Sample records for t-jump tension rise

  1. Force generation and temperature-jump and length-jump tension transients in muscle fibers.

    PubMed Central

    Davis, J S; Rodgers, M E

    1995-01-01

    Muscle tension rises with increasing temperature. The kinetics that govern the tension rise of maximally Ca(2+)-activated, skinned rabbit psoas fibers over a temperature range of 0-30 degrees C was characterized in laser temperature-jump experiments. The kinetic response is simple and can be readily interpreted in terms of a basic three-step mechanism of contraction, which includes a temperature-sensitive rapid preequilibrium(a) linked to a temperature-insensitive rate-limiting step and followed by a temperature-sensitive tension-generating step. These data and mechanism are compared and contrasted with the more complex length-jump Huxley-Simmons phases in which all states that generate tension or bear tension are perturbed. The rate of the Huxley-Simmons phase 4 is temperature sensitive at low temperatures but plateaus at high temperatures, indicating a change in rate-limiting step from a temperature-sensitive (phase 4a) to a temperature-insensitive reaction (phase 4b); the latter appears to correlate with the slow, temperature-insensitive temperature-jump relaxation. Phase 3 is absent in the temperature-jump, which excludes it from tension generation. We confirm that de novo tension generation occurs as an order-disorder transition during phase 2slow and the equivalent, temperature-sensitive temperature-jump relaxation. PMID:7612845

  2. Temperature Effects on Force and Actin⁻Myosin Interaction in Muscle: A Look Back on Some Experimental Findings.

    PubMed

    Ranatunga, K W

    2018-05-22

    Observations made in temperature studies on mammalian muscle during force development, shortening, and lengthening, are re-examined. The isometric force in active muscle goes up substantially on warming from less than 10 °C to temperatures closer to physiological (>30 °C), and the sigmoidal temperature dependence of this force has a half-maximum at ~10 °C. During steady shortening, when force is decreased to a steady level, the sigmoidal curve is more pronounced and shifted to higher temperatures, whereas, in lengthening muscle, the curve is shifted to lower temperatures, and there is a less marked increase with temperature. Even with a small rapid temperature-jump (T-jump), force in active muscle rises in a definitive way. The rate of tension rise is slower with adenosine diphosphate (ADP) and faster with increased phosphate. Analysis showed that a T-jump enhances an early, pre-phosphate release step in the acto-myosin (crossbridge) ATPase cycle, thus inducing a force-rise. The sigmoidal dependence of steady force on temperature is due to this endothermic nature of crossbridge force generation. During shortening, the force-generating step and the ATPase cycle are accelerated, whereas during lengthening, they are inhibited. The endothermic force generation is seen in different muscle types (fast, slow, and cardiac). The underlying mechanism may involve a structural change in attached myosin heads and/or their attachments on heat absorption.

  3. Temperature Effects on Force and Actin–Myosin Interaction in Muscle: A Look Back on Some Experimental Findings

    PubMed Central

    Ranatunga, K. W.

    2018-01-01

    Observations made in temperature studies on mammalian muscle during force development, shortening, and lengthening, are re-examined. The isometric force in active muscle goes up substantially on warming from less than 10 °C to temperatures closer to physiological (>30 °C), and the sigmoidal temperature dependence of this force has a half-maximum at ~10 °C. During steady shortening, when force is decreased to a steady level, the sigmoidal curve is more pronounced and shifted to higher temperatures, whereas, in lengthening muscle, the curve is shifted to lower temperatures, and there is a less marked increase with temperature. Even with a small rapid temperature-jump (T-jump), force in active muscle rises in a definitive way. The rate of tension rise is slower with adenosine diphosphate (ADP) and faster with increased phosphate. Analysis showed that a T-jump enhances an early, pre-phosphate release step in the acto-myosin (crossbridge) ATPase cycle, thus inducing a force-rise. The sigmoidal dependence of steady force on temperature is due to this endothermic nature of crossbridge force generation. During shortening, the force-generating step and the ATPase cycle are accelerated, whereas during lengthening, they are inhibited. The endothermic force generation is seen in different muscle types (fast, slow, and cardiac). The underlying mechanism may involve a structural change in attached myosin heads and/or their attachments on heat absorption. PMID:29786656

  4. The endothermic ATP hydrolysis and crossbridge attachment steps drive the increase of force with temperature in isometric and shortening muscle

    PubMed Central

    Offer, Gerald; Ranatunga, K W

    2015-01-01

    The isometric tetanic tension of skeletal muscle increases with temperature because attached crossbridge states bearing a relatively low force convert to those bearing a higher force. It was previously proposed that the tension-generating step(s) in the crossbridge cycle was highly endothermic and was therefore itself directly targeted by changes in temperature. However, this did not explain why a rapid rise in temperature (a temperature jump) caused a much slower rate of rise of tension than a rapid length step. This led to suggestions that the step targeted by a temperature rise is not the tension-generating step but is an extra step in the attached pathway of the crossbridge cycle, perhaps located on a parallel pathway. This enigma has been a major obstacle to a full understanding of the operation of the crossbridge cycle. We have now used a previously developed mechano-kinetic model of the crossbridge cycle in frog muscle to simulate the temperature dependence of isometric tension and shortening velocity. We allowed all five steps in the cycle to be temperature-sensitive. Models with different starting combinations of enthalpy changes and activation enthalpies for the five steps were refined by downhill simplex runs and scored by their ability to fit experimental data on the temperature dependence of isometric tension and the relationship between force and shortening velocity in frog muscle. We conclude that the first tension-generating step may be weakly endothermic and that the rise of tension with temperature is largely driven by the preceding two strongly endothermic steps of ATP hydrolysis and attachment of M.ADP.Pi to actin. The refined model gave a reasonable fit to the available experimental data and after a temperature jump the overall rate of tension rise was much slower than after a length step as observed experimentally. The findings aid our understanding of the crossbridge cycle by showing that it may not be necessary to include an additional temperature-sensitive step. PMID:25564737

  5. Effect of liquid surface tension on circular and linear hydraulic jumps; theory and experiments

    NASA Astrophysics Data System (ADS)

    Bhagat, Rajesh Kumar; Jha, Narsing Kumar; Linden, Paul F.; Wilson, David Ian

    2017-11-01

    The hydraulic jump has attracted considerable attention since Rayleigh published his account in 1914. Watson (1964) proposed the first satisfactory explanation of the circular hydraulic jump by balancing the momentum and hydrostatic pressure across the jump, but this solution did not explain what actually causes the jump to form. Bohr et al. (1992) showed that the hydraulic jump happens close to the point where the local Froude number equals to one, suggesting a balance between inertial and hydrostatic contributions. Bush & Aristoff (2003) subsequently incorporated the effect of surface tension and showed that this is important when the jump radius is small. In this study, we propose a new account to explain the formation and evolution of hydraulic jumps under conditions where the jump radius is strongly influenced by the liquid surface tension. The theory is compared with experiments employing liquids of different surface tension and different viscosity, in circular and linear configurations. The model predictions and the experimental results show excellent agreement. Commonwealth Scholarship Commission, St. John's college, University of Cambridge.

  6. Cyclic tensile response of a pre-tensioned polyurethane

    NASA Astrophysics Data System (ADS)

    Nie, Yizhou; Liao, Hangjie; Chen, Weinong W.

    2018-05-01

    In the research reported in this paper, we subject a polyurethane to uniaxial tensile loading at a quasi-static strain rate, a high strain rate and a jumping strain rate where the specimen is under quasi-static pre-tension and is further subjected to a dynamic cyclic loading using a modified Kolsky tension bar. The results obtained at the quasi-static and high strain rate clearly show that the mechanical response of this material is significantly rate sensitive. The rate-jumping experimental results show that the response of the material behavior is consistent before jumping. After jumping the stress-strain response of the material does not jump to the corresponding high-rate curve. Rather it approaches the high-rate curve asymptotically. A non-linear hyper-viscoelastic (NLHV) model, after having been calibrated by monotonic quasi-static and high-rate experimental results, was found to be capable of describing the material tensile behavior under such rate jumping conditions.

  7. Indirect coupling of phosphate release to de novo tension generation during muscle contraction.

    PubMed Central

    Davis, J S; Rodgers, M E

    1995-01-01

    A key question in muscle contraction is how tension generation is coupled to the chemistry of the actomyosin ATPase. Biochemical and mechanochemical experiments link tension generation to a change in structure associated with phosphate release. Length-jump and temperature-jump experiments, on the other hand, implicate phase 2slow, a significantly faster, markedly strain-sensitive kinetic process in tension generation. We use a laser temperature jump to probe the kinetics and mechanism of tension generation in skinned rabbit psoas fibers--an appropriate method since both phosphate release and phase 2slow are readily perturbed by temperature. Kinetics characteristic of the structural change associated with phosphate release are observed only when phosphate is added to fibers. When present, it causes a reduction in fiber tension; otherwise, no force is generated when it is perturbed. We therefore exclude this step from tension generation. The kinetics of de novo tension generation by the temperature-jump equivalent of phase 2slow appear unaffected by phosphate binding. We therefore propose that phosphate release is indirectly coupled to de novo tension generation via a steady-state flux through an irreversible step. We conclude that tension generation occurs in the absence of chemical change as the result of an entropy-driven transition between strongly bound crossbridges in the actomyosin-ADP state. The mechanism resembles the operation of a clock, with phosphate release providing the energy to tension the spring, and the irreversible step functions as the escapement mechanism, which is followed in turn by tension generation as the movement of the hands. Images Fig. 6 PMID:7479824

  8. The flux jumps in high Tc Bi(1.7)Pb(0.3)Sr2 Ca2Cu3O(y) bulk superconductor

    NASA Astrophysics Data System (ADS)

    Cao, Xiaowen; Huang, Sunli

    1989-11-01

    There were giant flux jumps in high T sub c Bi(1.7)Pb(0.3)Sr2Ca2Cu3O(v) bulk superconductor. The relaxation time, tau, decreased with both the increase of magnetic field and the rise of temperature. The maximum tau was about 40 min. The average -dM/dt increased with both the increase of magnetic field and the rise of temperature. The minimum average -dM/dt was about 4.1 x 10(exp -2) G/min. The flux jump weakened with time. It was dependent on the decrease of gradient of magnetic flux density dn/dx in the sample.

  9. Prolonged use of Kinesiotaping does not enhance functional performance and joint proprioception in healthy young males: Randomized controlled trial

    PubMed Central

    Magalhães, Igor; Bottaro, Martim; Freitas, João R.; Carmo, Jake; Matheus, João P. C.; Carregaro, Rodrigo L.

    2016-01-01

    ABSTRACT Objectives The aim of this study was to investigate the effects of continuous (48-hour) use of Kinesiotaping (KT) on functional and proprioceptive performance in healthy, physically active men. Method Twenty-six healthy, physically active men (21.8±2.2 years old) were randomly allocated into two groups: 1) Kinesiotaping group (KG, tape applied with 40% tension for rectus femoris activation); 2) Control (CG, tape applied over rectus femoris without additional tension). Subjects attended the laboratory on five separate occasions: 1) familiarization; 2) baseline measurement without tape (BL); 3) immediately post-tape application (T0); 4) 24h (T24); and 5) 48h (T48) post-tape application. The outcomes were distance in the single (SHT) and triple hop tests (THT), vertical jump height (VJH), vertical jump power (VJP), and rate of force development (RFD). A mixed-model ANOVA was applied to verify differences between and within groups. Results No significant (p >0.05) differences were found in the SHT and THT between groups and moments. Likewise, the main effects for VJH, VJP, and RFD were not significant (p >0.05). Conclusion The present study demonstrated no significant immediate or prolonged (48h) effects of KT on functional and proprioceptive performance. PMID:27437712

  10. Prolonged use of Kinesiotaping does not enhance functional performance and joint proprioception in healthy young males: Randomized controlled trial.

    PubMed

    Magalhães, Igor; Bottaro, Martim; Freitas, João R; Carmo, Jake; Matheus, João P C; Carregaro, Rodrigo L

    2016-03-18

    The aim of this study was to investigate the effects of continuous (48-hour) use of Kinesiotaping (KT) on functional and proprioceptive performance in healthy, physically active men. Twenty-six healthy, physically active men (21.8±2.2 years old) were randomly allocated into two groups: 1) Kinesiotaping group (KG, tape applied with 40% tension for rectus femoris activation); 2) Control (CG, tape applied over rectus femoris without additional tension). Subjects attended the laboratory on five separate occasions: 1) familiarization; 2) baseline measurement without tape (BL); 3) immediately post-tape application (T0); 4) 24h (T24); and 5) 48h (T48) post-tape application. The outcomes were distance in the single (SHT) and triple hop tests (THT), vertical jump height (VJH), vertical jump power (VJP), and rate of force development (RFD). A mixed-model ANOVA was applied to verify differences between and within groups. No significant (p >0.05) differences were found in the SHT and THT between groups and moments. Likewise, the main effects for VJH, VJP, and RFD were not significant (p >0.05). The present study demonstrated no significant immediate or prolonged (48h) effects of KT on functional and proprioceptive performance.

  11. BIOMECHANICS. Jumping on water: Surface tension-dominated jumping of water striders and robotic insects.

    PubMed

    Koh, Je-Sung; Yang, Eunjin; Jung, Gwang-Pil; Jung, Sun-Pill; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G; Wood, Robert J; Kim, Ho-Young; Cho, Kyu-Jin

    2015-07-31

    Jumping on water is a unique locomotion mode found in semi-aquatic arthropods, such as water striders. To reproduce this feat in a surface tension-dominant jumping robot, we elucidated the hydrodynamics involved and applied them to develop a bio-inspired impulsive mechanism that maximizes momentum transfer to water. We found that water striders rotate the curved tips of their legs inward at a relatively low descending velocity with a force just below that required to break the water surface (144 millinewtons/meter). We built a 68-milligram at-scale jumping robotic insect and verified that it jumps on water with maximum momentum transfer. The results suggest an understanding of the hydrodynamic phenomena used by semi-aquatic arthropods during water jumping and prescribe a method for reproducing these capabilities in artificial systems. Copyright © 2015, American Association for the Advancement of Science.

  12. Shocks and finite-time singularities in Hele-Shaw flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teodorescu, Razvan; Wiegmann, P; Lee, S-y

    Hele-Shaw flow at vanishing surface tension is ill-defined. In finite time, the flow develops cusplike singularities. We show that the ill-defined problem admits a weak dispersive solution when singularities give rise to a graph of shock waves propagating in the viscous fluid. The graph of shocks grows and branches. Velocity and pressure jump across the shock. We formulate a few simple physical principles which single out the dispersive solution and interpret shocks as lines of decompressed fluid. We also formulate the dispersive solution in algebro-geometrical terms as an evolution of Krichever-Boutroux complex curve. We study in details the most genericmore » (2,3) cusp singularity which gives rise to an elementary branching event. This solution is self-similar and expressed in terms of elliptic functions.« less

  13. On pitch jumps between chest and falsetto registers in voice: data from living and excised human larynges.

    PubMed

    Svec, J G; Schutte, H K; Miller, D G

    1999-09-01

    The paper offers a new concept of studying abrupt chest-falsetto register transitions (jumps) based on the theory of nonlinear dynamics. The jumps were studied in an excised human larynx and in three living subjects (one female and two male). Data from the excised larynx revealed that a small and gradual change in tension of the vocal folds can cause an abrupt change of register and pitch. This gives evidence that the register jumps are manifestations of bifurcations in the vocal-fold vibratory mechanism. A hysteresis was observed; the upward register jump occurred at higher pitches and tensions than the downward jump. Due to the hysteresis, the chest and falsetto registers can be produced with practically identical laryngeal adjustments within a certain range of longitudinal tensions. The magnitude of the frequency jump was measured as the "leap ratio" F0F:F0C (fundamental frequency of the falsetto related to that of the chest register) and alternatively expressed as a corresponding musical interval, termed the "leap interval." Ranges of this leap interval were found to be different for the three living subjects (0-5 semitones for the female, 5-10 and 10-17 for the two males, respectively). These differences are considered to reflect different biomechanical properties of the vocal folds of the examined subjects. A small magnitude of the leap interval was associated with a smooth chest-falsetto transition in the female subject.

  14. Dynamics of a camphoric acid boat at the air-water interface

    NASA Astrophysics Data System (ADS)

    Akella, V. S.; Singh, Dhiraj K.; Mandre, Shreyas; Bandi, M. M.

    2018-05-01

    We report experiments on an agarose gel tablet loaded with camphoric acid (c-boat) spontaneously set into motion by surface tension gradients on the water surface. We observe three distinct modes of c-boat motion: harmonic mode where the c-boat speed oscillates sinusoidally in time, a steady mode where the c-boat maintains constant speed, and an intermittent mode where the c-boat maintains near-zero speed between sudden jumps in speed. Whereas all three modes have been separately reported before in different systems, controlled release of Camphoric Acid (CA) from the agarose gel matrix allowed the observation of all the three modes in the same system. These three modes are a result of a competition between the driving (surface tension gradients) and drag forces acting on the c-boat. Moreover we suggest that there exist two time scales corresponding to spreading of CA and boat motion and the mismatch of these two time scales give rise to the three modes in boat motion. We reproduced all the modes of motion by varying the air-water interfacial tension using Sodium Dodecyl Sulfate (SDS).

  15. Asymptotic stability of shear-flow solutions to incompressible viscous free boundary problems with and without surface tension

    NASA Astrophysics Data System (ADS)

    Tice, Ian

    2018-04-01

    This paper concerns the dynamics of a layer of incompressible viscous fluid lying above a rigid plane and with an upper boundary given by a free surface. The fluid is subject to a constant external force with a horizontal component, which arises in modeling the motion of such a fluid down an inclined plane, after a coordinate change. We consider the problem both with and without surface tension for horizontally periodic flows. This problem gives rise to shear-flow equilibrium solutions, and the main thrust of this paper is to study the asymptotic stability of the equilibria in certain parameter regimes. We prove that there exists a parameter regime in which sufficiently small perturbations of the equilibrium at time t=0 give rise to global-in-time solutions that return to equilibrium exponentially in the case with surface tension and almost exponentially in the case without surface tension. We also establish a vanishing surface tension limit, which connects the solutions with and without surface tension.

  16. Surface tension measurement of undercooled liquid Ni-based multicomponent alloys

    NASA Astrophysics Data System (ADS)

    Chang, J.; Wang, H. P.; Zhou, K.; Wei, B.

    2012-09-01

    The surface tensions of liquid ternary Ni-5%Cu-5%Fe, quaternary Ni-5%Cu-5%Fe-5%Sn and quinary Ni-5%Cu-5%Fe-5%Sn-5%Ge alloys were determined as a function of temperature by the electromagnetic levitation oscillating drop method. The maximum undercoolings obtained in the experiments are 272 (0.15T L), 349 (0.21T L) and 363 K (0.22T L), respectively. For all the three alloys, the surface tension decreases linearly with the rise of temperature. The surface tension values are 1.799, 1.546 and 1.357 N/m at their liquidus temperatures of 1719, 1644 and 1641 K. Their temperature coefficients are -4.972 × 10-4, -5.057 × 10-4 and -5.385 × 10-4 N/m/K. It is revealed that Sn and Ge are much more efficient than Cu and Fe in reducing the surface tension of Ni-based alloys. The addition of Sn can significantly enlarge the maximum undercooling at the same experimental condition. The viscosity of the three undercooled liquid alloys was also derived from the surface tension data.

  17. The Effects of Temperature and Body Mass on Jump Performance of the Locust Locusta migratoria

    PubMed Central

    Snelling, Edward P.; Becker, Christie L.; Seymour, Roger S.

    2013-01-01

    Locusts jump by rapidly releasing energy from cuticular springs built into the hind femur that deform when the femur muscle contracts. This study is the first to examine the effect of temperature on jump energy at each life stage of any orthopteran. Ballistics and high-speed cinematography were used to quantify the energy, distance, and take-off angle of the jump at 15, 25, and 35°C in the locust Locusta migratoria. Allometric analysis across the five juvenile stages at 35°C reveals that jump distance (D; m) scales with body mass (M; g) according to the power equation D = 0.35M 0.17±0.08 (95% CI), jump take-off angle (A; degrees) scales as A = 52.5M 0.00±0.06, and jump energy (E; mJ per jump) scales as E = 1.91M 1.14±0.09. Temperature has no significant effect on the exponent of these relationships, and only a modest effect on the elevation, with an overall Q10 of 1.08 for jump distance and 1.09 for jump energy. On average, adults jump 87% farther and with 74% more energy than predicted based on juvenile scaling data. The positive allometric scaling of jump distance and jump energy across the juvenile life stages is likely facilitated by the concomitant relative increase in the total length (L f+t; mm) of the femur and tibia of the hind leg, L f+t = 34.9M 0.37±0.02. The weak temperature-dependence of jump performance can be traced to the maximum tension of the hind femur muscle and the energy storage capacity of the femur's cuticular springs. The disproportionately greater jump energy and jump distance of adults is associated with relatively longer (12%) legs and a relatively larger (11%) femur muscle cross-sectional area, which could allow more strain loading into the femur's cuticular springs. Augmented jump performance in volant adult locusts achieves the take-off velocity required to initiate flight. PMID:23967304

  18. Bifilm Defect Formation in Hydraulic Jump of Liquid Aluminum

    NASA Astrophysics Data System (ADS)

    Hsu, Fu-Yuan

    2016-06-01

    In aluminum gravity casting, as liquid aluminum fell through a vertical sprue and impacted on the horizontal flat surface, a phenomenon known as hydraulic jump ( i.e., flow transition from super-critical to sub-critical flows) was observed. As the jump was transformed, a reverse eddy motion on the surface of the jump was created. This motion entrained aluminum oxide film from the surface into aluminum melt. This folded film (so-called "bifilm" defect) was engulfed by the melt and caused its quality to deteriorate. To understand this phenomenon, aluminum casting experiments and computational modeling were conducted. In the casting experiment, a radius ( R j) to the point where the circular hydraulic jump occurred was measured. This is the circular region of `irregular surface feature', a rough oxidized surface texture near the center area of the castings. To quantify contents of the bifilm defects in the outer region of the jump, the samples in this region were sectioned and re-melted for doing re-melted reduced pressure test (re-melt RPT). An "area-normalized" bifilm index map was plotted to analyze bifilms' population in the samples. The flow transition in the hydraulic jump of liquid aluminum depended on three pressure heads: inertial, gravitational, and surface-tension pressures. A new theoretical equation containing surface tension for describing the flow transition of liquid metal was proposed.

  19. Liquid film on a circular plate formed by a droplet train impingement

    NASA Astrophysics Data System (ADS)

    Sanada, Toshiyuki; Yamamoto, Shoya

    2017-11-01

    Droplet impingement phenomena are found in the wide variety of industrial processes, however the detail of liquid film structure formed by the continuous impact of droplets is not clarified. In this study, we experimentally investigated behavior of liquid film which was formed by a droplet train impact. Especially, we focus on the diameter of hydraulic jump formed on a circular plate. The effects of nozzle diameter, liquid surface tension and liquid flow rate on the jump diameter were investigated. In addition, we compared the liquid film by the droplet train impact with that by a liquid column impact. As a result, the hydraulic jump was observed under the smaller water flow rate condition compare to the liquid column impact. And the jump diameters for the case of droplet train impact were greater than that of liquid column impact. However, the jump diameters for the small surface tension liquid for the case of droplet train impact were smaller than that of liquid column impact. We consider that this phenomenon is related to both high speed lateral flow after droplet impact and splash formation. In addition, the liquid film heights after hydraulic jump on a small circular plate were sensitive to either the droplet train impact or liquid column impact.

  20. The Drosophila indirect flight muscle myosin heavy chain isoform is insufficient to transform the jump muscle into a highly stretch-activated muscle type

    PubMed Central

    Zhao, Cuiping

    2017-01-01

    Stretch activation (SA) is a delayed increase in force that enables high power and efficiency from a cyclically contracting muscle. SA exists in various degrees in almost all muscle types. In Drosophila, the indirect flight muscle (IFM) displays exceptionally high SA force production (FSA), whereas the jump muscle produces only minimal FSA. We previously found that expressing an embryonic (EMB) myosin heavy chain (MHC) isoform in the jump muscle transforms it into a moderately SA muscle type and enables positive cyclical power generation. To investigate whether variation in MHC isoforms is sufficient to produce even higher FSA, we substituted the IFM MHC isoform (IFI) into the jump muscle. Surprisingly, we found that IFI only caused a 1.7-fold increase in FSA, less than half the increase previously observed with EMB, and only at a high Pi concentration, 16 mM. This IFI-induced FSA is much less than what occurs in IFM, relative to isometric tension, and did not enable positive cyclical power generation by the jump muscle. Both isometric tension and FSA of control fibers decreased with increasing Pi concentration. However, for IFI-expressing fibers, only isometric tension decreased. The rate of FSA generation was ~1.5-fold faster for IFI fibers than control fibers, and both rates were Pi dependent. We conclude that MHC isoforms can alter FSA and hence cyclical power generation but that isoforms can only endow a muscle type with moderate FSA. Highly SA muscle types, such as IFM, likely use a different or additional mechanism. PMID:27881413

  1. Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics.

    PubMed

    Kubelka, Jan

    2009-04-01

    Many important biochemical processes occur on the time-scales of nanoseconds and microseconds. The introduction of the laser temperature-jump (T-jump) to biophysics more than a decade ago opened these previously inaccessible time regimes up to direct experimental observation. Since then, laser T-jump methodology has evolved into one of the most versatile and generally applicable methods for studying fast biomolecular kinetics. This perspective is a review of the principles and applications of the laser T-jump technique in biophysics. A brief overview of the T-jump relaxation kinetics and the historical development of laser T-jump methodology is presented. The physical principles and practical experimental considerations that are important for the design of the laser T-jump experiments are summarized. These include the Raman conversion for generating heating pulses, considerations of size, duration and uniformity of the temperature jump, as well as potential adverse effects due to photo-acoustic waves, cavitation and thermal lensing, and their elimination. The laser T-jump apparatus developed at the NIH Laboratory of Chemical Physics is described in detail along with a brief survey of other laser T-jump designs in use today. Finally, applications of the laser T-jump in biophysics are reviewed, with an emphasis on the broad range of problems where the laser T-jump methodology has provided important new results and insights into the dynamics of the biomolecular processes.

  2. The Advanced Tactical Parachute System (T-11): injuries during basic military parachute training.

    PubMed

    Knapik, Joseph J; Graham, Bria; Steelman, Ryan; Colliver, Keith; Jones, Bruce H

    2011-10-01

    Since the 1950s, the standard U.S. military troop parachute system has been the T-10. TheT-10 is currently being replaced by the newer T-11 system. This investigation compared injury incidence between the T-10 and T-11 military parachute systems. Participants were students in basic parachute training at the U.S. Army Airborne School (USAAS). Students performed their first parachute jumps with the T-11 and subsequent jumps with the T-10. Injury data were collected from routine reports produced by the USAAS. Combat loaded jumps and night jumps were excluded from the analysis since these were only conducted with the T-10. There were a total of 76 injuries in 30,755 jumps for an overall cumulative injury incidence of 2.5/1000 jumps. With the T-10 parachute, there were 61 injuries in 21,404 jumps for a cumulative injury incidence of 2.9/1000 jumps; with the T-11 parachute there were 15 injuries in 9351 jumps for a cumulative injury incidence of 1.6/1000 jumps [risk ratio (T10/T11) = 1.78, 95% confidence interval = 1.01-3.12, P = 0.04]. Limitations to this analysis included the fact that the T-11 was only used on the first jumps among students who had likely never previously performed a parachute jump and that aircraft exit procedures differed very slightly for the two parachutes. Nonetheless, the data suggest that injury incidence is lower with the T-11 parachute than with the T-10 parachute when airborne training operations are conducted during the day without combat loads.

  3. The Drosophila indirect flight muscle myosin heavy chain isoform is insufficient to transform the jump muscle into a highly stretch-activated muscle type.

    PubMed

    Zhao, Cuiping; Swank, Douglas M

    2017-02-01

    Stretch activation (SA) is a delayed increase in force that enables high power and efficiency from a cyclically contracting muscle. SA exists in various degrees in almost all muscle types. In Drosophila, the indirect flight muscle (IFM) displays exceptionally high SA force production (F SA ), whereas the jump muscle produces only minimal F SA We previously found that expressing an embryonic (EMB) myosin heavy chain (MHC) isoform in the jump muscle transforms it into a moderately SA muscle type and enables positive cyclical power generation. To investigate whether variation in MHC isoforms is sufficient to produce even higher F SA , we substituted the IFM MHC isoform (IFI) into the jump muscle. Surprisingly, we found that IFI only caused a 1.7-fold increase in F SA , less than half the increase previously observed with EMB, and only at a high Pi concentration, 16 mM. This IFI-induced F SA is much less than what occurs in IFM, relative to isometric tension, and did not enable positive cyclical power generation by the jump muscle. Both isometric tension and F SA of control fibers decreased with increasing Pi concentration. However, for IFI-expressing fibers, only isometric tension decreased. The rate of F SA generation was ~1.5-fold faster for IFI fibers than control fibers, and both rates were Pi dependent. We conclude that MHC isoforms can alter F SA and hence cyclical power generation but that isoforms can only endow a muscle type with moderate F SA Highly SA muscle types, such as IFM, likely use a different or additional mechanism. Copyright © 2017 the American Physiological Society.

  4. The relationship of heel contact in ascent and descent from jumps to the incidence of shin splints in ballet dancers.

    PubMed

    Gans, A

    1985-08-01

    I conducted a study to determine whether ballet dancers with a history of shin splints make heel contact on ascent and descent from jumps less often than dancers without this history. Sixteen dancers were filmed as they executed a sequence of jumps at two different speeds. Eight of the subjects had a history of shin-splint pain; eight had no such history. The film was viewed on a Super 8 movie projector. Heel contacts on ascent and descent from jumps were counted. Double heel strikes (heel rise between landing and pushing off) were also counted. A nonparametric t test showed no differences between the two groups in the number of contacts on ascent or descent. The dancers with a history of shin splints, however, demonstrated more double heel strikes (p = .02) than the other group. Clinically, this finding may represent a lack of control or a tight Achilles tendon or both. Further study is necessary to confirm these theories. For treatment and prevention of shin splints, a clinician must evaluate a dancer's jumping technique and then provide systematic training to develop the skin strength, flexibility, and coordination that make up control.

  5. DC-Powered Jumping Ring

    NASA Astrophysics Data System (ADS)

    Jeffery, Rondo N.; Amiri, Farhang

    2016-02-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant differences from the AC case. In particular, the ring does not fly off the core but rises a short distance and then falls back. If the ring jumps high enough, the rising and the falling motion of the ring does not follow simple vertical motion of a projectile. This indicates that there are additional forces on the ring in each part of its motion. Four possible stages of the motion of the ring with DC are identified, which result from the ring current changing directions during the jump in response to a changing magnetic flux through the moving ring.

  6. Accelerated deflation promotes homogeneous airspace liquid distribution in the edematous lung.

    PubMed

    Wu, You; Nguyen, Tam L; Perlman, Carrie E

    2017-04-01

    Edematous lungs contain regions with heterogeneous alveolar flooding. Liquid is trapped in flooded alveoli by a pressure barrier-higher liquid pressure at the border than in the center of flooded alveoli-that is proportional to surface tension, T Stress is concentrated between aerated and flooded alveoli, to a degree proportional to T Mechanical ventilation, by cyclically increasing T , injuriously exacerbates stress concentrations. Overcoming the pressure barrier to redistribute liquid more homogeneously between alveoli should reduce stress concentration prevalence and ventilation injury. In isolated rat lungs, we test whether accelerated deflation can overcome the pressure barrier and catapult liquid out of flooded alveoli. We generate a local edema model with normal T by microinfusing liquid into surface alveoli. We generate a global edema model with high T by establishing hydrostatic edema, which does not alter T , and then gently ventilating the edematous lungs, which increases T at 15 cmH 2 O transpulmonary pressure by 52%. Thus ventilation of globally edematous lungs increases T , which should increase stress concentrations and, with positive feedback, cause escalating ventilation injury. In the local model, when the pressure barrier is moderate, accelerated deflation causes liquid to escape from flooded alveoli and redistribute more equitably. Flooding heterogeneity tends to decrease. In the global model, accelerated deflation causes liquid escape, but-because of elevated T -the liquid jumps to nearby, aerated alveoli. Flooding heterogeneity is unaltered. In pulmonary edema with normal T , early ventilation with accelerated deflation might reduce the positive feedback mechanism through which ventilation injury increases over time. NEW & NOTEWORTHY We introduce, in the isolated rat lung, a new model of pulmonary edema with elevated surface tension. We first generate hydrostatic edema and then ventilate gently to increase surface tension. We investigate the mechanical mechanisms through which 1 ) ventilation injures edematous lungs and 2 ) ventilation with accelerated deflation might lessen ventilation injury. Copyright © 2017 the American Physiological Society.

  7. Accelerated deflation promotes homogeneous airspace liquid distribution in the edematous lung

    PubMed Central

    Wu, You; Nguyen, Tam L.

    2017-01-01

    Edematous lungs contain regions with heterogeneous alveolar flooding. Liquid is trapped in flooded alveoli by a pressure barrier—higher liquid pressure at the border than in the center of flooded alveoli—that is proportional to surface tension, T. Stress is concentrated between aerated and flooded alveoli, to a degree proportional to T. Mechanical ventilation, by cyclically increasing T, injuriously exacerbates stress concentrations. Overcoming the pressure barrier to redistribute liquid more homogeneously between alveoli should reduce stress concentration prevalence and ventilation injury. In isolated rat lungs, we test whether accelerated deflation can overcome the pressure barrier and catapult liquid out of flooded alveoli. We generate a local edema model with normal T by microinfusing liquid into surface alveoli. We generate a global edema model with high T by establishing hydrostatic edema, which does not alter T, and then gently ventilating the edematous lungs, which increases T at 15 cmH2O transpulmonary pressure by 52%. Thus ventilation of globally edematous lungs increases T, which should increase stress concentrations and, with positive feedback, cause escalating ventilation injury. In the local model, when the pressure barrier is moderate, accelerated deflation causes liquid to escape from flooded alveoli and redistribute more equitably. Flooding heterogeneity tends to decrease. In the global model, accelerated deflation causes liquid escape, but—because of elevated T—the liquid jumps to nearby, aerated alveoli. Flooding heterogeneity is unaltered. In pulmonary edema with normal T, early ventilation with accelerated deflation might reduce the positive feedback mechanism through which ventilation injury increases over time. NEW & NOTEWORTHY We introduce, in the isolated rat lung, a new model of pulmonary edema with elevated surface tension. We first generate hydrostatic edema and then ventilate gently to increase surface tension. We investigate the mechanical mechanisms through which 1) ventilation injures edematous lungs and 2) ventilation with accelerated deflation might lessen ventilation injury. PMID:27979983

  8. Numerical study of laminar, standing hydraulic jumps in a planar geometry.

    PubMed

    Dasgupta, Ratul; Tomar, Gaurav; Govindarajan, Rama

    2015-05-01

    We solve the two-dimensional, planar Navier-Stokes equations to simulate a laminar, standing hydraulic jump using a Volume-of-Fluid method. The geometry downstream of the jump has been designed to be similar to experimental conditions by including a pit at the edge of the platform over which liquid film flows. We obtain jumps with and without separation. Increasing the inlet Froude number pushes the jump downstream and makes the slope of the jump weaker, consistent with experimental observations of circular jumps, and decreasing the Reynolds number brings the jump upstream while making it steeper. We study the effect of the length of the domain and that of a downstream obstacle on the structure and location of the jump. The transient flow which leads to a final steady jump is described for the first time to our knowledge. In the moderate Reynolds number regime, we obtain steady undular jumps with a separated bubble underneath the first few undulations. Interestingly, surface tension leads to shortening of wavelength of these undulations. We show that the undulations can be explained using the inviscid theory of Benjamin and Lighthill (Proc. R. Soc. London, Ser. A, 1954). We hope this new finding will motivate experimental verification.

  9. Playing with inclined circular hydraulic jumps

    NASA Astrophysics Data System (ADS)

    Lebon, Luc; Saget, Beryl; Durand, Marc; Limat, Laurent; Couder, Yves; Receveur, Mathieu

    2008-11-01

    We have investigated the structure of the circular hydraulic jump, when the jet impacts an inclined plate. At low plate slope, quasi-circular shapes, evolving towards elliptic shapes are observed. At moderate inclinations, the upper and lower jumps become markedly different, and the lower jump is even rejected to infinity when a critical inclination is reached. Above this critical inclination, the jump is coupled to an outer dewetting contact line to give a specific object (expanding impact sheet feeding a curved rim in which the liquid is flowing tangentially). In this regime, both the position and curvature of the upper jump follows unusual scalings with the flow rate that completely differ from those observed on horizontal plates. Finally we have looked to metastable drops trapped in the circular jump at very small inclinations. As reported in a previous APS, the lowest position in the jump can become unstable and the drops oscillate around the jump perimeter. We show that this behavior requires very specific conditions of surface tension and viscosity and propose simple interpretations for the instability mechanism.

  10. Mechanics of jumping on water

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Young; Amauger, Juliette; Jeong, Han-Bi; Lee, Duck-Gyu; Yang, Eunjin; Jablonski, Piotr G.

    2017-10-01

    Some species of semiaquatic arthropods including water striders and springtails can jump from the water surface to avoid sudden dangers like predator attacks. It was reported recently that the jump of medium-sized water striders is a result of surface-tension-dominated interaction of thin cylindrical legs and water, with the leg movement speed nearly optimized to achieve the maximum takeoff velocity. Here we describe the mathematical theories to analyze this exquisite feat of nature by combining the review of existing models for floating and jumping and the introduction of the hitherto neglected capillary forces at the cylinder tips. The theoretically predicted dependence of body height on time is shown to match the observations of the jumps of the water striders and springtails regardless of the length of locomotory appendages. The theoretical framework can be used to understand the design principle of small jumping animals living on water and to develop biomimetic locomotion technology in semiaquatic environments.

  11. Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces

    PubMed Central

    Chen, Xuemei; Patel, Ravi S.; Weibel, Justin A.; Garimella, Suresh V.

    2016-01-01

    Coalescence-induced jumping of condensate droplets from a superhydrophobic surface with hierarchical micro/nanoscale roughness is quantitatively characterized. Experimental observations show that the condensate droplet jumping is induced by coalescence of multiple droplets of different sizes, and that the coalesced droplet trajectories typically deviate from the surface normal. A depth-from-defocus image processing technique is developed to track the out-of-plane displacement of the jumping droplets, so as to accurately measure the droplet size and velocity. The results demonstrate that the highest jumping velocity is achieved when two droplets coalesce. The jumping velocity decreases gradually with an increase in the number of coalescing droplets, despite the greater potential surface energy released upon coalescence. A general theoretical model that accounts for viscous dissipation, surface adhesion, line tension, the initial droplet wetting states, and the number and sizes of the coalescing droplets is developed to explain the trends of droplet jumping velocity observed in the experiments. PMID:26725512

  12. Condensation and jumping relay of droplets on lotus leaf

    NASA Astrophysics Data System (ADS)

    Lv, Cunjing; Hao, Pengfei; Yao, Zhaohui; Song, Yu; Zhang, Xiwen; He, Feng

    2013-07-01

    Dynamic behavior of micro water droplet condensed on a lotus leaf with two-tier roughness is studied. Under laboratory environment, the contact angle of the micro droplet on single micro papilla increases smoothly from 80° to 160° during the growth of condensed water. The best-known "self-cleaning" phenomenon will be lost. A striking observation is the out-of-plane jumping relay of condensed droplets triggered by falling droplets, as well as its sustained speed obtained in continuous jumping relays. The underlying mechanism can be used to enhance the automatic removal of dropwise condensation without the help from any external force. The surface tension energy dissipation is the main reason controlling the critical size of jumping droplet and its onset velocity of rebounding.

  13. Water movement in glass bead porous media: 1. Experiments of capillary rise and hysteresis

    NASA Astrophysics Data System (ADS)

    Lu, T. X.; Biggar, J. W.; Nielsen, D. R.

    1994-12-01

    Experimental observations of capillary rise and hysteresis of water or ethanol in glass beads are presented to improve our understanding of those physical processes in porous media. The results provide evidence that capillary rise into porous media cannot be fully explained by a model of cylinders. They further demonstrate that the "Ink bottle" model does not provide an adequate explanation of hysteresis. Glass beads serving as a model for ideal soil are enclosed in a rectangular glass chamber model. A TV camera associated with a microscope was used to record the processes of capillary rise and drainage. It is clearly shown during capillary rise that the fluid exhibits a "jump" behavior at the neck of the pores in an initially dry profile or at the bottom of the water film in an initially wet profile. Under an initially dry condition, the jump initiates at the particle with smallest diameter. The jump process continues to higher elevations until at equilibrium the surface tensile force is balanced by the hydrostatic force. The wetting front at that time is readily observed as flat and saturated. Under an initially wet condition, capillary rise occurs as a water film thickening process associated with the jump process. Trapped air behind the wetting front renders the wetting front irregular and unsaturated. The capillary rise into an initially wet porous medium can be higher than that into an initially dry profile. During the drying process, large surface areas associated with the gas-liquid interface develop, allowing the porous medium to retain more water than during the wetting process at the same pressure. That mechanism explains better the hysteresis phenomenon in porous media in contrast to other mechanisms that now prevail.

  14. New England Colleges under Stress: Presidential Voices from the Region's Smaller Colleges

    ERIC Educational Resources Information Center

    Halfond, Jay A.; Stokes, Peter

    2013-01-01

    Shifting demography, rising operating expenses, plummeting state and federal support, intensified competition, broken financial models… these are just a few of the complex challenges facing New England higher education institutions. Given these tensions, who would be surprised if college presidents in the region weren't occasionally plagued by…

  15. Impact of Attending Jump Start Literacy Camp on Reading Achievement among Third and Fourth Grade Students

    ERIC Educational Resources Information Center

    Padgett, Carrie B.

    2010-01-01

    The Jump Start Literacy Camp was developed as a means to combat summer learning loss. The camp utilized high-energy activities to target phonemic awareness, phonics, vocabulary, fluency, and comprehension. This study examined the effects of the Jump Start Literacy Camp on reading achievement for rising third and fourth grade students in an urban…

  16. Numerical investigations on the characteristics of thermomagnetic instability in MgB2 bulks

    NASA Astrophysics Data System (ADS)

    Xia, Jing; Li, Maosheng; Zhou, Youhe

    2017-07-01

    This paper presents the characteristics of thermomagnetic instability in MgB2 bulks by numerically solving the macroscopic dynamics of thermomagnetic interaction governed by the coupled magnetic and heat diffusion equations in association with a modified E-J power-law relationship. The finite element method is used to discretize the system of partial differential equations. The calculated magnetization loops with flux jumps are consistent with the experimental results for MgB2 slabs bathed in a wide range of ambient temperatures. We reveal the evolution process of the thermomagnetic instability and present the distributions of the magnetic field, temperature, and current density before and after flux jumps. A 2D axisymmetric model is used to study the thermomagnetic instability in cylindrical MgB2 bulks. It is found that the number of flux jumps monotonously reduces as the ambient temperature rises and no flux jump appears when the ambient temperature exceeds a certain value. Moreover, the flux-jump phenomenon exists in a wide range of the ramp rate of the applied external field, i.e. 10-2-102 T s-1. Furthermore, the dependences of the first flux-jump field on the ambient temperature, ramp rate, and bulk thickness are investigated. The critical bulk thicknesses for stability are obtained for different ambient temperatures and sample radii. In addition, the influence of the capability of the interfacial heat transfer on the temporal response of the bulk temperature is discussed. We also find that the prediction of thermomagnetic instability is sensitive to the employment of the flux creep exponent in the simulations.

  17. Direct numerical simulation of variable surface tension flows using a Volume-of-Fluid method

    NASA Astrophysics Data System (ADS)

    Seric, Ivana; Afkhami, Shahriar; Kondic, Lou

    2018-01-01

    We develop a general methodology for the inclusion of a variable surface tension coefficient into a Volume-of-Fluid based Navier-Stokes solver. This new numerical model provides a robust and accurate method for computing the surface gradients directly by finding the tangent directions on the interface using height functions. The implementation is applicable to both temperature and concentration dependent surface tension coefficient, along with the setups involving a large jump in the temperature between the fluid and its surrounding, as well as the situations where the concentration should be strictly confined to the fluid domain, such as the mixing of fluids with different surface tension coefficients. We demonstrate the applicability of our method to the thermocapillary migration of bubbles and the coalescence of drops characterized by a different surface tension coefficient.

  18. Levitation of a drop over a film flow

    NASA Astrophysics Data System (ADS)

    Sreenivas, K. R.; de, P. K.; Arakeri, Jaywant H.

    1999-02-01

    A vertical jet of water impinging on a horizontal surface produces a radial film flow followed by a circular hydraulic jump. We report a phenomenon where fairly large (1 ml) drops of liquid levitate just upstream of the jump on a thin air layer between the drop and the film flow. We explain the phenomenon using lubrication theory. Bearing action both in the air film and the water film seems to be necessary to support large drops. Horizontal support is given to the drop by the hydraulic jump. A variety of drop shapes is observed depending on the volume of the drop and liquid properties. We show that interaction of the forces due to gravity, surface tension, viscosity and inertia produces these various shapes.

  19. Analysis of the Vertical Ground Reaction Forces and Temporal Factors in the Landing Phase of a Countermovement Jump

    PubMed Central

    Ortega, Daniel Rojano; Rodríguez Bíes, Elisabeth C.; Berral de la Rosa, Francisco J.

    2010-01-01

    In most common bilateral landings of vertical jumps, there are two peak forces (F1 and F2) in the force-time curve. The combination of these peak forces and the high frequency of jumps during sports produce a large amount of stress in the joints of the lower limbs which can be determinant of injury. The aim of this study was to find possible relationships between the jump height and F1 and F2, between F1 and F2 themselves, and between F1, F2, the time they appear (T1 and T2, respectively) and the length of the impact absorption phase (T). Thirty semi-professional football players made five countermovement jumps and the highest jump of each player was analyzed. They were instructed to perform the jumps with maximum effort and to land first with the balls of their feet and then with their heels. All the data were collected using a Kistler Quattro Jump force plate with a sample rate of 500 Hz. Quattro Jump Software, v.1.0.9.0., was used. There was neither significant correlation between T1 and F1 nor between T1 and F2. There was a significant positive correlation between flight height (FH) and F1 (r = 0.584, p = 0.01) but no significant correlation between FH and F2. A significant positive correlation between F1 and T2 (r = 0.418, p < 0.05) and a significant negative correlation between F2 and T2 (r = -0.406, p < 0.05) were also found. There is a significant negative correlation between T2 and T (r = -0. 443, p < 0.05). T1 has a little effect in the impact absorption process. F1 increases with increasing T2 but F2 decreases with increasing T2. Besides, increasing T2, with the objective of decreasing F2, makes the whole impact absorption shorter and the jump landing faster. Key points In the landing phase of a jump there are always sev-eral peak forces. The combination of these peaks forces and the high frequency of jumps during sports produces a large amount of stress in the joints of the lower limbs which can be determinant of injury. In the most common two-footed landings usually appear two peak forces (F1 and F2) in the force-time curve and the second one is usually related to injury’s risk. In this article it is shown that increasing the time F2 appears decrease F2. Increasing landing times could be counterproductive with respect to the goals of the sport. In this article it is shown that increasing the time F2 appears makes, however, the whole impact absorption shorter in du-ration. PMID:24149697

  20. Low peak jump power is associated with elevated odds of dysmobility syndrome in community-dwelling elderly individuals: the Korean Urban Rural Elderly (KURE) study.

    PubMed

    Hong, Namki; Kim, Chang Oh; Youm, Yoosik; Kim, Hyeon Chang; Rhee, Yumie

    2018-06-01

    In a community-dwelling elderly cohort (Korean Urban Rural Elderly), low peak jump power was associated with elevated odds of dysmobility syndrome and its components, independent of age and comorbidities. Jump power measurement improved discrimination of individuals with dysmobility syndrome when added to conventional risk factors. Dysmobility syndrome was proposed to encompass the risks affecting musculoskeletal outcomes. Jump power measurement is a safe, reproducible high-intensity test for physical function in elderly. However, the relationship between jump power and dysmobility syndrome remains unknown. A total of 1369 subjects (mean 71.6 years; women, 66%) were analyzed from a community-based cohort. Dysmobility syndrome was defined as the presence of ≥ 3 factors among falls in the preceding year, low lean mass, high fat mass, osteoporosis, low grip strength, and low timed get-up-and-go (TUG) performance. Subjects were grouped into tertiles of jump power relative to weight based on sex-stratified cutoffs (32.4 and 27.6 W/kg in men; 23.9 and 19.9 W/kg in women) or into the failed-to-jump group. The prevalence of dysmobility syndrome was 20% overall, increasing from the highest (T1) to lowest (T3) jump power tertile (1, 11, 15% in men; 11, 16, 39% in women) and the failed-to-jump group (39% in men; 48% in women). Low jump power or failed-to-jump was associated with elevated odds of dysmobility syndrome (T3 vs. T1, adjusted odds ratio [aOR] 4.35, p < 0.001; failed-to-jump vs. T1, aOR 7.60, p < 0.001) and its components including falls, low lean mass, high fat mass, and poor TUG performance but not osteoporosis after adjustment for covariates. Jump power modestly discriminated dysmobility syndrome (area under the curve [AUC], 0.71, p < 0.001), which improved discriminatory performance when added to conventional risk factors (AUC, from 0.75 to 0.79, p < 0.001). Low peak jump power was associated with elevated odds of dysmobility syndrome and its components, independent of age and comorbidities.

  1. Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race

    PubMed Central

    Rousanoglou, Elissavet N.; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A.; Boudolos, Konstantinos D.

    2016-01-01

    The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key points The 4.1% reduction of jump height immediately after the race is not statistically significant The eccentric phase alterations of jump mechanics precede those of the concentric ones. Force-velocity alterations present a timing shift rather than a change in force or velocity magnitude. PMID:27274665

  2. Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race.

    PubMed

    Rousanoglou, Elissavet N; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A; Boudolos, Konstantinos D

    2016-06-01

    The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key pointsThe 4.1% reduction of jump height immediately after the race is not statistically significantThe eccentric phase alterations of jump mechanics precede those of the concentric ones.Force-velocity alterations present a timing shift rather than a change in force or velocity magnitude.

  3. Reliability and Validity of the Standing Heel-Rise Test

    ERIC Educational Resources Information Center

    Yocum, Allison; McCoy, Sarah Westcott; Bjornson, Kristie F.; Mullens, Pamela; Burton, Gay Naganuma

    2010-01-01

    A standardized protocol for a pediatric heel-rise test was developed and reliability and validity are reported. Fifty-seven children developing typically (CDT) and 34 children with plantar flexion weakness performed three tests: unilateral heel rise, vertical jump, and force measurement using handheld dynamometry. Intraclass correlation…

  4. Unifying models of dialect spread and extinction using surface tension dynamics

    PubMed Central

    2018-01-01

    We provide a unified mathematical explanation of two classical forms of spatial linguistic spread. The wave model describes the radiation of linguistic change outwards from a central focus. Changes can also jump between population centres in a process known as hierarchical diffusion. It has recently been proposed that the spatial evolution of dialects can be understood using surface tension at linguistic boundaries. Here we show that the inclusion of long-range interactions in the surface tension model generates both wave-like spread, and hierarchical diffusion, and that it is surface tension that is the dominant effect in deciding the stable distribution of dialect patterns. We generalize the model to allow population mixing which can induce shrinkage of linguistic domains, or destroy dialect regions from within. PMID:29410847

  5. Utilization of stored elastic energy in leg extensor muscles by men and women.

    PubMed

    Komi, P V; Bosco, C

    1978-01-01

    An alternating cycle of eccentric-concentric contractions in locomotion represents a sequence when storage and utilization of elastic energy takes place. It is possible that this storage capacity and its utilization depends on the imposed stretch loads in activated muscles, and that sex differences may be present in these phenomena. To investigate these assumed differences, subjects from both sexes and of good physical condition performed vertical jumps on the force-platform from the following experimental conditions: squatting jump (SJ) from a static starting position; counter-movement jump (CMJ) from a free standing position and with a preparatory counter-movement; drop jumps (DJ) from the various heights (20 to 100 cm) on to the platform followed immediately by a vertical jump. In all subjects the SJ, in which condition no appreciable storage of elastic energy takes place, produced the lowest height of rise of the whole body center of gravity (C.G.). The stretch load (drop height) influenced the performance so that height of rise of C. of G. increased when the drop height increased from 26 up to 62 cm (males) and from 20 to 50 cm (females). In all jumping conditions the men jumped higher than the women. However, examination of the utilization of elastic energy indicated that in CMJ the female subjects were able to utilize most (congruent to 90%) of the energy produced in the prestretching phase. Similarly, in DJ the overall change in positive energy over SJ condition was higher in women as compared to men. Thus the results suggest that although the leg extensor muscles of the men subjects could sustain much higher stretch loads, the females may be able to utilize a greater portion of the stored elastic energy in jumping activities.

  6. Relationships Between Vertical Jump and Full Squat Power Outputs With Sprint Times in U21 Soccer Players

    PubMed Central

    López-Segovia, Manuel; Marques, Mário C.; van den Tillaar, Roland; González-Badillo, Juan J

    2011-01-01

    The aim of this study was to assess the relationship between power variables in the vertical jump and full squat with the sprint performance in soccer players. Fourteen under-21 soccer players were evaluated in two testing sessions separated by 7 days. In the first testing session, vertical jump height in countermovement was assessed, and power output for both loaded countermovement jump (CMJL) and full squat (FS) exercises in two progressive load tests. The second testing session included sprinting at 10, 20, and 30m (T10, T20, T30, T10–20, T10–30, T20–30). Power variables obtained in the loaded vertical jump with 20kg and full squat exercise with 70kg showed significant relationships with all split times (r=−0.56/–0.79; p≤ 0.01/0.01). The results suggest that power produced either with vertical jump or full squat exercises is an important factor to explain short sprint performance in soccer players. These findings might suggest that certain levels of neuromuscular activation are more related with sprint performance reflecting the greater suitability of loads against others for the improvement of short sprint ability in under-21 soccer players. PMID:23487438

  7. Biomolecular dynamics studied with IR-spectroscopy using quantum cascade lasers combined with nanosecond perturbation techniques

    NASA Astrophysics Data System (ADS)

    Popp, Alexander; Scheerer, David; Heck, Benjamin; Hauser, Karin

    2017-06-01

    Early events of protein folding can be studied with fast perturbation techniques triggering non-equilibrium relaxation dynamics. A nanosecond laser-excited pH-jump or temperature-jump (T-jump) was applied to initiate helix folding or unfolding of poly-L-glutamic acid (PGA). PGA is a homopolypeptide with titratable carboxyl side-chains whose protonation degree determines the PGA conformation. A pH-jump was realized by the photochemical release of protons and induces PGA folding due to protonation of the side-chains. Otherwise, the helical conformation can be unfolded by a T-jump. We operated under conditions where PGA does not aggregate and temperature and pH are the regulatory properties of its conformation. The experiments were performed in such a manner that the folding/unfolding jump proceeded to the same PGA conformation. We quantified the increase/decrease in helicity induced by the pH-/T-jump and demonstrated that the T-jump results in a relatively small change in helical content in contrast to the pH-jump. This is caused by the strong pH-dependence of the PGA conformation. The conformational changes were detected by time-resolved single wavelength IR-spectroscopy using quantum cascade lasers (QCL). We could independently observe the kinetics for α-helix folding and unfolding in PGA by using different perturbation techniques and demonstrate the high sensitivity of time-resolved IR-spectroscopy to study protein folding mechanisms.

  8. Biomolecular dynamics studied with IR-spectroscopy using quantum cascade lasers combined with nanosecond perturbation techniques.

    PubMed

    Popp, Alexander; Scheerer, David; Heck, Benjamin; Hauser, Karin

    2017-06-15

    Early events of protein folding can be studied with fast perturbation techniques triggering non-equilibrium relaxation dynamics. A nanosecond laser-excited pH-jump or temperature-jump (T-jump) was applied to initiate helix folding or unfolding of poly-l-glutamic acid (PGA). PGA is a homopolypeptide with titratable carboxyl side-chains whose protonation degree determines the PGA conformation. A pH-jump was realized by the photochemical release of protons and induces PGA folding due to protonation of the side-chains. Otherwise, the helical conformation can be unfolded by a T-jump. We operated under conditions where PGA does not aggregate and temperature and pH are the regulatory properties of its conformation. The experiments were performed in such a manner that the folding/unfolding jump proceeded to the same PGA conformation. We quantified the increase/decrease in helicity induced by the pH-/T-jump and demonstrated that the T-jump results in a relatively small change in helical content in contrast to the pH-jump. This is caused by the strong pH-dependence of the PGA conformation. The conformational changes were detected by time-resolved single wavelength IR-spectroscopy using quantum cascade lasers (QCL). We could independently observe the kinetics for α-helix folding and unfolding in PGA by using different perturbation techniques and demonstrate the high sensitivity of time-resolved IR-spectroscopy to study protein folding mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A compressible multiphase framework for simulating supersonic atomization

    NASA Astrophysics Data System (ADS)

    Regele, Jonathan D.; Garrick, Daniel P.; Hosseinzadeh-Nik, Zahra; Aslani, Mohamad; Owkes, Mark

    2016-11-01

    The study of atomization in supersonic combustors is critical in designing efficient and high performance scramjets. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in high speed compressible flow requires robust numerical methods that can handle discontinuities caused by both material interfaces and shocks. A shock capturing/diffused interface method is developed to simulate high-speed compressible gas-liquid flows with surface tension effects using the five-equation model. This includes developments that account for the interfacial pressure jump that occurs in the presence of surface tension. A simple and efficient method for computing local interface curvature is developed and an acoustic non-dimensional scaling for the surface tension force is proposed. The method successfully captures a variety of droplet breakup modes over a range of Weber numbers and demonstrates the impact of surface tension in countering droplet deformation in both subsonic and supersonic cross flows.

  10. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    NASA Astrophysics Data System (ADS)

    Garrick, Daniel P.; Owkes, Mark; Regele, Jonathan D.

    2017-06-01

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge-Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten-Lax-van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas-liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.

  11. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrick, Daniel P.; Owkes, Mark; Regele, Jonathan D., E-mail: jregele@iastate.edu

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kuttamore » method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.« less

  12. Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness.

    PubMed

    Kim, Seyoung; Son, Youngsu; Choi, Sangkyu; Ham, Sangyong; Park, Cheolhoon

    2015-09-01

    In this study, a passive-elastic ankle exoskeleton (PEAX) with a one-way clutch mechanism was developed and then pilot-tested with vertical jumping to determine whether the PEAX is sufficiently lightweight and comfortable to be used in further biomechanical studies. The PEAX was designed to supplement the function of the Achilles tendon and ligaments as they passively support the ankle torque with their inherent stiffness. The main frame of the PEAX consists of upper and lower parts connected to each other by tension springs (N = 3) and lubricated hinge joints. The upper part has an offset angle of 5° with respect to the vertical line when the springs are in their resting state. Each spring has a slack length of 8 cm and connects the upper part to the tailrod of the lower part in the neutral position. The tailrod freely rotates with low friction but has a limited range of motion due to the stop pin working as a one-way clutch. Because of the one-way clutch system, the tension springs store the elastic energy only due to an ankle dorsiflexion when triggered by the stop pin. This clutch mechanism also has the advantage of preventing any inconvenience during ankle plantarflexion because it does not limit the ankle joint motion during the plantarflexion phase. In pilot jumping tests, all of the subjects reported that the PEAX was comfortable for jumping due to its lightweight (approximately 1 kg) and compact (firmly integrated with shoes) design, and subjects were able to nearly reach their maximum vertical jump heights while wearing the PEAX. During the countermovement jump, elastic energy was stored during dorsiflexion by spring extension and released during plantarflexion by spring restoration, indicating that the passive spring torque (i.e., supportive torque) generated by the ankle exoskeleton partially supported the ankle joint torque throughout the process.

  13. Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness

    NASA Astrophysics Data System (ADS)

    Kim, Seyoung; Son, Youngsu; Choi, Sangkyu; Ham, Sangyong; Park, Cheolhoon

    2015-09-01

    In this study, a passive-elastic ankle exoskeleton (PEAX) with a one-way clutch mechanism was developed and then pilot-tested with vertical jumping to determine whether the PEAX is sufficiently lightweight and comfortable to be used in further biomechanical studies. The PEAX was designed to supplement the function of the Achilles tendon and ligaments as they passively support the ankle torque with their inherent stiffness. The main frame of the PEAX consists of upper and lower parts connected to each other by tension springs (N = 3) and lubricated hinge joints. The upper part has an offset angle of 5° with respect to the vertical line when the springs are in their resting state. Each spring has a slack length of 8 cm and connects the upper part to the tailrod of the lower part in the neutral position. The tailrod freely rotates with low friction but has a limited range of motion due to the stop pin working as a one-way clutch. Because of the one-way clutch system, the tension springs store the elastic energy only due to an ankle dorsiflexion when triggered by the stop pin. This clutch mechanism also has the advantage of preventing any inconvenience during ankle plantarflexion because it does not limit the ankle joint motion during the plantarflexion phase. In pilot jumping tests, all of the subjects reported that the PEAX was comfortable for jumping due to its lightweight (approximately 1 kg) and compact (firmly integrated with shoes) design, and subjects were able to nearly reach their maximum vertical jump heights while wearing the PEAX. During the countermovement jump, elastic energy was stored during dorsiflexion by spring extension and released during plantarflexion by spring restoration, indicating that the passive spring torque (i.e., supportive torque) generated by the ankle exoskeleton partially supported the ankle joint torque throughout the process.

  14. The "Suicide Guard Rail": a minimal structural intervention in hospitals reduces suicide jumps.

    PubMed

    Mohl, Andreas; Stulz, Niklaus; Martin, Andrea; Eigenmann, Franz; Hepp, Urs; Hüsler, Jürg; Beer, Jürg H

    2012-08-04

    Jumping from heights is a readily available and lethal method of suicide. This study examined the effectiveness of a minimal structural intervention in preventing suicide jumps at a Swiss general teaching hospital. Following a series of suicide jumps out of the hospital's windows, a metal guard rail was installed at each window of the high-rise building. In the 114 months prior to the installation of the metal guard rail, 10 suicides by jumping out of the hospital's windows occurred among 119,269 inpatients. This figure was significantly reduced to 2 fatal incidents among 104,435 inpatients treated during the 78 months immediately following the installation of the rails at the hospital's windows (χ2 = 4.34, df = 1, p = .037). Even a minimal structural intervention might prevent suicide jumps in a general hospital. Further work is needed to examine the effectiveness of minimal structural interventions in preventing suicide jumps.

  15. The “Suicide Guard Rail”: a minimal structural intervention in hospitals reduces suicide jumps

    PubMed Central

    2012-01-01

    Background Jumping from heights is a readily available and lethal method of suicide. This study examined the effectiveness of a minimal structural intervention in preventing suicide jumps at a Swiss general teaching hospital. Following a series of suicide jumps out of the hospital’s windows, a metal guard rail was installed at each window of the high-rise building. Results In the 114 months prior to the installation of the metal guard rail, 10 suicides by jumping out of the hospital’s windows occurred among 119,269 inpatients. This figure was significantly reduced to 2 fatal incidents among 104,435 inpatients treated during the 78 months immediately following the installation of the rails at the hospital’s windows (χ2 = 4.34, df = 1, p = .037). Conclusions Even a minimal structural intervention might prevent suicide jumps in a general hospital. Further work is needed to examine the effectiveness of minimal structural interventions in preventing suicide jumps. PMID:22862804

  16. The Application of Nonstandard Analysis to the Study of Inviscid Shock Wave Jump Conditions

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Baty, R. S.

    1998-01-01

    The use of conservation laws in nonconservative form for deriving shock jump conditions by Schwartz distribution theory leads to ambiguous products of generalized functions. Nonstandard analysis is used to define a class of Heaviside functions where the jump from zero to one occurs on an infinitesimal interval. These Heaviside functions differ by their microstructure near x = 0, i.e., by the nature of the rise within the infinitesimal interval it is shown that the conservation laws in nonconservative form can relate the different Heaviside functions used to define jumps in different flow parameters. There are no mathematical or logical ambiguities in the derivation of the jump conditions. An important result is that the microstructure of the Heaviside function of the jump in entropy has a positive peak greater than one within the infinitesimal interval where the jump occurs. This phenomena is known from more sophisticated studies of the structure of shock waves using viscous fluid assumption. However, the present analysis is simpler and more direct.

  17. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    PubMed

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of <0.2mOD and a fluorescence sensitivity of 2% of the overall fluorescence intensity. Using a computer controlled QCL to rapidly tune the IR frequency it is possible to create a T-jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics

    NASA Astrophysics Data System (ADS)

    Davis, Caitlin M.; Reddish, Michael J.; Dyer, R. Brian

    2017-05-01

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of < 0.2 mOD and a fluorescence sensitivity of 2% of the overall fluorescence intensity. Using a computer controlled QCL to rapidly tune the IR frequency it is possible to create a T-jump induced difference spectrum from 50 ns to 0.5 ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics.

  19. Will jumping snails prevail? Influence of near-future CO₂, temperature and hypoxia on respiratory performance in the tropical conch Gibberulus gibberulus gibbosus.

    PubMed

    Lefevre, Sjannie; Watson, Sue-Ann; Munday, Philip L; Nilsson, Göran E

    2015-10-01

    Tropical coral reef organisms are predicted to be especially sensitive to ocean warming because many already live close to their upper thermal limit, and the expected rise in ocean CO2 is proposed to further reduce thermal tolerance. Little, however, is known about the thermal sensitivity of a diverse and abundant group of reef animals, the gastropods. The humpbacked conch (Gibberulus gibberulus gibbosus), inhabiting subtidal zones of the Great Barrier Reef, was chosen as a model because vigorous jumping, causing increased oxygen uptake (ṀO2 ), can be induced by exposure to odour from a predatory cone snail (Conus marmoreus). We investigated the effect of present-day ambient (417-454 µatm) and projected-future (955-987 µatm) PCO2 on resting (ṀO2 , rest) and maximum (ṀO2 , max) ṀO2 , as well as ṀO2 during hypoxia and critical oxygen tension (PO2 , crit), in snails kept at present-day ambient (28°C) or projected-future temperature (33°C). ṀO2 , rest and ṀO2 , max were measured both at the acclimation temperature and during an acute 5°C increase. Jumping caused a 4- to 6-fold increase in ṀO2 , and ṀO2 , max increased with temperature so that absolute aerobic scope was maintained even at 38°C, although factorial scope was reduced. The humpbacked conch has a high hypoxia tolerance with a PO2 , crit of 2.5 kPa at 28°C and 3.5 kPa at 33°C. There was no effect of elevated CO2 on respiratory performance at any temperature. Long-term temperature records and our field measurements suggest that habitat temperature rarely exceeds 32.6°C during the summer, indicating that these snails have aerobic capacity in excess of current and future needs. © 2015. Published by The Company of Biologists Ltd.

  20. East Pacific Rise at lat 19°S: Evidence for a recent ridge jump

    NASA Astrophysics Data System (ADS)

    Morton, Janet L.; Ballard, Robert D.

    1986-02-01

    A detailed ANGUS (Acoustically Navigated Geological Undersea Surveyor) photographic and bathymetric survey of the East Pacific Rise (EPR) near lat 19°S reveals a small jump of the ridge axis to the west. The axial block in this region consists of two parallel ridges 3 km apart and separated by a 200-m-deep valley. South of lat 19°06‧S the plate boundary is a single, narrow (<1 km) ridge. The eastern ridge near lat 19°S is shallower than the western ridge and is morphologically a continuation of the narrow, active ridge axis to the south. ANGUS photographs along both ridges and in the intervening valley, however, show that the western ridge is the currently active plate boundary. We suggest that spreading shifted westward from the eastern ridge to its present position within the past 40 000 yr. The EPR in the general region has been characterized by asymmetric spreading for the past 2.4 m.y. The sense of the ridge jump near lat 19°S is consistent with the asymmetric spreading, which could have been produced by a series of such jumps.

  1. Validity and reliability of the Myotest accelerometric system for the assessment of vertical jump height.

    PubMed

    Casartelli, Nicola; Müller, Roland; Maffiuletti, Nicola A

    2010-11-01

    The aim of the present study was to verify the validity and reliability of the Myotest accelerometric system (Myotest SA, Sion, Switzerland) for the assessment of vertical jump height. Forty-four male basketball players (age range: 9-25 years) performed series of squat, countermovement and repeated jumps during 2 identical test sessions separated by 2-15 days. Flight height was simultaneously quantified with the Myotest system and validated photoelectric cells (Optojump). Two calculation methods were used to estimate the jump height from Myotest recordings: flight time (Myotest-T) and vertical takeoff velocity (Myotest-V). Concurrent validity was investigated comparing Myotest-T and Myotest-V to the criterion method (Optojump), and test-retest reliability was also examined. As regards validity, Myotest-T overestimated jumping height compared to Optojump (p < 0.001) with a systematic bias of approximately 7 cm, even though random errors were low (2.7 cm) and intraclass correlation coefficients (ICCs) where high (>0.98), that is, excellent validity. Myotest-V overestimated jumping height compared to Optojump (p < 0.001), with high random errors (>12 cm), high limits of agreement ratios (>36%), and low ICCs (<0.75), that is, poor validity. As regards reliability, Myotest-T showed high ICCs (range: 0.92-0.96), whereas Myotest-V showed low ICCs (range: 0.56-0.89), and high random errors (>9 cm). In conclusion, Myotest-T is a valid and reliable method for the assessment of vertical jump height, and its use is legitimate for field-based evaluations, whereas Myotest-V is neither valid nor reliable.

  2. Effect of surface tension on the behavior of adhesive contact based on Lennard-Jones potential law

    NASA Astrophysics Data System (ADS)

    Zhu, Xinyao; Xu, Wei

    2018-02-01

    The present study explores the effect of surface tension on adhesive contact behavior where the adhesion is interpreted by long-range intermolecular forces. The adhesive contact is analyzed using the equivalent system of a rigid sphere and an elastic half space covered by a membrane with surface tension. The long-range intermolecular forces are modeled with the Lennard‒Jones (L‒J) potential law. The current adhesive contact issue can be represented by a nonlinear integral equation, which can be solved by Newton‒Raphson method. In contrast to previous studies which consider intermolecular forces as short-range, the present study reveals more details of the features of adhesive contact with surface tension, in terms of jump instabilities, pull-off forces, pressure distribution within the contact area, etc. The transition of the pull-off force is not only consistent with previous studies, but also presents some new interesting characteristics in the current situation.

  3. Isometric and dynamic strength and neuromuscular attributes as predictors of vertical jump performance in 11- to 13-year-old male athletes.

    PubMed

    McKinlay, Brandon John; Wallace, Phillip J; Dotan, Raffy; Long, Devon; Tokuno, Craig; Gabriel, David A; Falk, Bareket

    2017-09-01

    In explosive contractions, neural activation is a major factor in determining the rate of torque development, while the latter is an important determinant of jump performance. However, the contribution of neuromuscular activation and rate of torque development to jump performance in children and youth is unclear. The purpose of this study was to examine the relationships between the rate of neuromuscular activation, peak torque, rate of torque development, and jump performance in young male athletes. Forty-one 12.5 ± 0.5-year-old male soccer players completed explosive, unilateral isometric and dynamic (240°/s) knee extensions (Biodex System III), as well as countermovement-, squat-, and drop-jumps. Peak torque (pT), peak rate of torque development (pRTD), and rate of vastus lateralis activation (Q 30 ) during the isometric and dynamic contractions were examined in relation to attained jump heights. Isometric pT and pRTD were strongly correlated (r = 0.71) but not related to jump performance. Dynamic pT and pRTD, normalized to body mass, were significantly related to jump height in all 3 jumps (r = 0.38-0.66, p < 0.05). Dynamic normalized, but not absolute pRTD, was significantly related to Q 30 (r = 0.35, p < 0.05). In young soccer players, neuromuscular activation and rate of torque development in dynamic contractions are related to jump performance, while isometric contractions are not. These findings have implications in the choice of training and assessment methods for young athletes.

  4. Viscous bursting of suspended films

    NASA Astrophysics Data System (ADS)

    Debrégeas, G.; Martin, P.; Brochard-Wyart, F.

    1995-11-01

    Soap films break up by an inertial process. We present here the first observations on freely suspended films of long-chain polymers, where viscous effects are dominant and no surfactant is present. A hole is nucleated at time 0 and grows up to a radius R(t) at time t. A surprising feature is that the liquid from the hole is not collected into a rim (as it is in soap films): The liquid spreads out without any significant change of the film thickness. The radius R(t) grows exponentially with time, R~exp(t/τ) [while in soap films R(t) is linear]. The rise time τ~ηe/2γ where η is viscosity, e is thickness (in the micron range), and γ is surface tension. A simple model is developed to explain this growth law.

  5. Interaction-induced partitioning and magnetization jumps in the mixed-spin oxide FeTiO3-Fe2O3.

    PubMed

    Charilaou, M; Sahu, K K; Zhao, S; Löffler, J F; Gehring, A U

    2011-07-29

    In this study we report on jumps in the magnetic moment of the hemo-ilmenite solid solution (x)FeTiO(3)-(1-x)Fe(2)O(3) above Fe(III) percolation at low temperature (T<3 K). The first jumps appear at 2.5 K, one at each side of the magnetization loop, and their number increases with decreasing temperature and reaches 5 at T=0.5 K. The jumps occur after field reversal from a saturated state and are symmetrical in the trigger field and intensity with respect to the field axis. Moreover, an increase of the sample temperature by 2.8% at T=2.0 K indicates the energy released after the ignition of the magnetization jump, as the spin-currents generated by the event are dissipated in the lattice. The magnetization jumps are further investigated by Monte Carlo simulations, which show that these effects are a result of magnetic interaction-induced partitioning on a sublattice level. © 2011 American Physical Society

  6. The AGT Gene M235T Polymorphism and Response of Power-Related Variables to Aerobic Training

    PubMed Central

    Aleksandra, Zarębska; Zbigniew, Jastrzębski; Waldemar, Moska; Agata, Leońska-Duniec; Mariusz, Kaczmarczyk; Marek, Sawczuk; Agnieszka, Maciejewska-Skrendo; Piotr, Żmijewski; Krzysztof, Ficek; Grzegorz, Trybek; Ewelina, Lulińska-Kuklik; Semenova, Ekaterina A.; Ahmetov, Ildus I.; Paweł, Cięszczyk

    2016-01-01

    The C allele of the M235T (rs699) polymorphism of the AGT gene correlates with higher levels of angiotensin II and has been associated with power and strength sport performance. The aim of the study was to investigate whether or not selected power-related variables and their response to a 12-week program of aerobic dance training are modulated by the AGT M235T genotype in healthy participants. Two hundred and one Polish Caucasian women aged 21 ± 1 years met the inclusion criteria and were included in the study. All women completed a 12-week program of low and high impact aerobics. Wingate peak power and total work capacity, 5 m, 10 m, and 30 m running times and jump height and jump power were determined before and after the training programme. All power-related variables improved significantly in response to aerobic dance training. We found a significant association between the M235T polymorphism and jump-based variables (squat jump (SJ) height, p = 0.005; SJ power, p = 0.015; countermovement jump height, p = 0.025; average of 10 countermovement jumps with arm swing (ACMJ) height, p = 0.001; ACMJ power, p = 0.035). Specifically, greater improvements were observed in the C allele carriers in comparison with TT homozygotes. In conclusion, aerobic dance, one of the most commonly practiced adult fitness activities in the world, provides sufficient training stimuli for augmenting the explosive strength necessary to increase vertical jump performance. The AGT gene M235T polymorphism seems to be not only a candidate gene variant for power/strength related phenotypes, but also a genetic marker for predicting response to training. Key points Aerobic dance provides sufficient training stimuli for the improvement of explosive power. The AGT gene M235T polymorphism is associated with individual variation in the change of power-related phenotypes in response to aerobic dance training. The C allele carriers of the AGT gene M235T polymorphism show greater improvements of jump-based variables in comparison with TT homozygotes. PMID:27928207

  7. Marangoni Effects of a Drop in an Extensional Flow: The Role of Surfactant Physical Chemistry

    NASA Technical Reports Server (NTRS)

    Stebe, Kathleen J.; Balasubramaniam, R. (Technical Monitor)

    2002-01-01

    While the changes in stresses caused by surfactant adsorption on non-deforming interfaces have been fairly well established, prior to this work, there were few studies addressing how surfactants alter stresses on strongly deforming interfaces. We chose the model problem of a drop in a uniaxial extensional flow to study these stress conditions To model surfactant effects at fluid interfaces, a proper description of the dependence of the surface tension on surface concentration, the surface equation of state, is required. We have adopted a surface equation of state that accounts for the maximum coverage limit; that is, because surfactants have a finite cross sectional area, there is an upper bound to the amount of surfactant that can adsorb in a monolayer. The surface tension reduces strongly only when this maximum coverage is approached. Since the Marangoni stresses go as the derivative of the surface equation of state times the surface concentration gradient, the non-linear equation of state determines both the effect of surfactants in the normal stress jump, (which is balanced by the product of the mean curvature of the interface times the surface tension), and the tangential stress jump, which is balanced by Marangoni stresses. First, the effects of surface coverage and intermolecular interactions among surfactants which drive aggregation of surfactants in the interface were studied. (see Pawar and Stebe, Physics of Fluids).

