Sample records for t-p phase diagram

  1. T- P Phase Diagram of Nitrogen at High Pressures

    NASA Astrophysics Data System (ADS)

    Algul, G.; Enginer, Y.; Yurtseven, H.

    2018-05-01

    By employing a mean field model, calculation of the T- P phase diagram of molecular nitrogen is performed at high pressures up to 200 GPa. Experimental data from the literature are used to fit a quadratic function in T and P, describing the phase line equations which have been derived using the mean field model studied here for N 2, and the fitted parameters are determined. Our model study gives that the observed T- P phase diagram can be described satisfactorily for the first-order transitions between the phases at low as well as high pressures in nitrogen. Some thermodynamic quantities can also be predicted as functions of temperature and pressure from the mean field model studied here and they can be compared with the experimental data.

  2. Equilibrium p-T Phase Diagram of Boron: Experimental Study and Thermodynamic Analysis

    PubMed Central

    Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.

    2013-01-01

    Solid-state phase transformations and melting of high-purity crystalline boron have been in situ and ex situ studied at pressures to 20 GPa in the 1500–2500 K temperature range where diffusion processes become fast and lead to formation of thermodynamically stable phases. The equilibrium phase diagram of boron has been constructed based on thermodynamic analysis of experimental and literature data. The high-temperature part of the diagram contains p-T domains of thermodynamic stability of rhombohedral β-B106, orthorhombic γ-B28, pseudo-cubic (tetragonal) t'-B52, and liquid boron (L). The positions of two triple points have been experimentally estimated, i.e. β–t'–L at ~ 8.0 GPa and ~ 2490 K; and β–γ–t' at ~ 9.6 GPa and ~ 2230 K. Finally, the proposed phase diagram explains all thermodynamic aspects of boron allotropy and significantly improves our understanding of the fifth element. PMID:23912523

  3. T-p phase diagrams and the barocaloric effect in materials with successive phase transitions

    NASA Astrophysics Data System (ADS)

    Gorev, M. V.; Bogdanov, E. V.; Flerov, I. N.

    2017-09-01

    An analysis of the extensive and intensive barocaloric effect (BCE) at successive structural phase transitions in some complex fluorides and oxyfluorides was performed. The high sensitivity of these compounds to a change in the chemical pressure allows one to vary the succession and parameters of the transformations (temperature, entropy, baric coefficient) over a wide range and obtain optimal values of the BCE. A comparison of different types of schematic T-p phase diagrams with the complicated T( p) dependences observed experimentally shows that in some ranges of temperature and pressure the BCE in compounds undergoing successive transformations can be increased due to a summation of caloric effects associated with distinct phase transitions. The maximum values of the extensive and intensive BCE in complex fluorides and oxyfluorides can be realized at rather low pressure (0.1-0.3 GPa). In a narrow temperature range around the triple points conversion from conventional BCE to inverse BCE is observed, which is followed by a gigantic change of both \\vertΔ S_BCE\\vert and \\vertΔ T_AD\\vert .

  4. One-Component Pressure-Temperature Phase Diagrams in the Presence of Air

    ERIC Educational Resources Information Center

    Andrade-Gamboa, Julio; Martire, Daniel O.; Donati, Edgardo R.

    2010-01-01

    One-component phase diagrams are good approximations to predict pressure-temperature ("P-T") behavior of a substance in the presence of air, provided air pressure is not much higher than the vapor pressure. However, at any air pressure, and from the conceptual point of view, the use of a traditional "P-T" phase diagram is not strictly correct. In…

  5. The phase diagram of ammonium nitrate.

    PubMed

    Chellappa, Raja S; Dattelbaum, Dana M; Velisavljevic, Nenad; Sheffield, Stephen

    2012-08-14

    The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH(4)NO(3)] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.

  6. The phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Chellappa, Raja S.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Sheffield, Stephen

    2012-08-01

    The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH4NO3] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.

  7. P-T phase diagram and structural transformations of molten P2O5 under pressure

    NASA Astrophysics Data System (ADS)

    Brazhkin, V. V.; Katayama, Y.; Lyapin, A. G.; Saitoh, H.

    2014-03-01

    The P2O5 compound is an archetypical glass-forming oxide with a record high hygroscopicity, which makes its study extremely difficult. We present the in situ x-ray diffraction study of the pressure-temperature phase diagram of P2O5 and, particularly, of the liquid P2O5 structure under high pressure up to 10 GPa. Additionally, quenching from the melt has been used to extend the melting curve up to 15 GPa. We found that structural transformation in the liquid P2O5 under pressure is unique and includes three stages: first, the disappearance of the intermediate range order of the melt together with a slow increase in the average first-coordination number (P-O and O-P neighbors) up to 4 GPa; second, the "normal" compression almost without structural modification at higher pressures up to 8-9 GPa; and, finally, the abrupt change of the short-range order structure of the liquid with the jumplike increase at 9-10 GPa. The last stage correlates with the melting curve maximum (≈1250 °C) at ≈10 GPa and can be interpreted as a transformation to the liquid phase with entirely fivefold-coordinated phosphorus and twofold-coordinated oxygen atoms.

  8. Theory of phase diagrams described by thermodynamic potentials with T d symmetry

    NASA Astrophysics Data System (ADS)

    Mukovnin, A. A.; Talanov, V. M.

    2014-09-01

    Phase diagrams of crystals induced by irreducible representations with symmetry group ( T d ) are constructed within the phenomenological theory of second-order phase transitions. A model of the Landau thermodynamic potential is studied, state equations of all symmetry-conditioned phases are obtained, and general conditions for their thermodynamic stability are formulated. Equations for the boundaries of phase areas and lines of phase transitions are obtained for the fourth order of expansion of the potential via components of the order parameter. Some types of the collapse of the multicritical point of the phase diagram for the eighth order of potential expansion are studied using computer calculations. The possible existence of phase diagrams that contain one or more triple points and areas of existence of three and four phases is shown for the first time for the potentials with the above symmetry. Examples are given of crystals that undergo phase transitions in the considered symmetry of the order parameter.

  9. Magnetic phase diagrams of erbium

    NASA Astrophysics Data System (ADS)

    Frazer, B. H.; Gebhardt, J. R.; Ali, N.

    1999-04-01

    The magnetic phase diagrams of erbium in the magnetic field-temperature plane have been constructed for applied magnetic fields along the a and b axes. For an a-axis applied field our H-T phase diagrams determined from magnetization and magnetoresistance data are in good agreement and consistent with that of Jehan et al. for temperatures below 50 K. A splitting of the basal plane Néel temperature (TN⊥) above 3.75 T introduces two new magnetic phases. Also a transition from a fan to a canted fan phase as suggested by Jehan et al. is observed in an increasing field below TC. Our phase diagram for a b-axis applied field constructed from magnetization data is very similar to the phase diagram of Watson and Ali using magnetoresistance measurements. However, the anomaly at 42 K reported by Watson and Ali is not observed in the present study. No splitting of the TN⊥ transition is observed in either work for a field applied along the b axis.

  10. Glass and liquid phase diagram of a polyamorphic monatomic system.

    PubMed

    Reisman, Shaina; Giovambattista, Nicolas

    2013-02-14

    We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, P(LDA-HDA)(T) and P(HDA-LDA)(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, P(LPC-HDA)(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)] simulations suggest that the P(LDA-HDA)(T) and P(HDA-LDA)(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the P(LPC-HDA)(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the P(LDA-HDA)(T), P(HDA-LDA)(T), P(LPC-HDA)(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the glass

  11. Thermodynamic properties and p-T phase diagrams of (NH4)3M3+F6 cryolites (M3+: Ga, Sc)

    NASA Astrophysics Data System (ADS)

    Gorev, M. V.; Flerov, I. N.; Tressaud, A.

    1999-10-01

    Calorimetric and high pressure experiments are used to establish thermodynamic features of (NH4)3M3+F6 cryolites with M3+: Ga, Sc as they undergo one and three structural phase transitions, respectively. The heat capacity measurements performed between 80 K and 370 K, using an adiabatic calorimeter, have shown that all phase transitions under study are first order with different closeness to the tricritical point. The total entropy change in the Sc compound connected with the successive transformations is almost equal to the entropy change in the Ga cryolite. The effect of hydrostatic pressure has been studied up to 0.6 GPa, using differential thermographic analysis. The p-T phase diagrams of both cryolites were found to be rather complicated, including triple points. The experimental results are considered as connected with order-disorder phase transitions.

  12. H-T Magnetic Phase Diagram of a Frustrated Triangular Lattice Antiferromagnet CuFeO 2

    NASA Astrophysics Data System (ADS)

    Mitsuda, Setsuo; Mase, Motoshi; Uno, Takahiro; Kitazawa, Hideaki; Katori, Hiroko

    2000-01-01

    By magnetization and specific heat measurements in an applied magnetic field up to 12 T, we obtained the magnetic field (H) versus temperature (T) phase diagram of a frustrated triangular lattice antiferromagnet (TLA), CuFeO2, where a partially disordered phase typical to Ising TLA exists as a thermally induced state for the 4-sublattice ground state as well as for the first-field-induced 5-sublattice-like state. The experimentally obtained H-T magnetic phase diagram is compared with that from Monte-Carlo simulation of a 2D Ising TLA model with competing exchange interactions up to 3rd neighbors.

  13. The phase diagram of a directed polymer in random media with p-spin ferromagnetic interactions

    NASA Astrophysics Data System (ADS)

    Wedagedera, J. R.

    2011-01-01

    We consider a directed polymer model with an additive p-spin (p>2) ferromagnetic term in the Hamiltonian. We give a rigorous proof for the specific free energy and derive the phase diagram. This model was proposed previously, and a detailed proof was given in the case p = 2, while the main result was only stated for p > 2. We give a detailed proof of the main result and show the behavior of the model as p → ∞ by constructing the phase diagram also in this case. These results are important in many applications, for instance, in telecommunication and immunology. Our major finding is that in the phase diagram for p > 2, a new transition curve (absent for p = 2) emerges between the paramagnetic region and the so-called mixed region and that the ferromagnetic region diminishes as p → ∞.

  14. Phase diagrams for the system water/butyric acid/propylene carbonate at T = 293.2-313.2 K and p = 101.3 kPa

    NASA Astrophysics Data System (ADS)

    Shekarsaraee, Sina; Nahzomi, Hossein Taherpour; Nasiri-Touli, Elham

    2017-11-01

    Phase diagrams for the system water/butyric acid/propylene carbonate were plotted at T = 293.2, 303.2, 313.2 K and p = 101.3 kPa. Acidimetric titration and refractive index methods were used to determine tie-line data. Solubility data revealed that the studied system exhibits type-1 behavior of liquid-liquid equilibrium. The experimental data were regressed and acceptably correlated using the UNIQUAC and NRTL models. As a result, propylene carbonate is a suitable separating agent for aqueous mixture of butyric acid.

  15. Phase diagrams of flux lattices with disorder

    NASA Astrophysics Data System (ADS)

    Giamarchi, T.; Le Doussal, P.

    1997-03-01

    We review the prediction, made in a previous work [T. Giamarchi and P. Le Doussal, Phys. Rev. B 52, 1242 (1995)], that the phase diagram of type-II superconductors consists of a topologically ordered Bragg glass phase at low fields undergoing a transition at higher fields into a vortex glass or a liquid. We estimate the position of the phase boundary using a Lindemann criterion. We find that the proposed theory is compatible with recent experiments on superconductors. Further experimental consequences are investigated.

  16. High-pressure phase diagrams of liquid CO2 and N2

    NASA Astrophysics Data System (ADS)

    Boates, Brian; Bonev, Stanimir

    2011-06-01

    The phase diagrams of liquid CO2 and N2 have been investigated using first-principles theory. Both materials exhibit transitions to conducting liquids at high temperatures (T) and relatively modest pressures (P). Furthermore, both liquids undergo polymerization phase transitions at pressures comparable to their solid counterparts. The liquid phase diagrams have been divided into several regimes through a detailed analysis of changes in bonding, as well as structural and electronic properties for pressures and temperatures up to 200 GPa and 10 000 K, respectively. Similarities and differences between the high- P and T behavior of these fluids will be discussed. Calculations of the Hugoniot are in excellent agreement with available experimental data. Work supported by NSERC, LLNL, and the Killam Trusts. Prepared by LLNL under Contract DE-AC52-07NA27344.

  17. Phase diagrams and crystal growth

    NASA Astrophysics Data System (ADS)

    Venkrbec, Jan

    1980-04-01

    Phase diagrams are briefly treated as generalized property-composition relationships, with respect to crystal technology optimization. The treatment is based on mutual interaction of three systems related to semiconductors: (a) the semiconducting material systems, (b0 the data bank, (c) the system of crystallization methods. A model is proposed enabling optimatization on the path from application requirements to the desired material. Further, several examples of the selection as to the composition of LED and laser diode material are given. Some of molten-solution-zone methods are being successfully introduced for this purpose. Common features of these methods, the application of phase diagrams, and their pecularities compared with other crystallization methods are illustrated by schematic diagrams and by examples. LPE methods, particularly the steady-state LPE methods such as Woodall's ISM and Nishizawa's TDM-CVP, and the CAM-S (Crystallization Method Providing Composition Autocontrol in Situ) have been chosen as examples. Another approach of exploiting phase diagrams for optimal material selection and for determination of growth condition before experimentation through a simple calculation is presented on InP-GaP solid solutions. Ternary phase diagrams are visualized in space through calculation and constructions based on the corresponding thermodynamic models and anaglyphs. These make it easy to observe and qualitatively analyze the crystallization of every composition. Phase diagrams can be also used as a powerful tool for the deduction of new crystallization methods. Eutectic crystallization is an example of such an approach where a modified molten-solution-zone method can give a sandwich structure with an abrupt concentration change. The concentration of a component can range from 0 to 100% in the different solid phases.

  18. c-T phase diagram and Landau free energies of (AgAu)55 nanoalloy via neural-network molecular dynamic simulations.

    PubMed

    Chiriki, Siva; Jindal, Shweta; Bulusu, Satya S

    2017-10-21

    For understanding the structure, dynamics, and thermal stability of (AgAu) 55 nanoalloys, knowledge of the composition-temperature (c-T) phase diagram is essential due to the explicit dependence of properties on composition and temperature. Experimentally, generating the phase diagrams is very challenging, and therefore theoretical insight is necessary. We use an artificial neural network potential for (AgAu) 55 nanoalloys. Predicted global minimum structures for pure gold and gold rich compositions are lower in energy compared to previous reports by density functional theory. The present work based on c-T phase diagram, surface area, surface charge, probability of isomers, and Landau free energies supports the enhancement of catalytic property of Ag-Au nanoalloys by incorporation of Ag up to 24% by composition in Au nanoparticles as found experimentally. The phase diagram shows that there is a coexistence temperature range of 70 K for Ag 28 Au 27 compared to all other compositions. We propose the power spectrum coefficients derived from spherical harmonics as an order parameter to calculate Landau free energies.

  19. Triple points and phase diagrams in the extended phase space of charged Gauss-Bonnet black holes in AdS space

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liu, Yu-Xiao

    2014-08-01

    We study the triple points and phase diagrams in the extended phase space of the charged Gauss-Bonnet black holes in d-dimensional anti-de Sitter space, where the cosmological constant appears as a dynamical pressure of the system and its conjugate quantity is the thermodynamic volume of the black holes. Employing the equation of state T=T(v,P), we demonstrate that the information of the phase transition and behavior of the Gibbs free energy are potential encoded in the T-v (T-rh) line with fixed pressure P. We get the phase diagrams for the charged Gauss-Bonnet black holes with different values of the charge Q and dimension d. The result shows that the small/large black hole phase transitions appear for any d, which is reminiscent of the liquid/gas transition of a Van der Waals type. Moreover, the interesting thermodynamic phenomena, i.e., the triple points and the small/intermediate/large black hole phase transitions are observed for d=6 and Q ∈(0.1705,0.1946).

  20. Global mean-field phase diagram of the spin-1 Ising ferromagnet in a random crystal field

    NASA Astrophysics Data System (ADS)

    Borelli, M. E. S.; Carneiro, C. E. I.

    1996-02-01

    We study the phase diagram of the mean-field spin-1 Ising ferromagnet in a uniform magnetic field H and a random crystal field Δi, with probability distribution P( Δi) = pδ( Δi - Δ) + (1 - p) δ( Δi). We analyse the effects of randomness on the first-order surfaces of the Δ- T- H phase diagram for different values of the concentration p and show how these surfaces are affected by the dilution of the crystal field.

  1. Phase Equilibria Diagrams Database

    National Institute of Standards and Technology Data Gateway

    SRD 31 NIST/ACerS Phase Equilibria Diagrams Database (PC database for purchase)   The Phase Equilibria Diagrams Database contains commentaries and more than 21,000 diagrams for non-organic systems, including those published in all 21 hard-copy volumes produced as part of the ACerS-NIST Phase Equilibria Diagrams Program (formerly titled Phase Diagrams for Ceramists): Volumes I through XIV (blue books); Annuals 91, 92, 93; High Tc Superconductors I & II; Zirconium & Zirconia Systems; and Electronic Ceramics I. Materials covered include oxides as well as non-oxide systems such as chalcogenides and pnictides, phosphates, salt systems, and mixed systems of these classes.

  2. Ground-state phase diagram of the repulsive fermionic t -t' Hubbard model on the square lattice from weak coupling

    NASA Astrophysics Data System (ADS)

    Šimkovic, Fedor; Liu, Xuan-Wen; Deng, Youjin; Kozik, Evgeny

    2016-08-01

    We obtain a complete and numerically exact in the weak-coupling limit (U →0 ) ground-state phase diagram of the repulsive fermionic Hubbard model on the square lattice for filling factors 0 t'≤0.5 . Phases are distinguished by the symmetry and the number of nodes of the superfluid order parameter. The phase diagram is richer than may be expected and typically features states with a high—higher than that of the fundamental mode of the corresponding irreducible representation—number of nodes. The effective coupling strength in the Cooper channel λ , which determines the critical temperature Tc of the superfluid transition, is calculated in the whole parameter space and regions with high values of λ are identified. It is shown that besides the expected increase of λ near the Van Hove singularity line, joining the ferromagnetic and antiferromagnetic points, another region with high values of λ can be found at quarter filling and t'=0.5 due to the presence of a line of nesting at t'≥0.5 . The results can serve as benchmarks for controlled nonperturbative methods and guide the ongoing search for high-Tc superconductivity in the Hubbard model.

  3. Theoretical Prediction of Melting Relations in the Deep Mantle: the Phase Diagram Approach

    NASA Astrophysics Data System (ADS)

    Belmonte, D.; Ottonello, G. A.; Vetuschi Zuccolini, M.; Attene, M.

    2016-12-01

    Despite the outstanding progress in computer technology and experimental facilities, understanding melting phase relations in the deep mantle is still an open challenge. In this work a novel computational scheme to predict melting relations at HP-HT by a combination of first principles DFT calculations, polymer chemistry and equilibrium thermodynamics is presented and discussed. The adopted theoretical framework is physically-consistent and allows to compute multi-component phase diagrams relevant to Earth's deep interior in a broad range of P-T conditions by a convex-hull algorithm for Gibbs free energy minimisation purposely developed for high-rank simplexes. The calculated phase diagrams are in turn used as a source of information to gain new insights on the P-T-X evolution of magmas in the deep mantle, providing some thermodynamic constraints to both present-day and early Earth melting processes. High-pressure melting curves of mantle silicates are also obtained as by-product of phase diagram calculation. Application of the above method to the MgO-Al2O3-SiO2 (MAS) ternary system highlights as pressure effects are not only able to change the nature of melting of some minerals (like olivine and pyroxene) from eutectic to peritectic (and vice versa), but also simplify melting relations by drastically reducing the number of phases with a primary phase field at HP-HT conditions. It turns out that mineral phases like Majorite-Pyrope garnet and Anhydrous Phase B (Mg14Si5O24), which are often disregarded in modelling melting processes of mantle assemblages, are stable phases at solidus or liquidus conditions in a P-T range compatible with the mantle transition zone (i.e. P = 16 - 23 GPa and T = 2200 - 2700 °C) when their thermodynamic and thermophysical properties are properly assessed. Financial support to the Senior Author (D.B.) during his stay as Invited Scientist at the Institut de Physique du Globe de Paris (IPGP, Paris) is warmly acknowledged.

  4. Constraints on the merging of the transition lines at the tricritical point in a wing-structure phase diagram

    DOE PAGES

    Taufour, Valentin; Kaluarachchi, Udhara S.; Kogan, Vladimir G.

    2016-08-19

    Here, we consider the phase diagram of a ferromagnetic system driven to a quantum phase transition with a tuning parameter $p$. Before being suppressed, the transition becomes of the first order at a tricritical point, from which wings emerge under application of the magnetic field H in the T $-$ p $-$ H phase diagram. We show that the edge of the wings merge with tangent slopes at the tricritical point.

  5. The neodymium-gold phase diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saccone, A.; Maccio, D.; Delfino, S.

    The Nd-Au phase diagram was studied in the 0 to 100 at. pct Au composition range by differential thermal analysis (DTA), X-ray diffraction (XRD), optical microscopy (LOM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Six intermetallic phases were identified, the crystallographic structures were determined or confirmed, and the melting behavior was determined, as follows: Nd{sub 2}Au, orthorhombic oP12-Co{sub 2}Si type, peritectic decomposition at 810 C; NdAu, R.T. form, orthorhombic oP8-FeB type, H.T. forms, orthorhombic oC8-CrB type and, at a higher temperature, cubic cP2-CsCl type, melting point 1470 C; Nd{sub 3}Au{sub 4}, trigonal hR42-Pu{sub 3}Pd{sub 4} type, peritectic decompositionmore » at 1250 C; Nd{sub 17}Au{sub 36}, tetragonal tP106-Nd{sub 17}Au{sub 36} type, melting point 1170 C; Nd{sub 14}Au{sub 51}, hexagonal hP65-Gd{sub 14}Ag{sub 51} type, melting point 1210 C; and NdAu{sub 6}, monoclinic mC28-PrAu{sub 6} type, peritectic decomposition at 875 C. Four eutectic reactions were found, respectively, at 19.0 at. pct Au and 655 C, at 63.0 at. pct Au and 1080 C, at 72.0 at. pct Au and 1050 C, and, finally, at 91.0 at. pct Au and 795 C. A catatectic decomposition of the ({beta}Nd) phase, at 825 C and {approx}1 at. pct Au, was also found. The results are briefly discussed and compared to those for the other rare earth-gold (R-Au) systems. A short discussion of the general alloying behavior of the coinage metals (Cu, Ag, and Au) with the rare-earth metals is finally presented.« less

  6. Quantum tricritical point in the temperature-pressure-magnetic field phase diagram of CeTiGe 3

    DOE PAGES

    Kaluarachchi, Udhara S.; Taufour, Valentin; Bud'ko, Sergey L.; ...

    2018-01-22

    We report the temperature-pressure-magnetic eld phase diagram of the ferromagnetic Kondolattice CeTiGe 3 determined by means of electrical resistivity measurements. Measurements up to ~5.8GPa reveal a rich phase diagram with multiple phase transitions. At ambient pressure, CeTiGe 3 orders ferromagnetically at T C =14 K. Application of pressure suppresses T C, but a pressure induced ferromagnetic quantum criticality is avoided by the appearance of two new successive transitions for p>4.1GPa that are probably antiferromagnetic in nature. These two transitions are suppressed under pressure, with the lower temperature phase being fully suppressed above 5.3GPa. The critical pressures for the presumed quantummore » phase transitions are p1≅4.1GPa and p2≅5.3GPa. Above 4.1GPa, application of magnetic eld shows a tricritical point evolving into a wing structure phase with a quantum tricritical point at 2.8T at 5.4GPa, where the rst order antiferromagneticferromagnetic transition changes into the second order antiferromagnetic-ferromagnetic transition.« less

  7. Optimization of the thermodynamic properties and phase diagrams of P2O5-containing systems

    NASA Astrophysics Data System (ADS)

    Hudon, Pierre; Jung, In-Ho

    2014-05-01

    P2O5 is an important oxide component in the late stage products of numerous igneous rocks such as granites and pegmatites. Typically, P2O5 combines with CaO and crystallizes in the form of apatite, while in volatile-free conditions, Ca-whitlockite is formed. In spite of their interest, the thermodynamic properties and phase diagrams of P2O5-containg systems are not well known yet. In the case of the pure P2O5 for example, no experimental thermodynamic data are available for the liquid and the O and O' solid phases. As a result, we re-evaluated all the thermodynamic and phase diagram data of the P2O5 unary system [1]. Optimization of the thermodynamic properties and phase diagrams of the binary P2O5 systems was then performed including the Li2O-, Na2O-, MgO-, CaO-, BaO-, MnO-, FeO-, Fe2O3-, ZnO-, Al2O3-, and SiO2-P2O5 [2] systems. All available thermodynamic and phase equilibrium data were simultaneously reproduced in order to obtain a set of model equations for the Gibbs energies of all phases as functions of temperature and composition. In particular, the Gibbs energy of the liquid solution was described using the Modified Quasichemical Model [3-5] implemented in the FactSage software [6]. Thermodynamic modeling of the Li2O-Na2O-K2O-MgO-CaO-FeO-Fe2O3-Al2O3-SiO2 system, which include many granite-forming minerals such as nepheline, leucite, pyroxene, melilite, feldspar and spinel is currently in progress. [1] Jung, I.-H., Hudon, P. (2012) Thermodynamic assessment of P2O5. J. Am. Ceram. Soc., 95 (11), 3665-3672. [2] Rahman, M., Hudon, P. and Jung, I.-H. (2013) A coupled experimental study and thermodynamic modeling of the SiO2-P2O5 system. Metall. Mater. Trans. B, 44 (4), 837-852. [3] Pelton, A.D. and Blander, M. (1984) Computer-assisted analysis of the thermodynamic properties and phase diagrams of slags. Proc. AIME Symp. Metall. Slags Fluxes, TMS-AIME, 281-294. [4] Pelton, A.D. and Blander, M. (1986) Thermodynamic analysis of ordered liquid solutions by a modified

  8. In-depth study of the H - T phase diagram of Sr4Ru3O10 by magnetization experiments

    NASA Astrophysics Data System (ADS)

    Weickert, F.; Civale, L.; Maiorov, B.; Jaime, M.; Salamon, M. B.; Carleschi, E.; Strydom, A. M.; Fittipaldi, R.; Granata, V.; Vecchione, A.

    2018-05-01

    We present magnetization measurements on Sr4Ru3O10 as a function of temperature and magnetic field applied perpendicular to the magnetic easy c-axis inside the ferromagnetic phase. Peculiar metamagnetism evolves in Sr4Ru3O10 below the ferromagnetic transition TC as a double step in the magnetization at two critical fields Hc1 and Hc2. We map the H - T phase diagram with special focus on the temperature range 50 K ≤ T ≤TC . We find that the critical field Hc1 (T) connects the field and temperature axes of the phase diagram, whereas the Hc2 boundary starts at 2.8 T for the lowest temperatures and ends in a critical endpoint at (1 T; 80 K). We conclude from the temperature dependence of the ratio Hc 1/Hc 2 (T) that the double metamagnetic transition is an intrinsic effect of the material and it is not caused by sample stacking faults such as twinning or partial in-plane rotation between layers.

  9. Determination of protein phase diagrams by microbatch experiments: exploring the influence of precipitants and pH.

    PubMed

    Baumgartner, Kai; Galm, Lara; Nötzold, Juliane; Sigloch, Heike; Morgenstern, Josefine; Schleining, Kristina; Suhm, Susanna; Oelmeier, Stefan A; Hubbuch, Jürgen

    2015-02-01

    Knowledge of protein phase behavior is essential for downstream process design in the biopharmaceutical industry. Proteins can either be soluble, crystalline or precipitated. Additionally liquid-liquid phase separation, gelation and skin formation can occur. A method to generate phase diagrams in high throughput on an automated liquid handling station in microbatch scale was developed. For lysozyme from chicken egg white, human lysozyme, glucose oxidase and glucose isomerase phase diagrams were generated at four different pH values – pH 3, 5, 7 and 9. Sodium chloride, ammonium sulfate, polyethylene glycol 300 and polyethylene glycol 1000 were used as precipitants. Crystallizing conditions could be found for lysozyme from chicken egg white using sodium chloride, for human lysozyme using sodium chloride or ammonium sulfate and glucose isomerase using ammonium sulfate. PEG caused destabilization of human lysozyme and glucose oxidase solutions or a balance of stabilizing and destabilizing effects for glucose isomerase near the isoelectric point. This work presents a systematic generation and extensive study of phase diagrams of proteins. Thus, it adds to the general understanding of protein behavior in liquid formulation and presents a convenient methodology applicable to any protein solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. In-depth study of the H - T phase diagram of Sr 4 Ru 3 O 10 by magnetization experiments

    DOE PAGES

    Weickert, F.; Civale, L.; Maiorov, B.; ...

    2017-09-28

    Here, we present magnetization measurements on Sr4Ru3O10 as a function of temperature and magnetic field applied perpendicular to the magnetic easy c-axis inside the ferromagnetic phase. Peculiar metamagnetism evolves in Sr4Ru3O10 below the ferromagnetic transition TC as a double step in the magnetization at two critical fields Hc1 and Hc2. We map the H-T phase diagram with special focus on the temperature range 50 K ≤T≤TC. We find that the critical field Hc1(T) connects the field and temperature axes of the phase diagram, whereas the Hc2 boundary starts at 2.8 T for the lowest temperatures and ends in a criticalmore » endpoint at (1 T; 80 K). We also conclude from the temperature dependence of the ratio Hc1Hc2(T) that the double metamagnetic transition is an intrinsic effect of the material and it is not caused by sample stacking faults such as twinning or partial in-plane rotation between layers.« less

  11. High pressure cosmochemistry applied to major planetary interiors: Experimental studies. [phase diagram for the ammonia water system

    NASA Technical Reports Server (NTRS)

    Nicol, M. F.; Johnson, M.; Schwake, A.

    1983-01-01

    Progress is reported in the development of the P-T-X diagram for 0 less than or = X less than or = 0.50 and in the development of techniques for measuring adiabats of phases of NH3-H2O. The partial phase diagram is presented, investigations of the compositions of ammonia ices are described, and methods for obtaining the infrared spectra of ices are discussed.

  12. Phase Diagrams and the Non-Linear Dielectric Constant in the Landau-Type Potential Including the Linear-Quadratic Coupling between Order Parameters

    NASA Astrophysics Data System (ADS)

    Iwata, Makoto; Orihara, Hiroshi; Ishibashi, Yoshihiro

    1997-04-01

    The phase diagrams in the Landau-type thermodynamic potential including the linear-quadratic coupling between order parameters p and q, i.e., qp2, which is applicable to the phase transition in the benzil, phospholipid bilayers, and the isotropic-nematic phase transition in liquid crystals, are studied. It was found that the phase diagram in the extreme case has one tricritical point c1, one critical end point e1, and two triple points t1 and t2. The linear and nonlinear dielectric constants in the potential are discussed in the case that the order parameter p is the polarization.

  13. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  14. Phase Diagram in a Random Mixture of Two Antiferromagnets with Competing Spin Anisotropies. I

    NASA Astrophysics Data System (ADS)

    Someya, Yoshiko

    1981-12-01

    The phase diagram of a random mixture of two antiferromagnets with competing spin anisotropies (A1-xBx) has been analyzed by extending the theory of Matsubara and Inawashiro, and Oguchi and Ishikawa. In the model assumed, the anisotropy energies are expressed by the anisotropic exchange interactions. According to this formulation, it has been shown that the concentration dependence of TN becomes a function of \\includegraphics{dummy.eps}, where P, Q=A, B; SP is a magnitude of P-spin, and JPQη is a η component of exchange integral between P- and Q-spin). Further, the phase boundary between an AF phase and an OAF (oblique antiferromagnetic) phase at T{=}0 K has been shown to be determined by α({\\equiv}SB/SA), if \\includegraphics{dummy.eps} are given. The obtained phase diagrams for Fe1-xCoxCl2, K2Mn1-xFexF4 and Fe1-xCoxCl2\\cdot2H2O are compared with the experimental ones.

  15. Spin Crossover and the Magnetic P- T Phase Diagram of Hematite at High Hydrostatic Pressures and Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Gavriliuk, A. G.; Struzhkin, V. V.; Mironovich, A. A.; Lyubutin, I. S.; Troyan, I. A.; Chow, P.; Xiao, Y.

    2018-02-01

    The magnetic properties of the α-Fe2O3 hematite at a high hydrostatic pressure have been studied by synchrotron Mössbauer spectroscopy (nuclear forward scattering (NFS)) on iron nuclei. Time-domain NFS spectra of hematite have been measured in a diamond anvil cell in the pressure range of 0-72 GPa and the temperature range of 36-300 K in order to study the magnetic properties at a phase transition near a critical pressure of 50 GPa. In addition, Raman spectra at room temperature have been studied in the pressure range of 0-77 GPa. Neon has been used as a pressure-transmitting medium. The appearance of an intermediate electronic state has been revealed at a pressure of 48 GPa. This state is probably related to the spin crossover in Fe3+ ions at their transition from the high-spin state (HS, S = 5/2) to a low-spin one (LS, S = 1/2). It has been found that the transient pressure range of the HS-LS crossover is extended from 48 to 55 GPa and is almost independent of the temperature. This surprising result differs fundamentally from other cases of the spin crossover in Fe3+ ions observed in other crystals based on iron oxides. The transition region of spin crossover appears because of thermal fluctuations between HS and LS states in the critical pressure range and is significantly narrowed at cooling because of the suppression of thermal excitations. The magnetic P- T phase diagram of α-Fe2O3 at high pressures and low temperatures in the spin crossover region has been constructed according to the results of measurements.

  16. High P-T phase transitions and P-V-T equation of state of hafnium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrubiak, Rostislav; Drozd, Vadym; Karbasi, Ali

    2016-07-29

    We measured the volume of hafnium at several pressures up to 67 GPa and at temperatures between 300 to 780 K using a resistively heated diamond anvil cell with synchrotron x-ray diffraction at the Advanced Photon Source. The measured data allows us to determine the P-V-T equation of state of hafnium. The previously described [Xia et al., Phys. Rev. B 42, 6736-6738 (1990)] phase transition from hcp ({alpha}) to simple hexagonal ({omega}) phase at 38 GPa at room temperature was not observed even up to 51 GPa. The {omega} phase was only observed at elevated temperatures. Our measurements have alsomore » improved the experimental constraint on the high P-T phase boundary between the {omega} phase and high pressure bcc ({beta}) phase of hafnium. Isothermal room temperature bulk modulus and its pressure derivative for the {alpha}-phase of hafnium were measured to be B{sub 0} = 112.9{+-}0.5 GPa and B{sub 0}'=3.29{+-}0.05, respectively. P-V-T data for the {alpha}-phase of hafnium was used to obtain a fit to a thermodynamic P-V-T equation of state based on model by Brosh et al. [CALPHAD 31, 173-185 (2007)].« less

  17. Canonical phase diagrams of the 1D Falicov-Kimball model at T = O

    NASA Astrophysics Data System (ADS)

    Gajek, Z.; Jȩdrzejewski, J.; Lemański, R.

    1996-02-01

    The Falicov-Kimball model of spinless quantum electrons hopping on a 1-dimensional lattice and of immobile classical ions occupying some lattice sites, with only intrasite coupling between those particles, have been studied at zero temperature by means of well-controlled numerical procedures. For selected values of the unique coupling parameter U the restricted phase diagrams (based on all the periodic configurations of localized particles (ions) with period not greater than 16 lattice constants, typically) have been constructed in the grand-canonical ensemble. Then these diagrams have been translated into the canonical ensemble. Compared to the diagrams obtained in other studies our ones contain more details, in particular they give better insight into the way the mixtures of periodic phases are formed. Our study has revealed several families of new characteristic phases like the generalized most homogeneous and the generalized crenel phases, a first example of a structural phase transition and a tendency to build up an additional symmetry - the hole-particle symmetry with respect to the ions (electrons) only, as U decreases.

  18. Using reweighting and free energy surface interpolation to predict solid-solid phase diagrams

    NASA Astrophysics Data System (ADS)

    Schieber, Natalie P.; Dybeck, Eric C.; Shirts, Michael R.

    2018-04-01

    Many physical properties of small organic molecules are dependent on the current crystal packing, or polymorph, of the material, including bioavailability of pharmaceuticals, optical properties of dyes, and charge transport properties of semiconductors. Predicting the most stable crystalline form at a given temperature and pressure requires determining the crystalline form with the lowest relative Gibbs free energy. Effective computational prediction of the most stable polymorph could save significant time and effort in the design of novel molecular crystalline solids or predict their behavior under new conditions. In this study, we introduce a new approach using multistate reweighting to address the problem of determining solid-solid phase diagrams and apply this approach to the phase diagram of solid benzene. For this approach, we perform sampling at a selection of temperature and pressure states in the region of interest. We use multistate reweighting methods to determine the reduced free energy differences between T and P states within a given polymorph and validate this phase diagram using several measures. The relative stability of the polymorphs at the sampled states can be successively interpolated from these points to create the phase diagram by combining these reduced free energy differences with a reference Gibbs free energy difference between polymorphs. The method also allows for straightforward estimation of uncertainties in the phase boundary. We also find that when properly implemented, multistate reweighting for phase diagram determination scales better with the size of the system than previously estimated.

  19. Glass and liquid phase diagram of a polyamorphic monatomic system

    NASA Astrophysics Data System (ADS)

    Reisman, Shaina; Giovambattista, Nicolas

    2013-02-01

    We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, PLDA-HDA(T) and PHDA-LDA(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, PLPC-HDA(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)], 10.1103/PhysRevE.48.4605 simulations suggest that the PLDA-HDA(T) and PHDA-LDA(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the PLPC-HDA(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the PLDA-HDA(T), PHDA-LDA(T), PLPC-HDA(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the

  20. The phase diagram of water at negative pressures: virtual ices.

    PubMed

    Conde, M M; Vega, C; Tribello, G A; Slater, B

    2009-07-21

    The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.

  1. Quantum phase transitions and phase diagram for a one-dimensional p-wave superconductor with an incommensurate potential.

    PubMed

    Cai, X

    2014-04-16

    The effect of the incommensurate potential is studied for the one-dimensional p-wave superconductor. It is determined by analyzing various properties, such as the superconducting gap, the long-range order of the correlation function, the inverse participation ratio and the Z2 topological invariant, etc. In particular, two important aspects of the effect are investigated: (1) as disorder, the incommensurate potential destroys the superconductivity and drives the system into the Anderson localized phase; (2) as a quasi-periodic potential, the incommensurate potential causes band splitting and turns the system with certain chemical potential into the band insulator phase. A full phase diagram is also presented in the chemical potential-incommensurate potential strength plane.

  2. On the magnetism of the C14 Nb0.975Fe2.025 Laves phase compound: Determination of the H-T phase diagram

    NASA Astrophysics Data System (ADS)

    Bałanda, Maria; Dubiel, Stanisław M.

    2018-05-01

    A C14 Nb0.975Fe2.025 Laves phase compound was investigated aimed at determining the H-T magnetic phase diagram. Magnetization, M, and AC magnetic susceptibility measurement were performed. Concerning the former field-cooled and zero-field-cooled M-curves were recorded in the temperature range of 2-200 K and in applied magnetic field, H, up to 1000 Oe, isothermal M(H) curves at 2 K, 5 K, 50 K, 80 K and 110 K as well as hysteresis loops at several temperatures over the field range of ±10 kOe were measured. Regarding the AC susceptibility, χ, both real and imaginary components were registered as a function of increasing temperature in the interval of 2 K-150 K at the frequencies of the oscillating field, f, from 3 Hz up to 999 Hz. An influence of the external DC magnetic field on the temperature dependence of χ was investigated, too. The measurements clearly demonstrated that the magnetism of the studied sample is weak, itinerant and has a reentrant character. Based on the obtained results a magnetic phase diagram has been constructed in the H-T coordinates.

  3. Negative extensibility metamaterials: phase diagram calculation

    NASA Astrophysics Data System (ADS)

    Klein, John T.; Karpov, Eduard G.

    2017-12-01

    Negative extensibility metamaterials are able to contract against the line of increasing external tension. A bistable unit cell exhibits several nonlinear mechanical behaviors including the negative extensibility response. Here, an exact form of the total mechanical potential is used based on engineering strain measure. The mechanical response is a function of the system parameters that specify unit cell dimensions and member stiffnesses. A phase diagram is calculated, which maps the response to regions in the diagram using the system parameters as the coordinate axes. Boundary lines pinpoint the onset of a particular mechanical response. Contour lines allow various material properties to be fine-tuned. Analogous to thermodynamic phase diagrams, there exist singular "triple points" which simultaneously satisfy conditions for three response types. The discussion ends with a brief statement about how thermodynamic phase diagrams differ from the phase diagram in this paper.

  4. Calculation of Gallium-metal-Arsenic phase diagrams

    NASA Technical Reports Server (NTRS)

    Scofield, J. D.; Davison, J. E.; Ray, A. E.; Smith, S. R.

    1991-01-01

    Electrical contacts and metallization to GaAs solar cells must survive at high temperatures for several minutes under specific mission scenarios. The determination of which metallizations or alloy systems that are able to withstand extreme thermal excursions with minimum degradation to solar cell performance can be predicted by properly calculated temperature constitution phase diagrams. A method for calculating a ternary diagram and its three constituent binary phase diagrams is briefly outlined and ternary phase diagrams for three Ga-As-X alloy systems are presented. Free energy functions of the liquid and solid phase are approximated by the regular solution theory. Phase diagrams calculated using this method are presented for the Ga-As-Ge and Ga-As-Ag systems.

  5. Phase diagram of the triangular-lattice Potts antiferromagnet

    DOE PAGES

    Jacobsen, Jesper Lykke; Salas, Jesus; Scullard, Christian R.

    2017-07-28

    Here, we study the phase diagram of the triangular-lattice Q-state Potts model in the realmore » $(Q, v)$ -plane, where $$v={\\rm e}^J-1$$ is the temperature variable. Our first goal is to provide an obviously missing feature of this diagram: the position of the antiferromagnetic critical curve. This curve turns out to possess a bifurcation point with two branches emerging from it, entailing important consequences for the global phase diagram. We have obtained accurate numerical estimates for the position of this curve by combining the transfer-matrix approach for strip graphs with toroidal boundary conditions and the recent method of critical polynomials. The second goal of this work is to study the corresponding $$A_{p-1}$$ RSOS model on the torus, for integer $$p=4, 5, \\ldots, 8$$ . We clarify its relation to the corresponding Potts model, in particular concerning the role of boundary conditions. For certain values of p, we identify several new critical points and regimes for the RSOS model and we initiate the study of the flows between the corresponding field theories.« less

  6. Mn 0.9Co 0.1P in field parallel to hard direction: phase diagram and irreversibility of CONE phase

    NASA Astrophysics Data System (ADS)

    Zieba, A.; Becerra, C. C.; Oliveira, N. F.; Fjellvåg, H.; Kjekshus, A.

    1992-02-01

    A single crystal of Mn 0.9Co 0.1P, a homologue of MnP with disordered metal sublattice, has been studied by the ac susceptibility method in a steady field H. This report concerns H parallel to the orthorhombic a axis ( a> b> c). The magnetic phase diagram is qualitatively similar to that of MnP, including the presence of a Lifshitz multicritical point ( TL = 98 K, HL = 42 kOe) at the confluence of the paramagnetic, ferromagnetic and modulated FAN phases. Contrary to pure MnP, irreversible behaviour was observed in the susceptibility of the modulated CONE phase. This phenomenon develops only for fields above 30 kOe, in contrast to the irreversibility of the FAN phase (reported previously for H‖ b in the whole field range down to H = 0). New features of the presumably continuous CONE-FAN transition were also found.

  7. Cuprate phase diagram and the influence of nanoscale inhomogeneities

    DOE PAGES

    Zaki, Nader; Yang, Hongbo -B.; Rameau, Jon D.; ...

    2017-11-28

    The phase diagram associated with high-T c superconductors is complicated by an array of different ground states. The parent material represents an antiferromagnetic insulator but with doping superconductivity becomes possible with transition temperatures previously thought unattainable. The underdoped region of the phase diagram is dominated by the so-called pseudogap phenomena, whereby in the normal state the system mimics superconductivity in its spectral response but does not show the complete loss of resistivity associated with the superconducting state. An understanding of this regime presents one of the great challenges for the field. In the present study we revisit the structure ofmore » the phase diagram as determined in photoemission studies. By careful analysis of the role of nanoscale inhomogeneities in the overdoped region, we are able to more carefully separate out the gaps due to the pseudogap phenomena from the gaps due to the superconducting transition. Within a mean-field description, we are thus able to link the magnitude of the doping-dependent pseudogap directly to the Heisenberg exchange interaction term, JΣs is j, contained in the t-J model. This approach provides a clear indication that the pseudogap is associated with spin singlet formation.« less

  8. Phase diagram of electron systems near the superconductor-insulator transition.

    PubMed

    Pokrovsky, V L; Falco, G M; Nattermann, T

    2010-12-31

    The zero temperature phase diagram of Cooper pairs exposed to disorder and a magnetic field is determined theoretically from a variational approach. Four distinct phases are found: a Bose and a Fermi insulating, a metallic, and a superconducting phase, respectively. The results explain the giant negative magnetoresistance found experimentally in In-O, TiN, Be and high-T(c) materials.

  9. High Pressure-Temperature Phase Diagram of 1,1-diamino-2,2-dinitroethylene

    NASA Astrophysics Data System (ADS)

    Bishop, Matthew; Chellappa, Raja; Liu, Zhenxian; Preston, Daniel; Sandstrom, Mary; Dattelbaum, Dana; Vohra, Yogesh; Velisavljevic, Nenad

    2013-06-01

    1,1-diamino-2,2-dinitroethelyne (FOX-7) is a less sensitive energetic material with performance comparable to commonly used secondary explosives such as RDX and HMX. At ambient pressure, FOX-7 exhibits complex polymorphism with at least three structurally distinct phases (α, β, and γ) . In this study, we have investigated the high P-T stability of FOX-7 polymorphs using synchrotron mid-infrared (MIR) spectroscopy. At ambient pressure, our MIR spectra confirmed the known α --> β (110 °C) and β --> γ (160 °C) phase transitions; as well as, indicated an additional phase transition, γ --> δ (210°C), with the δ phase being stable up to 250 °C prior to melt/decomposition. In situ MIR spectra obtained during isobaric heating at 0.9 GPa revealed that the α --> β transition occurs at 180 °C, while β --> β + δ phase transition shifted to 300 °C with suppression of γ phase. Decomposition was observed above 325 °C. Based on multiple high P-T measurements, we have established the first high P-T phase diagram of FOX-7. This work was, in part, supported by the US DOE under contract No. DE-AC52-06NA25396 and Science Campaign 2 Program. MB acknowledges additional support from the NSF BD program. Use of NSLS (DE-AC02-98CH10886) beamline U2A (COMPRES, No.EAR01-35554, CDAC).

  10. Complexities of One-Component Phase Diagrams

    ERIC Educational Resources Information Center

    Ciccioli, Andrea; Glasser, Leslie

    2011-01-01

    For most materials, the solid at and near the triple-point temperature is denser than the liquid with which it is in equilibrium. However, for water and certain other materials, the densities of the phases are reversed, with the solid being less dense. The profound consequences for the appearance of the "pVT" diagram of one-component materials…

  11. Phase diagram of two-dimensional hard ellipses.

    PubMed

    Bautista-Carbajal, Gustavo; Odriozola, Gerardo

    2014-05-28

    We report the phase diagram of two-dimensional hard ellipses as obtained from replica exchange Monte Carlo simulations. The replica exchange is implemented by expanding the isobaric ensemble in pressure. The phase diagram shows four regions: isotropic, nematic, plastic, and solid (letting aside the hexatic phase at the isotropic-plastic two-step transition [E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704 (2011)]). At low anisotropies, the isotropic fluid turns into a plastic phase which in turn yields a solid for increasing pressure (area fraction). Intermediate anisotropies lead to a single first order transition (isotropic-solid). Finally, large anisotropies yield an isotropic-nematic transition at low pressures and a high-pressure nematic-solid transition. We obtain continuous isotropic-nematic transitions. For the transitions involving quasi-long-range positional ordering, i.e., isotropic-plastic, isotropic-solid, and nematic-solid, we observe bimodal probability density functions. This supports first order transition scenarios.

  12. Protein Denaturation on p-T Axes--Thermodynamics and Analysis.

    PubMed

    Smeller, László

    2015-01-01

    Proteins are essential players in the vast majority of molecular level life processes. Since their structure is in most cases substantial for their correct function, study of their structural changes attracted great interest in the past decades. The three dimensional structure of proteins is influenced by several factors including temperature, pH, presence of chaotropic and cosmotropic agents, or presence of denaturants. Although pressure is an equally important thermodynamic parameter as temperature, pressure studies are considerably less frequent in the literature, probably due to the technical difficulties associated to the pressure studies. Although the first steps in the high-pressure protein study have been done 100 years ago with Bridgman's ground breaking work, the field was silent until the modern spectroscopic techniques allowed the characterization of the protein structural changes, while the protein was under pressure. Recently a number of proteins were studied under pressure, and complete pressure-temperature phase diagrams were determined for several of them. This review summarizes the thermodynamic background of the typical elliptic p-T phase diagram, its limitations and the possible reasons for deviations of the experimental diagrams from the theoretical one. Finally we show some examples of experimentally determined pressure-temperature phase diagrams.

  13. Phase diagram of the Pr-Mn-O system in composition-temperature-oxygen pressure coordinates

    NASA Astrophysics Data System (ADS)

    Vedmid', L. B.; Yankin, A. M.; Fedorova, O. M.; Kozin, V. M.

    2016-05-01

    The phase relations in the Pr-Mn-O system were studied by the static method at lowered oxygen pressure in combination with thermal analysis and high-temperature X-ray diffraction. The equilibrium oxygen pressure in dissociation of PrMn2O5 and PrMnO3 was measured, and the thermodynamic characteristics of formation of these compounds from elements were calculated. The P- T- x phase diagram of the Pr-Mn-O system was constructed in the "composition-oxygen pressure-temperature" coordinates.

  14. High pressure–temperature phase diagram of 1,1-diamino-2,2-dinitroethylene (FOX-7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Matthew M.; Velisavljevic, Nenad; Chellappa, Raja

    In this study, the pressure–temperature (P–T) phase diagram of 1,1-diamino-2,2-dinitroethylene (FOX-7) was determined by in situ synchrotron infrared radiation spectroscopy with the resistively heated diamond anvil cell (DAC) technique. The stability of high-P–T FOX-7 polymorphs is established from ambient pressure up to 10 GPa and temperatures until decomposition. The phase diagram indicates two near isobaric phase boundaries at ~2 GPa (α → I) and ~5 GPa (I → II) that persists from 25 °C until the onset of decomposition at ~300 °C. In addition, the ambient pressure, high-temperature α → β phase transition (~111 °C) lies along a steep boundarymore » (~100 °C/GPa) with a α–β–δ triple point at ~1 GPa and 300 °C. A 0.9 GPa isobaric temperature ramping measurement indicates a limited stability range for the γ-phase between 0.5 and 0.9 GPa and 180 and 260 °C, terminating in a β–γ–δ triple point. With increasing pressure, the δ-phase exhibited a small negative dT/dP slope (up to ~0.2 GPa) before turning over to a positive 70 °C/GPa slope, at higher pressures. The decomposition boundary (~55 °C/GPa) was identified through the emergence of spectroscopic signatures of the characteristic decomposition products as well as trapped inclusions within the solid KBr pressure media.« less

  15. High pressure–temperature phase diagram of 1,1-diamino-2,2-dinitroethylene (FOX-7)

    DOE PAGES

    Bishop, Matthew M.; Velisavljevic, Nenad; Chellappa, Raja; ...

    2015-08-27

    In this study, the pressure–temperature (P–T) phase diagram of 1,1-diamino-2,2-dinitroethylene (FOX-7) was determined by in situ synchrotron infrared radiation spectroscopy with the resistively heated diamond anvil cell (DAC) technique. The stability of high-P–T FOX-7 polymorphs is established from ambient pressure up to 10 GPa and temperatures until decomposition. The phase diagram indicates two near isobaric phase boundaries at ~2 GPa (α → I) and ~5 GPa (I → II) that persists from 25 °C until the onset of decomposition at ~300 °C. In addition, the ambient pressure, high-temperature α → β phase transition (~111 °C) lies along a steep boundarymore » (~100 °C/GPa) with a α–β–δ triple point at ~1 GPa and 300 °C. A 0.9 GPa isobaric temperature ramping measurement indicates a limited stability range for the γ-phase between 0.5 and 0.9 GPa and 180 and 260 °C, terminating in a β–γ–δ triple point. With increasing pressure, the δ-phase exhibited a small negative dT/dP slope (up to ~0.2 GPa) before turning over to a positive 70 °C/GPa slope, at higher pressures. The decomposition boundary (~55 °C/GPa) was identified through the emergence of spectroscopic signatures of the characteristic decomposition products as well as trapped inclusions within the solid KBr pressure media.« less

  16. Polymorphism of paracetamol: relative stabilities of the monoclinic and orthorhombic phases inferred from topological pressure-temperature and temperature-volume phase diagrams.

    PubMed

    Espeau, Philippe; Céolin, René; Tamarit, Josep-Lluis; Perrin, Marc-Antoine; Gauchi, Jean-Pierre; Leveiller, Franck

    2005-03-01

    The thermodynamic relationships between the two known polymorphs of paracetamol have been investigated, and the subsequent pressure-temperature and temperature-volume phase diagrams were constructed using data from crystallographic and calorimetric measurements as a function of the temperature. Irrespective of temperature, monoclinic Form I and orthorhombic Form II are stable phases at ordinary and high pressures, respectively. The I and II phase regions in the pressure-temperature diagram are bordered by the I-II equilibrium curve, for which a negative slope (dp/dT approximately -0.3 MPa x K(-1)) was determined although it was not observed experimentally. This curve goes through the I-II-liquid triple point whose coordinates (p approximately 234 MPa, T approximately 505 K) correspond to the crossing point of the melting curves, for which dp/dT values of +3.75 MPa x K(-1) (I) and +3.14 MPa x K(-1) (II) were calculated from enthalpy and volume changes upon fusion. More generally, this case exemplifies how the stability hierarchy of polymorphs may be inferred from the difference in their sublimation curves, as topologically positioned with respect to each other, using the phase rule and simple inferences resorting to Gibbs equilibrium thermodynamics. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association.

  17. Magnetic field-temperature phase diagram of multiferroic [(CH3)2NH2] Mn (HCOO) 3

    NASA Astrophysics Data System (ADS)

    Clune, A. J.; Hughey, K. D.; Lee, C.; Abhyankar, N.; Ding, X.; Dalal, N. S.; Whangbo, M.-H.; Singleton, J.; Musfeldt, J. L.

    2017-09-01

    We combined pulsed field magnetization and first-principles spin-density calculations to reveal the magnetic field-temperature phase diagram and spin state character in multiferroic [(CH3)2NH2] Mn (HCOO) 3 . Despite similarities with the rare earth manganites, the phase diagram is analogous to other Mn-based quantum magnets with a 0.31 T spin flop, a 15.3 T transition to the fully polarized state, and short-range correlations that persist above the ordering temperature. The experimentally accessible saturation field opens the door to exploration of the high-field phase.

  18. Phase Coexistence in a Dynamic Phase Diagram.

    PubMed

    Gentile, Luigi; Coppola, Luigi; Balog, Sandor; Mortensen, Kell; Ranieri, Giuseppe A; Olsson, Ulf

    2015-08-03

    Metastability and phase coexistence are important concepts in colloidal science. Typically, the phase diagram of colloidal systems is considered at the equilibrium without the presence of an external field. However, several studies have reported phase transition under mechanical deformation. The reason behind phase coexistence under shear flow is not fully understood. Here, multilamellar vesicle (MLV)-to-sponge (L3 ) and MLV-to-Lα transitions upon increasing temperature are detected using flow small-angle neutron scattering techniques. Coexistence of Lα and MLV phases at 40 °C under shear flow is detected by using flow NMR spectroscopy. The unusual rheological behavior observed by studying the lamellar phase of a non-ionic surfactant is explained using (2) H NMR and diffusion flow NMR spectroscopy with the coexistence of planar lamellar-multilamellar vesicles. Moreover, a dynamic phase diagram over a wide range of temperatures is proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Potential-pH Diagrams.

    ERIC Educational Resources Information Center

    Barnum, Dennis W.

    1982-01-01

    Potential-pH diagrams show the domains of redoxpotential and pH in which major species are most stable. Constructing such diagrams provides students with opportunities to decide what species must be considered, search literature for equilibrium constants and free energies of formation, and practice in using the Nernst equation. (Author/JN)

  20. Calculating phase diagrams using PANDAT and panengine

    NASA Astrophysics Data System (ADS)

    Chen, S.-L.; Zhang, F.; Xie, F.-Y.; Daniel, S.; Yan, X.-Y.; Chang, Y. A.; Schmid-Fetzer, R.; Oates, W. A.

    2003-12-01

    Knowledge of phase equilibria or phase diagrams and thermodynamic properties is important in alloy design and materials-processing simulation. In principle, stable phase equilibrium is uniquely determined by the thermodynamic properties of the system, such as the Gibbs energy functions of the phases. PANDAT, a new computer software package for multicomponent phase-diagram calculation, was developed under the guidance of this principle.

  1. Unique Pressure versus Temperature Phase Diagram for Antiferromagnets Eu2Ni3Ge5 and EuRhSi3

    NASA Astrophysics Data System (ADS)

    Nakashima, Miho; Amako, Yasushi; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Nada, Masato; Sugiyama, Kiyohiro; Hagiwara, Masayuki; Haga, Yoshinori; Takeuchi, Tetsuya; Nakamura, Ai; Akamine, Hiromu; Tomori, Keisuke; Yara, Tomoyuki; Ashitomi, Yosuke; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika

    2017-03-01

    We studied the magnetic properties of the antiferromagnets Eu2Ni3Ge5 and EuRhSi3 by measuring their electrical resistivity, specific heat, magnetic susceptibility, magnetization, and thermoelectric power, together with the electrical resistivities at high pressures of up to 15 GPa. These compounds have almost divalent Eu ions at ambient pressure and order antiferromagnetically with a successive change in the antiferromagnetic structure at TN = 19 K and T'N = 17 K in Eu2Ni3Ge5, and at TN = 49 K and T'N = 45 K in EuRhSi3. Magnetic field versus temperature (H-T) phase diagrams were constructed for both compounds from the magnetization measurements. The Néel temperature in Eu2Ni3Ge5 was found to increase up to 7 GPa but to decrease continuously with further increasing pressure, without the so-called valence transition. Under a high pressure of 15 GPa, Kondo-like behavior of the electrical resistivity was observed, suggesting the existence of the heavy-fermion state at low temperatures. A similar trend is likely to occur in EuRhSi3. The present P-T phase diagrams for both compounds are the first cases that are reminiscent of the phase diagram of EuCu2(SixGe1-x)2.

  2. Phase Diagram of the Bose Hubbard Model with Weak Links

    NASA Astrophysics Data System (ADS)

    Hettiarachchilage, Kalani; Rousseau, Valy; Tam, Ka-Ming; Moreno, Juana; Jarrell, Mark; Sheehy, Daniel

    2012-02-01

    We study the ground state phase diagram of strongly interacting ultracold Bose gas in a one-dimensional optical lattice with a tunable weak link, by means of Quantum Monte Carlo simulation. This model contains an on-site repulsive interaction (U) and two different near-neighbor hopping terms, J and t, for the weak link and the remainder of the chain, respectively. We show that by reducing the strength of J, a novel intermediate phase develops which is compressible and non-superfluid. This novel phase is identified as a Normal Bose Liquid (NBL) which does not appear in the phase diagram of the homogeneous bosonic Hubbard model. Further, we find a linear variation of the phase boundary of Normal Bose Liquid (NBL) to SuperFluid (SF) as a function of the strength of the weak link. These results may provide a new path to design advanced atomtronic devices in the future.

  3. Cuprate phase diagram and the influence of nanoscale inhomogeneities

    NASA Astrophysics Data System (ADS)

    Zaki, N.; Yang, H.-B.; Rameau, J. D.; Johnson, P. D.; Claus, H.; Hinks, D. G.

    2017-11-01

    The phase diagram associated with high-Tc superconductors is complicated by an array of different ground states. The parent material represents an antiferromagnetic insulator but with doping superconductivity becomes possible with transition temperatures previously thought unattainable. The underdoped region of the phase diagram is dominated by the so-called pseudogap phenomena, whereby in the normal state the system mimics superconductivity in its spectral response but does not show the complete loss of resistivity associated with the superconducting state. An understanding of this regime presents one of the great challenges for the field. In the present study we revisit the structure of the phase diagram as determined in photoemission studies. By careful analysis of the role of nanoscale inhomogeneities in the overdoped region, we are able to more carefully separate out the gaps due to the pseudogap phenomena from the gaps due to the superconducting transition. Within a mean-field description, we are thus able to link the magnitude of the doping-dependent pseudogap directly to the Heisenberg exchange interaction term, J ∑sisj , contained in the t -J model. This approach provides a clear indication that the pseudogap is associated with spin singlet formation.

  4. Using Fluid Inclusions to Bring Phase Diagrams to Life in a Guided Inquiry Instructional Setting

    NASA Astrophysics Data System (ADS)

    Farver, J. R.; Onasch, C.

    2011-12-01

    selected sample. Using a fluorite sample (Denton Mine) yields excellent results and a meaningful extension activity. Each student collects Th and Tm data that are then combined and class histograms are generated and interpreted. At this point, a general explanation of fluid inclusions is provided to bring together the student's observations and to assess their understanding. The extension activity involves using the Th, Te, and Tm data obtained for primary inclusions to constrain the true trapping temperature (Tt). The isochore is calculated and plotted on a P-T plot. Using the geothermal gradient for the sample locale, students calculate the hydrostatic and lithostatic gradients for the region and plot these on the P-T diagram in order to constrain the possible range in Tt. Finally, based upon the salinity and Tt range, students determine what ore fluid type is represented (MVT). The evaluation includes observation of participation, answers to questions posed during the engagement activity, and a written report that includes answers to refining and open-ended questions as well as a reflection on their learning. This activity strengthens student's understanding of phase diagrams while introducing them to the importance of fluids in the crust.

  5. Phase diagram and critical end point for strongly interacting quarks.

    PubMed

    Qin, Si-xue; Chang, Lei; Chen, Huan; Liu, Yu-xin; Roberts, Craig D

    2011-04-29

    We introduce a method based on chiral susceptibility, which enables one to draw a phase diagram in the chemical-potential-temperature plane for strongly interacting quarks whose interactions are described by any reasonable gap equation, even if the diagrammatic content of the quark-gluon vertex is unknown. We locate a critical end point at (μ(E),T(E))∼(1.0,0.9)T(c), where T(c) is the critical temperature for chiral-symmetry restoration at μ=0, and find that a domain of phase coexistence opens at the critical end point whose area increases as a confinement length scale grows.

