Sample records for t-killer cell polarization

  1. T helper type 2-polarized invariant natural killer T cells reduce disease severity in acute intra-abdominal sepsis

    PubMed Central

    Anantha, R V; Mazzuca, D M; Xu, S X; Porcelli, S A; Fraser, D D; Martin, C M; Welch, I; Mele, T; Haeryfar, S M M; McCormick, J K

    2014-01-01

    Sepsis is characterized by a severe systemic inflammatory response to infection that is associated with high morbidity and mortality despite optimal care. Invariant natural killer T (iNK T) cells are potent regulatory lymphocytes that can produce pro- and/or anti-inflammatory cytokines, thus shaping the course and nature of immune responses; however, little is known about their role in sepsis. We demonstrate here that patients with sepsis/severe sepsis have significantly elevated proportions of iNK T cells in their peripheral blood (as a percentage of their circulating T cells) compared to non-septic patients. We therefore investigated the role of iNK T cells in a mouse model of intra-abdominal sepsis (IAS). Our data show that iNK T cells are pathogenic in IAS, and that T helper type 2 (Th2) polarization of iNK T cells using the synthetic glycolipid OCH significantly reduces mortality from IAS. This reduction in mortality is associated with the systemic elevation of the anti-inflammatory cytokine interleukin (IL)-13 and reduction of several proinflammatory cytokines within the spleen, notably interleukin (IL)-17. Finally, we show that treatment of sepsis with OCH in mice is accompanied by significantly reduced apoptosis of splenic T and B lymphocytes and macrophages, but not natural killer cells. We propose that modulation of iNK T cell responses towards a Th2 phenotype may be an effective therapeutic strategy in early sepsis. PMID:24965554

  2. Natural killer T-cell lymphoma of the tongue.

    PubMed

    Cho, Kwang-Jae; Cho, Seok-Goo; Lee, Dong-Hee

    2005-01-01

    Lymphoma, which represents about 5.4% of all neoplasms and, more significantly, 19% to 28% of malignant neoplasms, is the most common nonepithelial malignancy of the head and neck area in Koreans. Natural killer T-cell (NK/T-cell) lymphoma is a lymphoma of putative natural killer cell lineage. NK/T-cell neoplasms are generally rare, but they are more common in people of East Asian, Mexican, or South American descent. These neoplasms are highly aggressive and show a strong association with Epstein-Barr virus. The preferential site of extranodal NK/T-cell lymphoma is the nasal cavity, and there has been no report of NK/T-cell lymphoma developing from the tongue. We encountered a rare case of NK/T-cell lymphoma of the tongue, which we report with a review of the literature.

  3. Natural killer T cells in health and disease

    PubMed Central

    Wu, Lan; Van Kaer, Luc

    2013-01-01

    Natural killer T (NKT) cells are a subset of T lymphocytes that share surface markers and functional characteristics with both conventional T lymphocytes and natural killer cells. Most NKT cells express a semiinvariant T cell receptor that reacts with glycolipid antigens presented by the major histocompatibility complex class I-related protein CD1d on the surface of antigen-presenting cells. NKT cells become activated during a variety of infections and inflammatory conditions, rapidly producing large amounts of immunomodulatory cytokines. NKT cells can influence the activation state and functional properties of multiple other cell types in the immune system and, thus, modulate immune responses against infectious agents, autoantigens, tumors, tissue grafts and allergens. One attractive aspect of NKT cells is that their immunomodulatory activities can be readily harnessed with cognate glycolipid antigens, such as the marine sponge-derived glycosphingolipid alpha-galactosylceramide. These properties of NKT cells are being exploited for therapeutic intervention to prevent or treat cancer, infections, and autoimmune and inflammatory diseases. PMID:21196373

  4. [Nasal type natural killer/T cell lymphoma: case series and literature review].

    PubMed

    Düzlü, Mehmet; Ant, Ayça; Tutar, Hakan; Karamert, Recep; Şahin, Melih; Sayar, Erolcan; Cesur, Nesibe

    2016-01-01

    Nasal type natural killer/T-cell lymphoma is a rare type of extranodal non-Hodgkin lymphoma which originates from nasal cavity and paranasal sinuses. Exact diagnosis of nasal natural killer/T-cell lymphoma, which is a rapidly progressive clinical condition, may be established by immunohistochemical analysis on biopsy material after clinical suspicion. In this article, we report four cases of nasal natural killer/T-cell lymphoma who were followed-up in our clinic and discuss the diagnosis and treatment of the disease in light of the literature data.

  5. Natural Killer T Cells in Cancer Immunotherapy

    PubMed Central

    Nair, Shiny; Dhodapkar, Madhav V.

    2017-01-01

    Natural killer T (NKT) cells are specialized CD1d-restricted T cells that recognize lipid antigens. Following stimulation, NKT cells lead to downstream activation of both innate and adaptive immune cells in the tumor microenvironment. This has impelled the development of NKT cell-targeted immunotherapies for treating cancer. In this review, we provide a brief overview of the stimulatory and regulatory functions of NKT cells in tumor immunity as well as highlight preclinical and clinical studies based on NKT cells. Finally, we discuss future perspectives to better harness the potential of NKT cells for cancer therapy. PMID:29018445

  6. Natural Killer Dendritic Cells Enhance Immune Responses Elicited by α -Galactosylceramide-Stimulated Natural Killer T Cells.

    PubMed

    Lee, Sung Won; Park, Hyun Jung; Kim, Nayoung; Hong, Seokmann

    2013-01-01

    Natural killer dendritic cells (NKDCs) possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT) cells is required for the anti-tumor immune responses that are elicited by α -galactosylceramide ( α -GC) in mice. The rapid and strong expression of interferon- γ by NKDCs after α -GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated following α -GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited by α -GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated by α -GC-stimulated NKT cells in vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.

  7. Chimeric antigen receptor-engineered natural killer and natural killer T cells for cancer immunotherapy.

    PubMed

    Bollino, Dominique; Webb, Tonya J

    2017-09-01

    Natural killer (NK) cells of the innate immune system and natural killer T (NKT) cells, which have roles in both the innate and adaptive responses, are unique lymphocyte subsets that have similarities in their functions and phenotypes. Both cell types can rapidly respond to the presence of tumor cells and participate in immune surveillance and antitumor immune responses. This has incited interest in the development of novel cancer therapeutics based on NK and NKT cell manipulation. Chimeric antigen receptors (CARs), generated through the fusion of an antigen-binding region of a monoclonal antibody or other ligand to intracellular signaling domains, can enhance lymphocyte targeting and activation toward diverse malignancies. Most of the CAR studies have focused on their expression in T cells; however, the functional heterogeneity of CAR T cells limits their therapeutic potential and is associated with toxicity. CAR-modified NK and NKT cells are becoming more prevalent because they provide a method to direct these cells more specifically to target cancer cells, with less risk of adverse effects. This review will outline current NK and NKT cell CAR constructs and how they compare to conventional CAR T cells, and discuss future modifications that can be explored to advance adoptive cell transfer of NK and NKT cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Natural killer/T-cell lymphoma invading the orbit and globe.

    PubMed

    Lyons, Lance J; Vrcek, Ivan; Somogyi, Marie; Taheri, Kevin; Admirand, Joan H; Chexal, Saradha; Loukas, Demetrius F; Nakra, Tanuj

    2017-10-01

    Natural killer/T-cell lymphomas are extremely rare and carry high mortality rates. Epidemiologically, these cancers tend to affect mainly Asian and South American patients and are associated with Epstein-Barr virus seropositivity. This report details a 78-year-old Vietnamese woman who presented initially with vitritis of unknown cause, but later developed proptosis and conjunctival involvement as her disease spread. Biopsies of the orbit, ethmoid sinus, and conjunctiva were found to be significant for natural killer/T-cell lymphoma. The case highlights the diagnostic difficulty of this tumor given its rarity and ability to mimic other disorders.

  9. Natural killer/T-cell lymphoma invading the orbit and globe

    PubMed Central

    Lyons, Lance J.; Somogyi, Marie; Taheri, Kevin; Admirand, Joan H.; Chexal, Saradha; Loukas, Demetrius F.; Nakra, Tanuj

    2017-01-01

    Natural killer/T-cell lymphomas are extremely rare and carry high mortality rates. Epidemiologically, these cancers tend to affect mainly Asian and South American patients and are associated with Epstein-Barr virus seropositivity. This report details a 78-year-old Vietnamese woman who presented initially with vitritis of unknown cause, but later developed proptosis and conjunctival involvement as her disease spread. Biopsies of the orbit, ethmoid sinus, and conjunctiva were found to be significant for natural killer/T-cell lymphoma. The case highlights the diagnostic difficulty of this tumor given its rarity and ability to mimic other disorders. PMID:28966461

  10. Induction of myeloma-specific cytotoxic T lymphocytes responses by natural killer cells stimulated-dendritic cells in patients with multiple myeloma.

    PubMed

    Nguyen-Pham, Thanh-Nhan; Im, Chang-Min; Nguyen, Truc-Anh Thi; Lim, Mi-Seon; Hong, Cheol Yi; Kim, Mi-Hyun; Lee, Hyun Ju; Lee, Youn-Kyung; Cho, Duck; Ahn, Jae-Sook; Yang, Deok-Hwan; Kim, Yeo-Kyeoung; Chung, Ik-Joo; Kim, Hyeoung-Joon; Lee, Je-Jung

    2011-09-01

    The interaction between dendritic cells (DCs) and natural killer (NK) cells plays a key role in inducing DC maturation for subsequent T-cell priming. We investigated to generate potent DCs by stimulated with NK cells to induce myeloma-specific cytotoxic T lymphocytes (CTLs). NK cells-stimulated-DCs exhibited high expression of costimulatory molecules and high production of IL-12p70. These DCs induce high potency of Th1 polarization and exhibit a high ability to generate myeloma-specific CTLs responses. These results suggest that functionally potent DCs can be generated by stimulation with NK cells and may provide an effective source of DC-based immunotherapy in multiple myeloma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Impaired liver regeneration is associated with reduced cyclin B1 in natural killer T cell-deficient mice.

    PubMed

    Ben Ya'acov, Ami; Meir, Hadar; Zolotaryova, Lydia; Ilan, Yaron; Shteyer, Eyal

    2017-03-23

    It has been shown that the proportion of natural killer T cells is markedly elevated during liver regeneration and their activation under different conditions can modulate this process. As natural killer T cells and liver injury are central in liver regeneration, elucidating their role is important. The aim of the current study is to explore the role of natural killer T cells in impaired liver regeneration. Concanvalin A was injected 4 days before partial hepatectomy to natural killer T cells- deficient mice or to anti CD1d1-treated mice. Ki-67 and proliferating cell nuclear antigen were used to measure hepatocytes proliferation. Expression of hepatic cyclin B1 and proliferating cell nuclear antigen were evaluated by Western Blot and liver injury was assessed by ALT and histology. Natural killer T cells- deficient or mice injected with anti CD1d antibodies exhibited reduced liver regeneration. These mice were considerably resistant to ConA-induced liver injury. In the absence of NKT cells hepatic proliferating cell nuclear antigen and cyclin B1 decreased in mice injected with Concanvalin A before partial hepatectomy. This was accompanied with reduced serum interleukin-6 levels. Natural killer T cells play an important role in liver regeneration, which is associated with cyclin B1 and interleukin-6.

  12. Co-Expansion of Cytokine-Induced Killer Cells and Vγ9Vδ2 T Cells for CAR T-Cell Therapy

    PubMed Central

    Chen, Can; Tan, Wee-Kiat; Chi, Zhixia; Xu, Xue-Hu; Wang, Shu

    2016-01-01

    Gamma delta (γδ) T cells and cytokine-induced killer (CIK) cells, which are a heterogeneous population of T lymphocytes and natural killer T (NKT) cells, have been separately expanded ex vivo and shown to be capable of targeting and mediating cytotoxicity against various tumor cells in a major histocompatibility complex-unrestricted manner. However, the co-expansion and co-administration of these immune cells have not been explored. In this study we describe an efficient method to expand simultaneously both CIK and Vγ9Vδ2 T cells, termed as CIKZ cells, from human peripheral blood mononuclear cells (PBMCs) using Zometa, interferon-gamma (IFN-γ), interleukin 2 (IL-2), anti-CD3 antibody and engineered K562 feeder cells expressing CD64, CD137L and CD86. A 21-day culture of PBMCs with this method yielded nearly 20,000-fold expansion of CIKZ cells with γδ T cells making up over 20% of the expanded population. The expanded CIKZ cells exhibited antitumor cytotoxicity and could be modified to express anti-CD19 chimeric antigen receptor (CAR), anti-CEA CAR, and anti-HER2 CAR to enhance their specificity and cytotoxicity against CD19-, CEA-, or HER2-positive tumor cells. The tumor inhibitory activity of anti-CD19 CAR-modified CIKZ cells was further demonstrated in vivo in a Raji tumor mouse model. The findings herein substantiate the feasibility of co-expanding CIK and γδ cells for adoptive cellular immunotherapy applications such as CAR T-cell therapy against cancer. PMID:27598655

  13. Invariant natural killer T cells trigger adaptive lymphocytes to churn up bile.

    PubMed

    Joyce, Sebastian; Van Kaer, Luc

    2008-05-15

    How innate immune response causes autoimmunity has remained an enigma. In this issue of Cell Host & Microbe, Mattner et al. demonstrate that invariant natural killer T cells activated by the mucosal commensal Novosphingobium aromaticivorans precipitate chronic T cell-mediated autoimmunity against small bile ducts that mirrors human primary biliary cirrhosis. These findings provide a mechanistic understanding of the role of innate immunity toward a microbe in the development of autoimmunity.

  14. T-cell and natural killer cell therapies for hematologic malignancies after hematopoietic stem cell transplantation: enhancing the graft-versus-leukemia effect

    PubMed Central

    Cruz, C. Russell; Bollard, Catherine M.

    2015-01-01

    Hematopoietic stem cell transplantation has revolutionized the treatment of hematologic malignancies, but infection, graft-versus-host disease and relapse are still important problems. Calcineurin inhibitors, T-cell depletion strategies, and immunomodulators have helped to prevent graft-versus-host disease, but have a negative impact on the graft-versus-leukemia effect. T cells and natural killer cells are both thought to be important in the graft-versus-leukemia effect, and both cell types are amenable to ex vivo manipulation and clinical manufacture, making them versatile immunotherapeutics. We provide an overview of these immunotherapeutic strategies following hematopoietic stem cell transplantation, with discussions centered on natural killer and T-cell biology. We discuss the contributions of each cell type to graft-versus-leukemia effects, as well as the current research directions in the field as related to adoptive cell therapy after hematopoietic stem cell transplantation. PMID:26034113

  15. Thio-isoglobotrihexosylceramide, an agonist for activating invariant natural killer T cells.

    PubMed

    Xia, Chengfeng; Zhou, Dapeng; Liu, Chengwen; Lou, Yanyan; Yao, Qingjia; Zhang, Wenpeng; Wang, Peng George

    2006-11-23

    Thio-isoglobotrihexosylceramide (S-iGb3) might be resistant to alpha-galactosidases in antigen-presenting cells and have a longer retaining time in the lysosome before being loaded to CD1d. The biological assay showed that S-iGb3 demonstrates a much higher increase as a stimulatory ligand toward invariant natural killer T (iNKT) cells as compared to iGb3. [structure: see text].

  16. Whole transcriptome analysis reveals dysregulated oncogenic lncRNAs in natural killer/T-cell lymphoma and establishes MIR155HG as a target of PRDM1.

    PubMed

    Baytak, Esra; Gong, Qiang; Akman, Burcu; Yuan, Hongling; Chan, Wing C; Küçük, Can

    2017-05-01

    Natural killer/T-cell lymphoma is a rare but aggressive neoplasm with poor prognosis. Despite previous reports that showed potential tumor suppressors, such as PRDM1 or oncogenes associated with the etiology of this malignancy, the role of long non-coding RNAs in natural killer/T-cell lymphoma pathobiology has not been addressed to date. Here, we aim to identify cancer-associated dysregulated long non-coding RNAs and signaling pathways or biological processes associated with these long non-coding RNAs in natural killer/T-cell lymphoma cases and to identify the long non-coding RNAs transcriptionally regulated by PRDM1. RNA-Seq analysis revealed 166 and 66 long non-coding RNAs to be significantly overexpressed or underexpressed, respectively, in natural killer/T-cell lymphoma cases compared with resting or activated normal natural killer cells. Novel long non-coding RNAs as well as the cancer-associated ones such as SNHG5, ZFAS1, or MIR155HG were dysregulated. Interestingly, antisense transcripts of many growth-regulating genes appeared to be transcriptionally deregulated. Expression of ZFAS1, which is upregulated in natural killer/T-cell lymphoma cases, showed association with growth-regulating pathways such as stabilization of P53, regulation of apoptosis, cell cycle, or nuclear factor-kappa B signaling in normal and neoplastic natural killer cell samples. Consistent with the tumor suppressive role of PRDM1, we identified MIR155HG and TERC to be transcriptionally downregulated by PRDM1 in two PRDM1-null NK-cell lines when it is ectopically expressed. In conclusion, this is the first study that identified long non-coding RNAs whose expression is dysregulated in natural killer/T-cell lymphoma cases. These findings suggest that ZFAS1 and other dysregulated long non-coding RNAs may be involved in natural killer/T-cell lymphoma pathobiology through regulation of cancer-related genes, and loss-of-PRDM1 expression in natural killer/T-cell lymphomas may contribute to

  17. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective

    PubMed Central

    Kumar, Amrendra; Suryadevara, Naveenchandra; Hill, Timothy M.; Bezbradica, Jelena S.; Van Kaer, Luc; Joyce, Sebastian

    2017-01-01

    Type I natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo) perspective. PMID:29312339

  18. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective.

    PubMed

    Kumar, Amrendra; Suryadevara, Naveenchandra; Hill, Timothy M; Bezbradica, Jelena S; Van Kaer, Luc; Joyce, Sebastian

    2017-01-01

    Type I natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo) perspective.

  19. Epstein-Barr virus-associated T/natural killer-cell lymphoproliferative disorders.

    PubMed

    Park, Sanghui; Ko, Young H

    2014-01-01

    Primary infection with Epstein-Barr virus (EBV) is usually asymptomatic and, in a normal host, EBV remains latent in B cells after primary infection for the remainder of life. Uncommonly, EBV can infect T or natural killer (NK) cells in a person with a defect in innate immunity, and EBV infection can cause unique systemic lymphoproliferative diseases (LPD) of childhood. Primary infection in young children can be complicated by hemophagocytic lymphohistiocytosis or fulminant systemic T-cell LPD of childhood. Uncommonly, patients can develop chronic active EBV (CAEBV) disease-type T/NK LPD, which includes CAEBV infection of the systemic form, hydroa vacciniforme-like T-cell LPD, and mosquito-bite hypersensitivity. The clinical course of CAEBV disease-type T/NK LPD can be smoldering, persistent or progressive, depending on the balance between viral factors and host immunity. Aggressive NK-cell leukemia, hydroa vacciniforme-like T-cell lymphoma, or uncommonly extranodal NK/T-cell lymphoma can develop in children and young adults with CAEBV disease-type T/NK-cell LPD. Extranodal T/NK-cell lymphoma is a disease of adults, and its incidence begins to increase in the third decade and comprises the major subtype of T/NK LPD throughout life. Aggressive NK-cell leukemia and nodal T/NK-cell lymphoma of the elderly are fulminant diseases, and immune senescence may be an important pathogenetic factor. This review describes the current progress in identifying different types of EBV-associated T/NK-cell LPD and includes a brief presentation of data from Korea. © 2014 Japanese Dermatological Association.

  20. Revving up Natural Killer Cells and Cytokine-Induced Killer Cells Against Hematological Malignancies.

    PubMed

    Pittari, Gianfranco; Filippini, Perla; Gentilcore, Giusy; Grivel, Jean-Charles; Rutella, Sergio

    2015-01-01

    Natural killer (NK) cells belong to innate immunity and exhibit cytolytic activity against infectious pathogens and tumor cells. NK-cell function is finely tuned by receptors that transduce inhibitory or activating signals, such as killer immunoglobulin-like receptors, NK Group 2 member D (NKG2D), NKG2A/CD94, NKp46, and others, and recognize both foreign and self-antigens expressed by NK-susceptible targets. Recent insights into NK-cell developmental intermediates have translated into a more accurate definition of culture conditions for the in vitro generation and propagation of human NK cells. In this respect, interleukin (IL)-15 and IL-21 are instrumental in driving NK-cell differentiation and maturation, and hold great promise for the design of optimal NK-cell culture protocols. Cytokine-induced killer (CIK) cells possess phenotypic and functional hallmarks of both T cells and NK cells. Similar to T cells, they express CD3 and are expandable in culture, while not requiring functional priming for in vivo activity, like NK cells. CIK cells may offer some advantages over other cell therapy products, including ease of in vitro propagation and no need for exogenous administration of IL-2 for in vivo priming. NK cells and CIK cells can be expanded using a variety of clinical-grade approaches, before their infusion into patients with cancer. Herein, we discuss GMP-compliant strategies to isolate and expand human NK and CIK cells for immunotherapy purposes, focusing on clinical trials of adoptive transfer to patients with hematological malignancies.

  1. How polarity shapes the destiny of T cells.

    PubMed

    Russell, Sarah

    2008-01-15

    The differentiation, activation and expansion of T cells are dictated by their integrated response to a complex array of extracellular signals. Recent studies provide insight into how these signals are integrated and demonstrate a key role for cell shape in many aspects of T-cell signalling. T cells polarise during migration, antigen presentation and cell division to give rise to daughter cells that can have different cell fates. In each case, the polarity of the T cell facilitates this activity. This raises the possibility that adoption of a polarised state acts as a positive feedback mechanism to enhance responses to specific signals. Similarly, in asymmetric division of other cell types, the distribution of different molecules into each daughter can have profound consequences for proliferation, death and differentiation. The mechanisms of polarity regulation are far better understood in cells such as epithelial cells, neurons and neuronal precursors, and the fertilised zygote. With the emerging parallels between polarity in these cells and T cells, we should now be able to elucidate how polarity affects signalling and cell fate determination in T cells.

  2. Glycolipid presentation to natural killer T cells differs in an organ-dependent fashion

    NASA Astrophysics Data System (ADS)

    Schmieg, John; Yang, Guangli; Franck, Richard W.; van Rooijen, Nico; Tsuji, Moriya

    2005-01-01

    It has been shown that dendritic cells (DCs) are able to present glycolipids to natural killer (NK) T cells in vivo. However, the essential role of DCs, as well as the role of other cells in glycolipid presentation, is unknown. Here, we show that DCs are the crucial antigen-presenting cells (APCs) for splenic NK T cells, whereas Kupffer cells are the key APCs for hepatic NK T cells. Both cell types stimulate cytokine production by NK T cells within 2 h of glycolipid administration, but only DCs are involved in the systemic, downstream responses to glycolipid administration. More specifically, CD8+ DCs produce IL-12 in response to glycolipid presentation, which stimulates secondary IFN- production by NK cells in different organs. Different APCs participate in glycolipid presentation to NK T cells in vivo but differ in their involvement in the overall glycolipid response. dendritic cell | Kupffer cell

  3. α-Galactosylceramide-activated Vα14 natural killer T cells mediate protection against murine malaria

    PubMed Central

    Gonzalez-Aseguinolaza, Gloria; de Oliveira, Camila; Tomaska, Margaret; Hong, Seokmann; Bruna-Romero, Oscar; Nakayama, Toshinori; Taniguchi, Masaru; Bendelac, Albert; Van Kaer, Luc; Koezuka, Yasuhiko; Tsuji, Moriya

    2000-01-01

    Natural killer T (NKT) cells are a unique population of lymphocytes that coexpress a semiinvariant T cell and natural killer cell receptors, which are particularly abundant in the liver. To investigate the possible effect of these cells on the development of the liver stages of malaria parasites, a glycolipid, α-galactosylceramide (α-GalCer), known to selectively activate Vα14 NKT cells in the context of CD1d molecules, was administered to sporozoite-inoculated mice. The administration of α-GalCer resulted in rapid, strong antimalaria activity, inhibiting the development of the intrahepatocytic stages of the rodent malaria parasites Plasmodium yoelii and Plasmodium berghei. The antimalaria activity mediated by α-GalCer is stage-specific, since the course of blood-stage-induced infection was not inhibited by administration of this glycolipid. Furthermore, it was determined that IFN-γ is essential for the antimalaria activity mediated by the glycolipid. Taken together, our results provide the clear evidence that NKT cells can mediate protection against an intracellular microbial infection. PMID:10900007

  4. Rapidly fatal nasal natural killer/T-cell lymphoma: orbital and ocular adnexal presentations.

    PubMed

    Yousuf, Salman J; Kumar, Nitin; Kidwell, Earl D; Copeland, Robert A

    2011-03-01

    Nasal natural killer/T-cell lymphoma (NKTL) is an aggressive malignancy that may initially present with orbital and/or ocular adnexal symptoms. We describe the case of a 27-year-old female with nasal NKTL, who initially presented with epiphora and died 4 months thereafter.

  5. The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression.

    PubMed

    Ghiringhelli, Francois; Ménard, Cédric; Martin, Francois; Zitvogel, Laurence

    2006-12-01

    Tumor immunosurveillance relies on cognate immune effectors [lymphocytes and interferon-gamma (IFN-gamma)] and innate immunity [natural killer (NK) cells, natural killer group 2, member D (NKG2D) ligands, perforin/granzyme, and tumor necrosis factor-related apoptosis-inducing ligand]. In parallel, tumor cells promote the expansion of CD4(+)CD25(+) regulatory T cells (Tregs) that counteract T-cell-based anti-tumor immunity. Moreover, accumulating evidence points to a critical role for Tregs in dampening NK cell immune responses. This review summarizes the findings showing that Tregs suppress NK cell effector functions in vitro and in vivo, i.e. homeostatic proliferation, cytotoxicity, and interleukin-12-mediated IFN-gamma production. The molecular mechanism involve selective expression of membrane-bound transforming growth factor-beta on Tregs, which downregulate NKG2D expression on NK cells in vitro and in vivo. The regulatory events dictating NK cell suppression by Tregs have been studied and are discussed. The pathological relevance of the Treg-NK cell interaction has been brought up in tumor models and in patients with cancer. Consequently, inhibition of Tregs through pharmacological interventions should be considered during NK-cell-based immunotherapy of cancer.

  6. Natural killer cells and regulatory T cells in early pregnancy loss

    PubMed Central

    SHARMA, SURENDRA

    2015-01-01

    Survival of the allogeneic embryo in the uterus depends on the maintenance of immune tolerance at the maternal-fetal interface. The pregnant uterus is replete with activated maternal immune cells. How this immune tolerance is acquired and maintained has been a topic of intense investigation. The key immune cells that predominantly populate the pregnant uterus are natural killer (NK) cells. In normal pregnancy, these cells are not killers, but rather provide a microenvironment that is pregnancy compatible and supports healthy placentation. In placental mammals, an array of highly orchestrated immune elements to support successful pregnancy outcome has been incorporated. This includes active cooperation between maternal immune cells, particularly NK cells, and trophoblast cells. This intricate process is required for placentation, immune regulation and to remodel the blood supply to the fetus. During the past decade, various types of maternal immune cells have been thought to be involved in cross-talk with trophoblasts and in programming immune tolerance. RegulatoryT cells (Tregs) have attracted a great deal of attention in promoting implantation and immune tolerance beyond implantation. However, what has not been fully addressed is how this immune-trophoblast axis breaks down during adverse pregnancy outcomes, particularly early pregnancy loss, and in response to unscheduled inflammation. Intense research efforts have begun to shed light on the roles of NK cells and Tregs in early pregnancy loss, although much remains to be unraveled in order to fully characterize the mechanisms underlying their detrimental activity. An increased understanding of host-environment interactions that lead to the cytotoxic phenotype of these otherwise pregnancy compatible maternal immune cells is important for prediction, prevention and treatment of pregnancy maladies, particularly recurrent pregnancy loss. In this review, we discuss relevant information from experimental and human

  7. Immunotherapeutic strategies targeting Natural killer T cell responses in cancer

    PubMed Central

    Shissler, Susannah C.; Bollino, Dominique R.; Tiper, Irina V.; Bates, Joshua; Derakhshandeh, Roshanak; Webb, Tonya J.

    2017-01-01

    Natural killer T (NKT) cells are a unique subset of lymphocytes that bridge the innate and adaptive immune system. NKT cells possess a classic αβ T-cell receptor (TCR) that is able to recognize self and foreign glycolipid antigens presented by the nonclassical class I major histocompatibility complex (MHC) molecule, CD1d. Type I NKT cells (referred to as invariant NKT cells) express a semi-invariant Vα14Jα18 TCR in mice and Vα24Jα18 TCR in humans. Type II NKT cells are CD1d-restricted T cells that express a more diverse set of TCR α chains. The two types of NKT cells often exert opposing effects especially in tumor immunity, where Type II cells generally suppress tumor immunity while Type I NKT cells can enhance antitumor immune responses. In this review, we focus on the role of NKT cells in cancer. We discuss their effector and suppressive functions, as well as describe preclinical and clinical studies utilizing therapeutic strategies focused on harnessing their potent anti-tumor effector functions, and conclude with a discussion on potential next steps for the utilization of NKT cell targeted therapies for the treatment of cancer. PMID:27393665

  8. Arf-like GTPase Arl8b regulates lytic granule polarization and natural killer cell-mediated cytotoxicity.

    PubMed

    Tuli, Amit; Thiery, Jerome; James, Ashley M; Michelet, Xavier; Sharma, Mahak; Garg, Salil; Sanborn, Keri B; Orange, Jordan S; Lieberman, Judy; Brenner, Michael B

    2013-12-01

    Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell-mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity.

  9. Regulatory T cells decrease invariant natural killer T cell-mediated pregnancy loss in mice.

    PubMed

    Li, L; Tu, J; Jiang, Y; Zhou, J; Schust, D J

    2017-05-01

    Pregnancy loss is the commonest complication of pregnancy. The causes of pregnancy loss are poorly understood. It has been reported that stimulation of invariant natural killer T (iNKT) cells using α-galactosylceramide (αGC) induces pregnancy loss in mice. Here we investigated the mechanisms, especially the role of regulatory T (Treg) cells, in iNKT cell-mediated pregnancy loss. We found that injection of αGC rapidly induced fetal resorption, activated decidual iNKT cells, decreased the percentage of decidual Treg cells and their interleukin (IL)-10 and transforming growth factor (TGF)-β production, and upregulated the levels of interferon (IFN)-γ, tumor necrosis factor-α, IL-4, and IL-10 in serum. Adoptive transfer of iNKT cells from wild-type (WT) and IL-4 -/- mice but not IFN-γ -/- mice into αGC-treated iNKT cell-deficient Jα18 -/- mice restored αGC-induced pregnancy loss. Adoptive transfer of Treg cells downregulated α-GC-induced pregnancy loss in WT mice. Finally, co-culture with αGC-stimulated decidual iNKT cells decreased the production of IL-10 and TGF-β in decidual Treg cells and inhibited their suppressive activity. These findings suggest that activation of iNKT cells induces pregnancy loss in mice in an IFN-γ-dependent manner. In addition, inhibition of the function of decidual Treg cells has an important role in iNKT cell-mediated pregnancy loss.

  10. Natural killer cells regulate T cell immune responses in primary biliary cirrhosis.

    PubMed

    Shimoda, Shinji; Hisamoto, Satomi; Harada, Kenichi; Iwasaka, Sho; Chong, Yong; Nakamura, Minoru; Bekki, Yuki; Yoshizumi, Tomoharu; Shirabe, Ken; Ikegami, Toru; Maehara, Yoshihiko; He, Xiao-Song; Gershwin, M Eric; Akashi, Koichi

    2015-12-01

    The hallmark of primary biliary cirrhosis (PBC) is the presence of autoreactive T- and B-cell responses that target biliary epithelial cells (BECs). Biliary cell cytotoxicity is dependent upon initiation of innate immune responses followed by chronic adaptive, as well as bystander, mechanisms. Critical to these mechanisms are interactions between natural killer (NK) cells and BECs. We have taken advantage of the ability to isolate relatively pure viable preparations of liver-derived NK cells, BECs, and endothelial cells, and studied interactions between NK cells and BECs and focused on the mechanisms that activate autoreactive T cells, their dependence on interferon (IFN)-γ, and expression of BEC major histocompatibility complex (MHC) class I and II molecules. Here we show that at a high NK/BEC ratio, NK cells are cytotoxic for autologous BECs, but are not dependent on autoantigen, yet still activate autoreactive CD4(+) T cells in the presence of antigen presenting cells. In contrast, at a low NK/BEC ratio, BECs are not lysed, but IFN-γ production is induced, which facilitates expression of MHC class I and II molecules on BEC and protects them from lysis upon subsequent exposure to autoreactive NK cells. Furthermore, IFN-γ secreted from NK cells after exposure to autologous BECs is essential for this protective function and enables autoreactive CD4(+) T cells to become cytopathic. NK cell-mediated innate immune responses are likely critical at the initial stage of PBC, but also facilitate and maintain the chronic cytopathic effect of autoantigen-specific T cells, essential for progression of disease. © 2015 by the American Association for the Study of Liver Diseases.

  11. The prognostic value of natural killer cell infiltration in resected pulmonary adenocarcinoma.

    PubMed

    Takanami, I; Takeuchi, K; Giga, M

    2001-06-01

    Natural cytotoxicity caused by mediated natural killer cells is believed to play an important role in host-cancer defense mechanisms. Immunohistochemically, we have detected natural killer cells in tissue specimens from patients with pulmonary adenocarcinoma and have assessed their clinical characteristics. Using the monoclonal antibody for CD57 specific marker for natural killer cells, we quantified natural killer cell infiltration in 150 patients with pulmonary adenocarcinoma who underwent curative tumor resection to investigate the relationship between natural killer cell counts and clinicopathologic factors and prognosis. The natural killer cell count was significantly related to the regulation of tumor progression, involving T classification, N classification, and stage (P =.01 for T classification or stage; P =.02 for N classification). A significant difference in the rate of patient survival was detected between those patients whose tumors had either high or low natural killer cell counts in both the overall and stage I groups (P =.0002 for the overall group; P =.049 for the stage I group). These data indicate that natural killer infiltration may contribute to the regulation of tumor progression and that the natural killer cell count can serve as a useful prognostic marker in overall and stage I pulmonary adenocarcinoma.

  12. CD20-Positive nodal natural killer/T-cell lymphoma with cutaneous involvement.

    PubMed

    Tsai, Yi-Chiun; Chen, Chi-Kuan; Wu, Yu-Hung

    2015-09-01

    CD20-positive natural killer (NK)/T-cell lymphoma is extremely rare. We describe a case of a CD20-positive nodal NK/T-cell lymphoma with cutaneous involvement in a 32-year-old man. The patient presented with fever, night sweats, right inguinal lymphadenopathy and multiple violaceous to erythematous nodules and plaques on the back and bilateral legs. Immunohistochemical analysis showed diffusely and strongly positive staining for CD3, CD3 epsilon, CD43, CD56, TIA-1 and CD20 but negative staining for other B-cell markers, including CD79a and PAX-5 and T-cell markers CD5 and CD7. The tumor cell nuclei were diffusely positive for Epstein-Barr virus-encoded RNA in situ hybridization. A partial clinical response was observed after chemotherapy, indicated by the decreased size of the lymph nodes and skin lesions. It is a diagnostic challenge to deal with lymphoma cells that present with the surface proteins of both T- and B-cells. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders?

    PubMed Central

    Baci, Denisa; Tremolati, Marco; Fanuli, Matteo; Farronato, Giampietro; Mortara, Lorenzo

    2018-01-01

    Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy. PMID:29507865

  14. The cytotoxic action of the CD56+ fraction of cytokine-induced killer cells against a K562 cell line is mainly restricted to the natural killer cell subset.

    PubMed

    Chieregato, Katia; Zanon, Cristina; Castegnaro, Silvia; Bernardi, Martina; Amati, Eliana; Sella, Sabrina; Rodeghiero, Francesco; Astori, Giuseppe

    2017-01-01

    Cytokine-induced killer cells are polyclonal T cells generated ex vivo and comprise two main subsets: the CD56- fraction, possessing an alloreactive potential caused by T cells (CD3+CD56-), and the CD56+ fraction, characterised by a strong antitumour capacity induced by natural killer-like T cells (NK-like T, CD3+CD56+) and natural killer cells (NK, CD3-CD56+ bright). We investigated the cytotoxic action of selected CD56+ cell subpopulations against a human chronic myeloid leukaemia (K562) cell line. After immunomagnetic selection of the CD56+ cell fraction, NK bright cells (CD3-CD56+ bright) and two subsets of NK-like T cells (CD3+CD56+), called NK-like T CD56 dim and NK-like T CD56 bright, could be identified. The cytotoxic effect against K562 cells was mainly exerted by the NK bright subpopulation and resulted to be inversely correlated with the percentage of NK-like T CD56 dim cells in the culture. The lytic action appeared to be independent of cell degranulation as suggested by the lack of change in the expression of CD107a. We conclude that the cytotoxic action of CD56+ cells against a K562 cell line is mainly due to the NK cells.

  15. Identification of immunophenotypic subtypes with different prognoses in extranodal natural killer/T-cell lymphoma, nasal type.

    PubMed

    Yu, Jian-Bo; Zuo, Zhuo; Zhang, Wen-Yan; Yang, Qun-Pei; Zhang, Ying-Chun; Tang, Yuan; Zhao, Sha; Mo, Xian-Ming; Liu, Wei-Ping

    2014-11-01

    To analyze the differentiation characteristics of extranodal natural killer/T-cell lymphoma, nasal type, one nude mouse model, cell lines SNK6 and SNT8, and 16 fresh human samples were analyzed by flow cytometry immunophenotyping and immunohistochemistry staining; and 115 archived cases were used for phenotypic detection and prognostic analysis. We found that CD25 was expressed by most tumor cells in all samples, and CD56(+)CD25(+) cells were the predominant population in the mouse model, the 2 cell lines, and 10 of the 16 fresh tumor samples; in the other 6 fresh tumor samples, the predominant cell population was of the CD16(+)CD25(+) phenotype, and only a minor population showed the CD56(+)CD25(+) phenotype. The phenotype detected by immunohistochemistry staining generally was consistent with the phenotype found by flow cytometry immunophenotyping. According to the expression of CD56 and CD16, 115 cases could be classified into 3 phenotypic subtypes: CD56(-)CD16(-), CD56(+)CD16(-), and CD56(dim/-)CD16(+). Patients with tumors of the CD56(dim/-)CD16(+) phenotype had a poorer prognosis than patients with tumors of the other phenotypes. Differentiation of extranodal natural killer/T-cell lymphoma, nasal type apparently resembles the normal natural killer cell developmental pattern, and these tumors can be classified into 3 phenotypic subtypes of different aggressiveness. Expression of CD56(dim/-)CD16(+) implies a poorer prognosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: are we close to reality?

    PubMed Central

    Simoni, Y; Diana, J; Ghazarian, L; Beaudoin, L; Lehuen, A

    2013-01-01

    T cells reactive to lipids and restricted by major histocompatibility complex (MHC) class I-like molecules represent more than 15% of all lymphocytes in human blood. This heterogeneous population of innate cells includes the invariant natural killer T cells (iNK T), type II NK T cells, CD1a,b,c-restricted T cells and mucosal-associated invariant T (MAIT) cells. These populations are implicated in cancer, infection and autoimmunity. In this review, we focus on the role of these cells in autoimmunity. We summarize data obtained in humans and preclinical models of autoimmune diseases such as primary biliary cirrhosis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, psoriasis and atherosclerosis. We also discuss the promise of NK T cell manipulations: restoration of function, specific activation, depletion and the relevance of these treatments to human autoimmune diseases. PMID:23199318

  17. Differences between T cell-type and natural killer cell-type chronic active Epstein-Barr virus infection.

    PubMed

    Kimura, Hiroshi; Hoshino, Yo; Hara, Shinya; Sugaya, Naomi; Kawada, Jun-Ichi; Shibata, Yukiko; Kojima, Seiji; Nagasaka, Tetsuro; Kuzushima, Kiyotaka; Morishima, Tsuneo

    2005-02-15

    Infections of T cells and natural killer (NK) cells play a central role in the pathogenesis of chronic active Epstein-Barr virus (CAEBV) infection. To characterize the virologic and cytokine profiles of T cell-type and NK cell-type infection, 39 patients with CAEBV infection were analyzed. Patients with T cell-type infection had higher titers of immunoglobulin G against early and late EBV antigens, suggesting lytic cycle infection. However, the pattern of EBV gene expression was latency type II; BZLF1, which is a hallmark of lytic cycle infection, could not be detected in any patients, regardless of infection type. Patients with CAEBV infection had high concentrations of proinflammatory, T helper cell type 1, and anti-inflammatory cytokines. The cytokine profile in patients with NK cell-type infection was similar to that in patients with T cell-type infection, but the concentration of IL-13 was high in patients with NK cell-type infection. These findings should help to clarify the pathogenesis of CAEBV infection and facilitate the development of more-effective treatments.

  18. Natural Killer Cell Memory

    PubMed Central

    O’Sullivan, Timothy E.; Sun, Joseph C.; Lanier, Lewis L.

    2015-01-01

    Natural killer (NK) cells have historically been considered short-lived cytolytic cells that can rapidly respond against pathogens and tumors in an antigen-independent manner, and then undergo cell death. Recently, however, NK cells have been shown to possess traits of adaptive immunity, and can acquire immunological memory in a similar manner to T and B cells. In this review, we discuss evidence for NK cell memory and the mechanisms involved in the generation and survival of these innate lymphocytes. PMID:26488815

  19. Invariant Natural Killer T Cell Deficiency and Functional Impairment in Sleep Apnea: Links to Cancer Comorbidity.

    PubMed

    Gaoatswe, Gadintshware; Kent, Brian D; Corrigan, Michelle A; Nolan, Geraldine; Hogan, Andrew E; McNicholas, Walter T; O'Shea, Donal

    2015-10-01

    Emerging evidence links obstructive sleep apnea (OSA) with increased cancer incidence and mortality. Invariant natural killer T (iNKT) cells play an important role in cancer immunity. We hypothesized that patients with OSA have low number of circulating invariant natural killer T (iNKT) cells, which may also be functionally impaired. This study aims to evaluate the frequency of circulating iNKT cells in OSA. We evaluated the frequency of circulating iNKT cells by flow cytometry in 33 snorers being assessed for possible OSA. Using iNKT cell lines, we also evaluated the effect of exposure to hypoxia over 24 hours on apoptosis, cytotoxicity, and cytokine production. Teaching hospital based sleep unit and research laboratory. Thirty-three snorers were evaluated: 9 with no OSA (apnea-hypopnea frequency [AHI] < 5/h), 12 with mild-moderate OSA (AHI 5-30) and 12 with severe OSA (AHI > 30). Patients with severe OSA had considerably fewer iNKT cells (0.18%) compared to patients with mild-moderate (0.24%) or no OSA (0.35%), P = 0.0026. The frequency of iNKT cells correlated negatively with apnea-hypopnea index (r = -0.58, P = 0.001), oxygen desaturation index (r = -0.58, P = 0.0003), and SpO2% < 90% (r = -0.5407, P = 0.005). The frequency of iNKT cells increased following 12 months of nCPAP therapy (P = 0.015). Hypoxia resulted in increased apoptosis (P = 0.016) and impaired cytotoxicity (P = 0.035). Patients with obstructive sleep apnea (OSA) have significantly reduced levels of circulating invariant natural killer T (iNKT) cells and hypoxia leads to impaired iNKT cell function. These observations may partly explain the increased cancer risk reported in patients with OSA. © 2015 Associated Professional Sleep Societies, LLC.

  20. Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma

    PubMed Central

    Spel, Lotte; Boelens, Jaap-Jan; van der Steen, Dirk M.; Blokland, Nina J.G.; van Noesel, Max M.; Molenaar, Jan J.; Heemskerk, Mirjam H.M.

    2015-01-01

    Neuroblastoma is the most common solid tumor in children with an estimated 5-year progression free survival of 20–40% in stage 4 disease. Neuroblastoma actively avoids recognition by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Although immunotherapy has gained traction for neuroblastoma treatment, these immune escape mechanisms restrain clinical results. Therefore, we aimed to improve neuroblastoma immunogenicity to further the development of antigen-specific immunotherapy against neuroblastoma. We found that neuroblastoma cells significantly increase surface expression of MHC I upon exposure to active NK cells which thereby readily sensitize neuroblastoma cells for recognition by CTLs. We show that oncoprotein PRAME serves as an immunodominant antigen for neuroblastoma as NK-modulated neuroblastoma cells are recognized by PRAMESLLQHLIGL/A2-specific CTL clones. Furthermore, NK cells induce MHC I upregulation in neuroblastoma through contact-dependent secretion of IFNγ. Our results demonstrate remarkable plasticity in the peptide/MHC I surface expression of neuroblastoma cells, which is reversed when neuroblastoma cells experience innate immune attack by sensitized NK cells. These findings support the exploration of NK cells as adjuvant therapy to enforce neuroblastoma-specific CTL responses. PMID:26452036

  1. Optimal culture conditions for the generation of natural killer cell-induced dendritic cells for cancer immunotherapy.

    PubMed

    Nguyen-Pham, Thanh-Nhan; Yang, Deok-Hwan; Nguyen, Truc-Anh Thi; Lim, Mi-Seon; Hong, Cheol Yi; Kim, Mi-Hyun; Lee, Hyun Ju; Lee, Youn-Kyung; Cho, Duck; Bae, Soo-Young; Ahn, Jae-Sook; Kim, Yeo-Kyeoung; Chung, Ik-Joo; Kim, Hyeoung-Joon; Lee, Je-Jung

    2012-01-01

    Dendritic cell (DC)-based vaccines continue to be considered an attractive tool for cancer immunotherapy. DCs require an additional signal from the environment or other immune cells to polarize the development of immune responses toward T helper 1 (Th1) or Th2 responses. DCs play a role in natural killer (NK) cell activation, and NK cells are also able to activate and induce the maturation of DCs. We investigated the types of NK cells that can induce the maturation and enhanced function of DCs and the conditions under which these interactions occur. DCs that were activated by resting NK cells in the presence of inflammatory cytokines exhibited increased expression of several costimulatory molecules and an enhanced ability to produce IL-12p70. NK cell-stimulated DCs potently induced Th1 polarization and exhibited the ability to generate tumor antigen-specific cytotoxic T lymphocyte responses. Our data demonstrate that functional DCs can be generated by coculturing immature DCs with freshly isolated resting NK cells in the presence of Toll-like receptor agonists and proinflammatory cytokines and that the resulting DCs effectively present antigens to induce tumor-specific T-cell responses, which suggests that these cells may be useful for cancer immunotherapy.

  2. Working in "NK Mode": Natural Killer Group 2 Member D and Natural Cytotoxicity Receptors in Stress-Surveillance by γδ T Cells.

    PubMed

    Silva-Santos, Bruno; Strid, Jessica

    2018-01-01

    Natural killer cell receptors (NKRs) are germline-encoded transmembrane proteins that regulate the activation and homeostasis of NK cells as well as other lymphocytes. For γδ T cells, NKRs play critical roles in discriminating stressed (transformed or infected) cells from their healthy counterparts, as proposed in the "lymphoid stress-surveillance" theory. Whereas the main physiologic role is seemingly fulfilled by natural killer group 2 member D, constitutively expressed by γδ T cells, enhancement of their therapeutic potential may rely on natural cytotoxicity receptors (NCRs), like NKp30 or NKp44, that can be induced selectively on human Vδ1 + T cells. Here, we review the contributions of NCRs, NKG2D, and their multiple ligands, to γδ T cell biology in mouse and human.

  3. Natural Killer T Cell Activation Protects Mice Against Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Singh, Avneesh K.; Wilson, Michael T.; Hong, Seokmann; Olivares-Villagómez, Danyvid; Du, Caigan; Stanic, Aleksandar K.; Joyce, Sebastian; Sriram, Subramaniam; Koezuka, Yasuhiko; Van Kaer, Luc

    2001-01-01

    Experimental autoimmune encephalomyelitis (EAE) serves as a prototypic model for T cell–mediated autoimmunity. Vα14 natural killer T (NKT) cells are a subset of T lymphocytes that recognize glycolipid antigens presented by the nonpolymorphic major histocompatibility complex (MHC) class I–like protein CD1d. Here, we show that activation of Vα14 NKT cells by the glycosphingolipid α-galactosylceramide (α-GalCer) protects susceptible mice against EAE. β-GalCer, which binds CD1d but is not recognized by NKT cells, failed to protect mice against EAE. Furthermore, α-GalCer was unable to protect CD1d knockout (KO) mice against EAE, indicating the requirement for an intact CD1d antigen presentation pathway. Protection of disease conferred by α-GalCer correlated with its ability to suppress myelin antigen-specific Th1 responses and/or to promote myelin antigen-specific Th2 cell responses. α-GalCer was unable to protect IL-4 KO and IL-10 KO mice against EAE, indicating a critical role for both of these cytokines. Because recognition of α-GalCer by NKT cells is phylogenetically conserved, our findings have identified NKT cells as novel target cells for treatment of inflammatory diseases of the central nervous system. PMID:11748281

  4. Hemin controls T cell polarization in sickle cell alloimmunization.

    PubMed

    Zhong, Hui; Bao, Weili; Friedman, David; Yazdanbakhsh, Karina

    2014-07-01

    Patients with sickle cell disease (SCD) often require transfusions to treat and prevent worsening anemia and other SCD complications. However, transfusions can trigger alloimmunization against transfused RBCs with serious clinical sequelae. Risk factors for alloimmunization in SCD remain poorly understood. We recently reported altered regulatory T cell (Treg) and Th responses with higher circulating Th1 (IFN-γ(+)) cytokines in chronically transfused SCD patients with alloantibodies as compared with those without alloantibodies. Because monocytes play a critical role in polarization of T cell subsets and participate in clearance of transfused RBCs, we tested the hypothesis that in response to the RBC breakdown product hemin, monocyte control of T cell polarization will differ between alloimmunized and non-alloimmunized SCD patients. Exogenous hemin induced Treg polarization in purified T cell/monocyte cocultures from healthy volunteers through the monocyte anti-inflammatory heme-degrading enzyme heme oxygenase-1. Importantly, hemin primarily through its effect on CD16+ monocytes induced an anti-inflammatory (higher Treg/lower Th1) polarization state in the non-alloimmunized SCD group, whereas it had little effect in the alloimmunized group. Non-alloimmunized SCD CD16+ monocytes expressed higher basal levels of heme oxygenase-1. Furthermore, IL-12, which contributed to a proinflammatory polarization state (low Treg/high Th1) in SCD, was dampened in hemin-treated stimulated monocytes from non-alloimmunized SCD patients, but not in the alloimmunized group. These data suggest that unlike alloimmunized patients, non-alloimmunized SCD CD16+ monocytes in response to transfused RBC breakdown products promote an anti-inflammatory state that is less conducive to alloimmunization. Copyright © 2014 by The American Association of Immunologists, Inc.

  5. Staphylococcus-mediated T-cell activation and spontaneous natural killer cell activity in the absence of major histocompatibility complex class II molecules

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Hoynowski, S. M.; Woods, K. M.; Armstrong, J. W.; Beharka, A. A.; Iandolo, J. J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    We used major histocompatibility complex class II antigen-deficient transgenic mice to show that in vitro natural killer cell cytotoxicity and T-cell activation by staphylococcal exotoxins (superantigens) are not dependent upon the presence of major histocompatibility complex class II molecules. T cells can be activated by exotoxins in the presence of exogenously added interleukin 1 or 2 or in the presence of specific antibody without exogenously added cytokines.

  6. CXCL16-positive dendritic cells enhance invariant natural killer T cell-dependent IFNγ production and tumor control

    PubMed Central

    Veinotte, Linnea; Gebremeskel, Simon; Johnston, Brent

    2016-01-01

    ABSTRACT Crosstalk interactions between dendritic cells (DCs) and invariant natural killer T (iNKT) cells are important in regulating antitumor responses elicited by glycolipid antigens. iNKT cells constitutively express the chemokine receptor CXCR6, while cytokine-activated DCs upregulate the transmembrane chemokine ligand, CXCL16. This study examined the co-stimulatory role of CXCR6/CXCL16 interactions in glycolipid-dependent iNKT cell activation and tumor control. Spleen and liver DCs in wild-type mice, but not iNKT cell deficient (Jα18−/−) mice, transiently upregulated surface CXCL16 following in vivo administration of the glycolipid antigen α-galactosylceramide. Recombinant CXCL16 did not directly induce iNKT cell activation in vitro but enhanced interferon (IFN)-γ production when mouse or human iNKT cells were stimulated with plate-bound anti-CD3. Compared with glycolipid-loaded CXCL16neg DCs, CXCL16hi DCs induced higher levels of IFNγ production in iNKT cell cultures and following adoptive transfer in vivo. The number of IFNγ+ iNKT cells and expansion of T-bet+ iNKT cells were reduced in vivo when CXCL16−/− DCs were used to activate iNKT cells. Enhanced IFNγ production in vivo was not dependent on CXCR6 expression on natural killer (NK) cells. Adoptive transfer of glycolipid-loaded CXCL16hi DCs provided superior protection against tumor metastasis compared to CXCL16neg DC transfers. Similarly, wild-type DCs provided superior protection against metastasis compared with CXCL16−/− DCs. These experiments implicate an important role for CXCR6/CXCL16 interactions in regulating iNKT cell IFNγ production and tumor control. The selective use of CXCL16hi DCs in adoptive transfer immunotherapies may prove useful for enhancing T helper (Th) type 1 responses and clinical outcomes in cancer patients. PMID:27471636

  7. Deficiencies of Circulating Mucosal-associated Invariant T Cells and Natural Killer T Cells in Patients with Multiple Trauma.

    PubMed

    Jo, Young Goun; Choi, Hyun Jung; Kim, Jung Chul; Cho, Young Nan; Kang, Jeong Hwa; Jin, Hye Mi; Kee, Seung Jung; Park, Yong Wook

    2017-05-01

    Mucosal-associated invariant T (MAIT) cells and natural killer T (NKT) cells are known to play important roles in autoimmunity, infectious diseases and cancers. However, little is known about the roles of these invariant T cells in multiple trauma. The purposes of this study were to examine MAIT and NKT cell levels in patients with multiple trauma and to investigate potential relationships between these cell levels and clinical parameters. The study cohort was composed of 14 patients with multiple trauma and 22 non-injured healthy controls (HCs). Circulating MAIT and NKT cell levels in the peripheral blood were measured by flow cytometry. The severity of injury was categorised according to the scoring systems, such as Acute Physiology and Chronic Health Evaluation (APACHE) II score, Simplified Acute Physiology Score (SAPS) II, and Injury Severity Score (ISS). Circulating MAIT and NKT cell numbers were significantly lower in multiple trauma patients than in HCs. Linear regression analysis showed that circulating MAIT cell numbers were significantly correlated with age, APACHE II, SAPS II, ISS category, hemoglobin, and platelet count. NKT cell numbers in the peripheral blood were found to be significantly correlated with APACHE II, SAPS II, and ISS category. This study shows numerical deficiencies of circulating MAIT cells and NKT cells in multiple trauma. In addition, these invariant T cell deficiencies were found to be associated with disease severity. These findings provide important information for predicting the prognosis of multiple trauma. © 2017 The Korean Academy of Medical Sciences.

  8. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma.

    PubMed

    Laouar, Yasmina; Sutterwala, Fayyaz S; Gorelik, Leonid; Flavell, Richard A

    2005-06-01

    Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.

  9. Type II Natural Killer T (NKT) Cells And Their Emerging Role In Health And Disease

    PubMed Central

    Dhodapkar, Madhav V.; Kumar, Vipin

    2016-01-01

    Natural killer T (NKT) cells recognize lipid antigens presented by a class I MHC-like molecule CD1d, a member of the CD1 family. While most of the initial studies on NKT cells focused on a subset with semi-invariant T cell receptor (TCR) termed iNKT cells, majority of CD1d-restricted lipid-reactive human T cells express diverse TCRs and are termed as type II NKT cells. These cells constitute a distinct population of circulating and tissue-resident effector T cells with immune-regulatory properties. They react to a growing list of self- as well as non-self lipid ligands, and share some properties with both iNKT as well as conventional T cells. Emerging body of evidence points to their role in the regulation of immunity to pathogens/tumors and in autoimmune/metabolic disorders. Improved understanding of the biology of these cells and the ability to manipulate their function may be of therapeutic benefit in diverse disease conditions. PMID:28115591

  10. Novel targets for natural killer/T-cell lymphoma immunotherapy.

    PubMed

    Kumai, Takumi; Kobayashi, Hiroya; Harabuchi, Yasuaki

    2016-01-01

    Extranodal natural killer/T-cell lymphoma, nasal type (NKTL) is a rare but highly aggressive Epstein-Barr virus-related malignancy, which mainly occurs in nasopharyngeal and nasal/paranasal areas. In addition to its high prevalence in Asian, Central American and South American populations, its incidence rate has been gradually increasing in Western countries. The current mainstay of treatment is a combination of multiple chemotherapies and irradiation. Although chemoradiotherapy can cure NKTL, it often causes severe and fatal adverse events. Because a growing body of evidence suggests that immunotherapy is effective against hematological malignancies, this treatment could provide an alternative to chemoradiotherapy for treatment of NKTL. In this review, we focus on how recent findings could be used to develop efficient immunotherapies against NKTL.

  11. Critical roles of conventional dendritic cells in promoting T cell‐dependent hepatitis through regulating natural killer T cells

    PubMed Central

    Wang, J.; Cao, X.; Zhao, J.; Zhao, H.; Wei, J.; Li, Q.; Qi, X.; Yang, Z.; Wang, L.; Zhang, H.; Bai, L.; Wu, Z.; Zhao, L.; Hong, Z.

    2017-01-01

    Summary Dendritic cells (DCs) play critical roles in initiating and regulating innate immunity as well as adaptive immune responses. However, the role of conventional dendritic cells (cDCs) in concanavalin A (ConA)‐induced fulminant hepatitis is unknown. In this study, we demonstrated that depletion of cDCs using either CD11c‐diphtheria toxin receptor transgenic mice (DTR Tg) mice or anti‐CD11c antibody reduced the severity of liver injury significantly, indicating a detrimental role of cDCs in ConA‐induced hepatitis. We elucidated further the pathological role of cDCs as being the critical source of interleukin (IL)‐12, which induced the secretion of interferon (IFN)‐γ by natural killer (NK) T cells. Reconstitution of cDCs‐depleted mice with IL‐12 restored ConA‐induced hepatitis significantly. Furthermore, we determined that NK T cells were the target of DC‐derived IL‐12, and NK T cells contributed to liver inflammation and injury through production of IFN‐γ. In summary, our study demonstrated a novel function of cDCs in mediating ConA‐induced hepatitis through regulating IFN‐γ secretion of NK T cells in an IL‐12‐dependent fashion. Targeting cDCs might provide potentially therapeutic applications in treating autoimmune related liver diseases. PMID:27891589

  12. Core binding factors are necessary for natural killer cell development and cooperate with Notch signaling during T-cell specification

    PubMed Central

    Guo, Yalin; Maillard, Ivan; Chakraborti, Sankhamala; Rothenberg, Ellen V.

    2008-01-01

    CBFβ is the non-DNA binding subunit of the core binding factors (CBFs). Mice with reduced CBFβ levels display profound, early defects in T-cell but not B-cell development. Here we show that CBFβ is also required at very early stages of natural killer (NK)–cell development. We also demonstrate that T-cell development aborts during specification, as the expression of Gata3 and Tcf7, which encode key regulators of T lineage specification, is substantially reduced, as are functional thymic progenitors. Constitutively active Notch or IL-7 signaling cannot restore T-cell expansion or differentiation of CBFβ insufficient cells, nor can overexpression of Runx1 or CBFβ overcome a lack of Notch signaling. Therefore, the ability of the prethymic cell to respond appropriately to Notch is dependent on CBFβ, and both signals converge to activate the T-cell developmental program. PMID:18390836

  13. Protein Kinase C-θ (PKC-θ) in Natural Killer Cell Function and Anti-Tumor Immunity

    PubMed Central

    Anel, Alberto; Aguiló, Juan I.; Catalán, Elena; Garaude, Johan; Rathore, Moeez G.; Pardo, Julián; Villalba, Martín

    2012-01-01

    The protein kinase C-θ (PKCθ), which is essential for T cell function and survival, is also required for efficient anti-tumor immune surveillance. Natural killer (NK) cells, which express PKCθ, play a prominent role in this process, mainly by elimination of tumor cells with reduced or absent major histocompatibility complex class-I (MHC-I) expression. This justifies the increased interest of the use of activated NK cells in anti-tumor immunotherapy in the clinic. The in vivo development of MHC-I-deficient tumors is much favored in PKCθ−/− mice compared with wild-type mice. Recent data offer some clues on the mechanism that could explain the important role of PKCθ in NK cell-mediated anti-tumor immune surveillance: some studies show that PKCθ is implicated in signal transduction and anti-tumoral activity of NK cells elicited by interleukin (IL)-12 or IL-15, while others show that it is implicated in NK cell functional activation mediated by certain killer-activating receptors. Alternatively, the possibility that PKCθ is involved in NK cell degranulation is discussed, since recent data indicate that it is implicated in microtubule-organizing center polarization to the immune synapse in CD4+ T cells. The implication of PKC isoforms in degranulation has been more extensively studied in cytotoxic T lymphocyte, and these studies will be also summarized. PMID:22783260

  14. Innate-like behavior of human invariant natural killer T cells during herpes simplex virus infection.

    PubMed

    Novakova, Lucie; Nevoralova, Zuzana; Novak, Jan

    2012-01-01

    Invariant natural killer T (iNKT) cells, CD1d restricted T cells, are involved in the immune responses against various infection agents. Here we describe their behavior during reactivation of human herpes simplex virus (HSV). iNKT cells exhibit only discrete changes, which however, reached statistically significant level due to the relatively large patient group. Higher percentage of iNKT cells express NKG2D. iNKT cells down-regulate NKG2A in a subset of patients. Finally, iNKT cells enhance their capacity to produce TNF-α. Our data suggests that iNKT cells are involved in the immune response against HSV and contribute mainly to its early, innate phase. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Expression of activating natural killer-cell receptors is a hallmark of the innate-like T-cell neoplasm in peripheral T-cell lymphomas.

    PubMed

    Uemura, Yu; Isobe, Yasushi; Uchida, Akiko; Asano, Junko; Nishio, Yuji; Sakai, Hirotaka; Hoshikawa, Masahiro; Takagi, Masayuki; Nakamura, Naoya; Miura, Ikuo

    2018-04-01

    Peripheral T- or natural killer (NK)-cell lymphomas are rare and difficult-to-recognize diseases. It remains arduous to distinguish between NK cell- and cytotoxic T-lymphocyte-derived lymphomas through routine histological evaluation. To clarify the cells of origin, we focused on NK-cell receptors and examined the expression using immunohistochemistry in 22 cases with T- and NK-cell neoplasms comprising angioimmunoblastic T-cell lymphoma, anaplastic lymphoma kinase (ALK)-positive and -negative anaplastic large-cell lymphomas, extranodal NK/T-cell lymphoma, nasal type, monomorphic epitheliotropic intestinal T-cell lymphoma, aggressive NK-cell leukemia, and other peripheral T-cell lymphomas. Inhibitory receptor leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1) was detected in 14 (64%) cases, whereas activating receptors DNAM1, NKp46, and NKG2D were expressed in 7 (32%), 9 (41%), and 5 (23%) cases, respectively. Although LILRB1 was detected regardless of the disease entity, the activating NK-cell receptors were expressed predominantly in TIA-1-positive neoplasms (DNAM1, 49%; NKp46, 69%; and NKG2D, 38%). In addition, NKp46 and NKG2D were detected only in NK-cell neoplasms and cytotoxic T-lymphocyte-derived lymphomas including monomorphic epitheliotropic intestinal T-cell lymphoma. One Epstein-Barr virus-harboring cytotoxic T-lymphocyte-derived lymphoma mimicking extranodal NK/T-cell lymphoma, nasal type lacked these NK-cell receptors, indicating different cell origin from NK and innate-like T cells. Furthermore, NKG2D expression showed a negative impact on survival among the 22 examined cases, which mainly received the standard chemotherapy regimen (log-rank test, P = .024). We propose that the presence of activating NK-cell receptors may provide new insights into understanding peripheral T-cell lymphomas and characterizing them as innate-like T-cell neoplasm. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on

  16. Circulating natural killer T cells in patients with asthma.

    PubMed

    Ikegami, Yasuhiko; Yokoyama, Akihito; Haruta, Yoshinori; Hiyama, Keiko; Kohno, Nobuoki

    2004-01-01

    Recent studies suggest that therapies targeted at depletion or limiting of natural killer (NK) T cells may be a possible strategy for the treatment of asthma. In the present study, we measured the number of circulating V alpha24+ NKT cells in 32 asthmatic patients and compared these patients with 29 nonatopic healthy controls. We investigated the relationships between NKT cell number and clinical variables such as the number of eosinophils, the circulating level of IgE, and the severity of asthma. In addition, we also investigated the ability of NKT cells to proliferate in response to alpha-galactosyl ceramide (alpha-GalCer) in vitro. The V alpha24+ NKT cell counts of asthmatic patients were significantly lower than those of healthy controls. There were no significant differences observed in asthmatic patients among the subgroups in terms of atopic status and severity. There was no significant correlation between the number of NKT cells and clinical variables. The proliferative response to alpha-GalCer of the patients and controls was not significantly different, indicating no intrinsic proliferative defect of NKT cells in asthma. These results suggest that the number of circulating NKT cells was already decreased in patients with asthma. Further study, such as the evaluation of lung NKT cells, will be needed to determine the role of NKT cells in patients with asthma.

  17. Invariant Natural Killer T Cells Are Pathogenic in the HLA-DR4-Transgenic Humanized Mouse Model of Toxic Shock Syndrome and Can Be Targeted to Reduce Morbidity.

    PubMed

    Szabo, Peter A; Rudak, Patrick T; Choi, Joshua; Xu, Stacey X; Schaub, Robert; Singh, Bhagirath; McCormick, John K; Haeryfar, S M Mansour

    2017-03-01

    During toxic shock syndrome (TSS), bacterial superantigens trigger a polyclonal T -cell response leading to a potentially catastrophic "cytokine storm". Whether innate-like invariant natural killer T (iNKT) cells, with remarkable immunomodulatory properties, participate in TSS is unclear. Using genetic and cell depletion approaches, we generated iNKT cell-deficient, superantigen-sensitive HLA-DR4-transgenic (DR4tg) mice, which were compared with their iNKT-sufficient counterparts for responsiveness to staphylococcal enterotoxin B (SEB). Both approaches indicate that iNKT cells are pathogenic in TSS. Importantly, treating DR4tg mice with a TH2-polarizing glycolipid agonist of iNKT cells reduced SEB-inflicted morbidity/mortality. Therefore, iNKT cells may constitute an attractive therapeutic target in superantigen-mediated illnesses. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  18. Intrinsic hyporesponsiveness of invariant natural killer T cells precedes the onset of lupus

    PubMed Central

    Yang, J-Q; Kim, P J; Halder, R C; Singh, R R

    2013-01-01

    Patients with systemic lupus erythematosus (SLE) display reduced numbers and functions of invariant natural killer T (iNK T) cells, which are restored upon treatment with corticosteroids and rituximab. It is unclear whether the iNK T cell insufficiency is a consequence of disease or is a primary abnormality that precedes the onset of disease. To address this, we analysed iNK T cell function at different stages of disease development using the genetically lupus-susceptible NZB × NZW F1 (BWF1) model. We found that iNK T cell in-vivo cytokine responses to an iNK T cell ligand α-galactosylceramide (α-GalCer) were lower in BWF1 mice than in non-autoimmune BALB/c and major histocompatibility complex (MHC)-matched NZB × N/B10.PL F1 mice, although iNK T cell numbers in the periphery were unchanged in BWF1 mice compared to control mice. Such iNK T cell hyporesponsiveness in BWF1 mice was detected at a young age long before the animals exhibited any sign of autoimmunity. In-vivo activation of iNK T cells is known to transactivate other immune cells. Such transactivated T and B cell activation markers and/or cytokine responses were also lower in BWF1 mice than in BALB/c controls. Finally, we show that iNK T cell responses were markedly deficient in the NZB parent but not in NZW parent of BWF1 mice, suggesting that BWF1 might inherit the iNK T cell defect from NZB mice. Thus, iNK T cells are functionally insufficient in lupus-prone BWF1 mice. Such iNK T cell insufficiency precedes the onset of disease and may play a pathogenic role during early stages of disease development in SLE. PMID:23607366

  19. Green Tea Catechin Metabolites Exert Immunoregulatory Effects on CD4(+) T Cell and Natural Killer Cell Activities.

    PubMed

    Kim, Yoon Hee; Won, Yeong-Seon; Yang, Xue; Kumazoe, Motofumi; Yamashita, Shuya; Hara, Aya; Takagaki, Akiko; Goto, Keiichi; Nanjo, Fumio; Tachibana, Hirofumi

    2016-05-11

    Tea catechins, such as (-)-epigallocatechin-3-O-gallate (EGCG), have been shown to effectively enhance immune activity and prevent cancer, although the underlying mechanism is unclear. Green tea catechins are instead converted to catechin metabolites in the intestine. Here, we show that these green tea catechin metabolites enhance CD4(+) T cell activity as well as natural killer (NK) cell activity. Our data suggest that the absence of a 4'-hydroxyl on this phenyl group (B ring) is important for the effect on immune activity. In particular, 5-(3',5'-dihydroxyphenyl)-γ-valerolactone (EGC-M5), a major metabolite of EGCG, not only increased the activity of CD4(+) T cells but also enhanced the cytotoxic activity of NK cells in vivo. These data suggest that EGC-M5 might show immunostimulatory activity.

  20. Cyclosporin a inhibits T cell-mediated augmentation of mouse natural killer activity.

    PubMed

    Yanagihara, R H; Adler, W H

    1982-06-01

    Cyclosporin A (CSA) in vitro inhibited the spontaneous cytotoxic activity of mouse spleen cells against YAC target cells in a 4 hr 51Cr release assay. While natural killer (NK) cells were inhibited directly by CSA, these suppressive effects were largely reversible by coculture of effector cells for an optimal period with polyinosinic-polycytidylic acid (Poly I:C) or lipopolysaccharide (LPS). In contrast concanavalin A (Con A), in the presence of CSA, was unable to augment NK activity. The supernatant, however, of mouse spleen cells cultured with Con A was fully able to augment the NK the activity by freshly cultured spleen cells in the presence of CSA. The results indicate that CSA inhibits NK activity by two distinct mechanisms: a) a direct inactivation of NK cells and b) a suppression of production or release of an NK-activating factor from T cells, but not B cells or macrophages.

  1. Immune function in arctic mammals: Natural killer (NK) cell-like activity in polar bear, muskox and reindeer.

    PubMed

    Desforges, Jean-Pierre; Jasperse, Lindsay; Jensen, Trine Hammer; Grøndahl, Carsten; Bertelsen, Mads F; Guise, Sylvain De; Sonne, Christian; Dietz, Rune; Levin, Milton

    2018-01-01

    Natural killer (NK) cells are a vital part of the rapid and non-specific immune defense against invading pathogens and tumor cells. This study evaluated NK cell-like activity by flow cytometry for the first time in three ecologically and culturally important Arctic mammal species: polar bear (Ursus maritimus), muskox (Ovibos moschatus) and reindeer (Rangifer tarandus). NK cell-like activity for all three species was most effective against the mouse lymphoma cell line YAC-1, compared to the human leukemia cell line K562; NK cell response displayed the characteristic increase in cytotoxic activity when the effector:target cell ratio increased. Comparing NK activity between fresh and cryopreserved mouse lymphocytes revealed little to no difference in function, highlighting the applicability of cryopreserving cells in field studies. The evaluation of this important innate immune function in Arctic mammals can contribute to future population health assessments, especially as pollution-induced suppression of immune function may increase infectious disease susceptibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Early stages in the development of human T, natural killer and thymic dendritic cells.

    PubMed

    Spits, H; Blom, B; Jaleco, A C; Weijer, K; Verschuren, M C; van Dongen, J J; Heemskerk, M H; Res, P C

    1998-10-01

    T-cell development is initiated when CD34+ pluripotent stem cells or their immediate progeny leave the bone marrow to migrate to the thymus. Upon arrival in the thymus the stem cell progeny is not yet committed to the T-cell lineage as it has the capability to develop into T, natural killer (NK) and dendritic cells (DC). Primitive hematopoietic progenitor cells in the human thymus express CD34 and lack CD1a. When these progenitor cells develop into T cells they traverse a number of checkpoints. One early checkpoint is the induction of T-cell commitment, which correlates with appearance of CD1a and involves the loss of capacity to develop into NK cells and DC and the initiation of T-cell receptor (TCR) gene rearrangements. Basic helix-loop-helix transcription factors play a role in induction of T-cell commitment. CD1a+CD34+ cells develop into CD4+CD8 alpha+ beta+ cells by upregulating first CD4, followed by CD8 alpha and then CD8 beta. Selection for productive TCR beta gene rearrangements (beta selection) likely occurs in the CD4+CD8 alpha+ beta- and CD4+CD8 alpha+ beta+ populations. Although the T and NK-cell lineages are closely related to each other, NK cells can develop independently of the thymus. The fetal thymus is most likely one site of NK-cell development.

  3. Invariant natural killer T cells ameliorate murine chronic GVHD by expanding donor regulatory T cells.

    PubMed

    Du, Jing; Paz, Katelyn; Thangavelu, Govindarajan; Schneidawind, Dominik; Baker, Jeanette; Flynn, Ryan; Duramad, Omar; Feser, Colby; Panoskaltsis-Mortari, Angela; Negrin, Robert S; Blazar, Bruce R

    2017-06-08

    Chronic graft-versus-host-disease (cGVHD) can cause multiorgan system disease, typically with autoimmune-like features, resulting in high mortality and morbidity caused by treatment limitations. Invariant natural killer T cells (iNKTs), a small population characterized by expression of a semi-invariant T-cell receptor, rapidly produce copious amounts of diverse cytokines on activation that exert potent immune regulatory function. Here, we show that iNKTs are significantly reduced in a cGVHD murine model that recapitulates several aspects of autoimmunity and organ fibrosis observed in patients with cGVHD. Low iNKT infused doses effectively prevented and, importantly, reversed established cGVHD, as did third-party iNKTs. iNKTs suppressed the autoimmune response by reducing the germinal center (GC) reaction, which was associated with an increase in total Tregs and follicular Tregs (Tfr) that control the GC reaction, along with pathogenic antibody production. Treg depletion during iNKT infusions completely abolished iNKT efficacy in treating cGVHD. iNKT cell interleukin 4 production and GC migration were critical to cGVHD reversal. In vivo stimulation of iNKT cells by α-galactosyl-ceramide was effective in both preventing and treating cGVHD. Together, this study demonstrates iNKT deficiency in cGVHD mice and highlights the key role of iNKTs in regulating cGVHD pathogenesis and as a potentially novel prophylactic and therapeutic option for patients with cGVHD. © 2017 by The American Society of Hematology.

  4. The Human Natural Killer Cell Immune Synapse

    NASA Astrophysics Data System (ADS)

    Davis, Daniel M.; Chiu, Isaac; Fassett, Marlys; Cohen, George B.; Mandelboim, Ofer; Strominger, Jack L.

    1999-12-01

    Inhibitory killer Ig-like receptors (KIR) at the surface of natural killer (NK) cells induced clustering of HLA-C at the contacting surface of target cells. In this manner, inhibitory immune synapses were formed as human NK cells surveyed target cells. At target/NK cell synapses, HLA-C/KIR distributed into rings around central patches of intercellular adhesion molecule-1/lymphocyte function-associated antigen-1, the opposite orientation to mature murine T cell-activating synapses. This organization of protein was stable for at least 20 min. Cells could support multiple synapses simultaneously, and clusters of HLA-C moved as NK cells crawled over target cells. Clustering required a divalent metal cation, explaining how metal chelators inhibit KIR function. Surprisingly, however, formation of inhibitory synapses was unaffected by ATP depletion and the cytoskeletal inhibitors, colchicine and cytochalsins B and D. Clearly, supramolecular organization within plasma membranes is critical for NK cell immunosurveillance.

  5. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes.

    PubMed

    Vose, Julie; Armitage, James; Weisenburger, Dennis

    2008-09-01

    Peripheral T-cell lymphoma (PTCL) and natural killer/T-cell lymphoma (NKTCL) are rare and heterogeneous forms of non-Hodgkin's lymphoma (NHL) that, in general, are associated with a poor clinical outcome. A cohort of 1,314 cases of PTCL and NKTCL was organized from 22 centers worldwide, consisting of patients with previously untreated PTCL or NKTCL who were diagnosed between 1990 and 2002. Tissue biopsies, immunophenotypic markers, molecular genetic studies, and clinical information from consecutive patients at each site were reviewed by panels of four expert hematopathologists and classified according to the WHO classification. A diagnosis of PTCL or NKTCL was confirmed in 1,153 (87.8%) of the cases. The most common subtypes were PTCL not otherwise specified (NOS; 25.9%), angioimmunoblastic type (18.5%), NKTCL (10.4%), and adult T-cell leukemia/lymphoma (ATLL; 9.6%). Misclassification occurred in 10.4% of the cases including Hodgkin's lymphoma (3%), B-cell lymphoma (1.4%), unclassifiable lymphoma (2.8%), or a diagnosis other than lymphoma (2.3%). We found marked variation in the frequency of the various subtypes by geographic region. The use of an anthracycline-containing regimen was not associated with an improved outcome in PTCL-NOS or angioimmunoblastic type, but was associated with an improved outcome in anaplastic large-cell lymphoma, ALK positive. The WHO classification is useful for defining subtypes of PTCL and NKTCL. However, expert hematopathology review is important for accurate diagnosis. The clinical outcome for patients with most of these lymphoma subtypes is poor with standard therapies, and novel agents and new modalities are needed to improve survival.

  6. Third-party CD4+ invariant natural killer T cells protect from murine GVHD lethality

    PubMed Central

    Schneidawind, Dominik; Baker, Jeanette; Pierini, Antonio; Buechele, Corina; Luong, Richard H.; Meyer, Everett H.

    2015-01-01

    Graft-versus-host disease (GVHD) is driven by extensive activation and proliferation of alloreactive donor T cells causing significant morbidity and mortality following allogeneic hematopoietic cell transplantation (HCT). Invariant natural killer T (iNKT) cells are a potent immunoregulatory T-cell subset in both humans and mice. Here, we explored the role of adoptively transferred third-party CD4+ iNKT cells for protection from lethal GVHD in a murine model of allogeneic HCT across major histocompatibility barriers. We found that low numbers of CD4+ iNKT cells from third-party mice resulted in a significant survival benefit with retained graft-versus-tumor effects. In vivo expansion of alloreactive T cells was diminished while displaying a T helper cell 2-biased phenotype. Notably, CD4+ iNKT cells from third-party mice were as protective as CD4+ iNKT cells from donor mice although third-party CD4+ iNKT cells were rejected early after allogeneic HCT. Adoptive transfer of third-party CD4+ iNKT cells resulted in a robust expansion of donor CD4+CD25+FoxP3+ regulatory T cells (Tregs) that were required for protection from lethal GVHD. However, in vivo depletion of myeloid-derived suppressor cells abrogated both Treg expansion and protection from lethal GVHD. Despite the fact that iNKT cells are a rare cell population, the almost unlimited third-party availability and feasibility of in vitro expansion provide the basis for clinical translation. PMID:25795920

  7. Contribution of Invariant Natural Killer T Cells to Skin Wound Healing.

    PubMed

    Tanno, Hiromasa; Kawakami, Kazuyoshi; Ritsu, Masae; Kanno, Emi; Suzuki, Aiko; Kamimatsuno, Rina; Takagi, Naoyuki; Miyasaka, Tomomitsu; Ishii, Keiko; Imai, Yoshimichi; Maruyama, Ryoko; Tachi, Masahiro

    2015-12-01

    In the present study, we determined the contribution of invariant natural killer T (iNKT) cells to the skin wound healing process. In iNKT cell-deficient (Jα18KO) mice lacking iNKT cells, wound closure was significantly delayed compared with wild-type mice. Collagen deposition, expression of α-smooth muscle actin and CD31, and wound breaking strength were significantly attenuated in Jα18KO mice. The adoptive transfer of liver mononuclear cells from wild-type but not from Jα18KO or interferon (IFN)-γ gene-disrupted (IFN-γKO) mice resulted in the reversal of this impaired wound healing in Jα18KO mice. IFN-γ expression was induced in the wounded tissues, which was significantly decreased at 6, 12, and 24 hours, but increased on day 3 after wounding in Jα18KO mice. The main source of the late-phase IFN-γ production in Jα18KO mice were neutrophils rather than NK cells and T cells. Administration of α-galactosylceramide, an activator of iNKT cells, resulted in the acceleration of wound healing on day 3 in wild-type mice. This effect was not observed in IFN-γKO mice. These results indicate that iNKT cells play important roles in wound healing. The iNKT cell-induced IFN-γ production may regulate the wound healing process in the early phase. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Regulatory T, natural killer T and γδ T cells in multiple sclerosis and chronic fatigue syndrome/myalgic encephalomyelitis: a comparison.

    PubMed

    Ramos, Sandra; Brenu, Ekua; Broadley, Simon; Kwiatek, Richard; Ng, Jennifer; Nguyen, Thao; Freeman, Susan; Staines, Donald; Marshall-Gradisnik, Sonya

    2016-12-01

    Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME), and Multiple Sclerosis (MS) may share some similarities in relation to reduced NK cell activity. It is likely that other cells such as regulatory T (Tregs), invariant Natural Killer T (iNKT) and gamma delta T (γδ T) cells may also be dysregulated in CFS/ME and MS. To evaluate and compare specific immune regulatory cells of patients with CFS/ME, patients with MS and healthy controls. Sixty three volunteers were included in this study: 24 were CFS/ME patients, 11 were MS patients and 27 were healthy controls. Blood samples were obtained from all participants for flow cytometry analysis of iNKT cells, Tregs and γδ T cell phenotypes. We observed a significant increase in Tregs in the CFS/ME group (p≤0.05) compared to the healthy control group. Total γδ and γδ2 T cells were significantly reduced in MS patients in comparison with the healthy control group. Conversely, CD4+iNKT percentage of iNKT, was significantly increased in the CFS/ME group compared with healthy controls and the double-negative iNKT percentage of iNKT significantly decreased compared with the healthy control group. This study has not identified any immunological disturbances that are common in both MS and CFS/ME patients. However, the differential expression of cell types between the conditions investigated suggests different pathways of disease. These differences need to be explored in further studies.

  9. Induction of micronuclei and apoptosis in natural killer cells compared to T lymphocytes after gamma-irradiation.

    PubMed

    Louagie, H; Philippé, J; Vral, A; Cornelissen, M; Thierens, H; De Ridder, L

    1998-02-01

    To investigate the chromosomal damage caused by gamma-irradiation in T lymphocytes and natural killer (NK) cells and compare this with apoptosis induction in both lymphocyte subsets. Apoptosis induction by gamma-irradiation in T lymphocytes and NK cells was quantified using the annexin V flow cytometric assay. The cytokinesis-block micronucleus (MN) assay was used to evaluate the induced cytogenetic damage. For the MN assays on NK cells, gamma-irradiated peripheral blood mononuclear cells were cultured and stimulated with interleukin 15 (IL-15). Afterwards the NK cells (characterized by the CD3-/CD56+ phenotype) were separated with the FACSort flow cytometer and the number of MN in the sorted binuclear cells was scored. Doses of 1 and 2 Gy gamma-irradiation were applied. Higher numbers of MN in NK cells were found compared with the MN yield in T lymphocytes. In contrast, NK cells were less than T lymphocytes prone to apoptosis after gamma-irradiation. The results support the view that cytogenetic damage and apoptosis after gamma-irradiation are not necessarily correlated.

  10. Invariant Natural Killer T Cells are Reduced in Hereditary Hemochromatosis Patients.

    PubMed

    Maia, M L; Pereira, C S; Melo, G; Pinheiro, I; Exley, M A; Porto, G; Macedo, M F

    2015-01-01

    Invariant natural killer T (iNKT) cells are CD1d restricted-T cells that react to lipid antigens. iNKT cells were shown to be important in infection, autoimmunity and tumor surveillance. Alterations in the number and function of these cells were described in several pathological conditions including autoimmune and/or liver diseases. CD1d is critical for antigen presentation to iNKT cells, and its expression is increased in liver diseases. The liver is the major organ affected in Hereditary Hemochromatosis (HH), an autosomal recessive disorder caused by excessive iron absorption. Herein, we describe the study of iNKT cells of HH patients. Twenty-eight HH patients and 24 control subjects from Santo António Hospital, Porto, were included in this study. Patient's iron biochemical parameters (serum transferrin saturation and ferritin levels) and the liver function marker alanine transaminase (ALT) were determined at the time of study. Peripheral blood iNKT cells were analyzed by flow cytometry using an anti-CD3 antibody and the CD1d tetramer loaded with PBS57. We found a decrease in the percentage and number of circulating iNKT cells from HH patients when compared with control population independently of age. iNKT cell defects were more pronounced in untreated patients, relating with serum ferritin and transferrin saturation levels. No correlation was found with ALT, a marker of active liver dysfunction. Altogether, our results demonstrate that HH patients have reduced numbers of iNKT cells and that these are influenced by iron overload.

  11. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system.

    PubMed

    Montalvillo, Enrique; Garrote, José Antonio; Bernardo, David; Arranz, Eduardo

    2014-05-01

    The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity.Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions.

  12. Anti-tumor effects of suberoylanilide hydroxamic acid on Epstein–Barr virus-associated T cell and natural killer cell lymphoma

    PubMed Central

    Siddiquey, Mohammed NA; Nakagawa, Hikaru; Iwata, Seiko; Kanazawa, Tetsuhiro; Suzuki, Michio; Imadome, Ken-Ichi; Fujiwara, Shigeyoshi; Goshima, Fumi; Murata, Takayuki; Kimura, Hiroshi

    2014-01-01

    The ubiquitous Epstein–Barr virus (EBV) infects not only B cells but also T cells and natural killer (NK) cells and is associated with various lymphoid malignancies. Recent studies have reported that histone deacetylase (HDAC) inhibitors exert anticancer effects against various tumor cells. In the present study, we have evaluated both the in vitro and in vivo effects of suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor, on EBV-positive and EBV-negative T and NK lymphoma cells. Several EBV-positive and EBV-negative T and NK cell lines were treated with various concentrations of SAHA. SAHA suppressed the proliferation of T and NK cell lines, although no significant difference was observed between EBV-positive and EBV-negative cell lines. SAHA induced apoptosis and/or cell cycle arrest in several T and NK cell lines. In addition, SAHA increased the expression of EBV-lytic genes and decreased the expression of EBV-latent genes. Next, EBV-positive NK cell lymphoma cells were subcutaneously inoculated into severely immunodeficient NOD/Shi-scid/IL-2Rγnull mice, and then SAHA was administered intraperitoneally. SAHA inhibited tumor progression and metastasis in the murine xenograft model. SAHA displayed a marked suppressive effect against EBV-associated T and NK cell lymphomas through either induction of apoptosis or cell cycle arrest, and may represent an alternative treatment option. PMID:24712440

  13. New Directions for Natural Killer T Cells in the Immunotherapy of Cancer

    PubMed Central

    Teyton, Luc

    2017-01-01

    Natural killer T (NKT) cells have been placed at the interface between innate and adaptive immunity by a long series of experiments that convincingly showed that beyond cytokine secretion and NK cell recruitment, NKT cells were coordinating dendritic cell and B cell maturation through direct membrane contacts and initiate productive responses. As such, NKT cells are the cellular adjuvant of many immune reactions and have functions that go much beyond what their name encapsulates. In addition, the initial discovery of the ligands of NKT cells is deeply linked to cancer biology and therapy. However, for a host of reasons, animal models in which agonists of NKT cells were used did not translate well to human cancers. A systematic reassessment of NKT cells role in tumorigenesis, especially spontaneous one, is now accessible using single cell analysis technologies both in mouse and man, and should be taken advantage of. Similarly, the migration, localization, phenotype of NKT cells following induced expansion after injection of an agonist can be examined at the single cell level. This technological revolution will help evaluate where and how NKT cells can be used in cancer. PMID:29209309

  14. Extranodal natural killer/T-cell lymphoma: advances in the management.

    PubMed

    Jaccard, Arnaud; Hermine, Olivier

    2011-09-01

    Extranodal natural killer (NK)/T-cell lymphoma, nasal-type is a highly aggressive disease more frequent in Asia than in Western countries. There is no consensus treatment. The outcome depends on disease stage. Localized NK/T-cell lymphomas often respond to radiotherapy. In contrast, patients who have extensive disease or who relapse after radiotherapy have a very poor prognosis. Overall, long-term survival in these lymphomas tends to be inferior to that for other aggressive lymphomas. This review focuses on the new management modalities in light of advances in risk stratification, patient monitoring and treatment strategies. Many parameters have been reported to correlate with prognosis and new staging systems have been elaborated. Detecting Epstein-Barr virus (EBV) in the bone marrow is important for staging and measuring EBV DNA in the serum improved monitoring response to therapy. Radiation modalities have been precised and new strategies combining radiation and chemotherapy have been proposed for patients with localized disease. The particular efficacy of L-asparaginase in this disease has been confirmed and L-asparaginase-based regimens have been studied in prospective trials for patients with refractory, relapsing or disseminated disease with good results. Laboratory studies may point the way toward new therapeutic approaches. Early-stage disease is treated by involved-field radiotherapy with adjuvant chemotherapy. L-Asparaginase-containing regimens are the mainstay of treatment for advanced or disseminated disease. The role of targeted therapies, autologous and allogeneic haematopoietic stem cell transplantation is yet to be clearly defined.