  8. Vertical Jumping Tests versus Wingate Anaerobic Test in Female Volleyball Players: The Role of Age

    PubMed Central

    Nikolaidis, Pantelis Theodoros; Afonso, Jose; Clemente-Suarez, Vicente Javier; Alvarado, Jose Rafael Padilla; Driss, Tarak; Knechtle, Beat; Torres-Luque, Gema

    2016-01-01

    Single and continuous vertical jumping tests, as well as the Wingate anaerobic test (WAnT), are commonly used to assess the short-term muscle power of female volleyball players; however, the relationship among these tests has not been studied adequately. Thus, the aim of the present study was to examine the relationship of single and continuous vertical jumps with the WAnT in female volleyball players. Seventy adolescent (age 16.0 ± 1.0 years, body mass 62.5 ± 7.1 kg, height 170.4 ± 6.1 cm, body fat 24.2% ± 4.3%) and 108 adult female volleyball players (age 24.8 ± 5.2 years, body mass 66.5 ± 8.7 kg, height 173.2 ± 7.4 cm, body fat 22.0% ± 5.1%) performed the squat jump (SJ), countermovement jump (CMJ), Abalakov jump (AJ), 30 s Bosco test and WAnT (peak power, Ppeak; mean power, Pmean). Mean power in the Bosco test was correlated (low to large magnitude) with Pmean of the WAnT (r = 0.27, p = 0.030 in adolescents versus r = 0.56, p < 0.001 in adults). SJ, CMJ and AJ also correlated with Ppeak (0.28 ≤ r ≤ 0.46 in adolescents versus 0.58 ≤ r ≤ 0.61 in adults) and with Pmean (0.43 ≤ r ≤ 0.51 versus 0.67 ≤ r ≤ 0.71, respectively) of the WAnT (p < 0.05). In summary, the impact of the Bosco test and WAnT on muscle power varied, especially in the younger age group. Single jumping tests had larger correlations with WAnT in adults than in adolescent volleyball players. These findings should be taken into account by volleyball coaches and fitness trainers during the assessment of short-term muscle power of their athletes.

  9. Fusion of vesicles with the air-water interface: the influence of polar head group, salt concentration, and vesicle size.

    PubMed

    Gugliotti, M; Chaimovich, H; Politi, M J

    2000-02-15

    Fusion of vesicles with the air-water interface and consequent monolayer formation has been studied as a function of temperature. Unilamellar vesicles of DMPC, DPPC, and DODAX (X=Cl(-), Br(-)) were injected into a subphase containing NaCl, and the surface pressure (tension) was recorded on a Langmuir Balance (Tensiometer) using the Wilhelmy plate (Ring) method. For the zwitterionic vesicles, plots of the initial surface pressure increase rate (surface tension decrease rate) as a function of temperature show a peak at the phase transition temperature (T(m)) of the vesicles, whereas for ionic ones they show a sharp rise. At high concentrations of NaCl, ionic DODA(Cl) vesicles seem to behave like zwitterionic ones, and the rate of fusion is higher at the T(m). The influence of size was studied comparing large DODA(Cl) vesicles with small sonicated ones, and no significant changes were found regarding the rate of fusion with the air-water interface.

  10. Jumping hoops on water

    NASA Astrophysics Data System (ADS)

    Yang, Eunjin; Kim, Ho-Young

    2015-11-01

    Small aquatic arthropods, such as water striders and fishing spiders, are able to jump off water to a height several times their body length. Inspired by the unique biological motility on water, we study a simple model using a flexible hoop to provide fundamental understanding and a mimicking principle of small jumpers on water. Behavior of a hoop on water, which is coated with superhydrophobic particles and initially bent into an ellipse from an equilibrium circular shape, is visualized with a high speed camera upon launching it into air by releasing its initial elastic strain energy. We observe that jumping of our hoops is dominated by the dynamic pressure of water rather than surface tension, and thus it corresponds to the dynamic condition experienced by fishing spiders. We calculate the reaction forces provided by water adopting the unsteady Bernoulli equation as well as the momentum loss into liquid inertia and viscous friction. Our analysis allows us to predict the jumping efficiency of the hoop on water in comparison to that on ground, and to discuss the evolutionary pressure rendering fishing spiders select such dynamic behavior.

  11. The AGT Gene M235T Polymorphism and Response of Power-Related Variables to Aerobic Training.

    PubMed

    Aleksandra, Zarębska; Zbigniew, Jastrzębski; Waldemar, Moska; Agata, Leońska-Duniec; Mariusz, Kaczmarczyk; Marek, Sawczuk; Agnieszka, Maciejewska-Skrendo; Piotr, Żmijewski; Krzysztof, Ficek; Grzegorz, Trybek; Ewelina, Lulińska-Kuklik; Semenova, Ekaterina A; Ahmetov, Ildus I; Paweł, Cięszczyk

    2016-12-01

    The C allele of the M235T (rs699) polymorphism of the AGT gene correlates with higher levels of angiotensin II and has been associated with power and strength sport performance. The aim of the study was to investigate whether or not selected power-related variables and their response to a 12-week program of aerobic dance training are modulated by the AGT M235T genotype in healthy participants. Two hundred and one Polish Caucasian women aged 21 ± 1 years met the inclusion criteria and were included in the study. All women completed a 12-week program of low and high impact aerobics. Wingate peak power and total work capacity, 5 m, 10 m, and 30 m running times and jump height and jump power were determined before and after the training programme. All power-related variables improved significantly in response to aerobic dance training. We found a significant association between the M235T polymorphism and jump-based variables (squat jump (SJ) height, p = 0.005; SJ power, p = 0.015; countermovement jump height, p = 0.025; average of 10 countermovement jumps with arm swing (ACMJ) height, p = 0.001; ACMJ power, p = 0.035). Specifically, greater improvements were observed in the C allele carriers in comparison with TT homozygotes. In conclusion, aerobic dance, one of the most commonly practiced adult fitness activities in the world, provides sufficient training stimuli for augmenting the explosive strength necessary to increase vertical jump performance. The AGT gene M235T polymorphism seems to be not only a candidate gene variant for power/strength related phenotypes, but also a genetic marker for predicting response to training.

  12. THE EFFECT OF KINESIO® TAPE ON VERTICAL JUMP AND DYNAMIC POSTURAL CONTROL

    PubMed Central

    Baldridge, Carolann

    2013-01-01

    Introduction and Background: Ankle injuries are one of the most common injuries among physically active individuals. The role of prophylactic ankle taping and bracing has been studied extensively. Kinesio® Tape (KT) is a somewhat new type of taping technique gaining popularity as both treatment and performance enhancement tool. However, there is limited research on the effect of KT on functional performance. Purpose: The purpose of this study was to determine whether the application of Kinesio Tex® Tape had an effect on vertical jump and dynamic postural control in healthy young individuals. Methods: 52 healthy subjects free of ankle or lower extremity problems (28 males and 24 females; age: 22.12±2.08 years; height: 170.77±8.69 cm; weight: 69.90±12.03 kg) participated in the study. Subjects were randomly assigned to either the experimental group (KT with tension) or the control group (KT without tension). Vertical jump was measured using the VertiMetric device and dynamic postural control was assessed using the Star Excursion Balance Test (SEBT) under three conditions: (1) without taping; (2) immediately after taping; (3) 24 hours after taping with the taping remaining in situ. Results: Three-way repeated measure ANOVA was conducted in order to identify differences between the experimental and the control group during the three conditions. Overall, there were no differences between groups in vertical jump maximum height, vertical jump average height, or the SEBT scores for the three time periods (pre-test, post-test, 24hrs-post-test). However, the main effect of KT was moderated by a significant gender interaction, resulting in a statistically significant effect of KT for the SEBT scores in the posterior-medial direction, F(1.72, 82.57) = 4.50, p = 0.018 and the medial direction, F(1.75, 83.81) = 4.27, p = 0.021. Follow-up analyses indicated that female subjects in the KT group had increased SEBT scores between three time periods when compared to the placebo group. Discussion: KT application on the ankle neither decreased nor increased vertical jump height in healthy non-injured young individuals, but did increase dynamic postural control in females for certain directions. Additional study is warranted using different measures of balance to further investigate the effect of KT on dynamic postural control. Level of Evidence: 2b PMID:24175126

  13. Understanding the etiology of the posteromedial tibial stress fracture.

    PubMed

    Milgrom, Charles; Burr, David B; Finestone, Aharon S; Voloshin, Arkady

    2015-09-01

    Previous human in vivo tibial strain measurements from surface strain gauges during vigorous activities were found to be below the threshold value of repetitive cyclical loading at 2500 microstrain in tension necessary to reduce the fatigue life of bone, based on ex vivo studies. Therefore it has been hypothesized that an intermediate bone remodeling response might play a role in the development of tibial stress fractures. In young adults tibial stress fractures are usually oblique, suggesting that they are the result of failure under shear strain. Strains were measured using surface mounted unstacked 45° rosette strain gauges on the posterior aspect of the flat medial cortex just below the tibial midshaft, in a 48year old male subject while performing vertical jumps, staircase jumps and running up and down stadium stairs. Shear strains approaching 5000 microstrain were recorded during stair jumping and vertical standing jumps. Shear strains above 1250 microstrain were recorded during runs up and down stadium steps. Based on predictions from ex vivo studies, stair and vertical jumping tibial shear strain in the test subject was high enough to potentially produce tibial stress fracture subsequent to repetitive cyclic loading without necessarily requiring an intermediate remodeling response to microdamage. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Deyong; Li, Yunliang; Li, Hao

    2015-05-15

    Knowledge of dynamical structure of protein is an important clue to understand its biological function in vivo. Temperature-jump (T-jump) time-resolved transient mid-IR absorbance spectroscopy is a powerful tool in elucidating the protein dynamical structures and the folding/unfolding kinetics of proteins in solution. A home-built setup of T-jump time-resolved transient mid-IR absorbance spectroscopy with high sensitivity is developed, which is composed of a Q-switched Cr, Tm, Ho:YAG laser with an output wavelength at 2.09 μm as the T-jump heating source, and a continuous working CO laser tunable from 1580 to 1980 cm{sup −1} as the IR probe. The results demonstrate thatmore » this system has a sensitivity of 1 × 10{sup −4} ΔOD for a single wavelength detection, and 2 × 10{sup −4} ΔOD for spectral detection in amide I′ region, as well as a temporal resolution of 20 ns. Moreover, the data quality coming from the CO laser is comparable to the one using the commercial quantum cascade laser.« less

  15. Tensions and Striving for Coherence in an Academic's Professional Identity Work

    ERIC Educational Resources Information Center

    Arvaja, Maarit

    2018-01-01

    The emergence of 'new managerialism' in academic institutions and professions has given rise to tensions between one's professional self and work context. Such tensions often originate from a misalignment between institutional and personal values. This study builds on a dialogical approach to identity and discusses the role of inner tensions and…

  16. Countermovement jump height: gender and sport-specific differences in the force-time variables.

    PubMed

    Laffaye, Guillaume; Wagner, Phillip P; Tombleson, Tom I L

    2014-04-01

    The goal of this study was to assess (a) the eccentric rate of force development, the concentric force, and selected time variables on vertical performance during countermovement jump, (b) the existence of gender differences in these variables, and (c) the sport-specific differences. The sample was composed of 189 males and 84 females, all elite athletes involved in college and professional sports (primarily football, basketball, baseball, and volleyball). The subjects performed a series of 6 countermovement jumps on a force plate (500 Hz). Average eccentric rate of force development (ECC-RFD), total time (TIME), eccentric time (ECC-T), Ratio between eccentric and total time (ECC-T:T) and average force (CON-F) were extracted from force-time curves and the vertical jumping performance, measured by impulse momentum. Results show that CON-F (r = 0.57; p < 0.001) and ECC-RFD (r = 0.52, p < 0.001) are strongly correlated with the jump height (JH), whereas the time variables are slightly and negatively correlated (r = -0.21-0.23, p < 0.01). Force variables differ between both sexes (p < 0.01), whereas time variables did not differ, showing a similar temporal structure. The best way to jump high is to increase CON-F and ECC-RFD thus minimizing the ECC-T. Principal component analysis (PCA) accounted for 76.8% of the JH variance and revealed that JH is predicted by a temporal and a force component. Furthermore, the PCA comparison made among athletes revealed sport-specific signatures: volleyball players revealed a temporal-prevailing profile, a weak-force with large ECC-T:T for basketball players and explosive and powerful profiles for football and baseball players.

  17. The effects of ramp stretches on active contractions in intact mammalian fast and slow muscle fibres.

    PubMed

    Mutungi, G; Ranatunga, K W

    2001-01-01

    The effects of a ramp stretch (amplitude <6% muscle fibre length (L0), speed < 13L0 s(-1)) on twitch tension and twitch tension re-development were examined in intact mammalian (rat) fast and slow muscle fibre bundles. The experiments were done in vitro at 20 degrees C and at an initial sarcomere length of 2.68 microm. In both fibre types, a stretch applied during the rising phase of the twitch response (including the time of stimulation) increased the re-developed twitch tension (15-35%). A stretch applied before the stimulus had little or no effect on the twitch myogram in fast muscle fibres, but it increased the twitch tension (approximately 5%) in slow muscle fibres. A similar stretch had little or no effect on tetanic tension in either muscle fibre type. In general, the results indicate that the contractile-activation mechanism may be stretch sensitive and this is particularly pronounced in slow muscle fibres. Recorded at a high sampling rate and examined at an appropriate time scale, the transitory tension response to a stretch rose in at least two phases; an initial rapid tension rise to a break (break point tension, P1a) followed by a slower tension rise (apparent P2a) to a peak reached at the end of the stretch. Plotted against stretch velocity, P1a tension increased in direct proportion to stretch velocity (viscous-like) whereas, P2a tension (calculated as peak tension minus P1a tension) increased with stretch velocity to a plateau (visco-elastic). Examined at the peak of a twitch, P1a tension had a slope (viscosity coefficient) of 1.8 kN m(-2) per L0 s(-1) in fast fibres and 4.7 kN m(-2) per L0 s(-1) in slow muscle fibres. In the same preparations, P2a tension had a relaxation time of 8 ms in the fast muscle fibres and 25 ms in the slow muscle fibres. The amplitudes of both tension components scaled with the instantaneous twitch tension in qualitatively the same way as the instantaneous fibre stiffness. These fast/slow fibre type differences probably reflect differences in their cross-bridge kinetics.

  18. Modeling and estimating the jump risk of exchange rates: Applications to RMB

    NASA Astrophysics Data System (ADS)

    Wang, Yiming; Tong, Hanfei

    2008-11-01

    In this paper we propose a new type of continuous-time stochastic volatility model, SVDJ, for the spot exchange rate of RMB, and other foreign currencies. In the model, we assume that the change of exchange rate can be decomposed into two components. One is the normally small-cope innovation driven by the diffusion motion; the other is a large drop or rise engendered by the Poisson counting process. Furthermore, we develop a MCMC method to estimate our model. Empirical results indicate the significant existence of jumps in the exchange rate. Jump components explain a large proportion of the exchange rate change.

  19. Design of an experimental apparatus for measurement of the surface tension of metastable fluids

    NASA Astrophysics Data System (ADS)

    Vinš, V.; Hrubý, J.; Hykl, J.; Blaha, J.; Šmíd, B.

    2013-04-01

    A unique experimental apparatus for measurement of the surface tension of aqueous mixtures has been designed, manufactured, and tested in our laboratory. The novelty of the setup is that it allows measurement of surface tension by two different methods: a modified capillary elevation method in a long vertical capillary tube and a method inspired by the approach of Hacker (National Advisory Committee for Aeronautics, Technical Note 2510, 1-20, 1951), i.e. in a short horizontal capillary tube. Functionality of all main components of the apparatus, e.g., glass chamber with the capillary tube, temperature control unit consisting of two thermostatic baths with special valves for rapid temperature jumps, helium distribution setup allowing pressure variation above the liquid meniscus inside the capillary tube, has been successfully tested. Preliminary results for the surface tension of the stable and metastable supercooled water measured by the capillary elevation method at atmospheric pressure are provided. The surface tension of water measured at temperatures between +26 °C and -11 °C is in good agreement with the extrapolated IAPWS correlation (IAPWS Release on Surface Tension of Ordinary Water Substance, September 1994); however it disagrees with data by Hacker.

  20. Tension-compression-tension tertiary twins in coarse-grained polycrystalline pure magnesium at room temperature

    DOE PAGES

    Yu, Qin; Jiang, Yanyao; Wang, Jian

    2015-04-07

    Using electron backscatter diffraction, the microstructural features of tension–compression–tension (T–C–T) tertiary twins are studied in coarse-grained pure polycrystalline magnesium subjected to monotonic compression along the extrusion direction in ambient air. T–C–T tertiary twins are developed due to the formation of a compression–tension double twin inside a primary tension twin. All the observed T–C–T twin variants are of T iC jT j type. T iC i+1T i+1 (or T iC i–1T i–1) variants are observed more frequently than T iC i+2T i+2 (or T iC i–2T i–2) variants. Moreover, the number of tertiary twin lamellae increases with the applied compressive strain.

  1. End-growth/evaporation living polymerization kinetics revisited

    NASA Astrophysics Data System (ADS)

    Semenov, A. N.; Nyrkova, I. A.

    2011-03-01

    End-growth/evaporation kinetics in living polymer systems with "association-ready" free unimers (no initiator) is considered theoretically. The study is focused on the systems with long chains (typical aggregation number N ≫ 1) at long times. A closed system of continuous equations is derived and is applied to study the kinetics of the chain length distribution (CLD) following a jump of a parameter (T-jump) inducing a change of the equilibrium mean chain length from N0 to N. The continuous approach is asymptotically exact for t ≫ t1, where t1 is the dimer dissociation time. It yields a number of essentially new analytical results concerning the CLD kinetics in some representative regimes. In particular, we obtained the asymptotically exact CLD response (for N ≫ 1) to a weak T-jump (ɛ = N0/N - 1 ≪ 1). For arbitrary T-jumps we found that the longest relaxation time tmax = 1/γ is always quadratic in N (γ is the relaxation rate of the slowest normal mode). More precisely tmax ∝4N2 for N0 < 2N and tmax ∝NN0/(1 - N/N0) for N0 > 2N. The mean chain length Nn is shown to change significantly during the intermediate slow relaxation stage t1 ≪ t ≪ tmax . We predict that N_n(t)-N_n(0)∝ √{t} in the intermediate regime for weak (or moderate) T-jumps. For a deep T-quench inducing strong increase of the equilibrium Nn (N ≫ N0 ≫ 1), the mean chain length follows a similar law, N_n(t)∝ √{t}, while an opposite T-jump (inducing chain shortening, N0 ≫ N ≫ 1) leads to a power-law decrease of Nn: Nn(t)∝t-1/3. It is also shown that a living polymer system gets strongly polydisperse in the latter regime, the maximum polydispersity index r = Nw/Nn being r* ≈ 0.77N0/N ≫ 1. The concentration of free unimers relaxes mainly during the fast process with the characteristic time tf ˜ t1N0/N2. A nonexponential CLD dominated by short chains develops as a result of the fast stage in the case of N0 = 1 and N ≫ 1. The obtained analytical results are supported, in part, by comparison with numerical results found both previously and in the present paper.

  2. Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk

    NASA Technical Reports Server (NTRS)

    Thomas, S.; Faghri, A.; Hankey, W.

    1991-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed ranged from 0-300 rpm and the flow rate varied from 7.0-15.0 lpm. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Upstream from the jump, the film thickness was determined by the inertial and frictional forces on the fluid, and the radial spreading of the film. The surface tension at the edge of the disk affected the film thickness downstream from the jump. For the rotating disk, the film thickness was dependent upon the inertial and frictional forces near the center of the disk and the centrifugal forces near the edge of the disk.

  3. Effect of a Trampoline Exercise on the Anthropometric Measures and Motor Performance of Adolescent Students

    PubMed Central

    Aalizadeh, Bahman; Mohammadzadeh, Hassan; Khazani, Ali; Dadras, Ali

    2016-01-01

    Background: Physical exercises can influence some anthropometric and fitness components differently. The aim of present study was to evaluate how a relatively long-term training program in 11-14-year-old male Iranian students affects their anthropometric and motor performance measures. Methods: Measurements were conducted on the anthropometric and fitness components of participants (n = 28) prior to and following the program. They trained 20 weeks, 1.5 h/session with 10 min rest, in 4 times trampoline training programs per week. Motor performance of all participants was assessed using standing long jump and vertical jump based on Eurofit Test Battery. Results: The analysis of variance (ANOVA) repeated measurement test showed a statistically significant main effect of time in calf girth P = 0.001, fat% P = 0.01, vertical jump P = 0.001, and long jump P = 0.001. The ANOVA repeated measurement test revealed a statistically significant main effect of group in fat% P = 0.001. Post hoc paired t-tests indicated statistical significant differences in trampoline group between the two measurements about calf girth (t = −4.35, P = 0.001), fat% (t = 5.87, P = 0.001), vertical jump (t = −5.53, P = 0.001), and long jump (t = −10.00, P = 0.001). Conclusions: We can conclude that 20-week trampoline training with four physical activity sessions/week in 11–14-year-old students seems to have a significant effect on body fat% reduction and effective results in terms of anaerobic physical fitness. Therefore, it is suggested that different training model approach such as trampoline exercises can help students to promote the level of health and motor performance. PMID:27512557

  4. Effect of a Trampoline Exercise on the Anthropometric Measures and Motor Performance of Adolescent Students.

    PubMed

    Aalizadeh, Bahman; Mohammadzadeh, Hassan; Khazani, Ali; Dadras, Ali

    2016-01-01

    Physical exercises can influence some anthropometric and fitness components differently. The aim of present study was to evaluate how a relatively long-term training program in 11-14-year-old male Iranian students affects their anthropometric and motor performance measures. Measurements were conducted on the anthropometric and fitness components of participants (n = 28) prior to and following the program. They trained 20 weeks, 1.5 h/session with 10 min rest, in 4 times trampoline training programs per week. Motor performance of all participants was assessed using standing long jump and vertical jump based on Eurofit Test Battery. The analysis of variance (ANOVA) repeated measurement test showed a statistically significant main effect of time in calf girth P = 0.001, fat% P = 0.01, vertical jump P = 0.001, and long jump P = 0.001. The ANOVA repeated measurement test revealed a statistically significant main effect of group in fat% P = 0.001. Post hoc paired t-tests indicated statistical significant differences in trampoline group between the two measurements about calf girth (t = -4.35, P = 0.001), fat% (t = 5.87, P = 0.001), vertical jump (t = -5.53, P = 0.001), and long jump (t = -10.00, P = 0.001). We can conclude that 20-week trampoline training with four physical activity sessions/week in 11-14-year-old students seems to have a significant effect on body fat% reduction and effective results in terms of anaerobic physical fitness. Therefore, it is suggested that different training model approach such as trampoline exercises can help students to promote the level of health and motor performance.

  5. Physics of singularities in pressure-impulse theory

    NASA Astrophysics Data System (ADS)

    Krechetnikov, R.

    2018-05-01

    The classical solution in the pressure-impulse theory for the inviscid, incompressible, and zero-surface-tension water impact of a flat plate at zero dead-rise angle exhibits both singular-in-time initial fluid acceleration, ∂v /∂ t |t =0˜δ (t ) , and a near-plate-edge spatial singularity in the velocity distribution, v ˜r-1 /2 , where r is the distance from the plate edge. The latter velocity divergence also leads to the interface being stretched infinitely right after the impact, which is another nonphysical artifact. From the point of view of matched asymptotic analysis, this classical solution is a singular limit when three physical quantities achieve limiting values: sound speed c0→∞ , fluid kinematic viscosity ν →0 , and surface tension σ →0 . This leaves open a question on how to resolve these singularities mathematically by including the neglected physical effects—compressibility, viscosity, and surface tension—first one by one and then culminating in the local compressible viscous solution valid for t →0 and r →0 , demonstrating a nontrivial flow structure that changes with the degree of the bulk compressibility. In the course of this study, by starting with the general physically relevant formulation of compressible viscous flow, we clarify the parameter range(s) of validity of the key analytical solutions including classical ones (inviscid incompressible and compressible, etc.) and understand the solution structure, its intermediate asymptotics nature, characteristics influencing physical processes, and the role of potential and rotational flow components. In particular, it is pointed out that sufficiently close to the plate edge surface tension must be taken into account. Overall, the idea is to highlight the interesting physics behind the singularities in the pressure-impulse theory.

  6. Jump frequency may contribute to risk of jumper's knee: a study of interindividual and sex differences in a total of 11,943 jumps video recorded during training and matches in young elite volleyball players.

    PubMed

    Bahr, Martin A; Bahr, Roald

    2014-09-01

    Male sex, total training volume (number of hours per week) and match exposure (number of sets played per week) are risk factors for jumper's knee among young elite volleyball players. However, it is not known whether jump frequency differs among players on the same squad. To examine interindividual and sex differences in jump frequency during training and matches in young elite volleyball players. Observational study. Norwegian elite volleyball boarding school training programme. Student-athletes (26 boys and 18 girls, 16-18 years). Individual jump counts were recorded based on visual analysis of video recordings obtained from 1 week of volleyball training (9 training sessions for boys and 10 for girls, 14.1 h and 17.8 h of training, respectively) and 10 matches (5.9 h for boys (16 sets) and 7.7 h for girls (21 sets). A total of 11,943 jumps were recorded, 4138 during matches and 7805 during training. As training attendance and jump frequency varied substantially between players, the total exposure in training ranged from 50 to 666 jumps/week among boys and from 11 to 251 jumps/week among girls. On average, this corresponded to 35.7 jumps/h for boys and 13.7 jumps/h for girls (Student t test, p=0.002). Total jump exposure during matches ranged between 1 and 339 jumps among boys and between 0 and 379 jumps among girls, corresponding to an average jump frequency of 62.2 jumps/h for boys and 41.9 jumps/h for girls (Student t test, p<0.039). The interindividual differences in jump frequency were substantially greater than any differences observed among player functions. Jump frequency has substantial interindividual and sex differences during training and matches in young elite volleyball players. Total jump volume may represent a more important risk factor for jumper's knee than total training volume, warranting further research attention. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. BPS Jumping Loci are Automorphic

    NASA Astrophysics Data System (ADS)

    Kachru, Shamit; Tripathy, Arnav

    2018-06-01

    We show that BPS jumping loci-loci in the moduli space of string compactifications where the number of BPS states jumps in an upper semi-continuous manner—naturally appear as Fourier coefficients of (vector space-valued) automorphic forms. For the case of T 2 compactification, the jumping loci are governed by a modular form studied by Hirzebruch and Zagier, while the jumping loci in K3 compactification appear in a story developed by Oda and Kudla-Millson in arithmetic geometry. We also comment on some curious related automorphy in the physics of black hole attractors and flux vacua.

  8. Sex differences in athletic performance emerge coinciding with the onset of male puberty.

    PubMed

    Handelsman, David J

    2017-07-01

    Male performance in athletic events begins to exceed that of age-matched females during early adolescence, but the timing of this divergence relative to the onset of male puberty and the rise in circulating testosterone remains poorly defined. This study is a secondary quantitative analysis of four published sources which aimed to define the timing of the gender divergence in athletic performance and relating it to the rise in circulating testosterone due to male puberty. Four data sources reflecting elite swimming and running and jumping track and field events as well as hand-grip strength in nonathletes were analysed to define the age-specific gender differences through adolescence and their relationship to the rising circulating testosterone during male puberty. The onset and tempo of gender divergence were very similar for swimming, running and jumping events as well as the hand-grip strength in nonathletes, and all closely paralleled the rise in circulating testosterone in adolescent boys. The gender divergence in athletic performance begins at the age of 12-13 years and reaches adult plateau in the late teenage years with the timing and tempo closely parallel to the rise in circulating testosterone in boys during puberty. © 2017 John Wiley & Sons Ltd.

  9. Heel-Rise Height Deficit 1 Year After Achilles Tendon Rupture Relates to Changes in Ankle Biomechanics 6 Years After Injury.

    PubMed

    Brorsson, Annelie; Willy, Richard W; Tranberg, Roy; Grävare Silbernagel, Karin

    2017-11-01

    It is unknown whether the height of a heel-rise performed in the single-leg standing heel-rise test 1 year after an Achilles tendon rupture (ATR) correlates with ankle biomechanics during walking, jogging, and jumping in the long-term. To explore the differences in ankle biomechanics, tendon length, calf muscle recovery, and patient-reported outcomes at a mean of 6 years after ATR between 2 groups that, at 1-year follow-up, had less than 15% versus greater than 30% differences in heel-rise height. Cohort study; Level of evidence, 3. Seventeen patients with less than 15% (<15% group) and 17 patients with greater than 30% (>30% group) side-to-side difference in heel-rise height at 1 year after ATR were evaluated at a mean (SD) 6.1 (2.0) years after their ATR. Ankle kinematics and kinetics were sampled via standard motion capture procedures during walking, jogging, and jumping. Patient-reported outcome was evaluated with Achilles tendon Total Rupture Score (ATRS), Physical Activity Scale (PAS), and Foot and Ankle Outcome Score (FAOS). Tendon length was evaluated by ultrasonography. The Limb Symmetry Index (LSI = [Injured Side ÷ Healthy Side] × 100) was calculated for side differences. The >30% group had significantly more deficits in ankle kinetics during all activities compared with patients in the <15% group at a mean of 6 years after ATR (LSI, 70%-149% and 84%-106%, respectively; P = .010-.024). The >30% group, compared with the <15% group, also had significantly lower values in heel-rise height (LSI, 72% and 95%, respectively; P < .001) and heel-rise work (LSI, 58% and 91%, respectively; P < .001) and significantly larger side-to-side difference in tendon length (114% and 106%, respectively; P = .012). Achilles tendon length correlated with ankle kinematic variables ( r = 0.38-0.44; P = .015-.027) whereas heel-rise work correlated with kinetic variables ( r = -0.57 to 0.56; P = .001-.047). LSI tendon length correlated negatively with LSI heel-rise height ( r = -0.41; P = .018). No differences were found between groups in patient-reported outcome ( P = .143-.852). Height obtained during the single-leg standing heel-rise test performed 1 year after ATR related to the long-term ability to regain normal ankle biomechanics. Minimizing tendon elongation and regaining heel-rise height may be important for the long-term recovery of ankle biomechanics, particularly during more demanding activities such as jumping.

  10. Counting supersymmetric branes

    NASA Astrophysics Data System (ADS)

    Kleinschmidt, Axel

    2011-10-01

    Maximal supergravity solutions are revisited and classified, with particular emphasis on objects of co-dimension at most two. This class of solutions includes branes whose tension scales with xxxx. We present a group theory derivation of the counting of these objects based on the corresponding tensor hierarchies derived from E 11 and discrete T- and U-duality transformations. This provides a rationale for the wrapping rules that were recently discussed for σ ≤ 3 in the literature and extends them. Explicit supergravity solutions that give rise to co-dimension two branes are constructed and analysed.

  11. Self-propulsion of a metallic superoleophobic micro-boat.

    PubMed

    Musin, Albina; Grynyov, Roman; Frenkel, Mark; Bormashenko, Edward

    2016-10-01

    The self-propulsion of a heavy, superoleophobic, metallic micro-boat carrying a droplet of various aqueous alcohol solutions as a fuel tank is reported. The micro-boat is driven by the solutocapillary Marangoni flow. The jump in the surface tension owing to the condensation of alcohols on the water surface was established experimentally. Maximal velocities of the self-propulsion were registered as high as 0.05m/s. The maximal velocity of the center mass of the boat correlates with the maximal change in the surface tension, due to the condensation of alcohols. The mechanism of the self-locomotion is discussed. The phenomenological dynamic model describing the self-propulsion is reported. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Validity and Reliability of the 30-s Continuous Jump for Anaerobic Power and Capacity Assessment in Combat Sport

    PubMed Central

    Čular, Drazen; Ivančev, Vladimir; Zagatto, Alessandro M.; Milić, Mirjana; Beslija, Tea; Sellami, Maha; Padulo, Johnny

    2018-01-01

    Cycling test such Wingate anaerobic test (WAnT) is used to measure anaerobic power (AP), but not anaerobic capacity (AC, i.e., the metabolic energy demand). However, in sports that do not involve cycling movements (Karate), the continuous jump for 30 s (vertical jumps for 30 s) has been extensively used to measure anaerobic performance in all young athletes. Limited information’s are available concerning its validity and reliability especially in children. As such, the current study aimed to test validity and reliability of a continuous jumps test (the CJ30s), using WAnT as a reference. Thirteen female Karate kids (age: 11.07 ± 1.32 years; mass: 41.76 ± 15.32 kg; height: 152 ± 11.52 cm; training experience: 4.38 ± 2.14 years) were tested on three separate sessions. The first and second sessions were used to assess the reliability using Intra-class correlation coefficient (ICC) of CJ30s, whereas on the third session WAnT was administered. Following CJ30s and WAnT, we assessed AP (1/CJ30s, as jump height [JH], fatigue index [FI], and blood lactate [BL]; 2/WAnT, as mechanical power [P], FI, and BL) and AC as the excess post-exercise oxygen consumption (EPOC). Large/highly significant correlations were found between CJ30s and WAnT EPOCs (r = 0.730, P = 0.003), and BLs (r = 0.713, P = 0.009). Moderate/significant correlations were found between CJ30s and WAnT FIs (r = 0.640, P = 0.014), CJ30s first four jumps mean JH and WAnT peak P (r = 0.572, P = 0.032), and CJ30s mean JH and WAnT mean P (r = 0.589, P = 0.021). CJ30s showed excellent and moderate reliability (ICC) for AP (maximal JH 0.884, mean JH 0.742, FI 0.657, BL 0.653) and AC (EPOC 0.788), respectively. Correlations observed especially in terms of AC between CJ30s and WAnT provide evidence that former may adequately assess anaerobic performance for the young combat athlete. CJ30 is a reliable test and allow an easy assessment of AP and AC in karate children. PMID:29867580

  13. A portable magnetic field of >3 T generated by the flux jump assisted, pulsed field magnetization of bulk superconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Difan; Ainslie, Mark D.; Shi, Yunhua; Dennis, Anthony R.; Huang, Kaiyuan; Hull, John R.; Cardwell, David A.; Durrell, John H.

    2017-02-01

    A trapped magnetic field of greater than 3 T has been achieved in a single grain GdBa2Cu3O7-δ (GdBaCuO) bulk superconductor of diameter 30 mm by employing pulsed field magnetization. The magnet system is portable and operates at temperatures between 50 K and 60 K. Flux jump behaviour was observed consistently during magnetization when the applied pulsed field, Ba, exceeded a critical value (e.g., 3.78 T at 60 K). A sharp dBa/dt is essential to this phenomenon. This flux jump behaviour enables the magnetic flux to penetrate fully to the centre of the bulk superconductor, resulting in full magnetization of the sample without requiring an applied field as large as that predicted by the Bean model. We show that this flux jump behaviour can occur over a wide range of fields and temperatures, and that it can be exploited in a practical quasi-permanent magnet system.

  14. Effects of a contrast training programme on jumping, sprinting and agility performance of prepubertal basketball players.

    PubMed

    Latorre Román, Pedro Ángel; Villar Macias, Francisco Javier; García Pinillos, Felipe

    2018-04-01

    The purpose of this study was to examine the effects of a 10 week contrast training (CT) programme (isometric + plyometric) on jumping, sprinting abilities and agility performance in prepubertal basketball players. Fifty-eight children from a basketball academy (age: 8.72 ± 0.97 years; body mass index: 17.22 ± 2.48 kg/m 2 ) successfully completed the study. Participants were randomly assigned to experimental groups (EG, n = 30) and control groups (CG, n = 28). The CT programme was included in the experimental group's training sessions - twice a week - as part of their usual weekly training regime. This programme included 3 exercises: 1 isometric and 2 plyometric. Jumping, sprinting and agility performance were assessed before and after the training programme. Significant differences were found in posttest between EG and CG in sprint and T-test: EG showed better results than CG. Furthermore, there were significant differences in posttest-pretest between EG and CG in squat jump, countermovement jump, drop jump, sprint and T-test with the EG showing better results than CG. The CT programme led to increases in vertical jump, sprint and agility levels, so that the authors suggest that prepubertal children exhibit high muscular strength trainability.

  15. Prospects of Using High-Intensity THz Pulses To Induce Ultrafast Temperature-Jumps in Liquid Water.

    PubMed

    Mishra, Pankaj Kr; Bettaque, Vincent; Vendrell, Oriol; Santra, Robin; Welsch, Ralph

    2018-06-01

    Ultrashort, high-intensity terahertz (THz) pulses, e.g., generated at free-electron laser facilities, allow for direct investigation as well as the driving of intermolecular modes in liquids like water and thus will deepen our understanding of the hydrogen bonding network. In this work, the temperature-jump (T-jump) of water induced by THz radiation is simulated for ten different THz frequencies in the range from 3 to 30 THz and five different pulse intensities in the range from 1 × 10 11 to 5 × 10 12 W/cm 2 employing both ab initio molecular dynamics (AIMD) and force field molecular dynamics (FFMD) approaches. The most efficient T-jump can be achieved with 16 THz pulses. Three distinct T-jump mechanisms can be uncovered. For all cases, the T-jump mechanism proceeds within tens of femtoseconds (fs). For frequencies between 10 and 25 THz, most of the energy is initially transferred to the rotational degrees of freedom. Subsequently, the energy is redistributed to the translational and intramolecular vibrational degrees of freedom within a maximum of 500 fs. For the lowest frequencies considered (7 THz and below), translational and rotational degrees of freedom are heated within tens of fs as the THz pulse also couples to the intermolecular vibrations. Subsequently, the intramolecular vibrational modes are heated within a few hundred fs. At the highest frequencies considered (25 THz and above), vibrational and rotational degrees of freedom are heated within tens of fs, and energy redistribution to the translational degrees of freedom happens within several hundred fs. Both AIMD and FFMD simulations show a similar dependence of the T-jump on the frequency employed. However, the FFMD simulations overestimate the total energy transfer around the main peak and drop off too fast toward frequencies higher and lower than the main peak. These differences can be rationalized by missing elements, such as the polarizability, in the TIP4P/2005f force field employed. The feasibility of performing experiments at the studied frequencies and intensities as well as important issues such as energy efficiency, penetration depth, and focusing are discussed.

  16. Differences in Lateral Drop Jumps From an Unknown Height Among Individuals With Functional Ankle Instability

    PubMed Central

    Rosen, Adam; Swanik, Charles; Thomas, Stephen; Glutting, Joseph; Knight, Christopher; Kaminski, Thomas W.

    2013-01-01

    Context: Functional ankle instability (FAI) is a debilitating condition that has been reported to occur after 20% to 50% of all ankle sprains. Landing from a jump is one common mechanism of ankle injury, yet few researchers have explored the role of visual cues and anticipatory muscle contractions, which may influence ankle stability, in lateral jumping maneuvers. Objective: To examine muscle-activation strategies between FAI and stable ankles under a lateral load and to evaluate the differences in muscle activation in participants with FAI and participants with stable ankles when they were unable to anticipate the onset of lateral loads during eyes-open versus eyes-closed conditions. Design: Case-control study. Setting: Controlled laboratory setting. Patients or Other Participants: A total of 40 people participated: 20 with FAI and 20 healthy, uninjured, sex- and age-matched persons (control group). Intervention(s): Participants performed a 2-legged lateral jump off a platform onto a force plate set to heights of 35 cm or 50 cm and then immediately jumped for maximal height. They performed jumps in 2 conditions (eyes open, eyes closed) and were unaware of the jump height when their eyes were closed. Main Outcome Measure(s): Amplitude normalized electromyographic (EMG) area (%), peak (%), and time to peak in the tibialis anterior (TA), peroneus longus (PL), and lateral gastrocnemius (LG) muscles were measured. Results: Regardless of the eyes-open or eyes-closed condition, participants with FAI had less preparatory TA (t158 = 2.22, P = .03) and PL (t158 = 2.09, P = .04) EMG area and TA (t158 = 2.45, P = .02) and PL (t158 = 2.17, P = .03) peak EMG than control-group participants. Conclusions: By removing visual cues, unanticipated lateral joint loads occurred simultaneously with decreased muscle activity, which may reduce dynamic restraint capabilities in persons with FAI. Regardless of visual impairment and jump height, participants with FAI exhibited PL and TA inhibition, which may limit talonavicular stability and intensify lateral joint surface compression and pain. PMID:23952040

  17. Vertical and Horizontal Impact Force Comparison During Jump Landings With and Without Rotation in NCAA Division I Male Soccer Players.

    PubMed

    Harry, John R; Barker, Leland A; Mercer, John A; Dufek, Janet S

    2017-07-01

    Harry, JR, Barker, LA, Mercer, JA, and Dufek, JS. Vertical and horizontal impact force comparison during jump landings with and without rotation in NCAA Division I male soccer players. J Strength Cond Res 31(7): 1780-1786, 2017-There is a wealth of research on impact force characteristics when landing from a jump. However, there are no data on impact forces during landing from a jump with an airborne rotation about the vertical axis. We examined impact force parameters in the vertical and horizontal axes during vertical jump (VJ) landings and VJ landings with a 180° rotation (VJR). Twenty-four Division I male soccer players performed 3 VJ and VJR landings on a dual-force platform system. Paired-samples t-tests (α = 0.05) compared differences in the first (F1) and second (F2) peak vertical ground reaction forces, times to F1 (tF1), F2 (tF2), and the end of the impact phase, vertical impulse, and anterior-posterior and medial-lateral force couples. Effect sizes (ES; large >0.8) were computed to determine the magnitude of the differences. Lower jump height (41.60 ± 4.03 cm, VJ landings; 39.40 ± 4.05 cm, VJR landings; p = 0.002; ES = 0.39), greater F2 (55.71 ± 11.95 N·kg, VJ; 68.16 ± 14.82 N·kg; p < 0.001; ES = 0.94), faster tF2 (0.057 ± 0.012 seconds, VJ; 0.047 ± 0.011 seconds, VJR; p = 0.001; ES = 0.89), greater anterior-posterior (0.06 ± 0.03 N·s·kg, VJ; 0.56 ± 0.15 N·s·kg, VJR; p < 0.001; ES = 1.83) and medial-lateral force couples (0.29 ± 0.11 N·s·kg, VJ; 0.56 ± 0.14 N·s·kg, VJR; p < 0.001; ES = 1.46) occurred during VJR landings. No other differences were identified. This kinetic analysis determined that landing from a jump with 180° airborne rotation is different than landing from a jump without an airborne rotation. Male Division I soccer players could benefit from increasing the volume of VJR landings during training to address the differences in jump height and force parameters compared with VJ landings.

  18. Effects of Plyometric and Resistance Training on Muscle Strength, Explosiveness and Neuromuscular Function in Young Adolescent Soccer Players.

    PubMed

    McKinlay, Brandon John; Wallace, Phillip; Dotan, Raffy; Long, Devon; Tokuno, Craig; Gabriel, David; Falk, Bareket

    2018-01-04

    This study examined the effect of 8-weeks of free-weight-resistance (RT) and plyometric (PLYO) training on maximal strength, explosiveness and jump performance compared with no added training (CON), in young male soccer players. Forty-one 11[FIGURE DASH]13-year-old soccer players were divided into three groups (RT, PLYO, CON). All participants completed isometric and dynamic (240°/s) knee extensions pre- and post-training. Peak torque (pT), peak rate of torque development (pRTD), electromechanical-delay (EMD), rate of muscle activation (Q50), m. vastus-lateralis thickness (VLT), and jump performance were examined. pT, pRTD and jump performance significantly improved in both training groups. Training resulted in significant (p<0.05) increases in isometric pT (23.4 vs. 15.8%) and pRTD (15.0 vs. 17.6%), in RT and PLYO, respectively. During dynamic contractions, training resulted in significant increases in pT (12.4 and 10.8% in RT and PLYO, respectively), but not pRTD. Jump performance increased in both training groups (RT=10.0%, PLYO=16.2%), with only PLYO significantly different from CON. Training resulted in significant increases in VLT (RT=6.7%. PLYO=8.1%). There were no significant EMD changes. In conclusion, 8-week free-weight resistance and plyometric training resulted in significant improvements in muscle strength and jump performance. Training resulted in similar muscle hypertrophy in the two training modes, with no clear differences in muscle performance. Plyometric training was more effective in improving jump performance, while free-weight resistance training was more advantageous in improving peak torque, where the stretch reflex was not involved.

  19. Changes in passive tension of muscle in humans and animals after eccentric exercise

    PubMed Central

    Whitehead, N P; Weerakkody, N S; Gregory, J E; Morgan, D L; Proske, U

    2001-01-01

    This is a report of experiments on ankle extensor muscles of human subjects and a parallel series on the medial gastrocnemius of the anaesthetised cat, investigating the origin of the rise in passive tension after a period of eccentric exercise. Subjects exercised their triceps surae of one leg eccentrically by walking backwards on an inclined, forward-moving treadmill. Concentric exercise required walking forwards on a backwards-moving treadmill. For all subjects the other leg acted as a control. Immediately after both eccentric and concentric exercise there was a significant drop in peak active torque, but only after eccentric exercise was this accompanied by a shift in optimum angle for torque generation and a rise in passive torque. In the eccentrically exercised group some swelling and soreness developed but not until 24 h post-exercise. In the animal experiments the contracting muscle was stretched by 6 mm at 50 mm s−1 over a length range symmetrical about the optimum length for tension generation. Measurements of passive tension were made before and after the eccentric contractions, using small stretches to a range of muscle lengths, or with large stretches covering the full physiological range. After 150 eccentric contractions, passive tension was significantly elevated over most of the range of lengths. Measurements of work absorption during stretch-release cycles showed significant increases after the contractions. It is suggested that the rise in passive tension in both human and animal muscles after eccentric contractions is the result of development of injury contractures in damaged muscle fibres. PMID:11389215

  20. Inductance Jump at Melting of Vortex Lattice in Untwinned YBaCuO

    NASA Astrophysics Data System (ADS)

    Matl, P.; Wu, H.; Ong, N. P.; Gagnon, R.; Taillefer, L.

    1997-03-01

    We have measured the complex resistivity in an untwinned single crystal YBaCuO between 70K and 120K at a fixed magnetic field. As T increases towards the melting temperature Tm the inductance increases rapidly. At Tm the inductance undergoes a discontinuous jump, which we correlate with the collapse of the shear modulus c_66. We describe how the magnitude of the jump varies with temperature, field, and frequency. We have also extracted the viscosity of the vortex lattice from a Bardeen-Stephen fit to the low field complex resistivity measured at 1 to 15 MHz between 80K and T_c. We find that the viscosity decreases as 1.2x10-13 kg m-1 s-1 K-1 as the temperature approaches T_c.

  1. Vented versus unvented chest seals for treatment of pneumothorax and prevention of tension pneumothorax in a swine model.

    PubMed

    Kheirabadi, Bijan S; Terrazas, Irasema B; Koller, Alexandra; Allen, Paul B; Klemcke, Harold G; Convertino, Victor A; Dubick, Michael A; Gerhardt, Robert T; Blackbourne, Lorne H

    2013-07-01

    Unvented chest seals (CSs) are currently recommended for the management of penetrating thoracic injuries in the battlefield. Since no supporting data exist, we compared the efficacy of a preferred unvented with that of a vented CS in a novel swine model of pneumothorax (PTx). An open chest wound was created in the left thorax of spontaneously air-breathing anesthetized pigs (n = 8). A CS was applied over the injury, then tension PTx was induced by incremental air injections (0.2 L) into the pleural cavity via a cannula that was also used to measure intrapleural pressure (IP). Both CS were tested on each pig in series. Tidal volume (V(T)), respiratory rate, IP, heart rate, mean arterial pressure, cardiac output, central venous pressure, pulmonary arterial pressure, venous and peripheral oxygen saturations (SvO2, SpO2) were recorded. Tension PTx was defined as a mean IP equal to or greater than +1 mm Hg plus significant (20-30%) deviation in baseline levels of the previously mentioned parameters and confirmed by chest x-ray study. PaO2 and PaCo2 were also measured. PTx produced immediate breathing difficulty and significant rises in IP and pulmonary arterial pressure and falls in V(T), SpO2, and SvO2. Both CSs returned these parameters to near baseline within 5 minutes of application. After vented CS was applied, serial air injections up to 2 L resulted in no significant change in the previously mentioned parameters. After unvented CS application, progressive deterioration of all respiratory parameters and onset of tension PTx were observed in all subjects after approximately 1.4-L air injection. Both vented and unvented CSs provided immediate improvements in breathing and blood oxygenation in our model of penetrating thoracic trauma. However, in the presence of ongoing intrapleural air accumulation, the unvented CS led to tension PTx, hypoxemia, and possible respiratory arrest, while the vented CS prevented these outcomes.

  2. In-situ neutron diffraction study on the tension-compression fatigue behavior of a twinning induced plasticity steel

    DOE PAGES

    Xie, Qingge; Liang, Jiangtao; Stoica, Alexandru Dan; ...

    2017-05-17

    Grain orientation dependent behavior during tension-compression type of fatigue loading in a TWIP steel was studied using in-situ neutron diffraction. Orientation zones with dominant behavior of (1) twinning-de-twinning, (2) twinning-re-twinning followed by twinning-de-twinning, (3) twinning followed by dislocation slip and (4) dislocation slip were identified. Jumps of the orientation density were evidenced in neutron diffraction peaks which explains the macroscopic asymmetric behavior. The asymmetric behavior in early stage of fatigue loading is mainly due to small volume fraction of twins in comparison with that at later stage. As a result, easy activation of the de-twin makes the macroscopically unloading behaviormore » nonlinear.« less

  3. In-situ neutron diffraction study on the tension-compression fatigue behavior of a twinning induced plasticity steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Qingge; Liang, Jiangtao; Stoica, Alexandru Dan

    Grain orientation dependent behavior during tension-compression type of fatigue loading in a TWIP steel was studied using in-situ neutron diffraction. Orientation zones with dominant behavior of (1) twinning-de-twinning, (2) twinning-re-twinning followed by twinning-de-twinning, (3) twinning followed by dislocation slip and (4) dislocation slip were identified. Jumps of the orientation density were evidenced in neutron diffraction peaks which explains the macroscopic asymmetric behavior. The asymmetric behavior in early stage of fatigue loading is mainly due to small volume fraction of twins in comparison with that at later stage. As a result, easy activation of the de-twin makes the macroscopically unloading behaviormore » nonlinear.« less

  4. Caffeinated energy drinks improve volleyball performance in elite female players.

    PubMed

    Pérez-López, Alberto; Salinero, Juan José; Abian-Vicen, Javier; Valadés, David; Lara, Beatriz; Hernandez, Cesar; Areces, Francisco; González, Cristina; Del Coso, Juan

    2015-04-01

    The objective of this study is to determine the effects of a caffeine-containing energy drink on female volleyball players' performance. Thirteen elite female volleyball players ingested 3 mg·kg of caffeine with an energy drink or the same drink without caffeine (placebo drink) in a double-blind and randomized study. Then, participants performed the following: standing spike, jumping spike, spike jump, blocking jump, squat jump, countermovement jump, manual dynamometry, and the agility t-test. A simulated volleyball game was played, videotaped, and notated afterward. In comparison to the placebo drink, the ingestion of the caffeinated energy drink increased the ball velocity in the standing spike (19.2 ± 2.1 vs 19.7 ± 1.9 m·s, P = 0.023) and in the jumping spike (17.9 ± 2.2 vs 18.8 ± 2.2 m·s, P = 0.038) and the jump height in the squat jump (28.1 ± 3.2 vs 29.4 ± 3.6 cm, P = 0.028), countermovement jump (32.0 ± 4.6 vs 33.1 ± 4.5 cm, P = 0.018), spike jump (43.3 ± 4.7 vs 44.4 ± 5.0 cm, P = 0.025), and block jump (35.2 ± 5.1 vs 36.1 ± 5.1 cm, P = 0.044). Furthermore, the caffeinated energy drink decreased the time needed to complete the agility t-test (11.1 ± 0.5 vs 10.9 ± 0.3 s, P = 0.036). During the game, the volleyball actions categorized as successful were more frequent with the caffeinated energy drink (34% ± 9% vs 45% ± 9%, P < 0.001), whereas imprecise actions decreased (28% ± 7% vs 14% ± 9%, P < 0.001) when compared with the placebo drink. Commercially available energy drinks can significantly improve physical performance in female volleyball players. Increased physical performance led to improved accuracy during an actual volleyball match.

  5. Altitude transitions in energy climbs

    NASA Technical Reports Server (NTRS)

    Weston, A. R.; Cliff, E. M.; Kelley, H. J.

    1982-01-01

    The aircraft energy-climb trajectory for configurations with a sharp transonic drag rise is well known to possess two branches in the altitude/Mach-number plane. Transition in altitude between the two branches occurs instantaneously, a 'corner' in the minimum-time solution obtained with the energy-state model. If the initial and final values of altitude do not lie on the energy-climb trajectory, then additional jumps (crude approximations to dives and zooms) are required at the initial and terminal points. With a singular-perturbation approach, a 'boundary-layer' correction is obtained for each altitude jump, the transonic jump being a so-called 'internal' boundary layer, different in character from the initial and terminal layers. The determination of this internal boundary layer is examined and some computational results for an example presented.

  6. Chance findings about early holocene tidal marshes of Grays Harbor, Washington, in relation to rapidly rising seas and great subduction earthquakes

    USGS Publications Warehouse

    Phipps, James B.; Hemphill-Haley, Eileen; Atwater, Brian F.

    2015-06-18

    The puzzles posed by these findings include: (1) How did the marshes manage to endure centuries of relative sea-level rise that likely approached 1 cm/yr on average? (2) Did the marshes also endure subsidence that accompanied great thrust earthquakes on the Cascadia Subduction Zone? (3) Was their eventual drowning triggered by a Cascadia earthquake of unusually large size, or can the drowning be explained by sea-level rise that included a jump from drainage of glacial Lake Agassiz?

  7. Bilateral contact ground reaction forces and contact times during plyometric drop jumping.

    PubMed

    Ball, Nick B; Stock, Christopher G; Scurr, Joanna C

    2010-10-01

    Drop jumping (DJ) is used in training programs aimed to improve lower extremity explosive power. When performing double-leg drop jumps, it is important to provide an equal stimulus to both legs to ensure balanced development of the lower legs. The aim of this study was to bilaterally analyze the ground reactions forces and temporal components of drop jumping from 3 heights. Ten recreationally active male subjects completed 3 bounce-drop jumps from 3 starting heights (0.2, 0.4, and 0.6 m). Two linked force platforms were used to record left- and right-leg peak vertical force, time to peak force, average force, ground contact time, impulse and time differential. Between-height and between-leg comparisons for each variable were made using a multivariate analysis of variance with post hoc Wilcoxon tests (p < 0.05). Results indicated that force and time variables increased as drop jump height increased (p < 0.0001). Post hoc analyses showed that at 0.2- and 0.4-m bilateral differences were present in the time to peak force, average force, and impulse. No bilateral differences for any variables were shown at 0.6-m starting height. The contact time for all jumps was <0.26 seconds. At 0.2 m, only 63% of the subjects had a starting time differential of <0.01 seconds, rising to 96.3% at 0.6 m. The results indicated that 0.6 m is the suggested drop jump height to ensure that no bilateral differences in vertical forces and temporal components occur; however, shorter contact times were found at the lower heights.

  8. Dynamic relationships between motor skill competence and health-related fitness in youth.

    PubMed

    Stodden, David F; Gao, Zan; Goodway, Jacqueline D; Langendorfer, Stephen J

    2014-08-01

    This cross-sectional study examined associations among motor skill competence (MSC) and health-related fitness (HRF) in youth. A convenient sample of 253 boys and 203 girls (aged 4-13 years) participated in the study. Associations among measures of MSC (throwing and kicking speed and standing long jump distance) and a composite measure of HRF (push-ups, curl-ups, grip strength and PACER test) across five age groups (4-5, 6-7, 8-9, 10-11 and 12-13 yrs.) were assessed using hierarchical regression modeling. When including all children, throwing and jumping were significantly associated with the composite HRF factor for both boys and girls (throw, t = 5.33; jump, t = 4.49) beyond the significant age effect (t = 4.98) with kicking approaching significance (t = 1.73, p = .08). Associations between throwing and kicking speed and HRF appeared to increase from early to middle to late childhood age ranges. Associations between jumping and HRF were variable across age groups. These results support the notion that the relationship between MSC and HRF performance are dynamic and may change across childhood. These data suggest that the development of object control skills in childhood may be important for the development and maintenance of HRF across childhood and into adolescence.

  9. Magnetic field dependent measurement techniques of surface tension of magnetic fluid at an air interface

    NASA Astrophysics Data System (ADS)

    Nair, Nishant; Virpura, Hiral; Patel, Rajesh

    2015-06-01

    We describe here two measurement techniques to determine surface tension of magnetic fluid. (i) magneti c field dependent capillary rise method and (ii) Taylor wavelength method in which the distance between the consecutive stable spikes was measured and then surface tension was calculated. The surface tension measurements from both the methods are compared. It is observed that surface tension of magnetic fluid increases with increase in magnetic field due to field dependent structure formation in magnetic fluid at an air interface. We have also measured magnetic susceptibility and surface tension for different volume fractions. The measurement of magnetic susceptibility is carried out using Quincke's experimental techniques.

  10. A temperature-jump NMR probe setup using rf heating optimized for the analysis of temperature-induced biomacromolecular kinetic processes

    NASA Astrophysics Data System (ADS)

    Rinnenthal, Jörg; Wagner, Dominic; Marquardsen, Thorsten; Krahn, Alexander; Engelke, Frank; Schwalbe, Harald

    2015-02-01

    A novel temperature jump (T-jump) probe operational at B0 fields of 600 MHz (14.1 Tesla) with an integrated cage radio-frequency (rf) coil for rapid (<1 s) heating in high-resolution (HR) liquid-state NMR-spectroscopy is presented and its performance investigated. The probe consists of an inner 2.5 mm "heating coil" designed for generating rf-electric fields of 190-220 MHz across a lossy dielectric sample and an outer two coil assembly for 1H-, 2H- and 15N-nuclei. High B0 field homogeneities (0.7 Hz at 600 MHz) are combined with high heating rates (20-25 K/s) and only small temperature gradients (<±1.5 K, 3 s after 20 K T-jump). The heating coil is under control of a high power rf-amplifier within the NMR console and can therefore easily be accessed by the pulse programmer. Furthermore, implementation of a real-time setup including synchronization of the NMR spectrometer's air flow heater with the rf-heater used to maintain the temperature of the sample is described. Finally, the applicability of the real-time T-jump setup for the investigation of biomolecular kinetic processes in the second-to-minute timescale is demonstrated for samples of a model 14mer DNA hairpin and a 15N-selectively labeled 40nt hsp17-RNA thermometer.

  11. Neuromuscular transmission in a primitive insect: modulation by octopamine, and catch-like tension.

    PubMed

    Hoyle, G

    1984-01-01

    The third pair of legs of the primitive New Zealand orthopteran insect, the " weta ", has and innervation and muscle cell distribution exactly similar to that of locusts, but wetas do not jump. Neuromuscular transmission to the slow excitatory axon ( SETi ) is potentiated more than 10-fold by the natural modulator octopamine (OCT). A brief burst of SETi impulses following infusion of as little as 10(-8) M OCT is followed by a very long-lasting plateau of catch-like tension (CT). The plateau is abruptly relaxed by a single inhibitory impulse, or even by a single SETi impulse if this arrives no sooner than about 30 sec following excitation. CT is used by wetas in a defense posture. Locusts and grasshoppers have a different type of modulation by OCT.

  12. Tisaniba, a new genus of marpissoid jumping spiders from Borneo (Araneae: Salticidae).

    PubMed

    Zhang, Jun-Xia; Maddison, Wayne P

    2014-08-14

    Six new species of marpissoid jumping spiders from Sarawak, Borneo, are described in the new genus Tisaniba Zhang & Maddison. They are the type species, T. mulu Zhang & Maddison sp. nov., as well as the species T. bijibijan Zhang & Maddison sp. nov., T. dik Zhang & Maddison sp. nov., T. kubah Zhang & Maddison sp. nov., T. selan Zhang & Maddison sp. nov., and T. selasi Zhang & Maddison sp. nov. The spiders are small and brown to black, living in leaf litter in the tropical forest. Phylogenetic analyses based on 28s and 16sND1 genes indicate that they are a distinctive group within the marpissoids. Diagnostic illustrations and photographs of living spiders are provided for all species.

  13. Isokinetic knee strength qualities as predictors of jumping performance in high-level volleyball athletes: multiple regression approach.

    PubMed

    Sattler, Tine; Sekulic, Damir; Spasic, Miodrag; Osmankac, Nedzad; Vicente João, Paulo; Dervisevic, Edvin; Hadzic, Vedran

    2016-01-01

    Previous investigations noted potential importance of isokinetic strength in rapid muscular performances, such as jumping. This study aimed to identify the influence of isokinetic-knee-strength on specific jumping performance in volleyball. The secondary aim of the study was to evaluate reliability and validity of the two volleyball-specific jumping tests. The sample comprised 67 female (21.96±3.79 years; 68.26±8.52 kg; 174.43±6.85 cm) and 99 male (23.62±5.27 years; 84.83±10.37 kg; 189.01±7.21 cm) high- volleyball players who competed in 1st and 2nd National Division. Subjects were randomly divided into validation (N.=55 and 33 for males and females, respectively) and cross-validation subsamples (N.=54 and 34 for males and females, respectively). Set of predictors included isokinetic tests, to evaluate the eccentric and concentric strength capacities of the knee extensors, and flexors for dominant and non-dominant leg. The main outcome measure for the isokinetic testing was peak torque (PT) which was later normalized for body mass and expressed as PT/Kg. Block-jump and spike-jump performances were measured over three trials, and observed as criteria. Forward stepwise multiple regressions were calculated for validation subsamples and then cross-validated. Cross validation included correlations between and t-test differences between observed and predicted scores; and Bland Altman graphics. Jumping tests were found to be reliable (spike jump: ICC of 0.79 and 0.86; block-jump: ICC of 0.86 and 0.90; for males and females, respectively), and their validity was confirmed by significant t-test differences between 1st vs. 2nd division players. Isokinetic variables were found to be significant predictors of jumping performance in females, but not among males. In females, the isokinetic-knee measures were shown to be stronger and more valid predictors of the block-jump (42% and 64% of the explained variance for validation and cross-validation subsample, respectively) than that of the spike-jump (39% and 34% of the explained variance for validation and cross-validation subsample, respectively). Differences between prediction models calculated for males and females are mostly explained by gender-specific biomechanics of jumping. Study defined importance of knee-isokinetic-strength in volleyball jumping performance in female athletes. Further studies should evaluate association between ankle-isokinetic-strength and volleyball-specific jumping performances. Results reinforce the need for the cross-validation of the prediction-models in sport and exercise sciences.

  14. Role of Vertical Jumps and Anthropometric Variables in Maximal Kicking Ball Velocities in Elite Soccer Players

    PubMed Central

    Rodríguez-Lorenzo, Lois; Fernandez-del-Olmo, Miguel; Sanchez-Molina, José Andrés

    2016-01-01

    Abstract Kicking is one of the most important skills in soccer and the ability to achieve ma ximal kicking velocity with both legs leads to an advantage for the soccer player. This study examined the relationship be tween kicking ball velocity with both legs using anthropometric measurements and vertical jumps (a squat jump (SJ); a countermovement jump without (CMJ) and with the arm swing (CMJA) and a reactive jump (RJ)). Anthropome tric measurements did not correlate with kicking ball velocity. Vertical jumps correlated significantly with kicking ball velocity using the dominant leg only (r = .47, r = .58, r = .44, r = .51, for SJ, CMJ, CMJA and RJ, respectively) . Maximal kicking velocity with the dominant leg was significantly higher than with the non-dominant leg (t = 18.0 4, p < 0.001). Our results suggest that vertical jumps may be an optimal test to assess neuromuscular skills involved in kicking at maximal speed. Lack of the relationship between vertical jumps and kicking velocity with the non-dominant leg may reflect a difficulty to exhibit the neuromuscular skills during dominant leg kicking. PMID:28149419

  15. Peristaltic flow of Powell-Eyring fluid in curved channel with heat transfer: A useful application in biomedicine.

    PubMed

    Hina, S; Mustafa, M; Hayat, T; Alsaedi, A

    2016-10-01

    In this work, we explore the heat transfer characteristics in the peristaltic transport of Powell-Eyring fluid inside a curved channel with complaint walls. The study has motivation toward the understanding of blood flow in microcirculatory system. Formulation is developed in the existence of velocity slip and temperature jump conditions. Perturbation approach has been utilized to present series expressions of axial velocity and temperature distributions. Streamlines are prepared to analyze the interesting phenomenon of trapping. Moreover, the plots of heat transfer coefficient for a broad range of embedded parameters are presented and discussed. The results indicate that slip effects substantially influence the velocity and temperature distributions. Axial flow accelerates when slip parameter is incremented. Temperature rises and wall heat flux grows when viscous dissipation effect is strengthened. In contrast to the planar channels, here velocity and temperature functions do not exhibit symmetry with respect to the central line. In addition, bolus size and its shape are different in upper and lower portions of the channel. Heat transfer coefficient enlarges when the curvature effects are reduced. The behaviors of wall tension and wall mass parameters on the profiles are qualitatively similar. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Saw-tooth pattern from flux jumps observed by high resolution M-H curves in MgB2 thin films

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Yeap; Lee, Hu-Jong; Jung, Myung-Hwa; Lee, Sung-Ik; Choi, Eun-Mi; Kang, W. N.

    2010-08-01

    While flux jumps have been observed in the magnetic hysteresis loops of superconductors, a saw-tooth pattern of the flux jump is known to appear only in a bulk superconductor. But in this study, we were able to observe the saw-tooth pattern in MgB2 thin film with the careful data acquisition method enhancing the data taking capability and report the details of the distribution of the field interval between jumps Bfj, and the size of the flux jump, Mfj. The theory based on Bean's model in the adiabatic approach was adapted and it was compared with experimental results. In addition, we observe the cross-over between the saw-tooth pattern and a rounded saw-tooth pattern, as a byproduct. A patterns diagram of the vortex jump was drawn on the H-T plane.

  17. School education, physical performance in late midlife and allostatic load: a retrospective cohort study.

    PubMed

    Hansen, Åse M; Andersen, Lars L; Mendes de Leon, Carlos F; Bruunsgaard, Helle; Lund, Rikke

    2016-08-01

    The mechanisms underlying the social gradient in physical functioning are not fully understood. Cumulative physiological stress may be a pathway. The present study aimed to investigate the association between highest attained school education and physical performance in late midlife, and to determine to what extent cumulative physiological stress mediated these associations. The study is based on data from the Copenhagen Aging and Midlife Biobank (CAMB; n=5467 participants, aged 48-62 years, 31.5% women). School education was measured as highest examination passed in primary or secondary school (3 categories). Cumulative stress was operationalised as allostatic load (AL), and measured as the number of biological parameters (out of 14) in which participants scored in the poorest quartile. Physical performance included dynamic muscle performance (chair rise ability, postural balance, sagittal flexibility) and muscle strength (jump height, trunk extension and flexion, and handgrip strength). Among women, higher school education was associated with better performance in all physical performance tests. Among men, higher school education was associated with better performance only in chair rise and jump height. AL partially mediated the association between school education and physical performance, and accounted only for 2-30% of the total effect among women. Similar results were observed among men for chair rise and jump height. These results might indicate that AL plays a minor role in the association between school education and late midlife dynamic muscle performance in both men and women, and in muscle strength among women. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Does vitamin D improve muscle strength in adults? A randomized, double-blind, placebo-controlled trial among ethnic minorities in Norway.

    PubMed

    Knutsen, Kirsten V; Madar, Ahmed A; Lagerløv, Per; Brekke, Mette; Raastad, Truls; Stene, Lars C; Meyer, Haakon E

    2014-01-01

    The effect of vitamin D on muscle strength in adults is not established. Our objective was to test whether vitamin D supplementation increases muscle strength and power compared with placebo. We conducted a randomized, double-blind, placebo-controlled trial. The setting was immigrants' activity centers. Two hundred fifty-one healthy adult males and females aged 18-50 years with non-Western immigrant background performed the baseline test and 86% returned to the follow-up test. Sixteen weeks of daily supplementation with 25 μg (1000 IU) vitamin D3, 10 μg (400 IU) vitamin D3, or placebo. Difference in jump height between pre- and postintervention. Secondary outcomes were differences in handgrip strength and chair-rising test. Percentage change in jump height did not differ between those receiving vitamin D (25 or 10 μg vitamin D3) and those receiving placebo (mean difference -1.4%, 95% confidence interval: -4.9% to 2.2%, P=.44). No significant effect was detected in the subgroup randomized to 25 μg vitamin D or in other preplanned subgroup analyses nor were there any significant differences in handgrip strength or the chair-rising test. Mean serum 25-hydroxyvitamin D3 concentration increased from 27 to 52 nmol/L and from 27 to 43 nmol/L in the 25 and 10 μg supplementation groups, respectively, whereas serum 25-hydroxyvitamin D3 did not change in the placebo group. Daily supplementation with 25 or 10 μg vitamin D3 for 16 weeks did not improve muscle strength or power measured by the jump test, handgrip test, or chair-rising test in this population with low baseline vitamin D status.

  19. Scientific basis for learning transfer from movements to urinary bladder functions for bladder repair in human patients with CNS injury.

    PubMed

    Schalow, G

    2010-01-01

    Coordination Dynamics Therapy (CDT) has been shown to be able to partly repair CNS injury. The repair is based on a movement-based re-learning theory which requires at least three levels of description: the movement or pattern (and anamnesis) level, the collective variable level, and the neuron level. Upon CDT not only the actually performed movement pattern itself is repaired, but the entire dynamics of CNS organization is improved, which is the theoretical basis for (re-) learning transfer. The transfer of learning for repair from jumping on springboard and exercising on a special CDT and recording device to urinary bladder functions is investigated at the neuron level. At the movement or pattern level, the improvement of central nervous system (CNS) functioning in human patients can be seen (or partly measured) by the improvement of the performance of the pattern. At the collective variable level, coordination tendencies can be measured by the so-called 'coordination dynamics' before, during and after treatment. At the neuron level, re-learning can additionally be assessed by surface electromyography (sEMG) as alterations of single motor unit firings and motor programs. But to express the ongoing interaction between the numerous neural, muscular, and metabolic elements involved in perception and action, it is relevant to inquire how the individual afferent and efferent neurons adjust their phase and frequency coordination to other neurons to satisfy learning task requirements. With the single-nerve fibre action potential recording method it was possible to measure that distributed single neurons communicate by phase and frequency coordination. It is shown that this timed firing of neurons is getting impaired upon injury and has to be improved by learning The stability of phase and frequency coordination among afferent and efferent neuron firings can be related to pattern stability. The stability of phase and frequency coordination at the neuron level can therefore be assessed integratively at the (non-invasive) collective variable level by the arrhythmicity of turning (coordination dynamics) when a patient is exercising on a special CDT device. Upon jumping on springboard and exercising on the special CDT device, the intertwined neuronal networks, subserving movements (somatic) and urinary bladder functions (autonomic and somatic) in the sacral spinal cord, are synchronously activated and entrained to give rise to learning transfer from movements to bladder functions. Jumping on springboard and other movements primarily repair the pattern dynamics, whereas the exactly coordinated performed movements, performed on the special CDT device for turning, primarily improve the preciseness of the timed firing of neurons. The synchronous learning of perceptuomotor and perceptuobladder functioning from a dynamical perspective (giving rise to learning transfer) can be understood at the neuron level. Especially the activated phase and frequency coordination upon natural stimulation under physiologic and pathophysiologic conditions among a and gamma-motoneurons, muscle spindle afferents, touch and pain afferents, and urinary bladder stretch and tension receptor afferents in the human sacral spinal cord make understandable that somatic and parasympathetic functions are integrated in their functioning and give rise to learning transfer from movements to bladder functions. The power of this human treatment research project lies in the unit of theory, diagnostic/measurement, and praxis, namely that CNS injury can partly be repaired, including urinary bladder functions, and the repair can partly be understood even at the neuron level of description in human.

  20. The rise and fall of axial highs during ridge jumps

    NASA Astrophysics Data System (ADS)

    Shah, Anjana K.; Buck, W. Roger

    2006-08-01

    We simulate jumps of ocean spreading centers with axial high topography using elastoplastic thin plate flexure models. Processes considered include ridge abandonment, the breaking of a stressed plate on the ridge flank, and renewed spreading at the site of this break. We compare model results to topography at the East Pacific Rise between 15°25'N and 16°N, where there is strong evidence of a recent ridge jump. At an apparently abandoned ridge, gravity data do not suggest buoyant support of topography. Model deflections during cooling and melt solidification stages of ridge abandonment are of small vertical amplitude because of plate strengthening, resulting in the preservation of a "frozen" fossil high. The present-day high is bounded by slopes with up to a 40% grade, a scenario very difficult to achieve flexurally given generally accepted constraints on lithospheric strength. We model these slopes by assuming that the height at which magma is accreted increases rapidly after the ridge jumps. This increase is attributed to high overburden pressure on melt that resided in an initially deep magma chamber, followed by a rapid increase in temperature and melt supply to the region shortly after spreading began. The high is widest at the segment center, suggesting that magmatic activity began near the center of the segment, propagated south and then north. The mantle Bouguer anomaly exhibits a "bull's-eye" pattern centered at the widest part of the high, but the depth of the axis is nearly constant along the length of the segment. We reconcile these observations by assigning different cross-axis widths to a low-density zone within the crust.

  1. Bending effects and temperature dependence of magnetic properties in a Fe-rich amorphous wire

    NASA Astrophysics Data System (ADS)

    Bordin, G.; Buttino, G.; Poppi, M.

    2001-08-01

    Amorphous wires with composition Fe 77.5Si 7.5B 15 exhibit a very peculiar magnetization process characterized by a single and quite large Barkhausen jump. This gives rise to a squared hysteresis loop at a critical magnetic field. The bistable behaviour, widely studied in wires with typical length of 10 cm and diameter of 125 μm, appears above a length of about 7 cm in straight wires and disappears for curvature radius within the range 2-12 cm in bent wires. In this work it is shown that bistability occurs in bent wires, whatever their curvature is, provided the wires are long enough. To this purpose spiral-shaped samples with several turns are considered. However, when the wire length is not a integer number of turns the magnetization reverses through many large Barkhausen jumps. In this condition, varying the measuring temperature can activate the energy barriers for the jumps.