  6. Binary Phase Diagrams and Thermodynamic Properties of Silicon and Essential Doping Elements (Al, As, B, Bi, Ga, In, N, P, Sb and Tl)

    PubMed Central

    Mostafa, Ahmad; Medraj, Mamoun

    2017-01-01

    Fabrication of solar and electronic silicon wafers involves direct contact between solid, liquid and gas phases at near equilibrium conditions. Understanding of the phase diagrams and thermochemical properties of the Si-dopant binary systems is essential for providing processing conditions and for understanding the phase formation and transformation. In this work, ten Si-based binary phase diagrams, including Si with group IIIA elements (Al, B, Ga, In and Tl) and with group VA elements (As, Bi, N, P and Sb), have been reviewed. Each of these systems has been critically discussed on both aspects of phase diagram and thermodynamic properties. The available experimental data and thermodynamic parameters in the literature have been summarized and assessed thoroughly to provide consistent understanding of each system. Some systems were re-calculated to obtain a combination of the best evaluated phase diagram and a set of optimized thermodynamic parameters. As doping levels of solar and electronic silicon are of high technological importance, diffusion data has been presented to serve as a useful reference on the properties, behavior and quantities of metal impurities in silicon. This paper is meant to bridge the theoretical understanding of phase diagrams with the research and development of solar-grade silicon production, relying on the available information in the literature and our own analysis. PMID:28773034

  7. H-T magnetic phase diagrams of electron-doped Sm1-xCaxMnO3: Evidence for phase separation and metamagnetic transitions

    NASA Astrophysics Data System (ADS)

    Respaud, M.; Broto, J. M.; Rakoto, H.; Vanacken, J.; Wagner, P.; Martin, C.; Maignan, A.; Raveau, B.

    2001-04-01

    The magnetic properties of the polycrystalline manganites Sm1-xCaxMnO3 have been studied for (1>=x>=2/3) under high magnetic fields up to 50 T. The phase diagrams in the H-T plane have been determined. The more representative systems have also been studied by means of neutron diffraction experiments. Increasing the electron concentration in CaMnO3 leads to an increasing minor ferromagnetic (FM) component superimposed on the antiferromagnetic (AFM) background. A cluster-glass regime is observed for x=0.9, where FM clusters are embedded in the G-type AFM matrix of the parent compound. For 0.8>=x, field-induced transitions from the AFM ground state to a FM one have been observed. They correspond to the melting of the C-type AFM orbital-ordered phase for x=0.8, and to the collapse of the charge-ordered phase for x=3/4. In between these two characteristic domains of concentration, x~0.85, the magnetization curves show a superposition of the two above behaviors, suggesting phase separation. This scenario is consistent with the neutron diffraction results showing that the crystalline and magnetic structures of each phase coexist.

  8. Phase stabilities at a glance: Stability diagrams of nickel dipnictides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachhuber, F.; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland; Rothballer, J.

    2013-12-07

    In the course of the recent advances in chemical structure prediction, a straightforward type of diagram to evaluate phase stabilities is presented based on an expedient example. Crystal structures and energetic stabilities of dipnictides NiPn{sub 2} (Pn = N, P, As, Sb, Bi) are systematically investigated by first principles calculations within the framework of density functional theory using the generalized gradient approximation to treat exchange and correlation. These dipnictides show remarkable polymorphism that is not yet understood systematically and offers room for the discovery of new phases. Relationships between the concerned structures including the marcasite, the pyrite, the arsenopyrite/CoSb{sub 2},more » and the NiAs{sub 2} types are highlighted by means of common structural fragments. Electronic stabilities of experimentally known and related AB{sub 2} structure types are presented graphically in so-called stability diagrams. Additionally, competing binary phases are taken into consideration in the diagrams to evaluate the stabilities of the title compounds with respect to decomposition. The main purpose of the stability diagrams is the introduction of an image that enables the estimation of phase stabilities at a single glance. Beyond that, some of the energetically favored structure types can be identified as potential new phases.« less

  9. Phase diagram and thermal properties of strong-interaction matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fei; Chen, Jing; Liu, Yu-Xin

    2016-05-20

    We introduce a novel method for computing the (μ, T)-dependent pressure in continuum QCD, from which we obtain a complex phase diagram and predictions for thermal properties of the dressed-quark component of the system, providing the in-medium behavior of the related trace anomaly, speed of sound, latent heat, and heat capacity.

  10. Lattice QCD phase diagram in and away from the strong coupling limit.

    PubMed

    de Forcrand, Ph; Langelage, J; Philipsen, O; Unger, W

    2014-10-10

    We study lattice QCD with four flavors of staggered quarks. In the limit of infinite gauge coupling, "dual" variables can be introduced, which render the finite-density sign problem mild and allow a full determination of the μ-T phase diagram by Monte Carlo simulations, also in the chiral limit. However, the continuum limit coincides with the weak coupling limit. We propose a strong-coupling expansion approach towards the continuum limit. We show first results, including the phase diagram and its chiral critical point, from this expansion truncated at next-to-leading order.

  11. Pitfalls and feedback when constructing topological pressure-temperature phase diagrams

    NASA Astrophysics Data System (ADS)

    Ceolin, R.; Toscani, S.; Rietveld, Ivo B.; Barrio, M.; Tamarit, J. Ll.

    2017-04-01

    The stability hierarchy between different phases of a chemical compound can be accurately reproduced in a topological phase diagram. This type of phase diagrams may appear to be the result of simple extrapolations, however, experimental complications quickly increase in the case of crystalline trimorphism (and higher order polymorphism). To ensure the accurate positioning of stable phase domains, a topological phase diagram needs to be consistent. This paper gives an example of how thermodynamic feedback can be used in the topological construction of phase diagrams to ensure overall consistency in a phase diagram based on the case of piracetam crystalline trimorphism.

  12. Phase diagram of the isovalent phosphorous-substituted 122-type iron pnictides

    DOE PAGES

    Zhao, YuanYuan; Tai, Yuan -Yen; Ting, C. S.

    2015-05-11

    Recent experiments demonstrated that the isovalent doping system gives a similar phase diagram as the heterovalent doped cases. For example, with the phosphorous (P) doping, the magnetic order in BaFe 2(As 1–xP x) 2 compound is first suppressed, then the superconductivity dome emerges to an extended doping region but eventually it disappears at large x. With the help of a minimal two-orbital model for both BaFe 2As 2 and BaFe 2P 2, together with the self-consistent lattice Bogoliubov-de Gennes (BdG) equation, we calculate the phase diagram against the P content x in which the doped isovalent P atoms are treatedmore » as impurities. Furthermore, we show that our numerical results can qualitatively compare with the experimental measurements.« less

  13. Phase diagram of an extended Agassi model

    NASA Astrophysics Data System (ADS)

    García-Ramos, J. E.; Dukelsky, J.; Pérez-Fernández, P.; Arias, J. M.

    2018-05-01

    Background: The Agassi model [D. Agassi, Nucl. Phys. A 116, 49 (1968), 10.1016/0375-9474(68)90482-X] is an extension of the Lipkin-Meshkov-Glick (LMG) model [H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188 (1965), 10.1016/0029-5582(65)90862-X] that incorporates the pairing interaction. It is a schematic model that describes the interplay between particle-hole and pair correlations. It was proposed in the 1960s by D. Agassi as a model to simulate the properties of the quadrupole plus pairing model. Purpose: The aim of this work is to extend a previous study by Davis and Heiss [J. Phys. G: Nucl. Phys. 12, 805 (1986), 10.1088/0305-4616/12/9/006] generalizing the Agassi model and analyze in detail the phase diagram of the model as well as the different regions with coexistence of several phases. Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov (HFB) approximation, introducing two variational parameters that play the role of order parameters. We also compare the HFB calculations with the exact ones. Results: We obtain the phase diagram of the model and classify the order of the different quantum phase transitions appearing in the diagram. The phase diagram presents broad regions where several phases, up to three, coexist. Moreover, there is also a line and a point where four and five phases are degenerated, respectively. Conclusions: The phase diagram of the extended Agassi model presents a rich variety of phases. Phase coexistence is present in extended areas of the parameter space. The model could be an important tool for benchmarking novel many-body approximations.

  14. Uranium phase diagram from first principles

    NASA Astrophysics Data System (ADS)

    Yanilkin, Alexey; Kruglov, Ivan; Migdal, Kirill; Oganov, Artem; Pokatashkin, Pavel; Sergeev, Oleg

    2017-06-01

    The work is devoted to the investigation of uranium phase diagram up to pressure of 1 TPa and temperature of 15 kK based on density functional theory. First of all the comparison of pseudopotential and full potential calculations is carried out for different uranium phases. In the second step, phase diagram at zero temperature is investigated by means of program USPEX and pseudopotential calculations. Stable and metastable structures with close energies are selected. In order to obtain phase diagram at finite temperatures the preliminary selection of stable phases is made by free energy calculation based on small displacement method. For remaining candidates the accurate values of free energy are obtained by means of thermodynamic integration method (TIM). For this purpose quantum molecular dynamics are carried out at different volumes and temperatures. Interatomic potentials based machine learning are developed in order to consider large systems and long times for TIM. The potentials reproduce the free energy with the accuracy 1-5 meV/atom, which is sufficient for prediction of phase transitions. The equilibrium curves of different phases are obtained based on free energies. Melting curve is calculated by modified Z-method with developed potential.

  15. Dynamic phase transitions and dynamic phase diagrams of the Blume-Emery-Griffiths model in an oscillating field: the effective-field theory based on the Glauber-type stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-06-01

    Using the effective-field theory based on the Glauber-type stochastic dynamics (DEFT), we investigate dynamic phase transitions and dynamic phase diagrams of the Blume-Emery-Griffiths model under an oscillating magnetic field. We presented the dynamic phase diagrams in (T/J, h0/J), (D/J, T/J) and (K/J, T/J) planes, where T, h0, D, K and z are the temperature, magnetic field amplitude, crystal-field interaction, biquadratic interaction and the coordination number. The dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and special critical points, as well as re-entrant behavior depending on interaction parameters. We also compare and discuss the results with the results of the same system within the mean-field theory based on the Glauber-type stochastic dynamics and find that some of the dynamic first-order phase lines and special dynamic critical points disappeared in the DEFT calculation.

  16. Cu-Zn binary phase diagram and diffusion couples

    NASA Technical Reports Server (NTRS)

    Mccoy, Robert A.

    1992-01-01

    The objectives of this paper are to learn: (1) what information a binary phase diagram can yield; (2) how to construct and heat treat a simple diffusion couple; (3) how to prepare a metallographic sample; (4) how to operate a metallograph; (5) how to correlate phases found in the diffusion couple with phases predicted by the phase diagram; (6) how diffusion couples held at various temperatures could be used to construct a phase diagram; (7) the relation between the thickness of an intermetallic phase layer and the diffusion time; and (8) the effect of one species of atoms diffusing faster than another species in a diffusion couple.

  17. Low-frequency phase diagram of irradiated graphene and a periodically driven spin-1/2 X Y chain

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bhaskar; Mohan, Priyanka; Sen, Diptiman; Sengupta, K.

    2018-05-01

    We study the Floquet phase diagram of two-dimensional Dirac materials such as graphene and the one-dimensional (1D) spin-1/2 X Y model in a transverse field in the presence of periodic time-varying terms in their Hamiltonians in the low drive frequency (ω ) regime where standard 1 /ω perturbative expansions fail. For graphene, such periodic time-dependent terms are generated via the application of external radiation of amplitude A0 and time period T =2 π /ω , while for the 1D X Y model, they result from a two-rate drive protocol with a time-dependent magnetic field and nearest-neighbor couplings between the spins. Using the adiabatic-impulse method, whose predictions agree almost exactly with the corresponding numerical results in the low-frequency regime, we provide several semianalytic criteria for the occurrence of changes in the topology of the phase bands (eigenstates of the evolution operator U ) of such systems. For irradiated graphene, we point out the role of the symmetries of the instantaneous Hamiltonian H (t ) and the evolution operator U behind such topology changes. Our analysis reveals that at low frequencies, topology changes of irradiated graphene phase bands may also happen at t =T /3 and2 T /3 (apart from t =T ) showing the necessity of analyzing the phase bands of the system for obtaining its phase diagrams. We chart out the phase diagrams at t =T /3 ,2 T /3 ,and T , where such topology changes occur, as a function of A0 and T using exact numerics, and compare them with the prediction of the adiabatic-impulse method. We show that several characteristics of these phase diagrams can be analytically understood from results obtained using the adiabatic-impulse method and point out the crucial contribution of the high-symmetry points in the graphene Brillouin zone to these diagrams. We study the modes that can appear at the edges of a finite-width strip of graphene and show that the change in the number of such modes agrees with the change in the

  18. Cuprate phase diagram and the influence of nanoscale inhomogeneities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaki, N.; Yang, H. -B.; Rameau, J. D.

    2017-11-01

    The phase diagram associated with high-Tc superconductors is complicated by an array of different ground states. The parent material represents an antiferromagnetic insulator but with doping superconductivity becomes possible with transition temperatures previously thought unattainable. The underdoped region of the phase diagram is dominated by the so-called pseudogap phenomena, whereby in the normal state the system mimics superconductivity in its spectral response but does not show the complete loss of resistivity associated with the superconducting state. An understanding of this regime presents one of the great challenges for the field. In the present study we revisit the structure of themore » phase diagram as determined in photoemission studies. By careful analysis of the role of nanoscale inhomogeneities in the overdoped region, we are able to more carefully separate out the gaps due to the pseudogap phenomena from the gaps due to the superconducting transition. Within a mean-field description, we are thus able to link the magnitude of the doping-dependent pseudogap directly to the Heisenberg exchange interaction term, J Sigma s(i)s(j), contained in the t - J model. This approach provides a clear indication that the pseudogap is associated with spin singlet formation.« less

  19. Energetic studies and phase diagram of thioxanthene.

    PubMed

    Freitas, Vera L S; Monte, Manuel J S; Santos, Luís M N B F; Gomes, José R B; Ribeiro da Silva, Maria D M C

    2009-11-19

    The molecular stability of thioxanthene, a key species from which very important compounds with industrial relevance are derived, has been studied by a combination of several experimental techniques and computational approaches. The standard (p degrees = 0.1 MPa) molar enthalpy of formation of crystalline thioxanthene (117.4 +/- 4.1 kJ x mol(-1)) was determined from the experimental standard molar energy of combustion, in oxygen, measured by rotating-bomb combustion calorimetry at T = 298.15 K. The enthalpy of sublimation was determined by a direct method, using the vacuum drop microcalorimetric technique, and also by an indirect method, using a static apparatus, where the vapor pressures at different temperatures were measured. The latter technique was used for both crystalline and undercooled liquid samples, and the phase diagram of thioxanthene near the triple point was obtained (triple point coordinates T = 402.71 K and p = 144.7 Pa). From the two methods, a mean value for the standard (p degrees = 0.1 MPa) molar enthalpy of sublimation, at T = 298.15 K (101.3 +/- 0.8 kJ x mol(-1)), was derived. From the latter value and from the enthalpy of formation of the solid, the standard (p degrees = 0.1 MPa) enthalpy of formation of gaseous thioxanthene was calculated as 218.7 +/- 4.2 kJ x mol(-1). Standard ab initio molecular orbital calculations were performed using the G3(MP2)//B3LYP composite procedure and several homodesmotic reactions in order to derive the standard molar enthalpy of formation of thioxanthene. The ab initio results are in excellent agreement with the experimental data.

  20. Phase diagram of the Hubbard-Holstein model on a four-leg tube system at quarter filling

    NASA Astrophysics Data System (ADS)

    Reja, Sahinur; Nishimoto, Satoshi

    2018-06-01

    We derive an effective electronic Hamiltonian for the square lattice Hubbard-Holstein model (HHM) in the strong electron-electron (e -e ) and electron-phonon (e -p h ) coupling regime and under nonadiabatic conditions (t /ω0≤1 ), t and ω0 being the electron hopping and phonon frequency respectively. Using the density matrix renormalization-group method, we simulate this effective electronic model on a four-leg cylinder system at quarter filling and present a phase diagram in the g -U plane where g and U are the e -p h coupling constant and Hubbard on-site interaction respectively. For larger g , we find that a cluster of spins, i.e., phase separation (PS), gives way to a charge density wave (CDW) phase made of nearest-neighbor singlets which abruptly goes to another CDW phase as we increase U . But for smaller g , we find a metallic phase sandwiched between PS and the singlet CDW phase. This phase is characterized by a vanishing charge gap but a finite spin gap, suggesting a singlet superconducting phase.

  1. Another dimension to metamorphic phase equilibria: the power of interactive movies for understanding complex phase diagram sections

    NASA Astrophysics Data System (ADS)

    Moulas, E.; Caddick, M. J.; Tisato, N.; Burg, J.-P.

    2012-04-01

    The investigation of metamorphic phase equilibria, using software packages that perform thermodynamic calculations, involves a series of important assumptions whose validity can often be questioned but are difficult to test. For example, potential influences of deformation on phase relations, and modification of effective reactant composition (X) at successive stages of equilibrium may both introduce significant uncertainty into phase diagram calculations. This is generally difficult to model with currently available techniques, and is typically not well quantified. We present here a method to investigate such phenomena along pre-defined Pressure-Temperature (P-T) paths, calculating local equilibrium via Gibbs energy minimization. An automated strategy to investigate complex changes in the effective equilibration composition has been developed. This demonstrates the consequences of specified X modification and, more importantly, permits automated calculation of X changes that are likely along the requested path if considering several specified processes. Here we describe calculations considering two such processes and show an additional example of a metamorphic texture that is difficult to model with current techniques. Firstly, we explore the assumption that although water saturation and bulk-rock equilibrium are generally considered to be valid assumptions in the calculation of phase equilibria, the saturation of thermodynamic components ignores mechanical effects that the fluid/melt phase can impose on the rock, which in turn can modify the effective equilibrium composition. Secondly, we examine how mass fractionation caused by porphyroblast growth at low temperatures or progressive melt extraction at high temperatures successively modifies X out of the plane of the initial diagram, complicating the process of determining best-fit P-T paths for natural samples. In particular, retrograde processes are poorly modeled without careful consideration of prograde

  2. Ab initio construction of magnetic phase diagrams in alloys: The case of Fe 1-xMn xPt

    DOE PAGES

    Pujari, B. S.; Larson, P.; Antropov, V. P.; ...

    2015-07-28

    A first-principles approach to the construction of concentration-temperature magnetic phase diagrams of metallic alloys is presented. The method employs self-consistent total energy calculations based on the coherent potential approximation for partially ordered and noncollinear magnetic states and is able to account for competing interactions and multiple magnetic phases. The application to the Fe 1–xMn xPt “magnetic chameleon” system yields the sequence of magnetic phases at T = 0 and the c-T magnetic phase diagram in good agreement with experiment, and a new low-temperature phase is predicted at the Mn-rich end. The importance of non-Heisenberg interactions for the description of themore » magnetic phase diagram is demonstrated.« less

  3. Phase diagram of URu 2-xFe xSi 2 in high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ran, S.; Jeon, I.; Kanchanavatee, N.

    2017-03-01

    The search for the order parameter of the hidden order (HO) phase in URu 2Si 2 has attracted an enormous amount of attention for the past three decades. Measurements in high magnetic fields H up to 45~T reveal that URu 2Si 2 displays behavior that is consistent with quantum criticality at a field near 35~T, where a cascade of novel quantum phases was found at and around the quantum critical point, suggesting the existence of competing order parameters. Experiments at high pressure P reveal that a first order transition from the HO phase to a large moment antiferromagnetic (LMAFM) phasemore » occurs under pressure at a critical pressure Pc. We have recently demonstrated that tuning URu 2Si 2 by substitution of Fe for Ru offers an opportunity to study the HO and LMAFM phases at atmospheric pressure. In this study, we conducted electrical resistance measurements on URu 2-xFe xSi 2 for H < 65 T using the pulsed field facility at the NHMFL in Los Alamos, in order to establish the temperature T vs. H phase diagram of URu 2-xFe xSi 2 under magnetic fields.« less

  4. Vesicle deformation by microtubules: A phase diagram

    NASA Astrophysics Data System (ADS)

    Emsellem, Virginie; Cardoso, Olivier; Tabeling, Patrick

    1998-10-01

    The experimental investigation of vesicles deformed by the growth of encapsulated microtubules shows that the axisymmetric morphologies can be classified into ovals, lemons, φ, cherries, dumbbells, and pearls. A geometrical phase diagram is established. Numerical minimization of the elastic energy of the membrane reproduces satisfactorily well the observed morphologies and the corresponding phase diagram.

  5. Updating the phase diagram of the archetypal frustrated magnet Gd3Ga5O12

    NASA Astrophysics Data System (ADS)

    Deen, P. P.; Florea, O.; Lhotel, E.; Jacobsen, H.

    2015-01-01

    The applied magnetic field and temperature phase diagram of the archetypal frustrated magnet, Gd3Ga5O12 , has been reinvestigated using single-crystal magnetometry and polarized neutron diffraction. The updated phase diagram is substantially more complicated than previously reported and can be understood in terms of competing interactions with loops of spins, trimers, and decagons, in addition to competition and interplay between antiferromagnetic, incommensurate, and ferromagnetic order. Several additional distinct phase boundaries are presented. The phase diagram centers around a multiphase convergence to a single point at 0.9 T and ˜0.35 K, below which, in temperature, a very narrow magnetically disordered region exists. These data illustrate the richness and diversity that arise from frustrated exchange on the three-dimensional hyperkagome lattice.

  6. Unusual Phase Diagram of CeOs 4Sb 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, P. -C.; Goddard, P. A.; Maple, M. B.

    2017-03-01

    Filled skutterudite compounds, with the formula MT 4X 12, where M is an alkali metal, alkaline-earth, lanthanide, or actinide, T is Fe, Ru, or Os, and X is P, As, or Sb, display a wide variety of interesting phenomena caused by strong electron correlations [1]. Among these, the three compounds CeOs 4Sb 12, PrOs 4Sb 12, and NdOs 4Sb 12, formed by employing Periodic Table neighbors for M, span the range from an antiferromagnetic (AFM) semimetal (M = Ce) via a 1.85 K unconventional (quadrupolar-fluctuation mediated) superconductor (M = Pr) to a 1 K ferromagnet (FM; M = Nd). Inmore » the course of an extended study of these compounds, we uncovered an unusual phase diagram for CeOs 4Sb 12.« less

  7. Defect phase diagram for doping of Ga2O3

    NASA Astrophysics Data System (ADS)

    Lany, Stephan

    2018-04-01

    For the case of n-type doping of β-Ga2O3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association of dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO2) conditions. Considering further the stability constraints due to sublimation of molecular Ga2O, specific predictions of optimized pO2 and Si dopant concentrations are given. The incomplete passivation of dopant-defect complexes in β-Ga2O3 suggests a design rule for metastable doping above the solubility limit.

  8. Phase diagram as a function of temperature and magnetic field for magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    González, I.; Castro, J.; Baldomir, D.

    2002-10-01

    Using an extension of the Nagaev model of phase separation [E. L. Nagaev and A. I. Podel'shchikov, Sov. Phys. JETP, 71, 1108 (1990)] we calculate the phase diagram for degenerate antiferromagnetic semiconductors in the T-H plane for different current carrier densities. Both wide-band semiconductors and double-exchange materials are investigated.

  9. Third Law of Thermodynamics and The Shape of the Phase Diagram for Systems With a First-Order Quantum Phase Transition.

    PubMed

    Kirkpatrick, T R; Belitz, D

    2015-07-10

    The third law of thermodynamics constrains the phase diagram of systems with a first-order quantum phase transition. For a zero conjugate field, the coexistence curve has an infinite slope at T=0. If a tricritical point exists at T>0, then the associated tricritical wings are perpendicular to the T=0 plane, but not to the zero-field plane. These results are based on the third law and basic thermodynamics only, and are completely general. As an explicit example we consider the ferromagnetic quantum phase transition in clean metals, where a first-order quantum phase transition is commonly observed.

  10. Phase diagram and high-pressure boundary of hydrate formation in the carbon dioxide-water system.

    PubMed

    Manakov, Andrej Yu; Dyadin, Yuriy A; Ogienko, Andrey G; Kurnosov, Alexander V; Aladko, Eugeny Ya; Larionov, Eduard G; Zhurko, Fridrih V; Voronin, Vladimir I; Berger, Ivan F; Goryainov, Sergei V; Lihacheva, Anna Yu; Ancharov, Aleksei I

    2009-05-21

    Experimental investigation of the phase diagram of the system carbon dioxide-water at pressures up to 2.7 GPa has been carried out in order to explain earlier controversial results on the decomposition curves of the hydrates formed in this system. According to X-ray diffraction data, solid and/or liquid phases of water and CO2 coexist in the system at room temperature within the pressure range from 0.8 to 2.6 GPa; no clathrate hydrates are observed. The results of neutron diffraction experiments involving the samples with different CO2/H2O molar ratios, and the data on the phase diagram of the system carbon dioxide-water show that CO2 hydrate of cubic structure I is the only clathrate phase present in this system under studied P-T conditions. We suppose that in the cubic structure I hydrate of CO2 multiple occupation of the large hydrate cavities with CO2 molecules takes place. At pressure of about 0.8 GPa this hydrate decomposes into components indicating the presence of the upper pressure boundary of the existence of clathrate hydrates in the system.

  11. Phase diagram of the disordered Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Gurarie, V.; Pollet, L.; Prokof'Ev, N. V.; Svistunov, B. V.; Troyer, M.

    2009-12-01

    We establish the phase diagram of the disordered three-dimensional Bose-Hubbard model at unity filling which has been controversial for many years. The theorem of inclusions, proven by Pollet [Phys. Rev. Lett. 103, 140402 (2009)] states that the Bose-glass phase always intervenes between the Mott insulating and superfluid phases. Here, we note that assumptions on which the theorem is based exclude phase transitions between gapped (Mott insulator) and gapless phases (Bose glass). The apparent paradox is resolved through a unique mechanism: such transitions have to be of the Griffiths type when the vanishing of the gap at the critical point is due to a zero concentration of rare regions where extreme fluctuations of disorder mimic a regular gapless system. An exactly solvable random transverse field Ising model in one dimension is used to illustrate the point. A highly nontrivial overall shape of the phase diagram is revealed with the worm algorithm. The phase diagram features a long superfluid finger at strong disorder and on-site interaction. Moreover, bosonic superfluidity is extremely robust against disorder in a broad range of interaction parameters; it persists in random potentials nearly 50 (!) times larger than the particle half-bandwidth. Finally, we comment on the feasibility of obtaining this phase diagram in cold-atom experiments, which work with trapped systems at finite temperature.

  12. Magnetic Phase Diagram of α-RuCl3

    NASA Astrophysics Data System (ADS)

    Sears, Jennifer; Kim, Young-June; Zhao, Yang; Lynn, Jeffrey

    The layered honeycomb material α-RuCl3 is thought to possess unusual magnetic interactions including a strong bond-dependent Kitaev term, offering a potential opportunity to study a material near a well understood spin liquid phase. Although this material orders magnetically at low temperatures and is thus not a realization of a Kitaev spin liquid, it does show a broad continuum of magnetic excitations reminiscent of that expected for the spin liquid phase. It has also been proposed that a magnetic field could destabilize the magnetic order in this material and induce a transition into a spin liquid phase. Low temperature magnetization and specific heat measurements in this material have suggested a complex magnetic phase diagram with multiple unidentified magnetic phases present at low temperature. This has provided motivation for our work characterizing the magnetic transitions and phase diagram in α-RuCl3. I will present detailed bulk measurements combined with magnetic neutron diffraction measurements to map out the phase diagram and identify the various phases present.

  13. Water, Water Everywhere: Phase Diagrams of Ordinary Water Substance

    ERIC Educational Resources Information Center

    Glasser, L.

    2004-01-01

    The full phase diagram of water in the form of a graphical representation of the three-dimensional (3D) PVT diagram using authentic data is presented. An interesting controversy regarding the phase behavior of water was the much-touted proposal of a solid phase of water, polywater, supposedly stable under atmospheric conditions.

  14. Phase stability in nanoscale material systems: extension from bulk phase diagrams

    NASA Astrophysics Data System (ADS)

    Bajaj, Saurabh; Haverty, Michael G.; Arróyave, Raymundo; Goddard Frsc, William A., III; Shankar, Sadasivan

    2015-05-01

    Phase diagrams of multi-component systems are critical for the development and engineering of material alloys for all technological applications. At nano dimensions, surfaces (and interfaces) play a significant role in changing equilibrium thermodynamics and phase stability. In this work, it is shown that these surfaces at small dimensions affect the relative equilibrium thermodynamics of the different phases. The CALPHAD approach for material surfaces (also termed ``nano-CALPHAD'') is employed to investigate these changes in three binary systems by calculating their phase diagrams at nano dimensions and comparing them with their bulk counterparts. The surface energy contribution, which is the dominant factor in causing these changes, is evaluated using the spherical particle approximation. It is first validated with the Au-Si system for which experimental data on phase stability of spherical nano-sized particles is available, and then extended to calculate phase diagrams of similarly sized particles of Ge-Si and Al-Cu. Additionally, the surface energies of the associated compounds are calculated using DFT, and integrated into the thermodynamic model of the respective binary systems. In this work we found changes in miscibilities, reaction compositions of about 5 at%, and solubility temperatures ranging from 100-200 K for particles of sizes 5 nm, indicating the importance of phase equilibrium analysis at nano dimensions.Phase diagrams of multi-component systems are critical for the development and engineering of material alloys for all technological applications. At nano dimensions, surfaces (and interfaces) play a significant role in changing equilibrium thermodynamics and phase stability. In this work, it is shown that these surfaces at small dimensions affect the relative equilibrium thermodynamics of the different phases. The CALPHAD approach for material surfaces (also termed ``nano-CALPHAD'') is employed to investigate these changes in three binary systems by

  15. Defect phase diagram for doping of Ga 2O 3

    DOE PAGES

    Lany, Stephan

    2018-04-01

    For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less

  16. Defect phase diagram for doping of Ga 2O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lany, Stephan

    For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less

  17. Unified Phase Diagram for Iron-Based Superconductors.

    PubMed

    Gu, Yanhong; Liu, Zhaoyu; Xie, Tao; Zhang, Wenliang; Gong, Dongliang; Hu, Ding; Ma, Xiaoyan; Li, Chunhong; Zhao, Lingxiao; Lin, Lifang; Xu, Zhuang; Tan, Guotai; Chen, Genfu; Meng, Zi Yang; Yang, Yi-Feng; Luo, Huiqian; Li, Shiliang

    2017-10-13

    High-temperature superconductivity is closely adjacent to a long-range antiferromagnet, which is called a parent compound. In cuprates, all parent compounds are alike and carrier doping leads to superconductivity, so a unified phase diagram can be drawn. However, the properties of parent compounds for iron-based superconductors show significant diversity and both carrier and isovalent dopings can cause superconductivity, which casts doubt on the idea that there exists a unified phase diagram for them. Here we show that the ordered moments in a variety of iron pnictides are inversely proportional to the effective Curie constants of their nematic susceptibility. This unexpected scaling behavior suggests that the magnetic ground states of iron pnictides can be achieved by tuning the strength of nematic fluctuations. Therefore, a unified phase diagram can be established where superconductivity emerges from a hypothetical parent compound with a large ordered moment but weak nematic fluctuations, which suggests that iron-based superconductors are strongly correlated electron systems.

  18. Numerical calculation of Kossel diagrams of cholesteric blue phases

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun-ichi; Okumura, Yasushi; Kikuchi, Hirotsugu

    2018-02-01

    Kossel diagrams visualize the directions of strong Bragg reflections from a specimen with periodic ordering. They have played a pivotal role in the determination of the symmetry of cholesteric blue phases, and in the investigation of their structural changes under an electric field. In this work, we present direct numerical calculations of the Kossel diagrams of cholesteric blue phases by solving the Maxwell equations for the transmission and reflection of light incident upon a finite-thickness blue phase cell. Calculated Kossel diagrams are in good agreement with what is expected as a result of Bragg reflections, although some differences are present.

  19. Symmetry Breaking in the Correlated Electronic and Lattice Degrees of Freedom in the CuxTiSe2 T-x Phase Diagram

    NASA Astrophysics Data System (ADS)

    Lioi, David B.

    In this thesis I investigate the relationship between the charge density wave (CDW) phase and superconductivity in the T-x phase diagram of Cu xTiSe2. I find that the incommensurate (IC)-CDW is related to the superconducting phase due to the fact that the former effectively isolates the CDW subsystem degrees of freedom. This increases the symmetry of the electronic populations within the IC-CDW band structure and leave them susceptible to internal instabilities, which in turn give rise to the superconducting phase. Because the correlated properties of these solid-state phases of matter are highly dependent on the crystalline quality of our samples, I also detail the growth of pristine single crystals and utilize several characterization techniques to aid in this purpose. In this portion of the thesis the single crystals are deliberately injected with heat and monitored to deduce the formation of defects through selenium migration. I also confirm the existence of chiral symmetry breaking in the bulk commensurate (C)-CDW phase in TiSe2 brought about by the cooperation of phonon and exciton degrees of freedom, and also observe chiral character in fluctuations above TCDW. These thermal fluctuations were observed up to 80 K above TCDW via optical signatures of the folded Se-4p band and Raman signatures of the soft L1- phonon mode. The suppression of the excitonic degree of freedom with Cu intercalation brings about a quantum phase transition into the IC-CDW at x=0.04. Large quantum fluctuations of the folded Se-4p electronic band were observed at the quantum phase transition where measurements of the phonon system show the onset of incommensuration in the CDW super-lattice. Optical measurements demonstrate a large decoupling of the electron-phonon degrees of freedom within the electronic band structure of the IC-CDW subsystem.

  20. The phase diagrams of iron-based superconductors: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Martinelli, Alberto; Bernardini, Fabio; Massidda, Sandro

    2016-01-01

    Phase diagrams play a primary role in the understanding of materials properties. For iron-based superconductors (Fe-SC), the correct definition of their phase diagrams is crucial because of the close interplay between their crystallochemical and magnetic properties, on one side, and the possible coexistence of magnetism and superconductivity, on the other. The two most difficult issues for understanding the Fe-SC phase diagrams are: 1) the origin of the structural transformation taking place during cooling and its relationship with magnetism; 2) the correct description of the region where a crossover between the magnetic and superconducting electronic ground states takes place. Hence a proper and accurate definition of the structural, magnetic and electronic phase boundaries provides an extremely powerful tool for material scientists. For this reason, an exact definition of the thermodynamic phase fields characterizing the different structural and physical properties involved is needed, although it is not easy to obtain in many cases. Moreover, physical properties can often be strongly dependent on the occurrence of micro-structural and other local-scale features (lattice micro-strain, chemical fluctuations, domain walls, grain boundaries, defects), which, as a rule, are not described in a structural phase diagram. In this review, we critically summarize the results for the most studied 11-, 122- and 1111-type compound systems, providing a correlation between experimental evidence and theory. Les deux difficultés principales pour la compréhension des diagrammes de phase Fe-SC sont : 1) l'origine de la transformation structurelle ayant lieu pendant le refroidissement et sa relation avec le magnétisme ; 2) la description correcte de la région où survient un recouvrement entre les états fondamentaux électroniques, magnétiques et supraconducteur électronique survient. De ce fait, une définition appropriée et précise des frontières des phases structurelle

  1. Workshop on Applications of Phase Diagrams in Metallurgy and Ceramics

    NASA Technical Reports Server (NTRS)

    Bennett, L. H.; Carter, G. C.

    1977-01-01

    A workshop was held to assess the current national and international status of phase diagram determinations and evaluations for alloys, ceramics, and semiconductors; to determine the needs and priorities, especially technological, for phase diagram determinations and evaluations; and to estimate the resources being used and potentially available for phase diagram evaluation. Highlights of the workshop, description of a new poster board design used in the poster sessions, lists of attendees and demonstrations, the program, and descriptions of the presentations are included.

  2. An Introductory Idea for Teaching Two-Component Phase Diagrams

    ERIC Educational Resources Information Center

    Peckham, Gavin D.; McNaught, Ian J.

    2011-01-01

    The teaching of two-component phase diagrams has attracted little attention in this "Journal," and it is hoped that this article will make a useful contribution. Current physical chemistry textbooks describe two-component phase diagrams adequately, but do so in a piecemeal fashion one section at a time; first solid-liquid equilibria, then…

  3. Phase diagram of heteronuclear Janus dumbbells

    NASA Astrophysics Data System (ADS)

    O'Toole, Patrick; Giacometti, Achille; Hudson, Toby

    Using Aggregation-Volume-Bias Monte Carlo simulations along with Successive Umbrella Sampling and Histogram Re-weighting, we study the phase diagram of a system of dumbbells formed by two touching spheres having variable sizes, as well as different interaction properties. The first sphere ($h$) interacts with all other spheres belonging to different dumbbells with a hard-sphere potential. The second sphere ($s$) interacts via a square-well interaction with other $s$ spheres belonging to different dumbbells and with a hard-sphere potential with all remaining $h$ spheres. We focus on the region where the $s$ sphere is larger than the $h$ sphere, as measured by a parameter $1\\le \\alpha\\le 2 $ controlling the relative size of the two spheres. As $\\alpha \\to 2$ a simple fluid of square-well spheres is recovered, whereas $\\alpha \\to 1$ corresponds to the Janus dumbbell limit, where the $h$ and $s$ spheres have equal sizes. Many phase diagrams falling into three classes are observed, depending on the value of $\\alpha$. The $1.8 \\le \\alpha \\le 2$ is dominated by a gas-liquid phase separation very similar to that of a pure square-well fluid with varied critical temperature and density. When $1.3 \\le \\alpha \\le 1.8$ we find a progressive destabilization of the gas-liquid phase diagram by the onset of self-assembled structures, that eventually lead to a metastability of the gas-liquid transition below $\\alpha=1.2$.

  4. Phase diagram of hard squares in slit confinement.

    PubMed

    Bautista-Carbajal, Gustavo; Gurin, Péter; Varga, Szabolcs; Odriozola, Gerardo

    2018-06-11

    This work shows a complete phase diagram of hard squares of side length σ in slit confinement for H < 4.5, H being the wall to wall distance measured in σ units, including the maximal packing fraction limit. The phase diagram exhibits a transition between a single-row parallel 1-[Formula: see text] and a zigzag 2-[Formula: see text] structures for H c (2) = (2[Formula: see text] - 1) < H < 2, and also another one involving the 1-[Formula: see text] and 2-[Formula: see text] structures (two parallel rows) for 2 < H < H c (3) (H c (n) = n - 1 + [Formula: see text]/n is the critical wall-to-wall distance for a (n - 1)-[Formula: see text] to n-[Formula: see text] transition and where n-[Formula: see text] represents a structure formed by tilted rectangles, each one clustering n stacked squares), and a triple point for H t  [Formula: see text] 2.005. In this triple point there coexists the 1-[Formula: see text], 2-[Formula: see text], and 2-[Formula: see text] structures. For regions H c (3) < H < H c (4) and H c (4) < H < H c (5), very similar pictures arise. There is a (n - 1)-[Formula: see text] to a n-[Formula: see text] strong transition for H c (n) < H < n, followed by a softer (n - 1)-[Formula: see text] to n-[Formula: see text] transition for n < H < H c (n + 1). Again, at H [Formula: see text] n there appears a triple point, involving the (n - 1)-[Formula: see text], n-[Formula: see text], and n-[Formula: see text] structures. The similarities found for n = 2, 3 and 4 lead us to propose a tentative phase diagram for H c (n) < H < H c (n + 1) (n ∈ [Formula: see text], n > 2), where structures (n - 1)-[Formula: see text], n-[Formula: see text], and n-[Formula: see text] fill the phase diagram. Simulation and Onsager theory results are qualitatively consistent.

  5. DNA unzipping phase diagram calculated via replica theory.

    PubMed

    Roland, C Brian; Hatch, Kristi Adamson; Prentiss, Mara; Shakhnovich, Eugene I

    2009-05-01

    We show how single-molecule unzipping experiments can provide strong evidence that the zero-force melting transition of long molecules of natural dsDNA should be classified as a phase transition of the higher-order type (continuous). Toward this end, we study a statistical-mechanics model for the fluctuating structure of a long molecule of dsDNA, and compute the equilibrium phase diagram for the experiment in which the molecule is unzipped under applied force. We consider a perfect-matching dsDNA model, in which the loops are volume-excluding chains with arbitrary loop exponent c . We include stacking interactions, hydrogen bonds, and main-chain entropy. We include sequence heterogeneity at the level of random sequences; in particular, there is no correlation in the base-pairing (bp) energy from one sequence position to the next. We present heuristic arguments to demonstrate that the low-temperature macrostate does not exhibit degenerate ergodicity breaking. We use this claim to understand the results of our replica-theoretic calculation of the equilibrium properties of the system. As a function of temperature, we obtain the minimal force at which the molecule separates completely. This critical-force curve is a line in the temperature-force phase diagram that marks the regions where the molecule exists primarily as a double helix versus the region where the molecule exists as two separate strands. We compare our random-sequence model to magnetic tweezer experiments performed on the 48 502 bp genome of bacteriophage lambda . We find good agreement with the experimental data, which is restricted to temperatures between 24 and 50 degrees C . At higher temperatures, the critical-force curve of our random-sequence model is very different for that of the homogeneous-sequence version of our model. For both sequence models, the critical force falls to zero at the melting temperature T_{c} like |T-T_{c}|;{alpha} . For the homogeneous-sequence model, alpha=1/2 almost

  6. The Use of the Skew T, Log P Diagram in Analysis and Forecasting. Revision

    DTIC Science & Technology

    1990-03-01

    28 x 30 been added to further enhance the value of the inches. This version now includes the Apple - diagram. A detailed description of the Skew T, man...airocrau rqor we ovailable. The eauning lIkIaatte U the lop rate Is. at times. recorded as swot - adobaik wheun the mulm leave* a cloud Up and ener

  7. 3D Computer Models of T- x- y Diagrams, Forming the Fe-Ni-Co-FeS-NiS-CoS Subsystem

    NASA Astrophysics Data System (ADS)

    Lutsyk, V. I.; Vorob'eva, V. P.

    2017-12-01

    3D computer models of Fe-Ni-Co, Fe-Ni-FeS-NiS, Fe-Co-FeS-CoS, Ni-Co-NiS-CoS T- x- y diagrams have been designed. The geometric structure (35 surfaces, two-phase surface of the reaction type change, 17 phase regions) of the Fe-Ni-FeS-NiS T- x- y diagram is investigated in detail. The liquidus hypersurfaces prediction of the Fe-Ni-Co-FeS-NiS-CoS subsystem is represented.

  8. P-T-t metamorphic evolution of highly deformed metapelites from the Pinkie unit of western Svalbard using quartz-in-garnet barometry, trace element thermometry, P-T-X-M diagrams and monazite in-situ dating

    NASA Astrophysics Data System (ADS)

    Kośmińska, Karolina; Spear, Frank; Majka, Jarosław

    2017-04-01

    We present the results of quartz-in-garnet (QuiG) Raman barometry coupled with P-T-X-M diagrams, trace element thermometry, and monazite dating from metapelites of the Pinkie unit on Prins Karls Forland, western Svalbard. This unconventional approach, which combines traditional and novel thermobarometry techniques as well as dating results, provides the opportunity to decipher the pressure-temperature-time (P-T-t) metamorphic evolution of these highly deformed rocks, for which the P-T conditions could not have been obtained using traditional techniques. The Pinkie unit is comprised of Barrovian-type zones expressed by the following three mineral assemblages: Grt+St+Ms+Bt+Pl+Q, Grt+St+Ky+Ms+Bt+Pl+Q and Grt+Ky+Ms+Bt+Pl+Q. The metamorphic assemblages have been strongly affected by pervasive mylonitization. Two generations of garnet are present. Early garnet-I forms large (up to 2 mm) anhedral and inclusion-rich porphyroblasts that are strongly deformed with resorbed rims. Its composition varies from Alm81Grs5Prp11Sps3 in the core to Alm84Grs4Prp10Sps2 in the rim for a St-bearing sample. St-Ky bearing metapelites contain garnet-I, which is characterized by Alm88Grs2Prp8Sps2 in the core and Alm89Grs2Prp8Sps1 in the rim. In the Ky-bearing sample garnet-I composition is varying from Alm77Grs4Prp11Sps8 in the core to Alm83Grs4Prp9Sps4 in the rim. Garnet-II is characterized by small (up to 0.5 mm) euhedral grains that locally overgrows garnet-I. It contains very scarce inclusions, mostly quartz. Grt-II composition is very similar in all Pinkie unit samples and is characterized by Alm80Grs11Prp8Sps1(0). The measured maximum shift of the 464 cm-1 Raman band for quartz in garnet-I is 1.05 cm-1 for St-bearing samples, 1.80 cm-1 for St-Ky bearing rocks, and 2.10 cm-1 for Ky-bearing samples, respectively. The highest shift obtained for inclusions in garnet-II is 2.7 cm-1. Monazite-in-garnet thermometry combined with the QuiG yielded P-T conditions of garnet-I nucleation as

  9. The Pressure-Temperature Phase Diagram of Metacetamol and Its Comparison to the Phase Diagram of Paracetamol.

    PubMed

    Barrio, Maria; Huguet, Judit; Rietveld, Ivo B; Robert, Benoît; Céolin, René; Tamarit, Josep-Lluis

    2017-06-01

    Understanding the polymorphic behavior of active pharmaceutical ingredients is important for formulation purposes and regulatory reasons. Metacetamol is an isomer of paracetamol and it similarly exhibits polymorphism. In the present article, it has been found that one of the polymorphs of metacetamol is only stable under increased pressure, which has led to the conclusion that metacetamol like paracetamol is a monotropic system under ordinary (= laboratory) conditions and that it becomes enantiotropic under pressure with the I-II-L triple point coordinates for metacetamol T I-II-L  = 535 ± 10 K and P I-II-L  = 692 ± 70 MPa. However, whereas for paracetamol the enantiotropy under pressure can be foreseen, because the metastable polymorph is denser, in the case of metacetamol this is not possible, as the metastable polymorph is less dense than the stable one. The existence of the stability domain for the less dense polymorph of metacetamol can only be demonstrated by the construction of the topological phase diagram as presented in this article. It is a delicate interplay between the specific volume differences and the enthalpy differences causing the stability domain of the less dense polymorph to be sandwiched between the denser polymorph and the liquid. Metacetamol shares this behavior with bicalutamide and fluoxetine nitrate. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Phase diagram of URu 2–xFe xSi 2 in high magnetic fields

    DOE PAGES

    Ran, Sheng; Jeon, Inho; Pouse, Naveen; ...

    2017-08-28

    Here, electrical transport measurements were performed on URu 2-xFe xSi 2 single-crystal specimens in high magnetic fields up to 45 T (DC fields) and 60 T (pulsed fields). We observed a systematic evolution of the critical fields for both the hidden-order (HO) and large-moment antiferromagnetic (LMAFM) phases and established the 3D phase diagram of T–H–x. In the HO phase, H/H 0 scales with T/T 0 and collapses onto a single curve. However, in the LMAFM phase, this single scaling relation is not satisfied. Within a certain range of x values, the HO phase reenters after the LMAFM phase is suppressedmore » by the magnetic field, similar to the behavior observed for URu 2Si 2 within a certain range of pressures.« less

  11. Phase diagram of URu 2–xFe xSi 2 in high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ran, Sheng; Jeon, Inho; Pouse, Naveen

    Here, electrical transport measurements were performed on URu 2-xFe xSi 2 single-crystal specimens in high magnetic fields up to 45 T (DC fields) and 60 T (pulsed fields). We observed a systematic evolution of the critical fields for both the hidden-order (HO) and large-moment antiferromagnetic (LMAFM) phases and established the 3D phase diagram of T–H–x. In the HO phase, H/H 0 scales with T/T 0 and collapses onto a single curve. However, in the LMAFM phase, this single scaling relation is not satisfied. Within a certain range of x values, the HO phase reenters after the LMAFM phase is suppressedmore » by the magnetic field, similar to the behavior observed for URu 2Si 2 within a certain range of pressures.« less

  12. Magnetic Properties and Magnetic Phase Diagrams of Trigonal DyNi3Ga9

    NASA Astrophysics Data System (ADS)

    Ninomiya, Hiroki; Matsumoto, Yuji; Nakamura, Shota; Kono, Yohei; Kittaka, Shunichiro; Sakakibara, Toshiro; Inoue, Katsuya; Ohara, Shigeo

    2017-12-01

    We report the crystal structure, magnetic properties, and magnetic phase diagrams of single crystalline DyNi3Ga9 studied using X-ray diffraction, electrical resistivity, specific heat, and magnetization measurements. DyNi3Ga9 crystallizes in the chiral structure with space group R32. The dysprosium ions, which are responsible for the magnetism in this compound, form a two-dimensional honeycomb structure on a (0001) plane. We show that DyNi3Ga9 exhibits successive phase transitions at TN = 10 K and T'N = 9 K. The former suggests quadrupolar ordering, and the latter is attributed to the antiferromagnetic order. It is considered that DyNi3Ga9 forms the canted-antiferromagnetic structure below T'N owing to a small hysteresis loop of the low-field magnetization curve. We observe the strong easy-plane anisotropy, and the multiple-metamagnetic transitions with magnetization-plateaus under the field applied along the honeycomb plane. For Hallel [2\\bar{1}\\bar{1}0], the plateau-region arises every 1/6 for saturation magnetization. The magnetic phase diagrams of DyNi3Ga9 are determined for the fields along principal-crystal axes.

  13. Si-Ge-metal ternary phase diagram calculations

    NASA Technical Reports Server (NTRS)

    Fleurial, J. P.; Borshchevsky, A.

    1990-01-01

    Solution crystal growth and doping conditions of Si-Ge alloys used for high-temperature thermoelectric generation are determined here. Liquid-phase epitaxy (LPE) has been successfully employed recently to obtain single-crystalline homogeneous layers of Si-Ge solid solutions from a liquid metal solvent. Knowledge of Si-Ge-metallic solvent ternary phase diagrams is essential for further single-crystal growth development. Consequently, a thermodynamic equilibrium model was used to calculate the phase diagrams of the Si-Ge-M systems, including solid solubilities, where M is Al, Ga, In, Sn, Pb, Sb, or Bi. Good agreement between calculated liquidus and solidus data and experimental DTA and microprobe results was obtained. The results are used to compare the suitability of the different systems for crystal growth (by LPE-type process).

  14. Magnetic Phase Diagram of Heusler Alloy System Ni2Mn1-xCrxGa

    NASA Astrophysics Data System (ADS)

    Adachi, Yoshiya; Kouta, Ryuji; Fujio, Mitsuhiro; Kanomata, Takeshi; Umetsu, Rie Y.; Xu, Xiao; Kainuma, Ryosuke

    The temperature dependence of the electrical resistivity ρ of Ni2Mn1-xCrxGa (x=0.05∼0.25) was measured. Two anomalies corresponding to the magnetic and structural phase transitions at TC and TM were observed on the ρ-T curves for each sample, respectively. The kinks corresponding to the premartensitic transition at Tp were observed for all samples except x=0.25. On the basis of the experimental results, the T vs. x phase diagram of Ni2Mn1-xCrxGa was determined.

  15. Analyzing phase diagrams and phase transitions in networked competing populations

    NASA Astrophysics Data System (ADS)

    Ni, Y.-C.; Yin, H. P.; Xu, C.; Hui, P. M.

    2011-03-01

    Phase diagrams exhibiting the extent of cooperation in an evolutionary snowdrift game implemented in different networks are studied in detail. We invoke two independent payoff parameters, unlike a single payoff often used in most previous works that restricts the two payoffs to vary in a correlated way. In addition to the phase transition points when a single payoff parameter is used, phase boundaries separating homogeneous phases consisting of agents using the same strategy and a mixed phase consisting of agents using different strategies are found. Analytic expressions of the phase boundaries are obtained by invoking the ideas of the last surviving patterns and the relative alignments of the spectra of payoff values to agents using different strategies. In a Watts-Strogatz regular network, there exists a re-entrant phenomenon in which the system goes from a homogeneous phase into a mixed phase and re-enters the homogeneous phase as one of the two payoff parameters is varied. The non-trivial phase diagram accompanying this re-entrant phenomenon is quantitatively analyzed. The effects of noise and cooperation in randomly rewired Watts-Strogatz networks are also studied. The transition between a mixed phase and a homogeneous phase is identify to belong to the directed percolation universality class. The methods used in the present work are applicable to a wide range of problems in competing populations of networked agents.

  16. Phase diagram of supercooled water confined to hydrophilic nanopores

    NASA Astrophysics Data System (ADS)

    Limmer, David T.; Chandler, David

    2012-07-01

    We present a phase diagram for water confined to cylindrical silica nanopores in terms of pressure, temperature, and pore radius. The confining cylindrical wall is hydrophilic and disordered, which has a destabilizing effect on ordered water structure. The phase diagram for this class of systems is derived from general arguments, with parameters taken from experimental observations and computer simulations and with assumptions tested by computer simulation. Phase space divides into three regions: a single liquid, a crystal-like solid, and glass. For large pores, radii exceeding 1 nm, water exhibits liquid and crystal-like behaviors, with abrupt crossovers between these regimes. For small pore radii, crystal-like behavior is unstable and water remains amorphous for all non-zero temperatures. At low enough temperatures, these states are glasses. Several experimental results for supercooled water can be understood in terms of the phase diagram we present.

  17. Equation of state and phase diagram of carbon

    NASA Astrophysics Data System (ADS)

    Averin, A. B.; Dremov, V. V.; Samarin, S. I.; Sapozhnikov, A. T.

    1996-05-01

    Thermodynamically consistent equation of state (EOS) for graphite and diamond is proposed. The EOS satisfactorily describes experimental data on shock compression, heat capacity, thermal expansion and phase equilibrium and can be used in mathematical models and computer codes for calculation of graphite-diamond phase transition under dynamic loading. Monte-Carlo calculations of diamond thermodynamic properties have been carried out to check correctness of the EOS in the regions of phase diagram where experimental data are absent. On the basis of the EOS and Grover's model of liquid state the EOS of liquid carbon have been constructed and carbon phase diagram (graphite and diamond melting curves and triple point) have been calculated. Comparison of calculated and experimental Hugoniots has stated a question about diamond melting curve.

  18. A Closer Look at Phase Diagrams for the General Chemistry Course.

    ERIC Educational Resources Information Center

    Gramsch, Stephen A.

    2000-01-01

    Information concerning structural chemistry and phase equilibria contained in the full phase diagrams of common substances is a great deal richer than the general chemistry students are given to believe. Discusses ways of enriching the traditional presentation of phase diagrams in general chemistry courses. (Contains over 20 references.) (WRM)

  19. High-pressure phases of Weyl semimetals NbP, NbAs, TaP, and TaAs

    NASA Astrophysics Data System (ADS)

    Guo, ZhaoPeng; Lu, PengChao; Chen, Tong; Wu, JueFei; Sun, Jian; Xing, DingYu

    2018-03-01

    In this study, we used the crystal structure search method and first-principles calculations to systematically explore the highpressure phase diagrams of the TaAs family (NbP, NbAs, TaP, and TaAs). Our calculation results show that NbAs and TaAs have similar phase diagrams, the same structural phase transition sequence I41 md→ P6¯ m2→ P21/ c→ Pm3¯ m, and slightly different transition pressures. The phase transition sequence of NbP and TaP differs somewhat from that of NbAs and TaAs, in which new structures emerge, such as the Cmcm structure in NbP and the Pmmn structure in TaP. Interestingly, we found that in the electronic structure of the high-pressure phase P6¯ m2-NbAs, there are coexistingWeyl points and triple degenerate points, similar to those found in high-pressure P6¯ m2-TaAs.

  20. Equations of State and Phase Diagrams of Ammonia

    ERIC Educational Resources Information Center

    Glasser, Leslie

    2009-01-01

    We present equations of state relating the phases and a three-dimensional phase diagram for ammonia with its solid, liquid, and vapor phases, based on fitted authentic experimental data and including recent information on the high-pressure solid phases. This presentation follows similar articles on carbon dioxide and water published in this…

  1. Magnetic phase diagram of Ba3CoSb2O9 as determined by ultrasound velocity measurements

    NASA Astrophysics Data System (ADS)

    Quirion, G.; Lapointe-Major, M.; Poirier, M.; Quilliam, J. A.; Dun, Z. L.; Zhou, H. D.

    2015-07-01

    Using high-resolution sound velocity measurements we have obtained a very precise magnetic phase diagram of Ba3CoSb2O9 , a material that is considered to be an archetype of the spin-1/2 triangular-lattice antiferromagnet. Results obtained for the field parallel to the basal plane (up to 18 T) show three phase transitions, consistent with predictions based on simple two-dimensional isotropic Heisenberg models and previous experimental investigations. The phase diagram obtained for the field perpendicular to the basal plane clearly reveals an easy-plane character of this compound and, in particular, our measurements show a single first-order phase transition at Hc 1=12.0 T which can be attributed to a spin flop between an umbrella-type configuration and a coplanar V -type order where spins lie in a plane perpendicular to the a b plane. At low temperatures, softening of the lattice within some of the ordered phases is also observed and may be a result of residual spin fluctuations.

  2. The phase diagram and hardness of carbon nitrides

    DOE PAGES

    Dong, Huafeng; Oganov, Artem R.; Zhu, Qiang; ...

    2015-05-06

    Novel superhard materials, especially those with superior thermal and chemical stability, are needed to replace diamond. Carbon nitrides (C-N), which are likely to possess these characteristics and have even been expected to be harder than diamond, are excellent candidates. Here we report three new superhard and thermodynamically stable carbon nitride phases. Based on a systematic evolutionary structure searches, we report a complete phase diagram of the C-N system at 0–300 GPa and analyze the hardest metastable structures. Surprisingly, we find that at zero pressure, the earlier proposed graphitic-C 3N 4 structure (P6-bar m2) is dynamically unstable, and we find themore » lowest-energy structure based on s-triazine unit and s-heptazine unit.« less

  3. Effects of aspect ratio on the phase diagram of spheroidal particles

    NASA Astrophysics Data System (ADS)

    Kutlu, Songul; Haaga, Jason; Rickman, Jeffrey; Gunton, James

    Ellipsoidal particles occur in both colloidal and protein science. Models of protein phase transitions based on interacting spheroidal particles can often be more realistic than those based on spherical molecules. One of the interesting questions is how the aspect ratio of spheroidal particles affects the phase diagram. Some results have been obtained in an earlier study by Odriozola (J. Chem. Phys. 136:134505 (2012)). In this poster we present results for the phase diagram of hard spheroids interacting via a quasi-square-well potential, for different aspect ratios. These results are obtained from Monte Carlo simulations using the replica exchange method. We find that the phase diagram, including the crystal phase transition, is sensitive to the choice of aspect ratio. G. Harold and Leila Y. Mathers Foundation.

  4. Calculation of electric field–temperature (E, T) phase diagram of a ferroelectric liquid crystal near the SmA–{SmC}}_{\\alpha }^{* } transition

    NASA Astrophysics Data System (ADS)

    Trabelsi, F.; Dhaouadi, H.; Riahi, O.; Othman, T.

    2018-03-01

    In this work we perform a theoretical calculation in order to reconstitute the (E–T) phase diagram of a chiral smectic liquid crystal in the vicinity of the SmA–{SmC}}α * transition. This reconstruction is carried out on the basis of a thermodynamic calculation of the slope of the curve joining the {SmC}}α * domain and the unwound SmC*. An empiric correction of the mean field term of Landau De-Gennes development is necessary to accomplish this reconstruction. Thereafter, an experimental validation is performed to verify our calculations.

  5. Phase Diagram of the Ethylene Glycol-Dimethylsulfoxide System

    NASA Astrophysics Data System (ADS)

    Solonina, I. A.; Rodnikova, M. N.; Kiselev, M. R.; Khoroshilov, A. V.; Shirokova, E. V.

    2018-05-01

    The phase diagram of ethylene glycol (EG)-dimethylsulfoxide (DMSO) system is studied in the temperature range of +25 to -140°C via differential scanning calorimetry. It is established that the EG-DMSO system is characterized by strong overcooling of the liquid phase, a glass transition at -125°C, and the formation of a compound with the composition of DMSO · 2EG. This composition has a melting temperature of -60°C, which is close to those of neighboring eutectics (-75 and -70°C). A drop in the baseline was observed in the temperature range of 8 to -5°C at DMSO concentrations of 5-50 mol %, indicating the existence of a phase separation area in the investigated system. The obtained data is compared to the literature data on the H2O-DMSO phase diagram.

  6. RH-temperature phase diagrams of hydrate forming deliquescent crystalline ingredients.

    PubMed

    Allan, Matthew; Mauer, Lisa J

    2017-12-01

    Several common deliquescent crystalline food ingredients (including glucose and citric acid) are capable of forming crystal hydrate structures. The propensity of such crystals to hydrate/dehydrate or deliquesce is dependent on the environmental temperature and relative humidity (RH). As an anhydrous crystal converts to a crystal hydrate, water molecules internalize into the crystal structure resulting in different physical properties. Deliquescence is a solid-to-solution phase transformation. RH-temperature phase diagrams of the food ingredients alpha-d-glucose and citric acid, along with sodium sulfate, were produced using established and newly developed methods. Each phase diagram included hydrate and anhydrate deliquescence boundaries, the anhydrate-hydrate phase boundary, and the peritectic temperature (above which the hydrate was no longer stable). This is the first report of RH-temperature phase diagrams of glucose and citric acid, information which is beneficial for selecting storage and processing conditions to promote or avoid hydrate formation or loss and/or deliquescence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Phase diagram of a reentrant gel of patchy particles

    NASA Astrophysics Data System (ADS)

    Roldán-Vargas, Sándalo; Smallenburg, Frank; Kob, Walter; Sciortino, Francesco

    2013-12-01

    We study the phase diagram of a binary mixture of patchy particles which has been designed to form a reversible gel. For this we perform Monte Carlo and molecular dynamics simulations to investigate the thermodynamics of such a system and compare our numerical results with predictions based on the analytical parameter-free Wertheim theory. We explore a wide range of the temperature-density-composition space that defines the three-dimensional phase diagram of the system. As a result, we delimit the region of thermodynamic stability of the fluid. We find that for a large region of the phase diagram the Wertheim theory is able to give a quantitative description of the system. For higher densities, our simulations show that the system is crystallizing into a BCC structure. Finally, we study the relaxation dynamics of the system by means of the density and temperature dependences of the diffusion coefficient. We show that there exists a density range where the system passes reversibly from a gel to a fluid upon both heating and cooling, encountering neither demixing nor phase separation.

  8. A composite phase diagram of structure H hydrates using Schreinemakers' geometric approach

    USGS Publications Warehouse

    Mehta, A.P.; Makogon, T.Y.; Burruss, R.C.; Wendlandt, R.F.; Sloan, E.D.