  15. Effects of first-line chemotherapy on natural killer cells in adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma.

    PubMed

    Ogura, Michinori; Ishida, Takashi; Tsukasaki, Kunihiro; Takahashi, Takeshi; Utsunomiya, Atae

    2016-07-01

    Natural killer (NK) cells are well known to be the most important effector cells mediating antibody-dependent cellular cytotoxicity (ADCC) which is an important mechanism of action of antibody drugs. We evaluated the effects of chemotherapy on the cell number and activity of NK cells from patients who received the vincristine-cyclophosphamide-doxorubicin-prednisone (VCAP), doxorubicin-ranimustine-prednisone (AMP), and vindesine-etoposide-carboplatin-prednisone (VECP) (mLSG15) or mLSG15-like (-L) regimen, which is one of the standard of cares for newly diagnosed adult T-cell leukemia-lymphoma (ATL), or the cyclophosphamide-doxorubicin-vincristine-prednisone (CHOP) or CHOP-L regimen which is another standard of care for ATL and peripheral T-cell lymphoma (PTCL). The number of lymphocytes and NK cells, and NK cell activity, were assessed using flow cytometry and a (51)Cr release assay, respectively. A total of 26 patients with untreated ATL or PTCL were enrolled, and blood samples from 25 patients were evaluable. NK cell number in ATL decreased after mLSG15/-L treatment, and the degree of decrease in the NK cell number was more prominent just before VECP therapy (Day 15-17 of each cycle) than just before VCAP therapy (Day 1 of each cycle). The NK cell number in ATL after CHOP/-L treatment also decreased. Interestingly, the NK cell activity showed a tendency to increase after the treatment. NK cell number in PTCL did not decrease by CHOP/-L regimen, but the activity was slightly decreased after the treatment. These results indicate that the effects of chemotherapeutic agents on NK cells vary according to the disease type and intensity of chemotherapy.

  16. Hepatocellular apoptosis associated with cytotoxic T/natural killer-cell infiltration in chronic active EBV infection.

    PubMed

    Nomura, Yuko; Kimura, Hiroshi; Karube, Kennosuke; Yoshida, Shiro; Sugita, Yasuo; Niino, Daisuke; Shimizu, Kei; Kimura, Yoshizo; Aoki, Ryosuke; Kiyasu, Junichi; Takeuchi, Masanori; Hashikawa, Keiko; Hirose, Shinichi; Ohshima, Koichi

    2009-07-01

    The aim of the present study was to identify the mechanism of hepatocellular apoptosis induced by EBV-infected cytotoxic T/natural killer (NK) cells in chronic active EBV infection (CAEBV). Eight patients with CAEBV were studied, and infected T-cell expansion and NK-cell expansion were detected in four patients each. Biopsy or necropsy was performed on lymph node, liver, or spleen, and each specimen was subjected to immunohistochemical double staining of CD3 plus caspase-3 with the addition of cytotoxic markers of T-cell restricted intracellular antigen-1 (TIA-1), perforin, and granzyme B, as well as EBV in situ hybridization (EBV-ISH). In the liver, some of the infiltrating CD3-positive lymphocytes stained positively for EBV-ISH and cytotoxic markers. Double staining of CD3 plus caspase-3 indicated caspase-3 positive hepatocytes with apoptotic features, accompanied by extensive infiltration of CD3-positive cells, which were directly attached to the apoptotic caspase-3 positive hepatocytes. In contrast, far fewer cells stained positive for caspase-3 in lymph node and spleen than in liver. The present findings suggest that in patients with CAEBV, cytotoxic T/NK cells may directly induce hepatocytes to undergo apoptosis more frequently than they do cells in other organs of the reticulo-endothelial system.

  17. The role of missing killer cell immunoglobulin-like receptor ligands in T cell replete peripheral blood stem cell transplantation from HLA-identical siblings.

    PubMed

    Clausen, Johannes; Kircher, Brigitte; Auberger, Jutta; Schumacher, Petra; Ulmer, Hanno; Hetzenauer, Gabriele; Wolf, Dominik; Gastl, Günther; Nachbaur, David

    2010-02-01

    The contribution of natural killer (NK) cells to graft-versus-malignancy (GVM) effects following hematopoietic stem cell transplantation (HSCT) remains uncertain, particularly in the HLA-identical setting. A model considering missing HLA ligands to the donor's inhibitory killer cell immunoglobulin-like receptor (KIR), termed the missing KIR ligand model, has been established in T cell depleted bone marrow transplantation (BMT), but lacks validity in other cohorts with different treatment characteristics. We hypothesized that the impact of missing KIR ligands on relapse-free survival (RFS) and overall survival (OS) in T cell replete peripheral blood SCT (PBSCT) differs from that in the T cell depleted BMT setting, and retrospectively evaluated 100 consecutive, HLA-identical sibling transplantations for hematologic malignancies. In addition to KIR ligand status, we considered the donors' activating KIRs and grafted NK, T, and CD34(+) cell doses. Our findings demonstrate noninferiority for OS (P = .005) and RFS (P = .002) for the heterozygous HLA-C group KIR ligand status (C1/2; n = 47) compared with patients missing either C1 or C2 (n = 53). Similarly, OS (P = .031) and RFS (P = .034) of Bw4-positive patients was noninferior to that of patients missing a Bw4 ligand to KIR3DL1. By multivariate analysis, C1/2 heterozygous patients had a favorable risk ratio (RR) for relapse (RR = 0.28; P = .003), RFS (RR = 0.56; P = .046), and acute graft-versus-host disease grade II-IV (RR = 0.36; P = .05). Following reduced-intensity conditioning (RIC), but not standard-intensity conditioning, myeloablative (MA) transplantation, a grafted NK cell dose above the median (3.4 x 10(7)/kg) was associated with a lower risk of relapse (RR = 0.57; P = .003) and improved survival (RR = 0.78; P = .03). Overall, our findings support a role for NK alloreactivity in HLA-identical HSCT, but argue against a favorable impact of missing KIR ligands in the given setting. We conclude that the mechanism

  18. Tofacitinib induces G1 cell-cycle arrest and inhibits tumor growth in Epstein-Barr virus-associated T and natural killer cell lymphoma cells

    PubMed Central

    Ando, Shotaro; Kawada, Jun-ichi; Watanabe, Takahiro; Suzuki, Michio; Sato, Yoshitaka; Torii, Yuka; Asai, Masato; Goshima, Fumi; Murata, Takayuki; Shimizu, Norio; Ito, Yoshinori; Kimura, Hiroshi

    2016-01-01

    Epstein-Barr virus (EBV) infects not only B cells, but also T cells and natural killer (NK) cells, and is associated with T or NK cell lymphoma. These lymphoid malignancies are refractory to conventional chemotherapy. We examined the activation of the JAK3/STAT5 pathway in EBV-positive and -negative B, T and NK cell lines and in cell samples from patients with EBV-associated T cell lymphoma. We then evaluated the antitumor effects of the selective JAK3 inhibitor, tofacitinib, against these cell lines in vitro and in a murine xenograft model. We found that all EBV-positive T and NK cell lines and patient samples tested displayed activation of the JAK3/STAT5 pathway. Treatment of these cell lines with tofacitinib reduced the levels of phospho-STAT5, suppressed proliferation, induced G1 cell-cycle arrest and decreased EBV LMP1 and EBNA1 expression. An EBV-negative NK cell line was also sensitive to tofacitinib, whereas an EBV-infected NK cell line was more sensitive to tofacitinib than its parental line. Tofacitinib significantly inhibited the growth of established tumors in NOG mice. These findings suggest that tofacitinib may represent a useful therapeutic agent for patients with EBV-associated T and NK cell lymphoma. PMID:27732937

  19. Tofacitinib induces G1 cell-cycle arrest and inhibits tumor growth in Epstein-Barr virus-associated T and natural killer cell lymphoma cells.

    PubMed

    Ando, Shotaro; Kawada, Jun-Ichi; Watanabe, Takahiro; Suzuki, Michio; Sato, Yoshitaka; Torii, Yuka; Asai, Masato; Goshima, Fumi; Murata, Takayuki; Shimizu, Norio; Ito, Yoshinori; Kimura, Hiroshi

    2016-11-22

    Epstein-Barr virus (EBV) infects not only B cells, but also T cells and natural killer (NK) cells, and is associated with T or NK cell lymphoma. These lymphoid malignancies are refractory to conventional chemotherapy. We examined the activation of the JAK3/STAT5 pathway in EBV-positive and -negative B, T and NK cell lines and in cell samples from patients with EBV-associated T cell lymphoma. We then evaluated the antitumor effects of the selective JAK3 inhibitor, tofacitinib, against these cell lines in vitro and in a murine xenograft model. We found that all EBV-positive T and NK cell lines and patient samples tested displayed activation of the JAK3/STAT5 pathway. Treatment of these cell lines with tofacitinib reduced the levels of phospho-STAT5, suppressed proliferation, induced G1 cell-cycle arrest and decreased EBV LMP1 and EBNA1 expression. An EBV-negative NK cell line was also sensitive to tofacitinib, whereas an EBV-infected NK cell line was more sensitive to tofacitinib than its parental line. Tofacitinib significantly inhibited the growth of established tumors in NOG mice. These findings suggest that tofacitinib may represent a useful therapeutic agent for patients with EBV-associated T and NK cell lymphoma.

  20. Peripheral killer cells do not differentiate between asthma patients with or without fixed airway obstruction.

    PubMed

    Tubby, Carolyn; Negm, Ola H; Harrison, Timothy; Tighe, Patrick J; Todd, Ian; Fairclough, Lucy C

    2017-06-01

    The three main types of killer cells - CD8 + T cells, NK cells and NKT cells - have been linked to asthma and chronic obstructive pulmonary disease (COPD). However, their role in a small subset of asthma patients displaying fixed airway obstruction (FAO), similar to that seen in COPD, has not been explored. The objective of the present study was to investigate killer cell numbers, phenotype and function in peripheral blood from asthma patients with FAO, asthma patients without FAO, and healthy individuals. Peripheral CD8 + T cells (CD8 + CD3 + CD56 - ), NK cells (CD56 + CD3 - ) and NKT-like cells (CD56 + CD3 + ) of 14 asthma patients with FAO (post-bronchodilator FEV/FVC <0.7, despite clinician-optimised treatment), 7 asthma patients without FAO (post-bronchodilator FEV/FVC ≥ 0.7), and 9 healthy individuals were studied. No significant differences were seen between the number, receptor expression, MAPK signalling molecule expression, cytotoxic mediator expression, and functional cytotoxicity of peripheral killer cells from asthma patients with FAO, asthma patients without FAO and healthy individuals. Peripheral killer cell numbers or functions do not differentiate between asthma patients with or without fixed airway obstruction.

  1. Human Invariant Natural Killer T cells possess immune-modulating functions during Aspergillus infection.

    PubMed

    Beitzen-Heineke, Antonia; Bouzani, Maria; Schmitt, Anna-Lena; Kurzai, Oliver; Hünniger, Kerstin; Einsele, Hermann; Loeffler, Juergen

    2016-02-01

    Aspergillus fumigatus is the most common cause for invasive fungal infections, a disease associated with high mortality in immune-compromised patients. CD1d-restricted invariant natural killer T (iNKT) cells compose a small subset of T cells known to impact the immune response toward various infectious pathogens. To investigate the role of human iNKT cells during A. fumigatus infection, we studied their activation as determined by CD69 expression and cytokine production in response to distinct fungal morphotypes in the presence of different CD1d(+) antigen presenting cells using flow cytometry and multiplex enzyme-linked immunosorbent assay (ELISA). Among CD1d(+) subpopulations, CD1d(+)CD1c(+) mDCs showed the highest potential to activate iNKT cells on a per cell basis. The presence of A. fumigatus decreased this effect of CD1d(+)CD1c(+) mDCs on iNKT cells and led to reduced secretion of TNF-α, G-CSF and RANTES. Production of other Th1 and Th2 cytokines was not affected by the fungus, suggesting an immune-modulating function for human iNKT cells during A. fumigatus infection. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Generation of Novel Traj18-Deficient Mice Lacking Vα14 Natural Killer T Cells with an Undisturbed T Cell Receptor α-Chain Repertoire.

    PubMed

    Dashtsoodol, Nyambayar; Shigeura, Tomokuni; Ozawa, Ritsuko; Harada, Michishige; Kojo, Satoshi; Watanabe, Takashi; Koseki, Haruhiko; Nakayama, Manabu; Ohara, Osamu; Taniguchi, Masaru

    2016-01-01

    Invariant Vα14 natural killer T (NKT) cells, characterized by the expression of a single invariant T cell receptor (TCR) α chain encoded by rearranged Trav11 (Vα14)-Traj18 (Jα18) gene segments in mice, and TRAV10 (Vα24)-TRAJ18 (Jα18) in humans, mediate adjuvant effects to activate various effector cell types in both innate and adaptive immune systems that facilitates the potent antitumor effects. It was recently reported that the Jα18-deficient mouse described by our group in 1997 harbors perturbed TCRα repertoire, which raised concerns regarding the validity of some of the experimental conclusions that have been made using this mouse line. To resolve this concern, we generated a novel Traj18-deficient mouse line by specifically targeting the Traj18 gene segment using Cre-Lox approach. Here we showed the newly generated Traj18-deficient mouse has, apart from the absence of Traj18, an undisturbed TCRα chain repertoire by using next generation sequencing and by detecting normal generation of Vα19Jα33 expressing mucosal associated invariant T cells, whose development was abrogated in the originally described Jα18-KO mice. We also demonstrated here the definitive requirement for NKT cells in the protection against tumors and their potent adjuvant effects on antigen-specific CD8 T cells.

  3. Deficient natural killer cell function in preeclampsia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alanen, A.; Lassila, O.

    1982-11-01

    Natural killer cell activity of peripheral blood lymphocytes was measured against K-562 target cells with a 4-hour /sup 51/Cr release assay in 15 primigravid women with preeclamptic symptoms. Nineteen primigravid women with an uncomplicated pregnancy and 18 nonpregnant women served as controls. The natural killer cell activity of preeclamptic women was observed to be significantly lower than that of both control groups. Natural killer cells in preeclamptic women responded normally to augmentation caused by interferon. These findings give further evidence for the participation of the maternal immune system in this pregnancy disorder.

  4. CAR-T cells are serial killers.

    PubMed

    Davenport, Alexander J; Jenkins, Misty R; Ritchie, David S; Prince, H Miles; Trapani, Joseph A; Kershaw, Michael H; Darcy, Phillip K; Neeson, Paul J

    2015-12-01

    Chimeric antigen receptor (CAR) T cells have enjoyed unprecedented clinical success against haematological malignancies in recent years. However, several aspects of CAR T cell biology remain unknown. We recently compared CAR and T cell receptor (TCR)-based killing in the same effector cell and showed that CAR T cells can not only efficiently kill single tumor targets, they can also kill multiple tumor targets in a sequential manner. Single and serial killing events were not sustained long term due to CAR down-regulation after 20 hours.

  5. CAR-T cells are serial killers

    PubMed Central

    Davenport, Alexander J; Jenkins, Misty R; Ritchie, David S; Prince, H Miles; Trapani, Joseph A; Kershaw, Michael H; Darcy, Phillip K; Neeson, Paul J

    2015-01-01

    Chimeric antigen receptor (CAR) T cells have enjoyed unprecedented clinical success against haematological malignancies in recent years. However, several aspects of CAR T cell biology remain unknown. We recently compared CAR and T cell receptor (TCR)-based killing in the same effector cell and showed that CAR T cells can not only efficiently kill single tumor targets, they can also kill multiple tumor targets in a sequential manner. Single and serial killing events were not sustained long term due to CAR down-regulation after 20 hours. PMID:26587330

  6. Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11.

    PubMed

    Montoya, Carlos J; Pollard, David; Martinson, Jeffrey; Kumari, Kumud; Wasserfall, Clive; Mulder, Candice B; Rugeles, Maria T; Atkinson, Mark A; Landay, Alan L; Wilson, S Brian

    2007-09-01

    Identification of human CD1d-restricted T-cell receptor (TCR)-invariant natural killer T (iNKT) cells has been dependent on utilizing combinations of monoclonal antibodies or CD1d tetramers, which do not allow for the most specific analysis of this T-cell subpopulation. A novel monoclonal antibody (clone 6B11), specific for the invariant CDR3 loop of human canonical Valpha24Jalpha18 TCR alpha chain, was developed and used to specifically characterize iNKT cells. In healthy individuals studied for up to 1 year, a wide but stable frequency of circulating iNKT cells (range: 0.01-0.92%) was observed, with no differences in frequency by gender. Four stable iNKT cell subsets were characterized in peripheral blood based on the expression of CD4 and CD8, with CD8(+) iNKT cells being a phenotypic and functionally different subset from CD4(+) and double negative iNKT cells; in particular, LAG-3 was preferentially expressed on CD8(+) iNKT cells. In addition, a strong negative linear correlation between the frequency of total iNKT cells and percentage of the CD4(+) subset was observed. In terms of their potential association with disease, patients at risk for type 1 diabetes had significantly expanded frequencies of double negative iNKT cells when compared to matched controls and first-degree relatives. Moreover, peripheral blood CD4(+) iNKT cells were the highest producers of interleukin-4, while the production of interferon-gamma and tumour necrosis factor-alpha was similar amongst all iNKT cell subsets. These differences in iNKT cell subsets suggest that in humans the relative ratio of iNKT cell subsets may influence susceptibility vs. resistance to immune-mediated diseases.

  7. Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11

    PubMed Central

    Montoya, Carlos J; Pollard, David; Martinson, Jeffrey; Kumari, Kumud; Wasserfall, Clive; Mulder, Candice B; Rugeles, Maria T; Atkinson, Mark A; Landay, Alan L; Wilson, S Brian

    2007-01-01

    Identification of human CD1d-restricted T-cell receptor (TCR)-invariant natural killer T (iNKT) cells has been dependent on utilizing combinations of monoclonal antibodies or CD1d tetramers, which do not allow for the most specific analysis of this T-cell subpopulation. A novel monoclonal antibody (clone 6B11), specific for the invariant CDR3 loop of human canonical Vα24Jα18 TCR α chain, was developed and used to specifically characterize iNKT cells. In healthy individuals studied for up to 1 year, a wide but stable frequency of circulating iNKT cells (range: 0·01–0·92%) was observed, with no differences in frequency by gender. Four stable iNKT cell subsets were characterized in peripheral blood based on the expression of CD4 and CD8, with CD8+ iNKT cells being a phenotypic and functionally different subset from CD4+ and double negative iNKT cells; in particular, LAG-3 was preferentially expressed on CD8+ iNKT cells. In addition, a strong negative linear correlation between the frequency of total iNKT cells and percentage of the CD4+ subset was observed. In terms of their potential association with disease, patients at risk for type 1 diabetes had significantly expanded frequencies of double negative iNKT cells when compared to matched controls and first-degree relatives. Moreover, peripheral blood CD4+ iNKT cells were the highest producers of interleukin-4, while the production of interferon-γ and tumour necrosis factor-α was similar amongst all iNKT cell subsets. These differences in iNKT cell subsets suggest that in humans the relative ratio of iNKT cell subsets may influence susceptibility vs. resistance to immune-mediated diseases. PMID:17662044

  8. Inhibition of T Helper Cell Type 2 Cell Differentiation and Immunoglobulin E Response by Ligand-Activated Vα14 Natural Killer T Cells

    PubMed Central

    Cui, Junqing; Watanabe, Naohiro; Kawano, Tetsu; Yamashita, Masakatsu; Kamata, Tohru; Shimizu, Chiori; Kimura, Motoko; Shimizu, Eiko; Koike, Jyunzo; Koseki, Haruhiko; Tanaka, Yujiro; Taniguchi, Masaru; Nakayama, Toshinori

    1999-01-01

    Murine Vα14 natural killer T (NKT) cells are thought to play a crucial role in various immune responses, including infectious, allergic, and autoimmune diseases. Because Vα14 NKT cells produce large amounts of both interleukin (IL)-4 and interferon (IFN)-γ upon in vivo stimulation with a specific ligand, α-galactosylceramide (α-GalCer), or after treatment with anti-CD3 antibody, a regulatory role on helper T (Th) cell differentiation has been proposed for these cells. However, the identity of the cytokine produced by Vα14 NKT cells that play a dominant role on the Th cell differentiation still remains controversial. Here, we demonstrate by using Vα14 NKT-deficient mice that Vα14 NKT cells are dispensable for the induction of antigen-specific immunoglobulin (Ig)E responses induced by ovalbumin immunization or Nippostrongylus brasiliensis infection. However, upon in vivo activation with α-GalCer, Vα14 NKT cells are found to suppress antigen-specific IgE production. The suppression appeared to be IgE specific, and was not detected in either Vα14 NKT– or IFN-γ–deficient mice. Consistent with these results, we also found that ligand-activated Vα14 NKT cells inhibited Th2 cell differentiation in an in vitro induction culture system. Thus, it is likely that activated Vα14 NKT cells exert a potent inhibitory effect on Th2 cell differentiation and subsequent IgE production by producing a large amount of IFN-γ. In marked contrast, our studies have revealed that IL-4 produced by Vα14 NKT cells has only a minor effect on Th2 cell differentiation. PMID:10499917

  9. Frequency of γδ T Cells and Invariant Natural Killer T Cells in Helicobacter Pylori-infected Patients with Peptic Ulcer and Gastric Cancer.

    PubMed

    Shadman, Mojtaba; Rajabian, Zeinab; Ajami, Abolghasem; Hussein-Nattaj, Hadi; Rafiei, Alireza; Hosseini, Vahid; Taghvaei, Tarang; Abbasi, Ali; Tehrani, Mohsen

    2015-10-01

    To clarify the effect of γδ T cells and invariant Natural Killer T (iNKT) cells in pathophysiology of dyspeptic disorders, number of these two cells in patients with non-ulcer dyspepsia (NUD), peptic ulcer disease (PUD), and gastric cancer (GC) were compared.Patients with dyspepsia were divided into three groups of NUD, PUD, and GC according to their endoscopic and histopathological examinations. Helicobacter pylori infection was diagnosed by rapid urease test and histopathology. The number of peripheral blood CD3+TCRγδ(+) T cells and CD3+Va24Ja18+ iNKT cells were determined by flow cytometry. Immunohistochemistry (IHC) was also used for identifying the TCRγδ+ cells.Forty two patients with NUD (31.6%), 44 with PUD (33.1%), and 47 with GC (35.3%) were included in the study. The frequency of CD3+TCRγδ(+) T cells in peripheral blood of patients with GC (2.71±0.25) was significantly lower than that in NUD (3.97±0.32, p<0.05) and PUD groups (3.87±0.32, p<0.05). However, there was no significant difference in CD3+TCRγδ(+) T cell percentage between the NUD and PUD groups. The frequency of TCRγδ(+) lymphocytes was significantly lower in tissue samples from patients with GC (4.81±0.53) than in NUD (11.09±1.09, p<0.0001) and PUD groups (11.11±1.01, p<0.0001). Also, we could not find any significant difference in the percentage of mucosal TCRγδ+ cells between the NUD and PUD groups. The results showed no significant difference in iNKT cells percentage among the three groups of patients.The results suggest that decreasing number of γδ T cells may be related to development and progression of gastric cancer.

  10. Multidrug resistance-1 in T lymphocytes and natural killer cells of adults with idiopathic thrombocytopenic purpura: effect of prednisone treatment.

    PubMed

    López-Karpovitch, Xavier; Graue, Gerardo; Crespo-Solís, Erick; Piedras, Josefa

    2008-07-01

    High P-glycoprotein-mediated multidrug resistance-1 (P-gp/MDR1) activity in lymphocytes from idiopathic thrombocytopenic purpura (ITP) patients may affect disease outcome. ITP treatment includes glucocorticoids that are substrates of P-gp; hence, P-gp functional activity and antigenic expression were assessed by flow cytometry in T and natural killer (NK) cells from ITP patients before and after prednisone therapy. Herein, patients' T and NK cells did not show increased MDR1 functional activity, whereas P-gp antigenic expression was significantly enhanced in both therapy-free and prednisone-treated patients. Prednisone treatment did not significantly modify the function and expression of MDR1 in T and NK cells of ITP patients.

  11. Expression Profiles of Ligands for Activating Natural Killer Cell Receptors on HIV Infected and Uninfected CD4⁺ T Cells.

    PubMed

    Tremblay-McLean, Alexandra; Bruneau, Julie; Lebouché, Bertrand; Lisovsky, Irene; Song, Rujun; Bernard, Nicole F

    2017-10-12

    Natural Killer (NK) cell responses to HIV-infected CD4 T cells (iCD4) depend on the integration of signals received through inhibitory (iNKR) and activating NK receptors (aNKR). iCD4 activate NK cells to inhibit HIV replication. HIV infection-dependent changes in the human leukocyte antigen (HLA) ligands for iNKR on iCD4 are well documented. By contrast, less is known regarding the HIV infection related changes in ligands for aNKR on iCD4. We examined the aNKR ligand profiles HIV p24⁺ HIV iCD4s that maintained cell surface CD4 (iCD4⁺), did not maintain CD4 (iCD4 - ) and uninfected CD4 (unCD4) T cells for expression of unique long (UL)-16 binding proteins-1 (ULBP-1), ULBP-2/5/6, ULBP-3, major histocompatibility complex (MHC) class 1-related (MIC)-A, MIC-B, CD48, CD80, CD86, CD112, CD155, Intercellular adhesion molecule (ICAM)-1, ICAM-2, HLA-E, HLA-F, HLA-A2, HLA-C, and the ligands to NKp30, NKp44, NKp46, and killer immunoglobulin-like receptor 3DS1 (KIR3DS1) by flow cytometry on CD4 T cells from 17 HIV-1 seronegative donors activated and infected with HIV. iCD4⁺ cells had higher expression of aNKR ligands than did unCD4. However, the expression of aNKR ligands on iCD4 where CD4 was downregulated (iCD4 - ) was similar to (ULBP-1, ULBP-2/5/6, ULBP-3, MIC-A, CD48, CD80, CD86 and CD155) or significantly lower than (MIC-B, CD112 and ICAM-2) what was observed on unCD4. Thus, HIV infection can be associated with increased expression of aNKR ligands or either baseline or lower than baseline levels of aNKR ligands, concomitantly with the HIV-mediated downregulation of cell surface CD4 on infected cells.

  12. Epstein–Barr virus-positive T/NK-cell lymphoproliferative disorders

    PubMed Central

    Cai, Qingqing; Chen, Kailin; Young, Ken H

    2015-01-01

    Epstein–Barr virus, a ubiquitous human herpesvirus, can induce both lytic and latent infections that result in a variety of human diseases, including lymphoproliferative disorders. The oncogenic potential of Epstein–Barr virus is related to its ability to infect and transform B lymphocytes into continuously proliferating lymphoblastoid cells. However, Epstein–Barr virus has also been implicated in the development of T/natural killer cell lymphoproliferative diseases. Epstein–Barr virus encodes a series of products that mimic several growth, transcription and anti-apoptotic factors, thus usurping control of pathways that regulate diverse homeostatic cellular functions and the microenvironment. However, the exact mechanism by which Epstein–Barr virus promotes oncogenesis and inflammatory lesion development remains unclear. Epstein–Barr virus-associated T/natural killer cell lymphoproliferative diseases often have overlapping clinical symptoms as well as histologic and immunophenotypic features because both lymphoid cell types derive from a common precursor. Accurate classification of Epstein–Barr virus-associated T/natural killer cell lymphoproliferative diseases is a prerequisite for appropriate clinical management. Currently, the treatment of most T/natural killer cell lymphoproliferative diseases is less than satisfactory. Novel and targeted therapies are strongly required to satisfy clinical demands. This review describes our current knowledge of the genetics, oncogenesis, biology, diagnosis and treatment of Epstein–Barr virus-associated T/natural killer cell lymphoproliferative diseases. PMID:25613730

  13. Persistent Changes in Circulating and Intestinal γδ T Cell Subsets, Invariant Natural Killer T Cells and Mucosal-Associated Invariant T Cells in Children and Adults with Coeliac Disease

    PubMed Central

    Dunne, Margaret R.; Elliott, Louise; Hussey, Seamus; Mahmud, Nasir; Kelly, Jacinta; Doherty, Derek G.; Feighery, Conleth F.

    2013-01-01

    Coeliac disease is a chronic small intestinal immune-mediated enteropathy precipitated by exposure to dietary gluten in genetically predisposed individuals. The only current therapy is a lifelong gluten free diet. While much work has focused on the gliadin-specific adaptive immune response in coeliac disease, little is understood about the involvement of the innate immune system. Here we used multi-colour flow cytometry to determine the number and frequency of γδ T cells (Vδ1, Vδ2 and Vδ3 subsets), natural killer cells, CD56+ T cells, invariant NKT cells, and mucosal associated invariant T cells, in blood and duodenum from adults and children with coeliac disease and healthy matched controls. All circulating innate lymphocyte populations were significantly decreased in adult, but not paediatric coeliac donors, when compared with healthy controls. Within the normal small intestine, we noted that Vδ3 cells were the most abundant γδ T cell type in the adult epithelium and lamina propria, and in the paediatric lamina propria. In contrast, patients with coeliac disease showed skewing toward a predominant Vδ1 profile, observed for both adult and paediatric coeliac disease cohorts, particularly within the gut epithelium. This was concurrent with decreases in all other gut lymphocyte subsets, suggesting a specific involvement of Vδ1 cells in coeliac disease pathogenesis. Further analysis showed that γδ T cells isolated from the coeliac gut display an activated, effector memory phenotype, and retain the ability to rapidly respond to in vitro stimulation. A profound loss of CD56 expression in all lymphocyte populations was noted in the coeliac gut. These findings demonstrate a sustained aberrant innate lymphocyte profile in coeliac disease patients of all ages, persisting even after elimination of gluten from the diet. This may lead to impaired immunity, and could potentially account for the increased incidence of autoimmune co-morbidity. PMID:24124528

  14. Persistent changes in circulating and intestinal γδ T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease.

    PubMed

    Dunne, Margaret R; Elliott, Louise; Hussey, Seamus; Mahmud, Nasir; Kelly, Jacinta; Doherty, Derek G; Feighery, Conleth F

    2013-01-01

    Coeliac disease is a chronic small intestinal immune-mediated enteropathy precipitated by exposure to dietary gluten in genetically predisposed individuals. The only current therapy is a lifelong gluten free diet. While much work has focused on the gliadin-specific adaptive immune response in coeliac disease, little is understood about the involvement of the innate immune system. Here we used multi-colour flow cytometry to determine the number and frequency of γδ T cells (Vδ1, Vδ2 and Vδ3 subsets), natural killer cells, CD56(+) T cells, invariant NKT cells, and mucosal associated invariant T cells, in blood and duodenum from adults and children with coeliac disease and healthy matched controls. All circulating innate lymphocyte populations were significantly decreased in adult, but not paediatric coeliac donors, when compared with healthy controls. Within the normal small intestine, we noted that Vδ3 cells were the most abundant γδ T cell type in the adult epithelium and lamina propria, and in the paediatric lamina propria. In contrast, patients with coeliac disease showed skewing toward a predominant Vδ1 profile, observed for both adult and paediatric coeliac disease cohorts, particularly within the gut epithelium. This was concurrent with decreases in all other gut lymphocyte subsets, suggesting a specific involvement of Vδ1 cells in coeliac disease pathogenesis. Further analysis showed that γδ T cells isolated from the coeliac gut display an activated, effector memory phenotype, and retain the ability to rapidly respond to in vitro stimulation. A profound loss of CD56 expression in all lymphocyte populations was noted in the coeliac gut. These findings demonstrate a sustained aberrant innate lymphocyte profile in coeliac disease patients of all ages, persisting even after elimination of gluten from the diet. This may lead to impaired immunity, and could potentially account for the increased incidence of autoimmune co-morbidity.

  15. Immature Renal Dendritic Cells Recruit Regulatory CXCR6+ Invariant Natural Killer T Cells to Attenuate Crescentic GN

    PubMed Central

    Riedel, Jan-Hendrik; Paust, Hans-Joachim; Turner, Jan-Eric; Tittel, André P.; Krebs, Christian; Disteldorf, Erik; Wegscheid, Claudia; Tiegs, Gisa; Velden, Joachim; Mittrücker, Hans-Willi; Garbi, Natalio; Stahl, Rolf A.K.; Steinmetz, Oliver M.; Kurts, Christian

    2012-01-01

    Immature renal dendritic cells (DCs) are protective early in murine crescentic GN, but the mechanisms underlying this protection are unknown. Here, depletion of DCs reduced the recruitment of invariant natural killer T (iNKT) cells, which attenuate GN, into the kidney in the early stage of experimental crescentic GN. More than 90% of renal iNKT cells expressed the chemokine receptor CXCR6, and renal DCs produced high amounts of the cognate ligand CXCL16 early after induction of nephritis, suggesting that renal DC-derived CXCL16 might attract protective CXCR6+ iNKT cells. Consistent with this finding, CXCR6-deficient mice exhibited less iNKT cell recruitment and developed nephritis that was more severe, similar to the aggravated nephritis observed in mice depleted of immature DCs. Finally, adoptive transfer of CXCR6-competent NKT cells ameliorated nephritis. Taken together, these results suggest an immunoprotective mechanism involving immature DCs, CXCL16, CXCR6, and regulatory iNKT cells, which might stimulate the development of new therapeutic strategies for GN. PMID:23138484

  16. Immature renal dendritic cells recruit regulatory CXCR6(+) invariant natural killer T cells to attenuate crescentic GN.

    PubMed

    Riedel, Jan-Hendrik; Paust, Hans-Joachim; Turner, Jan-Eric; Tittel, André P; Krebs, Christian; Disteldorf, Erik; Wegscheid, Claudia; Tiegs, Gisa; Velden, Joachim; Mittrücker, Hans-Willi; Garbi, Natalio; Stahl, Rolf A K; Steinmetz, Oliver M; Kurts, Christian; Panzer, Ulf

    2012-12-01

    Immature renal dendritic cells (DCs) are protective early in murine crescentic GN, but the mechanisms underlying this protection are unknown. Here, depletion of DCs reduced the recruitment of invariant natural killer T (iNKT) cells, which attenuate GN, into the kidney in the early stage of experimental crescentic GN. More than 90% of renal iNKT cells expressed the chemokine receptor CXCR6, and renal DCs produced high amounts of the cognate ligand CXCL16 early after induction of nephritis, suggesting that renal DC-derived CXCL16 might attract protective CXCR6(+) iNKT cells. Consistent with this finding, CXCR6-deficient mice exhibited less iNKT cell recruitment and developed nephritis that was more severe, similar to the aggravated nephritis observed in mice depleted of immature DCs. Finally, adoptive transfer of CXCR6-competent NKT cells ameliorated nephritis. Taken together, these results suggest an immunoprotective mechanism involving immature DCs, CXCL16, CXCR6, and regulatory iNKT cells, which might stimulate the development of new therapeutic strategies for GN.

  17. Tracking the Response of Natural Killer T Cells to a Glycolipid Antigen Using Cd1d Tetramers

    PubMed Central

    Matsuda, Jennifer L.; Naidenko, Olga V.; Gapin, Laurent; Nakayama, Toshinori; Taniguchi, Masaru; Wang, Chyung-Ru; Koezuka, Yasuhiko; Kronenberg, Mitchell

    2000-01-01

    A major group of natural killer (NK) T cells express an invariant Vα14+ T cell receptor (TCR) specific for the lipoglycan α-galactosylceramide (α-GalCer), which is presented by CD1d. These cells may have an important immune regulatory function, but an understanding of their biology has been hampered by the lack of suitable reagents for tracking them in vivo. Here we show that tetramers of mouse CD1d loaded with α-GalCer are a sensitive and highly specific reagent for identifying Vα14+ NK T cells. Using these tetramers, we find that α-GalCer–specific T lymphocytes are more widely distributed than was previously appreciated, with populations of largely NK1.1− but tetramer-binding T cells present in the lymph nodes and the intestine. Injection of α-GalCer leads to the production of both interferon γ and interleukin 4 by nearly all NK T cells in the liver and the majority of the spleen within 2 h. These cells mostly disappear by 5 h, and they do not reappear after 1 wk. Curiously, tetramer-positive thymocytes do not rapidly synthesize cytokines, nor do they undergo decreases in cell number after lipid antigen stimulation, although they express equivalent TCR levels. In summary, the data presented here demonstrate that α-GalCer–specific NK T cells undergo a unique and highly compartmentalized response to antigenic stimulation. PMID:10974039

  18. Leishmania-infected MHC class IIhigh dendritic cells polarize CD4+ T cells toward a nonprotective T-bet+ IFN-γ+ IL-10+ phenotype.

    PubMed

    Resende, Mariana; Moreira, Diana; Augusto, Jorge; Cunha, Joana; Neves, Bruno; Cruz, Maria Teresa; Estaquier, Jérôme; Cordeiro-da-Silva, Anabela; Silvestre, Ricardo

    2013-07-01

    A differential behavior among infected and bystander dendritic cells (DCs) has been explored in different infection models. We have analyzed both populations sorted on contact with visceral Leishmania infantum on a susceptible mice model evaluating the subsequent repercussions on adaptive immune response. Our results demonstrate a clear dichotomy between the immunomodulatory abilities of bystander and infected DCs. The bystander population presents increased levels of IL-12p40 and costimulatory molecules being capable to induce CD4(+) T cell activation with immune protective capabilities. In contrast, infected DCs, which express lower costimulatory molecules and higher levels of IL-10, promote the development of Leishmania Ag-specific, nonprotective T-bet(+)IFN-γ(+)IL-10(+) CD4(+) T cells with an effector phenotype. This specific polarization was found to be dependent on IL-12p70. Splenic infected DCs recovered from chronic infected animals are similarly capable to polarize ex vivo syngeneic naive CD4(+) T cells toward a T-bet(+)IFN-γ(+)IL-10(+) phenotype. Further analysis revealed that only MHC class II(high)-infected DCs were responsible for this polarization. The adoptive transfer of such polarized CD4(+) T cells facilitates visceral leishmaniasis in BALB/c mice in a clear contrast with their counterpart generated with bystander DCs that significantly potentiate protection. Further, we demonstrated that CD4(+) T cells primed by infected DCs in an IL-10 free system, thus deprived of T-bet(+)IFN-γ(+)IL-10(+) population, restore the immune response and reduce parasite load, supporting a deleterious role of IFN-γ(+)IL-10(+) T cells in the maintenance of infection. Overall, our results highlight novel subversion mechanisms by which nonprotective T-bet(+)IFN-γ(+)IL-10(+) T cells are associated with chronicity and prolonged parasite persistence.

  19. Activation of mouse liver natural killer cells and NK1.1(+) T cells by bacterial superantigen-primed Kupffer cells.

    PubMed

    Dobashi, H; Seki, S; Habu, Y; Ohkawa, T; Takeshita, S; Hiraide, H; Sekine, I

    1999-08-01

    Although bacterial superantigens have been well characterized as potent stimulators of T cells, their role in natural killer (NK)-type cells remains largely unknown. In the present study, we examined the effect of bacterial superantigens on mouse liver NK cells and NK1.1 Ag(+) (NK1(+)) T cells. C57BL/6 mice were intravenously injected with staphylococcal enterotoxin B (SEB) or streptococcal pyrogenic exotoxin A (SPE-A), and mononuclear cells (MNC) of various organs were obtained from mice 4 hours after being injected with superantigen. MNC were cultured for 48 hours, and interferon gamma (IFN-gamma) levels of supernatants were measured. The antitumor cytotoxicities of the liver and spleen MNC were also evaluated 24 hours after the mice were injected with superantigen. Liver MNC produced more IFN-gamma than did splenocytes, and peripheral blood and lung MNC did not produce any detectable IFN-gamma. In addition, liver MNC acquired a potent antitumor cytotoxicity by the SEB injection, and both NK cells and NK1(+)T cells but not cluster of differentiation (CD)8(+) T cells were responsible for the cytotoxicity as demonstrated by either in vivo or in vitro cell depletion experiments, and the NK-type cells were partly responsible for the increased serum IFN-gamma. Activation of liver NK-type cells was also supported by the fact that liver NK cells proportionally increased and NK1(+) T cells augmented their CD11a expressions after SEB injection. The pretreatment of mice with anti-IFN-gamma Ab and/or with anti-interleukin-12 (IL-12) Ab diminished the SEB-induced cytotoxicity of liver MNC. Furthermore, the in vivo depletion of Kupffer cells decreased the SEB-induced cytotoxicity of liver MNC. Consistent with these results, liver MNC stimulated with superantigens in the presence of Kupffer cells in vitro produced a greater amount of IFN-gamma than did the liver MNC without Kupffer cells or splenocytes. Our results suggest that bacterial superantigen-primed Kupffer cells

  20. Lack of the programmed death-1 receptor renders host susceptible to enteric microbial infection through impairing the production of the mucosal natural killer cell effector molecules.

    PubMed

    Solaymani-Mohammadi, Shahram; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Frey, Blake F; Billeskov, Rolf; Singer, Steven M; Berzofsky, Jay A; Eckmann, Lars; Kagnoff, Martin F

    2016-03-01

    The programmed death-1 receptor is expressed on a wide range of immune effector cells, including T cells, natural killer T cells, dendritic cells, macrophages, and natural killer cells. In malignancies and chronic viral infections, increased expression of programmed death-1 by T cells is generally associated with a poor prognosis. However, its role in early host microbial defense at the intestinal mucosa is not well understood. We report that programmed death-1 expression is increased on conventional natural killer cells but not on CD4(+), CD8(+) or natural killer T cells, or CD11b(+) or CD11c(+) macrophages or dendritic cells after infection with the mouse pathogen Citrobacter rodentium. Mice genetically deficient in programmed death-1 or treated with anti-programmed death-1 antibody were more susceptible to acute enteric and systemic infection with Citrobacter rodentium. Wild-type but not programmed death-1-deficient mice infected with Citrobacter rodentium showed significantly increased expression of the conventional mucosal NK cell effector molecules granzyme B and perforin. In contrast, natural killer cells from programmed death-1-deficient mice had impaired expression of those mediators. Consistent with programmed death-1 being important for intracellular expression of natural killer cell effector molecules, mice depleted of natural killer cells and perforin-deficient mice manifested increased susceptibility to acute enteric infection with Citrobacter rodentium. Our findings suggest that increased programmed death-1 signaling pathway expression by conventional natural killer cells promotes host protection at the intestinal mucosa during acute infection with a bacterial gut pathogen by enhancing the expression and production of important effectors of natural killer cell function. © Society for Leukocyte Biology.

  1. The HLA-A2 Restricted T Cell Epitope HCV Core35–44 Stabilizes HLA-E Expression and Inhibits Cytolysis Mediated by Natural Killer Cells

    PubMed Central

    Nattermann, Jacob; Nischalke, Hans Dieter; Hofmeister, Valeska; Ahlenstiel, Golo; Zimmermann, Henning; Leifeld, Ludger; Weiss, Elisabeth H.; Sauerbruch, Tilman; Spengler, Ulrich

    2005-01-01

    Impaired activity of natural killer cells has been proposed as a mechanism contributing to viral persistence in hepatitis C virus (HCV) infection. Natural cytotoxicity is regulated by interactions of HLA-E with inhibitory CD94/NKG2A receptors on natural killer (NK) cells. Here, we studied whether HCV core encodes peptides that bind to HLA-E and inhibit natural cytotoxicity. We analyzed 30 HCV core-derived peptides. Peptide-induced stabilization of HLA-E expression was measured flow cytometrically after incubating HLA-E-transfected cells with peptides. NK cell function was studied with a 51chromium-release-assay. Intrahepatic HLA-E expression was analyzed by an indirect immunoperoxidase technique and flow cytometry of isolated cells using a HLA-E-specific antibody. We identified peptide aa35–44, a well-characterized HLA-A2 restricted T cell epitope, as a peptide stabilizing HLA-E expression and thereby inhibiting NK cell-mediated lysis. Blocking experiments confirmed that this inhibitory effect of peptide aa35–44 on natural cytotoxicity was mediated via interactions between CD94/NKG2A receptors and enhanced HLA-E expression. In line with these in vitro data we found enhanced intrahepatic HLA-E expression on antigen-presenting cells in HCV-infected patients. Our data indicate the existence of T cell epitopes that can be recognized by HLA-A2 and HLA-E. This dual recognition may contribute to viral persistence in hepatitis C. PMID:15681828

  2. PD-1 blocks lytic granule polarization with concomitant impairment of integrin outside-in signaling in the natural killer cell immunological synapse.

    PubMed

    Huang, Yu; Chen, Zhiying; Jang, Joon Hee; Baig, Mirza S; Bertolet, Grant; Schroeder, Casey; Huang, Shengjian; Hu, Qian; Zhao, Yong; Lewis, Dorothy E; Qin, Lidong; Zhu, Michael Xi; Liu, Dongfang

    2018-04-18

    The inhibitory receptor programmed cell death protein 1 (PD-1) is upregulated on a variety of immune cells, including natural killer (NK) cells, during chronic viral infection and tumorigenesis. Blockade of PD-1 or its ligands produces durable clinical responses with tolerable side effects in patients with a broad spectrum of cancers. However, the underlying molecular mechanisms of how PD-1 regulates NK cell function remain poorly characterized. We sought to determine the effect of PD-1 signaling on NK cells. PD-1 was overexpressed in CD16-KHYG-1 (a human NK cell line with both antibody-dependent cellular cytotoxicity through CD16 and natural cytotoxicity through NKG2D) cells and stimulated by exposing the cells to NK-sensitive target cells expressing programmed death ligand 1 (PD-L1). PD-1 engagement by PD-L1 specifically blocked NK cell-mediated cytotoxicity without interfering with the conjugation between NK cells and target cells. Further examination showed that PD-1 signaling blocked lytic granule polarization in NK cells, which was accompanied by failure of integrin-linked kinase, a key molecule in the integrin outside-in signaling pathway, to accumulate in the immunological synapse after NK-target cell conjugation. Our results suggest that NK cell cytotoxicity is inhibited by PD-1 engagement, which blocks lytic granule polarization to the NK cell immunological synapse with concomitant impairment of integrin outside-in signaling. This study provides novel mechanistic insights into how PD-1 inhibition disrupts NK cell function. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Clinical differences between nasal and extranasal natural killer/T-cell lymphoma: a study of 136 cases from the International Peripheral T-Cell Lymphoma Project.

    PubMed

    Au, Wing-yan; Weisenburger, Dennis D; Intragumtornchai, Tanin; Nakamura, Shigeo; Kim, Won-Seog; Sng, Ivy; Vose, Julie; Armitage, James O; Liang, Raymond

    2009-04-23

    Among 1153 new adult cases of peripheral/T-cell lymphoma from 1990-2002 at 22 centers in 13 countries, 136 cases (11.8%) of extranodal natural killer (NK)/T-cell lymphoma were identified (nasal 68%, extranasal 26%, aggressive/unclassifiable 6%). The disease frequency was higher in Asian than in Western countries and in Continental Asia than in Japan. There were no differences in age, sex, ethnicity, or immunophenotypic profile between the nasal and extranasal cases, but the latter had more adverse clinical features. The median overall survival (OS) was better in nasal compared with the extranasal cases in early- (2.96 vs 0.36 years, P < .001) and late-stage disease (0.8 vs 0.28 years, P = .031). The addition of radiotherapy for early-stage nasal cases yielded survival benefit (P = .045). Among nasal cases, both the International Prognostic Index (P = .006) and Korean NK/T-cell Prognostic Index (P < .001) were prognostic. In addition, Ki67 proliferation greater than 50%, transformed tumor cells greater than 40%, elevated C-reactive protein level (CRP), anemia (< 11 g/dL) and thrombocytopenia (< 150 x 10(9)/L) predicts poorer OS for nasal disease. No histologic or clinical feature was predictive in extranasal disease. We conclude that the clinical features and treatment response of extranasal NK/T-cell lymphoma are different from of those of nasal lymphoma. However, the underlying features responsible for these differences remain to be defined.

  4. Arf-like GTPase Arl8b regulates lytic granule polarization and natural killer cell–mediated cytotoxicity

    PubMed Central

    Tuli, Amit; Thiery, Jerome; James, Ashley M.; Michelet, Xavier; Sharma, Mahak; Garg, Salil; Sanborn, Keri B.; Orange, Jordan S.; Lieberman, Judy; Brenner, Michael B.

    2013-01-01

    Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell–mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity. PMID:24088571

  5. FasL Mediates T-Cell Eradication of Tumor Cells Presenting Low Levels of Antigens | Center for Cancer Research

    Cancer.gov

    One approach to cancer immunotherapy, as opposed to therapeutic vaccination, is the transfusion of large numbers of tumor-specific killer T cells (cytotoxic T cells or CTLs) into patients. The body’s own defense killer T cells are a subgroup of T lymphocytes (a type of white blood cells) that are capable of inducing death in tumor cells. CTLs can cause the death of target

  6. Extranodal natural killer/T-cell lymphoma presenting as orbital cellulitis

    PubMed Central

    Zuhaimy, Hanis; Aziz, Hayati Abdul; Vasudevan, Suresh; Hui Hui, Siah

    2017-01-01

    Objective: To report an aggressive case of extranodal natural killer/T-cell lymphoma (NKTCL) of the ethmoid sinus presenting as orbital cellulitis Method: Case report Results: A 56-year-old male presented with right eye redness, reduced vision, and periorbital swelling for 5 weeks duration associated with a two-month history of blocked nose. The visual acuity of the right eye was 6/18. The eye was proptosed with periorbital oedema and conjunctival chemosis. The pupil was mid-dilated but there was no relative afferent pupillary defect. The fundus was normal. The extraocular movements were restricted in all directions of gaze. Nasal endoscopy revealed pansinusitis that corresponded with CT scan orbit and paranasal sinuses findings. Despite treatment, he showed no clinical improvement. Ethmoidal sinus biopsies performed revealed extranodal NKTCL. Further imaging showed involvement of the right orbital contents and its adnexa with intracranial extension into the right cavernous sinus and meninges over right temporal fossa. The patient underwent chemotherapy. However he succumbed to his illness two months after the diagnosis. Conclusion: Extranodal NKTCL is a great mimicker. This case demonstrated how an acute initial presentation of extranodal NKTCL can present as orbital cellulitis with pansinusitis. PMID:28194321

  7. A different representation of natural T cells and natural killer cells between tumor-infiltrating and periphery lymphocytes in human hepatocellular carcinoma.

    PubMed

    Li, Xiao-Feng; Dai, Dong; Song, Xiu-Yu; Liu, Jian-Jing; Zhu, Lei; Zhu, Xiang; Ma, Wenchao; Xu, Wengui

    2017-05-01

    Natural T cells [cluster of differentiation (CD) 3 + CD56 + ] and natural killer (NK) cells (CD3 - CD56 + ) are particularly abundant in the human liver and serve an important role in immune responses in the liver. The aim of the present study was to extensively determine the phenotypic and functional characteristics of natural T and NK cells in human hepatocellular carcinoma (HCC). Tumorous and non-tumorous tissue infiltrating lymphocytes (TILs and NILs, respectively) and peripheral blood mononuclear cells (PBMCs) from patients with hepatocellular carcinoma (HCC) were obtained to determine the frequency and phenotype of natural T/NK cells by a multicolor fluorescence activated cell sorting analysis. The abundance of natural T cells and NK cells was decreased in TILs vs. NILs (natural T cells, 6.315±1.002 vs. 17.16±1.804; NK cells, 6.324±1.559 vs. 14.52±2.336, respectively). However such results were not observed in PBMCs from HCC patients vs. that of healthy donors. Notably, a substantial fraction of the natural T cells (21.96±5.283) in TILs acquired forkhead box P3 (FOXP3) expression, and the FOXP3 + natural T cells lost the expression of interferon-γ and perforin. Conversely, being similar to the conventional FOXP3 + regulatory T cells, the FOXP3 + natural T cells assumed a specific phenotype that was characteristic of CD25 + , CD45RO + and cytotoxic T-lymphocyte-associated protein 4 + . Consistent with the phenotypic conversion, the present functional results indicate that FOXP3 expression in natural T cells contributes to the acquisition of a potent immunosuppressive capability. In conclusion, the present study describes a different representation of natural T cells and NK cells in local tumor tissues and in the periphery blood of patients with HCC, and identified a new type of FOXP3-expressing natural T cell spontaneously arising in the TILs of HCC.

  8. Breaking tolerance to self, circulating natural killer cells expressing inhibitory KIR for non-self HLA exhibit effector function after T cell-depleted allogeneic hematopoietic cell transplantation.

    PubMed

    Yu, Junli; Venstrom, Jeffrey M; Liu, Xiao-Rong; Pring, James; Hasan, Reenat S; O'Reilly, Richard J; Hsu, Katharine C

    2009-04-16

    Alloreactive natural killer (NK) cells are an important influence on hematopoietic stem cell transplantation (HSCT) outcome. In HLA-mismatched HSCT, alloreactivity occurs when licensed donor NK cells expressing inhibitory killer Ig-like receptors (KIR) for donor MHC class I ligands recognize the lack of the class I ligands in the mismatched recipient ("missing self"). Studies in HLA-matched HSCT, however, have also demonstrated improved outcome in patients lacking class I ligands for donor inhibitory KIR ("missing ligand"), indicating that classically nonlicensed donor NK cells expressing KIR for non-self MHC class I ligands may exhibit functional competence in HSCT. We examined NK function in 16 recipients of T cell-depleted allografts from HLA-identical or KIR-ligand matched donors after myeloablative therapy. After HSCT, nonlicensed NK cells expressing inhibitory KIR for non-self class I exhibit robust intracellular IFN-gamma and cytotoxic response to target cells lacking cognate ligand, gradually becoming tolerized to self by day 100. These findings could not be correlated with cytokine environment or phenotypic markers of NK development, nor could they be attributed to non-KIR receptors such as CD94/NKG2A. These findings confirm that NK alloreactivity can occur in HLA-matched HSCT, where tolerance to self is either acquired by the stem cell-derived NK cell after exiting the bone marrow or where tolerance to self can be temporarily overcome.

  9. Detection of invariant natural killer T cells in ejaculates from infertile patients with chronic inflammation of genital tract.

    PubMed

    Duan, Yong-Gang; Chen, Shujian; Haidl, Gerhard; Allam, Jean-Pierre

    2017-08-01

    Chronic inflammation of genital tract is thought to play a major role in male fertility disorder. Natural killer (NK) T cells are a heterogeneous group of T cells that share properties of both T cells and NK cells which display immunoregulatory properties. However, little is known regarding the presence and function of NK T cells in ejaculates from patients with chronic inflammation of genital tract. Invariant NK T (iNK T) cells were detected by invariant (Vα24-JαQ) TCR chain in ejaculates from patients suffering from chronic inflammation of genital tract (CIGT) using flow cytometry and immunofluorescence of double staining (n=40). Inflammatory cytokines interleukin (IL)-6, IL-17, and IFN-γ were detected in cell-free seminal plasma using an enzyme-linked immunosorbent assay (ELISA). The correlation between the percentage of iNK T cells and spermatozoa count, motility, vitality, seminal IL-6, IL-17, and IFN-γ was investigated. Significant percentages of iNK T cells above 10% were detected in 50% (CIGT-NKT + group). A negative correlation was detected between the percentage of iNK T cells and spermatozoa count (r=-.5957, P=.0056), motility (r=-.6163, P=.0038), and vitality (r=-.8032, P=.0019) in CIGT-NKT + group (n=20). Interestingly, a significant correlation of iNK T cells to seminal IL-6 (r=.7083, P=.0005), IFN-γ (r=.9578, P<.0001) was detected whereas lack of correlation between iNK T cells and IL-17 (r=-.1557, P=.5122) in CIGT-NKT + group. The proliferative response of iNK T cells could accompany an inflammatory response to spermatozoa and consequently influence sperm quality through secretion of IFN-γ but not IL-17 under chronic inflammatory condition. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. T-cell lymphomas in South america and europe.

    PubMed

    Bellei, Monica; Chiattone, Carlos Sergio; Luminari, Stefano; Pesce, Emanuela Anna; Cabrera, Maria Elena; de Souza, Carmino Antonio; Gabús, Raul; Zoppegno, Lucia; Zoppegno, Lucia; Milone, Jorge; Pavlovsky, Astrid; Connors, Joseph Michael; Foss, Francine Mary; Horwitz, Steven Michael; Liang, Raymond; Montoto, Silvia; Pileri, Stefano Aldo; Polliack, Aaron; Vose, Julie Marie; Zinzani, Pier Luigi; Zucca, Emanuele; Federico, Massimo

    2012-01-01

    Peripheral T-cell lymphomas are a group of rare neoplasms originating from clonal proliferation of mature post-thymic lymphocytes with different entities having specific biological characteristics and clinical features. As natural killer cells are closely related to T-cells, natural killer-cell lymphomas are also part of the group. The current World Health Organization classification recognizes four categories of T/natural killer-cell lymphomas with respect to their presentation: disseminated (leukemic), nodal, extranodal and cutaneous. Geographic variations in the distribution of these diseases are well documented: nodal subtypes are more frequent in Europe and North America, while extranodal forms, including natural killer-cell lymphomas, occur almost exclusively in Asia and South America. On the whole, T-cell lymphomas are more common in Asia than in western countries, usually affect adults, with a higher tendency in men, and, excluding a few subtypes, usually have an aggressive course and poor prognosis. Apart from anaplastic lymphoma kinase-positive anaplastic large cell lymphoma, that have a good outcome, other nodal and extranodal forms have a 5-year overall survival of about 30%. According to the principal prognostic indexes, the majority of patients are allocated to the unfavorable subset. In the past, the rarity of these diseases prevented progress in the understanding of their biology and improvements in the efficaciousness of therapy. Recently, international projects devoted to these diseases created networks promoting investigations on T-cell lymphomas. These projects are the basis of forthcoming cooperative, large scale trials to detail biologic characteristics of each sub-entity and to possibly individuate targets for new therapies.

  11. T-Cell Lymphomas in South America and Europe

    PubMed Central

    Bellei, Monica; Chiattone, Carlos Sergio; Luminari, Stefano; Pesce, Emanuela Anna; Cabrera, Maria Elena; de Souza, Carmino Antonio; Gabús, Raul; Zoppegno, Lucia; Zoppegno, Lucia; Milone, Jorge; Pavlovsky, Astrid; Connors, Joseph Michael; Foss, Francine Mary; Horwitz, Steven Michael; Liang, Raymond; Montoto, Silvia; Pileri, Stefano Aldo; Polliack, Aaron; Vose, Julie Marie; Zinzani, Pier Luigi; Zucca, Emanuele; Federico, Massimo

    2012-01-01

    Peripheral T-cell lymphomas are a group of rare neoplasms originating from clonal proliferation of mature post-thymic lymphocytes with different entities having specific biological characteristics and clinical features. As natural killer cells are closely related to T-cells, natural killer-cell lymphomas are also part of the group. The current World Health Organization classification recognizes four categories of T/natural killer-cell lymphomas with respect to their presentation: disseminated (leukemic), nodal, extranodal and cutaneous. Geographic variations in the distribution of these diseases are well documented: nodal subtypes are more frequent in Europe and North America, while extranodal forms, including natural killer-cell lymphomas, occur almost exclusively in Asia and South America. On the whole, T-cell lymphomas are more common in Asia than in western countries, usually affect adults, with a higher tendency in men, and, excluding a few subtypes, usually have an aggressive course and poor prognosis. Apart from anaplastic lymphoma kinase-positive anaplastic large cell lymphoma, that have a good outcome, other nodal and extranodal forms have a 5-year overall survival of about 30%. According to the principal prognostic indexes, the majority of patients are allocated to the unfavorable subset. In the past, the rarity of these diseases prevented progress in the understanding of their biology and improvements in the efficaciousness of therapy. Recently, international projects devoted to these diseases created networks promoting investigations on T-cell lymphomas. These projects are the basis of forthcoming cooperative, large scale trials to detail biologic characteristics of each sub-entity and to possibly individuate targets for new therapies. PMID:23049383

  12. Enhanced cytotoxic function of natural killer and natural killer T-like cells associated with decreased CD94 (Kp43) in the chronic obstructive pulmonary disease airway.

    PubMed

    Hodge, Greg; Mukaro, Violet; Holmes, Mark; Reynolds, Paul N; Hodge, Sandra

    2013-02-01

    Natural killer (NK) and natural killer T (NKT)-like cells represent a small but important proportion of effector lymphocytes that we have previously shown to be major sources of pro-inflammatory cytokines and granzymes. We hypothesized that these cells would be increased in the airway in chronic obstructive pulmonary disease (COPD), accompanied by reduced expression of the inhibitory receptor CD94 (Kp43) and increased expression of cytotoxic mediators granzyme B and perforin. We measured NK and NKT-like cells and their expression of CD94 in the blood of COPD patients (n = 71; 30 current and 41 ex-smokers), smokers (16) and healthy controls (25), and bronchoalveolar lavage fluid (BALF) from a cohort of subjects (19 controls, 12 smokers, 33 COPD). Activation was assessed by measuring CD69 in blood and the cytotoxic potential of NK cells by measuring granzymes A and B, and using a cytotoxicity assay in blood and BALF. In blood in COPD, there were no significant changes in the proportion of NK or NKT-like cells or expression of granzyme A or NK cytotoxic potential versus controls. There was, however, increased expression of granzyme B and decreased expression of CD94 by both cell types versus controls. The proportion of NK and NKT-like cells were increased in BALF in COPD, associated with increased NK cytotoxicity, increased expression of granzyme B and decreased expression of the inhibitory receptor CD94 by both cell types. Treatment strategies that target NK and NKT-like cells, their cytotoxicity and production of inflammatory mediators in the airway may improve COPD morbidity. © 2012 The Authors. Respirology © 2012 Asian Pacific Society of Respirology.

  13. Different subsets of natural killer T cells may vary in their roles in health and disease

    PubMed Central

    Kumar, Vipin; Delovitch, Terry L

    2014-01-01

    Natural killer T cells (NKT) can regulate innate and adaptive immune responses. Type I and type II NKT cell subsets recognize different lipid antigens presented by CD1d, an MHC class-I-like molecule. Most type I NKT cells express a semi-invariant T-cell receptor (TCR), but a major subset of type II NKT cells reactive to a self antigen sulphatide use an oligoclonal TCR. Whereas TCR-α dominates CD1d-lipid recognition by type I NKT cells, TCR-α and TCR-β contribute equally to CD1d-lipid recognition by type II NKT cells. These variable modes of NKT cell recognition of lipid–CD1d complexes activate a host of cytokine-dependent responses that can either exacerbate or protect from disease. Recent studies of chronic inflammatory and autoimmune diseases have led to a hypothesis that: (i) although type I NKT cells can promote pathogenic and regulatory responses, they are more frequently pathogenic, and (ii) type II NKT cells are predominantly inhibitory and protective from such responses and diseases. This review focuses on a further test of this hypothesis by the use of recently developed techniques, intravital imaging and mass cytometry, to analyse the molecular and cellular dynamics of type I and type II NKT cell antigen-presenting cell motility, interaction, activation and immunoregulation that promote immune responses leading to health versus disease outcomes. PMID:24428389

  14. Natural killer-cell counts are associated with molecular relapse-free survival after imatinib discontinuation in chronic myeloid leukemia: the IMMUNOSTIM study.

    PubMed

    Rea, Delphine; Henry, Guylaine; Khaznadar, Zena; Etienne, Gabriel; Guilhot, François; Nicolini, Franck; Guilhot, Joelle; Rousselot, Philippe; Huguet, Françoise; Legros, Laurence; Gardembas, Martine; Dubruille, Viviane; Guerci-Bresler, Agnès; Charbonnier, Aude; Maloisel, Frédéric; Ianotto, Jean-Christophe; Villemagne, Bruno; Mahon, François-Xavier; Moins-Teisserenc, Hélène; Dulphy, Nicolas; Toubert, Antoine

    2017-08-01

    Despite persistence of leukemic stem cells, patients with chronic myeloid leukemia who achieve and maintain deep molecular responses may successfully stop the tyrosine kinase inhibitor imatinib. However, questions remain unanswered regarding the biological basis of molecular relapse after imatinib cessation. In IMMUNOSTIM, we monitored 51 patients from the French Stop IMatinib trial for peripheral blood T cells and natural killer cells. Molecular relapse-free survival at 24 months was 45.1% (95% CI: 31.44%-58.75%). At the time of imatinib discontinuation, non-relapsing patients had significantly higher numbers of natural killer cells of the cytotoxic CD56 dim subset than had relapsing patients, while CD56 bright natural killer cells, T cells and their subsets did not differ significantly. Furthermore, the CD56 dim natural killer-cell count was an independent prognostic factor of molecular-relapse free survival in a multivariate analysis. However, expression of natural killer-cell activating receptors, BCR-ABL1 + leukemia cell line K562-specific degranulation and cytokine-induced interferon-gamma secretion were decreased in non-relapsing and relapsing patients as compared with healthy individuals. After imatinib cessation, the natural killer-cell count increased significantly and stayed higher in non-relapsing patients than in relapsing patients, while receptor expression and functional properties remained unchanged. Altogether, our results suggest that natural killer cells may play a role in controlling leukemia-initiating cells at the origin of relapse after imatinib cessation, provided that these cells are numerous enough to compensate for their functional defects. Further research will decipher mechanisms underlying functional differences between natural killer cells from patients and healthy individuals and evaluate the potential interest of immunostimulatory approaches in tyrosine kinase inhibitor discontinuation strategies. (ClinicalTrial.gov Identifier NCT

  15. Critical Role for Very-Long Chain Sphingolipids in Invariant Natural Killer T Cell Development and Homeostasis.

    PubMed

    Saroha, Ashish; Pewzner-Jung, Yael; Ferreira, Natalia S; Sharma, Piyush; Jouan, Youenn; Kelly, Samuel L; Feldmesser, Ester; Merrill, Alfred H; Trottein, François; Paget, Christophe; Lang, Karl S; Futerman, Anthony H

    2017-01-01

    The role of sphingolipids (SLs) in the immune system has come under increasing scrutiny recently due to the emerging contributions that these important membrane components play in regulating a variety of immunological processes. The acyl chain length of SLs appears particularly critical in determining SL function. Here, we show a role for very-long acyl chain SLs (VLC-SLs) in invariant natural killer T ( i NKT) cell maturation in the thymus and homeostasis in the liver. Ceramide synthase 2-null mice, which lack VLC-SLs, were susceptible to a hepatotropic strain of lymphocytic choriomeningitis virus, which is due to a reduction in the number of i NKT cells. Bone marrow chimera experiments indicated that hematopoietic-derived VLC-SLs are essential for maturation of i NKT cells in the thymus, whereas parenchymal-derived VLC-SLs are crucial for i NKT cell survival and maintenance in the liver. Our findings suggest a critical role for VLC-SL in i NKT cell physiology.

  16. Education of human natural killer cells by activating killer cell immunoglobulin-like receptors.

    PubMed

    Fauriat, Cyril; Ivarsson, Martin A; Ljunggren, Hans-Gustaf; Malmberg, Karl-Johan; Michaëlsson, Jakob

    2010-02-11

    Expression of inhibitory killer cell immunoglobulin-like receptors (KIRs) specific for self-major histocompatibility complex (MHC) class I molecules provides an educational signal that generates functional natural killer (NK) cells. However, the effects of activating KIRs specific for self-MHC class I on NK-cell education remain elusive. Here, we provide evidence that the activating receptor KIR2DS1 tunes down the responsiveness of freshly isolated human NK cells to target cell stimulation in donors homozygous for human leukocyte antigen (HLA)-C2, the ligand of KIR2DS1. The tuning was apparent in KIR2DS1(+) NK cells lacking expression of inhibitory KIRs and CD94/NKG2A, as well as in KIR2DS1(+) NK cells coexpressing the inhibitory MHC class I-specific receptors CD94/NKG2A and KIR2DL3, but not KIR2DL1. However, the tuning of responsiveness was restricted to target cell recognition because KIR2DS1(+) NK cells responded well to stimulation with exogenous cytokines. Our results provide the first example of human NK-cell education by an activating KIR and suggest that the education of NK cells via activating KIRs is a mechanism to secure tolerance that complements education via inhibitory KIRs.

  17. Expression of killer inhibitory receptors on cytotoxic cells from HIV-1-infected individuals

    PubMed Central

    Galiani, M D; Aguado, E; Tarazona, R; Romero, P; Molina, I; Santamaria, M; Solana, R; PeñA, J

    1999-01-01

    Dysfunction of cytotoxic activity of T and natural killer (NK) lymphocytes is a main immunological feature in patients with AIDS, but its basis are not well understood. It has been recently described that T and NK cell-mediated cytotoxicity can be regulated by HLA killer inhibitory receptors (KIR). In this work, we have determined on cytotoxic T cells and NK cells from HIV-1-infected individuals the expression of the following KIR molecules: p58, p70, and ILT2 (immunoglobulin-like family KIR) as well as CD94 and NKG2A (C-lectin-type family KIR). With some exceptions, no significant changes were found on the expression of immunoglobulin-like KIR in either CD8+ or CD56+ cells. Interestingly, the percentages of CD8+ and CD56+ cells expressing CD94 were significantly increased in these individuals. We also show that, in vitro, IL-10 up-regulates CD94 expression on CD8+ and CD56+ cells obtained from normal individuals, suggesting that the augmented expression observed in HIV-infected individuals could be related to the high levels of IL-10 previously described in HIV-1-infected individuals. PMID:10193420

  18. The Functions of Type I and Type II Natural Killer T (NKT) Cells in Inflammatory Bowel Diseases

    PubMed Central

    Liao, Chia-Min; Zimmer, Michael I.; Wang, Chyung-Ru

    2013-01-01

    CD1d-restricted natural killer T (NKT) cells are a distinct subset of T cells that rapidly produce an array of cytokines upon activation and play a critical role in regulating various immune responses. NKT cells are classified into two groups based on differences in T cell receptor (TCR) usage. Type I NKT cells have an invariant TCRα-chain and are readily detectable by α-galactosylceramide (α-GalCer)-loaded CD1d tetramers. Type II NKT cells have a more diverse TCR repertoire and cannot be directly identified. Both types of NKT cells as well as multiple CD1d-expressing cell types are present in the intestine and their interactions are likely to be modulated by pathogenic and commensal microbes, which in turn contribute to the intestinal immune responses in health and disease. Indeed, in several animal models of inflammatory bowel disease (IBD), Type I NKT cells have been shown to make both protective and pathogenic contributions to disease. In contrast, in human patients suffering from ulcerative colitis (UC), and a mouse model in which both CD1d expression and the frequency of Type II NKT cells are increased, Type II NKT cells appear to promote intestinal inflammation. In this review, we summarize present knowledge on the antigen recognition, activation and function of NKT cells with a particular focus on their role in IBD, and discuss factors that may influence the functional outcome of NKT cell responses in intestinal inflammation. PMID:23518808

  19. Dendritic cell internalization of α-galactosylceramide from CD8 T cells induces potent antitumor CD8 T-cell responses.

    PubMed

    Choi, Dong Hoon; Kim, Kwang Soon; Yang, Se Hwan; Chung, Doo Hyun; Song, Boyeong; Sprent, Jonathan; Cho, Jae Ho; Sung, Young Chul

    2011-12-15

    Dendritic cells (DC) present α-galactosylceramide (αGalCer) to invariant T-cell receptor-expressing natural killer T cells (iNKT) activating these cells to secrete a variety of cytokines, which in turn results in DC maturation and activation of other cell types, including NK cells, B cells, and conventional T cells. In this study, we showed that αGalCer-pulsing of antigen-activated CD8 T cells before adoptive transfer to tumor-bearing mice caused a marked increase in donor T-cell proliferation, precursor frequency, and cytotoxic lymphocyte activity. This effect was interleukin (IL)-2 dependent and involved both natural killer T cells (NKT) and DCs, as mice lacking IL-2, NKTs, and DCs lacked any enhanced response to adoptively transferred αGalCer-loaded CD8 T cells. iNKT activation was mediated by transfer of αGalCer from the cell membrane of the donor CD8 T cells onto the αGalCer receptor CD1d which is present on host DCs. αGalCer transfer was increased by prior activation of the donor CD8 T cells and required AP-2-mediated endocytosis by host DCs. In addition, host iNKT cell activation led to strong IL-2 synthesis, thereby increasing expansion and differentiation of donor CD8 T cells. Transfer of these cells led to improved therapeutic efficacy against established solid tumors in mice. Thus, our findings illustrate how αGalCer loading of CD8 T cells after antigen activation in vitro may leverage the therapeutic potential of adoptive T-cell therapies.

  20. Lipid-Antigen Presentation by CD1d+ B Cells Is Essential for the Maintenance of Invariant Natural Killer T Cells

    PubMed Central

    Bosma, Anneleen; Abdel-Gadir, Azza; Isenberg, David A.; Jury, Elizabeth C.; Mauri, Claudia

    2012-01-01

    Summary B cells perform many immunological functions, including presenting lipid antigen to CD1d-restricted invariant natural killer T (iNKT) cells, known to contribute to maintaining tolerance in autoimmunity. Patients with systemic lupus erythematous (SLE) display dysregulated B cell responses and reduced peripheral iNKT cell frequencies. The significance of these defects and how they relate to SLE pathogenesis remain elusive. We report that B cells are essential for iNKT cell expansion and activation in healthy donors but fail to exert a similar effect in SLE patients. Defective B cell-mediated stimulation of iNKT cells in SLE patients was associated with altered CD1d recycling, a defect recapitulated in B cells from healthy donors after stimulation with interferon-α (IFN-α) and anti-immunoglobulin (Ig). iNKT cell number and function were restored in SLE patients responding to anti-CD20 treatment upon normalization of CD1d expression exclusively in repopulated immature B cells. We propose that healthy B cells are pivotal for iNKT cell homeostasis. PMID:22406267

  1. Turned on by danger: activation of CD1d-restricted invariant natural killer T cells

    PubMed Central

    Lawson, Victoria

    2012-01-01

    CD1d-restricted invariant natural killer T (iNKT) cells bear characteristics of innate and adaptive lymphocytes, which allow them to bridge the two halves of the immune response and play roles in many disease settings. Recent work has characterized precisely how their activation is initiated and regulated. Novel antigens from important pathogens have been identified, as has an abundant self-antigen, β-glucopyranosylcaramide, capable of mediating an iNKT-cell response. Studies of the iNKT T-cell receptor (TCR)–antigen–CD1d complex show how docking between CD1d–antigen and iNKT TCR is highly conserved, and how small sequence differences in the TCR establish intrinsic variation in iNKT TCR affinity. The sequence of the TCR CDR3β loop determines iNKT TCR affinity for ligand–CD1d, independent of ligand identity. CD1d ligands can promote T helper type 1 (Th1) or Th2 biased cytokine responses, depending on the composition of their lipid tails. Ligands loaded into CD1d on the cell surface promote Th2 responses, whereas ligands with long hydrophobic tails are loaded endosomally and promote Th1 responses. This information is informing the design of synthetic iNKT-cell antigens. The iNKT cells may be activated by exogenous antigen, or by a combination of dendritic cell-derived interleukin-12 and iNKT TCR–self-antigen–CD1d engagement. The iNKT-cell activation is further modulated by recent foreign or self-antigen encounter. Activation of dendritic cells through pattern recognition receptors alters their antigen presentation and cytokine production, strongly influencing iNKT-cell activation. In a range of bacterial infections, dendritic cell-dependent innate activation of iNKT cells through interleukin-12 is the dominant influence on their activity. PMID:22734667

  2. Natural killer T cell facilitated engraftment of rat skin but not islet xenografts in mice.

    PubMed

    Gordon, Ethel J; Kelkar, Vinaya

    2009-01-01

    We have studied cellular components required for xenograft survival mediated by anti-CD154 monoclonal antibody (mAb) and a transfusion of donor spleen cells and found that the elimination of CD4(+) but not CD8(+) cells significantly improves graft survival. A contribution of other cellular components, such as natural killer (NK) cells and natural killer T (NKT) cells, for costimulation blockade-induced xenograft survival has not been clearly defined. We therefore tested the hypothesis that NK or NKT cells would promote rat islet and skin xenograft acceptance in mice. Lewis rat islets or skin was transplanted into wild type B6 mice or into B6 mice that were Jalpha18(null), CD1(null), or beta2 microglobulin (beta2M)(null) NK 1.1 depleted, or perforin(null). Graft recipients were pretreated with an infusion of donor derived spleen cells and a brief course of anti-CD154 mAb treatments. Additional groups received mAb or cells only. We first observed that the depletion of NK1.1 cells does not significantly interfere with graft survival in C57BL/6 (B6) mice. We used NKT cell deficient B6 mice to test the hypothesis that NKT cells are involved in islet and skin xenograft survival in our model. These mice bear a null mutation in the gene for the Jalpha18 component of the T-cell receptor. The component is uniquely associated with NKT cells. We found no difference in islet xenograft survival between Jalpha18(null) and wild type B6 mice. In contrast, median skin graft survival appeared shorter in Jalpha18(null) recipients. These data imply a role for Jalpha18(+) NKT cells in skin xenograft survival in treated mice. In order to confirm this inference, we tested skin xenograft survival in B6 CD1(null) mice because NKT cells are CD1 restricted. Results of these trials demonstrate that the absence of CD1(+) cells adversely affects rat skin graft survival. An additional assay in beta2M(null) mice demonstrated a requirement for major histocompatibility complex (MHC) class I

  3. Phototoxic effects of lysosome-associated genetically encoded photosensitizer KillerRed

    NASA Astrophysics Data System (ADS)

    Serebrovskaya, Ekaterina O.; Ryumina, Alina P.; Boulina, Maria E.; Shirmanova, Marina V.; Zagaynova, Elena V.; Bogdanova, Ekaterina A.; Lukyanov, Sergey A.; Lukyanov, Konstantin A.

    2014-07-01

    KillerRed is a unique phototoxic red fluorescent protein that can be used to induce local oxidative stress by green-orange light illumination. Here we studied phototoxicity of KillerRed targeted to cytoplasmic surface of lysosomes via fusion with Rab7, a small GTPase that is known to be attached to membranes of late endosomes and lysosomes. It was found that lysosome-associated KillerRed ensures efficient light-induced cell death similar to previously reported mitochondria- and plasma membrane-localized KillerRed. Inhibitory analysis demonstrated that lysosomal cathepsins play an important role in the manifestation of KillerRed-Rab7 phototoxicity. Time-lapse monitoring of cell morphology, membrane integrity, and nuclei shape allowed us to conclude that KillerRed-Rab7-mediated cell death occurs via necrosis at high light intensity or via apoptosis at lower light intensity. Potentially, KillerRed-Rab7 can be used as an optogenetic tool to direct target cell populations to either apoptosis or necrosis.

  4. Effect of spaceflight on natural killer cell activity

    NASA Technical Reports Server (NTRS)

    Rykova, Marina P.; Sonnenfeld, Gerald; Lesniak, A. T.; Taylor, Gerald R.; Meshkov, Dimitrii O.; Mandel, Adrian D.; Medvedev, Andrei E.; Berry, Wallace D.; Fuchs, Boris B.; Konstantinova, Irina V.

    1992-01-01

    The effects of spaceflight on immune cell function were determined in rats flown on Cosmos 2044. Control groups included vivarium, synchronous, and antiorthostatically suspended rats. The ability of natural killer cells to lyse two different target cell lines was determined. Spleen and bone marrow cells obtained from flight rats showed significantly inhibited cytotoxicity for YAC-1 target cells compared with cells from synchronous control rats. This could have been due to exposure of the rats to microgravity. Antiorthostatic suspension did not affect the level of cytotoxicity from spleen cells of suspended rats for YAC-1 cells. On the other hand, cells from rats flown in space showed no significant differences from vivarium and synchronous control rats in cytotoxicity for K-562 target cells. Binding of natural killer cells to K-562 target cells was unaffected by spaceflight. Antiorthostatic suspension resulted in higher levels of cytotoxicity from spleen cells for Cr-51-labeled K-562 cells. The results indicate differential effects of spaceflight on function of natural killer cells. This shows that spaceflight has selective effects on the immune response.

  5. Opposing effect of mesenchymal stem cells on Th1 and Th17 cell polarization according to the state of CD4+ T cell activation.

    PubMed

    Carrión, Flavio; Nova, Estefania; Luz, Patricia; Apablaza, Felipe; Figueroa, Fernando

    2011-03-30

    Mesenchymal stem cells (MSCs) are multipotent progenitors with broad immunosuppressive properties. However, their therapeutic use in autoimmune disease models has shown dissimilar effects when applied at different stages of disease. We therefore investigated the effect of the addition of MSCs on the differentiation of Th1, Treg and Th17 cells in vitro, at different states of CD4(+) T cell activation. CD4(+) T lymphocytes purified by negative selection from mouse C57BL/6 splenocytes were cultured under Th1, Th17 and Treg inducing conditions with IL-12, TGF-β+IL-6 or TGF-β, respectively. C57BL/6 bone marrow derived MSCs were added to CD4(+) T cell cultures at day 0 or after 3 days of T cell polarizing activation. Intracellular cytokines for Th1, Th17 and Treg cells were quantitated at day 6 by flow cytometry. While early addition (day 0) of MSCs suppressed all CD4(+) T cell lineages, addition at day 3 only decreased IFN-γ production by Th1 polarized cells by 64% (p<0.05) while markedly increased IL-17 production by Th17 polarized cells by 50% (p<0.05) and left IL-10 production by Treg polarized cells unchanged. MSCs exhibit their typical suppressive phenotype when added early to cell cultures in the presence of CD4(+) T cell polarizing stimuli. However, once T cell activation has occurred, MSCs show an opposite stimulating effect on Th17 cells, while leaving Treg IL-10 producing cells unchanged. These results suggest that the therapeutic use of MSCs in vivo might exert opposing effects on disease activity, according to the time of therapeutic application and the level of effector T cell activation. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Different subsets of natural killer T cells may vary in their roles in health and disease.

    PubMed

    Kumar, Vipin; Delovitch, Terry L

    2014-07-01

    Natural killer T cells (NKT) can regulate innate and adaptive immune responses. Type I and type II NKT cell subsets recognize different lipid antigens presented by CD1d, an MHC class-I-like molecule. Most type I NKT cells express a semi-invariant T-cell receptor (TCR), but a major subset of type II NKT cells reactive to a self antigen sulphatide use an oligoclonal TCR. Whereas TCR-α dominates CD1d-lipid recognition by type I NKT cells, TCR-α and TCR-β contribute equally to CD1d-lipid recognition by type II NKT cells. These variable modes of NKT cell recognition of lipid-CD1d complexes activate a host of cytokine-dependent responses that can either exacerbate or protect from disease. Recent studies of chronic inflammatory and autoimmune diseases have led to a hypothesis that: (i) although type I NKT cells can promote pathogenic and regulatory responses, they are more frequently pathogenic, and (ii) type II NKT cells are predominantly inhibitory and protective from such responses and diseases. This review focuses on a further test of this hypothesis by the use of recently developed techniques, intravital imaging and mass cytometry, to analyse the molecular and cellular dynamics of type I and type II NKT cell antigen-presenting cell motility, interaction, activation and immunoregulation that promote immune responses leading to health versus disease outcomes. © 2014 John Wiley & Sons Ltd.

  7. The role of natural killer cells in chronic myeloid leukemia

    PubMed Central

    Danier, Anna Carolyna Araújo; de Melo, Ricardo Pereira; Napimoga, Marcelo Henrique; Laguna-Abreu, Maria Theresa Cerávolo

    2011-01-01

    Chronic myeloid leukemia is a neoplasia resulting from a translocation between chromosomes 9 and 22 producing the BCR-ABL hybrid known as the Philadelphia chromosome (Ph). In chronic myeloid leukemia a proliferation of malignant myeloid cells occurs in the bone marrow due to excessive tyrosine kinase activity. In order to maintain homeostasis, natural killer cells, by means of receptors, identify the major histocompatibility complex on the surface of tumor cells and subsequently induce apoptosis. The NKG2D receptor in the natural killer cells recognizes the transmembrane proteins related to major histocompatibility complex class I chain-related genes A and B (MICA and MICB), and it is by the interaction between NKG2D and MICA that natural killer cells exert cytotoxic activity against chronic myeloid leukemia tumor cells. However, in the case of chronic exposure of the NKG2D receptor, the MICA ligand releases soluble proteins called sMICA from the tumor cell surface, which negatively modulate NKG2D and enable the tumor cells to avoid lysis mediated by the natural killer cells. Blocking the formation of sMICA may be an important antitumor strategy. Treatment using tyrosine kinase inhibitors induces modulation of NKG2DL expression, which could favor the activity of the natural killer cells. However this mechanism has not been fully described in chronic myeloid leukemia. In the present study, we analyze the role of natural killer cells to reduce proliferation and in the cellular death of tumor cells in chronic myeloid leukemia. PMID:23049299

  8. Rapid and preferential distribution of blood-borne αCD3εAb to the liver is followed by local stimulation of T cells and natural killer T cells

    PubMed Central

    Wingender, Gerhard; Schumak, Beatrix; Schurich, Anna; Gessner, J Engelbert; Endl, Elmar; Limmer, Andreas; Knolle, Percy A

    2006-01-01

    Dissemination of soluble molecules or antigens via the blood stream is considered to lead to a uniform distribution in the various organs of the body, but organ-specific microarchitecture and vascularization may influence this. Following intravenous injection of αCD3ε antibody (αCD3εAb) we observed clear differences in antibody binding to Fcγ receptor (FcγR)+ antigen-presenting cells (APCs) or T lymphocytes in different organs. Significant binding of blood-borne αCD3εAb was only detected in the spleen and liver and not in the thymus or lymph node. In the spleen, only 10% of dendritic cells/macrophages and 40% of T-cell receptor (TCR)-β+ cells were positive for αCD3εAb, and, dependent on FcγR-mediated cross-linking of αCD3εAb, a similar percentage of splenic TCR-β+ cells were stimulated and became CD69+. Stimulation of TCR-β+ cells in the liver was at least as efficient as in the spleen, but almost all T cells and all scavenger liver sinusoidal endothelial cells bound αCD3εAb. In contrast to CD69 up-regulation, only CD4+ natural killer T (NKT) cells and CD11ahigh CD8+ T cells were activated by αCD3εAb and expressed interferon (IFN)-γ. Again, IFN-γ release from NKT/T cells was at least as efficient in the liver as in the spleen. Taken together, our results support the notion that the combination of extensive hepatic vascularization and very high scavenger activity allows the liver to fulfill its metabolic tasks and to promote stimulation of the large but widely distributed hepatic population of NKT/T cells. PMID:16423047

  9. Killer Cell Immunoglobulin-Like Receptor Gene Associations with Autoimmune and Allergic Diseases, Recurrent Spontaneous Abortion, and Neoplasms

    PubMed Central

    Kuśnierczyk, Piotr

    2013-01-01

    Killer cell immunoglobulin-like receptors (KIRs) are a family of cell surface inhibitory or activating receptors expressed on natural killer cells and some subpopulations of T lymphocytes. KIR genes are clustered in the 19q13.4 region and are characterized by both allelic (high numbers of variants) and haplotypic (different numbers of genes for inhibitory and activating receptors on individual chromosomes) polymorphism. This contributes to diverse susceptibility to diseases and other clinical situations. Associations of KIR genes, as well as of genes for their ligands, with selected diseases such as psoriasis vulgaris and atopic dermatitis, rheumatoid arthritis, recurrent spontaneous abortion, and non-small cell lung cancer are discussed in the context of NK and T cell functions. PMID:23372569

  10. Lysophospholipid presentation by CD1d and recognition by a human Natural Killer T-cell receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Sagaseta, Jacinto; Sibener, Leah V.; Kung, Jennifer E.

    2014-10-02

    Invariant Natural Killer T (iNKT) cells use highly restricted {alpha}{beta} T cell receptors (TCRs) to probe the repertoire of lipids presented by CD1d molecules. Here, we describe our studies of lysophosphatidylcholine (LPC) presentation by human CD1d and its recognition by a native, LPC-specific iNKT TCR. Human CD1d presenting LPC adopts an altered conformation from that of CD1d presenting glycolipid antigens, with a shifted {alpha}1 helix resulting in an open A pocket. Binding of the iNKT TCR requires a 7-{angstrom} displacement of the LPC headgroup but stabilizes the CD1d-LPC complex in a closed conformation. The iNKT TCR CDR loop footprint onmore » CD1d-LPC is anchored by the conserved positioning of the CDR3{alpha} loop, whereas the remaining CDR loops are shifted, due in part to amino-acid differences in the CDR3{beta} and J{beta} segment used by this iNKT TCR. These findings provide insight into how lysophospholipids are presented by human CD1d molecules and how this complex is recognized by some, but not all, human iNKT cells.« less

  11. Expansion of natural killer cell receptor (CD94/NKG2A)-expressing cytolytic CD8 T cells and CD4+CD25+ regulatory T cells from the same cord blood unit.