  2. The relationship between vertical jump power estimates and weightlifting ability: a field-test approach.

    PubMed

    Carlock, Jon M; Smith, Sarah L; Hartman, Michael J; Morris, Robert T; Ciroslan, Dragomir A; Pierce, Kyle C; Newton, Robert U; Harman, Everett A; Sands, William A; Stone, Michael H

    2004-08-01

    The purpose of this study was to assess the usefulness of the vertical jump and estimated vertical-jump power as a field test for weightlifting. Estimated PP output from the vertical jump was correlated with lifting ability among 64 USA national-level weightlifters (junior and senior men and women). Vertical jump was measured using the Kinematic Measurement System, consisting of a switch mat interfaced with a laptop computer. Vertical jumps were measured using a hands-on-hips method. A counter-movement vertical jump (CMJ) and a static vertical jump (SJ, 90 degrees knee angle) were measured. Two trials were given for each condition. Test-retest reliability for jump height was intra-class correlation (ICC) = 0.98 (CMJ) and ICC = 0.96 (SJ). Athletes warmed up on their own for 2-3 minutes, followed by 2 practice jumps at each condition. Peak power (PP) was estimated using the equations developed by Sayers et al. (24). The athletes' current lifting capabilities were assessed by a questionnaire, and USA national coaches checked the listed values. Differences between groups (i.e., men versus women, juniors versus resident lifters) were determined using t-tests (p < or = 0.05). Correlations were determined using Pearson's r. Results indicate that vertical jumping PP is strongly associated with weightlifting ability. Thus, these results indicate that PP derived from the vertical jump (CMJ or SJ) can be a valuable tool in assessing weightlifting performance.

  3. Seeking Solidarity and Responsibility: The Classroom Contexts of Control and Negotiation.

    ERIC Educational Resources Information Center

    McLaughlin, H. James

    Teachers' attempts to establish and maintain authority in their classrooms give rise to one of the essential tensions of teaching: reconciling caring and controlling. This paper examines sociopolitical questions about the nature of classroom authority and the uses of power to understand this tension. The first part presents an overview of the…

  4. The jump-off velocity of an impulsively loaded spherical shell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabaud, Brandon M.; Brock, Jerry S.

    2012-04-13

    We consider a constant temperature spherical shell of isotropic, homogeneous, linearly elastic material with density {rho} and Lame coefficients {lambda} and {mu}. The inner and outer radii of the shell are r{sub i} and r{sub o}, respectively. We assume that the inside of the shell is a void. On the outside of the shell, we apply a uniform, time-varying pressure p(t). We also assume that the shell is initially at rest. We want to compute the jump-off time and velocity of the pressure wave, which are the first time after t = 0 at which the pressure wave from themore » outer surface reaches the inner surface. This analysis computes the jump-off velocity and time for both compressible and incompressible materials. This differs substantially from [3], where only incompressible materials are considered. We will consider the behavior of an impulsively loaded, exponentially decaying pressure wave p(t) = P{sub 0{sup e}}{sup -{alpha}t}, where {alpha} {ge} 0. We notice that a constant pressure wave P(t) = P{sub 0} is a special case ({alpha} = 0) of a decaying pressure wave. Both of these boundary conditions are considered in [3].« less

  5. Direct Observation of Insulin Association Dynamics with Time-Resolved X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimmerman, Dolev; Leshchev, Denis; Hsu, Darren J.

    Biological functions frequently require protein-protein interactions that involve secondary and tertiary structural perturbation. Here we study protein-protein dissociation and reassociation dynamics in insulin, a model system for protein oligomerization. Insulin dimer dissociation into monomers was induced by a nanosecond temperature-jump (T-jump) of ~8 °C in aqueous solution, and the resulting protein and solvent dynamics were tracked by time-resolved X-ray solution scattering (TRXSS) on time scales of 10 ns to 100 ms. The protein scattering signals revealed the formation of five distinguishable transient species during the association process that deviate from simple two state kinetics. Our results show that the combinationmore » of T-jump pump coupled to TRXSS probe allows for direct tracking of structural dynamics in nonphotoactive proteins.« less

  6. Ballistic movements of jumping legs implemented as variable components of cricket behaviour.

    PubMed

    Hustert, R; Baldus, M

    2010-12-01

    Ballistic accelerations of a limb or the whole body require special joint mechanisms in many animals. Specialized joints can be moved by stereotypic or variable motor control during motor patterns with and without ballistic components. As a model of variable motor control, the specialized femur-tibia (knee) joints of cricket (Acheta domesticus) hindlegs were studied during ballistic kicking, jumping and swimming and in non-ballistic walking. In this joint the tendons of the antagonistic flexor and the extensor muscles attach at different distances from the pivot and the opposed lever arms form an angle of 120 deg. A 10:1 ratio of their effective lever arms at full knee flexion helps to prepare for most ballistic extensions: the tension of the extensor can reach its peak while it is restrained by flexor co-contraction. In kicks, preparatory flexion is rapid and the co-contraction terminates just before knee extensions. Therefore, mainly the stored tension of the extensor muscle accelerates the small mass of the tibia. Jumps are prepared with slower extensor-flexor co-contractions that flex both knees simultaneously and then halt to rotate both legs outward to a near horizontal level. From there, catapult extension of both knees accelerates the body, supported by continued high frequency motor activity to their tibia extensor muscles during the ongoing push-off from the substrate. Premature extension of one knee instantly takes load from the lagging leg that extends and catches up, which finally results in a straight jump. In swimming, synchronous ballistic power strokes of both hindlegs drive the tibiae on a ventral-to-posterior trajectory through the water, well coordinated with the swimming patterns of all legs. In walking, running and climbing the steps of the hindlegs range between 45 deg flexion and 125 deg extension and use non-ballistic, alternating activity of knee flexor and extensor muscles. Steep climbing requires longer bursts from the extensor tibiae muscles when they support the extended hindlegs against gravity forces when the body hangs over. All ballistic movements of cricket knees are elicited by a basic but variable motor pattern: knee flexions by co-contraction of the antagonists prepare catapult extensions with speeds and forces as required in the different behaviours.

  7. Boostream: a dynamic fluid flow process to assemble nanoparticles at liquid interface

    NASA Astrophysics Data System (ADS)

    Delléa, Olivier; Lebaigue, Olivier

    2017-12-01

    CEA-LITEN develops an original process called Boostream® to manipulate, assemble and connect micro- or nanoparticles of various materials, sizes, shapes and functions to obtain monolayer colloidal crystals (MCCs). This process uses the upper surface of a liquid film flowing down a ramp to assemble particles in a manner that is close to the horizontal situation of a Langmuir-Blodgett film construction. In presence of particles at the liquid interface, the film down-flow configuration exhibits an unusual hydraulic jump which results from the fluid flow accommodation to the particle monolayer. In order to master our process, the fluid flow has been modeled and experimentally characterized by optical means, such as with the moiré technique that consists in observing the reflection of a succession of periodic black-and-red fringes on the liquid surface mirror. The fringe images are deformed when reflected by the curved liquid surface associated with the hydraulic jump, the fringe deformation being proportional to the local slope of the surface. This original experimental setup allowed us to get the surface profile in the jump region and to measure it along with the main process parameters (liquid flow rate, slope angle, temperature sensitive fluid properties such as dynamic viscosity or surface tension, particle sizes). This work presents the experimental setup and its simple model, the different experimental characterization techniques used and will focus on the way the hydraulic jump relies on the process parameters.

  8. Calcium sensitization in human esophageal muscle: role for RhoA kinase in maintenance of lower esophageal sphincter tone.

    PubMed

    Sims, Stephen M; Chrones, Tom; Preiksaitis, Harold G

    2008-10-01

    A rise in intracellular-free calcium ([Ca(2+)](i)) concentration is important for initiating contraction of smooth muscles, and Ca(2+) sensitization involving RhoA kinase can sustain tension. We previously found that [Ca(2+)](i) was comparable in cells from the esophageal body (EB) and lower esophageal sphincter (LES) muscles, despite the fact that the LES maintains resting tone. We hypothesized that Ca(2+) sensitization contributes to contraction in human esophageal muscle. Tension and [Ca(2+)](i) were measured simultaneously in intact human EB and LES muscles using the ratiometric Ca(2+)-sensitive dye fura-2. Spontaneous oscillations in EB muscle tension were associated with transient elevations of [Ca(2+)](i). Carbachol caused a large increase in tension, compared with spontaneous oscillations, although the rise of [Ca(2+)](i) was similar, suggesting Ca(2+) sensitization. The RhoA-kinase blockers (R)-(+)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride monohydrate (Y-27632) and 1-(5-isoquinolinesulfonyl)-homopiperazine hydrochloride (HA-1077) reduced carbachol- and nerve-evoked contraction of the EB, accompanied by smaller reduction in the rise of [Ca(2+)](i). Protein kinase C inhibitors reduced force to a lesser extent. RhoA-kinase blockers caused concentration-dependent reduction of tension in spontaneously contracted LES muscles. Moreover, RhoA-kinase blockers reduced intrinsic nerve-evoked and carbachol-evoked contraction. However, there was no effect on nerve- or nitric oxide-mediated relaxation of LES. Ca(2+) sensitization mediated by the RhoA-kinase pathway has an important role in contraction of human EB muscles and LES tonic contraction, a feature not previously recognized.

  9. Surface tension of undercooled liquid cobalt

    NASA Astrophysics Data System (ADS)

    Yao, W. J.; Han, X. J.; Chen, M.; Wei, B.; Guo, Z. Y.

    2002-08-01

    This paper provides the results on experimentally measured and numerically predicted surface tensions of undercooled liquid cobalt. The experiments were performed by using the oscillation drop technique combined with electromagnetic levitation. The simulations are carried out with the Monte Carlo (MC) method, where the surface tension is predicted through calculations of the work of cohesion, and the interatomic interaction is described with an embedded-atom method. The maximum undercooling of the liquid cobalt is reached at 231 K (0.13Tm) in the experiment and 268 K (0.17Tm) in the simulation. The surface tension and its relationship with temperature obtained in the experiment and simulation are σexp = 1.93 - 0.000 33 (T - T m) N m-1 and σcal = 2.26 - 0.000 32 (T - T m) N m-1 respectively. The temperature dependence of the surface tension calculated from the MC simulation is in reasonable agreement with that measured in the experiment.

  10. RELATIONSHIP BETWEEN ISOKINETIC KNEE STRENGTH AND JUMP CHARACTERISTICS FOLLOWING ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION.

    PubMed

    Laudner, Kevin; Evans, Daniel; Wong, Regan; Allen, Aaron; Kirsch, Tom; Long, Brian; Meister, Keith

    2015-06-01

    Clinicians are often challenged when making return-to-play decisions following anterior cruciate ligament reconstruction (ACL-R). Isokinetic strength and jump performance testing are common tools used to make this decision. Unfortunately, vertical jump performance standards have not been clearly established and many clinicians do not have access to isokinetic testing equipment. To establish normative jump and strength characteristics in ACL-R patients cleared by an orthopedic physician to return-to-play and to determine if relationships exist between knee isokinetic strength measurements and jump characteristics described using an electronic jump map system. Descriptive laboratory study. Thirty-three ACL-R patients who had been cleared to return to athletic competition participated in this study. Twenty-six of these ACL-R participants were also matched to 26 asymptomatic athletes based on sex, limb, height, and mass to determine isokinetic strength and jump characteristic differences between groups. Jump tests consisted of single leg vertical, double leg vertical, and a 4-jump single leg vertical jump assessed using an electronic jump mat system. Independent t-tests were used to determine differences between groups and multiple regression analyses were used to identify any relationships between jump performance and knee strength (p<0.05). The ACL-R group had lower vertical jump capabilities and some bilateral knee strength deficiencies compared to the matched control group. The ACL-R group also showed several moderate-to-strong positive relationships for both knee extension and flexion strength with several jump performance characteristics, such as single and double leg vertical jump height. The current results indicate that ACL-R patients present with several knee strength and vertical jump differences compared to a matched control group at the time of return-to-play. Also, ACL-R patient's performance on an electronic jump mat system is strongly related to isokinetic knee strength measures. 2b.

  11. A Correction Equation for Jump Height Measured Using the Just Jump System.

    PubMed

    McMahon, John J; Jones, Paul A; Comfort, Paul

    2016-05-01

    To determine the concurrent validity and reliability of the popular Just Jump system (JJS) for determining jump height and, if necessary, provide a correction equation for future reference. Eighteen male college athletes performed 3 bilateral countermovement jumps (CMJs) on 2 JJSs (alternative method) that were placed on top of a force platform (criterion method). Two JJSs were used to establish consistency between systems. Jump height was calculated from flight time obtained from the JJS and force platform. Intraclass correlation coefficients (ICCs) demonstrated excellent within-session reliability of the CMJ height measurement derived from both the JJS (ICC = .96, P < .001) and the force platform (ICC = .96, P < .001). Dependent t tests revealed that the JJS yielded a significantly greater CMJ jump height (0.46 ± 0.09 m vs 0.33 ± 0.08 m) than the force platform (P < .001, Cohen d = 1.39, power = 1.00). There was, however, an excellent relationship between CMJ heights derived from the JJS and force platform (r = .998, P < .001, power = 1.00), with a coefficient of determination (R2) of .995. Therefore, the following correction equation was produced: Criterion jump height = (0.8747 × alternative jump height) - 0.0666. The JJS provides a reliable but overestimated measure of jump height. It is suggested, therefore, that practitioners who use the JJS as part of future work apply the correction equation presented in this study to resultant jump-height values.

  12. It's a Long Way down: The Underlying Tensions in the Education Export Industry

    ERIC Educational Resources Information Center

    Marginson, Simon

    2011-01-01

    The stellar rise of the education export industry in Australian higher education, and the even more spectacular downturn now occurring, mask underlying tensions that have long dogged the industry and prevented it from improving quality or achieving long-term sustainability. The international education programme has been unbalanced by the drive for…

  13. On the universality of Marangoni-driven spreading

    NASA Astrophysics Data System (ADS)

    Visser, Claas; van Capelleveen, Bram; Koldeweij, Robin; Lohse, Detlef

    2017-11-01

    When two liquids of different surface tensions come into contact, the liquid with lower surface tension spreads over the other. Here we measure the dynamics of this Marangoni-driven spreading in the drop-drop geometry, revealing universal behavior with respect to the control parameters as well as other geometries (such as spreading over a flat interface). The distance L over which the low-surface-tension liquid has covered the high-surface-tension droplet is measured as a function of time t, surface tension difference between the liquids Δσ , and viscosity η, revealing power-law behavior L(t) tα . The exponent α is discussed for the early and late spreading regimes. Spreading inhibition is observed at high viscosity, for which the threshold is discussed. Finally, we show that our results collapse onto a single curve of dimensionless L(t) as a function of dimensionless time, which also captures previous results for different geometries, surface tension modifiers, and miscibility. As this curve spans 7 orders of magnitude, Marangoni-induced spreading can be considered a universal phenomenon for many practically encountered liquid-liquid systems.

  14. Strength Determinants of Jump Height in the Jump Throw Movement in Women Handball Players.

    PubMed

    McGhie, David; Østerås, Sindre; Ettema, Gertjan; Paulsen, Gøran; Sandbakk, Øyvind

    2018-06-08

    McGhie, D, Østerås, S, Ettema, G, Paulsen, G, and Sandbakk, Ø. Strength determinants of jump height in the jump throw movement in women handball players. J Strength Cond Res XX(X): 000-000, 2018-The purpose of the study was to improve the understanding of the strength demands of a handball-specific jump through examining the associations between jump height in a jump throw jump (JTJ) and measures of lower-body maximum strength and impulse in handball players. For comparison, whether the associations between jump height and strength differed between the JTJ and the customarily used countermovement jump (CMJ) was also examined. Twenty women handball players from a Norwegian top division club participated in the study. Jump height was measured in the JTJ and in unilateral and bilateral CMJ. Lower-body strength (maximum isometric force, one-repetition maximum [1RM], impulse at ∼60% and ∼35% 1RM) was measured in seated leg press. The associations between jump height and strength were assessed with correlation analyses and t-tests of dependent r's were performed to determine if correlations differed between jump tests. Only impulse at ∼35% 1RM correlated significantly with JTJ height (p < 0.05), whereas all strength measures correlated significantly with CMJ heights (p < 0.001). The associations between jump height and strength were significantly weaker in the JTJ than in both CMJ tests for all strength measures (p = 0.001-0.044) except one. Maximum strength and impulse at ∼60% 1RM did not seem to sufficiently capture the capabilities associated with JTJ height, highlighting the importance of employing tests targeting performance-relevant neuromuscular characteristics when assessing jump-related strength in handball players. Further, CMJ height seemed to represent a wider range of strength capabilities and care should be taken when using it as a proxy for handball-specific movements.

  15. Coupled jump rotational dynamics in aqueous nitrate solutions.

    PubMed

    Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman

    2016-12-21

    A nitrate ion (NO 3 - ) with its trigonal planar geometry and charges distributed among nitrogen and oxygen atoms can couple to the extensive hydrogen bond network of water to give rise to unique dynamical characteristics. We carry out detailed atomistic simulations and theoretical analyses to investigate these aspects and report certain interesting findings. We find that the nitrate ions in aqueous potassium nitrate solution exhibit large amplitude rotational jump motions that are coupled to the hydrogen bond rearrangement dynamics of the surrounding water molecules. The jump motion of nitrate ions bears certain similarities to the Laage-Hynes mechanism of rotational jump motions of tagged water molecules in neat liquid water. We perform a detailed atomic-level investigation of hydrogen bond rearrangement dynamics of water in aqueous KNO 3 solution to unearth two distinct mechanisms of hydrogen bond exchange that are instrumental to promote these jump motions of nitrate ions. As observed in an earlier study by Xie et al., in the first mechanism, after breaking a hydrogen bond with nitrate ion, water forms a new hydrogen bond with a water molecule, whereas the second mechanism involves just a switching of hydrogen bond between the two oxygen atoms of the same nitrate ion (W. J. Xie et al., J. Chem. Phys. 143, 224504 (2015)). The magnitude as well as nature of the reorientational jump of nitrate ion for the two mechanisms is different. In the first mechanism, nitrate ion predominantly undergoes out-of-plane rotation, while in the second mechanism, in-plane reorientation of NO 3 - is favourable. These have been deduced by computing the torque on the nitrate ion during the hydrogen bond switching event. We have defined and computed the time correlation function for coupled reorientational jump of nitrate and water and obtained the associated relaxation time which is also different for the two mechanisms. These results provide insight into the relation between the coupled reorientational jump dynamics of solute and solvent molecules.

  16. A Comparison of Jump Height, Takeoff Velocities, and Blocking Coverage in the Swing and Traditional Volleyball Blocking Techniques

    PubMed Central

    Ficklin, Travis; Lund, Robin; Schipper, Megan

    2014-01-01

    The purpose of this study was to compare traditional and swing blocking techniques on center of mass (COM) projectile motion and effective blocking area in nine healthy Division I female volleyball players. Two high-definition (1080 p) video cameras (60 Hz) were used to collect two-dimensional variables from two separate views. One was placed perpendicular to the plane of the net and the other was directed along the top of the net, and were used to estimate COM locations and blocking area in a plane parallel to the net and hand penetration through the plane of the net respectively. Video of both the traditional and swing techniques were digitized and kinematic variables were calculated. Paired samples t-tests indicated that the swing technique resulted in greater (p < 0.05) vertical and horizontal takeoff velocities (vy and vx), jump height (H), duration of the block (tBLOCK), blocking coverage during the block (C) as well as hand penetration above and through the net’s plane (YPEN, ZPEN). The traditional technique had significantly greater approach time (tAPP). The results of this study suggest that the swing technique results in both greater jump height and effective blocking area. However, the shorter tAPP that occurs with swing is associated with longer times in the air during the block which may reduce the ability of the athlete to make adjustments to attacks designed to misdirect the defense. Key Points Swing blocking technique has greater jump height, effective blocking area, hand penetration, horizontal and vertical takeoff velocity, and has a shorter time of approach. Despite these advantages, there may be more potential for mistiming blocks and having erratic deflections of the ball after contact when using the swing technique. Coaches should take more than simple jump height and hand penetration into account when deciding which technique to employ. PMID:24570609

  17. A comparison of jump height, takeoff velocities, and blocking coverage in the swing and traditional volleyball blocking techniques.

    PubMed

    Ficklin, Travis; Lund, Robin; Schipper, Megan

    2014-01-01

    The purpose of this study was to compare traditional and swing blocking techniques on center of mass (COM) projectile motion and effective blocking area in nine healthy Division I female volleyball players. Two high-definition (1080 p) video cameras (60 Hz) were used to collect two-dimensional variables from two separate views. One was placed perpendicular to the plane of the net and the other was directed along the top of the net, and were used to estimate COM locations and blocking area in a plane parallel to the net and hand penetration through the plane of the net respectively. Video of both the traditional and swing techniques were digitized and kinematic variables were calculated. Paired samples t-tests indicated that the swing technique resulted in greater (p < 0.05) vertical and horizontal takeoff velocities (vy and vx), jump height (H), duration of the block (tBLOCK), blocking coverage during the block (C) as well as hand penetration above and through the net's plane (YPEN, ZPEN). The traditional technique had significantly greater approach time (tAPP). The results of this study suggest that the swing technique results in both greater jump height and effective blocking area. However, the shorter tAPP that occurs with swing is associated with longer times in the air during the block which may reduce the ability of the athlete to make adjustments to attacks designed to misdirect the defense. Key PointsSwing blocking technique has greater jump height, effective blocking area, hand penetration, horizontal and vertical takeoff velocity, and has a shorter time of approach.Despite these advantages, there may be more potential for mistiming blocks and having erratic deflections of the ball after contact when using the swing technique.Coaches should take more than simple jump height and hand penetration into account when deciding which technique to employ.

  18. Numerical simulations of katabatic jumps in coats land, Antartica

    NASA Astrophysics Data System (ADS)

    Yu, Ye; Cai, Xiaoming; King, John C.; Renfrew, Ian A.

    A non-hydrostatic numerical model, the Regional Atmospheric Modeling System (RAMS), has been used to investigate the development of katabatic jumps in Coats Land, Antarctica. In the control run with a 5 m s-1downslope directed initial wind, a katabatic jump develops near the foot of the idealized slope. The jump is manifested as a rapid deceleration of the downslope flow and a change from supercritical to subcritical flow, in a hydraulic sense, i.e., the Froude number (Fr) of the flow changes from Fr > 1 to Fr> 1. Results from sensitivity experiments show that an increase in the upstream flow rate strengthens the jump, while an increase in the downstream inversion-layer depth results in a retreat of the jump. Hydraulic theory and Bernoulli''s theorem have been used to explain the surface pressure change across the jump. It is found that hydraulic theory always underestimates the surface pressure change, while Bernoulli''s theorem provides a satisfactory estimation. An analysis of the downs balance for the katabatic jump indicates that the important forces are those related to the pressure gradient, advection and, to a lesser extent, the turbulent momentum divergence. The development of katabatic jumps can be divided into two phases. In phase I, the t gradient force is nearly balanced by advection, while in phase II, the pressure gradient force is counterbalanced by turbulent momentum divergence. The upslope pressure gradient force associated with a pool of cold air over the ice shelf facilitates the formation of the katabatic jump.

  19. Determination of Surface Tension of Surfactant Solutions through Capillary Rise Measurements: An Image-Processing Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Huck-Iriart, Cristia´n; De-Candia, Ariel; Rodriguez, Javier; Rinaldi, Carlos

    2016-01-01

    In this work, we described an image processing procedure for the measurement of surface tension of the air-liquid interface using isothermal capillary action. The experiment, designed for an undergraduate course, is based on the analysis of a series of solutions with diverse surfactant concentrations at different ionic strengths. The objective of…

  20. Pinching solutions of slender cylindrical jets

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.; Orellana, Oscar

    1993-01-01

    Simplified equations for slender jets are derived for a circular jet of one fluid flowing into an ambient second fluid, the flow being confined in a circular tank. Inviscid flows are studied which include both surface tension effects and Kelvin-Helmholtz instability. For slender jets a coupled nonlinear system of equations is found for the jet shape and the axial velocity jump across it. The equations can break down after a finite time and similarity solutions are constructed, and studied analytically and numerically. The break-ups found pertain to the jet pinching after a finite time, without violation of the slender jet ansatz. The system is conservative and admissible singular solutions are those which conserve the total energy, mass, and momentum. Such solutions are constructed analytically and numerically, and in the case of vortex sheets with no surface tension certain solutions are given in closed form.

  1. Demographic Characteristics of World Class Jamaican Sprinters

    PubMed Central

    Irving, Rachael; Charlton, Vilma; Morrison, Errol; Facey, Aldeam; Buchanan, Oral

    2013-01-01

    The dominance of Jamaican sprinters in international meets remains largely unexplained. Proposed explanations include demographics and favorable physiological characteristics. The aim of this study was to analyze the demographic characteristics of world class Jamaican sprinters. Questionnaires administered to 120 members of the Jamaican national team and 125 controls elicited information on place of birth, language, ethnicity, and distance and method of travel to school. Athletes were divided into three groups based on athletic disciplines: sprint (s: 100–400 m; n = 80), jump and throw (j/t: jump and throw; n = 25) and, middle distance (md: 800–3000 m; n = 15). Frequency differences between groups were assessed using chi-square tests. Regional or county distribution of sprint differed from that of middle distance (P < 0.001) but not from that of jump and throw athletes (P = 0.24) and that of controls (P = 0.59). Sprint athletes predominately originated from the Surrey county (s = 46%, j/t = 37%, md = 17, C = 53%), whilst middle distance athletes exhibited excess from the Middlesex county (md = 60%). The language distribution of all groups showed uniformity with a predominance of English. A higher proportion of middle distance and jump and throw athletes walked to school (md = 80%, j/t = 52%, s = 10%, and C = 12%) and travelled greater distances to school. In conclusion, Jamaica's success in sprinting may be related to environmental and social factors. PMID:24396303

  2. Structural design significance of tension-tension fatigue data on composites

    NASA Technical Reports Server (NTRS)

    Grimes, G. C.

    1977-01-01

    Constant cycle tension-tension fatigue and related static tension data have been generated on six single composite material/orientation combinations and twenty-one hybrid composite material/orientation combinations. Anomalies are related to the temperature rise and stopped interval creep, whereas endurance limit stresses (runouts) are associated with static proportional limit values, when they occur, and internal damage. The significance of these room temperature-dry data on the design allowables and weight of aerodynamic structueres is discussed. Such structures are helicopter rotor blades and wing and horizontal stabilizer lower surfaces. Typical criteria for turning these data into preliminary allowables are shown, as are examples of such allowables developed from the data. These values are then compared to those that might be used if the structures were made of metal.

  3. Tear oxygen under hydrogel and silicone hydrogel contact lenses in humans.

    PubMed

    Bonanno, Joseph A; Clark, Christopher; Pruitt, John; Alvord, Larry

    2009-08-01

    To determine the tear oxygen tension under a variety of conventional and silicone hydrogel contact lenses in human subjects. Three hydrogel and five silicone hydrogel lenses (Dk/t = 17 to 329) were coated on the back surface with an oxygen sensitive, bovine serum albumin-Pd meso-tetra (4-carboxyphenyl) porphine complex (BSA-porphine). Each lens type was placed on the right eye of 15 non-contact lens wearers to obtain a steady-state open eye tear oxygen tension using oxygen sensitive phosphorescence decay of BSA-porphine. A closed-eye oxygen tension estimate was obtained by measuring the change in tear oxygen tension after 5 min of eye closure. In separate experiments, a goggle was placed over the lens wearing eye and a gas mixture (PO2 = 51 torr) flowed over the lens to simulate anterior lens oxygen tension during eye closure. Mean open eye oxygen tension ranged from 58 to 133 torr. Closed eye estimates ranged from 11 to 42 torr. Oxygen tension under the goggle ranged from 8 to 48 torr and was higher than the closed eye estimate for six out of the eight lenses, suggesting that the average closed eye anterior lens surface oxygen tension is <51 torr. For Dk/t >30, the measured tear oxygen tension is significantly lower than that predicted from previous studies. The phosphorescence decay methodology is capable of directly measuring the in vivo post lens PO2 of high Dk/t lenses without disturbing the contact lens or cornea. Our data indicate that increasing Dk/t up to and beyond 140 continues to yield increased flux into the central cornea.

  4. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension

    NASA Astrophysics Data System (ADS)

    Kao, C. T.; Chen, C. C.; Cheong, U.-I.; Liu, S. L.; Huang, T. H.

    2014-08-01

    Low-level laser therapy (LLLT) can promote cell proliferation. The remodeling ability of the tension side of orthodontic teeth affects post-orthodontic stability. The purpose of the present study was to investigate the osteogenic effects of LLLT on osteoblast-like cells treated with a simulated tension system that provides a mechanical tension regimen. Murine osteoblastic (MC3T3-E1) cells were cultured in a Flexcell strain unit with programmed loads of 12% elongation at a frequency of 0.5 Hz for 24 and 48 h. The cultured cells were treated with a low-level diode laser using powers of 5 J and 10 J. The proliferation of MC3T3-E1 cells was determined using the Alamar Blue assay. The expression of osteogenic genes (type I collagen (Col-1), osteopontin (OPN), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphologic protein (BMP-2), and bone morphologic protein (BMP-4)) in MC3T3-E1 cells was analyzed using reverse transcription polymerase chain reaction (RT-PCR). The data were analyzed using one-way analysis of variance. The proliferation rate of tension-cultured MC3T3-E1 cells under 5 J and 10 J LLLT increased compared with that of the control group (p < 0.05). Prominent mineralization of the MC3T3-E1 cells was visible using a von Kossa stain in the 5 J LLLT group. Osteogenic genes (Col-1, OC, OPG and BMP-2) were significantly expressed in the MC3T3-E1 cells treated with 5 J and 10 J LLLT (p < 0.05). LLLT in tension-cultured MC3T3-E1 cells showed synergistic osteogenic effects, including increases in cell proliferation and Col-1, OPN, OC, OPG and BMP-2 gene expression. LLLT might be beneficial for bone remodeling on the tension side of orthodontics.

  5. The Road to Completion

    ERIC Educational Resources Information Center

    Collett, Stacy

    2013-01-01

    In 2000, nearly 5.5 million degree seeking students attended two-year colleges. In the 2010-2011 school year, that figure jumped to more than 8 million, due in part to the economic downturn and steadily rising tuition at four-year colleges and universities. Also, new skill requirements in the job market forced many professionals to seek…

  6. Capillary Rise in a Wedge

    ERIC Educational Resources Information Center

    Piva, M.

    2009-01-01

    In introductory-level physics courses, the concept of surface tension is often illustrated using the example of capillary rise in thin tubes. In this paper the author describes experiments conducted using a planar geometry created with two small plates forming a thin wedge. The distribution of the fluid entering the wedge can be studied as a…

  7. Adaptation of the length-active tension relationship in rabbit detrusor

    PubMed Central

    Almasri, Atheer M.; Bhatia, Hersch; Klausner, Adam P.; Ratz, Paul H.

    2009-01-01

    Studies have shown that the length-tension (L-T) relationships in airway and vascular smooth muscles are dynamic and can adapt to length changes over a period of time. Our prior studies have shown that the passive L-T relationship in rabbit detrusor smooth muscle (DSM) is also dynamic and that DSM exhibits adjustable passive stiffness (APS) characterized by a passive L-T curve that can shift along the length axis as a function of strain history and activation history. The present study demonstrates that the active L-T curve for DSM is also dynamic and that the peak active tension produced at a particular muscle length is a function of both strain and activation history. More specifically, this study reveals that the active L-T relationship, or curve, does not have a unique peak tension value with a single ascending and descending limb, but instead reveals that multiple ascending and descending limbs can be exhibited in the same DSM strip. This study also demonstrates that for DSM strips not stretched far enough to reveal a descending limb, the peak active tension produced by a maximal KCl-induced contraction at a short, passively slack muscle length of 3 mm was reduced by 58.6 ± 4.1% (n = 15) following stretches to and contractions at threefold the original muscle length, 9 mm. Moreover, five subsequent contractions at the short muscle length displayed increasingly greater tension; active tension produced by the sixth contraction was 91.5 ± 9.1% of that produced by the prestretch contraction at that length. Together, these findings indicate for the first time that DSM exhibits length adaptation, similar to vascular and airway smooth muscles. In addition, our findings demonstrate that preconditioning, APS and adaptation of the active L-T curve can each impact the maximum total tension observed at a particular DSM length. PMID:19675182

  8. [The phylogenetic theory of pathology. The arterial hypertension--a test of metabolic disorder. The biological basis of damage of target organs (a lecture)].

    PubMed

    Titov, V N

    2013-05-01

    The increase of blood tension is a diagnostic test of disorders of homeostasis, trophology, endoecology and adaptation in paracrine regulated coenosis of cells. This conditions results in disorder of microcirculation in the distal section of arterial race and in compensatory increase of blood tension in its proximal section. The increase of blood tension disturbs the function of paracrine coenosis of cells which have one's own system of hemo- and hydrodynamics such as brain with system of spinal liquor and kidneys with local pool of primary urine. They counteract the rise of blood tension and activate local, humoral system of renin-angiotensin-II increasing peripheral resistance to blood flow. At that, the compensatory blood tension becomes even higher. The aldosterone and natriuretic peptides are functional synergists. So, they preserve and excrete ions of Na+ and support the stability of unified pool of intercellular medium ("Inner Ocean" of organism) where all cells live. The parameters of this pool are limited most strictly in vivo. If at the level of nephron the conditions are formed that can alter the parameters of unified pool of intercellular medium the vasomotor center rises blood tension from the level of organism "forcing" nephrons to re-establish the parameters of this pool and normalize the biological functions and biological reactions. The blood pressure increase under pathology of kidneys is caused because of pathological compensation at the level of organism mediated by vegetal nervous system and dictated by necessity to preserve the parameters of inner medium of organism.

  9. The surface tension of liquid gallium

    NASA Technical Reports Server (NTRS)

    Hardy, S. C.

    1985-01-01

    The surface tension of liquid gallium has been measured using the sessile drop technique in an Auger spectrometer. The experimental method is described. The surface tension in mJ/sq m is found to decrease linearly with increasing temperature and may be represented as 708-0.66(T-29.8), where T is the temperature in centigrade. This result is of interest because gallium has been suggested as a model fluid for Marangoni flow experiments. In addition, the surface tension is of technological significance in the processing of compound semiconductors involving gallium.

  10. European option pricing under the Student's t noise with jumps

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Tian; Li, Zhe; Zhuang, Le

    2017-03-01

    In this paper we present a new approach to price European options under the Student's t noise with jumps. Through the conditional delta hedging strategy and the minimal mean-square-error hedging, a closed-form solution of the European option value is obtained under the incomplete information case. In particular, we propose a Value-at-Risk-type procedure to estimate the volatility parameter σ such that the pricing error is in accord with the risk preferences of investors. In addition, the numerical results of us show that options are not priced in some cases in an incomplete information market.

  11. Site-Specific Dynamics of β-Sheet Peptides with (D) Pro-Gly Turns Probed by Laser-Excited Temperature-Jump Infrared Spectroscopy.

    PubMed

    Popp, Alexander; Scheerer, David; Chi, Heng; Keiderling, Timothy A; Hauser, Karin

    2016-05-04

    Turn residues and side-chain interactions play an important role for the folding of β-sheets. We investigated the conformational dynamics of a three-stranded β-sheet peptide ((D) P(D) P) and a two-stranded β-hairpin (WVYY-(D) P) by time-resolved temperature-jump (T-jump) infrared spectroscopy. Both peptide sequences contain (D) Pro-Gly residues that favor a tight β-turn. The three-stranded β-sheet (Ac-VFITS(D) PGKTYTEV(D) PGOKILQ-NH2 ) is stabilized by the turn sequences, whereas the β-hairpin (SWTVE(D) PGKYTYK-NH2 ) folding is assisted by both the turn sequence and hydrophobic cross-strand interactions. Relaxation times after the T-jump were monitored as a function of temperature and occur on a sub-microsecond time scale, (D) P(D) P being faster than WVYY-(D) P. The Xxx-(D) Pro tertiary amide provides a detectable IR band, allowing us to probe the dynamics site-specifically. The relative importance of the turn versus the intrastrand stability in β-sheet formation is discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Aging ballistic Lévy walks

    NASA Astrophysics Data System (ADS)

    Magdziarz, Marcin; Zorawik, Tomasz

    2017-02-01

    Aging can be observed for numerous physical systems. In such systems statistical properties [like probability distribution, mean square displacement (MSD), first-passage time] depend on a time span ta between the initialization and the beginning of observations. In this paper we study aging properties of ballistic Lévy walks and two closely related jump models: wait-first and jump-first. We calculate explicitly their probability distributions and MSDs. It turns out that despite similarities these models react very differently to the delay ta. Aging weakly affects the shape of probability density function and MSD of standard Lévy walks. For the jump models the shape of the probability density function is changed drastically. Moreover for the wait-first jump model we observe a different behavior of MSD when ta≪t and ta≫t .

  13. Novel insights on the relationship between T-tubular defects and contractile dysfunction in a mouse model of hypertrophic cardiomyopathy.

    PubMed

    Crocini, C; Ferrantini, C; Scardigli, M; Coppini, R; Mazzoni, L; Lazzeri, E; Pioner, J M; Scellini, B; Guo, A; Song, L S; Yan, P; Loew, L M; Tardiff, J; Tesi, C; Vanzi, F; Cerbai, E; Pavone, F S; Sacconi, L; Poggesi, C

    2016-02-01

    Abnormalities of cardiomyocyte Ca(2+) homeostasis and excitation-contraction (E-C) coupling are early events in the pathogenesis of hypertrophic cardiomyopathy (HCM) and concomitant determinants of the diastolic dysfunction and arrhythmias typical of the disease. T-tubule remodelling has been reported to occur in HCM but little is known about its role in the E-C coupling alterations of HCM. Here, the role of T-tubule remodelling in the electro-mechanical dysfunction associated to HCM is investigated in the Δ160E cTnT mouse model that expresses a clinically-relevant HCM mutation. Contractile function of intact ventricular trabeculae is assessed in Δ160E mice and wild-type siblings. As compared with wild-type, Δ160E trabeculae show prolonged kinetics of force development and relaxation, blunted force-frequency response with reduced active tension at high stimulation frequency, and increased occurrence of spontaneous contractions. Consistently, prolonged Ca(2+) transient in terms of rise and duration are also observed in Δ160E trabeculae and isolated cardiomyocytes. Confocal imaging in cells isolated from Δ160E mice reveals significant, though modest, remodelling of T-tubular architecture. A two-photon random access microscope is employed to dissect the spatio-temporal relationship between T-tubular electrical activity and local Ca(2+) release in isolated cardiomyocytes. In Δ160E cardiomyocytes, a significant number of T-tubules (>20%) fails to propagate action potentials, with consequent delay of local Ca(2+) release. At variance with wild-type, we also observe significantly increased variability of local Ca(2+) transient rise as well as higher Ca(2+)-spark frequency. Although T-tubule structural remodelling in Δ160E myocytes is modest, T-tubule functional defects determine non-homogeneous Ca(2+) release and delayed myofilament activation that significantly contribute to mechanical dysfunction. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Tear Oxygen Under Hydrogel and Silicone Hydrogel Contact Lenses in Humans

    PubMed Central

    Bonanno, Joseph A.; Clark, Christopher; Pruitt, John; Alvord, Larry

    2011-01-01

    Purpose To determine the tear oxygen tension under a variety of conventional and silicone hydrogel contact lenses in human subjects. Methods Three hydrogel and five silicone hydrogel lenses (Dk/t = 17 to 329) were coated on the back surface with an oxygen sensitive, bovine serum albumin-Pd meso-tetra (4-carboxyphenyl) porphine complex (BSA-porphine). Each lens type was placed on the right eye of 15 non-contact lens wearers to obtain a steady-state open eye tear oxygen tension using oxygen sensitive phosphorescence decay of BSA-porphine. A closed-eye oxygen tension estimate was obtained by measuring the change in tear oxygen tension after 5 min of eye closure. In separate experiments, a goggle was placed over the lens wearing eye and a gas mixture (PO2 = 51 torr) flowed over the lens to simulate anterior lens oxygen tension during eye closure. Results Mean open eye oxygen tension ranged from 58 to 133 torr. Closed eye estimates ranged from 11 to 42 torr. Oxygen tension under the goggle ranged from 8 to 48 torr and was higher than the closed eye estimate for six out of the eight lenses, suggesting that the average closed eye anterior lens surface oxygen tension is <51 torr. For Dk/t >30, the measured tear oxygen tension is significantly lower than that predicted from previous studies. Conclusions The phosphorescence decay methodology is capable of directly measuring the in vivo post lens PO2 of high Dk/t lenses without disturbing the contact lens or cornea. Our data indicate that increasing Dk/t up to and beyond 140 continues to yield increased flux into the central cornea. PMID:19609230

  15. Contraction kinetics of ventricular muscle from hibernating and nonhibernating mammals.

    NASA Technical Reports Server (NTRS)

    South, F. E.; Jacobs, H. K.

    1973-01-01

    Temperature-dependent studies of excitability and tension-production kinetics were made on isolated trabecular strips from hibernating hamsters (HH), nonhibernating hamsters (CH), and from rats (R). The strips were electrically driven and isometric tension along with its first time derivative (dP/dt) were recorded. Excitabilities of both hamster tissues were greater than that of rat tissue from 5 to 38 C with HH greater than CH. Peak tension production followed the order of HH greater than CH greater than R at all temperatures below 24 C. Rat preparations showed an optimum peak tension production at about 31 C while HH and CH showed optima between 17 and 24 C. Times to maximal rates of tension rise showed significant variation. In this respect, the order of sensitivity to decreasing temperature was HH greater than CH greater than R.

  16. Dynamics of poroelastocapillary rise

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Elfring, Gwynn

    2017-11-01

    The surface-tension-driven rise of a liquid between two elastic sheets can result in their deformation or coalescence depending on their flexibility. When the sheets are poroelastic, the flexibility of the immersed parts of the sheets can change considerably thereby altering the dynamical behavior of the system. To better understand this phenomenon, we study the poroelastocapillary rise of a wetting liquid between poroelastic sheets. Using the lubrication theory and linear elasticity, we quantify the effects of the change in material properties of the wet sheets on the capillary rise and the equilibrium state of the system.

  17. Who jumps the highest? Anthropometric and physiological correlations of vertical jump in youth elite female volleyball players.

    PubMed

    Nikolaidis, Pantelis T; Gkoudas, Konstantinos; Afonso, José; Clemente-Suarez, Vicente J; Knechtle, Beat; Kasabalis, Stavros; Kasabalis, Athanasios; Douda, Helen; Tokmakidis, Savvas; Torres-Luque, Gema

    2017-06-01

    The aim of the present study was to examine the relationship of vertical jump (Abalakov jump [AJ]) with anthropometric and physiological parameters in youth elite female volleyball players. Seventy-two selected volleyball players from the region of Athens (age 13.3±0.7 years, body mass 62.0±7.2 kg, height 171.5±5.7 cm, body fat 21.2±4.5%), classified into quartiles according to AJ performance (group A, 21.4-26.5 cm; group B, 26.8-29.9 cm; group C, 30.5-33.7 cm; group D, 33.8-45.9 cm), performed a series of physical fitness tests. AJ was correlated with anthropometric (age at peak height velocity [APHV]: r=0.38, P<0.001; body mass: r=-0.43, P<0.001; Body Mass Index [BMI]: r=-0.37, P<0.001; body fat percentage [BF]: r=-0.64, P<0.001) and physiological parameters (isometric strength: r=0.50, P<0.001; squat jump [SJ]: r=0.92, P<0.001; countermovement jump [CMJ]: r=0.95, P<0.001, Bosco Test: r=0.70, P<0.001; mean power [Pmean]: r=0.61, P<0.001; Fatigue Index: r=-0.33, P=0.005) in the Wingate Anaerobic Test (WAnT). A one-way analysis of variance showed significant differences in APHV, chronological age, body mass, BMI, BF, aerobic capacity (step test and physical working capacity at heart rate 170 bpm), Pmean in the WAnT, isometric strength, SJ, CMJ and 30-s Bosco Test (P<0.05). A Bonferroni post-hoc analysis revealed that group D had older APHV and lower BMI, better aerobic capacity, isometric strength, SJ, CMJ, performance in the Bosco Test, and Pmean in the WAnT, was older and lighter than groups A, B, and C (P<0.05). Both the findings of the comparison among groups differing for AJ and the correlation analysis highlighted the negative role of excess body mass and fat, and the positive role of muscle strength and power on AJ. Also, there was indication that volleyball players that jumped the highest were those who matured later than others.

  18. Laterality versus jumping performance in men and women.

    PubMed

    Trzaskoma, Zbigniew; Ilnicka, Lidia; Wiszomirska, Ida; Wit, Andrzej; Wychowański, Michał

    2015-01-01

    The aim of this study was to investigate relationships between functional asymmetry of lower limbs, taking into account morphological features of the feet, and jumping ability in men and women. The study population consisted of 56 subjects, 30 women (age: 20.29 ± 0.59 years; body mass: 58.13 ± 4.58 kg, body height: 165.60 ± 5.03 cm) and 26 men (age: 20.41 ± 0.78 years, body mass: 78.39 ± 8.42 kg, body height: 181.15 ± 6.52 cm). The measurements of longitudinal arches were performed with the plan- tographic method on the basis of Clarke's angle mapped on a computer foot print. The measurements of jumping performance during bilateral (two legs) and unilateral (single-leg) counter movement jump (CMJ) were done on force plate. All subjects jumped three times each type of jump (total 9 jumps): three right leg, three left leg and three two legs. We put the test results through a detailed statistical analysis with the Statistica 8.0. The t-test for dependent variables and the Wilcoxon signed-rank test for divergent variances of the fea- tures compared. The analysis of relationships between the chosen podometric and plantographic features and jumping performance was conducted on the basis of the Pearson product-moment correlation coefficient (for the features which presented normal distribution, according to the Shapiro-Wilk test). The correlations between values of height of single-leg jumps (right and left) and bilateral jumps, and foot indices were found in few cases only in men who had greater values of jump height with the non-dominant limb. We did not find a significant difference in jumping ability between the dominant limb and the non-dominant limb in women. We found bilateral deficits in jumping ability in the study groups, though we did not find significant differences (P ≤ 0.05) between the values for women (a mean of 6.5%) and for men (a mean of 8.4%). We found significant gender differences of the correlations between the values of height of jumps (single-leg and bilateral jumps) and foot indices.

  19. Trans women and Michfest: An ethnophenomenology of attendees' experiences.

    PubMed

    McConnell, Elizabeth A; Odahl-Ruan, Charlynn A; Kozlowski, Christine; Shattell, Mona; Todd, Nathan R

    2016-01-01

    The rise of queer and transgender studies has greatly contributed to feminist and lesbian understandings of sex, gender, and sexuality and also has resulted in rifts, tensions, and border wars. One such tension is around the inclusion of trans women in women-only space, such as the Michigan Womyn's Music Festival (Michfest). In this ethnophenomenological study, we interviewed and surveyed 43 cisgender women who attended Michfest in 2013. Participants had a variety of perspectives on trans inclusion and on the dialogue surrounding it, and these paralleled intersections, frictions, and tensions between feminism, queer theory, and transgender studies.

  20. Twinning-detwinning behavior during cyclic deformation of magnesium alloy

    DOE PAGES

    Lee, Soo Yeol; Wang, Huamiao; Gharghouri, Michael A.

    2015-05-26

    In situ neutron diffraction has been used to examine the deformation mechanisms of a precipitation-hardened and extruded Mg-8.5wt.%Al alloy subjected to (i) compression followed by reverse tension (texture T1) and (ii) tension followed by reverse compression (texture T2). Two starting textures are used: (1) as-extruded texture, T1, in which the basal pole of most grains is normal to the extrusion axis and a small portion of grains are oriented with the basal pole parallel to the extrusion axis; (2) a reoriented texture, T2, in which the basal pole of most grains is parallel to the extrusion axis. For texture T1,more » the onset of extension twinning corresponds well with the macroscopic elastic-plastic transition during the initial compression stage. The non-linear macroscopic stress/strain behavior during unloading after compression is more significant than during unloading after tension. For texture T2, little detwinning occurs after the initial tension stage, but almost all of the twinned volumes are detwinned during loading in reverse compression.« less

  1. Somatotype variables related to strength and power output in male basketball players.

    PubMed

    Buśko, Krzysztof; Pastuszak, Anna; Lipińska, Monika; Lipińska, Marta; Gryko, Karol

    2017-01-01

    The purpose of this study was to investigate the relationship between somatotype, muscular strength, power output measured in maximal cycle ergometer exercise bouts, and maximal power output and height of rise of the body mass centre (jump height) measured in akimbo counter movement jump (ACMJ), counter movement jump (CMJ) and spike jump (SPJ), in male basketball players. Thirteen male basketball players (second division, age 19.4 ± 0.8 years, body height 192.9 ± 5.6 cm, body mass 88.8 ± 8.6 kg, training experience 9.3 ± 0.8 years) participated in the study. Somatotype was determined using the Heath-Carter method. Maximal joint torques were measured under static conditions. Power output was measured in 2 maximal cycle ergometer exercise bouts, 10 seconds each, with increasing external loads equal to 7.5 and 10.0% of the body weight (BW). All jump trials (ACMJ, CMJ and SPJ) were performed on a force plate. The mean somatotype of basketball players amounted to: 2.8-4.2-3.2. The sum of the joint torques for left and right lower extremities (0.613), trunk (0.631) and all six measured muscle groups (0.647) were significantly correlated (p < 0.05) with the mesomorphic component. Endomorphic, mesomorphic and ectomorphic components were correlated insignificantly with values of maximal power and height of jump during ACMJ, CMJ and SPJ trials. The power output measured in maximal cycle ergometer exercise bouts with increasing external loads was significantly correlated (p < 0.05) with mesomorphy and ectomorphy. It can be assumed that basketball players' anthropometric characteristics can influence their level of performance but it is not a decisive factor.

  2. Specific Adaptations in Performance and Muscle Architecture After Weighted Jump-Squat vs. Body Mass Squat Jump Training in Recreational Soccer Players.

    PubMed

    Coratella, Giuseppe; Beato, Marco; Milanese, Chiara; Longo, Stefano; Limonta, Eloisa; Rampichini, Susanna; Cè, Emiliano; Bisconti, Angela V; Schena, Federico; Esposito, Fabio

    2018-04-01

    Coratella, G, Beato, M, Milanese, C, Longo, S, Limonta, E, Rampichini, S, Cè, E, Bisconti, AV, Schena, F, and Esposito, F. Specific adaptations in performance and muscle architecture after weighted jump-squat vs. body mass squat jump training in recreational soccer players. J Strength Cond Res 32(4): 921-929, 2018-The aim of the present study was to compare the effects of weighted jump-squat training (WJST) vs. body mass squat jump training (BMSJT) on quadriceps' muscle architecture, lower-limb lean-mass (LM) and muscle strength, performance in change of direction (COD), and sprint and jump in recreational soccer players. Forty-eight healthy soccer players participated in an offseason randomized controlled trial. Before and after an 8-week training intervention, vastus lateralis pennation angle, fascicle length, muscle thickness, LM, squat 1RM, quadriceps and hamstrings isokinetic peak torque, agility T-test, 10-and 30-m sprints, and squat-jump (SJ) were measured. Although similar increases were observed in muscle thickness, fascicle length increased more in WJST (Effect size [ES] = 1.18, 0.82-1.54) than in BMSJT (ES = 0.54, 0.40-0.68), and pennation angle increased only in BMSJT (ES = 1.03, 0.78-1.29). Greater increases in LM were observed in WJST (ES = 0.44, 0.29-0.59) than in BMSJT (ES = 0.21, 0.07-0.37). The agility T-test (ES = 2.95, 2.72-3.18), 10-m (ES = 0.52, 0.22-0.82), and 30-m sprints (ES = 0.52, 0.23-0.81) improved only in WJST, whereas SJ improved in BMSJT (ES = 0.89, 0.43-1.35) more than in WJST (ES = 0.30, 0.03-0.58). Similar increases in squat 1RM and peak torque occurred in both groups. The greater inertia accumulated within the landing phase in WJST vs. BMSJT has increased the eccentric workload, leading to specific eccentric-like adaptations in muscle architecture. The selective improvements in COD in WJST may be related to the increased braking ability generated by the enhanced eccentric workload.

  3. Impact of muscle tension dysphonia on tonal pitch target implementation in vietnamese female teachers.

    PubMed

    Nguyen, Duong Duy; Kenny, Dianna T

    2009-11-01

    Muscle tension dysphonia (MTD) is a voice disorder with deteriorated vocal quality, particularly pitch problems. Because pitch is mainly controlled by the laryngeal muscles, and because MTD is characterized by increased laryngeal muscle tension, we hypothesized that it may result in problems in pitch target implementation in tonal languages. We examined tonal samples of 42 Vietnamese female primary school teachers diagnosed with MTD and compared them with 30 vocally healthy female teachers who spoke the same dialect. Tonal data were analyzed using Computerized Speech Lab (CSL-4300B) for Windows. From tonal sampling bases, fundamental frequency (F0) was measured at target points specified by contour examination. Parameters representing pitch movement including time, size, and speed of movement were measured for the falling tone and rising tone. We found that F0 at target points in MTD group was lowered in most tones, especially tones with extensive F0 variation. In MTD group, target F0 of the broken tone in isolation was 37.5 Hz lower (P<0.01) and target F0 of rising tone in isolation was 46 Hz lower (P<0.01) than in control group. In MTD group, speed of pitch fall of the falling tone in isolation was faster than control group by 2.2 semitones/second (st/s) (P<0.05) and speed of pitch rise in the rising tone in isolation was slower than control group by 7.2 st/s (P<0.01). These results demonstrate that MTD is associated with problems in tonal pitch variation.

  4. Somatotype-variables related to muscle torque and power output in female volleyball players.

    PubMed

    Buśko, Krzysztof; Lewandowska, Joanna; Lipińska, Monika; Michalski, Radosław; Pastuszak, Anna

    2013-01-01

    The purpose of this study was to investigate the relationship between somatotype, muscle torque, maximal power output and height of rise of the body mass centre measured in akimbo counter movement jump (ACMJ), counter movement jump (CMJ) and spike jump (SPJ), and power output measured in maximal cycle ergometer exercise bouts in female volleyball players. Fourteen players participated in the study. Somatotype was determined using the Heath-Carter method. Maximal muscle torque was measured under static conditions. Power output was measured in 5 maximal cycle ergometer exercise bouts, 10 s each, at increasing external loads equal to 2.5, 5.0, 7.5, 10.0 and 12.5% of body weight (BW). All jump trials (ACMJ, SPJ and CMJ) were performed on a force plate. The mean somatotype of volleyball players was: 4.9-3.5-2.5. The value of the sum of muscle torque of the left upper extremities was significantly correlated only with mesomorphic component. Mesomorphic and ectomorphic components correlated significantly with values of maximal power measured during ACMJ and CMJ. Power output measured in maximal cycle ergometer exercise bouts at increasing external loads equal to 2.5, 5.0 and 7.5% of BW was significantly correlated with endomorphy, mesomorphy and ectomorphy.

  5. A Multipurpose Apparatus to Measure Viscosity and Surface Tension of Solutions: The Measurement of the Molecular Cross-Sectional Area of N-Proposal

    ERIC Educational Resources Information Center

    Xin Zhang; Shouxin Liu; Booxin Li; Na An; Fan Zhang

    2004-01-01

    A multipurpose apparatus that can be used to measure the viscosity of solution by the Ostwald method and the surface tension of solution by the drop-weight method or by the capillary-rise method is developed. The apparatus is convenient for in-situ preparation of solutions of different concentrations and avoids the error that frothing of the…

  6. Techies, the Tea Party, and the Race to the Top: The Rise of the New Upper-Middle Class and Tensions in the Rightist Politics of Federal Education Reform

    ERIC Educational Resources Information Center

    Au, Wayne

    2016-01-01

    The Common Core State Standards (CCSS) and their associated high-stakes testing are key parts of the federal Race to the Top (RTTT) initiative. There has been considerable resistance to both CCSS and related testing, particularly from conservative actors. This resistance suggests that CCSS has caused substantial tension within the conservative…

  7. Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator

    PubMed Central

    Liu, Minhao; Wang, Wudi; Richardella, Anthony R.; Kandala, Abhinav; Li, Jian; Yazdani, Ali; Samarth, Nitin; Ong, N. Phuan

    2016-01-01

    A striking prediction in topological insulators is the appearance of the quantized Hall resistance when the surface states are magnetized. The surface Dirac states become gapped everywhere on the surface, but chiral edge states remain on the edges. In an applied current, the edge states produce a quantized Hall resistance that equals the Chern number C = ±1 (in natural units), even in zero magnetic field. This quantum anomalous Hall effect was observed by Chang et al. With reversal of the magnetic field, the system is trapped in a metastable state because of magnetic anisotropy. We investigate how the system escapes the metastable state at low temperatures (10 to 200 mK). When the dissipation (measured by the longitudinal resistance) is ultralow, we find that the system escapes by making a few very rapid transitions, as detected by large jumps in the Hall and longitudinal resistances. Using the field at which the initial jump occurs to estimate the escape rate, we find that raising the temperature strongly suppresses the rate. From a detailed map of the resistance versus gate voltage and temperature, we show that dissipation strongly affects the escape rate. We compare the observations with dissipative quantum tunneling predictions. In the ultralow dissipation regime, two temperature scales (T1 ~ 70 mK and T2 ~ 145 mK) exist, between which jumps can be observed. The jumps display a spatial correlation that extends over a large fraction of the sample. PMID:27482539

  8. Acceleration and Orientation Jumping Performance Differences Among Elite Professional Male Handball Players With or Without Previous ACL Reconstruction: An Inertial Sensor Unit-Based Study.

    PubMed

    Setuain, Igor; González-Izal, Miriam; Alfaro, Jesús; Gorostiaga, Esteban; Izquierdo, Mikel

    2015-12-01

    Handball is one of the most challenging sports for the knee joint. Persistent biomechanical and jumping capacity alterations can be observed in athletes with an anterior cruciate ligament (ACL) injury. Commonly identified jumping biomechanical alterations have been described by the use of laboratory technologies. However, portable and easy-to-handle technologies that enable an evaluation of jumping biomechanics at the training field are lacking. To analyze unilateral/bilateral acceleration and orientation jumping performance differences among elite male handball athletes with or without previous ACL reconstruction via a single inertial sensor unit device. Case control descriptive study. At the athletes' usual training court. Twenty-two elite male (6 ACL-reconstructed and 16 uninjured control players) handball players were evaluated. The participants performed a vertical jump test battery that included a 50-cm vertical bilateral drop jump, a 20-cm vertical unilateral drop jump, and vertical unilateral countermovement jump maneuvers. Peak 3-dimensional (X, Y, Z) acceleration (m·s(-2)), jump phase duration and 3-dimensional orientation values (°) were obtained from the inertial sensor unit device. Two-tailed t-tests and a one-way analysis of variance were performed to compare means. The P value cut-off for significance was set at P < .05. The ACL-reconstructed male athletes did not show any significant (P < .05) residual jumping biomechanical deficits regarding the measured variables compared with players who had not suffered this knee injury. A dominance effect was observed among non-ACL reconstructed controls but not among their ACL-reconstructed counterparts (P < .05). Elite male handball athletes with previous ACL reconstruction demonstrated a jumping biomechanical profile similar to control players, including similar jumping performance values in both bilateral and unilateral jumping maneuvers, several years after ACL reconstruction. These findings are in agreement with previous research showing full functional restoration of abilities in top-level male athletes after ACL reconstruction, rehabilitation and subsequent return to sports at the previous level. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  9. Mean-Variance Hedging on Uncertain Time Horizon in a Market with a Jump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharroubi, Idris, E-mail: kharroubi@ceremade.dauphine.fr; Lim, Thomas, E-mail: lim@ensiie.fr; Ngoupeyou, Armand, E-mail: armand.ngoupeyou@univ-paris-diderot.fr

    2013-12-15

    In this work, we study the problem of mean-variance hedging with a random horizon T∧τ, where T is a deterministic constant and τ is a jump time of the underlying asset price process. We first formulate this problem as a stochastic control problem and relate it to a system of BSDEs with a jump. We then provide a verification theorem which gives the optimal strategy for the mean-variance hedging using the solution of the previous system of BSDEs. Finally, we prove that this system of BSDEs admits a solution via a decomposition approach coming from filtration enlargement theory.

  10. ASCAN Helms simulates parachute jump during VAFB training exercises

    NASA Technical Reports Server (NTRS)

    1990-01-01

    1990 Group 13 Astronaut Candidate (ASCAN) Susan J. Helms simulates a parachute jump during ground egress and parasail training exercises at Vance Air Force Base (VAFB), Enid, Oklahoma. With her arms folded against her chest, Helms jumps from a brick platform onto the ground. In line behind her are Charles J. Precourt followed by Leroy Chiao. The training is designed to prepare the ASCANs for proper survival measures to take in the event of an emergency aboard the T-38 jet trainer aircraft they will frequently use once they become full-fledged astronauts. ASCANs completed the VAFB training courses from 07-29-90 through 07-31-90.

  11. Deflection and Supporting Force Analysis of a Slender Beam under Combined Transverse and Tensile Axial Loads

    DTIC Science & Technology

    2016-05-01

    force T > 0 case (this study) ............................................. 3 3.3 Nonlinear FEA solution for tension force T ≥ 0 case...6 3.4 Computed analytical and nonlinear FEA results...4.1 Analytical modal solution for tension force T = 0 case (textbook) ................................... 8 4.2 Computed nonlinear FEA results for

  12. The interrelation between mechanical characteristics of contracting muscle, cross-bridge internal structure, and the mechanism of chemomechanical energy transduction.

    PubMed

    Rosenfeld, E V

    2012-09-01

    The cross-bridge working stroke is regarded as a continuous (without jumps) change of myosin head internal state under the action of a force exerted within the nucleotide-binding site. Involvement of a concept of continuous cross-bridge conformation enables discussion of the nature of the force propelling muscle, and the Coulomb repulsion of like-charged adenosine triphosphate (ATP) fragments ADP(2-) and P (i) (2-) can quite naturally be considered as the source of this force. Two entirely different types of working stroke termination are considered. Along with the fluctuation mechanism, which controls the working stroke duration t (w) at isometric contraction, another interrupt mechanism is initially taken into account. It is triggered when the lever arm shift amounts to the maximal value S ≈ 11 nm, the back door opens, and P(i) crashes out. As a result, t (w) becomes inversely proportional to the velocity v of sliding filaments t (w) ≈ S/v for a wide range of values of v. Principal features of the experimentally observed dependences of force, efficiency, and rate of heat production on velocity and ATP concentration can then be reproduced by fitting a single parameter: the velocity-independent time span t (r) between the termination of the last and beginning of the next working stroke. v becomes the principal variable of the model, and the muscle force changes under external load are determined by variations in v rather than in the tension of filaments. The Boltzmann equation for an ensemble of cross-bridges is obtained, and some collective effects are discussed.

  13. Kinetic Compensations due to Chronic Ankle Instability during Landing and Jumping.

    PubMed

    Kim, Hyunsoo; Son, S Jun; Seeley, Matthew K; Hopkins, J Ty

    2018-02-01

    Skeletal muscles absorb and transfer kinetic energy during landing and jumping, which are common requirements of various forms of physical activity. Chronic ankle instability (CAI) is associated with impaired neuromuscular control and dynamic stability of the lower extremity. Little is known regarding an intralimb, lower-extremity joint coordination of kinetics during landing and jumping for CAI patients. We investigated the effect of CAI on lower-extremity joint stiffness and kinetic and energetic patterns across the ground contact phase of landing and jumping. One hundred CAI patients and 100 matched able-bodied controls performed five trials of a landing and jumping task (a maximal vertical forward jump, landing on a force plate with the test leg only, and immediate lateral jump toward the contralateral side). Functional analyses of variance and independent t-tests were used to evaluate between-group differences for lower-extremity net internal joint moment, power, and stiffness throughout the entire ground contact phase of landing and jumping. Relative to the control group, the CAI group revealed (i) reduced plantarflexion and knee extension and increased hip extension moments; (ii) reduced ankle and knee eccentric and concentric power, and increased hip eccentric and concentric power, and (iii) reduced ankle and knee joint stiffness and increased hip joint stiffness during the task. CAI patients seemed to use a hip-dominant strategy by increasing the hip extension moment, stiffness, and eccentric and concentric power during landing and jumping. This apparent compensation may be due to decreased capabilities to produce sufficient joint moment, stiffness, and power at the ankle and knee. These differences might have injury risk and performance implications.

  14. The ingestion of a caffeinated energy drink improves jump performance and activity patterns in elite badminton players.

    PubMed

    Abian, Pablo; Del Coso, Juan; Salinero, Juan José; Gallo-Salazar, Cesar; Areces, Francisco; Ruiz-Vicente, Diana; Lara, Beatriz; Soriano, Lidon; Muñoz, Victor; Abian-Vicen, Javier

    2015-01-01

    The aim of this study was to investigate the effectiveness of a caffeine-containing energy drink to enhance physical and match performance in elite badminton players. Sixteen male and elite badminton players (25.4 ± 7.3 year; 71.8 ± 7.9 kg) participated in a double-blind, placebo-controlled and randomised experiment. On two different sessions, badminton players ingested 3 mg of caffeine per kg of body mass in the form of an energy drink or the same drink without caffeine (placebo). After 60 min, participants performed the following tests: handgrip maximal force production, smash jump without and with shuttlecock, squat jump, countermovement jump and the agility T-test. Later, a 45-min simulated badminton match was played. Players' number of impacts and heart rate was measured during the match. The ingestion of the caffeinated energy drink increased squat jump height (34.5 ± 4.7 vs. 36.4 ± 4.3 cm; P < 0.05), squat jump peak power (P < 0.05), countermovement jump height (37.7 ± 4.5 vs. 39.5 ± 5.1 cm; P < 0.05) and countermovement jump peak power (P < 0.05). In addition, an increased number of total impacts was found during the badminton match (7395 ± 1594 vs. 7707 ± 2033 impacts; P < 0.05). In conclusion, the results show that the use of caffeine-containing energy drink may be an effective nutritional aid to increase jump performance and activity patterns during game in elite badminton players.

  15. The Effects of Eccentric Contraction Duration on Muscle Strength, Power Production, Vertical Jump, and Soreness.

    PubMed

    Mike, Jonathan N; Cole, Nathan; Herrera, Chris; VanDusseldorp, Trisha; Kravitz, Len; Kerksick, Chad M

    2017-03-01

    Mike, JN, Cole, N, Herrera, C, VanDusseldorp, T, Kravitz, L, and Kerksick, CM. The effects of eccentric contraction duration on muscle strength, power production, vertical jump, and soreness. J Strength Cond Res 31(3): 773-786, 2017-Previous research has investigated the effects of either eccentric-only training or comparing eccentric and concentric exercise on changes related to strength and power expression, but no research to date has investigated the impact of altering the duration of either the concentric or the eccentric component on these parameters. Therefore, the purpose of this study was to assess the duration of eccentric (i.e., 2-second, 4-second vs. 6-second) muscle contractions and their effect on muscle strength, power production, vertical jump, and soreness using a plate-loaded barbell Smith squat exercise. Thirty college-aged men (23 ± 3.5 years, 178 ± 6.8 cm, 82 ± 12 kg, and 11.6 ± 5.1% fat) with 3.0 ± 1.0 years of resistance training experience and training frequency of 4.3 ± 0.9 days per week were randomized and assigned to 1 of 3 eccentric training groups that incorporated different patterns of contraction. For every repetition, all 3 groups used 2-second concentric contractions and paused for 1 second between the concentric and eccentric phases. The control group (2S) used 2-second eccentric contractions, whereas the 4S group performed 4-second eccentric contractions and the 6S group performed 6-second eccentric contractions. All repetitions were completed using the barbell Smith squat exercise. All participants completed a 4-week training protocol that required them to complete 2 workouts per week using their prescribed contraction routine for 4 sets of 6 repetitions at an intensity of 80-85% one repetition maximum (1RM). For all performance data, significant group × time (G × T) interaction effects were found for average power production across all 3 sets of a squat jump protocol (p = 0.04) while vertical jump did not reach significance but there was a trend toward a difference (G × T, p = 0.07). No other significant (p > 0.05) G × T interaction effects were found for the performance variables. All groups showed significant main effects for time in 1RM (p < 0.001), vertical jump (p = 0.004), peak power (p < 0.001), and average power (p < 0.001). Peak velocity data indicated that the 6S group experienced a significant reduction in peak velocity during the squat jump protocol as a result of the 4-week training program (p = 0.03). Soreness data revealed significant increases across time in all groups at both week 0 and week 4. Paired sample t-tests revealed greater differences in soreness values across time in the 2S group. The results provide further evidence that resistance training with eccentrically dominated movement patterns can be an effective method to acutely increase maximal strength and power expression in trained college age men. Furthermore, longer eccentric contractions may negatively impact explosive movements such as the vertical jump, whereas shorter eccentric contractions may instigate greater amounts of soreness. These are important considerations for the strength and conditioning professional to more fully understand that expressions of strength and power through eccentric training and varying durations of eccentric activity can have a significant impact for populations ranging from athletes desiring peak performance.

  16. The effect of temperature on the average volume of Barkhausen jump on Q235 carbon steel

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Shu, Di; Yin, Liang; Chen, Juan; Qi, Xin

    2016-06-01

    On the basis of the average volume of Barkhausen jump (AVBJ) vbar generated by irreversible displacement of magnetic domain wall under the effect of the incentive magnetic field on ferromagnetic materials, the functional relationship between saturation magnetization Ms and temperature T is employed in this paper to deduce the explicit mathematical expression among AVBJ vbar, stress σ, incentive magnetic field H and temperature T. Then the change law between AVBJ vbar and temperature T is researched according to the mathematical expression. Moreover, the tensile and compressive stress experiments are carried out on Q235 carbon steel specimens at different temperature to verify our theories. This paper offers a series of theoretical bases to solve the temperature compensation problem of Barkhausen testing method.

  17. Comparison of the take-off ground reaction force patterns of the pole vault and the long jump.

    PubMed

    Plessa, E I; Rousanoglou, E N; Boudolos, K D

    2010-12-01

    The take-off is probably the most important phase of the pole vault. The kinematics of pole vault take-off is often described in comparison to the long jump take-off. If a kinetic similarity were also evidenced, the extra loading of carrying the pole could be avoided by using the long jump style take-off drills in pole vault take-off training. However, to our knowledge, a direct comparison of the take-off ground reaction force (GRF) pattern of the two types of jump has not been reported in the scientific or coaching literature. The purpose of this study was to compare the take-off GRF patterns of the support leg in the pole vault and the long jump. Twelve elite women jumpers undertook pole vault and long jump trials. The take-off GRF patterns were recorded by a force plate (Kistler-9286AA). Temporal and force parameters were determined for all three GRF components. Trials were videotaped to determine the take-off kinematics. Paired sample t-tests (SPSS 13.0) were applied (P≤0.05) for comparison between jumps. No significant differences were found in kinematics (P>0.05). Overall, the GRF patterns were similar, although there were particular significant (P≤0.05) differences in contact times, impulses and force peaks. This study provides scientific support for potential use of the long jump take-off drills during technical preparation for the pole vault take-off.

  18. Coping With a Rising Power: Vietnam’s Hedging Strategy Toward China

    DTIC Science & Technology

    2018-03-01

    again argued that Vietnam used three primary strategies when dealing with China: first, utilize high -level party-to-party talks; second, promote...the period from 2001 to 2008, there were various incidents and causes of tension between China and Vietnam in the South China Sea, but the two... Tensions between Vietnam and China in the South China Sea have generally garnered international support for Vietnam from powerful partners, including

  19. "You can't choose these emotions… they simply jump up": Ambiguities in Resilience-Building Interventions in Israel.

    PubMed

    Yankellevich, Ariel; Goodman, Yehuda C

    2017-03-01

    Following the growing critique of the use of Post-Traumatic Stress Disorder in post-disaster interventions, a new type of intervention aimed at building resilience in the face of traumatic events has been making its first steps in the social field. Drawing on fieldwork of a resilience-building program for pre-clinical populations in Israel, we analyze the paradoxes and ambiguities entailed in three inter-related aspects of this therapeutic project: The proposed clinical ideology aimed at immunizing against traumas; the discursive and non-discursive practices used by the mental-health professionals; and, participants' difficulties to inhabit the new resilient subject. These contradictions revolve around the injunction to rationally handle emotions in response to disruptive traumatic events. Hence, the attempt to separate between a sovereign rational subject and a post-traumatic subject is troubled in the face of experiences of trauma and social suffering. Furthermore, we demonstrate how these difficulties reconstitute unresolved tensions between mimetic and anti-mimetic tendencies that have been pervading the understanding of trauma in the therapeutic professions. Finally, we discuss how the construction of the resilient subject challenges the expanding bio-medical and neoliberal self-management paradigm in mental health.

  20. Single-channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors

    PubMed Central

    Wyllie, David J A; Béhé, Philippe; Colquhoun, David

    1998-01-01

    We have expressed recombinant NR1a/NR2A and NR1a/NR2D N-methyl-D-aspartate (NMDA) receptor channels in Xenopus oocytes and made recordings of single-channel and macroscopic currents in outside-out membrane patches. For each receptor type we measured (a) the individual single-channel activations evoked by low glutamate concentrations in steady-state recordings, and (b) the macroscopic responses elicited by brief concentration jumps with high agonist concentrations, and we explore the relationship between these two sorts of observation. Low concentration (5–100 nM) steady-state recordings of NR1a/NR2A and NR1a/NR2D single-channel activity generated shut-time distributions that were best fitted with a mixture of five and six exponential components, respectively. Individual activations of either receptor type were resolved as bursts of openings, which we refer to as ‘super-clusters’. During a single activation, NR1a/NR2A receptors were open for 36 % of the time, but NR1a/NR2D receptors were open for only 4 % of the time. For both, distributions of super-cluster durations were best fitted with a mixture of six exponential components. Their overall mean durations were 35.8 and 1602 ms, respectively. Steady-state super-clusters were aligned on their first openings and averaged. The average was well fitted by a sum of exponentials with time constants taken from fits to super-cluster length distributions. It is shown that this is what would be expected for a channel that shows simple Markovian behaviour. The current through NR1a/NR2A channels following a concentration jump from zero to 1 mM glutamate for 1 ms was well fitted by three exponential components with time constants of 13 ms (rising phase), 70 ms and 350 ms (decaying phase). Similar concentration jumps on NR1a/NR2D channels were well fitted by two exponentials with means of 45 ms (rising phase) and 4408 ms (decaying phase) components. During prolonged exposure to glutamate, NR1a/NR2A channels desensitized with a time constant of 649 ms, while NR1a/NR2D channels exhibited no apparent desensitization. We show that under certain conditions, the time constants for the macroscopic jump response should be the same as those for the distribution of super-cluster lengths, though the resolution of the latter is so much greater that it cannot be expected that all the components will be resolvable in a macroscopic current. Good agreement was found for jumps on NR1a/NR2D receptors, and for some jump experiments on NR1a/NR2A. However, the latter were rather variable and some were slower than predicted. Slow decays were associated with patches that had large currents. PMID:9625862

  1. Noncontact surface tension and viscosity measurements of molten oxides with a pressurized hybrid electrostatic-aerodynamic levitator

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takehiko; Yu, Jianding; Paradis, Paul-François

    2006-05-01

    In order to measure the surface tension and the viscosity of molten oxides, the oscillation drop technique has been applied on a pressurized hybrid electrostatic-aerodynamic levitator. To suppress the electrical discharge between the top and bottom electrodes, the drop excitation method which has been used with high vacuum electrostatic levitators has been modified. As a demonstration, the surface tension and viscosity of liquid BaTiO3 were measured using this new method. Over the 1500-2000K interval, the surface tension was measured as γ(T )=349-0.03 (T-Tm) (10-3N/m), where Tm=1893K is the melting temperature. Similarly, the viscosity was determined as η(T )=0.53exp[5.35×104/(RT)](10-3Pas) over the same temperature interval.