    1996-01-01

    A composite phase diagram is presented for Structure H (sH) clathrate hydrates. In this work, we derived the reactions occurring among the various phases along each four-phase (Ice/Liquid water, liquid hydrocarbon, vapor, and hydrate) equilibrium line. A powerful method (though seldom used in chemical engineering) for multicomponent equilibria developed by Schreinemakers is applied to determine the relative location of all quadruple (four-phase) lines emanating from three quintuple (five-phase) points. Experimental evidence validating the approximate phase diagram is also provided. The use of Schreinemakers' rules for the development of the phase diagram is novel for hydrates, but these rules may be extended to resolve the phase space of other more complex systems commonly encountered in chemical engineering.

  9. On the state of methane and nitrogen ice on Pluto and Triton: Implications of the binary phase diagram

    NASA Astrophysics Data System (ADS)

    Trafton, Laurence M.

    2015-01-01

    Compositional analyses of Pluto's surface ice in the literature typically include large areas on the body where CH4 and other volatiles are segregated in the pure form from the solid solution N2:CH4 in which CH4 is diluted. However, the existence of continent-size areas of pure CH4 are in conflict with both of the alternative models that successfully explain the enhancement of CH4 in Pluto's atmosphere, the Detailed Balancing thermal equilibrium model and the Hot Methane Patch model. Pluto's spectrum includes an apparently unshifted CH4 component while Triton's does not, and 93% of the concentration range of the binary phase diagram at 38 K shows that these species exist as a mixture of two saturated solid solution phases. Recognizing this, we propose that both of these saturated phases are present on Pluto and the CH4-rich phase of the mixture, CH4:N2, is the source of the relatively unshifted CH4 spectrum attributed to pure CH4. We also propose that CH4 is less abundant in Triton's ice to the point where either the ice is not saturated or the saturated CH4:N2 phase has not been detected. In this scenario, the partial vapor pressures do not change when the relative proportions of these saturated phases are varied in the mixture. Thus, the partial vapor pressures are independent of N2-CH4 concentrations if both saturated phases are present. Accordingly, the longitudinal and seasonal variations of CH4 and N2 features in Pluto's spectrum would be attributed to spatial variations in the relative proportions of these species. This may occur during volatile transport in the sublimation wind through extensive influences. The lower, unsaturated, values of the mole fraction of CH4 in the ice reported by Owen et al. (Owen et al. [1993]. Science 261, 745-748) and Cruikshank et al. (Cruikshank, D.P., Rush, T.L., Owen, T.C., Quirico, E., de Bergh, C. [1998]. The surface compositions of Triton, Pluto, and Charon. In: Solar System Ices. Astrophysics and Space Science Library

  10. Determination of the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system and a comparison between two theoretical methods for synthetic phase diagrams

    PubMed Central

    Han, Xu; Liu, Yang; Critser, John K.

    2010-01-01

    Characterization of the thermodynamic properties of multi-solute aqueous solutions is of critical importance for biological and biochemical research. For example, the phase diagrams of aqueous systems, containing salts, saccharides, and plasma membrane permeating solutes, are indispensible in the field of cryobiology and pharmacology. However, only a few ternary phase diagrams are currently available for these systems. In this study, an auto-sampler differential scanning calorimeter (DSC) was used to determine the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system. To improve the accuracy of melting point measurement, a “mass redemption” method was also applied for the DSC technique. Base on the analyses of these experimental data, a comparison was made between the two practical approaches to generate phase diagrams of multi-solute solutions from those of single-solute solutions: the summation of cubic polynomial melting point equations versus the use of osmotic virial equations with cross coefficients. The calculated values of the model standard deviations suggested that both methods are satisfactory for characterizing this quaternary system. PMID:20447385

  11. Optimization of binary thermodynamic and phase diagram data

    NASA Astrophysics Data System (ADS)

    Bale, Christopher W.; Pelton, A. D.

    1983-03-01

    An optimization technique based upon least squares regression is presented to permit the simultaneous analysis of diverse experimental binary thermodynamic and phase diagram data. Coefficients of polynomial expansions for the enthalpy and excess entropy of binary solutions are obtained which can subsequently be used to calculate the thermodynamic properties or the phase diagram. In an interactive computer-assisted analysis employing this technique, one can critically analyze a large number of diverse data in a binary system rapidly, in a manner which is fully self-consistent thermodynamically. Examples of applications to the Bi-Zn, Cd-Pb, PbCl2-KCl, LiCl-FeCl2, and Au-Ni binary systems are given.

  12. Physical properties and phase diagram of the magnetic compound Cr0.26NbS1.74 at high pressures

    NASA Astrophysics Data System (ADS)

    Sidorov, V. A.; Petrova, A. E.; Pinyagin, A. N.; Kolesnikov, N. N.; Khasanov, S. S.; Stishov, S. M.

    2016-06-01

    We report the results of a study of magnetic, electrical, and thermodynamic properties of a single crystal of the magnetic compound Cr0.26NbS1.74 at ambient and high pressures. Results of the measurements of magnetization as a function of temperature reveal the existence of a ferromagnetic phase transition in Cr0.26NbS1.74. The effective number of Bohr magnetons per Cr atom in the paramagnetic phase of Cr0.26NbS1.74 is µeff ≈ 4.6µB, which matches the literature data for Cr1/3NbS2. Similarly, the effective number of Bohr magnetons per Cr atom in the saturation fields is rather close in both substances and corresponds to the number of magnetons in the Cr+3 ion. In contrast to the stoichiometric compound, Cr0.26NbS1.74 does not show a metamagnetic transition, that indicates the lack of a magnetic soliton. A high-pressure phase diagram of the compound reveals the quantum phase transition at T = 0 and P ≈ 4.2 GPa and the triple point situated at T ≈ 20 K and P ≈ 4.2 GPa.

  13. Consecutive magnetic phase diagram of UCoGe-URhGe-UIrGe system

    NASA Astrophysics Data System (ADS)

    Pospíšil, Jiří; Haga, Yoshinori; Miyake, Atsushi; Kambe, Shinsaku; Tateiwa, Naoyuki; Tokunaga, Yo; Honda, Fuminori; Nakamura, Ai; Homma, Yoshiya; Tokunaga, Masashi; Aoki, Dai; Yamamoto, Etsuji

    2018-05-01

    We prepared single crystals in UCo1-xRhxGe and UIr1-xRhxGe systems to establish a complex dU-U-T (dU-U is the shortest interatomic uranium distance and T is temperature) magnetic phase diagram. This recognized a characteristic maximum in magnetic susceptibility at temperature Tmax along the b axis as an important parameter. Three magnetically ordered regions can be distinguished within this scope; first a ferromagnetic region with Curie temperature

  14. The phase diagrams of the ± K model on the Bethe lattice

    NASA Astrophysics Data System (ADS)

    Albayrak, Erhan

    2015-07-01

    The biquadratic exchange interaction is randomized in a bimodal form with probabilities (p) and (1 - p) for the cases with K > 0 (attractive case) and K < 0 (repulsive case), respectively, and its effects on the phase diagrams of the spin-1 Blume-Emery-Griffiths model are studied on the Bethe lattice by using the recursion relations. It was found that the critical behaviors of the model change drastically.

  15. Phase diagram and equation of state of praseodymium at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Baer, Bruce J.; Cynn, Hyunchae; Iota, Valentin; Yoo, Choong-Shik; Shen, Guoyin

    2003-04-01

    The phase diagram for praseodymium (Pr) has been determined for pressures between 5 and 60 GPa and temperatures between 295 and 830 K using both in situ energy- and angle-dispersive x-ray diffraction with externally heated diamond-anvil cells. Mineral oil and argon were alternatively used as pressure media in order to compare conflicting results in the literature and to ensure the validity of mineral oil as an inert medium. Evidence for the presence of an, as yet, unidentified phase (denoted Pr-VI) above 675 K has been observed, whereas no compelling evidence has been observed for the existence of the recently reported monoclinic phase (Pr-V). The new constraints of the phase diagram, therefore, suggest that the phase transitions occur as Pr-I(dhcp)→Pr-II(fcc)→Pr-VI→Pr-IV(α-U) above approximately 700 K. Additionally, there is a Pr-III(distorted fcc), Pr-VI, and Pr-IV triple point at approximately 675 K and 23.8 GPa. Temperature-dependent equations of state have been determined, allowing the temperature-dependent volume collapse at the transition between Pr-III and Pr-IV to be calculated. We report a linear decrease of the volume collapse along the Pr-III to Pr-IV boundary with temperature, ΔV/V (%)=16.235-0.0156[T(K)]; the extrapolation indicates that the volume collapse should vanish well below the melting point. With the temperature-dependent equation of state data and new phase diagram we demonstrate that the volume collapse can be accounted for by a change in the multiplicity of Pr atoms as the f electrons go from localized to itinerant.

  16. Comparison of actual vs synthesized ternary phase diagrams for solutes of cryobiological interest☆

    PubMed Central

    Kleinhans, F.W.; Mazur, Peter

    2009-01-01

    Phase diagrams are of great utility in cryobiology, especially those consisting of a cryoprotective agent (CPA) dissolved in a physiological salt solution. These ternary phase diagrams consist of plots of the freezing points of increasing concentrations of solutions of cryoprotective agents (CPA) plus NaCl. Because they are time-consuming to generate, ternary diagrams are only available for a small number of CPA's. We wanted to determine whether accurate ternary phase diagrams could be synthesized by adding together the freezing point depressions of binary solutions of CPA/water and NaCl/water which match the corresponding solute molality concentrations in the ternary solution. We begin with a low concentration of a solution of CPA + salt of given R (CPA/salt) weight ratio. Ice formation in that solution is mimicked by withdrawing water from it which increases the concentrations of both the CPA and the NaCl. We compute the individual solute concentrations, determine their freezing points from published binary phase diagrams, and sum the freezing points. These yield the synthesized ternary phase diagram for a solution of given R. They were compared with published experimental ternary phase diagrams for glycerol, dimethyl sulfoxide (DMSO), sucrose, and ethylene glycol (EG) plus NaCl in water. For the first three, the synthesized and experimental phase diagrams agreed closely, with some divergence occurring as wt % concentrations exceeded 30% for DMSO and 55% for glycerol and sucrose. However, in the case of EG there were substantial differences over nearly the entire range of concentrations which we attribute to systematic errors in the experimental EG data. New experimental EG work will be required to resolve this issue. PMID:17350609

  17. Comparison of actual vs. synthesized ternary phase diagrams for solutes of cryobiological interest.

    PubMed

    Kleinhans, F W; Mazur, Peter

    2007-04-01

    Phase diagrams are of great utility in cryobiology, especially, those consisting of a cryoprotective agent (CPA) dissolved in a physiological salt solution. These ternary phase diagrams consist of plots of the freezing points of increasing concentrations of solutions of cryoprotective agents (CPA) plus NaCl. Because they are time-consuming to generate, ternary diagrams are only available for a small number of CPAs. We wanted to determine whether accurate ternary phase diagrams could be synthesized by adding together the freezing point depressions of binary solutions of CPA/water and NaCl/water which match the corresponding solute molality concentrations in the ternary solution. We begin with a low concentration of a solution of CPA+salt of given R (CPA/salt) weight ratio. Ice formation in that solution is mimicked by withdrawing water from it which increases the concentrations of both the CPA and the NaCl. We compute the individual solute concentrations, determine their freezing points from published binary phase diagrams, and sum the freezing points. These yield the synthesized ternary phase diagram for a solution of given R. They were compared with published experimental ternary phase diagrams for glycerol, dimethyl sulfoxide (DMSO), sucrose, and ethylene glycol (EG) plus NaCl in water. For the first three, the synthesized and experimental phase diagrams agreed closely, with some divergence occurring as wt% concentrations exceeded 30% for DMSO and 55% for glycerol, and sucrose. However, in the case of EG there were substantial differences over nearly the entire range of concentrations which we attribute to systematic errors in the experimental EG data. New experimental EG work will be required to resolve this issue.

  18. Pourbaix ("E"-pH-M) Diagrams in Three Dimensions

    ERIC Educational Resources Information Center

    Pesterfield, Lester L.; Maddox, Jeremy B.; Crocker, Michael S.; Schweitzer, George K.

    2012-01-01

    "E"-pH (Pourbaix) diagrams provide an important graphical link between the thermodynamic calculations of potential, pH, equilibrium constant, concentration, and changes in Gibbs energy and the experimentally observed behavior of species in aqueous solutions. The utility of "E"-pH diagrams is extended with the introduction of an additional…

  19. Fog Machines, Vapors, and Phase Diagrams

    ERIC Educational Resources Information Center

    Vitz, Ed

    2008-01-01

    A series of demonstrations is described that elucidate the operation of commercial fog machines by using common laboratory equipment and supplies. The formation of fogs, or "mixing clouds", is discussed in terms of the phase diagram for water and other chemical principles. The demonstrations can be adapted for presentation suitable for elementary…

  20. The Binary Temperature-Composition Phase Diagram

    ERIC Educational Resources Information Center

    Sanders, Philip C.; Reeves, James H.; Messina, Michael

    2006-01-01

    The equations for the liquid and gas lines in the binary temperature-composition phase diagram are derived by approximating that delta(H)[subscript vap] of the two liquids are equal. It is shown that within this approximation, the resulting equations are not too difficult to present in an undergraduate physical chemistry lecture.

  1. Phase diagram for inertial granular flows.

    PubMed

    DeGiuli, E; McElwaine, J N; Wyart, M

    2016-07-01

    Flows of hard granular materials depend strongly on the interparticle friction coefficient μ_{p} and on the inertial number I, which characterizes proximity to the jamming transition where flow stops. Guided by numerical simulations, we derive the phase diagram of dense inertial flow of spherical particles, finding three regimes for 10^{-4}≲I≲10^{-1}: frictionless, frictional sliding, and rolling. These are distinguished by the dominant means of energy dissipation, changing from collisional to sliding friction, and back to collisional, as μ_{p} increases from zero at constant I. The three regimes differ in their kinetics and rheology; in particular, the velocity fluctuations and the stress ratio both display nonmonotonic behavior with μ_{p}, corresponding to transitions between the three regimes of flow. We rationalize the phase boundaries between these regimes, show that energy balance yields scaling relations between microscopic properties in each of them, and derive the strain scale at which particles lose memory of their velocity. For the frictional sliding regime most relevant experimentally, we find for I≥10^{-2.5} that the growth of the macroscopic friction μ(I) with I is induced by an increase of collisional dissipation. This implies in that range that μ(I)-μ(0)∼I^{1-2b}, where b≈0.2 is an exponent that characterizes both the dimensionless velocity fluctuations L∼I^{-b} and the density of sliding contacts χ∼I^{b}.

  2. Critical point analysis of phase envelope diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soetikno, Darmadi; Siagian, Ucok W. R.; Kusdiantara, Rudy, E-mail: rkusdiantara@s.itb.ac.id

    2014-03-24

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile,more » dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.« less

  3. Using a Spreadsheet To Explore Melting, Dissolving and Phase Diagrams.

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2002-01-01

    Compares phase diagrams relating to the solubilities and melting points of various substances in textbooks with those generated by a spreadsheet using data from the literature. Argues that differences between the diagrams give rise to new chemical insights. (Author/MM)

  4. Complete phase diagram of rare-earth nickelates from first-principles

    NASA Astrophysics Data System (ADS)

    Varignon, Julien; Grisolia, Mathieu N.; Íñiguez, Jorge; Barthélémy, Agnès; Bibes, Manuel

    2017-12-01

    The structural, electronic and magnetic properties of AMO3 perovskite oxides, where M is a 3d transition metal, are highly sensitive to the geometry of the bonds between the metal-d and oxygen-p ions (through octahedra rotations and distortions) and to their level of covalence. This is particularly true in rare-earth nickelates RNiO3 that display a metal-insulator transition with complex spin orders tunable by the rare-earth size, and are on the border line between dominantly ionic (lighter elements) and covalent characters (heavier elements). Accordingly, computing their ground state is challenging and a complete theoretical description of their rich phase diagram is still missing. Here, using first-principles simulations, we successfully describe the electronic and magnetic experimental ground state of nickelates. We show that the insulating phase is characterized by a split of the electronic states of the two Ni sites (i.e., resembling low-spin 4+ and high-spin 2+) with a concomitant shift of the oxygen-2p orbitals toward the depleted Ni cations. Therefore, from the point of view of the charge, the two Ni sites appear nearly identical whereas they are in fact distinct. Performing such calculations for several nickelates, we built a theoretical phase diagram that reproduces all their key features, namely a systematic dependence of the metal-insulator transition with the rare-earth size and the crossover between a second to first order transition for R = Pr and Nd. Finally, our results hint at strategies to control the electronic and magnetic phases of perovskite oxides by fine tuning of the level of covalence.

  5. Urea-temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding

    PubMed Central

    Tischer, Alexander; Auton, Matthew

    2013-01-01

    We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea–temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea–temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of and that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. PMID:23813497

  6. Molybdenum-titanium phase diagram evaluated from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Barzilai, Shmuel; Toher, Cormac; Curtarolo, Stefano; Levy, Ohad

    2017-07-01

    The design of next generation β -type titanium implants requires detailed knowledge of the relevant stable and metastable phases at temperatures where metallurgical heat treatments can be performed. Recently, a standard specification for surgical implant applications was established for Mo-Ti alloys. However, the thermodynamic properties of this binary system are not well known and two conflicting descriptions of the β -phase stability have been presented in the literature. In this study, we use ab initio calculations to investigate the Mo-Ti phase diagram. These calculations predict that the β phase is stable over a wide concentration range, in qualitative agreement with one of the reported phase diagrams. In addition, they predict stoichiometric compounds, stable at temperatures below 300 ∘C , which have not yet been detected by experiments. The resulting solvus, which defines the transition to the β -phase solid solution, therefore occurs at lower temperatures and is more complex than previously anticipated.

  7. Low temperature thermodynamic investigation of the phase diagram of Sr3Ru2O7

    NASA Astrophysics Data System (ADS)

    Sun, D.; Rost, A. W.; Perry, R. S.; Mackenzie, A. P.; Brando, M.

    2018-03-01

    We studied the phase diagram of Sr3Ru2O7 by means of heat capacity and magnetocaloric effect measurements at temperatures as low as 0.06 K and fields up to 12 T. We confirm the presence of a new quantum critical point at 7.5 T which is characterized by a strong non-Fermi-liquid behavior of the electronic specific heat coefficient Δ C /T ˜-logT over more than a decade in temperature, placing strong constraints on theories of its criticality. In particular logarithmic corrections are found when the dimension d is equal to the dynamic critical exponent z , in contrast to the conclusion of a two-dimensional metamagnetic quantum critical end point, recently proposed. Moreover, we achieved a clear determination of the new second thermodynamic phase adjoining the first one at lower temperatures. Its thermodynamic features differ significantly from those of the dominant phase and characteristics expected of classical equilibrium phase transitions are not observed, indicating fundamental differences in the phase formation.

  8. Monte Carlo modeling the phase diagram of magnets with the Dzyaloshinskii - Moriya interaction

    NASA Astrophysics Data System (ADS)

    Belemuk, A. M.; Stishov, S. M.

    2017-11-01

    We use classical Monte Carlo calculations to model the high-pressure behavior of the phase transition in the helical magnets. We vary values of the exchange interaction constant J and the Dzyaloshinskii-Moriya interaction constant D, which is equivalent to changing spin-spin distances, as occurs in real systems under pressure. The system under study is self-similar at D / J = constant , and its properties are defined by the single variable J / T , where T is temperature. The existence of the first order phase transition critically depends on the ratio D / J . A variation of J strongly affects the phase transition temperature and width of the fluctuation region (the ;hump;) as follows from the system self-similarity. The high-pressure behavior of the spin system depends on the evolution of the interaction constants J and D on compression. Our calculations are relevant to the high pressure phase diagrams of helical magnets MnSi and Cu2OSeO3.

  9. Kinetic Phase Diagrams of Ternary Al-Cu-Li System during Rapid Solidification: A Phase-Field Study

    PubMed Central

    Yang, Xiong; Zhang, Lijun; Sobolev, Sergey; Du, Yong

    2018-01-01

    Kinetic phase diagrams in technical alloys at different solidification velocities during rapid solidification are of great importance for guiding the novel alloy preparation, but are usually absent due to extreme difficulty in performing experimental measurements. In this paper, a phase-field model with finite interface dissipation was employed to construct kinetic phase diagrams in the ternary Al-Cu-Li system for the first time. The time-elimination relaxation scheme was utilized. The solute trapping phenomenon during rapid solidification could be nicely described by the phase-field simulation, and the results obtained from the experiment measurement and/or the theoretical model were also well reproduced. Based on the predicted kinetic phase diagrams, it was found that with the increase of interface moving velocity and/or temperature, the gap between the liquidus and solidus gradually reduces, which illustrates the effect of solute trapping and tendency of diffusionless solidification. PMID:29419753

  10. Phase diagram and quench dynamics of the cluster-XY spin chain

    NASA Astrophysics Data System (ADS)

    Montes, Sebastián; Hamma, Alioscia

    2012-08-01

    We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.

  11. Phase diagram and quench dynamics of the cluster-XY spin chain.

    PubMed

    Montes, Sebastián; Hamma, Alioscia

    2012-08-01

    We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.

  12. Analysis of the heat capacity for pure CH4 and CH4/CCl4 on graphite near the melting point and calculation of the T-X phase diagram for (CH3)CCl3 + CCl4

    NASA Astrophysics Data System (ADS)

    Yurtseven, Hamit; Yılmaz, Aygül

    2016-06-01

    We study the temperature dependence of the heat capacity Cp for the pure CH4 and the coadsorbed CH4/CCl4 on graphite near the melting point. The heat capacity peaks are analyzed using the experimental data from the literature by means of the power-law formula. The critical exponents for the heat capacity are deduced below and above the melting point for CH4 (Tm = 104.8 K) and CH4/CCl4 (Tm = 99.2 K). Our exponent values are larger as compared with the predicted values of some theoretical models exhibiting second order transition. Our analyses indicate that the pure methane shows a nearly second order (weak discontinuity in the heat capacity peak), whereas the transition in coadsorbed CH4/CCl4 is of first order (apparent discontinuity in Cp). We also study the T - X phase diagram of a two-component system of CH3CCl3+CCl4 using the Landau phenomenological model. Phase lines of the R+L (rhombohedral+liquid) and FCC+L (face-centred cubic + liquid) are calculated using the observed T - X phase diagram of this binary mixture. Our results show that the Landau mean field theory describes the observed behavior of CH3CCl3+CCl4 adequately. From the calculated T - X phase diagram, critical behavior of some thermodynamic quantities can be predicted at various temperatures and concentrations (CCl4) for a binary mixture of CH3CCl3+CCl4.

  13. Quantum corrections for the phase diagram of systems with competing order.

    PubMed

    Silva, N L; Continentino, Mucio A; Barci, Daniel G

    2018-06-06

    We use the effective potential method of quantum field theory to obtain the quantum corrections to the zero temperature phase diagram of systems with competing order parameters. We are particularly interested in two different scenarios: regions of the phase diagram where there is a bicritical point, at which both phases vanish continuously, and the case where both phases coexist homogeneously. We consider different types of couplings between the order parameters, including a bilinear one. This kind of coupling breaks time-reversal symmetry and it is only allowed if both order parameters transform according to the same irreducible representation. This occurs in many physical systems of actual interest like competing spin density waves, different types of orbital antiferromagnetism, elastic instabilities of crystal lattices, vortices in a multigap SC and also applies to describe the unusual magnetism of the heavy fermion compound URu 2 Si 2 . Our results show that quantum corrections have an important effect on the phase diagram of systems with competing orders.

  14. Quantum corrections for the phase diagram of systems with competing order

    NASA Astrophysics Data System (ADS)

    Silva, N. L., Jr.; Continentino, Mucio A.; Barci, Daniel G.

    2018-06-01

    We use the effective potential method of quantum field theory to obtain the quantum corrections to the zero temperature phase diagram of systems with competing order parameters. We are particularly interested in two different scenarios: regions of the phase diagram where there is a bicritical point, at which both phases vanish continuously, and the case where both phases coexist homogeneously. We consider different types of couplings between the order parameters, including a bilinear one. This kind of coupling breaks time-reversal symmetry and it is only allowed if both order parameters transform according to the same irreducible representation. This occurs in many physical systems of actual interest like competing spin density waves, different types of orbital antiferromagnetism, elastic instabilities of crystal lattices, vortices in a multigap SC and also applies to describe the unusual magnetism of the heavy fermion compound URu2Si2. Our results show that quantum corrections have an important effect on the phase diagram of systems with competing orders.

  15. Mapping Isobaric Aging onto the Equilibrium Phase Diagram.

    PubMed

    Niss, Kristine

    2017-09-15

    The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case-challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single structural parameter, referred to as an effective temperature.

  16. Structural and magnetic phase diagram of CrAs and its relationship with pressure-induced superconductivity

    DOE PAGES

    Shen, Yao; Wang, Qisi; Hao, Yiqing; ...

    2016-02-01

    In this paper, we use neutron diffraction to study the structure and magnetic phase diagram of the newly discovered pressure-induced superconductor CrAs. Unlike most magnetic unconventional superconductors where the magnetic moment direction barely changes upon doping, here we show that CrAs exhibits a spin reorientation from the ab plane to the ac plane, along with an abrupt drop of the magnetic propagation vector at a critical pressure (P c ≈ 0.6 GPa). This magnetic phase transition, accompanied by a lattice anomaly, coincides with the emergence of bulk superconductivity. With further increasing pressure, the magnetic order completely disappears near the optimalmore » T c regime (P ≈ 0.94 GPa). Moreover, the Cr magnetic moments tend to be aligned antiparallel between nearest neighbors with increasing pressure toward the optimal superconductivity regime. Finally, our findings suggest that the noncollinear helimagnetic order is strongly coupled to structural and electronic degrees of freedom, and that the antiferromagnetic correlations between nearest neighbors might be essential for superconductivity.« less

  17. Phase diagram and magnetocaloric effects in aluminum doped MnNiGe alloys

    NASA Astrophysics Data System (ADS)

    Quetz, Abdiel; Samanta, Tapas; Dubenko, Igor; Kangas, Michael J.; Chan, Julia Y.; Stadler, Shane; Ali, Naushad

    2013-10-01

    The magnetocaloric and thermomagnetic properties of the MnNiGe1-xAlx system have been studied by temperature-dependent x-ray diffraction, differential scanning calorimetry (DSC), and magnetization measurements. The partial substitution of Al for Ge in MnNiGe1-xAlx results in a first order magnetostructural transition (MST) from a hexagonal ferromagnetic to an orthorhombic antiferromagnetic phase at 186 K (for x = 0.09). A large magnetic entropy change of ΔSM = -17.6 J/kg K for ΔH = 5 T was observed in the vicinity of TM = 186 K for x = 0.09. The value is comparable to those of giant magnetocaloric materials such as Gd5Si2Ge2, MnFeP0.45As0.55, and Ni50Mn37Sn13. The values of the latent heat (L = 6.6 J/g) and corresponding total entropy changes (ΔST = 35 J/kg K) have been evaluated for the MST using DSC measurements. Large negative values of ΔSM of -5.8 and -4.8 J/kg K for ΔH = 5 T in the vicinity of TC were observed for x = 0.09 and 0.085, respectively. A concentration-dependent phase diagram of transition temperatures (magnetic, structural, and magnetostructural) has been generated using magnetic, XRD, and DSC data. The role of magnetic and structural changes on transition temperatures is discussed.

  18. The Ni-rich part of the Al–Ge–Ni phase diagram

    PubMed Central

    Jandl, Isabella; Reichmann, Thomas L.; Richter, Klaus W.

    2013-01-01

    The Ni-rich part of the ternary system Al–Ge–Ni (xNi > 50 at.%) was investigated by means of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and scanning electron microscopy (SEM). The two isothermal sections at 550 °C and 700 °C were determined. Within these two sections a new ternary phase, designated as τ4, AlyGe9−yNi13±x (hP66, Ga3Ge6Ni13-type) was detected and investigated by single crystal X-ray diffraction. Another ternary low temperature phase, τ5, was found only in the isothermal section at 550 °C around the composition AlGeNi4. This compound was found to crystallise in the Co2Si type structure (oP12, Pnma). The structure was identified by Rietveld refinement of powder data. The NiAs type (B8) phase based on binary Ge3Ni5 revealed an extended solid solubility of Al and the two isotypic compounds AlNi3 and GeNi3 form a complete solid solution. Based on DTA results, six vertical sections at 55, 60, 70, 75 and 80 at.% Ni and at a constant Al:Ni ratio of 1:3 were constructed. Furthermore, the liquidus surface projection and the reaction scheme (Scheil diagram) were completed by combining our results with previous results from the Ni-poor part of the phase diagram. Six invariant ternary reactions were identified in the Ni-rich part of the system. PMID:27087754

  19. Molecular Simulation of the Phase Diagram of Methane Hydrate: Free Energy Calculations, Direct Coexistence Method, and Hyperparallel Tempering.

    PubMed

    Jin, Dongliang; Coasne, Benoit

    2017-10-24

    Different molecular simulation strategies are used to assess the stability of methane hydrate under various temperature and pressure conditions. First, using two water molecular models, free energy calculations consisting of the Einstein molecule approach in combination with semigrand Monte Carlo simulations are used to determine the pressure-temperature phase diagram of methane hydrate. With these calculations, we also estimate the chemical potentials of water and methane and methane occupancy at coexistence. Second, we also consider two other advanced molecular simulation techniques that allow probing the phase diagram of methane hydrate: the direct coexistence method in the Grand Canonical ensemble and the hyperparallel tempering Monte Carlo method. These two direct techniques are found to provide stability conditions that are consistent with the pressure-temperature phase diagram obtained using rigorous free energy calculations. The phase diagram obtained in this work, which is found to be consistent with previous simulation studies, is close to its experimental counterpart provided the TIP4P/Ice model is used to describe the water molecule.

  20. The liquid⟷amorphous transition and the high pressure phase diagram of carbon

    NASA Astrophysics Data System (ADS)

    Robinson, David R.; Wilson, Mark

    2013-04-01

    The phase diagram of carbon is mapped to high pressure using a computationally-tractable potential model. The use of a relatively simple (Tersoff-II) potential model allows a large range of phase space to be explored. The coexistence (melting) curve for the diamond crystal/liquid dyad is mapped directly by modelling the solid/liquid interfaces. The melting curve is found to be re-entrant and belongs to a conformal class of diamond/liquid coexistence curves. On supercooling the liquid a phase transition to a tetrahedral amorphous form (ta-C) is observed. The liquid ⟷ amorphous coexistence curve is mapped onto the pT plane and is found to also be re-entrant. The entropy changes for both melting and the amorphous ⟶ liquid transitions are obtained from the respective coexistence curves and the associated changes in molar volume. The structural change on amorphization is analysed at different points on the coexistence curve including for transitions that are both isochoric and isocoordinate (no change in nearest-neighbour coordination number). The conformal nature of the melting curve is highlighted with respect to the known behaviour of Si. The relationship of the observed liquid/amorphous coexistence curve to the Si low- and high-density amorphous (LDA/HDA) transition is discussed.

  1. Complete phase diagram of DNA unzipping: eye, Y fork, and triple point.

    PubMed

    Kapri, Rajeev; Bhattacharjee, Somendra M; Seno, Flavio

    2004-12-10

    We study the unzipping of double stranded DNA by applying a pulling force at a fraction s (0< or =s < or =1) from the anchored end. From exact analytical and numerical results, the complete phase diagram is presented. The phase diagram shows a strong ensemble dependence for various values of s. In addition, we show the existence of an eye phase and a triple point.

  2. Application Of Empirical Phase Diagrams For Multidimensional Data Visualization Of High Throughput Microbatch Crystallization Experiments.

    PubMed

    Klijn, Marieke E; Hubbuch, Jürgen

    2018-04-27

    Protein phase diagrams are a tool to investigate cause and consequence of solution conditions on protein phase behavior. The effects are scored according to aggregation morphologies such as crystals or amorphous precipitates. Solution conditions affect morphological features, such as crystal size, as well as kinetic features, such as crystal growth time. Common used data visualization techniques include individual line graphs or symbols-based phase diagrams. These techniques have limitations in terms of handling large datasets, comprehensiveness or completeness. To eliminate these limitations, morphological and kinetic features obtained from crystallization images generated with high throughput microbatch experiments have been visualized with radar charts in combination with the empirical phase diagram (EPD) method. Morphological features (crystal size, shape, and number, as well as precipitate size) and kinetic features (crystal and precipitate onset and growth time) are extracted for 768 solutions with varying chicken egg white lysozyme concentration, salt type, ionic strength and pH. Image-based aggregation morphology and kinetic features were compiled into a single and easily interpretable figure, thereby showing that the EPD method can support high throughput crystallization experiments in its data amount as well as its data complexity. Copyright © 2018. Published by Elsevier Inc.

  3. On the bad metallicity and phase diagrams of Fe1+δX (X =Te, Se, S, solid solutions): an electrical resistivity study

    NASA Astrophysics Data System (ADS)

    El Massalami, M.; Deguchi, K.; Machida, T.; Takeya, H.; Takano, Y.

    2014-12-01

    Based on a systematic analysis of the thermal evolution of the resistivities of Fe-based chalcogenides Fe1+δTe1-xXx (X = Se, S), it is inferred that their often observed nonmetallic resistivities are related to a presence of two resistive channels: one is a high- temperature thermally-activated process while the other is a low-temperature log-in-T process. On lowering temperature, there are often two metal-to-nonmetall crossover events: one from the high-T thermally-activated nonmetallic regime into a metal-like phase and the other from the log-in-T regime into a second metal-like phase. Based on these events, together with the magnetic and superconducting transitions, a phase diagram is constructed for each series. We discuss the origin of both processes as well as the associated crossover events. We also discuss how these resistive processes are being influenced by pressure, intercalation, disorder, doping, or sample condition and, in turn, how these modifications are shaping the associated phase diagrams.

  4. The topological phase diagram of cimetidine: A case of overall monotropy.

    PubMed

    Céolin, R; Rietveld, I B

    2017-03-01

    Cimetidine is a histamine H 2 -receptor antagonist used against peptic ulcers. It is known to exhibit crystalline polymorphism. Forms A and D melt within 0.35 degrees from each other and the enthalpies of fusion are similar as well. The present paper demonstrates how to construct a pressure-temperature phase diagram with only calorimetric and volumetric data available. The phase diagram provides the stability domains and the phase equilibria for the phases A, D, the liquid and the vapor. Cimetidine is overall monotropic with form D the only stable solid phase. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  5. Magnetic-field-temperature phase diagram of alternating ferrimagnetic chains: Spin-wave theory from a fully polarized vacuum

    NASA Astrophysics Data System (ADS)

    da Silva, W. M.; Montenegro-Filho, R. R.

    2017-12-01

    Quantum critical (QC) phenomena can be accessed by studying quantum magnets under an applied magnetic field (B ). The QC points are located at the end points of magnetization plateaus and separate gapped and gapless phases. In one dimension, the low-energy excitations of the gapless phase form a Luttinger liquid (LL), and crossover lines bound insulating (plateau) and LL regimes, as well as the QC regime. Alternating ferrimagnetic chains have a spontaneous magnetization at T =0 and gapped excitations at zero field. Besides the plateau at the fully polarized (FP) magnetization, due to the gap there is another magnetization plateau at the ferrimagnetic (FRI) magnetization. We develop spin-wave theories to study the thermal properties of these chains under an applied magnetic field: one from the FRI classical state and another from the FP state, comparing their results with quantum Monte Carlo data. We deepen the theory from the FP state, obtaining the crossover lines in the T vs B low-T phase diagram. In particular, from local extreme points in the susceptibility and magnetization curves, we identify the crossover between an LL regime formed by excitations from the FRI state to another built from excitations of the FP state. These two LL regimes are bounded by an asymmetric domelike crossover line, as observed in the phase diagram of other quantum magnets under an applied magnetic field.

  6. Computer-Generated Phase Diagrams for Binary Mixtures.

    ERIC Educational Resources Information Center

    Jolls, Kenneth R.; And Others

    1983-01-01

    Computer programs that generate projections of thermodynamic phase surfaces through computer graphics were used to produce diagrams representing properties of water and steam and the pressure-volume-temperature behavior of most of the common equations of state. The program, program options emphasizing thermodynamic features of interest, and…

  7. The Cu-Li-Sn Phase Diagram: Isopleths, Liquidus Projection and Reaction Scheme

    PubMed Central

    Flandorfer, Hans

    2016-01-01

    The Cu-Li-Sn phase diagram was constructed based on XRD and DTA data of 60 different alloy compositions. Eight ternary phases and 14 binary solid phases form 44 invariant ternary reactions, which are illustrated by a Scheil-Schulz reaction scheme and a liquidus projection. Phase equilibria as a function of concentration and temperature are shown along nine isopleths. This report together with an earlier publication of our group provides for the first time comprehensive investigations of phase equilibria and respective phase diagrams. Most of the phase equilibria could be established based on our experimental results. Only in the Li-rich part where many binary and ternary compounds are present estimations had to be done which are all indicated by dashed lines. A stable ternary miscibility gap could be found which was predicted by modelling the liquid ternary phase in a recent work. The phase diagrams are a crucial input for material databases and thermodynamic optimizations regarding new anode materials for high-power Li-ion batteries. PMID:27788175

  8. Urea-temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding.

    PubMed

    Tischer, Alexander; Auton, Matthew

    2013-09-01

    We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea-temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea-temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of ΔH0 and ΔCP0 that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. © 2013 The Protein Society.

  9. Exploring the Nuclear Phase Diagram with Beam Energy Scans

    NASA Astrophysics Data System (ADS)

    Horvat, Stephen

    2017-04-01

    The nuclear phase diagram is mapped using beam energy scans of relativistic heavy-ion collisions. This mapping is possible because different collision energies develop along different trajectories through the phase diagram. High energy collisions will evolve though a crossover phase transition according to lattice QCD, but lower collision energies may traverse a first order phase transition. There are hints for this first order phase transition and its critical endpoint, but further measurements and theoretical guidance is needed. In addition to mapping the phase transition, beam energy scans allow us to see if we can turn off the signatures of deconfinement. If an observable is a real signature for the formation of the deconfined state called quark-gluon plasma, then it should turn off at sufficiently low collision energies. In this summary talk I will show the current state of the field using beam energy scan results from RHIC and SPS, I will show where precise theoretical guidance is needed for understanding recent measurements, and I will motivate the need for more data and new measurements from FAIR, NICA, RHIC, and the SPS.

  10. Broadband mixing of $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases in photonic heterostructures with a one-dimensional loss/gain bilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özgün, Ege; Serebryannikov, Andriy E.; Ozbay, Ekmel

    Combining loss and gain components in one photonic heterostructure opens a new route to efficient manipulation by radiation, transmission, absorption, and scattering of electromagnetic waves. Therefore, loss/gain structures enablingmore » $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues have extensively been studied in the last decade. In particular, translation from one phase to another, which occurs at the critical point in the two-channel structures with one-dimensional loss/gain components, is often associated with one-way transmission. In this report, broadband mixing of the $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues is theoretically demonstrated in heterostructures with four channels obtained by combining a one-dimensional loss/gain bilayer and one or two thin polarization-converting components (PCCs). The broadband phase mixing in the four-channel case is expected to yield advanced transmission and absorption regimes. Various configurations are analyzed, which are distinguished in symmetry properties and polarization conversion regime of PCCs. The conditions necessary for phase mixing are then discussed. The simplest two-component configurations with broadband mixing are found, as well as the more complex three-component configurations wherein symmetric and broken sets are not yet mixed and appear in the neighbouring frequency ranges. Peculiarities of eigenvalue behaviour are considered for different permittivity ranges of loss/gain medium, i.e., from epsilon-near-zero to high-epsilon regime.« less

  11. Broadband mixing of $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases in photonic heterostructures with a one-dimensional loss/gain bilayer

    DOE PAGES

    Özgün, Ege; Serebryannikov, Andriy E.; Ozbay, Ekmel; ...

    2017-11-14

    Combining loss and gain components in one photonic heterostructure opens a new route to efficient manipulation by radiation, transmission, absorption, and scattering of electromagnetic waves. Therefore, loss/gain structures enablingmore » $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues have extensively been studied in the last decade. In particular, translation from one phase to another, which occurs at the critical point in the two-channel structures with one-dimensional loss/gain components, is often associated with one-way transmission. In this report, broadband mixing of the $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues is theoretically demonstrated in heterostructures with four channels obtained by combining a one-dimensional loss/gain bilayer and one or two thin polarization-converting components (PCCs). The broadband phase mixing in the four-channel case is expected to yield advanced transmission and absorption regimes. Various configurations are analyzed, which are distinguished in symmetry properties and polarization conversion regime of PCCs. The conditions necessary for phase mixing are then discussed. The simplest two-component configurations with broadband mixing are found, as well as the more complex three-component configurations wherein symmetric and broken sets are not yet mixed and appear in the neighbouring frequency ranges. Peculiarities of eigenvalue behaviour are considered for different permittivity ranges of loss/gain medium, i.e., from epsilon-near-zero to high-epsilon regime.« less

  12. Phase diagram of Ba 2 NaOsO 6, a Mott insulator with strong spin orbit interactions

    NASA Astrophysics Data System (ADS)

    Liu, W.; Cong, R.; Garcia, E.; Reyes, A. P.; Lee, H. O.; Fisher, I. R.; Mitrović, V. F.

    2018-05-01

    We report 23Na nuclear magnetic resonance (NMR) measurements of the Mott insulator with strong spin-orbit interaction Ba2NaOsO6 as a function of temperature in different magnetic fields ranging from 7 T to 29 T. The measurements, intended to concurrently probe spin and orbital/lattice degrees of freedom, are an extension of our work at lower fields reported in Lu et al. (2017) [1]. We have identified clear quantitative NMR signatures that display the appearance of a canted ferromagnetic phase, which is preceded by local point symmetry breaking. We have compiled the field temperature phase diagram extending up to 29 T. We find that the broken local point symmetry phase extends over a wider temperature range as magnetic field increases.

  13. Fluctuations and the QCD Phase Diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Volker; Bzdak, Adam

    2016-07-01

    Here, we will discuss how the study of various fluctuation observables may be used to explore the phase diagram of the strong interaction. Furthermore, we will briefly summarize the present study of experimental and theoretical research in this area. We will then discuss various corrections and issues which need to be understood and applied for a meaningful comparison of experimental measurements with theoretical predictions.

  14. Measuring P-V-T Phase Behavior with a Variable Volume View Cell

    ERIC Educational Resources Information Center

    Hoffmann, Markus M.; Salter, Jason D.

    2004-01-01

    An experiment using a variable volume cell is presented where students actively control and directly observe the phase equilibrium inside the view cell. Measuring and exploring P-V-T phase behavior through dielectric constant measurements conveys the important concept that solvent behavior can be changed continuously in the sc fluid state.

  15. Global phase diagram of the spinless Falicov-Kimball model in d = 3 : renormalization-group theory

    NASA Astrophysics Data System (ADS)

    Sariyer, Ozan S.; Hinczewski, Michael; Berker, A. Nihat

    2011-03-01

    The global phase diagram of the spinless Falicov-Kimball model in d = 3 spatial dimensions is obtained by renormalization-group theory. This global phase diagram exhibits five distinct phases. Four of these phases are charge-ordered (CO) phases, in which the system forms two sublattices with different electron densities. The phase boundaries are second order, except for an intermediate interaction regime, where a first-order phase boundary between two CO phases occurs. The first-order phase boundary is delimited by special bicritical points. The cross-sections of the global phase diagram with respect to the chemical potentials of the localized and mobile electrons, at all representative interaction and hopping strengths, are calculated and exhibit three distinct topologies. The phase diagrams with respect to electron densities are also calculated. This research was supported by the Alexander von Humboldt Foundation, the Scientific and Technological Research Council of Turkey (TÜBITAK), and the Academy of Sciences of Turkey.

  16. Phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-12-01

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO-AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N2, N2O, and H2O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV' transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

  17. Phase Diagram of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-06-01

    Ammonium Nitrate (AN) has often been subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood - resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety, in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN, in different chemical environments, at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 15 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 673 K. The present study has been supported by the U.S. DHS under Award Number 2008-ST-061-ED0001.

  18. Identification of polymer stabilized blue-phase liquid crystal display by chromaticity diagram

    NASA Astrophysics Data System (ADS)

    Lan, Yi-Fen; Tsai, Cheng-Yeh; Wang, Ling-Yung; Ku, Po-Jen; Huang, Tai-Hsiang; Liu, Chu-Yu; Sugiura, Norio

    2012-04-01

    We reported an identification method of blue phase liquid crystal (BPLC) display status by using Commission International de l'Éclairage (CIE) chromaticity diagram. The BPLC was injected into in-plane-switch (IPS) cell, polymer stabilized (PS) by ultraviolet cured process and analyzed by luminance colorimeter. The results of CIE chromaticity diagram showed a remarkable turning point when polymer stabilized blue phase liquid crystal II (PSBPLC-II) formed in the IPS cell. A mechanism of CIE chromaticity diagram identify PSBPLC display status was proposed, and we believe this finding will be useful to application and production of PSBPLC display.

  19. Phase diagram of multiferroic KCu3As2O7(OD ) 3

    NASA Astrophysics Data System (ADS)

    Nilsen, Gøran J.; Simonet, Virginie; Colin, Claire V.; Okuma, Ryutaro; Okamoto, Yoshihiko; Tokunaga, Masashi; Hansen, Thomas C.; Khalyavin, Dmitry D.; Hiroi, Zenji

    2017-06-01

    The layered compound KCu3As2O7(OD ) 3 , comprising distorted kagome planes of S =1 /2 Cu2 + ions, is a recent addition to the family of type-II multiferroics. Previous zero-field neutron diffraction work has found two helically ordered regimes in KCu3As2O7(OD ) 3 , each showing a distinct coupling between the magnetic and ferroelectric order parameters. Here, we extend this work to magnetic fields up to 20 T using neutron powder diffraction, capacitance, polarization, and high-field magnetization measurements, hence determining the H -T phase diagram. We find metamagnetic transitions in both low-temperature phases around μ0Hc˜3.7 T, which neutron powder diffraction reveals to correspond to rotations of the helix plane away from the easy plane, as well as a small change in the propagation vector. Furthermore, we show that the sign of the ferroelectric polarization is reversible in a magnetic field, although no change is observed (or expected on the basis of the magnetic structure) due to the transition at 3.7 T. We finally justify the temperature dependence of the polarization in both zero-field ordered phases by a symmetry analysis of the free energy expansion, and attempt to account for the metamagnetic transition by adding anisotropic exchange interactions to our existing model for KCu3As2O7(OD ) 3 .

  20. Bilayer Ising system designed with half-integer spins: Magnetic hysteresis, compensation behaviors and phase diagrams

    NASA Astrophysics Data System (ADS)

    Kantar, Ersin

    2016-08-01

    In this paper, within the framework of the effective-field theory with correlation, mixed spin-1/2 and spin-3/2 bilayer system on a square lattice is studied. The characteristic behaviors for the magnetic hysteresis, compensation types and phase diagrams depending on effect of the surface and interface exchange parameters as well as crystal field are investigated. From the behavior of total magnetization as a function of the magnetic field and temperature, we obtain the single, double and triple hysteresis loops and the L-, Q-, P-, S-, and N-type compensation behaviors in the system. Moreover, we detect the more effective the J1 and crystal field parameters on the bilayer Ising model according to the behaviors of the phase diagrams.

  1. Manifestation of hopping conductivity and granularity within phase diagrams of LaO1-x F x BiS2, Sr1-x La x FBiS2 and related BiS2-based compounds

    NASA Astrophysics Data System (ADS)

    Arouca, R.; Silva Neto, M. B.; Chaves, C. M.; Nagao, M.; Watauchi, S.; Tanaka, I.; ElMassalami, M.

    2017-09-01

    Layered BiS 2 -based series, such as LaO 1-x F x BiS 2 and Sr 1-x La x FBiS 2 , offer ideal examples for studying normal and superconducting phase diagram of a solid solution that evolves from a nonmagnetic band-insulator parent. We constructed typical x-T phase diagrams of these systems based on events occurring in thermal evolution of their electrical resistivity, ρ(x, T) . Overall evolution of these diagrams can be rationalized in terms of (i) Mott-Efros-Shklovskii scenario which, within the semiconducting x regime (x_MIT = Mott metal-insulator transition), describes the doping influence on the thermally activated hopping conductivity. (ii) A granular metal (superconductor) scenario which, within x_MIT< x < x_solubility , describes the evolution of normal and superconducting properties in terms of conductance g, Coulomb charging energy E c and Josephson coupling J; their joint influence is usually captured within a g-\\frac{gE_c}{J}-T phase diagram. Based on analysis of the granular character of ρ(x, T) , we converted the x-T diagrams into projected g - T diagrams which, being fundamental, allow a better understanding of evolution of various granular-related properties (in particular the hallmarks of normal-state \\partialρ/\\partial T<0 feature and superconductor-insulator transition) and how such properties are influenced by x, pressure or heat treatment.

  2. Quantum vortex melting and phase diagram in the layered organic superconductor κ -(BEDT-TTF)2Cu(NCS ) 2

    NASA Astrophysics Data System (ADS)

    Uji, S.; Fujii, Y.; Sugiura, S.; Terashima, T.; Isono, T.; Yamada, J.

    2018-01-01

    Resistance and magnetic torque measurements have been performed to investigate vortex phases for a layered organic superconductor κ -(BEDT-TTF) 2Cu (NCS) 2 [BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene], which is modeled as stacks of Josephson junctions. At 25 mK, the out-of-plane resistivity increases at 0.6 T, has a step feature up to 4 T, and then increases again, whereas the in-plane resistivity monotonically increases above 4 T. The results show that both pancake vortices (PVs) and Josephson vortices (JVs) are in solid phases for μ0H <0.6 T, but only JVs are in a liquid phase for 0.6 <μ0H <4 T. For μ0H >4 T, both PVs and JVs are in liquid phases. These melting transitions are predominantly induced by quantum fluctuations (not by thermal fluctuations). In the magnetic torque curves, the irreversibility transition is clearly observed, roughly corresponding to the melting transition of the PVs but no anomaly is found at the JV melting transition. The detailed vortex phase diagram is determined in a wide temperature region.

  3. Solid/liquid phase diagram of the ammonium sulfate/glutaric acid/water system.

    PubMed

    Beyer, Keith D; Pearson, Christian S; Henningfield, Drew S

    2013-05-02

    We have studied the low temperature phase diagram and water activities of the ammonium sulfate/glutaric acid/water system using differential scanning calorimetry, infrared spectroscopy of thin films, and a new technique: differential scanning calorimetry-video microscopy. Using these techniques, we have determined that there is a temperature-dependent kinetic effect to the dissolution of glutaric acid in aqueous solution. We have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/glutaric acid phase boundary as well as the ternary eutectic composition and temperature. We have also modified our glutaric acid/water binary phase diagram previously published based on these new results. We compare our results for the ternary system to the predictions of the Extended AIM Aerosol Thermodynamics Model (E-AIM), and find good agreement for the ice melting points in the ice primary phase field of this system; however, significant differences were found with respect to phase boundaries, concentration and temperature of the ternary eutectic, and glutaric acid dissolution.

  4. Electron Number-Based Phase Diagram of Pr1 -xLaCex CuO4 -δ and Possible Absence of Disparity between Electron- and Hole-Doped Cuprate Phase Diagrams

    NASA Astrophysics Data System (ADS)

    Song, Dongjoon; Han, Garam; Kyung, Wonshik; Seo, Jeongjin; Cho, Soohyun; Kim, Beom Seo; Arita, Masashi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki; Yoshida, Y.; Eisaki, H.; Park, Seung Ryong; Kim, C.

    2017-03-01

    We performed annealing and angle resolved photoemission spectroscopy studies on electron-doped cuprate Pr1 -xLaCex CuO4 -δ (PLCCO). It is found that the optimal annealing condition is dependent on the Ce content x . The electron number (n ) is estimated from the experimentally obtained Fermi surface volume for x =0.10 , 0.15 and 0.18 samples. It clearly shows a significant and annealing dependent deviation from the nominal x . In addition, we observe that the pseudo-gap at hot spots is also closely correlated with n ; the pseudogap gradually closes as n increases. We established a new phase diagram of PLCCO as a function of n . Different from the x -based one, the new phase diagram shows similar antiferromagnetic and superconducting phases to those of hole doped ones. Our results raise a possibility for absence of disparity between the phase diagrams of electron- and hole-doped cuprates

  5. State diagram of magnetostatic coupling phase-locked spin-torque oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Mengwei; Wang, Longze; Wei, Dan, E-mail: weidan@mail.tsinghua.edu.cn

    2015-05-07

    The state diagram of magnetostatic coupling phase-locked spin torque oscillator (STO) with perpendicular reference layer and planar field generation layer (FGL) is studied by the macrospin model and the micromagnetic model. The state diagrams of current densities are calculated under various external fields. The simulation shows that there are two phase-lock current density regions. In the phase-locked STOs in low current region I, the spin configuration of FGL is uniform; in high current region II, the spin configuration of FGL is highly nonuniform. In addition, the results with different STOs separation L{sub s} are compared, and the coupling between twomore » STOs is largely decreased when L{sub s} is increased from 40 nm to 60 nm.« less

  6. Hydrodynamics of bacterial colonies: Phase diagrams

    NASA Astrophysics Data System (ADS)

    Lega, J.; Passot, T.

    2004-09-01

    We present numerical simulations of a recent hydrodynamic model describing the growth of bacterial colonies on agar plates. We show that this model is able to qualitatively reproduce experimentally observed phase diagrams, which relate a colony shape to the initial quantity of nutrients on the plate and the initial wetness of the agar. We also discuss the principal features resulting from the interplay between hydrodynamic motions and colony growth, as described by our model.

  7. Dimensionality-strain phase diagram of strontium iridates superlattices

    NASA Astrophysics Data System (ADS)

    Kim, Bongjae; Liu, Peitao; Franchini, Cesare

    Using ab initio approach, we study the electronic and magnetic behavior of strontium iridates as a function of dimensionality and epitaxial strain by employing a (SrIrO3)m/(SrTiO3) superlattice structure. We quantitatively evaluate the dimensional and strain-dependent change of the interaction parameters U and J using the constraint random phase approximation and construct a comprehensive phase diagram describing the evolution of the electronic and magnetic ground state upon strain and dimensionality. We find that compressive strain and increasing the dimensionality perturb the insulating relativistic Mott Jeff = 1 / 2 state, a characteristic of the m = 1 system, and induce two distinct types of insulator-to-metal transition (IMT) that can be explained from the entanglement of U and the bandwidth of the Ir-t2 g manifold. The IMTs are associated with distinctive changes of the spin ordering manifested by spin-flop transitions, correlated with the modulation of the interlayer exchange interaction, and with a complete quenching of any spin-ordered state in the m -> ∞ limit. The fundamental origin of these electronic and magnetic transitions will be discussed and compared with the corresponding situation in the Ruddlesden-Popper series.

  8. The Iron-Iron Carbide Phase Diagram: A Practical Guide to Some Descriptive Solid State Chemistry.

    ERIC Educational Resources Information Center

    Long, Gary J.; Leighly, H. P., Jr.

    1982-01-01

    Discusses the solid state chemistry of iron and steel in terms of the iron-iron carbide phase diagram. Suggests that this is an excellent way of introducing the phase diagram (equilibrium diagram) to undergraduate students while at the same time introducing the descriptive solid state chemistry of iron and steel. (Author/JN)

  9. Field-temperature phase diagram and entropy landscape of CeAuSb 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Lishan; Yelland, Edward A.; Bruin, Jan A. N.

    2016-05-12

    Here, we report a field-temperature phase diagram and an entropy map for the heavy-fermion compound CeAuSb 2. CeAuSb 2 orders antiferromagnetically below T N = 6.6 K and has two metamagnetic transitions, at 2.8 and 5.6 T. The locations of the critical end points of the metamagnetic transitions, which may play a strong role in the putative quantum criticality of CeAuSb 2 and related compounds, are identified. The entropy map reveals an apparent entropy balance with Fermi-liquid behavior, implying that above the Neel transition the Ce moments are incorporated into the Fermi liquid. High-field data showing that the magnetic behaviormore » is remarkably anisotropic are also reported.« less

  10. Sealed-tube synthesis and phase diagram of Li{sub x}TiS{sub 2} (0 ≤ x ≤1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ziping; National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Science, Beijing 100190; Dong, Cheng, E-mail: chengdon@aphy.iphy.ac.cn

    2015-01-15

    Graphical abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S aslithium source. A schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed based on the DTA and XRD data. - Abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S as lithium source. The Li{sub x}TiS{sub 2} samples were characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and differential thermal analysis. Themore » variations of the lattice parameters with lithium content x in Li{sub x}TiS{sub 2} were determined by X-ray powder diffraction analysis for both 1T and 3R phases. The phase transition between low-temperature 1T phase and high-temperature 3R phase was confirmed by the powder X-ray diffraction analysis. Based on the differential thermal analysis and X-ray diffraction results, a schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed, providing a guideline to synthesize Li{sub x}TiS{sub 2} in 1T structure or 3R structure.« less

  11. Influence of interstitial Fe to the phase diagram of Fe1+yTe1-xSex single crystals

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Yamada, Tatsuhiro; Pyon, Sunseng; Tamegai, Tsuyoshi

    2016-08-01

    Superconductivity (SC) with the suppression of long-range antiferromagnetic (AFM) order is observed in the parent compounds of both iron-based and cuprate superconductors. The AFM wave vectors are bicollinear (π, 0) in the parent compound FeTe different from the collinear AFM order (π, π) in most iron pnictides. Study of the phase diagram of Fe1+yTe1-xSex is the most direct way to investigate the competition between bicollinear AFM and SC. However, presence of interstitial Fe affects both magnetism and SC of Fe1+yTe1-xSex, which hinders the establishment of the real phase diagram. Here, we report the comparison of doping-temperature (x-T) phase diagrams for Fe1+yTe1-xSex (0 ≤ x ≤ 0.43) single crystals before and after removing interstitial Fe. Without interstitial Fe, the AFM state survives only for x < 0.05, and bulk SC emerges from x = 0.05, and does not coexist with the AFM state. The previously reported spin glass state, and the coexistence of AFM and SC may be originated from the effect of the interstitial Fe. The phase diagram of Fe1+yTe1-xSex is found to be similar to the case of the “1111” system such as LaFeAsO1-xFx, and is different from that of the “122” system.

  12. Phase diagram of quantum critical system via local convertibility of ground state

    PubMed Central

    Liu, Si-Yuan; Quan, Quan; Chen, Jin-Jun; Zhang, Yu-Ran; Yang, Wen-Li; Fan, Heng

    2016-01-01

    We investigate the relationship between two kinds of ground-state local convertibility and quantum phase transitions in XY model. The local operations and classical communications (LOCC) convertibility is examined by the majorization relations and the entanglement-assisted local operations and classical communications (ELOCC) via Rényi entropy interception. In the phase diagram of XY model, LOCC convertibility and ELOCC convertibility of ground-states are presented and compared. It is shown that different phases in the phase diagram of XY model can have different LOCC or ELOCC convertibility, which can be used to detect the quantum phase transition. This study will enlighten extensive studies of quantum phase transitions from the perspective of local convertibility, e.g., finite-temperature phase transitions and other quantum many-body models. PMID:27381284

  13. Thermodynamics around the first-order ferromagnetic phase transition of Fe2P single crystals

    NASA Astrophysics Data System (ADS)

    Hudl, M.; Campanini, D.; Caron, L.; Höglin, V.; Sahlberg, M.; Nordblad, P.; Rydh, A.

    2014-10-01

    The specific heat and thermodynamics of Fe2P single crystals around the first-order paramagnetic to ferromagnetic (FM) phase transition at TC≃217 K are empirically investigated. The magnitude and direction of the magnetic field relative to the crystal axes govern the derived H -T phase diagram. Strikingly different phase contours are obtained for fields applied parallel and perpendicular to the c axis of the crystal. In parallel fields, the FM state is stabilized, while in perpendicular fields the phase transition is split into two sections, with an intermediate FM phase where there is no spontaneous magnetization along the c axis. The zero-field transition displays a textbook example of a first-order transition with different phase stability limits on heating and cooling. The results have special significance since Fe2P is the parent material to a family of compounds with outstanding magnetocaloric properties.

  14. Vertical temperature boundary of the pseudogap under the superconducting dome in the phase diagram of Bi 2 Sr 2 CaCu 2 O 8 + δ

    DOE PAGES

    Loret, B.; Sakai, S.; Benhabib, S.; ...

    2017-09-25

    We combine electronic Raman scattering experiments with cellular dynamical mean field theory and present evidence of the pseudogap in the superconducting state of various hole-doped cuprates. In Bi 2 Sr 2 CaCu 2 O 8 + δ we also track the superconducting pseudogap hallmark, a peak-dip feature, as a function of temperature T and doping p , well beyond the optimal one. We show that, at all temperatures under the superconducting dome, the pseudogap disappears at the doping p c , between 0.222 and 0.226, where also the normal-state pseudogap collapses at a Lifshitz transition. This demonstrates that the superconductingmore » pseudogap boundary forms a vertical line in the T - p phase diagram.« less

  15. Phase Diagram of an Ethylene Glycol-Hexamethylphosphorotriamide System

    NASA Astrophysics Data System (ADS)

    Solonina, I. A.; Rodnikova, M. N.; Kiselev, M. R.; Khoroshilov, A. V.

    2018-02-01

    The phase diagram of an ethylene glycol (EG)-hexamethylphosphorotriamide (HMPT) system is studied over two wide temperature intervals (+25°C…-90°C…+40°C) and (-150°C…+40°C) by means of differential scanning calorimetry using INTERTECH DSC Q100 and METTLER TA4000 DSC instruments (Switzerland) in the DSC30 mode with variable cooling/heating rates. Substantial overcooling of the liquid phase, a glass transition, and different types of interaction are observed in the system. No thermal effects are observed in intermediate range of concentrations during the slow cooling/heating processes, and the system remains liquid until the glass transition. The presence of such a metastable phase is attributed to a sharp rise in the viscosity of the system due to different kinds of interaction between the components. HMPT: 2EG and HMPT: EG compounds with crystallization temperatures of +5 and -0.5°C, respectively, are observed upon rapid cooling and slow heating. Changes in enthalpy are calculated for all of the observed thermal effects. The distinction from the phase diagram of H2O-HMFT (literary data) is explained by the difference in the interactions between system components and by the structural differences between EG and H2O.

  16. Physical properties and phase diagram of the magnetic compound Cr{sub 0.26}NbS{sub 1.74} at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidorov, V. A.; Petrova, A. E.; Pinyagin, A. N.

