Sample records for t17m rho mice

  1. Effects of 17β-estradiol and progesterone on the production of adipokines in differentiating 3T3-L1 adipocytes: Role of Rho-kinase.

    PubMed

    Pektaş, Mehtap; Kurt, Akif Hakan; Ün, İsmail; Tiftik, Rukiye Nalan; Büyükafşar, Kansu

    2015-04-01

    Effect of female sex hormones on the production/release of adipocyte-derived cytokines has been debatable. Furthermore, whether the cellular signaling triggered by these hormones involve Rho-kinase has not been investigated yet. Therefore, in this study, effects of 17β-estradiol and progesterone as well as the Rho-kinase inhibitor, Y-27632 on the level of adipokines such as resistin, adiponectin, leptin, TNF-α and IL-6 were investigated in 3T3-L1-derived adipocytes. Differentiation was induced in the post-confluent preadipocytes by the standard differentiation medium (Dulbecco's modified Eagle's medium with 10% fetal bovine serum together with the mixture of isobutylmethylxanthine, dexamethasone and insulin) in the presence of 17β-estradiol (10(-8)-10(-7)M), progesterone (10(-6)-10(-5)M), the Rho-kinase inhibitor, Y-27632 (10(-5)M) and their combination for 8days. Measurements of the adipokines were performed in the culturing medium by ELISA kits using specific monoclonal antibodies. 17β-estradiol elevated resistin but decreased adiponectin and IL-6 levels; however, it did not alter the concentration of leptin and TNF-α. Y-27632 pretreatment inhibited the rise of resistin and the fall of adiponectin by 17β-estradiol without any effects by its own. Progesterone did not change resistin, leptin and TNF-α level; however, it elevated adiponectin and decreased IL-6 production. Neither 17β-estradiol nor Y-27632 was able to antagonize the increase of adiponectin and the reduction of IL-6 levels by progesterone. While Y-27632 alone lowered IL-6 level, it increased leptin and TNF-α concentration without altering resistin and adiponectin. In conclusion, 17β-estradiol could modify adipokine production in 3T3-L1 adipocytes with the actions some of which involve Rho-kinase mediation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Inflammatory T helper 17 cells promote depression-like behavior in mice.

    PubMed

    Beurel, Eléonore; Harrington, Laurie E; Jope, Richard S

    2013-04-01

    Recognition of substantial immune-neural interactions is revising dogmas about their insular actions and revealing that immune-neural interactions can substantially impact central nervous system functions. The inflammatory cytokine interleukin-6 promotes susceptibility to depression and drives production of inflammatory T helper 17 (Th17) T cells, raising the hypothesis that in mouse models, Th17 cells promote susceptibility to depression-like behaviors. Behavioral characteristics were measured in male mice administered Th17 cells, CD4(+) cells, or vehicle and in retinoid-related orphan receptor-γT (RORγT)(+/GFP) mice or male mice treated with RORγT inhibitor or anti-interleukin-17A antibodies. Mouse brain Th17 cells were elevated by learned helplessness and chronic restraint stress, two common depression-like models. Th17 cell administration promoted learned helplessness in 89% of mice in a paradigm where no vehicle-treated mice developed learned helplessness, and impaired novelty suppressed feeding and social interaction behaviors. Mice deficient in the RORγT transcription factor necessary for Th17 cell production exhibited resistance to learned helplessness, identifying modulation of RORγT as a potential intervention. Treatment with the RORγT inhibitor SR1001, or anti-interleukin-17A antibodies to abrogate Th17 cell function, reduced Th17-dependent learned helplessness. These findings indicate that Th17 cells are increased in the brain during depression-like states, promote depression-like behaviors in mice, and specifically inhibiting the production or function of Th17 cells reduces vulnerability to depression-like behavior, suggesting antidepressant effects may be attained by targeting Th17 cells. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Breath-hold black-blood T1rho mapping improves liver T1rho quantification in healthy volunteers.