  2. Procedures for Instructional Systems Development

    DTIC Science & Technology

    1981-09-18

    single faults to the circuit and components level. (JTI Task No. TCB-01). Figure III-ll.--Example of a Module Page of a Curriculum Outline. 3 - 80...semiconductor trapezoidal wave generator circuit , multimeter, and oscilloscope measure the output amplitude, rise time, and jump voltage within +/- 10...accuracy. Given a trainer having a semiconductor trapezoidal wave generator circuit , multimeter, and oscilloscope - CONDITION (C) . measure the output

  3. Getting It Right: Revamping Army Talent Management

    DTIC Science & Technology

    2015-06-01

    starting from foundational up through leadership with the level of difficulty increasing vertically ...............20 Figure 6. In the Nine-box Succession...conflicts has produced an officer population with a wealth of knowledge and experience involving combat, building infrastructure, jump- starting ...rise in importance for internal talent management. Bersin explains that starting in the 1970s, human capital management transitioned from a personnel

  4. Downstream DNA Tension Regulates the Stability of the T7 RNA Polymerase Initiation Complex

    PubMed Central

    Skinner, Gary M.; Kalafut, Bennett S.; Visscher, Koen

    2011-01-01

    Gene transcription by the enzyme RNA polymerase is tightly regulated. In many cases, such as in the lac operon in Escherichia coli, this regulation is achieved through the action of protein factors on DNA. Because DNA is an elastic polymer, its response to enzymatic processing can lead to mechanical perturbations (e.g., linear stretching and supercoiling) that can affect the operation of other DNA processing complexes acting elsewhere on the same substrate molecule. Using an optical-tweezers assay, we measured the binding kinetics between single molecules of bacteriophage T7 RNA polymerase and DNA, as a function of tension. We found that increasing DNA tension under conditions that favor formation of the open complex results in destabilization of the preinitiation complex. Furthermore, with zero ribonucleotides present, when the closed complex is favored, we find reduced tension sensitivity, implying that it is predominantly the open complex that is sensitive. This result strongly supports the “scrunching” model for T7 transcription initiation, as the applied tension acts against the movement of the DNA into the scrunched state, and introduces linear DNA tension as a potential regulatory quantity for transcription initiation. PMID:21320448

  5. Tension - Type - Headache treated by Positional Release Therapy: a case report.

    PubMed

    Mohamadi, Marzieh; Ghanbari, Ali; Rahimi Jaberi, Abbas

    2012-10-01

    Tension Type Headache (T.T.H) is the most prevalent headache. Myofascial abnormalities & trigger points are important in this type of headache which can be managed by Positional Release Therapy (PRT). This is a report of a 47 years old female patient with Tension Type Headache treated by Positional Release Therapy for her trigger points. She had a constant dull headache, which continued all the day for 9 months. A physiotherapist evaluated the patient and found active trigger points in her cervical muscles. Then, she received Positional Release Therapy for her trigger points. After 3 treatment sessions, the patient's headache stopped completely. During the 8 months following the treatment she was without pain, and did not use any medication. Positional Release Therapy was effective in treating Tension Type Headache. This suggests that PRT could be an alternative treatment to medication in patients with T.T.H if the effectiveness of that can be confirmed by further studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Connectivity disruption sparks explosive epidemic spreading.

    PubMed

    Böttcher, L; Woolley-Meza, O; Goles, E; Helbing, D; Herrmann, H J

    2016-04-01

    We investigate the spread of an infection or other malfunction of cascading nature when a system component can recover only if it remains reachable from a functioning central component. We consider the susceptible-infected-susceptible model, typical of mathematical epidemiology, on a network. Infection spreads from infected to healthy nodes, with the addition that infected nodes can only recover when they remain connected to a predefined central node, through a path that contains only healthy nodes. In this system, clusters of infected nodes will absorb their noninfected interior because no path exists between the central node and encapsulated nodes. This gives rise to the simultaneous infection of multiple nodes. Interestingly, the system converges to only one of two stationary states: either the whole population is healthy or it becomes completely infected. This simultaneous cluster infection can give rise to discontinuous jumps of different sizes in the number of failed nodes. Larger jumps emerge at lower infection rates. The network topology has an important effect on the nature of the transition: we observed hysteresis for networks with dominating local interactions. Our model shows how local spread can abruptly turn uncontrollable when it disrupts connectivity at a larger spatial scale.

  7. Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels

    PubMed Central

    Watson, Sue-Ann; Lefevre, Sjannie; McCormick, Mark I.; Domenici, Paolo; Nilsson, Göran E.; Munday, Philip L.

    2014-01-01

    Ocean acidification poses a range of threats to marine invertebrates; however, the potential effects of rising carbon dioxide (CO2) on marine invertebrate behaviour are largely unknown. Marine gastropod conch snails have a modified foot and operculum allowing them to leap backwards rapidly when faced with a predator, such as a venomous cone shell. Here, we show that projected near-future seawater CO2 levels (961 µatm) impair this escape behaviour during a predator–prey interaction. Elevated-CO2 halved the number of snails that jumped from the predator, increased their latency to jump and altered their escape trajectory. Physical ability to jump was not affected by elevated-CO2 indicating instead that decision-making was impaired. Antipredator behaviour was fully restored by treatment with gabazine, a GABA antagonist of some invertebrate nervous systems, indicating potential interference of neurotransmitter receptor function by elevated-CO2, as previously observed in marine fishes. Altered behaviour of marine invertebrates at projected future CO2 levels could have potentially far-reaching implications for marine ecosystems. PMID:24225456

  8. Force-displacement differences in the lower extremities of young healthy adults between drop jumps and drop landings.

    PubMed

    Hackney, James M; Clay, Rachel L; James, Meredith

    2016-10-01

    We measured ground reaction force and lower extremity shortening in ten healthy, young adults in order to compare five trials of drop jumps to drop landings. Our dependent variable was the percentage of displacement (shortening) between the markers on the ASIS and second metatarsal heads on each LE, relative to the maximum shortening (100% displacement) for that trial at the point of greatest ground reaction force. We defined this as "percent displacement at maximum force" (%dFmax). The sample mean %dFmax was 0.73%±0.14% for the drop jumps, and 0.47%±0.09% for the drop landings. The mean within-subject difference score was 0.26%±0.20%. Two-tailed paired t test comparing %dFmax between the drop jump and drop landing yielded P=0.002. For all participants in this study, the %dFmax was greater in drop jumps than in drop landings. This indicates that in drop jumps, the point of maximum force and of maximum shortening was nearly simultaneous, compared to drop landings, where the point of maximum shortening followed that of maximum force by a greater proportion. This difference in force to displacement behavior is explained by linear spring behavior in drop jumps, and linear damping behavior in drop landings. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Design of robust reliable control for T-S fuzzy Markovian jumping delayed neutral type neural networks with probabilistic actuator faults and leakage delays: An event-triggered communication scheme.

    PubMed

    Syed Ali, M; Vadivel, R; Saravanakumar, R

    2018-06-01

    This study examines the problem of robust reliable control for Takagi-Sugeno (T-S) fuzzy Markovian jumping delayed neural networks with probabilistic actuator faults and leakage terms. An event-triggered communication scheme. First, the randomly occurring actuator faults and their failures rates are governed by two sets of unrelated random variables satisfying certain probabilistic failures of every actuator, new type of distribution based event triggered fault model is proposed, which utilize the effect of transmission delay. Second, Takagi-Sugeno (T-S) fuzzy model is adopted for the neural networks and the randomness of actuators failures is modeled in a Markov jump model framework. Third, to guarantee the considered closed-loop system is exponential mean square stable with a prescribed reliable control performance, a Markov jump event-triggered scheme is designed in this paper, which is the main purpose of our study. Fourth, by constructing appropriate Lyapunov-Krasovskii functional, employing Newton-Leibniz formulation and integral inequalities, several delay-dependent criteria for the solvability of the addressed problem are derived. The obtained stability criteria are stated in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Finally, numerical examples are given to illustrate the effectiveness and reduced conservatism of the proposed results over the existing ones, among them one example was supported by real-life application of the benchmark problem. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Jump-Landing Biomechanics and Knee-Laxity Change Across the Menstrual Cycle in Women With Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Bell, David R.; Blackburn, J. Troy; Hackney, Anthony C.; Marshall, Stephen W.; Beutler, Anthony I.; Padua, Darin A.

    2014-01-01

    Context: Of the individuals able to return to sport participation after an anterior cruciate ligament(ACL) injury, up to 25% will experience a second ACL injury. This population may be more sensitive to hormonal fluctuations, which may explain this high rate of second injury. Objective: To examine changes in 3-dimensional hip and knee kinematics and kinetics during a jump landing and to examine knee laxity across the menstrual cycle in women with histories of unilateral noncontact ACL injury. Design  Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: A total of 20 women (age = 19.6 ± 1.3 years, height = 168.6 ± 5.3 cm, mass = 66.2 ± 9.1 kg) with unilateral, noncontact ACL injuries. Intervention(s) Participants completed a jump-landing task and knee-laxity assessment 3 to 5 days after the onset of menses and within 3 days of a positive ovulation test. Main Outcome Measure(s): Kinematics in the uninjured limb at initial contact with the ground during a jump landing, peak kinematics and kinetics during the loading phase of landing, anterior knee laxity via the KT-1000, peak vertical ground reaction force, and blood hormone concentrations (estradiol-β-17, progesterone, free testosterone). Results: At ovulation, estradiol-β-17 (t = −2.9, P = .009), progesterone (t = −3.4, P = .003), and anterior knee laxity (t = −2.3, P = .03) increased, and participants presented with greater knee-valgus moment (Z = −2.6, P = .01) and femoral internal rotation (t = −2.1, P = .047). However, during the menses test session, participants landed harder (greater peak vertical ground reaction force; t = 2.2, P = .04), with the tibia internally rotated at initial contact (t = 2.8, P = .01) and greater hip internal-rotation moment (Z = −2.4, P = .02). No other changes were observed across the menstrual cycle. Conclusions Knee and hip mechanics in both phases of the menstrual cycle represented a greater potential risk of ACL loading. Observed changes in landing mechanics may explain why the risk of second ACL injury is elevated in this population. PMID:24568229

  11. Giant magnetocaloric effect and temperature induced magnetization jump in GdCrO{sub 3} single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, L. H.; Yang, J.; Kan, X. C.

    2015-04-07

    We report on a systematic study of the single-crystal GdCrO{sub 3}, which shows various novel magnetic features, such as temperature-induced magnetization reversal (TMR), temperature-induced magnetization jump (TMJ), spin reorientation, and giant magnetocaloric effect (MCE). In the field-cooled cooling process with modest magnetic field along the c axis, GdCrO{sub 3} first shows a TMR at T{sub comp}∼120−130 K and then an abrupt TMJ with a sign change of magnetization at T{sub jump}∼52−120 K, and finally a spin reorientation at T{sub SR}∼4−7 K. Interestingly, the remarkable TMJ behavior, which was not reported ever before, persists at higher fields up to 10 kOe even when TMRmore » disappears. In addition, giant MCE with the maximum value of magnetic entropy change reaching ∼31.6 J/kg K for a field change of 44 kOe was also observed in GdCrO{sub 3} single crystal, suggesting it could be a potential material for low-T magnetic refrigeration. A possible mechanism for these peculiar magnetic behaviors is discussed based on the various competing magnetic interactions between the 3d electrons of Cr{sup 3+} ions and 4f electrons of Gd{sup 3+} ions.« less

  12. Evaluation of strength and conditioning measures with game success in Division I collegiate volleyball: A retrospective study.

    PubMed

    Bunn, Jennifer A; Ryan, Greg A; Button, Gabriel R; Zhang, S

    2017-08-04

    The purpose of this study was to retrospectively assess relationships between strength and conditioning (SC) measures and game performance in Division I volleyball. Five years of SC and game data were collected from one women's Division I collegiate team, n = 76. SC measures included: T-drill, 18.3 m sprint, back squat, hang clean, vertical jump, and broad jump. All game and SC stats were normalized to Z-scores. Analyses included assessing SC differences by position, and multiple stepwise regression to assess relationships between game and SC stats. There was a significant difference by position for broad jump (p =.002), 18.3 m sprint (p =.036), vertical (p <.001), and total strength (p =.019). Overall, game performance and SC measures were significantly correlated (r = .439, p <.001). Multiple regression analyses indicated significant relationships (p < .05) between SC measures and game success by position as follows: defensive specialist stats with squat and total strength; setters game stats with hang cleans, T-drill, and broad jump; pin hitter game stats with vertical, squat, and total strength; middle blockers game stats with broad jump. These data indicate that SC measures correlate well with game performance and are specific by position. These data could help SC coaches create a more precise training approach to focus on improving specific measures by position, which could then translate to improved game performance. These data could also help coaches with talent identification to determine playing time and rotations to maximize player ability and achieve success.

  13. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows

    PubMed Central

    Li, Zhilin; Lai, Ming-Chih

    2012-01-01

    In this paper, new finite difference methods based on the augmented immersed interface method (IIM) are proposed for simulating an inextensible moving interface in an incompressible two-dimensional flow. The mathematical models arise from studying the deformation of red blood cells in mathematical biology. The governing equations are incompressible Stokes or Navier-Stokes equations with an unknown surface tension, which should be determined in such a way that the surface divergence of the velocity is zero along the interface. Thus, the area enclosed by the interface and the total length of the interface should be conserved during the evolution process. Because of the nonlinear and coupling nature of the problem, direct discretization by applying the immersed boundary or immersed interface method yields complex nonlinear systems to be solved. In our new methods, we treat the unknown surface tension as an augmented variable so that the augmented IIM can be applied. Since finding the unknown surface tension is essentially an inverse problem that is sensitive to perturbations, our regularization strategy is to introduce a controlled tangential force along the interface, which leads to a least squares problem. For Stokes equations, the forward solver at one time level involves solving three Poisson equations with an interface. For Navier-Stokes equations, we propose a modified projection method that can enforce the pressure jump condition corresponding directly to the unknown surface tension. Several numerical experiments show good agreement with other results in the literature and reveal some interesting phenomena. PMID:23795308

  14. A single-sweep, nanosecond time resolution laser temperature-jump apparatus

    NASA Astrophysics Data System (ADS)

    Ballew, R. M.; Sabelko, J.; Reiner, C.; Gruebele, M.

    1996-10-01

    We describe a fast temperature-jump (T-jump) apparatus capable of acquiring kinetic relaxation transients via real-time fluorescence detection over a time interval from nanoseconds to milliseconds in a single sweep. The method is suitable for aqueous solutions, relying upon the direct absorption of laser light by the bulk water. This obviates the need for additives (serving as optical or conductive heaters) that may interact with the sample under investigation. The longitudinal temperature profile is made uniform by counterpropagating heating pulses. Dead time is limited to one period of the probe laser (16 ns). The apparatus response is tested with aqueous tryptophan and the diffusion-controlled dimerization of proflavine.

  15. Effect of Elastase-induced Emphysema on the Force-generating Ability of the Diaphragm

    PubMed Central

    Supinski, Gerald S.; Kelsen, Steven G.

    1982-01-01

    The effect of emphysema on the ability of the diaphragm to generate force was examined in costal diaphragm muscle strips from 10 Golden hamsters killed 18 mo after intratracheal injection of pancreatic elastase in a dose producing hyperinflation (mean total lung capacity [TLC] = 163% of control) and generalized panacinar emphysema. 13 saline-injected normal animals served as controls. The time course of isometric tension and the effect of alterations in muscle fiber and sarcomere length on the isometric tension (T) generated in response to tetanizing electrical stimuli (length-tension [L-T] relationship) were examined. Elastase administration caused an increase in diaphragm muscle thickness and reduction in the length of costal diaphragm muscle fibers measured in situ. Emphysema significantly increased the maximum tetanic tension as a result of hypertrophy. Maximal tension corrected for increases in muscle cross-sectional area (T/cm2), however, was the same in emphysematous (E) and control (C) animals. Emphysema also shifted the muscle fiber L-T curve of the diaphragm but not of a control muscle, the soleus, toward shorter lengths. In contrast to the effects of E on the diaphragm muscle fiber L-T curve, the sarcomere L-T curve was the same in E and C. Since the length at which tension was maximal correlated closely with sarcomere number (r = 0.94; P < 0.001) reduction in the number of sarcomeres in series in muscles from emphysematous animals appeared to explain the shift in the muscle fiber L-T curve. We conclude that in elastase-induced emphysema adaptive changes both in diaphragm cross-sectional area and sarcomere number augment the force-generating ability of the diaphragm. We speculate that changes in sarcomere number compensate for alterations in muscle fiber length resulting from chronic hyperinflation of the thorax, while diaphragmatic muscle hypertrophy represents a response to changes in respiratory load and/or diaphragm configuration (LaPlace relationship). Images PMID:6922866

  16. A velocity-dependent shortening depression in the development of the force-velocity relation in frog muscle fibres.

    PubMed Central

    Colomo, F; Lombardi, V; Piazzesi, G

    1986-01-01

    During the onset of activation in isolated frog muscle fibres the development of the force-velocity (T-V) relation was determined by imposing single and double ramp releases. The experiments were performed at 3.5-6 degrees C or 19-22 degrees C and at a starting sarcomere length of about 2.25 micron. A velocity- and time-dependent shortening deactivation was shown to exist during the development of contraction. It was found that, early during the tetanus rise, at submaximal levels of activation, the values of T (the steady force exerted by the muscle fibres at any velocity of shortening V lower than V0) were significantly affected by previous conditioning shortening. Conditioning shortening at lower speeds led to potentiation of T and, at higher speeds, to depression. Both these effects were independent of the amount of shortening and, in addition, were not present at the tetanus plateau. At each given time or isometric tension throughout the tetanus rise the values of T. normalized for those determined at the same velocities at the tetanus plateau, were found to be inversely correlated with the actual velocities of shortening. The slope of this relation (a measure of the velocity-dependent shortening deactivation) decreased exponentially with time, attaining, in six fibres at low temperature, 10% of its initial value within 26-73 ms. The results may be explained in terms of a cross-bridge model of contraction by assuming that the rate of development of activation is controlled by the rate of release of the Ca2+ as well as by the velocity at which the muscle fibres are allowed to shorten and in turn by the actual number of attached cross-bridges. PMID:3497263

  17. A kinematic hardening constitutive model for the uniaxial cyclic stress-strain response of magnesium sheet alloys at room temperature

    NASA Astrophysics Data System (ADS)

    He, Zhitao; Chen, Wufan; Wang, Fenghua; Feng, Miaolin

    2017-11-01

    A kinematic hardening constitutive model is presented, in which a modified form of von Mises yield function is adopted, and the initial asymmetric tension and compression yield stresses of magnesium (Mg) alloys at room temperature (RT) are considered. The hardening behavior was classified into slip, twinning, and untwinning deformation modes, and these were described by two forms of back stress to capture the mechanical response of Mg sheet alloys under cyclic loading tests at RT. Experimental values were obtained for AZ31B-O and AZ31B sheet alloys under both tension-compression-tension (T-C-T) and compression-tension (C-T) loadings to calibrate the parameters of back stresses in the proposed model. The predicted parameters of back stresses in the twinning and untwinning modes were expressed as a cubic polynomial. The predicted curves based on these parameters showed good agreement with the tests.

  18. Transition Crossing in the Main Injector for PIP-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ainsworth, R.; Chaurize, S.; Kourbanis, I.

    2017-05-01

    Proton Improvement Plan-II (PIP-II) [1] is Fermilab’s plan for providing powerful, high-intensity proton beams to the laboratory’s experiments. PIP II will include upgrades to the Booster, Recycler and Main Injector which will be required to accelerate 50% more beam as well as increasing the Booster repetition rate from 15 to 20 Hz. To accommodate the faster rate, the momentum separation of the slip stacking beams in the Recycler must increase which will result in in larger longitudinal emittance bunches in MI. In order to cross transition without losses, it is expected a gamma-t jump will be needed. Gamma-t jump schemesmore » for the MI are investigated.« less

  19. Changes in drop-jump landing biomechanics during prolonged intermittent exercise.

    PubMed

    Schmitz, Randy J; Cone, John C; Tritsch, Amanda J; Pye, Michele L; Montgomery, Melissa M; Henson, Robert A; Shultz, Sandra J

    2014-03-01

    As injury rates rise in the later stages of sporting activities, a better understanding of lower extremity biomechanics in the later phases of gamelike situations may improve training and injury prevention programs. Lower extremity biomechanics of a drop-jump task (extracted from a principal components analysis) would reveal factors associated with risk of anterior cruciate ligament injury during a 90-minute individualized intermittent exercise protocol (IEP) and for 1 hour following the IEP. Controlled laboratory study. Level 4. Fifty-nine athletes (29 women, 30 men) completed 3 sessions. The first session assessed fitness for an IEP designed to simulate the demands of a soccer match. An experimental session assessed drop-jump biomechanics, after a dynamic warm-up, every 15 minutes during the 90-minute IEP, and for 1 hour following the IEP. A control session with no exercise assessed drop-jump performance at the same intervals. Two biomechanical factors early in the first half (hip flexion at initial contact and hip loading; ankle loading and knee shear force) decreased at the end of the IEP and into the 60-minute recovery period, while a third factor (knee loading) decreased only during the recovery period (P ≤ 0.05). The individualized sport-specific IEP may have more subtle effects on landing biomechanics when compared with short-term, exhaustive fatigue protocols. Potentially injurious landing biomechanics may not occur until the later stages of soccer activity.

  20. Scaling the viscous circular hydraulic jump

    NASA Astrophysics Data System (ADS)

    Argentina, Mederic; Cerda, Enrique; Duchesne, Alexis; Limat, Laurent

    2017-11-01

    The formation mechanism of hydraulic jumps has been proposed by Belanger in 1828 and rationalised by Lord Rayleigh in 1914. As the Froude number becomes higher than one, the flow super criticality induces an instability which yields the emergence of a steep structure at the fluid surface. Strongly deformed liquid-air interface can be observed as a jet of viscous fluid impinges a flat boundary at high enough velocity. In this experimental setup, the location of the jump depends on the viscosity of the liquid, as shown by T. Bohr et al. in 1997. In 2014, A. Duchesne et al. have established the constancy of the Froude number at jump. Hence, it remains a contradiction, in which the radial hydraulic jump location might be explained through inviscid theory, but is also viscosity dependent. We present a model based on the 2011 Rojas et al. PRL, which solves this paradox. The agreement with experimental measurements is excellent not only for the prediction of the position of the hydraulic jump, but also for the determination of the fluid thickness profile. We predict theoretically the critical value of the Froude number, which matches perfectly to that measured by Duchesne et al. We acknowledge the support of the CNRS and the Universit Cte d'Azur, through the IDEX funding.

  1. Refraction of the principal stress trajectories and the stress jumps on faults and contact surfaces: Part 1. Non-constrained regular trajectories

    NASA Astrophysics Data System (ADS)

    Mukhamediev, Sh. A.

    2014-09-01

    Rock masses contain ubiquitous multiscale heterogeneities, which (or whose boundaries) serve as the surfaces of discontinuity for some characteristics of the stress state, e.g., for the orientation of principal stress axes. Revealing the regularities that control these discontinuities is a key to understanding the processes taking place at the boundaries of the heterogeneities and for designing the correct procedures for reconstructing and theoretical modeling of tectonic stresses. In the present study, the local laws describing the refraction of the axes of extreme principal stresses T 1 (maximal tension in the deviatoric sense) and T 3 (maximal compression) of the Cauchy stress tensor at the transition over the elementary area n of discontinuity whose orientation is specified by the unit normal n are derived. It is assumed that on the area n of discontinuity, frictional contact takes place. No hypotheses are made on the constitutive equations, and a priori constraints are not posed on the orientation on the stress axes. Two domains, which adjoin area n on the opposite sides and are conventionally marked + and -, are distinguished. In the case of the two-dimensional (2D) stress state, any principal stress axis on passing from domain - to domain + remains in the same quadrant of the plane as the continuation of this axis in domain +. The sign and size of the refraction angle depend on the sign and amplitude of the jump of the normal stress, which is tangential to the surface of discontinuity. In the three-dimensional (3D) case, the refraction of axes T 1 and T 3 should be analyzed simultaneously. For each side, + and -, the projections of the T 1 and T 3 axes on the generally oriented plane n form the shear sectors S + and S -, which are determined unambiguously and to whose angular domains the possible directions p + and p - of the shear stress vectors belong. In order for the extreme stress axes T {1/+}, T {3/+} and T {1/-}, T {3/-} to be statically compatible on the generally oriented plane n, it is required that sectors S + and S - had a nonempty intersection. The direction vectors p + and p - are determined uniquely if, besides axes T {1/-}, T {3/-} and T {1/+}, T {3/+}, also the ratios of differential stresses R + and R - (0 ≤ R ± ≤ 1) are known. This is equivalent to specifying the reduced stress tensors T {/R +} and T {/R -} The necessary condition for tensors T {/R +} and T {/R -} being statically compatible on plane n is the equality p + = p -. In this paper, simple methods are suggested for solving the inverse problem of constructing the set of the orientations of the extreme stress axes from the known direction p of the shear stress vector on plane n and from the data on the shear sector. Based on these methods and using the necessary conditions of local equilibrium on plane n formulated above, all the possible orientations of axes T {1/+}, T {3/+} are determined if the projections of axes T {1/-}, T {3/-} axes on side — are given. The angle between the projections of axes T {1/+}, T {1/-} and/or T {3/+}, T {3/-} on the plane can attain 90°. Besides the general case, also the particular cases of the contact between the degenerate stress states and the special position of plane n relative to the principal stress axes are thoroughly examined. Generalization of the obtained results makes it possible to plot the local diagram of the orientations of axes T {1/+}, T {3/+} for a given sector S -. This diagram is a so-called stress orientation sphere, which is subdivided into three pairs of areas (compression, tension, and compression-extension). The tension and compression zones cannot contain the poles of T {3/+} and T {1/+} axes, respectively. The compression-extension zones can contain the poles of either T {1/+} or T {3/+} axis but not both poles simultaneously. In the particular case when the shear stress vector has a unique direction p - on side -, the areas of compression-extension disappear and the diagram is reduced to a beach-ball plot, which visualizes the focal mechanism solution of an earthquake. If area n is a generally oriented plane and if the orientation of the pairs of the statically compatible axes T {1/-}, T {3/-} and T {1/+}, T {3/+} is specified, then, the stress values on side + are uniquely determined from the known stress values on side -. From the value of differential stress ratio R -, one can calculate the value of R +, and using the values of the principal stresses on side -, determine the total stress tensor T + on side +. The obtained results are supported by the laboratory experiments and drilling data. In particular, these results disclose the drawbacks of some established notions and methods in which the possible refraction of the stress axes is unreasonably ignored or taken into account improperly. For example, it is generally misleading to associate the slip on the preexisting fault with the orientation of any particular trihedron of the principal stress axes. The reconstruction should address the potentially statically compatible principal stress axes, which are differently oriented on opposite sides of the fault plane. The fact that, based on the orientation of the intraplate principal stresses at the base of the lithosphere, one cannot make a conclusion on the active or passive influence of the mantle flows on the lithospheric plate motion is another example. The present relationships linking the stress values on the opposite sides of the fault plane on which the orientations of the principal stress axes are known demonstrate the incorrectness of the existing methods, in which the reduced stress tensors within the material domains are reconstructed without allowance for the dynamic interaction of these domains with their neighbors. In addition, using the obtained results, one can generalize the notion of the zone of dynamical control of a fault onto the case of the existence of discontinuities in this region and analyze the stress transfer across the system of the faults.

  2. Tension amplification in tethered layers of bottle-brush polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leuty, Gary M.; Tsige, Mesfin; Grest, Gary S.

    2016-02-26

    In this paper, molecular dynamics simulations of a coarse-grained bead–spring model have been used to study the effects of molecular crowding on the accumulation of tension in the backbone of bottle-brush polymers tethered to a flat substrate. The number of bottle-brushes per unit surface area, Σ, as well as the lengths of the bottle-brush backbones N bb (50 ≤ N bb ≤ 200) and side chains N sc (50 ≤ N sc ≤ 200) were varied to determine how the dimensions and degree of crowding of bottle-brushes give rise to bond tension amplification along the backbone, especially near the substrate.more » From these simulations, we have identified three separate regimes of tension. For low Σ, the tension is due solely to intramolecular interactions and is dominated by the side chain repulsion that governs the lateral brush dimensions. With increasing Σ, the interactions between bottle-brush polymers induce compression of the side chains, transmitting increasing tension to the backbone. For large Σ, intermolecular side chain repulsion increases, forcing side chain extension and reorientation in the direction normal to the surface and transmitting considerable tension to the backbone.« less

  3. Galapagos Tectonics and Evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Hey, R. N.

    2010-12-01

    Galapagos is now considered one of the type-examples of hotspot-ridge interaction, although in the early years of plate tectonics it was generally thought that this interpretation was demonstrably wrong, with two influential groups insisting that non-hotspot models were required for this area. The key to understanding Galapagos tectonic evolution was the recognition that small ridge axis jumps toward the hotspot had occurred, producing complicated magnetic anomalies and asymmetric lithospheric accretion. My dissertation work, guided by Jason Morgan, showed that this simple modification to plate tectonic theory could resolve the seemingly compelling geometric arguments against the Cocos and Carnegie aseismic ridges being Galapagos hotspot tracks, and further that if Galapagos were a hotspot near Fernandina, fixed with respect to the Hawaii hotspot, there should be aseismic ridges on the Cocos and Nazca plates with the observed Cocos and Carnegie ridge geometry, both aseismic ridges forming when the hotspot was ridge-centered, but only the Carnegie ridge since the plate boundary migrated north of the hotspot. A great deal of subsequent research has shown that some areas are considerably more complicated than originally thought, but the following basic model still appears to hold. The Farallon plate split apart along the Grijalva scarp, possibly a preexisting Pacific-Farallon FZ that intersected the hotspot at this time (although alternative interpretations exist), probably in response to tensional stress caused by slab pull in different directions at the Mid-America and Peru-Chile trenches. This break-up allowed more orthogonal subduction of independent Cocos and Nazca plates beginning shortly after 25 Ma. The original Cocos-Nazca ridge trended E-NE, but soon reorganized into N-S spreading segments. The subsequent evolution involved substantial northward ridge migration and ridge jumps, mostly toward the Galapagos hotspot. Recent ridge jumps have occurred in systematic patterns as a result of new rifts almost always propagating “downhill” away from the hotspot, as shown by the characteristic patterns of pseudofaults, failed rifts (sometimes grabens, sometimes abandoned ridges), and zones of transferred lithosphere, with Galapagos 95.5W the type-example propagator. These propagators are probably driven by gravity sliding stresses due to the shallow lithosphere near the hotspot (although alternative interpretations exist). The origin of many propagation sequences appears to involve discrete southward jumps forming new segments near the hotspot. The observed petrological and geochemical variations are interpreted as consistent with mantle plume and propagating rift effects. However, the speculation of Schilling et al. (1982) that, in analogy to Iceland (the other type-example of hotspot-ridge interaction), Galapagos might be a pulsing plume, and that plume pulses might drive the Galapagos propagators, hasn’t received much support. It is interesting that the Galapagos and Iceland hotspots have produced such apparently different effects along the ridge segments they so obviously strongly influence.

  4. Surface Tension and Viscosity Measurements of Liquid and Undercooled Alumina by Containerless Techniques

    NASA Astrophysics Data System (ADS)

    Paradis, Paul-François; Ishikawa, Takehiko

    2005-07-01

    Electrostatic levitation and multi-beam radiative heating overcame contamination and sample position instability problems associated with handling of liquid alumina. This allowed the measurements of the surface tension and viscosity in the superheated and undercooled states using the oscillation drop method. Over the 2190-2500 K interval, the surface tension of alumina was measured as σ(T)=0.64--8.2× 10-5 (T-Tm) (N/m), where Tm, the melting temperature, is 2327 K. Similarly, on the same temperature range, the viscosity was determined as η(T)=3.2\\exp[43.2× 103/(RT)] (mPa\\cdots). Both sets of data agree well with the literature values.

  5. Elevated biological productivity as a trigger for the Holocene sapropel in the Black Sea during its reconnection with the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Yanchilina, A.; Ryan, W. B.; Kenna, T. C.

    2013-12-01

    Sapropelic sedimentation characterizes the mid-Holocene section of the Black Sea strata, ranging from ~7500 to 3000 kyr BP. The level of organic carbon in the sapropel reaches 20% and the timing of the onset is independent of depth. However, it is unclear what sequence of events led to the development of the sapropel and how exactly its deposition was related to the connection of the Black Sea with the Mediterranean. One component that contributes to the uncertainty is a ~1000 kyr BP jump in age across the sapropel interface derived from radiocarbon dating of carbonate material. This study looks at records of XRF done on dry and wet sediments (i.e., Cu, Mo, Br) in addition to radiocarbon and stable isotope measurements on shells of ostracods. Cu, Mo, and Br all increase substantially from their low abundances in the glacial, post-glacial, and early Holocene gray clay almost concurrently. An increase in Cu indicates the rise of nutrients in the surface water and is coincident with a rise in Corg. Mo rises after Cu; it is attributed to the onset of anoxia, as it precipitates out of the water column in an environment lacking oxygen. Br increases last, attributed to the rise of the bottom dense salt water layer to the surface and its uptake by phytoplankton. Stable isotope results show that the δ18O rises from -1 to 0.3 ‰ and δ13C rises from -3 to -0.5 ‰ prior to the disappearance of ostracods in the sediment and indicates that anoxia started after the Black Sea-Lake connected with the Mediterranean. These results suggest that it was increased biological productivity that initially led to the deposition of the sapropel and only later to anoxia that then reinforced the highly organic content of the preserved sediment for thousands of years. The one thousand year jump in radiocarbon is interpreted as a decrease in the reservoir age of the water due to the replacement of stratified Black Sea that has accumulated old carbon and a large reservoir age with Mediterranean water of a nearly zero reservoir age.

  6. Relationship Between Change of Direction, Speed and Power in Male and Female National Olympic Team Handball Athletes.

    PubMed

    Pereira, Lucas A; Nimphius, Sophia; Kobal, Ronaldo; Kitamura, Katia; Turisco, Luiz A L; Orsi, Rita C; Cal Abad, César Cs; Loturco, Irineu

    2018-02-22

    The aims of this study were to (1) assess the relationship between selected speed-power related abilities (determined by 20-m sprint, unloaded countermovement and squat jumps [CMJ and SJ] and loaded jump squat [JS]) and performance in two distinct change of direction (COD) protocols (Zigzag and T-Test), and (2) determine the magnitude of difference between female and male Brazilian National Olympic Team handball athletes. Fifteen male and twenty-three female elite handball athletes volunteered to perform the following assessments: SJ and CMJ; Zigzag and T-Test; 20-m sprint with 5-, 10-, and 20-m splits, and mean propulsive power (MPP) in JS. Pearson product moment correlation (P< 0.05) was performed to determine the relationship between the COD tests (Zigzag and T-test) and speed-power measures (sprint, SJ, CMJ and JS). The differences between male and female performances were determined using the magnitude-based inference. Moderate to very large significant correlations were observed between both COD tests and the speed-power abilities. Further, male athletes demonstrated likely to almost certainly higher performances than female athletes in all assessed variables. The results of the current study suggest that different speed-power qualities are strongly correlated to the performance obtained in various COD assessments (r values varying from 0.38 to 0.84 and from 0.34 to 0.84 for correlations between speed and power tests with Zigzag and T-Test, respectively). However, the level of these associations can vary greatly, according to the mechanical demands of each respective COD task. Whilst COD tests may be difficult to implement during competitive seasons, due to the strong correlations presented herein, the regular use of vertical jump tests with these athletes seems to be an effective and applied alternative. Furthermore, it might be inferred that the proper development of loaded and unloaded jump abilities has potential for improving the physical qualities related to COD performance in handball athletes.

  7. Heat capacity jump at T c and pressure derivatives of superconducting transition temperature in the Ba 1 - x Na x Fe 2 As 2 ( 0.1 ≤ x ≤ 0.9 ) series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bud'ko, Sergey L.; Chung, Duck Young; Bugaris, Daniel

    2014-01-16

    We present the evolution of the initial (up to ~ 10 kbar) hydrostatic pressure dependencies of T c and of the ambient pressure, and the jump in the heat capacity associated with the superconducting transition as a function of Na doping in the Ba1-xNaxFe2As2 family of iron-based superconductors. For Na concentrations 0.15 ≤ x ≤ 0.9, the jump in specific heat at T c, ΔC p| Tmore » $$_c$$, follows the ΔC p ∝ to T 3 (the so-called BNC scaling) found for most BaFe 2As 2 based superconductors. This finding suggests that, unlike the related Ba 1-xK xFe 2As 2 series, there is no significant modification of the superconducting state (e. g., change in superconducting gap symmetry) in the Ba 1-xNa xFe 2As 2 series over the whole studied Na concentration range. Pressure dependencies are nonmonotonic for x = 0.2 and 0.24. For other Na concentrations, T c decreases under pressure in an almost linear fashion. The anomalous behavior of the x = 0.2 and 0.24 samples under pressure is possibly due to the crossing of the phase boundaries of the narrow antiferromagnetic tetragonal phase, unique for the Ba 1-xNa xFe 2As 2 series, with the application of pressure. The negative sign of the pressure derivatives of T c across the whole superconducting dome (except for x = 0.2) is a clear indication of the nonequivalence of substitution and pressure for the Ba 1-xNa xFe 2As 2 series.« less

  8. Ridge Jumps Associated with Plume-Ridge Interaction 1: Off-axis Heating due to Lithospheric Magma Penetration

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E.; Ito, G.

    2005-12-01

    In many hot spot-ridge systems, changes in the ridge axis geometry occur between the hot spot centers and nearby mid-ocean ridges in the form of ridge jumps. Such ridge jumps likely occur as a result of anomalous lithospheric stresses associated with mantle plume-lithosphere interaction, as well as weakening of the hot spot lithosphere due to physical and thermal thinning caused by rising buoyant asthenosphere and magma transport through the lithosphere. In this study, we use numerical models to quantify the effects of excess magmatism through the near-ridge lithosphere. Hot spot magmatism can weaken the lithosphere both mechanically through fracturing and thermally through conduction and advection of heat into the plate. Here we focus on the effects of thermal weakening. Using a plane-strain approximation, we examine deformation in a 2-D cross section of a visco-elastic-plastic lithosphere with the finite element code FLAC. The model has isothermal top and bottom boundaries and a prescribed velocity equal to the half spreading rate is imposed on the sides to drive seafloor spreading. The initial condition, as predicted for normal mid-ocean ridges, is a square root of lithospheric age cooling curve with a corner flow velocity field symmetric about the ridge axis. A range of heat inputs are introduced at various plate ages and spreading rates to simulate off-axis magma transport. To reveal the physical conditions that allow for a ridge jump and control its timing, we vary 4 parameters: spreading rate, lithospheric age, crustal thickness and heat input. Results indicate that the heating rate required to produce a ridge jump increases as a function of lithospheric age at the location of magma intrusion. The time necessary for a ridge jump to develop in lithosphere of a particular age decreases with increasing crustal thicknesses. For magma fluxes comparable to those estimated for Galapagos and Iceland, lithospheric heating by the penetrating magma alone is sufficient to cause a ridge jump, even without the other effects.

  9. Stride-related rein tension patterns in walk and trot in the ridden horse.

    PubMed

    Egenvall, Agneta; Roepstorff, Lars; Eisersiö, Marie; Rhodin, Marie; van Weeren, René

    2015-12-30

    The use of tack (equipment such as saddles and reins) and especially of bits because of rein tension resulting in pressure in the mouth is questioned because of welfare concerns. We hypothesised that rein tension patterns in walk and trot reflect general gait kinematics, but are also determined by individual horse and rider effects. Six professional riders rode three familiar horses in walk and trot. Horses were equipped with rein tension meters logged by inertial measurement unit technique. Left and right rein tension data were synchronized with the gait. Stride split data (0-100 %) were analysed using mixed models technique to elucidate the left/right rein and stride percentage interaction, in relation to the exercises performed. In walk, rein tension was highest at hindlimb stance. Rein tension was highest in the suspension phase at trot, and lowest during the stance phase. In rising trot there was a significant difference between the two midstance phases, but not in sitting trot. When turning in trot there was a significant statistical association with the gait pattern with the tension being highest in the inside rein when the horse was on the outer fore-inner hindlimb diagonal. Substantial between-rider variation was demonstrated in walk and trot and between-horse variation in walk. Biphasic rein tensions patterns during the stride were found mainly in trot.

  10. Effects of cluster vs. traditional plyometric training sets on maximal-intensity exercise performance.

    PubMed

    Asadi, Abbas; Ramírez-Campillo, Rodrigo

    2016-01-01

    The aim of this study was to compare the effects of 6-week cluster versus traditional plyometric training sets on jumping ability, sprint and agility performance. Thirteen college students were assigned to a cluster sets group (N=6) or traditional sets group (N=7). Both training groups completed the same training program. The traditional group completed five sets of 20 repetitions with 2min of rest between sets each session, while the cluster group completed five sets of 20 [2×10] repetitions with 30/90-s rest each session. Subjects were evaluated for countermovement jump (CMJ), standing long jump (SLJ), t test, 20-m and 40-m sprint test performance before and after the intervention. Both groups had similar improvements (P<0.05) in CMJ, SLJ, t test, 20-m, and 40-m sprint. However, the magnitude of improvement in CMJ, SLJ and t test was greater for the cluster group (effect size [ES]=1.24, 0.81 and 1.38, respectively) compared to the traditional group (ES=0.84, 0.60 and 0.55). Conversely, the magnitude of improvement in 20-m and 40-m sprint test was greater for the traditional group (ES=1.59 and 0.96, respectively) compared to the cluster group (ES=0.94 and 0.75, respectively). Although both plyometric training methods improved lower body maximal-intensity exercise performance, the traditional sets methods resulted in greater adaptations in sprint performance, while the cluster sets method resulted in greater jump and agility adaptations. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Folding of human telomerase RNA pseudoknot using ion-jump and temperature-quench simulations.

    PubMed

    Biyun, Shi; Cho, Samuel S; Thirumalai, D

    2011-12-21

    Globally RNA folding occurs in multiple stages involving chain compaction and subsequent rearrangement by a number of parallel routes to the folded state. However, the sequence-dependent details of the folding pathways and the link between collapse and folding are poorly understood. To obtain a comprehensive picture of the thermodynamics and folding kinetics we used molecular simulations of coarse-grained model of a pseudoknot found in the conserved core domain of the human telomerase (hTR) by varying both temperature (T) and ion concentration (C). The phase diagram in the [T,C] plane shows that the boundary separating the folded and unfolded state for the finite 47-nucleotide system is relatively sharp, implying that from a thermodynamic perspective hTR behaves as an apparent two-state system. However, the folding kinetics following single C-jump or T-quench is complicated, involving multiple channels to the native state. Although globally folding kinetics triggered by T-quench and C-jump are similar, the kinetics of chain compaction are vastly different, which reflects the role of initial conditions in directing folding and collapse. Remarkably, even after substantial reduction in the overall size of hTR, the ensemble of compact conformations are far from being nativelike, suggesting that the search for the folded state occurs among the ensemble of low-energy fluidlike globules. The rate of unfolding, which occurs in a single step, is faster upon C-decrease compared to a jump in temperature. To identify "hidden" states that are visited during the folding process we performed simulations by periodically interrupting the approach to the folded state by lowering C. These simulations show that hTR reaches the folded state through a small number of connected clusters that are repeatedly visited during the pulse sequence in which the folding or unfolding is interrupted. The results from interrupted folding simulations, which are in accord with non-equilibrium single-molecule folding of a large ribozyme, show that multiple probes are needed to reveal the invisible states that are sampled by RNA as it folds. Although we have illustrated the complexity of RNA folding using hTR as a case study, general arguments and qualitative comparisons to time-resolved scattering experiments on Azoarcus group I ribozyme and single-molecule non-equilibrium periodic ion-jump experiments establish the generality of our findings. © 2011 American Chemical Society

  12. Moving Museum Experiences

    ERIC Educational Resources Information Center

    Weisberg, Shelley Kruger

    2011-01-01

    As Howard Gardner persuasively argued, movement, or kinesthetics, can be a powerful educational tool and one to which some learners are particularly attuned. Museums, however, are typically places that discourage movement (don't run, don't jump, watch out for the artifacts). This makes incorporating kinesthetic learning challenging. This article…

  13. Random walk with memory enhancement and decay

    NASA Astrophysics Data System (ADS)

    Tan, Zhi-Jie; Zou, Xian-Wu; Huang, Sheng-You; Zhang, Wei; Jin, Zhun-Zhi

    2002-04-01

    A model of random walk with memory enhancement and decay was presented on the basis of the characteristics of the biological intelligent walks. In this model, the movement of the walker is determined by the difference between the remaining information at the jumping-out site and jumping-in site. The amount of the memory information si(t) at a site i is enhanced with the increment of visiting times to that site, and decays with time t by the rate e-βt, where β is the memory decay exponent. When β=0, there exists a transition from Brownian motion (BM) to the compact growth of walking trajectory with the density of information energy u increasing. But for β>0, this transition does not appear and the walk with memory enhancement and decay can be considered as the BM of the mass center of the cluster composed of remembered sites in the late stage.

  14. Jumping translocation in a newborn boy with dup(4q) and severe hydrops fetalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duval, E.; Enden, A. van den; Vanhaesebrouck, P.

    We report on the unusual cytogenetic findings in a newborn boy with severe hydrops fetalis. He has a mosaic for 2 unbalanced chromosome rearrangements: a der(18)t(4;18)(q31;q23) and a der(18)t(4;18)(q31;p11). As a result, this patient had a duplication of 4q31-qter in cells, and was possibly monosomic for the distal ends of 18p and 18q, respectively in the 2 cell lines. Sine in both rearrangements the same chromosome 4 segment was translocated to 2 different chromosome regions, we consider the present finding as a peculiar type of jumping translocation. 32 refs., 3 figs., 1 tab.

  15. Time since maximum of Brownian motion and asymmetric Lévy processes

    NASA Astrophysics Data System (ADS)

    Martin, R. J.; Kearney, M. J.

    2018-07-01

    Motivated by recent studies of record statistics in relation to strongly correlated time series, we consider explicitly the drawdown time of a Lévy process, which is defined as the time since it last achieved its running maximum when observed over a fixed time period . We show that the density function of this drawdown time, in the case of a completely asymmetric jump process, may be factored as a function of t multiplied by a function of T  ‑  t. This extends a known result for the case of pure Brownian motion. We state the factors explicitly for the cases of exponential down-jumps with drift, and for the downward inverse Gaussian Lévy process with drift.

  16. DCM-related tropomyosin mutants E40K/E54K over-inhibit the actomyosin interaction and lead to a decrease in the number of cycling cross-bridges.

    PubMed

    Bai, Fan; Groth, Heather L; Kawai, Masataka

    2012-01-01

    Two DCM mutants (E40K and E54K) of tropomyosin (Tm) were examined using the thin-filament extraction/reconstitu-tion technique. The effects of the Ca²⁺, ATP, phos-phate (Pi), and ADP concentrations on isometric tension and its transients were studied at 25°C, and the results were com-pared to those for the WT protein. Our results indicate that both E40K and E54K have a significantly lower T(HC) (high Ca²⁺ ten-sion at pCa 4.66) (E40K: 1.21±0.06 T(a), ±SEM, N = 34; E54K: 1.24±0.07 T(a), N = 28), a significantly lower T(LC) (low- Ca²⁺ tension at pCa 7.0) (E40K: 0.07±0.02 T(a), N = 34; E54K: 0.06±0.02 T(a), N = 28), and a significantly lower T(act) (Ca²⁺ activatable tension) (T(act) = T(HC)-T(LC,) E40K: 1.15±0.08 T(a), N = 34; E54K: 1.18±0.06 T(a), N = 28) than WT (T(HC) = 1.53±0.07 T(a), T(LC) = 0.12±0.01 T(a), T(act) = 1.40±0.07 T(a), N = 25). All tensions were normalized to T(a) ( = 13.9±0.8 kPa, N = 57), the ten-sion of actin-filament reconstituted cardiac fibers (myocardium) under the standard activating conditions. The Ca²⁺ sensitivity (pCa₅₀) of E40K (5.23±0.02, N = 34) and E54K (5.24±0.03, N = 28) was similar to that of the WT protein (5.26±0.03, N = 25). The cooper-a-tivity increased significantly in E54K (3.73±0.25, N = 28) compared to WT (2.80±0.17, N = 25). Seven kinetic constants were deduced using sinusoidal analysis at pCa 4.66. These results enabled us to calculate the cross-bridge distribution in the strongly attached states, and thereby deduce the force/cross-bridge. The results indicate that the force/cross-bridge is ∼15% less in E54K than WT, but remains similar to that of the WT protein in the case of E40K. We conclude that over-inhibition of the actomyosin interaction by E40K and E54K Tm mutants leads to a decreased force-generating ability at systole, which is the main mechanism underlying the early pathogenesis of DCM.

  17. Surface Tension of Liquid Alkali, Alkaline, and Main Group Metals: Theoretical Treatment and Relationship Investigations

    NASA Astrophysics Data System (ADS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-09-01

    An improved theoretical method for calculating the surface tension of liquid metals is proposed. A recently derived equation that allows an accurate estimate of surface tension to be made for the large number of elements, based on statistical thermodynamics, is used for a means of calculating reliable values for the surface tension of pure liquid alkali, alkaline earth, and main group metals at the melting point, In order to increase the validity of the model, the surface tension of liquid lithium was calculated in the temperature range 454 K to 1300 K (181 °C to 1027 °C), where the calculated surface tension values follow a straight line behavior given by γ = 441 - 0.15 (T-Tm) (mJ m-2). The calculated surface excess entropy of liquid Li (- dγ/ dT) was found to be 0.15 mJ m-2 K-1, which agrees well with the reported experimental value (0.147 mJ/m2 K). Moreover, the relations of the calculated surface tension of alkali metals to atomic radius, heat of fusion, and specific heat capacity are described. The results are in excellent agreement with the existing experimental data.

  18. Tension-type headache: one or more headaches?

    PubMed Central

    Sjaastad, Ottar

    Summary In this context, the focus will be on the homogeneity of tension-type headache (T-TH): is it a disease? Or: is it more likely to be a syndrome? A multiplicity of disorders from as drastically different fields of medicine as disorders caused by environmental gases, intra-psychic conflicts, and nuchal/cervical disorders can putatively fake T-TH. T-TH is in all probability a conglomerate of disorders and not one solid, homogeneous disorder. PMID:22152438

  19. Validity of the Jump-and-Reach Test in Subelite Adolescent Handball Players.

    PubMed

    Muehlbauer, Thomas; Pabst, Jan; Granacher, Urs; Büsch, Dirk

    2017-05-01

    Muehlbauer, T, Pabst, J, Granacher, U, and Büsch, D. Validity of the jump-and-reach test in subelite adolescent handball players. J Strength Cond Res 31(5): 1282-1289, 2017-The primary purpose of this study was to examine concurrent validity of the jump-and-reach (JaR) test using the Vertec system and a criterion device (i.e., Optojump system). In separate subanalyses, we investigated the influence of gym floor condition and athletes' sex on the validity of vertical jump height. Four hundred forty subelite adolescent female (n = 222, mean age: 14 ± 1 year, age range: 13-15 years) and male (n = 218, mean age: 15 ± 1 year, age range: 14-16 years) handball players performed the JaR test in gyms with region or point elastic floors. Maximal vertical jump height was simultaneously assessed using the Vertec and the Optojump systems. In general, significantly higher jump heights were obtained for the Vertec compared with the Optojump system (11.2 cm, Δ31%, Cohen's d = 2.58). The subanalyses revealed significantly larger jump heights for the Vertec compared with the Optojump system irrespective of gym floor condition and players' sex. The association between Optojump- and Vertec-derived vertical jump heights amounted to rP = 0.84, with a coefficient of determination (R) of 0.71. The subanalyses indicated significantly larger correlations in males (rP = 0.75, R = 0.56) than in females (rP = 0.63, R = 0.40). Yet, correlations were not significantly different between region (rP = 0.83, R = 0.69) as opposed to point elastic floor (rP = 0.87, R = 0.76). Our findings indicate that the 2 apparatuses cannot be used interchangeably. Consequently, gym floor and sex-specific regression equations were provided to estimate true (Optojump system) vertical jump height from Vertec-derived data.

  20. Lower- extremity biomechanics and maintenance of vertical-jump height during prolonged intermittent exercise.

    PubMed

    Schmitz, Randy J; Cone, John C; Copple, Timothy J; Henson, Robert A; Shultz, Sandra J

    2014-11-01

    Potential biomechanical compensations allowing for maintenance of maximal explosive performance during prolonged intermittent exercise, with respect to the corresponding rise in injury rates during the later stages of exercise or competition, are relatively unknown. To identify lower-extremity countermovement-jump (CMJ) biomechanical factors using a principal-components approach and then examine how these factors changed during a 90-min intermittent-exercise protocol (IEP) while maintaining maximal jump height. Mixed-model design. Laboratory. Fifty-nine intermittent-sport athletes (30 male, 29 female) participated in experimental and control conditions. Before and after a dynamic warm-up and every 15 min during the 1st and 2nd halves of an individually prescribed 90-min IEP, participants were assessed on rating of perceived exertion, sprint/cut speed, and 3-dimensional CMJ biomechanics (experimental). On a separate day, the same measures were obtained every 15 min during 90 min of quiet rest (control). Univariate piecewise growth models analyzed progressive changes in CMJ performance and biomechanical factors extracted from a principal-components analysis of the individual biomechanical dependent variables. While CMJ height was maintained during the 1st and 2nd halves, the body descended less and knee kinetic and energetic magnitudes decreased as the IEP progressed. The results indicate that vertical-jump performance is maintained along with progressive biomechanical changes commonly associated with decreased performance. A better understanding of lower-extremity biomechanics during explosive actions in response to IEP allows us to further develop and individualize performance training programs.

  1. Relationship between ACTN3 R577X polymorphism and maximal power output in elite Polish athletes.

    PubMed

    Orysiak, Joanna; Busko, Krzysztof; Michalski, Radoslaw; Mazur-Różycka, Joanna; Gajewski, Jan; Malczewska-Lenczowska, Jadwiga; Sitkowski, Dariusz; Pokrywka, Andrzej

    2014-01-01

    The main purpose of this study was to examine the association between ACTN3 R577X polymorphism and the ability to produce peak power in young male athletes from various sports. Our hypothesis was that the ACTN3 R577X polymorphism is associated with jumping performance and athletes with RR genotype have better scores in tests than athletes with XX or RX genotype independently of the sport discipline. Two hundred young Polish male participants representing different disciplines were recruited for this study. Genotyping for ACTN3 gene was performed using polymerase chain reaction. The power output of lower extremities and the height of rise of the body mass center during vertical jumps were measured on a force plate. The genotype distribution of the ACTN3 gene did not differ significantly between groups of athletes. The significant difference in height of counter-movement jump was found between athletes with RR and XX genotype (0.446±0.049m vs. 0.421±0.036m, respectively, P=0.026). The ACTN3 RR genotype was associated with greater muscle power and height of jump in young male athletes. These results suggest that the ACTN3 gene may play a significant role in determining muscle phenotypes. However, this gene is only one of many factors which could contribute to athletes' performance and muscle phenotypes. Copyright © 2014 Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Changes in Drop-Jump Landing Biomechanics During Prolonged Intermittent Exercise

    PubMed Central

    Schmitz, Randy J.; Cone, John C.; Tritsch, Amanda J.; Pye, Michele L.; Montgomery, Melissa M.; Henson, Robert A.; Shultz, Sandra J.

    2014-01-01

    Background: As injury rates rise in the later stages of sporting activities, a better understanding of lower extremity biomechanics in the later phases of gamelike situations may improve training and injury prevention programs. Hypothesis: Lower extremity biomechanics of a drop-jump task (extracted from a principal components analysis) would reveal factors associated with risk of anterior cruciate ligament injury during a 90-minute individualized intermittent exercise protocol (IEP) and for 1 hour following the IEP. Study Design: Controlled laboratory study. Level of Evidence: Level 4. Methods: Fifty-nine athletes (29 women, 30 men) completed 3 sessions. The first session assessed fitness for an IEP designed to simulate the demands of a soccer match. An experimental session assessed drop-jump biomechanics, after a dynamic warm-up, every 15 minutes during the 90-minute IEP, and for 1 hour following the IEP. A control session with no exercise assessed drop-jump performance at the same intervals. Results: Two biomechanical factors early in the first half (hip flexion at initial contact and hip loading; ankle loading and knee shear force) decreased at the end of the IEP and into the 60-minute recovery period, while a third factor (knee loading) decreased only during the recovery period (P ≤ 0.05). Conclusion: The individualized sport-specific IEP may have more subtle effects on landing biomechanics when compared with short-term, exhaustive fatigue protocols. Clinical Relevance: Potentially injurious landing biomechanics may not occur until the later stages of soccer activity. PMID:24587862

  3. Cerebral blood flow response to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kern, F.H.; Ungerleider, R.M.; Quill, T.J.

    1991-04-01

    We examined the relationship of changes in partial pressure of carbon dioxide on cerebral blood flow responsiveness in 20 pediatric patients undergoing hypothermic cardiopulmonary bypass. Cerebral blood flow was measured during steady-state hypothermic cardiopulmonary bypass with the use of xenon 133 clearance methodology at two different arterial carbon dioxide tensions. During these measurements there was no significant change in mean arterial pressure, nasopharyngeal temperature, pump flow rate, or hematocrit value. Cerebral blood flow was found to be significantly greater at higher arterial carbon dioxide tensions (p less than 0.01), so that for every millimeter of mercury rise in arterial carbonmore » dioxide tension there was a 1.2 ml.100 gm-1.min-1 increase in cerebral blood flow. Two factors, deep hypothermia (18 degrees to 22 degrees C) and reduced age (less than 1 year), diminished the effect carbon dioxide had on cerebral blood flow responsiveness but did not eliminate it. We conclude that cerebral blood flow remains responsive to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in infants and children; that is, increasing arterial carbon dioxide tension will independently increase cerebral blood flow.« less

  4. Numerical simulation of fluid flow and heat transfer in a thin liquid film over a stationary and rotating disk and comparison with experimental data

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1990-01-01

    In the first section, improvements in the theoretical model and computational procedure for the prediction of film height and heat-transfer coefficient of the free surface flow of a radially-spreading thin liquid film adjacent to a flat horizontal surface of finite extent are presented. Flows in the presence and absence of gravity are considered. Theoretical results are compared to available experimental data with good agreement. In the presence of gravity, a hydraulic jump is present, isolating the flow into two regimes: supercritical upstream from the jump and subcritical downstream of it. In this situation, the effects of surface tension are important near the outer edge of the disk where the fluid experiences a free fall. A region of flow separation is present just downstream of the jump. In the absence of gravity, no hydraulic jump or separated flow region is present. The variation of the heat-transfer coefficient for flows in the presence and absence of gravity are also presented. In the second section, the results of a numerical simulation of the flow field and associated heat transfer coefficients are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation was performed for different flow rates and rotational velocities using a 3-D boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an iterative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow is found to be dominated by inertia near the entrance and close to the free surface and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhances the heat transfer coefficient by a significant amount.

  5. Effects of gravity in folding

    NASA Astrophysics Data System (ADS)

    Minkel, Donald Howe

    Effects of gravity on buckle folding are studied using a Newtonian fluid finite element model of a single layer embedded between two thicker less viscous layers. The methods allow arbitrary density jumps, surface tension coefficients, resistance to slip at the interfaces, and tracking of fold growth to a large amplitudes. When density increases downward in two equal jumps, a layer buckles less and thickens more than with uniform density. When density increases upward in two equal jumps, it buckles more and thickens less. A low density layer with periodic thickness variations buckles more, sometimes explosively. Thickness variations form, even if not present initially. These effects are greater with; smaller viscosities, larger density jump, larger length scale, and slower shortening rate. They also depend on wavelength and amplitude, and these dependencies are described in detail. The model is applied to the explosive growth of the salt anticlines of the Paradox Basin, Colorado and Utah. There, shale (higher density) overlies salt (lower density). Methods for simulating realistic earth surface erosion and deposition conditions are introduced. Growth rates increase both with ease of slip at the salt-shale interface, and when earth surface relief stays low due to erosion and deposition. Model anticlines grow explosively, attaining growth rates and amplitudes close to those of the field examples. Fastest growing wavelengths are the same as seen in the field. It is concluded that a combination of partial-slip at the salt-shale interface, with reasonable earth surface conditions, promotes sufficiently fast buckling of the salt-shale interface due to density inversion alone. Neither basement faulting, nor tectonic shortening is required to account for the observed structures. Of fundamental importance is the strong tendency of gravity to promote buckling in low density layers with thickness variations. These develop, even if not present initially.

  6. STATIC STRETCHING DOES NOT REDUCE VARIABILITY, JUMP AND SPEED PERFORMANCE.

    PubMed

    de Oliveira, Fábio Carlos Lucas; Rama, Luís Manuel Pinto Lopes

    2016-04-01

    Stretching is often part of the warm-up routine prior to athletic participation; however, controversial evidence exists on the effects of stretching on countermovement jump (CMJ) and sprint performance. Additionally, analysis of variability between repeated tasks is useful for monitoring players, to analyze factors that could affect the performance, and to guide clinical decisions for training strategies. The purpose of this study was to examine whether static stretching (SS) prior to CMJ and 20-meter (20-m) sprint would affect performance, and to investigate whether SS affects an athlete's ability to perform these tasks consistently. Twenty-two trained healthy athletes (23.2 ± 5.0 years) attended, randomly, two testing sessions, separated by 48 hours. At session one, all participants underwent 10 minutes of dynamic running warm-up followed by the experimental tasks (three CMJ and three 20-m sprint), whereas five minutes of stretching was added after the warm-up routine at session two. All participants performed the same experimental tasks in both sessions. The stretching protocol consisted of five stretching exercises for each lower limb. The paired-samples t-test revealed no significant differences between the stretching protocol condition and no stretching condition for the 20-m sprint (t(21)=.920; p=.368) and CMJ (t(21)=.709; p=.486). There were no significant differences in trial-by-trial variability on 20-m sprint (t(21)=1.934; p=.067) and CMJ scores (t(21)=.793; p=.437) as result of SS. The SS protocol did not modify jumping and running ability in trained healthy athletes. The SS prior to training or competition may not cause detrimental effects to athletic performance. Level III, Nonrandomized controlled trial.

  7. STATIC STRETCHING DOES NOT REDUCE VARIABILITY, JUMP AND SPEED PERFORMANCE

    PubMed Central

    Rama, Luís Manuel Pinto Lopes

    2016-01-01

    Background Stretching is often part of the warm-up routine prior to athletic participation; however, controversial evidence exists on the effects of stretching on countermovement jump (CMJ) and sprint performance. Additionally, analysis of variability between repeated tasks is useful for monitoring players, to analyze factors that could affect the performance, and to guide clinical decisions for training strategies. Purpose The purpose of this study was to examine whether static stretching (SS) prior to CMJ and 20-meter (20-m) sprint would affect performance, and to investigate whether SS affects an athlete's ability to perform these tasks consistently. Methods Twenty-two trained healthy athletes (23.2 ± 5.0 years) attended, randomly, two testing sessions, separated by 48 hours. At session one, all participants underwent 10 minutes of dynamic running warm-up followed by the experimental tasks (three CMJ and three 20-m sprint), whereas five minutes of stretching was added after the warm-up routine at session two. All participants performed the same experimental tasks in both sessions. The stretching protocol consisted of five stretching exercises for each lower limb. Results The paired-samples t-test revealed no significant differences between the stretching protocol condition and no stretching condition for the 20-m sprint (t(21)=.920; p=.368) and CMJ (t(21)=.709; p=.486). There were no significant differences in trial-by-trial variability on 20-m sprint (t(21)=1.934; p=.067) and CMJ scores (t(21)=.793; p=.437) as result of SS. Conclusion The SS protocol did not modify jumping and running ability in trained healthy athletes. The SS prior to training or competition may not cause detrimental effects to athletic performance. Level of evidence Level III, Nonrandomized controlled trial. PMID:27104057

  8. Comparison of muscle/lean mass measurement methods: correlation with functional and biochemical testing.

    PubMed

    Buehring, B; Siglinsky, E; Krueger, D; Evans, W; Hellerstein, M; Yamada, Y; Binkley, N

    2018-03-01

    DXA-measured lean mass is often used to assess muscle mass but has limitations. Thus, we compared DXA lean mass with two novel methods-bioelectric impedance spectroscopy and creatine (methyl-d3) dilution. The examined methodologies did not measure lean mass similarly and the correlation with muscle biomarkers/function varied. Muscle function tests predict adverse health outcomes better than lean mass measurement. This may reflect limitations of current mass measurement methods. Newer approaches, e.g., bioelectric impedance spectroscopy (BIS) and creatine (methyl-d3) dilution (D3-C), may more accurately assess muscle mass. We hypothesized that BIS and D3-C measured muscle mass would better correlate with function and bone/muscle biomarkers than DXA measured lean mass. Evaluations of muscle/lean mass, function, and serum biomarkers were obtained in older community-dwelling adults. Mass was assessed by DXA, BIS, and orally administered D3-C. Grip strength, timed up and go, and jump power were examined. Potential muscle/bone serum biomarkers were measured. Mass measurements were compared with functional and serum data using regression analyses; differences between techniques were determined by paired t tests. Mean (SD) age of the 112 (89F/23M) participants was 80.6 (6.0) years. The lean/muscle mass assessments were correlated (.57-.88) but differed (p < 0.0001) from one another with DXA total body less head being highest at 37.8 (7.3) kg, D3-C muscle mass at 21.1 (4.6) kg, and BIS total body intracellular water at 17.4 (3.5) kg. All mass assessment methods correlated with grip strength and jump power (R = 0.35-0.63, p < 0.0002), but not with gait speed or repeat chair rise. Lean mass measures were unrelated to the serum biomarkers measured. These three methodologies do not similarly measure muscle/lean mass and should not be viewed as being equivalent. Functional tests assessing maximal muscle strength/power (grip strength and jump power) correlated with all mass measures whereas gait speed was not. None of the selected serum measures correlated with mass. Efforts to optimize muscle mass assessment and identify their relationships with health outcomes are needed.

  9. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL

    NASA Technical Reports Server (NTRS)

    Sukharev, S. I.; Sigurdson, W. J.; Kung, C.; Sachs, F.

    1999-01-01

    MscL is multimeric protein that forms a large conductance mechanosensitive channel in the inner membrane of Escherichia coli. Since MscL is gated by tension transmitted through the lipid bilayer, we have been able to measure its gating parameters as a function of absolute tension. Using purified MscL reconstituted in liposomes, we recorded single channel currents and varied the pressure gradient (P) to vary the tension (T). The tension was calculated from P and the radius of curvature was obtained using video microscopy of the patch. The probability of being open (Po) has a steep sigmoidal dependence on T, with a midpoint (T1/2) of 11.8 dyn/cm. The maximal slope sensitivity of Po/Pc was 0.63 dyn/cm per e-fold. Assuming a Boltzmann distribution, the energy difference between the closed and fully open states in the unstressed membrane was DeltaE = 18.6 kBT. If the mechanosensitivity arises from tension acting on a change of in-plane area (DeltaA), the free energy, TDeltaA, would correspond to DeltaA = 6.5 nm2. MscL is not a binary channel, but has four conducting states and a closed state. Most transition rates are independent of tension, but the rate-limiting step to opening is the transition between the closed state and the lowest conductance substate. This transition thus involves the greatest DeltaA. When summed over all transitions, the in-plane area change from closed to fully open was 6 nm2, agreeing with the value obtained in the two-state analysis. Assuming a cylindrical channel, the dimensions of the (fully open) pore were comparable to DeltaA. Thus, the tension dependence of channel gating is primarily one of increasing the external channel area to accommodate the pore of the smallest conducting state. The higher conducting states appear to involve conformational changes internal to the channel that don't involve changes in area.

  10. Mechanical properties of dissimilar metal joints composed of DP 980 steel and AA 7075-T6

    DOE PAGES

    Squires, Lile; Lim, Yong Chae; Miles, Michael; ...

    2015-03-18

    In this study, a solid state joining process, called friction bit joining, was used to spot weld aluminium alloy 7075-T6 to dual phase 980 steel. Lap shear failure loads for specimens without adhesive averaged ~10kN, while cross-tension specimens averaged 2·8 kN. Addition of adhesive with a thickness up to 500 μm provided a gain of ~50% to lap shear failure loads, while a much thinner layer of adhesive increased cross-tension failure loads by 20%. Microstructures of the welds were martensitic, but the hardness of the joining bit portion was greater than that of the DP 980, owing to its highermore » alloy content. Softening in the heat affected zone of a welded joint appeared to be relatively small, though it was enough to cause nugget pullout failures in some lap shear tension specimens. Finally, other failures in lap shear tension were interfacial, while all of the failures in cross-tension were interfacial.« less

  11. Different loading schemes in power training during the preseason promote similar performance improvements in Brazilian elite soccer players.

    PubMed

    Loturco, Irineu; Ugrinowitsch, Carlos; Tricoli, Valmor; Pivetti, Bruno; Roschel, Hamilton

    2013-07-01

    The present study investigated the effects of 2 different power training loading schemes in Brazilian elite soccer players. Thirty-two players participated in the study. Maximum dynamic strength (1RM) was evaluated before (B), at midpoint (i.e., after 3 weeks; T1), and after 6 weeks (T2) of a preseason strength/power training. Muscle power, jumping, and sprinting performance were evaluated at B and T2. Players were randomly allocated to 1 of 2 training groups: velocity-based (VEL: n = 16; age, 19.18 ± 0.72 years; height, 173 ± 6 cm; body mass, 72.7 ± 5.8 kg) or intensity-based (INT: n = 16; age, 19.11 ± 0.7 years; height, 172 ± 4.5 cm; body mass, 71.8 ± 4.6 kg). After the individual determination of the optimal power load, both groups completed a 3-week traditional strength training period. Afterward, the VEL group performed 3 weeks of power-oriented training with increasing velocity and decreasing intensity (from 60 to 30% 1RM) throughout the training period, whereas the INT group increased the training intensity (from 30 to 60% 1RM) and thus decreased movement velocity throughout the power-oriented training period. Both groups used loads within ±15% (ranging from 30 to 60% 1RM) of the measured optimal power load (i.e., 45.2 ± 3.0% 1RM). Similar 1RM gains were observed in both groups at T1 (VEL: 9.2%; INT: 11.0%) and T2 (VEL: 19.8%; INT: 22.1%). The 2 groups also presented significant improvements (within-group comparisons) in all of the variables. However, no between-group differences were detected. Mean power in the back squat (VEL: 18.5%; INT: 20.4%) and mean propulsive power in the jump squat (VEL: 29.1%; INT: 31.0%) were similarly improved at T2. The 10-m sprint (VEL: -4.3%; INT: -1.6%), jump squat (VEL: 7.1%; INT: 4.5%), and countermovement jump (VEL: 6.7%; INT: 6.9%) were also improved in both groups at T2. Curiously, the 30-m sprint time (VEL: -0.8%; INT: -0.1%) did not significantly improve for both groups. In summary, our data suggest that male professional soccer players can achieve improvements in strength- and power-related abilities as a result of 6 weeks of power-oriented training during the preseason. Furthermore, similar performance improvements are observed when training intensity manipulation occurs around only a small range within the optimal power training load.

  12. Evolution of fine scale segmentation at intermediate ridges: example of Alarcon Rise and Endeavour Segment.

    NASA Astrophysics Data System (ADS)

    Le Saout, M.; Clague, D. A.; Paduan, J. B.; Caress, D. W.

    2016-12-01

    Mid-ocean ridges are marked by a segmentation of the axis and underlying magmatic system. Fine-scale segmentation is mainly studied along fast spreading ridges. Here we analyze the evolution of the 3rd and 4th order segmentation along two intermediate spreading centers, characterized by contrasting morphologies. Alarcon Rise, with a full spreading rate of 49 mm/yr, is characterized by an axial high and a relatively narrow axial summit trough. Endeavour segment has a spreading rate of 52.5 mm/yr and is represented by a wide axial valley affected by numerous faults. These two ridges are characterized by high and low volcanic periods, respectively. The segmentation is analyzed using high-resolution bathymetric cross-sections perpendicular to the axes. These profiles are 1200-m-long for Alarcon Rise and 2400-m-long at Endeavour Segment and are 100 m apart. The discontinuity order is based on variations, from either side of each offset, in: 1/the geometry and orientation of the axial summit trough or graben 2/ the lava morphology, and 3/ the distribution of hydrothermal vents. Alarcon Rise is marked by a recent southeast jump in volcanic activity. The comparison between actual and previous segmentation reveals a rapid evolution of the 3rd order segmentation in the most active part of the ridge, with a lengthening of the central 3rd segment of 8 km over 3-4 ky. However, no relation is observed in the 4th order segmentation before and after the axis jump. Along Endeavour, traces of the previous 3rd order discontinuities are still perceptible on the walls of the graben. This 3rd order segmentation has persisted at least during the last 4.5 ky. Indeed, it is visible in the distribution of the recent hydrothermal vents observed in the axial valley as well as in the segmentation of the axial magma lens. Analysis of the two ridges suggests that small-scale segmentation varies primarily during high magmatic phases.

  13. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.

    PubMed

    Li, GuanQiu; Alhosani, Mohamed H; Yuan, ShaoJun; Liu, HaoRan; Ghaferi, Amal Al; Zhang, TieJun

    2014-12-09

    Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation. By conducting systematic surface characterization and in situ environmental scanning electron microscope (ESEM) condensation experiments, we were able to probe the microscopic formation physics of droplets on irregular nanostructured surfaces. At the early stages of condensation process, the interfacial surface tensions at the edge of CuO nanoneedles were found to influence both the local energy barriers for microdroplet growth and the advancing contact angles when droplets undergo depinning. Local surface roughness also has a significant impact on the volume of the condensate within the nanostructures and overall heat transfer from the vapor to substrate. Both our theoretical analysis and in situ ESEM experiments have revealed that the liquid condensate within the nanostructures determines the amount of the work of adhesion and kinetic energy associated with droplet coalescence and jumping. Local and global droplet growth models were also proposed to predict how the microdroplet morphology within nanostructures affects the heat transfer performance of early-stage condensation. Our quantitative analysis of microdroplet formation and growth within irregular nanostructures provides the insight to guide the anodization-based nanofabrication for enhancing dropwise and jumping-droplet condensation performance.

  14. Bilateral differences in muscle fascicle architecture are not related to the preferred leg in jumping athletes.

    PubMed

    Aeles, Jeroen; Lenchant, Sietske; Vanlommel, Liesbeth; Vanwanseele, Benedicte

    2017-07-01

    In many sports, athletes have a preferred leg for sport-specific tasks, such as jumping, which leads to strength differences between both legs, yet the underlying changes in force-generating mechanical properties of the muscle remain unknown. The purpose of this study was to investigate whether the muscle architecture of the medial gastrocnemius (MG) is different between both legs in well-trained jumping athletes and untrained individuals. In addition, we investigated the effect of two ankle joint positions on ultrasound muscle architecture measurements. Muscle architecture of both legs was measured in 16 athletes and 11 untrained individuals at two ankle joint angles: one with the ankle joint in a tendon slack length (TSL) angle and one in a 90° angle. Fascicle lengths and pennation angles at TSL were not different between the preferred and non-preferred legs in either group. The comparison between groups showed no difference in fascicle length, but greater pennation angles were found in the athletes (21.7° ± 0.5°) compared to the untrained individuals (19.8° ± 0.6°). Analyses of the muscle architecture at a 90° angle yielded different results, mainly in the comparison between groups. These results provide only partial support for the notion of training-induced changes in muscle architecture as only differences in pennation angles were found between athletes and untrained individuals. Furthermore, our results provide support to the recommendation to take into account the tension-length relationship and to measure muscle architecture at individually determined tendon slack joint angles.