    PubMed

    Tanaka, Junji; Sugita, Junichi; Kato, Naoko; Toubai, Tomomi; Ibata, Makoto; Shono, Yusuke; Ota, Shuichi; Kondo, Takeshi; Kobayashi, Takahiko; Kobayashi, Masanobu; Asaka, Masahiro; Imamura, Masahiro

    2007-10-01

    Cord blood contains a significant number of precursor cells that differentiate to cytotoxic effector cells and immunoregulatory cells. We tried to expand inhibitory natural killer cell receptor CD94-expressing CD8 T cells with cytolytic activity and CD4(+)CD25(+) regulatory T cells from the same cord cell unit. Cytotoxic CD94-expressing CD8 T cells were expanded from CD4-depleted cord blood using an immobilized anti-CD3 monoclonal antibody and a cytokine and also CD4(+)CD25(+) regulatory T cells were expanded from a CD4-enriched fraction derived from the same cord blood unit using anti-CD3/CD28 monoclonal antibody-coated Dynabeads and cytokines. We were able to obtain a more than 1000-fold expansion of CD94-expressing CD8 T cells and a more than 50-fold expansion of CD4(+)CD25(+) cells from the same cord blood unit. These expanded CD4(+)CD25(+) cells expressed FoxP3 mRNA at a level about 100-fold higher than that in isolated CD25(-) cells and could suppress allogeneic mixed lymphocyte culture by >80% (effector cells: CD4(+)CD25(+) cells = 2:1). Cytolytic activities of purified CD94-expressing cells detected by a 4-hour (51)Cr release assay against K562 were >60%. Coculture of CD94-expressing cells with expanded CD4(+)CD25(+) cells did not have any effect on cytolytic activities of purified CD94-expressing cells against K562 cells. These expanded cytolytic CD94-expressing CD8 cells might be able to induce a graft-vs-leukemia effect without enhancing graft-vs-host disease, and CD4(+)CD25(+) cells might be able to suppress allogeneic responses, including graft-vs-host disease and graft rejection after cord blood transplantation.

  12. Leveraging natural killer cells for cancer immunotherapy.

    PubMed

    Grossenbacher, Steven K; Aguilar, Ethan G; Murphy, William J

    2017-05-01

    Natural killer (NK) cells are potent antitumor effector cells of the innate immune system. Based on their ability to eradicate tumors in vitro and in animal models, significant enthusiasm surrounds the prospect of leveraging human NK cells as vehicles for cancer immunotherapy. While interest in manipulating the effector functions of NK cells has existed for over 30 years, there is renewed optimism for this approach today. Although T cells receive much of the clinical and preclinical attention when it comes to cancer immunotherapy, new strategies are utilizing adoptive NK-cell immunotherapy and monoclonal antibodies and engineered molecules which have been developed to specifically activate NK cells against tumors. Despite the numerous challenges associated with the preclinical and clinical development of NK cell-based therapies for cancer, NK cells possess many unique immunological properties and hold the potential to provide an effective means for cancer immunotherapy.

  13. Circulating T-Cell Subsets, Monocytes, and Natural Killer Cells in Peripartum Cardiomyopathy: Results From the Multicenter IPAC Study.

    PubMed

    McTiernan, Charles F; Morel, Penelope; Cooper, Leslie T; Rajagopalan, Navin; Thohan, Vinay; Zucker, Mark; Boehmer, John; Bozkurt, Biykem; Mather, Paul; Thornton, John; Ghali, Jalal K; Hanley-Yanez, Karen; Fett, James; Halder, Indrani; McNamara, Dennis M

    2018-01-01

    The aim of this work was to evaluate the hypothesis that the distribution of circulating immune cell subsets, or their activation state, is significantly different between peripartum cardiomyopathy (PPCM) and healthy postpartum (HP) women. PPCM is a major cause of maternal morbidity and mortality, and an immune-mediated etiology has been hypothesized. Cellular immunity, altered in pregnancy and the peripartum period, has been proposed to play a role in PPCM pathogenesis. The Investigation of Pregnancy-Associated Cardiomyopathy (IPAC) study enrolled 100 women presenting with a left ventricular ejection fraction of <0.45 within 2 months of delivery. Peripheral T-cell subsets, natural killer (NK) cells, and cellular activation markers were assessed by flow cytometry in PPCM women early (<6 wk), 2 months, and 6 months postpartum and compared with those of HP women and women with non-pregnancy-associated recent-onset cardiomyopathy (ROCM). Entry NK cell levels (CD3-CD56+CD16+; reported as % of CD3- cells) were significantly (P < .0003) reduced in PPCM (6.6 ± 4.9% of CD3- cells) compared to HP (11.9 ± 5%). Of T-cell subtypes, CD3+CD4-CD8-CD38+ cells differed significantly (P < .004) between PPCM (24.5 ± 12.5% of CD3+CD4-CD8- cells) and HP (12.5 ± 6.4%). PPCM patients demonstrated a rapid recovery of NK and CD3+CD4-CD8-CD38+ cell levels. However, black women had a delayed recovery of NK cells. A similar reduction of NK cells was observed in women with ROCM. Compared with HP control women, early postpartum PPCM women show significantly reduced NK cells, and higher CD3+CD4-CD8-CD38+ cells, which both normalize over time postpartum. The mechanistic role of NK cells and "double negative" (CD4-CD8-) T regulatory cells in PPCM requires further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Natural killer cell function predicts severe infection in kidney transplant recipients.

    PubMed

    Dendle, Claire; Gan, Poh-Yi; Polkinghorne, Kevan R; Ngui, James; Stuart, Rhonda L; Kanellis, John; Thursky, Karin; Mulley, William R; Holdsworth, Stephen

    2018-04-30

    The aim of this study was to determine if natural killer cell number (CD3 - /CD16 ± /CD56 ± ) and cytotoxic killing function predicts severity and frequency of infection in kidney transplant recipients. A cohort of 168 kidney transplant recipients with stable graft function underwent assessment of natural killer cell number and functional killing capacity immediately prior to entry into this prospective study. Participants were followed for 2 years for development of severe infection, defined as hospitalization for infection. Area under receiver operating characteristic (AUROC) curves were used to evaluate the accuracy of natural killer cell number and function for predicting severe infection. Adjusted odds ratios were determined by logistic regression. Fifty-nine kidney transplant recipients (35%) developed severe infection and 7 (4%) died. Natural killer cell function was a better predictor of severe infection than natural killer cell number: AUROC 0.84 and 0.75, respectively (P = .018). Logistic regression demonstrated that after adjustment for age, transplant function, transplant duration, mycophenolate use, and increasing natural killer function (odds ratio [OR] 0.82, 95% confidence interval [CI] 0.74-0.90; P < .0001) but not natural killer number (OR 0.96, 95% CI 0.93-1.00; P = .051) remained significantly associated with a reduced likelihood of severe infection. Natural killer cell function predicts severe infection in kidney transplant recipients. © 2018 The American Society of Transplantation and the American Society of Transplant Surgeons.

  15. Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells

    PubMed Central

    Orlova-Fink, Nina; Einkauf, Kevin; Chowdhury, Fatema Z.; Sun, Xiaoming; Harrington, Sean; Kuo, Hsiao-Hsuan; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Reddy, Kavidha; Dong, Krista; Ndung’u, Thumbi; Walker, Bruce D.; Rosenberg, Eric S.; Yu, Xu G.

    2017-01-01

    HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells. PMID:28628034

  16. Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells.

    PubMed

    Lee, Guinevere Q; Orlova-Fink, Nina; Einkauf, Kevin; Chowdhury, Fatema Z; Sun, Xiaoming; Harrington, Sean; Kuo, Hsiao-Hsuan; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Reddy, Kavidha; Dong, Krista; Ndung'u, Thumbi; Walker, Bruce D; Rosenberg, Eric S; Yu, Xu G; Lichterfeld, Mathias

    2017-06-30

    HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells.

  17. Analysis of CD57+ natural killer cells and CD8+ T lymphocytes in periapical granulomas and radicular cysts.

    PubMed

    Silva, Luiz Arthur Barbosa da; Sá, Maria Alice Ramalho; Melo, Rafaela Albuquerque; Pereira, Joabe Dos Santos; Silveira, Éricka Janine Dantas da; Miguel, Márcia Cristina da Costa

    2017-12-18

    The aim of this study was to compare the number of CD57+ natural killer (NK) cells and CD8+ T lymphocytes between periapical granulomas (PGs) and radicular cysts (RCs). Twenty-fives cases of PGs and 25 of RCs were submitted to histological analysis and immunohistochemistry using anti-CD57 and anti-CD8 biomarkers. Positive cells were counted in 10 fields (400× magnification) and the median value was calculated for each case. Statistical tests were used to evaluate differences in the number of CD57+ NK cells and CD8+ T lymphocytes according to type of lesion, intensity of the infiltrate and thickness of the lining epithelium. The number of CD57+ NK cells and CD8+ T lymphocytes was higher in PGs than in RCs (p = 0.129 and p = 0.541, respectively). Comparison of the number of CD57+ NK cells in atrophic and hyperplastic epithelium revealed a larger number of cells in the atrophic epithelium (p = 0.042). A larger number of CD57+ NK cells and CD8+ T lymphocytes were observed in grade III infiltrates compared to grade I/II (p = 0.145 and p = 0.725, respectively). CD8+ T lymphocytes were more prevalent than CD57+ NK cells in most cases when PGs and RCs were analyzed separately or in combination (p < 0.0001). CD57+ NK cells and CD8+ T lymphocytes play a key role in antiviral defense and the presence of these cells supports evidence suggesting the participation of these microorganisms in the pathogenesis of PGs and RCs. The response mediated by CD8+ T lymphocytes was more frequent, indicating greater participation of the adaptive immunity in these chronic lesions.

  18. Chronic active Epstein–Barr virus infection associated with hemophagocytic syndrome and extra-nodal natural killer/T-cell lymphoma in an 18-year-old girl

    PubMed Central

    Xing, Yawei; Yang, Junwen; Lian, Guanghui; Chen, Shuijiao; Chen, Linlin; Li, Fujun

    2017-01-01

    Abstract Rationale: Chronic active Epstein–Barr virus infection (CAEBV) associated with hemophagocytic syndrome (HPS) and extra-nodal natural killer (NK)/T-cell lymphoma (ENKL) is a rare life-threatening disorder. This disease is easily misdiagnosed because of its varied presentations. Patient concerns: An 18-year-old girl was admitted to our hospital with a history of edema in the lower limbs and intermittent fever lasting for more than 1 month. At admission, she had severe liver injury of unknown etiology. Laboratory test results revealed pancytopenia, hyperferritinemia, hypertriglyceridemia, and hypofibrinogenemia. Results of serologic tests for EBV were positive. Results of a skin biopsy indicated EBV-positive NK/T-cell lymphoma, and bone marrow aspiration revealed focal hemophagocytosis and atypical lymphoid cells. Diagnosis: On the basis of these findings, we diagnosed the case as extra-nodal NK/T-cell lymphoma-associated HPS (natural killer/T-cell lymphoma-associated hemophagocytic syndrome), which is commonly induced by CAEBV. Interventions: Treatment consisted of general management of hepatitis, supplemented with albumin and empirical antibiotic therapy. Outcomes: The patient died from massive gastrointestinal hemorrhage a week after she was discharged from the hospital. Lessons: ENKL and HPS present with varied features and are generally fatal; therefore, clinicians should proceed with caution in suspected cases. HPS should be considered when the patient presents with fever, hepatosplenomegaly, pancytopenia, and liver failure. When HPS is suspected, clinicians should determine the underlying cause, such as severe infection, including infection with viruses such as EBV; genetic predisposition; or underlying malignancies, especially lymphoma because of its strong association with HPS. PMID:28489771

  19. FasL Mediates T-Cell Eradication of Tumor Cells Presenting Low Levels of Antigens | Center for Cancer Research

    Cancer.gov

    One approach to cancer immunotherapy, as opposed to therapeutic vaccination, is the transfusion of large numbers of tumor-specific killer T cells (cytotoxic T cells or CTLs) into patients. The body’s own defense killer T cells are a subgroup of T lymphocytes (a type of white blood cells) that are capable of inducing death in tumor cells. CTLs can cause the death of target cells either by releasing granules containing toxic molecules including perforin, or by producing a membrane protein called Fas ligand (FasL) which on interaction with the tumor cell results in cell death.

  20. Intraocular involvement of a nasal natural killer T-cell lymphoma: a case report.

    PubMed

    Yoo, Jae Ho; Kim, Soo Young; Jung, Kyu Bong; Lee, Jung Joo; Lee, Sang Joon

    2012-02-01

    Herein, we report a case of nasal natural killer T-cell lymphoma (NKTL) with intraocular involvement. A 57-year-old woman was referred due to a three-day history of photophobia and diplopia in the left eye. One-month previously, she was diagnosed with nasal NKTL of the right nasal cavity. Ophthalmic examination revealed conjunctival injection and ptosis. The left pupil was fully dilated and non-reactive to light. Ocular motion was restricted on left-upper gaze. Five days later, anterior uveitis developed and persisted despite topical steroid treatment. An orbital magnetic resonance imaging was without specific findings, however, ophthalmoplegia, vitreous opacity, and an iris mass were observed. A diagnostic anterior chamber aspiration was performed. Aqueous humor aspiration revealed 35% morphologically atypical lymphocytes. After an intravitreal triamcinolone injection, radiotherapy and chemotherapy were administered; this resolved the uveitis and iris mass. When refractory uveitis or orbital pseudotumor occurs in patients with nasal NKTL, ocular and orbital involvement of the NKTL should be considered.

  1. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection.

    PubMed

    Brigl, Manfred; Tatituri, Raju V V; Watts, Gerald F M; Bhowruth, Veemal; Leadbetter, Elizabeth A; Barton, Nathaniel; Cohen, Nadia R; Hsu, Fong-Fu; Besra, Gurdyal S; Brenner, Michael B

    2011-06-06

    Invariant natural killer T cells (iNKT cells) are critical for host defense against a variety of microbial pathogens. However, the central question of how iNKT cells are activated by microbes has not been fully explained. The example of adaptive MHC-restricted T cells, studies using synthetic pharmacological α-galactosylceramides, and the recent discovery of microbial iNKT cell ligands have all suggested that recognition of foreign lipid antigens is the main driver for iNKT cell activation during infection. However, when we compared the role of microbial antigens versus innate cytokine-driven mechanisms, we found that iNKT cell interferon-γ production after in vitro stimulation or infection with diverse bacteria overwhelmingly depended on toll-like receptor-driven IL-12. Importantly, activation of iNKT cells in vivo during infection with Sphingomonas yanoikuyae or Streptococcus pneumoniae, pathogens which are known to express iNKT cell antigens and which require iNKT cells for effective protection, also predominantly depended on IL-12. Constitutive expression of high levels of IL-12 receptor by iNKT cells enabled instant IL-12-induced STAT4 activation, demonstrating that among T cells, iNKT cells are uniquely equipped for immediate, cytokine-driven activation. These findings reveal that innate and cytokine-driven signals, rather than cognate microbial antigen, dominate in iNKT cell activation during microbial infections.

  2. Strong adhesion by regulatory T cells induces dendritic cell cytoskeletal polarization and contact-dependent lethargy.

    PubMed

    Chen, Jiahuan; Ganguly, Anutosh; Mucsi, Ashley D; Meng, Junchen; Yan, Jiacong; Detampel, Pascal; Munro, Fay; Zhang, Zongde; Wu, Mei; Hari, Aswin; Stenner, Melanie D; Zheng, Wencheng; Kubes, Paul; Xia, Tie; Amrein, Matthias W; Qi, Hai; Shi, Yan

    2017-02-01

    Dendritic cells are targeted by regulatory T (T reg) cells, in a manner that operates as an indirect mode of T cell suppression. In this study, using a combination of single-cell force spectroscopy and structured illumination microscopy, we analyze individual T reg cell-DC interaction events and show that T reg cells exhibit strong intrinsic adhesiveness to DCs. This increased DC adhesion reduces the ability of contacted DCs to engage other antigen-specific cells. We show that this unusually strong LFA-1-dependent adhesiveness of T reg cells is caused in part by their low calpain activities, which normally release integrin-cytoskeleton linkage, and thereby reduce adhesion. Super resolution imaging reveals that such T reg cell adhesion causes sequestration of Fascin-1, an actin-bundling protein essential for immunological synapse formation, and skews Fascin-1-dependent actin polarization in DCs toward the T reg cell adhesion zone. Although it is reversible upon T reg cell disengagement, this sequestration of essential cytoskeletal components causes a lethargic state of DCs, leading to reduced T cell priming. Our results reveal a dynamic cytoskeletal component underlying T reg cell-mediated DC suppression in a contact-dependent manner. © 2017 Chen et al.

  3. Chimeric antigen receptor-engineered cytokine-induced killer cells overcome treatment resistance of pre-B-cell acute lymphoblastic leukemia and enhance survival.

    PubMed

    Oelsner, Sarah; Wagner, Juliane; Friede, Miriam E; Pfirrmann, Verena; Genßler, Sabrina; Rettinger, Eva; Buchholz, Christian J; Pfeifer, Heike; Schubert, Ralf; Ottmann, Oliver G; Ullrich, Evelyn; Bader, Peter; Wels, Winfried S

    2016-10-15

    Pre-emptive cancer immunotherapy by donor lymphocyte infusion (DLI) using cytokine-induced killer (CIK) cells may be beneficial to prevent relapse with a reduced risk of causing graft-versus-host-disease. CIK cells are a heterogeneous effector cell population including T cells (CD3(+) CD56(-) ), natural killer (NK) cells (CD3(-) CD56(+) ) and natural killer T (T-NK) cells (CD3(+) CD56(+) ) that exhibit non-major histocompatibility complex (MHC)-restricted cytotoxicity and are generated by ex vivo expansion of peripheral blood mononuclear cells in the presence of interferon (IFN)-γ, anti-CD3 antibody, interleukin-2 (IL-2) and interleukin-15 (IL-15). To facilitate selective target-cell recognition and enhance specific cytotoxicity against B-cell acute lymphoblastic leukemia (B-ALL), we transduced CIK cells with a lentiviral vector encoding a chimeric antigen receptor (CAR) that carries a composite CD28-CD3ζ domain for signaling and a CD19-specific scFv antibody fragment for cell binding (CAR 63.28.z). In vitro analysis revealed high and specific cell killing activity of CD19-targeted CIK/63.28.z cells against otherwise CIK-resistant cancer cell lines and primary B-ALL blasts, which was dependent on CD19 expression and CAR signaling. In a xenograft model in immunodeficient mice, treatment with CIK/63.28.z cells in contrast to therapy with unmodified CIK cells resulted in complete and durable molecular remissions of established primary pre-B-ALL. Our results demonstrate potent antileukemic activity of CAR-engineered CIK cells in vitro and in vivo, and suggest this strategy as a promising approach for adoptive immunotherapy of refractory pre-B-ALL. © 2016 UICC.

  4. Natural Killer/T-cell Neoplasms: Analysis of Incidence, Patient Characteristics, and Survival Outcomes in the United States.

    PubMed

    Kommalapati, Anuhya; Tella, Sri Harsha; Ganti, Apar Kishore; Armitage, James O

    2018-05-04

    Limited data are available regarding the incidence, survival patterns, and long-term outcomes of natural killer (NK)/T-cell neoplasms in the United States. We performed a retrospective study of patients with NK/T-cell neoplasms diagnosed from 2001 to 2014 using the Surveillance, Epidemiology, and End Results program database. The Kaplan-Meier method was used to estimate the overall survival difference among the subgroups. Multivariate analyses were used to determine the factors affecting survival. For the 797 patients with NK/T-cell lymphoma, nasal type, the median age at diagnosis was 53 years, and males tended to be younger at diagnosis (P < .0001). The incidence of the disease increased from 0.4 in 2001 to 0.8 in 2014 per 1,000,000 individuals. The incidence was significantly greater in Hispanic patients compared with that in non-Hispanic patients (rate ratio, 3.03; P = .0001). The median overall survival was 20 months (range, 2-73 months) and varied significantly according to the primary site (P < .0001) and the disease stage at diagnosis (P < .0001). NK/T-cell lymphoma patients had an increased risk of acute myeloid leukemia (standardized incidence ratio, 18.77; 95% confidence interval, 2.27-67.81). For the 105 NK/T-cell leukemia patients, the median age at diagnosis was 58 years (range, 4-95 years). The overall incidence of the disease was 0.09 per 1,000,000 individuals and was significantly greater in males (rate ratio, 0.41; P < .0001). Unlike NK/T-cell lymphoma, no racial disparities were found in the incidence. The median overall survival was 17 months (range, 0-36 months). The incidence of NK/T-cell lymphoma, nasal type, in the United States has at least doubled in the past decade, with the greatest predilection among Hispanics. Patients with NK/T-cell lymphoma might have an increased risk of the subsequent development of acute myeloid leukemia. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Generation of cellular immune memory and B-cell immunity is impaired by natural killer cells.

    PubMed

    Rydyznski, Carolyn; Daniels, Keith A; Karmele, Erik P; Brooks, Taylor R; Mahl, Sarah E; Moran, Michael T; Li, Caimei; Sutiwisesak, Rujapak; Welsh, Raymond M; Waggoner, Stephen N

    2015-02-27

    The goal of most vaccines is the induction of long-lived memory T and B cells capable of protecting the host from infection by cytotoxic mechanisms, cytokines and high-affinity antibodies. However, efforts to develop vaccines against major human pathogens such as HIV and HCV have not been successful, thereby highlighting the need for novel approaches to circumvent immunoregulatory mechanisms that limit the induction of protective immunity. Here, we show that mouse natural killer (NK) cells inhibit generation of long-lived virus-specific memory T- and B cells as well as virus-specific antibody production after acute infection. Mechanistically, NK cells suppressed CD4 T cells and follicular helper T cells (T(FH)) in a perforin-dependent manner during the first few days of infection, resulting in a weaker germinal centre (GC) response and diminished immune memory. We anticipate that innovative strategies to relieve NK cell-mediated suppression of immunity should facilitate development of efficacious new vaccines targeting difficult-to-prevent infections.

  6. Strong adhesion by regulatory T cells induces dendritic cell cytoskeletal polarization and contact-dependent lethargy

    PubMed Central

    Mucsi, Ashley D.; Meng, Junchen; Yan, Jiacong; Zhang, Zongde; Wu, Mei; Hari, Aswin; Stenner, Melanie D.; Zheng, Wencheng; Kubes, Paul; Xia, Tie; Amrein, Matthias W.

    2017-01-01

    Dendritic cells are targeted by regulatory T (T reg) cells, in a manner that operates as an indirect mode of T cell suppression. In this study, using a combination of single-cell force spectroscopy and structured illumination microscopy, we analyze individual T reg cell–DC interaction events and show that T reg cells exhibit strong intrinsic adhesiveness to DCs. This increased DC adhesion reduces the ability of contacted DCs to engage other antigen-specific cells. We show that this unusually strong LFA-1–dependent adhesiveness of T reg cells is caused in part by their low calpain activities, which normally release integrin–cytoskeleton linkage, and thereby reduce adhesion. Super resolution imaging reveals that such T reg cell adhesion causes sequestration of Fascin-1, an actin-bundling protein essential for immunological synapse formation, and skews Fascin-1–dependent actin polarization in DCs toward the T reg cell adhesion zone. Although it is reversible upon T reg cell disengagement, this sequestration of essential cytoskeletal components causes a lethargic state of DCs, leading to reduced T cell priming. Our results reveal a dynamic cytoskeletal component underlying T reg cell–mediated DC suppression in a contact-dependent manner. PMID:28082358

  7. Requirement of T-lymphokine-activated killer cell-originated protein kinase for TRAIL resistance of human HeLa cervical cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Hyeok-Ran; Lee, Ki Won; Dong, Zigang

    2010-01-01

    T-lymphokine-activated killer cell-originated protein kinase (TOPK) appears to be highly expressed in various cancer cells and to play an important role in maintaining proliferation of cancer cells. However, the underlying mechanism by which TOPK regulates growth of cancer cells remains elusive. Here we report that upregulated endogenous TOPK augments resistance of cancer cells to apoptosis induced by tumor necrosis factor-related apoptosis inducing ligand (TRAIL). Stable knocking down of TOPK markedly increased TRAIL-mediated apoptosis of human HeLa cervical cancer cells, as compared with control cells. Caspase 8 or caspase 3 activities in response to TRAIL were greatly incremented in TOPK-depleted cells.more » Ablation of TOPK negatively regulated TRAIL-mediated NF-{kappa}B activity. Furthermore, expression of NF-{kappa}B-dependent genes, FLICE-inhibitory protein (FLIP), inhibitor of apoptosis protein 1 (c-IAP1), or X-linked inhibitor of apoptosis protein (XIAP) was reduced in TOPK-depleted cells. Collectively, these findings demonstrated that TOPK contributed to TRAIL resistance of cancer cells via NF-{kappa}B activity, suggesting that TOPK might be a potential molecular target for successful cancer therapy using TRAIL.« less

  8. Red blood cell distribution width as a predictor of survival in nasal-type, extranodal natural killer/T-cell lymphoma

    PubMed Central

    He, Qiao; Cai, Shaolei; Li, Shi; Zeng, Jian; Zhang, Qing; Gao, Yu; Yu, Sisi

    2017-01-01

    We retrospectively enrolled 191 nasal-type, extranodal natural killer/T-cell lymphoma (ENKTL) patients newly diagnosed from 2008 to 2016 at the Sichuan Cancer Hospital, in order to evaluate the relationship between disease outcomes, demographic and clinical factors, and red blood cell distribution width (RDW). C-index, fisher's exact test, univariate analysis, and cox regression analysis were applied. The median age of patients was 44 years and 134 (70%) were men. The cutoff of RDW was 46.2 fL determined by Cutoff Finder. Patients with RDW≤46.2 fL had significantly better progression-free survival (PFS) (3-year PFS, 80.4% vs. 63.1%; P=0.01) and overall survival (OS) (3-year OS, 83.2% vs. 65.5%; P=0.004) than those with RDW>46.2 fL. Multivariate analysis demonstrated that elevated RDW is an independent adverse predictor of OS (P=0.021, HR=2.04). RDW is an independent predictor of survival outcomes in ENKTL, which we found to be superior to both the prognostic index of natural killer lymphoma (PINK) and the Korean Prognostic Index (KPI) in discriminating patients with different outcomes in low-risk and high-risk groups (all P < 0.05). The new models combining RDW with the International Prognostic Index (IPI), KPI, and PINK showed more powerful prognostic value than corresponding original models. RDW represents an easily available and inexpensive marker for risk stratification in patients with ENKTL treated with radiotherapy-based treatment. Further prospective studies are warranted to confirm the prognostic value of RDW in ENKTL. PMID:29190934

  9. Red blood cell distribution width as a predictor of survival in nasal-type, extranodal natural killer/T-cell lymphoma.

    PubMed

    Luo, Huaichao; Quan, Xiaoying; Song, Xiao-Yu; Zhang, Li; Yin, Yilin; He, Qiao; Cai, Shaolei; Li, Shi; Zeng, Jian; Zhang, Qing; Gao, Yu; Yu, Sisi

    2017-11-03

    We retrospectively enrolled 191 nasal-type, extranodal natural killer/T-cell lymphoma (ENKTL) patients newly diagnosed from 2008 to 2016 at the Sichuan Cancer Hospital, in order to evaluate the relationship between disease outcomes, demographic and clinical factors, and red blood cell distribution width (RDW). C-index, fisher's exact test, univariate analysis, and cox regression analysis were applied. The median age of patients was 44 years and 134 (70%) were men. The cutoff of RDW was 46.2 fL determined by Cutoff Finder. Patients with RDW≤46.2 fL had significantly better progression-free survival (PFS) (3-year PFS, 80.4% vs. 63.1%; P =0.01) and overall survival (OS) (3-year OS, 83.2% vs. 65.5%; P =0.004) than those with RDW>46.2 fL. Multivariate analysis demonstrated that elevated RDW is an independent adverse predictor of OS ( P =0.021, HR=2.04). RDW is an independent predictor of survival outcomes in ENKTL, which we found to be superior to both the prognostic index of natural killer lymphoma (PINK) and the Korean Prognostic Index (KPI) in discriminating patients with different outcomes in low-risk and high-risk groups (all P < 0.05). The new models combining RDW with the International Prognostic Index (IPI), KPI, and PINK showed more powerful prognostic value than corresponding original models. RDW represents an easily available and inexpensive marker for risk stratification in patients with ENKTL treated with radiotherapy-based treatment. Further prospective studies are warranted to confirm the prognostic value of RDW in ENKTL.

  10. Blastic natural killer cell leukaemia in a dog--a case report.

    PubMed

    Bonkobara, Makoto; Saito, Taro; Yamashita, Masahiro; Tamura, Kyoichi; Yagihara, Hiroko; Isotani, Mayu; Sato, Takashi; Washizu, Tsukimi

    2007-11-01

    A case of canine non-T, non-B lymphoid leukaemia was determined to be of natural killer (NK) cell lineage by detecting specific expression of canine CD56 mRNA by reverse transcriptase polymerase chain reaction analysis. Although NK cells are usually considered to be morphologically large granular lymphocytes, the malignant NK cells in this case were agranular and blast-like, resembling human blastic NK cell leukaemia. The prognosis of human NK cell leukaemia is usually poor. In this case, the dog died 10 days after initial presentation, despite chemotherapy.

  11. Fasting Enhances TRAIL-Mediated Liver Natural Killer Cell Activity via HSP70 Upregulation

    PubMed Central

    Dang, Vu T. A.; Tanabe, Kazuaki; Tanaka, Yuka; Tokumoto, Noriaki; Misumi, Toshihiro; Saeki, Yoshihiro; Fujikuni, Nobuaki; Ohdan, Hideki

    2014-01-01

    Acute starvation, which is frequently observed in clinical practice, sometimes augments the cytolytic activity of natural killer cells against neoplastic cells. In this study, we investigated the molecular mechanisms underlying the enhancement of natural killer cell function by fasting in mice. The total number of liver resident natural killer cells in a unit weight of liver tissue obtained from C57BL/6J mice did not change after a 3-day fast, while the proportions of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL)+ and CD69+ natural killer cells were significantly elevated (n = 7, p <0.01), as determined by flow cytometric analysis. Furthermore, we found that TRAIL− natural killer cells that were adoptively transferred into Rag-2−/− γ chain−/− mice could convert into TRAIL+ natural killer cells in fasted mice at a higher proportion than in fed mice. Liver natural killer cells also showed high TRAIL-mediated antitumor function in response to 3-day fasting. Since these fasted mice highly expressed heat shock protein 70 (n = 7, p <0.05) in liver tissues, as determined by western blot, the role of this protein in natural killer cell activation was investigated. Treatment of liver lymphocytes with 50 µg/mL of recombinant heat shock protein 70 led to the upregulation of both TRAIL and CD69 in liver natural killer cells (n = 6, p <0.05). In addition, HSP70 neutralization by intraperitoneally injecting an anti- heat shock protein 70 monoclonal antibody into mice prior to fasting led to the downregulation of TRAIL expression (n = 6, p <0.05). These findings indicate that acute fasting enhances TRAIL-mediated liver natural killer cell activity against neoplastic cells through upregulation of heat shock protein 70. PMID:25356750

  12. Cytoskeletal stabilization of inhibitory interactions in immunologic synapses of mature human dendritic cells with natural killer cells

    PubMed Central

    Barreira da Silva, Rosa; Graf, Claudine

    2011-01-01

    Human mature dendritic cells (DCs) can efficiently stimulate natural killer (NK)–cell responses without being targeted by their cytotoxicity. To understand this important regulatory crosstalk, we characterized the development of the immunologic synapse between mature DCs and resting NK cells. Conjugates between these 2 innate leukocyte populations formed rapidly, persisted for prolonged time periods and matured with DC-derived f-actin polymerization at the synapse. Polarization of IL-12 and IL-12R to the synapse coincided with f-actin polymerization, while other activating and inhibitory molecules were enriched at the interface between DCs and NK cells earlier. Functional assays revealed that inhibition of f-actin polymerization in mature synapses led to an increase of IFN-γ secretion and cytotoxicity by NK cells. This elevated NK-cell reactivity resulted from decreased inhibitory signaling in the absence of MHC class I polarization at the interface, which was observed on inhibition of f-actin polymerization in DCs. Thus, inhibitory signaling is stabilized by f-actin at the synapse between mature DCs and resting NK cells. PMID:21917751

  13. Interactions between human mesenchymal stem cells and natural killer cells.

    PubMed

    Sotiropoulou, Panagiota A; Perez, Sonia A; Gritzapis, Angelos D; Baxevanis, Constantin N; Papamichail, Michael

    2006-01-01

    Mesenchymal stem cells (MSCs) are multipotent progenitor cells representing an attractive therapeutic tool for regenerative medicine. They possess unique immunomodulatory properties, being capable of suppressing T-cell responses and modifying dendritic cell differentiation, maturation, and function, whereas they are not inherently immunogenic, failing to induce alloreactivity to T cells and freshly isolated natural killer (NK) cells. To clarify the generation of host immune responses to implanted MSCs in tissue engineering and their potential use as immunosuppressive elements, the effect of MSCs on NK cells was investigated. We demonstrate that at low NK-to-MSC ratios, MSCs alter the phenotype of NK cells and suppress proliferation, cytokine secretion, and cyto-toxicity against HLA-class I- expressing targets. Some of these effects require cell-to-cell contact, whereas others are mediated by soluble factors, including transforming growth factor-beta1 and prostaglandin E2, suggesting the existence of diverse mechanisms for MSC-mediated NK-cell suppression. On the other hand, MSCs are susceptible to lysis by activated NK cells. Overall, these data improve our knowledge of interactions between MSCs and NK cells and consequently of their effect on innate immune responses and their contribution to the regulation of adaptive immunity, graft rejection, and cancer immunotherapy.

  14. Penile metastasis secondary to nasal-type extranodal natural killer/T-cell lymphoma: A case report and review of the literature.

    PubMed

    Li, Yanan; Fu, Xiaorui; Wu, Jingjing; Yu, Chang; Li, Zhaoming; Sun, Zhenchang; Yan, Jiaqin; Nan, Feifei; Zhang, Xundong; Li, Ling; Li, Xin; Zhang, Lei; Li, Wencai; Wang, Guannan; Zhang, Mingzhi

    2018-05-01

    Extranodal natural killer/T-cell lymphoma (NKTL), nasal-type is one of the most aggressive lymphoid malignancies and is characterized by an extremely poor survival outcome. The present study reports the case of a 39-year-old Chinese male with history of extranodal NKTL who presented with a painless indurated mass in the glans penis. The results of an incisional biopsy revealed atypical cells that were positive for CD3, CD56, T-cell-restricted intracellular antigen-1, granzyme B and Epstein-Barr virus-encoded RNA, and negative for CD20. A diagnosis of metastatic NKTL was determined. The patient was treated with systemic chemotherapy consisting of cisplatin, dexamethasone, gemcitabine and pegaspargase, which resulted in remission and regression of the mass. In addition, a review of the literature was performed, and the data for 13 cases of non-B-cell penile lymphoma, including the present case, are presented. To the best of our knowledge, this is first review of this entity.

  15. RORC2 is involved in T cell polarization through interaction with the FOXP3 promoter.

    PubMed

    Burgler, Simone; Mantel, Pierre-Yves; Bassin, Claudio; Ouaked, Nadia; Akdis, Cezmi A; Schmidt-Weber, Carsten B

    2010-06-01

    The process of Th cell differentiation toward polarized effector T cells tailors specific immunity against invading pathogens while allowing tolerance against commensal microorganisms, harmless allergens, or autologous Ags. Identification of the mechanisms underlying this polarization process is therefore central to understand how the immune system confers immunity and tolerance. The present study demonstrates that retinoic acid receptor-related orphan receptor C2 (RORC2), a key transcription factor in Th17 cell development, inhibits FOXP3 expression in human T cells. Although overexpression of RORC2 in naive T cells reduces levels of FOXP3, small interfering RNA-mediated knockdown of RORC2 enhances its expression. RORC2 mediates this inhibition at least partially by binding to two out of four ROR-responsive elements on the FOXP3 promoter. Knockdown of RORC2 promotes high FOXP3 levels and decreased expression of proinflammatory cytokines beta form of pro-IL-1, IL-6, IL-17A, IFN-gamma, and TNF-alpha in differentiating naive T cells, suggesting that the role of RORC2 in Th17 cell development involves not only induction of Th17-characteristic genes, but also suppression of regulatory T cell-specific programs. Together, this study identifies RORC2 as a polarizing factor in transcriptional cross-regulation and provides novel viewpoints on the control of immune tolerance versus effector immune responses.

  16. The early expansion of anergic NKG2Apos/CD56dim/CD16neg natural killer cells represents a therapeutic target in haploidentical haematopoietic stem cell transplantation.

    PubMed

    Roberto, Alessandra; Di Vito, Clara; Zaghi, Elisa; Mazza, Emilia Maria Cristina; Capucetti, Arianna; Calvi, Michela; Tentorio, Paolo; Zanon, Veronica; Sarina, Barbara; Mariotti, Jacopo; Bramanti, Stefania; Tenedini, Elena; Tagliafico, Enrico; Bicciato, Silvio; Santoro, Armando; Roederer, Mario; Marcenaro, Emanuela; Castagna, Luca; Lugli, Enrico; Mavilio, Domenico

    2018-04-26

    Natural Killer cells are the first lymphocyte population to reconstitute early after non myelo-ablative and T cell-replete haploidentical hematopoietic stem cell transplantation with post-transplant infusion of cyclophosphamide. The present study characterizes the transient and predominant expansion starting from the 2nd week after haploidentical hematopoietic stem cell transplantation of a donor-derived unconventional subset of NKp46neg-low/CD56dim/CD16neg natural killer cells expressing remarkable high levels of CD94/NKG2A. Both transcription and phenotypic profiles indicated that unconventional NKp46neg-low/CD56dim/CD16neg natural killer cells are a distinct natural killer cell subpopulation with features of late stage differentiation, yet retaining proliferative capability and functional plasticity to generate conventional NKp46pos/CD56bright/CD16pos natural killer cells in response to interleukin-15 plus interleukin-18. While present at low frequency in healthy donors, unconventional NKp46neg-low/CD56dim/CD16neg natural killer cells are greatly expanded in the following 7 weeks after haploidentical hematopoietic stem cell transplantation and express high levels of the activating receptors NKGD and NKp30 as well as of the lytic granules Granzyme-B and Perforin. Nonetheless, NKp46neg-low/CD56dim/CD16neg natural killer cells displayed a markedly defective cytotoxicity that could be reversed by blocking the inhibitory receptor CD94/NKG2A. These data open new important perspectives to better understand the ontogenesis/homeostasis of human natural killer cells and to develop a novel immune-therapeutic approach that targets the inhibitory NKG2A check point, thus unleashing natural killer cell alloreactivity early after haploidentical hematopoietic stem cell transplantation. Copyright © 2018, Ferrata Storti Foundation.

  17. γδ T cell homeostasis is established in competition with αβ T cells and NK cells

    PubMed Central

    French, Jena D.; Roark, Christina L.; Born, Willi K.; O'Brien, Rebecca L.

    2005-01-01

    γδ T cells are a diverse population of lymphocytes that play an important role in immune regulation. The size of the γδ T cell pool is tightly regulated, comprising only 1-10% of total lymphoid T cells in mice and humans. We examined the homeostatic regulation of γδ T cells using a model of lymphopenia-induced homeostatic expansion. We found that IL-15 and, to a lesser extent, IL-7 play an important role in lymphoid γδ T cell homeostasis. Moreover, γδ T cell homeostatic expansion was limited not only by γδ T cells themselves but also by natural killer cells and αβ T cells. Our results suggest that CD8+ αβ T cells are the most potent inhibitors of γδ T cell homeostasis and exert their effect by competing for IL-15. PMID:16203967

  18. Retroviral expression screening of oncogenes in natural killer cell leukemia.

    PubMed

    Choi, Young Lim; Moriuchi, Ryozo; Osawa, Mitsujiro; Iwama, Atsushi; Makishima, Hideki; Wada, Tomoaki; Kisanuki, Hiroyuki; Kaneda, Ruri; Ota, Jun; Koinuma, Koji; Ishikawa, Madoka; Takada, Shuji; Yamashita, Yoshihiro; Oshimi, Kazuo; Mano, Hiroyuki

    2005-08-01

    Aggressive natural killer cell leukemia (ANKL) is an intractable malignancy that is characterized by the outgrowth of NK cells. To identify transforming genes in ANKL, we constructed a retroviral cDNA expression library from an ANKL cell line KHYG-1. Infection of 3T3 cells with recombinant retroviruses yielded 33 transformed foci. Nucleotide sequencing of the DNA inserts recovered from these foci revealed that 31 of them encoded KRAS2 with a glycine-to-alanine mutation at codon 12. Mutation-specific PCR analysis indicated that the KRAS mutation was present only in KHYG-1 cells, not in another ANKL cell line or in clinical specimens (n=8).

  19. Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells

    PubMed Central

    Chauveau, Anne; Aucher, Anne; Eissmann, Philipp; Vivier, Eric; Davis, Daniel M.

    2010-01-01

    Membrane nanotubes are membranous tethers that physically link cell bodies over long distances. Here, we present evidence that nanotubes allow human natural killer (NK) cells to interact functionally with target cells over long distances. Nanotubes were formed when NK cells contacted target cells and moved apart. The frequency of nanotube formation was dependent on the number of receptor/ligand interactions and increased on NK cell activation. Most importantly, NK cell nanotubes contained a submicron scale junction where proteins accumulated, including DAP10, the signaling adaptor that associates with the activating receptor NKG2D, and MHC class I chain-related protein A (MICA), a cognate ligand for NKG2D, as occurs at close intercellular synapses between NK cells and target cells. Quantitative live-cell fluorescence imaging suggested that MICA accumulated at small nanotube synapses in sufficient numbers to trigger cell activation. In addition, tyrosine-phosphorylated proteins and Vav-1 accumulated at such junctions. Functionally, nanotubes could aid the lysis of distant target cells either directly or by moving target cells along the nanotube path into close contact for lysis via a conventional immune synapse. Target cells moving along the nanotube path were commonly polarized such that their uropods faced the direction of movement. This is the opposite polarization than for normal cell migration, implying that nanotubes can specifically drive target cell movement. Finally, target cells that remained connected to an NK cell by a nanotube were frequently lysed, whereas removing the nanotube using a micromanipulator reduced lysis of these target cells. PMID:20212116

  20. Invariant natural killer T-cell control of type 1 diabetes: a dendritic cell genetic decision of a silver bullet or Russian roulette.

    PubMed

    Driver, John P; Scheuplein, Felix; Chen, Yi-Guang; Grier, Alexandra E; Wilson, S Brian; Serreze, David V

    2010-02-01

    In part, activation of invariant natural killer T (iNKT)-cells with the superagonist alpha-galactosylceramide (alpha-GalCer) inhibits the development of T-cell-mediated autoimmune type 1 diabetes in NOD mice by inducing the downstream differentiation of antigen-presenting dendritic cells (DCs) to an immunotolerogenic state. However, in other systems iNKT-cell activation has an adjuvant-like effect that enhances rather than suppresses various immunological responses. Thus, we tested whether in some circumstances genetic variation would enable activated iNKT-cells to support rather than inhibit type 1 diabetes development. We tested whether iNKT-conditioned DCs in NOD mice and a major histocompatibility complex-matched C57BL/6 (B6) background congenic stock differed in capacity to inhibit type 1 diabetes induced by the adoptive transfer of pathogenic AI4 CD8 T-cells. Unlike those of NOD origin, iNKT-conditioned DCs in the B6 background stock matured to a state that actually supported rather than inhibited AI4 T-cell-induced type 1 diabetes. The induction of a differing activity pattern of T-cell costimulatory molecules varying in capacity to override programmed death-ligand-1 inhibitory effects contributes to the respective ability of iNKT-conditioned DCs in NOD and B6 background mice to inhibit or support type 1 diabetes development. Genetic differences inherent to both iNKT-cells and DCs contribute to their varying interactions in NOD and B6.H2(g7) mice. This great variability in the interactions between iNKT-cells and DCs in two inbred mouse strains should raise a cautionary note about considering manipulation of this axis as a potential type 1 diabetes prevention therapy in genetically heterogeneous humans.

  1. Hydrocortisone prevents immunosuppression by interleukin-10+ natural killer cells after trauma-hemorrhage.

    PubMed

    Roquilly, Antoine; Broquet, Alexis; Jacqueline, Cédric; Masson, Damien; Segain, Jean Pierre; Braudeau, Cecile; Vourc'h, Mickael; Caillon, Jocelyne; Altare, Frédéric; Josien, Regis; Retière, Christelle; Villadangos, Jose; Asehnoune, Karim

    2014-12-01

    Trauma induces a state of immunosuppression, which is responsible for the development of nosocomial infections. Hydrocortisone reduces the rate of pneumonia in patients with trauma. Because alterations of dendritic cells and natural killer cells play a central role in trauma-induced immunosuppression, we investigated whether hydrocortisone modulates the dendritic cell/natural killer cell cross talk in the context of posttraumatic pneumonia. Experimental study. Research laboratory from an university hospital. Bagg Albino/cJ mice (weight, 20-24 g). First, in an a priori substudy of a multicenter, randomized, double-blind, placebo-controlled trial of hydrocortisone (200 mg/d for 7 d) in patients with severe trauma, we have measured the blood levels of five cytokines (tumor necrosis factor-α, interleukin-6, interleukin-10, interleukin-12, interleukin-17) at day 1 and day 8. In a second step, the effects of hydrocortisone on dendritic cell/natural killer cell cross talk were studied in a mouse model of posttraumatic pneumonia. Hydrocortisone (0.6 mg/mice i.p.) was administered immediately after hemorrhage. Twenty-four hours later, the mice were challenged with Staphylococcus aureus (7 × 10 colony-forming units). Using sera collected during a multicenter study in patients with trauma, we found that hydrocortisone decreased the blood level of interleukin-10, a cytokine centrally involved in the regulation of dendritic cell/natural killer cell cluster. In a mouse model of trauma-hemorrhage-induced immunosuppression, splenic natural killer cells induced an interleukin-10-dependent elimination of splenic dendritic cell. Hydrocortisone treatment reduced this suppressive function of natural killer cells and increased survival of mice with posthemorrhage pneumonia. The reduction of the interleukin-10 level in natural killer cells by hydrocortisone was partially dependent on the up-regulation of glucocorticoid-induced tumor necrosis factor receptor-ligand (TNFsf18) on

  2. Contribution of Va24Vb11 natural killer T cells in Wilsonian hepatitis.

    PubMed

    Kinebuchi, M; Matsuura, A; Ohya, K; Abo, W; Kitazawa, J

    2005-01-01

    Wilson disease (WD) is an autosomal recessive disorder of copper transport, resulting in copper accumulation and toxicity to the liver and brain. There is no evidence that the WD patient's immune system attacks copper accumulated hepatocytes. Here we describe that the frequency and absolute number of Valpha24+Vbeta11+ natural killer T (NKT) cells were significantly increased in 3 cases of WD, whereas those of CD3+CD161+ NKT cells were within the normal range. Patients no. 1 and 2 had a presymptomatic form of WD. Their tissue specimens showed pathological changes of mild degeneration of hepatocytes with a few infiltrating mononuclear cells and a low degree of fatty change. Patient no. 3 displayed fulminant hepatitis with Coombs-negative haemolytic anaemia. The tissue specimens of patient no. 3 showed macronodular cirrhosis with thick fibrosis, inflammatory infiltrates and spotty necrosis. Human Valpha24+Vbeta11+ NKT cells are almost equal to CD1d-restricted NKT cells. Therefore we investigated CD1d-restricted NKT cells in the LEC rat as an animal model of WD. In LEC rats before hepatitis onset, the number and phenotype of liver NKT cells were normal. At about 4 months of age all LEC rats developed acute hepatitis accompanied by acute jaundice, and CD161high NKT cells developed in their livers. CD161highalphabetaTCRbright NKT cells developed in some of them. Their hepatitis was severe. CD161highalphabetaTCRbright NKT cells expressed an invariant rat Valpha14-Jalpha281 chain, which is CD1d-restricted. Furthermore, liver lymphocytes in the acute jaundiced LEC rats with CD161highalphabetaTCRbright NKT cells had significant and CD1d-specific cytotoxic activity.

  3. T cells' immunological synapses induce polarization of brain astrocytes in vivo and in vitro: a novel astrocyte response mechanism to cellular injury.

    PubMed

    Barcia, Carlos; Sanderson, Nicholas S R; Barrett, Robert J; Wawrowsky, Kolja; Kroeger, Kurt M; Puntel, Mariana; Liu, Chunyan; Castro, Maria G; Lowenstein, Pedro R

    2008-08-20

    Astrocytes usually respond to trauma, stroke, or neurodegeneration by undergoing cellular hypertrophy, yet, their response to a specific immune attack by T cells is poorly understood. Effector T cells establish specific contacts with target cells, known as immunological synapses, during clearance of virally infected cells from the brain. Immunological synapses mediate intercellular communication between T cells and target cells, both in vitro and in vivo. How target virally infected astrocytes respond to the formation of immunological synapses established by effector T cells is unknown. Herein we demonstrate that, as a consequence of T cell attack, infected astrocytes undergo dramatic morphological changes. From normally multipolar cells, they become unipolar, extending a major protrusion towards the immunological synapse formed by the effector T cells, and withdrawing most of their finer processes. Thus, target astrocytes become polarized towards the contacting T cells. The MTOC, the organizer of cell polarity, is localized to the base of the protrusion, and Golgi stacks are distributed throughout the protrusion, reaching distally towards the immunological synapse. Thus, rather than causing astrocyte hypertrophy, antiviral T cells cause a major structural reorganization of target virally infected astrocytes. Astrocyte polarization, as opposed to hypertrophy, in response to T cell attack may be due to T cells providing a very focused attack, and thus, astrocytes responding in a polarized manner. A similar polarization of Golgi stacks towards contacting T cells was also detected using an in vitro allogeneic model. Thus, different T cells are able to induce polarization of target astrocytes. Polarization of target astrocytes in response to immunological synapses may play an important role in regulating the outcome of the response of astrocytes to attacking effector T cells, whether during antiviral (e.g. infected during HIV, HTLV-1, HSV-1 or LCMV infection), anti

  4. Advantages and applications of CAR-expressing natural killer cells

    PubMed Central

    Glienke, Wolfgang; Esser, Ruth; Priesner, Christoph; Suerth, Julia D.; Schambach, Axel; Wels, Winfried S.; Grez, Manuel; Kloess, Stephan; Arseniev, Lubomir; Koehl, Ulrike

    2015-01-01

    In contrast to donor T cells, natural killer (NK) cells are known to mediate anti-cancer effects without the risk of inducing graft-versus-host disease (GvHD). In order to improve cytotoxicity against resistant cancer cells, auspicious efforts have been made with chimeric antigen receptor (CAR) expressing T- and NK cells. These CAR-modified cells express antigen receptors against tumor-associated surface antigens, thus redirecting the effector cells and enhancing tumor-specific immunosurveillance. However, many cancer antigens are also expressed on healthy tissues, potentially leading to off tumor/on target toxicity by CAR-engineered cells. In order to control such potentially severe side effects, the insertion of suicide genes into CAR-modified effectors can provide a means for efficient depletion of these cells. While CAR-expressing T cells have entered successfully clinical trials, experience with CAR-engineered NK cells is mainly restricted to pre-clinical investigations and predominantly to NK cell lines. In this review we summarize the data on CAR expressing NK cells focusing on the possible advantage using these short-lived effector cells and discuss the necessity of suicide switches. Furthermore, we address the compliance of such modified NK cells with regulatory requirements as a new field in cellular immunotherapy. PMID:25729364

  5. Decreased non-MHC-restricted (CD56+) killer cell cytotoxicity after spaceflight

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Kaur, I.; Grimm, E. A.; Smid, C.; Feeback, D. L.; Pierson, D. L.

    2001-01-01

    Cytotoxic activity of non-major histocompatibility complex-restricted (CD56+) (NMHC) killer cells and cell surface marker expression of peripheral blood mononuclear cells were determined before and after spaceflight. Ten astronauts (9 men, 1 woman) from two space shuttle missions (9- and 10-day duration) participated in the study. Blood samples were collected 10 days before launch, within 3 h after landing, and 3 days after landing. All peripheral blood mononuclear cell preparations were cryopreserved and analyzed simultaneously in a 4-h cytotoxicity (51)Cr release assay using K562 target cells. NMHC killer cell lytic activity was normalized per 1,000 CD56+ cells. When all 10 subjects were considered as one study group, NMHC killer cell numbers did not change significantly during the three sampling periods, but at landing lytic activity had decreased by approximately 40% (P < 0.05) from preflight values. Nine of ten astronauts had decreased lytic activity immediately after flight. NMHC killer cell cytotoxicity of only three astronauts returned toward preflight values by 3 days after landing. Consistent with decreased NMHC killer cell cytotoxicity, urinary cortisol significantly increased after landing compared with preflight levels. Plasma cortisol and ACTH levels at landing were not significantly different from preflight values. No correlation of changes in NMHC killer cell function or hormone levels with factors such as age, gender, mission, or spaceflight experience was found. After landing, expression of the major lymphocyte surface markers (CD3, CD4, CD8, CD14, CD16, CD56), as determined by flow cytometric analysis, did not show any consistent changes from measurements made before flight.

  6. Polarized type 2 alloreactive CD4+ and CD8+ donor T cells fail to induce experimental acute graft-versus-host disease.

    PubMed

    Krenger, W; Snyder, K M; Byon, J C; Falzarano, G; Ferrara, J L

    1995-07-15

    Acute graft-vs-host disease (GVHD) is thought to be mediated by alloreactive T cells with a type 1 cytokine phenotype. To prevent the development of acute GVHD, we have successfully polarized mature donor T cells toward a type 2 cytokine phenotype ex-vivo by incubating them with murine rIL-4 in a primary MLC. Polarized type 2 T cells were then transplanted with T cell-depleted bone marrow cells into irradiated recipients across either MHC class II (bm12-->C57BL/6) or class I (bm1-->C57BL/6) barriers, and the intensity of GVHD was measured by assessment of several in vitro and in vivo parameters. The injection of polarized type 2 T cells abrogated the mitogen-induced production of IFN-gamma by splenocytes from transplanted hosts on day 13 after bone marrow transplantation (BMT). Injection of polarized type 2 T cells failed to induce secretion of the effector phase cytokine TNF-alpha by splenocytes stimulated with LPS both in vitro and in vivo, and survival of transplanted mice after i.v. injection with LPS was significantly improved. Furthermore, cell-mixing experiments revealed that polarized type 2 T cells were able to inhibit type 1 cytokine responses induced by naive T cells after BMT. These data demonstrate that both polarized CD4+ and CD8+ type 2 alloreactive donor T cells can be generated in vitro from mature T cell populations. These cells function in vivo to inhibit type 1 T cell responses, and such inhibition attenuates the systemic morbidity of GVHD after BMT across both MHC class II or class I barriers in mice.

  7. An aggressive primary orbital natural killer/T-cell lymphoma case: poor response to chemotherapy.

    PubMed

    Marchino, Tizana; Ibáñez, Núria; Prieto, Sebastián; Novelli, Silvana; Szafranska, Justyna; Mozos, Anna; Graell, Xavier; Buil, José A

    2014-01-01

    Natural killer/T-cell lymphoma (NKTCL) and its presentation with extranodal orbital involvement as a single lesion are extremely rare. The aim of this article was to describe the presentation, diagnosis, and systemic treatment of a primary orbital NKTCL. A 67-year-old Caucasian woman presented with left exophthalmos, pain, periorbital swelling, and limited extrinsic ocular motility. Orbital cellulitis was suspected, but finally orbital biopsy was performed due to no response to initial antibiotic and anti-inflammatory standard treatment. The pathologic diagnosis was NKTCL. Systemic evaluations were negative. CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) chemotherapy was initiated, but after 2 cycles of treatment, tumoral progression was observed. SMILE (dexamethasone, methotrexate, ifosfamide, L-asparaginase, etoposide) rescue chemotherapy was then administered. Lymphoma progression was inevitable. She died 10 months later. Although more nasal NKTCL cases have been described, the nonnasal primary orbital NKTCL is an uncommon neoplasm with high mortality rate, despite the recent use of more potent chemotherapy regimens.

  8. Activation-Induced Killer Cell Immunoglobulin-like Receptor 3DL2 Binding to HLA-B27 Licenses Pathogenic T Cell Differentiation in Spondyloarthritis.

    PubMed

    Ridley, Anna; Hatano, Hiroko; Wong-Baeza, Isabel; Shaw, Jacqueline; Matthews, Katherine K; Al-Mossawi, Hussein; Ladell, Kristin; Price, David A; Bowness, Paul; Kollnberger, Simon

    2016-04-01

    In the spondyloarthritides (SpA), increased numbers of CD4+ T cells express killer cell immunoglobulin-like receptor 3DL2 (KIR-3DL2). The aim of this study was to determine the factors that induce KIR-3DL2 expression, and to characterize the relationship between HLA-B27 and the phenotype and function of KIR-3DL2-expressing CD4+ T cells in SpA. In total, 34 B27+ patients with SpA, 28 age- and sex-matched healthy controls (20 B27- and 8 B27+), and 9 patients with rheumatoid arthritis were studied. KIR-3DL2 expression and other phenotypic characteristics of peripheral blood and synovial fluid CD4+ T cells were studied by flow cytometry, quantitative polymerase chain reaction, and Western blotting. T cell receptor clonality was determined by template-switch anchored reverse transcription-polymerase chain reaction and sequencing analysis. Cytokines were measured by enzyme-linked immunosorbent assay. Cellular activation induced KIR-3DL2 expression on both naive and effector CD4+ T cells. KIR-3DL2 binding to B27+ cells promoted expression of KIR-3DL2, the Th17-specific transcription factor retinoic acid receptor-related orphan nuclear receptor γt, and the antiapoptotic factor B cell lymphoma 2. KIR-3DL2+CD4+ T cells in patients with ankylosing spondylitis were oligoclonal and enriched for markers of T cell activation and for the gut homing receptor CCR9. In the presence of B27+ antigen-presenting cells, KIR-3DL2+CD4+ T cells produced less interleukin-2 (IL-2) but more IL-17. This effect was blocked by HC10, an antibody that inhibits the binding of KIR-3DL2 to B27 heavy chains. KIR-3DL2 binding to HLA-B27 licenses Th17 cell differentiation in SpA. These findings raise the therapeutic potential of targeting HLA-B27-KIR-3DL2 interactions for the treatment of B27+ patients with SpA. © 2016 The Authors. Arthritis & Rheumatology published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.

  9. Activation‐Induced Killer Cell Immunoglobulin‐like Receptor 3DL2 Binding to HLA–B27 Licenses Pathogenic T Cell Differentiation in Spondyloarthritis

    PubMed Central

    Ridley, Anna; Hatano, Hiroko; Wong‐Baeza, Isabel; Shaw, Jacqueline; Matthews, Katherine K.; Al‐Mossawi, Hussein; Ladell, Kristin; Price, David A.; Bowness, Paul

    2016-01-01

    Objective In the spondyloarthritides (SpA), increased numbers of CD4+ T cells express killer cell immunoglobulin‐like receptor 3DL2 (KIR‐3DL2). The aim of this study was to determine the factors that induce KIR‐3DL2 expression, and to characterize the relationship between HLA–B27 and the phenotype and function of KIR‐3DL2–expressing CD4+ T cells in SpA. Methods In total, 34 B27+ patients with SpA, 28 age‐ and sex‐matched healthy controls (20 B27− and 8 B27+), and 9 patients with rheumatoid arthritis were studied. KIR-3DL2 expression and other phenotypic characteristics of peripheral blood and synovial fluid CD4+ T cells were studied by flow cytometry, quantitative polymerase chain reaction, and Western blotting. T cell receptor clonality was determined by template‐switch anchored reverse transcription–polymerase chain reaction and sequencing analysis. Cytokines were measured by enzyme‐linked immunosorbent assay. Results Cellular activation induced KIR‐3DL2 expression on both naive and effector CD4+ T cells. KIR‐3DL2 binding to B27+ cells promoted expression of KIR‐3DL2, the Th17‐specific transcription factor retinoic acid receptor–related orphan nuclear receptor γt, and the antiapoptotic factor B cell lymphoma 2. KIR‐3DL2+CD4+ T cells in patients with ankylosing spondylitis were oligoclonal and enriched for markers of T cell activation and for the gut homing receptor CCR9. In the presence of B27+ antigen‐presenting cells, KIR‐3DL2+CD4+ T cells produced less interleukin‐2 (IL‐2) but more IL‐17. This effect was blocked by HC10, an antibody that inhibits the binding of KIR‐3DL2 to B27 heavy chains. Conclusion KIR‐3DL2 binding to HLA–B27 licenses Th17 cell differentiation in SpA. These findings raise the therapeutic potential of targeting HLA–B27–KIR‐3DL2 interactions for the treatment of B27+ patients with SpA. PMID:26841353

  10. Retinoic Acid Modulates Interferon-γ Production by Hepatic Natural Killer T Cells via Phosphatase 2A and the Extracellular Signal-Regulated Kinase Pathway

    PubMed Central

    Chang, Heng-Kwei

    2015-01-01

    Retinoic acid (RA), an active metabolite converted from vitamin A, plays an active role in immune function, such as defending against infections and immune regulation. Although RA affects various types of immune cells, including antigen-presenting cells, B lymphocytes, and T lymphocytes, whether it affects natural killer T (NKT) cells remain unknown. In this study, we found that RA decreased interferon (IFN)-γ production by activated NKT cells through T-cell receptor (TCR) and CD28. We also found that RA reduced extracellular signal-regulated kinase (ERK) phosphorylation, but increased phosphatase 2A (PP2A) activity in TCR/CD28-stimulated NKT cells. The increased PP2A activity, at least partly, contributed to the reduction of ERK phosphorylation. Since inhibition of ERK activation decreases IFN-γ production by TCR/CD28-stimulated NKT cells, RA may downregulate IFN-γ production by TCR/CD28-stimulated NKT cells through the PP2A-ERK pathway. Our results demonstrated a novel function of RA in modulating the IFN-γ expression by activated NKT cells. PMID:25343668

  11. Thiopurine use associated with reduced B and natural killer cells in inflammatory bowel disease

    PubMed Central

    Lord, James D; Shows, Donna M

    2017-01-01

    AIM To identify which blood and mucosal lymphocyte populations are specifically depleted by thiopurine use in vivo. METHODS The thiopurines azathioprine and 6-mercaptopurine have been a mainstay of inflammatory bowel disease (IBD) therapy for decades, but their mechanism of action in vivo remains obscure. Although thiopurines are lymphotoxic at high doses, and have been reported to cause T cell apoptosis in vitro, their ability to control IBD at lower doses suggests that they may selectively deplete particular lymphocyte populations. Blood cells from 19 IBD patients on a thiopurine, 19 IBD patients not on a thiopurine, and 38 matched healthy control subjects were analyzed by multiple multi-color flow cytometry panels to quantify the immune cell subsets contained therein, both as a percent of cells, and as an absolute cell count. Similar analyses were performed on colon biopsies from 17 IBD patients on a thiopurine, 17 IBD patients not on a thiopurine, and 49 healthy screening colonoscopy recipients. RESULTS Complete blood counts revealed lower lymphocyte, but not monocyte or granulocyte, counts in IBD patients who were taking thiopurines at the time of sampling. This reduction was restricted to CD3-negative lymphocytes, wherein both natural killer (NK) and B cells were significantly reduced among thiopurine recipients. Among CD19+ B cells, the transitional B cells were particularly depleted, being nearly absent in both blood and colon biopsies of thiopurine recipients. No differences were associated with thiopurine use in CD8+ T cells, mucosa-associated invariant T (MAIT) cells, invariant natural killer T (iNKT) cells, gamma/delta T cells, Th1, Th17, regulatory T cells (Tregs) or naïve CD4+ T cells. However, patients with IBD had significantly more circulating FOXP3+, Helios+ Tregs and fewer iNKT and MAIT cells than healthy controls. CONCLUSION Thiopurine use is associated with reduced B and NK cell, but not T cell, subpopulations in the blood of IBD patients

  12. Circulating cytotoxic T cells and natural killer cells as potential predictors for antidepressant response in melancholic depression. Restoration of T regulatory cell populations after antidepressant therapy.

    PubMed

    Grosse, Laura; Carvalho, Livia A; Birkenhager, Tom K; Hoogendijk, Witte J; Kushner, Steven A; Drexhage, Hemmo A; Bergink, Veerle

    2016-05-01

    There is a substantial unmet need for biomarkers to predict treatment response in major depressive disorder (MDD). Evidence has converged on activation of the inflammatory response system as a fundamental mechanism underlying MDD. By investigating circulating leukocyte subsets quantified by fluorescence-activated cell sorting (FACS) analysis before treatment, we aim to predict antidepressant response. Forty medication-free inpatients with melancholic, non-psychotic depression before treatment with either venlafaxine or imipramine and 40 age- and gender-matched healthy controls were included. Leukocyte subsets were quantified by FACS analysis using frozen peripheral blood mononuclear cells (PBMC) collected prior to and after 7 weeks of treatment with either venlafaxine (375 mg/day) or imipramine (blood level 200-300 ng/ml). Response was defined as at least 50 % reduction of the baseline Hamilton Rating Scale for Depression (HAM-D) score. Prior to treatment, MDD patients showed reduced percentages of CD4(+)CD25(high)Foxp3(+) T regulatory (Treg) cells when compared with controls (1.5 ± 0.6 vs. 1.8 ± 0.6, p = .037). After treatment, robust rises in Treg cells were observed in patients (1.8 ± 0.7, p < .001), yet Treg cells were not predictors of the clinical outcome of treatment. Antidepressant non-responders showed increased CD8(+) cytotoxic T cell percentages (24.0 ± 8.6 vs. 15.9 ± 5.9, p = .004) and decreased natural killer (NK) cell percentages (14.0 ± 6.9 vs. 21.4 ± 11.9, p = .020) compared with responders before treatment. Both lymphocyte levels were not significantly modulated by treatment. In melancholic MDD, FACS analysis of circulating leukocyte subpopulations might help to discriminate between patients with high or low responsiveness to antidepressant treatment.

  13. Expansion of highly activated invariant natural killer T cells with altered phenotype in acute dengue infection

    PubMed Central

    Kamaladasa, A.; Wickramasinghe, N.; Adikari, T. N.; Gomes, L.; Shyamali, N. L. A.; Salio, M.; Cerundolo, V.; Ogg, G. S.

    2016-01-01

    Summary Invariant natural killer T (iNKT) cells are capable of rapid activation and production of cytokines upon recognition of antigenic lipids presented by CD1d molecules. They have been shown to play a significant role in many viral infections and were observed to be highly activated in patients with acute dengue infection. In order to characterize further their role in dengue infection, we investigated the proportion of iNKT cells and their phenotype in adult patients with acute dengue infection. The functionality of iNKT cells in patients was investigated by both interferon (IFN)‐γ and interleukin (IL)−4 ex‐vivo enzyme‐linked immunospot (ELISPOT) assays following stimulation with alpha‐galactosyl‐ceramide (αGalCer). We found that circulating iNKT cell proportions were significantly higher (P = 0·03) in patients with acute dengue when compared to healthy individuals and were predominantly of the CD4+ subset. iNKT cells of patients with acute dengue had reduced proportions expressing CD8α and CD161 when compared to healthy individuals. The iNKT cells of patients were highly activated and iNKT activation correlated significantly with dengue virus‐specific immunoglobulin (Ig)G antibody levels. iNKT cells expressing Bcl‐6 (P = 0·0003) and both Bcl‐6 and inducible T cell co‐stimulator (ICOS) (P = 0·006) were increased significantly in patients when compared to healthy individuals. Therefore, our data suggest that in acute dengue infection there is an expansion of highly activated CD4+ iNKT cells, with reduced expression of CD161 markers. PMID:26874822

  14. Manufacturing Natural Killer Cells as Medicinal Products

    PubMed Central

    Chabannon, Christian; Mfarrej, Bechara; Guia, Sophie; Ugolini, Sophie; Devillier, Raynier; Blaise, Didier; Vivier, Eric; Calmels, Boris

    2016-01-01

    Natural Killer (NK) cells are innate lymphoid cells (ILC) with cytotoxic and regulatory properties. Their functions are tightly regulated by an array of inhibitory and activating receptors, and their mechanisms of activation strongly differ from antigen recognition in the context of human leukocyte antigen presentation as needed for T-cell activation. NK cells thus offer unique opportunities for new and improved therapeutic manipulation, either in vivo or in vitro, in a variety of human diseases, including cancers. NK cell activity can possibly be modulated in vivo through direct or indirect actions exerted by small molecules or monoclonal antibodies. NK cells can also be adoptively transferred following more or less substantial modifications through cell and gene manufacturing, in order to empower them with new or improved functions and ensure their controlled persistence and activity in the recipient. In the present review, we will focus on the technological and regulatory challenges of NK cell manufacturing and discuss conditions in which these innovative cellular therapies can be brought to the clinic. PMID:27895646

  15. Pluripotent stem cell-derived natural killer cells for cancer therapy

    PubMed Central

    Knorr, David A.; Kaufman, Dan S.

    2010-01-01

    Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) provide an accessible, genetically tractable and homogenous starting cell populations to efficiently study human blood cell development. These cell populations provide platforms to develop new cell-based therapies to treat both malignant and non-malignant hematological diseases. Our group has previously demonstrated the ability of hESC-derived hematopoietic precursors to produce functional natural killer (NK) cells as well as an explanation of the underlying mechanism responsible for inefficient development of T and B cells from hESCs. hESCs and iPSCs, which can be reliably engineered in vitro, provide an important new model system to study human lymphocyte development and produce enhanced cell-based therapies with potential to serve as a “universal” source of anti-tumor lymphocytes for novel clinical therapies. This review will focus on the application of hESC-derived NK cells with currently used and novel therapeutics for clinical trials, current barriers to translation, and future applications through genetic engineering approaches. PMID:20801411

  16. Natural killer cells as a promising tool to tackle cancer-A review of sources, methodologies, and potentials.

    PubMed

    Preethy, Senthilkumar; Dedeepiya, Vidyasagar Devaprasad; Senthilkumar, Rajappa; Rajmohan, Mathaiyan; Karthick, Ramalingam; Terunuma, Hiroshi; Abraham, Samuel J K

    2017-07-04

    Immune cell-based therapies are emerging as a promising tool to tackle malignancies, both solid tumors and selected hematological tumors. Vast experiences in literature have documented their safety and added survival benefits when such cell-based therapies are combined with the existing treatment options. Numerous methodologies of processing and in vitro expansion protocols of immune cells, such as the dendritic cells, natural killer (NK) cells, NKT cells, αβ T cells, so-called activated T lymphocytes, γδ T cells, cytotoxic T lymphocytes, and lymphokine-activated killer cells, have been reported for use in cell-based therapies. Among this handful of immune cells of significance, the NK cells stand apart from the rest for not only their direct cytotoxic ability against cancer cells but also their added advantage, which includes their capability of (i) action through both innate and adaptive immune mechanism, (ii) tackling viruses too, giving benefits in conditions where viral infections culminate in cancer, and (iii) destroying cancer stem cells, thereby preventing resistance to chemotherapy and radiotherapy. This review thoroughly analyses the sources of such NK cells, methods for expansion, and the future potentials of taking the in vitro expanded allogeneic NK cells with good cytotoxic ability as a drug for treating cancer and/or viral infection and even as a prophylactic tool for prevention of cancer after initial remission.

  17. Chromatin organization as an indicator of glucocorticoid induced natural killer cell dysfunction.

    PubMed

    Misale, Michael S; Witek Janusek, Linda; Tell, Dina; Mathews, Herbert L

    2018-01-01

    It is well-established that psychological distress reduces natural killer cell immune function and that this reduction can be due to the stress-induced release of glucocorticoids. Glucocorticoids are known to alter epigenetic marks associated with immune effector loci, and are also known to influence chromatin organization. The purpose of this investigation was to assess the effect of glucocorticoids on natural killer cell chromatin organization and to determine the relationship of chromatin organization to natural killer cell effector function, e.g. interferon gamma production. Interferon gamma production is the prototypic cytokine produced by natural killer cells and is known to modulate both innate and adaptive immunity. Glucocorticoid treatment of human peripheral blood mononuclear cells resulted in a significant reduction in interferon gamma production. Glucocorticoid treatment also resulted in a demonstrable natural killer cell nuclear phenotype. This phenotype was localization of the histone, post-translational epigenetic mark, H3K27me3, to the nuclear periphery. Peripheral nuclear localization of H3K27me3 was directly related to cellular levels of interferon gamma. This nuclear phenotype was determined by direct visual inspection and by use of an automated, high through-put technology, the Amnis ImageStream. This technology combines the per-cell information content provided by standard microscopy with the statistical significance afforded by large sample sizes common to standard flow cytometry. Most importantly, this technology provides for a direct assessment of the localization of signal intensity within individual cells. The results demonstrate glucocorticoids to dysregulate natural killer cell function at least in part through altered H3K27me3 nuclear organization and demonstrate H3K27me3 chromatin organization to be a predictive indicator of glucocorticoid induced immune dysregulation of natural killer cells. Copyright © 2017 Elsevier Inc. All rights

  18. Effects of Polar Bear and Killer Whale Derived Contaminant Cocktails on Marine Mammal Immunity.

    PubMed

    Desforges, Jean-Pierre; Levin, Milton; Jasperse, Lindsay; De Guise, Sylvain; Eulaers, Igor; Letcher, Robert J; Acquarone, Mario; Nordøy, Erling; Folkow, Lars P; Hammer Jensen, Trine; Grøndahl, Carsten; Bertelsen, Mads F; St Leger, Judy; Almunia, Javier; Sonne, Christian; Dietz, Rune

    2017-10-03

    Most controlled toxicity studies use single chemical exposures that do not represent the real world situation of complex mixtures of known and unknown natural and anthropogenic substances. In the present study, complex contaminant cocktails derived from the blubber of polar bears (PB; Ursus maritimus) and killer whales (KW; Orcinus orca) were used for in vitro concentration-response experiments with PB, cetacean and seal spp. immune cells to evaluate the effect of realistic contaminant mixtures on various immune functions. Cytotoxic effects of the PB cocktail occurred at lower concentrations than the KW cocktail (1 vs 16 μg/mL), likely due to differences in contaminant profiles in the mixtures derived from the adipose of each species. Similarly, significant reduction of lymphocyte proliferation occurred at much lower exposures in the PB cocktail (EC 50 : 0.94 vs 6.06 μg/mL; P < 0.01), whereas the KW cocktail caused a much faster decline in proliferation (slope: 2.9 vs 1.7; P = 0.04). Only the KW cocktail modulated natural killer (NK) cell activity and neutrophil and monocyte phagocytosis in a concentration- and species-dependent manner. No clear sensitivity differences emerged when comparing cetaceans, seals and PB. Our results showing lower effect levels for complex mixtures relative to single compounds suggest that previous risk assessments underestimate the effects of real world contaminant exposure on immunity. Our results using blubber-derived contaminant cocktails add realism to in vitro exposure experiments and confirm the immunotoxic risk marine mammals face from exposure to complex mixtures of environmental contaminants.

  19. Adipose-derived stem cells were impaired in restricting CD4+T cell proliferation and polarization in type 2 diabetic ApoE-/- mouse.

    PubMed

    Liu, Ming-Hao; Li, Ya; Han, Lu; Zhang, Yao-Yuan; Wang, Di; Wang, Zhi-Hao; Zhou, Hui-Min; Song, Ming; Li, Yi-Hui; Tang, Meng-Xiong; Zhang, Wei; Zhong, Ming

    2017-07-01

    Atherosclerosis (AS) is the most common and serious complication of type 2 diabetes mellitus (T2DM) and is accelerated via chronic systemic inflammation rather than hyperglycemia. Adipose tissue is the major source of systemic inflammation in abnormal metabolic state. Pro-inflammatory CD4 + T cells play pivotal role in promoting adipose inflammation. Adipose-derived stem cells (ADSCs) for fat regeneration have potent ability of immunosuppression and restricting CD4 + T cells as well. Whether T2DM ADSCs are impaired in antagonizing CD4 + T cell proliferation and polarization remains unclear. We constructed type 2 diabetic ApoE -/- mouse models and tested infiltration and subgroups of CD4 + T cell in stromal-vascular fraction (SVF) in vivo. Normal/T2DM ADSCs and normal splenocytes with or without CD4 sorting were separated and co-cultured at different scales ex vivo. Immune phenotypes of pro- and anti-inflammation of ADSCs were also investigated. Flow cytometry (FCM) and ELISA were applied in the experiments above. CD4 + T cells performed a more pro-inflammatory phenotype in adipose tissue in T2DM ApoE -/- mice in vivo. Restriction to CD4 + T cell proliferation and polarization was manifested obviously weakened after co-cultured with T2DM ADSCs ex vivo. No obvious distinctions were found in morphology and growth type of both ADSCs. However, T2DM ADSCs acquired a pro-inflammatory immune phenotype, with secreting less PGE2 and expressing higher MHC-II and co-stimulatory molecules (CD40, CD80). Normal ADSCs could also obtain the phenotypic change after cultured with T2DM SVF supernatant. CD4 + T cell infiltration and pro-inflammatory polarization exist in adipose tissue in type 2 diabetic ApoE -/- mice. T2DM ADSCs had impaired function in restricting CD4 + T lymphocyte proliferation and pro-inflammatory polarization due to immune phenotypic changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Vav1-phospholipase C-γ1 (Vav1-PLC-γ1) pathway initiated by T cell antigen receptor (TCRγδ) activation is required to overcome inhibition by ubiquitin ligase Cbl-b during γδT cell cytotoxicity.

    PubMed

    Yin, Shanshan; Zhang, Jianmin; Mao, Yujia; Hu, Yu; Cui, Lianxian; Kang, Ning; He, Wei

    2013-09-13

    T cell antigen receptor γδ (TCRγδ) and natural killer group 2, member D (NKG2D) are two crucial receptors for γδT cell cytotoxicity. Compelling evidences suggest that γδT cell cytotoxicity is TCRγδ-dependent and can be co-stimulated by NKG2D. However, the molecular mechanism of underlying TCRγδ-dependent activation of γδT cells remains unclear. In this study we demonstrated that TCRγδ but not NKG2D engagement induced lytic granule polarization and promoted γδT cell cytotoxicity. TCRγδ activation alone was sufficient to trigger Vav1-dependent phospholipase C-γ1 signaling, resulting in lytic granule polarization and effective killing, whereas NKG2D engagement alone failed to trigger cytotoxicity-related signaling to overcome the inhibitory effect of Cbl-b; therefore, NKG2D engagement alone could not induce effective killing. However, NKG2D ligation augmented the activation of γδT cell cytotoxicity through the Vav1-phospholipase C-γ1 pathway. Vav1 overexpression or Cbl-b knockdown not only enhanced TCRγδ activation-initiated killing but also enabled NKG2D activation alone to induce γδT cell cytotoxicity. Taken together, our results suggest that the activation of γδT cell cytotoxicity requires a strong activation signal to overcome the inhibitory effect of Cbl-b. Our finding provides new insights into the molecular mechanisms underlying the initiation of γδT cell cytotoxicity and likely implications for optimizing γδT cell-based cancer immunotherapy.

  1. Endogenous cannabinoid receptor ligand induces the migration of human natural killer cells.

    PubMed

    Kishimoto, Seishi; Muramatsu, Mayumi; Gokoh, Maiko; Oka, Saori; Waku, Keizo; Sugiura, Takayuki

    2005-02-01

    2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors (CB1 and CB2). Evidence is gradually accumulating which shows that 2-arachidonoylglycerol plays important physiological roles in several mammalian tissues and cells, yet the details remain ambiguous. In this study, we first examined the effects of 2-arachidonoylglycerol on the motility of human natural killer cells. We found that 2-arachidonoylglycerol induces the migration of KHYG-1 cells (a natural killer leukemia cell line) and human peripheral blood natural killer cells. The migration of natural killer cells induced by 2-arachidonoylglycerol was abolished by treating the cells with SR144528, a CB2 receptor antagonist, suggesting that the CB2 receptor is involved in the 2-arachidonoylglycerol-induced migration. In contrast to 2-arachidonoylglycerol, anandamide, another endogenous cannabinoid receptor ligand, did not induce the migration. Delta9-tetrahydrocannabinol, a major psychoactive constituent of marijuana, also failed to induce the migration; instead, the addition of delta9-tetrahydrocannabinol together with 2-arachidonoylglycerol abolished the migration induced by 2-arachidonoylglycerol. It is conceivable that the endogenous ligand for the cannabinoid receptor, that is, 2-arachidonoylglycerol, affects natural killer cell functions such as migration, thereby contributing to the host-defense mechanism against infectious viruses and tumor cells.

  2. Chronic active Epstein-Barr virus infection associated with hemophagocytic syndrome and extra-nodal natural killer/T-cell lymphoma in an 18-year-old girl: A case report.

    PubMed

    Xing, Yawei; Yang, Junwen; Lian, Guanghui; Chen, Shuijiao; Chen, Linlin; Li, Fujun

    2017-05-01

    Chronic active Epstein-Barr virus infection (CAEBV) associated with hemophagocytic syndrome (HPS) and extra-nodal natural killer (NK)/T-cell lymphoma (ENKL) is a rare life-threatening disorder. This disease is easily misdiagnosed because of its varied presentations. An 18-year-old girl was admitted to our hospital with a history of edema in the lower limbs and intermittent fever lasting for more than 1 month. At admission, she had severe liver injury of unknown etiology. Laboratory test results revealed pancytopenia, hyperferritinemia, hypertriglyceridemia, and hypofibrinogenemia. Results of serologic tests for EBV were positive. Results of a skin biopsy indicated EBV-positive NK/T-cell lymphoma, and bone marrow aspiration revealed focal hemophagocytosis and atypical lymphoid cells. On the basis of these findings, we diagnosed the case as extra-nodal NK/T-cell lymphoma-associated HPS (natural killer/T-cell lymphoma-associated hemophagocytic syndrome), which is commonly induced by CAEBV. Treatment consisted of general management of hepatitis, supplemented with albumin and empirical antibiotic therapy. The patient died from massive gastrointestinal hemorrhage a week after she was discharged from the hospital. ENKL and HPS present with varied features and are generally fatal; therefore, clinicians should proceed with caution in suspected cases. HPS should be considered when the patient presents with fever, hepatosplenomegaly, pancytopenia, and liver failure. When HPS is suspected, clinicians should determine the underlying cause, such as severe infection, including infection with viruses such as EBV; genetic predisposition; or underlying malignancies, especially lymphoma because of its strong association with HPS.

  3. Extranodal natural killer/T-cell lymphoma, nasal type: the significance of radiotherapeutic parameters.

    PubMed

    Isobe, Koichi; Uno, Takashi; Tamaru, Jun-ichi; Kawakami, Hiroyuki; Ueno, Naoyuki; Wakita, Hisashi; Okada, Jun-ichi; Itami, Jun; Ito, Hisao

    2006-02-01

    The objective of this study was to investigate the correlation between local recurrence and radiotherapeutic parameters, including dose and RT radiotherapy (RT) field. The current study included 35 patients who were diagnosed with immunohistochemically confirmed nasal natural killer (NK)/T-cell lymphoma between 1976 and 2004. There were 21 males and 14 females, and they ranged in age from 18 years to 76 years (median, 51 yrs). The primary tumor originated in the nasal cavity in 28 patients, and 32 patients had Stage I disease. Seventeen patients received treatment solely with RT, and the remaining 18 patients received a combination of chemotherapy and RT. The median tumor dose was 50 grays (Gy) (range, 22-60 Gy). Twenty-seven patients received RT to include all macroscopic lesions, all paranasal sinuses, the palate, and the nasopharynx. Eight patients received RT to all macroscopic lesions with generous margins. A complete remission (CR) or a CR/unconfirmed was achieved in 28 patients (80%). The 5-year overall survival (OAS) rate, disease-free survival (DFS) rate, and local control probability (LCP) were 47.3%, 42.9%, and 65.2%, respectively. Patients who received RT only to macroscopic lesions fared less well in terms of LCP (LCP 5 years, 71.9% vs. 41.7%; P=0.007). The difference in RT field also affected both the OAS rate and the DFS rate. Patients who received RT doses>or=50 Gy tended to achieve favorable local control. In the management of nasal NK/T-cell lymphoma, the RT field affected treatment outcomes. RT doses>or=50 Gy resulted in favorable local control. Copyright (c) 2005 American Cancer Society.

  4. Aspergillus fumigatus Cell Wall α-(1,3)-Glucan Stimulates Regulatory T-Cell Polarization by Inducing PD-L1 Expression on Human Dendritic Cells.

    PubMed

    Stephen-Victor, Emmanuel; Karnam, Anupama; Fontaine, Thierry; Beauvais, Anne; Das, Mrinmoy; Hegde, Pushpa; Prakhar, Praveen; Holla, Sahana; Balaji, Kithiganahalli N; Kaveri, Srini V; Latgé, Jean-Paul; Aimanianda, Vishukumar; Bayry, Jagadeesh

    2017-12-05

    Human dendritic cell (DC) response to α-(1,3)-glucan polysaccharide of Aspergillus fumigatus and ensuing CD4+ T-cell polarization are poorly characterized. α-(1,3)-Glucan was isolated from A. fumigatus conidia and mycelia cell wall. For the analysis of polarization, DCs and autologous naive CD4+ T cells were cocultured. Phenotype of immune cells was analyzed by flow cytometry, and cytokines by enzyme-linked immunosorbent assay (ELISA). Blocking antibodies were used to dissect the role of Toll-like receptor 2 (TLR2) and programmed death-ligand 1 (PD-L1) in regulating α-(1,3)-glucan-mediated DC activation and T-cell responses. DCs from TLR2-deficient mice were additionally used to consolidate the findings. α-(1,3)-Glucan induced the maturation of DCs and was dependent in part on TLR2. "α-(1,3)-Glucan-educated" DCs stimulated the activation of naive T cells and polarized a subset of these cells into CD4+CD25+FoxP3+ regulatory T cells (Tregs). Mechanistically, Treg stimulation by α-(1,3)-glucan was dependent on the PD-L1 pathway that negatively regulated interferon-gamma (IFN-γ) secretion. Short α-(1,3)-oligosaccharides lacked the capacity to induce maturation of DCs but significantly blocked α-(1,3)-glucan-induced Treg polarization. PD-L1 dictates the balance between Treg and IFN-γ responses induced by α-(1,3)-glucan. Our data provide a rationale for the exploitation of immunotherapeutic approaches that target PD-1-PD-L1 to enhance protective immune responses to A. fumigatus infections. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  5. New prognostic model for extranodal natural killer/T cell lymphoma, nasal type.

    PubMed

    Cai, Qingqing; Luo, Xiaolin; Zhang, Guanrong; Huang, Huiqiang; Huang, Hui; Lin, Tongyu; Jiang, Wenqi; Xia, Zhongjun; Young, Ken H

    2014-09-01

    Extranodal natural killer/T cell lymphoma, nasal type (ENKTL) is an aggressive disease with a poor prognosis, requiring risk stratification in affected patients. We designed a new prognostic model specifically for ENKTL to identify high-risk patients who need more aggressive therapy. We retrospectively reviewed 158 patients who were newly diagnosed with ENKTL. The estimated 5-year overall survival rate was 39.4 %. Independent prognostic factors included total protein (TP) <60 g/L, fasting blood glucose (FBG) >100 mg/dL, and Korean Prognostic Index (KPI) score ≥2. We constructed a new prognostic model by combining these prognostic factors: group 1 (64 cases (41.0 %)), no adverse factors; group 2 (58 cases (37.2 %)), one adverse factor; and group 3 (34 cases (21.8 %)), two or three adverse factors. The 5-year overall survival (OS) rates of these groups were 66.7, 23.0, and 5.9 %, respectively (p < 0.001). Our new prognostic model had a better prognostic value than did the KPI model alone (p < 0.001). Our proposed prognostic model for ENKTL, including the newly identified prognostic indicators, TP and FBG, demonstrated a balanced distribution of patients into different risk groups with better prognostic discrimination compared with the KPI model alone.