    PubMed

    Wáng, Yì Xiáng J; Deng, Min; Lo, Gladys G; Liang, Dong; Yuan, Jing; Chen, Weitian

    2018-03-01

    Background Recent researches suggest that T1rho may be a non-invasive and quantitative technique for detecting and grading liver fibrosis. Purpose To compare a multi-breath-hold bright-blood fast gradient echo (GRE) imaging and a single breath-hold single-shot fast spin echo (FSE) imaging with black-blood effect for liver parenchyma T1rho measurement and to study liver physiological T1rho value in healthy volunteers. Material and Methods The institutional Ethics Committee approved this study. 28 healthy participants (18 men, 10 women; age = 29.6 ± 5.1 years) underwent GRE liver T1rho imaging, and 20 healthy participants (10 men, 10 women; age = 36.9 ± 10.3 years) underwent novel black-blood FSE liver T1rho imaging, both at 3T with spin-lock frequency of 500 Hz. The FSE technique allows simultaneous acquisition of four spin lock times (TSLs; 1 ms, 10 ms, 30 ms, 50msec) in 10 s. Results For FSE technique the intra-scan repeatability intraclass correlation coefficient (ICC) was 0.98; while the inter-scan reproducibility ICC was 0.82 which is better than GRE technique's 0.76. Liver T1rho value in women tended to have a higher value than T1rho values in men (FSE: 42.28 ± 4.06 ms for women and 39.13 ± 2.12 ms for men; GRE: 44.44 ± 1.62 ms for women and 42.36 ± 2.00 ms for men) and FSE technique showed liver T1rho value decreased slightly as age increased. Conclusion Single breath-hold black-blood FSE sequence has better scan-rescan reproducibility than multi-breath-hold bright-blood GRE sequence. Gender and age dependence of liver T1rho in healthy participants is observed, with young women tending to have a higher T1rho measurement.

  4. Up-regulation of the RhoA/Rho-kinase signaling pathway in corpus cavernosum from endothelial nitric-oxide synthase (NOS), but not neuronal NOS, null mice.

    PubMed

    Priviero, Fernanda B M; Jin, Li-Ming; Ying, Zhekang; Teixeira, Cleber E; Webb, R Clinton

    2010-04-01

    We tested the hypothesis that the basal release of nitric oxide (NO) from endothelial cells modulates contractile activity in the corpus cavernosum (CC) via inhibition of the RhoA/Rho-kinase signaling pathway. Cavernosal strips from wild-type (WT), endothelial nitric-oxide synthase knockout [eNOS(-/-)], and neuronal nitric-oxide synthase knockout [nNOS(-/-)] mice were mounted in myographs, and isometric force was recorded. mRNA and protein expression of key molecules in the RhoA/Rho-kinase pathway were analyzed by real-time polymerase chain reaction and Western blot, respectively. The cGMP levels were determined. The Rho-kinase inhibitors (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide (Y-27632) and (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinolinyl)sulfonyl] homopiperazine (H-1152) reduced cavernosal contractions evoked by phenylephrine or electrical field stimulation (EFS) in a concentration-dependent manner, although this inhibition was less effective in tissues from eNOS(-/-) mice. Y-27632 enhanced relaxations induced by sodium nitroprusside, EFS, and NO (administered as acidified NaNO2) without affecting the cGMP content of the cavernosal strips. This enhancement was less prominent in CC from eNOS(-/-). The protein expression of RhoA, Rho-guanine dissociation inhibitor, and Rho-kinase beta did not differ among the strains. However, in eNOS(-/-) CC, the protein expression of Rho-kinase alpha and both mRNA and protein expression of p115-Rho-associated guanine exchange factor (RhoGEF), PDZ-RhoGEF, and leukemia-associated RhoGEF were up-regulated. Phosphorylation of MYPT1 at Thr696 was higher in tissues from eNOS(-/-) mice. A high concentration of Y-27632 significantly enhanced NO release in CC stimulated by EFS. These results suggest a basal release of NO from endothelial cells, which inhibits contractions mediated by the RhoA/Rho-kinase pathway and modulates the expression of proteins related to this pathway in mouse CC. It indicates that

  5. Control of T lymphocyte morphology by the GTPase Rho

    NASA Technical Reports Server (NTRS)

    Woodside, Darren G.; Wooten, David K.; Teague, T. Kent; Miyamoto, Yuko J.; Caudell, Eva G.; Udagawa, Taturo; Andruss, Bernard F.; McIntyre, Bradley W.

