors with no effective medicinal treatment; hysterectomy is the mainstay of management. This study was undertaken to investigate a potential therapy for leiomyoma; we used a mutated dominant-negative estrogen receptor gene delivered via an adenoviral vector (Ad-ER-DN). Ad-ER-DN transduction, in both human and rat leiomyoma cell lines, induced an increase in both caspase-3 levels and BAX/Bcl-2 ratio with evident apoptosis in the TdT-mediated dUTP nick-end labeling assay. In nude mice, rat leiomyoma cells ex vivo transduced with Ad-ER-DN supported significantly smaller tumors compared with Ad-LacZ-treated cells 5 weeks after implantation. In mice treated by direct intratumor injection into preexisting lesions, Ad-ER-DN caused immediate overall arrest of tumor growth. The Ad-ER-DN-treated tumors demonstrated severely inhibited cell proliferation (BrdU index) and a marked increase in the number of apoptotic cells (TdT-mediated dUTP nick-end labeling index). Dominant-negative estrogen receptor gene therapy may provide a nonsurgical treatment option for women with symptomatic uterine fibroids who want to preserve their uteri.

  15. Treating Cancer with Genetically Engineered T Cells

    PubMed Central

    Park, Tristen S.; Rosenberg, Steven A.; Morgan, Richard A.

    2011-01-01

    Administration of ex-vivo cultured, naturally occurring tumor-infiltrating lymphocytes (TILs) have been shown to mediate durable regression of melanoma tumors. However, the generation of TIL is not possible in all patients and there has been limited success in generating TIL in other cancers. Advances in genetic engineering have overcome these limitations by introducing tumor-antigen-targeting receptors into human T lymphocytes. Physicians can now genetically engineer lymphocytes to express highly active T-cell receptors (TCRs) or chimeric antigen receptors (CARs) targeting a variety of tumor antigens expressed in cancer patients. In this review we discuss the development of TCR and CAR gene transfer technology and the expansion of these therapies into different cancers with the recent demonstration of the clinical efficacy of these treatments. PMID:21663987

  16. Systemic Administration of Interleukin 2 Enhances the Therapeutic Efficacy of Dendritic Cell-Based Tumor Vaccines

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Fields, R. C.; Giedlin, M.; Mule, J. J.

    1999-03-01

    We have reported previously that murine bone marrow-derived dendritic cells (DC) pulsed with whole tumor lysates can mediate potent antitumor immune responses both in vitro and in vivo. Because successful therapy was dependent on host immune T cells, we have now evaluated whether the systemic administration of the T cell stimulatory/growth promoting cytokine interleukin-2 (IL-2) could enhance tumor lysate-pulsed DC-based immunizations to further promote protective immunity toward, and therapeutic rejection of, syngeneic murine tumors. In three separate approaches using a weakly immunogenic sarcoma (MCA-207), the systemic administration of non-toxic doses of recombinant IL-2 (20,000 and 40,000 IU/dose) was capable of mediating significant increases in the potency of DC-based immunizations. IL-2 could augment the efficacy of tumor lysate-pulsed DC to induce protective immunity to lethal tumor challenge as well as enhance splenic cytotoxic T lymphocyte activity and interferon-γ production in these treated mice. Moreover, treatment with the combination of tumor lysate-pulsed DC and IL-2 could also mediate regressions of established pulmonary 3-day micrometastases and 7-day macrometastases as well as established 14- and 28-day s.c. tumors, leading to either significant cure rates or prolongation in overall survival. Collectively, these findings show that nontoxic doses of recombinant IL-2 can potentiate the antitumor effects of tumor lysate-pulsed DC in vivo and provide preclinical rationale for the use of IL-2 in DC-based vaccine strategies in patients with advanced cancer.

  17. Natural Killer Dendritic Cells Enhance Immune Responses Elicited by α -Galactosylceramide-Stimulated Natural Killer T Cells.

    PubMed

    Lee, Sung Won; Park, Hyun Jung; Kim, Nayoung; Hong, Seokmann

    2013-01-01

    Natural killer dendritic cells (NKDCs) possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT) cells is required for the anti-tumor immune responses that are elicited by α -galactosylceramide ( α -GC) in mice. The rapid and strong expression of interferon- γ by NKDCs after α -GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated following α -GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited by α -GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated by α -GC-stimulated NKT cells in vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.

  18. Association of tumor-infiltrating T-cell density with molecular subtype, racial ancestry and clinical outcomes in prostate cancer.