  6. Natural killer cells in host defense against veterinary pathogens.

    PubMed

    Shekhar, Sudhanshu; Yang, Xi

    2015-11-15

    Natural Killer (NK) cells constitute a major subset of innate lymphoid cells that do not express the T- and B-cell receptors and play an important role in antimicrobial defense. NK cells not only induce early and rapid innate immune responses, but also communicate with dendritic cells to shape the adaptive immunity, thus bridging innate and adaptive immunity. Although the functional biology of NK cells is well-documented in a variety of infections in humans and mice, their role in protecting domestic animals from infectious agents is only beginning to be understood. In this article, we summarize the current state of knowledge about the contribution of NK cells in pathogen defense in domestic animals, especially cattle and pigs. Understanding the immunobiology of NK cells will translate into strategies to manipulate these cells for preventive and therapeutic purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. RUNX3 is oncogenic in natural killer/T-cell lymphoma and is transcriptionally regulated by MYC

    PubMed Central

    Selvarajan, V; Osato, M; Nah, G S S; Yan, J; Chung, T-H; Voon, D C-C; Ito, Y; Ham, M F; Salto-Tellez, M; Shimizu, N; Choo, S-N; Fan, S; Chng, W-J; Ng, S-B

    2017-01-01

    RUNX3, runt-domain transcription factor, is a master regulator of gene expression in major developmental pathways. It acts as a tumor suppressor in many cancers but is oncogenic in certain tumors. We observed upregulation of RUNX3 mRNA and protein expression in nasal-type extranodal natural killer (NK)/T-cell lymphoma (NKTL) patient samples and NKTL cell lines compared to normal NK cells. RUNX3 silenced NKTL cells showed increased apoptosis and reduced cell proliferation. Potential binding sites for MYC were identified in the RUNX3 enhancer region. Chromatin immunoprecipitation–quantitative PCR revealed binding activity between MYC and RUNX3. Co-transfection of the MYC expression vector with RUNX3 enhancer reporter plasmid resulted in activation of RUNX3 enhancer indicating that MYC positively regulates RUNX3 transcription in NKTL cell lines. Treatment with a small-molecule MYC inhibitor (JQ1) caused significant downregulation of MYC and RUNX3, leading to apoptosis in NKTL cells. The growth inhibition resulting from depletion of MYC by JQ1 was rescued by ectopic MYC expression. In summary, our study identified RUNX3 overexpression in NKTL with functional oncogenic properties. We further delineate that MYC may be an important upstream driver of RUNX3 upregulation and since MYC is upregulated in NKTL, further study on the employment of MYC inhibition as a therapeutic strategy is warranted. PMID:28119527

  8. Larger number of invariant natural killer T cells in PBSC allografts correlates with improved GVHD-free and progression-free survival.

    PubMed

    Malard, Florent; Labopin, Myriam; Chevallier, Patrice; Guillaume, Thierry; Duquesne, Alix; Rialland, Fanny; Derenne, Sophie; Peterlin, Pierre; Leauté, Anne-Gaelle; Brissot, Eolia; Gregoire, Marc; Moreau, Philippe; Saas, Philippe; Gaugler, Béatrice; Mohty, Mohamad

    2016-04-07

    We studied the impact of a set of immune cells contained within granulocyte colony-stimulating factor-mobilized peripheral blood stem cell grafts (naïve and memory T-cell subsets, B cells, regulatory T cells, invariant natural killer T cells [iNKTs], NK cells, and dendritic cell subsets) in patients (n = 80) undergoing allogeneic stem cell transplantation (SCT), using the composite end point of graft-versus-host disease (GVHD)-free and progression-free survival (GPFS) as the primary end point. We observed that GPFS incidences in patients receiving iNKT doses above and below the median were 49% vs 22%, respectively (P= .007). In multivariate analysis, the iNKT dose was the only parameter with a significant impact on GPFS (hazard ratio = 0.48; 95% confidence interval, 0.27-0.85;P= .01). The incidences of severe grade III to IV acute GVHD and National Institutes of Health grade 2 to 3 chronic GVHD (12% and 16%, respectively) were low and associated with the use of antithymocyte globulin in 91% of patients. No difference in GVHD incidence was reported according to the iNKT dose. In conclusion, a higher dose of iNKTs within the graft is associated with an improved GPFS. These data may pave the way for prospective and active interventions aiming to manipulate the graft content to improve allo-SCT outcome. © 2016 by The American Society of Hematology.

  9. Activated Tissue-Resident Mesenchymal Stromal Cells Regulate Natural Killer Cell Immune and Tissue-Regenerative Function.

    PubMed

    Petri, Robert Michael; Hackel, Alexander; Hahnel, Katrin; Dumitru, Claudia Alexandra; Bruderek, Kirsten; Flohe, Stefanie B; Paschen, Annette; Lang, Stephan; Brandau, Sven

    2017-09-12

    The interaction of mesenchymal stromal cells (MSCs) with natural killer (NK) cells is traditionally thought of as a static inhibitory model, whereby resting MSCs inhibit NK cell effector function. Here, we use a dynamic in vitro system of poly(I:C) stimulation to model the interaction of NK cells and tissue-resident MSCs in the context of infection or tissue injury. The experiments suggest a time-dependent system of regulation and feedback, where, at early time points, activated MSCs secrete type I interferon to enhance NK cell effector function, while at later time points TGF-β and IL-6 limit NK cell effector function and terminate inflammatory responses by induction of a regulatory senescent-like NK cell phenotype. Importantly, feedback of these regulatory NK cells to MSCs promotes survival, proliferation, and pro-angiogenic properties. Our data provide additional insight into the interaction of stromal cells and innate immune cells and suggest a model of time-dependent MSC polarization and licensing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Tributyltin (TBT) and Dibutyltin (DBT) Alter Secretion of Tumor Necrosis Factor Alpha (TNFα) from Human Natural Killer (NK) Cells and a Mixture of T cells and NK Cells

    PubMed Central

    Hurt, Kelsi; Hurd-Brown, Tasia; Whalen, Margaret

    2012-01-01

    Butyltins (BTs) have been in widespread use. Tributyltin (TBT) has been used as a biocide in a variety of applications and is found in human blood samples. Dibutyltin (DBT) has been used as a stabilizer in polyvinyl chloride plastics and as a de-worming agent in poultry. DBT, like TBT, is found in human blood. Human natural killer (NK) cells are the earliest defense against tumors and viral infections and secrete the cytokine tumor necrosis factor (TNF) alpha (α). TNFα is an important regulator of adaptive and innate immune responses. TNFα promotes inflammation and an association between malignant transformation and inflammation has been established. Previously, we have shown that TBT and DBT were able to interfere with the ability of NK cells to lyse tumor target cells. Here we show that BTs alter cytokine secretion by NK cells as well as a mixture of T and NK lymphocytes (T/NK cells). We examined 24 h, 48 h, and 6 day exposures to TBT (200- 2.5 nM) and DBT (5- 0.05 µM) on TNFα secretion by highly enriched human NK cells and T/NK cells. The results indicate that TBT (200 - 2.5 nM) decreased TNFα secretion from NK cells. In the T/NK cells 200 nM TBT decreased secretion while 100-5 nM TBT increased secretion of TNFα. NK cells or T/NK cells exposed to higher concentrations of DBT showed decreased TNFα secretion while lower concentrations showed increased secretion. The effects of BTs on TNFα secretion are seen at concentrations present in human blood. PMID:23047847

  11. CCL17 and CCL22/CCR4 signaling is a strong candidate for novel targeted therapy against nasal natural killer/T-cell lymphoma

    PubMed Central

    Kumai, Takumi; Kobayashi, Hiroya; Komabayashi, Yuki; Ueda, Seigo; Kishibe, Kan; Ohkuri, Takayuki; Takahara, Miki; Celis, Esteban; Harabuchi, Yasuaki

    2015-01-01

    Nasal natural killer/T-cell lymphoma (NNKTL) is associated with Epstein–Barr virus and has a poor prognosis because of local invasion and/or multiple dissemination. Various chemokines play a role in tumor proliferation and invasion, and chemokine receptors including the C-C chemokine receptor 4 (CCR4) are recognized as potential targets for treating hematologic malignancies. The aim of the present study was to determine whether specific chemokines are produced by NNKTL. We compared chemokine expression patterns in culture supernatants of NNKTL cell lines with those of other lymphoma or leukemia cell lines using chemokine protein array and ELISA. Chemokine (C-C motif) ligand (CCL) 17 and CCL22 were highly produced by NNKTL cell lines as compared to the other cell lines. In addition, CCL17 and CCL22 were readily observed in the sera of NNKTL patients. The levels of these chemokines were significantly higher in patients than in healthy controls. Furthermore, we detected the expression of CCR4 (the receptor for CCL17 and CCL22) on the surface of NNKTL cell lines and in tissues of NNKTL patients. Anti-CCR4 monoclonal antibody (mAb) efficiently induced antibody-dependent cellular cytotoxicity mediated by natural killer cells against NNKTL cell lines. Our results suggest that CCL17 and CCL22 may be important factors in the development of NNKTL and open up the possibility of immunotherapy of this lymphoma using anti-CCR4 mAb. PMID:25754123

  12. Human microRNA-1245 down-regulates the NKG2D receptor in natural killer cells and impairs NKG2D-mediated functions

    PubMed Central

    Espinoza, J. Luis; Takami, Akiyoshi; Yoshioka, Katsuji; Nakata, Katsuya; Sato, Tokiharu; Kasahara, Yoshihito; Nakao, Shinji

    2012-01-01

    Background NKG2D is an activating receptor expressed by natural killer and T cells, which have crucial functions in tumor and microbial immunosurveillance. Several cytokines have been identified as modulators of NKG2D receptor expression. However, little is known about NKG2D gene regulation. In this study, we found that microRNA 1245 attenuated the expression of NKG2D in natural killer cells. Design and Methods We investigated the potential interactions between the 3′-untranslated region of the NKG2D gene and microRNA as well as their functional roles in the regulation of NKG2D expression and cytotoxicity in natural killer cells. Results Transforming growth factor-β1, a major negative regulator of NKG2D expression, post-transcriptionally up-regulated mature microRNA-1245 expression, thus down-regulating NKG2D expression and impairing NKG2D-mediated immune responses in natural killer cells. Conversely, microRNA-1245 down-regulation significantly increased the expression of NKG2D expression in natural killer cells, resulting in more efficient NKG2D-mediated cytotoxicity. Conclusions These results reveal a novel NKG2D regulatory pathway mediated by microRNA-1245, which may represent one of the mechanisms used by transforming growth factor-β1 to attenuate NKG2D expression in natural killer cells. PMID:22491735

  13. Autologous hematopoietic stem cell transplantation in extranodal natural killer/T cell lymphoma: a multinational, multicenter, matched controlled study.

    PubMed

    Lee, Jeeyun; Au, Wing-Yan; Park, Min Jae; Suzumiya, Junji; Nakamura, Shigeo; Kameoka, Jun-Ichi; Sakai, Chikara; Oshimi, Kazuo; Kwong, Yok-Lam; Liang, Raymond; Yiu, Harry; Wong, Kam-Hung; Cheng, Hoi-Ching; Ryoo, Baek-Yeol; Suh, Cheolwon; Ko, Young Hyeh; Kim, Kihyun; Lee, Jae-Won; Kim, Won Seog; Suzuki, Ritsuro

    2008-12-01

    Extranodal natural killer (NK)/T cell lymphoma, nasal type, is a recently recognized distinct entity and the most common type of non-B cell extranodal lymphoma in Asia. This retrospective analysis studied the potential survival benefits of hematopoeitic stem cell transplantation (HSCT) compared with a historical control group. A total of 47 patients from 3 previously published series of HSCT were matched according to NK/T cell lymphoma International Prognostic Index (NKIPI) risk groups and disease status at transplantation with 107 patients from a historical control group for analysis. After a median follow-up of 116.5 months, the median survival time was not determined for the HSCT group, but it was 43.5 months for the control group (95% confidence interval [CI] = 6.7 to 80.3 months; P = .127, log-rank test). In patients who were in complete remission (CR) at the time of HSCT or at surveillance after remission, disease-specific survival rates were significantly higher in the HSCT group compared with the control group (disease-specific 5-year survival rate, 87.3% for HSCT vs 67.8% for non-HSCT; P = .027). In contrast, in subgroup analysis on non-CR patients at the time of HSCT or non-HSCT treatment, disease-specific survival rates were not significantly prolonged in the HSCT group compared with the control group (1-year survival rate, 66.7% for HSCT vs 28.6% for non-HSCT; P = .141). The impact of HSCT on the survival of all patients was significantly retained at the multivariate level with a 2.1-fold (95% CI =1.2- to 3.7-fold) reduced risk of death (P = .006). HSCT seems to confer a survival benefit in patients who attained CR on postremission consolidation therapy. These findings suggest that, in particular, patients in CR with high NKIPI risk scores at diagnosis should receive full consideration for HSCT.

  14. CXCR6 marks a novel subset of T-betloEomeshi natural killer cells residing in human liver

    PubMed Central

    Stegmann, Kerstin A.; Robertson, Francis; Hansi, Navjyot; Gill, Upkar; Pallant, Celeste; Christophides, Theodoros; Pallett, Laura J.; Peppa, Dimitra; Dunn, Claire; Fusai, Giuseppe; Male, Victoria; Davidson, Brian R.; Kennedy, Patrick; Maini, Mala K.

    2016-01-01

    Natural killer cells (NK) are highly enriched in the human liver, where they can regulate immunity and immunopathology. We probed them for a liver-resident subset, distinct from conventional bone-marrow-derived NK. CXCR6+ NK were strikingly enriched in healthy and diseased liver compared to blood (p < 0.0001). Human hepatic CXCR6+ NK had an immature phenotype (predominantly CD56brightCD16−CD57−), and expressed the tissue-residency marker CD69. CXCR6+ NK produced fewer cytotoxic mediators and pro-inflammatory cytokines than the non-liver-specific CXCR6− fraction. Instead CXCR6+ NK could upregulate TRAIL, a key death ligand in hepatitis pathogenesis. CXCR6 demarcated liver NK into two transcriptionally distinct populations: T-bethiEomeslo(CXCR6−) and T-betloEomeshi(CXCR6+); the latter was virtually absent in the periphery. The small circulating CXCR6+ subset was predominantly T-bethiEomeslo, suggesting its lineage was closer to CXCR6− peripheral than CXCR6+ liver NK. These data reveal a large subset of human liver-resident T-betloEomeshi NK, distinguished by their surface expression of CXCR6, adapted for hepatic tolerance and inducible anti-viral immunity. PMID:27210614

  15. Fasting blood glucose is a novel prognostic indicator for extranodal natural killer/T-cell lymphoma, nasal type

    PubMed Central

    Cai, Q; Luo, X; Liang, Y; Rao, H; Fang, X; Jiang, W; Lin, T; Lin, T; Huang, H

    2013-01-01

    Background: Extranodal natural killer (NK)/T-cell lymphoma, nasal type (ENKTL) is an aggressive disease with poor prognosis, requiring risk stratification. However, the prognosis of ENKTL is not fully defined and needs supplementation. We hypothesised that fasting blood glucose (FBG) may be a new prognostic factor for ENKTL. Methods: We retrospectively analysed 130 patients newly diagnosed with ENKTL. Results: Both univariate analysis and multivariate analysis revealed that FBG >100 mg dl−1 was associated with a poor outcome. Patients with FBG >100 mg dl−1 at diagnosis had more adverse clinical features, achieved lower complete remission rates (P=0.003) and had worse overall survival (P<0.001) and progression-free survival (P<0.001) compared with low-FBG patients. Measurement of FBG was helpful in differentiating between low-risk patients using the International Prognostic Index (IPI) and Prognosis Index for peripheral T-cell lymphoma (PIT) scoring and patients in a different category using the Korean Prognostic Index (KPI) scores with different survival outcomes (P<0.05). Conclusion: Our data suggest that measuring FBG levels at diagnosis is a novel, independent predictor of prognosis in ENKTL and helps to distinguish low-risk patients with poor survival, and this holds true in patients considered low-risk by IPI, PIT and KPI. PMID:23299534

  16. Invariant natural killer T cells act as an extravascular cytotoxic barrier for joint-invading Lyme Borrelia.

    PubMed

    Lee, Woo-Yong; Sanz, Maria-Jesus; Wong, Connie H Y; Hardy, Pierre-Olivier; Salman-Dilgimen, Aydan; Moriarty, Tara J; Chaconas, George; Marques, Adriana; Krawetz, Roman; Mody, Christopher H; Kubes, Paul

    2014-09-23

    CXCR6-GFP(+) cells, which encompass 70% invariant natural killer T cells (iNKT cells), have been found primarily patrolling inside blood vessels in the liver. Although the iNKT cells fail to interact with live pathogens, they do respond to bacterial glycolipids presented by CD1d on liver macrophage that have caught the microbe. In contrast, in this study using dual laser multichannel spinning-disk intravital microscopy of joints, the CXCR6-GFP, which also made up 60-70% iNKT cells, were not found in the vasculature but rather closely apposed to and surrounding the outside of blood vessels, and to a lesser extent throughout the extravascular space. These iNKT cells also differed in behavior, responding rapidly and directly to joint-homing pathogens like Borrelia burgdorferi, which causes Lyme disease. These iNKT cells interacted with B. burgdorferi at the vessel wall and disrupted dissemination attempts by these microbes into joints. Successful penetrance of B. burgdorferi out of the vasculature and into the joint tissue was met by a lethal attack by extravascular iNKT cells through a granzyme-dependent pathway, an observation also made in vitro for iNKT cells from joint but not liver or spleen. These results suggest a novel, critical extravascular iNKT cell immune surveillance in joints that functions as a cytotoxic barrier and explains a large increase in pathogen burden of B. burgdorferi in the joint of iNKT cell-deficient mice, and perhaps the greater susceptibility of humans to this pathogen because of fewer iNKT cells in human joints.

  17. A Signaling Network Induced by β2 Integrin Controls the Polarization of Lytic Granulesin Cytotoxic Cells

    PubMed Central

    Zhang, Minggang; March, Michael E.; Lane, William S.; Long, Eric O.

    2014-01-01

    Cytotoxic lymphocyte skill target cells by polarized release of the content of perforin-containing granules. In natural killer cells, the binding of β2 integrin to its ligand ICAM-1 is sufficient to promote not only adhesion but also lytic granule polarization. This provided a unique opportunity to study polarization in the absence of degranulation, and β2 integrin signaling independently of inside-out signals from other receptors. Using an unbiased proteomics approach we identified a signaling network centered on an integrin-linked kinase (ILK)–Pyk2–Paxillin core that was required for granule polarization. Downstream of ILK, the highly conserved Cdc42–Par6 signaling pathway that controls cell polarity was activated and required for granule polarization. These results delineate two connected signaling networks induced upon β2 integrin engagement alone, which are integrated to control polarization of the microtubule organizing center and associated lytic granules toward the site of contact with target cells during cellular cytotoxicity. PMID:25292215

  18. Orbital involvement in extranodal natural killer T cell lymphoma: an atypical case presentation and review of the literature.

    PubMed

    Ely, A; Evans, J; Sundstrom, J M; Malysz, J; Specht, C S; Wilkinson, M

    2012-08-01

    To report a rare case of extranodal NK/T cell lymphoma (NKTL) and to compare its features with those cases previously reported. Case report, observational and literature review. Complete ophthalmologic examinations followed by excisional biopsy, histopathologic examination and therapy with radiation and chemotherapy. Evaluation of clinical presenting features and histopathologic diagnosis along with patient outcome. A 22 year old female presented as a referral with right orbital swelling, decreased vision and eye pain for 5 weeks. Subsequent orbital CT and multiple biopsies resulted in a diagnosis of extranodal natural killer (NK)/T cell lymphoma (NKTL). Despite continued chemotherapy and orbital radiation the patient expired within 3 months of diagnosis. To our knowledge, only 8 cases of orbital involvement without nasal mucosal involvement are reported in the literature, the majority in patients of male gender around the fifth decade. Here we present an atypical and aggressive case of extranodal NK/T cell lymphoma presenting in a 22 year old Caucasian female as orbital swelling without evidence of nasal mucosal involvement. It is important to distinguish NKTL from the more common benign lymphoproliferative lesions of the orbital adnexa as prognosis of these two clinical entities varies and timely diagnosis is key. The present case demonstrates that extranodal NKTL can occur in the orbit without evidence of the more common nasal mucosal presentations and should be included in the differential diagnosis of ocular adnexal lesions suspicious for a lymphoproliferative disorder and/or an inflammatory process.

  19. Structure-guided design of an invariant natural killer T cell agonist for optimum protection from type 1 diabetes in non-obese diabetic mice

    PubMed Central

    Blumenfeld, H J; Tohn, R; Haeryfar, S M M; Liu, Y; Savage, P B; Delovitch, T L

    2011-01-01

    Because invariant natural killer T (iNK T) cells link innate and adaptive immunity, the structure-dependent design of iNK T cell agonists may have therapeutic value as vaccines for many indications, including autoimmune disease. Previously, we showed that treatment of non-obese diabetic (NOD) mice with the iNK T cell activating prototypic glycolipid α-galactosylceramide (α-GalCer) protects them from type 1 diabetes (T1D). However, α-GalCer is a strong agonist that can hyperactivate iNK T cells, elicit several side effects and has shown only limited success in clinical trials. Here, we used a structure-guided design approach to identify an iNK T cell agonist that optimally protects from T1D with minimal side effects. Analyses of the kinetics and function of a panel of synthetic α-GalCer fatty acyl chain derivatives (C8:0-C16:0) were performed in NOD mice. C16:0 elicited the highest protection from insulitis and T1D, which was associated with a higher frequency and survival of iNK T cells and enhanced activity of tolerogenic dendritic cells (DCs) in draining pancreatic lymph nodes (PLN), inability to transactivate NK cells and a more rapid kinetics of induction and recovery of iNK T cells from anergy. We conclude that the length and structure of the acyl chain of α-GalCer regulates the level of protection against T1D in mice, and propose that the extent of this protection depends on the relative capacity of the acyl chain to accommodate an endogenous spacer lipid of appropriate length and structure. Thus, our findings with the α-GalCer C16:0 derivative suggest strongly that it be considered as a lead glycolipid candidate in clinical trials of T1D. PMID:21910729

  20. Multi-cellular natural killer (NK) cell clusters enhance NK cell activation through localizing IL-2 within the cluster

    NASA Astrophysics Data System (ADS)

    Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi

    2017-01-01

    Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited.

  1. Lifestyles and mental health status are associated with natural killer cell and lymphokine-activated killer cell activities.

    PubMed

    Morimoto, K; Takeshita, T; Inoue-Sakurai, C; Maruyama, S

    2001-04-10

    We investigated the association of lifestyle and mental health status with natural killer (NK) cell and lymphokine-activated killer (LAK) cell activities in healthy males. NK cell activity was determined in 105 male workers and LAK cell activity was determined in 54 male workers. Peripheral blood was obtained from each subject and peripheral blood mononuclear cells (PBMC) were isolated from the blood. These PBMC were used as effector cells. LAK cells were generated by incubation of PBMC with interleukin-2 for 72 h. NK cell activity against NK-sensitive K562 cells and LAK cell activity against NK-resistant Raji cells were examined by 51Cr release assay. Overall lifestyles were evaluated according to the answers on a questionnaire regarding eight health practices (cigarette smoking, alcohol consumption, eating breakfast, hours of sleep, hours of work, physical exercise, nutritional balance, mental stress). Subjects with a good overall lifestyle showed significantly higher NK cell (P < 0.05) and LAK cell (P < 0.05) activities than those with a poor overall lifestyles. Among eight lifestyle factors, cigarette smoking has relatively strong effects on NK cell and LAK cell activities. Subjects who complained of unstable mental status had significantly lower NK cell activity than those who reported stable mental status. When subjects were divided into four groups by lifestyle and mental health status, subjects who had poor or moderate lifestyle and reported unstable mental status showed the lowest NK cell activity and subjects who had good lifestyle and reported stable mental status showed the highest NK cell activity among four groups.

  2. Killer artificial antigen-presenting cells: the synthetic embodiment of a ‘guided missile’

    PubMed Central

    Schütz, Christian; Oelke, Mathias; Schneck, Jonathan P; Mackensen, Andreas; Fleck, Martin

    2010-01-01

    At present, the treatment of T-cell-dependent autoimmune diseases relies exclusively on strategies leading to nonspecific suppression of the immune systems causing a substantial reduced ability to control concomitant infections or malignancies. Furthermore, long-term treatment with most drugs is accompanied by several serious adverse effects and does not consequently result in cure of the primary immunological malfunction. By contrast, antigen-specific immunotherapy offers the potential to achieve the highest therapeutic efficiency in accordance with minimal adverse effects. Therefore, several studies have been performed utilizing antigen-presenting cells specifically engineered to deplete allo- or antigen-specific T cells (‘guided missiles’). Many of these strategies take advantage of the Fas/Fas ligand signaling pathway to efficiently induce antigen-presenting cell-mediated apoptosis in targeted T cells. In this article, we discuss the advantages and shortcomings of a novel non-cell-based ‘killer artificial antigen-presenting cell’ strategy, developed to overcome obstacles related to current cell-based approaches for the treatment of T-cell-mediated autoimmunity. PMID:20636007

  3. Activation of Invariant Natural Killer T Cells Redirects the Inflammatory Response in Neonatal Sepsis.

    PubMed

    Bolognese, Alexandra C; Yang, Weng-Lang; Hansen, Laura W; Sharma, Archna; Nicastro, Jeffrey M; Coppa, Gene F; Wang, Ping

    2018-01-01

    Sepsis is the third leading cause of death in the neonatal population, due to susceptibility to infection conferred by immaturity of both the innate and adaptive components of the immune system. Invariant natural killer T (iNKT) cells are specialized adaptive immune cells that possess important innate-like characteristics and have not yet been well-studied in septic neonates. We hypothesized that iNKT cells would play an important role in mediating the neonatal immune response to sepsis. To study this, we subjected 5- to 7-day-old neonatal C57BL/6 mice to sepsis by intraperitoneal (i.p.) cecal slurry (CS) injection. Thirty hours prior to or immediately following sepsis induction, pups received i.p. injection of the iNKT stimulator KRN7000 (KRN, 0.2 µg/g) or vehicle. Ten hours after CS injection, blood and tissues were collected for various analyses. Thirty-hour pretreatment with KRN resulted in better outcomes in inflammation, lung injury, and survival, while immediate treatment with KRN resulted in worse outcomes compared to vehicle treatment. We further analyzed the activation status of neonatal iNKT cells for 30 h after KRN administration, and showed a peak in frequency of CD69 expression on iNKT cells and serum IFN-γ levels at 5 and 10 h, respectively. We then used CD1d knockout neonatal mice to demonstrate that KRN acts through the major histocompatibility complex-like molecule CD1d to improve outcomes in neonatal sepsis. Finally, we identified that KRN pretreatment exerts its protective effect by increasing systemic levels of TGF-β1. These findings support the importance of iNKT cells for prophylactic immunomodulation in neonates susceptible to sepsis.

  4. Nitric oxide inhibits exocytosis of cytolytic granules from lymphokine-activated killer cells

    PubMed Central

    Ferlito, Marcella; Irani, Kaikobad; Faraday, Nauder; Lowenstein, Charles J.

    2006-01-01

    NO inhibits cytotoxic T lymphocyte killing of target cells, although the precise mechanism is unknown. We hypothesized that NO decreases exocytosis of cytotoxic granules from activated lymphocytes. We now show that NO inhibits lymphokine-activated killer cell killing of K562 target cells. Exogenous and endogenous NO decreases the release of granzyme B, granzyme A, and perforin: all contents of cytotoxic granules. NO inhibits the signal transduction cascade initiated by cross-linking of the T cell receptor that leads to granule exocytosis. In particular, we found that NO decreases the expression of Ras, a critical signaling component within the exocytic pathway. Ectopic expression of Ras prevents NO inhibition of exocytosis. Our data suggest that Ras mediates NO inhibition of lymphocyte cytotoxicity and emphasize that alterations in the cellular redox state may regulate the exocytic signaling pathway. PMID:16857739

  5. Dietary supplementation of probiotic Bacillus polyfermenticus, Bispan strain, modulates natural killer cell and T cell subset populations and immunoglobulin G levels in human subjects.

    PubMed

    Kim, Hyun-Sook; Park, Hyunjin; Cho, In-Young; Paik, Hyun-Dong; Park, Eunju

    2006-01-01

    A probiotic is a viable microbial dietary supplement that has beneficial effects such as prevention and treatment of specific gastrointestinal disorders, including counteracting gut barrier dysfunction associated with inflammation and infection. Probiotic Bacillus polyfermenticus, which is commonly called Bispan strain, has been appropriately used for the treatment of long-term intestinal disorders. The use of B. polyfermenticus for immune-related chronic intestinal disease may be appropriate considering that about 80% of the body's immune system is localized in the gastrointestinal tract. The current study aimed to evaluate the effect of probiotic B. polyfermenticus on the immune response of human subjects through the quantification of immune cell population and serum levels of immunoglobulins (Igs). Twenty-five male subjects, 20-35 years of age, were randomly assigned to either a control group (n =12) supplemented with a placebo or the experimental group (n = 13) supplemented with B. polyfermenticus tablets at a dose of 3.1 x 10(8) colony-forming units/day for 8 weeks. Dietary intake analyses from 3-day dietary records from three consecutive days including one weekend day and two weekdays revealed no significant differences in total energy and nutrient intakes between the two groups. The humoral immune response was monitored by the number of total B lymphocytes and serum concentrations of IgG, IgA, and IgM. To investigate the changes in immune cell populations, percentages of total T lymphocytes, CD4+ helper T cells, CD8+ cytotoxic T cells, and CD56+ natural killer (NK) cells were quantified. The concentration of IgG in the experimental group was 12% higher than in the placebo group after 8 weeks of Bispan supplementation. Also, the percentages of CD4+ helper T cells, CD8+cytotoxic T cells, and CD56+ NK cells in the Bispan strain-supplemented group were 32%, 28%, and 35% higher, respectively, compared with the control group. Because of a higher increment of the

  6. NK T Cells Contribute to Expansion of CD8+ T Cells and Amplification of Antiviral Immune Responses to Respiratory Syncytial Virus

    PubMed Central

    Johnson, Teresa R.; Hong, Seokmann; Van Kaer, Luc; Koezuka, Yasuhiko; Graham, Barney S.

    2002-01-01

    CD1d-deficient mice have normal numbers of T lymphocytes and natural killer cells but lack Vα14+ natural killer T cells. Respiratory syncytial virus (RSV) immunopathogenesis was evaluated in 129×C57BL/6, C57BL/6, and BALB/c CD1d−/− mice. CD8+ T lymphocytes were reduced in CD1d−/− mice of all strains, as shown by cell surface staining and major histocompatibility complex class I tetramer analysis, and resulted in strain-specific alterations in illness, viral clearance, and gamma interferon (IFN-γ) production. Transient activation of NK T cells in CD1d+/+ mice by α-GalCer resulted in reduced illness and delayed viral clearance. These data suggest that early IFN-γ production and efficient induction of CD8+-T-cell responses during primary RSV infection require CD1d-dependent events. We also tested the ability of α-GalCer as an adjuvant to modulate the type 2 immune responses induced by RSV glycoprotein G or formalin-inactivated RSV immunization. However, immunized CD1-deficient or α-GalCer-treated wild-type mice did not exhibit diminished disease following RSV challenge. Rather, some disease parameters, including cytokine production, eosinophilia, and viral clearance, were increased. These findings indicate that CD1d-dependent NK T cells play a role in expansion of CD8+ T cells and amplification of antiviral responses to RSV. PMID:11932395

  7. Human Invariant Natural Killer T Cells Respond to Antigen-Presenting Cells Exposed to Lipids from Olea europaea Pollen.

    PubMed

    Abos Gracia, Beatriz; López Relaño, Juan; Revilla, Ana; Castro, Lourdes; Villalba, Mayte; Martín Adrados, Beatriz; Regueiro, Jose Ramon; Fernández-Malavé, Edgar; Martínez Naves, Eduardo; Gómez Del Moral, Manuel

    2017-01-01

    Allergic sensitization might be influenced by the lipids present in allergens, which can be recognized by natural killer T (NKT) cells on antigen-presenting cells (APCs). The aim of this study was to analyze the effect of olive pollen lipids in human APCs, including monocytes as well as monocyte-derived macrophages (Mϕ) and dendritic cells (DCs). Lipids were extracted from olive (Olea europaea) pollen grains. Invariant (i)NKT cells, monocytes, Mϕ, and DCs were obtained from buffy coats of healthy blood donors, and their cell phenotype was determined by flow cytometry. iNKT cytotoxicity was measured using a lactate dehydrogenase assay. Gene expression of CD1A and CD1D was performed by RT-PCR, and the production of IL-6, IL-10, IL-12, and TNF-α cytokines by monocytes, Mϕ, and DCs was measured by ELISA. Our results showed that monocytes and monocyte-derived Mϕ treated with olive pollen lipids strongly activate iNKT cells. We observed several phenotypic modifications in the APCs upon exposure to pollen-derived lipids. Both Mϕ and monocytes treated with olive pollen lipids showed an increase in CD1D gene expression, whereas upregulation of cell surface CD1d protein occurred only in Mϕ. Furthermore, DCs differentiated in the presence of human serum enhance their surface CD1d expression when exposed to olive pollen lipids. Finally, olive pollen lipids were able to stimulate the production of IL-6 but downregulated the production of lipopolysaccharide- induced IL-10 by Mϕ. Olive pollen lipids alter the phenotype of monocytes, Mϕ, and DCs, resulting in the activation of NKT cells, which have the potential to influence allergic immune responses. © 2017 S. Karger AG, Basel.

  8. Aggressive natural killer (NK)-cell leukaemia and extranodal NK/T-cell lymphoma are two distinct diseases that differ in their clinical presentation and cytogenetic findings.

    PubMed

    Yang, Ching-Fen; Hsu, Chih-Yi; Ho, Donald M-T

    2018-05-01

    Aggressive natural killer (NK)-cell leukaemia (ANKCL) and extranodal NK/T-cell lymphoma (ENKTCL) with secondary bone marrow involvement are rare bone marrow NK/T-cell neoplasms and share similar features. This study aimed to distinguish these two entities. We studied bone marrow NK/T-cell neoplasms by classifying them into those with no extramedullary mass (group 1, eight cases) and those with extramedullary mass (group 2, 13 cases). The two groups showed similar clinical presentations and pathological features. Fever and cytopenia were the most common clinical presentations in both groups. The neoplastic cells varied from small and relatively monotonous cells to large pleomorphic cells. In six cases (two in group 1, and four in group 2), the neoplastic infiltrate was inconspicuous, consisting of ≤10% of marrow cells in the interstitium, which were hardly identified by haematoxylin and eosin staining alone. Nearly all patients rapidly died, regardless of the neoplastic infiltrate volume. All of the group 1 patients fulfilled the World Health Organisation 2017 diagnostic criteria of ANKCL, and their survival was significantly worse than that of the group 2 patients (P = 0.035). In addition, there was a significant association between being in group 1 and chromosome 7 abnormalities. Chromosome 6q deletion, which is commonly reported in ENKTCL, was seen in two of our group 2 patients, and was not observed in any of our group 1 patients. ANKCL with no extramedullary mass should be distinguished from ENKTCL with bone marrow involvement, as the former shows distinct outcomes and genetic features. © 2018 John Wiley & Sons Ltd.

  9. Toxoplasma gondii-infected natural killer cells display a hypermotility phenotype in vivo.

    PubMed

    Ueno, Norikiyo; Lodoen, Melissa B; Hickey, Graeme L; Robey, Ellen A; Coombes, Janine L

    2015-01-01

    Toxoplasma gondii is a highly prevalent intracellular protozoan parasite that causes severe disease in congenitally infected or immunocompromised hosts. T. gondii is capable of invading immune cells and it has been suggested that the parasite harnesses the migratory pathways of these cells to spread through the body. Although in vitro evidence suggests that the parasite further enhances its spread by inducing a hypermotility phenotype in parasitized immune cells, in vivo evidence for this phenomenon is scarce. Here we use a physiologically relevant oral model of T. gondii infection, in conjunction with two-photon laser scanning microscopy, to address this issue. We found that a small proportion of natural killer (NK) cells in mesenteric lymph nodes contained parasites. Compared with uninfected 'bystander' NK cells, these infected NK cells showed faster, more directed and more persistent migratory behavior. Consistent with this, infected NK cells showed impaired spreading and clustering of the integrin, LFA-1, when exposed to plated ligands. Our results provide the first evidence for a hypermigratory phenotype in T. gondii-infected NK cells in vivo, providing an anatomical context for understanding how the parasite manipulates immune cell motility to spread through the host.

  10. Dendritic cells rapidly undergo apoptosis in vitro following culture with activated CD4+ Vα24 natural killer T cells expressing CD40L

    PubMed Central

    Nieda, M; Kikuchi, A; Nicol, A; Koezuka, Y; Ando, Y; Ishihara, S; Lapteva, N; Yabe, T; Tokunaga, K; Tadokoro, K; Juji, T

    2001-01-01

    Human Vα24 natural killer T (Vα24NKT) cells are activated by α-glycosylceramide-pulsed dendritic cells (DCs) in a CD1d-dependent and T-cell receptor-mediated manner. There are two major subpopulations of Vα24NKT cells, CD4– CD8– Vα24NKT and CD4+ Vα24NKT cells. We have recently shown that activated CD4– CD8– Vα24NKT cells have cytotoxic activity against DCs, but knowledge of the molecules responsible for cytotoxicity of Vα24NKT cells is currently limited. We aimed to investigate whether CD4+ Vα24NKT cells also have cytotoxic activity against DCs and to determine the mechanisms underlying any observed cytotoxic activity. We demonstrated that activated CD4+ Vα24NKT cells [CD40 ligand (CD40L) -positive] have cytotoxic activity against DCs (strongly CD40-positive), but not against monocytes (weakly CD40-positive) or phytohaemagglutinin blast T cells (CD40-negative), and that apoptosis of DCs significantly contributes to the observed cytotoxicity. The apoptosis of DCs following culture with activated CD4+ Vα24NKT cells, but not with resting CD4+ Vα24NKT cells (CD40L-negative), was partially inhibited by anti-CD40L mAb. Direct ligation of CD40 on the DCs by the anti-CD40 antibody also induced apoptosis of DCs. Our results suggest that CD40–CD40L interaction plays an important role in the induction of apoptosis of DCs following culture with activated CD4+ Vα24NKT cells. The apoptosis of DCs from normal donors, triggered by the CD40–CD40L interaction, may contribute to the homeostatic regulation of the normal human immune system, preventing the interminable activation of activated CD4+ Vα24NKT cells by virtue of apoptosis of DCs. PMID:11260318

  11. Involvement of autophagy in T cell biology.

    PubMed

    Oral, Ozlem; Yedier, Ozlem; Kilic, Seval; Gozuacik, Devrim

    2017-01-01

    Autophagy is an essential cellular pathway that sequesters various cytoplasmic components, including accumulated proteins, damaged organelles or invading microorganisms and delivers them to lysosomes for degradation. The function of autophagy has been reported in various tissues and systems, including its role in the regulation of cellular immunity. Autophagy plays a fundamental role at various stages of T cell maturation. It regulates the thymocyte selection and the generation of T cell repertoire by presenting intracellular antigens to MHC class molecules. Autophagy is crucial for metabolic regulation of T cells, and therefore supports cell survival and homeostasis, particularly in activated mature T cells. Furthermore, deletion of specific autophagy-related genes induces several immunological alterations including differentiation of activated T cells into regulatory, memory or natural killer T cells. In this review, we emphasize the impact of autophagy on T cell development, activation and differentiation, which is pivotal for the adaptive immune system.

  12. Dual Modifications of α-Galactosylceramide Synergize to Promote Activation of Human Invariant Natural Killer T Cells and Stimulate Anti-tumor Immunity.

    PubMed

    Chennamadhavuni, Divya; Saavedra-Avila, Noemi Alejandra; Carreño, Leandro J; Guberman-Pfeffer, Matthew J; Arora, Pooja; Yongqing, Tang; Koay, Hui-Fern; Godfrey, Dale I; Keshipeddy, Santosh; Richardson, Stewart K; Sundararaj, Srinivasan; Lo, Jae Ho; Wen, Xiangshu; Gascón, José A; Yuan, Weiming; Rossjohn, Jamie; Le Nours, Jérôme; Porcelli, Steven A; Howell, Amy R

    2018-05-17

    Glycosylceramides that activate CD1d-restricted invariant natural killer T (iNKT) cells have potential therapeutic applications for augmenting immune responses against cancer and infections. Previous studies using mouse models identified sphinganine variants of α-galactosylceramide as promising iNKT cell activators that stimulate cytokine responses with a strongly proinflammatory bias. However, the activities of sphinganine variants in mice have generally not translated well to studies of human iNKT cell responses. Here, we show that strongly proinflammatory and anti-tumor iNKT cell responses were achieved in mice by a variant of α-galactosylceramide that combines a sphinganine base with a hydrocinnamoyl ester on C6″ of the sugar. Importantly, the activities observed with this variant were largely preserved for human iNKT cell responses. Structural and in silico modeling studies provided a mechanistic basis for these findings and suggested basic principles for capturing useful properties of sphinganine analogs of synthetic iNKT cell activators in the design of immunotherapeutic agents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. MHC class I target recognition, immunophenotypes and proteomic profiles of natural killer cells within the spleens of day-14 chick embryos

    USDA-ARS?s Scientific Manuscript database

    Chicken natural killer (NK) cells are not well defined, so little is known about the molecular interactions controlling their activity. At day 14 of embryonic development, chick spleens are a rich source of T-cellfree CD8aa+, CD3_ cells with natural killing activity. Cell-mediated cytotoxicity assay...

  14. CD161 Defines a Functionally Distinct Subset of Pro-Inflammatory Natural Killer Cells

    PubMed Central

    Kurioka, Ayako; Cosgrove, Cormac; Simoni, Yannick; van Wilgenburg, Bonnie; Geremia, Alessandra; Björkander, Sophia; Sverremark-Ekström, Eva; Thurnheer, Christine; Günthard, Huldrych F.; Khanna, Nina; Aubert, V; Arancibia-Cárcamo, CV; Walker, Lucy Jane; Arancibia-Cárcamo, Carolina V.; Newell, Evan W.; Willberg, Christian B.; Klenerman, Paul

    2018-01-01

    CD161 is a C-type lectin-like receptor expressed on the majority of natural killer (NK) cells; however, the significance of CD161 expression on NK cells has not been comprehensively investigated. Recently, we found that CD161 expression identifies a transcriptional and innate functional phenotype that is shared across various T cell populations. Using mass cytometry and microarray experiments, we demonstrate that this functional phenotype extends to NK cells. CD161 marks NK cells that have retained the ability to respond to innate cytokines during their differentiation, and is lost upon cytomegalovirus-induced maturation in both healthy and human immunodeficiency virus (HIV)-infected patients. These pro-inflammatory NK cells are present in the inflamed lamina propria where they are enriched for integrin CD103 expression. Thus, CD161 expression identifies NK cells that may contribute to inflammatory disease pathogenesis and correlates with an innate responsiveness to cytokines in both T and NK cells. PMID:29686665

  15. TIGIT expressing CD4+T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia

    PubMed Central

    Catakovic, Kemal; Gassner, Franz Josef; Ratswohl, Christoph; Zaborsky, Nadja; Rebhandl, Stefan; Schubert, Maria; Steiner, Markus; Gutjahr, Julia Christine; Pleyer, Lisa; Egle, Alexander; Hartmann, Tanja Nicole; Greil, Richard; Geisberger, Roland

    2018-01-01

    ABSTRACT While research on T cell exhaustion in context of cancer particularly focuses on CD8+ cytotoxic T cells, the role of inhibitory receptors on CD4+ T-helper cells have remained largely unexplored. TIGIT is a recently identified inhibitory receptor on T cells and natural killer (NK) cells. In this study, we examined TIGIT expression on T cell subsets from CLL patients. While we did not observe any differences in TIGIT expression in CD8+ T cells of healthy controls and CLL cells, we found an enrichment of TIGIT+ T cells in the CD4+ T cell compartment in CLL. Intriguingly, CLL patients with an advanced disease stage displayed elevated numbers of CD4+ TIGIT+ T cells compared to low risk patients. Autologous CLL-T cell co-culture assays revealed that depleting CD4+ TIGIT+ expressing T cells from co-cultures significantly decreased CLL viability. Accordingly, a supportive effect of TIGIT+CD4+ T cells on CLL cells in vitro could be recapitulated by blocking the interaction of TIGIT with its ligands using TIGIT-Fc molecules, which also impeded the T cell specific production of CLL-prosurvival cytokines. Our data reveal that TIGIT+CD4+T cells provide a supportive microenvironment for CLL cells, representing a potential therapeutic target for CLL treatment. PMID:29296521

  16. Tribody [(HER2)2xCD16] Is More Effective Than Trastuzumab in Enhancing γδ T Cell and Natural Killer Cell Cytotoxicity Against HER2-Expressing Cancer Cells.

    PubMed

    Oberg, Hans H; Kellner, Christian; Gonnermann, Daniel; Sebens, Susanne; Bauerschlag, Dirk; Gramatzki, Martin; Kabelitz, Dieter; Peipp, Matthias; Wesch, Daniela

    2018-01-01

    An enhanced expression of human epidermal growth factor receptor 2 (HER2, ErbB2) often occurs in an advanced stage of breast, ovarian, gastric or esophageal cancer, and pancreatic ductal adenocarcinoma (PDAC). Commonly, HER2 expression is associated with poor clinical outcome or chemoresistance in ovarian and breast cancer patients. Treatment with humanized anti-HER2 monoclonal antibodies, such as trastuzumab or pertuzumab, has improved the outcome of patients with HER2-positive metastatic gastric or breast cancer, but not all patients benefit. In this study, the bispecific antibody [(HER2) 2 xCD16] in the tribody format was employed to re-direct CD16-expressing γδ T lymphocytes as well as natural killer (NK) cells to the tumor-associated cell surface antigen HER2 to enhance their cytotoxic anti-tumor activity. Tribody [(HER2) 2 xCD16] comprises two HER2-specific single chain fragment variable fused to a fragment antigen binding directed to the CD16 (FcγRIII) antigen expressed on γδ T cells and NK cells. Our results revealed the superiority of tribody [(HER2) 2 xCD16] compared to trastuzumab in triggering γδ T cell and NK cell-mediated lysis of HER2-expressing tumor cells, such as PDAC, breast cancer, and autologous primary ovarian tumors. The increased efficacy of [(HER2) 2 xCD16] can be explained by an enhanced degranulation of immune cells. Although CD16 expression was decreased on γδ T cells in several PDAC patients and the number of tumor-infiltrating NK cells and γδ T cells was impaired in ovarian cancer patients, [(HER2) 2 xCD16] selectively enhanced cytotoxicity of cells from these patients. Here, unique anti-tumor properties of tribody [(HER2) 2 xCD16] are identified which beyond addressing HER2 overexpressing solid tumors may allow to treat with similar immunoconstructs combined with the adoptive transfer of γδ T cells and NK cells refractory hematological malignancies. A major advantage of γδ T cells and NK cells in the transplant

  17. Tribody [(HER2)2xCD16] Is More Effective Than Trastuzumab in Enhancing γδ T Cell and Natural Killer Cell Cytotoxicity Against HER2-Expressing Cancer Cells

    PubMed Central

    Oberg, Hans H.; Kellner, Christian; Gonnermann, Daniel; Sebens, Susanne; Bauerschlag, Dirk; Gramatzki, Martin; Kabelitz, Dieter; Peipp, Matthias; Wesch, Daniela

    2018-01-01

    An enhanced expression of human epidermal growth factor receptor 2 (HER2, ErbB2) often occurs in an advanced stage of breast, ovarian, gastric or esophageal cancer, and pancreatic ductal adenocarcinoma (PDAC). Commonly, HER2 expression is associated with poor clinical outcome or chemoresistance in ovarian and breast cancer patients. Treatment with humanized anti-HER2 monoclonal antibodies, such as trastuzumab or pertuzumab, has improved the outcome of patients with HER2-positive metastatic gastric or breast cancer, but not all patients benefit. In this study, the bispecific antibody [(HER2)2xCD16] in the tribody format was employed to re-direct CD16-expressing γδ T lymphocytes as well as natural killer (NK) cells to the tumor-associated cell surface antigen HER2 to enhance their cytotoxic anti-tumor activity. Tribody [(HER2)2xCD16] comprises two HER2-specific single chain fragment variable fused to a fragment antigen binding directed to the CD16 (FcγRIII) antigen expressed on γδ T cells and NK cells. Our results revealed the superiority of tribody [(HER2)2xCD16] compared to trastuzumab in triggering γδ T cell and NK cell-mediated lysis of HER2-expressing tumor cells, such as PDAC, breast cancer, and autologous primary ovarian tumors. The increased efficacy of [(HER2)2xCD16] can be explained by an enhanced degranulation of immune cells. Although CD16 expression was decreased on γδ T cells in several PDAC patients and the number of tumor-infiltrating NK cells and γδ T cells was impaired in ovarian cancer patients, [(HER2)2xCD16] selectively enhanced cytotoxicity of cells from these patients. Here, unique anti-tumor properties of tribody [(HER2)2xCD16] are identified which beyond addressing HER2 overexpressing solid tumors may allow to treat with similar immunoconstructs combined with the adoptive transfer of γδ T cells and NK cells refractory hematological malignancies. A major advantage of γδ T cells and NK cells in the transplant situation of

  18. CD137 Stimulation Enhances Cetuximab-Induced Natural Killer: Dendritic Cell Priming of Antitumor T-Cell Immunity in Patients with Head and Neck Cancer.

    PubMed

    Srivastava, Raghvendra M; Trivedi, Sumita; Concha-Benavente, Fernando; Gibson, Sandra P; Reeder, Carly; Ferrone, Soldano; Ferris, Robert L

    2017-02-01

    Cetuximab, an EGFR-specific antibody (mAb), modestly improves clinical outcome in patients with head and neck cancer (HNC). Cetuximab mediates natural killer (NK) cell:dendritic cell (DC) cross-talk by cross-linking FcγRIIIa, which is important for inducing antitumor cellular immunity. Cetuximab-activated NK cells upregulate the costimulatory receptor CD137 (4-1BB), which, when triggered by agonistic mAb urelumab, might enhance NK-cell functions, to promote T-cell-based immunity. CD137 expression on tumor-infiltrating lymphocytes was evaluated in a prospective cetuximab neoadjuvant trial, and CD137 stimulation was evaluated in a phase Ib trial, in combining agonistic urelumab with cetuximab. Flow cytometry and cytokine release assays using NK cells and DC were used in vitro, testing the addition of urelumab to cetuximab-activated NK, DC, and cross presentation to T cells. CD137 agonist mAb urelumab enhanced cetuximab-activated NK-cell survival, DC maturation, and tumor antigen cross-presentation. Urelumab boosted DC maturation markers, CD86 and HLA DR, and antigen-processing machinery (APM) components TAP1/2, leading to increased tumor antigen cross-presentation. In neoadjuvant cetuximab-treated patients with HNC, upregulation of CD137 by intratumoral, cetuximab-activated NK cells correlated with FcγRIIIa V/F polymorphism and predicted clinical response. Moreover, immune biomarker modulation was observed in an open label, phase Ib clinical trial, of patients with HNC treated with cetuximab plus urelumab. These results suggest a beneficial effect of combination immunotherapy using cetuximab and CD137 agonist in HNC. Clin Cancer Res; 23(3); 707-16. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Proposed categorization of pathological states of EBV-associated T/natural killer-cell lymphoproliferative disorder (LPD) in children and young adults: overlap with chronic active EBV infection and infantile fulminant EBV T-LPD.

    PubMed

    Ohshima, Koichi; Kimura, Hiroshi; Yoshino, Tadashi; Kim, Chul Woo; Ko, Young H; Lee, Seung-Suk; Peh, Suat-Cheng; Chan, John K C

    2008-04-01

    EBV-associated T/natural killer (NK)-cell lymphoproliferative disorder (EBV-T/NK LPD) of children and young adults is generally referred to with the blanket nosological term of severe chronic active EBV infection (CAEBV). This disease is rare, associated with high morbidity and mortality, and appears to be more prevalent in East Asian countries. But because there is no grading or categorization system for CAEBV, pathologists and clinicians often disagree regarding diagnosis and therapy. EBV-T/NK LPD includes polyclonal, oligoclonal, and monoclonal proliferation of cytotoxic T and/or NK cells. Moreover, a unique disease previously described as infantile fulminant EBV-associated T-LPD has been identified and overlaps with EBV-T/NK LPD. In the present review a clinicopathological categorization of EBV-T/NK LPD is proposed, based on pathological evaluation and molecular data, as follows: (i) category A1, polymorphic LPD without clonal proliferation of EBV-infected cells; (ii) category A2, polymorphic LPD with clonality; (iii) category A3, monomorphic LPD (T-cell or NK cell lymphoma/leukemia) with clonality; and (iv) category B, monomorphic LPD (T-cell lymphoma) with clonality and fulminant course. Categories A1, A2, and A3 possibly constitute a continuous spectrum and together are equivalent to CAEBV. Category B is the exact equivalent of infantile fulminant EBV-associated T-LPD. It is expected that this categorization system will provide a guide for the better understanding of this disorder. This proposal was approved at the third meeting of the Asian Hematopathology Association (Nagoya, 2006).

  20. Phase I clinical trial of costimulated, IL-4 polarized donor CD4+ T cells as augmentation of allogeneic hematopoietic cell transplantation.

    PubMed

    Fowler, Daniel H; Odom, Jeanne; Steinberg, Seth M; Chow, Catherine K; Foley, Jason; Kogan, Yelena; Hou, Jeannie; Gea-Banacloche, Juan; Sportes, Claude; Pavletic, Steven; Leitman, Susan; Read, Elizabeth J; Carter, Charles; Kolstad, Arne; Fox, Rebecca; Beatty, Gregory L; Vonderheide, Robert H; Levine, Bruce L; June, Carl H; Gress, Ronald E; Bishop, Michael R

    2006-11-01

    The primary objective of this clinical trial was to evaluate the safety, feasibility, and biologic effects of administering costimulated, interleukin (IL)-4 polarized donor CD4(+) T cells in the setting of HLA-matched sibling, T cell-replete allogeneic hematopoietic cell transplantation (HCT). Forty-seven subjects with hematologic malignancy received granulocyte colony-stimulating factor-mobilized allogeneic hematopoietic cell transplants and cyclosporine graft-versus-host disease (GVHD) prophylaxis after reduced intensity conditioning. Initial subjects received no additional cells (n = 19); subsequent subjects received additional donor CD4(+) T cells generated ex vivo by CD3/CD28 costimulation in medium containing IL-4 and IL-2 (administered day 1 after HCT at 5, 25, or 125 x 10(6) cells/kg). Studies after HCT included measurement of monocyte IL-1alpha and tumor necrosis factor alpha, detection of T cells with antitumor specificity, and characterization of T cell cytokine phenotype. The culture method generated donor CD4(+) T cells that secreted increased T helper 2 (Th2) cytokines and decreased T helper 1 (Th1) cytokines. Such Th2-like cells were administered without infusional or dose-limiting toxicity. The Th2 cohort had accelerated lymphocyte reconstitution; both cohorts had rapid hematopoietic recovery and alloengraftment. Acute GVHD and overall survival were similar in the Th2 and non-Th2 cohorts. Th2 cell recipients tended to have increased monocyte IL-1alpha and had increased tumor necrosis factor alpha secretion. CD8(+) T cells with antitumor specificity were observed in Th2 and non-Th2 cohorts. Post-transplantation T cells from Th2 cell recipients secreted IL-4 and IL-10 (Th2 cytokines) and IL-2 and interferon gamma (Th1 cytokines). Allograft augmentation with costimulated, IL-4-polarized donor CD4(+) T cells resulted in activated Th1, Th2, and inflammatory cytokine pathways without an apparent increase in GVHD.

  1. Profiling calcium signals of in vitro polarized human effector CD4+ T cells.

    PubMed

    Kircher, Sarah; Merino-Wong, Maylin; Niemeyer, Barbara A; Alansary, Dalia

    2018-06-01

    Differentiation of naïve CD4 + T cells into effector subtypes with distinct cytokine profiles and physiological roles is a tightly regulated process, the imbalance of which can lead to an inadequate immune response or autoimmune disease. The crucial role of Ca 2+ signals, mainly mediated by the store operated Ca 2+ entry (SOCE) in shaping the immune response is well described. However, it is unclear if human effector CD4 + T cell subsets show differential Ca 2+ signatures in response to different stimulation methods. Herein, we provide optimized in vitro culture conditions for polarization of human CD4 + effector T cells and characterize their SOCE following both pharmacological store depletion and direct T-cell receptor (TCR) activation. Moreover, we measured whole cell Ca 2+ release activated Ca 2+ currents (I CRAC ) and investigated whether the observed differences correlate to the expression of CRAC genes. Our results show that Ca 2+ profiles of helper CD4 + Th1, Th2 and Th17 are distinct and in part shaped by the intensity of stimulation. Regulatory T cells (Treg) are unique being the subtype with the most prominent SOCE response. Analysis of in vivo differentiated Treg unraveled the role of differential expression of ORAI2 in fine-tuning signals in Treg vs. conventional CD4 + T cells. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. CD49a promotes T-cell-mediated hepatitis by driving T helper 1 cytokine and interleukin-17 production

    PubMed Central

    Chen, Yonglin; Peng, Hui; Chen, Yongyan; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2014-01-01

    It is becoming increasingly clear that the T-cell-mediated immune response is important in many diseases. In this study, we used concanavalin A (Con A) -induced hepatitis to investigate the role of CD49a in the molecular and cellular mechanism of the T-cell-mediated immune response. We found that CD49a−/− mice had significantly reduced levels of serum alanine aminotransferase and were protected from Con A-induced hepatitis. CD49a deficiency led to decreased production of interferon-γ (IFN-γ) and interleukin-17A (IL-17A) after Con A injection. Furthermore, we found that hepatic CD4+ T cells and invariant natural killer T cells up-regulated CD49a expression, along with enhanced activation after Con A injection, leading to production of inflammatory cytokines by these T cells. Blockade of CD49a in vivo ameliorated Con A-induced hepatitis with reduced production of IFN-γ and IL-17A. Hence, CD49a promoted Con A-induced hepatitis through enhancing inflammatory cytokine production (IFN-γ and IL-17A) by CD4+ T and invariant natural killer T cells. The protective effect of CD49a blockade antibody suggested a new target therapeutic molecule for intervention of T-cell-mediated liver injury. PMID:24164540

  3. Role of interleukin (IL)-17 and T-helper (Th)17 cells in cancer.

    PubMed

    Song, Yang; Yang, Jian Ming

    2017-11-04

    Interleukin-17 (IL-17), a pleiotropic proinflammatory cytokine, is reported to be significantly generated by a distinct subset of CD4 + T-cells, upgrading cancer-elicited inflammation and preventing cancer cells from immune surveillance. T-helper (Th)17 cells produced from naive CD4 + T cells have recently been renowned and generally accepted, gaining eminence in cancer studies and playing the effective role in context of cancer. Th17 cells are the main source of IL-17-secreting cells, It was found that other cell types produced this cytokine as well, including Group 3 innate lymphoid cells (ILC3), δγT cells, invariant natural killer T (iNKT) cells, lymphoid-tissue inducer (LTi)-like cells and Natural killer (NK) cells. Th17-associated cytokines give impetus to tumor progression, or inducing angiogenesis and metastasis. This review demonstrates an understanding on how the pro- or antitumor function of Th17 cells and IL-17 may change cancer progression, leading to the appearance of complex and pivotal biologic activities in tumor. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Bone marrow produces sufficient alloreactive natural killer (NK) cells in vivo to cure mice from subcutaneously and intravascularly injected 4T1 breast cancer.

    PubMed

    van Gelder, Michel; Vanclée, Ariane; van Elssen, Catharina H M J; Hupperets, Pierre; Wieten, Lotte; Bos, Gerard M

    2017-02-01

    Administration of 5 million alloreactive natural killer (NK) cells after low-dose chemo-irradiation cured mice of 4T1 breast cancer, supposedly dose dependent. We now explored the efficacy of bone marrow as alternative in vivo source of NK cells for anti-breast cancer treatment, as methods for in vitro clinical scale NK cell expansion are still in developmental phases. Progression-free survival (PFS) after treatment with different doses of spleen-derived alloreactive NK cells to 4T1-bearing Balb/c mice was measured to determine a dose-response relation. The potential of bone marrow as source of alloreactive NK cells was explored using MHC-mismatched mice as recipients of 4T1. Chemo-irradiation consisted of 2× 2 Gy total body irradiation and 200 mg/kg cyclophosphamide. Antibody-mediated in vivo NK cell depletion was applied to demonstrate the NK cell's role. Administration of 2.5 instead of 5 million alloreactive NK cells significantly reduced PFS, evidencing dose responsiveness. Compared to MHC-matched receivers of subcutaneous 4T1, fewer MHC-mismatched mice developed tumors, which was due to NK cell alloreactivity because in vivo NK cell depletion facilitated tumor growth. Application of low-dose chemo-irradiation increased plasma levels of NK cell-activating cytokines, NK cell activity and enhanced NK cell-dependent elimination of subcutaneous tumors. Intravenously injected 4T1 was eliminated by alloreactive NK cells in MHC-mismatched recipients without the need for chemo-irradiation. Bone marrow is a suitable source of sufficient alloreactive NK cells for the cure of 4T1 breast cancer. These results prompt clinical exploration of bone marrow transplantation from NK-alloreactive MHC-mismatched donors in patients with metastasized breast cancer.

  5. Immunological role of CD4+CD28null T lymphocytes, natural killer cells, and interferon-gamma in pediatric patients with sickle cell disease: relation to disease severity and response to therapy.

    PubMed

    ElAlfy, Mohsen Saleh; Adly, Amira Abdel Moneam; Ebeid, Fatma Soliman ElSayed; Eissa, Deena Samir; Ismail, Eman Abdel Rahman; Mohammed, Yasser Hassan; Ahmed, Manar Elsayed; Saad, Aya Sayed

    2018-06-20

    Sickle cell disease (SCD) is associated with alterations in immune phenotypes. CD4 + CD28 null T lymphocytes have pro-inflammatory functions and are linked to vascular diseases. To assess the percentage of CD4 + CD28 null T lymphocytes, natural killer cells (NK), and IFN-gamma levels, we compared 40 children and adolescents with SCD with 40 healthy controls and evaluated their relation to disease severity and response to therapy. Patients with SCD steady state were studied, focusing on history of frequent vaso-occlusive crisis, hydroxyurea therapy, and IFN-gamma levels. Analysis of CD4 + CD28 null T lymphocytes and NK cells was done by flow cytometry. Liver and cardiac iron overload were assessed. CD4 + CD28 null T lymphocytes, NK cells, and IFN-gamma levels were significantly higher in patients than controls. Patients with history of frequent vaso-occlusive crisis and those with vascular complications had higher percentage of CD4 + CD28 null T lymphocytes and IFN-gamma while levels were significantly lower among hydroxyurea-treated patients. CD4 + CD28 null T lymphocytes were positively correlated to transfusional iron input while these cells and IFN-gamma were negatively correlated to cardiac T2* and duration of hydroxyurea therapy. NK cells were correlated to HbS and indirect bilirubin. Increased expression of CD4 + CD28 null T lymphocytes highlights their role in immune dysfunction and pathophysiology of SCD complications.

  6. Hemophagocytic lymphohistiocytosis secondary to T-cell/histiocyte-rich large B-cell lymphoma

    PubMed Central

    Devitt, Katherine; Cerny, Jan; Switzer, Bradley; Ramanathan, Muthalagu; Nath, Rajneesh; Yu, Hongbo; Woda, Bruce A.; Chen, Benjamin J.

    2014-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening clinical syndrome characterized by dysregulation of the immune system. Impaired function of cytotoxic T cells and natural killer cells is often seen, and T-cell malignancies represent most cases of lymphoma-associated HLH. HLH associated with B-cell lymphoma is rare. We describe a case of a 30-year-old man who presented with fever, splenomegaly, and hyperferritinemia. Bone marrow biopsy revealed T-cell/histiocyte-rich large B-cell lymphoma, a rare, aggressive B-cell malignancy. This case highlights the interplay between a pro-inflammatory cytokine microenvironment and tumor-mediated immune suppression, and addresses the importance of accurately diagnosing these entities for appropriate clinical management. PMID:24955327

  7. Hemophagocytic lymphohistiocytosis secondary to T-cell/histiocyte-rich large B-cell lymphoma.

    PubMed

    Devitt, Katherine; Cerny, Jan; Switzer, Bradley; Ramanathan, Muthalagu; Nath, Rajneesh; Yu, Hongbo; Woda, Bruce A; Chen, Benjamin J

    2014-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening clinical syndrome characterized by dysregulation of the immune system. Impaired function of cytotoxic T cells and natural killer cells is often seen, and T-cell malignancies represent most cases of lymphoma-associated HLH. HLH associated with B-cell lymphoma is rare. We describe a case of a 30-year-old man who presented with fever, splenomegaly, and hyperferritinemia. Bone marrow biopsy revealed T-cell/histiocyte-rich large B-cell lymphoma, a rare, aggressive B-cell malignancy. This case highlights the interplay between a pro-inflammatory cytokine microenvironment and tumor-mediated immune suppression, and addresses the importance of accurately diagnosing these entities for appropriate clinical management.

  8. Exposure of Human CD8+ T Cells to Type-2 Cytokines Impairs Division and Differentiation and Induces Limited Polarization.

    PubMed

    Fox, Annette; Harland, Kim L; Kedzierska, Katherine; Kelso, Anne

    2018-01-01

    Effector CD8 + T cells generally produce type-1 cytokines and mediators of the perforin/granzyme cytolytic pathway, yet type-2-polarized CD8 + cells (Tc2) are detected in type-2 (T2) cytokine-driven diseases such as asthma. It is unclear whether T2 cytokine exposure during activation is sufficient to polarize human CD8 + T cells. To address this question, a protocol was developed for high-efficiency activation of human CD8 + T cells in which purified single cells or populations were stimulated with plate-bound anti-CD3 and anti-CD11a mAb for up to 8 days in T2 polarizing or neutral conditions, before functional analysis. Activation of CD8 + naïve T cells (T N ) in T2 compared with neutral conditions decreased the size of single-cell clones, although early division kinetics were equivalent, indicating an effect on overall division number. Activation of T N in T2 conditions followed by brief anti-CD3 mAb restimulation favored expression of T2 cytokines, GATA3 and Eomes , and lowered expression of type-1 cytokines, Prf1 , Gzmb, T-BET, and Prdm1 . However, IL-4 was only weakly expressed, and PMA and ionomycin restimulation favored IFN-γ over IL-4 expression. Activation of T N in T2 compared with neutral conditions prevented downregulation of costimulatory (CD27, CD28) and lymph-node homing receptors (CCR7) and CD95 acquisition, which typically occur during differentiation into effector phenotypes. CD3 was rapidly and substantially induced after activation in neutral, but not T2 conditions, potentially contributing to greater division and differentiation in neutral conditions. CD8 + central memory T cells (T CM ) were less able to enter division upon reactivation in T2 compared with neutral conditions, and were more refractory to modulating IFN-γ and IL-4 production than CD8 + T N. In summary, while activation of T N in T2 conditions can generate T2 cytokine-biased cells, IL-4 expression is weak, T2 bias is lost upon strong restimulation, differentiation, and

  9. Effects of HIV infection and ART on phenotype and function of circulating monocytes, natural killer, and innate lymphoid cells.

    PubMed

    Nabatanzi, Rose; Cose, Stephen; Joloba, Moses; Jones, Sarah Rowland; Nakanjako, Damalie

    2018-03-15

    HIV infection causes upregulation of markers of inflammation, immune activation and apoptosis of host adaptive, and innate immune cells particularly monocytes, natural killer (NK) and innate lymphoid cells (ILCs). Although antiretroviral therapy (ART) restores CD4 T-cell counts, the persistent aberrant activation of monocytes, NK and ILCs observed likely contributes to the incomplete recovery of T-cell effector functions. A better understanding of the effects of HIV infection and ART on the phenotype and function of circulating monocytes, NK, and ILCs is required to guide development of novel therapeutic interventions to optimize immune recovery.

  10. TLR8 stimulation enhances cetuximab-mediated natural killer cell lysis of head and neck cancer cells and dendritic cell cross priming of EGFR-specific CD8+ T cells

    PubMed Central

    Stephenson, Ryan M.; Lim, Chwee Ming; Matthews, Maura; Dietsch, Gregory; Hershberg, Robert; Ferris, Robert L.

    2013-01-01

    Background Cetuximab is an anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) that prolongs survival in the treatment of head and neck cancer (HNC), but only in 10–20% of patients. An immunological mechanism of action such as natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC) has been suggested. We investigated the effects of activating toll-like receptor (TLR)-8 to enhance activity of cetuximab-stimulated, FcγR bearing cells. Objective To determine the capability of TLR8-stimulation to enhance the activation and function of NK cells and dendritic cells (DC) in the presence of cetuximab-coated HNC cells. Methods Peripheral blood mononuclear cells (PBMC), NK, DC and CD8+ T cells were isolated and analyzed using 51Cr release ADCC, flow cytometry analysis, cytokine ELISA, and EGFR853–861 tetramer staining. Results TLR8 stimulation of unfractionated PBMC led to enhanced cetuximab-mediated ADCC in healthy donors (p<0.01) and HNC patients (p<0.001), which was dependent on NK cells. Secretion of Th1 cytokines TNFα(p<0.0001), IFNγ(p<0.0001), and IL-12p40(p<0.005) was increased. TLR8 stimulation of PBMC augmented cetuximab-enhanced NK cell degranulation (p<0.001). TLR8 stimulated NK cells enhanced DC maturation markers CD80, CD83, and CD86 in co-culture with cetuximab-treated HNC cells. TLR8 stimulation of NK-DC co-cultures significantly increased DC priming of EGFR-specific CD8+ T cells in the presence of cetuximab. Discussion VTX-2337 and cetuximab combination therapy can activate innate and adaptive anti-cancer immune responses. Further investigation in human trials will be important for determining the clinical benefit of this combination, and for determining biomarkers of response. PMID:23685782

  11. Reciprocity between Regulatory T Cells and Th17 Cells: Relevance to Polarized Immunity in Leprosy

    PubMed Central

    Sadhu, Soumi; Khaitan, Binod Kumar; Joshi, Beenu; Sengupta, Utpal; Nautiyal, Arvind Kumar; Mitra, Dipendra Kumar

    2016-01-01

    T cell defect is a common feature in lepromatous or borderline lepromatous leprosy (LL/BL) patients in contrast to tuberculoid or borderline tuberculoid type (TT/BT) patients. Tuberculoid leprosy is characterized by strong Th1-type cell response with localized lesions whereas lepromatous leprosy is hallmarked by its selective Mycobacterium leprae specific T cell anergy leading to disseminated and progressive disease. FoxP3+ Regulatory T cells (Treg) which are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases also dampen proinflammatory T cells that include T helper 17 (Th17) cells. This study is aimed at evaluating the role of Treg cells in influencing other effector T cells and its relationship with the cytokine polarized state in leprosy patients. Peripheral blood mononuclear cells from of BT/TT (n = 15) and BL/LL (n = 15) patients were stimulated with M. leprae antigen (WCL) in presence of golgi transport inhibitor monensin for FACS based intracellular cytokine estimation. The frequency of Treg cells showed >5-fold increase in BL/LL in comparison to BT/TT and healthy contacts. These cells produced suppressive cytokine, IL-10 in BL/LL as opposed to BT/TT (p = 0.0200) indicating their suppressive function. The frequency of Th17 cells (CD4, CD45RO, IL-17) was, however, higher in BT/TT. Significant negative correlation (r = -0.68, P = 0.03) was also found between IL-10 of Treg cells and IL-17+ T cells in BL/LL. Blocking IL-10/TGF-β restored the IL-17+ T cells in BL/LL patients. Simultaneously, presence of Th17 related cytokines (TGF-β, IL-6, IL-17 and IL-23) decreased the number of FoxP3+ Treg cells concomitantly increasing IL-17 producing CD4+ cells in lepromatous leprosy. Higher frequency of Programmed Death-1/PD-1+ Treg cells and its ligand, PDL-1 in antigen presenting cells (APCs) was found in BL/LL patients. Inhibition of this pathway led to rescue of IFN-γ and IL-17 producing T cells

  12. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver.

    PubMed

    Stegmann, Kerstin A; Robertson, Francis; Hansi, Navjyot; Gill, Upkar; Pallant, Celeste; Christophides, Theodoros; Pallett, Laura J; Peppa, Dimitra; Dunn, Claire; Fusai, Giuseppe; Male, Victoria; Davidson, Brian R; Kennedy, Patrick; Maini, Mala K

    2016-05-23

    Natural killer cells (NK) are highly enriched in the human liver, where they can regulate immunity and immunopathology. We probed them for a liver-resident subset, distinct from conventional bone-marrow-derived NK. CXCR6+ NK were strikingly enriched in healthy and diseased liver compared to blood (p < 0.0001). Human hepatic CXCR6+ NK had an immature phenotype (predominantly CD56(bright)CD16-CD57-), and expressed the tissue-residency marker CD69. CXCR6+ NK produced fewer cytotoxic mediators and pro-inflammatory cytokines than the non-liver-specific CXCR6- fraction. Instead CXCR6+ NK could upregulate TRAIL, a key death ligand in hepatitis pathogenesis. CXCR6 demarcated liver NK into two transcriptionally distinct populations: T-bet(hi)Eomes(lo)(CXCR6-) and T-bet(lo)Eomes(hi)(CXCR6+); the latter was virtually absent in the periphery. The small circulating CXCR6+ subset was predominantly T-bet(hi)Eomes(lo), suggesting its lineage was closer to CXCR6- peripheral than CXCR6+ liver NK. These data reveal a large subset of human liver-resident T-bet(lo)Eomes(hi) NK, distinguished by their surface expression of CXCR6, adapted for hepatic tolerance and inducible anti-viral immunity.

  13. Transplantation of polarized type 2 donor T cells reduces mortality caused by experimental graft-versus-host disease.

    PubMed

    Krenger, W; Cooke, K R; Crawford, J M; Sonis, S T; Simmons, R; Pan, L; Delmonte, J; Karandikar, M; Ferrara, J L

    1996-11-15

    Acute graft-versus-host disease (GVHD) is thought to be initiated by alloreactive type 1 T cells that secrete gamma-interferon (IFN-gamma). IFN-gamma induces the production of inflammatory cytokines, e.g., tumor necrosis factor-alpha and interleukin (IL)-1, which are the distal mediators of GVHD. We demonstrate that the transplantation of polarized type 2 murine T cells (i.e., cells secreting IL-4 but not IFN-gamma) together with T-cell-depleted bone marrow results in a significant increase in survival (P<0.001) after bone marrow transplantation across minor histocompatibility barriers (B10.BR-->CBA/J). Further analysis demonstrated that increased survival in recipients of polarized type 2 T cells correlated with diminished production of both IFN-gamma and tumor necrosis factor-alpha but with increases in IL-4 2 weeks after transplantation. Despite improved survival, histologic changes of GVHD were evident in oral mucosal and hepatic tissues at 7 weeks after bone marrow transplantation. These data provide further evidence that inflammatory cytokines in the immediate posttransplant period are pivotal to the development of mortality but that they do not correlate with individual target organ damage.

  14. A monoclonal expansion of Epstein-Barr virus-infected natural killer cells after allogeneic peripheral blood stem cell transplantation.

    PubMed

    Isobe, Yasushi; Hamano, Yasuharu; Ito, Yoshinori; Kimura, Hiroshi; Tsukada, Nobuhiro; Sugimoto, Koichi; Komatsu, Norio

    2013-02-01

    Here, we describe a Japanese woman showing a monoclonal expansion of EBV-infected natural killer (NK) cells after receiving allogeneic peripheral blood stem cell transplantation (PBSCT). The patient initially had T-cell-type chronic active EBV disease (CAEBV) and subsequently developed liver T-cell lymphoma. L-Asparaginase-containing chemotherapy led to a favorable lymphoma response. To eradicate CAEBV and the lymphoma, she further received allogeneic PBSCT from a human leukocyte antigen-matched sibling donor. After the PBSCT, the patient presented with transient lymphocytosis of NK cells, which were infected with a monoclonal EBV strain other than previously detected ones. These NK cells seemed to have been transmitted from the healthy donor to the recipient. The patient and donor remain well in spite of carrying these NK cells. This is the first report of an asymptomatic Japanese carrier harboring monoclonal EBV-infected NK cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Suppressing the killer instinct.

    PubMed

    Campbell, Kerry S

    2016-05-24

    Natural killer (NK) cells are innate lymphoid cells that have adopted activating and inhibitory signaling mechanisms enabling them to be tolerant of normal cells but to distinguish and eliminate tumor cells and virus-infected cells. In this issue of Science Signaling, Matalon et al show how inhibitory receptors disrupt NK cell activation by stimulating dephosphorylation of the adaptor protein LAT (linker of activated T cells) and phospholipase C-γ by the phosphatase SHP-1 [Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 1], as well as ubiquitylation of LAT by Cbl family E3 ubiquitin ligases. Copyright © 2016, American Association for the Advancement of Science.

  16. Viral Evasion of Natural Killer Cell Activation

    PubMed Central

    Ma, Yi; Li, Xiaojuan; Kuang, Ersheng

    2016-01-01

    Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections. PMID:27077876

  17. Viral Evasion of Natural Killer Cell Activation.

    PubMed

    Ma, Yi; Li, Xiaojuan; Kuang, Ersheng

    2016-04-12

    Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.

  18. Stimulation of a shorter duration in the state of anergy by an invariant natural killer T cell agonist enhances its efficiency of protection from type 1 diabetes

    PubMed Central

    Tohn, R; Blumenfeld, H; Haeryfar, S M M; Veerapen, N; Besra, G S; Porcelli, S A; Delovitch, T L

    2011-01-01

    We have reported previously that treatment of non-obese diabetic (NOD) mice with the invariant natural killer T (iNK T) cell agonist α-galactosylceramide C26:0 (α-GalCer) or its T helper type 2 (Th2)-biasing derivative α-GalCer C20:2 (C20:2) protects against type 1 diabetes (T1D), with C20:2 yielding greater protection. After an initial response to α-GalCer, iNK T cells become anergic upon restimulation. While such anergic iNK T cells can induce tolerogenic dendritic cells (DCs) that mediate protection from T1D, chronic administration of α-GalCer also results in long-lasting anergy accompanied by significantly reduced iNK T cell frequencies, which raises concerns about its long-term therapeutic use. In this study, our objective was to understand more clearly the roles of anergy and induction of tolerogenic DCs in iNK T cell-mediated protection from T1D and to circumvent potential complications associated with α-GalCer. We demonstrate that NOD iNK T cells activated during multi-dose (MD) treatment in vivo with C20:2 enter into and exit from anergy more rapidly than after activation by α-GalCer. Importantly, this shorter duration of iNK T cells in the anergic state promotes the more rapid induction of tolerogenic DCs and reduced iNK T cell death, and enables C20:2 stimulated iNK T cells to elicit enhanced protection from T1D. Our findings further that suggest C20:2 is a more effective therapeutic drug than α-GalCer for protection from T1D. Moreover, the characteristics of C20:2 provide a basis of selection of next-generation iNK T cell agonists for the prevention of T1D. PMID:21361909

  19. The DNA methylation profile of activated human natural killer cells.

    PubMed

    Wiencke, John K; Butler, Rondi; Hsuang, George; Eliot, Melissa; Kim, Stephanie; Sepulveda, Manuel A; Siegel, Derick; Houseman, E Andres; Kelsey, Karl T

    2016-05-03

    Natural killer (NK) cells are now recognized to exhibit characteristics akin to cells of the adaptive immune system. The generation of adaptive memory is linked to epigenetic reprogramming including alterations in DNA methylation. The study herein found reproducible genome wide DNA methylation changes associated with human NK cell activation. Activation led predominately to CpG hypomethylation (81% of significant loci). Bioinformatics analysis confirmed that non-coding and gene-associated differentially methylated sites (DMS) are enriched for immune related functions (i.e., immune cell activation). Known DNA methylation-regulated immune loci were also identified in activated NK cells (e.g., TNFA, LTA, IL13, CSF2). Twenty-one loci were designated high priority and further investigated as potential markers of NK activation. BHLHE40 was identified as a viable candidate for which a droplet digital PCR assay for demethylation was developed. The assay revealed high demethylation in activated NK cells and low demethylation in naïve NK, T- and B-cells. We conclude the NK cell methylome is plastic with potential for remodeling. The differentially methylated region signature of activated NKs revealed similarities with T cell activation, but also provided unique biomarker candidates of NK activation, which could be useful in epigenome-wide association studies to interrogate the role of NK subtypes in global methylation changes associated with exposures and/or disease states.

  20. Invariant natural killer T cells from children with versus without food allergy exhibit differential responsiveness to milk-derived sphingomyelin.

    PubMed

    Jyonouchi, Soma; Abraham, Valsamma; Orange, Jordan S; Spergel, Jonathan M; Gober, Laura; Dudek, Emily; Saltzman, Rushani; Nichols, Kim E; Cianferoni, Antonella

    2011-07-01

    A key immunologic feature of food allergy (FA) is the presence of a T(h)2-type cytokine bias. Ligation of the invariant natural killer T cell (iNKT) T-cell receptor (TCR) by sphingolipids presented via the CD1d molecule leads to copious secretion of T(h)2-type cytokines. Major food allergens (eg, milk, egg) are the richest dietary source of sphingolipids (food-derived sphingolipids [food-SLs]). Nonetheless, the role of iNKTs in FA is unknown. To investigate the role of iNKTs in FA and to assess whether food-SL-CD1d complexes can engage the iNKT-TCR and induce iNKT functions. PBMCs from 15 children with cow's milk allergy (MA), 12 children tolerant to cow's milk but with allergy to egg, and 13 healthy controls were incubated with α-galactosylceramide (αGal), cow's milk-sphingomyelin, or hen's egg-ceramide. iNKTs were quantified, and their cytokine production and proliferation were assessed. Human CD1d tetramers loaded with milk-sphingomyelin or egg-ceramide were used to determine food-SL binding to the iNKT-TCR. Milk-sphingomyelin, but not egg-ceramide, can engage the iNKT-TCR and induce iNKT proliferation and T(h)2-type cytokine secretion. Children with FA, especially those with MA, had significantly fewer peripheral blood iNKTs and their iNKTs exhibited a greater T(h)2 response to αGal and milk-sphingomyelin than iNKTs of healthy controls. iNKTs from children with FA, especially those with MA, are reduced in number and exhibit a T(h)2 bias in response to αGal and milk-sphingomyelin. These data suggest a potential role for iNKTs in FA. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  1. Carbohydrates and T cells: A sweet twosome

    PubMed Central

    Avci, Fikri Y.; Li, Xiangming; Tsuji, Moriya; Kasper, Dennis L.

    2013-01-01

    Carbohydrates as T cell-activating antigens have been generating significant interest. For many years, carbohydrates were thought of as T-independent antigens, however, more recent research had demonstrated that mono- or oligosaccharides glycosidically-linked to peptides can be recognized by T cells. T cell recognition of these glycopeptides depends on the structure of both peptide and glycan portions of the antigen. Subsequently, it was discovered that natural killer T cells recognized glycolipids when presented by the antigen presenting molecule CD1d. A transformative insight into glycan-recognition by T cells occurred when zwitterionic polysaccharides were discovered to bind to and be presented by MHCII to CD4+ T cells. Based on this latter observation, the role that carbohydrate epitopes generated from glycoconjugate vaccines had in activating helper T cells was explored and it was found that these epitopes are presented to specific carbohydrate recognizing T cells through a unique mechanism. Here we review the key interactions between carbohydrate antigens and the adaptive immune system at the molecular, cellular and systems levels exploring the significant biological implications in health and disease. PMID:23757291

  2. Asymmetric cell division during T cell development controls downstream fate

    PubMed Central

    Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J.; Hawkins, Edwin D.; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B.; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O.; Gu, Min

    2015-01-01

    During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500

  3. Towards PDT with Genetically Encoded Photosensitizer KillerRed: A Comparison of Continuous and Pulsed Laser Regimens in an Animal Tumor Model.

    PubMed

    Shirmanova, Marina; Yuzhakova, Diana; Snopova, Ludmila; Perelman, Gregory; Serebrovskaya, Ekaterina; Lukyanov, Konstantin; Turchin, Ilya; Subochev, Pavel; Lukyanov, Sergey; Kamensky, Vladislav; Zagaynova, Elena

    2015-01-01

    The strong phototoxicity of the red fluorescent protein KillerRed allows it to be considered as a potential genetically encoded photosensitizer for the photodynamic therapy (PDT) of cancer. The advantages of KillerRed over chemical photosensitizers are its expression in tumor cells transduced with the appropriate gene and direct killing of cells through precise damage to any desired cell compartment. The ability of KillerRed to affect cell division and to induce cell death has already been demonstrated in cancer cell lines in vitro and HeLa tumor xenografts in vivo. However, the further development of this approach for PDT requires optimization of the method of treatment. In this study we tested the continuous wave (593 nm) and pulsed laser (584 nm, 10 Hz, 18 ns) modes to achieve an antitumor effect. The research was implemented on CT26 subcutaneous mouse tumors expressing KillerRed in fusion with histone H2B. The results showed that the pulsed mode provided a higher rate of photobleaching of KillerRed without any temperature increase on the tumor surface. PDT with the continuous wave laser was ineffective against CT26 tumors in mice, whereas the pulsed laser induced pronounced histopathological changes and inhibition of tumor growth. Therefore, we selected an effective regimen for PDT when using the genetically encoded photosensitizer KillerRed and pulsed laser irradiation.

  4. Natural Killer Cells in Antifungal Immunity.

    PubMed

    Schmidt, Stanislaw; Tramsen, Lars; Lehrnbecher, Thomas

    2017-01-01

    Invasive fungal infections are still an important cause of morbidity and mortality in immunocompromised patients such as patients suffering from hematological malignancies or patients undergoing hematopoietic stem cell transplantion. In addition, other populations such as human immunodeficiency virus-patients are at higher risk for invasive fungal infection. Despite the availability of new antifungal compounds and better supportive care measures, the fatality rate of invasive fungal infection remained unacceptably high. It is therefore of major interest to improve our understanding of the host-pathogen interaction to develop new therapeutic approaches such as adoptive immunotherapy. As experimental methodologies have improved and we now better understand the complex network of the immune system, the insight in the interaction of the host with the fungus has significantly increased. It has become clear that host resistance to fungal infections is not only associated with strong innate immunity but that adaptive immunity (e.g., T cells) also plays an important role. The antifungal activity of natural killer (NK) cells has been underestimated for a long time. In vitro studies demonstrated that NK cells from murine and human origin are able to attack fungi of different genera and species. NK cells exhibit not only a direct antifungal activity via cytotoxic molecules but also an indirect antifungal activity via cytokines. However, it has been show that fungi exert immunosuppressive effects on NK cells. Whereas clinical data are scarce, animal models have clearly demonstrated that NK cells play an important role in the host response against invasive fungal infections. In this review, we summarize clinical data as well as results from in vitro and animal studies on the impact of NK cells on fungal pathogens.

  5. Clinicopathological analysis of 12 patients with Epstein-Barr virus-positive primary intestinal T/natural killer-cell lymphoma (EBV+ ITNKL).

    PubMed

    Hu, Lei-Ming; Takata, Katsuyoshi; Miyata-Takata, Tomoko; Asano, Naoko; Takahashi, Emiko; Furukawa, Katsuya; Miyoshi, Hiroaki; Satou, Akira; Kohno, Kei; Kosugi, Hiroshi; Kinoshita, Tomohiro; Hirooka, Yoshiki; Goto, Hidemi; Nakamura, Shigeo; Kato, Seiichi

    2017-06-01

    Epstein-Barr virus-positive (EBV + ) intestinal T/natural killer (NK) cell lymphoma (ITNKL) is an uncommon tumour with an extremely aggressive clinical behaviour. However, the clinicopathological characteristics of this tumour, including T cell receptor (TCR) phenotype and the patient's background, remain unknown. The aim of this study was to elucidate the detailed clinicopathological profile of EBV + ITNKL. We enrolled 12 patients with EBV + ITNKL without nasal involvement into the study. All patients were characterized by involvement of the small intestine with concurrent lesions of the large intestine in two patients. Seven patients (58%) had Lugano stages IIE/IV disease and eight (67%) were categorized as high-intermediate/high-risk according to the Prognostic Index for PTCL (PIT). Three patients (25%) with an age of onset of less than 50 years had chronic active EBV infection (CAEBV). Five CD56-positive patients (42%) had a poorer prognosis than those without CD56 expression (P = 0.008). NK cell-type lymphoma defined by the absence of any TCR expression or clonal TCR-γ rearrangement was found in six patients (50%). Interestingly, EBV + intra-epithelial lymphocytosis was observed in one case with a background of CAEBV. This study is the first to shed light on the significant heterogeneity of EBV + ITNKL and its relationship with CAEBV, especially in patients younger than 50 years of age. These observations will provide a guide for diagnostic and therapeutic approaches in routine practice. © 2017 John Wiley & Sons Ltd.