    2003-01-01

    BACKGROUND: Rho family GTPase regulation of the actin cytoskeleton governs a variety of cell responses. In this report, we have analyzed the role of the GTPase Rho in maintenance of the T lymphocyte actin cytoskeleton. RESULTS: Inactivation of the GTPase Rho in the human T lymphocytic cell line HPB-ALL does not inhibit constitutively high adhesion to the integrin beta1 substrate fibronectin. It did however result in the aberrant extension of finger-like dendritic processes on the substrates VCAM-1, Fn, and mAb specific to beta1 integrins. Time-lapse video microscopy demonstrated that C3 induced extensions were primarily the result of an altered pseudopod elongation rather than retraction. Once the stellate pseudopodia extended, none retracted, and cells became completely immobile. Filipodial structures were absent and the dendritic-like processes in C3 treated cells were rich in filamentous actin. Immunolocalization of RhoA in untreated HPB-ALL cells spreading on fibronectin demonstrated a diffuse staining pattern within the pseudopodia. In C3 treated cells, clusters of RhoA were pronounced and localized within the altered extensions. CONCLUSIONS: GTPase Rho is actively involved in the regulation of T lymphocyte morphology and motility.

  6. RhoA orchestrates glycolysis for Th2 cell differentiation and allergic airway inflammation

    PubMed Central

    Yang, Jun-Qi; Kalim, Khalid W.; Li, Yuan; Zhang, Shuangmin; Hinge, Ashwini; Filippi, Marie-Dominique; Zheng, Yi; Guo, Fukun

    2015-01-01

    Background Mitochondrial metabolism is known to be important for T cell activation. However, its involvement in effector T cell differentiation has just begun to gain attention. Importantly, how metabolic pathways are integrated with T cell activation and effector cell differentiation and function remains largely unknown. Objective We sought to test our hypothesis that RhoA GTPase orchestrates glycolysis for Th2 cell differentiation and Th2-mediated allergic airway inflammation. Methods Conditional RhoA-deficient mice were generated by crossing RhoAflox/flox mice with CD2-Cre transgenic mice. Effects of RhoA on Th2 differentiation were evaluated by in vitro Th2-polarized culture conditions, and in vivo in ovalbumin (OVA)-induced allergic airway inflammation. Cytokines were measured by intracellular staining and ELISA. T cell metabolism was measured by Seahorse XF24 Analyzer and flow cytometry. Results Disruption of RhoA inhibited T cell activation and Th2 differentiation in vitro and prevented the development of allergic airway inflammation in vivo, with no effect on Th1 cells. RhoA deficiency in activated T cells led to multiple defects in metabolic pathways such as glycolysis and oxidative phosphorylation. Importantly, RhoA couples glycolysis to Th2 cell differentiation and allergic airway inflammation via regulating IL-4 receptor mRNA expression and Th2-specific signaling events. Finally, inhibition of Rho-associated protein kinase (ROCK), an immediate downstream effector of RhoA, blocked Th2 differentiation and allergic airway inflammation. Conclusion RhoA is a key component of the signaling cascades leading to Th2-differentiation and allergic airway inflammation, at least in part, through the control of T cell metabolism and via ROCK pathway. PMID:26100081

  7. Interleukin-17A-Deficient Mice Are Highly Susceptible to Toxoplasma gondii Infection Due to Excessively Induced T. gondii HSP70 and Interferon Gamma Production.

    PubMed

    Moroda, Masataka; Takamoto, Masaya; Iwakura, Yoichiro; Nakayama, Jun; Aosai, Fumie