    We report the results of a study of magnetic, electrical, and thermodynamic properties of a single crystal of the magnetic compound Cr{sub 0.26}NbS{sub 1.74} at ambient and high pressures. Results of the measurements of magnetization as a function of temperature reveal the existence of a ferromagnetic phase transition in Cr{sub 0.26}NbS{sub 1.74}. The effective number of Bohr magnetons per Cr atom in the paramagnetic phase of Cr{sub 0.26}NbS{sub 1.74} is µ{sub eff} ≈ 4.6µB, which matches the literature data for Cr1/3NbS2. Similarly, the effective number of Bohr magnetons per Cr atom in the saturation fields is rather close in bothmore » substances and corresponds to the number of magnetons in the Cr{sup +3} ion. In contrast to the stoichiometric compound, Cr{sub 0.26}NbS{sub 1.74} does not show a metamagnetic transition, that indicates the lack of a magnetic soliton. A high-pressure phase diagram of the compound reveals the quantum phase transition at T = 0 and P ≈ 4.2 GPa and the triple point situated at T ≈ 20 K and P ≈ 4.2 GPa.« less

  17. Quasi-Phase Diagrams at Air/Oil Interfaces and Bulk Oil Phases for Crystallization of Small-Molecular Semiconductors by Adjusting Gibbs Adsorption.

    PubMed

    Watanabe, Satoshi; Ohta, Takahisa; Urata, Ryota; Sato, Tetsuya; Takaishi, Kazuto; Uchiyama, Masanobu; Aoyama, Tetsuya; Kunitake, Masashi

    2017-09-12

    The temperature and concentration dependencies of the crystallization of two small-molecular semiconductors were clarified by constructing quasi-phase diagrams at air/oil interfaces and in bulk oil phases. A quinoidal quaterthiophene derivative with four alkyl chains (QQT(CN)4) in 1,1,2,2-tetrachroloethane (TCE) and a thienoacene derivative with two alkyl chains (C8-BTBT) in o-dichlorobenzene were used. The apparent crystal nucleation temperature (T n ) and dissolution temperature (T d ) of the molecules were determined based on optical microscopy examination in closed glass capillaries and open dishes during slow cooling and heating processes, respectively. T n and T d were considered estimates of the critical temperatures for nuclear formation and crystal growth, respectively. The T n values of QQT(CN)4 and C8-BTBT at the air/oil interfaces were higher than those in the bulk oil phases, whereas the T d values at the air/oil interfaces were almost the same as those in the bulk oil phases. These Gibbs adsorption phenomena were attributed to the solvophobic effect of the alkyl chain moieties. The temperature range between T n and T d corresponds to suitable supercooling conditions for ideal crystal growth based on the suppression of nucleation. The T n values at the water/oil and oil/glass interfaces did not shift compared with those of the bulk phases, indicating that adsorption did not occur at the hydrophilic interfaces. Promotion and inhibition of nuclear formation for crystal growth of the semiconductors were achieved at the air/oil and hydrophilic interfaces, respectively.

  18. Benzocaine polymorphism: pressure-temperature phase diagram involving forms II and III.

    PubMed

    Gana, Inès; Barrio, Maria; Do, Bernard; Tamarit, Josep-Lluís; Céolin, René; Rietveld, Ivo B

    2013-11-18

    Understanding the phase behavior of an active pharmaceutical ingredient in a drug formulation is required to avoid the occurrence of sudden phase changes resulting in decrease of bioavailability in a marketed product. Benzocaine is known to possess three crystalline polymorphs, but their stability hierarchy has so far not been determined. A topological method and direct calorimetric measurements under pressure have been used to construct the topological pressure-temperature diagram of the phase relationships between the solid phases II and III, the liquid, and the vapor phase. In the process, the transition temperature between solid phases III and II and its enthalpy change have been determined. Solid phase II, which has the highest melting point, is the more stable phase under ambient conditions in this phase diagram. Surprisingly, solid phase I has not been observed during the study, even though the scarce literature data on its thermal behavior appear to indicate that it might be the most stable one of the three solid phases. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Phase diagram for a two-dimensional, two-temperature, diffusive XY model.

    PubMed

    Reichl, Matthew D; Del Genio, Charo I; Bassler, Kevin E

    2010-10-01

    Using Monte Carlo simulations, we determine the phase diagram of a diffusive two-temperature conserved order parameter XY model. When the two temperatures are equal the system becomes the equilibrium XY model with the continuous Kosterlitz-Thouless (KT) vortex-antivortex unbinding phase transition. When the two temperatures are unequal the system is driven by an energy flow from the higher temperature heat-bath to the lower temperature one and reaches a far-from-equilibrium steady state. We show that the nonequilibrium phase diagram contains three phases: A homogenous disordered phase and two phases with long range, spin texture order. Two critical lines, representing continuous phase transitions from a homogenous disordered phase to two phases of long range order, meet at the equilibrium KT point. The shape of the nonequilibrium critical lines as they approach the KT point is described by a crossover exponent φ=2.52±0.05. Finally, we suggest that the transition between the two phases with long-range order is first-order, making the KT-point where all three phases meet a bicritical point.

  20. Magnetic phase diagrams of CexLa1-xB6 in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Akatsu, Mitsuhiro; Kazama, Nanako; Goto, Terutaka; Nemoto, Yuichi; Suzuki, Osamu; Kido, Giyuu; Kunii, Satoru

    We have performed ultrasonic measurements under high magnetic fields up to 30 T by using the hybrid magnet at the National Institute for Materials Science to investigate the magnetic phase diagram for antiferroquadrupole (AFQ) phase II in CexLa1-xB6. With increasing Ce concentration x from x=0.50, the AFQ phase transition temperatures TQ indicate an almost linear increase in various fields. The large magnetic anisotropy of AFQ phase II, in which TQH∥[0 0 1] is much smaller than TQH∥[1 1 0] and TQH∥[1 1 1] in high magnetic fields, is revealed in x=0.75,0.60 as well as in x=0.50. These experimental results support the theoretical calculation based on the Γ5-type AFQ ordering and the magnetic field induced octupole Txyz.

  1. Evaluation of the Current Status of the Combinatorial Approach for the Study of Phase Diagrams

    PubMed Central

    Wong-Ng, W.

    2012-01-01

    This paper provides an evaluation of the effectiveness of using the high throughput combinatorial approach for preparing phase diagrams of thin film and bulk materials. Our evaluation is based primarily on examples of combinatorial phase diagrams that have been reported in the literature as well as based on our own laboratory experiments. Various factors that affect the construction of these phase diagrams are examined. Instrumentation and analytical approaches needed to improve data acquisition and data analysis are summarized. PMID:26900530

  2. pH controlled pathway and systematic hydrothermal phase diagram for elaboration of synthetic lead nickel selenites.

    PubMed

    Kovrugin, Vadim M; Colmont, Marie; Terryn, Christine; Colis, Silviu; Siidra, Oleg I; Krivovichev, Sergey V; Mentré, Olivier

    2015-03-02

    The PbO-NiO-SeO2 ternary system was fully studied using constant hydrothermal conditions at 473 K. It yields the establishment of the corresponding phase diagram using a systematic assignment of reaction products by both powder and single-crystal X-ray diffraction. It leads to the preparation of three novel lead nickel selenites, α-PbNi(SeO3)2 (I), β-PbNi(SeO3)2 (II), and PbNi2(SeO2OH)2(SeO3)2 (III), and one novel lead cobalt selenite, α-PbCo(SeO3)2 (IV), which have been structurally characterized. The crystal structures of the α-forms I, IV, and III are based on a 3D complex nickel selenite frameworks, whereas the β-PbNi(SeO3)2 modification (II) consists of nickel selenite sheets stacked in a noncentrosymmetric structure, second-harmonic generation active. The pH value of the starting solution was shown to play an essential role in the reactive processes. Magnetic measurements of I, III, and IV are discussed.

  3. From MIPS to Vicsek: A comprehensive phase diagram for self-propelled rods

    NASA Astrophysics Data System (ADS)

    Shi, Xiaqing

    Self-propelled rods interacting by volume exclusion is one of the simplest active matter systems. Despite years of effort, no comprehensive picture of their phase diagram is available. Furthermore, results on explicit rods are so far largely disconnected from those obtained on the relatively better understood cases of motility induced phase separation (MIPS) of (usually) isotropic active particles, and from our current knowledge of Vicsek-style aligning point particles. In this talk, I will present a complete phase diagram of a generic model of self-propelled rods and show how it is connected to both MIPS and Vicsek worlds.

  4. Au-Ge MEAM potential fitted to the binary phase diagram

    NASA Astrophysics Data System (ADS)

    Wang, Yanming; Santana, Adriano; Cai, Wei

    2017-02-01

    We have developed a modified embedded atom method potential for the gold-germanium (Au-Ge) binary system that is fitted to the experimental binary phase diagram. The phase diagram is obtained from the common tangent construction of the free energy curves calculated by the adiabatic switching method. While maintaining the accuracy of the melting points of pure Au and Ge, this potential reproduces the eutectic temperature, eutectic composition and the solubility of Ge in solid Au, all in good agreement with the experimental values. To demonstrate the self-consistency of the potential, we performed benchmark molecular dynamics simulations of Ge crystal growth and etching in contact with a Au-Ge liquid alloy.

  5. High P-T Raman study of transitions in relaxor multiferroic Pb(Fe 0.5Nb 0.5)O 3

    DOE PAGES

    Wilfong, Brandon; Ahart, Muhtar; Gramsch, Stephen A.; ...

    2015-09-02

    The vibrational and structural properties of Pb(Fe 0.5Nb 0.5)O 3 have been investigated using Raman spectroscopy up to 40 GPa at 300 K and from 300 to 415 K at selected pressures. The measurements reveal three phase transitions at 5.5, 8.7 and 24 GPa at room temperature. The temperature dependences of the spectra indicated transitions at 1.5 GPa, at 335 and 365 K. The results support the appearance of an intermediate tetragonal P4mm phase between ferroelectric R3m and paraelectric Pm-3m phases. Furthermore, a P-T phase diagram is proposed that allows further insight into the magnetoelectric coupling present in this material.

  6. How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography

    PubMed Central

    Jørgensen, J. S.; Sidky, E. Y.

    2015-01-01

    We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers to questions of undersampling. First, we demonstrate that there are cases where X-ray CT empirically performs comparably with a near-optimal CS strategy, namely taking measurements with Gaussian sensing matrices. Second, we show that, in contrast to what might have been anticipated, taking randomized CT measurements does not lead to improved performance compared with standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means of total-variation regularization. PMID:25939620

  7. How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography.

    PubMed

    Jørgensen, J S; Sidky, E Y

    2015-06-13

    We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers to questions of undersampling. First, we demonstrate that there are cases where X-ray CT empirically performs comparably with a near-optimal CS strategy, namely taking measurements with Gaussian sensing matrices. Second, we show that, in contrast to what might have been anticipated, taking randomized CT measurements does not lead to improved performance compared with standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means of total-variation regularization.

  8. Doping-induced disappearance of ice II from water's phase diagram

    NASA Astrophysics Data System (ADS)

    Shephard, Jacob J.; Slater, Ben; Harvey, Peter; Hart, Martin; Bull, Craig L.; Bramwell, Steven T.; Salzmann, Christoph G.

    2018-06-01

    Water and the many phases of ice display a plethora of complex physical properties and phase relationships1-4 that are of paramount importance in a range of settings including processes in Earth's hydrosphere, the geology of icy moons, industry and even the evolution of life. Well-known examples include the unusual behaviour of supercooled water2, the emergent ferroelectric ordering in ice films4 and the fact that the `ordinary' ice Ih floats on water. We report the intriguing observation that ice II, one of the high-pressure phases of ice, disappears in a selective fashion from water's phase diagram following the addition of small amounts of ammonium fluoride. This finding exposes the strict topologically constrained nature of the ice II hydrogen-bond network, which is not found for the competing phases. In analogy to the behaviour of frustrated magnets5, the presence of the exceptional ice II is argued to have a wider impact on water's phase diagram, potentially explaining its general tendency to display anomalous behaviour. Furthermore, the impurity-induced disappearance of ice II raises the prospect that specific dopants may not only be able to suppress certain phases but also induce the formation of new phases of ice in future studies.

  9. The phase diagram of solid hydrogen at high pressure: A challenge for first principles calculations

    NASA Astrophysics Data System (ADS)

    Azadi, Sam; Foulkes, Matthew

    2015-03-01

    We present comprehensive results for the high-pressure phase diagram of solid hydrogen. We focus on the energetically most favorable molecular and atomic crystal structures. To obtain the ground-state static enthalpy and phase diagram, we use semi-local and hybrid density functional theory (DFT) as well as diffusion quantum Monte Carlo (DMC) methods. The closure of the band gap with increasing pressure is investigated utilizing quasi-particle many-body calculations within the GW approximation. The dynamical phase diagram is calculated by adding proton zero-point energies (ZPE) to static enthalpies. Density functional perturbation theory is employed to calculate the proton ZPE and the infra-red and Raman spectra. Our results clearly demonstrate the failure of DFT-based methods to provide an accurate static phase diagram, especially when comparing insulating and metallic phases. Our dynamical phase diagram obtained using fully many-body DMC calculations shows that the molecular-to-atomic phase transition happens at the experimentally accessible pressure of 374 GPa. We claim that going beyond mean-field schemes to obtain derivatives of the total energy and optimize crystal structures at the many-body level is crucial. This work was supported by the UK engineering and physics science research council under Grant EP/I030190/1, and made use of computing facilities provided by HECTOR, and by the Imperial College London high performance computing centre.

  10. Ferromagnetic quantum criticality: New aspects from the phase diagram of LaCrGe 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taufour, Valentin; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.

    Some Recent theoretical and experimental studies have shown that ferromagnetic quantum criticality is always avoided in clean systems. Two possibilities have been identified. In the first scenario, the ferromagnetic transition becomes of the first order at a tricritical point before being suppressed. A wing structure phase diagram is observed indicating the possibility of a new type of quantum critical point under magnetic field. In a second scenario, a transition to a modulated magnetic phase occurs. Our earlier studies on the compound LaCrGe 3 illustrate a third scenario where not only a new magnetic phase occurs, but also a change ofmore » order of the transition at a tricritical point leading to a wing-structure phase diagram. Careful experimental study of the phase diagram near the tricritical point also illustrates new rules near this type of point.« less

  11. Ferromagnetic quantum criticality: New aspects from the phase diagram of LaCrGe3

    NASA Astrophysics Data System (ADS)

    Taufour, Valentin; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; Canfield, Paul C.

    2018-05-01

    Recent theoretical and experimental studies have shown that ferromagnetic quantum criticality is always avoided in clean systems. Two possibilities have been identified. In the first scenario, the ferromagnetic transition becomes of the first order at a tricritical point before being suppressed. A wing structure phase diagram is observed indicating the possibility of a new type of quantum critical point under magnetic field. In a second scenario, a transition to a modulated magnetic phase occurs. Our recent studies on the compound LaCrGe3 illustrate a third scenario where not only a new magnetic phase occurs, but also a change of order of the transition at a tricritical point leading to a wing-structure phase diagram. Careful experimental study of the phase diagram near the tricritical point also illustrates new rules near this type of point.

  12. Ferromagnetic quantum criticality: New aspects from the phase diagram of LaCrGe 3

    DOE PAGES

    Taufour, Valentin; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; ...

    2017-08-25

    Some Recent theoretical and experimental studies have shown that ferromagnetic quantum criticality is always avoided in clean systems. Two possibilities have been identified. In the first scenario, the ferromagnetic transition becomes of the first order at a tricritical point before being suppressed. A wing structure phase diagram is observed indicating the possibility of a new type of quantum critical point under magnetic field. In a second scenario, a transition to a modulated magnetic phase occurs. Our earlier studies on the compound LaCrGe 3 illustrate a third scenario where not only a new magnetic phase occurs, but also a change ofmore » order of the transition at a tricritical point leading to a wing-structure phase diagram. Careful experimental study of the phase diagram near the tricritical point also illustrates new rules near this type of point.« less

  13. Uhlenbeck-Ford model: Phase diagram and corresponding-states analysis

    NASA Astrophysics Data System (ADS)

    Paula Leite, Rodolfo; Santos-Flórez, Pedro Antonio; de Koning, Maurice

    2017-09-01

    Using molecular dynamics simulations and nonequilibrium thermodynamic-integration techniques we compute the Helmholtz free energies of the body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal close-packed, and fluid phases of the Uhlenbeck-Ford model (UFM) and use the results to construct its phase diagram. The pair interaction associated with the UFM is characterized by an ultrasoft, purely repulsive pair potential that diverges logarithmically at the origin. We find that the bcc and fcc are the only thermodynamically stable crystalline phases in the phase diagram. Furthermore, we report the existence of two reentrant transition sequences as a function of the number density, one featuring a fluid-bcc-fluid succession and another displaying a bcc-fcc-bcc sequence near the triple point. We find strong resemblances to the phase behavior of other soft, purely repulsive systems such as the Gaussian-core model (GCM), inverse-power-law, and Yukawa potentials. In particular, we find that the fcc-bcc-fluid triple point and the phase boundaries in its vicinity are in good agreement with the prediction supplied by a recently proposed corresponding-states principle [J. Chem. Phys. 134, 241101 (2011), 10.1063/1.3605659; Europhys. Lett. 100, 66004 (2012), 10.1209/0295-5075/100/66004]. The particularly strong resemblance between the behavior of the UFM and GCM models are also discussed.

  14. Highly Accurate Calculations of the Phase Diagram of Cold Lithium

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke; Baczewski, Andrew

    The phase diagram of lithium is particularly complicated, exhibiting many different solid phases under the modest application of pressure. Experimental efforts to identify these phases using diamond anvil cells have been complemented by ab initio theory, primarily using density functional theory (DFT). Due to the multiplicity of crystal structures whose enthalpy is nearly degenerate and the uncertainty introduced by density functional approximations, we apply the highly accurate many-body diffusion Monte Carlo (DMC) method to the study of the solid phases at low temperature. These calculations span many different phases, including several with low symmetry, demonstrating the viability of DMC as a method for calculating phase diagrams for complex solids. Our results can be used as a benchmark to test the accuracy of various density functionals. This can strengthen confidence in DFT based predictions of more complex phenomena such as the anomalous melting behavior predicted for lithium at high pressures. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Kosterlitz-Thouless transitions and phase diagrams of the interacting monomer-dimer model on a checkerboard lattice

    NASA Astrophysics Data System (ADS)

    Li, Sazi; Li, Wei; Chen, Ziyu

    2014-11-01

    Using the tensor network approach, we investigate the monomer-dimer models on a checkerboard lattice, in which there are interactions (with strength v ) between the parallel dimers on half of the plaquettes. For the fully packed interacting dimer model, we observe a Kosterlitz-Thouless (KT) transition between the low-temperature symmetry breaking and the high-temperature critical phases; for the doped monomer-dimer case with finite chemical potential μ , we also find an order-disorder phase transition which is of second order instead. We use the boundary matrix product state approach to detect the KT and second-order phase transitions and obtain the phase diagrams v -T and μ -T . Moreover, for the noninteracting monomer-dimer model (setting μ =ν =0 ), we get an extraordinarily accurate determination of the free energy per site (negative of the monomer-dimer constant h2) as f =-0.662 798 972 833 746 with the dimer density n =0.638 123 109 228 547 , both of 15 correct digits.

  16. A concise approach for building the s-T diagram for Mn-Fe-P-Si hysteretic magnetocaloric material

    NASA Astrophysics Data System (ADS)

    Christiaanse, T. V.; Campbell, O.; Trevizoli, P. V.; Misra, S.; van Asten, D.; Zhang, L.; Govindappa, P.; Niknia, I.; Teyber, R.; Rowe, A.

    2017-09-01

    The use of first order magnetocaloric materials (FOM’s) in magnetic cycles is of interest for the development of efficient magnetic heat pumps. FOM’s present promising magnetocaloric properties; however, hysteresis reduces the reversible adiabatic temperature change (Δ Tad ) of these materials, and consequently, impacts performance. The present paper evaluates the reversible Δ Tad in a FOM. Six samples of the Mn-Fe-P-Si material with different transition temperatures are examined. The samples are measured for heat capacity, magnetization, and adiabatic temperature change using heating and cooling protocols to characterize hysteresis. After correcting demagnetizing fields, the entropy-temperature (s-T ) diagrams are constructed and used to calculate adiabatic temperature change using four different thermal paths. The post-calculated Δ Tad is compared with experimental data from direct Δ Tad measurements. Most of the samples of Mn-Fe-P-Si show that post-calculated Δ Tad resulting from the heating zero field and cooling in-field entropy curves align best with the Δ Tad measurements. The impact of the demagnetizing field is shown in terms of absolute variation to the post-calculated Δ Tad . A functional representation is used to explain observed data sensitivities in the post-calculated Δ Tad .

  17. Dynamic phase diagram of a nonionic surfactant lamellar phase.

    PubMed

    Gentile, Luigi; Behrens, Manja A; Balog, Sandor; Mortensen, Kell; Ranieri, Giuseppe A; Olsson, Ulf

    2014-04-03

    The dynamic phase diagram of triethylene glycol dodecyl ether (C12E3) in D2O was determined for 40, 50, and 60 wt % of surfactant. The shear flow effect on the nonionic lamellar phase was investigated as a function of temperature and concentration. The transition from planar lamellae (Lα)-to-multilamellar vesicles (MLVs) was characterized by means of rheology, rheo-small-angle neutron and light scattering. New insight into the nature of the transition region between Lα and the MLVs state is provided. A disorder-order transition was also observed by SANS. This is attributed to a transition from disordered MLVs to a close-packed array of MLV's with slightly higher order than before. Moreover flow instability was observed in the shear-thickening regime at 40 °C.

  18. The global phase diagram of the Gay-Berne model

    NASA Astrophysics Data System (ADS)

    de Miguel, Enrique; Vega, Carlos

    2002-10-01

    The phase diagram of the Gay-Berne model with anisotropy parameters κ=3, κ'=5 has been evaluated by means of computer simulations. For a number of temperatures, NPT simulations were performed for the solid phase leading to the determination of the free energy of the solid at a reference density. Using the equation of state and free energies of the isotropic and nematic phases available in the existing literature the fluid-solid equilibrium was calculated for the temperatures selected. Taking these fluid-solid equilibrium results as the starting points, the fluid-solid equilibrium curve was determined for a wide range of temperatures using Gibbs-Duhem integration. At high temperatures the sequence of phases encountered on compression is isotropic to nematic, and then nematic to solid. For reduced temperatures below T=0.85 the sequence is from the isotropic phase directly to the solid state. In view of this we locate the isotropic-nematic-solid triple point at TINS=0.85. The present results suggest that the high-density phase designated smectic B in previous simulations of the model is in fact a molecular solid and not a smectic liquid crystal. It seems that no thermodynamically stable smectic phase appears for the Gay-Berne model with the choice of parameters used in this work. We locate the vapor-isotropic liquid-solid triple point at a temperature TVIS=0.445. Considering that the critical temperatures is Tc=0.473, the Gay-Berne model used in this work presents vapor-liquid separation over a rather narrow range of temperatures. It is suggested that the strong lateral attractive interactions present in the Gay-Berne model stabilizes the layers found in the solid phase. The large stability of the solid phase, particularly at low temperatures, would explain the unexpectedly small liquid range observed in the vapor-liquid region.

  19. Phase diagram and quantum criticality of disordered Majorana-Weyl fermions

    NASA Astrophysics Data System (ADS)

    Wilson, Justin; Pixley, Jed; Goswami, Pallab

    A three-dimensional px + ipy superconductor hosts gapless Bogoliubov-de Gennes (BdG) quasiparticles which provide an intriguing example of a thermal Hall semimetal (ThSM) phase of Majorana-Weyl fermions. We study the effect of quenched disorder on such a topological phase with both numerical and analytical methods. Using the kernel polynomial method, we compute the average and typical density of states for the BdG quasiparticles; based on this, we construct the disordered phase diagram. We show for infinitesimal disorder, the ThSM is converted into a diffusive thermal Hall metal (ThDM) due to rare statistical fluctuations. Consequently, the phase diagram of the disordered model only consists of ThDM and thermal insulating phases. Nonetheless, there is a cross-over at finite energies from a ThSM regime to a ThDM regime, and we establish the scaling properties of the avoided quantum critical point which marks this cross-over. Additionally, we show the existence of two types of thermal insulators: (i) a trivial thermal band insulator (ThBI), and (ii) a thermal Anderson insulator (AI). We also discuss the experimental relevance of our results for three-dimensional, time reversal symmetry breaking, triplet superconducting states.

  20. Pseudo-critical point in anomalous phase diagrams of simple plasma models

    NASA Astrophysics Data System (ADS)

    Chigvintsev, A. Yu; Iosilevskiy, I. L.; Noginova, L. Yu

    2016-11-01

    Anomalous phase diagrams in subclass of simplified (“non-associative”) Coulomb models is under discussion. The common feature of this subclass is absence on definition of individual correlations for charges of opposite sign. It is e.g. modified OCP of ions on uniformly compressible background of ideal Fermi-gas of electrons OCP(∼), or a superposition of two non-ideal OCP(∼) models of ions and electrons etc. In contrast to the ordinary OCP model on non-compressible (“rigid”) background OCP(#) two new phase transitions with upper critical point, boiling and sublimation, appear in OCP(∼) phase diagram in addition to the well-known Wigner crystallization. The point is that the topology of phase diagram in OCP(∼) becomes anomalous at high enough value of ionic charge number Z. Namely, the only one unified crystal- fluid phase transition without critical point exists as continuous superposition of melting and sublimation in OCP(∼) at the interval (Z 1 < Z < Z 2). The most remarkable is appearance of pseudo-critical points at both boundary values Z = Z 1 ≈ 35.5 and Z = Z 2 ≈ 40.0. It should be stressed that critical isotherm is exactly cubic in both these pseudo-critical points. In this study we have improved our previous calculations and utilized more complicated model components equation of state provided by Chabrier and Potekhin (1998 Phys. Rev. E 58 4941).

  1. Ionic effects on the temperature-force phase diagram of DNA.

    PubMed

    Amnuanpol, Sitichoke

    2017-12-01

    Double-stranded DNA (dsDNA) undergoes a structural transition to single-stranded DNA (ssDNA) in many biologically important processes such as replication and transcription. This strand separation arises in response either to thermal fluctuations or to external forces. The roles of ions are twofold, shortening the range of the interstrand potential and renormalizing the DNA elastic modulus. The dsDNA-to-ssDNA transition is studied on the basis that dsDNA is regarded as a bound state while ssDNA is regarded as an unbound state. The ground state energy of DNA is obtained by mapping the statistical mechanics problem to the imaginary time quantum mechanics problem. In the temperature-force phase diagram the critical force F c (T) increases logarithmically with the Na + concentration in the range from 32 to 110 mM. Discussing this logarithmic dependence of F c (T) within the framework of polyelectrolyte theory, it inevitably suggests a constraint on the difference between the interstrand separation and the length per unit charge during the dsDNA-to-ssDNA transition.

  2. Computed phase diagrams for the system: Sodium hydroxide-uric acid-hydrochloric acid-water

    NASA Astrophysics Data System (ADS)

    Brown, W. E.; Gregory, T. M.; Füredi-Milhofer, H.

    1987-07-01

    Renal stone formation is made complex by the variety of solid phases that are formed, by the number of components in the aqueous phase, and by the multiplicity of ionic dissociation and association processes that are involved. In the present work we apply phase diagrams calculated by the use of equilibrium constants from the ternary system sodium hydroxide-uric acid-water to simplify and make more rigorous the understanding of the factors governing dissolution and precipitation of uric acid (anhydrous and dihydrate) and sodium urate monohydrate. The system is then examined in terms of four components. Finally, procedures are described for fluids containing more than four components. The isotherms, singular points, and fields of supersaturation and undersaturation are shown in various forms of phase diagrams. This system has two notable features: (1) in the coordinates -log[H 2U] versus -log[NaOH], the solubility isotherms for anhydrous uric acid and uric acid dihydrate approximate straight lines with slopes equal to +1 over a wide range of concentrations. As a result, substantial quantities of sodium acid urate monohydrate can precipitate from solution or dissolve without changing the degree of saturation of uric acid significantly. (2) The solubility isotherm for NaHU·H 2O has a deltoid shape with the low-pH branch having a slope of infinity. As a result of the vertical slope of this isotherm, substantial quantities of uric acid can dissolve or precipitate without changing the degree of saturation of sodium acid urate monohydrate significantly. The H 2U-NaOH singular point has a pH of 6.87 at 310 K in the ternary system.

  3. A Simple Experiment for Demonstration of Phase Diagram of Carbon Dioxide.

    ERIC Educational Resources Information Center

    Lieu, Van T.

    1996-01-01

    Explains an experiment that can be used to help students visualize the phase changes of carbon dioxide. The equipment consists of tweezers and a small plastic syringe. Dry ice is also required. Results are discussed and the phase diagram for carbon dioxide is provided. (DDR)

  4. Thermochemical properties of silver tellurides including empressite (AgTe) and phase diagrams for Ag-Te and Ag-Te-O

    NASA Astrophysics Data System (ADS)

    Voronin, Mikhail V.; Osadchii, Evgeniy G.; Brichkina, Ekaterina A.

    2017-10-01

    This study compiles original experimental and literature data on the thermodynamic properties (ΔfG°, S°, ΔfH°) of silver tellurides (α-Ag2Te, β-Ag2Te, Ag1.9Te, Ag5Te3, AgTe) obtained by the method of solid-state galvanic cell with the RbAg4I5 and AgI solid electrolytes. The thermodynamic data for empressite (AgTe, pure fraction from Empress Josephine Mine, Colorado USA) have been obtained for the first time by the electrochemical experiment with the virtual reaction Ag + Te = AgTe. The Ag-Te phase diagrams in the T - x and log fTe2 (gas) - 1/ T coordinates have been refined, and the ternary Ag-Te-O diagrams with Ag-Te-TeO2 (paratellurite) composition range have been calculated.

  5. Metastability Gap in the Phase Diagram of Monoclonal IgG Antibody.

    PubMed

    Rowe, Jacob B; Cancel, Rachel A; Evangelous, Tyler D; Flynn, Rhiannon P; Pechenov, Sergei; Subramony, J Anand; Zhang, Jifeng; Wang, Ying

    2017-10-17

    Crystallization of IgG antibodies has important applications in the fields of structural biology, biotechnology, and biopharmaceutics. However, a rational approach to crystallize antibodies is still lacking. In this work, we report a method to estimate the solubility of antibodies at various temperatures. We experimentally determined the full phase diagram of an IgG antibody. Using the full diagram, we examined the metastability gaps, i.e., the distance between the crystal solubility line and the liquid-liquid coexistence curve, of IgG antibodies. By comparing our results to the partial phase diagrams of other IgGs reported in literature, we found that IgG antibodies have similar metastability gaps. Thereby, we present an equation with two phenomenological parameters to predict the approximate location of the solubility line of IgG antibodies with respect to their liquid-liquid coexistence curves. We have previously shown that the coexistence curve of an antibody solution can be readily determined by the polyethylene glycol-induced liquid-liquid phase separation method. Combining the polyethylene glycol-induced liquid-liquid phase separation measurements and the phenomenological equation in this article, we provide a general and practical means to predict the thermodynamic conditions for crystallizing IgG antibodies in the solution environments of interest. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Topological phase diagram and saddle point singularity in a tunable topological crystalline insulator

    DOE PAGES

    Neupane, Madhab; Xu, Su-Yang; Sankar, R.; ...

    2015-08-20

    Here we report the evolution of the surface electronic structure and surface material properties of a topological crystalline insulator (TCI), Pb 1more » $${-}$$xSnxSe, as a function of various material parameters including composition x, temperature T , and crystal structure. Our spectroscopic data demonstrate the electronic ground-state condition for the saddle point singularity, the tunability of surface chemical potential, and the surface states’ response to circularly polarized light. Our results show that each material parameter can tune the system between the trivial and topological phase in a distinct way, unlike that seen in Bi 2Se 3 and related compounds, leading to a rich topological phase diagram. Our systematic studies of the TCI Pb 1$${-}$$xSnxSe are a valuable materials guide to realize new topological phenomena.« less

  7. Magnetic phase diagram of ErGe 1-xSi x (0

    NASA Astrophysics Data System (ADS)

    Thuéry, P.; El Maziani, F.; Clin, M.; Schobinger-Papamantellos, P.; Buschow, K. H. J.

    1993-10-01

    The composition-temperature magnetic phase diagram of ErGe 1- xSi x (0 < x < 1) has been deduced from the powder neutron diffraction investigation of the magnetic structure of several samples in the 1.5-15 K range. These compounds present an antiferromagnetic behaviour with 7.2 < TN < 11.5 K. Four magnetic phases are present: two that are commensurate with the crystal lattice (wavevectors (1/2,0,1/2) and (0,0,1/2) and two incommensurate (wavevectors (0,0, kz and ( k' x,0, k' z) with a slight deviation of kx, k' x and k' z from 1/2). Whatever x, an incommensurate phase appears below TN, the wavevector being (0,0, kz) for x < 0.40 and ( k' x,0, k' z) for x > 0.40. For 0.17 ≥ x ≤ 0.55, a first-order transition occurs as function of the temperature between these two phases. For x ≥ 0.65, a lock-in transition takes place at TIC, leading from the wavevector ( k' x,0, k' z) to (1/2,0,1/2), as was already observed in ErSi. Finally, for x < 0.17 or 0.55 < x < 0.65, the wavevectors of the incommensurate phases characterized by (0,0, kz) or ( k' x,0, k' z) respectively remain unchanged in the whole temperature range below TN. For x≥0.65, a small amount of a magnetic phase characterized by the wavevector (0,0, 1/2) coexists with the main phases, below a Néel temperature T' N slightly lower than TN. In all cases, the erbium magnetic moments are colinear along the orthorhombic α-axis; the arrangement of the moments in the commensurate phases is the same as in ErSi and the incommensurate orderings correspond to sine-wave amplitude modulations. A brief account on the theoretical interpretation of this phase diagram is finally given.

  8. Modified-hypernetted-chain determination of the phase diagram of rigid C60 molecules

    NASA Astrophysics Data System (ADS)

    Caccamo, C.

    1995-02-01

    The modified-hypernetted-chain theory is applied to the determination of the phase diagram of the Lennard-Jones (LJ) fluid, and of a model of C60 previously investigated [Phys. Rev. Lett. 71, 1200 (1993)] through molecular-dynamics (MD) simulation and a different theoretical approach. In the LJ case the agreement with available MD data is quantitative and superior to other theories. For C60, the phase diagram obtained is in quite good agreement with previous MD results: in particular, the theory confirms the existence of a liquid phase between 1600 and 1920 K, the estimated triple point and critical temperature, respectively.

  9. Dimensionality-strain phase diagram of strontium iridates

    NASA Astrophysics Data System (ADS)

    Kim, Bongjae; Liu, Peitao; Franchini, Cesare

    2017-03-01

    The competition between spin-orbit coupling, bandwidth (W ), and electron-electron interaction (U ) makes iridates highly susceptible to small external perturbations, which can trigger the onset of novel types of electronic and magnetic states. Here we employ first principles calculations based on density functional theory and on the constrained random phase approximation to study how dimensionality and strain affect the strength of U and W in (SrIrO3)m/(SrTiO3) superlattices. The result is a phase diagram explaining two different types of controllable magnetic and electronic transitions, spin-flop and insulator-to-metal, connected with the disruption of the Jeff=1 /2 state which cannot be understood within a simplified local picture.

  10. Atomic density functional and diagram of structures in the phase field crystal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ankudinov, V. E., E-mail: vladimir@ankudinov.org; Galenko, P. K.; Kropotin, N. V.

    2016-02-15

    The phase field crystal model provides a continual description of the atomic density over the diffusion time of reactions. We consider a homogeneous structure (liquid) and a perfect periodic crystal, which are constructed from the one-mode approximation of the phase field crystal model. A diagram of 2D structures is constructed from the analytic solutions of the model using atomic density functionals. The diagram predicts equilibrium atomic configurations for transitions from the metastable state and includes the domains of existence of homogeneous, triangular, and striped structures corresponding to a liquid, a body-centered cubic crystal, and a longitudinal cross section of cylindricalmore » tubes. The method developed here is employed for constructing the diagram for the homogeneous liquid phase and the body-centered iron lattice. The expression for the free energy is derived analytically from density functional theory. The specific features of approximating the phase field crystal model are compared with the approximations and conclusions of the weak crystallization and 2D melting theories.« less

  11. Triclinic-monoclinic-orthorhombic (T-M-O) structural transitions in phase diagram of FeVO4-CrVO4 solid solutions

    NASA Astrophysics Data System (ADS)

    Bera, Ganesh; Reddy, V. R.; Rambabu, P.; Mal, P.; Das, Pradip; Mohapatra, N.; Padmaja, G.; Turpu, G. R.

    2017-09-01

    Phase diagram of FeVO4-CrVO4 solid solutions pertinent with structural and magnetic phases is presented with unambiguous experimental evidences. Solid solutions Fe1-xCrxVO4 (0 ≤ x ≤ 1.0) were synthesized through the standard solid state route and studied by X-ray diffraction, scanning electron microscopy, energy dispersive spectra of X-rays, Raman spectroscopy, d.c. magnetization, and 57Fe Mössbauer spectroscopic studies. FeVO4 and CrVO4 were found to be in triclinic (P-1 space group) and orthorhombic structures (Cmcm space group), respectively. Cr incorporation into the FeVO4 lattice leads to the emergence of a new monoclinic phase dissimilar to the both end members of the solid solutions. In Fe1-xCrxVO4 up to x = 0.10, no discernible changes in the triclinic structure were found. A new structural monoclinic phase (C2/m space group) emerges within the triclinic phase at x = 0.125, and with the increase in Cr content, it gets stabilized with clear single phase signatures in the range of x = 0.175-0.25 as evidenced by the Rietveld analysis of the structures. Beyond x = 0.33, orthorhombic phase similar to CrVO4 (Cmcm space group) emerges and coexists with a monoclinic structure up to x = 0.85, which finally tends to stabilize in the range of x = 0.90-1.00. The Raman spectroscopic studies also confirm the structural transition. FeVO4 Raman spectra show the modes related to three nonequivalent V ions in the triclinic structure, where up to 42 Raman modes are observed in the present study. With the stabilization of structures having higher symmetry, the number of Raman modes decreases and the modes related to symmetry inequivalent sites collate into singular modes from the doublet structure. A systematic crossover from two magnetic transitions in FeVO4, at 21.5 K and 15.4 K to single magnetic transition in CrVO4, at 71 K (antiferromagnetic transition), is observed in magnetization studies. The intermediate solid solution with x = 0.15 shows two magnetic transitions

  12. Tuning the phase diagram of colloid-polymer mixtures via Yukawa interactions

    NASA Astrophysics Data System (ADS)

    González García, Álvaro; Tuinier, Remco

    2016-12-01

    Theory that predicts the phase behavior of interacting Yukawa spheres in a solution containing nonadsorbing polymer is presented. Our approach accounts for multiple overlap of depletion zones. It is found that additional Yukawa interactions beyond hard core interactions strongly affect the location and presence of coexistence regions and phase states. The theoretical phase diagrams are compared with Monte Carlo simulations. The agreement between the two approaches supports the validity of the theoretical approximations made and confirms that, by choosing the parameters of the interaction potentials, tuning of the binodals is possible. The critical end point characterizes the phase diagram topology. It is demonstrated how an additional Yukawa interaction shifts this point with respect to the hard sphere case. Provided a certain depletant-to-colloid size ratio for which a stable colloidal gas-liquid phase coexistence takes place for hard spheres, added direct interactions turn this into a metastable gas-liquid equilibrium. The opposite case, the induction of a stable gas-liquid coexistence where only fluid-solid was present for hard spheres, is also reported.

  13. Mermin-Wagner physics, (H ,T ) phase diagram, and candidate quantum spin-liquid phase in the spin-1/2 triangular-lattice antiferromagnet Ba8CoNb6O24

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Dai, J.; Zhou, P.; Wang, P. S.; Li, T. R.; Song, W. H.; Wang, J. C.; Ma, L.; Zhang, Z.; Li, S. Y.; Luke, G. M.; Normand, B.; Xiang, T.; Yu, W.

    2018-04-01

    Ba8CoNb6O24 presents a system whose Co2 + ions have an effective spin 1/2 and construct a regular triangular-lattice antiferromagnet (TLAFM) with a very large interlayer spacing, ensuring purely two-dimensional character. We exploit this ideal realization to perform a detailed experimental analysis of the S =1 /2 TLAFM, which is one of the keystone models in frustrated quantum magnetism. We find strong low-energy spin fluctuations and no magnetic ordering, but a diverging correlation length down to 0.1 K, indicating a Mermin-Wagner trend toward zero-temperature order. Below 0.1 K, however, our low-field measurements show an unexpected magnetically disordered state, which is a candidate quantum spin liquid. We establish the (H ,T ) phase diagram, mapping in detail the quantum fluctuation corrections to the available theoretical analysis. These include a strong upshift in field of the maximum ordering temperature, qualitative changes to both low- and high-field phase boundaries, and an ordered regime apparently dominated by the collinear "up-up-down" state. Ba8CoNb6O24 , therefore, offers fresh input for the development of theoretical approaches to the field-induced quantum phase transitions of the S =1 /2 Heisenberg TLAFM.

  14. Conjecture about the 2-Flavour QCD Phase Diagram

    NASA Astrophysics Data System (ADS)

    Nava Blanco, M. A.; Bietenholz, W.; Fernández Téllez, A.

    2017-10-01

    The QCD phase diagram, in particular its sector of high baryon density, is one of the most prominent outstanding mysteries within the Standard Model of particle physics. We sketch a project how to arrive at a conjecture for the case of two massless quark flavours. The pattern of spontaneous chiral symmetry breaking is isomorphic to the spontaneous magnetisation in an O(4) non-linear σ-model, which can be employed as a low-energy effective theory to study the critical behaviour. We focus on the 3d O(4) model, where the configurations are divided into topological sectors, as in QCD. A topological winding with minimal Euclidean action is denoted as a skyrmion, and the topological charge corresponds to the QCD baryon number. This effective model can be simulated on a lattice with a powerful cluster algorithm, which should allow us to identify the features of the critical temperature, as we proceed from low to high baryon density. In this sense, this projected numerical study has the potential to provide us with a conjecture about the phase diagram of QCD with two massless quark flavours.

  15. [Thermodynamics of drug polymorphism: domains and stability hierarchy by pressure temperature diagram. Application to the tetramorphism of fananserine].

    PubMed

    Toscani, S

    2002-05-01

    In this communication, an application of classical thermodynamics to crystalline solid state polymorphism is shown to allow stability p, T domains and stability hierarchy among crystalline phases of a polymorph to be defined by constructing the unary p, T phase diagram. The three topological rules upon which this construction is founded are presented; the first one is a straight consequence of the least vapour pressure criterion by Ostwald. Calculation of triple point co-ordinates and of two-phase equilibrium curves is based upon using both thermodynamic and crystallographic data obtained at ordinary pressure. Clapeyron equation allows the slopes of the straight lines representing equilibria between condensed phases to be calculated and, hence, triple points situated at high or negative pressure to be determined. On the other hand, the hierarchy among the thermodynamic stability degrees of the crystalline varieties may be inferred from the location of the sublimation curves, by merely acknowledging inequalities among vapour pressures at each temperature on the whole T-range. These building-up processes are pointed out by outlining the achievement of a phase diagram related to the tetramorphism of fananserine, an anxiolytic drug. Three out four crystalline forms, namely phases II, III and IV, possess their own stability domain, although those belonging to phases II and III are limited at high pressure by that of phase IV. Conversely, phase I is overall metastable and exhibits a whole monotropic behaviour.

  16. Liquid part of the phase diagram and percolation line for two-dimensional Mercedes-Benz water.

    PubMed

    Urbic, T

    2017-09-01

    Monte Carlo simulations and Wertheim's thermodynamic perturbation theory (TPT) are used to predict the phase diagram and percolation curve for the simple two-dimensional Mercedes-Benz (MB) model of water. The MB model of water is quite popular for explaining water properties, but the phase diagram has not been reported till now. In the MB model, water molecules are modeled as two-dimensional Lennard-Jones disks, with three orientation-dependent hydrogen-bonding arms, arranged as in the MB logo. The liquid part of the phase space is explored using grand canonical Monte Carlo simulations and two versions of Wertheim's TPT for associative fluids, which have been used before to predict the properties of the simple MB model. We find that the theory reproduces well the physical properties of hot water but is less successful at capturing the more structured hydrogen bonding that occurs in cold water. In addition to reporting the phase diagram and percolation curve of the model, it is shown that the improved TPT predicts the phase diagram rather well, while the standard one predicts a phase transition at lower temperatures. For the percolation line, both versions have problems predicting the correct position of the line at high temperatures.

  17. Liquid part of the phase diagram and percolation line for two-dimensional Mercedes-Benz water

    NASA Astrophysics Data System (ADS)

    Urbic, T.

    2017-09-01

    Monte Carlo simulations and Wertheim's thermodynamic perturbation theory (TPT) are used to predict the phase diagram and percolation curve for the simple two-dimensional Mercedes-Benz (MB) model of water. The MB model of water is quite popular for explaining water properties, but the phase diagram has not been reported till now. In the MB model, water molecules are modeled as two-dimensional Lennard-Jones disks, with three orientation-dependent hydrogen-bonding arms, arranged as in the MB logo. The liquid part of the phase space is explored using grand canonical Monte Carlo simulations and two versions of Wertheim's TPT for associative fluids, which have been used before to predict the properties of the simple MB model. We find that the theory reproduces well the physical properties of hot water but is less successful at capturing the more structured hydrogen bonding that occurs in cold water. In addition to reporting the phase diagram and percolation curve of the model, it is shown that the improved TPT predicts the phase diagram rather well, while the standard one predicts a phase transition at lower temperatures. For the percolation line, both versions have problems predicting the correct position of the line at high temperatures.

  18. Magnetic phase diagram of a frustrated spin ladder

    NASA Astrophysics Data System (ADS)

    Sugimoto, Takanori; Mori, Michiyasu; Tohyama, Takami; Maekawa, Sadamichi

    2018-04-01

    Frustrated spin ladders show magnetization plateaux depending on the rung-exchange interaction and frustration defined by the ratio of first and second neighbor exchange interactions in each chain. This paper reports on its magnetic phase diagram. Using the variational matrix-product state method, we accurately determine phase boundaries. Several kinds of magnetization plateaux are induced by the frustration and the strong correlation among quasiparticles on a lattice. The appropriate description of quasiparticles and their relevant interactions are changed by a magnetic field. We find that the frustration differentiates the triplet quasiparticle from the singlet one in kinetic energy.

  19. First-principles interatomic potentials for transition-metal aluminides. III. Extension to ternary phase diagrams

    NASA Astrophysics Data System (ADS)

    Widom, Mike; Al-Lehyani, Ibrahim; Moriarty, John A.

    2000-08-01

    Modeling structural and mechanical properties of intermetallic compounds and alloys requires detailed knowledge of their interatomic interactions. The first two papers of this series [Phys. Rev. B 56, 7905 (1997); 58, 8967 (1998)] derived first-principles interatomic potentials for transition-metal (TM) aluminides using generalized pseudopotential theory (GPT). Those papers focused on binary alloys of aluminum with first-row transition metals and assessed the ability of GPT potentials to reproduce and elucidate the alloy phase diagrams of Al-Co and Al-Ni. This paper addresses the phase diagrams of the binary alloy Al-Cu and the ternary systems Al-Co-Cu and Al-Co-Ni, using GPT pair potentials calculated in the limit of vanishing transition-metal concentration. Despite this highly simplifying approximation, we find rough agreement with the known low-temperature phase diagrams, up to 50% total TM concentration provided the Co fraction is below 25%. Full composition-dependent potentials and many-body interactions would be required to correct deficiencies at higher Co concentration. Outside this troublesome region, the experimentally determined stable and metastable phases all lie on or near the convex hull of a scatter plot of energy versus composition. We verify, qualitatively, reported solubility ranges extending binary alloys into the ternary diagram in both Al-Co-Cu and Al-Co-Ni. Finally, we reproduce previously conjectured transition-metal positions in the decagonal quasicrystal phase.

  20. Phase diagrams of vortex matter with multi-scale inter-vortex interactions in layered superconductors.

    PubMed

    Meng, Qingyou; Varney, Christopher N; Fangohr, Hans; Babaev, Egor

    2017-01-25

    It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field.

  1. Investigation of phase diagrams for cylindrical Ising nanotube using cellular automata

    NASA Astrophysics Data System (ADS)

    Astaraki, M.; Ghaemi, M.; Afzali, K.

    2018-05-01

    Recent developments in the field of applied nanoscience and nanotechnology have heightened the need for categorizing various characteristics of nanostructures. In this regard, this paper establishes a novel method to investigate magnetic properties (phase diagram and spontaneous magnetization) of a cylindrical Ising nanotube. Using a two-layer Ising model and the core-shell concept, the interactions within nanotube has been modelled. In the model, both ferromagnetic and antiferromagnetic cases have been considered. Furthermore, the effect of nanotube's length on the critical temperature is investigated. The model has been simulated using cellular automata approach and phase diagrams were constructed for different values of inter- and intra-layer couplings. For the antiferromagnetic case, the possibility of existence of compensation point is observed.

  2. Ammonia-water mixtures at high pressures - Melting curves of ammonia dihydrate and ammonia monohydrate and a revised high-pressure phase diagram for the water-rich region. [in primordial solar system ices

    NASA Technical Reports Server (NTRS)

    Boone, S.; Nicol, M. F.

    1991-01-01

    The phase relations of some mixtures of ammonia and water are investigated to create a phase diagram in pressure-temperature-composition space relevant to the geophysical study of bodies in the outer solar system. The mixtures of NH3(x)H2O(1-x), where x is greater than 0.30 but less than 0.51, are examined at pressures and temperatures ranging from 0-6.5 GPa and 125-400 K, respectively. The ruby luminescence technique monitors the pressure and a diamond-anvil cell compresses the samples, and the phases are identified by means of normal- and polarized-light optical microscopy. The melting curve for NH3H2O(2) is described by the equation T = 176 + 60P - 8.5P squared for the ranges of 0.06-1.4 GPa and 179-243 K. The equation for NH3H2O is T = 194 + 37P - P squared, which represents a minor correction of a previous description by Johnson et al. (1985). Observed phase transitions are consistent with the high-pressure stability limit of NH3H2O(2), and the transition boundary is found to be linear.

  3. Lyapunov exponents and phase diagrams reveal multi-factorial control over TRAIL-induced apoptosis

    PubMed Central

    Aldridge, Bree B; Gaudet, Suzanne; Lauffenburger, Douglas A; Sorger, Peter K

    2011-01-01

    Receptor-mediated apoptosis proceeds via two pathways: one requiring only a cascade of initiator and effector caspases (type I behavior) and the second requiring an initiator–effector caspase cascade and mitochondrial outer membrane permeabilization (type II behavior). Here, we investigate factors controlling type I versus II phenotypes by performing Lyapunov exponent analysis of an ODE-based model of cell death. The resulting phase diagrams predict that the ratio of XIAP to pro-caspase-3 concentrations plays a key regulatory role: type I behavior predominates when the ratio is low and type II behavior when the ratio is high. Cell-to-cell variability in phenotype is observed when the ratio is close to the type I versus II boundary. By positioning multiple tumor cell lines on the phase diagram we confirm these predictions. We also extend phase space analysis to mutations affecting the rate of caspase-3 ubiquitylation by XIAP, predicting and showing that such mutations abolish all-or-none control over activation of effector caspases. Thus, phase diagrams derived from Lyapunov exponent analysis represent a means to study multi-factorial control over a complex biochemical pathway. PMID:22108795

  4. Phase diagram of boron-doped diamond revisited by thickness-dependent transport studies

    NASA Astrophysics Data System (ADS)

    Bousquet, J.; Klein, T.; Solana, M.; Saminadayar, L.; Marcenat, C.; Bustarret, E.

    2017-04-01

    We report on a detailed study of the electronic properties of a series of boron-doped diamond epilayers with dopant concentration ranging from 1 ×1020 to 3 ×1021cm-3 and thicknesses (d⊥) ranging from 2 μ m to 8 nm. By using well-defined mesa patterns that minimize the parasitic currents induced by doping inhomogeneities, we have been able to unveil a new phase diagram differing from all previous reports. We first show that the boron concentration corresponding to the onset of superconductivity (above 50 mK) does not coincide with that of the metal-insulator transition; the latter one corresponding to the vanishing of the residual conductivity σ0 (deduced from σ (T ) =σ (0 ) +A √{T } fits to the low temperature data). Moreover, a dimensional crossover from 3D to 2D transport properties could be induced by reducing d⊥ in both (metallic) nonsuperconducting and superconducting epilayers but without any reduction of Tc in the latter.

  5. Separating the effects of repulsive and attractive forces on the phase diagram, interfacial, and critical properties of simple fluids

    NASA Astrophysics Data System (ADS)

    Fuentes-Herrera, M.; Moreno-Razo, J. A.; Guzmán, O.; López-Lemus, J.; Ibarra-Tandi, B.

    2016-06-01

    Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

  6. Separating the effects of repulsive and attractive forces on the phase diagram, interfacial, and critical properties of simple fluids.

    PubMed

    Fuentes-Herrera, M; Moreno-Razo, J A; Guzmán, O; López-Lemus, J; Ibarra-Tandi, B

    2016-06-07

    Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

  7. Automated discovery and construction of surface phase diagrams using machine learning

    DOE PAGES

    Ulissi, Zachary W.; Singh, Aayush R.; Tsai, Charlie; ...

    2016-08-24

    Surface phase diagrams are necessary for understanding surface chemistry in electrochemical catalysis, where a range of adsorbates and coverages exist at varying applied potentials. These diagrams are typically constructed using intuition, which risks missing complex coverages and configurations at potentials of interest. More accurate cluster expansion methods are often difficult to implement quickly for new surfaces. We adopt a machine learning approach to rectify both issues. Using a Gaussian process regression model, the free energy of all possible adsorbate coverages for surfaces is predicted for a finite number of adsorption sites. Our result demonstrates a rational, simple, and systematic approachmore » for generating accurate free-energy diagrams with reduced computational resources. Finally, the Pourbaix diagram for the IrO 2(110) surface (with nine coverages from fully hydrogenated to fully oxygenated surfaces) is reconstructed using just 20 electronic structure relaxations, compared to approximately 90 using typical search methods. Similar efficiency is demonstrated for the MoS 2 surface.« less

  8. Conformational Phase Diagram for Polymers Adsorbed on Ultrathin Nanowires

    NASA Astrophysics Data System (ADS)

    Vogel, Thomas; Bachmann, Michael

    2010-05-01

    We study the conformational behavior of a polymer adsorbed at an attractive stringlike nanowire and construct the complete structural phase diagram in dependence of the binding strength and effective thickness of the nanowire. For this purpose, Monte Carlo optimization techniques are employed to identify lowest-energy structures for a coarse-grained model of a polymer in contact with the nanowire. Among the representative conformations in the different phases are, for example, compact droplets attached to the wire and also nanotubelike monolayer films wrapping it in a very ordered way. We here systematically analyze low-energy shapes and structural order parameters to elucidate the transitions between the structural phases.

  9. Conformational phase diagram for polymers adsorbed on ultrathin nanowires.

    PubMed

    Vogel, Thomas; Bachmann, Michael

    2010-05-14

    We study the conformational behavior of a polymer adsorbed at an attractive stringlike nanowire and construct the complete structural phase diagram in dependence of the binding strength and effective thickness of the nanowire. For this purpose, Monte Carlo optimization techniques are employed to identify lowest-energy structures for a coarse-grained model of a polymer in contact with the nanowire. Among the representative conformations in the different phases are, for example, compact droplets attached to the wire and also nanotubelike monolayer films wrapping it in a very ordered way. We here systematically analyze low-energy shapes and structural order parameters to elucidate the transitions between the structural phases.

  10. Phase diagram of two-dimensional hard rods from fundamental mixed measure density functional theory

    NASA Astrophysics Data System (ADS)

    Wittmann, René; Sitta, Christoph E.; Smallenburg, Frank; Löwen, Hartmut

    2017-10-01

    A density functional theory for the bulk phase diagram of two-dimensional orientable hard rods is proposed and tested against Monte Carlo computer simulation data. In detail, an explicit density functional is derived from fundamental mixed measure theory and freely minimized numerically for hard discorectangles. The phase diagram, which involves stable isotropic, nematic, smectic, and crystalline phases, is obtained and shows good agreement with the simulation data. Our functional is valid for a multicomponent mixture of hard particles with arbitrary convex shapes and provides a reliable starting point to explore various inhomogeneous situations of two-dimensional hard rods and their Brownian dynamics.

  11. The topological pressure-temperature phase diagram of fluoxetine nitrate: monotropy unexpectedly turning into enantiotropy

    NASA Astrophysics Data System (ADS)

    Céolin, René; Rietveld, Ivo B.

    2017-04-01

    The phase behavior of pharmaceuticals is important for regulatory requirements and dosage form development. Racemic fluoxetine nitrate possesses two crystalline forms for which initial measurements indicated that they have a monotropic relationship with form I the only stable form. By constructing the topological pressure-temperature phase diagram, it has been shown that unexpectedly form II has a stable domain in the phase diagram and can be easily obtained by heating and grinding. The pressure necessary to obtain form II is only 11 MPa, which is much lower than most pressure used for tableting in the pharmaceutical industry.

  12. Dark energy in six nearby galaxy flows: Synthetic phase diagrams and self-similarity

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Dolgachev, V. P.; Kanter, A. A.; Domozhilova, L. M.; Valtonen, M. J.; Byrd, G. G.

    2012-09-01

    Outward flows of galaxies are observed around groups of galaxies on spatial scales of about 1 Mpc, and around galaxy clusters on scales of 10 Mpc. Using recent data from the Hubble Space Telescope (HST), we have constructed two synthetic velocity-distance phase diagrams: one for four flows on galaxy-group scales and the other for two flows on cluster scales. It has been shown that, in both cases, the antigravity produced by the cosmic dark-energy background is stronger than the gravity produced by the matter in the outflow volume. The antigravity accelerates the flows and introduces a phase attractor that is common to all scales, corresponding to a linear velocity-distance relation (the local Hubble law). As a result, the bundle of outflow trajectories mostly follow the trajectory of the attractor. A comparison of the two diagrams reveals the universal self-similar nature of the outflows: their gross phase structure in dimensionless variables is essentially independent of their physical spatial scales, which differ by approximately a factor of 10 in the two diagrams.

  13. Phase diagrams of ferroelectric nanocrystals strained by an elastic matrix

    NASA Astrophysics Data System (ADS)

    Nikitchenko, A. I.; Azovtsev, A. V.; Pertsev, N. A.

    2018-01-01

    Ferroelectric crystallites embedded into a dielectric matrix experience temperature-dependent elastic strains caused by differences in the thermal expansion of the crystallites and the matrix. Owing to the electrostriction, these lattice strains may affect polarization states of ferroelectric inclusions significantly, making them different from those of a stress-free bulk crystal. Here, using a nonlinear thermodynamic theory, we study the mechanical effect of elastic matrix on the phase states of embedded single-domain ferroelectric nanocrystals. Their equilibrium polarization states are determined by minimizing a special thermodynamic potential that describes the energetics of an ellipsoidal ferroelectric inclusion surrounded by a linear elastic medium. To demonstrate the stability ranges of such states for a given material combination, we construct a phase diagram, where the inclusion’s shape anisotropy and temperature are used as two parameters. The ‘shape-temperature’ phase diagrams are calculated numerically for PbTiO3 and BaTiO3 nanocrystals embedded into representative dielectric matrices generating tensile (silica glass) or compressive (potassium silicate glass) thermal stresses inside ferroelectric inclusions. The developed phase maps demonstrate that the joint effect of thermal stresses and matrix-induced elastic clamping of ferroelectric inclusions gives rise to several important features in the polarization behavior of PbTiO3 and BaTiO3 nanocrystals. In particular, the Curie temperature displays a nonmonotonic variation with the ellipsoid’s aspect ratio, being minimal for spherical inclusions. Furthermore, the diagrams show that the polarization orientation with respect to the ellipsoid’s symmetry axis is controlled by the shape anisotropy and the sign of thermal stresses. Under certain conditions, the mechanical inclusion-matrix interaction qualitatively alters the evolution of ferroelectric states on cooling, inducing a structural transition

  14. On structural transitions, thermodynamic equilibrium, and the phase diagram of DNA and RNA duplexes under torque and tension.

    PubMed

    Wereszczynski, Jeff; Andricioaei, Ioan

    2006-10-31

    A precise understanding of the flexibility of double stranded nucleic acids and the nature of their deformed conformations induced by external forces is important for a wide range of biological processes including transcriptional regulation, supercoil and catenane removal, and site-specific recombination. We present, at atomic resolution, a simulation of the dynamics involved in the transitions from B-DNA and A-RNA to Pauling (P) forms and to denatured states driven by application of external torque and tension. We then calculate the free energy profile along a B- to P-transition coordinate and from it, compute a reversible pathway, i.e., an isotherm of tension and torque pairs required to maintain P-DNA in equilibrium. The reversible isotherm maps correctly onto a phase diagram derived from single molecule experiments, and yields values of elongation, twist, and twist-stretch coupling in agreement with measured values. We also show that configurational entropy compensates significantly for the large electrostatic energy increase due to closer-packed P backbones. A similar set of simulations applied to RNA are used to predict a novel structure, P-RNA, with its associated free energy, equilibrium tension, torque and structural parameters, and to assign the location, on the phase-diagram, of a putative force-torque-dependent RNA "triple point."

  15. The phase diagrams of a spin 1/2 core and a spin 1 shell nanoparticle with a disordered interface

    NASA Astrophysics Data System (ADS)

    Zaim, N.; Zaim, A.; Kerouad, M.

    2016-12-01

    The critical and compensation behaviors, of a spherical ferrimagnetic nanoparticle, consisting of a ferromagnetic core of spin-1/2 A atoms, a ferromagnetic shell of spin-1 B atoms and a disordered interface in between that is characterized by a random arrangement of A and B atoms of ApB1-p type and a negative A - B coupling, are studied. The ground state phase diagrams of the system have been determined in the (JAB, D/jA) and (JB, D/jA) planes. Monte Carlo simulation based on Metropolis algorithm has been used to study the effects of the concentration parameter p, the crystal field, the coupling between B - B atoms jB and the antiferromagnetic interface coupling jAB on the phase diagrams and the magnetic properties of the system. It has been found that one, two or even three compensation point(s) can appear for appropriate values of the system parameters.

  16. Determining the phase diagram of lithium via ab initio calculation and ramp compression

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke; Seagle, Chris; Haill, Thomas; Harding, Eric

    2015-06-01

    Diamond anvil cell experiments have shown elemental lithium to have an extraordinarily complex phase diagram under pressure exhibiting numerous solid phases at pressures below 1 Mbar, as well as a complicated melting behavior. We explore this phase diagram utilizing a combination of quantum mechanical calculations and ramp compression experiments performed on Sandia National Laboratories' Z-machine. We aim to extend our knowledge of the high pressure behavior to moderate temperatures at pressures above 50 GPa with a specific focus on the melt line above 70 GPa. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Dept of Energy's Natl. Nuclear Security Administration under Contract DE-AC04-94AL85000.