  6. Combining cetuximab with killer lymphocytes synergistically inhibits human cholangiocarcinoma cells in vitro.

    PubMed

    Morisaki, Takashi; Umebayashi, Masayo; Kiyota, Akifumi; Koya, Norihiro; Tanaka, Hiroto; Onishi, Hideya; Katano, Mitsuo

    2012-06-01

    We explored the possibility of combining adoptive immunotherapy with cytokine-activated killer (CAK) cells and the epidermal growth factor receptor monoclonal antibody, cetuximab, as a treatment for cholangiocarcinoma. CAK cells were cultured with a high-dose of interleukin-2 and anti-CD3 monoclonal antibodies. This cell population contained both activated CD16+/CD56+ (NK) cells and CD3+/NKG2D(high+) T-cells. The effect of CAK cells and cetuximab, alone and in combination, on the viability of human cholangiocarcinoma cells was evaluated. Culture of CAK cells alone, but not cetuximab alone, exhibited modest cytotoxicity toward cholangiocarcinoma cells. However, combining CAK cells with cetuximab significantly enhanced cytotoxicity. This enhancement was inhibited by the addition of excess human immunoglobulins, suggesting that antibody-dependent cytotoxicity, mediated by activated NK cells in the CAK cell culture was involved in this mechanism. Cetuximab may be used to enhance CAK cell therapeutic activity in patients with cholangiocarcinoma, by potentiating antibody-dependent cellular cytotoxicity.

  7. Adhesion of Epstein–Barr virus-positive natural killer cell lines to cultured endothelial cells stimulated with inflammatory cytokines

    PubMed Central

    Kanno, H; Watabe, D; Shimizu, N; Sawai, T

    2008-01-01

    Chronic active Epstein–Barr virus (EBV) infection (CAEBV) is characterized by chronic recurrent infectious mononucleosis-like symptoms. Approximately one-fourth of CAEBV patients develop vascular lesions with infiltration of EBV-positive lymphoid cells. Furthermore, EBV-positive natural killer (NK)/T cell lymphomas often exhibit angiocentric or angiodestructive lesions. These suggest an affinity of EBV-positive NK/T cells to vascular components. In this study, we evaluated the expression of adhesion molecules and cytokines in EBV-positive NK lymphoma cell lines, SNK1 and SNK6, and examined the role of cytokines in the interaction between NK cell lines and endothelial cells. SNKs expressed intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) at much higher levels than those in EBV-negative T cell lines. SNKs produced the larger amount of tumour necrosis factor (TNF)-α, which caused increased expression of ICAM-1 and VCAM-1 in cultured human endothelial cells, than that from EBV-negative T cell lines. Furthermore, SNKs exhibited increased adhesion to cultured endothelial cells stimulated with TNF-α or interleukin (IL)-1β, and the pretreatment of cytokine-stimulated endothelial cells with anti-VCAM-1-antibodies reduced cell adhesion. These indicate that the up-regulated expression of VCAM-1 on cytokine-stimulated endothelial cells would be important for the adhesion of EBV-positive NK cells and might initiate the vascular lesions. PMID:18190605

  8. Individual motile CD4+ T cells can participate in efficient multi-killing through conjugation to multiple tumor cells

    PubMed Central

    Liadi, Ivan; Singh, Harjeet; Romain, Gabrielle; Rey-Villamizar, Nicolas; Merouane, Amine; Adolacion, Jay R T.; Kebriaei, Partow; Huls, Helen; Qiu, Peng; Roysam, Badrinath; Cooper, Laurence J.N.; Varadarajan, Navin

    2015-01-01

    T cells genetically modified to express a CD19-specific chimeric antigen receptor (CAR) for the investigational treatment of B-cell malignancies comprise a heterogeneous population, and their ability to persist and participate in serial killing of tumor cells is a predictor of therapeutic success. We implemented Timelapse Imaging Microscopy In Nanowell Grids (TIMING) to provide direct evidence that CD4+CAR+ T cells (CAR4 cells) can engage in multi-killing via simultaneous conjugation to multiple tumor cells. Comparisons of the CAR4 cells and CD8+CAR+ T cells (CAR8 cells) demonstrate that while CAR4 cells can participate in killing and multi-killing, they do so at slower rates, likely due to the lower Granzyme B content. Significantly, in both sets of T cells, a minor sub-population of individual T cells identified by their high motility, demonstrated efficient killing of single tumor cells. By comparing both the multi-killer and single killer CAR+ T cells it appears that the propensity and kinetics of T-cell apoptosis was modulated by the number of functional conjugations. T cells underwent rapid apoptosis, and at higher frequencies, when conjugated to single tumor cells in isolation and this effect was more pronounced on CAR8 cells. Our results suggest that the ability of CAR+ T cells to participate in multi-killing should be evaluated in the context of their ability to resist activation induced cell death (AICD). We anticipate that TIMING may be utilized to rapidly determine the potency of T-cell populations and may facilitate the design and manufacture of next-generation CAR+ T cells with improved efficacy. PMID:25711538

  9. Licensed human natural killer cells aid dendritic cell maturation via TNFSF14/LIGHT

    PubMed Central

    Holmes, Tim D.; Wilson, Erica B.; Black, Emma V. I.; Benest, Andrew V.; Vaz, Candida; Tan, Betty; Tanavde, Vivek M.; Cook, Graham P.

    2014-01-01

    Interactions between natural killer (NK) cells and dendritic cells (DCs) aid DC maturation and promote T-cell responses. Here, we have analyzed the response of human NK cells to tumor cells, and we identify a pathway by which NK–DC interactions occur. Gene expression profiling of tumor-responsive NK cells identified the very rapid induction of TNF superfamily member 14 [TNFSF14; also known as homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes (LIGHT)], a cytokine implicated in the enhancement of antitumor responses. TNFSF14 protein expression was induced by three primary mechanisms of NK cell activation, namely, via the engagement of CD16, by the synergistic activity of multiple target cell-sensing NK-cell activation receptors, and by the cytokines IL-2 and IL-15. For antitumor responses, TNFSF14 was preferentially produced by the licensed NK-cell population, defined by the expression of inhibitory receptors specific for self-MHC class I molecules. In contrast, IL-2 and IL-15 treatment induced TNFSF14 production by both licensed and unlicensed NK cells, reflecting the ability of proinflammatory conditions to override the licensing mechanism. Importantly, both tumor- and cytokine-activated NK cells induced DC maturation in a TNFSF14-dependent manner. The coupling of TNFSF14 production to tumor-sensing NK-cell activation receptors links the tumor immune surveillance function of NK cells to DC maturation and adaptive immunity. Furthermore, regulation by NK cell licensing helps to safeguard against TNFSF14 production in response to healthy tissues. PMID:25512551

  10. Bacterial lysate increases the percentage of natural killer T cells in peripheral blood and alleviates asthma in children.

    PubMed

    Lu, Yanming; Li, Yaqin; Xu, Lingyun; Xia, Min; Cao, Lanfang

    2015-01-01

    To assess the efficacy of conventional treatment combined with bacterial lysate [OM-85 Broncho-Vaxom (BV)] in the prevention of asthma in children as well as its influence on the number of natural killer T (NKT) cells and their cytokine production. Sixty children diagnosed with asthma were divided into either a BV-treated group (with oral OM-85 BV) or a conventional inhaled corticosteroid (ICS) group. The numbers of NKT cells and CD4+ NKT cells were measured in the peripheral blood by flow cytometry. The levels of IFN-γ, IL-4, and IL-10 after the blood cells had been cultured with an NKT cell agonist were detected by ELISA. After therapy, asthma attacks were significantly decreased compared with before therapy in both groups. However, after therapy, respiratory tract infections were reduced compared with before therapy in the BV-treated group only. Additionally, the frequency of asthma attacks and use of antibiotics in the BV-treated group were lower than in the ICS group. With BV treatment, the numbers of peripheral blood NKT cells and CD4+ NKT cells were higher after therapy than before therapy. After therapy, the ratio of IFN-γ/IL-4 and IL-10 levels were increased in the BV-treated group, whereas IL-4 was reduced in the BV-treated group compared with the ICS group. BV combined with conventional asthma treatment can prevent recurrent respiratory tract infections and suppress the severity of asthma attacks, possibly by altering the rates and cytokines of NKT cells. © 2015 S. Karger AG, Basel

  11. Common cytological and cytogenetic features of Epstein-Barr virus (EBV)-positive natural killer (NK) cells and cell lines derived from patients with nasal T/NK-cell lymphomas, chronic active EBV infection and hydroa vacciniforme-like eruptions.

    PubMed

    Zhang, Yu; Nagata, Hiroshi; Ikeuchi, Tatsuro; Mukai, Hiroyuki; Oyoshi, Michiko K; Demachi, Ayako; Morio, Tomohiro; Wakiguchi, Hiroshi; Kimura, Nobuhiro; Shimizu, Norio; Yamamoto, Kohtaro

    2003-06-01

    In this study, we describe the cytological and cytogenetic features of six Epstein-Barr virus (EBV)-infected natural killer (NK) cell clones. Three cell clones, SNK-1, -3 and -6, were derived from patients with nasal T/NK-cell lymphomas; two cell clones, SNK-5 and -10, were isolated from patients with chronic active EBV infection (CAEBV); and the other cell clone, SNK-11, was from a patient with hydroa vacciniforme (HV)-like eruptions. An analysis of the number of EBV-terminal repeats showed that the SNK cell clones had monoclonal EBV genomes identical to the original EBV-infected cells of the respective patients, and SNK cells had the type II latency of EBV infection, suggesting that not only the cell clones isolated from nasal T/NK-cell lymphomas but also those isolated from CAEBV and HV-like eruptions had been transformed by EBV to a certain degree. Cytogenetic analysis detected deletions in chromosome 6q in five out of the six SNK cell clones, while 6q was not deleted in four control cell lines of T-cell lineage. This suggested that a 6q deletion is a characteristic feature of EBV-positive NK cells, which proliferated in the diseased individuals. The results showed that EBV-positive NK cells in malignant and non-malignant lymphoproliferative diseases shared common cytological and cytogenetic features.

  12. Intravenous transplantation of mesenchymal stromal cells has therapeutic effects in a sepsis mouse model through inhibition of septic natural killer cells.

    PubMed

    Liu, Wenhua; Gao, Yang; Li, Haibo; Wang, Hongliang; Ye, Ming; Jiang, Guihua; Chen, Yongsheng; Liu, Yang; Kong, Junying; Liu, Wei; Sun, Meng; Hou, Meng; Yu, Kaijiang

    2016-10-01

    Transplantation of mesenchymal stromal cells is a promising strategy for treating sepsis. Natural killer cells are important in the development of sepsis, and their functions can be inhibited by mesenchymal stromal cells, we asked whether mesenchymal stromal cells exert their therapeutic effects through inhibiting the functions of natural killer cells in a septic mouse model generated with cecal ligation puncture method. Using co-cultures of cells, small interfering RNA, enzyme-linked immnuosorbent assays, fluorescence assays, western blotting, and pathological examination, we investigated the levels of inflammatory cytokines, proliferation of natural killer cells, inflammatory infiltration of important organs in mice, and activity of the Janus kinase/signal transducer and activator of transcription signaling pathway and found that mesenchymal stromal cells inhibited the function and proliferation of septic natural killer cells, increased interleukin-10 levels and increased the expression of components, such as Janus kinase 1, Janus kinase 2, and signal transducer and activator of transcription 3 in the Janus kinase/signal transducer and activator of transcription pathway both in vitro and in vivo. We conclude that mesenchymal stromal cells have their therapeutic effect in the septic mouse model through inhibiting the function and proliferation of septic natural killer cells. This biological process may involve interleukin-10 and suppressor of cytokine signaling 3 as well as other pathway components in the Janus kinase/signal transducer and activator of transcription pathway. Transplantation of mesenchymal stromal cells is an effective strategy to treat sepsis. Copyright © 2016. Published by Elsevier Ltd.

  13. Increased Soluble CD226 in Sera of Patients with Cutaneous T-Cell Lymphoma Mediates Cytotoxic Activity against Tumor Cells via CD155.

    PubMed

    Takahashi, Naomi; Sugaya, Makoto; Suga, Hiraku; Oka, Tomonori; Kawaguchi, Makiko; Miyagaki, Tomomitsu; Fujita, Hideki; Inozume, Takashi; Sato, Shinichi

    2017-08-01

    Immune checkpoint therapy, which targets regulatory pathways in T cells to enhance antitumor immune responses, has led to important clinical advances. CD155 is expressed in various types of cancer, and this surface molecule on tumor cells functions either as a co-stimulatory molecule or a co-inhibitory molecule, depending on its receptor. CD226, a CD155 ligand, is mainly expressed on natural killer cells and CD8 + T cells, playing important roles in natural killer cell-mediated cytotoxicity. In this study, we investigated the expression and function of CD155 and CD226 in cutaneous T-cell lymphoma (CTCL). CD155 was strongly expressed on tumor cells and CD155 mRNA expression levels were increased in CTCL lesional skin. CD226 expression on natural killer cells and CD8 + cells in peripheral blood of CTCL patients was decreased. On the other hand, serum CD226 levels were significantly elevated in CTCL patients, strongly reflecting disease activity, suggesting that soluble CD226 in sera was generated by shedding of its membrane form. Recombinant CD226 itself showed cytotoxic activity against CD155-expressing CTCL cells in vitro. These data suggest that soluble CD226 elevated in sera of CTCL patients would be important for tumor immunity by interacting with CD155 on tumor cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Herpesvirus Evasion of Natural Killer Cells.

    PubMed

    De Pelsmaeker, Steffi; Romero, Nicolas; Vitale, Massimo; Favoreel, Herman W

    2018-06-01

    Natural killer (NK) cells play an important role in the host response against viral infections and cancer development. They are able to kill virus-infected and tumor cells, and they produce different important cytokines that stimulate the antiviral and antitumor adaptive immune response, particularly interferon gamma. NK cells are of particular importance in herpesvirus infections, which is illustrated by systemic and life-threatening herpesvirus disease symptoms in patients with deficiencies in NK cell activity and by the myriad of reports describing herpesvirus NK cell evasion strategies. The latter is particularly obvious for cytomegaloviruses, but increasing evidence indicates that most, if not all, members of the herpesvirus family suppress NK cell activity to some extent. This review discusses the different NK cell evasion strategies described for herpesviruses and how this knowledge may translate to clinical applications. Copyright © 2018 American Society for Microbiology.

  15. A Single Subset of Dendritic Cells Controls the Cytokine Bias of Natural Killer T Cell Responses to Diverse Glycolipid Antigens

    PubMed Central

    Arora, Pooja; Baena, Andres; Yu, Karl O.A.; Saini, Neeraj K.; Kharkwal, Shalu S.; Goldberg, Michael F.; Kunnath-Velayudhan, Shajo; Carreño, Leandro J.; Venkataswamy, Manjunatha M.; Kim, John; Lazar-Molnar, Eszter; Lauvau, Gregoire; Chang, Young-tae; Liu, Zheng; Bittman, Robert; Al-Shamkhani, Aymen; Cox, Liam R.; Jervis, Peter J.; Veerapen, Natacha; Besra, Gurdyal S.; Porcelli, Steven A.

    2014-01-01

    Summary Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killercells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α+ DEC-205+ dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α+ dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses. PMID:24412610

  16. A new effect of IL-4 on human γδ T cells: promoting regulatory Vδ1 T cells via IL-10 production and inhibiting function of Vδ2 T cells.

    PubMed

    Mao, Yujia; Yin, Shanshan; Zhang, Jianmin; Hu, Yu; Huang, Bo; Cui, Lianxian; Kang, Ning; He, Wei

    2016-03-01

    Interleukin 4 (IL-4) has a variety of immune functions, including helper T-cell (Th-cell) differentiation and innate immune-response processes. However, the impact of IL-4 on gamma delta (γδ) T cells remains unclear. In this study, we investigate the effects of IL-4 on the activation and proliferation of γδ T cells and the balance between variable delta 1 (Vδ1) and Vδ2 T cells in humans. The results show that IL-4 inhibits the activation of γδ T cells in the presence of γδ T-cell receptor (TCR) stimulation in a STAT6-dependent manner. IL-4 promoted the growth of activated γδ T cells and increased the levels of Vδ1 T cells, which in turn inhibited Vδ2 T-cell growth via significant IL-10 secretion. Vδ1 T cells secreted significantly less interferon gamma (IFNγ) and more IL-10 relative to Vδ2. Furthermore, Vδ1 T cells showed relatively low levels of Natural Killer Group 2D (NKG2D) expression in the presence of IL-4, suggesting that Vδ1 T cells weaken the γδ T cell-mediated anti-tumor immune response. For the first time, our findings demonstrate a negative regulatory role of IL-4 in γδ T cell-mediated anti-tumor immunity.

  17. HIV-specific CD8+ T cells: serial killers condemned to die?

    PubMed

    Petrovas, Constantinos; Mueller, Yvonne M; Katsikis, Peter D

    2004-04-01

    An increasing body of evidence supports a key role for cytotoxic CD8+ T cells (CTL) in controlling HIV infection. Although a vigorous HIV-specific CD8+ T cell response is raised during the primary infection, these cells ultimately fail to control virus and prevent disease progression. The failure of CTL to control HIV infection has been attributed to a number of strategies HIV employs to evade the immune system. Recently, intrinsic defects in the CTL themselves have been proposed to contribute to the failure of CTL to control HIV. HIV-specific CD8+ T cells differ in their effector/memory phenotype from other virus-specific CD8+ T cells indicating that their differentiation status differs. This altered differentiation may affect effector functions as well as homing properties of these cells. Other studies have indicated that activation of HIV-specific CTL may be impaired and this contributes to their dysfunction. The effector function of these CTL may also be affected. There are conflicting reports about their ability to kill, whereas IFNgamma production does not appear to be impaired in these cells. In this review we focus on recent work indicating that apoptosis may be an important mechanism through which HIV evades the CTL response. In particular, HIV-specific CD8+ T cells are highly susceptible to CD95/Fas-induced apoptosis. This leads to the hypothesis that virus-specific cytotoxic T cells can be eliminated upon binding CD95L/FasL on HIV-infected cells. Understanding the intrinsic defects of CTL in HIV infection could lead to new therapeutic strategies and optimized vaccination protocols that enhance the HIV-specific cytotoxic response.

  18. Quantal concept of T-cell activation: adhesion domains as immunological synapses

    NASA Astrophysics Data System (ADS)

    Sackmann, Erich

    2011-06-01

    Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.

  19. Testosterone Increases Susceptibility to Amebic Liver Abscess in Mice and Mediates Inhibition of IFNγ Secretion in Natural Killer T Cells

    PubMed Central

    Lotter, Hannelore; Helk, Elena; Bernin, Hannah; Jacobs, Thomas; Prehn, Cornelia; Adamski, Jerzy; González-Roldán, Nestor; Holst, Otto; Tannich, Egbert

    2013-01-01

    Amebic liver abscess (ALA), a parasitic disease due to infection with the protozoan Entamoeba histolytica, occurs age and gender dependent with strong preferences for adult males. Using a mouse model for ALA with a similar male bias for the disease, we have investigated the role of female and male sexual hormones and provide evidence for a strong contribution of testosterone. Removal of testosterone by orchiectomy significantly reduced sizes of abscesses in male mice, while substitution of testosterone increased development of ALA in female mice. Activation of natural killer T (NKT) cells, which are known to be important for the control of ALA, is influenced by testosterone. Specifically activated NKT cells isolated from female mice produce more IFNγ compared to NKT cells derived from male mice. This high level production of IFNγ in female derived NKT cells was inhibited by testosterone substitution, while the IFNγ production in male derived NKT cells was increased by orchiectomy. Gender dependent differences were not a result of differences in the total number of NKT cells, but a result of a higher activation potential for the CD4− NKT cell subpopulation in female mice. Taken together, we conclude that the hormone status of the host, in particular the testosterone level, determines susceptibility to ALA at least in a mouse model of the disease. PMID:23424637

  20. A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation.

    PubMed

    Yagita, M; Huang, C L; Umehara, H; Matsuo, Y; Tabata, R; Miyake, M; Konaka, Y; Takatsuki, K

    2000-05-01

    We present the establishment of a natural killer (NK) leukemia cell line, designated KHYG-1, from the blood of a patient with aggressive NK leukemia, which both possessed the same p53 point mutation. The immunophenotype of the primary leukemia cells was CD2+, surface CD3-, cytoplasmic CD3epsilon+, CD7+, CD8alphaalpha+, CD16+, CD56+, CD57+ and HLA-DR+. A new cell line (KHYG-1) was established by culturing peripheral leukemia cells with 100 units of recombinant interleukin (IL)-2. The KHYG-1 cells showed LGL morphology with a large nucleus, coarse chromatin, conspicuous nucleoli, and abundant basophilic cytoplasm with many azurophilic granules. The immunophenotype of KHYG-1 cells was CD1-, CD2+, surface CD3-, cytoplasmic CD3epsilon+, CD7+, CD8alphaalpha+, CD16-, CD25-, CD33+, CD34-, CD56+, CD57-, CD122+, CD132+, and TdT-. Southern blot analysis of these cells revealed a normal germline configuration for the beta, delta, and gamma chains of the T cell receptor and the immunoglobulin heavy-chain genes. Moreover, the KHYG-1 cells displayed NK cell activity and IL-2-dependent proliferation in vitro, suggesting that they are of NK cell origin. Epstein-Barr virus (EBV) DNA was not detected in KHYG-1 cells by Southern blot analysis with a terminal repeat probe from an EBV genome. A point mutation in exon 7 of the p53 gene was detected in the KHYG-1 cells by PCR/SSCP analysis, and direct sequencing revealed the conversion of C to T at nucleotide 877 in codon 248. The primary leukemia cells also carried the same point mutation. Although the precise role of the p53 point mutation in leukemogenesis remains to be clarified, the establishment of an NK leukemia cell line with a p53 point mutation could be valuable in the study of leukemogenesis.

  1. Differential loss of natural killer cell activity in patients with acute myocardial infarction and stable angina pectoris.

    PubMed

    Yan, Wenwen; Zhou, Lin; Wen, Siwan; Duan, Qianglin; Huang, Feifei; Tang, Yu; Liu, Xiaohong; Chai, Yongyan; Wang, Lemin

    2015-01-01

    To evaluate the activity of natural killer cells through their inhibitory and activating receptors and quantity in peripheral blood mononuclear cells extracted from patients with acute myocardial infarction, stable angina pectoris and the controls. 100 patients with myocardial infarction, 100 with stable angina, and 20 healthy volunteers were recruited into the study. 20 randomly chosen people per group were examined for the whole human genome microarray analysis to detect the gene expressions of all 40 inhibitory and activating natural killer cell receptors. Flow cytometry analysis was applied to all 200 patients to measure the quantity of natural killer cells. In myocardial infarction group, the mRNA expressions of six inhibitory receptors KIR2DL2, KIR3DL3, CD94, NKG2A, KLRB1, KLRG1, and eight activating receptors KIR2DS3, KIR2DS5, NKp30, NTB-A, CRACC, CD2, CD7 and CD96 were significantly down-regulated (P<0.05) compared with both angina patients and the controls. There was no statistical difference in receptor expressions between angina patients and control group. The quantity of natural killer cells was significantly decreased in both infarction and angina patients compared with normal range (P<0.001). The significant mRNAs down-regulation of several receptors in myocardial infarction group and reduction in the quantity of natural killer cells in both myocardial infarction and angina patients showed a quantitative loss and dysfunction of natural killer cells in myocardial infarction patients.

  2. Infiltration of invariant natural killer T cells occur and accelerate brain infarction in permanent ischemic stroke in mice.

    PubMed

    Wang, Zhen-Kui; Xue, Li; Wang, Tao; Wang, Xiu-Jie; Su, Zhi-Qiang

    2016-10-28

    Invariant natural killer T (iNKT) cells are a unique subset of T cells that have been implicated in inflammation, atopy, autoimmunity, infections, and cancer. Although iNKT cells have been extensively studied over the past decade, its role in the pathogenesis of ischemic brain injury is still largely unknown. In our study, we determined whether iNKT cells infiltration occur in a mouse model of permanent cerebral ischemia. C57BL6/J male mice were treated with either alpha-galactosylceramide (α-GalCer) or vehicle control before undergoing permanent middle cerebral artery occlusion (pMCAO). α-GalCer, a glycolipid antigen, specifically activates iNKT cells by a CD1d-restricted mechanism. Using flow cytometry, 10,000 leukocytes (CD45 high cells) from the ischemic hemisphere and peripheral blood respectively were analyzed to determine the number of NK1.1 + CD3 + cells at 3, 12, 24 and 48h post-pMCAO. Cerebral infarct size, brain edema and morphological characteristics were measured at the stipulated time points by 2,3,5-triphenyltetrazolium chloride (TTC) staining, weighing, and H&E staining. The levels of IFN-γ and TNF-α in brain tissue and serum were assessed by immunohistochemistry and ELISA respectively. We found that the number of iNKT cells started increasing from 12h (PB sample) and 24h (ischemic hemisphere sample) respectively in the vehicle treated group. iNKT cells infiltration occurred at an earlier time-point compared in the α-GalCer treated group (T=3H vs T=12H in PB sample; T=12H vs T=24H in ischemic hemisphere sample). Brain water content at 12h and 24h was significantly higher in pMCAO+α-GalCer mice compared to pMCAO+vehicle mice which was in turn higher than mice that underwent sham surgery. Aggravated morphological abnormalities in HE-stained neurons and significantly increased neurons with pyknotic nuclei and cavitation in the ischemic region were observed at 24h in the pMCAO+α-GalCer and pMCAO+vehicle groups. Cerebral infarct volume

  3. The role of natural killer cells in autoimmune blistering diseases.

    PubMed

    Zakka, L R; Fradkov, E; Keskin, D B; Tabansky, I; Stern, J N H; Ahmed, A R

    2012-02-01

    The major focus of this paper is to describe and evaluate current information on the role of natural killer cells (NK cells) in the pathogenesis of blistering diseases. Until now, only pemphigus vulgaris (PV) has been studied. One co-culture study demonstrated that CD4+ T cells from the peripheral blood or perilesional skin of patients with active disease proliferate and secrete cytokines in the presence of major histocompatibility class II-expressing NK cells loaded with antigenic desmoglein self-peptides. Another study showed that NK cells can contribute to a T helper type 2-biased immune response through impaired interleukins (IL)-12 signaling and upregulation of IL, IL-10 and IL-5. Although significant data on other blistering diseases are unavailable at present, some studies implicate NK cells in disease progression. For instance, information on the role of NK cells in psoriasis and their production of tumor necrosis factor-α (TNF-α) will be provided since several TNF-α-inhibitors are used in its treatment. Studies on alopecia areata are also included in this paper because NK cells seem to play a key role in its pathogenesis. This review highlights the potential importance of NK cells and NKT cells as members of the large repertoire of cells and soluble mediators that play a critical role in pathogenesis of blistering diseases and other autoimmune diseases involving the skin. Therefore, the authors advocate a greater focus and interest on the study of the interaction of NK cells and the skin.

  4. Linfoma Nasal de Células T/Natural Killer Extranodal Refractario Mal Diagnosticado, Tratado de Manera Exitosa: Informe de Caso.

    PubMed

    Saavedra Ramírez, José Domingo

    2017-01-01

    El linfoma de células T/natural killer extranodal ("extranodal natural killer/T-cell lymphoma", ENKL) nasal es un linfoma no Hodgkin (LNH) agresivo y poco común para el cual no se ha establecido un tratamiento de referencia claro, especialmente en el escenario de la enfermedad recidivante/refractaria. Debido a su rareza, no se han llevado a cabo ensayos aleatorizados específicamente en ENKL nasal; sin embargo, los informes de caso y las series de caso pequeñas ofrecen un conocimiento importante sobre nuevos tratamientos potenciales. Presentamos el informe de caso de un paciente con ENKL nasal (previamente mal diagnosticado como una sinusitis crónica recidivante) en quien la enfermedad progresó durante la quimioterapia con múltiples agentes pero respondió al tratamiento de segunda línea con pralatrexato como agente único. Analizamos opciones de tratamiento para el ENKL nasal recidivante/refractario y sugerimos que el pralatrexato se evalúe más a fondo en este escenario clínico.

  5. Linfoma Nasal de Células T/Natural Killer Extranodal Refractario Mal Diagnosticado, Tratado de Manera Exitosa: Informe de Caso

    PubMed Central

    Saavedra Ramírez, José Domingo

    2017-01-01

    El linfoma de células T/natural killer extranodal (“extranodal natural killer/T-cell lymphoma”, ENKL) nasal es un linfoma no Hodgkin (LNH) agresivo y poco común para el cual no se ha establecido un tratamiento de referencia claro, especialmente en el escenario de la enfermedad recidivante/refractaria. Debido a su rareza, no se han llevado a cabo ensayos aleatorizados específicamente en ENKL nasal; sin embargo, los informes de caso y las series de caso pequeñas ofrecen un conocimiento importante sobre nuevos tratamientos potenciales. Presentamos el informe de caso de un paciente con ENKL nasal (previamente mal diagnosticado como una sinusitis crónica recidivante) en quien la enfermedad progresó durante la quimioterapia con múltiples agentes pero respondió al tratamiento de segunda línea con pralatrexato como agente único. Analizamos opciones de tratamiento para el ENKL nasal recidivante/refractario y sugerimos que el pralatrexato se evalúe más a fondo en este escenario clínico. PMID:29430232

  6. Imaging Polarized Secretory Traffic at the Immune Synapse in Living T Lymphocytes.

    PubMed

    Calvo, Víctor; Izquierdo, Manuel

    2018-01-01

    Immune synapse (IS) formation by T lymphocytes constitutes a crucial event involved in antigen-specific, cellular and humoral immune responses. After IS formation by T lymphocytes and antigen-presenting cells, the convergence of secretory vesicles toward the microtubule-organizing center (MTOC) and MTOC polarization to the IS are involved in polarized secretion at the synaptic cleft. This specialized mechanism appears to specifically provide the immune system with a fine strategy to increase the efficiency of crucial secretory effector functions of T lymphocytes, while minimizing non-specific, cytokine-mediated stimulation of bystander cells, target cell killing and activation-induced cell death. The molecular bases involved in the polarized secretory traffic toward the IS in T lymphocytes have been the focus of interest, thus different models and several imaging strategies have been developed to gain insights into the mechanisms governing directional secretory traffic. In this review, we deal with the most widely used, state-of-the-art approaches to address the molecular mechanisms underlying this crucial, immune secretory response.

  7. (1-->6)-beta-D-glucan as cell wall receptor for Pichia membranifaciens killer toxin.

    PubMed

    Santos, A; Marquina, D; Leal, J A; Peinado, J M

    2000-05-01

    The killer toxin from Pichia membranifaciens CYC 1106, a yeast isolated from fermenting olive brines, binds primarily to the (1-->6)-beta-D-glucan of the cell wall of a sensitive yeast (Candida boidinii IGC 3430). The (1-->6)-beta-D-glucan was purified from cell walls of C. boidinii by alkali and hot-acetic acid extraction, a procedure which solubilizes glucans. The major fraction of receptor activity remained with the alkali-insoluble (1-->6)-beta- and (1-->3)-beta-D-glucans. The chemical (gas-liquid chromatography) and structural (periodate oxidation, infrared spectroscopy, and (1)H nuclear magnetic resonance) analyses of the fractions obtained showed that (1-->6)-beta-D-glucan was a receptor. Adsorption of most of the killer toxin to the (1-->6)-beta-D-glucan was complete within 2 min. Killer toxin adsorption to the linear (1-->6)-beta-D-glucan, pustulan, and a glucan from Penicillium allahabadense was observed. Other polysaccharides with different linkages failed to bind the killer toxin. The specificity of the killer toxin for its primary receptor provides an effective means to purify the killer toxin, which may have industrial applications for fermentations in which salt is present as an adjunct, such as olive brines. This toxin shows its maximum killer activity in the presence of NaCl. This report is the first to identify the (1-->6)-beta-D-glucan as a receptor for this novel toxin.

  8. HPV vaccine stimulates cytotoxic activity of killer dendritic cells and natural killer cells against HPV-positive tumour cells

    PubMed Central

    Van den Bergh, Johan M J; Guerti, Khadija; Willemen, Yannick; Lion, Eva; Cools, Nathalie; Goossens, Herman; Vorsters, Alex; Van Tendeloo, Viggo F I; Anguille, Sébastien; Van Damme, Pierre; Smits, Evelien L J M

    2014-01-01

    Cervarix™ is approved as a preventive vaccine against infection with the human papillomavirus (HPV) strains 16 and 18, which are causally related to the development of cervical cancer. We are the first to investigate in vitro the effects of this HPV vaccine on interleukin (IL)-15 dendritic cells (DC) as proxy of a naturally occurring subset of blood DC, and natural killer (NK) cells, two innate immune cell types that play an important role in antitumour immunity. Our results show that exposure of IL-15 DC to the HPV vaccine results in increased expression of phenotypic maturation markers, pro-inflammatory cytokine production and cytotoxic activity against HPV-positive tumour cells. These effects are mediated by the vaccine adjuvant, partly through Toll-like receptor 4 activation. Next, we demonstrate that vaccine-exposed IL-15 DC in turn induce phenotypic activation of NK cells, resulting in a synergistic cytotoxic action against HPV-infected tumour cells. Our study thus identifies a novel mode of action of the HPV vaccine in boosting innate immunity, including killing of HPV-infected cells by DC and NK cells. PMID:24979331

  9. TdKT, a new killer toxin produced by Torulaspora delbrueckii effective against wine spoilage yeasts.

    PubMed

    Villalba, María Leticia; Susana Sáez, Julieta; Del Monaco, Silvana; Lopes, Christian Ariel; Sangorrín, Marcela Paula

    2016-01-18

    Microbiological spoilage is a major concern throughout the wine industry, and control tools are limited. This paper addresses the identification and partial characterization of a new killer toxin from Torulaspora delbrueckii with potential biocontrol activity of Brettanomyces bruxellensis, Pichia guilliermondii, Pichia manshurica and Pichia membranifaciens wine spoilage. A panel of 18 different wine strains of T. delbrueckii killer yeasts was analysed, and the strain T. delbrueckii NPCC 1033 (TdKT producer) showed a significant inhibitory effect on the growth of all different spoilage yeasts evaluated. The TdKT toxin was then subjected to a partial biochemical characterization. Its estimated molecular weight was N30 kDa and it showed glucanase and chitinase enzymatic activities. The killer activity was stable between pH 4.2 and 4.8 and inactivated at temperature above 40 °C. Pustulan and chitin — but not other cell wall polysaccharides — prevented sensitive yeast cells from being killed by TdKT, suggesting that those may be the first toxin targets in the cell wall. TdKT provoked an increase in necrosis cell death after 3 h treatment and apoptotic cell death after 24 h showing time dependence in its mechanisms of action. Killer toxin extracts were active at oenological conditions, confirming their potential use as a biocontrol tool in winemaking.

  10. Stepwise cytoskeletal polarization as a series of checkpoints in innate but not adaptive cytolytic killing

    NASA Astrophysics Data System (ADS)

    Wülfing, Christoph; Purtic, Bozidar; Klem, Jennifer; Schatzle, John D.

    2003-06-01

    Cytolytic killing is a major effector mechanism in the elimination of virally infected and tumor cells. The innate cytolytic effectors, natural killer (NK) cells, and the adaptive effectors, cytotoxic T cells (CTL), despite differential immune recognition, both use the same lytic mechanism, cytolytic granule release. Using live cell video fluorescence microscopy in various primary cell models of NK cell and CTL killing, we show here that on tight target cell contact, a majority of the NK cells established cytoskeletal polarity required for effective lytic function slowly or incompletely. In contrast, CTLs established cytoskeletal polarity rapidly. In addition, NK cell killing was uniquely sensitive to minor interference with cytoskeletal dynamics. We propose that the stepwise NK cell cytoskeletal polarization constitutes a series of checkpoints in NK cell killing. In addition, the use of more deliberate progression to effector function to compensate for inferior immune recognition specificity provides a mechanistic explanation for how the same effector function can be used in the different functional contexts of the innate and adaptive immune response.

  11. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency

    PubMed Central

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels. PMID:28095507

  12. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency.

    PubMed

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels.

  13. Regulation of cytokine polarization and T cell recruitment to inflamed paws in mouse collagen-induced arthritis by the chemokine receptor CXCR6.

    PubMed

    Slauenwhite, Drew; Gebremeskel, Simon; Doucette, Carolyn D; Hoskin, David W; Johnston, Brent

    2014-11-01

    The chemokine receptor CXCR6 is highly expressed on lymphocytes isolated from the synovium of patients with rheumatoid arthritis, psoriatic arthritis, or juvenile idiopathic arthritis, suggesting that CXCR6 regulates immune cell activation or infiltration into arthritic joints. This study was undertaken to examine the role of CXCR6 in T cell activation and arthritis development. A collagen-induced arthritis model was used to examine arthritis development in wild-type and CXCR6(-/-) mice. CXCR6 expression, lymphocyte accumulation, and intracellular cytokine production were examined by flow cytometry. Collagen-specific antibodies were measured in the serum. Collagen-specific recall responses were examined in vitro via proliferation and cytokine release assays. T cell homing to inflamed joints was examined using competitive adoptive transfer of dye-labeled lymphocytes from wild-type and CXCR6(-/-) mice. The numbers of CXCR6+ T cells were increased in the paws and draining lymph nodes of arthritic mice. The incidence of arthritis, disease severity, extent of T cell accumulation, and levels of collagen-specific IgG2a antibodies were significantly reduced in CXCR6(-/-) mice compared to wild-type mice. T cells from wild-type mice exhibited Th1 (interferon-γ [IFNγ]) polarization in the inguinal lymph nodes following immunization. At disease peak, this shifted to a Th17 (interleukin-17A [IL-17A]) response in the popliteal lymph nodes. T cells in CXCR6(-/-) mice exhibited impaired cytokine polarization, resulting in a decreased frequency and number of IL-17A- and IFNγ-producing cells. Recruitment of activated CXCR6(-/-) mouse T cells to the inflamed paws was impaired compared to recruitment of wild-type mouse T cells. These experiments demonstrate that CXCR6 plays important roles in the pathogenesis of arthritis through its effects on both T cell cytokine polarization and homing of T cells to inflamed joints. Copyright © 2014 by the American College of Rheumatology.

  14. Lidocaine Stimulates the Function of Natural Killer Cells in Different Experimental Settings.

    PubMed

    Cata, Juan P; Ramirez, Maria F; Velasquez, Jose F; Di, A I; Popat, Keyuri U; Gottumukkala, Vijaya; Black, Dahlia M; Lewis, Valerae O; Vauthey, Jean N

    2017-09-01

    One of the functions of natural killer (NK) cells is to eliminate cancer cells. The cytolytic activity of NK cells is tightly regulated by inhibitory and activation receptors located in the surface membrane. Lidocaine stimulates the function of NK cells at clinically relevant concentrations. It remains unknown whether this effect of lidocaine has an impact on the expression of surface receptors of NK cells, can uniformly stimulate across different cancer cell lines, and enhances the function of cells obtained during oncological surgery. NK cells from healthy donors and 43 patients who had undergone surgery for cancer were isolated. The function of NK cells was measured by lactate dehydrogenase release assay. NK cells were incubated with clinically relevant concentrations of lidocaine. By flow cytometry, we determined the impact of lidocaine on the expression of galactosylgalactosylxylosylprotein3-beta-glucuronosytranferase 1, marker of cell maturation (CD57), killer cell lectin like receptor A, inhibitory (NKG2A) receptors and killer cell lectin like receptor D, activation (NKG2D) receptors of NK cells. Differences in expression at p<0.05 were considered statistically significant. Lidocaine increased the expression of NKG2D receptors and stimulated the function of NK cells against ovarian, pancreatic and ovarian cancer cell lines. Lidocaine also increased the cytolytic activity of NK cells from patients who underwent oncological surgery, except for those who had orthopedic procedures. Lidocaine showed an important stimulatory activity on NK cells. Our findings suggest that lidocaine might be used perioperatively to minimize the impact of surgery on NK cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. T-lymphokine-activated killer cell-originated protein kinase (TOPK) as a prognostic factor and a potential therapeutic target in glioma

    PubMed Central

    Duan, Qiuhong; Yuan, Ping; Xue, Peipei; Lu, Hui; Yan, Meng; Guo, Dongsheng; Xu, Sanpeng; Zhang, Xiaohui; Lin, Xuan; Wang, Yong; Dogan, Soner; Zhang, Jianmin; Zhu, Feng; Ke, Changshu; Liu, Lin

    2018-01-01

    TOPK is overexpressed in various types of cancer and associated with poor outcomes in different types of cancer. In this study, we first found that the expression of T-lymphokine-activated killer cell-originated protein kinase (TOPK) was significantly higher in Grade III or Grade IV than that in Grade II in glioma (P = 0.007 and P < 0.001, respectively). Expression of TOPK was positively correlated with Ki67 (P < 0.001). Knockdown of TOPK significantly inhibited cell growth, colony formation and increased sensitivities to temozolomide (TMZ) in U-87 MG or U-251 cells, while TOPK overexpression promoted cell growth and colony formation in Hs 683 or A-172 cells. Glioma patients expressing high levels of TOPK have poor survival compared with those expressing low levels of TOPK in high-grade or low-grade gliomas (hazard ratio = 0.2995; 95% CI, 0.1262 to 0.7108; P = 0.0063 and hazard ratio = 0.1509; 95% CI, 0.05928 to 0.3842; P < 0.0001, respectively). The level of TOPK was low in TMZ-sensitive patients compared with TMZ-resistant patients (P = 0.0056). In TMZ-resistant population, patients expressing high TOPK have two months’ shorter survival time than those expressing low TOPK. Our findings demonstrated that TOPK might represent as a promising prognostic and predictive factor and potential therapeutic target for glioma. PMID:29487691

  16. Natural killer cells: In health and disease.

    PubMed

    Mandal, Arundhati; Viswanathan, Chandra

    2015-06-01

    Natural killer (NK) cells constitute our bodies' frontline defense system, guarding against tumors and launching attacks against infections. The activities of NK cells are regulated by the interaction of various receptors expressed on their surfaces with cell surface ligands. While the role of NK cells in controlling tumor activity is relatively clear, the fact that they are also linked to various other disease conditions is now being highlighted. Here, we present an overview of the role of NK cells during normal body state as well as under diseased state. We discuss the possible utilization of these powerful cells as immunotherapeutic agents in combating diseases such as asthma, autoimmune diseases, and HIV-AIDS. This review also outlines current challenges in NK cell therapy. Copyright © 2015. Published by Elsevier B.V.

  17. Psychosocial predictors of natural killer cell mobilization during marital conflict.

    PubMed

    Miller, G E; Dopp, J M; Myers, H F; Stevens, S Y; Fahey, J L

    1999-05-01

    This study examined how specific emotions relate to autonomic nervous and immune system parameters and whether cynical hostility moderates this relationship. Forty-one married couples participated in a 15-min discussion about a marital problem. Observers recorded spouses' emotional expressions during the discussion, and cardiovascular, neuroendocrine, and immunologic parameters were assessed throughout the laboratory session. Among men high in cynical hostility, anger displayed during the conflict was associated with greater elevations in systolic and diastolic blood pressure, cortisol, and increases in natural killer cell numbers and cytotoxicity. Among men low in cynical hostility, anger was associated with smaller increases in heart rate and natural killer cell cytotoxicity. These findings suggest that models describing the impact of stress on physiology should be refined to reflect the joint contribution of situational and dispositional variables.

  18. Flurbiprofen improves dysfunction of T-lymphocyte subsets and natural killer cells in cancer patients receiving post-operative morphine analgesia.

    PubMed

    Shen, Jin-Chun; Sun, He-Liang; Zhang, Ming-Qiang; Liu, Xiao-Yu; Wang, Zhong- Yun; Yang, Jian-Jun

    2014-08-01

    Acute pain can lead to immune dysfunction, which can be partly ameliorated by successful pain management. Opioids, which are widely used for analgesia, can result in the deterioration of immune function. This study aimed to investigate the influence of morphine with or without flurbiprofen as post-operative analgesics on the immune systems of patients undergoing gastric cancer surgery. 60 patients undergoing gastric cancer surgery were equally randomized into two groups. They received post-operative patient-controlled intravenous (IV) analgesia using morphine either with or without flurbiprofen. Visual analogue scale (VAS) scores, Bruggemann comfort scale (BCS) scores, morphine consumption, time of first flatus, incidence of nausea/vomiting, and T-lymphocyte subsets (CD3⁺, CD4⁺, and CD8⁺) and natural killer cells (CD3⁻CD16⁺CD56⁺) were evaluated. No significant difference was observed in the VAS scores, BCS scores, and nausea/vomiting incidence between groups. Less morphine was consumed and the time of first flatus was earlier in patients receiving morphine with flurbiprofen than morphine alone. The expression of CD3⁺, CD4⁺, CD4⁺/CD8⁺, and CD3⁻CD16⁺CD56⁺ decreased at 2 hours after incision and, except for CD3⁻CD16⁺CD56⁺, returned to baseline at 120 hours after surgery. Moreover, the expression of CD3⁻CD16⁺CD56⁺ at 2 hours after incision and the expression of CD3⁺, CD4⁺, CD4⁺/CD8⁺, and CD3⁻CD16⁺CD56⁺ at 24 hours after surgery were higher in patients receiving morphine with flurbiprofen than morphine alone. The combination of morphine and flurbiprofen ameliorates the immune depression in Tlymphocyte subsets and natural killer cells and provides a similar analgesic efficacy to morphine alone in patients undergoing gastric cancer surgery.

  19. T-Cell Warriors—Equipped to Kill Cancer Cells | Center for Cancer Research

    Cancer.gov

    When the body recognizes tumor cells as foreign, a natural immune response arises to attack them. Unfortunately, tumors have ways to evade immune surveillance systems and antitumor responses are often too weak to defeat the disease. Rather than relying on the body’s natural response, scientists can now manipulate a patient’s own immune cells so that they latch on to tumor cells by recognizing specific proteins on their surface. A type of immune cell that has been explored for this purpose is the killer (cytotoxic) T cell, which eliminates cells infected by viruses, damaged cells, and tumor cells.

  20. Suppression of a Natural Killer Cell Response by Simian Immunodeficiency Virus Peptides

    PubMed Central

    Schafer, Jamie L.; Ries, Moritz; Guha, Natasha; Connole, Michelle; Colantonio, Arnaud D.; Wiertz, Emmanuel J.; Wilson, Nancy A.; Kaur, Amitinder; Evans, David T.

    2015-01-01

    Natural killer (NK) cell responses in primates are regulated in part through interactions between two highly polymorphic molecules, the killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their major histocompatibility complex (MHC) class I ligands on target cells. We previously reported that the binding of a common MHC class I molecule in the rhesus macaque, Mamu-A1*002, to the inhibitory receptor Mamu-KIR3DL05 is stabilized by certain simian immunodeficiency virus (SIV) peptides, but not by others. Here we investigated the functional implications of these interactions by testing SIV peptides bound by Mamu-A1*002 for the ability to modulate Mamu-KIR3DL05+ NK cell responses. Twenty-eight of 75 SIV peptides bound by Mamu-A1*002 suppressed the cytolytic activity of primary Mamu-KIR3DL05+ NK cells, including three immunodominant CD8+ T cell epitopes previously shown to stabilize Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. Substitutions at C-terminal positions changed inhibitory peptides into disinhibitory peptides, and vice versa, without altering binding to Mamu-A1*002. The functional effects of these peptide variants on NK cell responses also corresponded to their effects on Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. In assays with mixtures of inhibitory and disinhibitory peptides, low concentrations of inhibitory peptides dominated to suppress NK cell responses. Consistent with the inhibition of Mamu-KIR3DL05+ NK cells by viral epitopes presented by Mamu-A1*002, SIV replication was significantly higher in Mamu-A1*002+ CD4+ lymphocytes co-cultured with Mamu-KIR3DL05+ NK cells than with Mamu-KIR3DL05- NK cells. These results demonstrate that viral peptides can differentially affect NK cell responses by modulating MHC class I interactions with inhibitory KIRs, and provide a mechanism by which immunodeficiency viruses may evade NK cell responses. PMID:26333068

  1. Tumor necrosis factor-{alpha} enhances IL-15-induced natural killer cell differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jiwon; Lee, Suk Hyung; Korea University of Science and Technology, Yusong, Daejeon 305-333

    2009-09-04

    The differentiation of natural killer (NK) cells is regulated by various factors including soluble growth factors and transcription factors. Here, we have demonstrated that tumor necrosis factor-{alpha} (TNF-{alpha}) is a positive regulator of NK cell differentiation. TNF-{alpha} augmented the IL-15-induced expression of NK1.1 and CD122 in mature NK cells, and TNF-{alpha} alone also induced NK cell maturation as well as IL-15. TNF-{alpha} also increased IFN-{gamma} production in NK cells in the presence of IL-15. Meanwhile, mRNA expression of several transcription factors, including T-bet and GATA-3, was increased by the addition of TNF-{alpha} and IL-15. In addition, TNF-{alpha} increased nuclear factor-kappamore » B (NF-{kappa}B) activity in NK cells and inhibition of NF-{kappa}B impeded TNF-{alpha}-enhanced NK cell maturation. Overall, these data suggest that TNF-{alpha} significantly increased IL-15-driven NK cell differentiation by increasing the expression of transcription factors that play crucial roles in NK cell maturation and inducing the NF-{kappa}B activity.« less

  2. Interleukin (IL)-18 Binding Protein Deficiency Disrupts Natural Killer Cell Maturation and Diminishes Circulating IL-18

    PubMed Central

    Harms, Robert Z.; Creer, Austin J.; Lorenzo-Arteaga, Kristina M.; Ostlund, Katie R.; Sarvetnick, Nora E.

    2017-01-01

    The cytokine interleukin (IL)-18 is a crucial amplifier of natural killer (NK) cell function. IL-18 signaling is regulated by the inhibitory effects of IL-18 binding protein (IL-18BP). Using mice deficient in IL-18BP (IL-18BPKO), we investigated the impact of mismanaged IL-18 signaling on NK cells. We found an overall reduced abundance of splenic NK cells in the absence of IL-18BP. Closer examination of NK cell subsets in spleen and bone marrow using CD27 and CD11b expression revealed that immature NK cells were increased in abundance, while the mature population of NK cells was reduced. Also, NK cells were polarized to greater production of TNF-α, while dedicated IFN-γ producers were reduced. A novel subset of IL-18 receptor α− NK cells contributed to the expansion of immature NK cells in IL-18BPKO mice. Splenocytes cultured with IL-18 resulted in alterations similar to those observed in IL-18BP deficiency. NK cell changes were associated with significantly reduced levels of circulating plasma IL-18. However, IL-18BPKO mice exhibited normal weight gain and responded to LPS challenge with a >10-fold increase in IFN-γ compared to wild type. Finally, we identified that the source of splenic IL-18BP was among dendritic cells/macrophage localized to the T cell-rich regions of the spleen. Our results demonstrate that IL-18BP is required for normal NK cell abundance and function and also contributes to maintaining steady-state levels of circulating IL-18. Thus, IL-18BP appears to have functions suggestive of a carrier protein, not just an inhibitor. PMID:28900426

  3. Defective natural killer cell activity in a mouse model of eczema herpeticum.

    PubMed

    Kawakami, Yuko; Ando, Tomoaki; Lee, Jong-Rok; Kim, Gisen; Kawakami, Yu; Nakasaki, Tae; Nakasaki, Manando; Matsumoto, Kenji; Choi, Youn Soo; Kawakami, Toshiaki

    2017-03-01

    Patients with atopic dermatitis (AD) are susceptible to several viruses, including herpes simplex virus (HSV). Some patients experience 1 or more episodes of a severe skin infection caused by HSV termed eczema herpeticum (EH). There are numerous mouse models of AD, but no established model exists for EH. We sought to establish and characterize a mouse model of EH. We infected AD-like skin lesions with HSV1 to induce severe skin lesions in a dermatitis-prone mouse strain of NC/Nga. Gene expression was investigated by using a microarray and quantitative PCR; antibody titers were measured by means of ELISA; and natural killer (NK) cell, cytotoxic T-cell, regulatory T-cell, and follicular helper T-cell populations were evaluated by using flow cytometry. The role of NK cells in HSV1-induced development of severe skin lesions was examined by means of depletion and adoptive transfer. Inoculation of HSV1 induced severe erosive skin lesions in eczematous mice, which had an impaired skin barrier, but milder lesions in small numbers of normal mice. Eczematous mice exhibited lower NK cell activity but similar cytotoxic T-cell activity and humoral immune responses compared with normal mice. The role of NK cells in controlling HSV1-induced skin lesions was demonstrated by experiments depleting or transferring NK cells. A murine model of EH with an impaired skin barrier was established in this study. We demonstrated a critical role of defective NK activities in the development of HSV1-induced severe skin lesions in eczematous mice. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  4. NK Cells and Their Ability to Modulate T Cells during Virus Infections

    PubMed Central

    Cook, Kevin D.; Waggoner, Stephen N.; Whitmire, Jason K.

    2014-01-01

    Natural killer (NK) cells are important in protection against virus infections, and many viruses have evolved mechanisms to thwart NK cell activity. NK cells respond to inflammatory signals at an early stage of virus infection, resulting in proliferation, cytokine production, and cytolytic activity that can reduce virus loads. Moreover, the rapid kinetics of the NK cell response enables NK cells to influence other populations of innate immune cells, affect the inflammatory milieu, and guide adaptive immune responses to infection. Early NK cell interactions with other leukocytes can have long-lasting effects on the number and quality of memory T cells, as well as impact the exhaustion of T cells during chronic infections. The ability of NK cells to modulate T cell responses can be mediated through direct T-NK interactions, cytokine production, or indirectly through dendritic cells and other cell types. Herein, we summarize our current understanding of how NK cells interact with T cells, dendritic cells, B cells, and other cell types involved in adaptive immune responses to virus infection. We outline several mechanisms by which NK cells enhance or suppress adaptive immune response and long-lived immunological memory. PMID:25404045

  5. T cells which proliferate in response to concanavalin A include cells which proliferate in mixed leucocyte reactions.

    PubMed

    Watanabe, T; Fathman, C G; Coutinho, A

    1977-09-01

    Selection in long-term culture of alloreactive T cells, by successive in vitro restimulation with semi-allogeneic cells, results in primed responder cell populations which maintain full proliferative reactivity to allogeneic cells as well as to the T cell mitogens concanavalin A (Con A) and phytohemagglutinin (PHA) but are depleted of cells which can effect target cell destruction in either a specific or nonspecific manner. Con A-induced T cell blasts (selected by velocity sedimentation) can revert to small resting lymphocytes in the presence of inert "filler" cells. Con A blasts which have reverted, readily proliferate in response to Con A or allogeneic stimulator cells but are largely depleted of effector killer cells and PHA-responsive cells.

  6. "Killer" Microcapsules That Can Selectively Destroy Target Microparticles in Their Vicinity.

    PubMed

    Arya, Chandamany; Oh, Hyuntaek; Raghavan, Srinivasa R

    2016-11-02

    We have developed microscale polymer capsules that are able to chemically degrade a certain type of polymeric microbead in their immediate vicinity. The inspiration here is from the body's immune system, where killer T cells selectively destroy cancerous cells or cells infected by pathogens while leaving healthy cells alone. The "killer" capsules are made from the cationic biopolymer chitosan by a combination of ionic cross-linking (using multivalent tripolyposphate anions) and subsequent covalent cross-linking (using glutaraldehyde). During capsule formation, the enzyme glucose oxidase (GOx) is encapsulated in these capsules. The target beads are made by ionic cross-linking of the biopolymer alginate using copper (Cu 2+ ) cations. The killer capsules harvest glucose from their surroundings, which is then enzymatically converted by GOx into gluconate ions. These ions are known for their ability to chelate Cu 2+ cations. Thus, when a killer capsule is next to a target alginate bead, the gluconate ions diffuse into the bead and extract the Cu 2+ cross-links, causing the disintegration of the target bead. Such destruction is visualized in real-time using optical microscopy. The destruction is specific, i.e., other microparticles that do not contain Cu 2+ are left undisturbed. Moreover, the destruction is localized, i.e., the targets destroyed in the short term are the ones right next to the killer beads. The time scale for destruction depends on the concentration of encapsulated enzyme in the capsules.

  7. Augmenting Influenza-Specific T Cell Memory Generation with a Natural Killer T Cell-Dependent Glycolipid-Peptide Vaccine.

    PubMed

    Anderson, Regan J; Li, Jasmine; Kedzierski, Lukasz; Compton, Benjamin J; Hayman, Colin M; Osmond, Taryn L; Tang, Ching-Wen; Farrand, Kathryn J; Koay, Hui-Fern; Almeida, Catarina Filipa Dos Santos Sa E; Holz, Lauren R; Williams, Geoffrey M; Brimble, Margaret A; Wang, Zhongfang; Koutsakos, Marios; Kedzierska, Katherine; Godfrey, Dale I; Hermans, Ian F; Turner, Stephen J; Painter, Gavin F

    2017-11-17

    The development of a universal vaccine for influenza A virus (IAV) that does not require seasonal modification is a long-standing health goal, particularly in the context of the increasing threat of new global pandemics. Vaccines that specifically induce T cell responses are of considerable interest because they can target viral proteins that are more likely to be shared between different virus strains and subtypes and hence provide effective cross-reactive IAV immunity. From a practical perspective, such vaccines should induce T cell responses with long-lasting memory, while also being simple to manufacture and cost-effective. Here we describe the synthesis and evaluation of a vaccine platform based on solid phase peptide synthesis and bio-orthogonal conjugation methodologies. The chemical approach involves covalently attaching synthetic long peptides from a virus-associated protein to a powerful adjuvant molecule, α-galactosylceramide (α-GalCer). Strain-promoted azide-alkyne cycloaddition is used as a simple and efficient method for conjugation, and pseudoproline methodology is used to increase the efficiency of the peptide synthesis. α-GalCer is a glycolipid that stimulates NKT cells, a population of lymphoid-resident immune cells that can provide potent stimulatory signals to antigen-presenting cells engaged in driving proliferation and differentiation of peptide-specific T cells. When used in mice, the vaccine induced T cell responses that provided effective prophylactic protection against IAV infection, with the speed of viral clearance greater than that seen from previous viral exposure. These findings are significant because the vaccines are highly defined, quick to synthesize, and easily characterized and are therefore appropriate for large scale affordable manufacture.

  8. Shifted T Helper Cell Polarization in a Murine Staphylococcus aureus Mastitis Model.

    PubMed

    Zhao, Yanqing; Zhou, Ming; Gao, Yang; Liu, Heyuan; Yang, Wenyu; Yue, Jinhua; Chen, Dekun

    2015-01-01

    Mastitis, one of the most costly diseases in dairy ruminants, is an inflammation of the mammary gland caused by pathogenic infection. The mechanisms of adaptive immunity against pathogens in mastitis have not been fully elucidated. To investigate T helper cell-mediated adaptive immune responses, we established a mastitis model by challenge with an inoculum of 4 × 106 colony-forming units of Staphylococcus aureus in the mammary gland of lactating mice, followed by quantification of bacterial burden and histological analysis. The development of mastitis was accompanied by a significant increase in both Th17 and Th1 cells in the mammary gland. Moreover, the relative expression of genes encoding cytokines and transcription factors involved in the differentiation and function of these T helper cells, including Il17, Rorc, Tgfb, Il1b, Il23, Ifng, Tbx21, and Il12, was greatly elevated in the infected mammary gland. IL-17 is essential for neutrophil recruitment to infected mammary gland via CXC chemokines, whereas the excessive IL-17 production contributes to tissue damage in mastitis. In addition, a shift in T helper cell polarization toward Th2 and Treg cells was observed 5 days post-infection, and the mRNA expression of the anti-inflammatory cytokine Il10 was markedly increased at day 7 post-infection. These results indicate that immune clearance of Staphylococcus aureus in mastitis is facilitated by the enrichment of Th17, Th1 and Th2 cells in the mammary gland mediated by pro-inflammatory cytokine production, which is tightly regulated by Treg cells and the anti-inflammatory cytokine IL-10.

  9. Shifted T Helper Cell Polarization in a Murine Staphylococcus aureus Mastitis Model

    PubMed Central

    Zhao, Yanqing; Zhou, Ming; Gao, Yang; Liu, Heyuan; Yang, Wenyu; Yue, Jinhua; Chen, Dekun

    2015-01-01

    Mastitis, one of the most costly diseases in dairy ruminants, is an inflammation of the mammary gland caused by pathogenic infection. The mechanisms of adaptive immunity against pathogens in mastitis have not been fully elucidated. To investigate T helper cell-mediated adaptive immune responses, we established a mastitis model by challenge with an inoculum of 4 × 106 colony-forming units of Staphylococcus aureus in the mammary gland of lactating mice, followed by quantification of bacterial burden and histological analysis. The development of mastitis was accompanied by a significant increase in both Th17 and Th1 cells in the mammary gland. Moreover, the relative expression of genes encoding cytokines and transcription factors involved in the differentiation and function of these T helper cells, including Il17, Rorc, Tgfb, Il1b, Il23, Ifng, Tbx21, and Il12, was greatly elevated in the infected mammary gland. IL-17 is essential for neutrophil recruitment to infected mammary gland via CXC chemokines, whereas the excessive IL-17 production contributes to tissue damage in mastitis. In addition, a shift in T helper cell polarization toward Th2 and Treg cells was observed 5 days post-infection, and the mRNA expression of the anti-inflammatory cytokine Il10 was markedly increased at day 7 post-infection. These results indicate that immune clearance of Staphylococcus aureus in mastitis is facilitated by the enrichment of Th17, Th1 and Th2 cells in the mammary gland mediated by pro-inflammatory cytokine production, which is tightly regulated by Treg cells and the anti-inflammatory cytokine IL-10. PMID:26230498

  10. Successful Treatment of Pediatric Epstein-Barr Virus-positive Aggressive Natural Killer-Cell Leukemia.

    PubMed

    Kim, Bo Kyung; Hong, Kyung Taek; Kang, Hyoung Jin; An, Hong Yul; Choi, Jung Yoon; Hong, Che Ry; Park, Kyung Duk; Lee, Dong Soon; Shin, Hee Young

    2018-06-08

    Epstein-Barr virus (EBV)-positive aggressive natural killer-cell leukemia (ANKL) is a rare malignancy of mature natural killer cells, with a very poor survival rate. Patients have a rapidly declining clinical course and a poor prognosis, with a median survival of only a few months. Herein, we describe a 16-year-old boy who was diagnosed with EBV-positive ANKL and successfully treated using combination chemotherapy and a subsequent allogeneic hematopoietic stem cell transplantation (alloHSCT). The patient is disease free 4 years and 9 months after alloHSCT. Thus, combination chemotherapy followed by alloHSCT seems to be a promising therapeutic option for EBV-positive ANKL.

  11. Fatal natural killer cell lymphoma arising in a patient with a crop of Epstein-Barr virus-associated disorders.

    PubMed

    Nitta, Yukiko; Iwatsuki, Keiji; Kimura, Hiroshi; Kojima, Seiji; Morishima, Tsuneo; Tsuji, Kazuhide; Oono, Takashi

    2005-01-01

    Natural killer (NK) lymphoma in Asia is frequently associated with latent Epstein-Barr (EBV) infection. Unlike the adult cases, EBV-associated NK/T cell lymphomas in children are often preceded by various EBV-related disorders, including chronic active EBV infection (CAEBV), hypersensitivity to mosquito bites (HMB), virus-associated haemophagocytic syndrome (VAHS), and hydroa vacciniforme (HV)-like eruptions. Here, we report a 14-year-old Japanese girl who sequentially developed all the symptoms related to EBV-associated NK/T cell lymphoproliferative disorders in a 12-year clinical course. Our observations confirm the spectrum of EBV-associated cutaneous disorders and indicate the importance of long-term follow-up.

  12. Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer.

    PubMed

    Mehta, Rohtesh S; Rezvani, Katayoun

    2018-01-01

    Adoptive cell therapy has emerged as a powerful treatment for advanced cancers resistant to conventional agents. Most notable are the remarkable responses seen in patients receiving autologous CD19-redirected chimeric antigen receptor (CAR) T cells for the treatment of B lymphoid malignancies; however, the generation of autologous products for each patient is logistically cumbersome and has restricted widespread clinical use. A banked allogeneic product has the potential to overcome these limitations, yet allogeneic T-cells (even if human leukocyte antigen-matched) carry a major risk of graft-versus-host disease (GVHD). Natural killer (NK) cells are bone marrow-derived innate lymphocytes that can eliminate tumors directly, with their activity governed by the integration of signals from activating and inhibitory receptors and from cytokines including IL-15, IL-12, and IL-18. NK cells do not cause GVHD or other alloimmune or autoimmune toxicities and thus, can provide a potential source of allogeneic "off-the-shelf" cellular therapy, mediating major anti-tumor effects without inducing potentially lethal alloreactivity such as GVHD. Given the multiple unique advantages of NK cells, researchers are now exploring the use of CAR-engineered NK cells for the treatment of various hematological and non-hematological malignancies. Herein, we review preclinical data on the development of CAR-NK cells, advantages, disadvantages, and current obstacles to their clinical use.

  13. Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer

    PubMed Central

    Mehta, Rohtesh S.; Rezvani, Katayoun

    2018-01-01

    Adoptive cell therapy has emerged as a powerful treatment for advanced cancers resistant to conventional agents. Most notable are the remarkable responses seen in patients receiving autologous CD19-redirected chimeric antigen receptor (CAR) T cells for the treatment of B lymphoid malignancies; however, the generation of autologous products for each patient is logistically cumbersome and has restricted widespread clinical use. A banked allogeneic product has the potential to overcome these limitations, yet allogeneic T-cells (even if human leukocyte antigen-matched) carry a major risk of graft-versus-host disease (GVHD). Natural killer (NK) cells are bone marrow-derived innate lymphocytes that can eliminate tumors directly, with their activity governed by the integration of signals from activating and inhibitory receptors and from cytokines including IL-15, IL-12, and IL-18. NK cells do not cause GVHD or other alloimmune or autoimmune toxicities and thus, can provide a potential source of allogeneic “off-the-shelf” cellular therapy, mediating major anti-tumor effects without inducing potentially lethal alloreactivity such as GVHD. Given the multiple unique advantages of NK cells, researchers are now exploring the use of CAR-engineered NK cells for the treatment of various hematological and non-hematological malignancies. Herein, we review preclinical data on the development of CAR-NK cells, advantages, disadvantages, and current obstacles to their clinical use. PMID:29497427

  14. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

    PubMed

    Xu, Hui; Yan, Yaping; Williams, Mark S; Carey, Gregory B; Yang, Jingxian; Li, Hongmei; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2010-11-01

    MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK) and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.

  15. Low-dose controlled release of mTOR inhibitors maintains T cell plasticity and promotes central memory T cells.

    PubMed

    Gammon, Joshua M; Gosselin, Emily A; Tostanoski, Lisa H; Chiu, Yu-Chieh; Zeng, Xiangbin; Zeng, Qin; Jewell, Christopher M

    2017-10-10

    An important goal for improving vaccine and immunotherapy technologies is the ability to provide further control over the specific phenotypes of T cells arising from these agents. Along these lines, frequent administration of rapamycin (Rapa), a small molecule inhibitor of the mammalian target of rapamycin (mTOR), exhibits a striking ability to polarize T cells toward central memory phenotypes (T CM ), or to suppress immune function, depending on the concentrations and other signals present during administration. T CM exhibit greater plasticity and proliferative capacity than effector memory T cells (T EFF ) and, therefore, polarizing vaccine-induced T cells toward T CM is an intriguing strategy to enhance T cell expansion and function against pathogens or tumors. Here we combined biodegradable microparticles encapsulating Rapa (Rapa MPs) with vaccines composed of soluble peptide antigens and molecular adjuvants to test if this approach allows polarization of differentiating T cells toward T CM . We show Rapa MPs modulate DC function, enhancing secretion of inflammatory cytokines at very low doses, and suppressing function at high doses. While Rapa MP treatment reduced - but did not stop - T cell proliferation in both CD4 + and CD8 + transgenic T cell co-cultures, the expanding CD8 + T cells differentiated to higher frequencies of T CM at low doses of MP Rapa MPs. Lastly, we show in mice that local delivery of Rapa MPs to lymph nodes during vaccination either suppresses or enhances T cell function in response to melanoma antigens, depending on the dose of drug in the depots. In particular, at low Rapa MP doses, vaccines increased antigen-specific T CM , resulting in enhanced T cell expansion measured during subsequent booster injections over at least 100days. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Control of epithelial cell function by interleukin-22-producing RORγt+ innate lymphoid cells

    PubMed Central

    Sanos, Stephanie L; Vonarbourg, Cedric; Mortha, Arthur; Diefenbach, Andreas

    2011-01-01

    It is rapidly emerging that the defence system of innate lymphocytes is more diverse than previously recognized. In addition to natural killer (NK) cells, lymphoid tissue inducer (LTi) cells, and natural helper cells have now been identified. LTi cells are developmentally dependent on the orphan transcription factor RORγt and instruct lymph node development during embryogenesis. More recently, it has become evident, that in addition to their role for lymph organ development, LTi cells are also potent producers of cytokines such as interleukin-22 (IL-22) and IL-17 in adult mice. In addition to LTi cells, another RORγt-dependent innate lymphocyte subset co-expressing RORγt and NK cell receptors (NKRs) has been identified. These NKR+ RORγt+ cells are also potent producers of IL-22 but it is unclear whether they are part of the NK cell or LTi cell lineage. This review will highlight recent progress in understanding development and function of innate IL-22-producing lymphocyte subsets. PMID:21391996

  17. A Conserved HIV-1-Derived Peptide Presented by HLA-E Renders Infected T-cells Highly Susceptible to Attack by NKG2A/CD94-Bearing Natural Killer Cells.

    PubMed

    Davis, Zachary B; Cogswell, Andrew; Scott, Hamish; Mertsching, Amanda; Boucau, Julie; Wambua, Daniel; Le Gall, Sylvie; Planelles, Vicente; Campbell, Kerry S; Barker, Edward

    2016-02-01

    Major histocompatibility class I (MHC-I)-specific inhibitory receptors on natural killer (NK) cells (iNKRs) tolerize mature NK cell responses toward normal cells. NK cells generate cytolytic responses to virus-infected or malignant target cells with altered or decreased MHC-I surface expression due to the loss of tolerizing ligands. The NKG2A/CD94 iNKR suppresses NK cell responses through recognition of the non-classical MHC-I, HLA-E. We used HIV-infected primary T-cells as targets in an in vitro cytolytic assay with autologous NK cells from healthy donors. In these experiments, primary NKG2A/CD94(+) NK cells surprisingly generated the most efficient responses toward HIV-infected T-cells, despite high HLA-E expression on the infected targets. Since certain MHC-I-presented peptides can alter recognition by iNKRs, we hypothesized that HIV-1-derived peptides presented by HLA-E on infected cells may block engagement with NKG2A/CD94, thereby engendering susceptibility to NKG2A/CD94(+) NK cells. We demonstrate that HLA-E is capable of presenting a highly conserved peptide from HIV-1 capsid (AISPRTLNA) that is not recognized by NKG2A/CD94. We further confirmed that HLA-C expressed on HIV-infected cells restricts attack by KIR2DL(+) CD56(dim) NK cells, in contrast to the efficient responses by CD56(bright) NK cells, which express predominantly NKG2A/CD94 and lack KIR2DLs. These findings are important since the use of NK cells was recently proposed to treat latently HIV-1-infected patients in combination with latency reversing agents. Our results provide a mechanistic basis to guide these future clinical studies, suggesting that ex vivo-expanded NKG2A/CD94(+) KIR2DL(-) NK cells may be uniquely beneficial.

  18. A Conserved HIV-1-Derived Peptide Presented by HLA-E Renders Infected T-cells Highly Susceptible to Attack by NKG2A/CD94-Bearing Natural Killer Cells

    PubMed Central

    Davis, Zachary B.; Cogswell, Andrew; Scott, Hamish; Mertsching, Amanda; Boucau, Julie; Wambua, Daniel; Le Gall, Sylvie; Planelles, Vicente; Campbell, Kerry S.; Barker, Edward

    2016-01-01

    Major histocompatibility class I (MHC-I)-specific inhibitory receptors on natural killer (NK) cells (iNKRs) tolerize mature NK cell responses toward normal cells. NK cells generate cytolytic responses to virus-infected or malignant target cells with altered or decreased MHC-I surface expression due to the loss of tolerizing ligands. The NKG2A/CD94 iNKR suppresses NK cell responses through recognition of the non-classical MHC-I, HLA-E. We used HIV-infected primary T-cells as targets in an in vitro cytolytic assay with autologous NK cells from healthy donors. In these experiments, primary NKG2A/CD94+ NK cells surprisingly generated the most efficient responses toward HIV-infected T-cells, despite high HLA-E expression on the infected targets. Since certain MHC-I-presented peptides can alter recognition by iNKRs, we hypothesized that HIV-1-derived peptides presented by HLA-E on infected cells may block engagement with NKG2A/CD94, thereby engendering susceptibility to NKG2A/CD94+ NK cells. We demonstrate that HLA-E is capable of presenting a highly conserved peptide from HIV-1 capsid (AISPRTLNA) that is not recognized by NKG2A/CD94. We further confirmed that HLA-C expressed on HIV-infected cells restricts attack by KIR2DL+ CD56dim NK cells, in contrast to the efficient responses by CD56bright NK cells, which express predominantly NKG2A/CD94 and lack KIR2DLs. These findings are important since the use of NK cells was recently proposed to treat latently HIV-1-infected patients in combination with latency reversing agents. Our results provide a mechanistic basis to guide these future clinical studies, suggesting that ex vivo-expanded NKG2A/CD94+ KIR2DL- NK cells may be uniquely beneficial. PMID:26828202

  19. Prognostic significance of peripheral monocyte count in patients with extranodal natural killer/T-cell lymphoma.

    PubMed

    Huang, Jia-Jia; Li, Ya-Jun; Xia, Yi; Wang, Yu; Wei, Wen-Xiao; Zhu, Ying-Jie; Lin, Tong-Yu; Huang, Hui-Qiang; Jiang, Wen-Qi; Li, Zhi-Ming

    2013-05-03

    Extranodal natural killer/T-cell lymphoma (ENKL) has heterogeneous clinical manifestations and prognosis. This study aims to evaluate the prognostic impact of absolute monocyte count (AMC) in ENKL, and provide some immunologically relevant information for better risk stratification in patients with ENKL. Retrospective data from 163 patients newly diagnosed with ENKL were analyzed. The absolute monocyte count (AMC) at diagnosis was analyzed as continuous and dichotomized variables. Independent prognostic factors of survival were determined by Cox regression analysis. The AMC at diagnosis were related to overall survival (OS) and progression-free survival (PFS) in patients with ENKL. Multivariate analysis identified AMC as independent prognostic factors of survival, independent of International Prognostic Index (IPI) and Korean prognostic index (KPI). The prognostic index incorporating AMC and absolute lymphocyte count (ALC), another surrogate factor of immune status, could be used to stratify all 163 patients with ENKL into different prognostic groups. For patients who received chemotherapy followed by radiotherapy (102 cases), the three AMC/ALC index categories identified patients with significantly different survivals. When superimposed on IPI or KPI categories, the AMC/ALC index was better able to identify high-risk patients in the low-risk IPI or KPI category. The baseline peripheral monocyte count is shown to be an effective prognostic indicator of survival in ENKL patients. The prognostic index related to tumor microenvironment might be helpful to identify high-risk patients with ENKL.

  20. Prognostic significance of peripheral monocyte count in patients with extranodal natural killer/T-cell lymphoma

    PubMed Central

    2013-01-01

    Background Extranodal natural killer/T-cell lymphoma (ENKL) has heterogeneous clinical manifestations and prognosis. This study aims to evaluate the prognostic impact of absolute monocyte count (AMC) in ENKL, and provide some immunologically relevant information for better risk stratification in patients with ENKL. Methods Retrospective data from 163 patients newly diagnosed with ENKL were analyzed. The absolute monocyte count (AMC) at diagnosis was analyzed as continuous and dichotomized variables. Independent prognostic factors of survival were determined by Cox regression analysis. Results The AMC at diagnosis were related to overall survival (OS) and progression-free survival (PFS) in patients with ENKL. Multivariate analysis identified AMC as independent prognostic factors of survival, independent of International Prognostic Index (IPI) and Korean prognostic index (KPI). The prognostic index incorporating AMC and absolute lymphocyte count (ALC), another surrogate factor of immune status, could be used to stratify all 163 patients with ENKL into different prognostic groups. For patients who received chemotherapy followed by radiotherapy (102 cases), the three AMC/ALC index categories identified patients with significantly different survivals. When superimposed on IPI or KPI categories, the AMC/ALC index was better able to identify high-risk patients in the low-risk IPI or KPI category. Conclusion The baseline peripheral monocyte count is shown to be an effective prognostic indicator of survival in ENKL patients. The prognostic index related to tumor microenvironment might be helpful to identify high-risk patients with ENKL. PMID:23638998

  1. Memory-like Responses of Natural Killer Cells

    PubMed Central

    Cooper, Megan A.; Yokoyama, Wayne M.

    2010-01-01

    Summary Natural killer (NK) cells are lymphocytes with the capacity to produce cytokines and kill target cells upon activation. NK cells have long been categorized as members of the innate immune system and as such have been thought to follow the ‘rules’ of innate immunity, including the principle that they have no immunologic memory, a property thought to be strictly limited to adaptive immunity. However, recent studies have suggested that NK cells have the capacity to alter their behavior based on prior activation. This property is analogous to adaptive immune memory; however, some NK cell memory-like functions are not strictly antigen-dependent and can be demonstrated following cytokine stimulation. Here we discuss the recent evidence that NK cells can exhibit properties of immunologic memory, focusing on the ability of cytokines to non-specifically induce memory-like NK cells with enhanced responses to restimulation. PMID:20536571

  2. HMBPP-deficient Listeria mutant immunization alters pulmonary/systemic responses, effector functions, and memory polarization of Vγ2Vδ2 T cells

    PubMed Central

    Frencher, James T.; Shen, Hongbo; Yan, Lin; Wilson, Jessica O.; Freitag, Nancy E.; Rizzo, Alicia N.; Chen, Crystal Y.; Chen, Zheng W.

    2014-01-01

    Whereas infection or immunization of humans/primates with microbes coproducing HMBPP/IPP can remarkably activate Vγ2Vδ2 T cells, in vivo studies have not been done to dissect HMBPP- and IPP-driven expansion, pulmonary trafficking, effector functions, and memory polarization of Vγ2Vδ2 T cells. We define these phosphoantigen-host interplays by comparative immunizations of macaques with the HMBPP/IPP-coproducing Listeria ΔactA prfA* and HMBPP-deficient Listeria ΔactAΔgcpE prfA* mutant. The HMBPP-deficient ΔgcpE mutant shows lower ability to expand Vγ2Vδ2 T cells in vitro than the parental HMBPP-producing strain but displays comparably attenuated infectivity or immunogenicity. Respiratory immunization of macaques with the HMBPP-deficient mutant elicits lower pulmonary and systemic responses of Vγ2Vδ2 T cells compared with the HMBPP-producing vaccine strain. Interestingly, HMBPP-deficient mutant reimmunization or boosting elicits enhanced responses of Vγ2Vδ2 T cells, but the magnitude is lower than that by HMBPP-producing listeria. HMBPP-deficient listeria differentiated fewer Vγ2Vδ2 T effector cells capable of coproducing IFN-γ and TNF-α and inhibiting intracellular listeria than HMBPP-producing listeria. Furthermore, HMBPP deficiency in listerial immunization influences memory polarization of Vγ2Vδ2 T cells. Thus, both HMBPP and IPP production in listerial immunization or infection elicit systemic/pulmonary responses and differentiation of Vγ2Vδ2 T cells, but a role for HMBPP is more dominant. Findings may help devise immune intervention. PMID:25114162

  3. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection.

    PubMed

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  4. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection

    PubMed Central

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR–HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants. PMID:28066408

  5. Natural Killer Cell Immunotherapy Targeting Cancer Stem Cells

    PubMed Central

    Luna, Jesus I; Grossenbacher, Steven K.; Murphy, William J; Canter, Robert J

    2017-01-01

    Introduction Standard cytoreductive cancer therapy, such as chemotherapy and radiotherapy, are frequently resisted by a small portion of cancer cells with “stem-cell” like properties including quiescence and repopulation. Immunotherapy represents a breakthrough modality for improving oncologic outcomes in cancer patients. Since the success of immunotherapy is not contingent on target cell proliferation, it may also be uniquely suited to address the problem of resistance and repopulation exerted by cancer stem cells (CSCs). Areas covered Natural killer (NK) cells have long been known for their ability to reject allogeneic hematopoietic stem cells, and there are increasing data demonstrating that NK cells can selectively identify and lyse CSCs. In this report, we review the current knowledge of CSCs and NK cells and highlight recent studies that support the concept that NK cells are capable of targeting CSC in solid tumors, especially in the context of combination therapy simultaneously targeting non-CSCs and CSCs. Expert Opinion Unlike cytotoxic cancer treatments, NK cells are able to target and eliminate quiescent/non-proliferating cells such as CSCs, and these enigmatic cells are an important source of relapse and metastasis. NK targeting of CSCs represents a novel and potentially high impact method to capitalize on the intrinsic therapeutic potential of NK cells. PMID:27960589

  6. Possible role of natural killer cells in pemphigus vulgaris − preliminary observations

    PubMed Central

    Stern, J N H; Keskin, D B; Barteneva, N; Zuniga, J; Yunis, E J; Ahmed, A R

    2008-01-01

    Pemphigus vulgaris (PV) is an autoimmune blistering disease that affects the skin and multiple mucous membranes, and is caused by antibodies to desmoglein (Dsg) 1 and 3. Natural killer (NK) cells have a role in autoimmunity, but their role in PV is not known. NK cells in the peripheral blood leucocytes (PBL) of 15 untreated Caucasian patients with active PV were studied and compared with healthy controls for the expression of major histocompatibility complex (MHC) class II and co-stimulatory molecules. CD56+ CD16- CD3- NK or CD56+ CD16+ CD3- NK cells from the PBL of PV patients co-express MHC class II and co-stimulatory molecule B7-H3 without exogenous stimulation. CD4+ T cells from the PBL and perilesional skin of PV patients were co-cultured with CD56+ CD3- NK cells from the PBL of the same patients; in the presence of Dsg3 peptides underwent statistically significant proliferation, indicating that NK cells functioned as antigen-presenting cells. Supernatants from these co-cultures and serum of the same patients with active PV had statistically significantly elevated levels of interleukin (IL)-6, IL-8 and interferon-γ, compared with controls indicating that the NK cells stimulated CD4+ T cells to produce proinflammatory cytokines. In these experiments, we present preliminary evidence that NK cells may play a role in the pathobiology of PV. PMID:18373702

  7. Natural killer cell subsets in cerebrospinal fluid of patients with multiple sclerosis

    PubMed Central

    Rodríguez-Martín, E; Picón, C; Costa-Frossard, L; Alenda, R; Sainz de la Maza, S; Roldán, E; Espiño, M; Villar, L M; Álvarez-Cermeño, J C

    2015-01-01

    Changes in blood natural killer (NK) cells, important players of the immune innate system, have been described in multiple sclerosis (MS). We studied percentages and total cell counts of different effector and regulatory NK cells in cerebrospinal fluid (CSF) of MS patients and other neurological diseases to gain clearer knowledge of the role of these cells in neuroinflammation. NK cell subsets were assessed by flow cytometry in CSF of 85 consecutive MS patients (33 with active disease and 52 with stable MS), 16 with other inflammatory diseases of the central nervous system (IND) and 17 with non-inflammatory neurological diseases (NIND). MS patients showed a decrease in percentages of different CSF NK subpopulations compared to the NIND group. However, absolute cell counts showed a significant increase of all NK subsets in MS and IND patients, revealing that the decrease in percentages does not reflect a real reduction of these immune cells. Remarkably, MS patients showed a significant increase of regulatory/effector (CD56bright/CD56dim) NK ratio compared to IND and NIND groups. In addition, MS activity associated with an expansion of NK T cells. These data show that NK cell subsets do not increase uniformly in all inflammatory neurological disease and suggest strongly that regulatory CD56bright and NK T cells may arise in CSF of MS patients as an attempt to counteract the CNS immune activation characteristic of the disease. PMID:25565222

  8. Natural Killer Cells Promote Fetal Development through the Secretion of Growth-Promoting Factors.

    PubMed

    Fu, Binqing; Zhou, Yonggang; Ni, Xiang; Tong, Xianhong; Xu, Xiuxiu; Dong, Zhongjun; Sun, Rui; Tian, Zhigang; Wei, Haiming

    2017-12-19

    Natural killer (NK) cells are present in large populations at the maternal-fetal interface during early pregnancy. However, the role of NK cells in fetal growth is unclear. Here, we have identified a CD49a + Eomes + subset of NK cells that secreted growth-promoting factors (GPFs), including pleiotrophin and osteoglycin, in both humans and mice. The crosstalk between HLA-G and ILT2 served as a stimulus for GPF-secreting function of this NK cell subset. Decreases in this GPF-secreting NK cell subset impaired fetal development, resulting in fetal growth restriction. The transcription factor Nfil3, but not T-bet, affected the function and the number of this decidual NK cell subset. Adoptive transfer of induced CD49a + Eomes + NK cells reversed impaired fetal growth and rebuilt an appropriate local microenvironment. These findings reveal properties of NK cells in promoting fetal growth. In addition, this research proposes approaches for therapeutic administration of NK cells in order to reverse restricted nourishments within the uterine microenvironment during early pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Clinical-grade purification of natural killer cells in haploidentical hematopoietic stem cell transplantation.

    PubMed

    Meyer-Monard, Sandrine; Passweg, Jakob; Siegler, Uwe; Kalberer, Christian; Koehl, Ulrike; Rovó, Alicia; Halter, Jörg; Stern, Martin; Heim, Dominik; Alois Gratwohl, Johannes Rischewski; Tichelli, André

    2009-02-01

    Because of a high risk of graft-versus-host disease (GVHD), donor lymphocyte infusions with unmodified lymphapheresis products are not used after haploidentical hematopoietic stem cell transplantation. Natural killer (NK) cells have antitumor activity and may consolidate engraftment without inducing GVHD. Production of NK cells under good manufacturing practice (GMP) conditions in a sufficient number is difficult. Twenty-four apheresis procedures and subsequent NK-cell enrichment from 14 haploidentical donors were performed. NK-cell enrichment was performed using a GMP suitable immunomagnetic procedure. Factors influencing the NK-cell recovery, purity, and NK-cell dose were analyzed. A median number of 4.9 x 10(8) NK cells were obtained and median NK-cell recovery was 58 percent. Median T-cell depletion was 4.32 log. The absolute NK-cell number in the final product after processing significantly correlated with the preharvest NK-cell content of the peripheral blood (p = 0.002, r = 0.867). The NK-cell recovery was inversely correlated to the absolute NK-cell number in the apheresis product (p = 0.01, r = -0.51). The NK-cell dose per kg of body weight of the patient was inversely correlated to the weight of the patient (p = 0.007, r = -0.533). Donors with a high NK-cell count in peripheral blood are likely to provide NK-cell products with the highest cell number. However, maximal NK-cell dose is limited and high NK-cell doses may only be obtained for patients with a low body weight, making children and young adults the best candidates for NK-cell therapy.

  10. Adenovirus-mediated interleukin-18 mutant in vivo gene transfer inhibits tumor growth through the induction of T cell immunity and activation of natural killer cell cytotoxicity.

    PubMed

    Hwang, Kyung-Sun; Cho, Won-Kyung; Yoo, Jinsang; Seong, Young Rim; Kim, Bum-Kyeng; Kim, Samyong; Im, Dong-Soo

    2004-06-01

    We report here that gene transfer using recombinant adenoviruses encoding interleukin (IL)-18 mutants induces potent antitumor activity in vivo. The precursor form of IL-18 (ProIL-18) is processed by caspase-1 to produce bioactive IL-18, but its cleavage by caspase-3 (CPP32) produces an inactive form. To prepare IL-18 molecules with an effective antitumor activity, a murine IL-18 mutant with the signal sequence of murine granulocyte-macrophage (GM)- colony stimulating factor (CSF) at the 5'-end of mature IL-18 cDNA (GMmIL-18) and human IL-18 mutant with the prepro leader sequence of trypsin (PPT), which is not cleaved by caspase-3 (PPThIL-18CPP32-), respectively, were constructed. Adenovirus vectors carrying GMmIL-18 or PPThIL-18CPP32- produced bioactive IL-18. Ad.GMmIL-18 had a more potent antitumor effect than Ad.mProIL-18 encoding immature IL-18 in renal cell adenocarcinoma (Renca) tumor-bearing mice. Tumor-specific cytotoxic T lymphocytes, the induction of Th1 cytokines, and an augmented natural killer (NK) cell activity were detected in Renca tumor-bearing mice treated with Ad.GMmIL-18. An immunohistological analysis revealed that CD4+ and CD8+ T cells abundantly infiltrated into tumors of mice treated with Ad.GMmIL-18. Huh-7 human hepatoma tumor growth in nude mice with a defect of T cell function was significantly inhibited by Ad.PPThIL-18CPP32- compared with Ad.hProIL-18 encoding immature IL-18. Nude mice treated with Ad.PPThIL-18CPP32- contained NK cells with increased cytotoxicity. The results suggest that the release of mature IL-18 in tumors is required for achieving an antitumor effect including tumor-specific cellular immunity and augmented NK cell-mediated cytotoxicity. These optimally designed IL-18 mutants could be useful for improving the antitumor effectiveness of wild-type IL-18. Copyright 2004 Nature Publishing Group

  11. Identification of natural killer cell receptor clusters in the platypus genome reveals an expansion of C-type lectin genes.