    2017-12-01

    Interleukin17A (IL-17A) is known to be involved in the host defense against pathogens and the pathogenesis of autoimmune diseases. Previously, we showed that excessive amounts of interferon gamma (IFN-γ) play an important role in the pathogenesis of the lethal effects of Toxoplasma gondii by inducing anaphylactic responses. In the study described in this report, we examined the effects of IL-17A deficiency on murine host defense against oral T. gondii infection. IL-17A-deficient C57BL/6 (B6) mice exhibited higher rates of mortality than wild-type (WT) mice during the acute phase of T. gondii infection. CD4 + T cells in the mesenteric lymph nodes (mLNs) and ileum of T. gondii -infected IL-17A-deficient mice produced higher levels of IFN-γ than did those of WT mice. In addition, the level of T. gondii HSP70 ( T.g HSP70) expression was also significantly increased in the ileum, mLNs, liver, and spleen of infected IL-17A-deficient mice compared with that in WT mice. These elevated levels of expression of T.g HSP70 and IFN-γ in infected IL-17A-deficient mice were presumably linked to the IL-17A defect since they decreased to WT levels after treatment with recombinant IL-17A. Furthermore, IL-17A-deficient mice were highly susceptible to the anaphylactic effect of T.g HSP70, and the survival of IL-17A-deficient mice during the acute phase was improved by treatment with an anti- T.g HSP70 monoclonal antibody. These results suggest that IL-17A plays an important role in host survival against T. gondii infection by protecting the host from an anaphylactic reaction via the downregulation of T.g HSP70 and IFN-γ production. Copyright © 2017 American Society for Microbiology.

  8. Ghrelin Inhibits the Differentiation of T Helper 17 Cells through mTOR/STAT3 Signaling Pathway

    PubMed Central

    Xu, Yanhui; Li, Ziru; Yin, Yue; Lan, He; Wang, Jun; Zhao, Jing; Feng, Juan; Li, Yin; Zhang, Weizhen

    2015-01-01

    Enhanced activity of interleukin 17 (IL-17) producing T helper 17 (Th17) cells plays an important role in autoimmune and inflammatory diseases. Significant loss of body weight and appetite is associated with chronic inflammation and immune activation, suggesting the cross talk between immune and neuroendocrine systems. Ghrelin has been shown to regulate the organism immune function. However, the effects of ghrelin on the differentiation of Th17 cells remain elusive. In the present study, we observed the enhanced differentiation of Th17 cells in spleens of growth hormone secretagogue receptor 1a (GHSR1a)-/- mice. Treatment of ghrelin repressed Th17 cell differentiation in a time- and concentration-dependent manner. Phosphorylation of mammalian target of rapamycin (mTOR) and signal transducer and activator of transcription 3 (STAT3) was increased in the spleens of GHSR1a-/- mice. Activation of mTOR signaling by injection of Cre-expressiong adenovirus into tuberous sclerosis complex 1 (TSC1) loxp/loxp mice increased the differentiation of Th17 cells in spleen, which was associated with an increment in the phosphorylation of STAT3. Activation of mTOR signaling by leucine or overexpression of p70 ribosome protein subunit 6 kinase 1 (S6K1) activated mTOR signaling in isolated T cells, while reversed the ghrelin-induced inhibition of iTh17 cell differentiation. In conclusion, mTOR mediates the inhibitory effect of ghrelin on the differentiation of Th17 cells by interacting with STAT3. PMID:25658305

  9. Interleukin 17-Producing γδT Cells Promote Hepatic Regeneration in Mice

    PubMed Central

    Rao, Raghavendra; Graffeo, Christopher S.; Gulati, Rishabh; Jamal, Mohsin; Narayan, Suchithra; Zambirinis, Constantinos; Barilla, Rocky; Deutsch, Michael; Greco, Stephanie; Ochi, Atsuo; Tomkötter, Lena; Blobstein, Reuven; Avanzi, Antonina; Tippens, Daniel M.; Gelbstein, Yisroel; Heerden, Eliza Van; Miller, George