  15. Physical Performance Comparison between Under 15 Elite and Sub-Elite Soccer Players

    PubMed Central

    Trecroci, Athos; Milanović, Zoran; Frontini, Matteo; Iaia, F. Marcello; Alberti, Giampietro

    2018-01-01

    Abstract The aim of this study was to compare the physical performance profile among young soccer players of different competitive levels. Two teams of elite (n = 22) and sub-elite (n = 22) soccer players at national (highly skilled) and regional (moderately skilled) level were recruited in the study. All participants were tested using a modified Illinois change of direction speed test, a T-drill with and without a ball, a countermovement jump, and a 10-m sprint. The analysis revealed significant differences in favor of elite players in sprint (d = 1.54, large) and vertical jump (d = 2.03, very large) outcomes, while no differences were observed in both modified Illinois change of direction speed (d = 0.16, trivial) and T-drill (d = 0.20, small) tests between the groups. The ability to change direction and speed with and without a ball was found not to be suitable enough to highlight the difference among youth players with moderate-to-high level of play. In conclusion, multi-testing approach based on task-related power should include vertical jump and sprint performance to delineate players of a higher level. PMID:29599873

  16. World Population Crisis.

    ERIC Educational Resources Information Center

    Ehrlich, Paul R.; Ehrlich, Anne H.

    1986-01-01

    Rapid population growth, rising competition for resources, and increasing environmental deterioration are intertwined factors in the human predicament that feed political tensions and conflicts of the late twentieth century. Outlines dimensions of this predicament (including data on population, growth, military spending, quality of life, and…

  17. Modified Veress needle decompression of tension pneumothorax: a randomized crossover animal study.

    PubMed

    Lubin, Dafney; Tang, Andrew L; Friese, Randall S; Martin, Matthew; Green, D J; Jones, Trevor; Means, Russell R; Ginwalla, Rashna; O'Keeffe, Terence S; Joseph, Bellal A; Wynne, Julie L; Kulvatunyou, Narong; Vercruysse, Gary; Gries, Lynn; Rhee, Peter

    2013-12-01

    The current prehospital standard of care using a large bore intravenous catheter for tension pneumothorax (tPTX) decompression is associated with a high failure rate. We developed a modified Veress needle (mVN) for this condition. The purpose of this study was to evaluate the effectiveness and safety of the mVN as compared with a 14-gauge needle thoracostomy (NT) in a swine tPTX model. tPTX was created in 16 adult swine via thoracic CO2 insufflation to 15 mm Hg. After tension physiology was achieved, defined as a 50% reduction of cardiac output, the swine were randomized to undergo either mVN or NT decompression. Failure to restore 80% baseline systolic blood pressure within 5 minutes resulted in crossover to the alternate device. The success rate of each device, death, and need for crossover were analyzed using χ. Forty-three tension events were created in 16 swine (24 mVN, 19 NT) at 15 mm Hg of intrathoracic pressure with a mean CO2 volume of 3.8 L. tPTX resulted in a 48% decline of systolic blood pressure from baseline and 73% decline of cardiac output, and 42% had equalization of central venous pressure with pulmonary capillary wedge pressure. All tension events randomized to mVN were successfully rescued within a mean (SD) of 70 (86) seconds. NT resulted in four successful decompressions (21%) within a mean (SD) of 157 (96) seconds. Four swine (21%) died within 5 minutes of NT decompression. The persistent tension events where the swine survived past 5 minutes (11 of 19 NTs) underwent crossover mVN decompression, yielding 100% rescue. Neither the mVN nor the NT was associated with inadvertent injuries to the viscera. Thoracic insufflation produced a reliable and highly reproducible model of tPTX. The mVN is vastly superior to NT for effective and safe tPTX decompression and physiologic recovery. Further research should be invested in the mVN for device refinement and replacement of NT in the field.

  18. Muscular adaptations to depth jump plyometric training: Comparison of sand vs. land surface

    PubMed Central

    Arazi, Hamid; Mohammadi, Mahdi

    2014-01-01

    The purpose of this study was to compare the effects of plyometric training on sand vs. land surface on muscular performance adaptations in men. Fourteen healthy men were randomly assigned to two training groups: a) Sand Depth Jump (SDJ; N = 7) and b) Land Depth Jump (LDJ; N = 7). Training was performed for 6 weeks and consisted of 5 × 20 repetitions of DJ training on 20-cm dry sand or 3-cm hard court surface twice weekly. Vertical Jump Test (VJT), Standing Long Jump Test (SLJT), 20-m and 40-m sprint, T-test (TT) and one repetition maximum leg press (1RMLP) were performed before and after training. Significant improvements in VJT [4 (ES = 0.63) vs. 5.4 (ES = 0.85) cm], SLJT [8.3 (ES = 0.3) vs. 12.7 (ES = 0.57) cm], and 1RMLP [23.5 (ES = 0.56) vs. 15.3 (ES = 0.49) kg] were seen for both the groups. Likewise, significant decreases were observed for both SDJ and LDJ groups in 20-m [0.3 (ES = 0.72) vs. 0.4 (ES = 1.98) s] and 40-m sprint times [0.2 (ES = 0.4) vs. 0.5 (ES = 0.71) s], and TT [0.5 (ES = 0.62) vs. 0.9 (ES = 0.57) s]. With regard to ES, it can be recommended that athletes used LDJ training for enhancing sprint and jump and SDJ training for improving agility and strength. PMID:25243078

  19. Unusual superconducting behavior in HfV2Ga4

    NASA Astrophysics Data System (ADS)

    Santos, F. B.; Correa, L. E.; de Lima, B. S.; Cigarroa, O. V.; da Luz, M. S.; Grant, T.; Fisk, Z.; Machado, A. J. S.

    2018-04-01

    Bulk superconductivity in HfV2Ga4 with critical temperature close to 4.1 K was determined via magnetic susceptibility, electrical resistivity and specific heat measurements. Both the upper and lower critical field dependence with reduced temperature (T /Tc) exhibit non-conventional behavior. The electronic component of specific heat shows a double-jump, the first close to Tc and the other close to 0.75Tc. We speculate about the nature of the douple jump observed in specific heat considering two plausable scenarios: bulk inhomogeneities and the existence of a second gap.

  20. ASCAN Helms simulates parachute jump during VAFB training exercises

    NASA Image and Video Library

    1990-09-17

    S90-48372 (29-31 July 1990) --- Mission specialist astronaut candidate Susan J. Helms simulates a parachute jump during a survival training course at Vance Air Force Base. She is one of 23 astronaut candidates from the Johnson Space Center who have joined military personnel for the special three-day training course. The course is designed to prepare the trainees for proper survival measures to take in the event of an emergency aboard the T-38 jet trainer aircraft they will frequently use once they become full-fledged astronauts.

  1. Nonequilibrium Dynamics of Arbitrary-Range Ising Models with Decoherence: An Exact Analytic Solution

    DTIC Science & Technology

    2013-04-03

    spontaneous deexcitation, spontaneous excitation, and elastic dephasing, respectively (see Fig. 1). We refer to the spin-changing processes (σ̂±) as Raman ...Series of Raman flips of the spin on site j can be formally accounted for as a magnetic field of strength 2Jjk/N acting for a time τ upj − τ downj . In...2σ̂±j , all Rayleigh jumps can be evaluated at t = 0 (their commutation with Raman jumps only affects the overall sign of the wave function). To the

  2. Jumping performance differences among elite professional handball players with or without previous ACL reconstruction.

    PubMed

    Setuain, I; Millor, N; Alfaro, J; Gorostiaga, E; Izquierdo, M

    2015-10-01

    Handball is one of the most challenging sports for the knee joint. Persistent strength and jumping capacity alterations may be observed among athletes who have suffered anterior cruciate ligament (ACL) injury. The aim of this study was to examine unilateral and bilateral jumping ability differences between previously ACL-reconstructed rehabilitated elite handball athletes and sex, age and uninjured sport activity level-pairs of control players. It was a Cross-sectional study with one factor: previous ACL injury. We recruited 22 male (6 ACL-reconstructed and 16 uninjured control players) and 21 female (6 ACL-reconstructed and 15 uninjured control players) elite handball players who were evaluated 6.2±3.4 years after surgical ACL reconstruction. A battery of jump tests, including both bilateral and unilateral maneuvers, was performed. Two-tailed unpaired (intergroup comparison) and paired (intragroup comparison) t-tests were performed for mean comparisons. The P-value cut-off for significance was set at <0.05. The previously ACL-reconstructed female athletes showed a lower bilateral drop jump contact time (0.429±179.9 vs. 0.349±151 s, P<0.05) and less distance reached (3.820±0.54 vs. 4.428±0.44 m, P<0.05) in the unilateral triple hop for distance (UTHD) on their reconstructed leg compared with the dominant legs of the uninjured control athletes. No significant differences were observed for any other recorded variable. Among the male athletes, no significant differences between groups were found for the studied jumping variables. Previously ACL-reconstructed elite female handball athletes demonstrated both lower vertical bilateral drop jump (VBDJ) contact times and lower UTHD scores for the injured leg several years after injury. These deficits could contribute to an increase in ACL re-injury risk.

  3. The Influence of Minimalist Footwear on Knee and Ankle Load during Depth Jumping.

    PubMed

    Sinclair, J; Hobbs, S J; Selfe, J

    2015-01-01

    Plyometric training is used by athletes to promote strength and explosive power. However plyometric activities such as depth jumping are associated with a high incidence of injuries. This study examined the influence of minimalist and conventional footwear on the loads experienced by the patellofemoral joint and Achilles tendon. Patellofemoral and Achilles tendon forces were obtained from ten male participants using an eight-camera 3D motion capture system and force platform data as they completed depth jumps in both footwear conditions. Differences between footwear were calculated using paired t-tests. The results show that the minimalist footwear were associated with significantly lower patellofemoral contact force/pressure and also knee abduction moment. It is therefore recommended, based on these observations, that those who are susceptible to knee pain should consider minimalist footwear when performing plyometric training.

  4. Autonomous Control of Fluids in a Wide Surface Tension Range in Microfluidics.

    PubMed

    Ge, Peng; Wang, Shuli; Liu, Yongshun; Liu, Wendong; Yu, Nianzuo; Zhang, Jianglei; Shen, Huaizhong; Zhang, Junhu; Yang, Bai

    2017-07-25

    In this paper, we report the preparation of anisotropic wetting surfaces that could control various wetting behaviors of liquids in a wide surface tension range (from water to oil), which could be employed as a platform for controlling the flow of liquids in microfluidics (MFs). The anisotropic wetting surfaces are chemistry-asymmetric "Janus" silicon cylinder arrays, which are fabricated via selecting and regulating the functional groups on the surface of each cylinder unit. Liquids (in a wide surface tension range) wet in a unidirectional manner along the direction that was modified by the group with large surface energy. Through introducing the Janus structure into a T-shaped pattern and integrating it with an identical T-shaped poly(dimethylsiloxane) microchannel, the as-prepared chips can be utilized to perform as a surface tension admeasuring apparatus or a one-way valve for liquids in a wide surface tension range, even oil. Furthermore, because of the excellent ability in controlling the flowing behavior of liquids in a wide surface tension range in an open system or a microchannel, the anisotropic wetting surfaces are potential candidates to be applied both in open MFs and conventional MFs, which would broaden the application fields of MFs.

  5. The Origin of Molecular Clouds in Central Galaxies

    NASA Astrophysics Data System (ADS)

    Pulido, F. A.; McNamara, B. R.; Edge, A. C.; Hogan, M. T.; Vantyghem, A. N.; Russell, H. R.; Nulsen, P. E. J.; Babyk, I.; Salomé, P.

    2018-02-01

    We present an analysis of 55 central galaxies in clusters and groups with molecular gas masses and star formation rates lying between {10}8 {and} {10}11 {M}ȯ and 0.5 and 270 {M}ȯ {{yr}}-1, respectively. Molecular gas mass is correlated with star formation rate, Hα line luminosity, and central atmospheric gas density. Molecular gas is detected only when the central cooling time or entropy index of the hot atmosphere falls below ∼1 Gyr or ∼35 keV cm2, respectively, at a (resolved) radius of 10 kpc. These correlations indicate that the molecular gas condensed from hot atmospheres surrounding the central galaxies. We explore the origins of thermally unstable cooling by evaluating whether molecular gas becomes prevalent when the minimum of the cooling to free-fall time ratio ({t}{cool}/{t}{ff}) falls below ∼10. We find that (1) molecular gas-rich systems instead lie between 10< \\min ({t}{cool}/{t}{ff})< 25, where {t}{cool}/{t}{ff}=25 corresponds approximately to cooling time and entropy thresholds of 1 Gyr and 35 {keV} {{cm}}2, respectively; (2) \\min ({t}{cool}/{t}{ff}) is uncorrelated with molecular gas mass and jet power; and (3) the narrow range 10< \\min ({t}{cool}/{t}{ff})< 25 can be explained by an observational selection effect, although a real physical effect cannot be excluded. These results and the absence of isentropic cores in cluster atmospheres are in tension with models that assume thermal instability ensues from linear density perturbations in hot atmospheres when {t}{cool}/{t}{ff}≲ 10. Some of the molecular gas may instead have condensed from atmospheric gas lifted outward by buoyantly rising X-ray bubbles or by dynamically induced uplift (e.g., mergers, sloshing).

  6. Upper and lower limb functionality: are these compromised in obese children?

    PubMed

    Riddiford-Harland, Diane L; Steele, Julie R; Baur, Louise A

    2006-01-01

    The aim of this study was to investigate the effects of obesity on upper and lower limb functional strength and power in children, and to determine whether the ability to perform the daily activity of rising from a chair was compromised in obese children. It was hypothesised that obese children would display less upper and lower limb functionality compared to their non-obese counterparts. Upper and lower limb strength and power of 43 obese children (aged 8.4 +/- 0.5 y, BMI 24.1 +/- 2.3 kg/m(-2)) and 43 non-obese controls (aged 8.4 +/- 0.5 y, BMI 16.9 +/- 0.4 kg/m(-2)) were assessed using age-appropriate field-based tests: arm push/pull ability; basketball throw; vertical jump (VJ), and standing long jump (SLJ) performance. Functional lower limb strength was assessed for 13 obese and 13 non-obese children by quantifying their chair rising ability. Although obese children displayed significantly greater upper limb push (9.3 +/- 2.3 kg) and pull strength (9.6 +/- 3.0 kg) than their non-obese peers (push: 8.8 +/- 2.2 kg; pull: 8.8 +/- 2.3 kg; p < or = 0.05), their VJ (22.1 +/- 4.3 cm) and SLJ (94.6 +/- 12.8 cm) performance was significantly impaired relative to the non-obese children (VJ: 24.7 +/- 4.0 cm; SLJ: 101.7 +/- 14.0 cm; p < or = 0.05). Obese children spent significantly more time during all transfer phases of the chair rising task, compared to the non-obese children. Lower limb functionality in young obese children is impeded when they move their greater body mass against gravity.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muresan, Ioana Cristina; Balc, Roxana

    Beam-to-column end-plate bolted connections are usually used as moment-resistant connections in steel framed structures. For this joint type, the deformability is governed by the deformation capacity of the column flange and end-plate under tension and elongation of the bolts. All these elements around the beam tension flange form the tension region of the joint, which can be modeled by means of equivalent T-stubs. In this paper a beam-to-column end-plate bolted connection is substituted with a T-stub of appropriate effective length and it is analyzed using the commercially available finite element software ABAQUS. The performance of the model is validated bymore » comparing the behavior of the T-stub from the numerical simulation with the behavior of the connection as a whole. The moment-rotation curve of the T-stub obtained from the numerical simulation is compared with the behavior of the whole extended end-plate connection, obtained by numerical simulation, experimental tests and analytical approach.« less

  8. Measuring the force of punches using an accelerometric punching bag - Relationship between force of punches and power of jump - An example of application of the modern information technology in sport

    NASA Astrophysics Data System (ADS)

    Pilewska, Wiesława; Buśko, Krzysztof; Nikolaidis, Pantelis Theodoros

    2017-11-01

    The main aim of the study was to design a new system to measure punching forces in boxers. In addition, the study examined whether there were any relationship between force of punches and power of jump. A total of 9 boxers (age: 17.5±1.2 years, body height: 174.1±8.1 cm, body mass: 73.9±11.8 kg) participated in the study. The punching bag was equipped with acceleration transducers and gyroscopes embedded in a cylinder covered with a layer to absorb shock as well as a set of colour signal diodes. Value of the punching bag's acceleration was used for calculating: strike force; the punching location on the bag; and time of a strike. The relative error of force calculation was 3%; the relative error in acceleration measurement was less than 1%. The maximal straight of rear and lead punching forces were 1702.4±497.8 N and 1262.0±417.7 N in boxers, respectively. Strong correlations were found between the punching force and power of lower limbs developed for the ACMJ, CMJ and SPJ jump. Height of rise of the body mass centre and punching force correlated insignificantly. Based on these findings, it was concluded that the modified punching bag is a good diagnostic tool for combat sports. The measurement of power during the jump may be a good diagnostic test in boxers.

  9. Examination of Self-Myofascial Release vs. Instrument-Assisted Soft-Tissue Mobilization Techniques on Vertical and Horizontal Power in Recreational Athletes.

    PubMed

    Stroiney, Debra A; Mokris, Rebecca L; Hanna, Gary R; Ranney, John D

    2018-05-08

    Stroiney, DA, Mokris, RL, Hanna, GR, and Ranney, JD. Examination of self-myofascial release vs. instrument-assisted soft-tissue mobilization techniques on vertical and horizontal power in recreational athletes. J Strength Cond Res XX(X): 000-000, 2018-This study examined whether pre-exercise self-myofascial release (SMR) and instrument-assisted soft-tissue mobilization (IASTM) would improve performance on measures of vertical jump height and 40-yd sprint time. Differences in perceived pain levels were also examined. Forty-nine college students volunteered for the study and were randomly assigned to receive either IASTM via Tècnica Gavilàn PTB or SMR via The Stick before performance assessments. After the massage intervention, subjects rated their level of perceived pain using a visual analog scale. An independent t test was used to analyze differences in perceived pain levels between the 2 massage interventions. A 2 × 2 analyses of covariance analyzed differences between sex and the 2 massage interventions. There was no interaction (p > 0.05) between the massage intervention and sex for both the vertical jump and 40-yd sprint tests. There was a significant main effect for vertical jump and SMR (p = 0.04). Sex also had a significant main effect for both the vertical jump (p = 0.04) and the 40-yd sprint (p = 0.02). There were no significant differences between massage interventions for the 40-yd sprint times (p = 0.73). There were no significant differences in perceived pain (t(49) = -1.60, p > 0.05). The use of SMR before exercise may improve vertical jump height in recreational athletes. Pain should not be a factor when choosing massage interventions for athletes because IASTM was not perceived to be more painful than SMR. Self-myofascial release and IASTM did not enhance sprinting performance in this study.

  10. Kinematic and kinetic analyses of the toes in dance movements.

    PubMed

    Jarvis, Danielle N; Kulig, Kornelia

    2016-09-01

    Due to the significant amount of time dancers spend on the forefoot, loads on the metatarsophalangeal joints are likely high, yet vary between dance movements. The purpose of this study was to compare joint motion and net joint moments at the metatarsophalangeal joints during three different dance movements ranging in demands at the foot and ankle joints. Ten healthy, female dancers (27.6 ± 3.2 years; 56.3 ± 6.9 kg; 1.6 ± 0.1 m) with an average 21.7 ± 4.9 years of dance training performed relevés (rising up onto the toes), sautés (vertical bipedal jumps), and saut de chat leaps (split jumps involving both vertical and horizontal components). Metatarsophalangeal joint kinematics and kinetics in the sagittal plane were calculated. Total excursion and peak net joint moments during rising or push-off were compared between the three dance movements. Greater extension of the metatarsophalangeal joints was seen during relevés compared to sautés or saut de chat leaps, and the largest metatarsophalangeal net joint moments were seen during saut de chat leaps. The metatarsophalangeal joints frequently and repetitively manage external loads and substantial metatarsophalangeal extension during these three dance movements, which may contribute to the high rate of foot and ankle injuries in dancers.

  11. Re-examining the effects of verbal instructional type on early stage motor learning.

    PubMed

    Bobrownicki, Ray; MacPherson, Alan C; Coleman, Simon G S; Collins, Dave; Sproule, John

    2015-12-01

    The present study investigated the differential effects of analogy and explicit instructions on early stage motor learning and movement in a modified high jump task. Participants were randomly assigned to one of three experimental conditions: analogy, explicit light (reduced informational load), or traditional explicit (large informational load). During the two-day learning phase, participants learned a novel high jump technique based on the 'scissors' style using the instructions for their respective conditions. For the single-day testing phase, participants completed both a retention test and task-relevant pressure test, the latter of which featured a rising high-jump-bar pressure manipulation. Although analogy learners demonstrated slightly more efficient technique and reported fewer technical rules on average, the differences between the conditions were not statistically significant. There were, however, significant differences in joint variability with respect to instructional type, as variability was lowest for the analogy condition during both the learning and testing phases, and as a function of block, as joint variability decreased for all conditions during the learning phase. Findings suggest that reducing the informational volume of explicit instructions may mitigate the deleterious effects on performance previously associated with explicit learning in the literature. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. ABOUT the phenomenon produced by the successive jumps of the peripheric electrons, at the absorbtion of the intense photon beam by the metal

    NASA Astrophysics Data System (ADS)

    Isarie, Claudiu I.; Oprean, Constantin; Marginean, Ion; Nemes, Toderita; Isarie, Ilie V.; Bokor, Corina; Itu, Sorin

    2011-03-01

    When a photon beam is in impact with a metal, the peripheric electrons which belong to the bombarded material are made jumps, and in the same time, new photons are absorbed by electrons which had not time to come back to the fundamental levels. At a high level concentration of the radiant energy, a peripheral electron, could sequentially absorb more photons and could realize energetic jumps in succesive phase, equivalent with some photons of high energy which have wave-lenght smaller than the incidental photons. After some succesive photon absorbtion of the same electron, in the interval in which it is not activated by new photons, the electron comes back to the fundamental level and delivers the accumulated energy, in photons of higher energy, which have a lower energy than the incident beam. Comming back to the fundamental level, the electrons disturb the electronic cloud of the atom or ion they belong. After a huge number of such phenomenon the electronic cloud which is succesivelly disturbed, produces an oscillation which risez the temperature of the nucleus. The authors have studied the conditions which generated the rise of temperature and multiple radiations at the place where the photons bombard the metal.

  13. Physical Properties of AZ91D Measured Using the Draining Crucible Method: Effect of SF6

    NASA Astrophysics Data System (ADS)

    Roach, Steven J.; Henein, Hani

    2012-03-01

    The draining crucible (DC) technique was used for measurements on AZ91D under Ar and SF6. The DC technique is a new method developed to simultaneously measure the physical properties of fluids, the density, surface tension, and viscosity. Based on the relationship between the height of a metal in a crucible and the outgoing flow rate, a multi-variable regression is used to calculate the values of these fluid properties. Experiments performed with AZ91D at temperatures from 923 K to 1173 K indicate that under argon, the surface tension (N · m-1) and density (kg · m-3) are [0.63 - 2.13 × 10-4 ( T - T L)] and [1656 - 0.158 ( T - T L)], respectively. The viscosity (Pa · s) has been determined to be [1.455 × 10-3 - 1.209 × 10-5 ( T - T L)] over the temperature range from 921 K to 967 K superheat. Above 967 K, the viscosity of the alloy under argon seems to be constant at (2.66 × 10-4 ± 8.67 × 10-5) Pa · s. SF6 reduces the surface tension of AZ91D.

  14. How to grow great leaders.

    PubMed

    Ready, Douglas A

    2004-12-01

    Few leaders excel at both the unit and enterprise levels. More than ever, though, corporations need people capable of running business units, functions, or regions and focusing on broader company goals. It's up to organizations to develop leaders who can manage the inherent tensions between unit and enterprise priorities. Take the example of RBC Financial Group, one of the largest, most profitable companies in Canada. In the mid-1990's, RBC revamped its competitive strategy in a couple of ways. After the government announced that the Big Six banks in Canada could neither merge with nor acquire one another, RBC decided to grow through cross-border acquisitions. Additionally, because customers were starting to seek bundled products and services, RBC reached across its traditional stand-alone businesses to offer integrated solutions. These changes in strategy didn't elicit immediate companywide support. Instinctively, employees reacted against what would amount to a delicate balancing act: They would have to lift their focus out of their silos while continuing to meet unit goals. However, by communicating extensively with staff members, cross-fertilizing talent across unit boundaries, and targeting rewards to shape performance, RBC was able to cultivate rising leaders with the unit expertise and the enterprise vision to help the company fulfill its new aims. Growing such well-rounded leaders takes sustained effort because unit-enterprise tensions are quite real. Three common conditions reinforce these tensions. First, most organizational structures foster silo thinking and unimaginative career paths. Second, most companies lack venues for airing and resolving conflicts that arise when there are competing priorities. Third, many have misguided reward systems that pit unit performance against enterprise considerations. Such long-established patterns of organizational behavior are tough to break. Fortunately, as RBC discovered, people can be trained to think and work differently.

  15. Spectral analysis of variable-length coded digital signals

    NASA Astrophysics Data System (ADS)

    Cariolaro, G. L.; Pierobon, G. L.; Pupolin, S. G.

    1982-05-01

    A spectral analysis is conducted for a variable-length word sequence by an encoder driven by a stationary memoryless source. A finite-state sequential machine is considered as a model of the line encoder, and the spectral analysis of the encoded message is performed under the assumption that the sourceword sequence is composed of independent identically distributed words. Closed form expressions for both the continuous and discrete parts of the spectral density are derived in terms of the encoder law and sourceword statistics. The jump part exhibits jumps at multiple integers of per lambda(sub 0)T, where lambda(sub 0) is the greatest common divisor of the possible codeword lengths, and T is the symbol period. The derivation of the continuous part can be conveniently factorized, and the theory is applied to the spectral analysis of BnZS and HDBn codes.

  16. A model of the generation and transport of ozone in high-tension nozzle driven corona inside a novel diode

    NASA Astrophysics Data System (ADS)

    Vijayan, T.; Patil, Jagadish G.

    2012-12-01

    The genesis and transport of ozone (O3) are investigated in a novel plasma diode and described in this paper. The innovative cathode (K) of this axial symmetric diode which operated at the high voltage (ϕ0), has a large number of sharpened nozzles located on different radial planes of its central tubular-mast and is encircled by the anode (A). The nozzles played the dual role of oxygen (O2) injection as well as creation of high electric field (E) in the A-K gap, enabled the formation of a cold corona. Electrons in the corona under the influence of E moved towards anode, collided with O2 and created the O radicals. O in turn joined the free O2 and formed O3. The evolution of O3 here is modeled in various O2 pressure (P), electron density (ne), and temperature (T) in terms of the major reaction modes involving e, O, O2, and O3. Typical steady state O3 density attained so in P ˜ bar, ne ˜ 1015 m-3 and T ˜ 300 K is over 1025 m-3 and that of O lower ˜1020 m-3. Both the O and O3 densities increased with an enhanced ne of avalanche multiplications in corona. O3 increased also with a higher P but the temporal O reversed in trend midway and reduced with P towards the steady state. A sharp decline in diode resistance with smaller A-K gap induced finite discharge current and led to the undesired heating of corona. It is shown that the O3 density reduced with the temperature rise but O density reduced with the T rise up to 500 K and then rose modestly with the further T increase.

  17. What about Sam--The Kid in the Corner Whose Voice Doesn't Come Out?--Tensions between Open Discussions and Inclusive Educational Opportunities for English Learners

    ERIC Educational Resources Information Center

    Gourd, Karen Miller

    2016-01-01

    This article identifies a tension between a teacher's intention and an English learner's interpretation of his experiences in a US high school English class for native users of English and English learners. The tension highlights two issues. First, democratic classroom practices, frequently advocated by second language acquisition theorists, may…

  18. "If you can't say something nice, don't say anything at all": coping with interpersonal tensions in the parent-child relationship during adulthood.

    PubMed

    Birditt, Kira S; Rott, Leslie M; Fingerman, Karen L

    2009-12-01

    Tensions are normative in the parent-child tie, but there is less information on the strategies used to cope with such tensions. This study examined strategies parents and adult children use in reaction to interpersonal tensions and the implications of those strategies for relationship quality. Parents and their adult sons and daughters (aged 22 to 49 years; N = 158 families, 474 individuals) reported the strategies they used in response to tensions with one another (constructive, destructive, and avoidant). Across dyads, parents and adult children reported using constructive strategies more often than destructive or avoidant strategies. Strategy use varied between and within dyads by generation, gender of parent, ethnicity, education, and age of child. Constructive strategies predicted better relationship quality, whereas avoidant and destructive strategies predicted poorer relationship quality. Parents may be more likely to use constructive strategies, which are meant to maintain the relationship because of their greater investment in the tie. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  19. Density, Molar Volume, and Surface Tension of Liquid Al-Ti

    NASA Astrophysics Data System (ADS)

    Wessing, Johanna Jeanette; Brillo, Jürgen

    2017-02-01

    Al-Ti-based alloys are of enormous technical relevance due to their specific properties. For studies in atomic dynamics, surface physics and industrial processing the precise knowledge of the thermophysical properties of the liquid phase is crucial. In the present work, we systematically measure mass density, ρ (g cm-3), and the surface tension, γ (N m-1), as functions of temperature, T, and compositions of binary Al-Ti melts. Electromagnetic levitation in combination with the optical dilatometry method is used for density measurements and the oscillating drop method for surface tension measurements. It is found that, for all compositions, density and surface tension increase linearly upon decreasing temperature in the liquid phase. Within the Al-Ti system, we find the largest values for pure titanium and the smallest for pure aluminum, which amount to ρ(L,Ti) = 4.12 ± 0.04 g cm-3 and γ(L,Ti) = 1.56 ± 0.02 N m-1; and ρ(L,Al) = 2.09 ± 0.01 g cm-3 and γ(L,Al) = 0.87 ± 0.06 N m-1, respectively. The data are analyzed concerning the temperature coefficients, ρ T and γ T, excess molar volume, V E, excess surface tension, γ E, and surface segregation of the surface active component, Al. The results are compared with thermodynamic models. Generally, it is found that Al-Ti is a highly nonideal system.

  20. Late Tertiary history of hydrothermal deposition at the East Pacific Rise, 19°S: Correlation to volcano-tectonic events

    NASA Astrophysics Data System (ADS)

    Lyle, Mitchell; Leinen, Margaret; Owen, Robert M.; Rea, David K.

    1987-06-01

    Commonly it is assumed that the intensity of mid-ocean ridge hydrothermal activity should correlate with spreading rate, since high spreading rates are an indication of large subcrustal heat sources needed for intense hydrothermal activity. We have tested this hypothesis by modeling the deposition of hydrothermal precipitates from cores from Deep Sea Drilling Project Leg 92, taken on the west flank of the East Pacific Rise at 19°S. Although spreading rates at the East Pacific Rise and its predecessor, the Mendoza Rise, have varied by only 50% in the last 30 million years, we found certain episodes, at about 25, 18, 14, and 9 million years ago, of hydrothermal manganese deposition as much as a factor of 20 higher than equivalent Holocene accumulation. These eposides do not correlate with spreading rate changes and instead seem to occur at times of major tectonic reorganizations. We propose that ridge jumps and changes of ridge orientation may substantially increase hydrothermal activity by fracturing the ocean crust and providing seawater access to deep-seated heat sources.

  1. Non-Poissonian Quantum Jumps of a Fluxonium Qubit due to Quasiparticle Excitations

    NASA Astrophysics Data System (ADS)

    Vool, U.; Pop, I. M.; Sliwa, K.; Abdo, B.; Wang, C.; Brecht, T.; Gao, Y. Y.; Shankar, S.; Hatridge, M.; Catelani, G.; Mirrahimi, M.; Frunzio, L.; Schoelkopf, R. J.; Glazman, L. I.; Devoret, M. H.

    2014-12-01

    As the energy relaxation time of superconducting qubits steadily improves, nonequilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevant limit for qubit coherence. We measure fluctuations in the number of quasiparticle excitations by continuously monitoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is obtained by performing quantum nondemolition projective measurements within a time interval much shorter than T1 , using a quantum-limited amplifier (Josephson parametric converter). The quantum jump statistics switches between the expected Poisson distribution and a non-Poissonian one, indicating large relative fluctuations in the quasiparticle population, on time scales varying from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or by seeding quasiparticle-trapping vortices by cooling down in a magnetic field.

  2. COMPARISON OF DRY NEEDLING VS. SHAM ON THE PERFORMANCE OF VERTICAL JUMP.

    PubMed

    Bandy, William D; Nelson, Russell; Beamer, Lisa

    2017-10-01

    Dry needling has been reported to decrease pain in subjects having myofascial trigger points, as well as pain in muscle and connective tissue. The purpose of the study was to compare the effects on the ability to perform a two-legged vertical jump between a group who received one bout of dry needling and a group who received one bout of a sham treatment. Thirty-five healthy students (19 males, 16 females) were recruited to participate in this study (mean age 22.7+/- 2.4 years). The subjects were randomly divided into two groups- dry needling (n=18) vs sham (n=17). The dry needling group received needling to four sites on bilateral gastrocnemius muscles; two at the medial head and two at the lateral head. The sham group had the four areas of the gastrocnemius muscle pressed with the tube housing the needle, but the needle was never inserted into the skin. Two-legged vertical jump was measured with chalk marks on the wall before and after the dry needling and sham treatments. Analysis with a t-test indicated that the dry needling group significantly increased vertical jump height 1.2 inches over the sham group. One bout of dry needling showed an immediate effect at significantly increasing vertical jump height in healthy, young adults. Future research is needed to determine if dry needling has any long-term effects. 2b.

  3. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de; Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de; Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevantmore » physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.« less

  4. Tension and Bending Testing of an Integral T-Cap for Stitched Composite Airframe Joints

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Leone, Frank A., Jr.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in large-scale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.

  5. Lower limb alactic anaerobic power output assessed with different techniques in morbid obesity.

    PubMed

    Lafortuna, C L; Fumagalli, E; Vangeli, V; Sartorio, A

    2002-02-01

    Short-term alactic anaerobic performance in jumping (5 consecutive jumps with maximal effort), sprint running (8 m) and stair climbing (modified Margaria test) were measured in 75 obese subjects (BMI: 40.3+/-5.0 kg/m2) and in 36 lean control subjects (BMI: 22.4+/-3.2 kg/m2) of the same age and gender distribution. The results show that obese subjects attained a significantly lower specific (per unit body mass) power output both in jumping (W(spec,j); p<0.001) and stair climbing (W(spec,s); p<0.001) and run at a significantly lower average velocity (v; p<0.001) during sprinting. In spite of the different motor skillfulness required to accomplish the jumping and climbing tests, W(spec,s) (and hence the vertical velocity in climbing, v(v)) was closely correlated with W(spec,j) (R2=0.427, p<0.001). In jumping, although the average force during the positive work phase was significantly higher in obese subjects (p<0.001), no difference between the 2 groups was detected in absolute power. In stair climbing the absolute power output of obese resulted significantly higher (18%) than that of lean controls (p<0.001). In sprint running, the lower average horizontal velocity attained by obese subjects also entailed a different locomotion pattern with shorter step length (L(s); p<0.001), lower frequency (p<0.001) and longer foot contact time with ground (T(c,r); p<0.001). W(spec,j) seems to be a determinant of the poorer motor performance of obese, being significantly correlated with: I) the vertical displacement of the centre of gravity (R2=0.853, p<0.001) in jumping; II) with v(v) in stair climbing; and III) with T(c,r) (R2=0.492, p<0.001), L(s) (R2=0.266, p<0.001) and v (R2=0.454, p<0.001) in sprinting. The results suggest that obese individuals, although partially hampered in kinetic movements, largely rely on their effective specific power output to perform complex anaerobic tasks, and they suffer from the disproportionate excess of inert mass of fat. Furthermore, in view of the sedentary style of life and the consequent degree of muscle de-conditioning accompanying this condition, it may prove useful to implement rehabilitation programs for obesity with effective power training protocols.

  6. Dynamics of ligand substitution in labile cobalt complexes resolved by ultrafast T-jump

    PubMed Central

    Ma, Hairong; Wan, Chaozhi; Zewail, Ahmed H.

    2008-01-01

    Ligand exchange of hydrated metal complexes is common in chemical and biological systems. Using the ultrafast T-jump, we examined this process, specifically the transformation of aqua cobalt (II) complexes to their fully halogenated species. The results reveal a stepwise mechanism with time scales varying from hundreds of picoseconds to nanoseconds. The dynamics are significantly faster when the structure is retained but becomes rate-limited when the octahedral-to-tetrahedral structural change bottlenecks the transformation. Evidence is presented, from bimolecular kinetics and energetics (enthalpic and entropic), for a reaction in which the ligand assists the displacement of water molecules, with the retention of the entering ligand in the activated state. The reaction time scale deviates by one to two orders of magnitude from that of ionic diffusion, suggesting the involvement of a collisional barrier between the ion and the much larger complex. PMID:18725628

  7. A simplified model for equilibrium and transient swelling of thermo-responsive gels.

    PubMed

    Drozdov, A D; deClaville Christiansen, J

    2017-11-01

    A simplified model is developed for the elastic response of thermo-responsive gels subjected to swelling under an arbitrary deformation with finite strains. The constitutive equations involve five adjustable parameters that are determined by fitting observations in equilibrium water uptake tests and T-jump transient tests on thin gel disks. Two scenarios for water release under heating are revealed by means of numerical simulation. When the final temperature in a T-jump test is below the volume-phase transition temperature, deswelling is characterized by smooth distribution of water molecules and small tensile stresses. When the final temperature exceeds the critical temperature, a gel disk is split into three regions (central part with a high concentration of water molecules and two domains near the boundaries with low water content) separated by sharp interfaces, whose propagation is accompanied by development of large (comparable with the elastic modulus) tensile stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model.

    PubMed

    Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan

    2016-12-28

    The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.

  9. Manipulation of Dirac Cones in Mechanical Graphene

    PubMed Central

    Kariyado, Toshikaze; Hatsugai, Yasuhiro

    2015-01-01

    Recently, quantum Hall state analogs in classical mechanics attract much attention from topological points of view. Topology is not only for mathematicians but also quite useful in a quantum world. Further it even governs the Newton’s law of motion. One of the advantages of classical systems over solid state materials is its clear controllability. Here we investigate mechanical graphene, which is a spring-mass model with the honeycomb structure as a typical mechanical model with nontrivial topological phenomena. The vibration spectrum of mechanical graphene is characterized by Dirac cones serving as sources of topological nontriviality. We find that the spectrum has dramatic dependence on the spring tension at equilibrium as a natural control parameter, i.e., creation and annihilation of the Dirac particles are realized as the tension increases. Just by rotating the system, the manipulated Dirac particles lead to topological transition, i.e., a jump of the “Chern number” occurs associated with flipping of propagating direction of chiral edge modes. This is a bulk-edge correspondence governed by the Newton’s law. A simple observation that in-gap edge modes exist only at the fixed boundary, but not at the free one, is attributed to the symmetry protection of topological phases. PMID:26667580

  10. Raising Leadership Criticality in MBAs

    ERIC Educational Resources Information Center

    Garcia, Eric Jean

    2009-01-01

    In a world of supercapitalism, the tensions between business and public interests are expected to rise, thereby calling corporations to assume new roles in society. In response to this trend, corporations will be in demand of an innovative kind of leadership exercised at all levels by a new breed of ethical, reflective and creative…

  11. Addressing Interstate Ethnic Tensions In the Pacific Through Cooperative Sea Lane Strategy

    DTIC Science & Technology

    2015-04-01

    political stability and secure, open Sea Lines of Communications (SLOCs) for continued economic development and therefore, the United States must deter conflict and reassure allies within a complex, geopolitical environment rife with ethnic mistrust and successfully welcome a rising but fragile, economic and military

  12. Mathematics Education and the Objectivist Programme in HPS

    ERIC Educational Resources Information Center

    Glas, Eduard

    2013-01-01

    Using history of mathematics for studying concepts, methods, problems and other internal features of the discipline may give rise to a certain tension between descriptive adequacy and educational demands. Other than historians, educators are concerned with mathematics as a "normatively defined" discipline. Teaching cannot but be based on a…

  13. Promoting Community Cohesion in England

    ERIC Educational Resources Information Center

    Morris, Andrew B.; McDaid, Maggie; Potter, Hugh

    2011-01-01

    Following serious disturbances in some northern cities in England in 2001, concerns about possible rising inter-communal tension have led to a statutory duty to promote community cohesion being placed on schools. Inspectors from the Office for Standards in Education (Ofsted) are required to make judgements in the leadership and management section…

  14. Organizing for Learning: Toward the 21st Century.

    ERIC Educational Resources Information Center

    Walberg, Herbert J., Ed.; Lane, John J., Ed.

    In this monograph, 13 authors offer their perspectives on the essential components of good schools. One interesting commonality is the tension expressed between institutional structure and personal values. Another issue that surfaces centers on the rising expectations of society for school achievement and the need for making learning more student…

  15. Surfactant Effect on the Average Flow Generation Near Curved Interface

    NASA Astrophysics Data System (ADS)

    Klimenko, Lyudmila; Lyubimov, Dmitry

    2018-02-01

    The present work is devoted to the average flow generation near curved interface with a surfactant adsorbed on the surface layer. The investigation was carried out for a liquid drop embedded in a viscous liquid with a different density. The liquid flows inside and outside the drop are generated by small amplitude and high frequency vibrations. Surfactant exchange between the drop surface and the surrounding liquid is limited by the process of adsorption-desorption. It was assumed that the surfactant is soluble in the surrounding liquid, but not soluble in the liquid drop. Surrounding liquid and the liquid in the drop are considered incompressible. Normal and shear viscous stresses balance at the interface is performed under the condition that the film thickness of the adsorbed surfactant is negligible. The problem is solved under assumption that the shape of the drop in the presence of adsorbed surfactant remains spherical symmetry. The effective boundary conditions for the tangential velocity jump and shear stress jump, describing the above generation have been obtained by matched asymptotic expansions method. The conditions under which the drop surface can be considered as a quasi-solid are determined. It is shown that in the case of the significant effect of surfactant on the surface tension, the dominant mechanism for the generation is the Schlichting mechanisms under vibrations.

  16. State trends in premiums and deductibles, 2003-2009: how building on the Affordable Care Act will help stem the tide of rising costs and eroding benefits.

    PubMed

    Schoen, Cathy; Stremikis, Kristof; How, Sabrina K H; Collins, Sara R

    2010-12-01

    Rapidly rising health insurance costs have strained U.S. families and employers in recent years. This issue brief examines data for all states on changes in private employer premiums and deductibles for 2003 and 2009. The analysis finds that premiums for businesses and their employees increased 41 percent across states from 2003 to 2009, while per-person deductibles jumped 77 percent in large as well as small firms. If these trends continue at the rate prior to enactment of the Affordable Care Act, the average premium for family coverage will rise 79 percent by 2020, to more than $23,000. The authors describe how health reform offers the potential to reduce insurance cost growth while improving value and protection. If reforms succeed in slowing premium growth by 1 percentage point annually in all states, by 2020 employers and families together will save $2,323 annually for family coverage, compared with projected trends.

  17. Comparison of Anion Reorientational Dynamics in MCB 9 H 10 and M 2 B 10 H 10 (M = Li, Na) via Nuclear Magnetic Resonance and Quasielastic Neutron Scattering Studies

    DOE PAGES

    Soloninin, Alexei V.; Dimitrievska, Mirjana; Skoryunov, Roman V.; ...

    2016-12-13

    The disordered phases of the 1-carba-closo-decaborates LiCB9H10 and NaCB9H10 exhibit the best solid-state ionic conductivities to date among all known polycrystalline competitors, likely facilitated in part by the highly orientationally mobile CB9H10- anions. We have undertaken both NMR and quasielastic neutron scattering (QENS) measurements to help characterize the monovalent anion reorientational mobilities and mechanisms associated with these two compounds and to compare their anion reorientational behaviors with those for the divalent B10H102- anions in the related Li2B10H10 and Na2B10H10 compounds. NMR data show that the transition from the low-T ordered to the high-T disordered phase for both LiCB9H10 and NaCB9H10more » is accompanied by a nearly two-orders-of-magnitude increase in the reorientational jump rate of CB9H10- anions. QENS measurements of the various disordered compounds indicate anion jump correlation frequencies on the order of 1010-1011 s-1 and confirm that NaCB9H10 displays jump frequencies about 60% to 120% higher than those for LiCB9H10 and Na2B10H10 at comparable temperatures. The Q-dependent quasielastic scattering suggests similar small-angular-jump reorientational mechanisms for the different disordered anions, changing from more uniaxial in character at lower temperatures to more multidimensional at higher temperatures, although still falling short of full three-dimensional rotational diffusion below 500 K within the nanosecond neutron window.« less

  18. Contact Angles and Surface Tension of Germanium-Silicon Melts

    NASA Technical Reports Server (NTRS)

    Croell, A.; Kaiser, N.; Cobb, S.; Szofran, F. R.; Volz, M.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Precise knowledge of material parameters is more and more important for improving crystal growth processes. Two important parameters are the contact (wetting) angle and the surface tension, determining meniscus shapes and surface-tension driven flows in a variety of methods (Czochralski, EFG, floating-zone, detached Bridgman growth). The sessile drop technique allows the measurement of both parameters simultaneously and has been used to measure the contact angles and the surface tension of Ge(1-x)Si(x) (0 less than or equal to x less than or equal to 1.3) alloys on various substrate materials. Fused quartz, Sapphire, glassy carbon, graphite, SiC, carbon-based aerogel, pyrolytic boron nitride (pBN), AIN, Si3N4, and polycrystalline CVD diamond were used as substrate materials. In addition, the effect of different cleaning procedures and surface treatments on the wetting behavior were investigated. Measurements were performed both under dynamic vacuum and gas atmospheres (argon or forming gas), with temperatures up to 1100 C. In some experiments, the sample was processed for longer times, up to a week, to investigate any changes of the contact angle and/or surface tension due to slow reactions with the substrate. For pure Ge, stable contact angles were found for carbon-based substrates and for pBN, for Ge(1-x)Si(x) only for pBN. The highest wetting angles were found for pBN substrates with angles around 170deg. For the surface tension of Ge, the most reliable values resulted in gamma(T) = (591- 0.077 (T-T(sub m)) 10(exp -3)N/m. The temperature dependence of the surface tension showed similar values for Ge(1-x)Si(x), around -0.08 x 10(exp -3)N/m K, and a compositional dependence of 2.2 x 10(exp -3)N/m at%Si.

  19. Fitness Level Modulates Intraocular Pressure Responses to Strength Exercises.

    PubMed

    Vera, Jesús; Jiménez, Raimundo; Redondo, Beatríz; Cárdenas, David; García-Ramos, Amador

    2018-06-01

    Purpose/Aim: The execution of strength exercises has demonstrated to increase the intraocular pressure (IOP) levels, and it may have a negative impact on the ocular health. We aimed to explore the influence of fitness level on the acute IOP response to strength exercises performed under different loading conditions, as well as to test whether the IOP responses differ between the bench press and jump squat when performed against the same relative loads. Forty military personnel males were divided in two subgroups (20 high-fit and 20 low-fit) based on their relative to body mass one-repetition maximum (1-RM). Participants performed an incremental loading test in the bench press and jump squat exercises, and IOP was assessed before and after each repetition by rebound tonometry. IOP increased immediately after executing both exercises (p < 0.01 in both cases), being the magnitude of the IOP increment positively and linearly associated with the increment of the load in both groups (i.e., high-fit and low-fit) and in both exercises (R 2 range: 0.81-1.00). Higher fitness level attenuated the IOP rise produced by both exercises (p < 0.01 in both cases). The bench press induced higher IOP increments than the jump squat for both groups at relative loads of ~50%1-RM and ~60%1-RM (p < 0.01 in all cases). These data indicate that IOP increases as a consequence of performing strength exercises, being the increment accentuated with the increase of the load and in the bench press compared to the jump squat exercise. Of special importance would be that the IOP responses were significantly reduced in high-fit individuals. These findings should be addressed in glaucoma patients.

  20. Dynamics and control of coherent structures in the turbulent wall layer: An overview

    NASA Technical Reports Server (NTRS)

    Berkooz, Gal; Holmes, Philip; Lumley, John

    1993-01-01

    We expand the velocity field in the vicinity of the wall in empirical eigenfunctions obtained from experiment. Truncating our system and using Galerkin projection, we obtain a closed set of non-linear ordinary differential equations with ten degrees of freedom. We find a rich dynamical behavior, including in particular a heteroclinic attracting orbit giving rise to intermittency. The intermittent jump from one attracting point to the other resembles in many respects the bursts observed in experiments. Specifically, the time between jumps and the duration of the jumps, is approximately that observed in a burst; the jump begins with the formation of a narrowed and intensified updraft, like the ejection phase of a burst, and is followed by a gentle, diffuse downdraft like the sweep phase of a burst. The magnitude of the Reynolds stress spike produced during a burst is limited by our truncation. The behavior is quite robust, much of it being due to the symmetries present (Aubry's group has examined dimensions up to 128 with persistence of the global behavior). We have examined eigenvalues and coefficients obtained from experiment, and from exact simulation, which differ in magnitude. Similar behavior is obtained in both cases; in the latter case, the heteroclinic orbits connect limit cycles instead of fixed points, corresponding to cross-stream waving of the streamwise rolls. The bifurcation diagram remains structurally similar, but somewhat distorted. The role of the pressure term is made clear - it triggers the intermittent jumps, which otherwise would occur at longer and longer intervals, as the system trajectory is attracted closer and closer to the heteroclinic cycle. The pressure term results in the jumps occurring at essentially random times, and the magnitude of the signal determines the average timing. Stretching of the wall region shows that the model is consistent with observations of polymer drag reduction. Change of the third order coefficients, corresponding to acceleration or deceleration of the mean flow, changes the heteroclinic cycles from attracting to repelling, increasing or decreasing the stability, in agreement with observations. The existence of fixed points is an artifact introduced by the projection; however, a decoupled model still displays the rich dynamics. Numerous assumptions made in Aubry et al. (1988) can now be proved exactly. Feeding back eigenfuncitons with the proper phase can delay the bursting, (the heteroclinic jump to the other fixed point), decreasing the drag. It is also possible to speed up the bursting, increasing mixing to control separation. Our approach is optimal for short time tracking in control.

  1. Influence of Crack-Tip Configurations on the Fracture Response of 0.04-Inch Thick 2024-T3 Aluminum Alloy Sheet

    NASA Technical Reports Server (NTRS)

    Johnston, William M.; Newman, James C. (Technical Monitor)

    2002-01-01

    A series of fracture tests were conducted on Middle-crack tension M(T) and compact tension C(T) specimens to determine the effects of specimen type, specimen width, notch tip sharpness and buckling on the fracture behavior of cracked thin sheet (0.04 inch thick) 2024-T3 aluminum alloy material. A series of M(T) specimens were tested with three notch tip configurations: (1) a fatigue pre-cracked notch, (2) a 0.010-inch-diameter wire electrical discharge machined (EDM) notch, and (3) a EDM notch sharpened with a razor blade. The test procedures are discussed and the experimental results for failure stress, load vs. crack extension and the material stress-strain response are reported.

  2. Relationships between maximal strength of lower limb, anthropometric characteristics and fundamental explosive performance in handball players.

    PubMed

    Hermassi, Souhail; Chelly, Mohamed Souhaiel; Wagner, Herbert; Fieseler, Georg; Schulze, Stephan; Delank, Karl-Stefan; Shephard, Roy J; Schwesig, René

    2018-02-14

     The purpose of this study was to examine relationships between lower body muscular strength, anthropometric characteristics and several measures of explosive performance in elite team-handball players.  22 male elite team-handball players (age: 19.1 ± 1.7 years) were studied during the competitive season. Standard anthropometric and body composition measures included body mass index, lower limb and thigh muscle volume, and body fat percentage. Maximal leg strength was determined by a one-repetition maximum (1-RM) half back-squat. Vertical jump performance was assessed using a squat jump (SJ) and a counter movement jump (CMJ). Repeated shuttle-sprint ability (RSA) was tested by 6 (2 × 15 m) shuttle sprints with 20 s of active recovery intervals. The best time in a single shuttle sprint (30m; RSA best ), fastest total time (RSA TT ) and RSA test performance decrement (RSA dec ) were recorded. Agility was measured using a modified T-half test (MAT). Throwing velocities of jump shooting and 3-step throwing were recorded by digital video camera.  The explained variance of 1-RM half-back-squats ranged from 0.2 % (RSA% Fatigue Index) to 70.1 % (CMJ). Four out of 8 variables (RSA Best Time, CMJ, SJ, throwing velocity of jump shoot) demonstrated an r 2  > 0.5. Jump performances seemed closely related to 1-RM half-back-squats. Furthermore, 1-RM half-back-squats were positively correlated with leg and thigh muscle volumes (r = 0.652, r = 0.768).  The anthropometric characteristics and some physical performance tests are closely related to the maximal strength performance of handball players. Coaches should focus on maximal strength training programs for the lower limbs when seeking improvements in the throwing velocity and jump performance of handball players. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Effects of unilateral and bilateral plyometric training on power and jumping ability in women.

    PubMed

    Makaruk, Hubert; Winchester, Jason B; Sadowski, Jerzy; Czaplicki, Adam; Sacewicz, Tomasz

    2011-12-01

    Makaruk, H, Winchester, JB, Sadowski, J, Czaplicki, A, and Sacewicz, T. Effects of unilateral and bilateral plyometric training on power and jumping ability in women. J Strength Cond Res 25(12): 3311-3318, 2011-The purpose of this study was to examine the effects of unilateral and bilateral plyometric exercise on peak power and jumping performance during different stages of a 12-week training and detraining in women. Forty-nine untrained but physically active female college students were randomly assigned to 1 of 3 groups: unilateral plyometric group (n = 16), bilateral plyometric group (BLE; n = 18), and a control group (n = 15). Peak power and jumping ability were assessed by means of the alternate leg tests (10-second Wingate test and 5 alternate leg bounds), bilateral leg test (countermovement jump [CMJ]) and unilateral leg test (unilateral CMJ). Performance indicators were measured pretraining, midtraining, posttraining, and detraining. Differences between dependent variables were assessed with a 3 × 4 (group × time) repeated analysis of variance with Tukey's post hoc test applied where appropriate. Effect size was calculated to determine the magnitude of significant differences between the researched parameters. Only the unilateral plyometric training produced significant (p < 0.05) improvement in all tests from pretraining to midtraining, but there was no significant (p < 0.05) increase in performance indicators from midtraining to posttraining. The BLE group significantly (p < 0.05) improved in all tests from pretraining to posttraining and did not significantly (p > 0.05) decrease power and jumping ability in all tests during detraining. These results suggest that unilateral plyometric exercises produce power and jumping performance during a shorter period when compared to bilateral plyometric exercises but achieved performance gains last longer after bilateral plyometric training. Practitioners should consider the inclusion of both unilateral and bilateral modes of plyometric exercise to elicit rapid improvements and guard against detraining.

  4. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    DOE PAGES

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; ...

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  6. The ethics and politics of patient-physician mistrust in contemporary China.

    PubMed

    Yan, Yunxiang

    2018-03-01

    Focusing on the shared sense of victimization and disadvantage-ness by both patients and doctors/medical workers in cases of medical conflicts, this paper aims to examine the current patient-doctor tensions in the larger context of moral transformation in Chinese society since the 1980s. Although the decline of public trust in certain aspects is closely associated with the impact of commodification and commercialization of medical sector during the past two decades, other factors play important role as well. In the case of patient-doctor tension, mutual disrespect and mistrust also result from the ongoing process of individualization and the remaking of moral self, in which the individual demand for respect, dignity, and trust seem to have unexpectedly and ironically contributed to the rise of tensions and conflicts between patients and doctors as well as other medical workers. © 2017 John Wiley & Sons Ltd.

  7. Tension-induced binding of semiflexible biopolymers

    NASA Astrophysics Data System (ADS)

    Benetatos, Panayotis; von der Heydt, Alice; Zippelius, Annette

    2015-03-01

    We investigate theoretically the effect of polymer tension on the collective behaviour of reversible cross-links. We use a model of two parallel-aligned, weakly-bending wormlike chains with a regularly spaced sequence of binding sites subjected to a tensile force. Reversible cross-links attach and detach at the binding sites with an affinity controlled by a chemical potential. In a mean-field approach, we calculate the free energy of the system and we show the emergence of a free energy barrier which controls the reversible (un)binding. The tension affects the conformational entropy of the chains which competes with the binding energy of the cross-links. This competition gives rise to a sudden increase in the fraction of bound sites as the polymer tension increases. The force-induced first-order transition in the number of cross-links implies a sudden force-induced stiffening of the effective stretching modulus of the polymers. This mechanism may be relevant to the formation and stress-induced strengthening of stress fibers in the cytoskeleton. We acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) via grant SFB-937/A1.

  8. Flight style optimization in ski jumping on normal, large, and ski flying hills.

    PubMed

    Jung, Alexander; Staat, Manfred; Müller, Wolfram

    2014-02-07

    In V-style ski jumping, aerodynamic forces are predominant performance factors and athletes have to solve difficult optimization problems in parts of a second in order to obtain their jump length maximum and to keep the flight stable. Here, a comprehensive set of wind tunnel data was used for optimization studies based on Pontryagin's minimum principle with both the angle of attack α and the body-ski angle β as controls. Various combinations of the constraints αmax and βmin(t) were analyzed in order to compare different optimization strategies. For the computer simulation studies, the Olympic hill profiles in Esto-Sadok, Russia (HS 106m, HS 140m), and in Harrachov, Czech Republic, host of the Ski Flying World Championships 2014 (HS 205m) were used. It is of high importance for ski jumping practice that various aerodynamic strategies, i.e. combinations of α- and β-time courses, can lead to similar jump lengths which enables athletes to win competitions using individual aerodynamic strategies. Optimization results also show that aerodynamic behavior has to be different at different hill sizes (HS). Optimized time courses of α and β using reduced drag and lift areas in order to mimic recent equipment regulations differed only in a negligible way. This indicates that optimization results presented here are not very sensitive to minor changes of the aerodynamic equipment features when similar jump length are obtained by using adequately higher in-run velocities. However, wind tunnel measurements with athletes including take-off and transition to stabilized flight, flight, and landing behavior would enable a more detailed understanding of individual flight style optimization. © 2013 Published by Elsevier Ltd.

  9. COMPARISON OF DRY NEEDLING VS. SHAM ON THE PERFORMANCE OF VERTICAL JUMP

    PubMed Central

    Nelson, Russell; Beamer, Lisa

    2017-01-01

    Introduction Dry needling has been reported to decrease pain in subjects having myofascial trigger points, as well as pain in muscle and connective tissue. Objective The purpose of the study was to compare the effects on the ability to perform a two-legged vertical jump between a group who received one bout of dry needling and a group who received one bout of a sham treatment. Methods Thirty-five healthy students (19 males, 16 females) were recruited to participate in this study (mean age 22.7+/- 2.4 years). The subjects were randomly divided into two groups- dry needling (n=18) vs sham (n=17). The dry needling group received needling to four sites on bilateral gastrocnemius muscles; two at the medial head and two at the lateral head. The sham group had the four areas of the gastrocnemius muscle pressed with the tube housing the needle, but the needle was never inserted into the skin. Two-legged vertical jump was measured with chalk marks on the wall before and after the dry needling and sham treatments. Results Analysis with a t-test indicated that the dry needling group significantly increased vertical jump height 1.2 inches over the sham group. Conclusion One bout of dry needling showed an immediate effect at significantly increasing vertical jump height in healthy, young adults. Future research is needed to determine if dry needling has any long-term effects. Level of Evidence 2b PMID:29181252

  10. Human thoracic duct in vitro: diameter-tension properties, spontaneous and evoked contractile activity.

    PubMed

    Telinius, Niklas; Drewsen, Nanna; Pilegaard, Hans; Kold-Petersen, Henrik; de Leval, Marc; Aalkjaer, Christian; Hjortdal, Vibeke; Boedtkjer, Donna Briggs

    2010-09-01

    The current study characterizes the mechanical properties of the human thoracic duct and demonstrates a role for adrenoceptors, thromboxane, and endothelin receptors in human lymph vessel function. With ethical permission and informed consent, portions of the thoracic duct (2-5 cm) were resected and retrieved at T(7)-T(9) during esophageal and cardia cancer surgery. Ring segments (2 mm long) were mounted in a myograph for isometric tension (N/m) measurement. The diameter-tension relationship was established using ducts from 10 individuals. Peak active tension of 6.24 +/- 0.75 N/m was observed with a corresponding passive tension of 3.11 +/- 0.67 N/m and average internal diameter of 2.21 mm. The equivalent active and passive transmural pressures by LaPlace's law were 47.3 +/- 4.7 and 20.6 +/- 3.2 mmHg, respectively. Subsequently, pharmacology was performed on rings from 15 ducts that were normalized by stretching them until an equivalent pressure of 21 mmHg was calculable from the wall tension. At low concentrations, norepinephrine, endothelin-1, and the thromboxane-A(2) analog U-46619 evoked phasic contractions (analogous to lymphatic pumping), whereas at higher contractions they induced tonic activity (maximum tension values of 4.46 +/- 0.63, 5.90 +/- 1.4, and 6.78 +/- 1.4 N/m, respectively). Spontaneous activity was observed in 44% of ducts while 51% of all the segments produced phasic contractions after agonist application. Acetylcholine and bradykinin relaxed norepinephrine preconstrictions by approximately 20% and approximately 40%, respectively. These results demonstrate that the human thoracic duct can develop wall tensions that permit contractility to be maintained across a wide range of transmural pressures and that isolated ducts contract in response to important vasoactive agents.

  11. On a Theory of Rates

    DTIC Science & Technology

    2005-04-01

    be the likelihood of contracting the disease and the jump function one. 51 F. Predator and Prey The Lotka - Volterra equations,[Ball 1985] dx dt = Ax...dt = n0 2t0repro y2 1 t0old age y: Notice that neither set of these rate di¤erential equations look like the Lotka - Volterra equa- tions. We might...218) dy dt = n0 2t0repro y2 1 t0old age y h 1 kpeatx i ktencounter y; 53 which gets us closer to the form of the Lotka - Volterra equations

  12. The effect of an East Pacific Rise offset on the formation of secondary cracks ahead of the Cocos-Nazca Rift at the Galapagos Triple Junction

    NASA Astrophysics Data System (ADS)

    Smith, D. K.; Montesi, L. G.; Schouten, H.; Zhu, W.

    2011-12-01

    A succession of short-lived, E-W trending cracks at the Galapagos Triple Junction north and south of the Cocos-Nazca (C-N) Rift, has been explained by a simple crack interaction model. The locations of where the cracks initiate are controlled by tensile stresses generated at the East Pacific Rise (EPR) by two interacting cracks: One representing the north-south trending EPR, and the other the large, westward propagating C-N Rift, whose tip is separated from the EPR by a distance D. The model predicts symmetric cracking at the EPR north and south of the C-N Rift tip. Symmetry in the distribution of cracks north and south of the C-N Rift is observed and especially remarkable between 2.5 and 1.5 Ma when the rapid jumping of cracks toward the C-N Rift appears synchronous. The rapid jumping can be explained by decreasing D, which means that the tip of the C-N Rift was moving closer to the EPR. Symmetry of cracking breaks down at 1.5 Ma, however, with the establishment of the Dietz Deep Rift, the southern boundary of the Galapagos microplate. Symmetry of cracking also breaks down on older crust to the east between about 100 35'W and 100 45'W (about 2.6 Ma) where a rapid jumping of cracks toward the C-N Rift is observed in the south cracking region. There is no evidence of similar rapid jumping in the north cracking region. It could be simply that the response to changing the value of D is not always as predicted. It could also be that the shape of the EPR has not always been symmetric about the C-N Rift, as assumed in the model. Currently, an overlapping spreading center with a 15 km east-west offset between the limbs of the EPR has formed at 1 50'N. We assess the importance of the geometry of the EPR on the crack interaction model. The model has been modified to include a ridge offset similar to what is observed today. We find that the region of stress enhancement at the EPR (where cracks initiate) is subdued south of the C-N Rift tip because of the EPR offset. It is possible, therefore, that the asymmetry in cracking observed since about 1.5 Ma may be explained in part by the presence of a ridge offset south of the C-N Rift tip.

  13. EFFECT OF ATHLETIC TAPING AND KINESIOTAPING® ON MEASUREMENTS OF FUNCTIONAL PERFORMANCE IN BASKETBALL PLAYERS WITH CHRONIC INVERSION ANKLE SPRAINS

    PubMed Central

    Karatas, Nihan; Baltaci, Gul

    2012-01-01

    Background: Chronic inversion ankle sprains are common in basketball players. The effect of taping on functional performance is disputed in the literature. Kinesiotaping® (KT®) is a new method that is being used as both a therapeutic and performance enhancement tool. To date, it appears that no study has investigated the effect of ankle KT® on functional performance. Purpose: To investigate the effects of different types of taping (KT® using Kinesio Tex®, athletic taping) on functional performance in athletes with chronic inversion sprains of the ankle. Study Design: Crossover Study Design Methods: Fifteen male basketball players with chronic inversion ankle sprains between the ages of 18 and 22 participated in this study. Functional performance tests (Hopping test by Amanda et al, Single Limb Hurdle Test, Standing Heel Rise test, Vertical Jump Test, The Star Excursion Balance Test [SEBT] and Kinesthetic Ability Trainer [KAT] Test) were used to quantify agility, endurance, balance, and coordination. These tests were conducted four times at one week intervals using varied conditions: placebo tape, without tape, standard athletic tape, and KT®. One-way ANOVA tests were used to examine difference in measurements between conditions. Bonferroni correction was applied to correct for repeated testing. Results: There were no significant differences among the results obtained using the four conditions for SEBT (anterior p=0.0699; anteromedial p=0.126; medial p=0.550; posteromedial p=0.587; posterior p=0.754; posterolateral p=0.907; lateral p=0.124; anterolateral p=0.963) and the KAT dynamic measurement (p=0.388). Faster performance times were measured with KT® and athletic tape in single limb hurdle test when compared to placebo and non-taped conditions (Athletic taping- placebo taping: p=0.03; athletic taping- non tape p=0.016;KT®- Placebo taping p=0.042; KT®-Non tape p=0.016). In standing heel rise test and vertical jump test, athletic taping led to decreased performance. (Standing heel rise test: Athletic taping- placebo taping p=0.035; athletic taping- non tape p=0.043; athletic tape- KT® p<0.001) (Vertical jump test: Athletic taping- placebo taping p=0.002: athletic taping- non tape p=0.002; KT®- athletic tape p<0.001) Conclusion: Kinesiotaping® had no negative effects on a battery of functional performance tests and improvements were seen in some functional performance tests. Clinical Relevance: Ankle taping using Kinesio Tex® Tape did not inhibit functional performance. PMID:22530190

  14. Effect of athletic taping and kinesiotaping® on measurements of functional performance in basketball players with chronic inversion ankle sprains.

    PubMed

    Bicici, Seda; Karatas, Nihan; Baltaci, Gul

    2012-04-01

    Chronic inversion ankle sprains are common in basketball players. The effect of taping on functional performance is disputed in the literature. Kinesiotaping® (KT®) is a new method that is being used as both a therapeutic and performance enhancement tool. To date, it appears that no study has investigated the effect of ankle KT® on functional performance. To investigate the effects of different types of taping (KT® using Kinesio Tex®, athletic taping) on functional performance in athletes with chronic inversion sprains of the ankle. Crossover Study Design Fifteen male basketball players with chronic inversion ankle sprains between the ages of 18 and 22 participated in this study. Functional performance tests (Hopping test by Amanda et al, Single Limb Hurdle Test, Standing Heel Rise test, Vertical Jump Test, The Star Excursion Balance Test [SEBT] and Kinesthetic Ability Trainer [KAT] Test) were used to quantify agility, endurance, balance, and coordination. These tests were conducted four times at one week intervals using varied conditions: placebo tape, without tape, standard athletic tape, and KT®. One-way ANOVA tests were used to examine difference in measurements between conditions. Bonferroni correction was applied to correct for repeated testing. There were no significant differences among the results obtained using the four conditions for SEBT (anterior p=0.0699; anteromedial p=0.126; medial p=0.550; posteromedial p=0.587; posterior p=0.754; posterolateral p=0.907; lateral p=0.124; anterolateral p=0.963) and the KAT dynamic measurement (p=0.388). Faster performance times were measured with KT® and athletic tape in single limb hurdle test when compared to placebo and non-taped conditions (Athletic taping- placebo taping: p=0.03; athletic taping- non tape p=0.016;KT®- Placebo taping p=0.042; KT®-Non tape p=0.016). In standing heel rise test and vertical jump test, athletic taping led to decreased performance. (Standing heel rise test: Athletic taping- placebo taping p=0.035; athletic taping- non tape p=0.043; athletic tape- KT® p<0.001) (Vertical jump test: Athletic taping- placebo taping p=0.002: athletic taping- non tape p=0.002; KT®- athletic tape p<0.001) Kinesiotaping® had no negative effects on a battery of functional performance tests and improvements were seen in some functional performance tests. Ankle taping using Kinesio Tex® Tape did not inhibit functional performance.

  15. Developing Leadership Strategies inside the Politics of Language, Diversity, and Change

    ERIC Educational Resources Information Center

    Tooms, Autumn

    2004-01-01

    Currently in her third year as principal of the Leighton Elementary School, Georgia Henson faces conflicting pressures in a district where the priorities of Anglo and Hispanic communities may diverge. This case raises questions regarding administration and supervision of schools in multicultural contexts where political tensions are rising. In…

  16. Schooling Culturally Relevant Pedagogy: One Story about Tension and Transformation

    ERIC Educational Resources Information Center

    Mason, Ann Mogush

    2013-01-01

    The need for multifaceted analyses of the relationship between how the United States acknowledges racism and how schooling can be structured to mitigate its negative impacts has never been greater, especially given the rising and often simplistic attention to the racial "achievement gap." In suburban, elite Pioneer City, a series of…

  17. Why Clothes Don't Fall Apart: Tension Transmission in Staple Yarns

    NASA Astrophysics Data System (ADS)

    Warren, Patrick B.; Ball, Robin C.; Goldstein, Raymond E.

    2018-04-01

    The problem of how staple yarns transmit tension is addressed within abstract models in which the Amontons-Coulomb friction laws yield a linear programing (LP) problem for the tensions in the fiber elements. We find there is a percolation transition such that above the percolation threshold the transmitted tension is in principle unbounded. We determine that the mean slack in the LP constraints is a suitable order parameter to characterize this supercritical state. We argue the mechanism is generic, and in practical terms, it corresponds to a switch from a ductile to a brittle failure mode accompanied by a significant increase in mechanical strength.

  18. Polydispersed O/W emulsions in porous media: segregation at low-tension conditions.

    PubMed

    Török, János; Tóth, János; Gesztesi, Gyula

    2006-03-15

    The segregation of polydispersed oil was studied in theoretical models, sand packs, and plugs from consolidated cores at low tension and atmospheric conditions. The height of the oil belt formed at the top of the porous column and its change in time were measured. The analysis of the segregation curves indicates the subsequent appearance and rise of three pseudo-phases. The primary phase, which contains the dominant fraction of oil in the system, rises with a relatively high steady state velocity. Unsteady state and decreasing velocity characterize the transitional secondary phase which is a lean emulsion left behind. The ternary phase, which follows it with a semi-steady state low velocity, is a lean emulsion of the smallest oil blobs present in low concentration. The process terminates at the segregation of the mobile oil particles in the subsequent phases where a small fraction of the total oil content remains in the porous bed, mainly from the last stage of segregation due to the entrapment in suitable microstructures. According to the postulated mechanism, the decreasing probability of the repeated coalescence in pore bodies and dispersion at the connecting pore throats are responsible for the development of the mobile phases at the sufficiently low-tension conditions. The structure of the pore network, the size-distribution of the oil droplets, the density of their population, and the length of paths affect the mechanism, properties, and behaviour of the systems.

  19. Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts.

    PubMed

    Dutcher, Cari S; Wexler, Anthony S; Clegg, Simon L

    2010-11-25

    A semiempirical model is presented that predicts surface tensions (σ) of aqueous electrolyte solutions and their mixtures, for concentrations ranging from infinitely dilute solution to molten salt. The model requires, at most, only two temperature-dependent terms to represent surface tensions of either pure aqueous solutions, or aqueous or molten mixtures, over the entire composition range. A relationship was found for the coefficients of the equation σ = c(1) + c(2)T (where T (K) is temperature) for molten salts in terms of ion valency and radius, melting temperature, and salt molar volume. Hypothetical liquid surface tensions can thus be estimated for electrolytes for which there are no data, or which do not exist in molten form. Surface tensions of molten (single) salts, when extrapolated to normal temperatures, were found to be consistent with data for aqueous solutions. This allowed surface tensions of very concentrated, supersaturated, aqueous solutions to be estimated. The model has been applied to the following single electrolytes over the entire concentration range, using data for aqueous solutions over the temperature range 233-523 K, and extrapolated surface tensions of molten salts and pure liquid electrolytes: HCl, HNO(3), H(2)SO(4), NaCl, NaNO(3), Na(2)SO(4), NaHSO(4), Na(2)CO(3), NaHCO(3), NaOH, NH(4)Cl, NH(4)NO(3), (NH(4))(2)SO(4), NH(4)HCO(3), NH(4)OH, KCl, KNO(3), K(2)SO(4), K(2)CO(3), KHCO(3), KOH, CaCl(2), Ca(NO(3))(2), MgCl(2), Mg(NO(3))(2), and MgSO(4). The average absolute percentage error between calculated and experimental surface tensions is 0.80% (for 2389 data points). The model extrapolates smoothly to temperatures as low as 150 K. Also, the model successfully predicts surface tensions of ternary aqueous mixtures; the effect of salt-salt interactions in these calculations was explored.

  20. On the curvature effect of thin membranes

    NASA Astrophysics Data System (ADS)

    Wang, Duo; Jiao, Xiangmin; Conley, Rebecca; Glimm, James

    2013-01-01

    We investigate the curvature effect of a thin, curved elastic interface that separates two subdomains and exerts a pressure due to a curvature effect. This pressure, which we refer to as interface pressure, is similar to the surface tension in fluid mechanics. It is important in some applications, such as the canopy of parachutes, biological membranes of cells, balloons, airbags, etc., as it partially balances a pressure jump between the two sides of an interface. In this paper, we show that the interface pressure is equal to the trace of the matrix product of the curvature tensor and the Cauchy stress tensor in the tangent plane. We derive the theory for interfaces in both 2-D and 3-D, and present numerical discretizations for computing the quality over triangulated surfaces.

  1. Edge Fracture in Complex Fluids.

    PubMed

    Hemingway, Ewan J; Kusumaatmaja, Halim; Fielding, Suzanne M

    2017-07-14

    We study theoretically the edge fracture instability in sheared complex fluids, by means of linear stability analysis and direct nonlinear simulations. We derive an exact analytical expression for the onset of edge fracture in terms of the shear-rate derivative of the fluid's second normal stress difference, the shear-rate derivative of the shear stress, the jump in shear stress across the interface between the fluid and the outside medium (usually air), the surface tension of that interface, and the rheometer gap size. We provide a full mechanistic understanding of the edge fracture instability, carefully validated against our simulations. These findings, which are robust with respect to choice of rheological constitutive model, also suggest a possible route to mitigating edge fracture, potentially allowing experimentalists to achieve and accurately measure flows stronger than hitherto possible.