    PubMed

    Wong, Emily S W; Sanderson, Claire E; Deakin, Janine E; Whittington, Camilla M; Papenfuss, Anthony T; Belov, Katherine

    2009-08-01

    Natural killer (NK) cell receptors belong to two unrelated, but functionally analogous gene families: the immunoglobulin superfamily, situated in the leukocyte receptor complex (LRC) and the C-type lectin superfamily, located in the natural killer complex (NKC). Here, we describe the largest NK receptor gene expansion seen to date. We identified 213 putative C-type lectin NK receptor homologs in the genome of the platypus. Many have arisen as the result of a lineage-specific expansion. Orthologs of OLR1, CD69, KLRE, CLEC12B, and CLEC16p genes were also identified. The NKC is split into at least two regions of the genome: 34 genes map to chromosome 7, two map to a small autosome, and the remainder are unanchored in the current genome assembly. No NK receptor genes from the LRC were identified. The massive C-type lectin expansion and lack of Ig-domain-containing NK receptors represents the most extreme polarization of NK receptors found to date. We have used this new data from platypus to trace the possible evolutionary history of the NK receptor clusters.

  12. Mechanisms of Invariant Natural Killer T Cell-Mediated Immunoregulation in Cancer

    DTIC Science & Technology

    2012-05-01

    by mesenchymal stem cells . Intriguingly, the increased metastatic ability was dependent on the production of CCL5 by mesenchymal stem cells , which...Tubo, R., &Weinberg, R.A.(2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. Vol. 449:pp557-563. Breast...can induce preferential secretion of immunosuppressive cytokines ; 2) iNKT cells inhibit effector T cell priming by killing dendritic cells that

  13. Murine Cytomegalovirus m02 Gene Family Protects against Natural Killer Cell-Mediated Immune Surveillance

    PubMed Central

    Oliveira, Sofia A.; Park, Se-Ho; Lee, Peter; Bendelac, Albert; Shenk, Thomas E.

    2002-01-01

    The murine cytomegalovirus m02 gene family encodes putative type I membrane glycoproteins named m02 through m16. A subset of these genes were fused to an epitope tag and cloned into an expression vector. In transfected and murine cytomegalovirus-infected cells, m02, m04, m05, m06, m07, m09, m10, and m12 localized to cytoplasmic structures near the nucleus, whereas m08 and m13 localized to a filamentous structure surrounding the nucleus. Substitution mutants lacking the m02 gene (SMsubm02) or the entire m02 gene family (SMsubm02-16) grew like their wild-type parent in cultured cells. However, whereas SMsubm02 was as pathogenic as the wild-type virus, SMsubm02-16 was markedly less virulent. SMsubm02-16 produced less infectious virus in most organs compared to wild-type virus in BALB/c and C57BL/6J mice, but it replicated to wild-type levels in the organs of immunodeficient γc/Rag2 mice, lacking multiple cell types including natural killer cells, and in C57BL/6J mice depleted of natural killer cells. These results argue that one or more members of the m02 gene family antagonize natural killer cell-mediated immune surveillance. PMID:11752177

  14. Is There Natural Killer Cell Memory and Can It Be Harnessed by Vaccination? Natural Killer Cells in Vaccination.

    PubMed

    Neely, Harold R; Mazo, Irina B; Gerlach, Carmen; von Andrian, Ulrich H

    2017-12-18

    Natural killer (NK) cells have historically been considered to be a part of the innate immune system, exerting a rapid response against pathogens and tumors in an antigen (Ag)-independent manner. However, over the past decade, evidence has accumulated suggesting that at least some NK cells display certain characteristics of adaptive immune cells. Indeed, NK cells can learn and remember encounters with a variety of Ags, including chemical haptens and viruses. Upon rechallenge, memory NK cells mount potent recall responses selectively to those Ags. This phenomenon, traditionally termed "immunological memory," has been reported in mice, nonhuman primates, and even humans and appears to be concentrated in discrete NK cell subsets. Because immunological memory protects against recurrent infections and is the central goal of active vaccination, it is crucial to define the mechanisms and consequences of NK cell memory. Here, we summarize the different kinds of memory responses that have been attributed to specific NK cell subsets and discuss the possibility to harness NK cell memory for vaccination purposes. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. The Expression of Activating Receptor Gene of Natural Killer Cells (KLRC3) in Patients with 
Type 1 Diabetes Mellitus (T1DM)

    PubMed Central

    Shalaby, Dalia; Saied, Marwa; Khater, Doaa; Abou Zeid, Abla

    2017-01-01

    Objectives To identify the possible role of natural killer (NK) cells in the pathogenesis of type 1 diabetes mellitus (T1DM) through studying the expression of the KLRC3 gene, which encodes the NK cell activating receptor (NKG2E). Methods This study was conducted at Alexandria University Children’s Hospital from April to October 2015. The study was conducted with 30 newly diagnosed T1DM patients (15 males and 15 females), aged 7–13 years (10.6±1.8 years) and 20 non-diabetic subjects served as age- and sex-matched controls. The patients were further sub-divided into two groups; group I included patients who first presented with classical symptoms of DM (polyuria, polydipsia, and polyphagia) without diabetes ketoacidosis (DKA) and group II included patients who first presented with DKA. The expression of the KLRC3 gene was measured in each group using the real-time polymerase chain reaction. Results KLRC3 gene expression was significantly downregulated in T1DM cases compared to healthy controls (p = 0.001). Expression was more downregulated in group I patients (p = 0.008). Moreover, there was higher mean value of glycated heamoglobin and lower C-peptide levels in group I than group II. Serum pancreatic amylase showed no significant difference between the two groups. Conclusions KLRC3 gene expression was downregulated in patients with T1DM compared to healthy controls. Downregulation of expression was greater in DKA patients compared to those who presented with classical symptoms. Expression of KLRC3 in T1DM might play a role in the pathogenesis of T1DM and could be a predictor of its severity. PMID:28804584

  16. Expansions of NK-like αβT cells with chronologic aging: Novel lymphocyte effectors that compensate for functional deficits of conventional NK cells and T cells

    PubMed Central

    Vallejo, Abbe N.; Mueller, Robert G.; Hamel, David L.; Way, Amanda; Dvergsten, Jeffrey A.; Griffin, Patricia; Newman, Anne B.

    2010-01-01

    As the repertoire of αβT cell receptors (TCR) contracts with advancing age, there is an associated age-dependent accumulation of oligoclonal T cells expressing of a variety of receptors (NKR), normally expressed on natural killer (NK) cells. Evidences for differential regulation of expression of particular NKRs between T cells and NK cells suggest that NKR expression on T cells is physiologically programmed rather than a random event of the aging process. Experimental studies show NKRs on aged αβT cells may function either as independent receptors, and/or as costimulatory receptors to the TCR. Considering the reported deficits of conventional αβTCR-driven activation and also functional deficits of classical NK cells, NKR+ αβT cells likely represent novel immune effectors that are capable of combining innate and adaptive functions. Inasmuch as immunity is a determinant of individual fitness, the type and density of NKRs could be important contributing factors to the wide heterogeneity of health characteristics of older adults, ranging from institutionalized frail elders who are unable to mount immune responses to functionally independent community-dwelling elders who exhibit protective immunity. Understanding the biology of NKR+ αβT cells could lead to new avenues for age-specific intervention to improve protective immunity. PMID:20932941

  17. Genetically Engineered Natural Killer Cells as a Means for Adoptive Tumor Immunotherapy.

    PubMed

    Michen, Susanne; Temme, Achim

    2016-01-01

    Natural killer (NK) cells are lymphoid cells of the innate immune system; they stand at the first defense line against viruses and transformed cells. NK cells use an array of germline-encoded activating and inhibitory receptors that sense virus-infected cells or malignant cells displaying altered surface expression of activating and inhibitory NK cell ligands. They exert potent cytotoxic responses to cellular targets and thus are candidate effector cells for immunotherapy of cancer. In particular, the genetic engineering of NK cells with chimeric antigen receptors (CARs) against surface-expressed tumor-associated antigens (TAAs) seems promising. In the allogeneic context, gene-modified NK cells compared to T cells may be superior because they are short-lived effector cells and do not cause graft-versus-host disease. Furthermore, their anti-tumoral activity can be augmented by combinatorial use with therapeutic antibodies, chemotherapeutics, and radiation. Today, efforts are being undertaken for large-scale NK-cell expansion and their genetic engineering for adoptive cell transfer. With the recent advances in understanding the complex biological interactions that regulate NK cells, it is expected that the genetic engineering of NK cells and a combinatorial blockade of immune evasion mechanisms are required to exploit the full potential of NK-cell-based immunotherapies.

  18. The effect of propofol and sevoflurane on cancer cell, natural killer cell, and cytotoxic T lymphocyte function in patients undergoing breast cancer surgery: an in vitro analysis.

    PubMed

    Lim, Jeong-Ae; Oh, Chung-Sik; Yoon, Tae-Gyoon; Lee, Ji Yeon; Lee, Seung-Hyun; Yoo, Young-Bum; Yang, Jung-Hyun; Kim, Seong-Hyop

    2018-02-07

    To clarify the effect of anaesthetic agents on cancer immunity, we evaluated the effects of propofol and sevoflurane on natural killer (NK) cell, cytotoxic T lymphocyte (CTL) counts and apoptosis rate in breast cancer and immune cells co-cultures from patients who underwent breast cancer surgery. Venous blood samples were collected after inducing anaesthesia and at 1 and 24 h postoperatively in patients who had undergone breast cancer surgery. The patients were allocated randomly to the propofol- or sevoflurane-based anaesthesia groups. We counted and detected apoptosis in cancer cell, NK cell and CTL of patients with breast cancer by co-culture with a breast cancer cell line in both groups. We also evaluated changes in the cytokines tumour necrosis factor-alpha, interleukin (IL)-6 and IL-10 during the perioperative period. Forty-four patients were included in the final analysis. No difference in NK cell count, CTL count or apoptosis rate was detected between the groups. Furthermore, the number of breast cancer cells undergoing apoptosis in the breast cancer cell co-cultures was not different between the groups. No changes in cytokines were detected between the groups. Although basic science studies have suggested the potential benefits of propofol over a volatile agent during cancer surgery, propofol was not superior to sevoflurane, on the aspects of NK and CTL cells counts with apoptosis rate including breast cancer cell, during anaesthesia for breast cancer surgery in a clinical environment. NCT02758249 on February 26, 2016.

  19. A high dose of intravenous immunoglobulin increases CD94 expression on natural killer cells in women with recurrent spontaneous abortion.

    PubMed

    Shimada, Shigeki; Takeda, Masamitsu; Nishihira, Jun; Kaneuchi, Masanori; Sakuragi, Noriaki; Minakami, Hisanori; Yamada, Hideto

    2009-11-01

    A high dose of intravenous immunoglobulin (HIVIg) therapy is effective in various diseases such as autoimmune diseases, and also is expected to have efficacy in recurrent spontaneous abortion (RSA). The aim of this study was to understand immunological mechanisms of this therapy. By flowcytometric analyses, we examined phenotypic changes of a variety of immunological cells including natural killer (NK) cells, cytotoxic T cells, regulatory T cells and macrophages in peripheral blood of RSA women with HIVIg therapy (n = 8). Expression percentages of inhibitory CD94 on NK cells significantly (P = 0.01) increased after the therapy (58.8 +/- 21.4% versus 71.0 +/- 17.6%). Mechanisms of possible efficacy of HIVIg therapy for RSA may include enhancement of CD94 expression and subsequent suppression of NK cell cytotoxicity.

  20. Expression of NK cell receptors on decidual T cells in human pregnancy.

    PubMed

    Tilburgs, Tamara; van der Mast, Barbara J; Nagtzaam, Nicole M A; Roelen, Dave L; Scherjon, Sicco A; Claas, Frans H J

    2009-06-01

    Specific receptors enable NK cells to discriminate between cells with normal expression of MHC class I and cells that have low or absent expression of MHC class I molecules. In addition to NK cells, these receptors can be expressed on T cell subsets, mainly on CD8+ T cells but also on gammadeltaTCR+ T cells and CD4+ T cells. Although the function of NK cell receptor expression on T cells is not completely understood, various studies have shown that they are involved in down regulation of T cell receptor (TCR)-mediated activation and influence effector functions, like cytotoxicity and cytokine production. The aim of this study was to analyze expression of NK cell receptors on peripheral blood and decidual T cells during human pregnancy using flow cytometry. We demonstrate that a proportion of decidual T cells express HLA-C specific killer immunoglobulin-like receptors (KIRs). Furthermore, a small proportion of decidual T cells express the HLA-E specific CD94-NKG2A inhibitory and CD94-NKG2C activating receptors. Decidual KIR+ and CD94-NKG2+ T cells mainly display a CD3+CD4-CD8- phenotype. However, decidual tissue also contains higher percentages of KIR and CD94-NKG2 expressing CD4+ and CD8+ T cells compared to peripheral blood. So far, the functional capacities of decidual T cells expressing the NK cell receptors are unknown but NK cell receptor expression on decidual T cells may provide an alternative means by which decidual T cells distinguish self (maternal) cells from allogeneic fetal cells, and act to modulate the decidual immune response.

  1. Human germinal center CD4+CD57+ T cells act differently on B cells than do classical T-helper cells.

    PubMed

    Bouzahzah, F; Bosseloir, A; Heinen, E; Simar, L J

    1995-01-01

    We have isolated two subtypes of helper T cells from human tonsils: CD4+CD57+ cells, mostly located in the germinal center (GC), and CD4+CD57- cells, distributed through the interfollicular areas but also present in the GC. In a functional study, we have compared the capacities of these T-cell subtypes to stimulate B cells in cocultures. In order to block T-cell proliferation while maintaining their activation level, we pretreated isolated T cells with mitomycin C prior to culture in the presence of B cells and added polyclonal activators such as PHA and Con A, combined or not with IL-2. Contrary to CD4+ CD57- cells, CD4+CD57+ cells did not markedly enhance B-cell proliferation. Even when sIgD.B cells typical of germinal center cells were tested, the CD4+CD57+ cells had no significant effect. This is in accordance with the location of these cells: They mainly occupy the light zones of the GC where few B cells divide. Even when added to preactivated, actively proliferating cells, CD4+CD57 cells failed to modulate B-cell multiplication. On the supernatants of B-cell-T-cell cocultures, we examined by the ELISA technique the effect of T cells on Ig synthesis. Contrary to CD57+ T cells, whose effect was strong, CD57- T cells weakly stimulated Ig synthesis. More IgM than IgG was generally found. Because CD57 antigen is a typical marker of natural killer cells, we tested the cytolytic activity of tonsillar CD4+CD57+ cells on K562 target cells. Unlike NK cells, neither CD4+CD57+ nor CD4+CD57- cells exhibit any cytotoxicity. Thus, germinal center CD4+CD57+ cells are not cytolytic and do not strongly stimulate either B-cell proliferation or Ig secretion. CD4+CD57- cells, however, enhance B-cell proliferation and differentiation, thus acting like the classical helper cells of the T-dependent areas.

  2. Role of Natural Killer T Cells in Immunogenic Chemotherapy for Breast Cancer

    DTIC Science & Technology

    2013-09-01

    critical in the control of tuberculosis, candidiasis , Escherichia coli and Staphylococcus aureus infections (5, 6). In these models, γδT cells have...naturally occurring interleukin-17A-producing gammadelta T cells in the lung at the early stage of systemic candidiasis in mice. Infect Immun 79(11

  3. Role of Natural Killer T Cells In Immunogenic Chemotherapy for Breast Cancer

    DTIC Science & Technology

    2012-09-01

    carcinomas, hematopoietic malignancies, and their metastases. This effect is mainly due to the synthesis of IFN-g by NKT cells and to the bystander...promote IFN-g synthesis by splenic gd T cells. In con- trast, combined addition of both cytokines induced IFN-g pro- duction by gd T cells. Taken...GalCer is mainly due to the rapid synthesis of IFN-g by type I NKT cells and the by- stander activation of both NK and CD8+ CTL (15, 16). Thus, we

  4. Synergistic inhibition of natural killer cells by the nonsignaling molecule CD94.

    PubMed

    Cheent, Kuldeep S; Jamil, Khaleel M; Cassidy, Sorcha; Liu, Mengya; Mbiribindi, Berenice; Mulder, Arend; Claas, Frans H J; Purbhoo, Marco A; Khakoo, Salim I

    2013-10-15

    Peptide selectivity is a feature of inhibitory receptors for MHC class I expressed by natural killer (NK) cells. CD94-NKG2A operates in tandem with the polymorphic killer cell Ig-like receptors (KIR) and Ly49 systems to inhibit NK cells. However, the benefits of having two distinct inhibitory receptor-ligand systems are not clear. We show that noninhibitory peptides presented by HLA-E can augment the inhibition of NKG2A(+) NK cells mediated by MHC class I signal peptides through the engagement of CD94 without a signaling partner. Thus, CD94 is a peptide-selective NK cell receptor, and NK cells can be regulated by nonsignaling interactions. We also show that KIR(+) and NKG2A(+) NK cells respond with differing stoichiometries to MHC class I down-regulation. MHC-I-bound peptide functions as a molecular rheostat controlling NK cell function. Selected peptides which in isolation do not inhibit NK cells can have different effects on KIR and NKG2A receptors. Thus, these two inhibitory systems may complement each other by having distinct responses to bound peptide and surface levels of MHC class I.

  5. Synergistic inhibition of natural killer cells by the nonsignaling molecule CD94

    PubMed Central

    Cheent, Kuldeep S.; Jamil, Khaleel M.; Cassidy, Sorcha; Liu, Mengya; Mbiribindi, Berenice; Mulder, Arend; Claas, Frans H. J.; Purbhoo, Marco A.; Khakoo, Salim I.

    2013-01-01

    Peptide selectivity is a feature of inhibitory receptors for MHC class I expressed by natural killer (NK) cells. CD94–NKG2A operates in tandem with the polymorphic killer cell Ig-like receptors (KIR) and Ly49 systems to inhibit NK cells. However, the benefits of having two distinct inhibitory receptor–ligand systems are not clear. We show that noninhibitory peptides presented by HLA-E can augment the inhibition of NKG2A+ NK cells mediated by MHC class I signal peptides through the engagement of CD94 without a signaling partner. Thus, CD94 is a peptide-selective NK cell receptor, and NK cells can be regulated by nonsignaling interactions. We also show that KIR+ and NKG2A+ NK cells respond with differing stoichiometries to MHC class I down-regulation. MHC-I–bound peptide functions as a molecular rheostat controlling NK cell function. Selected peptides which in isolation do not inhibit NK cells can have different effects on KIR and NKG2A receptors. Thus, these two inhibitory systems may complement each other by having distinct responses to bound peptide and surface levels of MHC class I. PMID:24082146

  6. Regulation of Memory T Cells by Interleukin-23.

    PubMed

    Li, Yanchun; Wang, Hongbo; Lu, Honghua; Hua, Shucheng

    2016-01-01

    Interleukin-23 (IL-23), a member of the IL-12 family of cytokines, is a heterodimeric cytokine. It is composed of subunits p40 (shared with IL-12) and p19 (an IL-12 p35-related subunit) and is secreted by several types of immune cells, such as natural killer cells and dendritic cells. The IL-23 receptor is composed of the subunit IL-12Rβ1 and the IL-23-specific subunit IL-23R. The binding of IL-23 to its specific cell surface receptor regulates a number of functions, including proliferation and differentiation of cells and secretion of cell factors. Memory T cells are a subset of T cells that secrete numerous important cell factors, and they function in the immune response to infection and diseases like cancer, autoimmune disease and bronchial asthma. IL-23R is expressed on the surface of memory T cells, which suggests that it can specifically regulate memory T cell function. IL-23 has been widely used as a clinical indicator in immune-related diseases and shows potential for use in disease treatment. Here we review the current progress in the study of the role of IL-23 in the regulation of memory T cells. © 2016 S. Karger AG, Basel.

  7. MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis

    PubMed Central

    Delano, Matthew J.; Scumpia, Philip O.; Weinstein, Jason S.; Coco, Dominique; Nagaraj, Srinivas; Kelly-Scumpia, Kindra M.; O'Malley, Kerri A.; Wynn, James L.; Antonenko, Svetlana; Al-Quran, Samer Z.; Swan, Ryan; Chung, Chun-Shiang; Atkinson, Mark A.; Ramphal, Reuben; Gabrilovich, Dmitry I.; Reeves, Wesley H.; Ayala, Alfred; Phillips, Joseph; LaFace, Drake; Heyworth, Paul G.; Clare-Salzler, Michael; Moldawer, Lyle L.

    2007-01-01

    Polymicrobial sepsis alters the adaptive immune response and induces T cell suppression and Th2 immune polarization. We identify a GR-1+CD11b+ population whose numbers dramatically increase and remain elevated in the spleen, lymph nodes, and bone marrow during polymicrobial sepsis. Phenotypically, these cells are heterogeneous, immature, predominantly myeloid progenitors that express interleukin 10 and several other cytokines and chemokines. Splenic GR-1+ cells effectively suppress antigen-specific CD8+ T cell interferon (IFN) γ production but only modestly suppress antigen-specific and nonspecific CD4+ T cell proliferation. GR-1+ cell depletion in vivo prevents both the sepsis-induced augmentation of Th2 cell–dependent and depression of Th1 cell–dependent antibody production. Signaling through MyD88, but not Toll-like receptor 4, TIR domain–containing adaptor-inducing IFN-β, or the IFN-α/β receptor, is required for complete GR-1+CD11b+ expansion. GR-1+CD11b+ cells contribute to sepsis-induced T cell suppression and preferential Th2 polarization. PMID:17548519

  8. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV.

    PubMed

    Liu, Dongfang; Tian, Shuo; Zhang, Kai; Xiong, Wei; Lubaki, Ndongala Michel; Chen, Zhiying; Han, Weidong

    2017-12-01

    Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells contribute to the body's immune defenses. Current chimeric antigen receptor (CAR)-modified T cell immunotherapy shows strong promise for treating various cancers and infectious diseases. Although CAR-modified NK cell immunotherapy is rapidly gaining attention, its clinical applications are mainly focused on preclinical investigations using the NK92 cell line. Despite recent advances in CAR-modified T cell immunotherapy, cost and severe toxicity have hindered its widespread use. To alleviate these disadvantages of CAR-modified T cell immunotherapy, additional cytotoxic cell-mediated immunotherapies are urgently needed. The unique biology of NK cells allows them to serve as a safe, effective, alternative immunotherapeutic strategy to CAR-modified T cells in the clinic. While the fundamental mechanisms underlying the cytotoxicity and side effects of CAR-modified T and NK cell immunotherapies remain poorly understood, the formation of the immunological synapse (IS) between CAR-modified T or NK cells and their susceptible target cells is known to be essential. The role of the IS in CAR T and NK cell immunotherapies will allow scientists to harness the power of CAR-modified T and NK cells to treat cancer and infectious diseases. In this review, we highlight the potential applications of CAR-modified NK cells to treat cancer and human immunodeficiency virus (HIV), and discuss the challenges and possible future directions of CAR-modified NK cell immunotherapy, as well as the importance of understanding the molecular mechanisms of CAR-modified T cell- or NK cell-mediated cytotoxicity and side effects, with a focus on the CAR-modified NK cell IS.

  9. Size of the population of CD4+ natural killer T cells in the liver is maintained without supply by the thymus during adult life

    PubMed Central

    Kameyama, Hitoshi; Kawamura, Toshihiko; Naito, Tetsuya; Bannai, Makoto; Shimamura, Kazuhiko; Hatakeyama, Katsuyoshi; Abo, Toru

    2001-01-01

    Given that there are few natural killer T (NKT) cells in the liver of athymic nude mice and in neonatally thymectomized mice, it is still controversial whether all NKT cells existing in the liver are supplied by the thymus or if some such cells develop in the liver. To determine whether or not NKT cells are consistently supplied from the thymus during adult life, thymectomy was conducted in mice at the age of 8 weeks. Interestingly, the proportion and number of CD4+ NKT cells increased or remained unchanged in the liver after adult thymectomy and this phenomenon continued for up to 6 months after thymectomy. The administration of α-galactosylceramide induced severe cytopenia (due to apoptosis) of CD4+ NKT cells in the liver on day 1, but subsequent expansion of these NKT cells occurred in thymectomized mice similar to the case in normal mice. However, in thymectomized mice given lethal irradiation (9·5 Gy) and subsequent bone marrow transfer, the population of CD4+ NKT cells no longer expanded in the liver, although that of CD8+ NKT cells did. These results suggest that thymic CD4+ NKT cells, or their progenitors, may migrate to the liver at a neonatal stage but are not supplied from the thymus in the adult stage under usual conditions. CD8+ NKT cells can be generated in the liver. PMID:11683952

  10. Newtonian cell interactions shape natural killer cell education.

    PubMed

    Goodridge, Jodie P; Önfelt, Björn; Malmberg, Karl-Johan

    2015-09-01

    Newton's third law of motion states that for every action on a physical object there is an equal and opposite reaction. The dynamic change in functional potential of natural killer (NK) cells during education bears many features of such classical mechanics. Cumulative physical interactions between cells, under a constant influence of homeostatic drivers of differentiation, lead to a reactive spectrum that ultimately shapes the functionality of each NK cell. Inhibitory signaling from an array of self-specific receptors appear not only to suppress self-reactivity but also aid in the persistence of effector functions over time, thereby allowing the cell to gradually build up a functional potential. Conversely, the frequent non-cytolytic interactions between normal cells in the absence of such inhibitory signaling result in continuous stimulation of the cells and attenuation of effector function. Although an innate cell, the degree to which the fate of the NK cell is predetermined versus its ability to adapt to its own environment can be revealed through a Newtonian view of NK cell education, one which is both chronological and dynamic. As such, the development of NK cell functional diversity is the product of qualitatively different physical interactions with host cells, rather than simply the sum of their signals or an imprint based on intrinsically different transcriptional programs. © 2015 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.

  11. High folic acid intake reduces natural killer cell cytotoxicity in aged mice

    USDA-ARS?s Scientific Manuscript database

    Presence of unmetabolized folic acid in plasma, which is indicative of folic acid intake beyond the metabolic capacity of the body, is associated with reduced natural killer (NK) cell cytotoxicity in post-menopausal women >/= 50 years. NK cells are cytotoxic lymphocytes that are part of the innate i...

  12. Impairment of regulatory capacity of CD4+CD25+ regulatory T cells mediated by dendritic cell polarization and hyperthyroidism in Graves' disease.

    PubMed

    Mao, Chaoming; Wang, Shu; Xiao, Yichuan; Xu, Jingwei; Jiang, Qian; Jin, Min; Jiang, Xiaohua; Guo, Hua; Ning, Guang; Zhang, Yanyun

    2011-04-15

    Graves' disease (GD) is one of the most common autoimmune diseases. The immune dysfunction in GD involves the generation of thyroid-stimulating hormone receptor (TSHR) autoantibodies that presumably arise consequent to interactions among dendritic cells (DCs), T cells, and regulatory T (Treg) cells. However, the immunological mechanisms of interactions between them that lead to the induction and regulation of this autoimmune disease are poorly defined. In this study, we investigated whether DCs are the main cause of the defective activity of Treg cells in GD patients. We found a significant decrease in the percentage of circulating CD4(+)CD25(+)FOXP3(+) Treg cells in untreated GD patients (uGD), which was negatively correlated with the concentration of TSHR autoantibodies. uGD-derived DCs were polarized to increase the number of plasmacytoid DCs (pDCs) and conferred the ability to abrogate the suppressive function of Treg cells through inducing apoptosis of CD4(+)CD25(+) Treg cells in an IFN-α-dependent manner, and elevated thyroid hormones further exacerbated the effect. The nucleotide UDP, which inhibits IFN-α secretion of pDCs through P2Y6 receptor signaling, restored the suppressive function of CD4(+)CD25(+) Treg cells. Collectively, uGD-derived DCs through pDC polarization and elevated thyroid hormones act in concert to impair the regulatory capacity of Treg cells, facilitating the production of TSHR autoantibodies in the pathogenesis of GD.

  13. Generation of natural killer cells from hematopoietic stem cells in vitro for immunotherapy

    PubMed Central

    Luevano, Martha; Madrigal, Alejandro; Saudemont, Aurore

    2012-01-01

    Natural killer (NK) cells are part of the innate immune system and are an alluring option for immunotherapy due to their ability to kill infected cells or cancer cells without prior sensitization. Throughout the past 20 years, different groups have been able to reproduce NK cell development in vitro, and NK cell ontogeny studies have provided the basis for the establishment of protocols to produce NK cells in vitro for immunotherapy. Here, we briefly discuss NK cell development and NK cell immunotherapy approaches. We review the factors needed for NK cell differentiation in vitro, which stem cell sources have been used, published protocols, challenges and future directions for Good Manufacturing Practice protocols. PMID:22705914

  14. Planar Cell Polarity Pathway – Coordinating morphogenetic cell behaviors with embryonic polarity

    PubMed Central

    Gray, Ryan S.; Roszko, Isabelle; Solnica-Krezel, Lilianna

    2011-01-01

    Planar cell polarization entails establishment of cellular asymmetries within the tissue plane. An evolutionarily conserved Planar Cell Polarity (PCP) signaling system employs intra- and intercellular feedback interactions between its core components, including Frizzled, Van Gogh, Flamingo, Prickle and Dishevelled, to establish their characteristic asymmetric intracellular distributions and coordinate planar polarity of cell populations. By translating global patterning information into asymmetries of cell membranes and intracellular organelles, PCP signaling coordinates morphogenetic behaviors of individual cells and cell populations with the embryonic polarity. In vertebrates, by polarizing cilia in the node/Kupffer’s vesicle, PCP signaling links the anteroposterior to left-right embryonic polarity. PMID:21763613

  15. Classification of human natural killer cells based on migration behavior and cytotoxic response.

    PubMed

    Vanherberghen, Bruno; Olofsson, Per E; Forslund, Elin; Sternberg-Simon, Michal; Khorshidi, Mohammad Ali; Pacouret, Simon; Guldevall, Karolin; Enqvist, Monika; Malmberg, Karl-Johan; Mehr, Ramit; Önfelt, Björn

    2013-02-21

    Despite intense scrutiny of the molecular interactions between natural killer (NK) and target cells, few studies have been devoted to dissection of the basic functional heterogeneity in individual NK cell behavior. Using a microchip-based, time-lapse imaging approach allowing the entire contact history of each NK cell to be recorded, in the present study, we were able to quantify how the cytotoxic response varied between individual NK cells. Strikingly, approximately half of the NK cells did not kill any target cells at all, whereas a minority of NK cells was responsible for a majority of the target cell deaths. These dynamic cytotoxicity data allowed categorization of NK cells into 5 distinct classes. A small but particularly active subclass of NK cells killed several target cells in a consecutive fashion. These "serial killers" delivered their lytic hits faster and induced faster target cell death than other NK cells. Fast, necrotic target cell death was correlated with the amount of perforin released by the NK cells. Our data are consistent with a model in which a small fraction of NK cells drives tumor elimination and inflammation.

  16. Movements and Habitat Use of Satellite-Tagged False Killer Whales Around the Main Hawaiian Islands

    DTIC Science & Technology

    2010-01-01

    southern Ross Sea, Antarctica. Polar Biol 31:1461–1468 Baird RW, Gorgone AM (2005) False killer whale dorsal fin disfigurements as a possible indicator of...assessment of critical habitats of resident killer whales in waters off the Pacific coast of Canada. Can Sci Advis Secretariat Res Doc 2006/072...the high trophic level of false killer whales (Baird et al. 2008a), it is not surprising that the population size of false killer whales in Hawai‘i is

  17. Redistribution, Hyperproliferation, Activation of Natural Killer Cells and CD8 T Cells, and Cytokine Production During First-in-Human Clinical Trial of Recombinant Human Interleukin-15 in Patients With Cancer

    PubMed Central

    Conlon, Kevin C.; Lugli, Enrico; Welles, Hugh C.; Rosenberg, Steven A.; Fojo, Antonio Tito; Morris, John C.; Fleisher, Thomas A.; Dubois, Sigrid P.; Perera, Liyanage P.; Stewart, Donn M.; Goldman, Carolyn K.; Bryant, Bonita R.; Decker, Jean M.; Chen, Jing; Worthy, Tat'Yana A.; Figg, William D.; Peer, Cody J.; Sneller, Michael C.; Lane, H. Clifford; Yovandich, Jason L.; Creekmore, Stephen P.; Roederer, Mario; Waldmann, Thomas A.

    2015-01-01

    Purpose Interleukin-15 (IL-15) has significant potential in cancer immunotherapy as an activator of antitumor CD8 T and natural killer (NK) cells. The primary objectives of this trial were to determine safety, adverse event profile, dose-limiting toxicity, and maximum-tolerated dose of recombinant human IL-15 (rhIL-15) administered as a daily intravenous bolus infusion for 12 consecutive days in patients with metastatic malignancy. Patients and Methods We performed a first in-human trial of Escherichia coli–produced rhIL-15. Bolus infusions of 3.0, 1.0, and 0.3 μg/kg per day of IL-15 were administered for 12 consecutive days to patients with metastatic malignant melanoma or metastatic renal cell cancer. Results Flow cytometry of peripheral blood lymphocytes revealed dramatic efflux of NK and memory CD8 T cells from the circulating blood within minutes of IL-15 administration, followed by influx and hyperproliferation yielding 10-fold expansions of NK cells that ultimately returned to baseline. Up to 50-fold increases of serum levels of multiple inflammatory cytokines were observed. Dose-limiting toxicities observed in patients receiving 3.0 and 1.0 μg/kg per day were grade 3 hypotension, thrombocytopenia, and elevations of ALT and AST, resulting in 0.3 μg/kg per day being determined the maximum-tolerated dose. Indications of activity included clearance of lung lesions in two patients. Conclusion IL-15 could be safely administered to patients with metastatic malignancy. IL-15 administration markedly altered homeostasis of lymphocyte subsets in blood, with NK cells and γδ cells most dramatically affected, followed by CD8 memory T cells. To reduce toxicity and increase efficacy, alternative dosing strategies have been initiated, including continuous intravenous infusions and subcutaneous IL-15 administration. PMID:25403209

  18. Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma.

    PubMed

    Rook, Alain H; Gelfand, Joel M; Gelfand, Joel C; Wysocka, Maria; Troxel, Andrea B; Benoit, Bernice; Surber, Christian; Elenitsas, Rosalie; Buchanan, Marie A; Leahy, Deborah S; Watanabe, Rei; Kirsch, Ilan R; Kim, Ellen J; Clark, Rachael A

    2015-09-17

    Early-stage cutaneous T-cell lymphoma (CTCL) is a skin-limited lymphoma with no cure aside from stem cell transplantation. Twelve patients with stage IA-IIA CTCL were treated in a phase 1 trial of 0.03% and 0.06% topical resiquimod gel, a Toll-like receptor 7/8 agonist. Treated lesions significantly improved in 75% of patients and 30% had clearing of all treated lesions. Resiquimod also induced regression of untreated lesions. Ninety-two percent of patients had more than a 50% improvement in body surface area involvement by the modified Severity-Weighted Assessment Tool analysis and 2 patients experienced complete clearing of disease. Four of 5 patients with folliculotropic disease also improved significantly. Adverse effects were minor and largely skin limited. T-cell receptor sequencing and flow cytometry studies of T cells from treated lesions demonstrated decreased clonal malignant T cells in 90% of patients and complete eradication of malignant T cells in 30%. High responses were associated with recruitment and expansion of benign T-cell clones in treated skin, increased skin T-cell effector functions, and a trend toward increased natural killer cell functions. In patients with complete or near eradication of malignant T cells, residual clinical inflammation was associated with cytokine production by benign T cells. Fifty percent of patients had increased activation of circulating dendritic cells, consistent with a systemic response to therapy. In summary, topical resiquimod is safe and effective in early-stage CTCL and the first topical therapy to our knowledge that can induce clearance of untreated lesions and complete remissions in some patients. This trial was registered at www.clinicaltrials.gov as #NCT813320. © 2015 by The American Society of Hematology.

  19. Measurement of uterine natural killer cell percentage in the periimplantation endometrium from fertile women and women with recurrent reproductive failure: establishment of a reference range.

    PubMed

    Chen, Xiaoyan; Mariee, Najat; Jiang, Lingming; Liu, Yingyu; Wang, Chi Chiu; Li, Tin Chiu; Laird, Susan

    2017-12-01

    Uterine natural killer cells are the major leukocytes present in the periimplantation endometrium. Previous studies have found controversial differences in uterine natural killer cell percentage in women with recurrent reproductive failure compared with fertile controls. We sought to compare the uterine natural killer cell percentage in women with recurrent reproductive failure and fertile controls. This was a retrospective study carried out in university hospitals. A total of 215 women from 3 university centers participated in the study, including 97 women with recurrent miscarriage, 34 women with recurrent implantation failure, and 84 fertile controls. Endometrial biopsy samples were obtained precisely 7 days after luteinization hormone surge in a natural cycle. Endometrial sections were immunostained for CD56 and cell counting was performed by a standardized protocol. Results were expressed as percentage of positive uterine natural killer cell/total stromal cells. The median uterine natural killer cell percentage in Chinese ovulatory fertile controls in natural cycles was 2.5% (range 0.9-5.3%). Using 5th and 95th percentile to define the lower and upper limits of uterine natural killer cell percentage, the reference range was 1.2-4.5%. Overall, the groups with recurrent reproductive failure had significantly higher uterine natural killer cell percentage than the controls (recurrent miscarriage: median 3.2%, range 0.6-8.8%; recurrent implantation failure: median 3.1%, range 0.8-8.3%). However, there was a subset of both groups (recurrent miscarriage: 16/97; recurrent implantation failure: 6/34) that had lower uterine natural killer cell percentage compared to fertile controls. A reference range for uterine natural killer cell percentage in fertile women was established. Women with recurrent reproductive failure had uterine natural killer cell percentages both above and below the reference range. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Cryoablation combined with allogenic natural killer cell immunotherapy improves the curative effect in patients with advanced hepatocellular cancer.

    PubMed

    Lin, Mao; Liang, Shuzhen; Wang, Xiaohua; Liang, Yinqing; Zhang, Mingjie; Chen, Jibing; Niu, Lizhi; Xu, Kecheng

    2017-10-10

    In this study, the clinical efficacy of cryosurgery combined with allogenic natural killer cell immunotherapy for advanced hepatocellular cancer was evaluated. From October 2015 to March 2017, we enrolled 61 patients who met the enrollment criteria and divided them into two groups: 1) the simple cryoablation group (Cryo group, n = 26); and 2) the cryoablation combined with allogenic natural killer cells group (Cryo-NK group, n = 35), the safety and short-term effects were evaluated firstly, then the median progression-free survival, response rate and disease control rate were assessed. All adverse events experienced by the patients were recorded, and included local (e.g., pain, pleural effusion, and ascites) and systemic (e.g., chills, fatigue, and fever) reactions, fever was more frequent. Other possible seriously side effects (e.g., blood or bone marrow changes) were not detected. Combining allogeneic natural killer cells with cryoablation had a synergistic effect, not only enhancing the immune function, improving the quality of life of the patients, but also reducing the expression of AFP and significantly exhibiting good clinical efficacy of the patients. After a median follow-up of 8.7 months (3.9 -15.1months), median progression-free survival was higher in Cryo-NK (9.1 months) than in Cryo (7.6 months, P = 0.0107), median progression-free survival who received multiple natural killer was higher than who just received single natural killer (9.7 months vs.8.4 months, P = 0.0011, respectively), the response rate in Cryo-NK (60.0%) was higher than in Cryo (46.1%, P < 0.05), the disease control rate in Cryo-NK (85.7%) was higher than in Cryo group (69.2%, P < 0.01). Percutaneous cryoablation combined with allogeneic natural killer cell immunotherapy significantly increased median progression-free survival of advanced hepatocellular cancer patients. Multiple allogeneic natural killer cells infusion was associated with better prognosis to advanced hepatocellular

  1. Cryoablation combined with allogenic natural killer cell immunotherapy improves the curative effect in patients with advanced hepatocellular cancer

    PubMed Central

    Lin, Mao; Liang, Shuzhen; Wang, Xiaohua; Liang, Yinqing; Zhang, Mingjie; Chen, Jibing; Niu, Lizhi; Xu, Kecheng

    2017-01-01

    In this study, the clinical efficacy of cryosurgery combined with allogenic natural killer cell immunotherapy for advanced hepatocellular cancer was evaluated. From October 2015 to March 2017, we enrolled 61 patients who met the enrollment criteria and divided them into two groups: 1) the simple cryoablation group (Cryo group, n = 26); and 2) the cryoablation combined with allogenic natural killer cells group (Cryo-NK group, n = 35), the safety and short-term effects were evaluated firstly, then the median progression-free survival, response rate and disease control rate were assessed. All adverse events experienced by the patients were recorded, and included local (e.g., pain, pleural effusion, and ascites) and systemic (e.g., chills, fatigue, and fever) reactions, fever was more frequent. Other possible seriously side effects (e.g., blood or bone marrow changes) were not detected. Combining allogeneic natural killer cells with cryoablation had a synergistic effect, not only enhancing the immune function, improving the quality of life of the patients, but also reducing the expression of AFP and significantly exhibiting good clinical efficacy of the patients. After a median follow-up of 8.7 months (3.9 –15.1months), median progression-free survival was higher in Cryo-NK (9.1 months) than in Cryo (7.6 months, P = 0.0107), median progression-free survival who received multiple natural killer was higher than who just received single natural killer (9.7 months vs.8.4 months, P = 0.0011, respectively), the response rate in Cryo-NK (60.0%) was higher than in Cryo (46.1%, P < 0.05), the disease control rate in Cryo-NK (85.7%) was higher than in Cryo group (69.2%, P < 0.01). Percutaneous cryoablation combined with allogeneic natural killer cell immunotherapy significantly increased median progression-free survival of advanced hepatocellular cancer patients. Multiple allogeneic natural killer cells infusion was associated with better prognosis to advanced hepatocellular

  2. Role of natural killer cells in antibacterial immunity.

    PubMed

    Schmidt, Stanislaw; Ullrich, Evelyn; Bochennek, Konrad; Zimmermann, Stefanie-Yvonne; Lehrnbecher, Thomas

    2016-12-01

    Bacteria are a significant cause of infectious complications, in particular in immunocompromised patients. There is an increasing understanding that Natural Killer (NK) cells not only exhibit direct activity against bacteria, but also exert indirect antibacterial activity through interaction with other immune cells via cytokines and interferons. Areas covered: This review seeks to give a global overview of in vitro and in vivo data how NK cells interact with bacteria. In this regard, the review describes how NK cells directly damage and kill bacteria by soluble factors such as perforin, the impact of NK cells on other arms of the immune system, as well as how bacteria may inhibit NK cell activities. Expert commentary: A better characterization of the antibacterial effects of NK cells is urgently needed. With a better understanding of the interaction of NK cells and bacteria, NK cells may become a promising tool to prevent or to combat bacterial infections, e.g. by adoptively transferring NK cells to immunocompromised patients.

  3. Disruption of alpha beta but not of gamma delta T cell development by overexpression of the helix-loop-helix protein Id3 in committed T cell progenitors.

    PubMed Central

    Blom, B; Heemskerk, M H; Verschuren, M C; van Dongen, J J; Stegmann, A P; Bakker, A Q; Couwenberg, F; Res, P C; Spits, H

    1999-01-01

    Enforced expression of Id3, which has the capacity to inhibit many basic helix-loop-helix (bHLH) transcription factors, in human CD34(+) hematopoietic progenitor cells that have not undergone T cell receptor (TCR) gene rearrangements inhibits development of the transduced cells into TCRalpha beta and gamma delta cells in a fetal thymic organ culture (FTOC). Here we document that overexpression of Id3, in progenitors that have initiated TCR gene rearrangements (pre-T cells), inhibits development into TCRalpha beta but not into TCRgamma delta T cells. Furthermore, Id3 impedes expression of recombination activating genes and downregulates pre-Talpha mRNA. These observations suggest possible mechanisms by which Id3 overexpression can differentially affect development of pre-T cells into TCRalpha beta and gamma delta cells. We also observed that cell surface CD4(-)CD8(-)CD3(-) cells with rearranged TCR genes developed from Id3-transduced but not from control-transduced pre-T cells in an FTOC. These cells had properties of both natural killer (NK) and pre-T cells. These findings suggest that bHLH factors are required to control T cell development after the T/NK developmental checkpoint. PMID:10329625

  4. Why natural killer cells are not enough: a further understanding of killer immunoglobulin-like receptor and human leukocyte antigen.

    PubMed

    Alecsandru, Diana; García-Velasco, Juan A

    2017-06-01

    The immune system's role in recurrent reproductive failure is a controversial issue in assisted reproduction. Most studies into immune system implication in reproduction have focused on finding markers of peripheral blood and less on the uterine environment. Peripheral blood natural killer cells have become an "immune study core" for women with recurrent miscarriage or recurrent implantation failure, based on the mistaken notion that they cause reproductive failure by killing or "rejecting" the embryo. Maternal-fetal tolerance begins at the uterine level, so successful adaptation to the fetus occurs after a complicated process. Insufficient uterine lining invasion by an invading extravillous trophoblast is the primary defect in pregnancy disorders such as recurrent miscarriage. This process is regulated by the interaction between maternal killer immunoglobulin-like receptors (KIRs), expressed by uterine natural killer cells (uNK), and their ligand human leukocyte antigen (HLA) C, expressed by the extravillous trophoblast. Pregnancies are an increased risk of disorders in mothers with KIR AA when the fetus has paternal HLA-C2. A recent report has indicated that the expression of more than one paternal HLA-C by the extravillous trophoblast in assisted reproduction may affect placentation in mothers with KIR AA. This review provides insight into the immune system's role in assisted reproductive treatments. These insights can have an impact on the selection of single-embryo transfer and/or oocyte/sperm donor according to HLA-C in patients with recurrent implantation failure and recurrent miscarriage depending on their KIR haplotype. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. The 2017 WHO update on mature T- and natural killer (NK) cell neoplasms.

    PubMed

    Matutes, E

    2018-05-01

    Over the last decade, there has been a significant body of information regarding the biology of the lymphoid neoplasms. This clearly supports the need for updating the 2008 WHO (World Health Organization) classification of haematopoietic and lymphoid tumours. The 2017 WHO classification is not a new edition but an update and revision of the 4th edition. New provisional entities but not new definitive entities are included, and novel molecular data in most of the entities and changes in the nomenclature in few of them have been incorporated. In the context of the mature T- and NK-cell neoplasms, the most relevant updates concern to: 1-dysregulation of the JAK/STAT pathway due to gene mutations which are common to various aggressive and indolent neoplasms; 2-incorporation of new molecular players that are relevant to the pathogenesis of these neoplasms and/or have prognostic implications; 3-inclusion of new provisional entities within the subgroups of anaplastic, primarily intestinal and cutaneous lymphomas such as breast implant-associated anaplastic large cell lymphoma, indolent T-cell lymphoproliferative disorder of the gastrointestinal tract and primary cutaneous acral CD8 + T-cell lymphoma; 4-identification of poor prognostic subtypes of peripheral T-cell lymphomas not otherwise specified (PTCL, NOS) characterized by overexpression of certain genes and of a subgroup PTCL, NOS with a T follicular phenotype that now is included together with angioimmunoblastic T-cell lymphoma under the umbrella of lymphomas with a T follicular helper phenotype; and 5-refinement on the designation and definition of already established entities. A review of the major changes will be outlined. © 2018 John Wiley & Sons Ltd.

  6. Establishment and characterization of pygmy killer whale (Feresa attenuata) dermal fibroblast cell line.

    PubMed

    Yajing, Sun; Rajput, Imran Rashid; Ying, Huang; Fei, Yu; Sanganyado, Edmond; Ping, Li; Jingzhen, Wang; Wenhua, Liu

    2018-01-01

    The pygmy killer whale (Feresa attenuata) (PKW) is a tropical and subtropical marine mammal commonly found in the Atlantic, Indian and Pacific oceans. Since the PKWs live in offshore protected territories, they are rarely seen onshore. Hence, PKW are one of the most poorly understood oceanic species of odontocetes. The dermal tissue comes primarily from stranding events that occur along the coast of the Shantou, Guangdong, China. The sampled tissues were immediately processed and attached on collagen-coated 6-well tissue culture plate. The complete medium (DMEM and Ham's F12, fetal bovine serum, antibiotic and essential amino acids) was added to the culture plates. The primary culture (PKW-LWH) cells were verified as fibroblast by vimentin and karyotype analyses, which revealed 42 autosomes and two sex chromosomes X and Y. Following transfection of PKW-LWH cells with a plasmid encoding, the SV40 large T-antigens and the transfected cells were isolated and expanded. Using RT-PCR, western blot, immunofluorescence analysis and SV40 large T-antigen stability was confirmed. The cell proliferation rate of the fibroblast cells, PKW-LWHT was faster than the primary cells PKW-LWH with the doubling time 68.9h and 14.4h, respectively. In this study, we established PKW dermal fibroblast cell line for the first time, providing a unique opportunity for in vitro studies on the effects of environmental pollutants and pathogens that could be determined in PKW and/or Cetaceans.

  7. The Biology of Pichia membranifaciens Killer Toxins

    PubMed Central

    Belda, Ignacio; Ruiz, Javier; Alonso, Alejandro; Marquina, Domingo; Santos, Antonio

    2017-01-01

    The killer phenomenon is defined as the ability of some yeast to secrete toxins that are lethal to other sensitive yeasts and filamentous fungi. Since the discovery of strains of Saccharomyces cerevisiae capable of secreting killer toxins, much information has been gained regarding killer toxins and this fact has substantially contributed knowledge on fundamental aspects of cell biology and yeast genetics. The killer phenomenon has been studied in Pichia membranifaciens for several years, during which two toxins have been described. PMKT and PMKT2 are proteins of low molecular mass that bind to primary receptors located in the cell wall structure of sensitive yeast cells, linear (1→6)-β-d-glucans and mannoproteins for PMKT and PMKT2, respectively. Cwp2p also acts as a secondary receptor for PMKT. Killing of sensitive cells by PMKT is characterized by ionic movements across plasma membrane and an acidification of the intracellular pH triggering an activation of the High Osmolarity Glycerol (HOG) pathway. On the contrary, our investigations showed a mechanism of killing in which cells are arrested at an early S-phase by high concentrations of PMKT2. However, we concluded that induced mortality at low PMKT2 doses and also PMKT is indeed of an apoptotic nature. Killer yeasts and their toxins have found potential applications in several fields: in food and beverage production, as biocontrol agents, in yeast bio-typing, and as novel antimycotic agents. Accordingly, several applications have been found for P. membranifaciens killer toxins, ranging from pre- and post-harvest biocontrol of plant pathogens to applications during wine fermentation and ageing (inhibition of Botrytis cinerea, Brettanomyces bruxellensis, etc.). PMID:28333108

  8. Saposins modulate human invariant Natural Killer T cells self-reactivity and facilitate lipid exchange with CD1d molecules during antigen presentation

    PubMed Central

    Salio, Mariolina; Ghadbane, Hemza; Dushek, Omer; Shepherd, Dawn; Cypen, Jeremy; Gileadi, Uzi; Aichinger, Michael C.; Napolitani, Giorgio; Qi, Xiaoyang; van der Merwe, P. Anton; Wojno, Justyna; Veerapen, Natacha; Cox, Liam R.; Besra, Gurdyal S.; Yuan, Weiming; Cresswell, Peter; Cerundolo, Vincenzo

    2013-01-01

    Lipid transfer proteins, such as molecules of the saposin family, facilitate extraction of lipids from biological membranes for their loading onto CD1d molecules. Although it has been shown that prosaposin-deficient mice fail to positively select invariant natural killer T (iNKT) cells, it remains unclear whether saposins can facilitate loading of endogenous iNKT cell agonists in the periphery during inflammatory responses. In addition, it is unclear whether saposins, in addition to loading, also promote dissociation of lipids bound to CD1d molecules. To address these questions, we used a combination of cellular assays and demonstrated that saposins influence CD1d-restricted presentation to human iNKT cells not only of exogenous lipids but also of endogenous ligands, such as the self-glycosphingolipid β-glucopyranosylceramide, up-regulated by antigen-presenting cells following bacterial infection. Furthermore, we demonstrated that in human myeloid cells CD1d-loading of endogenous lipids after bacterial infection, but not at steady state, requires trafficking of CD1d molecules through an endo-lysosomal compartment. Finally, using BIAcore assays we demonstrated that lipid-loaded saposin B increases the off-rate of lipids bound to CD1d molecules, providing important insights into the mechanisms by which it acts as a “lipid editor,” capable of fine-tuning loading and unloading of CD1d molecules. These results have important implications in understanding how to optimize lipid-loading onto antigen-presenting cells, to better harness iNKT cells central role at the interface between innate and adaptive immunity. PMID:24248359

  9. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation.

    PubMed

    Daley, Donnele; Zambirinis, Constantinos Pantelis; Seifert, Lena; Akkad, Neha; Mohan, Navyatha; Werba, Gregor; Barilla, Rocky; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu Raj Kumar; Avanzi, Antonina; Tippens, Daniel; Narayanan, Rajkishen; Jang, Jung-Eun; Newman, Elliot; Pillarisetty, Venu Gopal; Dustin, Michael Loran; Bar-Sagi, Dafna; Hajdu, Cristina; Miller, George

    2016-09-08

    Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The signalling receptor MCAM coordinates apical-basal polarity and planar cell polarity during morphogenesis

    PubMed Central

    Gao, Qian; Zhang, Junfeng; Wang, Xiumei; Liu, Ying; He, Rongqiao; Liu, Xingfeng; Wang, Fei; Feng, Jing; Yang, Dongling; Wang, Zhaoqing; Meng, Anming; Yan, Xiyun

    2017-01-01

    The apical–basal (AB) polarity and planar cell polarity (PCP) provide an animal cell population with different phenotypes during morphogenesis. However, how cells couple these two patterning systems remains unclear. Here we provide in vivo evidence that melanoma cell adhesion molecule (MCAM) coordinates AB polarity-driven lumenogenesis and c-Jun N-terminal kinase (JNK)/PCP-dependent ciliogenesis. We identify that MCAM is an independent receptor of fibroblast growth factor 4 (FGF4), a membrane anchor of phospholipase C-γ (PLC-γ), an immediate upstream receptor of nuclear factor of activated T-cells (NFAT) and a constitutive activator of JNK. We find that MCAM-mediated vesicular trafficking towards FGF4, while generating a priority-grade transcriptional response of NFAT determines lumenogenesis. We demonstrate that MCAM plays indispensable roles in ciliogenesis through activating JNK independently of FGF signals. Furthermore, mcam-deficient zebrafish and Xenopus exhibit a global defect in left-right (LR) asymmetric establishment as a result of morphogenetic failure of their LR organizers. Therefore, MCAM coordination of AB polarity and PCP provides insight into the general mechanisms of morphogenesis. PMID:28589943

  11. CD28 T-cell costimulatory molecule expression in pemphigus vulgaris.

    PubMed

    Alecu, M; Ursaciuc, C; Surcel, M; Coman, G; Ciotaru, D; Dobre, M

    2009-03-01

    CD28 superfamily of immune costimulatory molecules could play an important role in autotolerance control. CD28 costimulation seems to be necessary for regulatory T cell (Treg) activation and successive suppressive activities involved in autoimmunity protection. This study investigates CD28 expression, especially inducible costimulator fraction, on T lymphocytes in pemphigus vulgaris (PV) patients. CD28 expression on T lymphocytes was assessed in 16 PV patients during acute attack. All patients and 10 healthy control subjects were tested for lymphocyte populations, T-cell subpopulations (T-CD4+, T-CD8+), Treg and CD28 expression on T-cell subpopulations. T, B and natural killer cells average values in PV patients were close to the control group values. Compared with control group, PV values showed lower Treg (2.2% compared with 4.7%), slightly decreased CD4+ CD28+ T cells (91% compared with 95%), higher CD4+ CD28- T cells (9% compared with 5%), decreased CD8+ CD28+ T cells (57% and 73%, respectively) and significantly enhanced CD8+ CD28- T cells (43% compared with 27%). These data suggest that Treg-mediated suppressor T-cell effects could be diminished in PV, together with an abnormal or ineffective subsequent helper T-cell suppression. CD28 high expression on helper T cells and low expression on suppressor T cells are arguments for a potential CD28 role in PV autoimmune response mechanism.

  12. Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model

    PubMed Central

    Swift, Brenna E.; Williams, Brent A.; Kosaka, Yoko; Wang, Xing-Hua; Medin, Jeffrey A.; Viswanathan, Sowmya; Martinez-Lopez, Joaquin; Keating, Armand

    2012-01-01

    Background Novel therapies capable of targeting drug resistant clonogenic MM cells are required for more effective treatment of multiple myeloma. This study investigates the cytotoxicity of natural killer cell lines against bulk and clonogenic multiple myeloma and evaluates the tumor burden after NK cell therapy in a bioluminescent xenograft mouse model. Design and Methods The cytotoxicity of natural killer cell lines was evaluated against bulk multiple myeloma cell lines using chromium release and flow cytometry cytotoxicity assays. Selected activating receptors on natural killer cells were blocked to determine their role in multiple myeloma recognition. Growth inhibition of clonogenic multiple myeloma cells was assessed in a methylcellulose clonogenic assay in combination with secondary replating to evaluate the self-renewal of residual progenitors after natural killer cell treatment. A bioluminescent mouse model was developed using the human U266 cell line transduced to express green fluorescent protein and luciferase (U266eGFPluc) to monitor disease progression in vivo and assess bone marrow engraftment after intravenous NK-92 cell therapy. Results Three multiple myeloma cell lines were sensitive to NK-92 and KHYG-1 cytotoxicity mediated by NKp30, NKp46, NKG2D and DNAM-1 activating receptors. NK-92 and KHYG-1 demonstrated 2- to 3-fold greater inhibition of clonogenic multiple myeloma growth, compared with killing of the bulk tumor population. In addition, the residual colonies after treatment formed significantly fewer colonies compared to the control in a secondary replating for a cumulative clonogenic inhibition of 89–99% at the 20:1 effector to target ratio. Multiple myeloma tumor burden was reduced by NK-92 in a xenograft mouse model as measured by bioluminescence imaging and reduction in bone marrow engraftment of U266eGFPluc cells by flow cytometry. Conclusions This study demonstrates that NK-92 and KHYG-1 are capable of killing clonogenic and bulk

  13. Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model.

    PubMed

    Swift, Brenna E; Williams, Brent A; Kosaka, Yoko; Wang, Xing-Hua; Medin, Jeffrey A; Viswanathan, Sowmya; Martinez-Lopez, Joaquin; Keating, Armand

    2012-07-01

    Novel therapies capable of targeting drug resistant clonogenic MM cells are required for more effective treatment of multiple myeloma. This study investigates the cytotoxicity of natural killer cell lines against bulk and clonogenic multiple myeloma and evaluates the tumor burden after NK cell therapy in a bioluminescent xenograft mouse model. The cytotoxicity of natural killer cell lines was evaluated against bulk multiple myeloma cell lines using chromium release and flow cytometry cytotoxicity assays. Selected activating receptors on natural killer cells were blocked to determine their role in multiple myeloma recognition. Growth inhibition of clonogenic multiple myeloma cells was assessed in a methylcellulose clonogenic assay in combination with secondary replating to evaluate the self-renewal of residual progenitors after natural killer cell treatment. A bioluminescent mouse model was developed using the human U266 cell line transduced to express green fluorescent protein and luciferase (U266eGFPluc) to monitor disease progression in vivo and assess bone marrow engraftment after intravenous NK-92 cell therapy. Three multiple myeloma cell lines were sensitive to NK-92 and KHYG-1 cytotoxicity mediated by NKp30, NKp46, NKG2D and DNAM-1 activating receptors. NK-92 and KHYG-1 demonstrated 2- to 3-fold greater inhibition of clonogenic multiple myeloma growth, compared with killing of the bulk tumor population. In addition, the residual colonies after treatment formed significantly fewer colonies compared to the control in a secondary replating for a cumulative clonogenic inhibition of 89-99% at the 20:1 effector to target ratio. Multiple myeloma tumor burden was reduced by NK-92 in a xenograft mouse model as measured by bioluminescence imaging and reduction in bone marrow engraftment of U266eGFPluc cells by flow cytometry. This study demonstrates that NK-92 and KHYG-1 are capable of killing clonogenic and bulk multiple myeloma cells. In addition, multiple myeloma

  14. Peroxisome Proliferator-Activated Receptor γ Deficiency in T Cells Accelerates Chronic Rejection by Influencing the Differentiation of CD4+ T Cells and Alternatively Activated Macrophages

    PubMed Central

    Ye, Ping; Cheng, Chao; Wu, Jie; Wang, Sihua; Sun, Yuan; Liu, Zheng; Xie, Aini; Xia, Jiahong

    2014-01-01

    Background In a previous study, activation of the peroxisome proliferator–activated receptor γ (PPARγ) inhibited chronic cardiac rejection. However, because of the complexity of chronic rejection and the fact that PPARγ is widely expressed in immune cells, the mechanism of the PPARγ - induced protective effect was unclear. Materials and Methods A chronic rejection model was established using B6.C-H-2bm12KhEg (H-2bm12) mice as donors, and MHC II-mismatched T-cell-specific PPARγ knockout mice or wild type (WT) littermates as recipients. The allograft lesion was assessed by histology and immunohistochemistry. T cells infiltrates in the allograft were isolated, and cytokines and subpopulations were detected using cytokine arrays and flow cytometry. Transcription levels in the allograft were measured by RT-PCR. In vitro, the T cell subset differentiation was investigated after culture in various polarizing conditions. PPARγ-deficient regularory T cells (Treg) were cocultured with monocytes to test their ability to induce alternatively activated macrophages (AAM). Results T cell-specific PPARγ knockout recipients displayed reduced cardiac allograft survival and an increased degree of pathology compared with WT littermates. T cell-specific PPARγ knockout resulted in more CD4+ T cells infiltrating into the allograft and altered the Th1/Th2 and Th17/Treg ratios. The polarization of AAM was also reduced by PPARγ deficiency in T cells through the action of Th2 and Treg. PPARγ-deficient T cells eliminated the pioglitazone-induced polarization of AAM and reduced allograft survival. Conclusions PPARγ-deficient T cells influenced the T cell subset and AAM polarization in chronic allograft rejection. The mechanism of PPARγ activation in transplantation tolerance could yield a novel treatment without side effects. PMID:25383620

  15. Adoptive Cell Therapy of Melanoma with Cytokine-induced Killer Cells.

    PubMed

    Kim, Ji Sung; Kim, Yong Guk; Pyo, Minji; Lee, Hong Kyung; Hong, Jin Tae; Kim, Youngsoo; Han, Sang-Bae

    2015-04-01

    Melanoma is the most aggressive skin cancer and its incidence is gradually increasing worldwide. Patients with metastatic melanoma have a very poor prognosis (estimated 5-year survival rate of <16%). In the last few years, several drugs have been approved for malignant melanoma, such as tyrosine kinase inhibitors and immune checkpoint blockades. Although new therapeutic agents have improved progression-free and overall survival, their use is limited by drug resistance and drug-related toxicity. At the same time, adoptive cell therapy of metastatic melanoma with tumor-infiltrating lymphocytes has shown promising results in preclinical and clinical studies. In this review, we summarize the currently available drugs for treatment of malignant melanoma. In addition, we suggest cytokine-induced killer (CIK) cells as another candidate approach for adoptive cell therapy of melanoma. Our preclinical study and several previous studies have shown that CIK cells have potent anti-tumor activity against melanomas in vitro and in an in vivo human tumor xenograft model without any toxicity.

  16. Adoptive Cell Therapy of Melanoma with Cytokine-induced Killer Cells

    PubMed Central

    Kim, Ji Sung; Kim, Yong Guk; Pyo, Minji; Lee, Hong Kyung; Hong, Jin Tae; Kim, Youngsoo

    2015-01-01

    Melanoma is the most aggressive skin cancer and its incidence is gradually increasing worldwide. Patients with metastatic melanoma have a very poor prognosis (estimated 5-year survival rate of <16%). In the last few years, several drugs have been approved for malignant melanoma, such as tyrosine kinase inhibitors and immune checkpoint blockades. Although new therapeutic agents have improved progression-free and overall survival, their use is limited by drug resistance and drug-related toxicity. At the same time, adoptive cell therapy of metastatic melanoma with tumor-infiltrating lymphocytes has shown promising results in preclinical and clinical studies. In this review, we summarize the currently available drugs for treatment of malignant melanoma. In addition, we suggest cytokine-induced killer (CIK) cells as another candidate approach for adoptive cell therapy of melanoma. Our preclinical study and several previous studies have shown that CIK cells have potent anti-tumor activity against melanomas in vitro and in an in vivo human tumor xenograft model without any toxicity. PMID:25922594

  17. Diversification of both KIR and NKG2 natural killer cell receptor genes in macaques - implications for highly complex MHC-dependent regulation of natural killer cells.

    PubMed

    Walter, Lutz; Petersen, Beatrix

    2017-02-01

    The killer immunoglobulin-like receptors (KIR) as well as their MHC class I ligands display enormous genetic diversity and polymorphism in macaque species. Signals resulting from interaction between KIR or CD94/NKG2 receptors and their cognate MHC class I proteins essentially regulate the activity of natural killer (NK) cells. Macaque and human KIR share many features, such as clonal expression patterns, gene copy number variations, specificity for particular MHC class I allotypes, or epistasis between KIR and MHC class I genes that influence susceptibility and resistance to immunodeficiency virus infection. In this review article we also annotated publicly available rhesus macaque BAC clone sequences and provide the first description of the CD94-NKG2 genomic region. Besides the presence of genes that are orthologous to human NKG2A and NKG2F, this region contains three NKG2C paralogues. Hence, the genome of rhesus macaques contains moderately expanded and diversified NKG2 genes in addition to highly diversified KIR genes. The presence of two diversified NK cell receptor families in one species has not been described before and is expected to require a complex MHC-dependent regulation of NK cells. © 2016 John Wiley & Sons Ltd.

  18. Selective Blockade of Human Natural Killer Cells by a Monoclonal Antibody

    NASA Astrophysics Data System (ADS)

    Newman, Walter

    1982-06-01

    A murine monoclonal antibody, 13.1, which blocks human natural killer (NK) cell-mediated lysis, has been developed. Hybridoma 13.1 was derived by fusion of NS-1 cells with spleen cells from mice immunized with an enriched population of NK cells. Supernatants of growing hybridomas were screened for their ability to block NK cell-mediated lysis of K562 targets. Antibody 13.1 is an IgG1 with a single light chain type and it does not fix complement. The 13.1 antigen is expressed on all peripheral blood mononuclear cells, with an antigen density approximately 1/30th that of HLA antigen heavy chain. Pretreatment and washing experiments revealed that inhibition of cytotoxicity occurred at the effector cell level only. Significant blocking was achieved with nanogram quantities of antibody and was not due to toxic effects on NK cells. Likewise, controls with other antibodies of the same subclass demonstrated that blocking was not a consequence of mere binding to NK cells. When a panel of 17 NK cell-susceptible targets was tested, the lysis of only 5 of these was blocked, namely K562, HL-60, KG-1, Daudi, and HEL, a human erythroleukemic cell line. The lysis of 12 human B cell and T cell line targets was not inhibited. In addition to the demonstration that the 13.1 antigen is a crucial cell surface structure involved in NK lysis, a heterogeneity of target cell recognition has been revealed that argues for the proposition that individual NK cells have multiple recognitive capabilities.

  19. Predictors of survival of natural killer/T-cell lymphoma, nasal type, in a non-Asian population: a single cancer centre experience

    PubMed Central

    Vásquez, Jule; Serrano, Mariana; Lopez, Lourdes; Pacheco, Cristian; Quintana, Shirley

    2016-01-01

    Background Natural killer/T-cell lymphoma (NKTCL), part of T-cell and NK-cell neoplasms in the World Health Organisation (WHO) classification, is an aggressive lymphoma with poor prognosis more predominantly seen in Asian and South American countries. This study evaluates the factors associated with survival among patients with newly diagnosed NKTCL in Peru. Methods Information was abstracted from medical records (MR) for all NKTCL patients >13 years of age at the Instituto Nacional de Enfermedades Neoplasicas (INEN) between 2002 and 2011. The estimate of the survival curves was performed by the Kaplan-Meier method, and the difference was computed by the log-rank test. Results Around 226 MR were reviewed, 153 met the selection criteria, the median age was 40 years (14–84). The median progression-free survival (PFS) was 20 months, five year PFS was 42.6%, univariable analysis (UA) showed statistical significance (p < 0.05) for male sex, non-nasal primary site, advanced clinical stages, B symptoms, poor performance status, regional nodal involvement (RNI). In the multivariate analysis the only poor prognostic factors was primary non-nasal (Hazard ratio (HR) = 2.40, 95% confidence interval (CI) = 1.43– 4.02, P = 0.01). The median overall survival (OS) was 49 months, five year OS was 48.9%, UA showed statistical significance for non-nasal primary site, advanced clinical stages, B symptoms, lactate dehydrogenase (LDH) > normal, RNI and local tumour invasion. In the multivariate analysis, primary non-nasal was the only poor prognostic factor with HR = 2.57, 95% CI = 1.37–4.83, P = 0.03. Conclusions In Peru, OS of NKTCL is similar to other countries. This result suggests that non-nasal NKTCL is the only poor prognostic factor of OS and PFS. PMID:27994644

  20. PET/CT aids the staging of and radiotherapy planning for early-stage extranodal natural killer/T-cell lymphoma, nasal type: A case series

    PubMed Central

    2011-01-01

    Extranodal natural killer/T-cell lymphoma (ENKTL), nasal type, is a rare form of non-Hodgkin lymphoma. Treatment of ENKTL primarily relies on radiation; thus, proper delineation of target volumes is critical. Currently, the ideal modalities for delineation of gross tumor volume for ENKTL are unknown. We describe three consecutive cases of localized ENKTL that presented to the Nova Scotia Cancer Centre in Halifax, Nova Scotia. All patients had a planning CT and MRI as well as a planning FDG-PET/CT in the radiotherapy treatment position, wearing immobilization masks. All patients received radiation alone. In two patients, PET/CT changed not only the stage, but also the target volume requiring treatment. The third patient was unable to tolerate an MRI, but was able to undergo PET/CT, which improved the accuracy of the target volume. PET/CT aided the staging of and radiotherapy planning for our patients and appears to be a promising tool in the treatment of ENKTL. PMID:22208903

  1. Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications

    PubMed Central

    LAPTEVA, NATALIA; DURETT, APRIL G.; SUN, JIALI; ROLLINS, LISA A.; HUYE, LESLIE L.; FANG, JIAN; DANDEKAR, VARADA; MEI, ZHUYONG; JACKSON, KIMBERLEY; VERA, JUAN; ANDO, JUN; NGO, MINHTRAN C.; COUSTAN-SMITH, ELAINE; CAMPANA, DARIO; SZMANIA, SUSANN; GARG, TARUN; MORENO-BOST, AMBERLY; VANRHEE, FRITS; GEE, ADRIAN P.; ROONEY, CLIONA M.

    2016-01-01

    Background aims Interest in natural killer (NK) cell-based immunotherapy has resurged since new protocols for the purification and expansion of large numbers of clinical-grade cells have become available. Methods We have successfully adapted a previously described NK expansion method that uses K562 cells expressing interleukin (IL)-15 and 4-1 BB Ligand (BBL) (K562-mb15-41BBL) to grow NK cells in novel gas-permeable static cell culture flasks (G-Rex). Results Using this system we produced up to 19 × 109 functional NK cells from unseparated apheresis products, starting with 15 × 107 CD3− CD56+ NK cells, within 8–10 days of culture. The G-Rex yielded a higher fold expansion of NK cells than conventional gas-permeable bags and required no cell manipulation or feeding during the culture period. We also showed that K562-mb15-41BBL cells up-regulated surface HLA class I antigen expression upon stimulation with the supernatants from NK cultures and stimulated alloreactive CD8+ T cells within the NK cultures. However, these CD3+ T cells could be removed successfully using the CliniMACS system. We describe our optimized NK cell cryopreservation method and show that the NK cells are viable and functional even after 12 months of cryopreservation. Conclusions We have successfully developed a static culture protocol for large-scale expansion of NK cells in the gas permeable G-Rex system under good manufacturing practice (GMP) conditions. This strategy is currently being used to produce NK cells for cancer immunotherapy. PMID:22900959

  2. Interruption of the Sequential Release of Small and Large Molecules from Tumor Cells by Low Temperature During Cytolysis Mediated by Immune T-Cells or Complement

    PubMed Central

    Martz, Eric; Burakoff, Steven J.; Benacerraf, Baruj

    1974-01-01

    Specific lysis of tumor cells by thymus-derived lymphocytes from alloimmunized mice (T-effector specific lysis) was studied with target cells labeled with isotopes attached to both small (14C-labeled nicotinamide) and large (51Cr-labeled) molecules. The results confirm and extend previous reports that target cells release small molecules considerably earlier than large molecules during T-effector specific lysis. After interruption of T-effector specific lysis by specific antibody and complement directed against the killer cells, or by ethylenediaminetetraacetic acid, release of both isotopes continued, eventually reaching identical levels of specific release, the value of which represents the fraction of the target cell population which had been committed to die at the time these treatments were applied. On the other hand, release of both isotopes during T-effector specific lysis stops immediately when the cultures are cooled to 0°. Thus, while ethylenediaminetetraacetic acid or specific complement-mediated lysis of the killer cells merely prevents the initiation of any new damage to target cells, cooling to 0° also stops the lytic process in already-damaged target cells. The colloid osmotic phase of target cell lysis induced by specific antibody and complement was similarly stopped at 0° in tumor cells, but not in erythrocytes. Thus, in tumor target cells, both T-effector specific lysis and complement cause a sequential release of progressively larger molecules which can be immediately stopped at any point by cooling to 0°. PMID:4359327

  3. Measurement of top quark polarization in t t ¯ lepton +jets final states

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Aushev, V.; Aushev, Y.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brochmann, M.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cuth, J.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Franc, J.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schott, M.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shkola, O.; Simak, V.; Skubic, P.; Slattery, P.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stefaniuk, N.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; D0 Collaboration

    2017-01-01

    We present a measurement of top quark polarization in t t ¯ pair production in p p ¯ collisions at √{s }=1.96 TeV using data corresponding to 9.7 fb-1 of integrated luminosity recorded with the D0 detector at the Fermilab Tevatron Collider. We consider final states containing a lepton and at least three jets. The polarization is measured through the distribution of lepton angles along three axes: the beam axis, the helicity axis, and the transverse axis normal to the t t ¯ production plane. This is the first measurement of top quark polarization at the Tevatron using lepton +jet final states and the first measurement of the transverse polarization in t t ¯ production. The observed distributions are consistent with standard model predictions of nearly no polarization.

  4. Restoration of Immune Surveillance in Lung Cancer by Natural Killer Cells

    DTIC Science & Technology

    2016-10-01

    and had no dramatic effects on NK cell, unlike TGFb, although this product had been effective in the past. However, the pathway that Nicotine and... effects of nicotine on NK function in vivo in smokers and have proceeded to conduct the clinical protocol in Aim 2. Aim 2. To verify that use of...molecule, DAP12, that controls tumoricidal function in human Natural Killer (NK) Cells and to understand how nicotine , contained in tobacco smoke

  5. Decreased expression of CD69 in chronic fatigue syndrome in relation to inflammatory markers: evidence for a severe disorder in the early activation of T lymphocytes and natural killer cells.

    PubMed

    Mihaylova, Ivana; DeRuyter, Marcel; Rummens, Jean-Luc; Bosmans, Eugene; Maes, Michael

    2007-08-01

    There is some evidence that patients with chronic fatigue syndrome (CFS) suffer from immune abnormalities, such as immune activation and decreased immune cell responsivity upon polyclonal stimili. This study was designed to evaluate lymphocyte activation in CFS by using a CD69 expression assay. CD69 acts as a costimulatory molecule for T- and natural killer (NK) cell activation. We collected whole blood from CFS patients, who met CDC criteria, and healthy volunteers. The blood samples were stimulated with mitogens during 18 h and the levels of activated T and NK cells expressing CD69 were measured on a Coulter Epics flow cytometer using a three color immunofluorescence staining protocol. The expression of the CD69 activation marker on T cells (CD3+, CD3+CD4+, and CD3+CD8+) and on NK cells (CD45+CD56+) was significantly lower in CFS patients than in healthy subjects. These differences were significant to the extent that a significant diagnostic performance was obtained, i.e. the area under the ROC curve was around 89%. No differences either in the number of leukocytes or in the number or percentage of lymphocytes, i.e. CD3, CD4, CD8 and CD19, could be found between CFS patients and the controls. Patients with CFS show defects in T- and NK cell activation. Since induction of CD69 surface expression is dependent on the activation of the protein kinase C (PKC) activation pathway, it is suggested that in CFS there is a disorder in the early activation of the immune system involving PKC.

  6. Functional characterization of T cells in abdominal aortic aneurysms.

    PubMed

    Forester, Nerys D; Cruickshank, Sheena M; Scott, D Julian A; Carding, Simon R

    2005-06-01

    Abdominal aortic aneurysms (AAA) exhibit features of a chronic inflammatory disorder. The functional attributes of the T cells in AAA tissue are unclear, with little quantitative or functional data. Using a novel, non-enzymatic method to isolate viable cells from AAA tissue, functional properties of AAA T cells were investigated for the first time. Composition and phenotype of AAA T cells was determined by flow cytometry and verified by immunohistochemistry. Tissue mononuclear cells (MNCs) were cultured in the presence of T-cell mitogens, and cell cycle analysis and cytokine production assessed. Typical cell yield was 4.5 x 10(6) cells per gram of AAA tissue. The majority (58.1+/-5.3%) of haematopoietic (CD45+) cells recovered were CD3+ T cells, B cells comprised 41.1+/-5.7%, natural killer cells 7.3+/-2.5%, and macrophages 2%. Freshly isolated T cells were in resting (G1) state, with 25% expressing the activation-associated cell surface antigens major histocompatibility complex II and CD25. When stimulated in vitro, a significant proportion entered S and G2 phase of the cell cycle, up-regulated CD25, and secreted tumour necrosis factor-alpha, interferon-gamma, interleukin (IL)-5 and IL-6. Despite patient differences, the composition of the AAA inflammatory infiltrate was remarkably consistent, and when re-stimulated ex-vivo T cells produced a stereotypical cytokine response, consistent with the hypothesis that AAA T cells can promote tissue inflammation by secretion of proinflammatory cytokines, and in addition provide signals for B-cell help.

  7. Ocular anatomy, ganglion cell distribution and retinal resolution of a killer whale (Orcinus orca).

    PubMed

    Mass, Alla M; Supin, Alexander Y; Abramov, Andrey V; Mukhametov, Lev M; Rozanova, Elena I

    2013-01-01

    Retinal topography, cell density and sizes of ganglion cells in the killer whale (Orcinus orca) were analyzed in retinal whole mounts stained with cresyl violet. A distinctive feature of the killer whale's retina is the large size of ganglion cells and low cell density compared to terrestrial mammals. The ganglion cell diameter ranged from 8 to 100 µm, with the majority of cells within a range of 20-40 µm. The topographic distribution of ganglion cells displayed two spots of high cell density located in the temporal and nasal quadrants, 20 mm from the optic disk. The high-density areas were connected by a horizontal belt-like area passing below the optic disk of the retina. Peak cell densities in these areas were evaluated. Mean peak cell densities were 334 and 288 cells/mm(2) in the temporal and nasal high-density areas, respectively. With a posterior nodal distance of 19.5 mm, these high-density data predict a retinal resolution of 9.6' (3.1 cycles/deg.) and 12.6' (2.4 cycles/deg.) in the temporal and nasal areas, respectively, in water. Copyright © 2012 S. Karger AG, Basel.

  8. KHYG-1, a model for the study of enhanced natural killer cell cytotoxicity.

    PubMed

    Suck, Garnet; Branch, Donald R; Smyth, Mark J; Miller, Richard G; Vergidis, Joanna; Fahim, Soad; Keating, Armand

    2005-10-01

    To compare the cytotoxicity of KHYG-1 with other natural killer (NK)/NK T-cell lines and identify molecules that may be associated with enhanced cytotoxicity, thereby eventually leading to improved NK cell-mediated cancer immunotherapy. NK/NK T-cell lines KHYG-1, NK-92, YT, and SNT-8 were compared with a novel flow cytometric cytotoxicity assay under different culture conditions. Transcription, expression, and phosphorylation studies were performed using polymerase chain reaction sequence-specific primers, reverse transcription polymerase chain reaction, immunoblotting, and flow cytometry. KHYG-1 is a highly cytotoxic cell line, exceeding the cytolytic capacity of the other cell lines against K562. KHYG-1 is also highly cytotoxic against the leukemia cell lines EM2, EM3, and HL60. The novel activation receptor NKp44 and its adaptor, DAP12, NKG2D, and constitutively phosphorylated ERK2 may be associated with the enhanced cytotoxicity of KHYG-1. This cell line most likely mediates cytolysis by granzyme M (but not granzymes A and B) together with perforin, which is constitutively fully cleaved to the 60-kD form, in contrast to the other cell lines. KHYG-1 is a valuable model for the study of enhanced cytotoxicity by NK cells. In addition to the activation of NKp44, KHYG-1 may induce apoptosis of tumor cells by the newly described granzyme M/perforin pathway. Targeted modifications of effector molecules demonstrated in this model could generate NK cells with even greater killing ability that may be particularly attractive for clinical application. Moreover, our demonstration of greater cytotoxicity of KHYG-1 versus NK-92 cells, already in clinical trials, suggests a direct therapeutic role for KHYG-1.

  9. HIV turns plasmacytoid dendritic cells (pDC) into TRAIL-expressing killer pDC and down-regulates HIV coreceptors by Toll-like receptor 7-induced IFN-alpha.

    PubMed

    Hardy, Andrew W; Graham, David R; Shearer, Gene M; Herbeuval, Jean-Philippe

    2007-10-30

    Plasmacytoid dendritic cells (pDC) are key players in viral immunity and produce IFN-alpha after HIV-1 exposure, which in turn regulates TNF-related apoptosis-inducing ligand (TRAIL) expression by CD4(+) T cells. We show here that infectious and noninfectious HIV-1 virions induce activation of pDC into TRAIL-expressing IFN-producing killer pDC (IKpDC). IKpDC expressed high levels of activation markers (HLA-DR, CD80, CD83, and CD86) and the migration marker CCR7. Surprisingly, CXCR4 and CCR5 were down-regulated on IKpDC. We also show that HIV-1-induced IKpDC depended on Toll-like receptor 7 (TLR7) activation. HIV-1 or TLR7 agonistexposed IKpDC induced apoptosis of the CD4(+) T cell line SupT1 via the TRAIL pathway. Furthermore, IFN-alpha produced after HIV-induced TLR7 stimulation was responsible for TRAIL expression and the down-regulation of both CXCR4 and CCR5 by IKpDC. In contrast, activation and migration markers were not regulated by IFN-alpha. Finally, IFN-alpha increased the survival of IKpDC. We characterized a subset of pDC with a killer activity that is activated by endosomal-associated viral RNA and not by infection.

  10. Characterization of tumor infiltrating Natural Killer cell subset

    PubMed Central

    Nissan, Aviram; Darash-Yahana, Merav; Peretz, Tamar; Mandelboim, Ofer; Rachmilewitz, Jacob

    2015-01-01

    The presence of tumor-infiltrating Natural Killer (NK) within a tumor bed may be indicative of an ongoing immune response toward the tumor. However, many studies have shown that an intense NK infiltration, is associated with advanced disease and may even facilitate cancer development. The exact role of the tumor infiltrating NK cells and the correlation between their presence and poor prognosis remains unclear. Interestingly, during pregnancy high numbers of a specific NK subset, CD56brightCD16dim, are accumulated within first trimester deciduas. These decidual NK (dNK) cells are unique in their gene expression pattern secret angiogenic factors that induce vascular growth. In the present study we demonstrate a significant enrichment of a CD56brighCD16dim NK cells within tumors. These NK cells express several dNK markers including VEGF. Hence, this study adds new insights into the identity of tumor residual NK cells, which has clear implications for the treatment of human cancer. PMID:26079948

  11. Enhancing Natural Killer Cell Mediated Targeting and Responses to Myeloid Leukemias

    DTIC Science & Technology

    2017-10-01

    Syndromes , AML – Acute Myeloid Leukemia, BiKE – Bi-specific Killer Engager, TriKE – Tri-specific Killer E 16. SECURITY CLASSIFICATION OF: 17...Natural Killer CML – Chronic Myeloid Leukemia MDS – Myelodysplastic Syndromes AML – Acute Myeloid Leukemia BiKE – Bi-specific Killer Engager TriKE...incidence of myeloid malignancies is increased due to exposure to ionizing radiation , chemicals, and other agents during deployment. Although

  12. Measurement of top quark polarization in t t ¯ lepton + jets final states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.

    We present a measurement of top quark polarization in t ¯ t pair production in p ¯ p collisions at √ s = 1.96 TeV using data corresponding to 9.7 fb -1 of integrated luminosity recorded with the D0 detector at the Fermilab Tevatron Collider. We consider final states containing a lepton and at least three jets. The polarization is measured through the distribution of lepton angles along three axes: the beam axis, the helicity axis, and the transverse axis normal to the t ¯ t production plane. This is the first measurement of top quark polarization at the Tevatronmore » using lepton + jet final states and the first measurement of the transverse polarization in t ¯ t production. The observed distributions are consistent with standard model predictions of nearly no polarization.« less

  13. Presence of natural killer-cell clones with variable proliferative capacity in chronic active Epstein-Barr virus infection.

    PubMed

    Nagata, H; Numata, T; Konno, A; Mikata, I; Kurasawa, K; Hara, S; Nishimura, M; Yamamoto, K; Shimizu, N

    2001-10-01

    Chronic active Epstein-Barr virus infection (CAEBV) is a syndrome that takes diverse clinical courses and is often associated with lymphoproliferative disorders of T/natural killer (NK)-cell lineage. We describe a patient with CAEBV associated with persistent pharyngeal ulcer, and with subsequent nasal T/NK-cell lymphoma in her neck lymph nodes and nasopharynx. Immunophenotyping of lymphoid cells showed that the lineage of Epstein-Barr virus (EBV)-positive cells in the patient was of NK-cell origin. By means of high-dose recombinant interleukin-2, we established an EBV-positive cell line of NK-cell lineage from her peripheral blood. Southern blot analysis for the number of terminal repeat sequences of EBV detected three NK-cell clones in the patient's lymph node. One of these clones was identical to the established cell line but was not observed in the pharyngeal ulcer, while the other two clones were present in the pharyngeal ulcer. These results suggest that the patient had expansion of the three NK-cell clones, one of which had proliferative capacity in vitro and was involved in the formation of the lymphoma. Moreover, the results suggest that the proliferative capacity of EBV-positive cells can be variable even in a single patient, and this variability may explain the clinical diversity in CAEBV.

  14. Progressive lentivirus infection induces natural killer cell receptor-expressing B cells in the gastrointestinal tract.

    PubMed

    Manickam, Cordelia; Nwanze, Chiadika; Ram, Daniel R; Shah, Spandan V; Smith, Scott; Jones, Rhianna; Hueber, Brady; Kroll, Kyle; Varner, Valerie; Goepfert, Paul; Jost, Stephanie; Reeves, R Keith

    2018-05-03

    Recently, a seemingly novel innate immune cell subset bearing features of natural killer and B cells was identified in mice. So-called NKB cells appear as first responders to infections, but whether this cell population is truly novel or is in fact a subpopulation of B cells and exists in higher primates remains unclear. The objective of this study was to identify NKB cells in primates and study the impact of HIV/SIV infections. NKB cells were quantified in both naïve and lentivirus infected rhesus macaques and humans by excluding lineage markers (CD3, CD127), and positive Boolean gating for CD20, NKG2A/C and/or NKp46. Additional phenotypic measures were conducted by RNA-probe and traditional flow cytometry. Circulating cytotoxic NKB cells were found at similar frequencies in humans and rhesus macaques (range, 0.01-0.2% of total lymphocytes). NKB cells were notably enriched in spleen (median, 0.4% of lymphocytes), but were otherwise systemically distributed in tonsil, lymph nodes, colon, and jejunum. Expression of immunoglobulins was highly variable, but heavily favoured IgM and IgA rather than IgG. Interestingly, NKB cell frequencies expanded in PBMC and colon during SIV infection, as did IgG expression, but were generally unaltered in HIV-infected humans. These results suggest a cell type expressing both natural killer and B-cell features exists in rhesus macaques and humans and are perturbed by HIV/SIV infection. The full functional niche remains unknown, but the unique phenotype and systemic distribution could make NKB cells unique targets for immunotherapeutics or vaccine strategies.