    2014-01-01

    Background & Aims Subsets of leukocytes synergize with regenerative growth factors to promote hepatic regeneration. γδT cells are early responders to inflammation-induced injury in a number of contexts. We investigated the role of γδT cells in hepatic regeneration using mice with disruptions in Tcrd (encodes the T cell receptor δ chain) and Clec7a (encodes C-type lectin domain family 7 member a, also known as DECTIN1). Methods We performed partial hepatectomies on wild-type C57BL/6, CD45.1, Tcrd−/−, or Clec7a−/− mice. Cells were isolated from livers of patients and mice via mechanical and enzymatic digestion. γδT cells were purified by fluorescence-activated cell sorting. Results In mice, partial hepatectomy upregulated expression of CCL20 and ligands of Dectin-1, associated with recruitment and activation of γδT cells and their increased production of interleukin (IL)17 family cytokines. Recruited γδT cells induced production of IL6 by antigen-presenting cells and suppressed expression of interferon γ by natural killer T cells, promoting hepatocyte proliferation. Absence of IL17-producing γδT cells or deletion of Dectin-1 prevented development of regenerative phenotypes in subsets of innate immune cells. This slowed liver regeneration and was associated with reduced expression of regenerative growth factors and cell cycle regulators. Conversely, exogenous administration of IL17 family cytokines or Dectin-1 ligands promoted regeneration. More broadly, we found that γδT cells are required for inflammatory responses mediated by IL17 and Dectin-1. Conclusions γδT cells regulate hepatic regeneration by producing IL22 and IL17, which have direct mitogenic effects on hepatocytes and promote a regenerative phenotype in hepatic leukocytes, respectively. Dectin-1 ligation is required for γδT cells to promote hepatic regeneration. PMID:24801349

  10. Targeting the RhoA-ROCK Pathway to Reverse T Cell Dysfunction in SLE

    PubMed Central

    Rozo, Cristina; Chinenov, Yurii; Maharaj, Reena Khianey; Gupta, Sanjay; Leuenberger, Laura; Kirou, Kyriakos A.; Bykerk, Vivian P.; Goodman, Susan M.; Salmon, Jane E.; Pernis, Alessandra B.

    2018-01-01

    Objectives Deregulated production of IL-17 and IL-21 contributes to the pathogenesis of autoimmune disorders like SLE and RA. Production of IL-17 and IL-21 can be regulated by ROCK2, one of the two Rho kinases. Increased ROCK activation was previously observed in an SLE cohort. Here, we evaluated ROCK activity in a new SLE cohort, an RA cohort, and assessed the ability of distinct inhibitors of the ROCK pathway to suppress production of IL-17 and IL-21 by SLE T cells or human Th17 cells. Methods ROCK activity in PBMCs from 29 SLE patients, 31 RA patients, and 28 healthy controls was determined by ELISA. SLE T cells or in vitro-differentiated Th17 cells were treated with Y27632 (a pan-ROCK inhibitor), KD025 (a selective ROCK2 inhibitor), or simvastatin (which inhibits RhoA, a major ROCK activator). ROCK activity, IL-17, and IL-21 production were assessed. The transcriptional profile altered by ROCK inhibitors was evaluated by NanoString technology. Results ROCK activity levels were significantly higher in SLE and RA patients than healthy controls. Th17 cells exhibited high ROCK activity that was inhibited by Y276327, KD025, or simvastatin; each also decreased IL-17 and IL-21 production by purified SLE T cells or Th17 cells. Immune profiling revealed both overlapping and distinct effects of the different ROCK inhibitors. Conclusions ROCK activity is elevated in PBMCs from SLE and RA patients. Production of IL-17 and IL-21 by SLE T cells or Th17 cells can furthermore be inhibited by targeting the RhoA-ROCK pathway via both non-selective and selective approaches. PMID:28283529

  11. RhoG protein regulates platelet granule secretion and thrombus formation in mice.

    PubMed

    Goggs, Robert; Harper, Matthew T; Pope, Robert J; Savage, Joshua S; Williams, Christopher M; Mundell, Stuart J; Heesom, Kate J; Bass, Mark; Mellor, Harry; Poole, Alastair W

    2013-11-22

    Rho GTPases such as Rac, RhoA, and Cdc42 are vital for normal platelet function, but the role of RhoG in platelets has not been studied. In other cells, RhoG orchestrates processes integral to platelet function, including actin cytoskeletal rearrangement and membrane trafficking. We therefore hypothesized that RhoG would play a critical role in platelets. Here, we show that RhoG is expressed in human and mouse platelets and is activated by both collagen-related peptide (CRP) and thrombin stimulation. We used RhoG(-/-) mice to study the function of RhoG in platelets. Integrin activation and aggregation were reduced in RhoG(-/-) platelets stimulated by CRP, but responses to thrombin were normal. The central defect in RhoG(-/-) platelets was reduced secretion from α-granules, dense granules, and lysosomes following CRP stimulation. The integrin activation and aggregation defects could be rescued by ADP co-stimulation, indicating that they are a consequence of diminished dense granule secretion. Defective dense granule secretion in RhoG(-/-) platelets limited recruitment of additional platelets to growing thrombi in flowing blood in vitro and translated into reduced thrombus formation in vivo. Interestingly, tail bleeding times were normal in RhoG(-/-) mice, suggesting that the functions of RhoG in platelets are particularly relevant to thrombotic disorders.