  17. Navigating at Will on the Water Phase Diagram

    NASA Astrophysics Data System (ADS)

    Pipolo, S.; Salanne, M.; Ferlat, G.; Klotz, S.; Saitta, A. M.; Pietrucci, F.

    2017-12-01

    Despite the simplicity of its molecular unit, water is a challenging system because of its uniquely rich polymorphism and predicted but yet unconfirmed features. Introducing a novel space of generalized coordinates that capture changes in the topology of the interatomic network, we are able to systematically track transitions among liquid, amorphous, and crystalline forms throughout the whole phase diagram of water, including the nucleation of crystals above and below the melting point. Our approach, based on molecular dynamics and enhanced sampling or free energy calculation techniques, is not specific to water and could be applied to very different structural phase transitions, paving the way towards the prediction of kinetic routes connecting polymorphic structures in a range of materials.

  18. Effect of crystal orientation on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Huaping, E-mail: wuhuaping@gmail.com, E-mail: hpwu@zjut.edu.cn; State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024; Ma, Xuefu

    2016-01-15

    The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110) orientation leads to a lower symmetry and more complicated phase transition than the (111) orientation in BaTiO{sub 3} films. The increase of compressive strain will dramatically enhance the Curie temperature T{sub C} of (110)-oriented BaTiO{sub 3} films, which matches well with previous experimental data. The polarizationmore » components experience a great change across the boundaries of different phases at room temperature in both (110)- and (111)-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics.« less

  19. Octahedral tilting, monoclinic phase and the phase diagram of PZT

    NASA Astrophysics Data System (ADS)

    Cordero, F.; Trequattrini, F.; Craciun, F.; Galassi, C.

    2011-10-01

    Anelastic and dielectric spectroscopy measurements on PbZr1-xTixO3 (PZT) close to the morphotropic (MPB) and antiferroelectric boundaries provide new insight into some controversial aspects of its phase diagram. No evidence is found of a border separating monoclinic (M) from rhombohedral (R) phases, in agreement with recent structural studies supporting a coexistence of the two phases over a broad composition range x < 0.5, with the fraction of M increasing toward the MPB. It is also discussed why the observed maximum of elastic compliance appears to be due to a rotational instability of the polarization linearly coupled to shear strain. Therefore it cannot be explained by extrinsic softening from finely twinned R phase alone, but indicates the presence also of M phase, not necessarily homogeneous. A new diffuse transition is found within the ferroelectric phase near x ˜ 0.1, at a temperature TIT higher than the well established boundary TT to the phase with tilted octahedra. It is proposed that around TIT the octahedra start rotating in a disordered manner and finally become ordered below TT. In this interpretation, the onset temperature for octahedral tilting monotonically increases up to the antiferroelectric transition of PbZrO3, and the depression of TT(x) below x = 0.18 would be a consequence of the partial relief of the mismatch between the average cation radii with the initial stage of tilting below TIT.

  20. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    ERIC Educational Resources Information Center

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  1. Misfit strain phase diagrams of epitaxial PMN–PT films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khakpash, N.; Khassaf, H.; Rossetti, G. A.

    Misfit strain–temperature phase diagrams of three compositions of (001) pseudocubic (1 − x)·Pb (Mg{sub l/3}Nb{sub 2/3})O{sub 3} − x·PbTiO{sub 3} (PMN–PT) thin films are computed using a phenomenological model. Two (x = 0.30, 0.42) are located near the morphotropic phase boundary (MPB) of bulk PMN–PT at room temperature (RT) and one (x = 0.70) is located far from the MPB. The results show that it is possible to stabilize an adaptive monoclinic phase over a wide range of misfit strains. At RT, the stability region of this phase is much larger for PMN–PT compared to barium strontium titanate and lead zirconate titanate films.

  2. PHASE DIAGRAM FOR THE SYSTEM TITANIUM-TIN (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornilov, I.I.; Nartova, T.T.

    1960-03-01

    Differential thermal analysis, microstructural analyses, and determinations of hardness values and electric resistance were used to construct a diagram of state for the binary system Ti-Sn up to the composition of the compound Ti/sub 3/Sn (from 0 to 25 at.% Sn). Analyses of the thermograms showed that all conversions proceeding with the absorption of heat could be detected on the heating curves. Tin lowers the temperature of conversion of titunium with 5.0 at.% tin first to a minimum at 860 tained C which then increases to 890 tained C at higher tin contents. A peritectoid reaction ( alpha / submore » 2/ were ob ore resistant t + ) takes place with a conversion temperature at 890 tained C. A HF-HNO/sub 3/-glycerin etch showed a single-phase homogeneous structure of an alpha -solid solution with alloys containing up to 9 at.% Q. The amount of a second -phase increases with increasing tin content until a single-phase structure of a -solid solution of the compound Ti/sub 3/Sn is noted with alloys containing 23 to 25 at.% Sn. Alloys containing 8 to 22.5 at.% Sn undergo a peritectoid reaction, at a temperature of 890 tained C as shown by thermal analyses and by microstructural analyses of samples quenched frorn above and below the conversion temperature. A study of the microstructure of quenched alloys showed that the solubility of tin in ore resistant t -titanium increases from 8 at.% Sn at 890 tained C to 10.5 at.% Sn at 1100 tained C. X-ray analyses of annealed samples of alloy showed only the lines of an alpha solid solution for 5, 8, 9 at.% Sn, a -solid solution for 23 at.% Sn (close to the composition Ti/sub 3/Sn), and an alpha and mixed phase for a 15 at.% Sn. Vickers hardness numbers were determined with a diamond pyramid at a loading of 10 kg. The hardness increases smoothly with increasing tin content to a maximum at the saturation solubility of the tin in the alpha - or ore resistant t -solid solution. The hardness decreases smoothly with the appearance of

  3. Irreversible phase transitions due to laser-based T-jump heating of precursor Eu:ZrO{sub 2}/Tb:Y{sub 2}O{sub 3} core/shell nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunawidjaja, Ray; Diez-y-Riega, Helena; Eilers, Hergen, E-mail: eilers@wsu.edu

    2015-09-15

    Amorphous precursors of Eu-doped-ZrO{sub 2}/Tb-doped-Y{sub 2}O{sub 3} (p-Eu:ZrO{sub 2}/p-Tb:Y{sub 2}O{sub 3}) core/shell nanoparticles are rapidly heated to temperatures between 200 °C and 950 °C for periods between 2 s and 60 s using a CO{sub 2} laser. During this heating process the nanoparticles undergo irreversible phase changes. The fluorescence spectra due to Eu{sup 3+} dopants in the core and Tb{sup 3+} dopants in the shell are used to identify distinct phases within the material and to generate time/temperature phase diagrams. Such phase diagrams can potentially help to determine unknown time/temperature histories in thermosensor applications. - Graphical abstract: A CO{sub 2}more » laser is used for rapid heating of p-Eu:ZrO{sub 2}/p-Tb:Y{sub 2}O{sub 3} core/shell nanoparticles. Optical spectra are used to identify distinct phases and to determine its thermal history. - Highlights: • Synthesized oxide precursors of lanthanide doped core/shell nanoparticles. • Heated core/shell nanoparticles via laser-based T-jump technique. • Observed time- and temperature-dependent irreversible phase transition.« less

  4. Phase diagram of matrix compressed sensing

    NASA Astrophysics Data System (ADS)

    Schülke, Christophe; Schniter, Philip; Zdeborová, Lenka

    2016-12-01

    In the problem of matrix compressed sensing, we aim to recover a low-rank matrix from a few noisy linear measurements. In this contribution, we analyze the asymptotic performance of a Bayes-optimal inference procedure for a model where the matrix to be recovered is a product of random matrices. The results that we obtain using the replica method describe the state evolution of the Parametric Bilinear Generalized Approximate Message Passing (P-BiG-AMP) algorithm, recently introduced in J. T. Parker and P. Schniter [IEEE J. Select. Top. Signal Process. 10, 795 (2016), 10.1109/JSTSP.2016.2539123]. We show the existence of two different types of phase transition and their implications for the solvability of the problem, and we compare the results of our theoretical analysis to the numerical performance reached by P-BiG-AMP. Remarkably, the asymptotic replica equations for matrix compressed sensing are the same as those for a related but formally different problem of matrix factorization.

  5. Criticality and phase diagram of quantum long-range O(N ) models

    NASA Astrophysics Data System (ADS)

    Defenu, Nicolò; Trombettoni, Andrea; Ruffo, Stefano

    2017-09-01

    Several recent experiments in atomic, molecular, and optical systems motivated a huge interest in the study of quantum long-range systems. Our goal in this paper is to present a general description of their critical behavior and phases, devising a treatment valid in d dimensions, with an exponent d +σ for the power-law decay of the couplings in the presence of an O(N ) symmetry. By introducing a convenient ansatz for the effective action, we determine the phase diagram for the N -component quantum rotor model with long-range interactions, with N =1 corresponding to the Ising model. The phase diagram in the σ -d plane shows a nontrivial dependence on σ . As a consequence of the fact that the model is quantum, the correlation functions are anisotropic in the spatial and time coordinates for σ smaller than a critical value, and in this region the isotropy is not restored even at criticality. Results for the correlation length exponent ν , the dynamical critical exponent z , and a comparison with numerical findings for them are presented.

  6. Melt-Vapor Phase Diagram of the Te-S System

    NASA Astrophysics Data System (ADS)

    Volodin, V. N.; Trebukhov, S. A.; Kenzhaliyev, B. K.; Nitsenko, A. V.; Burabaeva, N. M.

    2018-03-01

    The values of partial pressure of saturated vapor of the constituents of the Te-S system are determined from boiling points. The boundaries of the melt-vapor phase transition at atmospheric pressure and in vacuum of 2000 and 100 Pa are calculated on the basis of partial pressures. A phase diagram that includes vapor-liquid equilibrium fields whose boundaries allow us to assess the behavior of elements upon distillation fractioning is plotted. It is established that the separation of elements is possible at the first evaporation-condensation cycle. Complications can be caused by crystallization of a sulfur solid solution in tellurium.

  7. Bifurcation analysis and phase diagram of a spin-string model with buckled states.

    PubMed

    Ruiz-Garcia, M; Bonilla, L L; Prados, A

    2017-12-01

    We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. This complexity translates to the two-dimensional version of the model, whose numerical solution has been recently used to explain qualitatively the rippled to buckled transition observed in scanning tunneling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.

  8. Bifurcation analysis and phase diagram of a spin-string model with buckled states

    NASA Astrophysics Data System (ADS)

    Ruiz-Garcia, M.; Bonilla, L. L.; Prados, A.

    2017-12-01

    We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. This complexity translates to the two-dimensional version of the model, whose numerical solution has been recently used to explain qualitatively the rippled to buckled transition observed in scanning tunneling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.

  9. The p- T phase diagram of KNbO 3 by a dielectric constant measurement

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Endo, S.; Deguchi, K.; Ming, L. C.; Zou, G.

    2001-11-01

    A dielectric constant measurement was carried out on perovskite-type ferroelectrics KNbO 3 over a wide range of temperature under high pressure. The temperature- and pressure-dependence of the dielectric constant clarified that all temperatures of the transitions from the ferroelectric rhombohedral to orthorhombic, to tetragonal and then to the paraelectric cubic phase, decrease with increasing pressure. These results indicate that the orthorhombic-tetragonal transition takes place at 8.5 GPa and the tetragonal-cubic transition at 11 GPa, at room temperature.

  10. Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires.

    PubMed

    Sutter, Eli; Sutter, Peter

    2008-02-01

    We use transmission electron microscopy observations to establish the parts of the phase diagram of nanometer sized Au-Ge alloy drops at the tips of Ge nanowires (NWs) that determine their temperature-dependent equilibrium composition and, hence, their exchange of semiconductor material with the NWs. We find that the phase diagram of the nanoscale drop deviates significantly from that of the bulk alloy, which explains discrepancies between actual growth results and predictions on the basis of the bulk-phase equilibria. Our findings provide the basis for tailoring vapor-liquid-solid growth to achieve complex one-dimensional materials geometries.

  11. Shock Condition Forensics and Cryptic Phase Transformations from Crystallographic Orientation Relationships in Zircon

    NASA Astrophysics Data System (ADS)

    Timms, N. E.; Erickson, T. M.; Cavosie, A. J.; Pearce, M. A.; Reddy, S. M.; Zanetti, M.; Tohver, E.; Schmieder, M.; Nemchin, A. A.; Wittmann, A.

    2016-08-01

    We present an approach to constrain pressure and temperature conditions during impact events involving identification of cryptic histories of phase transformations from orientation relationships in shocked zircon, linked to new P-T phase diagrams.

  12. "Cooperative collapse" of the denatured state revealed through Clausius-Clapeyron analysis of protein denaturation phase diagrams.

    PubMed

    Tischer, Alexander; Machha, Venkata R; Rösgen, Jörg; Auton, Matthew

    2018-02-19

    Protein phase diagrams have a unique potential to identify the presence of additional thermodynamic states even when non-2-state character is not readily apparent from the experimental observables used to follow protein unfolding transitions. Two-state analysis of the von Willebrand factor A3 domain has previously revealed a discrepancy in the calorimetric enthalpy obtained from thermal unfolding transitions as compared with Gibbs-Helmholtz analysis of free energies obtained from the Linear Extrapolation Method (Tischer and Auton, Prot Sci 2013; 22(9):1147-60). We resolve this thermodynamic conundrum using a Clausius-Clapeyron analysis of the urea-temperature phase diagram that defines how ΔH and the urea m-value interconvert through the slope of c m versus T, (∂cm/∂T)=ΔH/(mT). This relationship permits the calculation of ΔH at low temperature from m-values obtained through iso-thermal urea denaturation and high temperature m-values from ΔH obtained through iso-urea thermal denaturation. Application of this equation uncovers sigmoid transitions in both cooperativity parameters as temperature is increased. Such residual thermal cooperativity of ΔH and the m-value confirms the presence of an additional state which is verified to result from a cooperative phase transition between urea-expanded and thermally-compact denatured states. Comparison of the equilibria between expanded and compact denatured ensembles of disulfide-intact and carboxyamidated A3 domains reveals that introducing a single disulfide crosslink does not affect the presence of the additional denatured state. It does, however, make a small thermodynamically favorable free energy (∼-13 ± 1 kJ/mol) contribution to the cooperative denatured state collapse transition as temperature is raised and urea concentration is lowered. The thermodynamics of this "cooperative collapse" of the denatured state retain significant compensations between the enthalpy and entropy contributions to the overall

  13. Phase diagram and thermal expansion measurements on the system URu 2–xFe xSi 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ran, Sheng; Wolowiec, Christian T.; Jeon, Inho

    Thermal expansion, electrical resistivity, magnetization, and specific heat measurements were performed on URu 2–xFe xSi 2 single crystals for various values of Fe concentration x in both the hidden-order (HO) and large-moment antiferromagnetic (LMAFM) regions of the phase diagram. Our results show that the paramagnetic (PM) to HO and LMAFM phase transitions are manifested differently in the thermal expansion coefficient. The uniaxial pressure derivatives of the HO/LMAFM transition temperature T0 change dramatically when crossing from the HO to the LMAFM phase. The energy gap also changes consistently when crossing the phase boundary. In addition, for Fe concentrations at x c≈more » 0.1, we observe two features in the thermal expansion upon cooling, one that appears to be associated with the transition from the PM to the HO phase and another one at lower temperature that may be due to the transition from the HO to the LMAFM phase.« less

  14. Phase diagram and thermal expansion measurements on the system URu 2–xFe xSi 2

    DOE PAGES

    Ran, Sheng; Wolowiec, Christian T.; Jeon, Inho; ...

    2016-11-08

    Thermal expansion, electrical resistivity, magnetization, and specific heat measurements were performed on URu 2–xFe xSi 2 single crystals for various values of Fe concentration x in both the hidden-order (HO) and large-moment antiferromagnetic (LMAFM) regions of the phase diagram. Our results show that the paramagnetic (PM) to HO and LMAFM phase transitions are manifested differently in the thermal expansion coefficient. The uniaxial pressure derivatives of the HO/LMAFM transition temperature T0 change dramatically when crossing from the HO to the LMAFM phase. The energy gap also changes consistently when crossing the phase boundary. In addition, for Fe concentrations at x c≈more » 0.1, we observe two features in the thermal expansion upon cooling, one that appears to be associated with the transition from the PM to the HO phase and another one at lower temperature that may be due to the transition from the HO to the LMAFM phase.« less

  15. Reentrant behaviors in the phase diagram of spin-1 planar ferromagnet with single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.; Mercaldo, M. T.

    2018-05-01

    We used the two-time Green function framework to investigate the role played by the easy-axis single-ion anisotropy on the phase diagram of (d > 2)-dimensional spin-1planar ferromagnets, which exhibit a magnetic field induced quantum phase transition. We tackled the problem using two different kind of approximations: the Anderson-Callen decoupling scheme and the Devlin approach. In the latter scheme, the exchange anisotropy terms in the equations of motion are treated at the Tyablikov decoupling level while the crystal field anisotropy contribution is handled exactly. The emerging key result is a reentrant structure of the phase diagram close to the quantum critical point, for certain values of the single-ion anisotropy parameter. We compare the results obtained within the two approximation schemes. In particular, we recover the same qualitative behavior. We show the phase diagram, close to the field-induced quantum critical point and the behavior of the susceptibility for different values of the single-ion anisotropy parameter, enhancing the differences between the two different scenarios (i.e. with and without reentrant behavior).

  16. The phase diagram of hydrogen in ultra thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jisrawi, N.M.; Ruckman, M.W.; Reisfeld, G.

    This paper, we discuss changes in the phase diagram of hydrogen in both bilayer (i.e. 200-2000 {Angstrom} Nb/100 {Angstrom} Pd on glass) and multilayer configurations. Comparison of x-ray diffraction, electrical resistivity and volumetric measurements of the films before and after hydrogen charging indicate that the phase equilibria between a correlated (high concentration) and a dilute phase of hydrogen in Nb is not sensitive to the number of layers in the films. On the other hand, the experimental methods show different behavior for 200 {Angstrom} thick Nb films and thicker (>400 {Angstrom}) Nb layers. The diffraction results also show that, whilemore » charging with hydrogen, the Nb layers mainly expand along the surface normal of the films, while the Pd layers expand in all directions equally, and transform to the bulk {alpha} phase.« less

  17. Phase diagram and criticality of the two-dimensional prisoner's dilemma model

    NASA Astrophysics Data System (ADS)

    Santos, M.; Ferreira, A. L.; Figueiredo, W.

    2017-07-01

    The stationary states of the prisoner's dilemma model are studied on a square lattice taking into account the role of a noise parameter in the decision-making process. Only first neighboring players—defectors and cooperators—are considered in each step of the game. Through Monte Carlo simulations we determined the phase diagrams of the model in the plane noise versus the temptation to defect for a large range of values of the noise parameter. We observed three phases: cooperators and defectors absorbing phases, and a coexistence phase between them. The phase transitions as well as the critical exponents associated with them were determined using both static and dynamical scaling laws.

  18. Short-range magnetic order, irreversibility and giant magnetoresistance near the triple points in the (x, T) magnetic phase diagram of ZrMn6Sn6-xGax

    NASA Astrophysics Data System (ADS)

    Mazet, T.; Ihou-Mouko, H.; Marêché, J.-F.; Malaman, B.

    2010-04-01

    We have studied pseudo-layered ZrMn6Sn6-xGax intermetallics (0.55 ≤ x ≤ 0.81) using magnetic, magnetoresistivity and powder neutron diffraction measurements. All the alloys studied have magnetic ordering temperatures in the 450-490 K temperature range. They present complex temperature-dependent partially disordered magnetic structures whose ferromagnetic component develops upon increasing the Ga content. ZrMn6Sn6-xGax alloys with x ≤ 0.69 are essentially collinear antiferromagnets at high-temperature and adopt antifan-like arrangements at low temperature. For x ≥ 0.75, the alloys order ferromagnetically and evolve to a fan-like structure upon cooling. The intermediate compositions (x = 0.71 and 0.73) present a canted fan-like order at high temperature and another kind of antifan-like arrangement at low temperature. The degree of short-range order tends to increase upon approaching the intermediate compositions. The (x, T) phase diagram contains two triple points (x ~ 0.70; T ~ 460 K and x ~ 0.74; T ~ 455 K), where the paramagnetic, an incommensurate and a commensurate phases meet, which possess some of the features of Lifshitz point. Irreversibilities manifest in the low-temperature magnetization curves at the antifan-fan or fan-ferromagnetic boundaries as well as inside the fan region. Giant magnetoresistance is observed, even above room temperature.

  19. High-pressure phase transition and phase diagram of gallium arsenide

    NASA Astrophysics Data System (ADS)

    Besson, J. M.; Itié, J. P.; Polian, A.; Weill, G.; Mansot, J. L.; Gonzalez, J.

    1991-09-01

    Under hydrostatic pressure, cubic GaAs-I undergoes phase transitions to at least two orthorhombic structures. The initial phase transition to GaAs-II has been investigated by optical-transmittance measurements, Raman scattering, and x-ray absorption. The structure of pressurized samples, which are retrieved at ambient, has been studied by x-ray diffraction and high-resolution diffraction microscopy. Various criteria that define the domain of stability of GaAs-I are examined, such as the occurrence of crystalline defects, the local variation in atomic coordination number, or the actual change in crystal structure. These are shown not to occur at the same pressure at 300 K, the latter being observable only several GPa above the actual thermodynamic instability pressure of GaAs-I. Comparison of the evolution of these parameters on increasing and decreasing pressure locates the thermodynamic transition region GaAs-I-->GaAs-II at 12+/-1.5 GPa and at 300 K that is lower than generally reported. The use of thermodynamic relations around the triple point, and of regularities in the properties of isoelectronic and isostructural III-V compounds, yields a phase diagram for GaAs which is consistent with this value.

  20. Phase diagram of the frustrated J 1 ‑ J 2 transverse field Ising model on the square lattice

    NASA Astrophysics Data System (ADS)

    Sadrzadeh, M.; Langari, A.

    2018-03-01

    We study the zero-temperature phase diagram of transverse field Ising model on the J 1 ‑ J 2 square lattice. In zero magnetic field, the model has a classical Néel phase for J 2/J 1 < 0.5 and an antiferromagnetic collinear phase for J 2/J 1 > 0.5. We incorporate harmonic fluctuations by using linear spin wave theory (LSWT) with single spin flip excitations above a magnetic order background and obtain the phase diagram of the model in this approximation. We find that harmonic quantum fluctuations of LSWT fail to lift the large degeneracy at J 2/J 1 = 0.5 and exhibit some inconsistent regions on the phase diagram. However, we show that anharmonic fluctuations of cluster operator approach (COA) resolve the inconsistency of the LSWT, which reveals a string-valence bond solid ordered phase for the highly frustrated region.

  1. P- V- T equation of state of CaAl4Si2O11 CAS phase

    NASA Astrophysics Data System (ADS)

    Gréaux, Steeve; Nishiyama, Norimasa; Kono, Yoshio; Irifune, Tetsuo; Gautron, Laurent

    2011-09-01

    The thermoelastic parameters of the CAS phase (CaAl4Si2O11) were examined by in situ high-pressure (up to 23.7 GPa) and high-temperature (up to 2,100 K) synchrotron X-ray diffraction, using a Kawai-type multi-anvil press. P- V data at room temperature fitted to a third-order Birch-Murnaghan equation of state (BM EOS) yielded: V 0,300 = 324.2 ± 0.2 Å3 and K 0,300 = 164 ± 6 GPa for K' 0,300 = 6.2 ± 0.8. With K' 0,300 fixed to 4.0, we obtained: V 0,300 = 324.0 ± 0.1 Å3 and K 0,300 = 180 ± 1 GPa. Fitting our P- V- T data with a modified high-temperature BM EOS, we obtained: V 0,300 = 324.2 ± 0.1 Å3, K 0,300 = 171 ± 5 GPa, K' 0,300 = 5.1 ± 0.6 (∂ K 0 ,T /∂ T) P = -0.023 ± 0.006 GPa K-1, and α0 ,T = 3.09 ± 0.25 × 10-5 K-1. Using the equation of state parameters of the CAS phase determined in the present study, we calculated a density profile of a hypothetical continental crust that would contain ~10 vol% of CaAl4Si2O11. Because of the higher density compared with the coexisting minerals, the CAS phase is expected to be a plunging agent for continental crust subducted in the transition zone. On the other hand, because of the lower density compared with lower mantle minerals, the CAS phase is expected to remain buoyant in the lowermost part of the transition zone.

  2. Phase diagram of the CF{sub 4} monolayer and bilayer on graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Petros; Hess, George B., E-mail: gbh@virginia.edu

    2014-05-21

    We report an experimental study of physisorbed monolayers and bilayers of CF{sub 4} on graphite using infrared reflection absorption spectroscopy supplemented by ellipsometry. The symmetric C–F stretch mode ν{sub 3} near 1283 cm{sup −1} in the gas is strongly blue shifted in the film by dynamic dipole coupling. This blue shift provides a very sensitive measure of the inter-molecular spacing in the monolayer and, less directly, in the bilayer. We find that important corrections are necessary to the volumetric coverage scales used in previous heat capacity and x-ray diffraction studies of this system. This requires quantitative and some qualitative changesmore » to the previously proposed phase diagram. We find evidence for a new phase transition in the middle of the hexagonal incommensurate region and construct new phase diagrams in both the variables coverage-temperature and chemical potential-temperature. We determine the compressibility and thermal expansion in the low-pressure hexagonal incommensurate phase and values for the entropy change in several phase transitions. Below about 55 K there is evidence of solution of up to 7% of an impurity, most likely CO, in our monolayer but not the bilayer film.« less

  3. Understanding the bond-energy, hardness, and adhesive force from the phase diagram via the electron work function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Hao; Huang, Xiaochen; Li, Dongyang, E-mail: dongyang.li@ualberta.ca

    2014-11-07

    Properties of metallic materials are intrinsically determined by their electron behavior. However, relevant theoretical treatment involving quantum mechanics is complicated and difficult to be applied in materials design. Electron work function (EWF) has been demonstrated to be a simple but fundamental parameter which well correlates properties of materials with their electron behavior and could thus be used to predict material properties from the aspect of electron activities in a relatively easy manner. In this article, we propose a method to extract the electron work functions of binary solid solutions or alloys from their phase diagrams and use this simple approachmore » to predict their mechanical strength and surface properties, such as adhesion. Two alloys, Fe-Ni and Cu-Zn, are used as samples for the study. EWFs extracted from phase diagrams show same trends as experimentally observed ones, based on which hardness and surface adhesive force of the alloys are predicted. This new methodology provides an alternative approach to predict material properties based on the work function, which is extractable from the phase diagram. This work may also help maximize the power of phase diagram for materials design and development.« less

  4. Aggregation of flexible polyelectrolytes: Phase diagram and dynamics.

    PubMed

    Tom, Anvy Moly; Rajesh, R; Vemparala, Satyavani

    2017-10-14

    Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.

  5. Phase diagrams of block copolymer melts by dissipative particle dynamics simulations

    NASA Astrophysics Data System (ADS)

    Gavrilov, Alexey A.; Kudryavtsev, Yaroslav V.; Chertovich, Alexander V.

    2013-12-01

    Phase diagrams for monodisperse and polydisperse diblock copolymer melts and a random multiblock copolymer melt are constructed using dissipative particle dynamics simulations. A thorough visual analysis and calculation of the static structure factor in several hundreds of points at each of the diagrams prove the ability of mesoscopic molecular dynamics to predict the phase behavior of polymer systems as effectively as the self-consistent field-theory and Monte Carlo simulations do. It is demonstrated that the order-disorder transition (ODT) curve for monodisperse diblocks can be precisely located by a spike in the dependence of the mean square pressure fluctuation on χN, where χ is the Flory-Huggins parameter and N is the chain length. For two other copolymer types, the continuous ODTs are observed. Large polydispersity of both blocks obeying the Flory distribution in length does not shift the ODT curve but considerably narrows the domains of the cylindrical and lamellar phases partially replacing them with the wormlike micelle and perforated lamellar phases, respectively. Instead of the pure 3d-bicontinuous phase in monodisperse diblocks, which could be identified as the gyroid, a coexistence of the 3d phase and cylindrical micelles is detected in polydisperse diblocks. The lamellar domain spacing D in monodisperse diblocks follows the strong-segregation theory prediction, D/N1/2 ˜ (χN)1/6, whereas in polydisperse diblocks it is almost independent of χN at χN < 100. Completely random multiblock copolymers cannot form ordered microstructures other than lamellas at any composition.

  6. Modeling of metastable phase formation diagrams for sputtered thin films.

    PubMed

    Chang, Keke; Music, Denis; To Baben, Moritz; Lange, Dennis; Bolvardi, Hamid; Schneider, Jochen M

    2016-01-01

    A method to model the metastable phase formation in the Cu-W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu-W and Cu-V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering.

  7. Phase diagram and high degeneracy points for generic anisotropic exchange on the garnet lattice

    NASA Astrophysics Data System (ADS)

    Andreanov, Alexei; McClarty, Paul

    Garnet magnets with chemical formula RE3Ga5O12 where RE is a rare earth ion have properties that are determined by a combination of geometrical frustration and strong spin-orbit coupling. The former arises from the RE structure which consists of two interpenetrating hyperkagome lattices while the latter leads, in general, to an anisotropy in the magnetic exchange. We systematically explore and describe the full phase diagram for the case of all nearest-neighbor interactions compatible with lattice symmetries and consider the role of fluctuations and further neighbor couplings around high degeneracy points in the phase diagram. AA was supported by Project Code(IBS-R024-D1).

  8. Insights into the phase diagram of bismuth ferrite from quasiharmonic free-energy calculations

    NASA Astrophysics Data System (ADS)

    Cazorla, Claudio; Iñiguez, Jorge

    2013-12-01

    We have used first-principles methods to investigate the phase diagram of multiferroic bismuth ferrite (BiFeO3 or BFO), revealing the energetic and vibrational features that control the occurrence of various relevant structures. More precisely, we have studied the relative stability of four low-energy BFO polymorphs by computing their free energies within the quasiharmonic approximation, introducing a practical scheme that allows us to account for the main effects of spin disorder. As expected, we find that the ferroelectric ground state of the material (with R3c space group) transforms into an orthorhombic paraelectric phase (Pnma) upon heating. We show that this transition is not significantly affected by magnetic disorder, and that the occurrence of the Pnma structure relies on its being vibrationally (although not elastically) softer than the R3c phase. We also investigate a representative member of the family of nanotwinned polymorphs recently predicted for BFO [S. Prosandeev et al., Adv. Funct. Mater. 23, 234 (2013), 10.1002/adfm.201201467] and discuss their possible stabilization at the boundaries separating the R3c and Pnma regions in the corresponding pressure-temperature phase diagram. Finally, we elucidate the intriguing case of the so-called supertetragonal phases of BFO: Our results explain why such structures have never been observed in the bulk material, despite their being stable polymorphs of very low energy. Quantitative comparison with experiment is provided whenever possible, and the relative importance of various physical effects (zero-point motion, spin fluctuations, thermal expansion) and technical features (employed exchange-correlation energy density functional) is discussed. Our work attests the validity and usefulness of the quasiharmonic scheme to investigate the phase diagram of this complex oxide, and prospective applications are discussed.

  9. Global Phase Diagram of a Three-Dimensional Dirty Topological Superconductor

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Alavirad, Yahya; Sau, Jay D.

    2017-06-01

    We investigate the phase diagram of a three-dimensional, time-reversal symmetric topological superconductor in the presence of charge impurities and random s -wave pairing. Combining complimentary field theoretic and numerical methods, we show that the quantum phase transition between two topologically distinct paired states (or thermal insulators), described by thermal Dirac semimetal, remains unaffected in the presence of sufficiently weak generic randomness. At stronger disorder, however, these two phases are separated by an intervening thermal metallic phase of diffusive Majorana fermions. We show that across the insulator-insulator and metal-insulator transitions, normalized thermal conductance displays single parameter scaling, allowing us to numerically extract the critical exponents across them. The pertinence of our study in strong spin-orbit coupled, three-dimensional doped narrow gap semiconductors, such as CuxBi2Se3 , is discussed.

  10. Light nuclei production as a probe of the QCD phase diagram

    NASA Astrophysics Data System (ADS)

    Sun, Kai-Jia; Chen, Lie-Wen; Ko, Che Ming; Pu, Jie; Xu, Zhangbu

    2018-06-01

    It is generally believed that the quark-hadron transition at small values of baryon chemical potentials μB is a crossover but changes to a first-order phase transition with an associated critical endpoint (CEP) as μB increases. Such a μB-dependent quark-hadron transition is expected to result in a double-peak structure in the collision energy dependence of the baryon density fluctuation in heavy-ion collisions with one at lower energy due to the spinodal instability during the first-order phase transition and another at higher energy due to the critical fluctuations in the vicinity of the CEP. By analyzing the data on the p, d and 3H yields in central heavy-ion collisions within the coalescence model for light nuclei production, we find that the relative neutron density fluctuation Δρn = 〈(δρn) 2 〉 /〈ρn 〉 2 at kinetic freeze-out indeed displays a clear peak at √{sNN } = 8.8GeV and a possible strong re-enhancement at √{sNN } = 4.86GeV. Our findings thus provide a strong support for the existence of a first-order phase transition at large μB and its critical endpoint at a smaller μB in the temperature versus baryon chemical potential plane of the QCD phase diagram.

  11. Metamorphic reprocessing of a serpentinized carbonate-bearing peridotite after detachment from the mantle wedge: A P-T path constrained from textures and phase diagrams in the system CaO-MgO-Al 2O 3-SiO 2-CO 2-H 2O

    NASA Astrophysics Data System (ADS)

    Mposkos, E.; Baziotis, I.; Proyer, A.

    2010-08-01

    In the central Rhodope mountains of Greece a carbonate-bearing metaperidotite lens ˜ 200 × 500 m in size crops out as part of the high- to ultrahigh-pressure metamorphic Upper Sidironero Complex ˜ 500 m SE of the Gorgona Village, north of Xanthi town. It is composed primarily of coarse grained (3-20 mm in size) olivine and orthopyroxene, medium grained clinohumite and medium to fine grained tremolite, chlorite, dolomite, magnesite, talc, antigorite and various spinel phases. Whole-rock chemistry, mineral textures and compositions, and phase diagram calculations show that the metaperidotite was subjected to a prograde HP metamorphism, isofacial with the surrounding migmatitic gneisses, metapelites and amphibolites. The prograde character of metamorphism is demonstrated by inclusions of talc, antigorite, chlorite, dolomite, magnesite and Ti-clinohumite in ferrit-chromite, olivine, and orthopyroxene, as well as of olivine in orthopyroxene, and by the typical change in composition of zoned spinel minerals from ferrit-chromite in the core to chromian spinel at the rim. The prograde path is characterized by successive growth of amphibole, Ti-clinohumite, olivine and orthopyroxene, followed by the breakdown of Ti-clinohumite to olivine + Mg-ilmenite and of chlorite to olivine + spinel, probably during exhumation. The construction of a partial petrogenetic P- T grid in the system CaO-MgO-Al 2O 3-SiO 2-CO 2-H 2O (CMASCH) for Ca-poor ultramafic bulk compositions has proven highly useful for the reconstruction of the metamorphic evolution and a P- T path, indicating that the use of univariant reactions in mixed volatile systems is highly warranted. The P- T path is clearly constrained to pressures below 1.5-1.7 GPa by the absence of clinopyroxene. These pressures are slightly lower than those recorded in the closely associated Jurassic eclogites and much lower than those recorded in the diamond-bearing gneisses 5 km to the south in the same tectonic unit. The carbonate

  12. Magnetic phase diagram of underdoped YBa 2 Cu 3 O y inferred from torque magnetization and thermal conductivity

    DOE PAGES

    Yu, Fan; Hirschberger, Max; Loew, Toshinao; ...

    2016-10-24

    We obtain the magnetic phase diagram in the underdoped cuprate YBa2Cu3Oy using torque magnetometry at temperatures 0.3–70 K and magnetic fields up to 45 T. At low fields, vortices (quantized flux tubes) form a vortex solid that is strongly pinned to the lattice. At large fields, melting of the solid to a vortex liquid produces nonzero dissipation. However, the vortex liquid persists to fields above 41 T. We have also mapped out the “transition” fields at which the charge-density–wave state (observed in X-ray diffraction experiments) becomes stable. Our results show that, in intense fields, superconductivity adjusts to coexist with themore » charge-density wave, but the Cooper pairs, which define the superconducting fluid, survive to fields well above 41 T.« less

  13. The nucleation rate surfaces design over diagram of phase equilibria and their applications for computational chemistry

    NASA Astrophysics Data System (ADS)

    Anisimov, M. P.

    2016-12-01

    One can find in scientific literature a pretty fresh idea of the nucleation rate surfaces design over the diagrams of phase equilibria. That idea looks like profitable for the nucleation theory development and for various practical applications where predictions of theory have no high enough accuracy for today. The common thermodynamics has no real ability to predict parameters of the first order phase transition. Nucleation experiment can be provided in very local nucleation conditions even the nucleation takes place from the critical line (in two-component case) down to the absolute zero temperature limit and from zero nucleation rates at phase equilibria up to the spinodal conditions. Theory predictions have low reliability as a rule. The computational chemistry has chance to make solution of that problem easier when a set of the used axiomatic statements will adapt enough progressive assumptions [1]. Semiempirical design of the nucleation rate surfaces over diagrams of phase equilibria have a potential ability to provide a reasonable quality information on nucleation rate for each channel of nucleation. Consideration and using of the nucleation rate surface topologies to optimize synthesis of a given phase of the target material can be available when data base on nucleation rates over diagrams of phase equilibria will be created.

  14. Pressure-temperature gelatinization phase diagram of starch: An in situ Fourier transform infrared study.

    PubMed

    Rubens, P; Heremans, K

    2000-12-01

    The gelatinization of rice starch is reported as a function of temperature and pressure from the changes in the ir spectrum. The diagram that is observed is reminiscent of those obtained for the denaturation of proteins and the phase separation observed from the cloud point for several water soluble synthetic polymers. It is proposed that the reentrant shape of the diagram for starch is not only due to hydrogen bonding but also to the imperfect packing of amylose and amylopectin chains in the starch granule. The influence of pressure and temperature on thermodynamic parameters leading to this diagram is discussed. Copyright 2000 John Wiley & Sons, Inc.

  15. Determination of the continuous cooling transformation diagram of a high strength low alloyed steel

    NASA Astrophysics Data System (ADS)

    Kang, Hun Chul; Park, Bong June; Jang, Ji Hun; Jang, Kwang Soon; Lee, Kyung Jong

    2016-11-01

    The continuous cooling transformation diagram of a high strength low alloyed steel was determined by a dilatometer and microscopic analysis (OM, SEM) as well as thermodynamic analysis. As expected, Widmanstätten ferrite, bainite and martensite coexisted for most cooling rates, which made it difficult to determine the transformation kinetics of individual phases. However, peaks were clearly observed in the dilatometric {d( {LVDT} )}/{dT} curves. By overlapping the {d( {LVDT} )}/{dT} curves, which were determined using various cooling rates, peaks were separated and the peak rate temperatures, as well as the temperature at the start of transformation (5%) and the end of transformation (95%) of an individual phase, were determined. A SEM analysis was also conducted to identify which phase existed and to quantify the volume fraction of each phase. It was confirmed that the additional {d( {LVDT} )}/{dT} curve analysis described the transformation behavior more precisely than the conventional continuous cooling transformation diagram, as determined by the volume measured from the microstructure analysis.

  16. Martensitic transformation and phase diagram in ternary Co-V-Ga Heusler alloys

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Nagashima, Akihide; Nagasako, Makoto; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2017-03-01

    We report the martensitic transformation behavior in Co-V-Ga Heusler alloys. Thermoanalysis and thermomagnetization measurements were conducted to observe the martensitic transformation. By using a transmission electron microscope and an in situ X-ray diffractometer, martensitic transformation was found to occur from the L21 Heusler parent phase to the D022 martensite phase. Phase diagrams were determined for two pseudo-binary sections where martensitic transformation was detected. Magnetic properties, including the Curie temperatures and spontaneous magnetization of the parent phase, were also investigated. The magnetic properties showing behaviors different from those of NiMn-based alloys were found.

  17. Phase Diagram of Spin-1/2 Alternating Ferromagnetic Chain with XY-Like Anisotropy

    NASA Astrophysics Data System (ADS)

    Yoshida, Satoru; Okamoto, Kiyomi

    1989-12-01

    By the use of the numerical method we investigate the ground state phase diagram of spin-1/2 alternating ferromagnetic chain. We numerically diagonalized the Hamiltonian of finite systems (up to 20 spins) and analyzed the numerical data for various physical quantities using the finite size scaling and the extrapolation methods. The ground state is either the effective singlet (ES) state or the spin fluid (SF) state depending on the value of the alternation parameter δ and the anisotropy parameter \\varDelta{\\equiv}Jz/J\\bot(\\varDelta{=}{-}1 for the isotropic ferromagnetic case and \\varDelta{=}0 for the XY case). The phase diagram obtained in this work strongly stupports the theoretical studies of Kohmoto-den Nijs-Kadanoff and Okamoto-Sugiyama. We also discuss the critical properties near the ES-SF transition line.

  18. Ratioed scatter diagrams - An erotetic method for phase identification on complex surfaces using scanning Auger microscopy

    NASA Technical Reports Server (NTRS)

    Browning, R.

    1984-01-01

    By ratioing multiple Auger intensities and plotting a two-dimensional occupational scatter diagram while digitally scanning across an area, the number and elemental association of surface phases can be determined. This can prove a useful tool in scanning Auger microscopic analysis of complex materials. The technique is illustrated by results from an anomalous region on the reaction zone of a SiC/Ti-6Al-4V metal matrix composite material. The anomalous region is shown to be a single phase associated with sulphur and phosphorus impurities. Imaging of a selected phase from the ratioed scatter diagram is possible and may be a useful technique for presenting multiple scanning Auger images.

  19. Hall-plot of the phase diagram for Ba(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Iida, Kazumasa; Grinenko, Vadim; Kurth, Fritz; Ichinose, Ataru; Tsukada, Ichiro; Ahrens, Eike; Pukenas, Aurimas; Chekhonin, Paul; Skrotzki, Werner; Teresiak, Angelika; Hühne, Ruben; Aswartham, Saicharan; Wurmehl, Sabine; Mönch, Ingolf; Erbe, Manuela; Hänisch, Jens; Holzapfel, Bernhard; Drechsler, Stefan-Ludwig; Efremov, Dmitri V.

    2016-06-01

    The Hall effect is a powerful tool for investigating carrier type and density. For single-band materials, the Hall coefficient is traditionally expressed simply by , where e is the charge of the carrier, and n is the concentration. However, it is well known that in the critical region near a quantum phase transition, as it was demonstrated for cuprates and heavy fermions, the Hall coefficient exhibits strong temperature and doping dependencies, which can not be described by such a simple expression, and the interpretation of the Hall coefficient for Fe-based superconductors is also problematic. Here, we investigate thin films of Ba(Fe1-xCox)2As2 with compressive and tensile in-plane strain in a wide range of Co doping. Such in-plane strain changes the band structure of the compounds, resulting in various shifts of the whole phase diagram as a function of Co doping. We show that the resultant phase diagrams for different strain states can be mapped onto a single phase diagram with the Hall number. This universal plot is attributed to the critical fluctuations in multiband systems near the antiferromagnetic transition, which may suggest a direct link between magnetic and superconducting properties in the BaFe2As2 system.

  20. Phase Diagram of Quaternary System NaBr-KBr-CaBr2-H2O at 323 K

    NASA Astrophysics Data System (ADS)

    Cui, Rui-Zhi; Wang, Wei; Yang, Lei; Sang, Shi-Hua

    2018-03-01

    The phase equilibria in the system NaBr-KBr-CaBr2-H2O at 323 K were studied using the isothermal dissolution equilibrium method. Using the experimental solubilities of salts data, phase diagram was constructed. The phase diagram have two invariant points, five univariant curves, and four crystallization fields. The equilibrium solid phases in the system are NaBr, NaBr · 2H2O, KBr, and CaBr2 · 4H2O. The solubilities of salts in the system at 323 K were calculated by Pitzer's equation. There is shown that the calculated solubilities agree well with experimental data.

  1. Phase diagram and polarization of stable phases of (Ga1- x In x )2O3

    NASA Astrophysics Data System (ADS)

    Maccioni, Maria Barbara; Fiorentini, Vincenzo

    2016-04-01

    The full phase diagram of (Ga1- x In x )2O3 is obtained theoretically. The phases competing for the ground state are monoclinic β (low x), hexagonal (x ˜ 0.5), and bixbyite (large x). Three disconnected mixing regions interlace with two distinct phase-separation regions, and at x ˜ 0.5, the coexistence of hexagonal and β alloys with phase-separated binary components is expected. We also explore the permanent polarization of the phases, but none of them are polar. On the other hand, we find that ɛ-Ga2O3, which was stabilized in recent experiments, is pyroelectric with a large polarization and piezoelectric coupling, and could be used to produce high-density electron gases at interfaces.

  2. Reinvestigation of the Cd–Gd phase diagram

    PubMed Central

    Reichmann, Thomas L.; Ipser, Herbert

    2014-01-01

    The complete Cd–Gd equilibrium phase diagram was investigated by a combination of powder-XRD, SEM and DTA. All previously reported phases, i.e., CdGd, Cd2Gd, Cd3Gd, Cd45Gd11, Cd58Gd13, and Cd6Gd, could be confirmed. In addition, a new intermetallic compound with a stoichiometric composition corresponding to “Cd8Gd” was found to exist. It was obtained that “Cd8Gd” decomposes peritectically at 465 °C. Homogeneity ranges of all intermetallic compounds were determined at distinct temperatures. In addition, the maximum solubilities of Cd in the low- and high-temperature modifications of Gd were determined precisely as 4.6 and 22.6 at.%, respectively. All invariant reaction temperatures (with the exception of the formation of Cd58Gd13) as well as liquidus temperatures were determined, most probably, Cd58Gd13 is formed in a peritectoid reaction from Cd45Gd11 and Cd6Gd at a temperature below 700 °C. PMID:25544803

  3. Towards a phase diagram for spin foams

    NASA Astrophysics Data System (ADS)

    Delcamp, Clement; Dittrich, Bianca

    2017-11-01

    One of the most pressing issues for loop quantum gravity and spin foams is the construction of the continuum limit. In this paper, we propose a systematic coarse-graining scheme for three-dimensional lattice gauge models including spin foams. This scheme is based on the concept of decorated tensor networks, which have been introduced recently. Here we develop an algorithm applicable to gauge theories with non-Abelian groups, which for the first time allows for the application of tensor network coarse-graining techniques to proper spin foams. The procedure deals efficiently with the large redundancy of degrees of freedom resulting from gauge invariance. The algorithm is applied to 3D spin foams defined on a cubical lattice which, in contrast to a proper triangulation, allows for non-trivial simplicity constraints. This mimics the construction of spin foams for 4D gravity. For lattice gauge models based on a finite group we use the algorithm to obtain phase diagrams, encoding the continuum limit of a wide range of these models. We find phase transitions for various families of models carrying non-trivial simplicity constraints.

  4. Electronic Properties of a TMTTF-Family Salt, (TMTTF)2TaF6: New Member Located on the Modified Generalized Phase-Diagram

    NASA Astrophysics Data System (ADS)

    Iwase, Fumitatsu; Sugiura, Koichi; Furukawa, Ko; Nakamura, Toshikazu

    2009-10-01

    A new TMTTF (tetramethyl-tetrathia-fulvalene)-family salt, (TMTTF)2TaF6, which has the largest octahedral (Oh) symmetry counter anion among the various salts in the TMTTF family, was prepared. X-ray, static magnetic susceptibility, electron spin resonance (ESR) and nuclear magnetic resonance (NMR) measurements were carried out in order to investigate the electronic state of (TMTTF)2TaF6. The unit-cell volume of (TMTTF)2TaF6 is larger than that of (TMTTF)2MF6 (M=P, As, and Sb). (TMTTF)2TaF6 shows the highest charge-ordering phase transition temperature (TCO˜ 175 K) among TMTTF salts with the Oh-symmetry counter anion. These facts indicate that (TMTTF)2TaF6 is located on the most negative side in the generalized phase-diagram for TMTCF family salts. (TMTTF)2TaF6 undergoes an antiferromagnetic transition around 9 K. It turned out the phase diagram needs to be modified.

  5. Critical Behavior and Macroscopic Phase Diagram of the Monoaxial Chiral Helimagnet Cr 1/3NbS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, Eleanor M.; Das, Raja; Li, Ling

    2017-07-26

    Cr 1/3NbS 2 is a unique example of a hexagonal chiral helimagnet with high crystalline anisotropy, and has generated growing interest for a possible magnetic field control of the incommensurate spin spiral. Here, we construct a comprehensive phase diagram based on detailed magnetization measurements of a high quality single crystal of Cr 1/3NbS 2 over three magnetic field regions. An analysis of the critical properties in the forced ferromagnetic region yields 3D Heisenberg exponents β = 0.3460 ± 0.040, γ = 1.344 ± 0.002, and T C = 130.78 K ± 0.044, which are consistent with the localized nature themore » of Cr 3+ moments and suggest short-range ferromagnetic interactions. We exploit the temperature and magnetic field dependence of magnetic entropy change (ΔS M) to accurately map the nonlinear crossover to the chiral soliton lattice regime from the chiral helimagnetic phase. Our observations in the low field region are consistent with the existence of chiral ordering in a temperature range above the Curie temperature, T C < T < T*, where a first-order transition has been previously predicted. An analysis of the universal behavior of ΔS M(T,H) experimentally demonstrates for the first time the first-order nature of the onset of chiral ordering.« less

  6. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis.

    PubMed

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  7. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis

    NASA Astrophysics Data System (ADS)

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  8. The ammonia-water phase diagram and its implications for icy satellites

    NASA Technical Reports Server (NTRS)

    Johnson, M. L.; Nicol, M.

    1986-01-01

    A Holzapfel-type diamond anvil cell is used to determine the NH3 - H2O phase diagram in the region from 0 to 33 mole percent NH3, 240 to 370 K, and 0 to 5 GPa. The following phases were identified: liquid; water ices Ih, III, V, VI, VII, and VIII; ammonia monohydrate, NH3.H2O; and ammonia dihydrate NH3.2H2O. Ammonia dihydrate becomes prominent at moderate pressures (less than 1 GPa), with planetologically significant implications, including the possibility of layering in Titan's magma ocean.

  9. The ammonia-water phase diagram and its implications for icy satellites

    NASA Technical Reports Server (NTRS)

    Johnson, Mary L.; Nicol, Malcolm

    1987-01-01

    A Holzapfel-type diamond anvil cell is used to determine the NH3 - H2O phase diagram in the region from 0 to 33 mole percent NH3, 240 to 370 K, and 0 to 5 GPa. The following phases were identified: liquid; water ices Ih, III, V, VI, VII, and VIII; ammonia monohydrate, NH3.H2O; and ammonia dihydrate NH3.2H2O. Ammonia dihydrate becomes prominent at moderate pressures (less than 1 GPa), with planetologically significant implications, including the possibility of layering in Titan's magma ocean.

  10. Phase diagrams of nonionic foam films: construction by means of disjoining pressure versus thickness curves.

    PubMed

    Stubenrauch, Cosima; Kashchiev, Dimo; Strey, Reinhard

    2004-12-01

    The thickness h of foam films can be measured as a function of the disjoining pressure Pi using a thin film pressure balance. Experimental Pi-h curves of foam films stabilized with nonionic surfactants measured at various concentrations resemble the p-V(m) isotherms of real gases measured at various temperatures (p is the pressure and V(m) is the molar volume of the gas). This observation led us to adopt the van der Waals approach for describing real gases to thin foam films, where the thickness h takes the role of V(m) and the disjoining pressure Pi replaces the ordinary pressure p. Our analysis results in a phase diagram for a thin foam film with spinodal, binodal as well as a critical point. The thicker common black film corresponds to the gas phase and the compact Newton black film for which the two surfaces are in direct contact corresponds to the dense liquid. We show that the tuning parameter for the phase behavior of the film is the surface charge density, which means that Pi-h curves should not be referred to as isotherms. In addition to the equilibrium properties the driving force for the phase transition from a common black film to a Newton black film or vice versa is calculated. We discuss how this transition can be controlled experimentally.

  11. Comparison of forcefields for molecular dynamics simulations of hydrocarbon phase diagrams

    NASA Astrophysics Data System (ADS)

    Pisarev, V. V.; Zakharov, S. A.

    2018-01-01

    Molecular dynamics calculations of vapor-liquid equilibrium of methane-n-butane mixture are performed. Three force-field models are tested: the TraPPE-UA united-atom forcefield, LOPLS-AA all-atom forcefield and a fully flexible version of the TraPPE-EH all-atom forcefield. All those forcefields reproduce well the composition of liquid phase in the mixture as a function of pressure at the 300 K isotherm, while significant discrepancies from experimental data are observed in the saturated vapor compositions with OPLS-AA and TraPPE-UA forcefields. The best agreement with the experimental phase diagram is found with TraPPE-EH forcefield which accurately reproduces compositions of both liquid and vapor phase. This forcefield can be recommended for simulation of two-phase hydrocarbon systems.

  12. Orientation dependence of phase diagrams and physical properties in epitaxial Ba0.6Sr0.4TiO3 films

    NASA Astrophysics Data System (ADS)

    Qiu, J. H.; Zhao, T. X.; Chen, Z. H.; Yuan, N. Y.; Ding, J. N.

    2018-04-01

    Orientation dependence of phase diagrams and physical properties of Ba0.6Sr0.4TiO3 films are investigated by using a phenomenological Landau-Devonshire theory. New ferroelectric phases, such as the tetragonal a1 phase and the orthorhombic a2 c phase in (110) oriented film and the monoclinic MA phase in (111) oriented film, appear in the "misfit strain-temperature" phase diagrams as compared with (001) oriented film. Moreover, the phase diagrams of (110) and (111) oriented films are more complex than that of (001) oriented film due to the nonlinear coupling terms appeared in the thermodynamic potential. The dielectric and piezoelectric properties largely depend on the misfit strain and orientation. (111) oriented film has the better piezoelectric property than (110) oriented film. Furthermore, the compressive misfit strain is prone to induce the larger piezoelectric property than tensile misfit strain.

  13. Effects of external mechanical loading on phase diagrams and dielectric properties in epitaxial ferroelectric thin films with anisotropic in-plane misfit strains

    NASA Astrophysics Data System (ADS)

    Qiu, J. H.; Jiang, Q.

    2007-02-01

    A phenomenological Landau-Devonshine theory is used to describe the effects of external mechanical loading on equilibrium polarization states and dielectric properties in epitaxial ferroelectric thin films grown on dissimilar orthorhombic substrates which induce anisotropic misfit strains in the film plane. The calculation focuses on single-domain perovskite BaTiO3 and PbTiO3 thin films on the assumption that um1=-um2. Compared with the phase diagrams without external loading, the characteristic features of "misfit strain-misfit strain" phase diagrams at room temperature are the presence of paraelectric phase and the strain-induced ferroelectric to paraelectric phase transition. Due to the external loading, the "misfit strain-stress" and "stress-temperature" phase diagrams also have drastic changes, especially for the vanishing of paraelectric phase in "misfit strain-stress" phase map and the appearance of possible ferroelectric phases. We also investigate the dielectric properties and the tunability of both BaTiO3 and PbTiO3 thin films. We find that the external stress dependence of phase diagrams and dielectric properties largely depends on strain anisotropy as well.

  14. Phase diagram and magnetic relaxation phenomena in Cu2OSeO3

    NASA Astrophysics Data System (ADS)

    Qian, F.; Wilhelm, H.; Aqeel, A.; Palstra, T. T. M.; Lefering, A. J. E.; Brück, E. H.; Pappas, C.

    2016-08-01

    We present an investigation of the magnetic-field-temperature phase diagram of Cu2OSeO3 based on dc magnetization and ac susceptibility measurements covering a broad frequency range of four orders of magnitude, from very low frequencies reaching 0.1 Hz up to 1 kHz. The experiments were performed in the vicinity of Tc=58.2 K and around the skyrmion lattice A phase. At the borders between the different phases the characteristic relaxation times reach several milliseconds and the relaxation is nonexponential. Consequently the borders between the different phases depend on the specific criteria and frequency used and an unambiguous determination is not possible.

  15. Evaluating the phase diagram of superconductors with asymmetric spin populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannarelli, Massimo; Nardulli, Giuseppe; Ruggieri, Marco

    2006-09-15

    The phase diagram of a nonrelativistic fermionic system with imbalanced state populations interacting via a short-range S-wave attractive interaction is analyzed in the mean-field approximation. We determine the energetically favored state for different values of the mismatch between the two Fermi spheres in the weak- and strong-coupling regimes considering both homogeneous and nonhomogeneous superconductive states. We find that the homogeneous superconductive phase persists for values of the population imbalance that increase with increasing coupling strength. In the strong-coupling regime and for large population differences the energetically stable homogeneous phase is characterized by one gapless mode. We also find that themore » inhomogeneous superconductive phase characterized by the condensate {delta}(x){approx}{delta} exp(iq{center_dot}x) is energetically favored in a range of values of the chemical-potential mismatch that shrinks to zero in the strong-coupling regime.« less

  16. Phase diagram of a symmetric electron–hole bilayer system: a variational Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Sharma, Rajesh O.; Saini, L. K.; Prasad Bahuguna, Bhagwati

    2018-05-01

    We study the phase diagram of a symmetric electron–hole bilayer system at absolute zero temperature and in zero magnetic field within the quantum Monte Carlo approach. In particular, we conduct variational Monte Carlo simulations for various phases, i.e. the paramagnetic fluid phase, the ferromagnetic fluid phase, the anti-ferromagnetic Wigner crystal phase, the ferromagnetic Wigner crystal phase and the excitonic phase, to estimate the ground-state energy at different values of in-layer density and inter-layer spacing. Slater–Jastrow style trial wave functions, with single-particle orbitals appropriate for different phases, are used to construct the phase diagram in the (r s , d) plane by finding the relative stability of trial wave functions. At very small layer separations, we find that the fluid phases are stable, with the paramagnetic fluid phase being particularly stable at and the ferromagnetic fluid phase being particularly stable at . As the layer spacing increases, we first find that there is a phase transition from the ferromagnetic fluid phase to the ferromagnetic Wigner crystal phase when d reaches 0.4 a.u. at r s   =  20, and before there is a return to the ferromagnetic fluid phase when d approaches 1 a.u. However, for r s   <  20 and a.u., the excitonic phase is found to be stable. We do not find that the anti-ferromagnetic Wigner crystal is stable over the considered range of r s and d. We also find that as r s increases, the critical layer separations for Wigner crystallization increase.

  17. Experimental Investigation of the Cd-Pr Phase Diagram

    PubMed Central

    Reichmann, Thomas L.; Effenberger, Herta S.; Ipser, Herbert

    2014-01-01

    The complete Cd-Pr equilibrium phase diagram was investigated with a combination of powder-XRD, SEM and DTA. All intermetallic compounds within this system, already reported in literature, could be confirmed: CdPr, Cd2Pr, Cd3Pr, Cd45Pr11, Cd58Pr13, Cd6Pr and Cd11Pr. The corresponding phase boundaries were determined at distinct temperatures. The homogeneity range of the high-temperature allotropic modification of Pr could be determined precisely and a limited solubility of 22.1 at.% Cd was derived. Additionally, single-crystal X-ray diffraction was employed to investigate structural details of Cd2Pr; it is isotypic to the AlB2-type structure with a z value of the Cd site of 0.5. DTA results of alloys located in the adjacent two-phase fields of Cd2Pr suggested a phase transformation between 893 and 930°C. For the phase Cd3Pr it was found that the lattice parameter a changes linearly with increasing Cd content, following Vegard’s rule. The corresponding defect mechanism could be evaluated from structural data collected with single-crystal XRD. Introduction of a significant amount of vacancies on the Pr site and the reduction in symmetry of one Cd position (8c to 32f) resulted in a noticeable decrease of all R-values. PMID:24718502

  18. Antiferromagnetism and phase diagram in ammoniated alkali fulleride salts

    PubMed

    Takenobu; Muro; Iwasa; Mitani

    2000-07-10

    Intercalation of neutral ammonia molecules into trivalent face-centered-cubic (fcc) fulleride superconductors induces a dramatic change in electronic states. Monoammoniated alkali fulleride salts (NH3)K3-xRbxC60, forming an isostructural orthorhombic series, undergo an antiferromagnetic transition, which was found by the electron spin resonance experiment. The Neel temperature first increases with the interfullerene spacing and then decreases for (NH3)Rb3C60, forming a maximum at 76 K. This feature is explained by the generalized phase diagram of Mott-Hubbard transition with an antiferromagnetic ground state.

  19. Hydration Phase Diagram of Clay Particles from Molecular Simulations.

    PubMed

    Honorio, Tulio; Brochard, Laurent; Vandamme, Matthieu

    2017-11-07

    Adsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior. In this article, we consider the hydration states of clays as phases and the transition between these states as phase changes. The thermodynamic formulation supporting this idea is presented. Then, the results from grand canonical Monte Carlo simulations of sodium montmorillonite are used to derive hydration phase diagrams. The stability analysis presented here explains the coexistence of different hydration states at clay particle scale and improves our understanding of the irreversibilities of clay thermo-hydro-mechanical behavior. Our results provide insights into the mechanics of the elementary constituents of clays, which is crucial for a better understanding of the macroscopic behavior of clay-rich rocks and soils.

  20. Spinodal decomposition in amorphous metal-silicate thin films: Phase diagram analysis and interface effects on kinetics

    NASA Astrophysics Data System (ADS)

    Kim, H.; McIntyre, P. C.

    2002-11-01

    Among several metal silicate candidates for high permittivity gate dielectric applications, the mixing thermodynamics of the ZrO2-SiO2 system were analyzed, based on previously published experimental phase diagrams. The driving force for spinodal decomposition was investigated in an amorphous silicate that was treated as a supercooled liquid solution. A subregular model was used for the excess free energy of mixing of the liquid, and measured invariant points were adopted for the calculations. The resulting simulated ZrO2-SiO2 phase diagram matched the experimental results reasonably well and indicated that a driving force exists for amorphous Zr-silicate compositions between approx40 mol % and approx90 mol % SiO2 to decompose into a ZrO2-rich phase (approx20 mol % SiO2) and SiO2-rich phase (>98 mol % SiO2) through diffusional phase separation at a temperature of 900 degC. These predictions are consistent with recent experimental reports of phase separation in amorphous Zr-silicate thin films. Other metal-silicate systems were also investigated and composition ranges for phase separation in amorphous Hf, La, and Y silicates were identified from the published bulk phase diagrams. The kinetics of one-dimensional spinodal decomposition normal to the plane of the film were simulated for an initially homogeneous Zr-silicate dielectric layer. We examined the effects that local stresses and the capillary driving force for component segregation to the interface have on the rate of spinodal decomposition in amorphous metal-silicate thin films.