  15. Divide, Conquer, and Sense: CD8+CD28- T Cells in Perspective.

    PubMed

    Arosa, Fernando A; Esgalhado, André J; Padrão, Carolina A; Cardoso, Elsa M

    2016-01-01

    Understanding the rationale for the generation of a pool of highly differentiated effector memory CD8 + T cells displaying a weakened capacity to scrutinize for peptides complexed with major histocompatibility class I molecules via their T cell receptor, lacking the "signal 2" CD28 receptor, and yet expressing a highly diverse array of innate receptors, from natural killer receptors, interleukin receptors, and damage-associated molecular pattern receptors, among others, is one of the most challenging issues in contemporary human immunology. The prevalence of these differentiated CD8 + T cells, also known as CD8 + CD28 - , CD8 + KIR + , NK-like CD8 + T cells, or innate CD8 + T cells, in non-lymphoid organs and tissues, in peripheral blood of healthy elderly, namely centenarians, but also in stressful and chronic inflammatory conditions suggests that they are not merely end-of-the-line dysfunctional cells. These experienced CD8 + T cells are highly diverse and capable of sensing a variety of TCR-independent signals, which enables them to respond and fine-tune tissue homeostasis.

  16. AHR prevents human IL-1R1hi ILC3 differentiation to natural killer cells

    PubMed Central

    Hughes, Tiffany; Briercheck, Edward L.; Freud, Aharon G.; Trotta, Rossana; McClory, Susan; Scoville, Steven D.; Keller, Karen; Deng, Youcai; Cole, Jordan; Harrison, Nicholas; Mao, Charlene; Zhang, Jianying; Benson, Don M.; Yu, Jianhua; Caligiuri, Michael A.

    2014-01-01

    SUMMARY Accumulating evidence indicates that human natural killer (NK) cells develop in secondary lymphoid tissue (SLT) through a so-called “stage 3” developmental intermediate minimally characterized by a CD34-CD117+CD94- immunophenotype that lacks mature NK cell function. This stage 3 population is heterogeneous, potentially composed of functionally distinct innate lymphoid cell (ILC) types that includes interleukin-1 receptor (IL-1R1) positive, IL-22-producing ILC3s. Whether human ILC3s are developmentally related to NK cells is a subject of ongoing investigation. Here we show that antagonism of the aryl hydrocarbon receptor (AHR) or silencing of AHR gene expression promotes differentiation of tonsillar IL-22-producing IL-1R1hi human ILC3s to CD56brightCD94+ IFN-gamma-producing cytolytic mature NK cells expressing eomesodermin (EOMES) and T-Box Protein 21 (TBX21 or TBET). Hence, AHR is a transcription factor that prevents human IL-1R1hi ILC3s from differentiating into NK cells. PMID:24953655

  17. The Broad Spectrum of Human Natural Killer Cell Diversity.

    PubMed

    Freud, Aharon G; Mundy-Bosse, Bethany L; Yu, Jianhua; Caligiuri, Michael A

    2017-11-21

    Natural killer (NK) cells provide protection against infectious pathogens and cancer. For decades it has been appreciated that two major NK cell subsets (CD56 bright and CD56 dim ) exist in humans and have distinct anatomical localization patterns, phenotypes, and functions in immunity. In light of this traditional NK cell dichotomy, it is now clear that the spectrum of human NK cell diversity is much broader than originally appreciated as a result of variegated surface receptor, intracellular signaling molecule, and transcription factor expression; tissue-specific imprinting; and foreign antigen exposure. The recent discoveries of tissue-resident NK cell developmental intermediates, non-NK innate lymphoid cells, and the capacity for NK cells to adapt and differentiate into long-lived memory cells has added further complexity to this field. Here we review our current understanding of the breadth and generation of human NK cell diversity. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Adoptive transfer of natural killer cells promotes the anti-tumor efficacy of T cells.

    PubMed

    Goding, Stephen R; Yu, Shaohong; Bailey, Lisa M; Lotze, Michael T; Basse, Per H

    2017-04-01

    The density of NK cells in tumors correlates positively with prognosis in many types of cancers. The average number of infiltrating NK cells is, however, quite modest (approximately 30 NK cells/sq.mm), even in tumors deemed to have a "high" density of infiltrating NK cells. It is unclear how such low numbers of tumor-infiltrating NK cells can influence outcome. Here, we used ovalbumin-expressing tumor cell lines and TCR transgenic, OVA-specific cytotoxic T lymphocytes (OT-I-CTLs) to determine whether the simultaneous attack by anti-tumor CTLs and IL-2-activated NK (A-NK) cells synergistically increases the overall tumor cell kill and whether upregulation of tumor MHC class-I by NK cell-derived interferon-gamma (IFNγ) improves tumor-recognition and kill by anti-tumor CTLs. At equal E:T ratios, A-NK cells killed OVA-expressing tumor cells better than OT-I-CTLs. The cytotoxicity against OVA-expressing tumor cells increased by combining OT-I-CTLs and A-NK cells, but the increase was additive rather than synergistic. A-NK cells adenovirally-transduced to produce IL-12 (A-NK IL-12 ) produced high amounts of IFNγ. The addition of a low number of A-NK IL-12 cells to OT-I-CTLs resulted in a synergistic, albeit modest, increase in overall cytotoxicity. Pre-treatment of tumor cells with NK cell-conditioned medium increased tumor MHC expression and sensitivity to CTL-mediated killing. Pre-treatment of CTLs with NK cell-conditioned medium had no effect on CTL cytotoxicity. In vivo, MHC class-I expression by OVA-expressing B16 melanoma lung metastases increased significantly within 24-48h after adoptive transfer of A-NK IL-12 cells. OT-I-CTLs and A-NK IL-12 cells localized selectively and equally well into OVA-expressing B16 lung metastases and treatment of mice bearing 7-days-old OVA-B16 lung metastases with both A-NK IL-12 cells and OT-I-CTLs lead to a significant prolongation of survival. Thus, an important function of tumor-infiltrating NK cells may be to increase tumor

  19. Expansion of natural (NK1+) T cells that express alpha beta T cell receptors in transporters associated with antigen presentation-1 null and thymus leukemia antigen positive mice

    PubMed Central

    1996-01-01

    Thymic selection of natural killer-1+ natural T cells that express alpha beta T cell receptors requires a conserved beta 2-microglobulin- associated molecule, presumably CD1d, displayed by CD4+8+ thymocytes. Here we demonstrate that positive selection of natural T cells occurs independent of transporters associated with antigen presentation-1 (TAP- 1) function. Moreover, natural T cells in TAP-1o/o mice are numerically expanded. Several H-2 class Ib molecules function in a TAP-independent manner, suggesting that if expressed in TAP-1o/o thymocytes, they could play a role in natural T cell development. Of these class Ib molecules, H-2TL is expressed by TAP-1o/o thymocytes. Moreover, we find that thymi of TL+ mice congenic or transgenic for H-2T18 also have a numerically expanded natural T cell repertoire compared with TL- mice. This expansion, as in TAP-1o/o thymi, is evident in each of the limited T cell receptor V beta chains expressed by natural T cells, suggesting that TL and CD1d impact similar repertoires. Thus TL, in addition to CD1d, plays a role in natural T cell development. PMID:8879233

  20. Dietary Human Milk Oligosaccharides but Not Prebiotic Oligosaccharides Increase Circulating Natural Killer Cell and Mesenteric Lymph Node Memory T Cell Populations in Noninfected and Rotavirus-Infected Neonatal Piglets.

    PubMed

    Comstock, Sarah S; Li, Min; Wang, Mei; Monaco, Marcia H; Kuhlenschmidt, Theresa B; Kuhlenschmidt, Mark S; Donovan, Sharon M

    2017-06-01

    Background: Human milk oligosaccharides (HMOs) have antimicrobial and immunomodulatory actions. It has previously been reported that these oligosaccharides contribute to the reduced duration of rotavirus-induced diarrhea in pigs. Objective: We measured the effects of HMOs and prebiotic oligosaccharides on immune cell populations from noninfected and rotavirus-infected pigs. We hypothesized that dietary HMOs would modulate systemic and gastrointestinal immunity. Methods: Colostrum-deprived newborn pigs were fed formula, formula with 4 g HMOs/L (2'-fucosyllactose, lacto- N -neotetraose, 6'-sialyllactose, 3'-sialyllactose, and free sialic acid), or formula with 3.6 g short-chain galactooligosaccharides/L and 0.4 g long-chain fructooligosaccharides/L. On day 10, half of the pigs were infected with the porcine rotavirus strain OSU. Peripheral blood mononuclear cell (PBMC), mesenteric lymph node (MLN), and ileal Peyer's patch immune cell populations were assessed with the use of flow cytometry 5 d postinfection. Interferon-γ (IFN-γ)-producing cells were assessed with the use of Enzyme-Linked ImmunoSpot assay. Results: Infection changed immune cell populations with more systemic natural killer (NK) cells, memory effector T cells, and major histocompatibility complex II + cells in infected than noninfected pigs ( P < 0.06). Regardless of infection status, HMO-fed pigs had nearly twice as many PBMC NK cells, 36% more MLN effector memory T cells, and 5 times more PBMC basophils than formula-fed pigs ( P < 0.04). These populations were intermediate in pigs fed prebiotics. PBMCs from HMO-fed noninfected pigs had twice as many IFN-γ-producing cells as did those from formula-fed noninfected pigs ( P = 0.017). The PBMCs and MLNs of formula-fed noninfected pigs had 3 times more plasmacytoid dendritic cells (pDCs) than those of HMO-fed noninfected and formula-fed infected pigs ( P < 0.04). In the MLNs, the formula-fed noninfected pigs had more macrophages, pDCs, and mature DCs

  1. CD56bright natural killer cells and response to daclizumab HYP in relapsing-remitting MS

    PubMed Central

    Sheridan, J.; Amaravadi, L.; Riester, K.; Selmaj, K.; Bielekova, B.; Parr, E.; Giovannoni, G.

    2015-01-01

    Objective: To assess the relationship between CD56bright natural killer (NK) cells and multiple sclerosis (MS) disease activity in patients with relapsing-remitting MS treated with daclizumab high-yield process (DAC HYP). Methods: Data were from patients enrolled in a 52-week randomized, double-blind, placebo-controlled study of DAC HYP and its extension study. Assessments included relationships of CD56bright NK cell numbers (identified using fluorescence-activated cell sorting) at weeks 4 and 8 with the numbers of new or newly enlarging T2-hyperintense lesions between weeks 24 and 52 and the annualized relapse rate. Results: In DAC HYP–treated patients but not placebo-treated patients, the numbers of CD56bright NK cells increased over 52 weeks of treatment, and their numbers at weeks 4 and 8 predicted the number of new or newly enlarging T2-hyperintense lesions between weeks 24 and 52 of treatment (p ≤ 0.005 for each comparison). Similar but nonsignificant trends were observed between CD56bright NK cell counts and the annualized relapse rate in DAC HYP–treated patients. DAC HYP–treated patients who showed lower levels of expansion of CD56bright NK cells still developed fewer new or newly enlarging T2-hyperintense lesions than placebo-treated patients during the first year of treatment. Conclusions: CD56bright NK cells appear to mediate some of the treatment-related effects of DAC HYP, but their numbers do not account for the full effect of DAC HYP on MS-related outcomes. PMID:25635261

  2. The expression of human natural killer cell receptors in early life.

    PubMed

    Sundström, Y; Nilsson, C; Lilja, G; Kärre, K; Troye-Blomberg, M; Berg, L

    2007-01-01

    Natural killer (NK) cells play an important role in tumour immunosurveillance and the early defence against viral infections. Recognition of altered cells (i.e. infected- or tumour-cells) is achieved through a multiple receptor recognition strategy which gives the NK cells inhibitory or activating signals depending on the ligands present on the target cell. NK cells originate from the bone marrow where they develop and proliferate. However, further maturation processes and homeostasis of NK cells in peripheral blood are not well understood. To determine the proportions of cells and the expression of NK cell receptors, mononuclear cells from children at three time points during early childhood were compared, i.e. cord blood (CB), 2 and 5 years of age. The proportion of NK cells was high in CB, but the interferon-gamma (IFN-gamma) production low compared to later in life. In contrast, the proportion of T cells was low in CB. This may indicate a deviation of the regulatory function of NK cells in CB compared to later in life, implying an importance of innate immunity in early life before the adaptive immune system matures. Additionally, we found that the proportion of LIR-1(+) NK cells increased with increasing age while CD94(+)NKG2C(-) (NKG2A(+)) NK cells and the level of expression of NKG2D, NKp30 and NKp46 decreased with age. These age related changes in NK cell populations defined by the expression of activating and inhibitory receptors may be the result of pathogen exposure and/or a continuation of the maturation process that begins in the bone marrow.

  3. Regulatory T cell effects in antitumor laser immunotherapy: a mathematical model and analysis

    NASA Astrophysics Data System (ADS)

    Dawkins, Bryan A.; Laverty, Sean M.

    2016-03-01

    Regulatory T cells (Tregs) have tremendous influence on treatment outcomes in patients receiving immunotherapy for cancerous tumors. We present a mathematical model incorporating the primary cellular and molecular components of antitumor laser immunotherapy. We explicitly model developmental classes of dendritic cells (DCs), cytotoxic T cells (CTLs), primary and metastatic tumor cells, and tumor antigen. Regulatory T cells have been shown to kill antigen presenting cells, to influence dendritic cell maturation and migration, to kill activated killer CTLs in the tumor microenvironment, and to influence CTL proliferation. Since Tregs affect explicitly modeled cells, but we do not explicitly model dynamics of Treg themselves, we use model parameters to analyze effects of Treg immunosuppressive activity. We will outline a systematic method for assigning clinical outcomes to model simulations and use this condition to associate simulated patient treatment outcome with Treg activity.

  4. Activation of natural killer cells by hepatitis C virus particles in vitro

    PubMed Central

    Farag, M M S; Weigand, K; Encke, J; Momburg, F

    2011-01-01

    Little is known about the ability of hepatitis C virus (HCV) to alter early innate immune responses in infected patients. Previous studies have shown that natural killer (NK) cells are functionally impaired after interaction of recombinant HCV glycoprotein E2 with the co-stimulatory CD81 molecule in vitro; however, the functional consequences of a prolonged contact of NK cells with HCV particles have remained unclear. We have examined the phenotypes of purified, interleukin-2-activated NK cells from healthy donors and HCV genotype 1b patients after culture for 5 days with HCV pseudoparticles (HCVpp) and serum samples containing HCV genotype 1b. NK cells from healthy donors and chronic HCV patients were found to up-regulate receptors associated with activation (NKp46, NKp44, NKp30, NKG2D), while NK receptors from the killer cell immunoglobulin-like receptor family (KIR/CD158), predominantly having an inhibitory function, were significantly down-modulated after culture in the presence of HCV particles compared with control cultures of NK cells. HCV-infected sera and HCVpp elicited significantly higher secretion of the NK effector lymphokines interferon-γ and tumour necrosis factor-α. Furthermore, HCV stimulated the cytotoxic potential of NK cells from normal donors and patients. The enhanced activation of NK cells after prolonged culture with HCVpp or HCV-containing sera for 5 days suggests that these innate effector cells may play an important role in viral control during early phases of HCV infection. PMID:21682720

  5. SLP-76-ADAP adaptor module regulates LFA-1 mediated costimulation and T cell motility.

    PubMed

    Wang, Hongyan; Wei, Bin; Bismuth, Georges; Rudd, Christopher E

    2009-07-28

    Although adaptor ADAP (FYB) and its binding to SLP-76 has been implicated in TcR-induced "inside-out" signaling for LFA-1 activation in T cells, little is known regarding its role in LFA-1-mediated "outside-in" signaling. In this study, we demonstrate that ADAP and SLP-76-ADAP binding are coupled to LFA-1 costimulation of IL-2 production, F-actin clustering, cell polarization, and T cell motility. LFA-1 enhancement of anti-CD3-induced IL-2 production was completely dependent on SLP-76-ADAP binding. Further, anti-CD3 was found to require CD11a ligation by antibody or ICAM1 to cause T cell polarization. ADAP augmented this polarization induced by anti-CD3/CD11a, but not by anti-CD3 alone. ADAP expression with LFA-1 ligation alone was sufficient to polarize T cells directly and to increase T cell motility whereas the loss of ADAP in ADAP-/- primary T cells reduced motility. A mutant lacking SLP-76-binding sites (M12) blocked LFA-1 costimulation of IL-2 production, polarization, and motility. LFA-1-ADAP polarization was also dependent on src kinases, Rho GTPases, phospholipase C, and phosphoinositol 3-kinase. Our findings provide evidence of an obligatory role for the SLP-76-ADAP module in LFA-1-mediated costimulation in T cells.

  6. Killer (FASL regulatory) B cells are present during latent TB and are induced by BCG stimulation in participants with and without latent tuberculosis.

    PubMed

    van Rensburg, Ilana C; Loxton, Andre G

    2018-01-01

    Regulatory B cells (Bregs) have been shown to be present during several disease states. The phenotype of the cells is not completely defined and the function of these cells differ between disease. The presence of FASL expressing (killer) B cells during latent and successfully treated TB disease have been shown but whether these cells are similar to regulatory B cells remain unclear. We assessed the receptor expression of FASL/IL5 (killer B cells), CD24/CD38 (regulatory B cells) on whole peripheral blood of participants with untreated active TB and healthy controls. We then isolated B cells from a second cohort of M.tb exposed (Quantiferon (QFN) positive) and unexposed (Quantiferon negative) HIV negative participants, and evaluated the frequency of killer B cells induced following stimulation with BCG and/or CD40 and IL5. Our data reveal no difference in the expression on CD24 and CD38 between participants with active TB and the controls. There was also no difference in the frequency of regulatory B cells measured in the peripheral blood mononuclear cells (PBMC) fraction between latent TB and uninfected controls. We did however notice that regulatory B cells (CD24hiCD38hi) population express the FASL receptor. The expression of killer B cell phenotype (CD178+IL5RA+) was significantly higher in controls compared to those with active TB disease (1,06% vs 0,455%). Furthermore, we found that BCG restimulation significantly induced the FASL/IL5RA B cells but this was only evident in the QFN positive group. Our data suggest that both regulatory and killer B cells are present during latent and active TB disease but that the frequency of these populations are increased during latent disease. We also show that the FASL+IL5RA+ B killer B cells are induced in latent TB infection following BCG restimulation but whether these cells are indicative of protection remains unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Longitudinal investigation of natural killer cells and cytokines in chronic fatigue syndrome/myalgic encephalomyelitis

    PubMed Central

    2012-01-01

    Background Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) is an etiologically unexplained disorder characterised by irregularities in various aspects of the immunological function. Presently, it is unknown whether these immunological changes remain consistent over time. This study investigates Natural Killer (NK) cell cytotoxic activity, NK cell subsets (CD56brightCD16- and CD56dimCD16+) and cytokines, over the course of a12 month period in patients with CFS/ME. Methods The participants in the study comprised 65 (47.2 ± 11.5 years) CFS/ME participants and 21 (45.2 ±9.3 years) non-fatigued controls. Flow cytometry protocols were used to assess NK subsets and NK cytotoxic activity at various time points that included baseline (T1), 6 (T2) and 12 months (T3). Cytokine secretions were measured following mitogenic stimulation of peripheral blood mononuclear cells. Results NK cytotoxic activity was significantly decreased in the CFS/ME patients at T1, T2 and T3 compared to the non-fatigued group. Additionally, in comparison to the non-fatigued controls, the CFS/ME group had significantly lower numbers of CD56brightCD16- NK cells at both T1 and T2. Interestingly, following mitogenic stimulation, cytokine secretion revealed significant increases in IL-10, IFN-γ and TNF-α at T1 in the CFS/ME group. A significant decrease was observed at T2 in the CFS/ME group for IL-10 and IL-17A while at T3, IL-2 was increased in the CFS/ME group in comparison to the non-fatigued controls. Overall cytotoxic activity was significantly decreased at T3 compared to T1 and T2. CD56brightCD16- NK cells were much lower at T2 compared to T1 and T3. IL-10 and IL-17A secretion was elevated at T2 in comparison to T1 and T3. Conclusion These results confirm decreases in immune function in CFS/ME patients, suggesting an increased susceptibility to viral and other infections. Furthermore, NK cytotoxic activity may be a suitable biomarker for diagnosing CFS/ME as it was

  8. Functional characterization of T cells in abdominal aortic aneurysms

    PubMed Central

    Forester, Nerys D; Cruickshank, Sheena M; Scott, D Julian A; Carding, Simon R

    2005-01-01

    Abdominal aortic aneurysms (AAA) exhibit features of a chronic inflammatory disorder. The functional attributes of the T cells in AAA tissue are unclear, with little quantitative or functional data. Using a novel, non-enzymatic method to isolate viable cells from AAA tissue, functional properties of AAA T cells were investigated for the first time. Composition and phenotype of AAA T cells was determined by flow cytometry and verified by immunohistochemistry. Tissue mononuclear cells (MNCs) were cultured in the presence of T-cell mitogens, and cell cycle analysis and cytokine production assessed. Typical cell yield was 4·5 × 106 cells per gram of AAA tissue. The majority (58·1 ± 5·3%) of haematopoietic (CD45+) cells recovered were CD3+ T cells, B cells comprised 41·1 ± 5·7%, natural killer cells 7·3 ± 2·5%, and macrophages 2%. Freshly isolated T cells were in resting (G1) state, with 25% expressing the activation-associated cell surface antigens major histocompatibility complex II and CD25. When stimulated in vitro, a significant proportion entered S and G2 phase of the cell cycle, up-regulated CD25, and secreted tumour necrosis factor-α, interferon-γ, interleukin (IL)-5 and IL-6. Despite patient differences, the composition of the AAA inflammatory infiltrate was remarkably consistent, and when re-stimulated ex-vivo T cells produced a stereotypical cytokine response, consistent with the hypothesis that AAA T cells can promote tissue inflammation by secretion of proinflammatory cytokines, and in addition provide signals for B-cell help. PMID:15885133

  9. Diversity of killer cell immunoglobulin-like receptor genes in Indonesian populations of Java, Kalimantan, Timor and Irian Jaya.

    PubMed

    Velickovic, M; Velickovic, Z; Panigoro, R; Dunckley, H

    2009-01-01

    Killer cell immunoglobulin-like receptors (KIRs) regulate the activity of natural killer and T cells through interactions with specific human leucocyte antigen class I molecules on target cells. Population studies performed over the last several years have established that KIR gene frequencies (GFs) and genotype content vary considerably among different ethnic groups, indicating the extent of KIR diversity, some of which have also shown the effect of the presence or absence of specific KIR genes in human disease. We have determined the frequencies of 16 KIR genes and pseudogenes and genotypes in 193 Indonesian individuals from Java, East Timor, Irian Jaya (western half of the island of New Guinea) and Kalimantan provinces of Indonesian Borneo. All 16 KIR genes were observed in all four populations. Variation in GFs between populations was observed, except for KIR2DL4, KIR3DL2, KIR3DL3, KIR2DP1 and KIR3DP1 genes, which were present in every individual tested. When comparing KIR GFs between populations, both principal component analysis and a phylogenetic tree showed close clustering of the Kalimantan and Javanese populations, while Irianese populations were clearly separated from the other three populations. Our results indicate a high level of KIR polymorphism in Indonesian populations that probably reflects the large geographical spread of the Indonesian archipelago and the complex evolutionary history and population migration in this region.

  10. ER-mitochondria contacts control surface glycan expression and sensitivity to killer lymphocytes in glioma stem-like cells.

    PubMed

    Bassoy, Esen Yonca; Kasahara, Atsuko; Chiusolo, Valentina; Jacquemin, Guillaume; Boydell, Emma; Zamorano, Sebastian; Riccadonna, Cristina; Pellegatta, Serena; Hulo, Nicolas; Dutoit, Valérie; Derouazi, Madiha; Dietrich, Pierre Yves; Walker, Paul R; Martinvalet, Denis

    2017-06-01

    Glioblastoma is a highly heterogeneous aggressive primary brain tumor, with the glioma stem-like cells (GSC) being more sensitive to cytotoxic lymphocyte-mediated killing than glioma differentiated cells (GDC). However, the mechanism behind this higher sensitivity is unclear. Here, we found that the mitochondrial morphology of GSCs modulates the ER-mitochondria contacts that regulate the surface expression of sialylated glycans and their recognition by cytotoxic T lymphocytes and natural killer cells. GSCs displayed diminished ER-mitochondria contacts compared to GDCs. Forced ER-mitochondria contacts in GSCs increased their cell surface expression of sialylated glycans and reduced their susceptibility to cytotoxic lymphocytes. Therefore, mitochondrial morphology and dynamism dictate the ER-mitochondria contacts in order to regulate the surface expression of certain glycans and thus play a role in GSC recognition and elimination by immune effector cells. Targeting the mitochondrial morphology, dynamism, and contacts with the ER could be an innovative strategy to deplete the cancer stem cell compartment to successfully treat glioblastoma. © 2017 The Authors.

  11. Insufficient natural killer cell responses against retroviruses: how to improve NK cell killing of retrovirus-infected cells.

    PubMed

    Littwitz-Salomon, Elisabeth; Dittmer, Ulf; Sutter, Kathrin

    2016-11-08

    Natural killer (NK) cells belong to the innate immune system and protect against cancers and a variety of viruses including retroviruses by killing transformed or infected cells. They express activating and inhibitory receptors on their cell surface and often become activated after recognizing virus-infected cells. They have diverse antiviral effector functions like the release of cytotoxic granules, cytokine production and antibody dependent cellular cytotoxicity. The importance of NK cell activity in retroviral infections became evident due to the discovery of several viral strategies to escape recognition and elimination by NK cells. Mutational sequence polymorphisms as well as modulation of surface receptors and their ligands are mechanisms of the human immunodeficiency virus-1 to evade NK cell-mediated immune pressure. In Friend retrovirus infected mice the virus can manipulate molecular or cellular immune factors that in turn suppress the NK cell response. In this model NK cells lack cytokines for optimal activation and can be functionally suppressed by regulatory T cells. However, these inhibitory pathways can be overcome therapeutically to achieve full activation of NK cell responses and ultimately control dissemination of retroviral infection. One effective approach is to modulate the crosstalk between NK cells and dendritic cells, which produce NK cell-stimulating cytokines like type I interferons (IFN), IL-12, IL-15, and IL-18 upon retrovirus sensing or infection. Therapeutic administration of IFNα directly increases NK cell killing of retrovirus-infected cells. In addition, IL-2/anti-IL-2 complexes that direct IL-2 to NK cells have been shown to significantly improve control of retroviral infection by NK cells in vivo. In this review, we describe novel approaches to improve NK cell effector functions in retroviral infections. Immunotherapies that target NK cells of patients suffering from viral infections might be a promising treatment option for the

  12. Natural Killer Cells for Therapy of Leukemia

    PubMed Central

    Suck, Garnet; Linn, Yeh Ching; Tonn, Torsten

    2016-01-01

    Summary Clinical application of natural killer (NK) cells against leukemia is an area of intense investigation. In human leukocyte antigen-mismatched allogeneic hematopoietic stem cell transplantations (HSCT), alloreactive NK cells exert powerful anti-leukemic activity in preventing relapse in the absence of graft-versus-host disease, particularly in acute myeloid leukemia patients. Adoptive transfer of donor NK cells post-HSCT or in non-transplant scenarios may be superior to the currently widely used unmanipulated donor lymphocyte infusion. This concept could be further improved through transfusion of activated NK cells. Significant progress has been made in good manufacturing practice (GMP)-compliant large-scale production of stimulated effectors. However, inherent limitations remain. These include differing yields and compositions of the end-product due to donor variability and inefficient means for cryopreservation. Moreover, the impact of the various novel activation strategies on NK cell biology and in vivo behavior are barely understood. In contrast, reproduction of the third-party NK-92 drug from a cryostored GMP-compliant master cell bank is straightforward and efficient. Safety for the application of this highly cytotoxic cell line was demonstrated in first clinical trials. This novel ‘off-the-shelf’ product could become a treatment option for a broad patient population. For specific tumor targeting chimeric-antigen-receptor-engineered NK-92 cells have been designed. PMID:27226791

  13. Notch ligands Delta1 and Jagged1 transmit distinct signals to T-cell precursors

    PubMed Central

    Lehar, Sophie M.; Dooley, James; Farr, Andrew G.; Bevan, Michael J.

    2009-01-01

    Signaling through the Notch pathway plays an essential role in inducing T-lineage commitment and promoting the maturation of immature thymocytes. Using an in vitro culture system, we show that 2 different classes of Notch ligands, Jagged1 or Delta1, transmit distinct signals to T-cell progenitors. OP9 stromal cells expressing either Jagged1 or Delta1 inhibit the differentiation of DN1 thymocytes into the B-cell lineage, but only the Delta1-expressing stromal cells promote the proliferation and maturation of T-cell progenitors through the early double-negative (DN) stages of thymocyte development. Whereas the majority of bone marrow-derived stem cells do not respond to Jagged1 signals, T-cell progenitors respond to Jagged1 signals during a brief window of their development between the DN1 and DN3 stages of thymic development. During these stages, Jagged1 signals can influence the differentiation of immature thymocytes along the natural killer (NK) and γδ T-cell lineages. PMID:15486060

  14. Natural killer cells as a therapeutic tool for infectious diseases – current status and future perspectives

    PubMed Central

    Schmidt, Stanislaw; Tramsen, Lars; Rais, Bushra; Ullrich, Evelyn; Lehrnbecher, Thomas

    2018-01-01

    Natural Killer (NK) cells are involved in the host immune response against infections due to viral, bacterial and fungal pathogens, all of which are a significant cause of morbidity and mortality in immunocompromised patients. Since the recovery of the immune system has a major impact on the outcome of an infectious complication, there is major interest in strengthening the host response in immunocompromised patients, either by using cytokines or growth factors or by adoptive cellular therapies transfusing immune cells such as granulocytes or pathogen-specific T-cells. To date, relatively little is known about the potential of adoptively transferring NK cells in immunocompromised patients with infectious complications, although the anti-cancer property of NK cells is already being investigated in the clinical setting. This review will focus on the antimicrobial properties of NK cells and the current standing and future perspectives of generating and using NK cells as immunotherapy in patients with infectious complications, an approach which is promising and might have an important clinical impact in the future. PMID:29755697

  15. Outer membrane protein A of Acinetobacter baumannii induces differentiation of CD4+ T cells toward a Th1 polarizing phenotype through the activation of dendritic cells.

    PubMed

    Lee, Jun Sik; Lee, Je Chul; Lee, Chang-Min; Jung, In Duk; Jeong, Young-Il; Seong, Eun-Young; Chung, Hae-Young; Park, Yeong-Min

    2007-06-30

    Acinetobacter baumannii is an increasing hospital-acquired pathogen that causes a various type of infections, but little is known about the protective immune response to this microorganism. Outer membrane protein A of A. baumannii (AbOmpA) is a major porin protein and plays an important role in pathogenesis. We analyzed interaction between AbOmpA and dendritic cells (DCs) to characterize the role of this protein in promoting innate and adaptive immune responses. AbOmpA functionally activates bone marrow-derived DCs by augmenting expression of the surface markers, CD40, CD54, B7 family (CD80 and CD86) and major histocompatibility complex class I and II. AbOmpA induces production of Th1-promoting interleukin-12 from DCs and augments the syngeneic and allogeneic immunostimulatory capacity of DCs. AbOmpA stimulates production of interferon-gamma from T cells in mixed lymphocyte reactions, which suggesting Th1-polarizing capacity. CD4(+) T cells stimulated by AbOmpA-stimulated DCs show a Th1-polarizing cytokine profile. The expression of surface markers on DCs is mediated by both mitogen-activated protein kinases and NF-kappaB pathways. Our findings suggest that AbOmpA induces maturation of DCs and drives Th1 polarization, which are important properties for determining the nature of immune response against A. baumannii.

  16. Non-CD34+ cells, especially CD8+ cytotoxic T cells and CD56+ natural killer cells, rather than CD34 cells, predict early engraftment and better transplantation outcomes in patients with hematologic malignancies after allogeneic peripheral stem cell transplantation.

    PubMed

    Kim, Dong Hwan; Won, Dong Il; Lee, Nan Young; Sohn, Sang Kyun; Suh, Jang Soo; Lee, Kyu Bo

    2006-07-01

    The effect of the transplant dose of each cell subset on engraftment kinetics and transplantation outcomes was evaluated in HLA-identical allogeneic peripheral blood stem cell transplantation (PBSCT). Sixty-nine patients were included in this retrospective study. Engraftment kinetics, transplantation outcomes, and immune reconstitution up to 1 year after transplantation were analyzed according to the transplant dose of CD34+ and non-CD34+ cells, including natural killer (NK) cells and CD8+ cytotoxic T (Tc) cells. An accelerated neutrophil engraftment was strongly associated with a higher transplant dose of NK cells (12 versus 16 days, P < .001) and Tc cells (13 versus 16 days, P < .001) but not CD34+ cells (P = .442). Survival analyses revealed a favorable prognosis for patients who received a higher dose of non-CD34+ cell subsets, rather than CD34+ cells, in terms of overall survival (OS; P = .024 for NK cells and .050 for Tc cells) and nonrelapse mortality (NRM; P = .005 for NK cells, .060 for Tc cells). In addition, a higher transplant dose of NK and Tc cells was correlated with a faster lymphoid reconstitution. In multivariate analyses, rapid neutrophil engraftment was correlated with a higher transplant dose of NK cells (P = .001) and Tc cells (P = .004). Moreover, an increased OS was associated with the NK cell dose (P = .007) and chronic graft-versus-host disease (P = .009), whereas a decreased NRM was associated with the NK dose (P = .024). In conclusion, in a PBSCT setting, a higher transplant dose of NK and Tc cells accelerated neutrophil engraftment, improved the immune reconstitution, and decreased NRM, thereby increasing OS after allogeneic PBSCT.

  17. Role of natural killer cells in lung cancer.

    PubMed

    Aktaş, Ozge Nur; Öztürk, Ayşe Bilge; Erman, Baran; Erus, Suat; Tanju, Serhan; Dilege, Şükrü

    2018-06-01

    One of the key immune cells involved in the pathogenesis of lung cancer is natural killer (NK) cells and these cells are novel targets for therapeutic applications in lung cancer. The purpose of this review is to summarize the current literature on lung cancer pathogenesis with a focus on the interaction between NK cells and smoking, how these factors are related to the pathogenesis of lung cancer and how NK cell-based immunotherapy effect lung cancer survival. The relevant literature from PubMed and Medline databases is reviewed in this article. The cytolytic potential of NK cells are reduced in lung cancer and increasing evidence suggests that improving NK cell functioning may induce tumor regression. Recent clinical trials on NK cell-based novel therapies such as cytokines including interleukin (IL)-15, IL-12 and IL-2, NK-92 cell lines and allogenic NK cell immunotherapy showed promising results with less adverse effects on the lung cancer survival. The NK cell targeting strategy has not yet been approved for lung cancer treatment. More clinical studies focusing on the role of NK cells in lung cancer pathogenesis are warranted to develop novel NK cell-based therapeutic approaches for the treatment of lung cancer.

  18. Galectin-7 promotes proliferation and Th1/2 cells polarization toward Th1 in activated CD4+ T cells by inhibiting The TGFβ/Smad3 pathway.

    PubMed

    Luo, Zhenlong; Ji, Yudong; Tian, Dean; Zhang, Yong; Chang, Sheng; Yang, Chao; Zhou, Hongmin; Chen, Zhonghua Klaus

    2018-06-08

    Galectin-7 (Gal-7) has been associated with cell proliferation and apoptosis. It is known that Gal-7 antagonises TGFβ-mediated effects in hepatocytes by interacting with Smad3. Previously, we have demonstrated that Gal-7 is related to CD4+ T cells responses; nevertheless, its effect and functional mechanism on CD4+ T cells responses remain unclear. The murine CD4+ T cells were respectively cultured with Gal-7, anti-CD3/CD28 mAbs, or with anti-CD3/CD28 mAbs & Gal-7. The effects of Gal-7 on proliferation and the phenotypic changes in CD4+ T cells were assessed by flow cytometry. The cytokines from CD4+ T cells were analysed by quantitative real-time PCR. Subcellular localisation and expression of Smad3 were determined by immunofluorescence staining and Western blot, respectively. Gal-7 enhanced the proliferation of activated CD4+ T cells in a dose- and β-galactoside-dependent manner. Additionally, Gal-7 treatment did not change the ratio of Th2 cells in activated CD4+ T cells, while it increased the ratio of Th1 cells. Gal-7 also induced activated CD4+ T cells to produce a higher level of IFN-γ and TNF-α and a lower level of IL-10. Moreover, Gal-7 treatment significantly accelerated nuclear export of Smad3 in activated CD4+ T cells. These results revealed a novel role of Gal-7 in promoting proliferation and Th1/2 cells polarization toward Th1 in activated CD4+ T cells by inhibiting the TGFβ/Smad3 pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. An integrated view of suppressor T cell subsets in immunoregulation

    PubMed Central

    Jiang, Hong; Chess, Leonard

    2004-01-01

    The immune system evolved to protect organisms from a virtually infinite variety of disease-causing agents but to avoid harmful responses to self. Because immune protective mechanisms include the elaboration of potent inflammatory molecules, antibodies, and killer cell activation — which together can not only destroy invading microorganisms, pathogenic autoreactive cells, and tumors, but also mortally injure normal cells — the immune system is inherently a “double-edged sword” and must be tightly regulated. Immune response regulation includes homeostatic mechanisms intrinsic to the activation and differentiation of antigen-triggered immunocompetent cells and extrinsic mechanisms mediated by suppressor cells. This review series will focus on recent advances indicating that distinct subsets of regulatory CD4+ and CD8+ T cells as well as NK T cells control the outgrowth of potentially pathogenic antigen-reactive T cells and will highlight the evidence that these suppressor T cells may play potentially important clinical roles in preventing and treating immune-mediated disease. Here we provide a historical overview of suppressor cells and the experimental basis for the existence of functionally and phenotypically distinct suppressor subsets. Finally, we will speculate on how the distinct suppressor cell subsets may function in concert to regulate immune responses. PMID:15520848

  20. Divide, Conquer, and Sense: CD8+CD28− T Cells in Perspective

    PubMed Central

    Arosa, Fernando A.; Esgalhado, André J.; Padrão, Carolina A.; Cardoso, Elsa M.

    2017-01-01

    Understanding the rationale for the generation of a pool of highly differentiated effector memory CD8+ T cells displaying a weakened capacity to scrutinize for peptides complexed with major histocompatibility class I molecules via their T cell receptor, lacking the “signal 2” CD28 receptor, and yet expressing a highly diverse array of innate receptors, from natural killer receptors, interleukin receptors, and damage-associated molecular pattern receptors, among others, is one of the most challenging issues in contemporary human immunology. The prevalence of these differentiated CD8+ T cells, also known as CD8+CD28−, CD8+KIR+, NK-like CD8+ T cells, or innate CD8+ T cells, in non-lymphoid organs and tissues, in peripheral blood of healthy elderly, namely centenarians, but also in stressful and chronic inflammatory conditions suggests that they are not merely end-of-the-line dysfunctional cells. These experienced CD8+ T cells are highly diverse and capable of sensing a variety of TCR-independent signals, which enables them to respond and fine-tune tissue homeostasis. PMID:28096804

  1. The evolution of the natural killer complex; a comparison between mammals using new high-quality genome assemblies and targeted annotation

    USDA-ARS?s Scientific Manuscript database

    Natural killer (NK) cells are a diverse population of lymphocytes with a range of biological roles including essential immune functions. NK cell diversity is created by the differential expression of cell surface receptors which modulate activation and function, including multiple subfamilies of C-t...

  2. Human antigen-presenting cells respond differently to gut-derived probiotic bacteria but mediate similar strain-dependent NK and T cell activation.

    PubMed

    Fink, Lisbeth N; Zeuthen, Louise H; Ferlazzo, Guido; Frøkiaer, Hanne

    2007-12-01

    The intestinal microbiota is essential for homeostasis of the local and systemic immune system, and particularly strains of lactic acid bacteria and Escherichia coli have been shown to have balancing effects on inflammatory conditions such as allergy and inflammatory bowel disease. However, in vitro assessment of the immunomodulatory effects of distinct strains may depend strongly on the cell type used as a model. To select the most appropriate model for screening of beneficial bacteria in human cells, the response to strains of intestinal bacteria of three types of antigen-presenting cells (APC) was compared; blood myeloid dendritic cells (DC), monocyte-derived DC and monocytes, and the effector response of natural killer cells and naïve T cells was characterized. Maturation induced by gut-derived bacteria differed between APC, with blood DC and monocytes responding with the production of IL-6 and tumour necrosis factor-alpha to bacteria, which elicited mainly IL-10 in monocyte-derived DC. In contrast, comparable IFN-gamma production patterns were found in both natural killer cells and T cells induced by all bacteria-matured APC. An inhibitory effect of certain strains on this IFN-gamma production was also mediated by all types of APC. The most potent responses were induced by monocyte-derived DC, which thus constitute a sensitive screening model.

  3. Measurement of top quark polarization in t t ¯ lepton + jets final states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.

    We present a study of top quark polarization inmore » $$t \\overline{t}$$ events produced in $$p \\overline{p}$$ collisions at $$\\sqrt{s}=1.96$$ TeV. Data correspond to 9.7 fb$$^{-1}$$ collected with the D0 detector at the Tevatron. We use final states containing a lepton and at least three jets. The polarization is measured using the distribution of leptons along the beam and helicity axes, and the axis normal to the production plane. This is the first measurement of top quark polarization at the Tevatron in $$\\ell$$+jets final states, and first measurement of transverse polarization in $$t \\overline{t}$$ production. The observed distributions are consistent with the standard model.« less

  4. Measurement of top quark polarization in t t ¯ lepton + jets final states

    DOE PAGES

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; ...

    2017-01-09

    We present a study of top quark polarization inmore » $$t \\overline{t}$$ events produced in $$p \\overline{p}$$ collisions at $$\\sqrt{s}=1.96$$ TeV. Data correspond to 9.7 fb$$^{-1}$$ collected with the D0 detector at the Tevatron. We use final states containing a lepton and at least three jets. The polarization is measured using the distribution of leptons along the beam and helicity axes, and the axis normal to the production plane. This is the first measurement of top quark polarization at the Tevatron in $$\\ell$$+jets final states, and first measurement of transverse polarization in $$t \\overline{t}$$ production. The observed distributions are consistent with the standard model.« less

  5. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells.

    PubMed

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-03-27

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis , Lactococcus . lactis subsp. Cremoris , Lactococcus. Lactis subsp. Lactis biovar diacetylactis , Lactobacillus plantarum , Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei . In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  6. Activation of natural killer cells by hepatitis C virus particles in vitro.

    PubMed

    Farag, M M S; Weigand, K; Encke, J; Momburg, F

    2011-09-01

    Little is known about the ability of hepatitis C virus (HCV) to alter early innate immune responses in infected patients. Previous studies have shown that natural killer (NK) cells are functionally impaired after interaction of recombinant HCV glycoprotein E2 with the co-stimulatory CD81 molecule in vitro; however, the functional consequences of a prolonged contact of NK cells with HCV particles have remained unclear. We have examined the phenotypes of purified, interleukin-2-activated NK cells from healthy donors and HCV genotype 1b patients after culture for 5 days with HCV pseudoparticles (HCVpp) and serum samples containing HCV genotype 1b. NK cells from healthy donors and chronic HCV patients were found to up-regulate receptors associated with activation (NKp46, NKp44, NKp30, NKG2D), while NK receptors from the killer cell immunoglobulin-like receptor family (KIR/CD158), predominantly having an inhibitory function, were significantly down-modulated after culture in the presence of HCV particles compared with control cultures of NK cells. HCV-infected sera and HCVpp elicited significantly higher secretion of the NK effector lymphokines interferon-γ and tumour necrosis factor-α. Furthermore, HCV stimulated the cytotoxic potential of NK cells from normal donors and patients. The enhanced activation of NK cells after prolonged culture with HCVpp or HCV-containing sera for 5 days suggests that these innate effector cells may play an important role in viral control during early phases of HCV infection. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  7. Umbilical cord blood as an alternative source of reduced-intensity hematopoietic stem cell transplantation for chronic Epstein-Barr virus-associated T or natural killer cell lymphoproliferative diseases.

    PubMed

    Sawada, Akihisa; Inoue, Masami; Koyama-Sato, Maho; Kondo, Osamu; Yamada, Kayo; Shimizu, Mariko; Isaka, Kanako; Kimoto, Tomiko; Kikuchi, Hiroaki; Tokimasa, Sadao; Yasui, Masahiro; Kawa, Keisei

    2014-02-01

    Chronic Epstein-Barr virus-associated T/natural killer cell lymphoproliferative diseases represented by chronic active Epstein-Barr virus infection are lethal but are curable with several courses of chemotherapy and allogeneic hematopoietic stem cell transplantation (HSCT). Recently, we reported that reduced-intensity conditioning (RIC) provided better outcomes than myeloablative conditioning because RIC was less toxic. However, it was unclear whether cord blood transplantation (CBT) works in the context of RIC. We retrospectively analyzed 17 patients who underwent RIC followed by bone marrow transplantation (RIC-BMT) and 15 patients who underwent RIC followed by CBT (RIC-CBT). The representative regimen was fludarabine and melphalan based. The overall survival rates with RIC-BMT and RIC-CBT were 92.9% ± 6.9% and 93.3% ± 6.4%, respectively (P = .87). One patient died of lung graft-versus-host disease after RIC-BMT, and 1 patient died of multiple viral infections after RIC-CBT. Although cytotoxic chemotherapy was also immunosuppressive and might contribute to better donor cell engraftment after RIC-HSCT, the rate of engraftment failure after RIC-CBT was still higher than that after RIC-BMT (not significant); however, patients who had experienced graft failure were successfully rescued with a second HSCT. Unrelated cord blood can be an alternative source for RIC-HSCT if a patient has no family donor. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  8. Good manufacturing practice-compliant cell sorting and large-scale expansion of single KIR-positive alloreactive human natural killer cells for multiple infusions to leukemia patients.

    PubMed

    Siegler, Uwe; Meyer-Monard, Sandrine; Jörger, Simon; Stern, Martin; Tichelli, André; Gratwohl, Alois; Wodnar-Filipowicz, Aleksandra; Kalberer, Christian P

    2010-10-01

    Alloreactive natural killer (NK) cells are potent effectors of innate anti-tumor defense. The introduction of NK cell-based immunotherapy to current treatment options in acute myeloid leukemia (AML) requires NK cell products with high anti-leukemic efficacy optimized for clinical use. We describe a good manufacturing practice (GMP)-compliant protocol of large-scale ex vivo expansion of alloreactive NK cells suitable for multiple donor lymphocyte infusions (NK-DLI) in AML. CliniMACS-purified NK cells were cultured in closed air-permeable culture bags with certified culture medium and components approved for human use [human serum, interleukin (IL)-2, IL-15 and anti-CD3 antibody] and with autologous irradiated feeder cells. NK cells (6.0 ± 1.2 x 10(8)) were purified from leukaphereses (8.1 ± 0.8 L) of six healthy donors and cultured under GMP conditions. NK cell numbers increased 117.0 ± 20.0-fold in 19 days. To reduce the culture volume associated with expansion of bulk NK cells and to expand selectively the alloreactive NK cell subsets, GMP-certified cell sorting was introduced to obtain cells with single killer immunoglobulin-like receptor (KIR) specificities. The subsequent GMP-compliant expansion of single KIR+ cells was 268.3 ± 66.8-fold, with a contaminating T-cell content of only 0.006 ± 0.002%. The single KIR-expressing NK cells were cytotoxic against HLA-mismatched primary AML blasts in vitro and effectively reduced tumor cell load in vivo in NOD/SCID mice transplanted with human AML. The approach to generating large numbers of GMP-grade alloreactive NK cells described here provides the basis for clinical efficacy trials of NK-DLI to complement and advance therapeutic strategies against human AML.

  9. Potassium Channels Mediate Killing by Human Natural Killer Cells

    NASA Astrophysics Data System (ADS)

    Schlichter, Lyanne; Sidell, Neil; Hagiwara, Susumu

    1986-01-01

    Human natural killer (NK) cells in peripheral blood spontaneously recognize and kill a wide variety of target cells. It has been suggested that ion channels are involved in the killing process because there is a Ca-dependent stage and because killing by presensitized cytotoxic T lymphocytes, which in many respects resembles NK killing, is associated with changes in K and Na transport in the target cell. However, no direct evidence exists for ion channels in NK cells or in their target cells. Using the whole-cell variation of the patch-clamp technique, we found a voltage-dependent potassium (K+) current in NK cells. The K+ current was reduced in a dose-dependent manner by the K-channel blockers 4-aminopyridine and quinidine and by the traditional Ca-channel blockers verapamil and Cd2+. We tested the effects of ion-channel blockers on killing of two commonly used target cell lines: K562, which is derived from a human myeloid leukemia, and U937, which is derived from a human histiocytic leukemia. Killing of K562 target cells, determined in a standard 51Cr-release assay, was inhibited in a dose-dependent manner by verapamil, quinidine, Cd2+, and 4-aminopyridine at concentrations comparable to those that blocked the K+ current in NK cells. In K562 target cells only a voltage-dependent Na+ current was found and it was blocked by concentrations of tetrodotoxin that had no effect on killing. Killing of U937 target cells was also inhibited by the two ion-channel blockers tested, quinidine and verapamil. In this cell line only a small K+ current was found that was similar to the one in NK cells. We could not find any evidence of a Ca2+ current in target cells or in NK cells; therefore, our results cannot explain the Ca dependence of killing. Our findings show that there are K channels in NK cells and that these channels play a necessary role in the killing process. In contrast, the endogenous channel type in the target cell is probably not a factor in determining target cell

  10. Lower numbers of circulating natural killer T (NK T) cells in individuals with human T lymphotropic virus type 1 (HTLV-1) associated neurological disease

    PubMed Central

    Ndhlovu, L C; Snyder-Cappione, J E; Carvalho, K I; Leal, F E; Loo, C P; bruno, F R; Jha, A R; Devita, D; Hasenkrug, A M; Barbosa, H M R; Segurado, A C; Nixon, D F; Murphy, E L; Kallas, E G

    2009-01-01

    Human T lymphotropic virus type 1 (HTLV-1) infects 10–20 million people worldwide. The majority of infected individuals are asymptomatic; however, approximately 3% develop the debilitating neurological disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). There is also currently no cure, vaccine or effective therapy for HTLV-1 infection, and the mechanisms for progression to HAM/TSP remain unclear. NK T cells are an immunoregulatory T cell subset whose frequencies and effector functions are associated critically with immunity against infectious diseases. We hypothesized that NK T cells are associated with HAM/TSP progression. We measured NK T cell frequencies and absolute numbers in individuals with HAM/TSP infection from two cohorts on two continents: São Paulo, Brazil and San Francisco, CA, USA, and found significantly lower levels when compared with healthy subjects and/or asymptomatic carriers. Also, the circulating NK T cell compartment in HAM/TSP subjects is comprised of significantly more CD4+ and fewer CD8+ cells than healthy controls. These findings suggest that lower numbers of circulating NK T cells and enrichment of the CD4+ NK T subset are associated with HTLV-1 disease progression. PMID:19778295

  11. Antitumor killer lymphocytes in the peripheral blood of a patient with transitional cell carcinoma of the bladder.

    PubMed

    Kim, C J; Yuasa, T; Kushima, R; Tomoyoshi, T; Seto, A

    1998-05-01

    Peripheral blood lymphocytes (PBL) from patients with bladder cancer also contain cells possessing cytotoxic activity against autologous tumor cells. These cells are phenotypically heterogenous and include natural killer (NK) and cytotoxic T cells. This study investigated the role of cytotoxic lymphocytes directed against autologous bladder cancer cells. PBL were obtained at intervals before and after surgery and analyzed for cytotoxic activity against autologous bladder cancer cells in 4-hour 51Cr release assay. PBL stimulated with autologous tumor cells were also transformed with human T-lymphotropic virus type-1, establishing a cell line (KB31) which was analyzed for phenotype and cytotoxic activity against the autologous tumor cells. PBL preoperative cytotoxic activity was low, but increased after surgery. Cytotoxic activity was found not only against autologous bladder cancer cells, but also against heterologous bladder cancer (KK-47) and myeloid leukemia (K562) cells, with the highest activity against the heterologous cell lines. The cytotoxic activity of KB31 was 40% against autologous tumor cells 6 weeks after initiation of the cell line, but decreased to 5% by 6 months. This activity was lower than that against the other cell lines, and was similar to that of PBL in short-term culture. Fluorescence-activated cell sorter (FACS) analysis demonstrated that in KB31 cells at 6 weeks, CD8+ cells were dominant, but CD56+ cells predominated at 6 months. These results suggest that the presence of cytotoxic activity in the peripheral blood of the patient was due to both cytotoxic T cells and NK cells. The cytotoxic activity was lowest prior to surgery and increased postoperatively.

  12. Boosting Natural Killer Cell-Based Immunotherapy with Anticancer Drugs: a Perspective.

    PubMed

    Cifaldi, Loredana; Locatelli, Franco; Marasco, Emiliano; Moretta, Lorenzo; Pistoia, Vito

    2017-12-01

    Natural killer (NK) cells efficiently recognize and kill tumor cells through several mechanisms including the expression of ligands for NK cell-activating receptors on target cells. Different clinical trials indicate that NK cell-based immunotherapy represents a promising antitumor treatment. However, tumors develop immune-evasion strategies, including downregulation of ligands for NK cell-activating receptors, that can negatively affect antitumor activity of NK cells, which either reside endogenously, or are adoptively transferred. Thus, restoration of the expression of NK cell-activating ligands on tumor cells represents a strategic therapeutic goal. As discussed here, various anticancer drugs can fulfill this task via different mechanisms. We envision that the combination of selected chemotherapeutic agents with NK cell adoptive transfer may represent a novel strategy for cancer immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Normalized Polarization Ratios for the Analysis of Cell Polarity

    PubMed Central

    Shimoni, Raz; Pham, Kim; Yassin, Mohammed; Ludford-Menting, Mandy J.; Gu, Min; Russell, Sarah M.

    2014-01-01

    The quantification and analysis of molecular localization in living cells is increasingly important for elucidating biological pathways, and new methods are rapidly emerging. The quantification of cell polarity has generated much interest recently, and ratiometric analysis of fluorescence microscopy images provides one means to quantify cell polarity. However, detection of fluorescence, and the ratiometric measurement, is likely to be sensitive to acquisition settings and image processing parameters. Using imaging of EGFP-expressing cells and computer simulations of variations in fluorescence ratios, we characterized the dependence of ratiometric measurements on processing parameters. This analysis showed that image settings alter polarization measurements; and that clustered localization is more susceptible to artifacts than homogeneous localization. To correct for such inconsistencies, we developed and validated a method for choosing the most appropriate analysis settings, and for incorporating internal controls to ensure fidelity of polarity measurements. This approach is applicable to testing polarity in all cells where the axis of polarity is known. PMID:24963926

  14. Liver natural killer cells: subsets and roles in liver immunity

    PubMed Central

    Peng, Hui; Wisse, Eddie; Tian, Zhigang

    2016-01-01

    The liver represents a frontline immune organ that is constantly exposed to a variety of gut-derived antigens as a result of its unique location and blood supply. With a predominant role in innate immunity, the liver is enriched with various innate immune cells, among which natural killer (NK) cells play important roles in host defense and in maintaining immune balance. Hepatic NK cells were first described as ‘pit cells' in the rat liver in the 1970s. Recent studies of NK cells in mouse and human livers have shown that two distinct NK cell subsets, liver-resident NK cells and conventional NK (cNK) cells, are present in this organ. Here, we review liver NK cell subsets in different species, revisiting rat hepatic pit cells and highlighting recent progress related to resident NK cells in mouse and human livers, and also discuss the dual roles of NK cells in liver immunity. PMID:26639736

  15. The Expression of the Beta Cell-Derived Autoimmune Ligand for the Killer Receptor Nkp46 Is Attenuated in Type 2 Diabetes

    PubMed Central

    Weitman, Efraim; Bachar, Etty; Suissa, Yaron; Cohen, Guy; Schyr, Rachel Ben-Haroush; Sabanay, Helena; Horwitz, Elad; Glaser, Benjamin; Dor, Yuval; Pribluda, Ariel; Hanna, Jacob H.

    2013-01-01

    NK cells rapidly kill tumor cells, virus infected cells and even self cells. This is mediated via killer receptors, among which NKp46 (NCR1 in mice) is prominent. We have recently demonstrated that in type 1 diabetes (T1D) NK cells accumulate in the diseased pancreas and that they manifest a hyporesponsive phenotype. In addition, we found that NKp46 recognizes an unknown ligand expressed by beta cells derived from humans and mice and that blocking of NKp46 activity prevented diabetes development. Here we investigated the properties of the unknown NKp46 ligand. We show that the NKp46 ligand is mainly located in insulin granules and that it is constitutively secreted. Following glucose stimulation the NKp46 ligand translocates to the cell membrane and its secretion decreases. We further demonstrate by using several modalities that the unknown NKp46 ligand is not insulin. Finally, we studied the expression of the NKp46 ligand in type 2 diabetes (T2D) using 3 different in vivo models and 2 species; mice and gerbils. We demonstrate that the expression of the NKp46 ligand is decreased in all models of T2D studied, suggesting that NKp46 is not involved in T2D. PMID:24009765

  16. Human cytomegalovirus infection elicits new decidual natural killer cell effector functions.

    PubMed

    Siewiera, Johan; El Costa, Hicham; Tabiasco, Julie; Berrebi, Alain; Cartron, Géraldine; Le Bouteiller, Philippe; Bouteiller, Philippe; Jabrane-Ferrat, Nabila

    2013-01-01

    During the first trimester of pregnancy the uterus is massively infiltrated by decidual natural killer cells (dNK). These cells are not killers, but they rather provide a microenvironment that is propitious to healthy placentation. Human cytomegalovirus (HCMV) is the most common cause of intrauterine viral infections and a known cause of severe birth defects or fetal death. The rate of HCMV congenital infection is often low in the first trimester of pregnancy. The mechanisms controlling HCMV spreading during pregnancy are not yet fully revealed, but evidence indicating that the innate immune system plays a role in controlling HCMV infection in healthy adults exists. In this study, we investigated whether dNK cells could be involved in controlling viral spreading and in protecting the fetus against congenital HCMV infection. We found that freshly isolated dNK cells acquire major functional and phenotypic changes when they are exposed to HCMV-infected decidual autologous fibroblasts. Functional studies revealed that dNK cells, which are mainly cytokines and chemokines producers during normal pregnancy, become cytotoxic effectors upon their exposure to HCMV-infected autologous decidual fibroblasts. Both the NKG2D and the CD94/NKG2C or 2E activating receptors are involved in the acquired cytotoxic function. Moreover, we demonstrate that CD56(pos) dNK cells are able to infiltrate HCMV-infected trophoblast organ culture ex-vivo and to co-localize with infected cells in situ in HCMV-infected placenta. Taken together, our results present the first evidence suggesting the involvement of dNK cells in controlling HCMV intrauterine infection and provide insights into the mechanisms through which these cells may operate to limit the spreading of viral infection to fetal tissues.

  17. Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target.

    PubMed

    Dufva, Olli; Kankainen, Matti; Kelkka, Tiina; Sekiguchi, Nodoka; Awad, Shady Adnan; Eldfors, Samuli; Yadav, Bhagwan; Kuusanmäki, Heikki; Malani, Disha; Andersson, Emma I; Pietarinen, Paavo; Saikko, Leena; Kovanen, Panu E; Ojala, Teija; Lee, Dean A; Loughran, Thomas P; Nakazawa, Hideyuki; Suzumiya, Junji; Suzuki, Ritsuro; Ko, Young Hyeh; Kim, Won Seog; Chuang, Shih-Sung; Aittokallio, Tero; Chan, Wing C; Ohshima, Koichi; Ishida, Fumihiro; Mustjoki, Satu

    2018-04-19

    Aggressive natural killer-cell (NK-cell) leukemia (ANKL) is an extremely aggressive malignancy with dismal prognosis and lack of targeted therapies. Here, we elucidate the molecular pathogenesis of ANKL using a combination of genomic and drug sensitivity profiling. We study 14 ANKL patients using whole-exome sequencing (WES) and identify mutations in STAT3 (21%) and RAS-MAPK pathway genes (21%) as well as in DDX3X (29%) and epigenetic modifiers (50%). Additional alterations include JAK-STAT copy gains and tyrosine phosphatase mutations, which we show recurrent also in extranodal NK/T-cell lymphoma, nasal type (NKTCL) through integration of public genomic data. Drug sensitivity profiling further demonstrates the role of the JAK-STAT pathway in the pathogenesis of NK-cell malignancies, identifying NK cells to be highly sensitive to JAK and BCL2 inhibition compared to other hematopoietic cell lineages. Our results provide insight into ANKL genetics and a framework for application of targeted therapies in NK-cell malignancies.

  18. STAT3 is a critical cell-intrinsic regulator of human unconventional T cell numbers and function

    PubMed Central

    Wilson, Robert P.; Ives, Megan L.; Rao, Geetha; Lau, Anthony; Payne, Kathryn; Kobayashi, Masao; Arkwright, Peter D.; Peake, Jane; Wong, Melanie; Adelstein, Stephen; Smart, Joanne M.; French, Martyn A.; Fulcher, David A.; Picard, Capucine; Bustamante, Jacinta; Boisson-Dupuis, Stephanie; Gray, Paul; Stepensky, Polina; Warnatz, Klaus; Freeman, Alexandra F.; Rossjohn, Jamie; McCluskey, James; Holland, Steven M.; Casanova, Jean-Laurent; Uzel, Gulbu; Ma, Cindy S.

    2015-01-01

    Unconventional T cells such as γδ T cells, natural killer T cells (NKT cells) and mucosal-associated invariant T cells (MAIT cells) are a major component of the immune system; however, the cytokine signaling pathways that control their development and function in humans are unknown. Primary immunodeficiencies caused by single gene mutations provide a unique opportunity to investigate the role of specific molecules in regulating human lymphocyte development and function. We found that individuals with loss-of-function mutations in STAT3 had reduced numbers of peripheral blood MAIT and NKT but not γδ T cells. Analysis of STAT3 mosaic individuals revealed that this effect was cell intrinsic. Surprisingly, the residual STAT3-deficient MAIT cells expressed normal levels of the transcription factor RORγt. Despite this, they displayed a deficiency in secretion of IL-17A and IL-17F, but were able to secrete normal levels of cytokines such as IFNγ and TNF. The deficiency in MAIT and NKT cells in STAT3-deficient patients was mirrored by loss-of-function mutations in IL12RB1 and IL21R, respectively. Thus, these results reveal for the first time the essential role of STAT3 signaling downstream of IL-23R and IL-21R in controlling human MAIT and NKT cell numbers. PMID:25941256

  19. Next-generation sequencing identifies the natural killer cell microRNA transcriptome

    PubMed Central

    Fehniger, Todd A.; Wylie, Todd; Germino, Elizabeth; Leong, Jeffrey W.; Magrini, Vincent J.; Koul, Sunita; Keppel, Catherine R.; Schneider, Stephanie E.; Koboldt, Daniel C.; Sullivan, Ryan P.; Heinz, Michael E.; Crosby, Seth D.; Nagarajan, Rakesh; Ramsingh, Giridharan; Link, Daniel C.; Ley, Timothy J.; Mardis, Elaine R.

    2010-01-01

    Natural killer (NK) cells are innate lymphocytes important for early host defense against infectious pathogens and surveillance against malignant transformation. Resting murine NK cells regulate the translation of effector molecule mRNAs (e.g., granzyme B, GzmB) through unclear molecular mechanisms. MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally regulate the translation of their mRNA targets, and are therefore candidates for mediating this control process. While the expression and importance of miRNAs in T and B lymphocytes have been established, little is known about miRNAs in NK cells. Here, we used two next-generation sequencing (NGS) platforms to define the miRNA transcriptomes of resting and cytokine-activated primary murine NK cells, with confirmation by quantitative real-time PCR (qRT-PCR) and microarrays. We delineate a bioinformatics analysis pipeline that identified 302 known and 21 novel mature miRNAs from sequences obtained from NK cell small RNA libraries. These miRNAs are expressed over a broad range and exhibit isomiR complexity, and a subset is differentially expressed following cytokine activation. Using these miRNA NGS data, miR-223 was identified as a mature miRNA present in resting NK cells with decreased expression following cytokine activation. Furthermore, we demonstrate that miR-223 specifically targets the 3′ untranslated region of murine GzmB in vitro, indicating that this miRNA may contribute to control of GzmB translation in resting NK cells. Thus, the sequenced NK cell miRNA transcriptome provides a valuable framework for further elucidation of miRNA expression and function in NK cell biology. PMID:20935160

  20. Stimulation of Natural Killer Cell-Mediated Tumor Immunity by an IL15/TGFβ-Neutralizing Fusion Protein.

    PubMed

    Ng, Spencer; Deng, Jiusheng; Chinnadurai, Raghavan; Yuan, Shala; Pennati, Andrea; Galipeau, Jacques

    2016-10-01

    The clinical efficacy of immune cytokines used for cancer therapy is hampered by elements of the immunosuppressive tumor microenvironment such as TGFβ. Here we demonstrate that FIST15, a recombinant chimeric protein composed of the T-cell-stimulatory cytokine IL15, the sushi domain of IL15Rα and a TGFβ ligand trap, can overcome immunosuppressive TGFβ to effectively stimulate the proliferation and activation of natural killer (NK) and CD8 + T cells with potent antitumor properties. FIST15-treated NK and CD8 + T cells produced more IFNγ and TNFα compared with treatment with IL15 and a commercially available TGFβ receptor-Fc fusion protein (sTβRII) in the presence of TGFβ. Murine B16 melanoma cells, which overproduce TGFβ, were lysed by FIST15-treated NK cells in vitro at doses approximately 10-fold lower than NK cells treated with IL15 and sTβRII. Melanoma cells transduced to express FIST15 failed to establish tumors in vivo in immunocompetent murine hosts and could only form tumors in beige mice lacking NK cells. Mice injected with the same cells were also protected from subsequent challenge by unmodified B16 melanoma cells. Finally, mice with pre-established B16 melanoma tumors responded to FIST15 treatment more strongly compared with tumors treated with control cytokines. Taken together, our results offer a preclinical proof of concept for the use of FIST15 as a new class of biological therapeutics that can coordinately neutralize the effects of immunosuppressive TGFβ in the tumor microenvironment while empowering tumor immunity. Cancer Res; 76(19); 5683-95. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. Cytokine Expression, Natural Killer Cell Activation, and Phenotypic Changes in Lymphoid Cells from Rhesus Macaques during Acute Infection with Pathogenic Simian Immunodeficiency Virus

    PubMed Central

    Giavedoni, Luis D.; Velasquillo, M. Cristina; Parodi, Laura M.; Hubbard, Gene B.; Hodara, Vida L.

    2000-01-01

    We studied the innate and adaptive immune system of rhesus macaques infected with the virulent simian immunodeficiency virus isolate SIVmac251 by evaluating natural killer (NK) cell activity, cytokine levels in plasma, humoral and virological parameters, and changes in the activation markers CD25 (interleukin 2R [IL-2R] α chain), CD69 (early activation marker), and CD154 (CD40 ligand) in lymphoid cells. We found that infection with SIVmac251 induced the sequential production of interferon-α/β (IFN-α/β), IL-18, and IL-12. IFN-γ, IL-4, and granulocyte-macrophage colony-stimulating factor were undetected in plasma by the assays used. NK cell activity peaked at 1 to 2 weeks postinfection and paralleled changes in viral loads. Maximum expression of CD69 on CD3−CD16+ lymphocytes correlated with NK cytotoxicity during this period. CD25 expression, which is associated with proliferation, was static or slightly down-regulated in CD4+ T cells from both peripheral blood (PB) and lymph nodes (LN). CD69, which is normally present in LN CD4+ T cells and absent in peripheral blood leukocyte (PBL) CD4+ T cells, was down-regulated in LN CD4+ T cells and up-regulated in PBL CD4+ T cells immediately after infection. CD8+ T cells increased CD69 but not CD25 expression, indicating the activation of this cellular subset in PB and LN. Finally, CD154 was transiently up-regulated in PBL CD4+ T cells but not in LN CD4+ T cells. Levels of antibodies to SIV Gag and Env did not correlate with the level of activation of CD154, a critical costimulatory molecule for T-cell-dependent immunity. In summary, we present the first documented evidence that the innate immune system of rhesus macaques recognizes SIV infection by sequential production of proinflammatory cytokines and transient activation of NK cytotoxic activity. Additionally, pathogenic SIV induces drastic changes in the level of activation markers on T cells from different anatomic compartments. These changes involve activation

  2. Malignant hematopoietic cell lines: in vitro models for the study of natural killer cell leukemia-lymphoma.

    PubMed

    Drexler, H G; Matsuo, Y

    2000-05-01

    Malignancies involving natural killer (NK) cells are rare disorders. The complexity of NK cell-involving disorders has only recently been appreciated. Modern classifications discern immature (precursor) from mature NK cell leukemias-lymphomas. Continuous NK leukemia-lymphoma cell lines represent important model systems to study these neoplasms. While there are a number of putative NK cell lines which are, however, either not characterized, not immortalized, non-malignant, non-NK, or plain false cell lines, six bona fide malignant NK cell lines have been established and are sufficiently well characterized: HANK1, KHYG-1, NK-92, NKL, NK-YS and YT. Except for YT which was derived from a not further defined acute lymphoblastic lymphoma, these cell lines were established from patients with various NK cell malignancies. Five of the six cell lines are constitutively interleukin-2-dependent. Their immunoprofile is remarkably similar: CD1-, CD2+, surface CD3 (but cytoplasmic CD3epsilon+), CD4-, CD5-, CD7+, CD8-, CD16-, CD56+, CD57-, TCRalphabeta-, TCRgammadelta-, negative for B cell and myelomonocytic markers. The immunoglobulin heavy chain and T cell receptor genes are all in germline configuration. All six lines show complex chromosomal alterations, with both numerical and structural aberrations, attesting to their malignant and monoclonal nature. Functionally, these cells which contain azurophilic granules in their cytoplasm are nearly universally positive in NK activity assays. Three of five cell lines are Epstein-Barr virus-positive (type II latency). The composite data on these six cell lines allow for the operational definition of a typical malignant NK cell line profile. NK leukemia-lymphoma cell lines will prove invaluable for studies of normal and malignant NK cell biology.

  3. Amide Analogues of CD1d Agonists Modulate iNKT-Cell-Mediated Cytokine Production

    PubMed Central

    2012-01-01

    Invariant natural killer T (iNKT) cells are restricted by the non-polymorphic MHC class I-like protein, CD1d, and activated following presentation of lipid antigens bound to CD1d molecules. The prototypical iNKT cell agonist is α-galactosyl ceramide (α-GalCer). CD1d-mediated activation of iNKT cells by this molecule results in the rapid secretion of a range of pro-inflammatory (Th1) and regulatory (Th2) cytokines. Polarization of the cytokine response can be achieved by modifying the structure of the glycolipid, which opens up the possibility of using CD1d agonists as therapeutic agents for a range of diseases. Analysis of crystal structures of the T-cell receptor−α-GalCer–CD1d complex led us to postulate that amide isosteres of known CD1d agonists should modulate the cytokine response profile upon iNKT-cell activation. To this end, we describe the synthesis and biological activity of amide analogues of α-GalCer and its non-glycosidic analogue threitol ceramide (ThrCer). All of the analogues were found to stimulate murine and human iNKT cells by CD1d-mediated presentation to varying degrees; however, the thioamide and carbamate analogues of ThrCer were of particular interest in that they elicited a strongly polarized cytokine response (more interferon-gamma (IFN-γ), no interleukin-4 (IL-4)) in mice. While the ThrCer-carbamate analogue was shown to transactivate natural killer (NK) cells, a mechanism that has been used to account for the preferential production of IFN-γ by other CD1d agonists, this pathway does not account for the polarized cytokine response observed for the thioamide analogue. PMID:22324848

  4. Early disease progression in patients with localized natural killer/T-cell lymphoma treated with concurrent chemoradiotherapy.

    PubMed

    Yamaguchi, Motoko; Suzuki, Ritsuro; Kim, Seok Jin; Ko, Young Hyeh; Oguchi, Masahiko; Asano, Naoko; Miyazaki, Kana; Terui, Yasuhiko; Kubota, Nobuko; Maeda, Takeshi; Kobayashi, Yukio; Amaki, Jun; Soejima, Toshinori; Saito, Bungo; Shimoda, Emiko; Fukuhara, Noriko; Tsukamoto, Norifumi; Shimada, Kazuyuki; Choi, Ilseung; Utsumi, Takahiko; Ejima, Yasuo; Kim, Won Seog; Katayama, Naoyuki

    2018-03-30

    Prognosis of patients with localized nasal extranodal natural killer/T-cell lymphoma, nasal type (ENKL) has been improved by non-anthracycline-containing treatments such as concurrent chemoradiotherapy (CCRT). However, some patients experience early disease progression. To clarify the clinical features and outcomes of these patients, data from 165 patients with localized nasal ENKL who were diagnosed between 2000 and 2013 at 31 institutes in Japan and who received radiotherapy with dexamethasone, etoposide, ifosfamide, and carboplatin (RT-DeVIC) were retrospectively analyzed. Progression of disease within 2 years after diagnosis (POD24) was used as the definition of early progression. An independent dataset of 60 patients with localized nasal ENKL who received CCRT at Samsung Medical Center was used in the validation analysis. POD24 was documented in 23% of patients who received RT-DeVIC and in 25% of patients in the validation cohort. Overall survival (OS) from risk-defining events of the POD24 group was inferior to that of the reference group in both cohorts (P < .00001). In the RT-DeVIC cohort, pretreatment elevated levels of serum soluble interleukin-2 receptor (sIL-2R), lactate dehydrogenase, C-reactive protein, and detectable Epstein-Barr virus DNA in peripheral blood were associated with POD24. In the validation cohort, no pretreatment clinical factor associated with POD24 was identified. Our study indicates that POD24 is a strong indicator of survival in localized ENKL, despite the different CCRT regimens adopted. In the treatment of localized nasal ENKL, POD24 is useful for identifying patients who have unmet medical needs. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. ERAP1 regulates natural killer cell function by controlling the engagement of inhibitory receptors.

    PubMed

    Cifaldi, Loredana; Romania, Paolo; Falco, Michela; Lorenzi, Silvia; Meazza, Raffaella; Petrini, Stefania; Andreani, Marco; Pende, Daniela; Locatelli, Franco; Fruci, Doriana

    2015-03-01

    The endoplasmic reticulum aminopeptidase ERAP1 regulates innate and adaptive immune responses by trimming peptides for presentation by MHC class I (MHC-I) molecules. Herein, we demonstrate that genetic or pharmacological inhibition of ERAP1 on human tumor cell lines perturbs their ability to engage several classes of inhibitory receptors by their specific ligands, including killer cell Ig-like receptors (KIR) by classical MHC-I-peptide (pMHC-I) complexes and the lectin-like receptor CD94-NKG2A by nonclassical pMHC-I complexes, in each case leading to natural killer (NK) cell killing. The protective effect of pMHC-I complexes could be restored in ERAP1-deficient settings by the addition of known high-affinity peptides, suggesting that ERAP1 was needed to positively modify the affinity of natural ligands. Notably, ERAP1 inhibition enhanced the ability of NK cells to kill freshly established human lymphoblastoid cell lines from autologous or allogeneic sources, thereby promoting NK cytotoxic activity against target cells that would not be expected because of KIR-KIR ligand matching. Overall, our results identify ERAP1 as a modifier to leverage immune functions that may improve the efficacy of NK cell-based approaches for cancer immunotherapy. ©2015 American Association for Cancer Research.

  6. High Rate of Induction of Human Autologous Cytotoxic T Lymphocytes against Renal Carcinoma Cells Cultured with an Interleukin Cocktail

    PubMed Central

    Liu, Shu Qin; Kawai, Koji; Shiraiwa, Hiroshi; Hayashi, Hitoshi; Akaza, Hideyuki; Hashizaki, Kazuko; Shiba, Reiko; Saijo, Kaoru

    1998-01-01

    A high rate of induction (9 of 10 cases) of human autologous cytotoxic T lymphocytes (CTL) was achieved in vitro from peripheral blood mononuclear cells of renal carcinoma patients by applying an interleukin (IL)‐cocktail consisting of IL‐1, ‐2, ‐4, and ‐6. The CTL specifically lysed their own target carcinoma cells within 24 h but did not kill neighboring autologous normal kidney cells or allogeneic renal cancer cell lines. In the case of TUHR4TKB, for which autologous CTL were not induced, no expression of MHC class‐I molecules was observed on the surface of these carcinoma cells, although they were sensitive to autologous natural killer cells. The results imply that adoptive immunotherapy for metastasized renal carcinoma will be feasible with autologous CTL in combination with natural killer cells. PMID:9914789

  7. CCL3 Enhances Antitumor Immune Priming in the Lymph Node via IFNγ with Dependency on Natural Killer Cells

    PubMed Central

    Allen, Frederick; Rauhe, Peter; Askew, David; Tong, Alexander A.; Nthale, Joseph; Eid, Saada; Myers, Jay T.; Tong, Caryn; Huang, Alex Y.

    2017-01-01

    Lymph node (LN) plays a critical role in tumor cell survival outside of the primary tumor sites and dictates overall clinical response in many tumor types (1, 2). Previously, we and others have demonstrated that CCL3 plays an essential role in orchestrating T cell—antigen-presenting cell (APC) encounters in the draining LN following vaccination, and such interactions enhance the magnitude of the memory T cell pool (3–5). In the current study, we investigate the cellular responses in the tumor-draining lymph nodes (TDLNs) of a CCL3-secreting CT26 colon tumor (L3TU) as compared to wild-type tumor (WTTU) during the priming phase of an antitumor response (≤10 days). In comparison to WTTU, inoculation of L3TU resulted in suppressed tumor growth, a phenomenon that is accompanied by altered in vivo inflammatory responses on several fronts. Autologous tumor-derived CCL3 (aCCL3) secretion by L3TU bolstered the recruitment of T- and B-lymphocytes, tissue-migratory CD103+ dendritic cells (DCs), and CD49b+ natural killer (NK) cells, resulting in significant increases in the differentiation and activation of multiple Interferon-gamma (IFNγ)-producing leukocytes in the TDLN. During this early phase of immune priming, NK cells constitute the major producers of IFNγ in the TDLN. CCL3 also enhances CD8+ T cell proliferation and differentiation by augmenting DC capacity to drive T cell activation in the TDLN. Our results revealed that CCL3-dependent IFNγ production and CCL3-induced DC maturation drive the priming of effective antitumor immunity in the TDLN. PMID:29109732

  8. Oncogenic activation of JAK3-STAT signaling confers clinical sensitivity to PRN371, a novel selective and potent JAK3 inhibitor, in natural killer/T-cell lymphoma.

    PubMed

    Nairismägi, M -L; Gerritsen, M E; Li, Z M; Wijaya, G C; Chia, B K H; Laurensia, Y; Lim, J Q; Yeoh, K W; Yao, X S; Pang, W L; Bisconte, A; Hill, R J; Bradshaw, J M; Huang, D; Song, T L L; Ng, C C Y; Rajasegaran, V; Tang, T; Tang, Q Q; Xia, X J; Kang, T B; Teh, B T; Lim, S T; Ong, C K; Tan, J

    2018-05-01

    Aberrant activation of the JAK3-STAT signaling pathway is a characteristic feature of many hematological malignancies. In particular, hyperactivity of this cascade has been observed in natural killer/T-cell lymphoma (NKTL) cases. Although the first-in-class JAK3 inhibitor tofacitinib blocks JAK3 activity in NKTL both in vitro and in vivo, its clinical utilization in cancer therapy has been limited by the pan-JAK inhibition activity. To improve the therapeutic efficacy of JAK3 inhibition in NKTL, we have developed a highly selective and durable JAK3 inhibitor PRN371 that potently inhibits JAK3 activity over the other JAK family members JAK1, JAK2, and TYK2. PRN371 effectively suppresses NKTL cell proliferation and induces apoptosis through abrogation of the JAK3-STAT signaling. Moreover, the activity of PRN371 has a more durable inhibition on JAK3 compared to tofacitinib in vitro, leading to significant tumor growth inhibition in a NKTL xenograft model harboring JAK3 activating mutation. These findings provide a novel therapeutic approach for the treatment of NKTL.

  9. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    PubMed Central

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-01-01

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity. PMID:29584690

  10. The Violence of Collection: "Indian Killer"'s Archives

    ERIC Educational Resources Information Center

    Dean, Janet

    2008-01-01

    At the close of Sherman Alexie's "Indian Killer," in a final chapter titled "Creation Story," a killer carries a backpack containing, among other things, "dozens of owl feathers, a scrapbook, and two bloody scalps in a plastic bag." Readers schooled in the psychopathologies of real and fictional serial killers will be familiar with the detail:…

  11. Murine natural killer immunoreceptors use distinct proximal signaling complexes to direct cell function

    PubMed Central

    May, Rebecca M.; Okumura, Mariko; Hsu, Chin-Jung; Bassiri, Hamid; Yang, Enjun; Rak, Gregory; Mace, Emily M.; Philip, Naomi H.; Zhang, Weiguo; Baumgart, Tobias; Orange, Jordan S.; Nichols, Kim E.

    2013-01-01

    Signaling pathways leading to natural killer (NK)–cell effector function are complex and incompletely understood. Here, we investigated the proximal signaling pathways downstream of the immunotyrosine-based activation motif (ITAM) bearing activating receptors. We found that the adaptor molecule SH2 domain-containing leukocyte protein of 76 kD (SLP-76) is recruited to microclusters at the plasma membrane in activated NK cells and that this is required for initiation of downstream signaling and multiple NK-cell effector functions in vitro and in vivo. Surprisingly, we found that 2 types of proximal signaling complexes involving SLP-76 were formed. In addition to the canonical membrane complex formed between SLP-76 and linker for activation of T cells (LAT) family members, a novel LAT family–independent SLP-76–dependent signaling pathway was identified. The LAT family–independent pathway involved the SH2 domain of SLP-76 and adhesion and degranulation-promoting adaptor protein (ADAP). Both the LAT family–dependent and ADAP-dependent pathway contributed to interferon-gamma production and cytotoxicity; however, they were not essential for other SLP-76–dependent events, including phosphorylation of AKT and extracellular signal–related kinase and cellular proliferation. These results demonstrate that NK cells possess an unexpected bifurcation of proximal ITAM-mediated signaling, each involving SLP-76 and contributing to optimal NK-cell function. PMID:23407547

  12. Influenza Virus Directly Infects Human Natural Killer Cells and Induces Cell Apoptosis▿

    PubMed Central

    Mao, Huawei; Tu, Wenwei; Qin, Gang; Law, Helen Ka Wai; Sia, Sin Fun; Chan, Ping-Lung; Liu, Yinping; Lam, Kwok-Tai; Zheng, Jian; Peiris, Malik; Lau, Yu-Lung

    2009-01-01

    Influenza is an acute respiratory viral disease that is transmitted in the first few days of infection. Evasion of host innate immune defenses, including natural killer (NK) cells, is important for the virus's success as a pathogen of humans and other animals. NK cells encounter influenza viruses within the microenvironment of infected cells and are important for host innate immunity during influenza virus infection. It is therefore important to investigate the direct effects of influenza virus on NK cells. In this study, we demonstrated for the first time that influenza virus directly infects and replicates in primary human NK cells. Viral entry into NK cells was mediated by both clathrin- and caveolin-dependent endocytosis rather than through macropinocytosis and was dependent on the sialic acids on cell surfaces. In addition, influenza virus infection induced a marked apoptosis of NK cells. Our findings suggest that influenza virus can directly target and kill NK cells, a potential novel strategy of influenza virus to evade the NK cell innate immune defense that is likely to facilitate viral transmission and may also contribute to virus pathogenesis. PMID:19587043

  13. Natural killer cells promote tissue injury and systemic inflammatory responses during fatal Ehrlichia-induced toxic shock-like syndrome.

    PubMed

    Stevenson, Heather L; Estes, Mark D; Thirumalapura, Nagaraja R; Walker, David H; Ismail, Nahed

    2010-08-01

    Human monocytotropic ehrlichiosis is caused by Ehrlichia chaffeensis, a Gram-negative bacterium lacking lipopolysaccharide. We have shown that fatal murine ehrlichiosis is associated with CD8(+)T cell-mediated tissue damage, tumor necrosis factor-alpha, and interleukin (IL)-10 overproduction, and CD4(+)Th1 hyporesponsiveness. In this study, we examined the relative contributions of natural killer (NK) and NKT cells in Ehrlichia-induced toxic shock. Lethal ehrlichial infection in wild-type mice induced a decline in NKT cell numbers, and late expansion and migration of activated NK cells to the liver, a main infection site that coincided with development of hepatic injury. The spatial and temporal changes in NK and NKT cells in lethally infected mice correlated with higher NK cell cytotoxic activity, higher expression of cytotoxic molecules such as granzyme B, higher production of interferon-gamma and tumor necrosis factor-alpha, increased hepatic infiltration with CD8alphaCD11c(+) dendritic cells and CD8(+)T cells, decreased splenic CD4(+)T cells, increased serum concentrations of IL-12p40, IL-18, RANTES, and monocyte chemotactic protein-1, and elevated production of IL-18 by liver mononuclear cells compared with nonlethally infected mice. Depletion of NK cells prevented development of severe liver injury, decreased serum levels of interferon-gamma, tumor necrosis factor-alpha, and IL-10, and enhanced bacterial elimination. These data indicate that NK cells promote immunopathology and defective anti-ehrlichial immunity, possibly via decreasing the protective immune response mediated by interferon-gamma producing CD4(+)Th1 and NKT cells.

  14. View Point: Semaphorin-3E: An Emerging Modulator of Natural Killer Cell Functions?

    PubMed Central

    Alamri, Abdulaziz; Soussi Gounni, Abdelilah; Kung, Sam K. P.

    2017-01-01

    Semaphorin-3E (Sema-3E) is a member of a large family of proteins originally identified as axon guidance cues in neural development. It is expressed in different cell types, such as immune cells, cancer cells, neural cells, and epithelial cells. Subsequently, dys-regulation of Sema-3E expression has been reported in various biological processes that range from cancers to autoimmune and allergic diseases. Recent work in our laboratories revealed a critical immunoregulatory role of Sema-3E in experimental allergic asthma. We further speculate possible immune modulatory function(s) of Sema-3E on natural killer (NK) cells. PMID:29113093

  15. Energy Security: From Deal Killers to Game Changers

    NASA Astrophysics Data System (ADS)

    Cooke, Charlie

    2010-03-01

    Five energy security ``deal killers" are identified: 1) Global warming and CO2 emissions from fossil fuel combustion; 2) Intermittent energy sources (wind, solar) and the presence and stability of the grid; 3) Penetration of plant defenses to produce transportation fuels from biomass; 4) Mimicking nature: artificial photosynthesis for solar energy to fuels; and 5) Spent fuel from nuclear power reactors. Transformational basic research is required to successfully change the ground rules, to transform these ``deal killers" into ``game changers." T hey are: 1) Offsetting carbon capture and storage costs through enhanced oil recovery and methane generation from high temperature geothermal saline aquifers; 2) Electrical energy storage, through batteries and super-capacitors; 3) Genetic modification of plant cell walls, and catalytic methods for transforming plant sugars into fuels; 4) Separation of solar-induced electrons from holes, and catalysis to produce fuels; and 5) Closing the nuclear fuel cycle. Basic research can revolutionize our approach to carbon-free energy by enhancing nature to achieve energy security.