  12. Interleukin 17-producing γδT cells promote hepatic regeneration in mice.

    PubMed

    Rao, Raghavendra; Graffeo, Christopher S; Gulati, Rishabh; Jamal, Mohsin; Narayan, Suchithra; Zambirinis, Constantinos P; Barilla, Rocky; Deutsch, Michael; Greco, Stephanie H; Ochi, Atsuo; Tomkötter, Lena; Blobstein, Reuven; Avanzi, Antonina; Tippens, Daniel M; Gelbstein, Yisroel; Van Heerden, Eliza; Miller, George

    2014-08-01

    Subsets of leukocytes synergize with regenerative growth factors to promote hepatic regeneration. γδT cells are early responders to inflammation-induced injury in a number of contexts. We investigated the role of γδT cells in hepatic regeneration using mice with disruptions in Tcrd (encodes the T-cell receptor δ chain) and Clec7a (encodes C-type lectin domain family 7 member a, also known as DECTIN1). We performed partial hepatectomies on wild-type C57BL/6, CD45.1, Tcrd(-/-), or Clec7a(-/-) mice. Cells were isolated from livers of patients and mice via mechanical and enzymatic digestion. γδT cells were purified by fluorescence-activated cell sorting. In mice, partial hepatectomy up-regulated expression of CCL20 and ligands of Dectin-1, which was associated with recruitment and activation of γδT cells and their increased production of interleukin (IL)-17 family cytokines. Recruited γδT cells induced production of IL-6 by antigen-presenting cells and suppressed expression of interferon gamma by natural killer T cells, promoting hepatocyte proliferation. Absence of IL-17-producing γδT cells or deletion of Dectin-1 prevented development of regenerative phenotypes in subsets of innate immune cells. This slowed liver regeneration and was associated with reduced expression of regenerative growth factors and cell cycle regulators. Conversely, exogenous administration of IL-17 family cytokines or Dectin-1 ligands promoted regeneration. More broadly, we found that γδT cells are required for inflammatory responses mediated by IL-17 and Dectin-1. γδT cells regulate hepatic regeneration by producing IL-22 and IL-17, which have direct mitogenic effects on hepatocytes and promote a regenerative phenotype in hepatic leukocytes, respectively. Dectin-1 ligation is required for γδT cells to promote hepatic regeneration. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Regulatory T-Cell Augmentation or Interleukin-17 Inhibition Prevents Calcineurin Inhibitor-Induced Hypertension in Mice.

    PubMed

    Chiasson, Valorie L; Pakanati, Abhinandan R; Hernandez, Marcos; Young, Kristina J; Bounds, Kelsey R; Mitchell, Brett M

    2017-07-01

    The immunosuppressive calcineurin inhibitors cyclosporine A and tacrolimus alter T-cell subsets and can cause hypertension, vascular dysfunction, and renal toxicity. We and others have reported that cyclosporine A and tacrolimus decrease anti-inflammatory regulatory T cells and increase proinflammatory interleukin-17-producing T cells; therefore, we hypothesized that inhibition of these effects using noncellular therapies would prevent the hypertension, endothelial dysfunction, and renal glomerular injury induced by calcineurin inhibitor therapy. Daily treatment of mice with cyclosporine A or tacrolimus for 1 week significantly decreased CD4 + /FoxP3 + regulatory T cells in the spleen and lymph nodes, as well as induced hypertension, vascular injury and dysfunction, and glomerular mesangial expansion in mice. Daily cotreatment with all-trans retinoic acid reported to increase regulatory T cells and decrease interleukin-17-producing T cells, prevented all of the detrimental effects of cyclosporine A and tacrolimus. All-trans retinoic acid also increased regulatory T cells and prevented the hypertension, endothelial dysfunction, and glomerular injury in genetically modified mice that phenocopy calcineurin inhibitor-treated mice (FKBP12-Tie2 knockout). Treatment with an interleukin-17-neutralizing antibody also increased regulatory T-cell levels and prevented the hypertension, endothelial dysfunction, and glomerular injury in cyclosporine A-treated and tacrolimus-treated mice and FKBP12-Tie2 knockout mice, whereas an isotype control had no effect. Augmenting regulatory T cells and inhibiting interleukin-17 signaling using noncellular therapies prevents the cardiovascular and renal toxicity of calcineurin inhibitors in mice. © 2017 American Heart Association, Inc.