    PubMed

    Kaur, Harsimar B; Guedes, Liana B; Lu, Jiayun; Maldonado, Laneisha; Reitz, Logan; Barber, John R; De Marzo, Angelo M; Tosoian, Jeffrey J; Tomlins, Scott A; Schaeffer, Edward M; Joshu, Corinne E; Sfanos, Karen S; Lotan, Tamara L

    2018-05-30

    The inflammatory microenvironment plays an important role in the pathogenesis and progression of tumors and may be associated with somatic genomic alterations. We examined the association of tumor-infiltrating T-cell density with clinical-pathologic variables, tumor molecular subtype, and oncologic outcomes in surgically treated primary prostate cancer occurring in patients of European-American or African-American ancestry. We evaluated 312 primary prostate tumors, enriched for patients with African-American ancestry and high grade disease. Tissue microarrays were immunostained for CD3, CD8, and FOXP3 and were previously immunostained for ERG and PTEN using genetically validated protocols. Image analysis for quantification of T-cell density in tissue microarray tumor spots was performed. Automated quantification of T-cell densities in tumor-containing regions of tissue microarray spots and standard histologic sections were correlated (r = 0.73, p < 0.00001) and there was good agreement between visual and automated T-cell density counts on tissue microarray spots (r = 0.93, p < 0.00001). There was a significant correlation between CD3+, CD8+, and FOXP3+ T-cell densities (p < 0.00001), but these were not associated with most clinical or pathologic variables. Increased T-cell density was significantly associated with ERG positivity (median 309 vs. 188 CD3+ T cells/mm 2 ; p = 0.0004) and also with PTEN loss (median 317 vs. 192 CD3+ T cells/mm 2 ; p = 0.001) in the combined cohort of matched European-American and African-American ancestry patients. The same association or a similar trend was present in patients of both ancestries when analyzed separately. When the African-American patients from the matched race set were combined with a separate high grade set of African-American cases, there was a weak association of increased FOXP3+ T-cell densities with increased risk of metastasis in multivariable analysis. Though high T-cell density is

  19. Compartmentalization of immune responses in human tuberculosis: few CD8+ effector T cells but elevated levels of FoxP3+ regulatory t cells in the granulomatous lesions.

    PubMed

    Rahman, Sayma; Gudetta, Berhanu; Fink, Joshua; Granath, Anna; Ashenafi, Senait; Aseffa, Abraham; Derbew, Milliard; Svensson, Mattias; Andersson, Jan; Brighenti, Susanna Grundström

    2009-06-01

    Immune responses were assessed at the single-cell level in lymph nodes from children with tuberculous lymphadenitis. Tuberculosis infection was associated with tissue remodeling of lymph nodes as well as altered cellular composition. Granulomas were significantly enriched with CD68+ macrophages expressing the M. tuberculosis complex-specific protein antigen MPT64 and inducible nitric oxide synthase. There was a significant increase in CD8+ cytolytic T cells surrounding the granuloma; however, CD8+ T cells expressed low levels of the cytolytic and antimicrobial effector molecules perforin and granulysin in the granulomatous lesions. Quantitative real-time mRNA analysis revealed that interferon-gamma, tumor necrosis factor-alpha, and interleukin-17 were not up-regulated in infected lymph nodes, but there was a significant induction of both transforming growth factor-beta and interleukin-13. In addition, granulomas contained an increased number of CD4+FoxP3+ T cells co-expressing the immunoregulatory cytotoxic T-lymphocyte antigen-4 and glucocorticoid-induced tumor necrosis factor receptor molecules. Low numbers of CD8+ T cells in the lesions correlated with high levels of transforming growth factor-beta and FoxP3+ regulatory T cells, suggesting active immunosuppression at the local infection site. Compartmentalization and skewing of the immune response toward a regulatory phenotype may result in an uncoordinated effector T-cell response that reduces granule-mediated killing of M. tuberculosis-infected cells and subsequent disease control.

  20. Human Naive T Cells Express Functional CXCL8 and Promote Tumorigenesis.

    PubMed

    Crespo, Joel; Wu, Ke; Li, Wei; Kryczek, Ilona; Maj, Tomasz; Vatan, Linda; Wei, Shuang; Opipari, Anthony W; Zou, Weiping

    2018-05-25

    Naive T cells are thought to be functionally quiescent. In this study, we studied and compared the phenotype, cytokine profile, and potential function of human naive CD4 + T cells in umbilical cord and peripheral blood. We found that naive CD4 + T cells, but not memory T cells, expressed high levels of chemokine CXCL8. CXCL8 + naive T cells were preferentially enriched CD31 + T cells and did not express T cell activation markers or typical Th effector cytokines, including IFN-γ, IL-4, IL-17, and IL-22. In addition, upon activation, naive T cells retained high levels of CXCL8 expression. Furthermore, we showed that naive T cell-derived CXCL8 mediated neutrophil migration in the in vitro migration assay, supported tumor sphere formation, and promoted tumor growth in an in vivo human xenograft model. Thus, human naive T cells are phenotypically and functionally heterogeneous and can carry out active functions in immune responses. Copyright © 2018 by The American Association of Immunologists, Inc.