  2. Dynamics of interacting edge defects in copolymer lamellae

    NASA Astrophysics Data System (ADS)

    Dalnoki-Veress, Kari; McGraw, Joshua D.; Rowe, Ian D. W.

    2011-03-01

    It is known that terraces at the interface of lamella forming diblock copolymers do not make discontinuous jumps in height. Rather, their profiles are smoothly varying. The width of the transition region between two lamellar heights is typically several hundreds of nanometres, resulting from a balance between surface tension, chain stretching penalties, and the enthalpy of mixing. What is less well known in these systems is what happens when two transition regions approach one another. In this study, we show that time dependent experimental data of interacting copolymer lamellar edges is consistent with a model that assumes a repulsion between adjacent edges. The range of the interaction between edge defects is consistent with the profile width of noninteracting diblock terraces. Financial support from NSERC of Canada is gratefully acknowledged.

  3. Effects of volume-based overload plyometric training on maximal-intensity exercise adaptations in young basketball players.

    PubMed

    Asadi, Abbas; Ramirez-Campillo, Rodrigo; Meylan, Cesar; Nakamura, Fabio Y; Cañas-Jamett, Rodrigo; Izquierdo, Mikel

    2017-12-01

    The aim of the present study was to compare maximal-intensity exercise adaptations in young basketball players (who were strong individuals at baseline) participating in regular basketball training versus regular plus a volume-based plyometric training program in the pre-season period. Young basketball players were recruited and assigned either to a plyometric with regular basketball training group (experimental group [EG]; N.=8), or a basketball training only group (control group [CG]; N.=8). The athletes in EG performed periodized (i.e., from 117 to 183 jumps per session) plyometric training for eight weeks. Before and after the intervention, players were assessed in vertical and broad jump, change of direction, maximal strength and a 60-meter sprint test. No significant improvements were found in the CG, while the EG improved vertical jump (effect size [ES] 2.8), broad jump (ES=2.4), agility T test (ES=2.2), Illinois agility test (ES=1.4), maximal strength (ES=1.8), and 60-m sprint (ES=1.6) (P<0.05) after intervention, and the improvements were greater compared to the CG (P<0.05). Plyometric training in addition to regular basketball practice can lead to meaningful improvements in maximal-intensity exercise adaptations among young basketball players during the pre-season.

  4. Budget boosts overall research but cuts NOAA and USGS funds

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Science in general, and physical sciences in particular, show growth far above projected inflation in President Ronald Reagan's fiscal 1984 budget proposal. Total funding requested for all federal research and development, including facilities, is $47 billion, up 17.2% over fiscal 1983, jumping hurdles over the 5% projected inflation rate. Defense R&D is slated to soar 29% to $30.3 billion, while non-defense R&D would rise 0.4% to $16.7 billion. Table 1 shows the proposed research and development budgets by major departments and agencies.

  5. Spine kinematics exhibited during the stop-jump by physically active individuals with adolescent idiopathic scoliosis and spinal fusion.

    PubMed

    Kakar, Rumit Singh; Li, Yumeng; Brown, Cathleen N; Kim, Seock-Ho; Oswald, Timothy S; Simpson, Kathy J

    2018-01-01

    Individuals with adolescent idiopathic scoliosis post spinal fusion often return to exercise and sport. However, the movements that individuals with spinal fusion for adolescent idiopathic scoliosis (SF-AIS) use to compensate for the loss of spinal flexibility during high-effort tasks are not known. The objective of this study was to compare the spinal kinematics of the trunk segments displayed during the stop-jump, a maximal effort task, between SF-AIS and healthy control groups. The study used a case-controlled design. Ten SF-AIS (physically active, posterior-approach spinal fusion: 11.2±1.9 fused segments, postop time: 2±.6 years) and nine control individuals, pair matched for gender, age (17.4±1.3 years and 20.6±1.5 years, respectively), mass (63.50±12.2 kg and 66. 40±10.9 kg), height (1.69±.09 m and 1.72±.08 m), and level of physical activity, participated in the study. Individuals with spinal fusion for adolescent idiopathic scoliosis and controls (CON) performed five acceptable trials of the stop-jump task. Spatial locations of 21 retroreflective trunk and pelvis markers were recorded via high-speed motion capture methodology. Mean differences and analysis of covariance (jump height=covariate, p<.05) were used to compare the groups' relative angle (RelAng) and segmental angle (SegAng) of the three trunk segments (trunk segments=upper trunk [C7-T8], middle trunk [MT: T9-T12], lower trunk [LT: L1-L5]) for each rotation plane in the three phases of interest (flight, stance, and the vertical flight phases). No significant group differences for jump height and RelAng were detected in the three phases of stop-jump. Individuals with spinal fusion for adolescent idiopathic scoliosis displayed 3.2° greater transverse plane RelAng of LT compared with CON (p=.059) in the stance phase. Group differences for RelAng ranged from 0° to 15.3°. For SegAng in the stance phase, LT demonstrated greater SegAng in the sagittal and frontal planes (mean difference: 3.2°-6.2°), whereas SegAng for MT was 5.1° greater in the sagittal plane and had a tendency of 2° greater displacement in the frontal plane (p=.070). In the vertical flight phase, greater LT displacement in the frontal plane was observed for SF-AIS than CON. In the flight phase, LT had a tendency for greater SegAng for SF-AIS than for CON in the transverse plane (p=.089). Overall, SF-AIS who participate in physical activity on a regular basis are able to demonstrate similar trunk kinematics during a high-intensity stop-jump task as their matched healthy peers. Fewer group differences for relative angular displacements of the spine were observed than anticipated. This finding suggests that the fused MT appeared to be moving synchronously with the LT, thereby suggesting a compensatory adaptation of SF-AIS to achieve sufficient trunk movements during this high-effort movement. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The Effects of Cold Whirlpool on Power, Speed, Agility, and Range of Motion

    PubMed Central

    Patterson, Stephen M.; Udermann, Brian E.; Doberstein, Scott T.; Reineke, David M.

    2008-01-01

    The purpose was to determine if cold whirlpool treatment decreases functional performance equally regardless of gender. A secondary aim was to determine if there is a gradual increase in functional performance across time. Twenty-one college-aged subjects volunteered to participate in this study and were required to perform four measures of functional performance including: counter movement vertical jump, T-test, 36.58-meter dash (40-yard), and active range of motion of the ankle. Participants were treated with a 20 minute, 10 degree Celsius cold whirlpool following the pre-test of a given functional performance measure. Participants demonstrated significant decreases in counter movement vertical jump, T-test, and 40-yard dash performance immediately following treatment. Vertical jump performance remained impaired for at least 32 minutes. While both the T-test and 40-yard dash were affected for 7 and 22 minutes post- treatment, respectively. Participants also demonstrated significant decreases in peak power and average power immediately after and for 32 minutes post-treatment. Dorsiflexion was significantly decreased 7 and 12 minutes following treatment. There were no differences for plantar flexion, inversion, or eversion. These data suggest functional performance was affected immediately following and for up to 32 minutes after cold whirlpool treatment. It was also evident that there is a gradual performance increase for each measure of functional performance across time. Therefore, the consequences should be carefully considered before returning athletes to activity following cold whirlpool treatment. Key pointsCryotherapy is a common and highly effective modality in treating acute and chronic athletic injuries.The results indicated that cold whirlpool does have an immediate and subsequent effect on functional performance.Understanding how cold whirlpool adversely affects functional performance allows clinicians to continue using this modality before vigorous athletic activity. PMID:24149907

  7. Superconducting gap of the single crystal β-PdBi2

    NASA Astrophysics Data System (ADS)

    Matsuzaki, H.; Nagai, K.; Kase, N.; Nakano, T.; Takeda, N.

    2017-07-01

    We investigate superconducting and normal properties of the single crystal of β-PdBi2. The electrical resistivity ρ(T) shows superconductivity at Tc = 5.0 K. Residual resistivity ratio (RRR) is estimated to be 2.9 obtained from ρ(300 K)/ρ(5.0 K). The H c2 curve obtained from ρ(T) in magnetic fields shows cleat enhancement from the Wertharmer-Helfand-Hohenberg theory in dirty limit. Specific heat C(T) measurement shows that clear jump is observed at T c = 4.8 K. T-dependence of the electronic specific heat C e(T) suggests full-gap symmetry with a single gap and strong coupling with ΔC e/γT c = 1.8.

  8. The YBa2Cu3O7- anomalous second peak and irreversible magnetic field in the magnetization hysteresis cycles

    NASA Astrophysics Data System (ADS)

    Taoufik, A.; Ramzi, A.; Senoussi, S.; Labrag, A.

    2004-05-01

    The flux jumps, the second peak and the irreversible magnetic field in the magnetization hysteresis cycles have been investigated in the high temperature superconductor YBa2Cu3O7- single crystals. These cycles were obtained for different temperature values, the applied magnetic fields up to 6 T and the angle between the applied magnetic field and c-axis. The magnetization curves exhibit a remarkable second peak fishtail, this second peak was not observed for the low temperature, but we observed the flux jumps saw tooth. The temperature dependence of the irreversible magnetic field, Hirr, for the applied magnetic field perpendicular to the ab planes is given by an extended expression, Hirr α (1-T/Tc )α, where α is a constant, the Abrikosov flux dynamics can explain this behavior. The Hirr as a function of has been strongly influenced by the flux pinning and the thermally assisted flux motion.

  9. Resonant magnetic perturbation effect on tearing mode dynamics

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Olofsson, K. E. J.; Brunsell, P. R.; Drake, J. R.

    2010-03-01

    The effect of a resonant magnetic perturbation (RMP) on the tearing mode (TM) dynamics is experimentally studied in the EXTRAP T2R device. EXTRAP T2R is equipped with a set of sensor coils and active coils connected by a digital controller allowing a feedback control of the magnetic instabilities. The recently upgraded feedback algorithm allows the suppression of all the error field harmonics but keeping a selected harmonic to the desired amplitude, therefore opening the possibility of a clear study of the RMP effect on the corresponding TM. The paper shows that the RMP produces two typical effects: (1) a weak oscillation in the TM amplitude and a modulation in the TM velocity or (2) a strong modulation in the TM amplitude and phase jumps. Moreover, the locking mechanism of a TM to a RMP is studied in detail. It is shown that before the locking, the TM dynamics is characterized by velocity modulation followed by phase jumps. Experimental results are reasonably explained by simulations obtained with a model.

  10. Nonequilibrium ab initio molecular dynamics determination of Ti monovacancy migration rates in B 1 TiN

    NASA Astrophysics Data System (ADS)

    Gambino, D.; Sangiovanni, D. G.; Alling, B.; Abrikosov, I. A.

    2017-09-01

    We use the color diffusion (CD) algorithm in nonequilibrium (accelerated) ab initio molecular dynamics simulations to determine Ti monovacancy jump frequencies in NaCl-structure titanium nitride (TiN), at temperatures ranging from 2200 to 3000 K. Our results show that the CD method extended beyond the linear-fitting rate-versus-force regime [Sangiovanni et al., Phys. Rev. B 93, 094305 (2016), 10.1103/PhysRevB.93.094305] can efficiently determine metal vacancy migration rates in TiN, despite the low mobilities of lattice defects in this type of ceramic compound. We propose a computational method based on gamma-distribution statistics, which provides unambiguous definition of nonequilibrium and equilibrium (extrapolated) vacancy jump rates with corresponding statistical uncertainties. The acceleration-factor achieved in our implementation of nonequilibrium molecular dynamics increases dramatically for decreasing temperatures from 500 for T close to the melting point Tm, up to 33 000 for T ≈0.7 Tm .

  11. Perceptual approaches to finding features in data

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.

    2013-03-01

    Electronic imaging applications hinge on the ability to discover features in data. For example, doctors examine diagnostic images for tumors, broken bones and changes in metabolic activity. Financial analysts explore visualizations of market data to find correlations, outliers and interaction effects. Seismologists look for signatures in geological data to tell them where to drill or where an earthquake may begin. These data are very diverse, including images, numbers, graphs, 3-D graphics, and text, and are growing exponentially, largely through the rise in automatic data collection technologies such as sensors and digital imaging. This paper explores important trends in the art and science of finding features in data, such as the tension between bottom-up and top-down processing, the semantics of features, and the integration of human- and algorithm-based approaches. This story is told from the perspective of the IS and T/SPIE Conference on Human Vision and Electronic Imaging (HVEI), which has fostered research at the intersection between human perception and the evolution of new technologies.

  12. Some Physics Constraints on Ultimate Achievement in Track and Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frohlich, Cliff

    2009-02-06

    World records in track and field have improved remarkably throughout the last 100 years; however, in several events physics places quite strict limitations on ultimate performance. For example, analysis suggests that records in broad jump and pole vault have approached their optimum possible values. Physical constraints are more subtle for events such as javelin, high jump, and the distance races, and thus there may be opportunities for “breakthroughs” in current records. Considering that there is enormous cultural interest and economic expenditure on sports, for most events the level of scientific analysis isn’t very high. This presents a research opportunity formore » fans who are engineers or physicists.« less

  13. Transition Crossing in the Main Injector for PIP-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ainsworth, R.; Chaurize, S.; Kourbanis, I.

    2017-01-01

    Proton Improvement Plan-II (PIP-II) is Fermilab’s plan for providing powerful, high-intensity proton beams to the laboratory’s experiments. PIP II will include upgrades to the Booster, Recycler and Main Injector which will be required to accelerate 50% more beam as well as increasing the Booster repetition rate from 15 to 20 Hz. To accommodate the faster rate, the momentum separation of the slip stacking beams in the Recycler must increase which will result in in larger longitudinal emittance bunches in MI. In order to cross transition without losses, it is expected a gammat jump will be needed. Gamma-t jump schemes formore » the MI are investigated« less

  14. Commercializing Higher Learning through the Discourse of Skills in University Co-Operative Education: Tensions and Contradictions

    ERIC Educational Resources Information Center

    Milley, Peter

    2016-01-01

    The last 3 decades have witnessed the rise of reforms aimed at conjoining Canadian universities to the economic system. Critics have pointed out how reforms have emphasized economic utility in universities to the detriment of their sociocultural mission, producing negative effects. One curricular innovation that has spread in tandem with reforms…

  15. A reconsideration for forming mechanism of optic fiber probe fabricated by static chemical etching

    NASA Astrophysics Data System (ADS)

    Chen, Yiru; Shen, Ruiqi

    2016-07-01

    The studies on the mechanism of static chemical etching are supplemented in this paper. Surface tension and diffusion effect are both taken into account. Theoretical analysis and data fitting show that the slant angle of the liquid-liquid interface leads to the maximum liquid rising, when diffusion effect is negligible.

  16. Standardized Individuality: Cosmopolitanism and Educational Decision-Making in an Atlantic Canadian Rural Community

    ERIC Educational Resources Information Center

    Corbett, Michael J.

    2010-01-01

    With the rise of network society, consumerism, individualization, globalization and contemporary change forces, students are pressured to both perform well in standardized academic assessments while at the same time constructing a non-standard, unique project of the self. I argue that this generates a particular set of place-based tensions for…

  17. Analytic theory for the determination of velocity and stability of bubbles in a Hele-Shaw cell. Part 1: Velocity selection

    NASA Technical Reports Server (NTRS)

    Tanveer, Saleh

    1989-01-01

    An asymptotic theory is presented for the determination of velocity and linear stability of a steady symmetric bubble in a Hele-Shaw cell for small surface tension. In the first part, the bubble velocity U relative to the fluid velocity at infinity is determined for small surface tension T by determining transcendentally small correction to the asymptotic series solution. It is found that for any relative bubble velocity U in the interval (U(c),2), solutions exist at a countably infinite set of values of T (which has zero as its limit point) corresponding to the different branches of bubble solutions. U(c) decreases monotonically from 2 to 1 as the bubble area increases from 0 to infinity. However, for a bubble of arbitrarily given size, as T approaches 0, solution exists on any given branch with relative bubble velocity U satisfying the relation 2-U = cT to the 2/3 power, where c depends on the branch but is independent of the bubble area. The analytical evidence further suggests that there are no solutions for U greater than 2. These results are in agreement with earlier analytical results for a finger. In Part 2, an analytic theory is presented for the determination of the linear stability of the bubble in the limit of zero surface tension. Only the solution branch corresponding to the largest possible U for given surface tension is found to be stable, while all the others are unstable, in accordance with earlier numerical results.

  18. Effect of Composition of Alloys of Tin-Sodium Systems on Surface Tension

    NASA Astrophysics Data System (ADS)

    Alchagirov, B. B.; Kyasova, O. Kh.

    2018-07-01

    The results are presented from investigating the surface tensions of tin-sodium systems, along with original experimental data on the concentration dependences of the surface tensions of 19 tin-based sodium alloys obtained for samples of enhanced purity in a range of compositions with contents of 0.06 to 5.00 at % Na at T = 573 K. It is established that adding small amounts of sodium to tin greatly reduces the surface tensions of the studied melts. Calculations of sodium adsorption in alloys with tin show there is a maximum on the adsorption curve that corresponds to alloys with contents of around 1.5 at % Na in Sn.

  19. Surface tension and density of liquid In-Sn-Zn alloys

    NASA Astrophysics Data System (ADS)

    Pstruś, Janusz

    2013-01-01

    Using the dilatometric method, measurements of the density of liquid alloys of the ternary system In-Sn-Zn in four sections with a constant ratio Sn:In = 24:1, 3:1, 1:1, 1:3, for various Zn additions (5, 10, 14, 20, 3 5, 50 and 75 at.% Zn) were performed at the temperature ranges of 500-1150 K. Density decreases linearly for all compositions. The molar volume calculated from density data exhibits close to ideal dependence on composition. Measurements of the surface tension of liquid alloys have been conducted using the method of maximum pressure in the gas bubbles. There were observed linear dependences on temperature with a negative gradients dσ/dT. Generally, with two exceptions, there was observed the increase of surface tension with increasing content of zinc. Using the Butler's model, the surface tension isotherms were calculated for temperatures T = 673 and 1073 K. Calculations show that only for high temperatures and for low content of zinc (up to about 35 at.%), the modeling is in very good agreement with experiment. Using the mentioned model, the composition of the surface phase was defined at two temperatures T = 673 and 973 K. Regardless of the temperature and of the defined section, the composition of the bulk is very different in comparison with the composition of the surface.

  20. FROM THE HISTORY OF PHYSICS: Electrolysis and surface phenomena. To the bicentenary of Volta's publication on the first direct-current source

    NASA Astrophysics Data System (ADS)

    Gokhshtein, Aleksandr Ya

    2000-07-01

    The development of knowledge about electric current, potential, and the conversion of energy at the interface between electronic- and ionic-conductivity phases is briefly reviewed. Although soon after its discovery it was realized that electric current is the motion of charged particles, the double-layer field promoting charge transfer through the interface was considered for a long time to be as uniform as in a capacitor. One-dimensional ion discharge theory failed to explain the observed dependence of the current on the potential jump across the interface. The spatial segmentation of energy in the double layer due to the quantum evolution of the layer's periphery puts a limit on the charge transfer work the field may perform locally, and creates conditions for the ionic atmosphere being spontaneously compressed after the critical potential jump has been reached. A discrete interchange of states also occurs due to the adsorption of discharged particles and corresponds to the consecutive exclusion of the d-wave function nodes of metal surface atoms, the exclusion manifesting itself in the larger longitudinal and smaller lateral sizes of the atomic orbital. The elastic extension of the metal surface reduces the d-function overlap thus intensifying adsorption. Advances in experimentation, in particular new techniques capable of detecting alternating surface tension of solids, enabled these and some other phenomena to be observed.

  1. Eccentric exercise: mechanisms and effects when used as training regime or training adjunct.

    PubMed

    Vogt, Michael; Hoppeler, Hans H

    2014-06-01

    The aim of the current review is to discuss applications and mechanism of eccentric exercise in training regimes of competitive sports. Eccentric muscle work is important in most sports. Eccentric muscle contractions enhance the performance during the concentric phase of stretch-shortening cycles, which is important in disciplines like sprinting, jumping, throwing, and running. Muscles activated during lengthening movements can also function as shock absorbers, to decelerate during landing tasks or to precisely deal with high external loading in sports like alpine skiing. The few studies available on trained subjects reveal that eccentric training can further enhance maximal muscle strength and power. It can further optimize muscle length for maximal tension development at a greater degree of extension, and has potential to improve muscle coordination during eccentric tasks. In skeletal muscles, these functional adaptations are based on increases in muscle mass, fascicle length, number of sarcomeres, and cross-sectional area of type II fibers. Identified modalities for eccentric loading in athletic populations involve classical isotonic exercises, accentuated jumping exercises, eccentric overloading exercises, and eccentric cycle ergometry. We conclude that eccentric exercise offers a promising training modality to enhance performance and to prevent injuries in athletes. However, further research is necessary to better understand how the neuromuscular system adapts to eccentric loading in athletes. Copyright © 2014 the American Physiological Society.

  2. Knee movement patterns of injured and uninjured adolescent basketball players when landing from a jump: A case-control study

    PubMed Central

    Louw, Quinette; Grimmer, Karen; Vaughan, Christopher

    2006-01-01

    Background A common knee injury mechanism sustained during basketball is landing badly from a jump. Landing is a complex task and requires good coordination, dynamic muscle control and flexibility. For adolescents whose coordination and motor control has not fully matured, landing badly from a jump can present a significant risk for injury. There is currently limited biomechanical information regarding the lower limb kinetics of adolescents when jumping, specifically regarding jump kinematics comparing injured with uninjured adolescents. This study reports on an investigation of biomechanical differences in landing patterns of uninjured and injured adolescent basketball players. Methods A matched case-control study design was employed. Twenty-two basketball players aged 14–16 years participated in the study: eleven previously knee-injured and eleven uninjured players matched with cases for age, gender, weight, height and years of play, and playing for the same club. Six high-speed, three-dimensional Vicon 370 cameras (120 Hz), Vicon biomechanical software and SAS Version 8 software were employed to analyse landing patterns when subjects performed a "jump shot". Linear correlations determined functional relationships between the biomechanical performance of lower limb joints, and paired t-tests determined differences between the normalised peak biomechanical parameters. Results The average peak vertical ground reaction forces between the cases and controls were similar. The average peak ground reaction forces between the cases and controls were moderately correlated (r = -0.47). The control (uninjured) players had significantly greater hip and knee flexion angles and significantly greater eccentric activity on landing than the uninjured cases (p < 0.01). Conclusion The findings of the study indicate that players with a history of knee injuries had biomechanically compromised landing techniques when compared with uninjured players matched for gender, age and club. Descriptions (norms) of expected levels of knee control, proprioceptive acuity and eccentric strength relative to landing from a jump, at different ages and physical developmental stages, would assist clinicians and coaches to identify players with inappropriate knee performance comparable to their age or developmental stage. PMID:16522210

  3. Conditioning exercises in ski jumping: biomechanical relationship of squat jumps, imitation jumps, and hill jumps.

    PubMed

    Lorenzetti, Silvio; Ammann, Fabian; Windmüller, Sabrina; Häberle, Ramona; Müller, Sören; Gross, Micah; Plüss, Michael; Plüss, Stefan; Schödler, Berni; Hübner, Klaus

    2017-11-22

    As hill jumps are very time-consuming, ski jumping athletes often perform various imitation jumps during training. The performed jumps should be similar to hill jumps, but a direct comparison of the kinetic and kinematic parameters has not been performed yet. Therefore, this study aimed to correlate 11 common parameters during hill jumps (Oberstdorf Germany), squat jumps (wearing indoor shoes), and various imitation jumps (rolling 4°, rolling flat, static; jumping equipment or indoor shoes) on a custom-built instrumented vehicle with a catch by the coach. During the performed jumps, force and video data of the take-off of 10 athletes were measured. The imitation and squat jumps were then ranked. The main difference between the hill jumps and the imitation and squat jumps is the higher maximal force loading rate during the hill jumps. Imitation jumps performed on a rolling platform, on flat ground were the most similar to hill jumps in terms of the force-time, and leg joint kinematic properties. Thus, non-hill jumps with a technical focus should be performed from a rolling platform with a flat inrun with normal indoor shoes or jumping equipment, and high normal force loading rates should be the main focus of imitation training.

  4. Curvature computation in volume-of-fluid method based on point-cloud sampling

    NASA Astrophysics Data System (ADS)

    Kassar, Bruno B. M.; Carneiro, João N. E.; Nieckele, Angela O.

    2018-01-01

    This work proposes a novel approach to compute interface curvature in multiphase flow simulation based on Volume of Fluid (VOF) method. It is well documented in the literature that curvature and normal vector computation in VOF may lack accuracy mainly due to abrupt changes in the volume fraction field across the interfaces. This may cause deterioration on the interface tension forces estimates, often resulting in inaccurate results for interface tension dominated flows. Many techniques have been presented over the last years in order to enhance accuracy in normal vectors and curvature estimates including height functions, parabolic fitting of the volume fraction, reconstructing distance functions, coupling Level Set method with VOF, convolving the volume fraction field with smoothing kernels among others. We propose a novel technique based on a representation of the interface by a cloud of points. The curvatures and the interface normal vectors are computed geometrically at each point of the cloud and projected onto the Eulerian grid in a Front-Tracking manner. Results are compared to benchmark data and significant reduction on spurious currents as well as improvement in the pressure jump are observed. The method was developed in the open source suite OpenFOAM® extending its standard VOF implementation, the interFoam solver.

  5. Muscle anatomy and dynamic muscle function in osteogenesis imperfecta type I.

    PubMed

    Veilleux, Louis-Nicolas; Lemay, Martin; Pouliot-Laforte, Annie; Cheung, Moira S; Glorieux, Francis H; Rauch, Frank

    2014-02-01

    Results of previous studies suggested that children and adolescents with osteogenesis imperfecta (OI) type I have a muscle force deficit. However, muscle function has only been assessed by static isometric force tests and not in more natural conditions such as dynamic force and power tests. The purpose of this study was to assess lower extremity dynamic muscle function and muscle anatomy in OI type I. The study was performed in the outpatient department of a pediatric orthopedic hospital. A total of 54 individuals with OI type I (6-21 years; 20 male) and 54 age- and sex-matched controls took part in this study. Calf muscle cross-sectional area and density were measured by peripheral quantitative computed tomography. Lower extremity muscle function (peak force per body weight and peak power per body mass) was measured by jumping mechanography through 5 tests: multiple two-legged hopping, multiple one-legged hopping, single two-legged jump, chair-rise test, and heel-rise test. Compared with age- and sex-matched controls, patients with OI type I had smaller muscle size (P = .04) but normal muscle density (P = .21). They also had lower average peak force and lower specific force (peak force/muscle cross-sectional area; all P < .008). Average peak power was lower in patients with OI type I but not significantly so (all P > .054). Children and adolescents with OI type I have, on average, a significant force deficit in the lower limb as measured by dynamic force tests. Nonetheless, these data also show that OI type I is compatible with normal muscle performance in some individuals.

  6. How to simulate global cosmic strings with large string tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klaer, Vincent B.; Moore, Guy D., E-mail: vklaer@theorie.ikp.physik.tu-darmstadt.de, E-mail: guy.moore@physik.tu-darmstadt.de

    Global string networks may be relevant in axion production in the early Universe, as well as other cosmological scenarios. Such networks contain a large hierarchy of scales between the string core scale and the Hubble scale, ln( f {sub a} / H ) ∼ 70, which influences the network dynamics by giving the strings large tensions T ≅ π f {sub a} {sup 2} ln( f {sub a} / H ). We present a new numerical approach to simulate such global string networks, capturing the tension without an exponentially large lattice.

  7. The direct-stress fatigue strength of 17S-T aluminum alloy throughout the range from 1/2 to 500,000,000 cycles of stress

    NASA Technical Reports Server (NTRS)

    Hartmann, E C; Stickley, G W

    1942-01-01

    Fatigue-test were conducted on six specimens made from 3/4-inch-diameter 17S-T rolled-and-drawn rod for the purpose of obtaining additional data on the fatigue life of the material at stresses up to the static strength. The specimens were tested in direct tension using a stress range from zero to a maximum in tension. A static testing machine was used to apply repeated loads in the case of the first three specimens; the other three specimens were tested in a direct tension-compression fatigue machine. The direct-stress fatigue curve obtained for the material indicates that, in the range of stresses above about two-thirds the tensile strength, the fatigue strength is higher than might be expected by simply extrapolating the ordinary curve of stress plotted against the number of cycles determined at lower stresses.

  8. Structure formation in f(T) gravity and a solution for H0 tension

    NASA Astrophysics Data System (ADS)

    Nunes, Rafael C.

    2018-05-01

    We investigate the evolution of scalar perturbations in f(T) teleparallel gravity and its effects on the cosmic microwave background (CMB) anisotropy. The f(T) gravity generalizes the teleparallel gravity which is formulated on the Weitzenböck spacetime, characterized by the vanishing curvature tensor (absolute parallelism) and the non-vanishing torsion tensor. For the first time, we derive the observational constraints on the modified teleparallel gravity using the CMB temperature power spectrum from Planck's estimation, in addition to data from baryonic acoustic oscillations (BAO) and local Hubble constant measurements. We find that a small deviation of the f(T) gravity model from the ΛCDM cosmology is slightly favored. Besides that, the f(T) gravity model does not show tension on the Hubble constant that prevails in the ΛCDM cosmology. It is clear that f(T) gravity is also consistent with the CMB observations, and undoubtedly it can serve as a viable candidate amongst other modified gravity theories.

  9. Rotational dynamics in supercooled water from nuclear spin relaxation and molecular simulations.

    PubMed

    Qvist, Johan; Mattea, Carlos; Sunde, Erik P; Halle, Bertil

    2012-05-28

    Structural dynamics in liquid water slow down dramatically in the supercooled regime. To shed further light on the origin of this super-Arrhenius temperature dependence, we report high-precision (17)O and (2)H NMR relaxation data for H(2)O and D(2)O, respectively, down to 37 K below the equilibrium freezing point. With the aid of molecular dynamics (MD) simulations, we provide a detailed analysis of the rotational motions probed by the NMR experiments. The NMR-derived rotational correlation time τ(R) is the integral of a time correlation function (TCF) that, after a subpicosecond librational decay, can be described as a sum of two exponentials. Using a coarse-graining algorithm to map the MD trajectory on a continuous-time random walk (CTRW) in angular space, we show that the slowest TCF component can be attributed to large-angle molecular jumps. The mean jump angle is ∼48° at all temperatures and the waiting time distribution is non-exponential, implying dynamical heterogeneity. We have previously used an analogous CTRW model to analyze quasielastic neutron scattering data from supercooled water. Although the translational and rotational waiting times are of similar magnitude, most translational jumps are not synchronized with a rotational jump of the same molecule. The rotational waiting time has a stronger temperature dependence than the translation one, consistent with the strong increase of the experimentally derived product τ(R) D(T) at low temperatures. The present CTRW jump model is related to, but differs in essential ways from the extended jump model proposed by Laage and co-workers. Our analysis traces the super-Arrhenius temperature dependence of τ(R) to the rotational waiting time. We present arguments against interpreting this temperature dependence in terms of mode-coupling theory or in terms of mixture models of water structure.

  10. Rise and fall of political complexity in island South-East Asia and the Pacific.

    PubMed

    Currie, Thomas E; Greenhill, Simon J; Gray, Russell D; Hasegawa, Toshikazu; Mace, Ruth

    2010-10-14

    There is disagreement about whether human political evolution has proceeded through a sequence of incremental increases in complexity, or whether larger, non-sequential increases have occurred. The extent to which societies have decreased in complexity is also unclear. These debates have continued largely in the absence of rigorous, quantitative tests. We evaluated six competing models of political evolution in Austronesian-speaking societies using phylogenetic methods. Here we show that in the best-fitting model political complexity rises and falls in a sequence of small steps. This is closely followed by another model in which increases are sequential but decreases can be either sequential or in bigger drops. The results indicate that large, non-sequential jumps in political complexity have not occurred during the evolutionary history of these societies. This suggests that, despite the numerous contingent pathways of human history, there are regularities in cultural evolution that can be detected using computational phylogenetic methods.

  11. Lévy walks with variable waiting time: A ballistic case

    NASA Astrophysics Data System (ADS)

    Kamińska, A.; Srokowski, T.

    2018-06-01

    The Lévy walk process for a lower interval of an excursion times distribution (α <1 ) is discussed. The particle rests between the jumps, and the waiting time is position-dependent. Two cases are considered: a rising and diminishing waiting time rate ν (x ) , which require different approximations of the master equation. The process comprises two phases of the motion: particles at rest and in flight. The density distributions for them are derived, as a solution of corresponding fractional equations. For strongly falling ν (x ) , the resting particles density assumes the α -stable form (truncated at fronts), and the process resolves itself to the Lévy flights. The diffusion is enhanced for this case but no longer ballistic, in contrast to the case for the rising ν (x ) . The analytical results are compared with Monte Carlo trajectory simulations. The results qualitatively agree with observed properties of human and animal movements.

  12. Anomalous interfacial tension temperature dependence of condensed phase drops in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Ivanov, Aleksey S.

    2018-05-01

    Interfacial tension temperature dependence σ(T) of the condensed phase (drop-like aggregates) in magnetic fluids undergoing field induced phase transition of the "gas-liquid" type was studied experimentally. Numerical analysis of the experimental data has revealed the anomalous (if compared to ordinary one-component fluids) behavior of the σ(T) function for all tested magnetic colloid samples: the condensed phase drops at high T ≈ 75 C exhibit higher σ(T) than the drops condensed at low T ≈ 20 C. The σ(T) behavior is explained by the polydispersity of magnetic colloids: at high T, only the largest colloidal particles are able to take part in the field induced condensation; thus, the increase of T causes the growth of the average particle diameters inside the drop-like aggregates, what in its turn results in the growth of σ(T). The result is confirmed by qualitative theoretical estimations and qualitative experimental observation of the condensed phase "evaporation" process after the applied magnetic field is removed: the drops that are formed due to capillary instability of the drop-like aggregates retract by one order of magnitude faster at high T, and the evaporation of the drops slows down at high T.

  13. Effects of plyometrics performed during warm-up on 20 and 40 m sprint performance.

    PubMed

    Creekmur, Ceith C; Haworth, Joshua L; Cox, Ronald H; Walsh, Mark S

    2017-05-01

    Postactivation potentiation in the form of a plyometric during warm-ups have been shown to improve performance in some speed/power events. This study aimed to determine if a plyometric during warm up can increase sprint performance in a 20 and 40 m sprint. In this study we measured sprint times of 10 male track and field athletes over distances of 20 and 40 m after warm-ups with and without a plyometric exercise. The subjects performed the sprints at the same time on 2 different days, once with the experimental treatment, a plyometric exercise in the form of a plate jump, and once without. Plate jumps were chosen as the plyometric treatment because they do not require special equipment or facilities. The plate used for the plate jumps had a mass of 11.2 kilograms, which was between 12.8-16.6% of each athlete's body mass. Statistical analysis showed a decrease in sprint time when a plyometric was performed during the warm-up for both 20 (t-test P<0.05) and 40 m sprints (t-test P<0.01). The effect sizes of the improvement for both the 20 and 40 m sprints were d=0.459 and d=0.405, respectively, which is considered a small to medium effect. These results indicate that including a plyometric exercise during warm-ups can improve sprint performance in collegiate aged male sprinters during short sprints.

  14. Influence of lumbar spine extension on vertical jump height during maximal squat jumping.

    PubMed

    Blache, Yoann; Monteil, Karine

    2014-01-01

    The purpose of this study was to determine the influence of lumbar spine extension and erector spinae muscle activation on vertical jump height during maximal squat jumping. Eight male athletes performed maximal squat jumps. Electromyograms of the erector spinae were recorded during these jumps. A simulation model of the musculoskeletal system was used to simulate maximal squat jumping with and without spine extension. The effect on vertical jump height of changing erector spinae strength was also tested through the simulated jumps. Concerning the participant jumps, the kinematics indicated a spine extension and erector spinae activation. Concerning the simulated jumps, vertical jump height was about 5.4 cm lower during squat jump without trunk extension compared to squat jump. These results were explained by greater total muscle work during squat jump, more especially by the erector spinae work (+119.5 J). The erector spinae may contribute to spine extension during maximal squat jumping. The simulated jumps confirmed this hypothesis showing that vertical jumping was decreased if this muscle was not taken into consideration in the model. Therefore it is concluded that the erector spinae should be considered as a trunk extensor, which enables to enhance total muscle work and consequently vertical jump height.

  15. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping.

    PubMed

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    1987-08-01

    In the literature, drop jumping is advocated as an effective exercise for athletes who prepare themselves for explosive activities. When executing drop jumps, different jumping techniques can be used. In this study, the influence of jumping technique on the biomechanics of jumping is investigated. Ten subjects executed drop jumps from a height of 20 cm and counter-movement jumps. For the execution of the drop jumps, two different techniques were adopted. The first technique, referred to as bounce drop jump, required the subjects to reverse the downward velocity into an upward one as soon as possible after landing. The second technique, referred to as counter-movement drop jump, required them to do this more gradually by making a larger downward movement. During jumping, the subjects were filmed, ground reaction forces were registered, and electromyograms were recorded. The results of a biomechanical analysis show that moments and power output about knee and ankle joints reach larger values during the drop jumps than during counter-movement jumps. The largest values were attained during bounce drop jumps. Based on this finding, it was hypothesized that bounce drop jump is better suited than counter-movement drop jump for athletes who seek to improve the mechanical output of knee extensors and plantar flexors. Researchers are, therefore, advised to control jumping technique when investigating training effects of executing drop jumps.

  16. Nonequilibrium Interfacial Tension in Simple and Complex Fluids

    NASA Astrophysics Data System (ADS)

    Truzzolillo, Domenico; Mora, Serge; Dupas, Christelle; Cipelletti, Luca

    2016-10-01

    Interfacial tension between immiscible phases is a well-known phenomenon, which manifests itself in everyday life, from the shape of droplets and foam bubbles to the capillary rise of sap in plants or the locomotion of insects on a water surface. More than a century ago, Korteweg generalized this notion by arguing that stresses at the interface between two miscible fluids act transiently as an effective, nonequilibrium interfacial tension, before homogenization is eventually reached. In spite of its relevance in fields as diverse as geosciences, polymer physics, multiphase flows, and fluid removal, experiments and theoretical works on the interfacial tension of miscible systems are still scarce, and mostly restricted to molecular fluids. This leaves crucial questions unanswered, concerning the very existence of the effective interfacial tension, its stabilizing or destabilizing character, and its dependence on the fluid's composition and concentration gradients. We present an extensive set of measurements on miscible complex fluids that demonstrate the existence and the stabilizing character of the effective interfacial tension, unveil new regimes beyond Korteweg's predictions, and quantify its dependence on the nature of the fluids and the composition gradient at the interface. We introduce a simple yet general model that rationalizes nonequilibrium interfacial stresses to arbitrary mixtures, beyond Korteweg's small gradient regime, and show that the model captures remarkably well both our new measurements and literature data on molecular and polymer fluids. Finally, we briefly discuss the relevance of our model to a variety of interface-driven problems, from phase separation to fracture, which are not adequately captured by current approaches based on the assumption of small gradients.

  17. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  18. Extrinsic and intrinsic properties in metal–insulator transition of hydrothermally prepared vanadium dioxide crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myeongsoon; Kim, Don, E-mail: donkim@pknu.ac.kr

    2014-03-01

    The clear insulator (monoclinic-VO{sub 2}) to metal (rutile-VO{sub 2}) transition (IMT) was observed in electrical conductivity and differential scanning calorimeter (DSC) measurements at around 340 K, which is IMT temperature (T{sub H}), in the hydrothermally prepared VO{sub 2} crystals. The occurrence of metal to insulator transition (MIT) temperature (T{sub C}) was observed below 333 K during the first resistance measurement cycle in the most of cases. The sudden jump of the electrical resistance at IMT and MIT points was amplified several times than that of the first cycle during the repeated successive thermal cycles (heating and cooling across the IMTmore » and MIT temperatures). T{sub C} and T{sub H} shifted to higher temperature by the repeated successive thermal cycles. This shift and the amplified jump might be related to the mechanical stress between the VO{sub 2} crystals, i.e. extrinsic properties. However, the starting point of MIT, T{sub CS} = ∼ 336 K, and the starting point of IMT, T{sub HS} = ∼ 338 K, kept almost constant during the repeated thermal cycles (< 10 times). These two temperatures may be related to the intrinsic properties of the VO{sub 2}: the phase transitions initiated at these temperatures regardless of the number of the repeated thermal cycles. The neat surface of the VO{sub 2} crystals was severely damaged and the average size of particles reduced from 110 nm to 70–90 nm after extensively repeated thermal cycles (> 70 times). The damaged surface and the smaller particles, which would be originated from the mechanical stress caused by crystal volume change during the first order transition of the VO{sub 2}, would weaken the electrical conduction path (loosen grain boundaries) between the VO{sub 2} single crystals and would result in the amplified jump at the following MIT. This report may boost the study for the improved stability and lifetime of the VO{sub 2} based electronic devices. - Highlights: • The sharp phase transition in cluster of VO{sub 2} crystals depends on repeated thermal cycles. • Two intrinsic and two extrinsic temperatures are observed during the phase transition. • The mechanical stress change and surface damage may cause the extrinsic properties in transport measurement.« less

  19. The effect of two different intra-operative end-tidal carbon dioxide tensions on apnoeic duration in the recovery period in horses.

    PubMed

    Thompson, Kate R; Bardell, David

    2016-03-01

    To compare the effect of two different intraoperative end-tidal carbon dioxide tensions on apnoeic duration in the recovery period in horses. Prospective randomized clinical study. Eighteen healthy client-owned adult horses (ASA I-II) admitted for elective surgery. Horses were of a median body mass of 595 (238-706) kg and a mean age of 9 ± 5 years. A standardized anaesthetic protocol was used. Horses were positioned in dorsal recumbency and randomly allocated to one of two groups. Controlled mechanical ventilation (CMV) was adjusted to maintain the end-tidal carbon dioxide tension (Pe'CO2 ) at 40 ± 5 mmHg (5.3 ± 0.7 kPa) (group 40) or 60 ± 5 mmHg (8.0 ± 0.7 kPa) (group 60). Arterial blood gas analysis was performed at the start of the anaesthetic period (T0), at one point during the anaesthetic (T1), immediately prior to disconnection from the breathing system (T2) and at the first spontaneous breath in the recovery box (T3). The time from disconnection from the breathing system to return to spontaneous ventilation (RSV) was recorded. Data were analysed using a two sample t-test or the Mann-Whitney U-test and significance assigned when p < 0.05. Horses in group 60 resumed spontaneous breathing significantly earlier than those in group 40, [52 (14-151) and 210 (103-542) seconds, respectively] (p < 0.001). Arterial oxygen tension (PaO2 ), pH, base excess (BE) and plasma bicarbonate (HCO3-) were not different between the groups at RSV, however, PaO2 was significantly lower in group 60 during (T1) and at the end of anaesthesia (T2). Aiming to maintain intra-operative Pe'CO2 at 60 ± 5 mmHg (8.0 ± 0.7 kPa) in mechanically ventilated horses resulted in more rapid RSV compared with when Pe'CO2 was maintained at 40 ± 5 mmHg (5.3 ± 0.7 kPa). © 2015 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  20. Effects of self-selected music on strength, explosiveness, and mood.

    PubMed

    Biagini, Matthew S; Brown, Lee E; Coburn, Jared W; Judelson, Daniel A; Statler, Traci A; Bottaro, Martim; Tran, Tai T; Longo, Nick A

    2012-07-01

    There has been much investigation into the use of music as an ergogenic aid to facilitate physical performance. However, previous studies have primarily focused on predetermined music and aerobic exercise. The purpose of this study was to investigate the effects of self-selected music (SSM) vs. those of no music (NM) on the mood and performance of the athletes performing bench press and squat jump. Twenty resistance trained collegiate men completed 2 experimental conditions, one while listening to SSM and the other with NM. The subjects reported their profile of mood states (POMS) and rating of perceived exertion (RPE) before and after performing 3 sets to failure of the bench press at 75% 1 repetition maximum (1RM) and 3 reps of the squat jump at 30% 1RM. Statistical analyses revealed no differences in squat jump height or relative ground reaction force, but the takeoff velocity (SSM-2.06 ± 0.17 m·s(-1); NM-1.99 ± 0.18 m·s(-1)), rate of velocity development (SSM-5.92 ± 1.46 m·s(-2); NM-5.63 ± 1.70 m·s(-2)), and rate of force development (SSM-3175.61 ± 1792.37 N·s(-1); NM-2519.12 ± 1470.32 N·s(-1)) were greater with SSM, whereas RPE (SSM-5.71 ± 1.37; NM-6.36 ± 1.61) was greater with NM. Bench press reps to failure and RPE were not different between conditions. The POMS scores of vigor (SSM-20.15 ± 5.58; NM-17.45 ± 5.84), tension (SSM-8.40 ± 3.99; NM-6.07 ± 3.26), and fatigue (SSM-8.65 ± 4.49; NM-7.40 ± 4.38) were greater with SSM. This study demonstrated increased performance during an explosive exercise and an altered mood state when listening to SSM. Therefore, listening to SSM might be beneficial for acute power performance.

  1. Elastic Bands as a Component of Periodized Resistance Training.

    PubMed

    Joy, Jordan M; Lowery, Ryan P; Oliveira de Souza, Eduardo; Wilson, Jacob M

    2016-08-01

    Joy, JM, Lowery, RP, Oliveira de Souza, E, and Wilson, JM. Elastic bands as a component of periodized resistance training. J Strength Cond Res 30(8): 2100-2106, 2016-Variable resistance training (VRT) has recently become a component of strength and conditioning programs. Prior research has demonstrated increases in power and/or strength using low loads of variable resistance. However, no study has examined using high loads of variable resistance as a part of a periodized training protocol to examine VRT within the context of a periodized training program and to examine a greater load of variable resistance than has been examined in prior research. Fourteen National Collegiate Athletic Association division II male basketball players were recruited for this study. Athletes were divided equally into either a variable resistance or control group. The variable resistance group added 30% of their 1 repetition maximum (1RM) as band tension to their prescribed weight 1 session per week. Rate of power development (RPD), peak power, strength, body composition, and vertical jump height were measured pretreatment and posttreatment. No baseline differences were observed between groups for any measurement of strength, power, or body composition. A significant group by time interaction was observed for RPD, in which RPD was greater in VRT posttraining than in the control group. Significant time effects were observed for all other variables including squat 1RM, bench press 1RM, deadlift 1RM, clean 3RM, vertical jump, and lean mass. Although there were no significant group ×-time interactions, the VRT group's percent changes and effect sizes indicate a larger treatment effect in the squat and bench press 1RM values and the vertical jump performed on the force plate and vertec. These results suggest that when using variable resistance as a component of a periodized training program, power and strength can be enhanced. Therefore, athletes who add variable resistance to 1 training session per week may enhance their athletic performance.

  2. 26 CFR 1.274-5T - Substantiation requirements (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... which are charged directly or indirectly to the employer (for example, through credit cards) or for... directly or indirectly to the client or customer through credit card systems or otherwise. See paragraph (j... only for the driver plus a folding jump seat, (I) Dump trucks (including garbage trucks), (J) Flatbed...

  3. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  4. Frontal plane comparison between drop jump and vertical jump: implications for the assessment of ACL risk of injury.

    PubMed

    Cesar, Guilherme M; Tomasevicz, Curtis L; Burnfield, Judith M

    2016-11-01

    The potential to use the vertical jump (VJ) to assess both athletic performance and risk of anterior cruciate ligament (ACL) injury could have widespread clinical implications since VJ is broadly used in high school, university, and professional sport settings. Although drop jump (DJ) and VJ observationally exhibit similar lower extremity mechanics, the extent to which VJ can also be used as screening tool for ACL injury risk has not been assessed. This study evaluated whether individuals exhibit similar knee joint frontal plane kinematic and kinetic patterns when performing VJs compared with DJs. Twenty-eight female collegiate athletes performed DJs and VJs. Paired t-tests indicated that peak knee valgus angles did not differ significantly between tasks (p = 0.419); however, peak knee internal adductor moments were significantly larger during the DJ vs. VJ (p < 0.001). Pearson correlations between the DJ and VJ revealed strong correlations for knee valgus angles (r = 0.93, p < 0.001) and for internal knee adductor moments (r = 0.82, p < 0.001). Our results provide grounds for investigating whether frontal plane knee mechanics during VJ can predict ACL injuries and thus can be used as an effective tool for the assessment of risk of ACL injury in female athletes.

  5. Institutional Participation and Social Transformation: Considering the Goals and Tensions of University-Initiated YPAR Projects with K-12 Youth

    ERIC Educational Resources Information Center

    Mirra, Nicole; Rogers, John

    2016-01-01

    In today's educational context, characterized by growing inequality and the rise of neoliberal ideology, universities are dealing with pressures to contribute to the global workforce and partner with private interests rather than educating citizens and serving the public good. This article presents youth participatory action research (YPAR) as a…

  6. Phasic changes in bone CO2 fractions, calcium, and phosphorus during chronic hypercapnia.

    PubMed

    Schaefer, K E; Pasquale, S; Messier, A A; Shea, M

    1980-05-01

    The bone CO2 buffering system and bone calcium and phosphorus were studied in guinea pigs exposed to 1% CO2 for periods up to 8 wk and killed at weekly intervals together with control animals of the same age. Measurements were made of arterial CO2 tension, pH, standard bicarbonate, and bone Ca and P. Heat-stabile bone CO2 (carbonate) was determined as dry bone CO2 and heat-labile bone CO2 (bicarbonate) as delta wet-dry bone CO2. During the first 3-4 wk of exposure to 1% CO2, a systemic acidosis was found as indicated in a lowered pH, increased arterial CO2 tension, and decreased standard bicarbonate. The acidosis subsided during the last 4 wk of exposure. Phasic changes in bone bicarbonate were observed as shown in immediate rise lasting for 2 wk followed by a 2-wk decline and second rise after 6 and 8 wk. Bone carbonate exhibited the opposite change during the first 4 wk and thereafter remained stable at an elevated level. Bone Ca and P fell in association with increasing bone bicarbonate and rose with increasing bone carbonate.

  7. Numerical Simulation of Hydrodynamics of a Heavy Liquid Drop Covered by Vapor Film in a Water Pool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, W.M.; Yang, Z.L.; Giri, A.

    2002-07-01

    A numerical study on the hydrodynamics of a droplet covered by vapor film in water pool is carried out. Two level set functions are used as to implicitly capture the interfaces among three immiscible fluids (melt-drop, vapor and coolant). This approach leaves only one set of conservation equations for the three phases. A high-order Navier-Stokes solver, called Cubic-Interpolated Pseudo-Particle (CIP) algorithm, is employed in combination with level set approach, which allows large density ratios (up to 1000), surface tension and jump in viscosity. By this calculation, the hydrodynamic behavior of a melt droplet falling into a volatile coolant is simulated,more » which is of great significance to reveal the mechanism of steam explosion during a hypothetical severe reactor accident. (authors)« less

  8. Surface tension of substantially undercooled liquid Ti-Al alloy

    NASA Astrophysics Data System (ADS)

    Zhou, K.; Wang, H. P.; Chang, J.; Wei, B.

    2010-06-01

    It is usually difficult to undercool Ti-Al alloys on account of their high reactivity in the liquid state. This results in a serious scarcity of information on their thermophysical properties in the metastable state. Here, we report on the surface tension of a liquid Ti-Al alloy under high undercooling condition. By using the electromagnetic levitation technique, a maximum undercooling of 324 K (0.19 T L) was achieved for liquid Ti-51 at.% Al alloy. The surface tension of this alloy, which was determined over a broad temperature range 1429-2040 K, increases linearly with the enhancement of undercooling. The experimental value of the surface tension at the liquidus temperature of 1753 K is 1.094 N m-1 and its temperature coefficient is -1.422 × 10-4 N m-1 K-1. The viscosity, solute diffusion coefficient and Marangoni number of this liquid Ti-Al alloy are also derived from the measured surface tension.

  9. Effects of horizontal plyometric training volume on soccer players' performance.

    PubMed

    Yanci, Javier; Los Arcos, Asier; Camara, Jesús; Castillo, Daniel; García, Alberto; Castagna, Carlo

    2016-01-01

    The aim of this study was to examine the dose response effect of strength and conditioning programmes, involving horizontally oriented plyometric exercises, on relevant soccer performance variables. Sixteen soccer players were randomly allocated to two 6-week plyometric training groups (G1 and G2) differing by imposed (twice a week) training volume. Post-training G1 (4.13%; d = 0.43) and G2 (2.45%; d = 0.53) moderately improved their horizontal countermovement jump performance. Significant between-group differences (p < 0.01) in the vertical countermovement jump for force production time (T2) were detected post-training. No significant and practical (p > 0.05, d = trivial or small) post-training improvements in sprint, change of direction ability (CODA) and horizontal arm swing countermovement jump were reported in either group. Horizontal plyometric training was effective in promoting improvement in injury prevention variables. Doubling the volume of a horizontal plyometric training protocol was shown to have no additional effect over functional aspects of soccer players' performance.

  10. Delta-Complete Analysis for Bounded Reachability of Hybrid Systems

    DTIC Science & Technology

    2014-07-16

    framework makes bounded reachability of hybrid systems a much more mathematically tractable problem and show that our practical implementation can handle...step i in the hybrid trajectory to an appropriate discrete mode in H , and make sure that the flow, jump, inv, init conditions are satisfied...trajectories start with some initial state satisfying initq(x0) for some q. In each step, it follows flowq(xi,xti, t) and makes a continuous flow from xi to x t

  11. Cold, warm, and composite (cool) cosmic string models

    NASA Astrophysics Data System (ADS)

    Carter, B.

    1994-01-01

    The dynamical behaviour of a cosmic string is strongly affected by any reduction of the effective string tension T below the constant value, T = m2 say, that typifies a simple, longitudinally Lorentz invariant Goto-Nambu type string model, where m is a fixed mass scale determined by the internal structure of an underlying Nielsen-Olesen type vacuum vortex. Such a reduction of tension occurs in the standard ``warm'' cosmic string model in which the effect of thermal perturbations of a simple Goto-Nambu model is represented by an effective tension T given in terms of the corresponding effective temperature, Θ say, by T2 = m2(m2 - 1/3πΘ2). A qualitatively similar though analytically more complicated tension reduction phenomenon occurs in ``cold'' conducting cosmic string models of the kind whose existence was first proposed by Witten, where the role of the temperature is played by an effective mass or chemical potential μ that is constructed as the scalar magnitude of the energy momentum covector obtained as the gradient of the phase ϕ of a bosonic condensate in the core of the vacuum vortex. The present article describes the construction and essential mechanical properties of a new category of composite ``cool'' cosmic string models that are intermediate between these ``warm'' and ``cold'' limit cases. These composite models are the string analogues of the standard Landau model for a two-constituent finite temperature superfluid, and as such involve two independent currents interpretable as that of the entropy on the one hand and that of the bosonic condensate on the other. It is surmised that the stationary (in particular ring) equilibrium states of such ``cool'' cosmic strings may be of cosmologicl significance.

  12. Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales.

    PubMed

    Grant, R F; Margolis, H A; Barr, A G; Black, T A; Dunn, A L; Bernier, P Y; Bergeron, O

    2009-01-01

    Net ecosystem productivity (NEP) of boreal coniferous forests is believed to rise with climate warming, thereby offsetting some of the rise in atmospheric CO(2) concentration (C(a)) by which warming is caused. However, the response of conifer NEP to warming may vary seasonally, with rises in spring and declines in summer. To gain more insight into this response, we compared changes in CO(2) exchange measured by eddy covariance and simulated by the ecosystem process model ecosys under rising mean annual air temperatures (T(a)) during 2004-2006 at black spruce stands in Saskatchewan, Manitoba and Quebec. Hourly net CO(2) uptake was found to rise with warming at T(a) < 15 degrees C and to decline with warming at T(a) > 20 degrees C. As mean annual T(a) rose from 2004 to 2006, increases in net CO(2) uptake with warming at lower T(a) were greater than declines with warming at higher T(a) so that annual gross primary productivity and hence NEP increased. Increases in net CO(2) uptake measured at lower T(a) were explained in the model by earlier recovery of photosynthetic capacity in spring, and by increases in carboxylation activity, using parameters for the Arrhenius temperature functions of key carboxylation processes derived from independent experiments. Declines in net CO(2) uptake measured at higher T(a) were explained in the model by sharp declines in mid-afternoon canopy stomatal conductance (g(c)) under higher vapor pressure deficits (D). These declines were modeled from a hydraulic constraint to water uptake imposed by low axial conductivity of conifer roots and boles that forced declines in canopy water potential (psi(c)), and hence in g(c) under higher D when equilibrating water uptake with transpiration. In a model sensitivity study, the contrasting responses of net CO(2) uptake to specified rises in T(a) caused annual NEP of black spruce in the model to rise with increases in T(a) of up to 6 degrees C, but to decline with further increases at mid-continental sites with lower precipitation. However, these contrasting responses to warming also indicate that rises in NEP with climate warming would depend on the seasonality (spring versus summer) as well as the magnitude of rises in T(a).

  13. S&E immigration

    NASA Astrophysics Data System (ADS)

    Despite an overall decline in immigration to the United States in 1993, the number of scientists and engineers (S&Es) entering the country continued to rise, with women representing 21.3% of the total admitted with permanent resident status. According to the Immigration and Naturalization Service, 23,534 S&Es were admitted to the United States on permanent visas in 1993, 3.1% more than in 1992. Of that total, 5,020 were women. S&Es made up 2.6% of the total U.S. immigration in 1993. The slight 1993 increase followed a large jump in 1992 of 62% over the previous year.

  14. Chasing maximal performance: a cautionary tale from the celebrated jumping frogs of Calaveras County.

    PubMed

    Astley, H C; Abbott, E M; Azizi, E; Marsh, R L; Roberts, T J

    2013-11-01

    Maximal performance is an essential metric for understanding many aspects of an organism's biology, but it can be difficult to determine because a measured maximum may reflect only a peak level of effort, not a physiological limit. We used a unique opportunity provided by a frog jumping contest to evaluate the validity of existing laboratory estimates of maximum jumping performance in bullfrogs (Rana catesbeiana). We recorded video of 3124 bullfrog jumps over the course of the 4-day contest at the Calaveras County Jumping Frog Jubilee, and determined jump distance from these images and a calibration of the jump arena. Frogs were divided into two groups: 'rental' frogs collected by fair organizers and jumped by the general public, and frogs collected and jumped by experienced, 'professional' teams. A total of 58% of recorded jumps surpassed the maximum jump distance in the literature (1.295 m), and the longest jump was 2.2 m. Compared with rental frogs, professionally jumped frogs jumped farther, and the distribution of jump distances for this group was skewed towards long jumps. Calculated muscular work, historical records and the skewed distribution of jump distances all suggest that the longest jumps represent the true performance limit for this species. Using resampling, we estimated the probability of observing a given jump distance for various sample sizes, showing that large sample sizes are required to detect rare maximal jumps. These results show the importance of sample size, animal motivation and physiological conditions for accurate maximal performance estimates.

  15. Impact and residual fatigue behavior of ARALL and AS6/5245 composite material

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1989-01-01

    The impact sensitivity of aramide fiber-reinforced aluminum laminates (ARALL) was investigated by testing two types of ARALL (7075 aluminum prestrained and 2024 aluminum not prestrained), via static indentation, and the results were compared to those of sheet aluminum alloys 7075-T6 and 2024-T3 and to a state of the art composite AS6/5245. It was found that the impact resistance of the two ARALL samples was inferior to that of monolithic sheet aluminum samples, although the ARALL material made with 2024-T3 aluminum was superior to that made with 7075-T6 aluminum. The impact damage resistance of ARALL materials was at least equal to that of AS6/5245, and the AS6/5245 had higher residual tension-tension fatigue strength after impact than the ARALL samples. It was also found that the prestraining of the ARALL reduced the fatigue growth of impact damage.

  16. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time.

    PubMed

    Barker, Leland A; Harry, John R; Mercer, John A

    2018-01-01

    Barker, LA, Harry, JR, and Mercer, JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res 32(1): 248-254, 2018-The purpose of this study was to determine the relationship between ground reaction force (GRF) variables to jump height, jump time, and the reactive strength index (RSI). Twenty-six, Division-I, male, soccer players performed 3 maximum effort countermovement jumps (CMJs) on a dual-force platform system that measured 3-dimensional kinetic data. The trial producing peak jump height was used for analysis. Vertical GRF (Fz) variables were divided into unloading, eccentric, amortization, and concentric phases and correlated with jump height, RSI (RSI = jump height/jump time), and jump time (from start to takeoff). Significant correlations were observed between jump height and RSI, concentric kinetic energy, peak power, concentric work, and concentric displacement. Significant correlations were observed between RSI and jump time, peak power, unload Fz, eccentric work, eccentric rate of force development (RFD), amortization Fz, amortization time, second Fz peak, average concentric Fz, and concentric displacement. Significant correlations were observed between jump time and unload Fz, eccentric work, eccentric RFD, amortization Fz, amortization time, average concentric Fz, and concentric work. In conclusion, jump height correlated with variables derived from the concentric phase only (work, power, and displacement), whereas Fz variables from the unloading, eccentric, amortization, and concentric phases correlated highly with RSI and jump time. These observations demonstrate the importance of countermovement Fz characteristics for time-sensitive CMJ performance measures. Researchers and practitioners should include RSI and jump time with jump height to improve their assessment of jump performance.

  17. A valid and reliable method to measure jump-specific training and competition load in elite volleyball players.

    PubMed

    Skazalski, C; Whiteley, R; Hansen, C; Bahr, R

    2018-05-01

    Use of a commercially available wearable device to monitor jump load with elite volleyball players has become common practice. The purpose of this study was to evaluate the validity and reliability of this device, the Vert, to count jumps and measure jump height with professional volleyball players. Jump count accuracy was determined by comparing jumps recorded by the device to jumps observed through systematic video analysis of three practice sessions and two league matches performed by a men's professional volleyball team. Jumps performed by 14 players were each coded for time and jump type and individually matched to device recorded jumps. Jump height validity of the device was examined against reference standards as participants performed countermovement jumps on a force plate and volleyball-specific jumps with a Vertec. The Vert device accurately counted 99.3% of the 3637 jumps performed during practice and match play. The device showed excellent jump height interdevice reliability for two devices placed in the same pouch during volleyball jumps (r = .99, 95% CI 0.98-0.99). The device had a minimum detectable change (MDC) of 9.7 cm and overestimated jump height by an average of 5.5 cm (95% CI 4.5-6.5) across all volleyball jumps. The Vert device demonstrates excellent accuracy counting volleyball-specific jumps during training and competition. While the device is not recommended to measure maximal jumping ability when precision is needed, it provides an acceptable measure of on-court jump height that can be used to monitor athlete jump load. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Relative net vertical impulse determines jumping performance.

    PubMed

    Kirby, Tyler J; McBride, Jeffrey M; Haines, Tracie L; Dayne, Andrea M

    2011-08-01

    The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r = .9337, p < .0001, power = 1.000) and countermovement jump (r = .925, p < .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r = -0.3947, p = .0018, power = 0.8831) and countermovement jump (r = -0.4080, p = .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.

  19. Thermophysical properties of undercooled liquid Co-Mo alloys

    NASA Astrophysics Data System (ADS)

    Han, X. J.; Wei, B.

    2003-05-01

    Using electromagnetic levitation in combination with the oscillating drop technique and drop calorimeter method, the surface tensions and specific heats of undercooled liquid Co-10 wt% Mo, Co-26.3 wt% Mo, and Co-37.6 wt% Mo alloys were measured. The containerless state during levitation produces substantial undercoolings up to 223 K (0.13TL), 213 K (0.13TL) and 110 K (0.07TL) respectively for these three alloys. In their respective undercooling ranges, the surface tensions were determined to be 1895 m 0.31(T m 1744), 1932 m 0.33(T m 1682), and 1989 m 0.34(T m 1607) mN mу. According to the Butler equation, the surface tensions of these three Co-Mo alloys were also calculated, and the results agree well with the experimental data. The specific heats of these three alloys are determined to be 41.85, 43.75 and 44.92 J molу Kу. Based on the determined surface tensions and specific heats, the changes in thermodynamics functions such as enthalpy, entropy and Gibbs free energy are predicted. Furthermore, the crystal nucleation, dendrite growth and Marangoni convection of undercooled Co-Mo alloys are investigated in the light of these measured thermophysical properties.

  20. Carbachol-induced volume adaptation in mouse bladder and length adaptation via rhythmic contraction in rabbit detrusor.

    PubMed

    Speich, John E; Wilson, Cameron W; Almasri, Atheer M; Southern, Jordan B; Klausner, Adam P; Ratz, Paul H

    2012-10-01

    The length-tension (L-T) relationships in rabbit detrusor smooth muscle (DSM) are similar to those in vascular and airway smooth muscles and exhibit short-term length adaptation characterized by L-T curves that shift along the length axis as a function of activation and strain history. In contrast to skeletal muscle, the length-active tension (L-T(a)) curve for rabbit DSM strips does not have a unique peak tension value with a single ascending and descending limb. Instead, DSM can exhibit multiple ascending and descending limbs, and repeated KCl-induced contractions at a particular muscle length on an ascending or descending limb display increasingly greater tension. In the present study, mouse bladder strips with and without urothelium exhibited KCl-induced and carbachol-induced length adaptation, and the pressure-volume relationship in mouse whole bladder displayed short-term volume adaptation. Finally, prostaglandin-E(2)-induced low-level rhythmic contraction produced length adaptation in rabbit DSM strips. A likely role of length adaptation during bladder filling is to prepare DSM cells to contract efficiently over a broad range of volumes. Mammalian bladders exhibit spontaneous rhythmic contraction (SRC) during the filling phase and SRC is elevated in humans with overactive bladder (OAB). The present data identify a potential physiological role for SRC in bladder adaptation and motivate the investigation of a potential link between short-term volume adaptation and OAB with impaired contractility.

  1. Determination of the enthalpy of vaporization and prediction of surface tension for ionic liquid 1-alkyl-3-methylimidazolium propionate [C(n)mim][Pro](n = 4, 5, 6).

    PubMed

    Tong, Jing; Yang, Hong-Xu; Liu, Ru-Jing; Li, Chi; Xia, Li-Xin; Yang, Jia-Zhen

    2014-11-13

    With the use of isothermogravimetrical analysis, the enthalpies of vaporization, Δ(g)lH(o)m(T(av)), at the average temperature, T(av) = 445.65 K, for the ionic liquids (ILs) 1-alkyl-3-methylimidazolium propionate [C(n)mim][Pro](n = 4, 5, 6) were determined. Using Verevkin's method, the difference of heat capacities between the vapor phase and the liquid phase, Δ(g)lC(p)(o)m, for [C(n)mim][Pro](n = 2, 3, 4, 5, 6), were calculated based on the statistical thermodynamics. Therefore, with the use of Δ(g)lC(p)(o)m, the values of Δ(g)lH(o)m(T(av)) were transformed into Δ(g)lH(o)m(298), 126.8, 130.3, and 136.5 for [C(n)mim][Pro](n = 4, 5, 6), respectively. In terms of the new scale of polarity for ILs, the order of the polarity of [C(n)mim][Pro](n = 2, 3, 4, 5, 6) was predicted, that is, the polarity decreases with increasing methylene. A new model of the relationship between the surface tension and the enthalpy of vaporization for aprotic ILs was put forward and used to predict the surface tension for [C(n)mim][Pro](n = 2, 3, 4, 5, 6) and others. The predicted surface tension for the ILs is in good agreement with the experimental one.

  2. Performance analysis of jump-gliding locomotion for miniature robotics.

    PubMed

    Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M

    2015-03-26

    Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.

  3. Glucose metabolism of isolated perfused rat hemidiaphragms stimulated via the phrenic nerve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassett, D.J.P.; Bowen-Kelly, E.; Bierkamper, G.

    1986-03-01

    Few investigations using indirect electrical stimulation of diaphragm muscles have measured metabolic pathways involved in energy production. In this study, hemidiaphragm (HD) glucose catabolism was determined while resting and during stimulation with trains of either five (T5) or fifteen (T15) 50 Hz bursts per second. Tissues were perfused and bathed in HEPES buffer pH 7.4 equilibrated with 100% O/sub 2/, and containing 11mM (U-/sup 14/C)(5-/sup 3/H) D-glucose. Resting glucose catabolism via the Emden-Meyerhof pathway was indicated by a /sup 3/H/sub 2/O production rate of 1.45 +/- 0.07 ..mu..mol/h/HD (+/- S.E.M., n = 3), of which 47% was recovered as /supmore » 14/C lactate. Following an initial decline in peak isometric tension from 100 g within the first 30 min, T5 and T15 stimulation gave constant tensions of 48 and 22 g during the next 60 min, respectively. These tensions were associated with linear rates of /sup 3/H/sub 2/O production of 2.93 +/- 0.41 and 2.84 +/- 0.25 ..mu..mol/h/HD (+/- S.E.M., n = 3). Since T5 and T15 stimulation had no significant effect on lactate formation from either exogenous or endogenous sources, the observed increased glycolytic rate was assumed to be associated with enhanced mitochondrial oxidation of glucose carbons to CO/sub 2/. Increased oxidative catabolism of glucose could therefore be correlated with the increased energy demands of a stimulated diaphragm.« less

  4. Testing Viable f(T) Models with Current Observations

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Yu, Hongwei; Wu, Puxun

    2018-03-01

    We perform observational tests on the f(T) gravity with the BAO data (including the BOSS DR 12 galaxy sample, the DR12 Lyα-Forests measurement, the new eBOSS DR14 quasar sample, the 6dFGS, and the SDSS), the CMB distance priors from the Planck 2015, the SNIa data from the joint light-curve analysis, the latest H(z) data, and the local value of the Hubble constant. Six different f(T) models are investigated. Furthermore, the ΛCDM is also considered. All models are compared by using the Akaike information criteria (AIC) and the Bayesian information criteria (BIC). Our results show that the ΛCDM remains to be the most favored model by current observations. However, there are also the Hubble constant tension between the Planck measurements and the local Universe observations and the tension between the CMB data and the H(z) data in the ΛCDM. For f(T) models considered in this paper, half, which can reduce to the ΛCDM, have values of {{χ }2}\\min smaller than that of the ΛCDM and can relieve the tensions existing in the ΛCDM. However, they are punished slightly by the BIC due to one extra parameter. Two of six f(T) models, in which the crossing of the phantom divide line can be realized for the equation of state of the effective dark energy and this crossing is shown in this paper to be favored by current observations, are punished by the information criteria. In addition, we find that the logarithmic f(T) model is excluded by cosmological observations.

  5. Effects of high-dose gentamicin sulfate on neuromuscular blockade in halothane-anesthetized horses.

    PubMed

    Hague, B A; Martinez, E A; Hartsfield, S M

    1997-11-01

    To evaluate effects of a single high dose of gentamicin on neuromuscular function in horses anesthetized with halothane. 6 healthy adult horses. Halothane-anesthetized horses were positioned in left lateral recumbency, and the right hind limb was immobilized in a reusable fiberglass cast fixed to a steel frame. The hoof was attached to a force transducer, and resting tension of 0.93 +/- 0.16 kg was maintained. A supramaximal train-of-four stimulus of 2 Hz for a duration of 0.25 millisecond was applied to the superficial peroneal nerve every 20 seconds by a square-wave stimulator. The force of the evoked digital extensor tension was recorded to determine first muscle twitch tension, compared with the baseline value (T1%) and the ratio of the force of the fourth twitch to the first twitch (T4/T1). Data were recorded at 5, 10, 15, 30, and 60 minutes after i.v. administration of vehicle or gentamicin (6 mg/kg of body weight). There was a significant (P = 0.04) treatment-time interaction for the effect of gentamicin on T1%; T1% associated with vehicle decreased from 100% to 92% during the 60- minute study period, but no decrease was associated with gentamicin. For T4/T1, there was no significant effect of treatment or time or treatment-time interaction between gentamicin and vehicle. Gentamicin did not cause a decrease in initial muscular strength, nor did it impair the muscles' ability to sustain strength. A single high dose of gentamicin does not cause significant neuromuscular blockade when administered alone to healthy horses anesthetized with halothane.

  6. Moderate Deviation Principles for Stochastic Differential Equations with Jumps

    DTIC Science & Technology

    2014-01-15

    N ŕ’"(dt; dy) and the controls ’" : X [0; T ] ! [0;1) are predictable processes satisfying LT (’") Ma2 (") for some constantM . Here LT denotes...space. Although in the moderate deviations problem one has the stronger bound LT (’") Ma2 (") on the cost of controls, the mere tightness of ’" does not...suitable quadratic form. For " > 0 and M ə, consider the spaces SM+;" : = f’ : X [0; T ]! R+j LT (’) Ma2 (")g (2.5) SM" : = f : X [0; T ]! Rj

  7. New tension band material for fixation of transverse olecranon fractures: a biomechanical study.

    PubMed

    Lalonde, James Allen; Rabalais, R David; Mansour, Alfred; Burger, Evalina L; Riemer, Barry L; Lu, Yun; Baratta, Richard V

    2005-10-01

    This study tested the use of braided polyethylene cable as an option for repairing transverse olecranon fractures. Six cadaveric elbows underwent a transverse olecranon osteotomy followed by fixation with tension band constructs using 18-gauge wire and Secure-Strand (U.S. Surgical, North Haven, Conn). Distraction forces up to 450 N were applied to the triceps tendon while measuring fracture displacement with an extensometer. The average maximal fracture gap with the standard AO tension band technique using stainless steel wire was 0.66 +/- 0.43 mm, as opposed to 0.68 +/- 0.45 mm with braided polyethylene cable. A paired t test indicated no significant difference between the two materials. These results support the feasibility of braided polyethylene cable as an alternative to the standard steel-wire tension band.

  8. Geothermal Heat Flow in the Gulfs of California and Aden.

    PubMed

    Von Herzen, R P

    1963-06-14

    Eighteen measurements in and near the gulfs of California and Aden indicate the geothermal flux is several times the world-wide mean of 1.2 x 10(-6) cal/cm(2) sec in both regions. Both gulfs closely coincide with the intersection of oceanic rises with continents and have likely been formed under tensional forces, which suggests an association with mantle convection currents.

  9. Expanding the Boundaries of Behavioral Integrity in Organizations

    DTIC Science & Technology

    2010-07-01

    2005), emotional exhaustion (Johnson & O’Leary-Kelly, 2003), burnout , job tension (James, 2005), and intentions to engage in OCBs (Andersson...related to stress- related outcomes (i.e., job tension and teacher burnout ), and showed significant relationships with some behavioral outcomes (i.e...on job burnout . Academy of Management Review, 18(4): 621-656. 214 Cording, M. & Simons, T. 2009. Merging under hypocrites: The performance

  10. Thermally Activated Motion of Sodium Cations in Insulating Parent Low-Silica X Zeolite

    NASA Astrophysics Data System (ADS)

    Igarashi, Mutsuo; Jeglič, Peter; Mežnaršič, Tadej; Nakano, Takehito; Nozue, Yasuo; Watanabe, Naohiro; Arčon, Denis

    2017-07-01

    We report a 23Na spin-lattice relaxation rate, T1 - 1, in low-silica X zeolite. T1 - 1 follows multiple BPP-type behavior as a result of thermal motion of sodium cations in insulating material. The estimated lowest activation energy of 15 meV is much lower than 100 meV observed previously for sodium motion in heavily Na-loaded samples and is most likely attributed to short-distance jumps of sodium cations between sites within the same supercage.