  1. The diagram of phase-field crystal structures: an influence of model parameters in a two-mode approximation

    NASA Astrophysics Data System (ADS)

    Ankudinov, V.; Galenko, P. K.

    2017-04-01

    Effect of phase-field crystal model (PFC-model) parameters on the structure diagram is analyzed. The PFC-model is taken in a two-mode approximation and the construction of structure diagram follows from the free energy minimization and Maxwell thermodynamic rule. The diagram of structure’s coexistence for three dimensional crystal structures [Body-Centered-Cubic (BCC), Face-Centered-Cubic (FCC) and homogeneous structures] are constructed. An influence of the model parameters, including the stability parameters, are discussed. A question about the structure diagram construction using the two-mode PFC-model with the application to real materials is established.

  2. Anisotropic phase diagram of the rare-earth hyperkagome system Gd3Ga5O12 (GGG)

    NASA Astrophysics Data System (ADS)

    Quilliam, Jeffrey; Rousseau, Alexandre; Parent, Jean-Michel

    An understanding of the low-temperature properties of the hyperkagome system Gd3Ga5O12 or GGG is a long-standing problem in the field of frustrated magnetism. The origins of spin liquid and exotic spin-glass phases in this material remain mysterious and even its precise magnetic phase diagram is still not firmly established. We have investigated the field-induced phase diagram of this material using the ultrasound velocity and attenuation technique at temperatures as low as 40 mK. Two different field orientations are tested, and give rise to significant quantitative and qualitative differences. Notably, two distinct field-induced antiferromagnetic phases are observed for field parallel to 110, consistent with recent results, whereas only one ordered phase is observed for a 100 orientation. The field dependence of the sound velocity and attenuation is also found to be anisotropic within the low-field spin liquid phase. Research supported by NSERC, FQRNT.

  3. Exploring the Phase Diagram SiO2-CO2 at High Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Kavner, A.

    2015-12-01

    CO2 is an important volatile system relevant for planetary sciences and fundamental chemistry. Molecular CO2 has doubly bonded O=C=O units but high pressure-high temperature (HP-HT) studies have recently shown its transformation into a three-dimensional network of corner-linked [CO4] units analogous to the silica mineral polymorphs, through intermediate non-molecular phases. Here, we report P-V-T data on CO2-IV ice from time-of-flight neutron diffraction experiments, which allow determining the compressibility and thermal expansivity of this intermediate molecular-to-non-molecular phase.1 Aditionally, we have explored the SiO2-CO2 phase diagram and the potential formation of silicon carbonate compounds. New data obtained by laser-heating diamond-anvil experiments in CO2-filled microporous silica polymorphs will be shown. In particular, these HP-HT experiments explore the existence of potential CO2/SiO2 compounds with tetrahedrally-coordinated C/Si atoms by oxygens, which are predicted to be stable (or metastable) by state-of-the-art ab initio simulations.2,3 These theoretical predictions were supported by a recent study that reports the formation of a cristobalite-type Si0.4C0.6O2 solid solution at high-pressures and temperatures, which can be retained as a metastable solid down to ambient conditions.4 Entirely new families of structures could exist based on [CO4]4- units in various degrees of polymerisation, giving rise to a range of chain, sheet and framework solids like those found in silicate chemistry. References[1] S. Palaich et al., Am. Mineral. Submitted (2015) [2] A. Morales-Garcia et al., Theor. Chem. Acc. 132, 1308 (2013) [3] R. Zhou et al., Phys. Rev. X, 4, 011030 (2014) [4] M. Santoro et al. Nature Commun. 5, 3761 (2014)

  4. Schaeffler-Type Phase Diagram of Ti-Based Alloys

    NASA Astrophysics Data System (ADS)

    Ishida, K.

    2017-10-01

    The α(hcp)/β(bcc) phase equilibria of Ti-based multi-component alloys can be described by a Schaeffler-type diagram, where Al and Mo equivalents (Aleq and Moeq) are used. Aleq is thermodynamically defined by the ratio of partial molar free energy changes transfer of one mole of each α forming element and Al from a dilute solution of α to β phases, while Moeq is also deduced by similar thermodynamic quantities of β forming element and Mo. Aleq and Moeq for 40 alloying elements are estimated from the thermodynamic parameters assessed by Kaufman and Murray. It is shown that three types of Ti alloys, i.e., α and near α, α+β, and β alloys, can be exactly classified using Aleq and Moeq. The Ms and β transus temperatures can also be predicted by Aleq and Moeq. The proposed Aleq and Moeq are very useful for alloy design, heat treatment, and microstructural evolution of Ti-based alloys.

  5. Recent advances in the study of the UO2-PuO2 phase diagram at high temperatures

    NASA Astrophysics Data System (ADS)

    Böhler, R.; Welland, M. J.; Prieur, D.; Cakir, P.; Vitova, T.; Pruessmann, T.; Pidchenko, I.; Hennig, C.; Guéneau, C.; Konings, R. J. M.; Manara, D.

    2014-05-01

    Recently, novel container-less laser heating experimental data have been published on the melting behaviour of pure PuO2 and PuO2-rich compositions in the uranium dioxide-plutonium dioxide system. Such data showed that previous data obtained by more traditional furnace heating techniques were affected by extensive interaction between the sample and its containment. It is therefore paramount to check whether data so far used by nuclear engineers for the uranium-rich side of the pseudo-binary dioxide system can be confirmed or not. In the present work, new data are presented both in the UO2-rich part of the phase diagram, most interesting for the uranium-plutonium dioxide based nuclear fuel safety, and in the PuO2 side. The new results confirm earlier furnace heating data in the uranium-dioxide rich part of the phase diagram, and more recent laser-heating data in the plutonium-dioxide side of the system. As a consequence, it is also confirmed that a minimum melting point must exist in the UO2-PuO2 system, at a composition between x(PuO2) = 0.4 and x(PuO2) = 0.7 and 2900 K ⩽ T ⩽ 3000 K. Taking into account that, especially at high temperature, oxygen chemistry has an effect on the reported phase boundary uncertainties, the current results should be projected in the ternary U-Pu-O system. This aspect has been extensively studied here by X-ray diffraction and X-ray absorption spectroscopy. The current results suggest that uncertainty bands related to oxygen behaviour in the equilibria between condensed phases and gas should not significantly affect the qualitative trend of the current solid-liquid phase boundaries.

  6. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1

    PubMed Central

    Bohu, Tsing; Santelli, Cara M.; Akob, Denise M.; Neu, Thomas R.; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling. PMID:26236307

  7. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1

    USGS Publications Warehouse

    Bohu, Tsing; Santelli, Cara M; Akob, Denise M.; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.

  8. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1.

    PubMed

    Bohu, Tsing; Santelli, Cara M; Akob, Denise M; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.

  9. Phase diagram for the Kuramoto model with van Hemmen interactions.

    PubMed

    Kloumann, Isabel M; Lizarraga, Ian M; Strogatz, Steven H

    2014-01-01

    We consider a Kuramoto model of coupled oscillators that includes quenched random interactions of the type used by van Hemmen in his model of spin glasses. The phase diagram is obtained analytically for the case of zero noise and a Lorentzian distribution of the oscillators' natural frequencies. Depending on the size of the attractive and random coupling terms, the system displays four states: complete incoherence, partial synchronization, partial antiphase synchronization, and a mix of antiphase and ordinary synchronization.

  10. Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures

    PubMed Central

    Drummond, N. D.; Monserrat, Bartomeu; Lloyd-Williams, Jonathan H.; Ríos, P. López; Pickard, Chris J.; Needs, R. J.

    2015-01-01

    Establishing the phase diagram of hydrogen is a major challenge for experimental and theoretical physics. Experiment alone cannot establish the atomic structure of solid hydrogen at high pressure, because hydrogen scatters X-rays only weakly. Instead, our understanding of the atomic structure is largely based on density functional theory (DFT). By comparing Raman spectra for low-energy structures found in DFT searches with experimental spectra, candidate atomic structures have been identified for each experimentally observed phase. Unfortunately, DFT predicts a metallic structure to be energetically favoured at a broad range of pressures up to 400 GPa, where it is known experimentally that hydrogen is non-metallic. Here we show that more advanced theoretical methods (diffusion quantum Monte Carlo calculations) find the metallic structure to be uncompetitive, and predict a phase diagram in reasonable agreement with experiment. This greatly strengthens the claim that the candidate atomic structures accurately model the experimentally observed phases. PMID:26215251

  11. Phase diagram of carbon and the factors limiting the quantity and size of natural diamonds

    NASA Astrophysics Data System (ADS)

    Blank, Vladimir D.; Churkin, Valentin D.; Kulnitskiy, Boris A.; Perezhogin, Igor A.; Kirichenko, Alexey N.; Denisov, Viktor N.; Erohin, Sergey V.; Sorokin, Pavel B.; Popov, Mikhail Yu

    2018-03-01

    Phase diagrams of carbon, and those focusing on the graphite-to-diamond transitional conditions in particular, are of great interest for fundamental and applied research. The present study introduces a number of experiments carried out to convert graphite under high-pressure conditions, showing a formation of stable phase of fullerene-type onions cross-linked by sp3-bonds in the 55-115 GPa pressure range instead of diamonds formation (even at temperature 2000-3000 K) and the already formed diamonds turn into carbon onions. Our results refute the widespread idea that diamonds can form at any pressure from 2.2 to 1000 GPa. The phase diagram built within this study allows us not only to explain the existing numerous experimental data on the formation of diamond from graphite, but also to make assumptions about the conditions of its growth in Earth’s crust.

  12. Thermodynamic functions, freezing transition, and phase diagram of dense carbon-oxygen mixtures in white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyetomi, H.; Ogata, S.; Ichimaru, S.

    1989-07-01

    Equations of state for dense carbon-oxygen (C-O) binary-ionic mixtures (BIM's) appropriate to the interiors of white dwarfs are investigated through Monte Carlo simulations, by solution of relevant integral equations andvariational calculations in the density-functional formalism. It is thereby shown that the internal energies of the C-O BIM solids and fluids both obey precisely the linear mixing formulas. We then present an accurate calculation of the phase diagram associated with freezing transitions in such BIM materials, resulting in a novel prediction of an azeotropic diagram. Discontinuities of the mass density across the azeotropic phase boundaries areevaluated numerically for application to amore » study of white-dwarf evolution.« less

  13. Proton dynamics and the phase diagram of dense water ice.

    PubMed

    Hernandez, J-A; Caracas, R

    2018-06-07

    All the different phases of water ice between 2 GPa and several megabars are based on a single body-centered cubic sub-lattice of oxygen atoms. They differ only by the behavior of the hydrogen atoms. In this study, we investigate the dynamics of the H atoms at high pressures and temperatures in water ice from first-principles molecular dynamics simulations. We provide a detailed analysis of the O-H⋯O bonding dynamics over the entire stability domain of the body-centered cubic (bcc) water ices and compute transport properties and vibrational density-of-states. We report the first ab initio evidence for a plastic phase of water and we propose a coherent phase diagram for bcc water ices compatible with the two groups of melting curves and with the multiple anomalies reported in ice VII around 15 GPa.

  14. Thin film phase diagram of iron nitrides grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gölden, D.; Hildebrandt, E.; Alff, L.

    2017-01-01

    A low-temperature thin film phase diagram of the iron nitride system is established for the case of thin films grown by molecular beam epitaxy and nitrided by a nitrogen radical source. A fine-tuning of the nitridation conditions allows for growth of α ‧ -Fe8Nx with increasing c / a -ratio and magnetic anisotropy with increasing x until almost phase pure α ‧ -Fe8N1 thin films are obtained. A further increase of nitrogen content below the phase decomposition temperature of α ‧ -Fe8N (180 °C) leads to a mixture of several phases that is also affected by the choice of substrate material and symmetry. At higher temperatures (350 °C), phase pure γ ‧ -Fe4N is the most stable phase.

  15. Phase diagram of a symmetric electron-hole bilayer system: a variational Monte Carlo study.

    PubMed

    Sharma, Rajesh O; Saini, L K; Bahuguna, Bhagwati Prasad

    2018-05-10

    We study the phase diagram of a symmetric electron-hole bilayer system at absolute zero temperature and in zero magnetic field within the quantum Monte Carlo approach. In particular, we conduct variational Monte Carlo simulations for various phases, i.e. the paramagnetic fluid phase, the ferromagnetic fluid phase, the anti-ferromagnetic Wigner crystal phase, the ferromagnetic Wigner crystal phase and the excitonic phase, to estimate the ground-state energy at different values of in-layer density and inter-layer spacing. Slater-Jastrow style trial wave functions, with single-particle orbitals appropriate for different phases, are used to construct the phase diagram in the (r s , d) plane by finding the relative stability of trial wave functions. At very small layer separations, we find that the fluid phases are stable, with the paramagnetic fluid phase being particularly stable at [Formula: see text] and the ferromagnetic fluid phase being particularly stable at [Formula: see text]. As the layer spacing increases, we first find that there is a phase transition from the ferromagnetic fluid phase to the ferromagnetic Wigner crystal phase when d reaches 0.4 a.u. at r s   =  20, and before there is a return to the ferromagnetic fluid phase when d approaches 1 a.u. However, for r s   <  20 and [Formula: see text] a.u., the excitonic phase is found to be stable. We do not find that the anti-ferromagnetic Wigner crystal is stable over the considered range of r s and d. We also find that as r s increases, the critical layer separations for Wigner crystallization increase.

  16. High-throughput determination of structural phase diagram and constituent phases using GRENDEL

    NASA Astrophysics Data System (ADS)

    Kusne, A. G.; Keller, D.; Anderson, A.; Zaban, A.; Takeuchi, I.

    2015-11-01

    Advances in high-throughput materials fabrication and characterization techniques have resulted in faster rates of data collection and rapidly growing volumes of experimental data. To convert this mass of information into actionable knowledge of material process-structure-property relationships requires high-throughput data analysis techniques. This work explores the use of the Graph-based endmember extraction and labeling (GRENDEL) algorithm as a high-throughput method for analyzing structural data from combinatorial libraries, specifically, to determine phase diagrams and constituent phases from both x-ray diffraction and Raman spectral data. The GRENDEL algorithm utilizes a set of physical constraints to optimize results and provides a framework by which additional physics-based constraints can be easily incorporated. GRENDEL also permits the integration of database data as shown by the use of critically evaluated data from the Inorganic Crystal Structure Database in the x-ray diffraction data analysis. Also the Sunburst radial tree map is demonstrated as a tool to visualize material structure-property relationships found through graph based analysis.

  17. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation

    PubMed Central

    Berman, Marvin D.

    2014-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. PMID:25359538

  18. Phase diagram calculations and high pressure Raman spectroscopy studies of organic "plastic crystal" thermal energy storage materials

    NASA Astrophysics Data System (ADS)

    Chellappa, Raja S.

    This dissertation presents the phase diagram calculations and high pressure Raman spectroscopy studies on organic "plastic crystal" thermal storage materials. The organic "plastic crystals" that were studied include pentaerythritol [PE:C(CH 2OH)4], neopentylglycol [NPG:(CH3)2C(CH 2OH)2], tris(hydroxymethyl)-aminomethane [TRIS:(NH2 )C(CH2OH)3], and 2-amino-2-methyl-1,3-propanediol [AMPL: (NH2)(CH3)C(CH2OH)2]. Thermodynamic optimization of the experimental data of AMPL-NPG and PE-AMPL binary system was performed and the calculated phase diagrams are presented. A preliminary calculated phase diagram of the TRIS-NPG binary system is also presented. A thorough reevaluation of the existing calorimetric and x-ray diffraction data of the PE-AMPL binary system is also presented. This analysis resulted in the correct interpretation of the phase boundaries and a revised phase diagram has been drawn. The results of high pressure Raman spectroscopy experiments on neopentylglycol and pentaerythritol presented. The phase transformation pressures were determined by analyzing the frequency shifts as a function of pressure as well as the changes in the internal modes of vibration for these compounds. A simplified assignment of the vibrational modes for NPG at ambient pressure is presented. The results indicate experiments were carried out using Diamond Anvil Cell (DAC) and the pressure induced transformations were studied by Raman spectroscopy. In NPG, a phase transition occurs at ˜3.6 GPa from Phase I (Monoclinic) to Phase II (unknown structure). In PE, the proposed phase transformation pressures are ˜4.8 GPa (Phase I to Phase II), ˜6.9 GPa (Phase II to Phase III), ˜9.5 GPa (Phase III to Phase IV), and ˜15 GPa (Phase IV to Amorphous). The results of a critical assessment of the vapor pressure data of solid metal carbonyls. The vapor pressure data of Chromium Carbonyl (Cr(CO)6), Tungsten Carbonyl (W(CO)6 ), Osmium Carbonyl (Os3(CO)12), Molybdenum Carbonyl (MO(CO)6). Rhenium

  19. Morphological phase diagrams of C60 and C70 films on graphite

    NASA Astrophysics Data System (ADS)

    Sato, Kazuma; Tanaka, Tomoyasu; Akaike, Kouki; Kanai, Kaname

    2017-10-01

    The morphologies of C60 and C70 fullerene films vacuum-deposited onto graphite at various deposition rates and grown at several temperatures were investigated using atomic force microscopy. These fullerene films on graphite are model systems of physisorption of organic molecules that likely exhibit little chemical interaction with the graphite's surface. The morphologies of C60 and C70 films grown on graphite can be understood well from growth models previously reported. Comparison of the morphological phase diagrams obtained for C60 and C70 indicate that the diffusion properties of the adsorbed molecule are key in determining the morphology of the obtained film. The low diffusion rate of C70 resulted in various film morphologies for all deposition conditions tested. Also, the obtained phase diagrams can be understood by the results of fractal dimension analysis on the C60 and C70 islands. The fundamental understanding of film growth obtained using these ideal physisorption systems will aid in understanding film growth by other molecular adsorption systems.

  20. Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x.

    PubMed

    Sterpetti, Edoardo; Biscaras, Johan; Erb, Andreas; Shukla, Abhay

    2017-12-12

    The phase diagram of hole-doped high critical temperature superconductors as a function of doping and temperature has been intensively studied with chemical variation of doping. Chemical doping can provoke structural changes and disorder, masking intrinsic effects. Alternatively, a field-effect transistor geometry with an electrostatically doped, ultra-thin sample can be used. However, to probe the phase diagram, carrier density modulation beyond 10 14  cm -2 and transport measurements performed over a large temperature range are needed. Here we use the space charge doping method to measure transport characteristics from 330 K to low temperature. We extract parameters and characteristic temperatures over a large doping range and establish a comprehensive phase diagram for one-unit-cell-thick BSCCO-2212 as a function of doping, temperature and disorder.

  1. Phase diagram of crystallization of Aspergillus niger acid proteinase A, a non-pepsin-type acid proteinase

    NASA Astrophysics Data System (ADS)

    Kudo, Norio; Ataka, Mitsuo; Sasaki, Hiroshi; Muramatsu, Tomonari; Katsura, Tatsuo; Tanokura, Masaru

    1996-10-01

    Proteinase A from Aspergillus niger var. macrosporus is a non-pepsin-type acid proteinase with an extremely low isoelectric point (pI 3.3). The protein is crystallized from ammonium sulfate solutions of pH lower than 4. The crystallization is affected by the presence of dimethylsulfoxide (DMSO). We have studied the phase diagram of the crystallization of proteinase A in the absence and presence of DMSO, to clarify crystallization at such an extremely low pH and to study the effects of DMSO. The results indicate that the logarithm of protein solubility is a rectilinear function of ammonium sulfate concentration in both the absence and presence of DMSO. DMSO definitely lowers the solubility at relatively low concentrations of ammonium sulfate, but had little effect on protein solubility at higher concentrations of ammonium sulfate.

  2. Stepwise positional-orientational order and the multicritical-multistructural global phase diagram of the s=3/2 Ising model from renormalization-group theory.

    PubMed

    Yunus, Çağın; Renklioğlu, Başak; Keskin, Mustafa; Berker, A Nihat

    2016-06-01

    The spin-3/2 Ising model, with nearest-neighbor interactions only, is the prototypical system with two different ordering species, with concentrations regulated by a chemical potential. Its global phase diagram, obtained in d=3 by renormalization-group theory in the Migdal-Kadanoff approximation or equivalently as an exact solution of a d=3 hierarchical lattice, with flows subtended by 40 different fixed points, presents a very rich structure containing eight different ordered and disordered phases, with more than 14 different types of phase diagrams in temperature and chemical potential. It exhibits phases with orientational and/or positional order. It also exhibits quintuple phase transition reentrances. Universality of critical exponents is conserved across different renormalization-group flow basins via redundant fixed points. One of the phase diagrams contains a plastic crystal sequence, with positional and orientational ordering encountered consecutively as temperature is lowered. The global phase diagram also contains double critical points, first-order and critical lines between two ordered phases, critical end points, usual and unusual (inverted) bicritical points, tricritical points, multiple tetracritical points, and zero-temperature criticality and bicriticality. The four-state Potts permutation-symmetric subspace is contained in this model.

  3. Triple point fcc-hcp-liquid in the Fe phase diagram determined by in-situ XANES diagnostic and post-mortem XRD and FIB-SEM analysis.

    NASA Astrophysics Data System (ADS)

    Morard, G.; Boccato, S.; Rosa, A. D.; Anzellini, S.; Miozzi Ferrini, F.; Laura, H.; Garbarino, G.; Harmand, M.; Guyot, F. J.; Boulard, E.; Kantor, I.; Irifune, T.; Torchio, R.

    2017-12-01

    Iron is the main constituent of planetary cores. Studying its phase diagram under high pressure is necessary to constrain properties of planetary interiors, and to model key parameters such as the generation of magnetic field. Though, strong controversy on the melting curve of pure Fe still remains. Recently, Aquilanti et al, (PNAS, 2015) reported a Fe melting curved based on XANES measurements which is in open disagreement with previous X-ray diffraction results (Anzellini et al, Science, 2013). Discrepancies in the melting temperature exceed several hundred degrees close to Mbar pressures, which may be related to differences in temperature measurement techniques, melting diagnostics, or to chemical reactions of the sample with the surrounding medium. We therefore performed new in situ high P/T XANES experiments on pure Fe (up to 115 GPa and 4000 K) at the ESRF beamline ID24, combining the energy dispersive absorption set up with laser heated diamond anvil cells. X-ray diffraction maps were collected from all recovered samples in order to identify and characterize laser-heated spots. The XANES melting criterion was further cross checked by analyzing the recovered sample textures using FIB cutting techniques and SEM imaging. We found systematically that low melting temperatures are related to the presence of Fe3C, implying that in those cases chemical reactions occurred during heating resulting in carbon contamination from the diamonds. These low melting points fall onto the melting line reported by Aquilanti et al, (2015). Uncontaminated points are in agreement with the melting curve of Anzellini et al, (2013) within their uncertainties. Moreover, this data set allowed us to refine the location of the triple point in the Fe phase diagram at 105 (±10) GPa and 3600 (±200) K, which may imply a small kink in the melting curve around this point. This refined Fe phase diagram could be then used to compute thermodynamic models for planetary cores.

  4. Self-assembly of colloidal particles from evaporating droplets: role of DLVO interactions and proposition of a phase diagram.

    PubMed

    Bhardwaj, Rajneesh; Fang, Xiaohua; Somasundaran, Ponisseril; Attinger, Daniel

    2010-06-01

    The shape of deposits obtained from drying drops containing colloidal particles matters for technologies such as inkjet printing, microelectronics, and bioassay manufacturing. In this work, the formation of deposits during the drying of nanoliter drops containing colloidal particles is investigated experimentally with microscopy and profilometry, and theoretically with an in-house finite-element code. The system studied involves aqueous drops containing titania nanoparticles evaporating on a glass substrate. Deposit shapes from spotted drops at different pH values are measured using a laser profilometer. Our results show that the pH of the solution influences the dried deposit pattern, which can be ring-like or more uniform. The transition between these patterns is explained by considering how DLVO interactions such as the electrostatic and van der Waals forces modify the particle deposition process. Also, a phase diagram is proposed to describe how the shape of a colloidal deposit results from the competition among three flow patterns: a radial flow driven by evaporation at the wetting line, a Marangoni recirculating flow driven by surface tension gradients, and the transport of particles toward the substrate driven by DLVO interactions. This phase diagram explains three types of deposits commonly observed experimentally, such as a peripheral ring, a small central bump, or a uniform layer. Simulations and experiments are found in very good agreement.

  5. A Jamming Phase Diagram for Pressing Polymers

    NASA Astrophysics Data System (ADS)

    Teng, Chao; Zhang, Zexin; Wang, Xiaoliang; Xue, Gi; Nanjing University Team; Soochow University Collaboration

    2011-03-01

    Molecular glasses begin to flow when they are heated. Other glassy systems, such as dense foams, emulsions, colloidal suspensions and granular materials, begin to flow when subjected to sufficiently large stresses. The equivalence of these two routes to flow is a basic tenet of jamming, a conceptual means of unifying glassy behavior in a swath of disordered, dynamical arrested systems. However, a full understanding of jamming transition for polymers remains elusive. By controlling the packing densities of polymer glasses, we found that polymer glasses could once flow under cold-pressing at temperatures well below its calorimetric glass transition temperature (Tg). The thermomechanical analysis (TMA) results confirmed that Tg changed with density as well as the applied stress, which is exactly what to be expected within the jamming picture. We propose a jamming phase diagram for polymers based on our laboratory experiments.

  6. Phase equillibria and solidification behaviour in the vanillin- p-anisidine system

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Das, S. S.; Gupta, Preeti; Dwivedi, M. K.

    2008-12-01

    Phase diagram of the vanillin- p-anisidine system has been studied by the thaw melt method. Congruent melting-type phase diagram exhibiting two eutectic points was obtained. Vanillin and p-anisidine react in 1:1 M ratio and form N-(4-methoxy phenyl)-4-hydroxy-3-methoxy phenyl methanimine (NHM) and water. Heats of fusion of pure components and the eutectic mixtures ( E1 and E2) were obtained from DSC studies. Jackson's roughness parameters ( α) were calculated. Excess Gibbs free energy ( GE), excess entropy ( SE) and excess enthalpy ( HE) of mixing of pre-, post- and eutectic mixtures were also calculated by using activity coefficient data. Linear velocities of solidification of components and eutectic mixtures were determined at different undercoolings. The values of excess thermodynamic functions and linear velocity data have indicated the non-ideal nature of the eutectic mixtures. Interaction energies in the gaseous state, calculated from computer simulation, have also indicated that the eutectics are non-ideal mixtures. Microstructural studies of vanillin, p-anisidine and NHM show the formation of broken lamellar type structures. However, for the eutectic E1, an irregular type and for the eutectic E2, a lamellar type structures were obtained. The effect of impurity on the microstructures of eutectic mixtures was also studied.

  7. Phase diagram and neutron spin resonance of superconducting NaFe 1 - x Cu x As

    DOE PAGES

    Tan, Guotai; Song, Yu; Zhang, Rui; ...

    2017-02-03

    In this paper, we use transport and neutron scattering to study the electronic phase diagram and spin excitations of NaFe 1-xCu xAs single crystals. Similar to Co- and Ni-doped NaFeAs, a bulk superconducting phase appears near x≈2% with the suppression of stripe-type magnetic order in NaFeAs. Upon further increasing Cu concentration the system becomes insulating, culminating in an antiferromagnetically ordered insulating phase near x≈50%. Using transport measurements, we demonstrate that the resistivity in NaFe 1-xCu xAs exhibits non-Fermi-liquid behavior near x≈1.8%. Our inelastic neutron scattering experiments reveal a single neutron spin resonance mode exhibiting weak dispersion along c axis inmore » NaFe 0.98Cu 0.02As. The resonance is high in energy relative to the superconducting transition temperature T c but weak in intensity, likely resulting from impurity effects. These results are similar to other iron pnictides superconductors despite that the superconducting phase in NaFe 1-xCu xAs is continuously connected to an antiferromagnetically ordered insulating phase near x≈50% with significant electronic correlations. Finally, therefore, electron correlations is an important ingredient of superconductivity in NaFe 1-xCu xAs and other iron pnictides.« less

  8. Edge states and phase diagram for graphene under polarized light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi -Xiang; Li, Fuxiang

    2016-03-22

    In this paper, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, themore » number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.« less

  9. Predicting solubilisation features of ternary phase diagrams of fully dilutable lecithin linker microemulsions.

    PubMed

    Nouraei, Mehdi; Acosta, Edgar J

    2017-06-01

    Fully dilutable microemulsions (μEs), used to design self-microemulsifying delivery system (SMEDS), are formulated as concentrate solutions containing oil and surfactants, without water. As water is added to dilute these systems, various μEs are produced (water-swollen reverse micelles, bicontinuous systems, and oil-swollen micelles), without the onset of phase separation. Currently, the formulation dilutable μEs follows a trial and error approach that has had a limited success. The objective of this work is to introduce the use of the hydrophilic-lipophilic-difference (HLD) and net-average-curvature (NAC) frameworks to predict the solubilisation features of ternary phase diagrams of lecithin-linker μEs and the use of these predictions to guide the formulation of dilutable μEs. To this end, the characteristic curvatures (Cc) of soybean lecithin (surfactant), glycerol monooleate (lipophilic linker) and polyglycerol caprylate (hydrophilic linker) and the equivalent alkane carbon number (EACN) of ethyl caprate (oil) were obtained via phase scans with reference surfactant-oil systems. These parameters were then used to calculate the HLD of lecithin-linkers-ethyl caprate microemulsions. The calculated HLDs were able to predict the phase transitions observed in the phase scans. The NAC was then used to fit and predict phase volumes obtained from salinity phase scans, and to predict the solubilisation features of ternary phase diagrams of the lecithin-linker formulations. The HLD-NAC predictions were reasonably accurate, and indicated that the largest region for dilutable μEs was obtained with slightly negative HLD values. The NAC framework also predicted, and explained, the changes in microemulsion properties along dilution lines. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Magnetostructural Phase Diagram of Multiferroic (ND 4) 2FeCl 5.H 2O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clune, A.; Hughey, K.; Musfeldt, J. L.

    2017-02-13

    Spin and polarization flop transitions are fascinating, especially when controlled by external stimuli like magnetic and electric field and accompanied by large material responses involving multiple degrees of freedom. Multiferroics like MnWO 4, TbMnO 3, and Ni 3TeO 6 are flagship examples and owe their remarkable properties, for instance field control of polarization and polarization flops combined with spin helix reorientation, to the anisotropy and heavy centers that bring in spin-orbit coupling. The family of A 2FeX 5.H 2O erythrosiderites (A = K, Rb, NH 4; B = Fe, Mn, Co; X = Cl, Br, H 2O) drew our attentionmore » due to the rich chemical tuning possibilities, complex phase diagrams, and topological similarities to oxide multiferroics.1 (NH 4) 2FeCl 5.H 2O is the flagship example (Fig. 1(a)). It displays a high temperature order-disorder transition involving long-range hydrogen bonding of the NH 4 + group and two successive low temperature magnetic transitions below which non-collinear magnetic order and ferroelectricity are established.1 In addition to the magnetically-induced electric polarization that arises below 6.9 K (P = 3 μC/m 2 along a and a smaller component along b), applied field reveals a peculiar hysteretic spin flop transition near 4.5 T above which polarization flops from the a- to the c-axis. There are elastic components as well. Taken together, these findings raise questions about the interactions that induce this behavior and whether additional non-equilibrium phases might be accessed under even higher magnetic fields.« less

  11. Novel phase diagram behavior and materials design in heterostructural semiconductor alloys

    PubMed Central

    Holder, Aaron M.; Siol, Sebastian; Ndione, Paul F.; Peng, Haowei; Deml, Ann M.; Matthews, Bethany E.; Schelhas, Laura T.; Toney, Michael F.; Gordon, Roy G.; Tumas, William; Perkins, John D.; Ginley, David S.; Gorman, Brian P.; Tate, Janet; Zakutayev, Andriy; Lany, Stephan

    2017-01-01

    Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the critical composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region. PMID:28630928

  12. Novel phase diagram behavior and materials design in heterostructural semiconductor alloys.

    PubMed

    Holder, Aaron M; Siol, Sebastian; Ndione, Paul F; Peng, Haowei; Deml, Ann M; Matthews, Bethany E; Schelhas, Laura T; Toney, Michael F; Gordon, Roy G; Tumas, William; Perkins, John D; Ginley, David S; Gorman, Brian P; Tate, Janet; Zakutayev, Andriy; Lany, Stephan

    2017-06-01

    Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the critical composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.

  13. QCD phase diagram using PNJL model with eight-quark interactions

    NASA Astrophysics Data System (ADS)

    Deb, Paramita; Bhattacharyya, Abhijit; Ghosh, Sanjay K.; Ray, Rajarshi; Lahiri, Anirban

    2011-07-01

    We present the phase diagram and the fluctuations of different conserved charges like quark number, charge and strangeness at vanishing chemical potential for the 2+1 flavor Polyakov Loop extended Nambu-Jona-Lasinio model with eight-quark interaction terms using three-momentum cutoff regularisation. The main effect of the higher order interaction term is to shift the critical end point to the lower value of the chemical potential and higher value of the temperature. The fluctuations show good qualitative agreement with the lattice data.

  14. Characterization of the temperature and humidity-dependent phase diagram of amorphous nanoscale organic aerosols.

    PubMed

    Rothfuss, Nicholas E; Petters, Markus D

    2017-03-01

    Atmospheric aerosols can exist in amorphous semi-solid or glassy phase states. These states are determined by the temperature (T) and relative humidity (RH). New measurements of viscosity for amorphous semi-solid nanometer size sucrose particles as a function of T and RH are reported. Viscosity is measured by inducing coagulation between two particles and probing the thermodynamic states that induce the particle to relax into a sphere. It is shown that the glass transition temperature can be obtained by extrapolation to 10 12 Pa s from the measured temperature-dependent viscosity in the 10 6 to 10 7 Pa s range. The experimental methodology was refined to allow isothermal probing of RH dependence and to increase the range of temperatures over which the dry temperature dependence can be studied. Several experiments where one monomer was sodium dodecyl sulfate (SDS), which remains solid at high RH, are also reported. These sucrose-SDS dimers were observed to relax into a sphere at T and RH similar to those observed in sucrose-sucrose dimers, suggesting that amorphous sucrose will flow over an insoluble particle at a viscosity similar to that characteristic of coalescence between two sucrose particles. Possible physical and analytical implications of this observation are considered. The data reported here suggest that semi-solid viscosity between 10 4 and 10 12 Pa s can be modelled over a wide range of T and RH using an adapted Vogel-Fulcher-Tammann equation and the Gordon-Taylor mixing rule. Sensitivity of modelled viscosity to variations in dry glass transition temperature, Gordon-Taylor constant, and aerosol hygroscopicity are explored, along with implications for atmospheric processes such as ice nucleation of glassy organic aerosols in the upper free troposphere. The reported measurement and modelling framework provides a template for characterizing the phase diagram of other amorphous aerosol systems, including secondary organic aerosols.

  15. General Mechanism of Morphology Transition and Spreading Area-dependent Phase Diagram of Block Copolymer Self-assembly at the Air/Water Interface

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hyup; Kim, So Youn

    Block copolymers (BCPs) can be self-assembled forming periodic nanostructures, which have been employed in many applications. While general agreements exist for the phase diagrams of BCP self-assembly in bulk or thin films, a fundamental understanding of BCP structures at the air/water interface still remain elusive. The current study explains morphology transition of BCPs with relative fraction of each block at the air/water interface: block fraction is the only parameter to control the morphology. In this study, we show morphology transitions from spherical to cylindrical and planar structures with neat polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) via reducing the spreading area of BCP solution at the air/water interface. For example, PS-b-P2VP in a fixed block fraction known to form only spheres can experience sphere to cylinder or lamellar transitions depending on the spreading area at the air/water interface. Suggesting a new parameter to control the interfacial assembly of BCPs, a complete phase diagram is drawn with two paramters: relative block fraction and spreading area. We also explain the morphology transition with the combinational description of dewetting mechanism and spring effect of hydrophilic block.

  16. Analytical description of the ternary melt and solution crystallization with a non-linear phase diagram

    NASA Astrophysics Data System (ADS)

    Toropova, L. V.; Alexandrov, D. V.

    2018-05-01

    The directional solidification of a ternary system with an extended phase transition region is theoretically studied. A mathematical model is developed to describe quasi-stationary solidification, and its analytical solution is constructed with allowance for a nonlinear liquids line equation. We demonstrate that the phase diagram nonlinearity leads to substantial changes of analytical solutions.

  17. The pressure-temperature phase diagram of pressure induced organic superconductors β-(BDA-TTP){2}MCl{4} (M = Ga, Fe)

    NASA Astrophysics Data System (ADS)

    Choi, E. S.; Graf, D.; Brooks, J. S.; Yamada, J.; Tokumoto, M.

    2004-04-01

    We investigate the pressure-temperature phase diagram of β -(BDA-TTP){2}MCl{4} (M=Ga, Fe), which shows a metal-insulator (MI) transition around 120 K at ambient pressure. By applying pressure, the insulating phase is suppressed. When the pressure is higher than 5.5 kbar, the superconducting phase appears in both salts with Tc ˜ 3 K for M=Ga and 2.2 K for M=Fe. We also observed Shubnikov-de Haas (SdH) oscillations at high magnetic field in both salts, where the SdH frequencies are found to be very similar each other. Key words. organic superconductor, pressure, phase diagram.

  18. Gutzwiller charge phase diagram of cuprates, including electron–phonon coupling effects

    DOE PAGES

    Markiewicz, R. S.; Seibold, G.; Lorenzana, J.; ...

    2015-02-01

    Besides significant electronic correlations, high-temperature superconductors also show a strong coupling of electrons to a number of lattice modes. Combined with the experimental detection of electronic inhomogeneities and ordering phenomena in many high-T c compounds, these features raise the question as to what extent phonons are involved in the associated instabilities. Here we address this problem based on the Hubbard model including a coupling to phonons in order to capture several salient features of the phase diagram of hole-doped cuprates. Charge degrees of freedom, which are suppressed by the large Hubbard U near half-filling, are found to become active atmore » a fairly low doping level. We find that possible charge order is mainly driven by Fermi surface nesting, with competition between a near-(π, π) order at low doping and antinodal nesting at higher doping, very similar to the momentum structure of magnetic fluctuations. The resulting nesting vectors are generally consistent with photoemission and tunneling observations, evidence for charge density wave order in YBa₂Cu₃O 7-δ including Kohn anomalies, and suggestions of competition between one- and two-q-vector nesting.« less

  19. Amphibole equilibria as monitors of P-T path and process in the exhumation of HP/UHP terranes

    NASA Astrophysics Data System (ADS)

    Waters, David; Airaghi, Laura; Czertowicz, Thomas

    2014-05-01

    Recent advances in modelling and the development of refined activity-composition relations allow the calculation of phase diagrams involving complex mineral solid solutions, such as calcic, sodic-calcic and sodic amphiboles (e.g. Diener et al., 2007, J metamorphic Geol.). Amphiboles are commonly found in eclogite facies metabasites, and formed at different metamorphic stages. Such rocks commonly show complex reaction microstructures that reveal their history. The focus in this contribution is on two distinct amphibole types: coarse, post-peak matrix amphibole, and amphibole involved in symplectitic microstructures replacing omphacite. These studies serve as a test of the current activity models and calculation approaches, but more importantly as a framework for understanding the processes and P-T path during exhumation of subducted terranes. Examples are taken from the Western Gneiss Complex of Norway and from the Kaghan Valley (Pakistan), but are more generally applicable to crustal blocks that have exhumed through the P-T 'window' in which comparable petrological features develop. The microstructural types of interest here are: broad irregular interstitial amphibole grains, which commonly merge with a coarse spongy intergrowth of amphibole with quartz and/or albite (most likely replacing omphacite); and a fine-grained symplectite of low-Na clinopyroxene with sodic plagioclase and minor hornblende invading omphacite. Many specimens show these varieties as a sequence, inferred to reflect decreasing pressure (and ultimately, temperature). Amphibole compositions cover a wide range: the most sodic occur in large interstitial grains and fall near the junction of the winchite, barroisite and taramite fields of the IMA classification; they trend towards a pargasitic hornblende, still with significant glaucophane component; spongy amphiboles typically lie on a trend towards lower glaucophane component; symplectite amphibole is generally a common hornblende on a typical

  20. Thermodynamics at the nanoscale: phase diagrams of nickel-carbon nanoclusters and equilibrium constants for phase transitions

    NASA Astrophysics Data System (ADS)

    Engelmann, Yannick; Bogaerts, Annemie; Neyts, Erik C.

    2014-09-01

    Using reactive molecular dynamics simulations, the melting behavior of nickel-carbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickel-carbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.

  1. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation.

    PubMed

    Berman, Marvin D; Carey, Martin C

    2015-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. Copyright © 2015 the American Physiological Society.

  2. Phase diagram for the Winfree model of coupled nonlinear oscillators.

    PubMed

    Ariaratnam, J T; Strogatz, S H

    2001-05-07

    In 1967 Winfree proposed a mean-field model for the spontaneous synchronization of chorusing crickets, flashing fireflies, circadian pacemaker cells, or other large populations of biological oscillators. Here we give the first bifurcation analysis of the model, for a tractable special case. The system displays rich collective dynamics as a function of the coupling strength and the spread of natural frequencies. Besides incoherence, frequency locking, and oscillator death, there exist hybrid solutions that combine two or more of these states. We present the phase diagram and derive several of the stability boundaries analytically.

  3. Phase Diagram for the Winfree Model of Coupled Nonlinear Oscillators

    NASA Astrophysics Data System (ADS)

    Ariaratnam, Joel T.; Strogatz, Steven H.

    2001-05-01

    In 1967 Winfree proposed a mean-field model for the spontaneous synchronization of chorusing crickets, flashing fireflies, circadian pacemaker cells, or other large populations of biological oscillators. Here we give the first bifurcation analysis of the model, for a tractable special case. The system displays rich collective dynamics as a function of the coupling strength and the spread of natural frequencies. Besides incoherence, frequency locking, and oscillator death, there exist hybrid solutions that combine two or more of these states. We present the phase diagram and derive several of the stability boundaries analytically.

  4. Phase diagram of single vesicle dynamical states in shear flow.

    PubMed

    Deschamps, J; Kantsler, V; Steinberg, V

    2009-03-20

    We report the first experimental phase diagram of vesicle dynamical states in a shear flow presented in a space of two dimensionless parameters suggested recently by V. Lebedev et al. To reduce errors in the control parameters, 3D geometrical reconstruction and determination of the viscosity contrast of a vesicle in situ in a plane Couette flow device prior to the experiment are developed. Our results are in accord with the theory predicting three distinctly separating regions of vesicle dynamical states in the plane of just two self-similar parameters.

  5. High-pressure high-temperature phase diagram of organic crystal paracetamol

    DOE PAGES

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-06

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I → orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II → unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. As a result, this new data is combined with previous ambientmore » temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol.« less

  6. High-pressure high-temperature phase diagram of organic crystal paracetamol

    NASA Astrophysics Data System (ADS)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  7. Phase diagram and transformations of iron pentacarbonyl to nm layered hematite and carbon-oxygen polymer under pressure

    DOE PAGES

    Ryu, Young Jay; Kim, Minseob; Yoo, Choong -Shik

    2015-10-12

    In this study, we present the phase diagram of Fe(CO) 5, consisting of three molecular polymorphs (phase I, II and III) and an extended polymeric phase that can be recovered at ambient condition. The phase diagram indicates a limited stability of Fe(CO) 5 within a pressure-temperature dome formed below the liquid- phase II- polymer triple point at 4.2 GPa and 580 K. The limited stability, in turn, signifies the temperature-induced weakening of Fe-CO back bonds, which eventually leads to the dissociation of Fe-CO at the onset of the polymerization of CO. The recovered polymer is a composite of novel nm-lamellarmore » layers of crystalline hematite Fe 2O 3 and amorphous carbon-oxygen polymers. These results, therefore, demonstrate the synthesis of carbon-oxygen polymer by compressing Fe(CO) 5, which advocates a novel synthetic route to develop atomistic composite materials by compressing organometallic compounds.« less

  8. Study of charge-phase diagrams for coupled system of Josephson junctions

    NASA Astrophysics Data System (ADS)

    Hamdipour, M.; Shukrinov, Y. U. M.

    2010-11-01

    Dynamics of stacked intrinsic Josephson junctions (IJJ) in the high-Tc superconductors is theoretically investigated. We calculate the current-voltage characteristics (CVC) of IJJ and study the breakpoint region on the outermost branch of the CVC for the stacks with 9 IJJ. A method for investigation of the fine structure in CVC of IJJ based on the recording the "phase-charge" diagrams is suggested. It is demonstrated that this method reflects the main features of the breakpoint region.

  9. Ground-state phase diagram of an anisotropic spin-1/2 model on the triangular lattice

    NASA Astrophysics Data System (ADS)

    Luo, Qiang; Hu, Shijie; Xi, Bin; Zhao, Jize; Wang, Xiaoqun

    2017-04-01

    Motivated by a recent experiment on the rare-earth material YbMgGaO4 [Y. Li et al., Phys. Rev. Lett. 115, 167203 (2015), 10.1103/PhysRevLett.115.167203], which found that the ground state of YbMgGaO4 is a quantum spin liquid, we study the ground-state phase diagram of an anisotropic spin-1 /2 model that was proposed to describe YbMgGaO4. Using the density matrix renormalization-group method in combination with the exact-diagonalization method, we calculate a variety of physical quantities, including the ground-state energy, the fidelity, the entanglement entropy and spin-spin correlation functions. Our studies show that in the quantum phase diagram, there is a 120∘ phase and two distinct stripe phases. The transitions from the two stripe phases to the 120∘ phase are of the first order. However, the transition between the two stripe phases is not of the first order, which is different from its classical counterpart. Additionally, we find no evidence for a quantum spin liquid in this model. Our results suggest that additional terms may also be important to model the material YbMgGaO4. These findings will stimulate further experimental and theoretical works in understanding the quantum spin-liquid ground state in YbMgGaO4.

  10. Pourbaix Diagrams at Elevated Temperatures A Study of Zinc and Tin

    NASA Astrophysics Data System (ADS)

    Palazhchenko, Olga

    Metals in industrial settings such as power plants are often subjected to high temperature and pressure aqueous environments, where failure to control corrosion compromises worker and environment safety. For instance, zircaloy (1.2-1.7 wt.% Sn) fuel rods are exposed to aqueous 250-310 °C coolant in CANDU reactors. The Pourbaix (EH-pH) diagram is a plot of electrochemical potential versus pH, which shows the domains of various metal species and by inference, corrosion susceptibility. Elevated temperature data for tin +II and tin +IV species were obtained using solid-aqueous phase equilibria with the respective oxides, in a batch vessel with in-situ pH measurement. Solubilities, determined via spectroscopic techniques, were used to calculate equilibrium constants and the Gibbs energies of Sn complexes for E-pH diagram construction. The SnOH3+ and Sn(OH )-5 species were incorporated, for the first time, into the 298.15 K and 358.15 K diagrams, with novel Go values determined at 358.15 K. Key words: Pourbaix diagrams, EH-pH, elevated temperatures, solubility, equilibrium, metal oxides, hydrolysis, redox potential, pH, thermochemical data, tin, zinc, zircaloy, corrosion, passivity.

  11. High pressure–low temperature phase diagram of barium: Simplicity versus complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desgreniers, Serge; Tse, John S., E-mail: John.Tse@usask.ca; State Key Laboratory of Superhard Materials, Jilin University, 130012 Changchun

    2015-11-30

    Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that ofmore » complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations.« less

  12. Novel phase diagram behavior and materials design in heterostructural semiconductor alloys

    DOE PAGES

    Holder, Aaron M.; Siol, Sebastian; Ndione, Paul F.; ...

    2017-06-07

    Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the criticalmore » composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Furthermore, thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.« less

  13. Electronic properties of in-plane phase engineered 1T'/2H/1T' MoS2

    NASA Astrophysics Data System (ADS)

    Thakur, Rajesh; Sharma, Munish; Ahluwalia, P. K.; Sharma, Raman

    2018-04-01

    We present the first principles studies of semi-infinite phase engineered MoS2 along zigzag direction. The semiconducting (2H) and semi-metallic (1T') phases are known to be stable in thin-film MoS2. We described the electronic and structural properties of the infinite array of 1T'/2H/1T'. It has been found that 1T'phase induced semi-metallic character in 2H phase beyond interface but, only Mo atoms in 2H phase domain contribute to the semi-metallic nature and S atoms towards semiconducting state. 1T'/2H/1T' system can act as a typical n-p-n structure. Also high holes concentration at the interface of Mo layer provides further positive potential barriers.

  14. Magnetic phase diagram and electronic structure of UPt 2 Si 2 at high magnetic fields: A possible field-induced Lifshitz transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grachtrup, D. Schulze; Steinki, N.; Süllow, S.

    2017-04-14

    We have measured Hall effect, magnetotransport and magnetostriction on the field induced phases of single crystalline UPt2Si2 in magnetic fields up to 60T at temperatures down to 50mK, this way firmly establishing the phase diagram for magnetic fields Bka and c axes. Moreover, for Bkc axis we observe strong changes in the Hall effect at the phase boundaries. From a comparison to band structure calculations utilizing the concept of a dual nature of the uranium 5f electrons, we propose that these represent field induced topological changes of the Fermi surface due to at least one Lifshitz transition. Furthermore, we findmore » a unique history dependence of the magnetotransport and magnetostriction data, indicating that the proposed Lifshitz type transition is of a discontinuous nature, as predicted for interacting electron systems.« less

  15. Wave packet dynamics, time scales and phase diagram in the IBM-Lipkin-Meshkov-Glick model

    NASA Astrophysics Data System (ADS)

    Castaños, Octavio; de los Santos, Francisco; Yáñez, Rafael; Romera, Elvira

    2018-02-01

    We derive the phase diagram of a scalar two-level boson model by studying the equilibrium and stability properties of its energy surface. The plane of control parameters is enlarged with respect to previous studies. We then analyze the time evolution of wave packets centered around the ground state at various quantum phase transition boundary lines. In particular, classical and revival times are computed numerically.

  16. Effect of water content on partial ternary phase diagram water-in-diesel microemulsion fuel

    NASA Astrophysics Data System (ADS)

    Mukayat, Hastinatun; Badri, Khairiah Haji; Raman, Ismail Ab.; Ramli, Suria

    2014-09-01

    Introduction of water in the fuel gave a significant effect to the reduction of pollutant such as NOx emission. In this work, water/diesel microemulsion fuels were prepared using compositional method by mixing water and diesel in the presence of non-ionic surfactant and co-surfactant. The effects of water composition on the partial ternary phase diagram were studied at 5%, 10%, 15% and 20% (w/w). The physical stability of the microemulsion was investigated at 45°C over a period of one month. The optimum formulae obtained were diesel/T80/1-penthanol/water 60:20:15:5 wt% (System 1), 55:20:15:10 wt% (System 2), 50:20:15:15 wt% (System 3) and 45:20:15:20 wt% (System 4). Physicochemical characterizations of optimum formulae were studied. The results showed that water content has a significant effect to the formation of microemulsion, its stability, droplet size and viscosity.

  17. Anomalous correlation effects and unique phase diagram of electron-doped FeSe revealed by photoemission spectroscopy

    PubMed Central

    Wen, C. H. P.; Xu, H. C.; Chen, C.; Huang, Z. C.; Lou, X.; Pu, Y. J.; Song, Q.; Xie, B. P.; Abdel-Hafiez, Mahmoud; Chareev, D. A.; Vasiliev, A. N.; Peng, R.; Feng, D. L.

    2016-01-01

    FeSe layer-based superconductors exhibit exotic and distinctive properties. The undoped FeSe shows nematicity and superconductivity, while the heavily electron-doped KxFe2−ySe2 and single-layer FeSe/SrTiO3 possess high superconducting transition temperatures that pose theoretical challenges. However, a comprehensive study on the doping dependence of an FeSe layer-based superconductor is still lacking due to the lack of a clean means of doping control. Through angle-resolved photoemission spectroscopy studies on K-dosed thick FeSe films and FeSe0.93S0.07 bulk crystals, here we reveal the internal connections between these two types of FeSe-based superconductors, and obtain superconductivity below ∼46 K in an FeSe layer under electron doping without interfacial effects. Moreover, we discover an exotic phase diagram of FeSe with electron doping, including a nematic phase, a superconducting dome, a correlation-driven insulating phase and a metallic phase. Such an anomalous phase diagram unveils the remarkable complexity, and highlights the importance of correlations in FeSe layer-based superconductors. PMID:26952215

  18. PHASEGO: A toolkit for automatic calculation and plot of phase diagram

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Li

    2015-06-01

    The PHASEGO package extracts the Helmholtz free energy from the phonon density of states obtained by the first-principles calculations. With the help of equation of states fitting, it reduces the Gibbs free energy as a function of pressure/temperature at fixed temperature/pressure. Based on the quasi-harmonic approximation (QHA), it calculates the possible phase boundaries among all the structures of interest and finally plots the phase diagram automatically. For the single phase analysis, PHASEGO can numerically derive many properties, such as the thermal expansion coefficients, the bulk moduli, the heat capacities, the thermal pressures, the Hugoniot pressure-volume-temperature relations, the Grüneisen parameters, and the Debye temperatures. In order to check its ability of phase transition analysis, I present here two examples: semiconductor GaN and metallic Fe. In the case of GaN, PHASEGO automatically determined and plotted the phase boundaries among the provided zinc blende (ZB), wurtzite (WZ) and rocksalt (RS) structures. In the case of Fe, the results indicate that at high temperature the electronic thermal excitation free energy corrections considerably alter the phase boundaries among the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed (hcp) structures.

  19. Equation of state and high-pressure/high-temperature phase diagram of magnesium

    NASA Astrophysics Data System (ADS)

    Stinton, G. W.; MacLeod, S. G.; Cynn, H.; Errandonea, D.; Evans, W. J.; Proctor, J. E.; Meng, Y.; McMahon, M. I.

    2014-10-01

    The phase diagram of magnesium has been investigated to 211 GPa at 300 K, and to 105 GPa at 4500 K, by using a combination of x-ray diffraction and resistive and laser heating. The ambient pressure hcp structure is found to start transforming to the bcc structure at ˜45 GPa, with a large region of phase-coexistence that becomes smaller at higher temperatures. The bcc phase is stable to the highest pressures reached. The hcp-bcc phase boundary has been studied on both compression and decompression, and its slope is found to be negative and steeper than calculations have previously predicted. The laser-heating studies extend the melting curve of magnesium to 105 GPa and suggest that, at the highest pressures, the melting temperature increases more rapidly with pressure than previously reported. Finally, we observe some evidence of a new phase in the region of 10 GPa and 1200 K, where previous studies have reported a double-hexagonal-close-packed (dhcp) phase. However, the additional diffraction peaks we observe cannot be accounted for by the dhcp phase alone.

  20. Phase diagram of q-deformed Yang-Mills theory on S 2 at non-zero θ-angle

    NASA Astrophysics Data System (ADS)

    Okuyama, Kazumi

    2018-04-01

    We study the phase diagram of q-deformed Yang-Mills theory on S 2 at non-zero θ-angle using the exact partition function at finite N . By evaluating the exact partition function numerically, we find evidence for the existence of a series of phase transitions at non-zero θ-angle as conjectured in [hep-th/0509004

  1. Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag.

    PubMed

    Börzsönyi, Tamás; Ecke, Robert E

    2006-12-01

    We report experiments on the overall phase diagram of granular flows on an incline with emphasis on high inclination angles where the mean layer velocity approaches the terminal velocity of a single particle free falling in air. The granular flow was characterized by measurements of the surface velocity, the average layer height, and the mean density of the layer as functions of the hopper opening, the plane inclination angle, and the downstream distance x of the flow. At high inclination angles the flow does not reach an x -invariant steady state over the length of the inclined plane. For low volume flow rates, a transition was detected between dense and very dilute (gas) flow regimes. We show using a vacuum flow channel that air did not qualitatively change the phase diagram and did not quantitatively modify mean flow velocities of the granular layer except for small changes in the very dilute gaslike phase.

  2. Finite-connectivity spin-glass phase diagrams and low-density parity check codes.

    PubMed

    Migliorini, Gabriele; Saad, David

    2006-02-01

    We obtain phase diagrams of regular and irregular finite-connectivity spin glasses. Contact is first established between properties of the phase diagram and the performance of low-density parity check (LDPC) codes within the replica symmetric (RS) ansatz. We then study the location of the dynamical and critical transition points of these systems within the one step replica symmetry breaking theory (RSB), extending similar calculations that have been performed in the past for the Bethe spin-glass problem. We observe that the location of the dynamical transition line does change within the RSB theory, in comparison with the results obtained in the RS case. For LDPC decoding of messages transmitted over the binary erasure channel we find, at zero temperature and rate , an RS critical transition point at while the critical RSB transition point is located at , to be compared with the corresponding Shannon bound . For the binary symmetric channel we show that the low temperature reentrant behavior of the dynamical transition line, observed within the RS ansatz, changes its location when the RSB ansatz is employed; the dynamical transition point occurs at higher values of the channel noise. Possible practical implications to improve the performance of the state-of-the-art error correcting codes are discussed.

  3. Pressure-magnetic field induced phase transformation in Ni{sub 46}Mn{sub 41}In{sub 13} Heusler alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rama Rao, N. V., E-mail: nvrrao@dmrl.drdo.in; Manivel Raja, M.; Pandian, S.

    2014-12-14

    The effect of hydrostatic pressure and magnetic field on the magnetic properties and phase transformation in Ni{sub 46}Mn{sub 41}In{sub 13} Heusler alloy was investigated. Pressure (P)-magnetic field (H)-temperature (T) phase diagram has been constructed from experimental results. In the P–T contour of the phase diagram, the slope of the austenite-martensite phase boundary line appears positive (dT/dP > 0), while it appears negative (dT/dH < 0) in the H–T contour. The results revealed that pressure and magnetic field have opposite effect on phase stabilization. The combined effect of pressure and magnetic field on martensitic transition has led to two important findings: (i) pressure dependent shiftmore » of austenite start temperature (A{sub s}) is higher when larger field is applied, and (ii) field dependent shift of A{sub s} is lowered when a higher pressure is applied. The pressure and magnetic field dependent shift observed in the martensitic transformation has been explained on the basis of thermodynamic calculations. Curie temperature of the phases was found to increase with pressure at a rate of 0.6 K/kbar.« less

  4. Using CCT Diagrams to Optimize the Composition of an As-Rolled Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Coldren, A. Phillip; Eldis, George T.

    1980-03-01

    A continuous-cooling transformation (CCT) diagram study was conducted for the purpose of optimizing the composition of a Mn-Si-Cr-Mo as-rolled dual-phase (ARDP) steel. The individual effects of chromium, molybdenum, and silicon on the allowable cooling rates were determined. On the basis of the CCT diagram study and other available information, an optimum composition was selected. Data from recent mill trials at three steel companies, involving steels with compositions in or near the newly recommended range, are presented and compared with earlier mill trial data. The comparison shows that the optimized composition is highly effective in making the steel's properties more uniform and reproducible in the as-rolled condition.

  5. Nonequilibrium phase diagram of a one-dimensional quasiperiodic system with a single-particle mobility edge

    NASA Astrophysics Data System (ADS)

    Purkayastha, Archak; Dhar, Abhishek; Kulkarni, Manas

    2017-11-01

    We investigate and map out the nonequilibrium phase diagram of a generalization of the well known Aubry-André-Harper (AAH) model. This generalized AAH (GAAH) model is known to have a single-particle mobility edge which also has an additional self-dual property akin to that of the critical point of the AAH model. By calculating the population imbalance, we get hints of a rich phase diagram. We also find a fascinating connection between single particle wave functions near the mobility edge of the GAAH model and the wave functions of the critical AAH model. By placing this model far from equilibrium with the aid of two baths, we investigate the open system transport via system size scaling of nonequilibrium steady state (NESS) current, calculated by fully exact nonequilibrium Green's function (NEGF) formalism. The critical point of the AAH model now generalizes to a `critical' line separating regions of ballistic and localized transport. Like the critical point of the AAH model, current scales subdiffusively with system size on the `critical' line (I ˜N-2 ±0.1 ). However, remarkably, the scaling exponent on this line is distinctly different from that obtained for the critical AAH model (where I ˜N-1.4 ±0.05 ). All these results can be understood from the above-mentioned connection between states near the mobility edge of the GAAH model and those of the critical AAH model. A very interesting high temperature nonequilibrium phase diagram of the GAAH model emerges from our calculations.

  6. The phase diagram of high-pressure superionic ice

    DOE PAGES

    Sun, Jiming; Clark, Bryan K.; Torquato, Salvatore; ...

    2015-08-28

    Superionic ice is a special group of ice phases at high temperature and pressure, which may exist in ice-rich planets and exoplanets. In superionic ice liquid hydrogen coexists with a crystalline oxygen sublattice. At high pressures, the properties of superionic ice are largely unknown. Here we report evidence that from 280 GPa to 1.3 TPa, there are several competing phases within the close-packed oxygen sublattice. At even higher pressure, the close-packed structure of the oxygen sublattice becomes unstable to a new unusual superionic phase in which the oxygen sublattice takes the P2 1/c symmetry. We also discover that higher pressuremore » phases have lower transition temperatures. The diffusive hydrogen in the P2 1/c superionic phase shows strong anisotropic behaviour and forms a quasi-two-dimensional liquid. The ionic conductivity changes abruptly in the solid to close-packed superionic phase transition, but continuously in the solid to P2 1/c superionic phase transition.« less

  7. P-T-t-d History of the Lahul Valley, NW Indian Himalaya

    NASA Astrophysics Data System (ADS)

    Nieblas, A.; Leech, M. L.