  16. EBV-Positive T/NK-Cell Lymphoproliferative Disease of Childhood

    PubMed Central

    Hong, Mineui; Yoo, Keon Hee; Koo, Hong Hoe; Kim, Seok Jin; Kim, Won Seog

    2013-01-01

    Background Epstein-Barr virus (EBV)-associated hemophagocytic lymphohistiocytosis (HLH), EBV-positive systemic T-cell lymphoproliferative disease (STLPD) of childhood, and chronic active EBV (CAEBV) infection may develop after primary EBV infection. This study reviewed the clinicopathological spectrum of EBV-associated T- and natural killer (NK)-cell LPD, including STLPD and CAEBV infection, with an analysis of T-cell clonality. Methods Clinicopathological features of seven patients with EBV-associated HLH or STLPD and 12 patients with CAEBV infection were reviewed. Immunohistochemical staining and a T-cell receptor (TCR) gene rearrangement study were performed. Results STLPD and EBV-positive HLH showed significantly overlapping clinicopathological findings. One patient with STLPD and one patient with EBV-positive HLH demonstrated moderate to severe atypia of the infiltrating lymphocytes, whereas the remaining patients lacked significant atypia. Twelve patients had CAEBV infection, four of whom suffered mosquito-bite hypersensitivity, five showed NK lymphocytosis, and one suffered hydroa vacciniforme. Infiltrating lymphocytes were predominantly small and devoid of atypia. Hemophagocytic histiocytosis was found in seven of 11 patients. Monoclonality was detected in three (50%) of the six patients with successful TCR gene analysis. Conclusions EBV-positive HLH and STLPD share similar clinicopathological findings and may constitute a continuous spectrum of acute EBV-associated T- or NK-cell proliferative disorders. The distinction of EBV-positive T-cell LPD from EBV-positive HLH may be difficult during routine diagnoses because of the technical limitations of clonality assessment. PMID:23667373

  17. EBV-Positive T/NK-Cell Lymphoproliferative Disease of Childhood.

    PubMed

    Hong, Mineui; Ko, Young Hyeh; Yoo, Keon Hee; Koo, Hong Hoe; Kim, Seok Jin; Kim, Won Seog; Park, Heejung

    2013-04-01

    Epstein-Barr virus (EBV)-associated hemophagocytic lymphohistiocytosis (HLH), EBV-positive systemic T-cell lymphoproliferative disease (STLPD) of childhood, and chronic active EBV (CAEBV) infection may develop after primary EBV infection. This study reviewed the clinicopathological spectrum of EBV-associated T- and natural killer (NK)-cell LPD, including STLPD and CAEBV infection, with an analysis of T-cell clonality. Clinicopathological features of seven patients with EBV-associated HLH or STLPD and 12 patients with CAEBV infection were reviewed. Immunohistochemical staining and a T-cell receptor (TCR) gene rearrangement study were performed. STLPD and EBV-positive HLH showed significantly overlapping clinicopathological findings. One patient with STLPD and one patient with EBV-positive HLH demonstrated moderate to severe atypia of the infiltrating lymphocytes, whereas the remaining patients lacked significant atypia. Twelve patients had CAEBV infection, four of whom suffered mosquito-bite hypersensitivity, five showed NK lymphocytosis, and one suffered hydroa vacciniforme. Infiltrating lymphocytes were predominantly small and devoid of atypia. Hemophagocytic histiocytosis was found in seven of 11 patients. Monoclonality was detected in three (50%) of the six patients with successful TCR gene analysis. EBV-positive HLH and STLPD share similar clinicopathological findings and may constitute a continuous spectrum of acute EBV-associated T- or NK-cell proliferative disorders. The distinction of EBV-positive T-cell LPD from EBV-positive HLH may be difficult during routine diagnoses because of the technical limitations of clonality assessment.

  18. Aerobic physical training does not condition against strenuous exercise-induced changes in immune function but modulates T cell proliferative responses.

    PubMed

    Patiño, Pablo J; Caraballo, Domingo I; Szewczyk, Katarzyna; Quintana, Juan C; Bedoya, Lady R; Ramírez, Beatriz E; Jaramillo, Andrés

    2017-09-29

    Exercise-induced stress induces considerable changes in the immune system. To better understand the mechanisms related to these immune changes during acute and chronic physical stress, we studied the effects of aerobic physical training (APT) on several parameters of the immune system. Previously untrained males (18-25 years of age) were divided into a group that was subjected to 6 months of APT (n=10) and a sedentary control group (n=7). The subjects performed a cardiopulmonary exercise test (CET) at 0, 3, and 6 months of the APT program. B cell (CD19+), T cell (CD4+ and CD8+), and natural killer cell (CD56+) levels, and mitogen-induced T cell proliferation and cytokine production (interleukin-1, interleukin-4, interleukin-12, and interferon-) were evaluated before and at 30 seconds and 24 hours after the CET. There was a significant increase in CD4+ T cells and natural killer cells and a significant reduction in T cell proliferation in both groups 30 seconds after the CET at 3 and 6 months of the APT program. Of note, the trained group showed significantly lower resting T cell proliferation (before and 24 hour after the CET) than the sedentary control group at 3 and 6 months of the APT program. There were no significant differences in cytokine production after the CET between both groups at any time point of the APT program. These data show that APT does not condition against strenuous exercise induced immune changes but significantly modulates T cell proliferative responses.

  19. An update on the management of peripheral T-cell lymphoma and emerging treatment options

    PubMed Central

    Phillips, Adrienne A; Owens, Colette; Lee, Sangmin; Bhagat, Govind

    2011-01-01

    Peripheral T-cell lymphomas (PTCLs) comprise a rare and heterogeneous subset of non-Hodgkin’s lymphomas (NHLs) that arise from post-thymic T-cells or natural killer (NK)-cells at nodal or extranodal sites. Worldwide, PTCLs represent approximately 12% of all NHLs and the 2008 World Health Organization (WHO) classification includes over 20 biologically and clinically distinct T/NK-cell neoplasms that differ significantly in presentation, pathology, and response to therapy. Because of the rarity and heterogeneity of these diseases, large clinical trials have not been conducted and optimal therapy is not well defined. Most subtypes are treated with similar combination chemotherapy regimens as used for aggressive B-cell NHL, but with poorer outcomes. New treatment combinations and novel agents are currently being explored for PTCLs and this review highlights a number of options that appear promising. PMID:22287871

  20. Positive selection on the killer whale mitogenome

    PubMed Central

    Foote, Andrew D.; Morin, Phillip A.; Durban, John W.; Pitman, Robert L.; Wade, Paul; Willerslev, Eske; Gilbert, M. Thomas P.; da Fonseca, Rute R.

    2011-01-01

    Mitochondria produce up to 95 per cent of the eukaryotic cell's energy. The coding genes of the mitochondrial DNA may therefore evolve under selection owing to metabolic requirements. The killer whale, Orcinus orca, is polymorphic, has a global distribution and occupies a range of ecological niches. It is therefore a suitable organism for testing this hypothesis. We compared a global dataset of the complete mitochondrial genomes of 139 individuals for amino acid changes that were associated with radical physico-chemical property changes and were influenced by positive selection. Two such selected non-synonymous amino acid changes were found; one in each of two ecotypes that inhabit the Antarctic pack ice. Both substitutions were associated with changes in local polarity, increased steric constraints and α-helical tendencies that could influence overall metabolic performance, suggesting a functional change. PMID:20810427

  1. Positive selection on the killer whale mitogenome.

    PubMed

    Foote, Andrew D; Morin, Phillip A; Durban, John W; Pitman, Robert L; Wade, Paul; Willerslev, Eske; Gilbert, M Thomas P; da Fonseca, Rute R

    2011-02-23

    Mitochondria produce up to 95 per cent of the eukaryotic cell's energy. The coding genes of the mitochondrial DNA may therefore evolve under selection owing to metabolic requirements. The killer whale, Orcinus orca, is polymorphic, has a global distribution and occupies a range of ecological niches. It is therefore a suitable organism for testing this hypothesis. We compared a global dataset of the complete mitochondrial genomes of 139 individuals for amino acid changes that were associated with radical physico-chemical property changes and were influenced by positive selection. Two such selected non-synonymous amino acid changes were found; one in each of two ecotypes that inhabit the Antarctic pack ice. Both substitutions were associated with changes in local polarity, increased steric constraints and α-helical tendencies that could influence overall metabolic performance, suggesting a functional change.

  2. Leukocytosis and natural killer cell function parallel neurobehavioral fatigue induced by 64 hours of sleep deprivation.

    PubMed

    Dinges, D F; Douglas, S D; Zaugg, L; Campbell, D E; McMann, J M; Whitehouse, W G; Orne, E C; Kapoor, S C; Icaza, E; Orne, M T

    1994-05-01

    The hypothesis that sleep deprivation depresses immune function was tested in 20 adults, selected on the basis of their normal blood chemistry, monitored in a laboratory for 7 d, and kept awake for 64 h. At 2200 h each day measurements were taken of total leukocytes (WBC), monocytes, granulocytes, lymphocytes, eosinophils, erythrocytes (RBC), B and T lymphocyte subsets, activated T cells, and natural killer (NK) subpopulations (CD56/CD8 dual-positive cells, CD16-positive cells, CD57-positive cells). Functional tests included NK cytotoxicity, lymphocyte stimulation with mitogens, and DNA analysis of cell cycle. Sleep loss was associated with leukocytosis and increased NK cell activity. At the maximum sleep deprivation, increases were observed in counts of WBC, granulocytes, monocytes, NK activity, and the proportion of lymphocytes in the S phase of the cell cycle. Changes in monocyte counts correlated with changes in other immune parameters. Counts of CD4, CD16, CD56, and CD57 lymphocytes declined after one night without sleep, whereas CD56 and CD57 counts increased after two nights. No changes were observed in other lymphocyte counts, in proliferative responses to mitogens, or in plasma levels of cortisol or adrenocorticotropin hormone. The physiologic leukocytosis and NK activity increases during deprivation were eliminated by recovery sleep in a manner parallel to neurobehavioral function, suggesting that the immune alterations may be associated with biological pressure for sleep.

  3. Leukocytosis and natural killer cell function parallel neurobehavioral fatigue induced by 64 hours of sleep deprivation.

    PubMed Central

    Dinges, D F; Douglas, S D; Zaugg, L; Campbell, D E; McMann, J M; Whitehouse, W G; Orne, E C; Kapoor, S C; Icaza, E; Orne, M T

    1994-01-01

    The hypothesis that sleep deprivation depresses immune function was tested in 20 adults, selected on the basis of their normal blood chemistry, monitored in a laboratory for 7 d, and kept awake for 64 h. At 2200 h each day measurements were taken of total leukocytes (WBC), monocytes, granulocytes, lymphocytes, eosinophils, erythrocytes (RBC), B and T lymphocyte subsets, activated T cells, and natural killer (NK) subpopulations (CD56/CD8 dual-positive cells, CD16-positive cells, CD57-positive cells). Functional tests included NK cytotoxicity, lymphocyte stimulation with mitogens, and DNA analysis of cell cycle. Sleep loss was associated with leukocytosis and increased NK cell activity. At the maximum sleep deprivation, increases were observed in counts of WBC, granulocytes, monocytes, NK activity, and the proportion of lymphocytes in the S phase of the cell cycle. Changes in monocyte counts correlated with changes in other immune parameters. Counts of CD4, CD16, CD56, and CD57 lymphocytes declined after one night without sleep, whereas CD56 and CD57 counts increased after two nights. No changes were observed in other lymphocyte counts, in proliferative responses to mitogens, or in plasma levels of cortisol or adrenocorticotropin hormone. The physiologic leukocytosis and NK activity increases during deprivation were eliminated by recovery sleep in a manner parallel to neurobehavioral function, suggesting that the immune alterations may be associated with biological pressure for sleep. PMID:7910171

  4. Eradication of melanoma in vitro and in vivo via targeting with a Killer-Red-containing telomerase-dependent adenovirus.

    PubMed

    Takehara, Kiyoto; Yano, Shuya; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Narii, Nobuhiro; Mizuguchi, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2017-08-18

    Melanoma is a highly recalcitrant cancer and transformative therapy is necessary for the cure of this disease. We recently developed a telomerase-dependent adenovirus containing the fluorescent protein Killer-Red. In the present report, we first determined the efficacy of Killer-Red adenovirus combined with laser irradiation on human melanoma cell lines in vitro. Cell viability of human melanoma cells was reduced in a dose-dependent and irradiation-time-dependent manner. We used an intradermal xenografted melanoma model in nude mice to determine efficacy of the Killer-Red adenovirus. Intratumoral injection of Killer-Red adenovirus, combined with laser irradiation, eradicated the melanoma indicating the potential of a new paradigm of cancer therapy.

  5. Adaptive NKG2C+CD57+ Natural Killer Cell and Tim-3 Expression During Viral Infections

    PubMed Central

    Kared, Hassen; Martelli, Serena; Tan, Shu Wen; Simoni, Yannick; Chong, Meng Li; Yap, Siew Hwei; Newell, Evan W.; Pender, Sylvia L. F.; Kamarulzaman, Adeeba; Rajasuriar, Reena; Larbi, Anis

    2018-01-01

    Repetitive stimulation by persistent pathogens such as human cytomegalovirus (HCMV) or human immunodeficiency virus (HIV) induces the differentiation of natural killer (NK) cells. This maturation pathway is characterized by the acquisition of phenotypic markers, CD2, CD57, and NKG2C, and effector functions—a process regulated by Tim-3 and orchestrated by a complex network of transcriptional factors, involving T-bet, Eomes, Zeb2, promyelocytic leukemia zinc finger protein, and Foxo3. Here, we show that persistent immune activation during chronic viral co-infections (HCMV, hepatitis C virus, and HIV) interferes with the functional phenotype of NK cells by modulating the Tim-3 pathway; a decrease in Tim-3 expression combined with the acquisition of inhibitory receptors skewed NK cells toward an exhausted and cytotoxic phenotype in an inflammatory environment during chronic HIV infection. A better understanding of the mechanisms underlying NK cell differentiation could aid the identification of new immunological targets for checkpoint blockade therapies in a manner that is relevant to chronic infection and cancer. PMID:29731749

  6. Cystatin F Affects Natural Killer Cell Cytotoxicity

    PubMed Central

    Perišić Nanut, Milica; Sabotič, Jerica; Švajger, Urban; Jewett, Anahid; Kos, Janko

    2017-01-01

    Cystatin F is a cysteine peptidase inhibitor which, unlike other cystatin family members, is targeted to endosomal/lysosomal compartments. It is synthesized as an inactive disulfide-linked dimer which is then converted to an active monomer by proteolytic cleavage of 15 N-terminal residues. Cystatin F has been suggested to regulate the cytotoxicity of natural killer (NK) cells by inhibiting the major granzyme convertases, cathepsins C and H. To test this hypothesis, we prepared variants of cystatin F and analyzed their uptake, subcellular trafficking, and peptidase inhibition, as well as their impact on the cytotoxicity of NK-92 cells and primary NK cells. The N-glycosylation pattern is responsible for the secretion, uptake, and subcellular sorting of cystatin F in HeLa and Hek293 cells, whereas the legumain binding site had no effect on these processes. Active, N-terminally truncated, monomeric cystatin F can also be internalized by recipient cells and targeted to endo/lysosomes, affecting also cells lacking the activating peptidase. Cystatin F mutants capable of cell internalization and trafficking through the endo/lysosomal pathway significantly decreased cathepsin C and H activities, both in situ, following transfection and in trans, using conditioned media. Further, incubation of IL-2 stimulated NK-92 and primary NK cells with full-length and N-terminally truncated cystatin F mutants led to suppression of their granule-mediated cytotoxicity. This effect was most significant with the N-terminally truncated mutants. These results suggest that cystatin F can be an important mediator within tumor microenvironment affecting the cytotoxicity of NK cells and consequently antitumor immune response. PMID:29180998

  7. The molecular bases of δ/αβ T cell-mediated antigen recognition.

    PubMed

    Pellicci, Daniel G; Uldrich, Adam P; Le Nours, Jérôme; Ross, Fiona; Chabrol, Eric; Eckle, Sidonia B G; de Boer, Renate; Lim, Ricky T; McPherson, Kirsty; Besra, Gurdyal; Howell, Amy R; Moretta, Lorenzo; McCluskey, James; Heemskerk, Mirjam H M; Gras, Stephanie; Rossjohn, Jamie; Godfrey, Dale I

    2014-12-15

    αβ and γδ T cells are disparate T cell lineages that can respond to distinct antigens (Ags) via the use of the αβ and γδ T cell Ag receptors (TCRs), respectively. Here we characterize a population of human T cells, which we term δ/αβ T cells, expressing TCRs comprised of a TCR-δ variable gene (Vδ1) fused to joining α and constant α domains, paired with an array of TCR-β chains. We demonstrate that these cells, which represent ∼50% of all Vδ1(+) human T cells, can recognize peptide- and lipid-based Ags presented by human leukocyte antigen (HLA) and CD1d, respectively. Similar to type I natural killer T (NKT) cells, CD1d-lipid Ag-reactive δ/αβ T cells recognized α-galactosylceramide (α-GalCer); however, their fine specificity for other lipid Ags presented by CD1d, such as α-glucosylceramide, was distinct from type I NKT cells. Thus, δ/αβTCRs contribute new patterns of Ag specificity to the human immune system. Furthermore, we provide the molecular bases of how δ/αβTCRs bind to their targets, with the Vδ1-encoded region providing a major contribution to δ/αβTCR binding. Our findings highlight how components from αβ and γδTCR gene loci can recombine to confer Ag specificity, thus expanding our understanding of T cell biology and TCR diversity. © 2014 Pellicci et al.

  8. Peripheral natural killer cytotoxicity and CD56(pos)CD16(pos) cells increase during early pregnancy in women with a history of recurrent spontaneous abortion.

    PubMed

    Emmer, P M; Nelen, W L; Steegers, E A; Hendriks, J C; Veerhoek, M; Joosten, I

    2000-05-01

    For diagnostic purposes we assessed peripheral natural killer (NK) cell cytotoxicity and NK and T cell numbers to assess their putative predictive value in recurrent spontaneous abortion (RSA). A total of 43 women with subsequent pregnancy, 37 healthy controls and 39 women successfully partaking in an in-vitro fertilization (IVF) procedure, were included in the study. We show that before pregnancy, levels of NK cytotoxicity and numbers of both single CD56(pos) and double CD56(pos)CD16(pos) cells were similar between RSA women and controls. But notably, within the RSA group, NK cell numbers of <12% were strongly associated with a subsequent pregnancy carried to term. Supplementation of folic acid led to an increase of single CD56(pos) cells, but cytotoxic function appeared unaffected. The expression pattern of killer inhibitory receptors on CD56(pos) cells was not different between patients and controls. A longitudinal study revealed that, compared with controls, in RSA women higher numbers of double CD56(pos)CD16(pos) cells were present during early pregnancy, paralleled by an increase in cytotoxic NK cell reactivity. The single CD56(pos) population decreased in number. In conclusion, the analysis of peripheral NK cell characteristics appears a suitable diagnostic tool in RSA. Immunomodulation aimed at NK cell function appears a promising therapeutic measure.

  9. Autoreactive T effector memory differentiation mirrors β-cell function in type 1 diabetes.

    PubMed

    Yeo, Lorraine; Woodwyk, Alyssa; Sood, Sanjana; Lorenc, Anna; Eichmann, Martin; Pujol-Autonell, Irma; Melchiotti, Rossella; Skowera, Ania; Fidanis, Efthymios; Dolton, Garry M; Tungatt, Katie; Sewell, Andrew K; Heck, Susanne; Saxena, Alka; Beam, Craig A; Peakman, Mark

    2018-05-31

    In type 1 diabetes, cytotoxic CD8 T cells with specificity for β-cell autoantigens are found in the pancreatic islets where they are implicated in the destruction of insulin-secreting β cells. In contrast, the disease relevance of β-cell-reactive CD8 T cells that are detectable in the circulation, and their relationship to β-cell function, are not known. Here, we tracked multiple, circulating β-cell-reactive CD8 T cell subsets and measured β-cell function longitudinally for two years, starting immediately after diagnosis of type 1 diabetes. We found that change in β-cell-specific effector memory CD8 T cells expressing CD57 was positively correlated with C-peptide change in subjects below 12 years of age. Autoreactive CD57+ effector memory CD8 T cells bore the signature of enhanced effector function (higher expression of granzyme B, killer specific protein 37 and CD16, and reduced expression of CD28) compared with their CD57-negative counterparts, and network association modelling indicated that the dynamics of β-cell-reactive CD57+ effector memory CD8 T cell subsets were strongly linked. Thus, coordinated changes in circulating β-cell-specific CD8 T cells within the CD57+ effector memory subset calibrate to functional insulin reserve in type 1 diabetes, providing a tool for immune monitoring and a mechanism-based target for immunotherapy.

  10. K2 killer toxin-induced physiological changes in the yeast Saccharomyces cerevisiae.

    PubMed

    Orentaite, Irma; Poranen, Minna M; Oksanen, Hanna M; Daugelavicius, Rimantas; Bamford, Dennis H

    2016-03-01

    Saccharomyces cerevisiae cells produce killer toxins, such as K1, K2 and K28, that can modulate the growth of other yeasts giving advantage for the killer strains. Here we focused on the physiological changes induced by K2 toxin on a non-toxin-producing yeast strain as well as K1, K2 and K28 killer strains. Potentiometric measurements were adjusted to observe that K2 toxin immediately acts on the sensitive cells leading to membrane permeability. This correlated with reduced respiration activity, lowered intracellular ATP content and decrease in cell viability. However, we did not detect any significant ATP leakage from the cells treated by killer toxin K2. Strains producing heterologous toxins K1 and K28 were less sensitive to K2 than the non-toxin producing one suggesting partial cross-protection between the different killer systems. This phenomenon may be connected to the observed differences in respiratory activities of the killer strains and the non-toxin-producing strain at low pH. This might also have practical consequences in wine industry; both as beneficial ones in controlling contaminating yeasts and non-beneficial ones causing sluggish fermentation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Polyclonal proliferation of activated suppressor/cytotoxic T cells with transient depression of natural killer cell function in acute infectious mononucleosis.

    PubMed Central

    Williams, M L; Loughran, T P; Kidd, P G; Starkebaum, G A

    1989-01-01

    In acute infectious mononucleosis large numbers of atypical lymphocytes proliferate in response to B cells infected with Epstein-Barr virus, generally resulting in a self-limited illness. Although both T-cells and NK cells are known to be involved, the precise origin of the large granular lymphocytes in this disorder is incompletely understood. Using two-colour immunofluorescent flow cytometry, we sequentially examined the phenotype of selected T cell and NK cell subsets from nine patients with infectious mononucleosis. In parallel, we determined whether these lymphocytes utilized a restricted repertoire of the T cell receptor gene and also measured their NK activity. Our results show that in acute infectious mononucleosis there was a greater than three-fold increase in T lymphocytes with the phenotype CD2+, CD3+, CD8+ and DR+. A modest increase in Leu7(HNK1)+ and CD4+ T cells was also seen. In addition, there was a three-fold increase in cells coexpressing CD3- and CD16+, the phenotype reported to represent most NK cells. In spite of this latter finding, however, a marked decrease in NK function was found at the time of diagnosis, gradually returning to normal by day 28. Finally, Southern blot analysis of DNA from patient lymphocytes showed polyclonal rearrangements of the T cell receptor beta chain gene. These studies indicate that the proliferation of activated suppressor/cytotoxic T lymphocytes in acute infectious mononucleosis is polyclonal and is associated with transient depression of NK function. Images Fig. 2 PMID:2527653

  12. IκBζ is essential for natural killer cell activation in response to IL-12 and IL-18

    PubMed Central

    Miyake, Tohru; Satoh, Takashi; Kato, Hiroki; Matsushita, Kazufumi; Kumagai, Yutaro; Vandenbon, Alexis; Tani, Tohru; Muta, Tatsushi; Akira, Shizuo; Takeuchi, Osamu

    2010-01-01

    IκBζ, encoded by Nfibiz, is a nuclear IκB-like protein harboring ankyrin repeats. IκBζ has been shown to regulate IL-6 production in macrophages and Th17 development in T cells. However, the role of IκBζ in natural killer (NK) cells has not be understood. In the present study, we found that the expression of IκBζ was rapidly induced in response to IL-18 in NK cells, but not in T cells. Analysis of Nfkbiz−/− mice revealed that IκBζ was essential for the production of IFN-γ production and cytotoxic activity in NK cells in response to IL-12 and/or IL-18 stimulation. IL-12/IL-18–mediated gene induction was profoundly impaired in Nfkbiz−/− NK cells. Whereas the phosphorylation of STAT4 was normally induced by IL-12 stimulation, STAT4 was not recruited to the Ifng gene regions in Nfkbiz−/− NK cells. Acetylation of histone 3 K9 on Ifng regions was also abrogated in Nfkbiz−/− NK cells. IκBζ was recruited on the proximal promoter region of the Ifng gene, and overexpression of IκBζ together with IL-12 activated the Ifng promoter. Furthermore, Nfkbiz−/− mice were highly susceptible to mouse MCMV infection. Taken together, these results demonstrate that IκBζ is essential for the activation of NK cells and antiviral host defense responses. PMID:20876105

  13. Cytotoxic human peripheral blood-derived γδT cells kill glioblastoma cell lines: implications for cell-based immunotherapy for patients with glioblastoma.

    PubMed

    Nakazawa, Tsutomu; Nakamura, Mitsutoshi; Park, Young Soo; Motoyama, Yasushi; Hironaka, Yasuo; Nishimura, Fumihiko; Nakagawa, Ichiro; Yamada, Shuichi; Matsuda, Ryosuke; Tamura, Kentaro; Sugimoto, Tadashi; Takeshima, Yasuhiro; Marutani, Akiko; Tsujimura, Takahiro; Ouji, Noriko; Ouji, Yukiteru; Yoshikawa, Masahide; Nakase, Hiroyuki

    2014-01-01

    Glioblastoma (GBM) is a highly aggressive brain tumor for which novel therapeutic approaches, such as immunotherapy, are urgently needed. Zoledronate (ZOL), an inhibitor of osteoclastic activity, is known to stimulate peripheral blood-derived γδT cells and sensitize tumors to γδT cell-mediated killing. To investigate the feasibility of γδT cell-based immunotherapy for patients with GBM, we focused on the killing of GBM cell lines by γδT cells and the molecular mechanisms involved in these cell-cell interactions. Peripheral blood mononuclear cells were expanded in ZOL and interleukin (IL)-2 for 14 days, and γδT cells were enriched in the expanded cells by the immunomagnetic depletion of αβT cells. Gliomas are resistant to NK cells but susceptible to lymphokine-activated killer cells and some cytotoxic T lymphocytes. When the γδT cell-mediated killing of three GBM cell lines (U87MG, U138MG and A172 cells) and an NK-sensitive leukemia cell line (K562 cells) were tested, 32% U87MG, 15% U138MG, 1% A172, and 50% K562 cells were killed at an effector:target ratio of 5:1. The γδT cell-mediated killing of all three GBM cell lines was significantly enhanced by ZOL and this ZOL-enhanced killing was blocked by an anti-T cell receptor (TcR) antibody. These results indicated that TcR γδ is crucial for the recognition of ZOL-treated GBM cells by γδT cells. Since the low level killing of GBM cells by the γδT cells was enhanced by ZOL, γδT cell-targeting therapy in combination with ZOL treatment could be effective for patients with GBM.

  14. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity.

    PubMed

    Davenport, A J; Cross, R S; Watson, K A; Liao, Y; Shi, W; Prince, H M; Beavis, P A; Trapani, J A; Kershaw, M H; Ritchie, D S; Darcy, P K; Neeson, P J; Jenkins, M R

    2018-02-27

    Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. Copyright © 2018 the Author(s). Published by PNAS.

  15. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity

    PubMed Central

    Davenport, A. J.; Cross, R. S.; Watson, K. A.; Liao, Y.; Shi, W.; Prince, H. M.; Beavis, P. A.; Trapani, J. A.; Kershaw, M. H.; Ritchie, D. S.; Darcy, P. K.; Jenkins, M. R.

    2018-01-01

    Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. PMID:29440406

  16. Allogeneic hematopoietic stem cell transplantation for Epstein-Barr virus-associated T/natural killer-cell lymphoproliferative disease in Japan.

    PubMed

    Sato, Emiko; Ohga, Shouichi; Kuroda, Hiroshi; Yoshiba, Fumiaki; Nishimura, Miki; Nagasawa, Masayuki; Inoue, Masami; Kawa, Keisei

    2008-09-01

    Epstein-Barr virus (EBV)-associated T/NK-cell lymphoproliferative disease (LPD) has been linked to several different disorders. Its prognosis is generally poor and a treatment strategy has yet to be established. There are reports, however, that hematopoietic stem cell transplantation (HSCT) can cure this disease. To clarify the current situation regarding allogeneic hematopoietic stem cell transplantation (allo-HSCT) for EBV-associated T/NK-LPD, a nationwide survey was performed in Japan. Data for 74 patients were collected. There were 42 cases of chronic active EBV infection (CAEBV), 10 cases of EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), and 22 cases of EBV-associated lymphoma/leukemia (EBV-lymphoma/leukemia). Of those with CAEBV, 54% had the EBV-infected T-cell type and 59% with EBV-lymphoma/leukemia had the EBV-infected NK-cell type. Most patients with EBV-HLH and EBV-lymphoma/leukemia received allo-HSCT within 1 year after onset compared to only 14% of patients with CAEBV. The event-free survival (EFS) rate following allo-HSCT was 0.561 +/- 0.086 for CAEBV, 0.614 +/- 0.186 for EBV-HLH, and 0.309 +/- 0.107 for EBV-lymphoma/leukemia. The EFS of allo-HSCT with conventional conditioning was 0.488 +/- 0.074 and with reduced-intensity conditioning was 0.563 +/- 0.124. Thus, in a substantial number of cases, EBV-associated T/NK-LPD can be cured by either allogeneic conventional stem cell transplantation or reduced-intensity stem cell transplantation. Copyright 2008 Wiley-Liss, Inc.

  17. Developmental and Functional Control of Natural Killer Cells by Cytokines

    PubMed Central

    Wu, Yang; Tian, Zhigang; Wei, Haiming

    2017-01-01

    Natural killer (NK) cells are effective in combating infections and tumors and as such are tempting for adoptive transfer therapy. However, they are not homogeneous but can be divided into three main subsets, including cytotoxic, tolerant, and regulatory NK cells, with disparate phenotypes and functions in diverse tissues. The development and functions of such NK cells are controlled by various cytokines, such as fms-like tyrosine kinase 3 ligand (FL), kit ligand (KL), interleukin (IL)-3, IL-10, IL-12, IL-18, transforming growth factor-β, and common-γ chain family cytokines, which operate at different stages by regulating distinct signaling pathways. Nevertheless, the specific roles of each cytokine that regulates NK cell development or that shapes different NK cell functions remain unclear. In this review, we attempt to describe the characteristics of each cytokine and the existing protocols to expand NK cells using different combinations of cytokines and feeder cells. A comprehensive understanding of the role of cytokines in NK cell development and function will aid the generation of better efficacy for adoptive NK cell treatment. PMID:28824650

  18. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    PubMed

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  19. Natural Killer Cell Receptor Genes in the Family Equidae: Not only Ly49

    PubMed Central

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  20. Cell polarity signaling in the plasticity of cancer cell invasiveness

    PubMed Central

    Gandalovičová, Aneta; Vomastek, Tomáš; Rosel, Daniel; Brábek, Jan

    2016-01-01

    Apico-basal polarity is typical of cells present in differentiated epithelium while front-rear polarity develops in motile cells. In cancer development, the transition from epithelial to migratory polarity may be seen as the hallmark of cancer progression to an invasive and metastatic disease. Despite the morphological and functional dissimilarity, both epithelial and migratory polarity are controlled by a common set of polarity complexes Par, Scribble and Crumbs, phosphoinositides, and small Rho GTPases Rac, Rho and Cdc42. In epithelial tissues, their mutual interplay ensures apico-basal and planar cell polarity. Accordingly, altered functions of these polarity determinants lead to disrupted cell-cell adhesions, cytoskeleton rearrangements and overall loss of epithelial homeostasis. Polarity proteins are further engaged in diverse interactions that promote the establishment of front-rear polarity, and they help cancer cells to adopt different invasion modes. Invading cancer cells can employ either the collective, mesenchymal or amoeboid invasion modes or actively switch between them and gain intermediate phenotypes. Elucidation of the role of polarity proteins during these invasion modes and the associated transitions is a necessary step towards understanding the complex problem of metastasis. In this review we summarize the current knowledge of the role of cell polarity signaling in the plasticity of cancer cell invasiveness. PMID:26872368

  1. Granulysin Produced by Uterine Natural Killer Cells Induces Apoptosis of Extravillous Trophoblasts in Spontaneous Abortion

    PubMed Central

    Nakashima, Akitoshi; Shiozaki, Arihiro; Myojo, Subaru; Ito, Mika; Tatematsu, Mikiko; Sakai, Masatoshi; Takamori, Yasushi; Ogawa, Kazuyuki; Nagata, Kinya; Saito, Shigeru

    2008-01-01

    Immune changes are known to occur in recurrent spontaneous abortion, but it is unclear whether either maternal natural killer (NK) cells or T cells attack fetus-derived trophoblasts. To clarify the immunological causes of spontaneous abortion, we examined the relationship between cytotoxic granule proteins in decidual lymphocytes, such as granulysin, granzyme B, and perforin, and the induction of apoptosis in extravillous trophoblasts (EVTs). The number of granulysin-positive CD56bright NK cells increased significantly in the decidua basalis during spontaneous abortion compared with normal pregnancy; however, granzyme B- and perforin-positive cells did not change. Interestingly, the expression of granulysin was also detected in the nuclei of EVTs in spontaneous abortion samples. When IL-2-stimulated CD56bright NK cells were cocultured with EVT cells (HTR-8/SV40neo), granulysin was found initially in the cytoplasm and then accumulated in the nuclei of the HTR-8/SV40neo cells. Furthermore, transfected cells expressing a GFP-granulysin fusion protein induced apoptosis in HTR-8/SV40neo cells independently of caspases. Our results suggest that granulysin-positive uterine NK cells attack EVTs; subsequently, the uNK-derived granulysin actively accumulates in the nuclei of EVTs, causing the death of EVTs due to apoptosis. These data support a new apoptosis pathway for trophoblasts via uNK-derived granulysin, suggesting that granulysin is involved in spontaneous abortion. PMID:18688023

  2. Phosphoinositide 3–kinase γ participates in T cell receptor–induced T cell activation

    PubMed Central

    Alcázar, Isabela; Marqués, Miriam; Kumar, Amit; Hirsch, Emilio; Wymann, Matthias; Carrera, Ana C.; Barber, Domingo F.

    2007-01-01

    Class I phosphoinositide 3–kinases (PI3Ks) constitute a family of enzymes that generates 3-phosphorylated polyphosphoinositides at the cell membrane after stimulation of protein tyrosine (Tyr) kinase–associated receptors or G protein–coupled receptors (GPCRs). The class I PI3Ks are divided into two types: class IA p85/p110 heterodimers, which are activated by Tyr kinases, and the class IB p110γ isoform, which is activated by GPCR. Although the T cell receptor (TCR) is a protein Tyr kinase–associated receptor, p110γ deletion affects TCR-induced T cell stimulation. We examined whether the TCR activates p110γ, as well as the consequences of interfering with p110γ expression or function for T cell activation. We found that after TCR ligation, p110γ interacts with Gαq/11, lymphocyte-specific Tyr kinase, and ζ-associated protein. TCR stimulation activates p110γ, which affects 3-phosphorylated polyphosphoinositide levels at the immunological synapse. We show that TCR-stimulated p110γ controls RAS-related C3 botulinum substrate 1 activity, F-actin polarization, and the interaction between T cells and antigen-presenting cells, illustrating a crucial role for p110γ in TCR-induced T cell activation. PMID:17998387

  3. Preferential susceptibility of Th9 and Th2 CD4+ T cells to X4-tropic HIV-1 infection.

    PubMed

    Orlova-Fink, Nina; Chowdhury, Fatema Z; Sun, Xiaoming; Harrington, Sean; Rosenberg, Eric S; Yu, Xu G; Lichterfeld, Mathias

    2017-10-23

    The functional polarization of CD4 T cells determines their antimicrobial effector profile, but may also impact the susceptibility to infection with HIV-1. Here, we analyzed the susceptibility of CD4 T cells with different functional polarization to infection with X4 and R5-tropic HIV-1. CD4 T cells with a Th1, Th2, Th17, and Th9 polarization were subjected to in-vitro infection assays with X4, R5, or vesicular stomatitis virus-G protein-pseudotyped HIV-1. In addition, we sorted differentially polarized CD4 T-cell subsets from individuals treated with antiretroviral therapy and analyzed the tropism of viral env sequences. Th9-polarized CD4 T cells and, to a lesser extent, Th2-polarized CD4 T cells expressed higher surface levels of CXCR4, and are more permissive to X4-tropic infection in vitro. In contrast, Th1 and Th17 CD4 T cells exhibited stronger surface expression of CCR5, and were more susceptible to infection with R5-tropic viruses. Correspondingly, the distribution of X4-tropic viral sequences in antiretroviral therapy-treated HIV-1-infected patients was biased toward Th9/Th2 cells, whereas R5-tropic sequences were more frequently observed in Th17 cells. CD4 T-cell polarization is associated with a distinct susceptibility to X4 and R5-tropic HIV-1 infection.

  4. The anti-canine distemper virus activities of ex vivo-expanded canine natural killer cells.

    PubMed

    Park, Ji-Yun; Shin, Dong-Jun; Lee, Soo-Hyeon; Lee, Je-Jung; Suh, Guk-Hyun; Cho, Duck; Kim, Sang-Ki

    2015-04-17

    Natural killer (NK) cells play critical roles in induction of antiviral effects against various viruses of humans and animals. However, few data on NK cell activities during canine distemper virus (CDV) infections are available. Recently, we established a culture system allowing activation and expansion of canine non-B, non-T, large granular NK lymphocytes from PBMCs of normal dogs. In the present study, we explored the ability of such expanded NK cells to inhibit CDV infection in vitro. Cultured CD3-CD5-CD21- NK cells produced large amounts of IFN-γ, exhibited highly upregulated expression of mRNAs encoding NK-cell-associated receptors, and demonstrated strong natural killing activity against canine tumor cells. Although the expanded NK cells were dose-dependently cytotoxic to both normal and CDV-infected Vero cells, CDV infection rendered Vero cells more susceptible to NK cells. Pretreatment with anti-CDV serum from hyperimmunized dogs enhanced the antibody-dependent cellular cytotoxicity (ADCC) of NK cells against CDV-infected Vero cells. The culture supernatants of NK cells, added before or after infection, dose-dependently inhibited both CDV replication and development of CDV-induced cytopathic effects (CPEs) in Vero cells. Anti-IFN-γ antibody neutralized the inhibitory effects of NK cell culture supernatants on CDV replication and CPE induction in Vero cells. Such results emphasize the potential significance of NK cells in controlling CDV infection, and indicate that NK cells may play roles both during CDV infection and in combating such infections, under certain conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Nucleocapsid promotes localization of HIV-1 gag to uropods that participate in virological synapses between T cells.

    PubMed

    Llewellyn, G Nicholas; Hogue, Ian B; Grover, Jonathan R; Ono, Akira

    2010-10-28

    T cells adopt a polarized morphology in lymphoid organs, where cell-to-cell transmission of HIV-1 is likely frequent. However, despite the importance of understanding virus spread in vivo, little is known about the HIV-1 life cycle, particularly its late phase, in polarized T cells. Polarized T cells form two ends, the leading edge at the front and a protrusion called a uropod at the rear. Using multiple uropod markers, we observed that HIV-1 Gag localizes to the uropod in polarized T cells. Infected T cells formed contacts with uninfected target T cells preferentially via HIV-1 Gag-containing uropods compared to leading edges that lack plasma-membrane-associated Gag. Cell contacts enriched in Gag and CD4, which define the virological synapse (VS), are also enriched in uropod markers. These results indicate that Gag-laden uropods participate in the formation and/or structure of the VS, which likely plays a key role in cell-to-cell transmission of HIV-1. Consistent with this notion, a myosin light chain kinase inhibitor, which disrupts uropods, reduced virus particle transfer from infected T cells to target T cells. Mechanistically, we observed that Gag copatches with antibody-crosslinked uropod markers even in non-polarized cells, suggesting an association of Gag with uropod-specific microdomains that carry Gag to uropods. Finally, we determined that localization of Gag to the uropod depends on higher-order clustering driven by its NC domain. Taken together, these results support a model in which NC-dependent Gag accumulation to uropods establishes a preformed platform that later constitutes T-cell-T-cell contacts at which HIV-1 virus transfer occurs.

  6. Non-canonical Activities of Hog1 Control Sensitivity of Candida albicans to Killer Toxins From Debaryomyces hansenii

    PubMed Central

    Morales-Menchén, Ana; Navarro-García, Federico; Guirao-Abad, José P.; Román, Elvira; Prieto, Daniel; Coman, Ioana V.; Pla, Jesús; Alonso-Monge, Rebeca

    2018-01-01

    Certain yeasts secrete peptides known as killer toxins or mycocins with a deleterious effect on sensitive yeasts or filamentous fungi, a common phenomenon in environmental species. In a recent work, different Debaryomyces hansenii (Dh) strains isolated from a wide variety of cheeses were identified as producing killer toxins active against Candida albicans and Candida tropicalis. We have analyzed the killer activity of these toxins in C. albicans mutants defective in MAPK signaling pathways and found that the lack of the MAPK Hog1 (but not Cek1 or Mkc1) renders cells hypersensitive to Dh mycocins while mutants lacking other upstream elements of the pathway behave as the wild type strain. Point mutations in the phosphorylation site (T174A-176F) or in the kinase domain (K52R) of HOG1 gene showed that both activities were relevant for the survival of C. albicans to Dh killer toxins. Moreover, Hog1 phosphorylation was also required to sense and adapt to osmotic and oxidative stress while the kinase activity was somehow dispensable. Although the addition of supernatant from the killer toxin- producing D. hansenii 242 strain (Dh-242) induced a slight intracellular increase in Reactive Oxygen Species (ROS), overexpression of cytosolic catalase did not protect C. albicans against this mycocin. This supernatant induced an increase in intracellular glycerol concentration suggesting that this toxin triggers an osmotic stress. We also provide evidence of a correlation between sensitivity to Dh-242 killer toxin and resistance to Congo red, suggesting cell wall specific alterations in sensitive strains. PMID:29774204

  7. Relative Contributions of B Cells and Dendritic Cells from Lupus-Prone Mice to CD4+ T Cell Polarization.

    PubMed

    Choi, Seung-Chul; Xu, Zhiwei; Li, Wei; Yang, Hong; Roopenian, Derry C; Morse, Herbert C; Morel, Laurence

    2018-05-01

    Mouse models of lupus have shown that multiple immune cell types contribute to autoimmune disease. This study sought to investigate the involvement of B cells and dendritic cells in supporting the expansion of inflammatory and regulatory CD4 + T cells that are critical for lupus pathogenesis. We used lupus-prone B6.NZM2410.Sle1.Sle2.Sle3 (TC) and congenic C57BL/6J (B6) control mice to investigate how the genetic predisposition of these two cell types controls the activity of normal B6 T cells. Using an allogeneic in vitro assay, we showed that TC B1-a and conventional B cells expanded Th17 cells significantly more than their B6 counterparts. This expansion was dependent on CD86 and IL-6 expression and mapped to the Sle1 lupus-susceptibility locus. In vivo, TC B cells promoted greater differentiation of CD4 + T cells into Th1 and follicular helper T cells than did B6 B cells, but they limited the expansion of Foxp3 regulatory CD4 + T cells to a greater extent than did B6 B cells. Finally, when normal B6 CD4 + T cells were introduced into Rag1 -/- mice, TC myeloid/stromal cells caused their heightened activation, decreased Foxp3 regulatory CD4 + T cell differentiation, and increased renal infiltration of Th1 and Th17 cells in comparison with B6 myeloid/stromal cells. The results show that B cells from lupus mice amplify inflammatory CD4 + T cells in a nonredundant manner with myeloid/stromal cells. Copyright © 2018 by The American Association of Immunologists, Inc.

  8. Signalling through NK1.1 triggers NK cells to die but induces NK T cells to produce interleukin-4.

    PubMed

    Asea, A; Stein-Streilein, J

    1998-02-01

    In vivo inoculation of specific antibody is an accepted protocol for elimination of specific cell populations. Except for anti-CD3 and anti-CD4, it is not known if the depleted cells are eliminated by signalling through the target molecule or through a more non-specific mechanism. C57BL/6 mice were inoculated with anti-natural killer (NK1.1) monoclonal antibody (mAb). Thereafter spleen cells were harvested, stained for both surface and intracellular markers, and analysed by flow cytometry. As early as 2 hr post inoculation, NK cells were signalled to become apoptotic while signalling through the NK1.1 molecule activated NK1.1+ T-cell receptor (TCR)+ (NK T) cells to increase in number, and produce interleukin-4 (IL-4). Anti NK1.1 mAb was less efficient at signalling apoptosis in NK cells when NK T-cell deficient [beta 2-microglobulin beta 2m-deficient] mice were used compared with wild type mice. Efficient apoptotic signalling was restored when beta 2m-deficient mice were reconstituted with NK T cells. NK-specific antibody best signals the apoptotic process in susceptible NK cells when resistant NK T cells are present, activated, and secrete IL-4.

  9. Profiling the dynamic expression of checkpoint molecules on cytokine-induced killer cells from non-small-cell lung cancer patients.

    PubMed

    Zhang, Lin; Wang, Jian; Wei, Feng; Wang, Kaiyuan; Sun, Qian; Yang, Fan; Jin, Hao; Zheng, Yu; Zhao, Hua; Wang, Limei; Yu, Wenwen; Zhang, Xiying; An, Yang; Yang, Lili; Zhang, Xinwei; Ren, Xiubao

    2016-07-12

    Immune checkpoints associate with dysfunctional T cells, which have a reduced ability to clear pathogens or cancer cells. T-cell checkpoint blockade may improve patient survival. However, checkpoint molecules on cytokine-induced killer (CIK) cell, a non-specific adoptive immunotherapy, remain unknown. In present study, we detected the dynamic expression of eight major checkpoint molecules (CTLA-4, PD-1, PD-L1, TIM- 3, CEACAM-1, LAG-3, TIGIT and BTLA) on CIK cells from NSCLC patients. The majority of these molecules, except BTLA, were sharply elevated during the early stage of CIK cell culture. Thereafter, PD-1 and TIGIT expressions decreased gradually towards the initial level (day 0). Moreover, CTLA-4 faded away during the later stage of CIK culture. LAG-3 expression decreased but was still significantly higher than the initial level. Of note, PD-L1 remained stably upregulated during CIK culture compared with PD-1, indicating that PD-L1 might act as an inhibitory molecule on CIK cells instead of PD-1. Furthermore, TIM-3 and CEACAM1 were strongly expressed simultaneously during long-term CIK culture and showed a significant and mutually positive correlation. BTLA displayed a distinct pattern, and its expression gradually decreased throughout the CIK culture. These observations suggested that CIK cells might be partly exhausted before clinical transfusion, characterized by the high expression of PD-L1, LAG-3, TIM- 3, and CEACAM-1 and the low expression of TIGIT, BTLA, PD-1, and CTLA-4 compared with initial culture. Our results imply that implementing combined treatment on CIK cells before transfusion via antibodies targeting PD-L1, LAG-3, TIM-3, and CEACAM-1 might improve the efficiency of CIK therapy for NSCLC patients.

  10. Apicobasal polarity of brain endothelial cells

    PubMed Central

    Worzfeld, Thomas

    2015-01-01

    Normal brain homeostasis depends on the integrity of the blood–brain barrier that controls the access of nutrients, humoral factors, and immune cells to the CNS. The blood–brain barrier is composed mainly of brain endothelial cells. Forming the interface between two compartments, they are highly polarized. Apical/luminal and basolateral/abluminal membranes differ in their lipid and (glyco-)protein composition, allowing brain endothelial cells to secrete or transport soluble factors in a polarized manner and to maintain blood flow. Here, we summarize the basic concepts of apicobasal cell polarity in brain endothelial cells. To address potential molecular mechanisms underlying apicobasal polarity in brain endothelial cells, we draw on investigations in epithelial cells and discuss how polarity may go awry in neurological diseases. PMID:26661193

  11. A STED-FLIM microscope applied to imaging the natural killer cell immune synapse

    NASA Astrophysics Data System (ADS)

    Lenz, M. O.; Brown, A. C. N.; Auksorius, E.; Davis, D. M.; Dunsby, C.; Neil, M. A. A.; French, P. M. W.

    2011-03-01

    We present a stimulated emission depletion (STED) fluorescence lifetime imaging (FLIM) microscope, excited by a microstructured optical fibre supercontinuum source that is pumped by a femtosecond Ti:Sapphire-laser, which is also used for depletion. Implemented using a piezo-scanning stage on a laser scanning confocal fluorescence microscope system with FLIM realised using time correlated single photon counting (TCSPC), this provides convenient switching between confocal and STED-FLIM with spatial resolution down to below 60 nm. We will present our design considerations to make a robust instrument for biological applications including a comparison between fixed phase plate and spatial light modulator (SLM) approaches to shape the STED beam and the correlation of STED and confocal FLIM microscopy. Following our previous application of FLIM-FRET to study intercellular signalling at the immunological synapse (IS), we are employing STED microscopy to characterize the spatial distribution of cellular molecules with subdiffraction resolution at the IS. In particular, we are imaging cytoskeletal structure at the Natural Killer cell activated immune synapse. We will also present our progress towards multilabel STED microscopy to determine how relative spatial molecular organization, previously undetectable by conventional microscopy techniques, is important for NK cell cytotoxic function. Keywords: STED, Stimulated Emission Depletion Microscopy, Natural Killer (NK) cell, Fluorescence lifetime imaging, FLIM, Super resolution microscopy.

  12. Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells

    PubMed Central

    Scoville, Steven D.; Freud, Aharon G.; Caligiuri, Michael A.

    2017-01-01

    Decades after the discovery of natural killer (NK) cells, their developmental pathways in mice and humans have not yet been completely deciphered. Accumulating evidence indicates that NK cells can develop in multiple tissues throughout the body. Moreover, detailed and comprehensive models of NK cell development were proposed soon after the turn of the century. However, with the recent identification and characterization of other subtypes of innate lymphoid cells (ILCs), which show some overlapping functional and phenotypic features with NK cell developmental intermediates, the distinct stages through which human NK cells develop from early hematopoietic progenitor cells remain unclear. Thus, there is a need to reassess and refine older models of NK cell development in the context of new data and in the era of ILCs. Our group has focused on elucidating the developmental pathway of human NK cells in secondary lymphoid tissues (SLTs), including tonsils and lymph nodes. Here, we provide an update of recent progress that has been made with regard to human NK cell development in SLTs, and we discuss these new findings in the context of contemporary models of ILC development. PMID:28396671

  13. Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells.

    PubMed

    Scoville, Steven D; Freud, Aharon G; Caligiuri, Michael A

    2017-01-01

    Decades after the discovery of natural killer (NK) cells, their developmental pathways in mice and humans have not yet been completely deciphered. Accumulating evidence indicates that NK cells can develop in multiple tissues throughout the body. Moreover, detailed and comprehensive models of NK cell development were proposed soon after the turn of the century. However, with the recent identification and characterization of other subtypes of innate lymphoid cells (ILCs), which show some overlapping functional and phenotypic features with NK cell developmental intermediates, the distinct stages through which human NK cells develop from early hematopoietic progenitor cells remain unclear. Thus, there is a need to reassess and refine older models of NK cell development in the context of new data and in the era of ILCs. Our group has focused on elucidating the developmental pathway of human NK cells in secondary lymphoid tissues (SLTs), including tonsils and lymph nodes. Here, we provide an update of recent progress that has been made with regard to human NK cell development in SLTs, and we discuss these new findings in the context of contemporary models of ILC development.

  14. Ferromagnetic nickel silicide nanowires for isolating primary CD4+ T lymphocytes

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Joo; Seol, Jin-Kyeong; Lee, Mi-Ri; Hyung, Jung-Hwan; Kim, Gil-Sung; Ohgai, Takeshi; Lee, Sang-Kwon

    2012-04-01

    Direct CD4+ T lymphocytes were separated from whole mouse splenocytes using 1-dimensional ferromagnetic nickel silicide nanowires (NiSi NWs). NiSi NWs were prepared by silver-assisted wet chemical etching of silicon and subsequent deposition and annealing of Ni. This method exhibits a separation efficiency of ˜93.5%, which is comparable to that of the state-of-the-art superparamagnetic bead-based cell capture (˜96.8%). Furthermore, this research shows potential for separation of other lymphocytes, B, natural killer and natural killer T cells, and even rare tumor cells simply by changing the biotin-conjugated antibodies.

  15. Building tolerance by dismantling synapses: inhibitory receptor signaling in natural killer cells.

    PubMed

    Huse, Morgan; Catherine Milanoski, S; Abeyweera, Thushara P

    2013-01-01

    Cell surface receptors bearing immunotyrosine-based inhibitory motifs (ITIMs) maintain natural killer (NK) cell tolerance to normal host tissues. These receptors are difficult to analyze mechanistically because they block activating responses in a rapid and comprehensive manner. The advent of high-resolution single cell imaging techniques has enabled investigators to explore the cell biological basis of the inhibitory response. Recent studies using these approaches indicate that ITIM-containing receptors function at least in part by structurally undermining the immunological synapse between the NK cell and its target. In this review, we discuss these new advances and how they might relate to what is known about the biochemistry of inhibitory signaling in NK cells and other cell types. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  16. Weak vaccinia virus-induced NK cell regulation of CD4 T cells is associated with reduced NK cell differentiation and cytolytic activity.

    PubMed

    Hatfield, Steven D; Daniels, Keith A; O'Donnell, Carey L; Waggoner, Stephen N; Welsh, Raymond M

    2018-06-01

    Natural killer (NK) cells control antiviral adaptive immune responses in mice during some virus infections, but the universality of this phenomenon remains unknown. Lymphocytic choriomeningitis virus (LCMV) infection of mice triggered potent cytotoxic activity of NK cells (NK LCMV ) against activated CD4 T cells, tumor cells, and allogeneic lymphocytes. In contrast, NK cells activated by vaccinia virus (VACV) infection (NK VACV ) exhibited weaker cytolytic activity against each of these target cells. Relative to NK LCMV cells, NK VACV cells exhibited a more immature (CD11b - CD27 + ) phenotype, and lower expression levels of the activation marker CD69, cytotoxic effector molecules (perforin, granzyme B), and the transcription factor IRF4. NK VACV cells expressed higher levels of the inhibitory molecule NKG2A than NK LCMV cells. Consistent with this apparent lethargy, NK VACV cells only weakly constrained VACV-specific CD4 T-cell responses. This suggests that NK cell regulation of adaptive immunity, while universal, may be limited with viruses that poorly activate NK cells. Published by Elsevier Inc.

  17. Role of CD44 in lymphokine-activated killer cell-mediated killing of melanoma.

    PubMed

    Sun, Jingping; Law, Gabriela P; McKallip, Robert J

    2012-03-01

    In the current study, we examined the potential significance of CD44 expression on lymphokine-activated killer (LAK) cells in their interaction and killing of melanoma cells. Stimulation of splenocytes with IL-2 led to a significant increase in the expression of CD44 on T cells, NK cells, and NKT cells. Treatment of melanoma-bearing CD44 WT mice with IL-2 led to a significant reduction in the local tumor growth while treatment of melanoma-bearing CD44 KO mice with IL-2 was ineffective at controlling tumor growth. Furthermore, the ability of splenocytes from IL-2-treated CD44 KO mice to kill melanoma tumor targets was significantly reduced when compared to the anti-tumor activity of splenocytes from IL-2-treated CD44 WT mice. The importance of CD44 expression on the LAK cells was further confirmed by the observation that adoptively transferred CD44 WT LAK cells were significantly more effective than CD44 KO LAK cells at controlling tumor growth in vivo. Next, the significance of the increased expression of CD44 in tumor killing was examined and showed that following stimulation with IL-2, distinct populations of cells with low (CD44(lo)) or elevated (CD44(hi)) expression of CD44 are generated and that the CD44(hi) cells are responsible for killing of the melanoma cells. The reduced killing activity of the CD44 KO LAK cells did not result from reduced activation or expression of effector molecules but was due, at least in part, to a reduced ability to adhere to B16F10 tumor cells.

  18. Characterization of mouse natural killer cell activating factor (NKAF) induced by OK-432: evidence for interferon- and interleukin 2-independent NK cell activation.

    PubMed Central

    Ichimura, O.; Suzuki, S.; Sugawara, Y.; Osawa, T.

    1984-01-01

    The bacterial immunopotentiator OK-432 induced natural killer cell activating factor (NKAF) from mouse spleen cells. OK-432-induced NKAF showed a single peak with an apparent mol. wt of 70 Kd by Sephadex G-100 chromatography and OK-432-induced interleukin 2 (IL-2) had the same mol. wt as NKAF. However, OK-432-induced interferon (IFN) showed molecular heterogeneity with two peaks at 90 Kd and 45 Kd. Further purification was achieved by Blue Sepharose affinity chromatography which copurified NKAF and IFN. The affinity-purified NKAF, however, was stable to heat (56 degrees C) and acid (pH 2) treatments. Moreover, anti-IFN failed to abolish NKAF activity and this activity was not absorbed by IL-2 dependent T cells. From isoelectric focusing analysis, a dissociation of NKAF and IFN was observed over the range of pI 6.5 to 8.0. Based on these results, KNAF appears to be a new kind of cytokine distinguishable from IFN and IL-2. PMID:6204667

  19. Cell polarity proteins and spermatogenesis.

    PubMed

    Gao, Ying; Xiao, Xiang; Lui, Wing-Yee; Lee, Will M; Mruk, Dolores; Cheng, C Yan

    2016-11-01

    When the cross-section of a seminiferous tubule from an adult rat testes is examined microscopically, Sertoli cells and germ cells in the seminiferous epithelium are notably polarized cells. For instance, Sertoli cell nuclei are found near the basement membrane. On the other hand, tight junction (TJ), basal ectoplasmic specialization (basal ES, a testis-specific actin-rich anchoring junction), gap junction (GJ) and desmosome that constitute the blood-testis barrier (BTB) are also located near the basement membrane. The BTB, in turn, divides the epithelium into the basal and the adluminal (apical) compartments. Within the epithelium, undifferentiated spermatogonia and preleptotene spermatocytes restrictively reside in the basal compartment whereas spermatocytes and post-meiotic spermatids reside in the adluminal compartment. Furthermore, the heads of elongating/elongated spermatids point toward the basement membrane with their elongating tails toward the tubule lumen. However, the involvement of polarity proteins in this unique cellular organization, in particular the underlying molecular mechanism(s) by which polarity proteins confer cellular polarity in the seminiferous epithelium is virtually unknown until recent years. Herein, we discuss latest findings regarding the role of different polarity protein complexes or modules and how these protein complexes are working in concert to modulate Sertoli cell and spermatid polarity. These findings also illustrate polarity proteins exert their effects through the actin-based cytoskeleton mediated by actin binding and regulatory proteins, which in turn modulate adhesion protein complexes at the cell-cell interface since TJ, basal ES and GJ utilize F-actin for attachment. We also propose a hypothetical model which illustrates the antagonistic effects of these polarity proteins. This in turn provides a unique mechanism to modulate junction remodeling in the testis to support germ cell transport across the epithelium in

  20. Current Status of Gene Engineering Cell Therapeutics

    PubMed Central

    Saudemont, Aurore; Jespers, Laurent; Clay, Timothy

    2018-01-01

    Ex vivo manipulations of autologous patient’s cells or gene-engineered cell therapeutics have allowed the development of cell and gene therapy approaches to treat otherwise incurable diseases. These modalities of personalized medicine have already shown great promises including product commercialization for some rare diseases. The transfer of a chimeric antigen receptor or T cell receptor genes into autologous T cells has led to very promising outcomes for some cancers, and particularly for hematological malignancies. In addition, gene-engineered cell therapeutics are also being explored to induce tolerance and regulate inflammation. Here, we review the latest gene-engineered cell therapeutic approaches being currently explored to induce an efficient immune response against cancer cells or viruses by engineering T cells, natural killer cells, gamma delta T cells, or cytokine-induced killer cells and to modulate inflammation using regulatory T cells. PMID:29459866

  1. Candida pyralidae killer toxin disrupts the cell wall of Brettanomyces bruxellensis in red grape juice.

    PubMed

    Mehlomakulu, N N; Prior, K J; Setati, M E; Divol, B

    2017-03-01

    The control of the wine spoilage yeast Brettanomyces bruxellensis using biological methods such as killer toxins (instead of the traditional chemical methods, e.g. SO 2 ) has been the focus of several studies within the last decade. Our previous research demonstrated that the killer toxins CpKT1 and CpKT2 isolated from the wine yeast Candida pyralidae were active and stable under winemaking conditions. In this study, we report the possible mode of action of CpKT1 on B. bruxellensis cells in red grape juice. Brettanomyces bruxellensis cells were exposed to CpKT1 either directly or through co-inoculation with C. pyralidae. This exposure yielded a temporary or permanent decline of the spoilage yeast population depending on the initial cell concentration. Scanning electron microscopy revealed cell surface abrasion while propidium iodide viability staining showed that CpKT1 caused plasma membrane damage on B. bruxellensis cells. Our data show that the exposure to CpKT1 resulted in increased levels of β-glucan, suggesting a compensatory response of the sensitive cells. The toxin CpKT1 causes cell membrane and cell wall damage in B. bruxellensis. Candida pyralidae shows potential to be used as a biocontrol agent against B. bruxellensis in grape juice/wine. © 2016 The Society for Applied Microbiology.

  2. CD16+ monocytes control T-cell subset development in immune thrombocytopenia

    PubMed Central

    Zhong, Hui; Bao, Weili; Li, Xiaojuan; Miller, Allison; Seery, Caroline; Haq, Naznin; Bussel, James

    2012-01-01

    Immune thrombocytopenia (ITP) results from decreased platelet production and accelerated platelet destruction. Impaired CD4+ regulatory T-cell (Treg) compartment and skewed Th1 and possibly Th17 responses have been described in ITP patients. The trigger for aberrant T-cell polarization remains unknown. Because monocytes have a critical role in development and polarization of T-cell subsets, we explored the contribution of monocyte subsets in control of Treg and Th development in patients with ITP. Unlike circulating classic CD14hiCD16− subpopulation, the CD16+ monocyte subset was expanded in ITP patients with low platelet counts on thrombopoietic agents and positively correlated with T-cell CD4+IFN-γ+ levels, but negatively with circulating CD4+CD25hiFoxp3+ and IL-17+ Th cells. Using a coculture model, we found that CD16+ ITP monocytes promoted the expansion of IFN-γ+CD4+ cells and concomitantly inhibited the proliferation of Tregs and IL-17+ Th cells. Th-1–polarizing cytokine IL-12, secreted after direct contact of patient T-cell and CD16+ monocytes, was responsible for the inhibitory effect on Treg and IL-17+CD4+ cell proliferation. Our findings are consistent with ITP CD16+ monocytes promoting Th1 development, which in turn negatively regulates IL-17 and Treg induction. This underscores the critical role of CD16+ monocytes in the generation of potentially pathogenic Th responses in ITP. PMID:22915651

  3. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells

    PubMed Central

    Sojka, Dorothy K; Plougastel-Douglas, Beatrice; Yang, Liping; Pak-Wittel, Melissa A; Artyomov, Maxim N; Ivanova, Yulia; Zhong, Chao; Chase, Julie M; Rothman, Paul B; Yu, Jenny; Riley, Joan K; Zhu, Jinfang; Tian, Zhigang; Yokoyama, Wayne M

    2014-01-01

    Natural killer (NK) cells belong to the innate immune system; they can control virus infections and developing tumors by cytotoxicity and producing inflammatory cytokines. Most studies of mouse NK cells, however, have focused on conventional NK (cNK) cells in the spleen. Recently, we described two populations of liver NK cells, tissue-resident NK (trNK) cells and those resembling splenic cNK cells. However, their lineage relationship was unclear; trNK cells could be developing cNK cells, related to thymic NK cells, or a lineage distinct from both cNK and thymic NK cells. Herein we used detailed transcriptomic, flow cytometric, and functional analysis and transcription factor-deficient mice to determine that liver trNK cells form a distinct lineage from cNK and thymic NK cells. Taken together with analysis of trNK cells in other tissues, there are at least four distinct lineages of NK cells: cNK, thymic, liver (and skin) trNK, and uterine trNK cells. DOI: http://dx.doi.org/10.7554/eLife.01659.001 PMID:24714492

  4. Killer cell immunoglobulin receptor profile on CD4+ CD28− T cells and their pathogenic role in non-dialysis-dependent and dialysis-dependent chronic kidney disease patients

    PubMed Central

    Zal, Behnam; Chitalia, Nihil; Ng, Yin Sing; Trieu, Verna; Javed, Sana; Warrington, Rachelle; Kaski, Juan Carlos; Banerjee, Debasish; Baboonian, Christina

    2015-01-01

    There is a progressive increase in cardiovascular disease with declining renal function, unexplained by traditional risk factors. A CD4+ T-cell subpopulation (CD4+ CD28−), activated by human heat-shock protein 60 (hHSP 60), expands in patients with acute coronary syndrome and is associated with vascular damage. These cells exhibit cytotoxicity via expression of activating killer cell-immunoglobulin-like receptor KIR2DS2, mainly in the absence of inhibitory KIR2DL3. We investigated expansion of these cells and the pathogenic role of the KIR in non-dialysis-dependent chronic kidney disease (NDD-CKD) and end-stage haemodialysis-dependent renal disease (HD-ESRD) patients. CD4+ CD28− cells were present in 27% of the NDD-CKD and HD-ESRD patients (8–11% and 10–11% of CD4+ compartment, respectively). CD4+ CD28− cells were phenotyped for KIR and DAP12 expression. Cytotoxicity was assessed by perforin and pro-inflammatory function by interferon-γ expression on CD4+ CD28− clones (NDD-CKD n = 97, HD-ESRD n = 262). Thirty-four per cent of the CD4+ CD28− cells from NDD-CKD expressed KIR2DS2 compared with 56% in HD-ESRD patients (P = 0·03). However, 20% of clones expressed KIR2DL3 in NDD-CKD compared with 7% in HD-ESRD patients (P = 0·004). DAP12 expression in CD28− 2DS2+ clones was more prevalent in HD-ESRD than NDD-CKD (92% versus 60%; P < 0·001). Only 2DS2+ 2DL3− DAP12+ clones were cytotoxic in response to hHSP 60. CD4+ CD28− cells exhibited increased KIR2DS2, reduced KIR2DL3 and increased DAP12 expression in HD-ESRD compared with NDD-CKD patients. These findings suggest a gradual loss of expression, functionality and protective role of inhibitory KIR2DL3 as well as increased cytotoxic potential of CD4+ C28− cells with progressive renal impairment. Clonal expansion of these T cells may contribute to heightened cardiovascular events in HD-ESRD. PMID:25484131

  5. Rhinovirus disrupts the barrier function of polarized airway epithelial cells.

    PubMed

    Sajjan, Umadevi; Wang, Qiong; Zhao, Ying; Gruenert, Dieter C; Hershenson, Marc B

    2008-12-15

    Secondary bacterial infection following rhinovirus (RV) infection has been recognized in chronic obstructive pulmonary disease. We sought to understand mechanisms by which RV infection facilitates secondary bacterial infection. Primary human airway epithelial cells grown at air-liquid interface and human bronchial epithelial (16HBE14o-) cells grown as polarized monolayers were infected apically with RV. Transmigration of bacteria (nontypeable Haemophilus influenzae and others) was assessed by colony counting and transmission electron microscopy. Transepithelial resistance (R(T)) was measured by using a voltmeter. The distribution of zona occludins (ZO)-1 was determined by immunohistochemistry and immunoblotting. Epithelial cells infected with RV showed 2-log more bound bacteria than sham-infected cultures, and bacteria were recovered from the basolateral media of RV- but not sham-infected cells. Infection of polarized airway epithelial cell cultures with RV for 24 hours caused a significant decrease in R(T) without causing cell death or apoptosis. Ultraviolet-treated RV did not decrease R(T), suggesting a requirement for viral replication. Reduced R(T) was associated with increased paracellular permeability, as determined by flux of fluorescein isothiocyanate (FITC)-inulin. Neutralizing antibodies to tumor necrosis factor (TNF)-alpha, IFN-gamma and IL-1beta reversed corresponding cytokine-induced reductions in R(T) but not that induced by RV, indicating that the RV effect is independent of these proinflammatory cytokines. Confocal microscopy and immunoblotting revealed the loss of ZO-1 from tight junction complexes in RV-infected cells. Intranasal inoculation of mice with RV1B also caused the loss of ZO-1 from the bronchial epithelium tight junctions in vivo. RV facilitates binding, translocation, and persistence of bacteria by disrupting airway epithelial barrier function.

  6. Lysis of autologous human macrophages by lymphokine-activated killer cells: interaction of effector cell and target cell conjugates analyzed by scanning electron microscopy.

    PubMed

    Streck, R J; Helinski, E H; Ovak, G M; Pauly, J L

    1990-09-01

    Lymphokine (i.e., interleukin 2; IL-2)-activated killer (LAK) cells derived from normal human blood are known to destroy human tumor target cells. Accordingly, immunotherapy modalities using IL-2, either alone or in combination with LAK cells, have been evaluated for eradicating metastatic cancer. In studies conducted to characterize receptors on LAK cell membrane ultrastructures, we observed that LAK cells kill autologous human monocyte-derived macrophages (M phi). In these experiments, peripheral blood mononuclear cells of a healthy adult donor were cultured to generate LAK cells and autologous non-adherent M phi. Thereafter, conjugates were prepared by incubating for 3 h autologous populations of LAK cells and M phi. Examination of the conjugates by scanning electron microscopy (SEM) identified LAK cell-mediated killing of M phi. Moreover, SEM analysis of the LAK cell membrane architecture identified microvilli-like ultrastructures that provided a physical bridge that joined together the LAK cell and M phi. The immunological mechanism(s) underling LAK cell killing of autologous M phi is not known; nevertheless, these conjugates will provide a useful model to study membrane receptors on ultrastructures that mediate the initial stages of cytolysis that include target cell recognition and cell-to-cell adhesion. The results of our observations and the findings of other investigators who have also demonstrated LAK cell killing of autologous normal human leukocytes are discussed in the context of the association of IL-2 and IL-2-activated killer cells with side effects observed in ongoing clinical trials and with autoimmune disorders.

  7. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells.

    PubMed

    Hammer, Quirin; Rückert, Timo; Borst, Eva Maria; Dunst, Josefine; Haubner, André; Durek, Pawel; Heinrich, Frederik; Gasparoni, Gilles; Babic, Marina; Tomic, Adriana; Pietra, Gabriella; Nienen, Mikalai; Blau, Igor Wolfgang; Hofmann, Jörg; Na, Il-Kang; Prinz, Immo; Koenecke, Christian; Hemmati, Philipp; Babel, Nina; Arnold, Renate; Walter, Jörn; Thurley, Kevin; Mashreghi, Mir-Farzin; Messerle, Martin; Romagnani, Chiara

    2018-05-01

    Natural killer (NK) cells are innate lymphocytes that lack antigen-specific rearranged receptors, a hallmark of adaptive lymphocytes. In some people infected with human cytomegalovirus (HCMV), an NK cell subset expressing the activating receptor NKG2C undergoes clonal-like expansion that partially resembles anti-viral adaptive responses. However, the viral ligand that drives the activation and differentiation of adaptive NKG2C + NK cells has remained unclear. Here we found that adaptive NKG2C + NK cells differentially recognized distinct HCMV strains encoding variable UL40 peptides that, in combination with pro-inflammatory signals, controlled the population expansion and differentiation of adaptive NKG2C + NK cells. Thus, we propose that polymorphic HCMV peptides contribute to shaping of the heterogeneity of adaptive NKG2C + NK cell populations among HCMV-seropositive people.

  8. Role of Natural Killer Cells in the Innate Immune System After Intraportal Islet Transplantation in Mice.

    PubMed

    Saeki, Y; Ishiyama, K; Ishida, N; Tanaka, Y; Ohdan, H

    Both liver natural killer (NK) and NK T cells of the innate immune system play a crucial role in islet graft loss after intraportal islet transplantation, although a relationship between NK and NK T cells in islet loss has not been proven. In this study, we investigated the role of NK cells in the innate immune system in islet graft loss after intraportal islet transplantation. To investigate the involvement of liver NK cells in islet destruction, we assessed the differences in graft survival after intraportal islet transplantation between CD1d -/- diabetic mice and NK cell-depleted CD1d -/- diabetic mice. The transplantation of 400 islets into the liver was sufficient to reverse hyperglycemia in wild-type diabetic mice (100%, 4/4). However, normoglycemia could not be achieved when 200 islets were transplanted (0%, 0/4). In contrast, intraportal transplantation of 200 islets in NK cell-depleted CD1d -/- diabetic mice ameliorated hyperglycemia in 71% of cases (5/7), whereas transplantation of the same number of islets in CD1d -/- diabetic mice did not (0%, 0/4). Histologic findings also confirmed that intact islets were observed in NK cell-depleted CD1d -/- diabetic mice, but were difficult to observe in CD1d -/- diabetic mice. The involvement of liver NK cells in the innate immune system related to islet graft loss after intraportal islet transplantation is revealed by improved graft survival and function in NK cell-depleted CD1d -/- diabetic mice. Our data reveal that regulation of NK cell activity is particularly important when insufficient islet numbers are used for transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Dok1 and Dok2 proteins regulate natural killer cell development and function

    PubMed Central

    Celis-Gutierrez, Javier; Boyron, Marilyn; Walzer, Thierry; Pandolfi, Pier Paolo; Jonjić, Stipan; Olive, Daniel; Dalod, Marc; Vivier, Eric; Nunès, Jacques A

    2014-01-01

    Natural killer (NK) cells are involved in immune responses against tumors and microbes. NK-cell activation is regulated by intrinsic and extrinsic mechanisms that ensure NK tolerance and efficacy. Here, we show that the cytoplasmic signaling molecules Dok1 and Dok2 are tyrosine phosphorylated upon NK-cell activation. Overexpression of Dok proteins in human NK cells reduces cell activation induced by NK-cell-activating receptors. Dok1 and Dok2 gene ablation in mice induces an NK-cell maturation defect and leads to increased IFN-γ production induced by activating receptors. Taken together, these results reveal that Dok1 and Dok2 proteins are involved in an intrinsic negative feedback loop downstream of NK-cell-activating receptors in mouse and human. PMID:24963146

  10. The aryl hydrocarbon receptor is required for the maintenance of liver-resident natural killer cells

    PubMed Central

    2016-01-01

    A tissue-resident population of natural killer cells (NK cells) in the liver has recently been described to have the unique capacity to confer immunological memory in the form of hapten-specific contact hypersensitivity independent of T and B cells. Factors regulating the development and maintenance of these liver-resident NK cells are poorly understood. The aryl hydrocarbon receptor (AhR) is a transcription factor modulated by exogenous and endogenous ligands that is important in the homeostasis of immune cells at barrier sites, such as the skin and gut. In this study, we show that liver-resident NK (NK1.1+CD3−) cells, defined as CD49a+TRAIL+CXCR6+DX5− cells in the mouse liver, constitutively express AhR. In AhR−/− mice, there is a significant reduction in the proportion and absolute number of these cells, which results from a cell-intrinsic dependence on AhR. This deficiency in liver-resident NK cells appears to be the result of higher turnover and increased susceptibility to cytokine-induced cell death. Finally, we show that this deficiency has functional implications in vivo. Upon hapten exposure, AhR−/− mice are not able to mount an NK cell memory response to hapten rechallenge. Together, these data demonstrate the requirement of AhR for the maintenance of CD49a+TRAIL+CXCR6+DX5− liver-resident NK cells and their hapten memory function. PMID:27670593

  11. Engineering Dendritic Cells to Enhance Cancer Immunotherapy

    PubMed Central

    Boudreau, Jeanette E; Bonehill, Aude; Thielemans, Kris; Wan, Yonghong

    2011-01-01

    Cancer immunotherapy aims to establish immune-mediated control of tumor growth by priming T-cell responses to target tumor-associated antigens. Three signals are required for T-cell activation: (i) presentation of cognate antigen in self MHC molecules; (ii) costimulation by membrane-bound receptor-ligand pairs; and (iii) soluble factors to direct polarization of the ensuing immune response. The ability of dendritic cells (DCs) to provide all three signals required for T-cell activation makes them an ideal cancer vaccine platform. Several strategies have been developed to enhance and control antigen presentation, costimulation, and cytokine production. In this review, we discuss progress toward developing DC-based cancer vaccines by genetic modification using RNA, DNA, and recombinant viruses. Furthermore, the ability of DC-based vaccines to activate natural killer (NK) and B-cells, and the impact of gene modification strategies on these populations is described. Clinical trials using gene-modified DCs have shown modest results, therefore, further considerations for DC manipulation to enhance their clinical efficacy are also discussed. PMID:21468005

  12. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse.

    PubMed

    Choudhuri, Kaushik; Llodrá, Jaime; Roth, Eric W; Tsai, Jones; Gordo, Susana; Wucherpfennig, Kai W; Kam, Lance C; Stokes, David L; Dustin, Michael L

    2014-03-06

    The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major histocompatibility complex molecules (pMHC) on APCs. This, along with engagement of adhesion receptors, leads to the formation of a specialized junction between T cells and APCs, known as the immunological synapse, which mediates efficient delivery of effector molecules and intercellular signals across the synaptic cleft. T-cell recognition of pMHC and the adhesion ligand intercellular adhesion molecule-1 (ICAM-1) on supported planar bilayers recapitulates the domain organization of the immunological synapse, which is characterized by central accumulation of TCRs, adjacent to a secretory domain, both surrounded by an adhesive ring. Although accumulation of TCRs at the immunological synapse centre correlates with T-cell function, this domain is itself largely devoid of TCR signalling activity, and is characterized by an unexplained immobilization of TCR-pMHC complexes relative to the highly dynamic immunological synapse periphery. Here we show that centrally accumulated TCRs are located on the surface of extracellular microvesicles that bud at the immunological synapse centre. Tumour susceptibility gene 101 (TSG101) sorts TCRs for inclusion in microvesicles, whereas vacuolar protein sorting 4 (VPS4) mediates scission of microvesicles from the T-cell plasma membrane. The human immunodeficiency virus polyprotein Gag co-opts this process for budding of virus-like particles. B cells bearing cognate pMHC receive TCRs from T cells and initiate intracellular signals in response to isolated synaptic microvesicles. We conclude that the immunological synapse orchestrates TCR sorting and release in extracellular microvesicles. These

  13. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse

    NASA Astrophysics Data System (ADS)

    Choudhuri, Kaushik; Llodrá, Jaime; Roth, Eric W.; Tsai, Jones; Gordo, Susana; Wucherpfennig, Kai W.; Kam, Lance C.; Stokes, David L.; Dustin, Michael L.

    2014-03-01

    The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major histocompatibility complex molecules (pMHC) on APCs. This, along with engagement of adhesion receptors, leads to the formation of a specialized junction between T cells and APCs, known as the immunological synapse, which mediates efficient delivery of effector molecules and intercellular signals across the synaptic cleft. T-cell recognition of pMHC and the adhesion ligand intercellular adhesion molecule-1 (ICAM-1) on supported planar bilayers recapitulates the domain organization of the immunological synapse, which is characterized by central accumulation of TCRs, adjacent to a secretory domain, both surrounded by an adhesive ring. Although accumulation of TCRs at the immunological synapse centre correlates with T-cell function, this domain is itself largely devoid of TCR signalling activity, and is characterized by an unexplained immobilization of TCR-pMHC complexes relative to the highly dynamic immunological synapse periphery. Here we show that centrally accumulated TCRs are located on the surface of extracellular microvesicles that bud at the immunological synapse centre. Tumour susceptibility gene 101 (TSG101) sorts TCRs for inclusion in microvesicles, whereas vacuolar protein sorting 4 (VPS4) mediates scission of microvesicles from the T-cell plasma membrane. The human immunodeficiency virus polyprotein Gag co-opts this process for budding of virus-like particles. B cells bearing cognate pMHC receive TCRs from T cells and initiate intracellular signals in response to isolated synaptic microvesicles. We conclude that the immunological synapse orchestrates TCR sorting and release in extracellular microvesicles. These

  14. Changes in endometrial natural killer cell expression of CD94, CD158a and CD158b are associated with infertility.

    PubMed

    McGrath, Emma; Ryan, Elizabeth J; Lynch, Lydia; Golden-Mason, Lucy; Mooney, Eoghan; Eogan, Maeve; O'Herlihy, Colm; O'Farrelly, Cliona

    2009-04-01

    Cycle-dependent fluctuations in natural killer (NK) cell populations in endometrium and circulation may differ, contributing to unexplained infertility. NK cell phenotypes were determined by flow cytometry in endometrial biopsies and matched blood samples. While circulating and endometrial T cell populations remained constant throughout the menstrual cycle in fertile and infertile women, circulating NK cells in infertile women increased during the secretory phase. However, increased expression of CD94, CD158b (secretory phase), and CD158a (proliferative phase) by endometrial NK cells from infertile women was observed. These changes were not reflected in the circulation. In infertile women, changes in circulating NK cell percentages are found exclusively during the secretory phase and not in endometrium; cycle-related changes in NK receptor expression are observed only in infertile endometrium. While having exciting implications for understanding NK cell function in fertility, our data emphasize the difficulty in attaching diagnostic or prognostic significance to NK cell analyses in individual patients.

  15. Accumulation and transfer of contaminants in killer whales (Orcinus orca) from Norway: indications for contaminant metabolism.

    PubMed

    Wolkers, Hans; Corkeron, Peter J; Van Parijs, Sofie M; Similä, Tiu; Van Bavel, Bert

    2007-08-01

    Blubber tissue of one subadult and eight male adult killer whales was sampled in Northern Norway in order to assess the degree and type of contaminant exposure and transfer in the herring-killer whale link of the marine food web. A comprehensive selection of contaminants was targeted, with special attention to toxaphenes and polybrominated diphenyl ethers (PBDEs). In addition to assessing exposure and food chain transfer, selective accumulation and metabolism issues also were addressed. Average total polychlorinated biphenyl (PCB) and pesticide levels were similar, approximately 25 microg/g lipid, and PBDEs were approximately 0.5 microg/g. This makes killer whales one of the most polluted arctic animals, with levels exceeding those in polar bears. Comparing the contamination of the killer whale's diet with the diet of high-arctic species such as white whales reveals six to more than 20 times higher levels in the killer whale diet. The difference in contaminant pattern between killer whales and their prey and the metabolic index calculated suggested that these cetaceans have a relatively high capacity to metabolize contaminants. Polychlorinated biphenyls, chlordanes, and dichlorodiphenyldichloro-ethylene (DDE) accumulate to some degree in killer whales, although toxaphenes and PBDEs might be partly broken down.

  16. Dysfunctional Natural Killer Cells in the Aftermath of Cancer Surgery.

    PubMed

    Angka, Leonard; Khan, Sarwat T; Kilgour, Marisa K; Xu, Rebecca; Kennedy, Michael A; Auer, Rebecca C

    2017-08-17

    The physiological changes that occur immediately following cancer surgeries initiate a chain of events that ultimately result in a short pro-, followed by a prolonged anti-, inflammatory period. Natural Killer (NK) cells are severely affected during this period in the recovering cancer patient. NK cells play a crucial role in anti-tumour immunity because of their innate ability to differentiate between malignant versus normal cells. Therefore, an opportunity arises in the aftermath of cancer surgery for residual cancer cells, including distant metastases, to gain a foothold in the absence of NK cell surveillance. Here, we describe the post-operative environment and how the release of sympathetic stress-related factors (e.g., cortisol, prostaglandins, catecholamines), anti-inflammatory cytokines (e.g., IL-6, TGF-β), and myeloid derived suppressor cells, mediate NK cell dysfunction. A snapshot of current and recently completed clinical trials specifically addressing NK cell dysfunction post-surgery is also discussed. In collecting and summarizing results from these different aspects of the surgical stress response, a comprehensive view of the NK cell suppressive effects of surgery is presented. Peri-operative therapies to mitigate NK cell suppression in the post-operative period could improve curative outcomes following cancer surgery.

  17. The International Prognostic Index predicts outcome in aggressive adult T-cell leukemia/lymphoma: analysis of 126 patients from the International Peripheral T-Cell Lymphoma Project.

    PubMed

    Suzumiya, J; Ohshima, K; Tamura, K; Karube, K; Uike, N; Tobinai, K; Gascoyne, R D; Vose, J M; Armitage, J O; Weisenburger, D D

    2009-04-01

    The International Peripheral T-cell Lymphoma Project was organized to better understand the T-cell and natural killer (NK) cell lymphomas, and our task is to present the clinicopathologic correlations and therapeutic results for adult T-cell leukemia/lymphoma (ATL). Among 1153 patients with T-cell or NK cell lymphomas, 126 patients (9.6%) with ATL were represented in this project. All were categorized as aggressive ATL, i.e. acute or lymphoma type, and 87% fell into the lymphoma type. The median age was 62 years and the male to female ratio was 1.2 : 1. Significant prognostic factors for overall survival (OS) by univariate analysis were the presence of B symptoms (P = 0.018), platelet count <150 x 10(9)/l (P = 0.065), and the International Prognostic Index (IPI; P = 0.019). However, multivariate analysis indicated that only the IPI was an independent predictor of OS. Combination chemotherapy including anthracyclines was given as the initial therapy in 109 of the 116 patients (94%) who received treatment, and the overall and complete response rates were 70% and 34%, respectively. However, there was no survival benefit for those receiving an anthracycline-containing regimen. Patients with aggressive ATL have a poor clinical outcome and the IPI is a useful model for predicting outcome in ATL of the lymphoma type.

  18. Natural killer cell therapy in children with relapsed leukemia.

    PubMed

    Rubnitz, Jeffrey E; Inaba, Hiroto; Kang, Guolian; Gan, Kwan; Hartford, Christine; Triplett, Brandon M; Dallas, Mari; Shook, David; Gruber, Tanja; Pui, Ching-Hon; Leung, Wing

    2015-08-01

    Novel therapies are needed for children with relapsed or refractory leukemia. We therefore tested the safety and feasibility of haploidentical natural killer cell therapy in this patient population. Twenty-nine children who had relapsed or refractory leukemia were treated with chemotherapy followed by the infusion of haploidentical NK cells. Cohort 1 included 14 children who had not undergone prior allogeneic hematopoietic cell transplantation (HCT), whereas Cohort 2 included 15 children with leukemia that had relapsed after HCT. Twenty-six (90%) NK donors were KIR mismatched (14 with one KIR and 12 with 2 KIRs). The peak NK chimerism levels were >10% donor in 87% of the evaluable recipients. In Cohort 1, 10 had responsive disease and 12 proceeded to HCT thereafter. Currently, 5 (36%) are alive without leukemia. In Cohort 2, 10 had responsive disease after NK therapy and successfully proceeded to second HCT. At present, 4 (27%) are alive and leukemia-free. The NK cell infusions and the IL-2 injections were well-tolerated. NK cell therapy is safe, feasible, and should be further investigated in patients with chemotherapy-resistant leukemia. © 2015 Wiley Periodicals, Inc.

  19. T-cell homeostasis in breast cancer survivors with persistent fatigue.

    PubMed

    Bower, Julienne E; Ganz, Patricia A; Aziz, Najib; Fahey, John L; Cole, Steve W

    2003-08-06

    Approximately 30% of women successfully treated for breast cancer suffer persistent fatigue of unknown origin. Recent studies linking inflammatory processes to central nervous system-mediated fatigue led us to examine cellular immune system status in 20 fatigued breast cancer survivors and 19 matched non-fatigued breast cancer survivors. Fatigued survivors, compared with non-fatigued survivors, had statistically significantly increased numbers of circulating T lymphocytes (mean 31% increase, 95% confidence interval [CI] = 6% to 56%; P =.015 by two-sided analysis of variance [ANOVA]), with pronounced elevation in the numbers of CD4+ T lymphocytes (mean 41% increase, 95% CI = 15% to 68%; P =.003 by two-sided ANOVA) and CD56+ effector T lymphocytes (mean 52% increase, 95% CI = 4% to 99%; P =.027 by two-sided ANOVA). These changes were independent of patient demographic and treatment characteristics. Absolute numbers of B cells, natural killer cells, granulocytes, and monocytes were not altered. The increased numbers of circulating T cells correlated with elevations in the level of serum interleukin 1 receptor antagonist (for CD3+ cells, r =.56 and P =.001; for CD3+/CD4+ cells, r =.68 and P<.001, by Spearman rank correlation). Results of this study suggest that persistent fatigue in breast cancer survivors might be associated with a chronic inflammatory process involving the T-cell compartment. These results require confirmation in a larger study that is specifically designed to address this hypothesis.

  20. Dacarbazine-mediated upregulation of NKG2D ligands on tumor cells activates NK and CD8 T cells and restrains melanoma growth.

    PubMed

    Hervieu, Alice; Rébé, Cédric; Végran, Frédérique; Chalmin, Fanny; Bruchard, Mélanie; Vabres, Pierre; Apetoh, Lionel; Ghiringhelli, François; Mignot, Grégoire

    2013-02-01

    Dacarbazine (DTIC) is a cytotoxic drug widely used for melanoma treatment. However, the putative contribution of anticancer immune responses in the efficacy of DTIC has not been evaluated. By testing how DTIC affects host immune responses to cancer in a mouse model of melanoma, we unexpectedly found that both natural killer (NK) and CD8(+) T cells were indispensable for DTIC therapeutic effect. Although DTIC did not directly affect immune cells, it triggered the upregulation of NKG2D ligands on tumor cells, leading to NK cell activation and IFNγ secretion in mice and humans. NK cell-derived IFNγ subsequently favored upregulation of major histocompatibility complex class I molecules on tumor cells, rendering them sensitive to cytotoxic CD8(+) T cells. Accordingly, DTIC markedly enhanced cytotoxic T lymphocyte antigen 4 inhibition efficacy in vivo in an NK-dependent manner. These results underscore the immunogenic properties of DTIC and provide a rationale to combine DTIC with immunotherapeutic agents that relieve immunosuppression in vivo.