  11. Instrumentation Analysis: An Automated Method for Producing Numeric Abstractions of Heap-Manipulating Programs

    DTIC Science & Technology

    2010-11-29

    Arbib and Suad Alagic. Proof rules for gotos. Acta Informatica , pages 139–148, 1979. 6.3 T. Ball, R. Majumdar, T. Millstein, and S. Rajamani...Press, January 1999. ISBN 0262032708. 3, 3.1, 3.3 323 B Bibliography M. Clint and C.A.R. Hoare. Program proving: Jumps and functions. Acta Informatica ...Goto statements: Semantics and deduction systems. Acta Informatica , pages 385–424, 1981. 6.3 324 B Bibliography Alain Deutsch. Interprocedural may

  12. Quasi permanent superconducting magnet of very high field

    NASA Technical Reports Server (NTRS)

    Ren, Y.; Liu, J.; Weinstein, R.; Chen, I. G.; Parks, D.; Xu, J.; Obot, V.; Foster, C.

    1993-01-01

    We report on persistent field in a quasi-permanent magnet made of high temperature superconductor. The material has an average of 40 percent molar excess of Y, relative to Y1Ba2Cu3O7 and has been irradiated with high energy light ions at 200 MeV. The magnet, which traps 1.52 T at 77.3 K, traps nearly 4 T at 64.5 K. No evidence of giant flux jump or sample cracking was observed.

  13. The Airborne Field Artillery: From Inception to Combat Operations

    DTIC Science & Technology

    2004-06-17

    equipment they would use. In the afternoon of Stage “A” the battery personnel dedicated their time to “tumbling, calisthenics, trampoline , and the much...trip. The next day they boarded the Ben My Chice and headed for Belfast, Northern Ireland. They arrived on 11 December and were separated--C Battery...of five lights placed to form a “T,” and a Eureka installation at the head of the “T.” The jump signal was to be given when the leader of the group

  14. A Capitol Idea

    ERIC Educational Resources Information Center

    Weiss, Laura B.

    2007-01-01

    Dominated by street after street of granite federal office buildings, the DC was a place that just couldn't jump-start itself into world-class status. Of course, it offered free, topnotch museums, but everyone lived and breathed politics and the town was sorely lacking a throbbing urban pulse. The absence of a major league baseball team said it…

  15. How Do We Get There from Here?

    ERIC Educational Resources Information Center

    Chenoweth, Karin

    2015-01-01

    The key practices that improve struggling schools, writes Chenoweth--a researcher who's studied successful high-poverty schools and their leaders--aren't a mystery. From both decades of research and the craft knowledge of educators who've jumped in and turned around schools, we know these practices generally yield improvement: (1) a…

  16. Modeling persistence of motion in a crowded environment: The diffusive limit of excluding velocity-jump processes

    NASA Astrophysics Data System (ADS)

    Gavagnin, Enrico; Yates, Christian A.

    2018-03-01

    Persistence of motion is the tendency of an object to maintain motion in a direction for short time scales without necessarily being biased in any direction in the long term. One of the most appropriate mathematical tools to study this behavior is an agent-based velocity-jump process. In the absence of agent-agent interaction, the mean-field continuum limit of the agent-based model (ABM) gives rise to the well known hyperbolic telegraph equation. When agent-agent interaction is included in the ABM, a strictly advective system of partial differential equations (PDEs) can be derived at the population level. However, no diffusive limit of the ABM has been obtained from such a model. Connecting the microscopic behavior of the ABM to a diffusive macroscopic description is desirable, since it allows the exploration of a wider range of scenarios and establishes a direct connection with commonly used statistical tools of movement analysis. In order to connect the ABM at the population level to a diffusive PDE at the population level, we consider a generalization of the agent-based velocity-jump process on a two-dimensional lattice with three forms of agent interaction. This generalization allows us to take a diffusive limit and obtain a faithful population-level description. We investigate the properties of the model at both the individual and population levels and we elucidate some of the models' key characteristic features. In particular, we show an intrinsic anisotropy inherent to the models and we find evidence of a spontaneous form of aggregation at both the micro- and macroscales.

  17. Constitutive Model Constants for Al7075-T651 and Al7075-T6

    NASA Astrophysics Data System (ADS)

    Brar, N. S.; Joshi, V. S.; Harris, B. W.

    2009-12-01

    Aluminum 7075-T651 and 7075-T6 are characterized at quasi-static and high strain rates to determine Johnson-Cook (J-C) strength and fracture model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact or similar impact events on structural components made of these materials. Although the two tempers show similar elongation at breakage, the ultimate tensile strength of T651 temper is generally lower than the T6 temper. Johnson-Cook strength model constants (A, B, n, C, and m) for the two alloys are determined from high strain rate tension stress-strain data at room and high temperature to 250°C. The Johnson-Cook fracture model constants are determined from quasi-static and medium strain rate as well as high temperature tests on notched and smooth tension specimens. Although the J-C strength model constants are similar, the fracture model constants show wide variations. Details of the experimental method used and the results for the two alloys are presented.

  18. Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study.

    PubMed

    Nikzad, Mohammadreza; Azimian, Ahmad Reza; Rezaei, Majid; Nikzad, Safoora

    2017-11-28

    Investigation of the effects of E-fields on the liquid-vapor interface is essential for the study of floating water bridge and wetting phenomena. The present study employs the molecular dynamics method to investigate the effects of parallel and perpendicular E-fields on the water liquid-vapor interface. For this purpose, density distribution, number of hydrogen bonds, molecular orientation, and surface tension are examined to gain a better understanding of the interface structure. Results indicate enhancements in parallel E-field decrease the interface width and number of hydrogen bonds, while the opposite holds true in the case of perpendicular E-fields. Moreover, perpendicular fields disturb the water structure at the interface. Given that water molecules tend to be parallel to the interface plane, it is observed that perpendicular E-fields fail to realign water molecules in the field direction while the parallel ones easily do so. It is also shown that surface tension rises with increasing strength of parallel E-fields, while it reduces in the case of perpendicular E-fields. Enhancement of surface tension in the parallel field direction demonstrates how the floating water bridge forms between the beakers. Finally, it is found that application of external E-fields to the liquid-vapor interface does not lead to uniform changes in surface tension and that the liquid-vapor interfacial tension term in Young's equation should be calculated near the triple-line of the droplet. This is attributed to the multi-directional nature of the droplet surface, indicating that no constant value can be assigned to a droplet's surface tension in the presence of large electric fields.

  19. Steeplechase barriers affect women less than men.

    PubMed

    Hunter, Iain; Bushnell, Tyler D

    2006-01-01

    Women began contesting the 3000 m steeplechase during the 1990's using barriers of different dimensions than men. Whenever a new event is introduced for women, consideration should be taken as to whether different technique or training methods should be utilized. This study investigated three aspects of hurdling technique: 1) Differences in the ratio of the landing step to the penultimate step between men and women around each non-water jump steeplechase barrier, 2) differences in step lengths between the four non-water jump barriers, and 3) changes in the step lengths around the barrier throughout the race. The step lengths around the 28 non-water jump barriers of the top seven men and women at the 2003 USA Track and Field Championships were measured using a two-dimensional analysis. A t-test determined any differences between men and women for the ratio of the landing to penultimate steps. A 2x4 repeated measures ANOVA tested for differences between the four non-water jump barriers. Linear regression tested for changes in step lengths throughout the race. Men exhibited a smaller ratio between the lengths of the landing to penultimate steps than women (0.73 ± 0.09 and 0.77 ± 0.10 for men and women respectively, p = 0.002). No step length differences were observed between the four barriers in the step lengths around each barrier (p = 0.192 and p = 0.105 for men and women respectively). Athletes gradually increased the total length of all steps around the barriers throughout the race (R(2) = 0.021, p = 0.048 and R(2) = 0.137, p < 0.001 for men and women respectively). The smaller ratio between landing to penultimate steps shows that the barriers affect women less than men. There may be a need to train men and women differently for the non-water jump barriers in the steeplechase or slightly alter racing strategy. Key PointsNon-water jump barriers disrupt the stride of men more than women.There is no difference between any of the four non-water jump barriers in the step lengths used around each barrier.Stride length gradually increases throughout a 3000m steeplechase race even if race pace is maintain.

  20. Cfd Simulation of Capillary Rise of Liquid in Cylindrical Container with Lateral Vanes

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolin; Huang, Yiyong; Li, Guangyu

    2016-06-01

    Orbit refueling is one of the most significant technologies, which has vital strategic meaning. It can enhance the flexibility and prolong the lifetime of the spacecrafts. Space propellant management is one of the key technologies in orbit refueling. Based on the background of space propellant management, CFD simulations of capillary rise of liquid in Cylindrical container with lateral vanes in space condition were carried out in this paper. The influence of the size and the number of the vanes to the capillary flow were analyzed too. The results can be useful to the design and optimization of the propellant management device in the vane type surface tension tank.

  1. The effect of dropping height on jumping performance in trained and untrained prepubertal boys and girls.

    PubMed

    Bassa, Eleni I; Patikas, Dimitrios A; Panagiotidou, Aikaterini I; Papadopoulou, Sophia D; Pylianidis, Theofilos C; Kotzamanidis, Christos M

    2012-08-01

    Plyometric training in children, including different types of jumps, has become common practice during the last few years in different sports, although there is limited information about the adaptability of children with respect to different loads and the differences in performance between various jump types. The purpose of this study was to examine the effect of gender and training background on the optimal drop jump height of 9- to 11-year-old children. Sixty prepubertal (untrained and track and field athletes, boys and girls, equally distributed in each group [n = 15]), performed the following in random order: 3 squat jumps, 3 countermovement jumps (CMJs) and 3 drop jumps from heights of 10, 20, 30, 40, and 50 cm. The trial with the best performance in jump height of each test was used for further analysis. The jump type significantly affected the jump height. The jump height during the CMJ was the highest among all other jump types, resulting in advanced performance for both trained and untrained prepubertal boys and girls. However, increasing the dropping height did not change the jumping height or contact time during the drop jump. This possibly indicates an inability of prepubertal children to use their stored elastic energy to increase jumping height during drop jumps, irrespective of their gender or training status. This indicates that children, independent of gender and training status, have no performance gain during drop jumps from heights up to 50 cm, and therefore, it is recommended that only low drop jump heights be included in plyometric training to limit the probability of sustaining injuries.

  2. T-Cap Pull-Off and Bending Behavior for Stitched Structure

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Leone, Frank A., Jr.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in largescale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.

  3. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    NASA Astrophysics Data System (ADS)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  4. The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid

    NASA Astrophysics Data System (ADS)

    Ohta, Mitsuhiro; Sussman, Mark

    2012-11-01

    The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid is computationally explored by way of 3d-axisymmetric computations. The Navier-Stokes equations for incompressible two-fluid flow are solved numerically in which the coupled level-set and volume-of-fluid method is used to simulate the deforming bubble/drop boundary and the interface jump conditions on the deforming boundary are enforced through a sharp interface numerical treatment. Dynamic, block structured adaptive grid refinement is employed in order to sufficiently resolve the thin skirts. Results on the sensitivity of the thickness of trailing bubble/drop skirts to the density ratio and viscosity ratio are reported. It is shown that both the density ratio (not the density difference) and the viscosity ratio effect the skirt thickness. Previous theory for predicting skirt thickness can be refined as a result of our calculations. It is also discovered that the formation of thin skirts for bubbles and drops have little effect on the rise velocity. In other words, the measured Re number for cases without skirt formation have almost the same values for Re as cases with a thin skirt.

  5. Cell adhesion and mechanics as drivers of tissue organization and differentiation: local cues for large scale organization.

    PubMed

    Wickström, Sara A; Niessen, Carien M

    2018-06-01

    Biological patterns emerge through specialization of genetically identical cells to take up distinct fates according to their position within the organism. How initial symmetry is broken to give rise to these patterns remains an intriguing open question. Several theories of patterning have been proposed, most prominently Turing's reaction-diffusion model of a slowly diffusing activator and a fast diffusing inhibitor generating periodic patterns. Although these reaction-diffusion systems can generate diverse patterns, it is becoming increasingly evident that cell shape and tension anisotropies, mediated via cell-cell and/or cell-matrix contacts, also facilitate symmetry breaking and subsequent self-organized tissue patterning. This review will highlight recent studies that implicate local changes in adhesion and/or tension as key drivers of cell rearrangements. We will also discuss recent studies on the role of cadherin and integrin adhesive receptors in mediating and responding to local tissue tension asymmetries to coordinate cell fate, position and behavior essential for tissue self-organization and maintenance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Does trampoline or hard surface jumping influence lower extremity alignment?

    PubMed

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-12-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations.

  7. Does trampoline or hard surface jumping influence lower extremity alignment?

    PubMed Central

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-01-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations. PMID:29643592

  8. Worse self-reported outcomes but no limitations in performance-based measures in patients with long-standing hip and groin pain compared with healthy controls.

    PubMed

    Wörner, Tobias; Sigurðsson, Haraldur B; Pålsson, Anders; Kostogiannis, Ioannis; Ageberg, Eva

    2017-01-01

    This study aimed to evaluate patient-reported outcomes as well as lower extremity and trunk muscle function in patients with long-standing hip and groin pain, in comparison with matched, healthy controls. It was hypothesized that patients with long-standing hip and groin pain would report more deficiency on the Copenhagen Hip and Groin Outcome Score (HAGOS) and have worse outcomes on performance-based measures than healthy controls. Nineteen patients with long-standing hip and groin pain and 19 healthy, activity level-, age-, gender-, and weight-matched controls were assessed with the HAGOS for self-reported outcomes, and a parallel squat (w/kg), single-leg triple jump (cm), single-leg rise (n), barbell roll-out (% of height), and plank test (s) for performance-based measures. Independent sample t test was performed to assess between-group differences. The paired t test was used to analyse between-limb differences in unilateral performance tasks. The patients had worse scores than the controls in all HAGOS subscales (p ≤ 0.001), while no statistically significant differences were observed for any performance measure between groups or between symptomatic and non-symptomatic limbs. Despite significant self-reported functional limitations on the HAGOS, there were no significant differences between groups in performance-based strength or power measures. The results of this study highlight the need to identify performance-based measures, sensitive to functional deficiencies in patients with long-standing hip and groin pain in order to complement the clinical picture obtained by patient-reported outcomes such as the HAGOS. III.

  9. Saving money, saving lives.

    PubMed

    Meliones, J

    2000-01-01

    In 1996, Duke Children's Hospital was in serious trouble. Its $11 million annual operating loss had forced administrators to make cutbacks. As a result, some caregivers felt that the quality of care had deteriorated. Parents' complaints were on the rise. Frustrated staff members were quitting. In this article, Jon Meliones, DCH's chief medical director, candidly describes how his debt-ridden hospital transformed itself into a vibrant and profitable one. The problem, he realized, was that each group in DCH was focusing only on its individual mission. Doctors and nurses wanted to restore their patients to health; they didn't want to have to think about costs. Hospital administrators, for their part, were focused only on controlling wildly escalating health care costs. To keep DCH afloat, clinicians and administrators needed to work together. By listening to staff concerns, turning reams of confusing data into useful information, taking a fresh approach to teamwork, and using the balanced scorecard method, Meliones and his colleagues brought DCH back to life. Developing and implementing the balanced scorecard approach wasn't easy: it took a pilot project, a top-down reorganization, development of a customized information system, and systematic work redesign. But their efforts paid off. Customer satisfaction ratings jumped 18%. Improvements to internal business processes reduced the average length of stay 21% while the readmission rate fell from 7% to 3%. The cost per patient dropped nearly $5,000. And DCH recorded profits of $4 million in 2000. This first-person account is required reading for any executive seeking to revitalize a sagging organization. Meliones shares the operating principles DCH followed to become a thriving business.

  10. Nano-Aluminum Reaction with Nitrogen in the Burn Front of Oxygen-Free Energetic Materials

    NASA Astrophysics Data System (ADS)

    Tappan, B. C.; Son, S. F.; Moore, D. S.

    2006-07-01

    Nano-particulate aluminum metal was added to the high nitrogen energetic material triaminoguanidium azotetrazolate (TAGzT) in order to determine the effects on decomposition behavior. Standard safety testing (sensitivity to impact, spark and friction) are reported and show that the addition of nano-Al actually decreases the sensitivity of the pure TAGzT. Thermo-equilibrium calculations (Cheetah) indicate that the all of the Al reacts to form AlN in TAGzT decomposition, and the calculated specific impulses are reported. T-Jump/FTIR spectroscopy was performed on the neat TAGzT. Emission spectra were collected to determine the temperature of AlN formation in combustion. Burning rates were also collected, and the effects of nano-Al on rates are discussed.

  11. Change of the binding mode of the DNA/proflavine system induced by ethanol.

    PubMed

    García, Begoña; Leal, José M; Ruiz, Rebeca; Biver, Tarita; Secco, Fernando; Venturini, M

    2010-07-01

    The equilibria and kinetics of the binding of proflavine to poly(dG-dC).poly(dG-dC) and poly(dA-dT).poly(dA-dT) were investigated in ethanol/water mixtures using spectrophotometric, circular dichroism, viscometric, and T-jump methods. All methods concur in showing that two modes of interaction are operative: intercalation and surface binding. The latter mode is favored by increasing ethanol and/or the proflavine content. Both static and kinetic experiments show that, concerning the poly(dG-dC).poly(dG-dC)/proflavine system, intercalation largely prevails up to 20% EtOH. For higher EtOH levels surface binding becomes dominant. Concerning the poly(dA-dT).poly(dA-dT)/proflavine system, melting experiments show that addition of proflavine stabilizes the double stranded structure, but the effect is reduced in the presence of EtOH. The DeltaH degrees and DeltaS degrees values of the melting process, measured at different concentrations of added proflavine, are linearly correlated, revealing the presence of the enthalpy-entropy compensation phenomenon (EEC). The nonmonotonicity of the "entropic term" of the EEC reveals the transition between the two binding modes. T-jump experiments show two relaxation effects, but at the highest levels of EtOH (>25%) the kinetic curves become monophasic, confirming the prevalence of the surface complex. A branched mechanism is proposed where diffusion controlled formation of a precursor complex occurs in the early stage of the binding process. This evolves toward the surface and/or the intercalated complex according to two rate-determining parallel steps. CD spectra suggest that, in the surface complex, proflavine is bound to DNA in the form of an aggregate.

  12. DNA unwinding by ring-shaped T4 helicase gp41 is hindered by tension on the occluded strand.

    PubMed

    Ribeck, Noah; Saleh, Omar A

    2013-01-01

    The replicative helicase for bacteriophage T4 is gp41, which is a ring-shaped hexameric motor protein that achieves unwinding of dsDNA by translocating along one strand of ssDNA while forcing the opposite strand to the outside of the ring. While much study has been dedicated to the mechanism of binding and translocation along the ssDNA strand encircled by ring-shaped helicases, relatively little is known about the nature of the interaction with the opposite, 'occluded' strand. Here, we investigate the interplay between the bacteriophage T4 helicase gp41 and the ss/dsDNA fork by measuring, at the single-molecule level, DNA unwinding events on stretched DNA tethers in multiple geometries. We find that gp41 activity is significantly dependent on the geometry and tension of the occluded strand, suggesting an interaction between gp41 and the occluded strand that stimulates the helicase. However, the geometry dependence of gp41 activity is the opposite of that found previously for the E. coli hexameric helicase DnaB. Namely, tension applied between the occluded strand and dsDNA stem inhibits unwinding activity by gp41, while tension pulling apart the two ssDNA tails does not hinder its activity. This implies a distinct variation in helicase-occluded strand interactions among superfamily IV helicases, and we propose a speculative model for this interaction that is consistent with both the data presented here on gp41 and the data that had been previously reported for DnaB.

  13. Surface-Tension Replica-Exchange Molecular Dynamics Method for Enhanced Sampling of Biological Membrane Systems.

    PubMed

    Mori, Takaharu; Jung, Jaewoon; Sugita, Yuji

    2013-12-10

    Conformational sampling is fundamentally important for simulating complex biomolecular systems. The generalized-ensemble algorithm, especially the temperature replica-exchange molecular dynamics method (T-REMD), is one of the most powerful methods to explore structures of biomolecules such as proteins, nucleic acids, carbohydrates, and also of lipid membranes. T-REMD simulations have focused on soluble proteins rather than membrane proteins or lipid bilayers, because explicit membranes do not keep their structural integrity at high temperature. Here, we propose a new generalized-ensemble algorithm for membrane systems, which we call the surface-tension REMD method. Each replica is simulated in the NPγT ensemble, and surface tensions in a pair of replicas are exchanged at certain intervals to enhance conformational sampling of the target membrane system. We test the method on two biological membrane systems: a fully hydrated DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine) lipid bilayer and a WALP23-POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane system. During these simulations, a random walk in surface tension space is realized. Large-scale lateral deformation (shrinking and stretching) of the membranes takes place in all of the replicas without collapse of the lipid bilayer structure. There is accelerated lateral diffusion of DPPC lipid molecules compared with conventional MD simulation, and a much wider range of tilt angle of the WALP23 peptide is sampled due to large deformation of the POPC lipid bilayer and through peptide-lipid interactions. Our method could be applicable to a wide variety of biological membrane systems.

  14. What is (and Isn't) Wrong with Both the Tension and Shear Failure Models for the Formation of Lineae on Europa

    NASA Technical Reports Server (NTRS)

    Kattenhorn, S. A.

    2004-01-01

    An unresolved problem in the interpretation of lineae on Europa is whether they formed as tension- or shear-fractures. Voyager image analyses led to hypotheses that Europan lineaments are tension cracks induced by tidal deformation of the ice crust. This interpretation continued with Galileo image analyses, with lineae being classified as crust- penetrating tension cracks. Tension fracturing has also been an implicit assumption of nonsynchronous rotation (NSR) studies. However, recent hypotheses invoke shear failure to explain lineae development. If a shear failure mechanism is correct, it will be necessary to re-evaluate any models for the evolution of Europa's crust that are based on tensile failure models, such as NSR estimates. For this reason, it is imperative that the mechanism by which fractures are initiated on Europa be unambiguously unraveled. A logical starting point is an evaluation of the pros and cons of each failure model, highlighting the lines of evidence that are needed to fully justify either model.

  15. Auroral particle acceleration: An example of a universal plasma process

    NASA Astrophysics Data System (ADS)

    Haerendel, G.

    1980-06-01

    The occurrence of discrete and narrow auroral arcs is attributed to a sudden release of magnetic tensions set up in a magnetospheric-ionospheric current circuit of high strength. At altitudes of several 1000 km the condition of frozen in magnetic fields can be broken temporarily in thin regions corresponding to the observed width of auroral arcs. This implies magnetic field-aligned potential drops of several kilovolts supported by certain anomalous transport processes which can only be maintained in a quasi-stationary fashion if the current density exceeds a critical limit. The region of field aligned potential drops is structured by two pairs of standing waves which are generalized Alfven waves of large amplitude across which the parallel electric field has a finite jump. The waves are emitted from the leading edge of the acceleration region which propagates slowly into the stressed magnetic field.

  16. Experimental and theoretical characterization of deep penetration welding threshold induced by 1-μm laser

    NASA Astrophysics Data System (ADS)

    Zou, J. L.; He, Y.; Wu, S. K.; Huang, T.; Xiao, R. S.

    2015-12-01

    The deep penetration-welding threshold (DPWT) is the critical value that describes the welding mode transition from the thermal conduction to the deep penetration. The objective of this research is to clarify the DPWT induced by the lasers with wavelength of 1 μm (1-μm laser), based on experimental observation and theoretical analysis. The experimental results indicated that the DPWT was the ratio between laser power and laser spot diameter (P/d) rather than laser power density (P/S). The evaporation threshold was smaller than the DPWT, while the jump threshold of the evaporated mass flux in the molten pool surface was consistent with the DPWT. Based on the force balance between the evaporation recoil pressure and the surface tension pressure at the gas-liquid interface of the molten pool as well as the temperature field, we developed a self-focusing model, which further confirmed the experimental results.

  17. The Role of Physical Activity on Mood State and Functional Skills of Elderly Women

    PubMed Central

    Monteiro-Junior, Renato Sobral; Rodrigues, Vinicius Dias; Campos, Carlos; Paes, Flávia; Murillo-Rodriguez, Eric; Maranhão-Neto, Geraldo A.; Machado, Sergio

    2017-01-01

    Introduction: Ageing is associated with several physical, psychological and behavioral changes. These changes are closely related with global health and functional capacity in the elderly. Mood disturbances are common among the elderly and may significantly increase apathy, resulting in decreased habitual physical activity levels. Materials and Methods: The purpose of this cross-sectional study was to evaluate the mood state and functional motor capacities of elderly women engaged in a public physical activity program in Brazil and compare them with physically inactive elderly. Thirty elderly women were included in the study and categorized into two groups: physically active group, composed of participants enrolled on a public physical activity program (n = 16, 69±5 years) and physically inactive group (n = 14, 68±4 years). Total mood disturbance was assessed using the Profile of Mood States, whereas functional motor capacity was evaluated with the Sitting and Rising test. Independent t test and Mann-Whitney U] were used to compare groups. Results: The physically active group had lower total mood disturbance (p=0.02), confusion (p<0.01), tension (p<0.01), hostility (p=0.05) and fatigue (p=0.01) compared to the physically inactive group. There were no group differences regarding vigor, depression and sitting and rising performance (p>0.05). Conclusion: Lack of difference in functional motor capacity between the physically active and inactive elderly may be explained by the absence of exercise systematization in these programs. PMID:29238389

  18. Mobile Jump Assessment (mJump): A Descriptive and Inferential Study.

    PubMed

    Mateos-Angulo, Alvaro; Galán-Mercant, Alejandro; Cuesta-Vargas, Antonio

    2015-08-26

    Vertical jump tests are used in athletics and rehabilitation to measure physical performance in people of different age ranges and fitness. Jumping ability can be analyzed through different variables, and the most commonly used are fly time and jump height. They can be obtained by a variety of measuring devices, but most are limited to laboratory use only. The current generation of smartphones contains inertial sensors that are able to record kinematic variables for human motion analysis, since they are tools for easy access and portability for clinical use. The aim of this study was to describe and analyze the kinematics characteristics using the inertial sensor incorporated in the iPhone 4S, the lower limbs strength through a manual dynamometer, and the jump variables obtained with a contact mat in the squat jump and countermovement jump tests (fly time and jump height) from a cohort of healthy people. A cross sectional study was conducted on a population of healthy young adults. Twenty-seven participants performed three trials (n=81 jumps) of squat jump and countermovement jump tests. Acceleration variables were measured through a smartphone's inertial sensor. Additionally, jump variables from a contact mat and lower limbs dynamometry were collected. In the present study, the kinematic variables derived from acceleration through the inertial sensor of a smartphone iPhone 4S, dynamometry of lower limbs with a handheld dynamometer, and the height and flight time with a contact mat have been described in vertical jump tests from a cohort of young healthy subjects. The development of the execution has been described, examined and identified in a squat jump test and countermovement jump test under acceleration variables that were obtained with the smartphone. The built-in iPhone 4S inertial sensor is able to measure acceleration variables while performing vertical jump tests for the squat jump and countermovement jump in healthy young adults. The acceleration kinematics variables derived from the smartphone's inertial sensor are higher in the countermovement jump test than the squat jump test. ©Alvaro Mateos-Angulo, Alejandro Galán-Mercant, Antonio Cuesta-Vargas. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 26.08.2015.

  19. Calorimetric and Neutron Scattering Studies on Glass Transitions and Ionic Diffusions in Imidazolium-based Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Yamamuro, O.; Kofu, M.

    2017-05-01

    Glass transition is one of the central research issues of ionic liquids (ILs). In particular, the most typical ILs, imidazolium-basedones (ImILs) are readily supercooled and exhibit glass transitions below room temperature. We have measured the heat capacities of several ImILs, encoded as CnmimX (n: alkyl carbon number, n = 2-8, X: anion, X = Cl, I, FeCl4, TFSI) using an adiabatic calorimeter. We found that most of ImILs exhibit glass transitions with large Cp jumps in a temperature range between 170 K and 230 K. The large Cp jumps reflect that these ILs are fragile liquids that exhibit large structural change depending on temperature near the glass transition temperature T g. It is also revealed that T g does not depend much on n but on the anion radius. We have investigated the dynamics of CnmimX (n = 2-8, X = Cl, NO3, PF6, TF, FSI, TFSI) by means of a quasielastic neutron scattering (QENS) technique. It was clarified that the ionic diffusion is directly associated with the viscosity and glass transition. The activation energy ΔE a of the ionic diffusion increases with decreasing anion size but remains almost unchanged with n as found for T g. These systematic change of T g and ΔE a can be explained well by taking account the nano-domain structure which is the most characteristic feature of ImILs.

  20. Effects of configurational changes on molecular dynamics in polyvinylidene fluoride and poly(vinylidene fluoride-trifluoroethylene) ferroelectric polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalarvo, N., E-mail: jalarvonh@ornl.gov, E-mail: abhijit.pramanick@gmail.com, E-mail: omardiallos@ornl.gov; Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; Pramanick, A., E-mail: jalarvonh@ornl.gov, E-mail: abhijit.pramanick@gmail.com, E-mail: omardiallos@ornl.gov

    2015-08-24

    We present a comparative study of proton dynamics in unpoled non-ferroelectric polymer polyvinylidene fluoride (PVDF) and in its trifluoroethylene containing ferroelectric copolymer (with 70/30 molar proportion), using quasi-elastic neutron scattering. The neutron data reveal the existence of two distinct types of molecular motions in the temperature range investigated. The slower motion, which is characterized in details here, is ascribed to protons jump diffusion along the polymeric carbon chains, while the faster motion could be attributed to localized rotational motion of methylene groups. At temperatures below the Curie point (T{sub c} ∼ 385 K) of the composite polymer, the slower diffusive mode experiences longermore » relaxation times in the ferroelectric blend than in the bare PVDF, although the net corresponding diffusion coefficient remains comparatively the same in both polymers with characteristic activation energy of E{sub A} ≈ 27–33 kJ/mol. This arises because of a temperature dependent jump length r{sub 0}, which we observe to be effectively longer in the copolymer, possibly due to the formation of ordered ferroelectric domains below T{sub c}. Above T{sub c}, there is no appreciable difference in r{sub 0} between the two systems. This observation directly relates the known dependence of T{sub c} on molar ratio to changes in r{sub 0}, providing fundamental insight into the ferroelectric properties of PVDF-based copolymers.« less

  1. Comparison of two anaerobic water polo-specific tests with the Wingate test.

    PubMed

    Bampouras, Theodoros M; Marrin, Kelly

    2009-01-01

    The purpose of the current study was to compare 2 water polo-specific tests-the 14 x 25-m swims (SWIM) and the 30-second crossbar jumps (30CJ)-with a laboratory-based test of anaerobic power, the Wingate Anaerobic Test (WAnT). Thirteen elite women's water polo players (mean +/- SD: age 22.0 +/- 4.4 years, height 168.7 +/- 7.9 cm, body mass 65.9 +/- 6.1 kg, body fat 23.6 +/- 3.5 %, maximum oxygen uptake 51.4 +/- 4.5 mlxkgxmin) participated in the study. The SWIM involved 14 repeated "all-out" sprints every 30 seconds. Swimming time was recorded, and sprint velocity, mean velocity (Vmean), and the gradient of the linear regression equation (GRADIENT) were calculated. The 30CJ involved repeated in-water water polo jumps and touching the goal crossbar with both hands. The number of touches in 30 seconds was recorded. Additionally, the subjects completed a 30-second WAnT, and mean power (Mp) and fatigue index (FI) were calculated. Kendall tau (tau) rank correlation was used to examine for correlation between ranks. Significance level was set at p

  2. Water confinement in faujasite cages: a deuteron NMR investigation in a wide temperature range. 1. Low temperature spectra.

    PubMed

    Szymocha, A M; Birczyński, A; Lalowicz, Z T; Stoch, G; Krzystyniak, M; Góra-Marek, K

    2014-07-24

    Deuteron NMR spectra were measured for D2O confined in NaX, NaY, and DY faujasites with various D2O loadings at temperatures ranging from T = 70 K to T = 200 K with the aim to study the molecular mobility of confined water as a function of Si/Al ratio and loading. The recorded spectra were fitted with linear combinations of representative spectral components. At low loading, with the number of water molecules per unit cell close to the abundance of sodium cations, a component related to π-jumps of water deuterons about the 2-fold symmetry axis dominated. For loadings at levels 3 times and 5 times higher than the initial loading level, Pake dublets due to rigid water deuterons dominated the recorded spectra. A set of the quadrupole coupling constant values of localized water deuterons was derived from the analysis of the Pake dublets. Their values were attributed to deuteron positions corresponding to the locations at oxygen atoms in the faujasite framework and locations within hydrogen-bonded water clusters inside faujasite cages. The contributions of the different spectral components were observed to change with increasing temperature according to the Arrhenius law with a characteristic dynamic crossover point at T = 165 K. Below T = 165 K a spectral component was observed whose contribution changed with temperature, yielding the activation energy of about 2 kJ/mol, characteristic for jumps between inversion-related water positions in clusters.

  3. Multiple magnetization steps and plateaus across the antiferromagnetic to ferromagnetic transition in L a1 -xC exF e12B6 : Time delay of the metamagnetic transitions

    NASA Astrophysics Data System (ADS)

    Diop, L. V. B.; Isnard, O.

    2018-01-01

    The effects of cerium substitution on the structural and magnetic properties of the L a1 -xC exF e12B6 (0 ≤x ≤0.175 ) series of compounds have been studied. All of the compounds exhibit an antiferromagnetic ground state below the Néel temperature TN≈36 K . Both antiferromagnetic and paramagnetic states can be transformed into the ferromagnetic state irreversibly and reversibly depending on the magnitude of the applied magnetic field, the temperature, and the direction of their changes. Of particular interest is the low-temperature magnetization process. This process is discontinuous and evolves unexpected huge metamagnetic transitions consisting of a succession of sharp magnetization steps separated by plateaus, giving rise to an unusual avalanchelike behavior. At constant temperature and magnetic field, the evolution with time of the magnetization displays a spectacular spontaneous jump after a long incubation time. L a1 -xC exF e12B6 compounds exhibit a unique combination of exceptional features like large thermal hysteresis, giant magnetization jumps, and remarkably huge magnetic hysteresis for the field-induced first-order metamagnetic transition.

  4. Diffusivity of the interstitial hydrogen shallow donor in In2O3

    NASA Astrophysics Data System (ADS)

    Qin, Ying; Weiser, Philip; Villalta, Karla; Stavola, Michael; Fowler, W. Beall; Biaggio, Ivan; Boatner, Lynn

    2018-04-01

    Hydrogen has been found to be an n-type dopant in In2O3 that gives rise to unintentional conductivity. An infrared (IR) absorption line observed at 3306 cm-1 has been assigned to the Hi+ center. Two types of experiments have been performed to determine the diffusivity of Hi+ in In2O3 from its IR absorption spectra. (i) At temperatures near 700 K, the O-H line at 3306 cm-1 has been used to determine the diffusivity of Hi+ from its in-diffusion and out-diffusion behaviors. (ii) At temperatures near 160 K, stress has been used to produce a preferential alignment of the Hi+ center that has been detected in IR absorption experiments made with polarized light. With the help of theory, the kinetics with which a stress-induced alignment can be produced yield the time constant for a single jump of the Hi+ center and also the diffusivity of Hi+ near 160 K. The combination of the diffusivity of Hi+ found near 700 K by mass-transport measurements and that found near 160 K from the time constant for a single Hi+ jump determines the diffusivity for Hi+ over eleven decades!

  5. Onset of anomalous diffusion from local motion rules

    NASA Astrophysics Data System (ADS)

    de Nigris, Sarah; Carletti, Timoteo; Lambiotte, Renaud

    2017-02-01

    Anomalous diffusion processes, in particular superdiffusive ones, are known to be efficient strategies for searching and navigation in animals and also in human mobility. One way to create such regimes are Lévy flights, where the walkers are allowed to perform jumps, the "flights," that can eventually be very long as their length distribution is asymptotically power-law distributed. In our work, we present a model in which walkers are allowed to perform, on a one-dimensional lattice, "cascades" of n unitary steps instead of one jump of a randomly generated length, as in the Lévy case, where n is drawn from a cascade distribution pn. We show that this local mechanism may give rise to superdiffusion or normal diffusion when pn is distributed as a power law. We also introduce waiting times that are power-law distributed as well and therefore the probability distribution scaling is steered by the two local distributions power-law exponents. As a perspective, our approach may engender a possible generalization of anomalous diffusion in context where distances are difficult to define, as in the case of complex networks, and also provide an interesting model for diffusion in temporal networks.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadid, M.; Vernin, J.; Zalian, C.

    We present the first detection of multi-shocks propagating through the atmosphere of the Blazhko star S Arae using uninterrupted, accurate optical photometric data collected during one polar night, 150 days from Antarctica at Dome C, with the Photometer AntarctIca eXtinction (PAIX). We acquired 89,736 CCD frames during 323 pulsation cycles and 3 Blazhko cycles. We detected two new light curve properties in the PAIX light curve, jump and rump, which we associated with two new post-maximum shock waves Sh{sub PM1} and Sh{sub PM2}. jump, lump, rump, bump, and hump are induced by five shock waves, with different amplitudes and origins,more » Sh{sub PM1}, Sh{sub PM}, Sh{sub PM2}, Sh{sub PM3}, and the main shock Sh{sub H+He}. Correlations between the length of rise time and light amplitude and Sh{sub PM3} are monotonous during three Blazhko cycles, but the pulsation curve is double peaked. We discuss the physical mechanisms driving the modulation of these quantities. Finally, we hypothesize that the origin of the Blazhko effect is a dynamical interaction between a multi-shock structure and an outflowing wind in a coronal structure.« less

  7. Vertical jumping tests in volleyball: reliability, validity, and playing-position specifics.

    PubMed

    Sattler, Tine; Sekulic, Damir; Hadzic, Vedran; Uljevic, Ognjen; Dervisevic, Edvin

    2012-06-01

    Vertical jumping is known to be important in volleyball, and jumping performance tests are frequently studied for their reliability and validity. However, most studies concerning jumping in volleyball have dealt with standard rather than sport-specific jumping procedures and tests. The aims of this study, therefore, were (a) to determine the reliability and factorial validity of 2 volleyball-specific jumping tests, the block jump (BJ) test and the attack jump (AJ) test, relative to 2 frequently used and systematically validated jumping tests, the countermovement jump test and the squat jump test and (b) to establish volleyball position-specific differences in the jumping tests and simple anthropometric indices (body height [BH], body weight, and body mass index [BMI]). The BJ was performed from a defensive volleyball position, with the hands positioned in front of the chest. During an AJ, the players used a 2- to 3-step approach and performed a drop jump with an arm swing followed by a quick vertical jump. A total of 95 high-level volleyball players (all men) participated in this study. The reliability of the jumping tests ranged from 0.97 to 0.99 for Cronbach's alpha coefficients, from 0.93 to 0.97 for interitem correlation coefficients and from 2.1 to 2.8 for coefficients of variation. The highest reliability was found for the specific jumping tests. The factor analysis extracted one significant component, and all of the tests were highly intercorrelated. The analysis of variance with post hoc analysis showed significant differences between 5 playing positions in some of the jumping tests. In general, receivers had a greater jumping capacity, followed by libero players. The differences in jumping capacities should be emphasized vis-a-vis differences in the anthropometric measures of players, where middle hitters had higher BH and body weight, followed by opposite hitters and receivers, with no differences in the BMI between positions.

  8. Industrial Base Actions in a Period of Rising Tensions.

    DTIC Science & Technology

    1982-08-01

    termination liability includin~g those available under Title 3 of - the Defense Production Act (DPA). e Encourage the use of experienced contractor or...start up new suppliers, offering long-term commitments and assuming liability for start-up costs would probably be most effective. Also, the general...and termination liability in the event - of cancellation) to lower-tier firms; *support the extension of DNS/DPS ratings by the Commerce Department to

  9. Engineering for Deep Sea Drilling for Scientific Purposes

    DTIC Science & Technology

    1980-01-01

    Clyde Consultants JOSEPH E. BEALL, Triton Engineering Services Company DOUWE DE VRIES, N L Industries, Incorporated TERRY N. GARDNER, Exxon...estimate: $1 million additional cost for each site drilled and 25 to 35 wells to be drilled over the period. __ U 20 inclusion in a request for proposal...26 of a positively buoyant system would allow a nearly conventional rise tensioning system. However, the latter approach would require de - .aping a

  10. Didactical design based on sharing and jumping tasks for senior high school chemistry learning

    NASA Astrophysics Data System (ADS)

    Fatimah, I.; Hendayana, S.; Supriatna, A.

    2018-05-01

    The purpose of this research is to develop the didactical design of senior high school chemistry learning based on sharing and jumping tasks in shift equilibrium chemistry. Sharing tasks used to facilitate students slow learners with help by other students of fast learners so they engage in learning. While jumping tasks used to challenge fast learners students so they didn’t feel bored in learning. In developing the didactic design, teacher activity is not only to focus on students and learning materials but also on the relationship between students and learning materials. The results of the analysis teaching plan of shift equilibrium chemistry in attached Senior High School to Indonesia University of Education showed that the learning activities more focus on how the teacher teaches instead of how the process of students’ learning. The use of research method is didactical design research (DDR). Didactical design consisted of three steps i.e. (a) analysing didactical condition before learning, (b) analyzing metapedadidactical, and (c) analyzing retrospective. Data were collected by test, observations, interviews, documentation and recordings (audio and video).The result showed that the didactical design on shift equilibrium chemistry was valid.

  11. Relationship of long-term macronutrients intake on anabolic-catabolic hormones in female elite volleyball players.

    PubMed

    Mielgo Ayuso, Juan; Zourdos, Michael C; Urdampilleta, Aritz; Calleja González, Julio; Seco, Jesús; Córdova, Alfredo

    2017-10-24

    Specific macronutrient distribution and training can alter acute and chronic hormone behavior and, subsequently, sport performance. The main aim was to examine relationships between dietary intake and anabolic/catabolic hormone response in elite female volleyball players during a 29-week season. Twenty-two elite female volleyballers (26.4 ± 5.6 years; 178 ± 9 cm; 67.1 ± 7.5 kg) had dietary intake (seven-day dietary recall and food frequency questionnaire), blood concentration of anabolic/catabolic hormones concentration, physical performance, and body composition assessed at four time points: a) T1: baseline/pre-testing; b) T2: eleven weeks after T1; c) T3: ten weeks after T2; and d) T4: eight weeks after T3. Hormones evaluated were: total testosterone (TT), free testosterone (FT) adrenocorticotropic hormone (ACTH), and cortisol (C), along with hormone ratios. Positive correlations were observed between carbohydrate/protein ratio with ΔFT (r = 0.955; p < 0.001), ΔTT/C ratio (r = 0.638; p = 0.047), and ΔFT/C ratio (r = 0.909; p < 0.001). Significant and negative correlations were found between protein intake with ΔTT (r = -0.670; p = 0.034), and FT (r = -0.743; p < 0.001), carbohydrate intake and ΔACTH (r = -0.658; p = 0.006). No relationships were observed regarding Δcortisol. On the other hand, there was no change (p > 0.05) in body mass or body mass index at any time point, and the sum of six skinfolds improved (p < 0.05) from T1 (86.5 ± 6.9 mm) to T4 (75.2 ± 5.6 mm) as did muscle mass (T1: 28.9 ± 0.7 kg vsT4: 30.1 ± 0.8 kg). Vertical jump, spike-jump and speed improved (p < 0.05) from T1 to T4. A high carbohydrate/protein ratio was associated with positive changes in anabolism, while high protein and low carbohydrates (CHO) were associated with an attenuated anabolic response.

  12. Effects of timing of signal indicating jump directions on knee biomechanics in jump-landing-jump tasks.

    PubMed

    Stephenson, Mitchell L; Hinshaw, Taylour J; Wadley, Haley A; Zhu, Qin; Wilson, Margaret A; Byra, Mark; Dai, Boyi

    2018-03-01

    A variety of the available time to react (ATR) has been utilised to study knee biomechanics during reactive jump-landing tasks. The purpose was to quantify knee kinematics and kinetics during a jump-land-jump task of three possible directions as the ATR was reduced. Thirty-four recreational athletes performed 45 trials of a jump-land-jump task, during which the direction of the second jump (lateral, medial or vertical) was indicated before they initiated the first jump, the instant they initiated the first jump, 300 ms before landing, 150 ms before landing or at the instant of landing. Knee joint angles and moments close to the instant of landing were significantly different when the ATR was equal to or more than 300 ms before landing, but became similar when the ATR was 150 ms or 0 ms before landing. As the ATR was decreased, knee moments decreased for the medial jump direction, but increased for the lateral jump direction. When the ATR is shorter than an individual's reaction time, the movement pattern cannot be pre-planned before landing. Knee biomechanics are dependent on the timing of the signal and the subsequent jump direction. Precise control of timing and screening athletes with low ATR are suggested.

  13. Validation of an inertial measurement unit for the measurement of jump count and height.

    PubMed

    MacDonald, Kerry; Bahr, Roald; Baltich, Jennifer; Whittaker, Jackie L; Meeuwisse, Willem H

    2017-05-01

    To validate the use of an inertial measurement unit (IMU) for the collection of total jump count and assess the validity of an IMU for the measurement of jump height against 3-D motion analysis. Cross sectional validation study. 3D motion-capture laboratory and field based settings. Thirteen elite adolescent volleyball players. Participants performed structured drills, played a 4 set volleyball match and performed twelve counter movement jumps. Jump counts from structured drills and match play were validated against visual count from recorded video. Jump height during the counter movement jumps was validated against concurrent 3-D motion-capture data. The IMU device captured more total jumps (1032) than visual inspection (977) during match play. During structured practice, device jump count sensitivity was strong (96.8%) while specificity was perfect (100%). The IMU underestimated jump height compared to 3D motion-capture with mean differences for maximal and submaximal jumps of 2.5 cm (95%CI: 1.3 to 3.8) and 4.1 cm (3.1-5.1), respectively. The IMU offers a valid measuring tool for jump count. Although the IMU underestimates maximal and submaximal jump height, our findings demonstrate its practical utility for field-based measurement of jump load. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers.

    PubMed

    Pauli, Carole A; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R; Lorenzetti, Silvio

    2016-03-01

    Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance.

  15. Don't Lose Your Marbles!: Game Project Teaches Introductory Manufacturing Skills

    ERIC Educational Resources Information Center

    Kapur, Arjun; Carter, Horlin; Dillon, Dave

    2006-01-01

    This article describes a lab activity conducted in an introductory manufacturing class. In this good, simple, mass-production project, the students designed and produced a small game composed of a piece of plywood and 14 glass marbles. In appearance, the game is something like Chinese checkers, but it involves jumping over marbles, then removing…

  16. Jump-Start Inquiry: How Students Begin when They Don't Know

    ERIC Educational Resources Information Center

    Fontichiaro, Kristin; Green, Julie

    2010-01-01

    In today's increasingly diverse schools, how can educators level the playing field for students with varied background knowledge before these students begin doing research? How can prior knowledge be awakened to give students a foundation upon which meaningful questions can be constructed? How can students be helped to know the words, terms, and…

  17. We Jumped on the Live Reference Band Wagon, and We Love the Ride!

    ERIC Educational Resources Information Center

    Schaake, Glenda; Sathan, Eleanor

    2003-01-01

    Memorial Hall Library in Andover, Massachusetts wanted to offer live reference service online but with limited resources, they couldn't do it alone. The 24/7 Reference cooperative program administered by the California State Library required Memorial Hall's librarians to monitor only 10 hours a week in return for live reference coverage. Memorial…

  18. Yorktown Students Don't Jump for Junk

    ERIC Educational Resources Information Center

    Nation's Schools, 1973

    1973-01-01

    When Yorktown switched to a flexible scheduling program it wanted to stretch the lunch hour to encourage students to spend their two free periods per day at school. The answer was a private food contractor who is responsible for equipment, personnel, and food preparation and is open from 7:30 a.m. to well into the evening. (Author/JN)

  19. Suicide in the island of Singapore.

    PubMed

    Kua, E H; Tsoi, W F

    1985-03-01

    In a study of suicide in Singapore in 1980 there were 230 cases and the suicide rate for the general population was 9.5 per 100,000. The age-specific rates increased steeply after 50 years and there was a male preponderance especially in the age group 60 years and over. Comparing the three major ethnic groups in Singapore, the highest rate was seen in the Indians and Chinese, whereas the Malays had the lowest. Amongst the suicides there were 59 (25.7%) with mental illness, mainly schizophrenia, and they were of a younger age group, 20-39 years. The commonest method of suicide was jumping from high-rise flats.

  20. Validity of Hip-worn Inertial Measurement Unit Compared to Jump Mat for Jump Height Measurement in Adolescents.

    PubMed

    Rantalainen, T; Hesketh, K D; Rodda, C; Duckham, R L

    2018-06-16

    Jump tests assess lower body power production capacity, and can be used to evaluate athletic ability and development during growth. Wearable inertial measurement units (IMU) seem to offer a feasible alternative to laboratory-based equipment for jump height assessments. Concurrent validity of these devices for jump height assessments has only been established in adults. Therefore, the purpose of this study was to evaluate the concurrent validity of IMU-based jump height estimate compared to contact mat-based jump height estimate in adolescents. Ninety-five adolescents (10-13 years-of-age; girls N=41, height = 154 (SD 9) cm, weight = 44 (11) kg; boys N=54, height=156 (10) cm, weight = 46 (13) kg) completed three counter-movement jumps for maximal jump height on a contact mat. Inertial recordings (accelerations, rotations) were concurrently recorded with a hip-worn IMU (sampling at 256 Hz). Jump height was evaluated based on flight time. The mean IMU-derived jump height was 27.1 (SD 3.8) cm, and the corresponding mean jump-mat-derived value was 21.5 (3.4) cm. While a significant 26% mean difference was observed between the methods (5.5 [95% limits of agreement 2.2 to 8.9] cm, p = 0.006), the correspondence between methods was excellent (ICC = 0.89). The difference between methods was weakly positively associated with jump height (r = 0.28, P = 0.007). Take-off velocity derived jump height was also explored but produced only fair congruence. In conclusion, IMU-derived jump height exhibited excellent congruence to contact mat-based jump height and therefore presents a feasible alternative for jump height assessments in adolescents. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Potential for Non-Contact ACL Injury Between Step-Close-Jump and Hop-Jump Tasks.

    PubMed

    Wang, Li-I; Gu, Chin-Yi; Chen, Wei-Ling; Chang, Mu-San

    2010-01-01

    This study aimed to compare the kinematics and kinetics during the landing of hop-jump and step-close-jump movements in order to provide further inferring that the potential risk of ACL injuries. Eleven elite male volleyball players were recruited to perform hop-jump and step-close-jump tasks. Lower extremity kinematics and ground reaction forces during landing in stop-jump tasks were recorded. Lower extremity kinetics was calculated by using an inverse dynamic process. Step-close-jump tasks demonstrated smaller peak proximal tibia anterior shear forces during the landing phase. In step-close-jump tasks, increasing hip joint angular velocity during initial foot-ground contact decreased peak posterior ground reaction force during the landing phase, which theoretically could reduce the risk of ACL injury. Key pointsThe different landing techniques required for these two stop-jump tasks do not necessarily affect the jump height.Hop-jump decreased the hip joint angular velocity at initial foot contact with ground, which could lead to an increasing peak posterior GRF during the landing phase.Hop-jump decreased hip and knee joint angular flexion displacement during the landing, which could increase the peak vertical loading rate during the landing phase.

  2. Comparison of integrated and isolated training on performance measures and neuromuscular control.

    PubMed

    Distefano, Lindsay J; Distefano, Michael J; Frank, Barnett S; Clark, Micheal A; Padua, Darin A

    2013-04-01

    Traditional weight training programs use an exercise prescription strategy that emphasizes improving muscle strength through resistance exercises. Other factors, such as stability, endurance, movement quality, power, flexibility, speed, and agility are also essential elements to improving overall functional performance. Therefore, exercises that incorporate these additional elements may be beneficial additions to traditional resistance training programs. The purpose of the study was to compare the effects of an isolated resistance training program (ISO) and an integrated training program (INT) on movement quality, vertical jump height, agility, muscle strength and endurance, and flexibility. The ISO program consisted of primarily upper and lower extremity progressive resistance exercises. The INT program involved progressive resistance exercises, and core stability, power, and agility exercises. Thirty subjects were cluster randomized to either the ISO (n = 15) or INT (n = 15) training program. Each training group performed their respective programs 2 times per week for 8 weeks. The subjects were assessed before (pretest) and after (posttest) the intervention period using the following assessments: a jump-landing task graded using the Landing Error Scoring System (LESS), vertical jump height, T-test time, push-up and sit-up performance, and the sit-and-reach test. The INT group performed better on the LESS test (pretest: 3.90 ± 1.02, posttest: 3.03 ± 1.02; p = 0.02), faster on the T-test (pretest: 10.35 ± 1.20 seconds, posttest: 9.58 ± 1.02 seconds; p = 0.01), and completed more sit-ups (pretest: 40.20 ± 15.01, posttest: 46.73 ± 14.03; p = 0.045) and push-ups (pretest: 40.67 ± 13.85, posttest: 48.93 ± 15.17; p = 0.05) at posttest compared with pretest, and compared with the ISO group at posttest. Both groups performed more push-ups (p = 0.002), jumped higher (p < 0.001), and reached further (p = 0.008) at posttest compared with that at pretest. Performance enhancement programs should use an integrated approach to exercise selection to optimize performance and movement technique benefits.

  3. Residual Strength Predictions with Crack Buckling

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Gullerud, A. S.; Dodds, R. H., Jr.; Hampton, R. W.

    1999-01-01

    Fracture tests were conducted on middle crack tension, M(T), and compact tension, C(T), specimens of varying widths, constructed from 0.063 inch thick sheets of 2024-T3 aluminum alloy. Guide plates were used to restrict out-of-plane displacements in about half of the tests. Analyses using the three-dimensional, elastic-plastic finite element code WARP3D simulated the tests with and without guide plates using a critical CTOA fracture criterion. The experimental results indicate that crack buckling reduced the failure loads by up to 40%. Using a critical CTOA value of 5.5 deg., the WARP3D analyses predicted the failure loads for the tests with guide plates within +/- 10% of the experimentally measured values. For the M(T) tests without guide plates, the WARP3D analyses predicted the failure loads for the 12 and 24 inch tests within 10%, while over predicting the failure loads for the 40 inch wide tests by about 20%.

  4. Kinematic and Microphysical Significance of Lightning Jumps versus Non-Jump Increases in Total Flash Rate

    PubMed Central

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.

    2017-01-01

    Thirty-nine thunderstorms are examined using multiple-Doppler, polarimetric and total lightning observations to understand the role of mixed phase kinematics and microphysics in the development of lightning jumps. This sample size is larger than those of previous studies on this topic. The principal result of this study is that lightning jumps are a result of mixed phase updraft intensification. Larger increases in intense updraft volume (≥ 10 m s−1) and larger changes in peak updraft speed are observed prior to lightning jump occurrence when compared to other non-jump increases in total flash rate. Wilcoxon-Mann-Whitney Rank Sum testing yields p-values ≤0.05, indicating statistical independence between lightning jump and non-jump distributions for these two parameters. Similar changes in mixed phase graupel mass magnitude are observed prior to lightning jumps and non-jump increases in total flash rate. The p-value for graupel mass change is p=0.096, so jump and non-jump distributions for graupel mass change are not found statistically independent using the p=0.05 significance level. Timing of updraft volume, speed and graupel mass increases are found to be 4 to 13 minutes in advance of lightning jump occurrence. Also, severe storms without lightning jumps lack robust mixed phase updrafts, demonstrating that mixed phase updrafts are not always a requirement for severe weather occurrence. Therefore, the results of this study show that lightning jump occurrences are coincident with larger increases in intense mixed phase updraft volume and peak updraft speed than smaller non-jump increases in total flash rate. PMID:29158622

  5. Kinematic and Microphysical Significance of Lightning Jumps versus Non-Jump Increases in Total Flash Rate.

    PubMed

    Schultz, Christopher J; Carey, Lawrence D; Schultz, Elise V; Blakeslee, Richard J

    2017-02-01

    Thirty-nine thunderstorms are examined using multiple-Doppler, polarimetric and total lightning observations to understand the role of mixed phase kinematics and microphysics in the development of lightning jumps. This sample size is larger than those of previous studies on this topic. The principal result of this study is that lightning jumps are a result of mixed phase updraft intensification. Larger increases in intense updraft volume (≥ 10 m s -1 ) and larger changes in peak updraft speed are observed prior to lightning jump occurrence when compared to other non-jump increases in total flash rate. Wilcoxon-Mann-Whitney Rank Sum testing yields p-values ≤0.05, indicating statistical independence between lightning jump and non-jump distributions for these two parameters. Similar changes in mixed phase graupel mass magnitude are observed prior to lightning jumps and non-jump increases in total flash rate. The p-value for graupel mass change is p=0.096, so jump and non-jump distributions for graupel mass change are not found statistically independent using the p=0.05 significance level. Timing of updraft volume, speed and graupel mass increases are found to be 4 to 13 minutes in advance of lightning jump occurrence. Also, severe storms without lightning jumps lack robust mixed phase updrafts, demonstrating that mixed phase updrafts are not always a requirement for severe weather occurrence. Therefore, the results of this study show that lightning jump occurrences are coincident with larger increases in intense mixed phase updraft volume and peak updraft speed than smaller non-jump increases in total flash rate.

  6. Kinematic and Microphysical Significance of Lightning Jumps Versus Non-Jump Increases in Total Flash Rate

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.

    2017-01-01

    Thirty-nine thunderstorms are examined using multiple-Doppler, polarimetric and total lightning observations to understand the role of mixed phase kinematics and microphysics in the development of lightning jumps. This sample size is larger than those of previous studies on this topic. The principal result of this study is that lightning jumps are a result of mixed phase updraft intensification. Larger increases in intense updraft volume greater than or equal to 10 m(sup -1) and larger changes in peak updraft speed are observed prior to lightning jump occurrence when compared to other non-jump increases in total ash rate. Wilcoxon-Mann-Whitney Rank Sum testing yields p-values 0.05, indicating statistical independence between lightning jump and non-jump distributions for these two parameters. Similar changes in mixed phase graupel mass magnitude are observed prior to lightning jumps and non-jump increases in total ash rate. The p-value for graupel mass change is p=0.096, so jump and non-jump distributions for graupel mass change are not found statistically independent using the p=0.05 significance level. Timing of updraft volume, speed and graupel mass increases are found to be 4 to 13 minutes in advance of lightning jump occurrence. Also, severe storms without lightning jumps lack robust mixed phase updrafts, demonstrating that mixed phase updrafts are not always a requirement for severe weather occurrence. Therefore, the results of this study show that lightning jump occurrences are coincident with larger increases in intense mixed phase updraft volume and peak updraft speed than smaller non-jump increases in total ash rate.

  7. Do Bilateral Vertical Jumps With Reactive Jump Landings Achieve Osteogenic Thresholds With and Without Instruction in Premenopausal Women?

    PubMed

    Clissold, Tracey L; Winwood, Paul W; Cronin, John B; De Souza, Mary Jane

    2018-04-01

    Jumps have been investigated as a stimulus for bone development; however, effects of instruction, jump type, and jump-landing techniques need investigation. This study sought to identify whether ground reaction forces (GRFs) for bilateral vertical jumps (countermovement jumps and drop jumps) with reactive jump-landings (ie, jumping immediately after initial jump-landing), with instruction and with instruction withdrawn, achieve magnitudes and rates of strain previously shown to improve bone mass among premenopausal women. Twenty-one women (Mean ± SD: 43.3 ± 5.9 y; 69.4 ± 9.6 kg; 167 ± 5.5 cm; 27.5 ± 8.7% body fat) performed a testing session 'with instruction' followed by a testing session performed 1 week later with 'instruction withdrawn.' The magnitudes (4.59 to 5.49 body weight [BW]) and rates of strain (263 to 359 BW·s -1 ) for the jump-landings, performed on an AMTI force plate, exceeded previously determined thresholds (>3 BWs and >43 BW·s -1 ). Interestingly, significantly larger peak resultant forces, (↑10%; P = .002) and peak rates of force development (↑20%; P < .001) values (in relation to BW and BW·s -1 , respectively) were observed for the second jump-landing (postreactive jump). Small increases (ES = 0.22-0.42) in all landing forces were observed in the second jump-landing with 'instruction withdrawn.' These jumps represent a unique training stimulus for premenopausal women and achieve osteogenic thresholds thought prerequisite for bone growth.

  8. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers

    PubMed Central

    Pauli, Carole A.; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R.

    2016-01-01

    Abstract Pauli, CA, Keller, M, Ammann, F, Hübner, K, Lindorfer, J, Taylor, WR, and Lorenzetti, S. Kinematics and kinetics of squats, drop jumps and imitation jumps of ski jumpers. J Strength Cond Res 30(3): 643–652, 2016—Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance. PMID:26418370

  9. [Evaluation of Artificial Hip Joint with Radiofrequency Heating Issues during MRI Examination: A Comparison between 1.5 T and 3 T].

    PubMed

    Yamazaki, Masaru; Ideta, Takahiro; Kudo, Sadahiro; Nakazawa, Masami

    2016-06-01

    In magnetic resonance imaging (MRI), when radiofrequency (RF) is irradiated to a subject with metallic implant, it can generate heat by RF irradiation. Recently 3 T MRI scanner has spread widely and imaging for any regions of whole body has been conducted. However specific absorption rate (SAR) of 3 T MRI becomes approximately four times as much as the 1.5 T, which can significantly affect the heat generation of metallic implants. So, we evaluated RF heating of artificial hip joints in different shapes and materials in 1.5 T and 3 T MRI. Three types of artificial hip joints made of stainless alloy, titanium alloy and cobalt chrome alloy were embedded in the human body-equivalent phantom respectively and their temperature change were measured for twenty minutes by 1.5 T and 3 T MRI. The maximum temperature rise was observed at the bottom head in all of three types of artificial hip joints, the rise being 12°C for stainless alloy, 11.9°C for titanium alloy and 6.1°C for cobalt chrome alloy in 1.5 T. The temperature rise depended on SAR and the increase of SAR had a good linear relationship with the temperature rise. It was found from the result that the RF heating of metallic implants can take place in various kinds of material and the increase of SAR has a good linear relationship with the temperature rise. This experience shows that reduction of SAR can decrease temperature of metallic implants.

  10. An extreme event of sea-level rise along the Northeast Coast of North America in 2009-2010.

    PubMed

    Goddard, Paul B; Yin, Jianjun; Griffies, Stephen M; Zhang, Shaoqing

    2015-02-24

    The coastal sea levels along the Northeast Coast of North America show significant year-to-year fluctuations in a general upward trend. The analysis of long-term tide gauge records identified an extreme sea-level rise (SLR) event during 2009-10. Within this 2-year period, the coastal sea level north of New York City jumped by 128 mm. This magnitude of interannual SLR is unprecedented (a 1-in-850 year event) during the entire history of the tide gauge records. Here we show that this extreme SLR event is a combined effect of two factors: an observed 30% downturn of the Atlantic meridional overturning circulation during 2009-10, and a significant negative North Atlantic Oscillation index. The extreme nature of the 2009-10 SLR event suggests that such a significant downturn of the Atlantic overturning circulation is very unusual. During the twenty-first century, climate models project an increase in magnitude and frequency of extreme interannual SLR events along this densely populated coast.

  11. A data-driven wavelet-based approach for generating jumping loads

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Li, Guo; Racic, Vitomir

    2018-06-01

    This paper suggests an approach to generate human jumping loads using wavelet transform and a database of individual jumping force records. A total of 970 individual jumping force records of various frequencies were first collected by three experiments from 147 test subjects. For each record, every jumping pulse was extracted and decomposed into seven levels by wavelet transform. All the decomposition coefficients were stored in an information database. Probability distributions of jumping cycle period, contact ratio and energy of the jumping pulse were statistically analyzed. Inspired by the theory of DNA recombination, an approach was developed by interchanging the wavelet coefficients between different jumping pulses. To generate a jumping force time history with N pulses, wavelet coefficients were first selected randomly from the database at each level. They were then used to reconstruct N pulses by the inverse wavelet transform. Jumping cycle periods and contract ratios were then generated randomly based on their probabilistic functions. These parameters were assigned to each of the N pulses which were in turn scaled by the amplitude factors βi to account for energy relationship between successive pulses. The final jumping force time history was obtained by linking all the N cycles end to end. This simulation approach can preserve the non-stationary features of the jumping load force in time-frequency domain. Application indicates that this approach can be used to generate jumping force time history due to single people jumping and also can be extended further to stochastic jumping loads due to groups and crowds.

  12. Interfacial tension measurement of immiscible liq uids using a capillary tube

    NASA Technical Reports Server (NTRS)

    Rashidnia, N.; Balasubramaniam, R.; Delsignore, D.

    1992-01-01

    The interfacial tension of immiscible liquids is an important thermophysical property that is useful in the behavior of liquids both in microgravity (Martinez et al. (1987) and Karri and Mathur (1988)) and in enhanced oil recovery processes under normal gravity (Slattery (1974)). Many techniques are available for its measurement, such as the ring method, drop weight method, spinning drop method, and capillary height method (Adamson (1960) and Miller and Neogi (1985)). Karri and Mathur mention that many of the techniques use equations that contain a density difference term and are inappropriate for equal density liquids. They reported a new method that is suitable for both equal and unequal density liquids. In their method, a capillary tube forms one of the legs of a U-tube. The interfacial tension is related to the heights of the liquids in the cups of the U-tube above the interface in the capillary. Our interest in this area arose from a need to measure small interfacial tension (around 1 mN/m) for a vegetable oil/silicon oil system that was used in a thermocapillary drop migration experiment (Rashidnia and Balasubramaniam (1991)). In our attempts to duplicate the method proposed by Karri and Mathur, we found it quite difficult to anchor the interface inside the capillary tube; small differences of the liquid heights in the cups drove the interface out of the capillary. We present an alternative method using a capillary tube to measure the interfacial tensions of liquids of equal or unequal density. The method is based on the combined capillary rises of both liquids in the tube.

  13. Analysis of the association between isokinetic knee strength with offensive and defensive jumping capacity in high-level female volleyball athletes.

    PubMed

    Sattler, Tine; Sekulic, Damir; Esco, Michael R; Mahmutovic, Ifet; Hadzic, Vedran

    2015-09-01

    Isokinetic-knee-strength was hypothesized to be an important factor related to jumping performance. However, studies examining this relation among elite female athletes and sport-specific jumps are lacking. This investigation determined the influence of isokinetic-knee flexor/extensor strength measures on spike-jump (offensive) and block-jump (defensive) performance among high-level female volleyball players. Cross-sectional laboratory study. Eighty-two female volleyball athletes (age = 21.3 ± 3.8 years, height = 175.4 ± 6.76 cm, and weight = 68.29 ± 8.53 kg) volunteered to participate in this study. The studied variables included spike-jump and block-jump performance and a set of isokinetic tests to evaluate the eccentric and concentric strength capacities of the knee extensors (quadriceps - Q), and flexors (hamstring - H) for both legs. Both jumping tests showed high intra-session reliability (ICC of 0.87 and 0.95 for spike-jump and block-jump, respectively). The athletes were clustered into three achievement-groups based on their spike-jump and block-jump performances. For the block-jump, ANOVA identified significant differences between achievement-groups for all isokinetic variables except the Right-Q-Eccentric-Strength. When observed for spike-jump, achievement-groups differed significantly in all tests but Right-H-Concentric-Strength. Discriminant canonical analysis showed that the isokinetic-strength variables were more associated with block-jump then spike-jump-performance. The eccentric isokinetic measures were relatively less important determinants of block-jump than for the spike-jump performance. Data support the hypothesis of the importance of isokinetic strength measures for the expression of rapid muscular performance in volleyball. The results point to the necessity of the differential approach in sport training for defensive and offensive duties. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Theory of incommensurate magnetic correlations across the insulator-superconductor transition of underdoped La2-xSrxCuO4.

    PubMed

    Sushkov, Oleg P; Kotov, Valeri N

    2005-03-11

    The main feature in the elastic neutron scattering of La2-xSrxCuO4 is the existence of incommensurate peaks with positions that jump from 45 degrees to 0 degrees at 5% doping. We show that the spiral state of the t-t(')-t('')-J model with realistic parameters describes these data perfectly. We explain why in the insulator the peak is at 45 degrees while it switches to 0 degrees precisely at the insulator-metal transition. The calculated positions of the peaks are in agreement with the data in both phases.

  15. Determination of K-shell absorption jump factors and jump ratios for La2O3, Ce and Gd using two different methods

    NASA Astrophysics Data System (ADS)

    Akman, Ferdi; Durak, Rıdvan; Kaçal, Mustafa Recep; Turhan, Mehmet Fatih; Akdemir, Fatma

    2015-02-01

    The K shell absorption jump factors and jump ratios for La2O3, Ce and Gd samples have been determined using the gamma or X-ray attenuation and EDXRF methods. It is the first time that the K shell absorption jump factor and jump ratio have been discussed for present elements using two different methods. To detect K X-rays, a high resolution Si(Li) detector was used. The experimental results of K shell absorption jump factors and jump ratios were compared with the theoretically calculated ones.

  16. Jump events in a 3D Edwards-Anderson spin glass

    NASA Astrophysics Data System (ADS)

    Mártin, Daniel A.; Iguain, José Luis

    2017-11-01

    The statistical properties of infrequent particle displacements, greater than a certain distance, are known as jump dynamics in the context of structural glass formers. We generalize the concept of a jump to the case of a spin glass, by dividing the system into small boxes, and considering the infrequent cooperative spin flips in each box. Jumps defined this way share similarities with jumps in structural glasses. We perform numerical simulations for the 3D Edwards-Anderson model, and study how the properties of these jumps depend on the waiting time after a quench. Similar to the results for structural glasses, we find that while jump frequency depends strongly on time, the jump duration and jump length are roughly stationary. At odds with some results reported on studies of structural glass formers, at long enough times, the rest time between jumps varies as the inverse of jump frequency. We give a possible explanation for this discrepancy. We also find that our results are qualitatively reproduced by a fully-connected trap model.

  17. Does gymnastics practice improve vertical jump reliability from the age of 8 to 10 years?

    PubMed

    Marina, Michel; Torrado, Priscila

    2013-01-01

    The objective of this study was to confirm whether gymnastics practice from a young age can induce greater vertical jump reliability. Fifty young female gymnasts (8.84 ± 0.62 years) and 42 females in the control group (8.58 ± 0.92 years) performed the following jump tests on a contact mat: squat jump, countermovement jump, countermovement jump with arm swing and drop jump from heights of 40 and 60 cm. The two testing sessions had three trials each and were separated by one week. A 2 (groups) × 2 (sessions) × 3 (trials) repeated measures analysis of variance (ANOVA) and a test-retest correlation analysis were used to study the reliability. There was no systematic source of error in either group for non-plyometric jumps such as squat jump, countermovement jump, and countermovement jump with arm swing. A significant group per trial interaction revealed a learning effect in gymnasts' drop jumps from 40 cm height. Additionally, the test-retest correlation analysis and the higher minimum detectable error suggest that the quick drop jump technique was not fully consolidated in either group. At an introductory level of gymnastics and between the ages of 8-10 years, the condition of being a gymnast did not lead to conclusively higher reliability, aside from better overall vertical jump performance.

  18. Intrinsic rhythm and basic tonus in insect skeletal muscle.

    PubMed

    Hoyle, G

    1978-04-01

    The jumping muscle of orthopterous insects contains fibres that possess an intrinsic rhythm (IR) of slow contraction. The contributing fibres are generally synchronized, but as many as three or four pacemakers are present. The frequency, amplitude and duration of IR contractions fluctuate erratically over a 24 h period. Metathoracic DUM neurone bursts suppress IR for a few minutes. Other, unidentified dorsal neurones enhance its amplitude. In addition to IR, the extensor tibiae shows intrinsic basic tonus (BT). BT is relaxed for several s by low-frequency burst output from unidentified metathoracic dorsal neurones. DUM neurone bursts may enhance extensor BT, relax it, or leave it unaffected. The effects on IR of various regimes of activity in the slow extensor tibiae (SETi) and the common inhibitor (CI) axons were examined. CI affects IR when stimulated at frequencies above 2 Hz. It causes amplitude depression and reduced duration of individual IR contractions as well as increased frequency. At 30 Hz and above, CI completely suppresses IR. An enhanced IR contraction starts within a few milliseconds of the termination of a CI train. At low frequencies (below 10 Hz) SETi causes increased frequency and decreased amplitude of IR, with a depressed IR contraction following cessation of the SETi burst. At frequencies above 15 Hz the SETi-evoked contraction dominates tension development, though IR summates with it during the rising phase. In quiescent preparations not showing IR, SETi stimulation at 10 Hz often started up IR. Single SETi or FETi impulses can initiate an IR contraction, and cause altered phasing, with up to a quintupling of frequency. After a critical period has elapsed following the onset of an IR contraction, a single single impulse in any one of the three axons will terminate it abruptly. The early termination is followed by a reduced interval which is proportional to the reduced IR contraction time. The rhythm of accumulated readiness to go into an IR contraction is independent of the pacemaker rhythm that initiates the contraction.

  19. Constitutive Model Constants for Al7075-T651 and Al7075-T6

    NASA Astrophysics Data System (ADS)

    Brar, Nachhatter; Joshi, Vasant; Harris, Bryan

    2009-06-01

    Aluminum 7075-T651 and 7075-T6 are characterized at quasi-static and high strain rates to determine Johnson-Cook (J-C) strength and fracture model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact or similar impact events on structural components made of these material. J-C strength model constants (A, B, n, C, and m) for the two alloys are determined from tension stress-strain data at room and high temperature to 250^oC. J-C strength model constants for Al7075-T651 are: A=527 MPa, B=676 MPa, n=0.71, C=0.017, and m=1.61 and for Al7075-T6: A = 546 MPa, B = 674 MPa, n = 0.72, C = 0.059, and m =1.56. J-C fracture model constants are determined form quasi-static and high strain rate/high temperature tests on notched and smooth tension specimens. J-C fracture model constants for the two alloys are: Al7075-T651; D1 = 0.110, D2 = 0.573, D3= -3.4446, D4 = 0.016, and D 5= 1.099 and Al7075-T6; D1= 0.451 D2= -0.952 D3= -.068, D4 =0.036, and D5 = 0.697.

  20. Effects of cold-treatment and strain-rate on mechanical properties of NbTi/Cu superconducting composite wires.

    PubMed

    Guan, Mingzhi; Wang, Xingzhe; Zhou, Youhe

    2015-01-01

    During design and winding of superconducting magnets at room temperature, a pre-tension under different rate is always applied to improve the mechanical stability of the magnets. However, an inconsistency rises for superconductors usually being sensitive to strain and oversized pre-stress which results in degradation of the superconducting composites' critical performance at low temperature. The present study focused on the effects of the cold-treatment and strain-rate of tension deformation on mechanical properties of NbTi/Cu superconducting composite wires. The samples were immersed in a liquid nitrogen (LN2) cryostat for the adiabatic cold-treatment, respectively with 18-hour, 20-hour, 22-hour and 24-hour. A universal testing machine was utilized for tension tests of the NbTi/Cu superconducting composite wires at room temperature; a small-scale extensometer was used to measure strain of samples with variable strain-rate. The strength, elongation at fracture and yield strength of pre-cold-treatment NbTi/Cu composite wires were drawn. It was shown that, the mechanical properties of the superconducting wires are linearly dependent on the holding time of cold-treatment at lower tensile strain-rate, while they exhibit notable nonlinear features at higher strain-rate. The cold-treatment in advance and the strain-rate of pre-tension demonstrate remarkable influences on the mechanical property of the superconducting composite wires.

  1. Origin of tension-compression asymmetry in ultrafine-grained fcc metals

    NASA Astrophysics Data System (ADS)

    Tsuru, T.