    2015-12-01

    The Lahul Valley of NW India is located between the Zanskar Shear zone to the northwest and the Sangla detachment to the southeast. This region contains three east-trending, laterally-continuous tectonostratigraphic units separated by two major fault zones. To the south, low-grade metasediments of the Lesser Himalayan Sequence (LHS) are separated from high-grade crystalline rocks of the Greater Himalayan Sequence (GHS) by the north dipping Main Central Thrust (MCT). The northern extent of the GHS is separated from overlying low-grade sedimentary rocks of the Tethyan Himalayan Sequence (THS) along the north dipping South Tibetan Detachment System (STDS). There is controversy over the location and type of shear motion for the STDS in the ~50 km strip running through Lahul Valley where the STD is interpreted as a discrete fault, a dextral shear zone, and is unidentified in some areas along the trend of the STDS. This study focuses on understanding the pressure-temperature-time-deformation (P-T-t-d) evolution of THS and GHS rocks in Lahul Valley to better understand regional Cenozoic deformation and the location and role of the STDS in the extrusion of the GHS. Deformed granitics, migmatites, and leucogranites from the GHS contain a dominant mineralogy of Qz + Kfs + Pl + Bt + Ms ± Grt ± Ky ± St. Schists and phyllites from the THS contain a dominant mineralogy of Qz + Kfs + Pl + Bt + Ms ± Grt. Isochemical phase equilibria diagrams (pseudosections) are calculated in Perple_X using whole-rock chemistry data with solution models based on these mineral assemblages. Ti-in-quartz thermometry and the Fe-Mg exchange thermometry from garnet-biotite pairs used with mineral growth relationships constrain conditions during deformation and to establish P-T paths. U-Pb SHRIMP dating of zircon constrains peak metamorphic conditions and 40Ar/39Ar thermochronology of micas provide the cooling history along the valley and across the STDS. This multi-component approach to understand

  8. Structural and magnetic phase transitions in CeCu 6-xT x (T = Ag,Pd)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poudel, Lekhanath N.; De la cruz, Clarina; Payzant, E. Andrew

    The structural and the magnetic properties of CeCu 6-xAg x (0 ≤ x ≤ 0.85) and CeCu 6-xPd x (0 ≤ x ≤ 0.4) have been studied using neutron diffraction, resonant ultrasound spectroscopy (RUS), x-ray diffraction measurements, and first principles calculations. The structural and magnetic phase diagrams of CeCu 6-xAg x and CeCu 6-xPd x as a function of Ag/Pd composition are reported. The end member, CeCu 6, undergoes a structural phase transition from an orthorhombic ( Pnma) to a monoclinic (P2 1/c) phase at 240 K. In CeCu 6-xAg x, the structural phase transition temperature (T s) decreases linearlymore » with Ag concentration and extrapolates to zero at x S ≈ 0.1. The structural transition in CeCu 6-xPd x remains unperturbed with Pd substitution within the range of our study. The lattice constant b slightly decreases with Ag/Pd doping, whereas a and c increase with an overall increase in the unit cell volume. Both systems, CeCu 6-xAg x and CeCu 6-xPd x, exhibit a magnetic quantum critical point (QCP), at x ≈ 0.2 and x ≈ 0.05, respectively. Near the QCP, long range antiferromagnetic ordering takes place at an incommensurate wave vector (δ 1 0 δ 2), where δ 1 ~ 0.62, δ 2 ~ 0.25, x = 0.125 for CeCu 6-xPd x and δ 1 ~ 0.64, δ 2 ~ 0.3, x = 0.3 for CeCu 6-xAg x. As a result, the magnetic structure consists of an amplitude modulation of the Ce moments which are aligned along the c axis of the orthorhombic unit cell.« less

  9. Structural and magnetic phase transitions in CeCu 6-xT x (T = Ag,Pd)

    DOE PAGES

    Poudel, Lekhanath N.; De la cruz, Clarina; Payzant, E. Andrew; ...

    2015-12-15

    The structural and the magnetic properties of CeCu 6-xAg x (0 ≤ x ≤ 0.85) and CeCu 6-xPd x (0 ≤ x ≤ 0.4) have been studied using neutron diffraction, resonant ultrasound spectroscopy (RUS), x-ray diffraction measurements, and first principles calculations. The structural and magnetic phase diagrams of CeCu 6-xAg x and CeCu 6-xPd x as a function of Ag/Pd composition are reported. The end member, CeCu 6, undergoes a structural phase transition from an orthorhombic ( Pnma) to a monoclinic (P2 1/c) phase at 240 K. In CeCu 6-xAg x, the structural phase transition temperature (T s) decreases linearlymore » with Ag concentration and extrapolates to zero at x S ≈ 0.1. The structural transition in CeCu 6-xPd x remains unperturbed with Pd substitution within the range of our study. The lattice constant b slightly decreases with Ag/Pd doping, whereas a and c increase with an overall increase in the unit cell volume. Both systems, CeCu 6-xAg x and CeCu 6-xPd x, exhibit a magnetic quantum critical point (QCP), at x ≈ 0.2 and x ≈ 0.05, respectively. Near the QCP, long range antiferromagnetic ordering takes place at an incommensurate wave vector (δ 1 0 δ 2), where δ 1 ~ 0.62, δ 2 ~ 0.25, x = 0.125 for CeCu 6-xPd x and δ 1 ~ 0.64, δ 2 ~ 0.3, x = 0.3 for CeCu 6-xAg x. As a result, the magnetic structure consists of an amplitude modulation of the Ce moments which are aligned along the c axis of the orthorhombic unit cell.« less

  10. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    NASA Astrophysics Data System (ADS)

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; Vohra, Y. K.

    2016-04-01

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0-10 GPa and 300-650 K.

  11. Cumulants and correlation functions versus the QCD phase diagram

    DOE PAGES

    Bzdak, Adam; Koch, Volker; Strodthoff, Nils

    2017-05-12

    Here, we discuss the relation of particle number cumulants and correlation functions. It is argued that measuring couplings of the genuine multiparticle correlation functions could provide cleaner information on possible nontrivial dynamics in heavy-ion collisions. We also extract integrated multiproton correlation functions from the presently available experimental data on proton cumulants. We find that the STAR data contain significant four-proton correlations, at least at the lower energies, with indication of changing dynamics in central collisions. We also find that these correlations are rather long ranged in rapidity. Finally, using the Ising model, we demonstrate how the signs of the multiprotonmore » correlation functions may be used to exclude certain regions of the phase diagram close to the critical point.« less

  12. Cumulants and correlation functions versus the QCD phase diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzdak, Adam; Koch, Volker; Strodthoff, Nils

    Here, we discuss the relation of particle number cumulants and correlation functions. It is argued that measuring couplings of the genuine multiparticle correlation functions could provide cleaner information on possible nontrivial dynamics in heavy-ion collisions. We also extract integrated multiproton correlation functions from the presently available experimental data on proton cumulants. We find that the STAR data contain significant four-proton correlations, at least at the lower energies, with indication of changing dynamics in central collisions. We also find that these correlations are rather long ranged in rapidity. Finally, using the Ising model, we demonstrate how the signs of the multiprotonmore » correlation functions may be used to exclude certain regions of the phase diagram close to the critical point.« less

  13. Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations

    DOE PAGES

    Mirmelstein, A.; Podlesnyak, Andrey A.; dos Santos, Antonio M.; ...

    2015-08-03

    The pressure-induced structural phase transition in the intermediate-valence compound CeNi has been investigated by x-ray and neutron powder diffraction techniques. It is shown that the structure of the pressure-induced CeNi phase (phases) can be described in terms of the Pnma space group. Equations of state for CeNi on both sides of the phase transition are derived and an approximate P-T phase diagram is suggested for P<8 GPa and T<300 K. The observed Cmcm→Pnma structural transition is then analyzed using density functional theory calculations, which successfully reproduce the ground state volume, the phase transition pressure, and the volume collapse associated withmore » the phase transition.« less

  14. Combinatorial materials synthesis and high-throughput screening: an integrated materials chip approach to mapping phase diagrams and discovery and optimization of functional materials.

    PubMed

    Xiang, X D

    Combinatorial materials synthesis methods and high-throughput evaluation techniques have been developed to accelerate the process of materials discovery and optimization and phase-diagram mapping. Analogous to integrated circuit chips, integrated materials chips containing thousands of discrete different compositions or continuous phase diagrams, often in the form of high-quality epitaxial thin films, can be fabricated and screened for interesting properties. Microspot x-ray method, various optical measurement techniques, and a novel evanescent microwave microscope have been used to characterize the structural, optical, magnetic, and electrical properties of samples on the materials chips. These techniques are routinely used to discover/optimize and map phase diagrams of ferroelectric, dielectric, optical, magnetic, and superconducting materials.

  15. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially-grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high pressure area on the order of a few tens of seconds. This device is then used to scanmore » the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in the experiment the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp→αSm transition proceeds in discontinuous steps at points along the expected phase boundary. Additionally, the unit cell volumes of each phase deviate from the expected thermal expansion behavior just before each transition is observed from the diffraction data. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0 - 10 GPa and 300 - 650 K.« less

  16. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE PAGES

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; ...

    2016-04-07

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially-grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high pressure area on the order of a few tens of seconds. This device is then used to scanmore » the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in the experiment the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp→αSm transition proceeds in discontinuous steps at points along the expected phase boundary. Additionally, the unit cell volumes of each phase deviate from the expected thermal expansion behavior just before each transition is observed from the diffraction data. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0 - 10 GPa and 300 - 650 K.« less

  17. Understanding agent-based models of financial markets: A bottom-up approach based on order parameters and phase diagrams

    NASA Astrophysics Data System (ADS)

    Lye, Ribin; Tan, James Peng Lung; Cheong, Siew Ann

    2012-11-01

    We describe a bottom-up framework, based on the identification of appropriate order parameters and determination of phase diagrams, for understanding progressively refined agent-based models and simulations of financial markets. We illustrate this framework by starting with a deterministic toy model, whereby N independent traders buy and sell M stocks through an order book that acts as a clearing house. The price of a stock increases whenever it is bought and decreases whenever it is sold. Price changes are updated by the order book before the next transaction takes place. In this deterministic model, all traders based their buy decisions on a call utility function, and all their sell decisions on a put utility function. We then make the agent-based model more realistic, by either having a fraction fb of traders buy a random stock on offer, or a fraction fs of traders sell a random stock in their portfolio. Based on our simulations, we find that it is possible to identify useful order parameters from the steady-state price distributions of all three models. Using these order parameters as a guide, we find three phases: (i) the dead market; (ii) the boom market; and (iii) the jammed market in the phase diagram of the deterministic model. Comparing the phase diagrams of the stochastic models against that of the deterministic model, we realize that the primary effect of stochasticity is to eliminate the dead market phase.

  18. Diagrams for the Free Energy and Density Weight Factors of the Ising Models.

    DTIC Science & Technology

    1983-01-01

    sum to zero . The associated R. A. Farrell, T. Morita, and P. H. E. Meijer, "Cluster Expan- also, "_ ratum: New Generating Functions and Results for the...given for the cubic lattices. We employ a theorem that states that a certain sum of diagrams is zero in order to obtain the density-dependent weight...these diagrams are given for the cubic lattices. We employ a theorem that states that a certain sum of diagrams is zero in order to obtain the density

  19. Universal scattering response across the type-II Weyl semimetal phase diagram

    NASA Astrophysics Data System (ADS)

    Rüßmann, P.; Weber, A. P.; Glott, F.; Xu, N.; Fanciulli, M.; Muff, S.; Magrez, A.; Bugnon, P.; Berger, H.; Bode, M.; Dil, J. H.; Blügel, S.; Mavropoulos, P.; Sessi, P.

    2018-02-01

    The discovery of Weyl semimetals represents a significant advance in topological band theory. They paradigmatically enlarged the classification of topological materials to gapless systems while simultaneously providing experimental evidence for the long-sought Weyl fermions. Beyond fundamental relevance, their high mobility, strong magnetoresistance, and the possible existence of even more exotic effects, such as the chiral anomaly, make Weyl semimetals a promising platform to develop radically new technology. Fully exploiting their potential requires going beyond the mere identification of materials and calls for a detailed characterization of their functional response, which is severely complicated by the coexistence of surface- and bulk-derived topologically protected quasiparticles, i.e., Fermi arcs and Weyl points, respectively. Here, we focus on the type-II Weyl semimetal class in which we find a stoichiometry-dependent phase transition from a trivial to a nontrivial regime. By exploring the two extreme cases of the phase diagram, we demonstrate the existence of a universal response of both surface and bulk states to perturbations. We show that quasiparticle interference patterns originate from scattering events among surface arcs. Analysis reveals that topologically nontrivial contributions are strongly suppressed by spin texture. We also show that scattering at localized impurities can generate defect-induced quasiparticles sitting close to the Weyl point energy. These give rise to strong peaks in the local density of states, which lift the Weyl node, significantly altering the pristine low-energy spectrum. Remarkably, by comparing the WTe2 and the MoTe2 cases we found that scattering response and topological transition are not directly linked. Visualizing the existence of a universal microscopic response to scattering has important consequences for understanding the unusual transport properties of this class of materials. Overall, our observations provide

  20. Identifying Liquid-Gas System Misconceptions and Addressing Them Using a Laboratory Exercise on Pressure-Temperature Diagrams of a Mixed Gas Involving Liquid-Vapor Equilibrium

    ERIC Educational Resources Information Center

    Yoshikawa, Masahiro; Koga, Nobuyoshi

    2016-01-01

    This study focuses on students' understandings of a liquid-gas system with liquid-vapor equilibrium in a closed system using a pressure-temperature ("P-T") diagram. By administrating three assessment questions concerning the "P-T" diagrams of liquid-gas systems to students at the beginning of undergraduate general chemistry…

  1. Ab initio study of the composite phase diagram of Ni-Mn-Ga shape memory alloys

    NASA Astrophysics Data System (ADS)

    Sokolovskaya, Yu. A.; Sokolovskiy, V. V.; Zagrebin, M. A.; Buchelnikov, V. D.; Zayak, A. T.

    2017-07-01

    The magnetic and structural properties of a series of nonstoichiometric Ni-Mn-Ga Heusler alloys are theoretically investigated in terms of the density functional theory. Nonstoichiometry is formed in the coherent potential approximation. Concentration dependences of the equilibrium lattice parameter, the bulk modulus, and the total magnetic moment are obtained and projected onto the ternary phase diagram of the alloys. The stable crystalline structures and the magnetic configurations of the austenitic phase are determined.

  2. Phase diagram of the underdoped cuprates at high magnetic field

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debmalya; Morice, Corentin; Pépin, Catherine

    2018-06-01

    The experimentally measured phase diagram of cuprate superconductors in the temperature-applied magnetic field plane illuminates key issues in understanding the physics of these materials. At low temperature, the superconducting state gives way to a long-range charge order with increasing magnetic field; both the orders coexist in a small intermediate region. The charge order transition is strikingly insensitive to temperature and quickly reaches a transition temperature close to the zero-field superconducting Tc. We argue that such a transition along with the presence of the coexisting phase is difficult to obtain in a weak coupling competing orders formalism. We demonstrate that for some range of parameters there is an enlarged symmetry of the strongly coupled charge and superconducting orders in the system depending on their relative masses and the coupling strength of the two orders. We establish that this sharp switch from the superconducting phase to the charge order phase can be understood in the framework of a composite SU(2) order parameter comprising the charge and superconducting orders. Finally, we illustrate that there is a possibility of the coexisting phase of the competing charge and superconducting orders only when the SU(2) symmetry between them is weakly broken due to biquadratic terms in the free energy. The relation of this sharp transition to the proximity to the pseudogap quantum critical doping is also discussed.

  3. Phase Diagram of Kob-Andersen-Type Binary Lennard-Jones Mixtures

    NASA Astrophysics Data System (ADS)

    Pedersen, Ulf R.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2018-04-01

    The binary Kob-Andersen (KA) Lennard-Jones mixture is the standard model for computational studies of viscous liquids and the glass transition. For very long simulations, the viscous KA system crystallizes, however, by phase separating into a pure A particle phase forming a fcc crystal. We present the thermodynamic phase diagram for KA-type mixtures consisting of up to 50% small (B ) particles showing, in particular, that the melting temperature of the standard KA system at liquid density 1.2 is 1.028(3) in A particle Lennard-Jones units. At large B particle concentrations, the system crystallizes into the CsCl crystal structure. The eutectic corresponding to the fcc and CsCl structures is cutoff in a narrow interval of B particle concentrations around 26% at which the bipyramidal orthorhombic PuBr3 structure is the thermodynamically stable phase. The melting temperature's variation with B particle concentration at two constant pressures, as well as at the constant density 1.2, is estimated from simulations at pressure 10.19 using isomorph theory. Our data demonstrate approximate identity between the melting temperature and the onset temperature below which viscous dynamics appears. Finally, the nature of the solid-liquid interface is briefly discussed.

  4. Studies on the phase diagram of Pb-Fe-O system and standard molar Gibbs energy of formation of 'PbFe5O8.5' and Pb2Fe2O5

    NASA Astrophysics Data System (ADS)

    Sahu, Sulata Kumari; Ganesan, Rajesh; Gnanasekaran, T.

    2012-07-01

    Partial phase diagram of Pb-Fe-O system has been established by phase equilibration studies over a wide temperature range coupled with high temperature solid electrolyte based emf cells. Ternary oxides are found to coexist with liquid lead only at temperatures above 900 K. At temperatures below 900 K, iron oxides coexist with liquid lead. Standard molar Gibbs energy of formation of ternary oxides 'PbFe5O8.5' and Pb2Fe2O5 were determined by measuring equilibrium oxygen partial pressures over relevant phase fields using emf cells and are given by the following expressions: ΔfGmo 'PbFeO'±1.0(kJ mol)=-2208.1+0.6677(T/K) (917⩽T/K⩽1117) ΔfGmo PbFeO±0.8(kJ mol)=-1178.4+0.3724(T/K) (1050⩽T/K⩽1131) .

  5. Study of the high-pressure helium phase diagram using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Koci, L.; Ahuja, R.; Belonoshko, A. B.; Johansson, B.

    2007-01-01

    The rich occurrence of helium and hydrogen in space makes their properties highly interesting. By means of molecular dynamics (MD), we have examined two interatomic potentials for 4He. Both potentials are demonstrated to reproduce high-pressure solid and liquid equation of state (EOS) data. The EOS, solid-solid transitions and melting at high pressures (P) were studied using a two-phase method. The Buckingham potential shows a good agreement with theoretical and experimental EOS, but does not reproduce experimental melting data. The Aziz potential shows a perfect match with theoretical melting data. We conclude that there is a stable body-centred-cubic (bcc) phase for 4He at temperatures (T) above 340 K and pressures above 22 GPa for the Buckingham potential, whereas no bcc phase is found for the Aziz potential in the applied PT range.

  6. Moving heavy quarkonium entropy, effective string tension, and the QCD phase diagram

    NASA Astrophysics Data System (ADS)

    Chen, Xun; Feng, Sheng-Qin; Shi, Ya-Fei; Zhong, Yang

    2018-03-01

    The entropy and effective string tension of the moving heavy quark-antiquark pair in the strongly coupled plasmas are calculated by using a deformed an anti-de Sitter/Reissner-Nordström black hole metric. A sharp peak of the heavy-quarkonium entropy around the deconfinement transition can be realized in our model, which is consistent with the lattice QCD result. The effective string tension of the heavy quark-antiquark pair is related to the deconfinement phase transition. Thus, we investigate the deconfinement phase transition by analyzing the characteristics of the effective string tension with different temperatures, chemical potentials, and rapidities. It is found that the results of phase diagram calculated through effective string tension are in agreement with results calculated through a Polyakov loop. We argue that a moving system will reach the phase transition point at a lower temperature and chemical potential than a stationary system. It means that the lifetime of the moving quark-gluon plasma become longer than the static one.

  7. Towards First Principles-Based Prediction of Highly Accurate Electrochemical Pourbaix Diagrams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Zhenhua; Chan, Maria K. Y.; Zhao, Zhi-Jian

    2015-08-13

    Electrochemical potential/pH (Pourbaix) diagrams underpin many aqueous electrochemical processes and are central to the identification of stable phases of metals for processes ranging from electrocatalysis to corrosion. Even though standard DFT calculations are potentially powerful tools for the prediction of such diagrams, inherent errors in the description of transition metal (hydroxy)oxides, together with neglect of van der Waals interactions, have limited the reliability of such predictions for even the simplest pure metal bulk compounds, and corresponding predictions for more complex alloy or surface structures are even more challenging. In the present work, through synergistic use of a Hubbard U correction,more » a state-of-the-art dispersion correction, and a water-based bulk reference state for the calculations, these errors are systematically corrected. The approach describes the weak binding that occurs between hydroxyl-containing functional groups in certain compounds in Pourbaix diagrams, corrects for self-interaction errors in transition metal compounds, and reduces residual errors on oxygen atoms by preserving a consistent oxidation state between the reference state, water, and the relevant bulk phases. The strong performance is illustrated on a series of bulk transition metal (Mn, Fe, Co and Ni) hydroxides, oxyhydroxides, binary, and ternary oxides, where the corresponding thermodynamics of redox and (de)hydration are described with standard errors of 0.04 eV per (reaction) formula unit. The approach further preserves accurate descriptions of the overall thermodynamics of electrochemically-relevant bulk reactions, such as water formation, which is an essential condition for facilitating accurate analysis of reaction energies for electrochemical processes on surfaces. The overall generality and transferability of the scheme suggests that it may find useful application in the construction of a broad array of electrochemical phase diagrams, including

  8. A neutron diffraction study of the magnetic phases of CsCuCl3 for in-plane fields up to 17 T

    NASA Astrophysics Data System (ADS)

    Stüßer, N.; Schotte, U.; Hoser, A.; Meschke, M.; Meißner, M.; Wosnitza, J.

    2002-05-01

    Neutron diffraction investigations have been performed to study the magnetization process of CsCuCl3 with the magnetic field aligned within the ab-plane. In zero field the stacked, triangular-lattice antiferromagnet (TLA) CsCuCl3 has a helical structure incommensurate in the chain direction normal to the ab-plane. The magnetic phase diagram was investigated from 2 K up to TN in fields up to 17 T. The phase line for the expected incommensurate-commensurate (IC-C) phase transition could be determined throughout the whole phase diagram. At low temperature the IC-C transition is roughly at half the saturation field HS. The neutron diffraction patterns were found to be well described by a sinusoidally modulated spiral in fields up to HS/3. The initial increase of the scattering intensity in rising field indicates a continuous reduction of the spin frustration on the triangular lattice. Between HS/3 and HS/2 a new phase occurs where the spiral vector has a plateau in its field dependence. Close to the IC-C transition a growing asymmetry of magnetic satellite-peak intensities indicates domain effects which are related to the lifting of the chiral degeneracy in the ab-plane in rising field. The phase diagram obtained has some similarities with those calculated for stacked TLAs by considering the effects of quantum and thermal fluctuations.

  9. The phase diagram and transport properties of MgO from theory and experiment

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke

    2013-06-01

    Planetary structure and the formation of terrestrial planets have received tremendous interest due to the discovery of so called super-earth exoplanets. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants and is a likely component of the interiors of many of these exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine MgO under extreme conditions using experimental and theoretical methods to determine its phase diagram and transport properties. Using plate impact experiments on Sandia's Z facility the solid-solid phase transition from B1 to B2 is clearly determined. The melting transition, on the other hand, is subtle, involving little to no signal in us-up space. Theoretical work utilizing density functional theory (DFT) provides a complementary picture of the phase diagram. The solid-solid phase transition is identified through a series of quasi-harmonic phonon calculations and thermodynamic integration, while the melt boundary is found using phase coexistence calculations. One issue of particular import is the calculation of reflectivity along the Hugoniot and the influence of the ionic structure on the transport properties. Particular care is necessary because of the underestimation of the band gap and attendant overestimation of transport properties due to the use of semi-local density functional theory. We will explore the impact of this theoretical challenge and its potential solutions in this talk. The integrated use of DFT simulations and high-accuracy shock experiments together provide a comprehensive understanding of MgO under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Extended phase diagram of R NiC2 family: Linear scaling of the Peierls temperature

    NASA Astrophysics Data System (ADS)

    Roman, Marta; Strychalska-Nowak, Judyta; Klimczuk, Tomasz; Kolincio, Kamil K.

    2018-01-01

    Physical properties for the late-lanthanide-based R NiC2 (R =Dy , Ho, Er, and Tm) ternary compounds are reported. All the compounds show antiferromagnetic ground state with the Néel temperature ranging from 3.4 K for HoNiC2 to 8.5 K for ErNiC2. The results of the transport and galvanomagnetic properties confirm a charge density wave state at and above room temperature with transition temperatures TCDW=284 , 335, 366, and 394 K for DyNiC2, HoNiC2, ErNiC2, and TmNiC2, respectively. The Peierls temperature TCDW scales linearly with the unit cell volume. A similar linear dependence has been observed for the temperature of the lock-in transition T1 as well. Beyond the intersection point of the trend lines, the lock-in transition is no longer observed. In this Rapid Communication we demonstrate an extended phase diagram for the R NiC2 family.

  11. Holographic QCD phase diagram with critical point from Einstein-Maxwell-dilaton dynamics

    NASA Astrophysics Data System (ADS)

    Knaute, J.; Yaresko, R.; Kämpfer, B.

    2018-03-01

    Supplementing the holographic Einstein-Maxwell-dilaton model of [1,2] by input of lattice QCD data for 2 + 1 flavors and physical quark masses for the equation of state and quark number susceptibility at zero baryo-chemical potential we explore the resulting phase diagram over the temperature-chemical potential plane. A first-order phase transition sets in at a temperature of about 112 MeV and a baryo-chemical potential of 612 MeV. We estimate the accuracy of the critical point position in the order of approximately 5-8% by considering parameter variations and different low-temperature asymptotics for the second-order quark number susceptibility. The critical pressure as a function of the temperature has a positive slope, i.e. the entropy per baryon jumps up when crossing the phase border line from larger values of temperature/baryo-chemical potential, thus classifying the phase transition as a gas-liquid one. The updated holographic model exhibits in- and outgoing isentropes in the vicinity of the first-order phase transition.

  12. Solitary Waves of a $$\\mathcal {P}$$ $$\\mathcal {T}$$-Symmetric Nonlinear Dirac Equation

    DOE PAGES

    Cuevas-Maraver, Jesus; Kevrekidis, Panayotis G.; Saxena, Avadh; ...

    2015-10-06

    In our study we consider we consider a prototypical example of a mathcalP mathcalT-symmetric Dirac model. We discuss the underlying linear limit of the model and identify the threshold of the mathcalP mathcalT -phase transition in an analytical form. We then focus on the examination of the nonlinear model. We consider the continuation in the mathcalP mathcalT -symmetric model of the solutions of the corresponding Hamiltonian model and find that the solutions can be continued robustly as stable ones all the way up to the mathcalP mathcalT-transition threshold. In the latter, they degenerate into linear waves. We also examine themore » dynamics of the model. Given the stability of the waveforms in the mathcalP mathcalT-exact phase, we consider them as initial conditions for parameters outside of that phase. We also find that both oscillatory dynamics and exponential growth may arise, depending on the size of the corresponding “quench”. The former can be characterized by an interesting form of bifrequency solutions that have been predicted on the basis of the SU symmetry. Finally, we explore some special, analytically tractable, but not mathcalP mathcalT-symmetric solutions in the massless limit of t- e model.« less

  13. The topological pressure-temperature phase diagram and crystal structures of the dimorphic system spiperone.

    PubMed

    Robert, B; Perrin, M-A; Coquerel, G; Céolin, R; Rietveld, I B

    2016-03-01

    The topological pressure-temperature phase diagram for the dimorphism of spiperone, a potent neuroleptic drug, has been constructed using literature data and improved crystal structures obtained with new crystallographic data from single-crystal X-ray diffraction at various temperatures. It is inferred that form II, which is the more dense form and exhibits the lower melting temperature, becomes the more stable phase under pressure. Under ambient conditions, form I is more stable. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  14. Eclogites and garnet clinopyroxenites in the Anrakhai complex, Central Asian Orogenic Belt, Southern Kazakhstan: P-T evolution, protoliths and some geodynamic implications

    NASA Astrophysics Data System (ADS)

    Pilitsyna, Anfisa V.; Tretyakov, Andrey A.; Degtyarev, Kirill E.; Cuthbert, Simon J.; Batanova, Valentina G.; Kovalchuk, Elena V.

    2018-03-01

    The Anrakhai Metamorphic Complex (AMC), located in the SE part of the Chu-Ili Mountains of Southern Kazakhstan in the western part of Central Asian Orogenic Belt, exhibits occurrences of HP metamorphic rocks in the form of eclogites and garnet clinopyroxenites with peak metamorphic conditions of 750-850° and 15-19 kbar estimated with both conventional geothermobarometric methods and phase diagram modeling. P-T estimates as well as intimate field relations evidently imply a common metamorphic history for eclogites and garnet clinopyroxenites of the AMC. These high-pressure, medium temperature eclogite facies P-T conditions are indicative of a collision or subduction tectonic setting. Major and trace element geochemistry suggests that they probably had a common magmatic origin as part of a suite of differentiated tholeiitic intrusions. Furthermore, distinctive mineral and chemical compositions of these eclogites and garnet clinopyroxenites correspond to the Fe-Ti type of ultramafic rocks suggesting that they may have been derivatives of intraplate tholeiitic melts, introduced into continental crust before HP metamorphism.

  15. Phase Diagram and Electronic Structure of Praseodymium and Plutonium

    DOE PAGES

    Lanatà, Nicola; Yao, Yongxin; Wang, Cai-Zhuang; ...

    2015-01-29

    We develop a new implementation of the Gutzwiller approximation in combination with the local density approximation, which enables us to study complex 4f and 5f systems beyond the reach of previous approaches. We calculate from first principles the zero-temperature phase diagram and electronic structure of Pr and Pu, finding good agreement with the experiments. Our study of Pr indicates that its pressure-induced volume-collapse transition would not occur without change of lattice structure—contrarily to Ce. Our study of Pu shows that the most important effect originating the differentiation between the equilibrium densities of its allotropes is the competition between the Peierlsmore » effect and the Madelung interaction and not the dependence of the electron correlations on the lattice structure.« less

  16. Complex magnetic phase diagram with multistep spin-flop transitions in L a0.25P r0.75C o2P2

    NASA Astrophysics Data System (ADS)

    Tan, Xiaoyan; Garlea, V. Ovidiu; Kovnir, Kirill; Thompson, Corey M.; Xu, Tongshuai; Cao, Huibo; Chai, Ping; Tener, Zachary P.; Yan, Shishen; Xiong, Peng; Shatruk, Michael

    2017-01-01

    L a0.25P r0.75C o2P2 crystallizes in the tetragonal ThC r2S i2 structure type and shows multiple magnetic phase transitions driven by changes in temperature and magnetic field. The nature of these transitions was investigated by a combination of magnetic and magnetoresistance measurements and both single crystal and powder neutron diffraction. The Co magnetic moments order ferromagnetically (FM) parallel to the c axis at 282 K, followed by antiferromagnetic (AFM) ordering at 225 K. In the AFM structure, the Co magnetic moments align along the c axis with FM [C o2P2] layers arranged in an alternating sequence, ↑↑↓↓ , which leads to the doubling of the c axis in the magnetic unit cell. Another AFM transition is observed at 27 K, due to the ordering of a half of Pr moments in the a b plane. The other half of Pr moments undergoes AFM ordering along the c axis at 11 K, causing simultaneous reorientation of the previously ordered Pr moments into an AFM structure with the moments being canted with respect to the c axis. This AFM transition causes an abrupt decrease in electrical resistivity at 11 K. Under applied magnetic field, two metamagnetic transitions are observed in the Pr sublattice at 0.8 and 5.4 T. They correlate with two anomalies in magnetoresistance measurements at the same critical fields. A comparison of the temperature- and field-dependent magnetic properties of L a0.25P r0.75C o2P2 to the magnetic behavior of PrC o2P2 is provided.

  17. Production method of carbamazepine/saccharin cocrystal particles by using two solution mixing based on the ternary phase diagram

    NASA Astrophysics Data System (ADS)

    Kudo, Shoji; Takiyama, Hiroshi

    2014-04-01

    In the pharmaceutical field, improvement of drug solubility is required, and an interest in cocrystals is growing. Crystallization methods for industrial production of cocrystals have not been developed enough whereas many cocrystals have been prepared in order to find a new crystal form by screening in the laboratory. The objective of this study was the development of the crystallization method which is useful for the industrial production of cocrystal particles based on the phase diagram. A cocrystal of carbamazepine and saccharin was selected as a model substance. The ternary phase diagram of carbamazepine and saccharin in methanol at 303 K was measured. A cocrystallization method of mixing two kinds of different eutectic solutions was designed based on the ternary phase diagram. In order to adjust the cocrystallization conditions, the determination method of the driving force for cocrystal deposition such as supersaturation based on mass balance was proposed. The cocrystal particles were obtained under all the conditions of the five mixing ratios. From these experimental results, the relationship between the supersaturation and the induction time for nucleation was confirmed as well as conventional crystallization. In conclusion, the crystallization method for industrial production of cocrystal particles including the determination of the supersaturation was suggested.

  18. Phase diagram, correlation gap, and critical properties of the coulomb glass.

    PubMed

    Goethe, Martin; Palassini, Matteo

    2009-07-24

    We investigate the lattice Coulomb glass model in three dimensions via Monte Carlo simulations. No evidence for an equilibrium glass phase is found down to very low temperatures, although the correlation length increases rapidly near T = 0. A charge-ordered phase exists at low disorder. The transition to this phase is consistent with the random field Ising universality class, which shows that the interaction is effectively screened at moderate temperature. For large disorder, the single-particle density of states near the Coulomb gap satisfies the scaling relation g(epsilon, T) = T;{delta}f(|epsilon|/T) with delta = 2.01 +/- 0.05 in agreement with the prediction of Efros and Shklovskii. For decreasing disorder, a crossover to a larger effective exponent occurs due to the proximity of the charge-ordered phase.

  19. Phase diagram, correlation gap, and critical properties of the Coulomb glass

    NASA Astrophysics Data System (ADS)

    Palassini, Matteo; Goethe, Martin

    2009-03-01

    We investigate the lattice Coulomb glass model in three dimensions via extensive Monte Carlo simulations. 1. No evidence for an equilibrium glass phase is found down to very low temperatures, contrary to mean-field predictions, although the correlation length increases rapidly near T=0. 2. The single-particle density of states near the Coulomb gap satisfies the scaling law g(e,T)=T^λf(e/T) with λ 2.2. 3. A charge-ordered phase exists at low disorder. The phase transition from the fluid to the charge ordered phase is consistent with the Random Field Ising universality class, which shows that the interaction is effectively screened at moderate temperature. Results from nonequilibrium simulations will also be briefly discussed. Reference: M.Goethe and M.Palassini, arXiv:0810.1047

  20. Influence of the inter-ion interaction on the phase diagrams of the 1D Falicov-Kimball system

    NASA Astrophysics Data System (ADS)

    Gajek, Z.; Lemański, R.

    2004-05-01

    A model of itinerant, spinless electrons interacting with ions via the on-site Coulomb potential U, modified by the inter-ionic nearest-neighbour interaction V, is studied on the one-dimensional infinite lattice. Only periodical configurations of the ions with a limited number of lattice sites in a unit cell and their mixtures are taken into account. Phases whose energies reach minimum values for given electron and ion chemical potentials are selected and depicted for a set of model parameters. Then the results are translated into the ion density-electron density canonical phase diagrams and summarized in the electrondensity-U plane. The diagrams clearly show how various kinds of charge ordering evolve with V, starting from V=0 case, that represents the standard Falicov-Kimball model discussed previously.

  1. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, J. M.; Samudrala, G. K.; Vohra, Y. K.

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phasemore » diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0–10 GPa and 300–650 K.« less

  2. Phase Diagram of a Three-Dimensional Antiferromagnet with Random Magnetic Anisotropy

    DOE PAGES

    Perez, Felio A.; Borisov, Pavel; Johnson, Trent A.; ...

    2015-03-04

    Three-dimensional (3D) antiferromagnets with random magnetic anisotropy (RMA) that were experimentally studied to date have competing two-dimensional and three-dimensional exchange interactions which can obscure the authentic effects of RMA. The magnetic phase diagram of Fe xNi 1-xF 2 epitaxial thin films with true random single-ion anisotropy was deduced from magnetometry and neutron scattering measurements and analyzed using mean field theory. Regions with uniaxial, oblique and easy plane anisotropies were identified. A RMA-induced glass region was discovered where a Griffiths-like breakdown of long-range spin order occurs.

  3. Electron—phonon Coupling and the Superconducting Phase Diagram of the LaAlO3—SrTiO3 Interface

    PubMed Central

    Boschker, Hans; Richter, Christoph; Fillis-Tsirakis, Evangelos; Schneider, Christof W.; Mannhart, Jochen

    2015-01-01

    The superconductor at the LaAlO3—SrTiO3 interface provides a model system for the study of two-dimensional superconductivity in the dilute carrier density limit. Here we experimentally address the pairing mechanism in this superconductor. We extract the electron—phonon spectral function from tunneling spectra and conclude, without ruling out contributions of further pairing channels, that electron—phonon mediated pairing is strong enough to account for the superconducting critical temperatures. Furthermore, we discuss the electron—phonon coupling in relation to the superconducting phase diagram. The electron—phonon spectral function is independent of the carrier density, except for a small part of the phase diagram in the underdoped region. The tunneling measurements reveal that the increase of the chemical potential with increasing carrier density levels off and is zero in the overdoped region of the phase diagram. This indicates that the additionally induced carriers do not populate the band that hosts the superconducting state and that the superconducting order parameter therefore is weakened by the presence of charge carriers in another band. PMID:26169351

  4. Scheil-Gulliver Constituent Diagrams

    NASA Astrophysics Data System (ADS)

    Pelton, Arthur D.; Eriksson, Gunnar; Bale, Christopher W.

    2017-06-01

    During solidification of alloys, conditions often approach those of Scheil-Gulliver cooling in which it is assumed that solid phases, once precipitated, remain unchanged. That is, they no longer react with the liquid or with each other. In the case of equilibrium solidification, equilibrium phase diagrams provide a valuable means of visualizing the effects of composition changes upon the final microstructure. In the present study, we propose for the first time the concept of Scheil-Gulliver constituent diagrams which play the same role as that in the case of Scheil-Gulliver cooling. It is shown how these diagrams can be calculated and plotted by the currently available thermodynamic database computing systems that combine Gibbs energy minimization software with large databases of optimized thermodynamic properties of solutions and compounds. Examples calculated using the FactSage system are presented for the Al-Li and Al-Mg-Zn systems, and for the Au-Bi-Sb-Pb system and its binary and ternary subsystems.

  5. Phase diagram of germanium telluride encapsulated in carbon nanotubes from first-principles searches

    NASA Astrophysics Data System (ADS)

    Wynn, Jamie M.; Medeiros, Paulo V. C.; Vasylenko, Andrij; Sloan, Jeremy; Quigley, David; Morris, Andrew J.

    2017-12-01

    Germanium telluride has attracted great research interest, primarily because of its phase-change properties. We have developed a general scheme, based on the ab initio random structure searching (AIRSS) method, for predicting the structures of encapsulated nanowires, and using this we predict a number of thermodynamically stable structures of GeTe nanowires encapsulated inside carbon nanotubes of radii under 9 Å . We construct the phase diagram of encapsulated GeTe, which provides quantitative predictions about the energetic favorability of different filling structures as a function of the nanotube radius, such as the formation of a quasi-one-dimensional rock-salt-like phase inside nanotubes of radii between 5.4 and 7.9 Å . Simulated TEM images of our structures show excellent agreement between our results and experimental TEM imagery. We show that, for some nanotubes, the nanowires undergo temperature-induced phase transitions from one crystalline structure to another due to vibrational contributions to the free energy, which is a first step toward nano-phase-change memory devices.

  6. Phase diagrams of orientational transitions in absorbing nematic liquid crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolot’ko, A. S., E-mail: zolotko@lebedev.ru; Ochkin, V. N.; Smayev, M. P.

    2015-05-15

    A theory of orientational transitions in nematic liquid crystals (NLCs), which employs the expansion of optical torques acting on the NLC director with respect to the rotation angle, has been developed for NLCs with additives of conformationally active compounds under the action of optical and low-frequency electric and magnetic fields. Phase diagrams of NLCs are constructed as a function of the intensity and polarization of the light field, the strength of low-frequency electric field, and a parameter that characterizes the feedback between the rotation of the NLC director and optical torque. Conditions for the occurrence of first- and second-order transitionsmore » are determined. The proposed theory agrees with available experimental data.« less

  7. Phase diagram of the isotropic spin-(3)/(2) model on the z=3 Bethe lattice

    NASA Astrophysics Data System (ADS)

    Depenbrock, Stefan; Pollmann, Frank

    2013-07-01

    We study an SU(2) symmetric spin-3/2 model on the z=3 Bethe lattice using the infinite time evolving block decimation (iTEBD) method. This model is shown to exhibit a rich phase diagram. We compute several order parameters which allow us to identify a ferromagnetic, a ferrimagnetic, an antiferromagnetic, as well as a dimerized phase. We calculate the entanglement spectra from which we conclude the existence of a symmetry protected topological phase that is characterized by S=1/2 edge spins. Details of the iTEBD algorithm used for the simulations are included.

  8. Investigations on the Phase Diagram and Interaction Parameter of Poly(styrene-b-1,3-cyclohexadiene) Copolymers

    DOE PAGES

    Misichronis, Konstantinos; Chen, Jihua; Imel, Adam; ...

    2017-03-15

    A series of linear diblock copolymers containing polystyrene (PS) and poly(1,3-cyclohexadiene) (PCHD) with high 1,4-microstructure (>87%) was synthesized by anionic polymerization and high vacuum techniques. Microphase separation in the bulk was examined in this paper by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) and compared to computational analysis of the predicted morphological phase diagram for this system. Because of the high conformational asymmetry between PS and PCHD, these materials self-assemble into typical morphologies expected for linear diblock copolymer systems and atypical structures. Rheological measurements were conducted and revealed order–disorder transition temperatures (T ODT), for the first time formore » PS-b-PCHD copolymers, resulting in a working expression for the effective interaction parameter χ eff = 32/T – 0.016. Furthermore, we performed computational studies that coincide with the experimental results. Finally, these copolymers exhibit well-ordered structures even at high temperatures (~260 °C) therefore providing a better insight concerning their microphase separation at the nanoscale which is important for their potential use in nanotechnology and/or nanolithography applications.« less

  9. Strain Phase Diagram of SrTiO3 Thin Films

    NASA Astrophysics Data System (ADS)

    He, Feizhou; Shapiro, S. M.

    2005-03-01

    SrTiO3 thin films were used as a model system to study the effects of strain and epitaxial constraint on structural phase transitions of oxide films. The basic phenomena revealed will apply to a variety of important structural transitions including the ferroelectric transition. Highly strained, epitaxial films of SrTiO3 were grown on different substrates. The structural phase transition temperature Tc increases from 105 K in bulk STO to 167 K for films under tensile strain and 330 K for films with compressive strain. The measured temperature-strain phase diagram is qualitatively consistent with theory [1], however the increase in Tc is much larger than predicted in all cases. The symmetry of the phases involved in the transition is different from the corresponding bulk structures largely because of epitaxial constraint, the clamping effect. Thus the shape of the STO unit cell is tetragonal at all temperatures. The possibility exists of a very unique low temperature phase with orthorhombic symmetry (Cmcm) but tetragonal unit cell shape. More generally, we have characterized at least three different manifestations of the clamping effect, showing it is much more subtle than usually recognized. This work is supported through NSF DMR-0239667, DMR-0132918, by the Research Corp, and at BNL by the US DOE DE-AC02-98CH10886. [1] N. A. Pertsev, A. K. Tagantsev and N. Setter, Phys. Rev. B61, R825 (2000).

  10. Indications for a critical point in the phase diagram for hot and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Lacey, Roy A.

    2016-12-01

    Two-pion interferometry measurements are studied for a broad range of collision centralities in Au+Au (√{sNN} = 7.7- 200 GeV) and Pb+Pb (√{sNN} = 2.76 TeV) collisions. They indicate non-monotonic excitation functions for the Gaussian emission source radii difference (Rout -Rside), suggestive of reaction trajectories which spend a fair amount of time near a soft point in the equation of state (EOS) that coincides with the critical end point (CEP). A Finite-Size Scaling (FSS) analysis of these excitation functions, provides further validation tests for the CEP. It also indicates a second order phase transition at the CEP, and the values Tcep ∼ 165 MeV and μBcep ∼ 95 MeV for its location in the (T ,μB)-plane of the phase diagram. The static critical exponents (ν ≈ 0.66 and γ ≈ 1.2) extracted via the same FSS analysis, place this CEP in the 3D Ising model (static) universality class. A Dynamic Finite-Size Scaling analysis of the excitation functions, gives the estimate z ∼ 0.87 for the dynamic critical exponent, suggesting that the associated critical expansion dynamics is dominated by the hydrodynamic sound mode.

  11. Neutron scattering study on the magnetic and superconducting phases of MnP

    NASA Astrophysics Data System (ADS)

    Yano, Shinichiro; Lancon, Diane; Ronnow, Henrik; Hansen, Thomas; Gardner, Jason

    We have performed series of neutron scattering experiments on MnP. MnP has been investigated for decades because of its rich magnetic phase diagram. The magnetic structure of MnP is ferromagnetic (FM) below TC = 291 K. It transforms into a helimagnetic structure at TS = 47 K with a propagation vector q = 0 . 117a* . Superconductivity was found in MnP under pressures of 8 GPa with a TSC around 1 K by J.-G. Cheng. Since Mn-based superconductors are rare, and the superconducting phase occurs in the vicinity of FM, new magnetic and helimagnetic phases, there is a need to understand how the magnetism evolves as one approach the superconducting state. MnP is believed to be a double helix magnetic structure at TS = 47 K. We observed new 2 δ and 3 δ satellite peaks whose intensity are 200 ~ 1000 times smaller than these of 1 δ satellite peaks on the cold triple axis spectrometer SIKA under zero magnetic fields. We also found the periods of helimagnetic structure changes as a function of temperature. If time permits, we will discuss recent experiments under pressure. However, we have complete picture of magnetic structure of this system with and without applied pressure, revealing the interplay between the magnetic and superconducting phases.

  12. Phase diagram of the LiNO3-NaNO3-NaCl-Sr(NO3)2 salt system

    NASA Astrophysics Data System (ADS)

    Rasulov, A. I.; Gasanaliev, A. M.; Mamedova, A. K.; Gamataeva, B. Yu.

    2015-04-01

    The phase diagram of the quaternary LiNO3-NaNO3-NaCl-Sr(NO3)2 system is studied by means of differential thermal analysis, and the compositions and crystallization temperatures of nonvariant equilibrium phases are revealed. The temperature dependence of conductivity in eutectic and peritectic salt compositions is investigated.

  13. The Effect of High Pressure on Phase Relationships and Some Properties of Ti and Its alloys.

    DTIC Science & Technology

    1981-05-01

    8217. forma--t ion. That- lna\\ p), G id-2 On, n t --: y of 1 tI \\ it t’ -I n( the ? e al fovs after var tcu-s heat treoo’ Ii ’s jn 4 new, : ieLt I u-1J * ri...H. Bernstein, Computer Calculations of Phase Diagrams, Academic Press, N.Y. and.London, 1970. 23, L. Kaufman, Acta Met. 7, 575 (1959). 24, A. Gysler

  14. High-field magnetization and magnetic phase diagram of α -Cu2V2O7

    NASA Astrophysics Data System (ADS)

    Gitgeatpong, G.; Suewattana, M.; Zhang, Shiwei; Miyake, A.; Tokunaga, M.; Chanlert, P.; Kurita, N.; Tanaka, H.; Sato, T. J.; Zhao, Y.; Matan, K.

    2017-06-01

    High-field magnetization of the spin-1 /2 antiferromagnet α -Cu2V2O7 was measured in pulsed magnetic fields of up to 56 T in order to study its magnetic phase diagram. When the field was applied along the easy axis (the a axis), two distinct transitions were observed at Hc 1=6.5 T and Hc 2=18.0 T. The former is a spin-flop transition typical for a collinear antiferromagnet and the latter is believed to be a spin-flip transition of canted moments. The canted moments, which are induced by the Dzyaloshinskii-Moriya interactions, anti-align for Hc 1T reveals the incommensurate helical spin structure in the spin-flop state.

  15. Two liquid states of matter: a dynamic line on a phase diagram.

    PubMed

    Brazhkin, V V; Fomin, Yu D; Lyapin, A G; Ryzhov, V N; Trachenko, K

    2012-03-01

    It is generally agreed that the supercritical region of a liquid consists of one single state (supercritical fluid). On the other hand, we show here that liquids in this region exist in two qualitatively different states: "rigid" and "nonrigid" liquids. Rigid to nonrigid transition corresponds to the condition τ≈τ(0), where τ is the liquid relaxation time and τ(0) is the minimal period of transverse quasiharmonic waves. This condition defines a new dynamic crossover line on the phase diagram and corresponds to the loss of shear stiffness of a liquid at all available frequencies and, consequently, to the qualitative change in many important liquid properties. We analyze this line theoretically as well as in real and model fluids and show that the transition corresponds to the disappearance of high-frequency sound, to the disappearance of roton minima, qualitative changes in the temperature dependencies of sound velocity, diffusion, viscous flow, and thermal conductivity, an increase in particle thermal speed to half the speed of sound, and a reduction in the constant volume specific heat to 2k(B) per particle. In contrast to the Widom line that exists near the critical point only, the new dynamic line is universal: It separates two liquid states at arbitrarily high pressure and temperature and exists in systems where liquid-gas transition and the critical point are absent altogether. We propose to call the new dynamic line on the phase diagram "Frenkel line".

  16. Thermoelastic behaviour of martensitic alloy in the vicinity of critical point in the stress-temperature phase diagram

    NASA Astrophysics Data System (ADS)

    L'vov, V. A.; Matsishin, N.; Glavatska, N.

    2010-04-01

    The theoretical phase diagram of the shape memory alloy, which exhibits the first-order martensitic phase transition of the cubic-tetragonal type, has been considered. The thermoelastic behaviour of the ultra-soft Ni-Mn-Ga alloy in the vicinity of the endpoint of the phase transitions line has been modelled. To this end, the strain-temperature and stress-strain dependencies have been computed with the account of the temperature dependence of the elastic modulus of the alloy. Two important features of thermoelastic behaviour of the alloy have been disclosed: (1) even in the case of complete stress-induced martensitic transformation (MT), the MT strain determined from the length of the plateaus at the stress-strain curves is smaller than the 'spontaneous' tetragonal distortion of the crystal lattice, which arises on cooling of the alloy and (2) the stress-strain loops may include the plateau-like segment even at temperatures above the critical temperature, which corresponds to the endpoint of the stress-strain phase diagram. These features render the observation of the endpoint of phase transitions line impossible with the help of the stress-strain tests and make preferable the direct structural studies of MTs in the stressed single-crystalline specimens.

  17. Group additivity-Pourbaix diagrams advocate thermodynamically stable nanoscale clusters in aqueous environments

    PubMed Central

    Wills, Lindsay A.; Qu, Xiaohui; Chang, I-Ya; Mustard, Thomas J. L.; Keszler, Douglas A.; Persson, Kristin A.; Cheong, Paul Ha-Yeon

    2017-01-01

    The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions. PMID:28643782

  18. Group additivity-Pourbaix diagrams advocate thermodynamically stable nanoscale clusters in aqueous environments

    NASA Astrophysics Data System (ADS)

    Wills, Lindsay A.; Qu, Xiaohui; Chang, I.-Ya; Mustard, Thomas J. L.; Keszler, Douglas A.; Persson, Kristin A.; Cheong, Paul Ha-Yeon

    2017-06-01

    The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions.

  19. Pressure–Temperature Phase Diagram Reveals Spin–Lattice Interactions in Co[N(CN) 2 ] 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musfeldt, J. L.; O’Neal, K. R.; Brinzari, T. V.

    2017-04-07

    Diamond anvil cell techniques, synchrotron-based infrared and Raman spectroscopies, and lattice dynamics calculations are combined with prior magnetic property work to reveal the pressure–temperature phase diagram of Co[N(CN)2]2. The second-order structural boundaries converge on key areas of activity involving the spin state exposing how the pressure-induced local lattice distortions trigger the ferromagnetic → antiferromagnetic transition in this quantum material.

  20. Phase diagram of tetradecyltrimethylammonium bromide (TTAB) + water + octanol system with application of mechanical deformation

    NASA Astrophysics Data System (ADS)

    Yavuz, Aykut Evren; Masalci, Özgür; Kazanci, Nadide

    2014-11-01

    Morphological properties of tetradecyltrimethylammonium bromide (TTAB) + water + octanol system in different concentrations have been studied. In the process, isotropic phase (L1) and nematic calamitic (NC), nematic discotic (ND), hexagonal E and lamellar D anizotropic mesophases have been determined by polarizing microscopy method and partial ternary phase diagram of the system set up. Textural properties of the anisotropic mesophases of the system have been discussed and their birefringence values measured. Mechanical deformation has been applied to the mesophases. The textural properties and the birefringence values have been observed to be changed by the deformation, after and before which changes have been compared.

  1. Communication: Phase diagram of C36 by atomistic molecular dynamics and thermodynamic integration through coexistence regions

    NASA Astrophysics Data System (ADS)

    Abramo, M. C.; Caccamo, C.; Costa, D.; Munaò, G.

    2014-09-01

    We report an atomistic molecular dynamics determination of the phase diagram of a rigid-cage model of C36. We first show that free energies obtained via thermodynamic integrations along isotherms displaying "van der Waals loops," are fully reproduced by those obtained via isothermal-isochoric integration encompassing only stable states. We find that a similar result also holds for isochoric paths crossing van der Waals regions of the isotherms, and for integrations extending to rather high densities where liquid-solid coexistence can be expected to occur. On such a basis we are able to map the whole phase diagram of C36, with resulting triple point and critical temperatures about 1770 K and 2370 K, respectively. We thus predict a 600 K window of existence of a stable liquid phase. Also, at the triple point density, we find that the structural functions and the diffusion coefficient maintain a liquid-like character down to 1400-1300 K, this indicating a wide region of possible supercooling. We discuss why all these features might render possible the observation of the melting of C36 fullerite and of its liquid state, at variance with what previously experienced for C60.

  2. Liquid gallium-lead mixture phase diagram, surface tension near the critical mixing point, and prewetting transition.

    PubMed

    Osman, S M; Grosdidier, B; Ali, I; Abdellah, A Ben

    2013-06-01

    Quite recently, we reported a semianalytical equation of state (EOS) for the Ga-Pb alloy [Phys. Rev. B 78, 024205 (2008)], which was based on the first-order perturbation theory of fluid mixtures, within the simplified random phase approximation, in conjunction with the Grosdidier et al. model pair potentials for Ga-Ga and Pb-Pb with a suitable nonadditive pair potential between Ga-Pb unlike pairs. In the present work, we employ the present EOS to calculate the Ga-Pb phase diagram along the immiscibility gap region. The accuracy of the EOS is tested by consulting the empirical binodal curve. A statistical-mechanical-based theory for the surface tension is employed to obtain an analytical expression for the alloy surface tension. We calculated the surface tension along the bimodal curve and at extreme conditions of temperatures and pressures. The surface tension exhibits reasonably well the prewetting transition of Pb atoms at the surface of the Ga-rich liquid alloy and could qualitatively explain the prewetting phenomena occurring in the Ga-rich side of the phase diagram. The predicted prewetting line and wetting temperature qualitatively agree with the empirical measurements.

  3. A Monte Carlo study of the spin-1 Blume-Emery-Griffiths phase diagrams within biquadratic exchange anisotropy

    NASA Astrophysics Data System (ADS)

    Dani, Ibtissam; Tahiri, Najim; Ez-Zahraouy, Hamid; Benyoussef, Abdelilah

    2014-08-01

    The effect of the bi-quadratic exchange coupling anisotropy on the phase diagram of the spin-1 Blume-Emery-Griffiths model on simple-cubic lattice is investigated using mean field theory (MFT) and Monte Carlo simulation (MC). It is found that the anisotropy of the biquadratic coupling favors the stability of the ferromagnetic phase. By decreasing the parallel and/or perpendicular bi-quadratic coupling, the ferrimagnetic and the antiquadrupolar phases broaden in contrast, the ferromagnetic and the disordered phases become narrow. The behavior of magnetization and quadrupolar moment as a function of temperature is also computed, especially in the ferrimagnetic phase.

  4. Misfit strain-temperature phase diagrams and domain stability of asymmetric ferroelectric capacitors: Thermodynamic calculation and phase-field simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, W. J.; Zheng, Yue, E-mail: zhengy35@mail.sysu.edu.cn; Wu, C. M.

    Thermodynamic calculation and phase-field simulation have been conducted to investigate the misfit strain-temperature phase diagrams, dielectric property, and domain stability of asymmetric ferroelectric capacitors (FCs), with considering the effects of dissimilar screening properties and work function steps at the two interfaces. The distinct features of asymmetric FCs from their symmetric counterparts have been revealed and discussed. Polar states with nonzero out-of-plane polarization in parallel with the built-in field are found preferential to form in asymmetric FCs. Meanwhile, the built-in field breaks the degeneracy of states with out-of-plane polarization in anti-directions. This leads to the necessity of redefining phases according tomore » the bistability of out-of-plane polarization. Moreover, the phase stability as well as the dielectric behavior can be significantly controlled by the properties of electrodes, misfit strain, and temperature. The phase-field simulation result also shows that polydomain instability would happen in asymmetric FCs as the equivalence of domain stability in anti-directions is destroyed.« less

  5. Simultaneous Chiral Symmetry Restoration and Deconfinement Consequences for the QCD Phase Diagram

    NASA Astrophysics Data System (ADS)

    Klähn, Thomas; Fischer, Tobias; Hempel, Matthias

    2017-02-01

    For studies of quark matter in astrophysical scenarios, the thermodynamic bag model is commonly employed. Although successful, it does not account for dynamical chiral symmetry breaking and repulsions due to the vector interaction which is crucial to explain recent observations of massive, two solar mass neutron stars. In Klähn & Fischer we developed the novel vBag quark matter model which takes these effects into account. This article extends vBag to finite temperatures and isospin asymmetry. Another particular feature of vBag is the determination of the deconfinement bag constant {B}{dc} from a given hadronic equation of state in order to ensure that chiral and deconfinement transitions coincide. We discuss consequences of this novel approach for the phase transition construction, the phase diagram, and implications for protoneutron stars.

  6. A non-classical phase diagram for virus-bacterial co-evolution mediated by CRISPR

    NASA Astrophysics Data System (ADS)

    Han, Pu; Deem, Michael

    CRISPR is a newly discovered prokaryotic immune system. Bacteria and archaea with this system incorporate genetic material from invading viruses into their genomes, providing protection against future infection by similar viruses. Due to the cost of CRISPR, bacteria can lose the acquired immunity. We will show an intriguing phase diagram of the virus extinction probability, which when the rate of losing the acquired immunity is small, is more complex than that of the classic predator-prey model. As the CRISPR incorporates genetic material, viruses are under pressure to evolve to escape the recognition by CRISPR, and this co-evolution leads to a non-trivial phase structure that cannot be explained by the classical predator-prey model.

  7. COED Transactions, Vol. 8, No. 10, October 1976. The Computer Generation of Thermodynamic Phase Diagrams.

    ERIC Educational Resources Information Center

    Jolls, Kenneth R.; And Others

    A technique is described for the generation of perspective views of three-dimensional models using computer graphics. The technique is applied to models of familiar thermodynamic phase diagrams and the results are presented for the ideal gas and van der Waals equations of state as well as the properties of liquid water and steam from the Steam…

  8. Study of phase relationships in the Sr{sub 3}(PO{sub 4}){sub 2}–CePO{sub 4} system. Phase diagram and thermal characteristics of phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matraszek, Aleksandra, E-mail: aleksandra.matraszek@ue.wroc.pl

    2013-07-15

    A diagram representing phase relationships in the Sr{sub 3}(PO{sub 4}){sub 2}–CePO{sub 4} phosphate system has been developed on the basis of results obtained by thermal analysis (DTA/DSC/TGA) and X-ray diffraction (XRD) methods. One intermediate compound with the formula Sr{sub 3}Ce(PO{sub 4}){sub 3} occurs in the Sr{sub 3}(PO{sub 4}){sub 2}–CePO{sub 4} system at temperatures exceeding 1045 °C. The compound has a eulytite structure with the following structural parameters: a=b=c=10.1655(8) Å, α=β=γ=90.00°, V=1050.46(6) Å{sup 3}. It's melting point exceeds 1950 °C. A limited solid solution exists in the system, which possesses the structure of a low-temperature form of Sr{sub 3}(PO{sub 4}){sub 2}.more » At 1000 °C the maximal concentration of CePO{sub 4} in the solid solution is below 20 mol%. The solid solution phase field narrows with increased temperature. There is a eutectic point in the (Sr{sub 3}(PO{sub 4}){sub 2}+Sr{sub 3}Ce(PO{sub 4}){sub 3}) phase field at 1765 °C and 15 mol% of CePO{sub 4}. The melting temperature of Sr{sub 3}(PO{sub 4}){sub 2} is 1882±15 °C. - Graphical abstract: The phase diagram of Sr{sub 3}(PO{sub 4}){sub 2}–CePO{sub 4} system showing the stability ranges of limited solid solution and Sr{sub 3}Ce(PO{sub 4}){sub 3} phases. - Highlights: • Sr{sub 3}(PO{sub 4}){sub 2} melts at 1882 °C. • Phase diagram of Sr{sub 3}(PO{sub 4}){sub 2}–CePO{sub 4} system has been proposed. • Limited solid solution of CePO{sub 4} in Sr{sub 3}(PO{sub 4}){sub 2} forms in the system. • The Sr{sub 3}Ce(PO{sub 4}){sub 2} phosphate is stable at temperatures above 1045 °C.« less

  9. Phase diagram of a crystalline protein: Determination of the solubility of concanavalin A by a microquantitation assay

    NASA Astrophysics Data System (ADS)

    Mikol, Vincent; Giegé, Richard

    1989-09-01

    A quick and miniature method has been devised for determining protein solubility and used to investigate the equilibrium solubility of concanavalin A from the Jack Bean with its crystals as a function of ammonium sulfate concentration, temperature and pH. The crystals were characterized by X-ray diffraction and their morphologies related to the corresponding solubilities. The protein solution concentration was estimated out of small crystallizing drops using a rapid and sensitive microassay. Measurements of protein quantity were carried out in 96-well microplates in an automatic spectrophotometer. The resulting phase diagram has permitted to analyse the solubility of concanavalin A, to estimate supersaturation and to devise readily new ways of crystal growth of this lectin, namely by pH and temperature variations. Moreover, the approach is proved to be a valuable tool to design crystallization experiments of new molecules and to improve and control protein crystal growth.

  10. Phase diagrams and free-energy landscapes for model spin-crossover materials with antiferromagnetic-like nearest-neighbor and ferromagnetic-like long-range interactions

    NASA Astrophysics Data System (ADS)

    Chan, C. H.; Brown, G.; Rikvold, P. A.

    2017-11-01

    We present phase diagrams, free-energy landscapes, and order-parameter distributions for a model spin-crossover material with a two-step transition between the high-spin and low-spin states (a square-lattice Ising model with antiferromagnetic-like nearest-neighbor and ferromagnetic-like long-range interactions) [P. A. Rikvold et al., Phys. Rev. B 93, 064109 (2016), 10.1103/PhysRevB.93.064109]. The results are obtained by a recently introduced, macroscopically constrained Wang-Landau Monte Carlo simulation method [Phys. Rev. E 95, 053302 (2017), 10.1103/PhysRevE.95.053302]. The method's computational efficiency enables calculation of thermodynamic quantities for a wide range of temperatures, applied fields, and long-range interaction strengths. For long-range interactions of intermediate strength, tricritical points in the phase diagrams are replaced by pairs of critical end points and mean-field critical points that give rise to horn-shaped regions of metastability. The corresponding free-energy landscapes offer insights into the nature of asymmetric, multiple hysteresis loops that have been experimentally observed in spin-crossover materials characterized by competing short-range interactions and long-range elastic interactions.