    2017-08-01

    A mechanism of anomalous tension-compression (T-C) asymmetry in ultrafine-grained (UFG) metals is proposed using large-scale atomistic simulations and dislocation theory. Unlike coarse-grained metals, UFG Al exhibits remarkable T-C asymmetry of the yield stress. The atomistic simulations reveal that the yield event is not related to intragranular dislocations but caused by dislocation nucleation from the grain boundaries (GBs). The dislocation core structure associated with the stacking fault energy in Al is strongly affected by the external stress compared with Cu; specifically, high tensile stress stabilizes the dissociation into partial dislocations. These dislocations are more likely to be nucleated from GBs and form deformation twins from an energetic viewpoint. The mechanism, which is different from well-known mechanisms for nanocrystalline and amorphous metals, is unique to high-strength UFG metals and can explain the difference in T-C asymmetry between UFG Cu and Al.

  2. Neuromuscular function during drop jumps in young and elderly males.

    PubMed

    Piirainen, Jarmo M; Linnamo, Vesa; Sippola, Niina; Avela, Janne

    2012-12-01

    The Hoffman reflex (H-reflex), indicating alpha-motoneuron pool activity, has been shown to be task - and in resting conditions - age dependent. How aging affects H-reflex activity during explosive movements is not clear at present. The purpose of this study was to examine the effects of aging on H-reflexes during drop jumps, and its possible role in drop jump performance. Ten young (26.8 ± 2.7 years) and twenty elderly (64.2 ± 2.7 years) subjects participated in the study. Maximal drop jump performance and soleus H-reflex response (H/M jump) 20 ms after ground contact were measured in a sledge ergometer. Maximal H-reflex, maximal M-wave, Hmax/Mmax-ratio and H-reflex excitability curves were measured during standing rest. Although in young the H-reflex response (Hmax/Mmax) was 6.5% higher during relaxed standing and 19.7% higher during drop jumps (H jump/M jump) than in the elderly group, these differences were not statistically significant. In drop jumps, the elderly subjects had lower jumping height (30.4%, p < 0.001), longer braking time (32.4%, p < 0.01), lower push-off force (18.0%, p < 0.05) and longer push-off time (31.0% p < 0.01). H jump/M jump correlated with the average push-off force (r = 0.833, p < 0.05) and with push-off time (r = -0.857, p < 0.01) in young but not in the elderly. Correlations between H-reflex response and jumping parameters in young may indicate different jumping and activation strategies in drop jumps. However, it does not fully explain age related differences in jumping performance, since age related differences in H-reflex activity were non-significant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Accuracy of Jump-Mat Systems for Measuring Jump Height.

    PubMed

    Pueo, Basilio; Lipinska, Patrycja; Jiménez-Olmedo, José M; Zmijewski, Piotr; Hopkins, Will G

    2017-08-01

    Vertical-jump tests are commonly used to evaluate lower-limb power of athletes and nonathletes. Several types of equipment are available for this purpose. To compare the error of measurement of 2 jump-mat systems (Chronojump-Boscosystem and Globus Ergo Tester) with that of a motion-capture system as a criterion and to determine the modifying effect of foot length on jump height. Thirty-one young adult men alternated 4 countermovement jumps with 4 squat jumps. Mean jump height and standard deviations representing technical error of measurement arising from each device and variability arising from the subjects themselves were estimated with a novel mixed model and evaluated via standardization and magnitude-based inference. The jump-mat systems produced nearly identical measures of jump height (differences in means and in technical errors of measurement ≤1 mm). Countermovement and squat-jump height were both 13.6 cm higher with motion capture (90% confidence limits ±0.3 cm), but this very large difference was reduced to small unclear differences when adjusted to a foot length of zero. Variability in countermovement and squat-jump height arising from the subjects was small (1.1 and 1.5 cm, respectively, 90% confidence limits ±0.3 cm); technical error of motion capture was similar in magnitude (1.7 and 1.6 cm, ±0.3 and ±0.4 cm), and that of the jump mats was similar or smaller (1.2 and 0.3 cm, ±0.5 and ±0.9 cm). The jump-mat systems provide trustworthy measurements for monitoring changes in jump height. Foot length can explain the substantially higher jump height observed with motion capture.

  4. Costs and benefits of larval jumping behaviour of Bathyplectes anurus.

    PubMed

    Saeki, Yoriko; Tani, Soichiro; Fukuda, Katsuto; Iwase, Shun-ichiro; Sugawara, Yuma; Tuda, Midori; Takagi, Masami

    2016-02-01

    Bathyplectes anurus, a parasitoid of the alfalfa weevils, forms a cocoon in the late larval stage and exhibits jumping behaviour. Adaptive significance and costs of the cocoon jumping have not been thoroughly studied. We hypothesised that jumping has the fitness benefits of enabling habitat selection by avoiding unfavourable environments. We conducted laboratory experiments, which demonstrated that jumping frequencies increased in the presence of light, with greater magnitudes of temperature increase and at lower relative humidity. In addition, when B. anurus individuals were allowed to freely jump in an arena with a light gradient, more cocoons were found in the shady area, suggesting microhabitat selection. In a field experiment, mortality of cocoons placed in the sun was significantly higher than for cocoons placed in the shade. B. anurus cocoons respond to environmental stress by jumping, resulting in habitat selection. In the presence of potential predators (ants), jumping frequencies were higher than in the control (no ant) arenas, though jumping frequencies decreased after direct contact with the predators. Body mass of B. anurus cocoons induced to jump significantly decreased over time than cocoons that did not jump, suggesting a cost to jumping. We discuss the benefits and costs of jumping behaviour and potential evolutionary advantages of this peculiar trait, which is present in a limited number of species.

  5. Small-world behaviour in a system of mobile elements

    NASA Astrophysics Data System (ADS)

    Manrubia, S. C.; Delgado, J.; Luque, B.

    2001-03-01

    We analyze the propagation of activity in a system of mobile automata. A number ρLd of elements move as random walkers on a lattice of dimension d, while with a small probability p they can jump to any empty site in the system. We show that this system behaves as a Dynamic Small World (DSW) and present analytic and numerical results for several quantities. Our analysis shows that the persistence time T* (equivalent to the persistence size L* of small-world networks) scales as T* ~ (ρp)-τ, with τ = 1/(d + 1).

  6. Modeling the Restraint of Liquid Jets by Surface Tension in Microgravity

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Jacqmim, David A.

    2001-01-01

    An axisymmetric phase field model is developed and used to model surface tension forces on liquid jets in microgravity. The previous work in this area is reviewed and a baseline drop tower experiment selected 'for model comparison. A mathematical model is developed which includes a free surface. a symmetric centerline and wall boundaries with given contact angles. The model is solved numerically with a compact fourth order stencil on a equally spaced axisymmetric grid. After grid convergence studies, a grid is selected and all drop tower tests modeled. Agreement was assessed by comparing predicted and measured free surface rise. Trend wise agreement is good but agreement in magnitude is only fair. Suspected sources of disagreement are suspected to be lack of a turbulence model and the existence of slosh baffles in the experiment which were not included in the model.

  7. Validity Study of a Jump Mat Compared to the Reference Standard Force Plate.

    PubMed

    Rogan, Slavko; Radlinger, Lorenz; Imhasly, Caroline; Kneubuehler, Andrea; Hilfiker, Roger

    2015-12-01

    In the field of vertical jump diagnostics, force plates (FP) are the reference standard. Recently, despite a lack of evidence, jump mats have been used increasingly. Important factors in favor of jumping mats are their low cost and portability. This validity study compared the Haynl-Elektronik jump mat (HE jump mat) with the reference standard force plate. Ten healthy volunteers participated and each participant completed three series of five drop jumps (DJ). The parameters ground contact time (GCT) and vertical jump height (VJH) from the HE jump mat and the FP were used to evaluate the concurrent validity. The following statistical calculations were performed: Pearson's correlation (r), Bland-Altman plots (standard and for adjusted trend), and regression equations. The Bland-Altman plots suggest that the HE jump mat measures shorter contact times and higher jump heights than the FP. The trend-adjusted Bland-Altman plot shows higher mean differences and wider wing-spreads of confidence limits during longer GCT. During the VJH the mean differences and the wing-spreads of the confidence limits throughout the range present as relatively constant. The following regression equations were created, as close as possible to the true value: GCT = 5.920385 + 1.072293 × [value HE jump mat] and VJH = -1.73777 + 1.011156 × [value HE jump mat]. The HE jump mat can be recommended in relation to the validity of constraints. In this study, only a part of the quality criteria were examined. For the final recommendation it is advised to examine the HE jump mat on the other quality criteria (test-retest reliability, sensitivity change).

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, Markus, E-mail: appel@ill.eu; Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble; Frick, Bernhard

    We report on quasielastic neutron spectroscopy experiments on ferrocene (bis(η{sup 5}-cyclopentadienyl)iron) in its three different crystalline phases: the disordered monoclinic crystalline phase (T > 164 K), the metastable triclinic phase (T < 164 K), and the stable orthorhombic phase (T < 250 K). The cyclopentadienyl rings in ferrocene are known to undergo rotational reorientations for which the analysis of our large data set suggests partially a revision of the known picture of the dynamics and allows for an extension and completion of previous studies. In the monoclinic phase, guided by structural information, we propose a model for rotational jumps amongmore » non-equivalent sites in contrast to the established 5-fold jump rotation model. The new model takes the dynamical disorder into account and allows the cyclopentadienyl rings to reside in two different configurations which are found to be twisted by an angle of approximately 30°. In the triclinic phase, our analysis demands the use of a 2-ring model accounting for crystallographically independent sites with different barriers to rotation. For the orthorhombic phase of ferrocene, we confirm a significantly increased barrier of rotation using neutron backscattering spectroscopy. Our data analysis includes multiple scattering corrections and presents a novel approach of simultaneous analysis of different neutron scattering data by combining elastic and inelastic fixed window temperature scans with energy spectra, providing a very robust and reliable mean of extracting the individual activation energies of overlapping processes.« less

  9. Jump spillover between oil prices and exchange rates

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ping; Zhou, Chun-Yang; Wu, Chong-Feng

    2017-11-01

    In this paper, we investigate the jump spillover effects between oil prices and exchange rates. To identify the latent historical jumps for exchange rates and oil prices, we use a Bayesian MCMC approach to estimate the stochastic volatility model with correlated jumps in both returns and volatilities for each. We examine the simultaneous jump intensities and the conditional jump spillover probabilities between oil prices and exchange rates, finding strong evidence of jump spillover effects. Further analysis shows that the jump spillovers are mainly due to exogenous events such as financial crises and geopolitical events. Thus, the findings have important implications for financial risk management.

  10. Strength and Conditioning Training by the Danish National Handball Team Before an Olympic Tournament.

    PubMed

    Kvorning, Thue; Hansen, Mikkel R B; Jensen, Kurt

    2017-07-01

    Kvorning, T, Hansen, MRB, and Jensen, K. Strength and conditioning training by the Danish national handball team before an Olympic tournament. J Strength Cond Res 31(7): 1759-1765, 2017-The physical demands imposed on national team handball teams during the Olympics imply significant physical preparation to improve performance and reduce incidence of injuries. The purpose of this case report was to describe and analyze the strength and conditioning (S&C) training performed by the Danish national handball team before the Beijing Olympic Games. Eight weeks of S&C was divided into 5 weeks emphasizing muscle hypertrophy and long-interval running followed by 3 weeks emphasizing strength, power, and short-interval running. Body mass increased by 1.6% (p < 0.05), whereas body fat decreased by 1.0% (p < 0.05). No differences were seen in countermovement jump or jump-and-reach height (p > 0.05). Agility performance was evaluated by a T-test and improved by 2.5% (p < 0.05). Changes by 6% and 22% were seen in 1 repetition maximum (1RM) bench press and 1RM back squat, respectively. However, only the 1RM bench press increased significantly (p < 0.05). Running performance was tested by the Yo-Yo intermittent recovery test, level 2, and improved by 25% (p < 0.05). In conclusion, during 8 weeks of S&C training before the Beijing Olympics, body composition changed toward more muscle mass, better upper-body strength, better interval running, and agility performance, whereas no changes were seen in jumping or lower-body muscle strength. This case report may be used as a handy script for handball teams preparing for competition. Detailed and periodized S&C training programs for 8 weeks are provided and can be used by teams ranging from moderately to highly trained.

  11. A Kolsky tension bar technique using a hollow incident tube

    NASA Astrophysics Data System (ADS)

    Guzman, O.; Frew, D. J.; Chen, W.

    2011-04-01

    Load control of the incident pulse profiles in compression Kolsky bar experiments has been widely used to subject the specimen to optimal testing conditions. Tension Kolsky bars have been used to determine dynamic material behavior since the 1960s with limited capability to shape the loading pulses due to the pulse-generating mechanisms. We developed a modified Kolsky tension bar where a hollow incident tube is used to carry the incident stress waves. The incident tube also acts as a gas gun barrel that houses the striker for impact. The main advantage of this new design is that the striker impacts on an impact cap of the incident tube. Compression pulse shapers can be attached to the impact cap, thus fully utilizing the predictive compression pulse-shaping capability in tension experiments. Using this new testing technique, the dynamic tensile material behavior for Al 6061-T6511 and TRIP 800 (transformation-induced plasticity) steel has been obtained.

  12. Nano-Aluminum Reaction with Nitrogen in the Burn Front of Oxygen-Free Energetic Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappan, B. C.; Son, S. F.; Moore, D. S.

    2006-07-28

    Nano-particulate aluminum metal was added to the high nitrogen energetic material triaminoguanidium azotetrazolate (TAGzT) in order to determine the effects on decomposition behavior. Standard safety testing (sensitivity to impact, spark and friction) are reported and show that the addition of nano-Al actually decreases the sensitivity of the pure TAGzT. Thermo-equilibrium calculations (Cheetah) indicate that the all of the Al reacts to form AlN in TAGzT decomposition, and the calculated specific impulses are reported. T-Jump/FTIR spectroscopy was performed on the neat TAGzT. Emission spectra were collected to determine the temperature of AlN formation in combustion. Burning rates were also collected, andmore » the effects of nano-Al on rates are discussed.« less

  13. Froghopper-inspired direction-changing concept for miniature jumping robots.

    PubMed

    Jung, Gwang-Pil; Cho, Kyu-Jin

    2016-09-14

    To improve the maneuverability and agility of jumping robots, several researchers have studied steerable jumping mechanisms. This steering ability enables robots to reach a particular target by controlling their jumping direction. To this end, we propose a novel direction-changing concept for miniature jumping robots. The proposed concept allows robots to be steerable while exerting minimal effects on jumping performance. The key design principles were adopted from the froghopper's power-producing hind legs and the moment cancellation accomplished by synchronized leg operation. These principles were applied via a pair of symmetrically positioned legs and conventional gears, which were modeled on the froghopper's anatomy. Each leg has its own thrusting energy, which improves jumping performance by allowing the mechanism to thrust itself with both power-producing legs. Conventional gears were utilized to simultaneously operate the legs and cancel out the moments that they induce, which minimizes body spin. A prototype to verify the concept was built and tested by varying the initial jumping posture. Three jumping postures (synchronous, asynchronous, and single-legged) were tested to investigate how synchronization and moment cancelling affect jumping performance. The results show that synchronous jumping allows the mechanism to change direction from -40° to 40°, with an improved take-off speed. The proposed concept can only be steered in a limited range of directions, but it has potential for use in miniature jumping robots that can change jumping direction with a minimal drop in jumping performance.

  14. Deformation mode and strain path dependence of martensite phase transformation in a medium manganese TRIP steel

    DOE PAGES

    Wu, Wei; Wang, Yu-wei; Makrygiannis, Panagiotis; ...

    2017-11-06

    The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. Some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less

  15. Deformation mode and strain path dependence of martensite phase transformation in a medium manganese TRIP steel

    DOE PAGES

    Wu, Wei; Wang, Yu -Wei; Makrygiannis, Panagiotis; ...

    2017-11-06

    The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. In conclusion, some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less

  16. Deformation mode and strain path dependence of martensite phase transformation in a medium manganese TRIP steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Wang, Yu -Wei; Makrygiannis, Panagiotis

    The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. In conclusion, some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less

  17. Deformation mode and strain path dependence of martensite phase transformation in a medium manganese TRIP steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Wang, Yu-wei; Makrygiannis, Panagiotis

    The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. Some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less

  18. The new productivity challenge.

    PubMed

    Drucker, P F

    1991-01-01

    "The single greatest challenge facing managers in the developed countries of the world is to raise the productivity of knowledge and service workers," writes Peter F. Drucker in "The New Productivity Challenge." Productivity, says Drucker, ultimately defeated Karl Marx; it gave common laborers the chance to earn the wages of skilled workers. Now five distinct steps will raise the productivity of knowledge and service workers--and not only stimulate new economic growth but also defuse rising social tensions.

  19. [Gender dysphoria in children and adolescents].

    PubMed

    Möller, Birgit; Georg, Romer

    2014-01-01

    Despite rising demand for treatment, far too few specialist services for gender dysphoric children and adolescents exist. Due to complex issues related to indication of physical treatment with lifelong consequences a thorough interdisciplinary treatment service with development-related evaluation is necessary. The aim of this paper is to outline the professional and social tension, in which the practitioner works, as well as to provide insight into the diversity of developmental trajectories and difficult decisions or dilemmas.

  20. Using Microsensor Technology to Quantify Match Demands in Collegiate Women's Volleyball.

    PubMed

    Vlantes, Travis G; Readdy, Tucker

    2017-12-01

    Vlantes, TG and Readdy, T. Using microsensor technology to quantify match demands in collegiate women's volleyball. J Strength Cond Res 31(12): 3266-3278, 2017-The purpose of this study was to quantify internal and external load demands of women's NCAA Division I collegiate volleyball competitions using microsensor technology and session rating of perceived exertion (S-RPE). Eleven collegiate volleyball players wore microsensor technology (Optimeye S5; Catapult Sports, Chicago, IL, USA) during 15 matches played throughout the 2016 season. Parameters examined include player load (PL), high impact PL, percentage of HI PL, explosive efforts (EEs), and jumps. Session rating of perceived exertion was collected 20 minutes postmatch using a modified Borg scale. The relationship between internal and external load was explored, comparing S-RPE data with the microsensor metrics (PL, HI PL, % HI PL, EEs, and jumps). The setter had the greatest mean PL and highest number of jumps of all positions in a 5-1 system, playing all 6 rotations. Playing 4 sets yielded a mean PL increase of 25.1% over 3 sets, whereas playing 5 sets showed a 31.0% increase in PL. A multivariate analysis of variance revealed significant differences (p < 0.01) across all position groups when examining % HI PL and jumps. Cohen's d analysis revealed large (≥0.8) effect sizes for these differences. Defensive specialists recorded the greatest mean S-RPE values over all 15 matches (886 ± 384.6). Establishing positional load demands allows coaches, trainers, and strength and conditioning professionals to implement training programs for position-specific demands, creating consistent peak performance, and reducing injury risk.

  1. Morning-evening difference of team-handball-related short-term maximal physical performances in female team handball players.

    PubMed

    Mhenni, Thouraya; Michalsik, Lars Bojsen; Mejri, Mohamed Arbi; Yousfi, Narimen; Chaouachi, Anis; Souissi, Nizar; Chamari, Karim

    2017-05-01

    This study investigated the two different time-of-day effect on team-handball-related short-term maximal physical performances. At two different time-of-day, fifteen young female team handball players performed different physical tests: HandGrip (HG) test, Ball-Throwing Velocity (BTV) test, Modified Agility T-test (MAT) and Repeated Shuttle-Sprint and Jump Ability (RSSJA) test. Rating of perceived exertion (RPE) scale was determined following the termination of the last test. Measurements were performed at two separate testing sessions (i.e., in the morning (7:00-8:30 h) and in the early evening (17:00-18:30 h)) in a randomised and counter-balanced setting on non-consecutive days. The results showed that HG (P = 0.0013), BTV (P = 0.0027) and MAT (P < 0.001) performances were better in the evening compared with the morning. During RSSJA, both best and mean sprint times were shorter in the evening compared to the morning (P < 0.001). Moreover, during the latter test, mean jump performance was higher in the evening compared to the morning (P = 0.026). However, there was no morning-evening difference in the best jump performance during RSSJA. Likewise, jump performance decrement was not affected by the time-of-day of testing. On the other hand, RPE fluctuated, with morning nadirs and afternoon/early evening highest values. The findings suggest that in female team handball players, team-handball-related short-term maximal physical performances were better in the afternoon than in the morning.

  2. Pointing the foot without sickling: an examination of ankle movement during jumping.

    PubMed

    Jarvis, Danielle N; Kulig, Kornelia

    2015-03-01

    The sauté is a relatively simple dance jump that can be performed by both highly skilled dancers and non-dancers. However, there are characteristics of jumping unique to trained dancers, especially in terms of foot and ankle movement during flight. Dancers are trained not to "sickle, " or to avoid the anatomically coupled ankle inversion that occurs with plantar flexion, maintaining the appearance of a straight line through the lower leg and foot. The purpose of this study was to examine ankle movements in elite dancers compared to non-dancers. Twenty healthy females, 10 with no prior dance training and 10 professional dancers, performed 20 consecutive sautés while three-dimensional kinematic data were collected. Sagittal and frontal plane kinematics were calculated and vector coding methods were used to quantify coordination patterns within the ankle in the sagittal and frontal planes. This pattern was chosen for analysis to identify the avoidance of a sickled foot by trained dancers. Peak ankle positions and coordination patterns between groups were examined using independent t-tests (a <0.05). Dancers demonstrated greater peak plantar flexion (p<0.01) and less change in ankle angle during the flight phase (p= 0.01), signifying holding the pointed foot position during flight. There was no statistically significant difference in sagittal and frontal plane ankle coupling (p= 0.15); however, the Cohen's d effect size for the difference in coupling was medium-to-large (0.73). Dynamic analysis of the foot and ankle during jumping demonstrates how elite dancers achieve the aesthetic requirements of dance technique.

  3. A Comparison of Mechanical Parameters Between the Counter Movement Jump and Drop Jump in Biathletes

    PubMed Central

    Król, Henryk; Mynarski, Władysław

    2012-01-01

    The main objective of the study was to determine to what degree higher muscular activity, achieved by increased load in the extension phase (eccentric muscle action) of the vertical jump, affects the efficiency of the vertical jump. Sixteen elite biathletes participated in this investigation. The biathletes performed tests that consisted of five, single “maximal” vertical jumps (counter movement jump – CMJ) and five, single vertical jumps, in which the task was to touch a bar placed over the jumping biathletes (specific task counter movement jump – SCMJ). Then, they performed five, single drop jumps from an elevation of 0.4m (DJ). Ground reaction forces were registered using the KISTLER 9182C force platform. MVJ software was used for signal processing (Król, 1999) and enabling calculations for kinematic and kinetic parameters of the subject’s jump movements (on-line system). The results indicate that only height of the jump (h) and mean power (Pmean) during the takeoff are statistically significant. Both h and Pmean are higher in the DJ. The results of this study may indicate that elite biathletes are well adapted to eccentric work of the lower limbs, thus reaching greater values of power during the drop jump. These neuromuscular adaptive changes may allow for a more dynamic and efficient running technique. PMID:23487157

  4. Vertical Gun Test Environmental Assessment

    DTIC Science & Technology

    2004-05-18

    antillarum E E Mexican spotted owl Strix occidentalis lucida T, CH - Mountain plover Charadrius montanus SOC - New Mexican meadow jumping mouse Zapus...community, there is only one tribal reservation within the County. The Alamo Navajo Band is a satellite community of the Navajo Nation with approximately...860 residents. (Alamo Chapter, 2004) The Alamo Navajo reservation is isolated from the other Navajo Nation communities, and is located

  5. Intranasal oxytocin does not modulate jumping to conclusions in schizophrenia: Potential interactions with caudate volume and baseline social functioning.

    PubMed

    Caravaggio, Fernando; Gerretsen, Philip; Mar, Wanna; Chung, Jun Ku; Plitman, Eric; Nakajima, Shinichiro; Kim, Julia; Iwata, Yusuke; Patel, Raihaan; Chakravarty, M Mallar; Remington, Gary; Graff-Guerrero, Ariel; Menon, Mahesh

    2017-07-01

    Patients with schizophrenia (SCZ) tend to sample less information when making a decision, jumping to conclusions (JTC) without sufficient evidence. This "JTC bias" may be a trait marker of the disease and may not improve with antipsychotic treatment. We conducted a double-blind, placebo-controlled trial to test whether intranasal oxytocin could reduce JTC in stable, medicated patients with SCZ and healthy controls (HCs). We also explored whether striatal volume, clinical symptoms, and baseline social functioning (SF) was related to JTC performance. Forty-three male, medicated SCZ patients (Mean Age: 40.81±11.44) and sixteen HCs (Mean Age: 30.38±9.85) participated in a double-blind, placebo-controlled, cross-over study. Participants completed the Beads Task on two separate visits (minimum 20days apart). Participants were randomized to receive either intranasal oxytocin (50IU in solution) or intranasal placebo (saline). Twenty of the SCZ patients and all sixteen HCs also provided T1 MRIs (3-T). Patients with SCZ took fewer draws to decision (DTD) than HCs (t(57)=2.78, p=0.007). Oxytocin did not significantly change DTD in patients (t(42)=-1.11, p=0.27), nor in HCs (t(15)=-0.62, p=0.55). Exploratory analyses found ventral caudate volumes were negatively correlated with DTD (r(18)=-0.50, p=0.03) in patients. Moreover, oxytocin was more likely to improve JTC in patients with lower baseline SF. However, these exploratory findings did not survive correction for multiple comparisons. We replicate increased JTC in SCZ. However, acute intranasal oxytocin did not modify JTC. Future studies with larger samples should explore how brain morphology and SF are related to JTC performance in patients with SCZ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effectiveness of the Surfactant Dioctyl Sodium Sulfosuccinate (DOSS) to Disperse Oil in a Changing Marine Environment

    NASA Astrophysics Data System (ADS)

    Steffy, D. A.; Nichols, A.; Kiplagat, G.

    2011-12-01

    We investigated the surfactant which was used to disperse the oil spill which occurred in the Gulf of Mexico during the summer 2010. The surfactant DOSS is an organic sulfonic acid salt which is a synthetic detergent that disrupts the interfacial tension between the saltwater and crude oil phases. The disruption becomes maximum at or above the critical micelle concentration (CMC). The CMC for the surfactant was determined to be at 0.13 % solution in deionized water at a pH of 7.2 and a temperature of 70oF. The CMC is lower at 0.09% solution in salt water. The effect has been identified as a "salting out" effect (Somasundaran, 2006). The CMC of DOSS in both saline and deionized water occurred at lower percent solutions at higher temperatures. The surface tension versus % solution plots are modeled by a power equation, with correlation coefficients consistently over 0.94. Surface tension versus percent solution plots are scalable to fit a temperature desired by the function f(x)= (1/(1+X^α)), where α = T1/T2.

  7. Inter-segmental moment analysis characterises the partial correspondence of jumping and jerking

    PubMed Central

    Cleather, Daniel J; Goodwin, Jon E; Bull, Anthony MJ

    2014-01-01

    The aim of this study was to quantify internal joint moments of the lower limb during vertical jumping and the weightlifting jerk in order to improve awareness of the control strategies and correspondence between these activities, and to facilitate understanding of the likely transfer of training effects. Athletic males completed maximal unloaded vertical jumps (n=12) and explosive push jerks at 40 kg (n=9). Kinematic data were collected using optical motion tracking and kinetic data via a force plate, both at 200 Hz. Joint moments were calculated using a previously described biomechanical model of the right lower limb. Peak moment results highlighted that sagittal plane control strategies differed between jumping and jerking (p<0.05) with jerking being a knee dominant task in terms of peak moments as opposed to a more balanced knee and hip strategy in jumping and landing. Jumping and jerking exhibited proximal to distal joint involvement and landing was typically reversed. High variability was seen in non-sagittal moments at the hip and knee. Significant correlations were seen between jump height and hip and knee moments in jumping (p<0.05). Whilst hip and knee moments were correlated between jumping and jerking (p<0.05), joint moments in the jerk were not significantly correlated to jump height (p>0.05) possibly indicating a limit to the direct transferability of jerk performance to jumping. Ankle joint moments were poorly related to jump performance (p>0.05). Peak knee and hip moment generating capacity are important to vertical jump performance. The jerk appears to offer an effective strategy to overload joint moment generation in the knee relative to jumping. However, an absence of hip involvement would appear to make it a general, rather than specific, training modality in relation to jumping. PMID:22362089

  8. Validity and intra-rater reliability of MyJump app on iPhone 6s in jump performance.

    PubMed

    Stanton, Robert; Wintour, Sally-Anne; Kean, Crystal O

    2017-05-01

    Smartphone applications are increasingly used by researchers, coaches, athletes and clinicians. The aim of this study was to examine the concurrent validity and intra-rater reliability of the smartphone-based application, MyJump, against laboratory-based force plate measurements. Cross sectional study. Participants completed counter-movement jumps (CMJ) (n=29) and 30cm drop jumps (DJ) (n=27) on a force plate which were simultaneously recorded using MyJump. To assess concurrent validity, jump height, derived from flight time acquired from each device, was compared for each jump type. Intra-rater reliability was determined by replicating data analysis of MyJump recordings on two occasions separated by seven days. CMJ and DJ heights derived from MyJump showed excellent agreement with the force plate (ICC values range from 0.991 for CMJ to 0.993) However mean DJ height from the force plate was significantly higher than MyJump (mean difference: 0.87cm, 95% CI: 0.69-1.04cm). Intra-rater reliability of MyJump for both CMJ and DJ was almost perfect (ICC values range from 0.997 for CMJ to 0.998 for DJ); however, mean CMJ and DJ jump height for Day 1 was significantly higher than Day 2 (CMJ: 0.43cm, 95% CI: 0.23-0.62cm); (DJ: 0.38cm, 95% CI: 0.23-0.53cm). The present study finds MyJump to be a valid and highly reliable tool for researchers, coaches, athletes and clinicians; however, systematic bias should be considered when comparing MyJump outputs to other testing devices. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Test-retest reliability of jump execution variables using mechanography: A comparison of jump protocols

    USDA-ARS?s Scientific Manuscript database

    Mechanography during the vertical jump test allows for evaluation of force-time variables reflecting jump execution, which may enhance screening for functional deficits that reduce physical performance and determining mechanistic causes underlying performance changes. However, utility of jump mechan...

  10. Psychophysiological response in parachute jumps, the effect of experience and type of jump.

    PubMed

    Clemente-Suárez, Vicente Javier; Robles-Pérez, José Juan; Fernández-Lucas, Jesús

    2017-10-01

    We aimed to analyse the effect of experience and type of parachute jump on the psychophysiological responses of jumpers. We analysed blood oxygen saturation, heart rate, blood glucose, lactate and creatinkinase, leg strength, isometric hand strength, cortical arousal, specific fine motor skills, self-confidence and cognition, and somatic and state anxiety, before and after four different parachute jumps: a sport parachute jump, a manual tactical parachute jump, tandem pilots, and tandem passengers. Independently of the parachute jump, the psychophysiological responses of experienced paratroopers were not affected by the jumps, except for an increase in anaerobic metabolism. Novice parachute jumpers presented a higher psychophysiological stress response than the experienced jumpers, together with a large anticipatory anxiety response before the jump; however, this decreased after the jump, although the high physiological activation was maintained. This information could be used by civil and military paratroopers' instructors to improve their training programmes. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The reliability of vertical jump tests between the Vertec and My Jump phone application.

    PubMed

    Yingling, Vanessa R; Castro, Dimitri A; Duong, Justin T; Malpartida, Fiorella J; Usher, Justin R; O, Jenny

    2018-01-01

    The vertical jump is used to estimate sports performance capabilities and physical fitness in children, elderly, non-athletic and injured individuals. Different jump techniques and measurement tools are available to assess vertical jump height and peak power; however, their use is limited by access to laboratory settings, excessive cost and/or time constraints thus making these tools oftentimes unsuitable for field assessment. A popular field test uses the Vertec and the Sargent vertical jump with countermovement; however, new low cost, easy to use tools are becoming available, including the My Jump iOS mobile application (app). The purpose of this study was to assess the reliability of the My Jump relative to values obtained by the Vertec for the Sargent stand and reach vertical jump (VJ) test. One hundred and thirty-five healthy participants aged 18-39 years (94 males, 41 females) completed three maximal Sargent VJ with countermovement that were simultaneously measured using the Vertec and the My Jump . Jump heights were quantified for each jump and peak power was calculated using the Sayers equation. Four separate ICC estimates and their 95% confidence intervals were used to assess reliability. Two analyses (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, consistency, two-way mixed-effects model, while two others (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, absolute agreement, two-way mixed-effects model. Moderate to excellent reliability relative to the degree of consistency between the Vertec and My Jump values was found for jump height (ICC = 0.813; 95% CI [0.747-0.863]) and calculated peak power (ICC = 0.926; 95% CI [0.897-0.947]). However, poor to good reliability relative to absolute agreement for VJ height (ICC = 0.665; 95% CI [0.050-0.859]) and poor to excellent reliability relative to absolute agreement for peak power (ICC = 0.851; 95% CI [0.272-0.946]) between the Vertec and My Jump values were found; Vertec VJ height, and thus, Vertec calculated peak power values, were significantly higher than those calculated from My Jump values ( p < 0.0001). The My Jump app may provide a reliable measure of vertical jump height and calculated peak power in multiple field and laboratory settings without the need of costly equipment such as force plates or Vertec. The reliability relative to degree of consistency between the Vertec and My Jump app was moderate to excellent. However, the reliability relative to absolute agreement between Vertec and My Jump values contained significant variation (based on CI values), thus, it is recommended that either the My Jump or the Vertec be used to assess VJ height in repeated measures within subjects' designs; these measurement tools should not be considered interchangeable within subjects or in group measurement designs.

  12. The reliability of vertical jump tests between the Vertec and My Jump phone application

    PubMed Central

    Castro, Dimitri A.; Duong, Justin T.; Malpartida, Fiorella J.; Usher, Justin R.; O, Jenny

    2018-01-01

    Background The vertical jump is used to estimate sports performance capabilities and physical fitness in children, elderly, non-athletic and injured individuals. Different jump techniques and measurement tools are available to assess vertical jump height and peak power; however, their use is limited by access to laboratory settings, excessive cost and/or time constraints thus making these tools oftentimes unsuitable for field assessment. A popular field test uses the Vertec and the Sargent vertical jump with countermovement; however, new low cost, easy to use tools are becoming available, including the My Jump iOS mobile application (app). The purpose of this study was to assess the reliability of the My Jump relative to values obtained by the Vertec for the Sargent stand and reach vertical jump (VJ) test. Methods One hundred and thirty-five healthy participants aged 18–39 years (94 males, 41 females) completed three maximal Sargent VJ with countermovement that were simultaneously measured using the Vertec and the My Jump. Jump heights were quantified for each jump and peak power was calculated using the Sayers equation. Four separate ICC estimates and their 95% confidence intervals were used to assess reliability. Two analyses (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, consistency, two-way mixed-effects model, while two others (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, absolute agreement, two-way mixed-effects model. Results Moderate to excellent reliability relative to the degree of consistency between the Vertec and My Jump values was found for jump height (ICC = 0.813; 95% CI [0.747–0.863]) and calculated peak power (ICC = 0.926; 95% CI [0.897–0.947]). However, poor to good reliability relative to absolute agreement for VJ height (ICC = 0.665; 95% CI [0.050–0.859]) and poor to excellent reliability relative to absolute agreement for peak power (ICC = 0.851; 95% CI [0.272–0.946]) between the Vertec and My Jump values were found; Vertec VJ height, and thus, Vertec calculated peak power values, were significantly higher than those calculated from My Jump values (p < 0.0001). Discussion The My Jump app may provide a reliable measure of vertical jump height and calculated peak power in multiple field and laboratory settings without the need of costly equipment such as force plates or Vertec. The reliability relative to degree of consistency between the Vertec and My Jump app was moderate to excellent. However, the reliability relative to absolute agreement between Vertec and My Jump values contained significant variation (based on CI values), thus, it is recommended that either the My Jump or the Vertec be used to assess VJ height in repeated measures within subjects’ designs; these measurement tools should not be considered interchangeable within subjects or in group measurement designs. PMID:29692955

  13. Capital versus talent. The battle that's reshaping business.

    PubMed

    Martin, Roger L; Moldoveanu, Mihnea C

    2003-07-01

    For much of the twentieth century, labor and capital fought bitterly for control of the industrialized economy. The titans of industry ultimately won a resounding victory over the unions, but the story doesn't end there. In today's economy, value is largely the product of knowledge and information. Companies cannot generate profits without the ideas, skills, and leadership capabilities of knowledge workers. It's these factors--not technologies, not factories, and certainly not capital--that give the most successful companies their unique advantages. As knowledge workers come to realize this, and see that the demand for their talent outstrips the supply, they are steadily wresting more and more of the profits from shareholders. This time the battle is between the sources of capital and the producers of value, and how it will end is far from clear. The roots of the current conflict lie in the twentieth-century shift from industrial to managerial capitalism and the creation of a new class of professional talent, the authors explain. Since the arrival of the information-based economy in the past decade, tensions have escalated. The dramatic rise of CEO pay--and the public fire it has drawn--is a telling symptom. With this new battle, we're also witnessing a fundamental change in the political alignment of capital. The Left is now siding with "the common shareholder" against the well-compensated top tier of the labor pool. Shareholders seeing an unprecedented proportion of the return on their investments siphoned off to employees may well ask, is there no end to it? Increasingly, it's human capital that is the basis of value, and financial capital has become far more generic than shareholders would like to believe. The growing tensions between shareholders and managers cannot be ignored, and capitalism is at a crossroads--again.

  14. Surface properties of liquid In-Zn alloys

    NASA Astrophysics Data System (ADS)

    Pstruś, J.; Moser, Z.; Gąsior, W.

    2011-02-01

    The measurements of surface tension and density of zinc, indium and liquid In-Zn alloys containing 0.9, 0.85, 0.75, 0.70, 0.60, 0.40, 0.25 and 0.10 mole fraction of In were carried out using the method of maximum pressure in gaseous bubbles (MBP) as well as dilatometric technique. The technique of sessile drop was additionally applied in the measurements of surface tension for pure indium and zinc. The measurements were performed at temperature range 474-1151 K. The isotherms of surface tension calculated based on Butler's equation at 700 and 1100 K corresponded well with the experimental values for zinc content lower than 0.6 mole fraction. The surface tension calculated for alloys of higher zinc concentrations (0.6 < XZn < 0.95) had a positive value of the surface tension temperature coefficient (dσ/dT), which did not coincide with the experimental results. The density as well as molar volume of liquid In-Zn alloys showed almost identical behaviour like the ideal solutions. The observed little deviations were contained within assessed experimental errors.

  15. Validation of the Two-Parameter-Fracture Criterion for Various Crack Configurations Made of 2014-T6 (TL) Aluminum Alloy Using Finite Element Fracture Simulations

    NASA Astrophysics Data System (ADS)

    McQuilkin, Martin

    The Two-Parameter- Fracture-Criterion (TPFC) was validated using an elastic-plastic two-dimensional (2D) finite-element code, ZIP2D, with the plane-strain- core concept. Fracture simulations were performed on three crack configurations: (1) middle-crack-tension, M(T), (2) single-edge- crack-tension, SE(T), and (3) single-edge crack-bend, SE(B), specimens. They were made of 2014-T6 (TL) aluminum alloy. Fracture test data from Thomas Orange work (NASA) were only available on M(T) specimens (one-half width, w = 1.5 to 6 in.) and they were all tested at cryogenic (-320 o F) temperature. All crack configurations were analysed over a very wide range of widths (w = 0.75 to 24 in.) and crack-length- to-width ratios ranged from 0.2 to 0.8. The TPFC was shown to fit the simulated fracture data fairly well (within 6.5%) for all crack configurations for net-section stresses less than the material proportional limit. For M(T) specimens, a simple approximation was shown to work well for net-section stresses greater than the proportional limit. Further study is needed for net-section stresses greater than the proportional limit for the SE(T) and SE(B) specimens.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttman, Shani; Sapir, Zvi; Ocko, Benjamin M.

    Recent extensive studies reveal that surfactant-stabilized spherical alkane emulsion droplets spontaneously adopt polyhedral shapes upon cooling below a temperature T d while remaining liquid. Further cooling induces the growth of tails and spontaneous droplet splitting. Two mechanisms were offered to account for these intriguing effects. One assigns the effects to the formation of an intradroplet frame of tubules consisting of crystalline rotator phases with cylindrically curved lattice planes. The second assigns the sphere-to-polyhedron transition to the buckling of defects in a crystalline interfacial monolayer, known to form in these systems at some T s > T d. The buckling reducesmore » the extensional energy of the crystalline monolayer’s defects, unavoidably formed when wrapping a spherical droplet by a hexagonally packed interfacial monolayer. The tail growth, shape changes, and droplet splitting were assigned to the decrease and vanishing of surface tension, γ. Here we present temperature-dependent γ(T), optical microscopy measurements, and interfacial entropy determinations for several alkane/surfactant combinations. We demonstrate the advantages and accuracy of the in situ γ(T) measurements made simultaneously with the microscopy measurements on the same droplet. The in situ and coinciding ex situ Wilhelmy plate γ(T) measurements confirm the low interfacial tension, ≲0.1 mN/m, observed at T d. Here, our results provide strong quantitative support validating the crystalline monolayer buckling mechanism.« less

  17. Comparison of the Hang High-Pull and Loaded Jump Squat for the Development of Vertical Jump and Isometric Force-Time Characteristics.

    PubMed

    Oranchuk, Dustin J; Robinson, Tracey L; Switaj, Zachary J; Drinkwater, Eric J

    2017-04-15

    Weightlifting movements have high skill demands and require expert coaching. Loaded jumps have a comparably lower skill demand, but may be similarly effective for improving explosive performance. The purpose of this study was to compare vertical jump performance, isometric force, and rate of force development (RFD) following a ten-week intervention employing the hang high-pull (hang-pull) or trap-bar jump squat (jump-squat). Eighteen NCAA Division II swimmers (8 males, 10 females) with at least one year of resistance training experience volunteered to participate. Testing included the squat jump (SJ), countermovement jump (CMJ) and the isometric mid-thigh pull (IMTP). Vertical ground reaction forces were analyzed to obtain jump height and relative peak power. Relative peak force, peak RFD and relative force at five time bands were obtained from the IMTP. Subjects were randomly assigned to either a hang-pull (n = 9) or jump-squat (n = 9) training group and completed a ten-week, volume-equated, periodized training program. While there was a significant main effect of training for both groups, no statistically significant between-group differences were found (p ≥ 0.17) for any of the dependent variables. However, medium effect sizes in favor of the jump-squat training group were seen in SJ height (d = 0.56) and SJ peak power (d = 0.69). Loaded jumps seem equally effective as weightlifting derivatives for improving lower-body power in experienced athletes. Since loaded jumps require less skill and less coaching expertise than weightlifting, loaded jumps should be considered where coaching complex movements is difficult.

  18. Tonganoxichnus, a new insect trace from the Upper Carboniferous of eastern Kansas

    USGS Publications Warehouse

    Mangano, M.G.; Buatois, L.A.; Maples, C.G.; Lanier, Wendy E.

    1997-01-01

    Upper Carboniferous tidal rhythmites of the Tonganoxie Sandstone Member (Stranger Formation) at Buildex Quarry, eastern Kansas, USA, host a relatively diverse arthropod-dominated ichnofauna. Bilaterally symmetrical traces displaying unique anterior and posterior sets of morphological features are well represented within the assemblage. A new ichnogenus, Tonganoxichnus, is proposed for these traces. T. buildexensis, the type ichnospecies, has an anterior region characterized by the presence of a frontal pair of maxillary palp impressions, followed by a head impression and three pairs of conspicuous thoracic appendage imprints symmetrically opposite along a median axis. The posterior region commonly exhibits numerous delicate chevron-like markings, recording the abdominal appendages, and a thin, straight, terminal extension. T. buildexensis is interpreted as a resting trace. A second ichnospecies, T. ottawensis, is characterized by a fan-like arrangement of mostly bifid scratch marks at the anterior area that records the head- and thoracic-appendage backstrokes against the substrate. The posterior area shows chevron-like markings or small subcircular impressions that record the abdominal appendages of the animal, also ending in a thin, straight, terminal extension. Specimens display lateral repetition, and are commonly grouped into twos or threes with a fix point at the posteriormost tail-like structure. T. ottawensis is interpreted as a jumping structure, probably in connection with feeding purposes. The two ichnospecies occur in close association, and share sufficient morphologic features to support the same type of arthropod producer. T. buildexensis closely mimics the ventral anatomy of the tracemaker, whereas T. ottawensis records the jumping abilities of the animal providing significant ethologic and paleoecologic information. The presence of well-differentiated cephalic, thoracic, and abdominal features, particularly in T. buildexensis, resembles the diagnostic tagmosis and segmentation of insects. Detailed analysis of trace morphology and comparison with described Paleozoic insect fossils and extant related forms suggest a monuran as the most likely tracemaker.

  19. One-Year Follow-up of the CAPO Kids Trial: Are Physical Benefits Maintained?

    PubMed

    Nogueira, Rossana C; Weeks, Benjamin K; Beck, Belinda

    2017-11-01

    To determine the 12-month maintenance of a 9-month, thrice-weekly, 10-minute high-intensity exercise program, delivered in schools, on bone and other health-related performance variables in prepubertal children. All participants (N = 311) of the CAPO kids trial (testing times T1-T2) were contacted to undergo retesting (T3) of all original measures-including weight, standing and sitting height, calcaneal broadband ultrasound attenuation (Achilles, GE), and stiffness index (Achilles, GE)-waist circumference, resting heart rate, blood pressure, vertical jump, and aerobic capacity. Maturity was determined by estimating age of peak height velocity using sex-specific regression equations. A total of 240 children [12.3 (0.6) y old] were included in the current study (77% of initial follow-up sample at T2). Between the T2 and T3 time points, both exercise (EX) group and control (CON) group increased broadband ultrasound attenuation (EX: 5.6%, P ≤ .001; CON: 6.5%, P ≤ .001), stiffness index (EX: 7.3%, P ≤ .001; CON: 5.2%, P ≤ .001), vertical jump (EX: 5.9%, P ≤ .001; CON: 6.3%, P ≤ .001), estimated maximal oxygen consumption (EX: 13.3%, P ≤ .001; CON: 12.1%, P ≤ .001), and reduced waist circumference (EX: -5.2%, P ≤ .001; CON: -5.6%, P ≤ .001), with no between-group differences in the magnitude of those changes. No differences were detected in absolute values between groups at T3. Although the statistically significant differences observed between groups following the intervention were no longer significant 1 year after withdrawal of the intervention, the between-group similarities in growth trajectories of those parameters could suggest that some benefit of the intervention for bone health, waist circumference, and physical performance endured.

  20. The effects of combined elastic- and free-weight tension vs. free-weight tension on one-repetition maximum strength in the bench press.

    PubMed

    Bellar, David M; Muller, Matthew D; Barkley, Jacob E; Kim, Chul-Ho; Ida, Keisuke; Ryan, Edward J; Bliss, Mathew V; Glickman, Ellen L

    2011-02-01

    The present study investigated the effects of training combining elastic tension, free weights, and the bench press. Eleven college-aged men (untrained) in the bench press participated in the 13-week study. The participants were first given instructions and then practiced the bench press, followed by a one-repetition maximum (1RM) test of baseline strength. Subjects were then trained in the bench press for 3 weeks to allow for the beginning of neural adaptation. After another 1RM test, participants were assigned to 1 of 2 conditions for the next 3 weeks of training: 85% Free-Weight Tension, 15% Elastic Tension (BAND), or 100% Free-Weight Tension (STAND). After 3 weeks of training and a third 1RM max test, participants switched treatments, under which they completed the final 3 weeks of training and the fourth 1RM test. Analysis via analysis of covariance revealed a significant (p ≤ 0.05) main effect for time and interaction effect for Treatment (BAND vs. STAND). Subsequent analysis via paired-samples t-test revealed the BAND condition was significantly better (p = 0.05) at producing raw gains in 1RM strength. (BAND 9.95 ± 3.7 kg vs. STAND 7.56 ± 2.8 kg). These results suggest that the addition of elastic tension to the bench press may be an effective method of increasing strength.

  1. Keeping Your Eye on the Rail: Gaze Behaviour of Horse Riders Approaching a Jump

    PubMed Central

    Hall, Carol; Varley, Ian; Kay, Rachel; Crundall, David

    2014-01-01

    The gaze behaviour of riders during their approach to a jump was investigated using a mobile eye tracking device (ASL Mobile Eye). The timing, frequency and duration of fixations on the jump and the percentage of time when their point of gaze (POG) was located elsewhere were assessed. Fixations were identified when the POG remained on the jump for 100 ms or longer. The jumping skill of experienced but non-elite riders (n = 10) was assessed by means of a questionnaire. Their gaze behaviour was recorded as they completed a course of three identical jumps five times. The speed and timing of the approach was calculated. Gaze behaviour throughout the overall approach and during the last five strides before take-off was assessed following frame-by-frame analyses. Differences in relation to both round and jump number were found. Significantly longer was spent fixated on the jump during round 2, both during the overall approach and during the last five strides (p<0.05). Jump 1 was fixated on significantly earlier and more frequently than jump 2 or 3 (p<0.05). Significantly more errors were made with jump 3 than with jump 1 (p = 0.01) but there was no difference in errors made between rounds. Although no significant correlations between gaze behaviour and skill scores were found, the riders who scored higher for jumping skill tended to fixate on the jump earlier (p = 0.07), when the horse was further from the jump (p = 0.09) and their first fixation on the jump was of a longer duration (p = 0.06). Trials with elite riders are now needed to further identify sport-specific visual skills and their relationship with performance. Visual training should be included in preparation for equestrian sports participation, the positive impact of which has been clearly demonstrated in other sports. PMID:24846055

  2. Validity of two alternative systems for measuring vertical jump height.

    PubMed

    Leard, John S; Cirillo, Melissa A; Katsnelson, Eugene; Kimiatek, Deena A; Miller, Tim W; Trebincevic, Kenan; Garbalosa, Juan C

    2007-11-01

    Vertical jump height is frequently used by coaches, health care professionals, and strength and conditioning professionals to objectively measure function. The purpose of this study is to determine the concurrent validity of the jump and reach method (Vertec) and the contact mat method (Just Jump) in assessing vertical jump height when compared with the criterion reference 3-camera motion analysis system. Thirty-nine college students, 25 females and 14 males between the ages of 18 and 25 (mean age 20.65 years), were instructed to perform the countermovement jump. Reflective markers were placed at the base of the individual's sacrum for the 3-camera motion analysis system to measure vertical jump height. The subject was then instructed to stand on the Just Jump mat beneath the Vertec and perform the jump. Measurements were recorded from each of the 3 systems simultaneously for each jump. The Pearson r statistic between the video and the jump and reach (Vertec) was 0.906. The Pearson r between the video and contact mat (Just Jump) was 0.967. Both correlations were significant at the 0.01 level. Analysis of variance showed a significant difference among the 3 means F(2,235) = 5.51, p < 0.05. The post hoc analysis showed a significant difference between the criterion reference (M = 0.4369 m) and the Vertec (M = 0.3937 m, p = 0.005) but not between the criterion reference and the Just Jump system (M = 0.4420 m, p = 0.972). The Just Jump method of measuring vertical jump height is a valid measure when compared with the 3-camera system. The Vertec was found to have a high correlation with the criterion reference, but the mean differed significantly. This study indicates that a higher degree of confidence is warranted when comparing Just Jump results with a 3-camera system study.

  3. Dynamics and stability of directional jumps in the desert locust.

    PubMed

    Gvirsman, Omer; Kosa, Gabor; Ayali, Amir

    2016-01-01

    Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points) are dominant in predicting the jumps' azimuth and elevation angles. We also report a strong linear correlation between the jumps' pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications.

  4. Maximum height and minimum time vertical jumping.

    PubMed

    Domire, Zachary J; Challis, John H

    2015-08-20

    The performance criterion in maximum vertical jumping has typically been assumed to simply raise the center of mass as high as possible. In many sporting activities minimizing movement time during the jump is likely also critical to successful performance. The purpose of this study was to examine maximum height jumps performed while minimizing jump time. A direct dynamics model was used to examine squat jump performance, with dual performance criteria: maximize jump height and minimize jump time. The muscle model had activation dynamics, force-length, force-velocity properties, and a series of elastic component representing the tendon. The simulations were run in two modes. In Mode 1 the model was placed in a fixed initial position. In Mode 2 the simulation model selected the initial squat configuration as well as the sequence of muscle activations. The inclusion of time as a factor in Mode 1 simulations resulted in a small decrease in jump height and moderate time savings. The improvement in time was mostly accomplished by taking off from a less extended position. In Mode 2 simulations, more substantial time savings could be achieved by beginning the jump in a more upright posture. However, when time was weighted more heavily in these simulations, there was a more substantial reduction in jump height. Future work is needed to examine the implications for countermovement jumping and to examine the possibility of minimizing movement time as part of the control scheme even when the task is to jump maximally. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Evaluation of different jumping tests in defining position-specific and performance-level differences in high level basketball players

    PubMed Central

    Pehar, Miran; Sekulic, Damir; Sisic, Nedim; Spasic, Miodrag; Uljevic, Ognjen; Krolo, Ante; Sattler, Tine

    2017-01-01

    The importance of jumping ability in basketball is well known, but there is an evident lack of studies that have examined different jumping testing protocols in basketball players at advanced levels. The aim of this study was to assess the applicability of different tests of jumping capacity in identifying differences between (i) playing position and (ii) competitive levels of professional players. Participants were 110 male professional basketball players (height: 194.92±8.09 cm; body mass: 89.33±10.91 kg; 21.58±3.92 years of age; Guards, 49; Forwards, 22; Centres, 39) who competed in the first (n = 58) and second division (n = 52). The variables included anthropometrics and jumping test performance. Jumping performances were evaluated by the standing broad jump (SBJ), countermovement jump (CMJ), reactive strength index (RSI), repeated reactive strength ability (RRSA) and four running vertical jumps: maximal jump with (i) take-off from the dominant leg and (ii) non-dominant leg, lay-up shot jump with take-off from the (iii) dominant leg and (iv) non-dominant leg. First-division players were taller (ES: 0.76, 95%CI: 0.35-1.16, moderate differences), heavier (0.69, 0.29-1.10), had higher maximal reach height (0.67, 0.26-1.07, moderate differences), and had lower body fat % (-0.87, -1.27-0.45, moderate differences) than second-division players. The playing positions differed significantly in three of four running jump achievements, RSI and RRSA, with Centres being least successful. The first-division players were superior to second-division players in SBJ (0.63, 0.23-1.03; 0.87, 0.26-1.43; 0.76, 0.11-1.63, all moderate differences, for total sample, Guards, and Forwards, respectively). Running vertical jumps and repeated jumping capacity can be used as valid measures of position-specific jumping ability in basketball. The differences between playing levels in vertical jumping achievement can be observed by assessing vertical jump scores together with differences in anthropometric indices between levels. PMID:29158620

  6. A comparison of men's and women's strength to body mass ratio and varus/valgus knee angle during jump landings.

    PubMed

    Haines, Tracie L; McBride, Jeffrey M; Triplett, N Travis; Skinner, Jared W; Fairbrother, Kimberly R; Kirby, Tyler J

    2011-10-01

    The purpose of this investigation was to compare valgus/varus knee angles during various jumps and lower body strength between males and females relative to body mass. Seventeen recreationally active females (age: 21.94 ± 2.59 years; height: 1.67 ± 0.05 m; mass: 64.42 ± 8.39 kg; percent body fat: 26.89 ± 6.26%; squat one-repetition maximum: 66.18 ± 19.47 kg; squat to body mass ratio: 1.03 ± 0.28) and 13 recreationally active males (age: 21.69 ± 1.65 years; height: 1.77 ± 0.07 m; mass: 72.39 ± 9.23 kg; percent body fat: 13.15 ± 5.18%; squat one-repetition maximum: 115.77 ± 30.40 kg; squat to body mass ratio: 1.59 ± 0.31) performed a one-repetition maximum in the squat and three of each of the following jumps: countermovement jump, 30 cm drop jump, 45 cm drop jump, and 60 cm drop jump. Knee angles were analysed using videography and body composition was analysed by dual-energy X-ray absorptiometry to allow for squat to body mass ratio and squat to fat free mass ratio to be calculated. Significant differences (P ≤ 0.05) were found between male and female one-repetition maximum, male and female squat to body mass ratio, and male and female squat to fat free mass ratio. Significant differences were found between male and female varus/valgus knee positions during maximum flexion of the right and left leg in the countermovement jump, drop jump from 30 cm, drop jump from 45 cm, and drop jump from 60 cm. Correlations between varus/valgus knee angles and squat to body mass ratio for all jumps displayed moderate, non-significant relationships (countermovement jump: r = 0.445; drop jump from 30 cm: r = 0.448; drop jump from 45 cm: r = 0.449; drop jump from 60 cm: r = 0.439). In conclusion, males and females have significantly different lower body strength and varus/valgus knee position when landing from jumps.

  7. Suction and cohesion demise in desaturating granular medium

    NASA Astrophysics Data System (ADS)

    Hueckel, T.; Mielniczuk, B.; El-Youssoufi, S. M.

    2017-12-01

    Continuum mechanics for unsaturated soils is based on the assumption of a one-to-one relationship betwee saturation degree and suction represented by the characteristic curve. Such curve commonly shows exceedingly high values of suction at saturation decreasing below 10%. We have performed a series of experiments on physical micro-structural models of 8-, 5, 4, 3, and 2-grain assemblies filled with water forming capillary, funicular and pendular bridges. Dynamic variables characterizing the evolution include: Laplace pressure, surface tension force, total intergralular force, contact angle and contact perimeter length. The Laplace pressure was calculated from the directly measured curvatures of interface surface for 2-grain bridges, and estimated from tomography stills for 3 grain bridges. The initial negative Laplace pressure (suction) as well as total intergranular force increase modestly at the begining of evaporation, but undergo an unstable decrease at the advanced stage, often with a jump in the force known as a Haines jumps since 1925. Laplace pressure turns into positive values prior to rupture for 2-grain bodies. For 3-grain bridges there is never an exceedingly high intergranular force of suction, reported in macro-scale experiments. For multiple-grain bodies there are two types of instabilities, depending on densitiy of the assembly and the Gaussian curvature (GC): at positive GC points it is thin-sheet instability, while at negative GC points instability is linked with air entry fingers, all associated with the split of assemblies into smaller isolated funicular, and eventually pendular bodies. The multi-grain bridges instabilities are linked to material drying cracking, the instabilities in 2 grain systems mean eventual loss of cohesion.

  8. The Grim Reaper, Hounds of Hell, and Dr. Death: The Role of Storytelling for Palliative Care in Competing Medical Meaning Systems.

    PubMed

    Omilion-Hodges, Leah M; Swords, Nathan M

    2017-10-01

    Palliative care (PC) is a medical specialty that strives to fulfill the physical, psychosocial, emotional, practical, and spiritual needs of individuals at end of life or in tandem with curative treatment. Although exponentially rising in use and beneficial to patient well-being at end of life, the purpose of PC is often misunderstood and those providing its services frequently report resistance from organizational members. Such resistance can be attributed to tensions between traditional biomedical models of medicine that privilege curative treatment and biosocial models of medicine that holistically care for patients. Thus, this study addresses what tensions PC providers experience in their institutions and what communicative strategies they use at the interpersonal level in managing those tensions. Using structuration theory in tandem with relational dialectics theory, we inductively analyzed semistructured interviews with 24 Circle of Life award-winning PC providers. Findings indicate two dialectics experienced by PC providers in their institutions: the living-dying dialectic and the practicing-advocating dialectic. We conclude that these interpersonal dialectics emerge through interaction in competing medical meaning systems and found that storytelling was a particularly salient form of communication that participants used for management.

  9. Numerical simulation of active track tensioning system for autonomous hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Mȩżyk, Arkadiusz; Czapla, Tomasz; Klein, Wojciech; Mura, Gabriel

    2017-05-01

    One of the most important components of a high speed tracked vehicle is an efficient suspension system. The vehicle should be able to operate both in rough terrain for performance of engineering tasks as well as on the road with high speed. This is especially important for an autonomous platform that operates either with or without human supervision, so that the vibration level can rise compared to a manned vehicle. In this case critical electronic and electric parts must be protected to ensure the reliability of the vehicle. The paper presents a dynamic parameters determination methodology of suspension system for an autonomous high speed tracked platform with total weight of about 5 tonnes and hybrid propulsion system. Common among tracked vehicles suspension solutions and cost-efficient, the torsion-bar system was chosen. One of the most important issues was determining optimal track tensioning - in this case an active hydraulic system was applied. The selection of system parameters was performed with using numerical model based on multi-body dynamic approach. The results of numerical analysis were used to define parameters of active tensioning control system setup. LMS Virtual.Lab Motion was used for multi-body dynamics numerical calculation and Matlab/SIMULINK for control system simulation.

  10. Falling films on flexible inclines

    NASA Astrophysics Data System (ADS)

    Matar, O. K.; Craster, R. V.; Kumar, S.

    2007-11-01

    The nonlinear stability and dynamic behavior of falling fluid films is studied for flow over a flexible substrate. We use asymptotic methods to deduce governing equations valid in various limits. Long-wave theory is used to derive Benney-like coupled equations for the film thickness and substrate deflection. Weakly nonlinear equations are then derived from these equations that, in the limit of large wall damping and/or large wall tension, reduce to the Kuramoto-Sivashinsky equation. These models break down when inertia becomes more significant, so we also use a long-wave approximation in conjunction with integral theory to derive three strongly coupled nonlinear evolution equations for the film thickness, substrate deflection, and film volumetric flow rate valid at higher Reynolds numbers. These equations, accounting for inertia, capillary, viscous, wall tension, and damping effects, are solved over a wide range of parameters. Our results suggest that decreasing wall damping and/or wall tension can promote the development of chaos in the weakly nonlinear regime and lead to severe substrate deformations in the strongly nonlinear regime; these can give rise to situations in which the free surface and underlying substrate come into contact in finite time.

  11. The Lower Extremity Biomechanics of Single- and Double-Leg Stop-Jump Tasks

    PubMed Central

    2011-01-01

    The anterior cruciate ligament (ACL) injury is a common occurrence in sports requiring stop-jump tasks. Single- and double-leg stop-jump techniques are frequently executed in sports. The higher risk of ACL injury in single-leg drop landing task compared to a double-leg drop landing task has been identified. However the injury bias between single- and double-leg landing techniques has not been investigated for stop-jump tasks. The purpose of this study was to determine the differences between single- and double-leg stop-jump tasks in knee kinetics that were influenced by the lower extremity kinematics during the landing phase. Ground reaction force, lower extremity kinematics, and knee kinetics data during the landing phase were obtained from 10 subjects performing single- and double-leg stop-jump tasks, using motion-capture system and force palates. Greater peak posterior and vertical ground reaction forces, and peak proximal tibia anterior and lateral shear forces (p < 0.05) during landing phase were observed of single-leg stop-jump. Single-leg stop-jump exhibited smaller hip and knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground (p < 0.05). We found smaller peak hip and knee flexion angles (p < 0.05) during the landing phase of single-leg stop-jump. These results indicate that single-leg landing may have higher ACL injury risk than double-leg landing in stop-jump tasks that may be influenced by the lower extremity kinematics during the landing phase. Key points Non-contact ACL injuries are more likely to occur during the single-leg stop-jump task than during the double-leg stop-jump task. Single-leg stop-jump exhibited greater peak proximal tibia anterior and lateral shear forces, and peak posterior and vertical ground reaction forces during the landing phase than the double-leg stop-jump task. Single-leg stop-jump exhibited smaller hip flexion angle, knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground. Single-leg stop-jump exhibited greater peak knee extension and valgus moment during the landing phase than the double-leg stop-jump task. Single-leg stop-jump extended the hip joint at initial foot contact with the ground. PMID:24149308

  12. Development of Maximum Bubble Pressure Method for Surface Tension Measurement of High Viscosity Molten Silicate

    NASA Astrophysics Data System (ADS)

    Takeda, Osamu; Iwamoto, Hirone; Sakashita, Ryota; Iseki, Chiaki; Zhu, Hongmin

    2017-07-01

    A surface tension measurement method based on the maximum bubble pressure (MBP) method was developed in order to precisely determine the surface tension of molten silicates in this study. Specifically, the influence of viscosity on surface tension measurements was quantified, and the criteria for accurate measurement were investigated. It was found that the MBP apparently increased with an increase in viscosity. This was because extra pressure was required for the flowing liquid inside the capillary due to viscous resistance. It was also expected that the extra pressure would decrease by decreasing the fluid velocity. For silicone oil with a viscosity of 1000 \\hbox {mPa}{\\cdot }\\hbox {s}, the error on the MBP could be decreased to +1.7 % by increasing the bubble detachment time to 300 \\hbox {s}. However, the error was still over 1 % even when the bubble detachment time was increased to 600 \\hbox {s}. Therefore, a true value of the MBP was determined by using a curve-fitting technique with a simple relaxation function, and that was succeeded for silicone oil at 1000 \\hbox {mPa}{\\cdot } \\hbox {s} of viscosity. Furthermore, for silicone oil with a viscosity as high as 10 000 \\hbox {mPa}{\\cdot }\\hbox {s}, the apparent MBP approached a true value by interrupting the gas introduction during the pressure rising period and by re-introducing the gas at a slow flow rate. Based on the fundamental investigation at room temperature, the surface tension of the \\hbox {SiO}2-40 \\hbox {mol}%\\hbox {Na}2\\hbox {O} and \\hbox {SiO}2-50 \\hbox {mol}%\\hbox {Na}2\\hbox {O} melts was determined at a high temperature. The obtained value was slightly lower than the literature values, which might be due to the influence of viscosity on surface tension measurements being removed in this study.

  13. Kinetics of Hole Nucleation in Biomembrane Rupture

    PubMed Central

    Evans, Evan; Smith, Benjamin A

    2011-01-01

    The core component of a biological membrane is a fluid-lipid bilayer held together by interfacial-hydrophobic and van der Waals interactions, which are balanced for the most part by acyl chain entropy confinement. If biomembranes are subjected to persistent tensions, an unstable (nanoscale) hole will emerge at some time to cause rupture. Because of the large energy required to create a hole, thermal activation appears to be requisite for initiating a hole and the activation energy is expected to depend significantly on mechanical tension. Although models exist for the kinetic process of hole nucleation in tense membranes, studies of membrane survival have failed to cover the ranges of tension and lifetime needed to critically examine nucleation theory. Hence, rupturing giant (~20 μm) membrane vesicles ultra-slowly to ultra-quickly with slow to fast ramps of tension, we demonstrate a method to directly quantify kinetic rates at which unstable holes form in fluid membranes, at the same time providing a range of kinetic rates from < 0.01 s−1 to > 100 s−1. Measuring lifetimes of many hundreds of vesicles, each tensed by precision control of micropipet suction, we have determined the rates of failure for vesicles made from several synthetic phospholipids plus 1:1 mixtures of phospho- and sphingo-lipids with cholesterol, all of which represent prominent constituents of eukaryotic cell membranes. Plotted on a logarithmic scale, the failure rates for vesicles are found to rise dramatically with increase of tension. Converting the experimental profiles of kinetic rates into changes of activation energy versus tension, we show that the results closely match expressions for thermal activation derived from a combination of meso-scale theory and molecular-scale simulations of hole formation. Moreover, we demonstrate a generic approach to transform analytical fits of activation energies obtained from rupture experiments into energy landscapes characterizing the process hole nucleation along the reaction coordinate defined by hole size. PMID:21966242

  14. Biomechanical analysis of the jump shot in basketball.

    PubMed

    Struzik, Artur; Pietraszewski, Bogdan; Zawadzki, Jerzy

    2014-09-29

    Basketball players usually score points during the game using the jump shot. For this reason, the jump shot is considered to be the most important element of technique in basketball and requires a high level of performance. The aim of this study was to compare the biomechanical characteristics of the lower limbs during a jump shot without the ball and a countermovement jump without an arm swing. The differences between variables provide information about the potential that an athlete can utilise during a game when performing a jump shot. The study was conducted among 20 second-league basketball players by means of a Kistler force plate and the BTS SMART system for motion analysis. The variables measured included the take-off time, mean power, peak power, relative mean power, jump height, maximum landing force and calculated impact ratio. Surprisingly, more advantageous variables were found for the jump shot. This finding suggests a very high performance level in the jump shot in the studied group and a maximum utilisation of their motor abilities. Both types of jumps were characterised by high mean and peak power values and average heights. The high forces at landing, which result in considerable impact ratios, may have prompted the studied group to land softly. Use of the countermovement jump without an arm swing is recommended to assess and predict the progression of player's jumping ability.

  15. Evidence for the absence of electron-electron Coulomb interaction quantum correction to the anomalous Hall effect in Co2FeSi Heusler-alloy thin films

    NASA Astrophysics Data System (ADS)

    Hazra, Binoy Krishna; Kaul, S. N.; Srinath, S.; Raja, M. Manivel; Rawat, R.; Lakhani, Archana

    2017-11-01

    Electrical (longitudinal) resistivity ρx x, at H =0 and H =80 kOe, anomalous Hall resistivity ρxy A H, and magnetization M , have been measured at different temperatures in the range 5-300 K on the Co2FeSi (CFS) Heusler-alloy thin films, grown on Si(111) substrate, with thickness ranging from 12 to 100 nm. At fixed fields H =0 and H =80 kOe, ρx x(T ) goes through a minimum at T =Tmin (which depends on the film thickness) in all the CFS thin films. In sharp contrast, both the anomalous Hall coefficient RA and ρxy A H monotonously increase with temperature without exhibiting a minimum. Elaborate analyses of ρx x, RA, and ρxy A H establishes the following. (i) The enhanced electron-electron Coulomb interaction (EEI) quantum correction (QC) is solely responsible for the upturn in "zero-field" and "in-field" ρx x(T ) at T

  16. Precise, contactless measurements of the surface tension of picolitre aerosol droplets† †Electronic supplementary information (ESI) available: Parametrizations used to infer concentration, density, viscosity, and surface tension from refractive index for sodium chloride and glutaric acid; description of the semi-analytical T-matrix calculations; Fig. S1 and S2. See DOI: 10.1039/c5sc03184b Click here for additional data file.

    PubMed Central

    Bzdek, Bryan R.; Power, Rory M.; Simpson, Stephen H.; Royall, C. Patrick

    2016-01-01

    The surface composition and surface tension of aqueous droplets can influence key aerosol characteristics and processes including the critical supersaturation required for activation to form cloud droplets in the atmosphere. Despite its fundamental importance, surface tension measurements on droplets represent a considerable challenge owing to their small volumes. In this work, we utilize holographic optical tweezers to study the damped surface oscillations of a suspended droplet (<10 μm radius) following the controlled coalescence of a pair of droplets and report the first contactless measurements of the surface tension and viscosity of droplets containing only 1–4 pL of material. An advantage of performing the measurement in aerosol is that supersaturated solute states (common in atmospheric aerosol) may be accessed. For pairs of droplets starting at their equilibrium surface composition, surface tensions and viscosities are consistent with bulk equilibrium values, indicating that droplet surfaces respond to changes in surface area on microsecond timescales and suggesting that equilibrium values can be assumed for growing atmospheric droplets. Furthermore, droplet surfaces are shown to be rapidly modified by trace species thereby altering their surface tension. This equilibration of droplet surface tension to the local environmental conditions is illustrated for unknown contaminants in laboratory air and also for droplets exposed to gas passing through a water–ethanol solution. This approach enables precise measurements of surface tension and viscosity over long time periods, properties that currently are poorly constrained. PMID:28758004

  17. The Import of the Cortisol Rise in Child Care Differs as a Function of Behavioral Inhibition

    ERIC Educational Resources Information Center

    Gunnar, Megan R.; Kryzer, Erin; Van Ryzin, Mark J.; Phillips, Deborah A.

    2011-01-01

    Children of ages 3 to 4.5 years (N = 107; 45 boys, 62 girls) were studied twice, 6 months apart, to examine whether the cortisol rise in child care at Time 1 (T1) was associated with (a) changes in anxious, vigilant behavior from T1 to Time 2 (T2) and (b) higher internalizing symptoms at T2. Controlling for measures of home environment and child…

  18. Multiscale Relaxation Dynamics in Ultrathin Metallic Glass-Forming Films

    NASA Astrophysics Data System (ADS)

    Bi, Q. L.; Lü, Y. J.; Wang, W. H.

    2018-04-01

    The density layering phenomenon originating from a free surface gives rise to the layerlike dynamics and stress heterogeneity in ultrathin Cu-Zr glassy films, which facilitates the occurrence of multistep relaxations in the timescale of computer simulations. Taking advantage of this condition, we trace the relaxation decoupling and evolution with temperature simply via the intermediate scattering function. We show that the β relaxation hierarchically follows fast and slow modes in films, and there is a β -relaxation transition as the film is cooled close to the glass transition. We provide the direct observation of particle motions responsible for the β relaxation and reveal the dominant mechanism varying from the thermal activated to the cooperative jumps across the transition.

  19. Measurements of K shell absorption jump factors and jump ratios using EDXRF technique

    NASA Astrophysics Data System (ADS)

    Kacal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-04-01

    In the present work, the K-shell absorption jump factors and jump ratios for 30 elements between Ti ( Z = 22) and Er ( Z = 68) were measured by energy dispersive X-ray fluorescence (EDXRF) technique. The jump factors and jump ratios for these elements were determined by measuring the K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to- Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using an Am-241 radioactive point source and a Si (Li) detector in direct excitation and transmission experimental geometry. The results for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature.

  20. Numerical shockwave anomalies in presence of hydraulic jumps in the SWE with variable bed elevation.

    NASA Astrophysics Data System (ADS)

    Navas-Montilla, Adrian; Murillo, Javier

    2017-04-01

    When solving the shallow water equations appropriate numerical solvers must allow energy-dissipative solutions in presence of steady and unsteady hydraulic jumps. Hydraulic jumps are present in surface flows and may produce significant morphological changes. Unfortunately, it has been documented that some numerical anomalies may appear. These anomalies are the incorrect positioning of steady jumps and the presence of a spurious spike of discharge inside the cell containing the jump produced by a non-linearity of the Hugoniot locus connecting the states at both sides of the jump. Therefore, this problem remains unresolved in the context of Godunov's schemes applied to shallow flows. This issue is usually ignored as it does not affect to the solution in steady cases. However, it produces undesirable spurious oscillations in transient cases that can lead to misleading conclusions when moving to realistic scenarios. Using spike-reducing techniques based on the construction of interpolated fluxes, it is possible to define numerical methods including discontinuous topography that reduce the presence of the aforementioned numerical anomalies. References: T. W. Roberts, The behavior of flux difference splitting schemes near slowly moving shock waves, J. Comput. Phys., 90 (1990) 141-160. Y. Stiriba, R. Donat, A numerical study of postshock oscillations in slowly moving shock waves, Comput. Math. with Appl., 46 (2003) 719-739. E. Johnsen, S. K. Lele, Numerical errors generated in simulations of slowly moving shocks, Center for Turbulence Research, Annual Research Briefs, (2008) 1-12. D. W. Zaide, P. L. Roe, Flux functions for reducing numerical shockwave anomalies. ICCFD7, Big Island, Hawaii, (2012) 9-13. D. W. Zaide, Numerical Shockwave Anomalies, PhD thesis, Aerospace Engineering and Scientific Computing, University of Michigan, 2012. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux-ADER schemes with application to hyperbolic conservation laws with geometric source terms, J. Comput. Phys. 317 (2016) 108-147. J. Murillo and A. Navas-Montilla, A comprehensive explanation and exercise of the source terms in hyperbolic systems using Roe type solutions. Application to the 1D-2D shallow water equations, Advances in Water Resources {98} (2016) 70-96.

Top