  11. Physiologically motivated multiplex Kuramoto model describes phase diagram of cortical activity

    NASA Astrophysics Data System (ADS)

    Sadilek, Maximilian; Thurner, Stefan

    2015-05-01

    We derive a two-layer multiplex Kuramoto model from Wilson-Cowan type physiological equations that describe neural activity on a network of interconnected cortical regions. This is mathematically possible due to the existence of a unique, stable limit cycle, weak coupling, and inhibitory synaptic time delays. We study the phase diagram of this model numerically as a function of the inter-regional connection strength that is related to cerebral blood flow, and a phase shift parameter that is associated with synaptic GABA concentrations. We find three macroscopic phases of cortical activity: background activity (unsynchronized oscillations), epileptiform activity (highly synchronized oscillations) and resting-state activity (synchronized clusters/chaotic behaviour). Previous network models could hitherto not explain the existence of all three phases. We further observe a shift of the average oscillation frequency towards lower values together with the appearance of coherent slow oscillations at the transition from resting-state to epileptiform activity. This observation is fully in line with experimental data and could explain the influence of GABAergic drugs both on gamma oscillations and epileptic states. Compared to previous models for gamma oscillations and resting-state activity, the multiplex Kuramoto model not only provides a unifying framework, but also has a direct connection to measurable physiological parameters.

  12. Physiologically motivated multiplex Kuramoto model describes phase diagram of cortical activity.

    PubMed

    Sadilek, Maximilian; Thurner, Stefan

    2015-05-21

    We derive a two-layer multiplex Kuramoto model from Wilson-Cowan type physiological equations that describe neural activity on a network of interconnected cortical regions. This is mathematically possible due to the existence of a unique, stable limit cycle, weak coupling, and inhibitory synaptic time delays. We study the phase diagram of this model numerically as a function of the inter-regional connection strength that is related to cerebral blood flow, and a phase shift parameter that is associated with synaptic GABA concentrations. We find three macroscopic phases of cortical activity: background activity (unsynchronized oscillations), epileptiform activity (highly synchronized oscillations) and resting-state activity (synchronized clusters/chaotic behaviour). Previous network models could hitherto not explain the existence of all three phases. We further observe a shift of the average oscillation frequency towards lower values together with the appearance of coherent slow oscillations at the transition from resting-state to epileptiform activity. This observation is fully in line with experimental data and could explain the influence of GABAergic drugs both on gamma oscillations and epileptic states. Compared to previous models for gamma oscillations and resting-state activity, the multiplex Kuramoto model not only provides a unifying framework, but also has a direct connection to measurable physiological parameters.

  13. Field-current phase diagrams of in-plane spin transfer torque memory cells with low effective magnetization storage layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    San Emeterio Alvarez, L.; Lacoste, B.; Rodmacq, B.

    2014-05-07

    Field-current phase diagrams were measured on in-plane anisotropy Co{sub 60}Fe{sub 20}B{sub 20} magnetic tunnel junctions to obtain the spin transfer torque (STT) field-current switching window. These measurements were used to characterise junctions with varying free layer thicknesses from 2.5 down to 1.1 nm having a reduced effective demagnetizing field due to the perpendicular magnetic anisotropy at CoFeB/MgO interface. Diagrams were obtained with 100 ns current pulses, of either same or alternating polarity. When consecutive pulses have the same polarity, it is possible to realize the STT switching even for conditions having a low switching probability. This was evidenced in diagrams with consecutivemore » pulses of alternating polarity, with 100% switching obtained at 4.7 MA/cm{sup 2}, compared to the lower 3.4 MA/cm{sup 2} value for same polarity pulses. Although the low level of the current density window is higher in alternating polarity diagrams, the field window in both diagrams is the same and therefore independent of the pulse polarity sequence.« less

  14. Phase diagram of the symbiotic two-species contact process

    NASA Astrophysics Data System (ADS)

    de Oliveira, Marcelo Martins; Dickman, Ronald

    2014-09-01

    We study the two-species symbiotic contact process, recently proposed by de Oliveira, Santos, and Dickman [Phys. Rev. E 86, 011121 (2012), 10.1103/PhysRevE.86.011121]. In this model, each site of a lattice may be vacant or host single individuals of species A and/or B. Individuals at sites with both species present interact in a symbiotic manner, having a reduced death rate μ <1. Otherwise, the dynamics follows the rules of the basic contact process, with individuals reproducing to vacant neighbor sites at rate λ and dying at a rate of unity. We determine the full phase diagram in the λ-μ plane in one and two dimensions by means of exact numerical quasistationary distributions, cluster approximations, and Monte Carlo simulations. We also study the effects of asymmetric creation rates and diffusion of individuals. In two dimensions, for sufficiently strong symbiosis (i.e., small μ), the absorbing-state phase transition becomes discontinuous for diffusion rates D within a certain range. We report preliminary results on the critical surface and tricritical line in the λ-μ-D space. Our results raise the possibility that strongly symbiotic associations of mobile species may be vulnerable to sudden extinction under increasingly adverse conditions.

  15. Determining phase diagrams of gas-liquid systems using a microfluidic PVT.

    PubMed

    Mostowfi, Farshid; Molla, Shahnawaz; Tabeling, Patrick

    2012-11-07

    A novel microfluidic device designed for analyzing phase diagrams of gas-liquid systems (PVT or pressure-volume-temperature measurements) is described. The method mimics the phase transition of a reservoir fluid as it travels through the wellbore from the formation to the surface. The device consists of a long serpentine microchannel etched in a silicon substrate. The local pressure inside the channel is measured using membrane-based optical pressure sensors positioned along the channel. Geometrical restrictions are placed along the microchannel in order to nucleate bubbles when nucleation conditions are met, thus preventing the development of a supersaturation state in the channel. We point out that a local equilibrium state between gas and liquid phases is achieved, which implies that equilibrium properties can be directly measured on the chip. We analyze different mixtures of hydrocarbon systems and, consistently with the preceding analysis, obtain excellent agreement between our technique and conventional measurements. From a practical viewpoint (important for the relevance of the technology), we observe that the measurement time of thermodynamic properties of gas-liquid systems is reduced from hours to minutes with the present device without compromising the measurement accuracy.

  16. The structural phase diagram and oxygen equilibrium partial pressure of YBa 2Cu 3O 6+ x studied by neutron powder diffraction and gas volumetry

    NASA Astrophysics Data System (ADS)

    Andersen, N. H.; Lebech, B.; Poulsen, H. F.

    1990-12-01

    An experimental technique based on neutron powder diffraction and gas volumetry is presented and used to study the structural phase diagram of YBa 2Cu 3O 6+ x under equilibrium conditions in an extended part of ( x, T)-phase (0.15< x<0.92 and 25° C< T<725°C). Our experimental observations lend strong support to a recent two-dimensional anisotropic next-nearest-neighbour Ising model calculation (the ASYNNNI model) of the basal plane oxygen ordering based of first principle interaction parameters. Simultaneous measurements of the oxygen equilibrium partial pressure show anomalies, one of which proves the thermodynamic stability of the orthorhombic OII double cell structure. Striking similarity with predictions of recent model calculations support that another anomaly may be interpreted to result from local one-dimensional fluctuations in the distribution of oxygen atoms in the basal plane of tetragonal YBCO. Our pressure data also indicate that x=0.92 is a maximum obtainable oxygen concentration for oxygen pressures below 760 Torr.

  17. The phase diagrams of KCaF3 and NaMgF3 by ab initio simulations

    NASA Astrophysics Data System (ADS)

    Jakymiw, Clément; Vočadlo, Lidunka; Dobson, David P.; Bailey, Edward; Thomson, Andrew R.; Brodholt, John P.; Wood, Ian G.; Lindsay-Scott, Alex

    2018-04-01

    ABF3 compounds have been found to make valuable low-pressure analogues for high-pressure silicate phases that are present in the Earth's deep interior and that may also occur in the interiors of exoplanets. The phase diagrams of two of these materials, KCaF3 and NaMgF3, have been investigated in detail by static ab initio computer simulations based on density functional theory. Six ABF3 polymorphs were considered, as follows: the orthorhombic perovskite structure (GdFeO3-type; space group Pbnm); the orthorhombic CaIrO3 structure ( Cmcm; commonly referred to as the "post-perovskite" structure); the orthorhombic Sb2S3 and La2S3 structures (both Pmcn); the hexagonal structure previously suggested in computer simulations of NaMgF3 ( P63/ mmc); the monoclinic structure found to be intermediate between the perovskite and CaIrO3 structures in CaRhO3 ( P21/ m). Volumetric and axial equations of state of all phases considered are presented. For KCaF3, as expected, the perovskite phase is shown to be the most thermodynamically stable at atmospheric pressure. With increasing pressure, the relative stability of the KCaF3 phases then follows the sequence: perovskite → La2S3 structure → Sb2S3 structure → P63/ mmc structure; the CaIrO3 structure is never the most stable form. Above about 2.6 GPa, however, none of the KCaF3 polymorphs are stable with respect to dissociation into KF and CaF2. The possibility that high-pressure KCaF3 polymorphs might exist metastably at 300 K, or might be stabilised by chemical substitution so as to occur within the standard operating range of a multi-anvil press, is briefly discussed. For NaMgF3, the transitions to the high-pressure phases occur at pressures outside the normal range of a multi-anvil press. Two different sequences of transitions had previously been suggested from computer simulations. With increasing pressure, we find that the relative stability of the NaMgF3 phases follows the sequence: perovskite → CaIrO3 structure → Sb2

  18. Phase transition in nonuniform Josephson arrays: Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Lozovik, Yu. E.; Pomirchy, L. M.

    1994-01-01

    Disordered 2D system with Josephson interactions is considered. Disordered XY-model describes the granular films, Josephson arrays etc. Two types of disorder are analyzed: (1) randomly diluted system: Josephson coupling constants J ij are equal to J with probability p or zero (bond percolation problem); (2) coupling constants J ij are positive and distributed randomly and uniformly in some interval either including the vicinity of zero or apart from it. These systems are simulated by Monte Carlo method. Behaviour of potential energy, specific heat, phase correlation function and helicity modulus are analyzed. The phase diagram of the diluted system in T c-p plane is obtained.

  19. Persistency-field Eh-pH diagrams for sulfides and their application to supergene oxidation and enrichment of sulfide ore bodies

    USGS Publications Warehouse

    Sato, M.

    1992-01-01

    At temperatures prevailing near the Earth's surface, metastable co-existence of chemical substances is common because chemical reactions that would directly lead to the attainment of thermody-namically most stable equilibria are often blocked by high activation energy barriers. The persistency of a metastable assemblage is then governed by alternative reaction paths that provide lower activation energy barriers. Comparison of observed mineral assemblages in the supergene oxidized and enriched sulfide ores with corresponding stability Eh-pH diagrams reveals that the supergene assemblages are mostly metastable due primarily to the persistency of sulfide minerals beyond stability boundaries. A new set of diagrams called persistency-field Eh-pH diagrams has been constructed for binary metal sulfides on the basis of electrochemical and other experimental data. Each diagram delineates the persistency field, which is a combined field of thermodynamic stability and reaction path-controlled metastability, for a specific sulfide mineral. When applied to the supergene assemblages, these new diagrams show much better correspondence to the field observations. Although there may still be room for further refinement, the new diagrams appear to provide a strong visual aid to the understanding of the behavior of sulfide minerals in the supergene conditions. ?? 1992.

  20. Construction of phase diagrams for nanoscaled Ising thin films on the honeycomb lattice using cellular automata simulation approach

    NASA Astrophysics Data System (ADS)

    Ghaemi, Mehrdad; Javadi, Nabi

    2017-11-01

    The phase diagrams of the three-layer Ising model on the honeycomb lattice with a diluted surface have been constructed using the probabilistic cellular automata based on Glauber algorithm. The effects of the exchange interactions on the phase diagrams have been investigated. A general mathematical expression for the critical temperature is obtained in terms of relative coupling r = J1/J and Δs = (Js/J) - 1, where J and Js represent the nearest neighbor coupling within inner- and surface-layers, respectively, and each magnetic site in the surface-layer is coupled with the nearest neighbor site in the inner-layer via the exchange coupling J1. In the case of antiferromagnetic coupling between surface-layer and inner-layer, system reveals many interesting phenomena, such as the possibility of existence of compensation line before the critical temperature.

  1. Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.

    PubMed

    Forest, M Gregory; Wang, Qi; Zhou, Ruhai

    2015-08-28

    Large-scale simulations by the authors of the kinetic-hydrodynamic equations for active polar nematics revealed a variety of spatio-temporal attractors, including steady and unsteady, banded (1d) and cellular (2d) spatial patterns. These particle scale activation-induced attractors arise at dilute nanorod volume fractions where the passive equilibrium phase is isotropic, whereas all previous model simulations have focused on the semi-dilute, nematic equilibrium regime and mostly on low-moment orientation tensor and polarity vector models. Here we extend our previous results to complete attractor phase diagrams for active nematics, with and without an explicit polar potential, to map out novel spatial and dynamic transitions, and to identify some new attractors, over the parameter space of dilute nanorod volume fraction and nanorod activation strength. The particle-scale activation parameter corresponds experimentally to a tunable force dipole strength (so-called pushers with propulsion from the rod tail) generated by active rod macromolecules, e.g., catalysis with the solvent phase, ATP-induced propulsion, or light-activated propulsion. The simulations allow 2d spatial variations in all flow and orientational variables and full spherical orientational degrees of freedom; the attractors correspond to numerical integration of a coupled system of 125 nonlinear PDEs in 2d plus time. The phase diagrams with and without the polar interaction potential are remarkably similar, implying that polar interactions among the rodlike particles are not essential to long-range spatial and temporal correlations in flow, polarity, and nematic order. As a general rule, above a threshold, low volume fractions induce 1d banded patterns, whereas higher yet still dilute volume fractions yield 2d patterns. Again as a general rule, varying activation strength at fixed volume fraction induces novel dynamic transitions. First, stationary patterns saturate the instability of the isotropic

  2. Global force-torque phase diagram for the DNA double helix: structural transitions, triple points and collapsed plectonemes

    PubMed Central

    Marko, John F.; Neukirch, Sébastien

    2014-01-01

    We present a free energy model for structural transitions of the DNA double helix driven by tensile and torsional stress. Our model is coarse grained, and is based on semiflexible polymer descriptions of B-DNA, underwound L-DNA, and highly overwound P-DNA. The statistical-mechanical model of plectonemic supercoiling previously developed for B-DNA is applied to semiflexible polymer models of P and L-DNA, to obtain a model of DNA structural transitions in quantitative accord with experiment. We identify two distinct plectonemic states, one “inflated” by electrostatic repulsion and thermal fluctuations, and the other “collapsed”, with the two double helices inside the supercoils driven to close contact. We find that supercoiled B and L are stable only in inflated form, while supercoiled P is always collapsed. We also predict the behavior and experimental signatures of highly underwound “Q”-DNA, the left-handed analog of P-DNA; as for P, supercoiled Q is always collapsed. Overstretched “S”-DNA and strand-separated “stress-melted” DNA are also included in our model, allowing prediction of a global phase diagram for forces up to 1000 pN and torques between ±60 pN nm, or in terms of linking number density, from σ = −5 to +3. PMID:24483501

  3. Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Cocker, T. L.; Titova, L. V.; Fourmaux, S.; Holloway, G.; Bandulet, H.-C.; Brassard, D.; Kieffer, J.-C.; El Khakani, M. A.; Hegmann, F. A.

    2012-04-01

    We use time-resolved terahertz spectroscopy to probe the ultrafast dynamics of the insulator-metal phase transition induced by femtosecond laser pulses in a nanogranular vanadium dioxide (VO2) film. Based on the observed thresholds for characteristic transient terahertz dynamics, a phase diagram of critical pump fluence versus temperature for the insulator-metal phase transition in VO2 is established for the first time over a broad range of temperatures down to 17 K. We find that both Mott and Peierls mechanisms are present in the insulating state and that the photoinduced transition is nonthermal. We propose a critical-threshold model for the ultrafast photoinduced transition based on a critical density of electrons and a critical density of coherently excited phonons necessary for the structural transition to the metallic state. As a result, evidence is found at low temperatures for an intermediate metallic state wherein the Mott state is melted but the Peierls distortion remains intact, consistent with recent theoretical predictions. Finally, the observed terahertz conductivity dynamics above the photoinduced transition threshold reveal nucleation and growth of metallic nanodomains over picosecond time scales.

  4. Phase Diagrams of Three-Dimensional Anderson and Quantum Percolation Models Using Deep Three-Dimensional Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Mano, Tomohiro; Ohtsuki, Tomi

    2017-11-01

    The three-dimensional Anderson model is a well-studied model of disordered electron systems that shows the delocalization-localization transition. As in our previous papers on two- and three-dimensional (2D, 3D) quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016), 86, 044708 (2017)], we used an image recognition algorithm based on a multilayered convolutional neural network. However, in contrast to previous papers in which 2D image recognition was used, we applied 3D image recognition to analyze entire 3D wave functions. We show that a full phase diagram of the disorder-energy plane is obtained once the 3D convolutional neural network has been trained at the band center. We further demonstrate that the full phase diagram for 3D quantum bond and site percolations can be drawn by training the 3D Anderson model at the band center.

  5. Construction of drug-polymer thermodynamic phase diagrams using Flory-Huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions.

    PubMed

    Tian, Yiwei; Booth, Jonathan; Meehan, Elizabeth; Jones, David S; Li, Shu; Andrews, Gavin P

    2013-01-07

    Amorphous drug-polymer solid dispersions have the potential to enhance the dissolution performance and thus bioavailability of BCS class II drug compounds. The principle drawback of this approach is the limited physical stability of amorphous drug within the dispersion. Accurate determination of the solubility and miscibility of drug in the polymer matrix is the key to the successful design and development of such systems. In this paper, we propose a novel method, based on Flory-Huggins theory, to predict and compare the solubility and miscibility of drug in polymeric systems. The systems chosen for this study are (1) hydroxypropyl methylcellulose acetate succinate HF grade (HPMCAS-HF)-felodipine (FD) and (2) Soluplus (a graft copolymer of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol)-FD. Samples containing different drug compositions were mixed, ball milled, and then analyzed by differential scanning calorimetry (DSC). The value of the drug-polymer interaction parameter χ was calculated from the crystalline drug melting depression data and extrapolated to lower temperatures. The interaction parameter χ was also calculated at 25 °C for both systems using the van Krevelen solubility parameter method. The rank order of interaction parameters of the two systems obtained at this temperature was comparable. Diagrams of drug-polymer temperature-composition and free energy of mixing (ΔG(mix)) were constructed for both systems. The maximum crystalline drug solubility and amorphous drug miscibility may be predicted based on the phase diagrams. Hyper-DSC was used to assess the validity of constructed phase diagrams by annealing solid dispersions at specific drug loadings. Three different samples for each polymer were selected to represent different regions within the phase diagram.

  6. Crystallization of D-mannitol in binary mixtures with NaCl: phase diagram and polymorphism.

    PubMed

    Telang, Chitra; Suryanarayanan, Raj; Yu, Lian

    2003-12-01

    To study the crystallization, polymorphism, and phase behavior of D-mannitol in binary mixtures with NaCl to better understand their interactions in frozen aqueous solutions. Differential scanning calorimetry, hot-stage microscopy, Raman microscopy, and variable-temperature X-ray diffractometry were used to characterize D-mannitol-NaCl mixtures. NaCl and D-mannitol exhibited significant melt miscibility (up to 7.5% w/w or 0.20 mole fraction of NaCl) and a eutectic phase diagram (eutectic composition 7.5% w/w NaCl; eutectic temperature 150 degrees C for the alpha and beta polymorphs of D-mannitol and 139 degrees C for the delta). The presence of NaCl did not prevent mannitol from crystallizing but, depending on sample size, affected the polymorph crystallized: below 10 mg, delta was obtained; above 100 mg, alpha was obtained. Pure mannitol crystallized under the same conditions first as the delta polymorph and then as the a polymorph, with the latter nucleating on the former. KCl showed similar eutectic points and melt miscibility with D-mannitol as NaCl. LiCl yielded lower eutectic melting points, inhibited the crystallization of D-mannitol during cooling, and enabled the observation of its glass transition. Despite their structural dissimilarity, significant melt miscibility exists between D-mannitol and NaCl. Their phase diagram has been determined and features polymorph-dependent eutectic points. NaCl influences the polymorphic behavior of mannitol, and the effect is linked to the crystallization of mannitol in two polymorphic stages.

  7. Magnetization plateaus and ground-state phase diagrams of the S=1 Ising model on the Shastry Sutherland lattice

    NASA Astrophysics Data System (ADS)

    Deviren, Seyma Akkaya

    2017-02-01

    In this research, we have investigated the magnetic properties of the spin-1 Ising model on the Shastry Sutherland lattice with the crystal field interaction by using the effective-field theory with correlations. The effects of the applied field on the magnetization are examined in detail in order to obtain the magnetization plateaus, thus different types of magnetization plateaus, such as 1/4, 1/3, 1/2, 3/5, 2/3 and 7/9 of the saturation, are obtained for strong enough magnetic fields (h). Magnetization plateaus exhibit single, triple, quintuplet and sextuple forms according to the interaction parameters, hence the magnetization plateaus originate from the competition between the crystal field (D) and exchange interaction parameters (J, J‧). The ground-state phase diagrams of the system are presented in three varied planes, namely (h/J, J‧/J), (h/J, D/J) and (D/J, J‧/J) planes. These phase diagrams display the Néel (N), collinear (C) and ferromagnetic (F) phases for certain values of the model parameters. The obtained results are in good agreement with some theoretical and experimental studies.

  8. Free cooling phase-diagram of hard-spheres with short- and long-range interactions

    NASA Astrophysics Data System (ADS)

    Gonzalez, S.; Thornton, A. R.; Luding, S.

    2014-10-01

    We study the stability, the clustering and the phase-diagram of free cooling granular gases. The systems consist of mono-disperse particles with additional non-contact (long-range) interactions, and are simulated here by the event-driven molecular dynamics algorithm with discrete (short-range shoulders or wells) potentials (in both 2D and 3D). Astonishingly good agreement is found with a mean field theory, where only the energy dissipation term is modified to account for both repulsive or attractive non-contact interactions. Attractive potentials enhance cooling and structure formation (clustering), whereas repulsive potentials reduce it, as intuition suggests. The system evolution is controlled by a single parameter: the non-contact potential strength scaled by the fluctuation kinetic energy (granular temperature). When this is small, as expected, the classical homogeneous cooling state is found. However, if the effective dissipation is strong enough, structure formation proceeds, before (in the repulsive case) non-contact forces get strong enough to undo the clustering (due to the ongoing dissipation of granular temperature). For both repulsive and attractive potentials, in the homogeneous regime, the cooling shows a universal behaviour when the (inverse) control parameter is used as evolution variable instead of time. The transition to a non-homogeneous regime, as predicted by stability analysis, is affected by both dissipation and potential strength. This can be cast into a phase diagram where the system changes with time, which leaves open many challenges for future research.

  9. Phase diagram and decomposition of 1,1-diamino-2,2-dinitroethene single crystals at high pressures and temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreger, Zbigniew A.; Tao, Yuchuan; Gupta, Yogendra M.

    The high pressure-high temperature (HP-HT) phase diagram and decomposition of FOX-7, central to understanding its stability and reactivity, were determined using optical spectroscopy and imaging measurements in hydrostatically compressed and heated single crystals. Boundaries between various FOX-7 phases (α, α’, β, γ, and ε) and melting/decomposition curves were established up to 10 GPa and 750 K. Main findings are: (i) a triple point is observed between α, β, and γ phases ~ 0.6 GPa and ~ 535 K, (ii) previously suggested δ phase is not a new phase but is partly decomposed γ phase, (iii) the α-α’ transition takes placemore » along an isobar, whereas the α’-ε transition pressure decreases with increasing temperature, and (iv) melting/decomposition temperatures increase rapidly with pressure, with an increase in the slope at the onset of the α’-ε transition. Our results differ from the recently reported HP-HT phase diagram for nonhydrostatically compressed polycrystalline FOX-7. In addition, the observed interplay between melting and decomposition suggests the suppression of melting with pressure. Our FTIR measurements at different pressures to 3.5 GPa showed similar decomposition products, suggesting similar decomposition pathways irrespective of the pressure. Lastly, the present results provide new insights into the structural and chemical stability of an important insensitive high explosive (IHE) crystal under well-defined HP-HT conditions.« less

  10. Phase diagram and decomposition of 1,1-diamino-2,2-dinitroethene single crystals at high pressures and temperatures

    DOE PAGES

    Dreger, Zbigniew A.; Tao, Yuchuan; Gupta, Yogendra M.

    2016-05-10

    The high pressure-high temperature (HP-HT) phase diagram and decomposition of FOX-7, central to understanding its stability and reactivity, were determined using optical spectroscopy and imaging measurements in hydrostatically compressed and heated single crystals. Boundaries between various FOX-7 phases (α, α’, β, γ, and ε) and melting/decomposition curves were established up to 10 GPa and 750 K. Main findings are: (i) a triple point is observed between α, β, and γ phases ~ 0.6 GPa and ~ 535 K, (ii) previously suggested δ phase is not a new phase but is partly decomposed γ phase, (iii) the α-α’ transition takes placemore » along an isobar, whereas the α’-ε transition pressure decreases with increasing temperature, and (iv) melting/decomposition temperatures increase rapidly with pressure, with an increase in the slope at the onset of the α’-ε transition. Our results differ from the recently reported HP-HT phase diagram for nonhydrostatically compressed polycrystalline FOX-7. In addition, the observed interplay between melting and decomposition suggests the suppression of melting with pressure. Our FTIR measurements at different pressures to 3.5 GPa showed similar decomposition products, suggesting similar decomposition pathways irrespective of the pressure. Lastly, the present results provide new insights into the structural and chemical stability of an important insensitive high explosive (IHE) crystal under well-defined HP-HT conditions.« less

  11. Interaction of tantalum, chromium, and phosphorus at 1070 K: Phase diagram and structural chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomnytska, Ya.; Babizhetskyy, V., E-mail: v.babizhetskyy@googlemail.com; Oliynyk, A.

    2016-03-15

    : • The phase diagram of Ta–Cr–P at 1070 K has been constructed. • New ternary compounds Ta{sub 0.92(2)}Cr{sub 0.08(2)}P{sub 2} and Ta{sub 0.93(3)}Ti{sub 0.07(3)}P{sub 2} were established. • Ta{sub 1.0−0.8}Cr{sub 1.0−1.2}P and Ta{sub 0.86+x}Ti{sub 0.15-x}P{sub 2}(x= 0−0.07) exhibit homogeneity ranges. • The binary compounds reveal homogeneity ranges by Ta/Cr and Cr/Ta substitutions.« less

  12. Non-classical phase diagram for virus bacterial coevolution mediated by clustered regularly interspaced short palindromic repeats.

    PubMed

    Han, Pu; Deem, Michael W

    2017-02-01

    CRISPR is a newly discovered prokaryotic immune system. Bacteria and archaea with this system incorporate genetic material from invading viruses into their genomes, providing protection against future infection by similar viruses. The condition for coexistence of prokaryots and viruses is an interesting problem in evolutionary biology. In this work, we show an intriguing phase diagram of the virus extinction probability, which is more complex than that of the classical predator-prey model. As the CRISPR incorporates genetic material, viruses are under pressure to evolve to escape recognition by CRISPR. When bacteria have a small rate of deleting spacers, a new parameter region in which bacteria and viruses can coexist arises, and it leads to a more complex coexistence patten for bacteria and viruses. For example, when the virus mutation rate is low, the virus extinction probability changes non-montonically with the bacterial exposure rate. The virus and bacteria coevolution not only alters the virus extinction probability, but also changes the bacterial population structure. Additionally, we show that recombination is a successful strategy for viruses to escape from CRISPR recognition when viruses have multiple proto-spacers, providing support for a recombination-mediated escape mechanism suggested experimentally. Finally, we suggest that the re-entrant phase diagram, in which phages can progress through three phases of extinction and two phases of abundance at low spacer deletion rates as a function of exposure rate to bacteria, is an experimentally testable phenomenon. © 2017 The Author(s).

  13. Two types of nematicity in the phase diagram of the cuprate superconductor YBa2Cu3Oy

    NASA Astrophysics Data System (ADS)

    Cyr-Choinière, O.; Grissonnanche, G.; Badoux, S.; Day, J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Doiron-Leyraud, N.; Taillefer, Louis

    2015-12-01

    Nematicity has emerged as a key feature of cuprate superconductors, but its link to other fundamental properties such as superconductivity, charge order, and the pseudogap remains unclear. Here we use measurements of transport anisotropy in YBa2Cu3Oy to distinguish two types of nematicity. The first is associated with short-range charge-density-wave modulations in a doping region near p =0.12 . It is detected in the Nernst coefficient, but not in the resistivity. The second type prevails at lower doping, where there are spin modulations but no charge modulations. In this case, the onset of in-plane anisotropy—detected in both the Nernst coefficient and the resistivity—follows a line in the temperature-doping phase diagram that tracks the pseudogap energy. We discuss two possible scenarios for the latter nematicity.

  14. FAST TRACK COMMUNICATION: Reinterpreting the Cu Pd phase diagram based on new ground-state predictions

    NASA Astrophysics Data System (ADS)

    Bärthlein, S.; Hart, G. L. W.; Zunger, A.; Müller, S.

    2007-01-01

    Our notions of the phase stability of compounds rest to a large extent on the experimentally assessed phase diagrams. Long ago, it was assumed that in the Cu-Pd system for xPd<=25% there are at least two phases at high temperature (L12 and a L12-based superstructure), which evolve into a single L12-ordered phase at low temperature. By constructing a first-principles Hamiltonian, we predict a yet undiscovered Cu7Pd ground state at xPd = 12.5% (referred to as S1 below) and an L12-like Cu9Pd3 superstructure at 25% (referred to as S2). We find that in the low-temperature regime, a single L12 phase cannot be stable, even with the addition of anti-sites. Instead we find that an S2-phase with S1-like ordering tendency will form. Previous short-range order diffraction data are quantitatively consistent with these new predictions.

  15. Precipitation of solid phase calcium carbonates and their effect on application of seawater SA-T-P models

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Millero, F. J.; Feistel, R.

    2009-07-01

    At the present time, little is known about how broad salinity and temperature ranges are for seawater thermodynamic models that are functions of absolute salinity (SA), temperature (T) and pressure (P). Such models rely on fixed compositional ratios of the major components (e.g., Na/Cl, Mg/Cl, Ca/Cl, SO4/Cl, etc.). As seawater evaporates or freezes, solid phases [e.g., CaCO3(s) or CaSO42H2O(s)] will eventually precipitate. This will change the compositional ratios, and these salinity models will no longer be applicable. A future complicating factor is the lowering of seawater pH as the atmospheric partial pressures of CO2 increase. A geochemical model (FREZCHEM) was used to quantify the SA-T boundaries at P=0.1 MPa and the range of these boundaries for future atmospheric CO2 increases. An omega supersaturation model for CaCO3 minerals based on pseudo-homogeneous nucleation was extended from 25-40°C to 3°C. CaCO3 minerals were the boundary defining minerals (first to precipitate) between 3°C (at SA=104 g kg-) and 40°C (at SA=66 g kg-). At 2.82°C, calcite(CaCO3) transitioned to ikaite(CaCO36H2O) as the dominant boundary defining mineral for colder temperatures, which culminated in a low temperature boundary of -4.93°C. Increasing atmospheric CO2 from 385 μatm (390 MPa) (in Year 2008) to 550 μatm (557 MPa) (in Year 2100) would increase the SA and t boundaries as much as 11 g kg-1 and 0.66°C, respectively. The model-calculated calcite-ikaite transition temperature of 2.82°C is in excellent agreement with ikaite formation in natural environments that occurs at temperatures of 3°C or lower. Furthermore, these results provide a quantitative theoretical explanation (FREZCHEM model calculation) for why ikaite is the solid phase CaCO3 mineral that precipitates during seawater freezing.

  16. Electronic phase diagram of disordered Co doped BaFe2As2-δ

    NASA Astrophysics Data System (ADS)

    Kurth, F.; Iida, K.; Trommler, S.; Hänisch, J.; Nenkov, K.; Engelmann, J.; Oswald, S.; Werner, J.; Schultz, L.; Holzapfel, B.; Haindl, S.

    2013-02-01

    Superconducting and normal state transport properties in iron pnictides are sensitive to disorder and impurity scattering. By investigation of Ba(Fe1-xCox)2As2-δ thin films with varying Co concentrations we demonstrate that in the dirty limit the superconducting dome in the electronic phase diagram of Ba(Fe1-xCox)2As2-δ shifts towards lower doping concentrations, which differs significantly from observations in single crystals. We show that especially in the underdoped regime superconducting transition temperatures higher than 27 K are possible.

  17. Fragile morphotropic phase boundary and phase stability in the near-surface region of the relaxor ferroelectric (1 -x ) Pb (Z n1 /3N b2 /3) O3-x PbTi O3 : [001] field-cooled phase diagrams

    NASA Astrophysics Data System (ADS)

    Wang, Yaojin; Wang, Ding; Yuan, Guoliang; Ma, He; Xu, Feng; Li, Jiefang; Viehland, D.; Gehring, Peter M.

    2016-11-01

    We have examined the effects of field cooling on the phase diagram of the relaxor system (1 -x ) Pb (Z n1 /3N b2 /3) O3-x PbTi O3 (PZN-x PT ) for compositions near the morphotropic phase boundary (MPB). High-resolution diffraction measurements using Cu Kα x rays, which probe ≈3 μ m below the crystal surface, were made on field-cooled (FC) single-crystal specimens of PZN-4.5 %PT and PZN-6.5 %PT under electric fields of 1 and 2 kV/cm applied along [001] and combined with previous neutron diffraction data, which probe the entire crystal volume, for FC PZN-8 %PT [Ohwada et al., Phys. Rev. B 67, 094111 (2003), 10.1103/PhysRevB.67.094111]. A comparison to the zero-field-cooled (ZFC) PZN-x PT phase diagram reveals several interesting features: (1) The short-range monoclinic phase observed in the ZFC state on the low-PT side of the MPB is replaced by a monoclinic MA phase; (2) field cooling extends the tetragonal phase to higher temperatures and lower-PT concentrations; (3) the orthorhombic phase near the MPB is replaced by a monoclinic MC phase; (4) the vertical MPB in the ZFC phase diagram bends significantly towards the low-PT side in the FC state. These results demonstrate that both the phase stability and the nature of the MPB in PZN-PT within the near-surface regions are fragile in the presence of electric fields.

  18. Strain-tuned enhancement of ferromagnetic TC to 176 K in Sm-doped BiMnO3 thin films and determination of magnetic phase diagram.

    PubMed

    Choi, Eun-Mi; Kleibeuker, Josée E; MacManus-Driscoll, Judith L

    2017-03-03

    BiMnO 3 is a promising multiferroic material but it's ferromagnetic T C is well below room temperature and the magnetic phase diagram is unknown. In this work, the relationship between magnetic transition temperature (T C ) and the substrate induced (pseudo-) tetragonal distortion (ratio of out-of-plane to in-plane lattice parameters, c/a) in BiMnO 3 thin films, lightly doped to optimize lattice dimensions, was determined. For c/a > 0.99, hidden antiferromagnetism was revealed and the magnetisation versus temperature curves showed a tail behaviour, whereas for c/a < 0.99 clear ferromagnetism was observed. A peak T C of up to 176 K, more than 70 K higher than for bulk BiMnO 3 , was achieved through precise strain tuning. The T C was maximised for strong tensile in-plane strain which produced weak octahedral rotations in the out-of-plane direction, an orthorhombic-like structure, and strong ferromagnetic coupling.

  19. The topological pressure-temperature phase diagram of ritonavir, an extraordinary case of crystalline dimorphism.

    PubMed

    Céolin, R; Rietveld, I B

    2015-01-01

    A topological pressure-temperature phase diagram involving the phase relationships of ritonavir forms I and II has been constructed using experimental calorimetric and volumetric data available from the literature. The triple point I-II-liquid is located at a temperature of about 407 K and a pressure as extraordinarily small as 17.5 MPa (175 bar). Thus, the less soluble solid phase (form II) will become metastable on increasing pressure. At room temperature, form I becomes stable around 100 MPa indicating that form II may turn into form I at a relatively low pressure of 1000 bar, which may occur under processing conditions such as mixing or grinding. This case is a good example for which a proper thermodynamic evaluation trumps "rules of thumb" such as the density rule. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. The happy marriage between electron-phonon superconductivity and Mott physics in Cs3C60: A first-principle phase diagram

    NASA Astrophysics Data System (ADS)

    Capone, Massimo; Nomura, Yusuke; Sakai, Shiro; Giovannetti, Gianluca; Arita, Ryotaro

    The phase diagram of doped fullerides like Cs3C60 as a function of the spacing between fullerene molecules is characterized by a first-order transition between a Mott insulator and an s-wave superconductor with a dome-shaped behavior of the critical temperature. By means of an ab-initio modeling of the bandstructure, the electron-phonon interaction and the interaction parameter and a Dynamical Mean-Field Theory solution, we reproduce the phase diagram and demonstrate that phonon superconductivity benefits from strong correlations confirming earlier model predictions. The role of correlations is manifest also in infrared measurements carried out by L. Baldassarre. The superconducting phase shares many similarities with ''exotic'' superconductors with electronic pairing, suggesting that the anomalies in the ''normal'' state, rather than the pairing glue, can be the real common element unifying a wide family of strongly correlated superconductors including cuprates and iron superconductors

  1. Phase diagrams and physicochemical properties of Li+,K+(Rb+)//borate-H2O systems at 323 K

    NASA Astrophysics Data System (ADS)

    Feng, Shan; Yu, Xudong; Cheng, Xinglong; Zeng, Ying

    2017-11-01

    The phase and physicochemical properties diagrams of Li+,K+(Rb+)//borate-H2O systems at 323 K were constructed using the experimentally measured solubilities, densities, and refractive indices. The Schreinemakers' wet residue method and the X-ray diffraction were used for the determination of the compositions of solid phase. Results show that these two systems belong to the hydrate I type, with no solid solution or double salt formation. The borate phases formed in our experiments are RbB5O6(OH)4 · 2H2O, Li2B4O5(OH)4 · H2O, and K2B4O5(OH)4 · 2H2O. Comparison between the stable phase diagrams of the studied system at 288, 323, and 348 K show that in this temperature range, the crystallization form of salts do not changed. With the increase in temperature, the crystallization field of Li2B4O5(OH)4 · H2O salt at 348 K is obviously larger than that at 288 K. In the Li+,K+(Rb+)//borate-H2O systems, the densities and refractive indices of the solutions (at equilibrium) increase along with the mass fraction of K2B4O7 (Rb2B4O7), and reach the maximum values at invariant point E.

  2. Roto-flexoelectric coupling impact on the phase diagrams and pyroelectricity of thin SrTiO 3 films

    DOE PAGES

    Morozovska, Anna N.; Eliseev, Eugene A.; Bravina, Svetlana L.; ...

    2012-09-20

    The influence of the flexoelectric and rotostriction coupling on the phase diagrams of ferroelastic-quantum paraelectric SrTiO 3 films was studied using Landau-Ginzburg-Devonshire (LGD) theory. We calculated the phase diagrams in coordinates temperature - film thickness for different epitaxial misfit strains. Tensile misfit strains stimulate appearance of the spontaneous out-of-plane structural order parameter (displacement vector of an appropriate oxygen atom from its cubic position) in the structural phase. For compressive misfit strains are stimulated because of the spontaneous in-plane structural order parameter. Furthermore, gradients of the structural order parameter components, which inevitably exist in the vicinity of film surfaces due tomore » the termination and symmetry breaking, induce improper polarization and pyroelectric response via the flexoelectric and rotostriction coupling mechanism. Flexoelectric and rotostriction coupling results in the roto-flexoelectric field that is antisymmetric inside the film, small in the central part of the film, where the gradients of the structural parameter are small, and maximal near the surfaces, where the gradients of the structural parameter are highest. The field induces improper polarization and pyroelectric response. Penetration depths of the improper phases (both polar and structural) can reach several nm from the film surfaces. An improper pyroelectric response of thin films is high enough to be registered with planar-type electrode configurations by conventional pyroelectric methods.« less

  3. Phase Diagram of Fractional Quantum Hall Effect of Composite Fermions in Multi-Component Systems

    NASA Astrophysics Data System (ADS)

    Coimbatore Balram, Ajit; Töke, Csaba; Wójs, Arkadiusz; Jain, Jainendra

    2015-03-01

    The fractional quantum Hall effect (FQHE) of composite fermions (CFs) produces delicate states arising from a weak residual interaction between CFs. We study the spin phase diagram of these states, motivated by the recent experimental observation by Liu et al. of several spin-polarization transitions at 4/5, 5/7, 6/5, 9/7, 7/9, 8/11 and 10/13 in GaAs systems. We show that the FQHE of CFs is much more prevalent in multicomponent systems, and consider the feasibility of such states for systems with N components for an SU(N) symmetric interaction. Our results apply to GaAs quantum wells, wherein electrons have two components, to AlAs quantum wells and graphene, wherein electrons have four components (two spins and two valleys), and to an H-terminated Si(111) surface, which can have six components. We provide a fairly comprehensive list of possible incompressible FQH states of CFs, their SU(N) spin content, their energies, and their phase diagram as a function of the generalized ``Zeeman'' energy. The results are in good agreement with available experiments. DOE Grant No. DE-SC0005042, Hungarian Scientific Research Funds No. K105149 (CT), the Polish NCN grant 2011/01/B/ST3/04504 and the EU Marie Curie Grant PCIG09-GA-2011-294186.

  4. Pressure-induced transformations in glassy water: A computer simulation study using the TIP4P/2005 model.

    PubMed

    Wong, Jessina; Jahn, David A; Giovambattista, Nicolas

    2015-08-21

    We study the pressure-induced transformations between low-density amorphous (LDA) and high-density amorphous (HDA) ice by performing out-of-equilibrium molecular dynamics (MD) simulations. We employ the TIP4P/2005 water model and show that this model reproduces qualitatively the LDA-HDA transformations observed experimentally. Specifically, the TIP4P/2005 model reproduces remarkably well the (i) structure (OO, OH, and HH radial distribution functions) and (ii) densities of LDA and HDA at P = 0.1 MPa and T = 80 K, as well as (iii) the qualitative behavior of ρ(P) during compression-induced LDA-to-HDA and decompression-induced HDA-to-LDA transformations. At the rates explored, the HDA-to-LDA transformation is less pronounced than in experiments. By studying the LDA-HDA transformations for a broad range of compression/decompression temperatures, we construct a "P-T phase diagram" for glassy water that is consistent with experiments and remarkably similar to that reported previously for ST2 water. This phase diagram is not inconsistent with the possibility of TIP4P/2005 water exhibiting a liquid-liquid phase transition at low temperatures. A comparison with previous MD simulation studies of SPC/E and ST2 water as well as experiments indicates that, overall, the TIP4P/2005 model performs better than the SPC/E and ST2 models. The effects of cooling and compression rates as well as aging on our MD simulations results are also discussed. The MD results are qualitatively robust under variations of cooling/compression rates (accessible in simulations) and are not affected by aging the hyperquenched glass for at least 1 μs. A byproduct of this work is the calculation of TIP4P/2005 water's diffusion coefficient D(T) at P = 0.1 MPa. It is found that, for T ≥ 210 K, D(T) ≈ (T - T(MCT))(-γ) as predicted by mode coupling theory and in agreement with experiments. For TIP4P/2005 water, T(MCT) = 209 K and γ = 2.14, very close to the corresponding experimental values T

  5. Size-dependent phase diagrams of metallic alloys: A Monte Carlo simulation study on order–disorder transitions in Pt–Rh nanoparticles

    PubMed Central

    Stahl, Christian; Albe, Karsten

    2012-01-01

    Summary Nanoparticles of Pt–Rh were studied by means of lattice-based Monte Carlo simulations with respect to the stability of ordered D022- and 40-phases as a function of particle size and composition. By thermodynamic integration in the semi-grand canonical ensemble, phase diagrams for particles with a diameter of 7.8 nm, 4.3 nm and 3.1 nm were obtained. Size-dependent trends such as the lowering of the critical ordering temperature, the broadening of the compositional stability range of the ordered phases, and the narrowing of the two-phase regions were observed and discussed in the context of complete size-dependent nanoparticle phase diagrams. In addition, an ordered surface phase emerges at low temperatures and low platinum concentration. A decrease of platinum surface segregation with increasing global platinum concentration was observed, when a second, ordered phase is formed inside the core of the particle. The order–disorder transitions were analyzed in terms of the Warren–Cowley short-range order parameters. Concentration-averaged short-range order parameters were used to remove the surface segregation bias of the conventional short-range order parameters. Using this procedure, it was shown that the short-range order in the particles at high temperatures is bulk-like. PMID:22428091

  6. High-throughput continuous hydrothermal synthesis of an entire nanoceramic phase diagram.

    PubMed

    Weng, Xiaole; Cockcroft, Jeremy K; Hyett, Geoffrey; Vickers, Martin; Boldrin, Paul; Tang, Chiu C; Thompson, Stephen P; Parker, Julia E; Knowles, Jonathan C; Rehman, Ihtesham; Parkin, Ivan; Evans, Julian R G; Darr, Jawwad A

    2009-01-01

    A novel High-Throughput Continuous Hydrothermal (HiTCH) flow synthesis reactor was used to make directly and rapidly a 66-sample nanoparticle library (entire phase diagram) of nanocrystalline Ce(x)Zr(y)Y(z)O(2-delta) in less than 12 h. High resolution PXRD data were obtained for the entire heat-treated library (at 1000 degrees C/1 h) in less than a day using the new robotic beamline I11, located at Diamond Light Source (DLS). This allowed Rietveld-quality powder X-ray diffraction (PXRD) data collection of the entire 66-sample library in <1 day. Consequently, the authors rapidly mapped out phase behavior and sintering behaviors for the entire library. Out of the entire 66-sample heat-treated library, the PXRD data suggests that 43 possess the fluorite structure, of which 30 (out of 36) are ternary compositions. The speed, quantity and quality of data obtained by our new approach, offers an exciting new development which will allow structure-property relationships to be accessed for nanoceramics in much shorter time periods.

  7. Prediction of Continuous Cooling Transformation Diagrams for Dual-Phase Steels from the Intercritical Region

    NASA Astrophysics Data System (ADS)

    Colla, V.; Desanctis, M.; Dimatteo, A.; Lovicu, G.; Valentini, R.

    2011-09-01

    The purpose of the present work is the implementation and validation of a model able to predict the microstructure changes and the mechanical properties in the modern high-strength dual-phase steels after the continuous annealing process line (CAPL) and galvanizing (Galv) process. Experimental continuous cooling transformation (CCT) diagrams for 13 differently alloying dual-phase steels were measured by dilatometry from the intercritical range and were used to tune the parameters of the microstructural prediction module of the model. Mechanical properties and microstructural features were measured for more than 400 dual-phase steels simulating the CAPL and Galv industrial process, and the results were used to construct the mechanical model that predicts mechanical properties from microstructural features, chemistry, and process parameters. The model was validated and proved its efficiency in reproducing the transformation kinetic and mechanical properties of dual-phase steels produced by typical industrial process. Although it is limited to the dual-phase grades and chemical compositions explored, this model will constitute a useful tool for the steel industry.

  8. Nonlinear Magnetic Dynamics and The Switching Phase Diagrams in Spintronic Devices

    NASA Astrophysics Data System (ADS)

    Yan, Shu

    Spin-transfer torque induced magnetic switching, by which the spin-polarized current transfers its magnetic moment to the ferromagnetic layer and changes its magnetization, holds great promise towards faster and smaller magnetic bits in data-storage applications due to the lower power consumption and better scalability. We propose an analytic approach which can be used to calculate the switching phase diagram of a nanomagnetic system in the presence of both magnetic field and spin-transfer torque in an exact fashion. This method is applied to the study of switching conditions for the uniaxial, single domain magnetic layers in different spin-transfer devices. In a spin valve with spin polarization collinear with the easy axis, we get a modified Stoner-Wohlfarth astroid which represents many of the features that have been found in experiment. It also shows a self-crossing boundary and demonstrates a region with three stable equilibria. We demonstrate that the region of stable equilibria with energy near the maximum can be reached only through a narrow bottleneck in the field space, which sets a stringent requirement for magnetic field alignment in the experiments. Switching diagrams are then calculated for the setups with magnetic field not perfectly aligned with the easy axis. In a ferromagnet-heavy-metal bilayer device with strong spin Hall effect, the in plane current becomes spin-polarized and transfers its magnetic moment to the ferromagnetic layer by diffusion. The three-dimensional asymmetric phase diagram is calculated. In the case that the external field is confined in the vertical plane defined by the direction of the current and the easy axis, the spin-transfer torque shifts the conventional in-plane (IP) equilibria within the same plane, and also creates two out-of-plane (OOP) equilibria, one of which can be stable. The threshold switching currents for IP switching and OOP switching are discussed. We also address the magnetic switching processes. Damping

  9. Evolution of ferroelectricity in tetrathiafulvalene-p-chloranil as a function of pressure and temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dengl, Armin; Beyer, Rebecca; Peterseim, Tobias

    2014-06-28

    The neutral-to-ionic phase transition in the mixed-stack charge-transfer complex tetrathiafulvalene-p-chloranil (TTF-CA) has been studied by pressure-dependent infrared spectroscopy up to p = 11 kbar and down to low temperatures, T = 10 K. By tracking the C=O antisymmetric stretching mode of CA molecules, we accurately determine the ionicity of TTF-CA in the pressure-temperature phase diagram. At any point, the TTF-CA crystal bears only a single ionicity; there is no coexistence region or an exotic high-pressure phase. Our findings shed new light on the role of electron-phonon interaction in the neutral-ionic transition.

  10. Influence of trapping potentials on the phase diagram of bosonic atoms in optical lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giampaolo, S.M.; Illuminati, F.; Mazzarella, G.

    2004-12-01

    We study the effect of external trapping potentials on the phase diagram of bosonic atoms in optical lattices. We introduce a generalized Bose-Hubbard Hamiltonian that includes the structure of the energy levels of the trapping potential, and show that these levels are in general populated both at finite and zero temperature. We characterize the properties of the superfluid transition for this situation and compare them with those of the standard Bose-Hubbard description. We briefly discuss similar behaviors for fermionic systems.

  11. Macroscopically constrained Wang-Landau method for systems with multiple order parameters and its application to drawing complex phase diagrams

    NASA Astrophysics Data System (ADS)

    Chan, C. H.; Brown, G.; Rikvold, P. A.

    2017-05-01

    A generalized approach to Wang-Landau simulations, macroscopically constrained Wang-Landau, is proposed to simulate the density of states of a system with multiple macroscopic order parameters. The method breaks a multidimensional random-walk process in phase space into many separate, one-dimensional random-walk processes in well-defined subspaces. Each of these random walks is constrained to a different set of values of the macroscopic order parameters. When the multivariable density of states is obtained for one set of values of fieldlike model parameters, the density of states for any other values of these parameters can be obtained by a simple transformation of the total system energy. All thermodynamic quantities of the system can then be rapidly calculated at any point in the phase diagram. We demonstrate how to use the multivariable density of states to draw the phase diagram, as well as order-parameter probability distributions at specific phase points, for a model spin-crossover material: an antiferromagnetic Ising model with ferromagnetic long-range interactions. The fieldlike parameters in this model are an effective magnetic field and the strength of the long-range interaction.

  12. Dielectric Study of the Phase Transitions in [P(CH3)4]2CuY4 (Y = Cl, Br)

    NASA Astrophysics Data System (ADS)

    Gesi, Kazuo

    2002-05-01

    Phase transitions in [P(CH3)4]2CuY4 (Y = Cl, Br) have been studied by dielectric measurements. In [P(CH3)4]2CuCl4, a slight break and a discontinuous jump on the dielectric constant vs. temperature curve are seen at the normal-incommensurate and the incommensurate-commensurate phase transitions, respectively. A small peak of dielectric constant along the b-direction exists just above the incommensurate-to-commensurate transition temperature. The anisotropic dielectric anomalies of [P(CH3)4]2CuBr4 at phase transitions were measured along the three crystallographic axes. The pressure-temperature phase diagram of [P(CH3)4]2CuCl4 was determined. The initial pressure coefficients of the normal-to-incommensurate and the incommensurate-to-commensurate transition temperatures are 0.19 K/MPa and 0.27 K/MPa, respectively. The incommensurate phase in [P(CH3)4]2CuCl4 disappears at a triple point which exists at 335 MPa and 443 K. The stability and the pressure effects of the incommensurate phases are much different among the four [Z(CH3)4]2CuY4 crystals (Z = N, P; Y = Cl, Br).

  13. Collapsed tetragonal phase transition in LaRu 2 P 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drachuck, Gil; Sapkota, Aashish; Jayasekara, Wageesha T.

    Here, the structural properties of LaRu 2P 2 under external pressure have been studied up to 14 GPa, employing high-energy x-ray diffraction in a diamond-anvil pressure cell. At ambient conditions, LaRu 2P 2 (I4/ mmm) has a tetragonal structure with a bulk modulus of B = 105(2) GPa and exhibits superconductivity at T c = 4.1 K. With the application of pressure, LaRu 2P 2 undergoes a phase transition to a collapsed tetragonal (cT) state with a bulk modulus of B = 175(5) GPa. At the transition, the c-lattice parameter exhibits a sharp decrease with a concurrent increase of themore » a-lattice parameter. The cT phase transition in LaRu 2P 2 is consistent with a second-order transition, and was found to be temperature dependent, increasing from P = 3.9(3) GPa at 160 K to P = 4.6(3) GPa at 300 K. In total, our data are consistent with the cT transition being near, but slightly above 2 GPa at 5 K where superconductivity is suppressed. Finally, we compare the effect of physical and chemical pressure in the RRu 2P 2 ( R = Y, La–Er, Yb) isostructural series of compounds and find them to be analogous.« less

  14. Collapsed tetragonal phase transition in LaRu 2 P 2

    DOE PAGES

    Drachuck, Gil; Sapkota, Aashish; Jayasekara, Wageesha T.; ...

    2017-11-10

    Here, the structural properties of LaRu 2P 2 under external pressure have been studied up to 14 GPa, employing high-energy x-ray diffraction in a diamond-anvil pressure cell. At ambient conditions, LaRu 2P 2 (I4/ mmm) has a tetragonal structure with a bulk modulus of B = 105(2) GPa and exhibits superconductivity at T c = 4.1 K. With the application of pressure, LaRu 2P 2 undergoes a phase transition to a collapsed tetragonal (cT) state with a bulk modulus of B = 175(5) GPa. At the transition, the c-lattice parameter exhibits a sharp decrease with a concurrent increase of themore » a-lattice parameter. The cT phase transition in LaRu 2P 2 is consistent with a second-order transition, and was found to be temperature dependent, increasing from P = 3.9(3) GPa at 160 K to P = 4.6(3) GPa at 300 K. In total, our data are consistent with the cT transition being near, but slightly above 2 GPa at 5 K where superconductivity is suppressed. Finally, we compare the effect of physical and chemical pressure in the RRu 2P 2 ( R = Y, La–Er, Yb) isostructural series of compounds and find them to be analogous.« less

  15. Phase diagrams for understanding gold-seeded growth of GaAs and InAs nanowires

    NASA Astrophysics Data System (ADS)

    Ghasemi, Masoomeh; Johansson, Jonas

    2017-04-01

    Phase diagrams are useful tools to study the phase equilibria of nanowire materials systems because the growth of nanowires is accompanied by phase formation and phase transition. We have modeled the phase equilibria of the As-Au-Ga ternary system by means of the CALPHAD method. This method is a well-established semi-empirical technique for thermodynamic modeling in which Gibbs energy functions with free parameters are defined for all phases in a system followed by adjusting these parameters to the experimental data. Using the resulting As-Au-Ga thermodynamic database, four vertical cuts of this ternary system are calculated and all show good agreement with experiments. This ternary system is particularly useful for predicting the state of the Au seed alloys when growing GaAs nanowires and we discuss such predictions. Similar calculations are performed for Au-seeded InAs nanowires. We show that the vapor-liquid-solid (VLS) growth fails for InAs nanowires, while GaAs nanowires can grow from a liquid particle. Our calculations are in agreement with experimental data on the growth of Au-seeded GaAs and InAs nanowires.

  16. Analytical phase diagrams for colloids and non-adsorbing polymer.

    PubMed

    Fleer, Gerard J; Tuinier, Remco

    2008-11-04

    introduce the size ratio q=delta/a, where the depletion thickness delta is no longer of order R. In the protein limit the binodal concentrations are above overlap. In such semidilute solutions delta approximately xi, where the De Gennes blob size (correlation length) xi scales as xi approximately phi(-gamma), with gamma=0.77 for good solvents and gamma=1 for a theta solvent. In this limit Pi=Pi(sd) approximately phi(3gamma). We now apply the following additional modifications: With these latter two modifications we obtain again a fully analytical model with simple equations for critical and triple points as a function of q(R). In the protein limit the binodal polymer concentrations scale as q(R)(1/gamma), and phase diagrams phiq(R)(-1/gamma) versus the colloid concentration eta become universal (i.e., independent of the size ratio q(R)). The predictions of this generalized free-volume theory (GFVT) are in excellent agreement with experiment and with computer simulations, not only for the colloid limit but also for the protein limit (and the crossover between these limits). The q(R)(1/gamma) scaling is accurately reproduced by both simulations and other theoretical models. The liquid window is the region between phi(c) (critical point) and phi(t) (triple point). In terms of the ratio phi(t)/phi(c) the liquid window extends from 1 in the cep (here phi(t)-phi(c)=0) to 2.2 in the protein limit. Hence, the liquid window is narrow: it covers at most a factor 2.2 in (external) polymer concentration.

  17. Perturbative study of the QCD phase diagram for heavy quarks at nonzero chemical potential: Two-loop corrections

    NASA Astrophysics Data System (ADS)

    Maelger, J.; Reinosa, U.; Serreau, J.

    2018-04-01

    We extend a previous investigation [U. Reinosa et al., Phys. Rev. D 92, 025021 (2015), 10.1103/PhysRevD.92.025021] of the QCD phase diagram with heavy quarks in the context of background field methods by including the two-loop corrections to the background field effective potential. The nonperturbative dynamics in the pure-gauge sector is modeled by a phenomenological gluon mass term in the Landau-DeWitt gauge-fixed action, which results in an improved perturbative expansion. We investigate the phase diagram at nonzero temperature and (real or imaginary) chemical potential. Two-loop corrections yield an improved agreement with lattice data as compared to the leading-order results. We also compare with the results of nonperturbative continuum approaches. We further study the equation of state as well as the thermodynamic stability of the system at two-loop order. Finally, using simple thermodynamic arguments, we show that the behavior of the Polyakov loops as functions of the chemical potential complies with their interpretation in terms of quark and antiquark free energies.

  18. Classification of ester oils according to their Equivalent Alkane Carbon Number (EACN) and asymmetry of fish diagrams of C10E4/ester oil/water systems.

    PubMed

    Ontiveros, Jesús F; Pierlot, Christel; Catté, Marianne; Molinier, Valérie; Pizzino, Aldo; Salager, Jean-Louis; Aubry, Jean-Marie

    2013-08-01

    The phase behavior of well-defined C10E4/ester oil/water systems versus temperature was investigated. Fifteen ester oils were studied and their Equivalent Alkane Carbon Numbers (EACNs) were determined from the so-called fish-tail temperature T* of the fish diagrams obtained with an equal weight amount of oil and water (f(w)=0.5). The influence of the chemical structure of linear monoester on EACN was quantitatively rationalized in terms of ester bonds position and total carbon number, and explained by the influence of these polar oils on the "effective" packing parameter of the interfacial surfactant, which takes into account its entire physicochemical environment. In order to compare the behaviors of typical mono-, di-, and triester oils, three fish diagrams were entirely plotted with isopropyl myristate, bis (2-ethylhexyl) adipate, and glycerol trioctanoate. When the number of ester bonds increases, a more pronounced asymmetry of the three-phase body of the fish diagram with respect to T* is observed. In this case, T* is much closer to the upper limit temperature Tu than to the lower limit temperature Tl of the three-phase zone. This asymmetry is suggested to be linked to an increased solubility of the surfactant in the oil phase, which decreases the surfactant availability for the interfacial pseudo-phase. As a consequence, the asymmetry depends on the water-oil ratio, and a method is proposed to determine the fw value at which T* is located at the mean value of Tu and Tl. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Critical current density, vortex dynamics, and phase diagram of single-crystal FeSe

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Pyon, Sunseng; Tamegai, Tsuyoshi; Kobayashi, Ryo; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2015-10-01

    We present a comprehensive study of the vortex pinning and dynamics in a high-quality FeSe single crystal which is free from doping-introduced inhomogeneities and charged quasiparticle scattering because of its innate superconductivity. The critical current density Jc is found to be almost isotropic and reaches a value of ˜3 ×104 A /cm2 at 2 K (self-field) for both H ∥c and a b . The normalized magnetic relaxation rate S (=∣d ln M /d ln t ∣ ) shows a temperature-insensitive plateau behavior in the intermediate temperature range with a relatively high creep rate (S ˜ 0.02 under zero field), which is interpreted in the framework of the collective creep theory. A crossover from the elastic to plastic creep is observed, while the fishtail effect is absent for both H ∥c and a b . Based on this observation, the origin of the fishtail effect is also discussed. Combining the results of Jc and S , the vortex motion in the FeSe single crystal is found to be dominated by sparse, strong pointlike pinning from nanometer-sized defects or imperfections. The weak collective pinning is also observed and proved in the form of large bundles. Besides, the vortex phase diagram of FeSe is also constructed and discussed.

  20. Structure, thermodynamic properties, and phase diagrams of few colloids confined in a spherical pore.

    PubMed

    Paganini, Iván E; Pastorino, Claudio; Urrutia, Ignacio

    2015-06-28

    We study a system of few colloids confined in a small spherical cavity with event driven molecular dynamics simulations in the canonical ensemble. The colloidal particles interact through a short range square-well potential that takes into account the basic elements of attraction and excluded-volume repulsion of the interaction among colloids. We analyze the structural and thermodynamic properties of this few-body confined system in the framework of inhomogeneous fluids theory. Pair correlation function and density profile are used to determine the structure and the spatial characteristics of the system. Pressure on the walls, internal energy, and surface quantities such as surface tension and adsorption are also analyzed for a wide range of densities and temperatures. We have characterized systems from 2 to 6 confined particles, identifying distinctive qualitative behavior over the thermodynamic plane T - ρ, in a few-particle equivalent to phase diagrams of macroscopic systems. Applying the extended law of corresponding states, the square well interaction is mapped to the Asakura-Oosawa model for colloid-polymer mixtures. We link explicitly the temperature of the confined square-well fluid to the equivalent packing fraction of polymers in the Asakura-Oosawa model. Using this approach, we study the confined system of few colloids in a colloid-polymer mixture.