  14. Targeting the RhoA-ROCK pathway to reverse T-cell dysfunction in SLE.

    PubMed

    Rozo, Cristina; Chinenov, Yurii; Maharaj, Reena Khianey; Gupta, Sanjay; Leuenberger, Laura; Kirou, Kyriakos A; Bykerk, Vivian P; Goodman, Susan M; Salmon, Jane E; Pernis, Alessandra B

    2017-04-01

    Deregulated production of interleukin (IL)-17 and IL-21 contributes to the pathogenesis of autoimmune disorders such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Production of IL-17 and IL-21 can be regulated by ROCK2, one of the two Rho kinases. Increased ROCK activation was previously observed in an SLE cohort. Here, we evaluated ROCK activity in a new SLE cohort, and an RA cohort, and assessed the ability of distinct inhibitors of the ROCK pathway to suppress production of IL-17 and IL-21 by SLE T cells or human Th17 cells. ROCK activity in peripheral blood mononuclear cells (PBMCs) from 29 patients with SLE, 31 patients with RA and 28 healthy controls was determined by ELISA. SLE T cells or in vitro-differentiated Th17 cells were treated with Y27632 (a pan-ROCK inhibitor), KD025 (a selective ROCK2 inhibitor) or simvastatin (which inhibits RhoA, a major ROCK activator). ROCK activity and IL-17 and IL-21 production were assessed. The transcriptional profile altered by ROCK inhibitors was evaluated by NanoString technology. ROCK activity levels were significantly higher in patients with SLE and RA than healthy controls. Th17 cells exhibited high ROCK activity that was inhibited by Y27632, KD025 or simvastatin; each also decreased IL-17 and IL-21 production by purified SLE T cells or Th17 cells. Immune profiling revealed both overlapping and distinct effects of the different ROCK inhibitors. ROCK activity is elevated in PBMCs from patients with SLE and RA. Production of IL-17 and IL-21 by SLE T cells or Th17 cells can furthermore be inhibited by targeting the RhoA-ROCK pathway via both non-selective and selective approaches. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Knockdown of RhoA expression alters ovarian cancer biological behavior in vitro and in nude mice.

    PubMed

    Wang, Xiaoxia; Jiang, Wenyan; Kang, Jiali; Liu, Qicai; Nie, Miaoling

    2015-08-01

    RhoA regulates cell proliferation, migration, angiogenesis and gene expression. Altered RhoA activity contributes to cancer progression. The present study investigated the effects of RhoA knockdown on the regulation of ovarian cancer biological behavior in vitro and in nude mice. The expression of RhoA was knocked down using a lentivirus carrying RhoA short hairpin RNA (shRNA) in ovarian cancer cells and was confirmed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The altered ovarian cancer biological behaviors were assayed by cell viability, terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL), migration, invasion, and nude mice tumorigenicity assays, while the altered gene expression was detected by RT-qPCR and western blot analysis. The results showed that lentivirus-carrying RhoA shRNA significantly suppressed RhoA expression in ovarian cancer cells, which suppressed tumor cell viability, migration, invasion and adhesion in vitro. RhoA silencing also inhibited the tumorigenicity of ovarian cancer cells in nude mice, which was characterized by the suppression of tumor xenograft formation and growth and induction of tumor cell apoptosis. The results of the present study demonstrated that knockdown of RhoA expression had a significant antitumor effect on ovarian cancer cells in vitro and in nude mice, suggesting that RhoA may be a target for the development of a novel therapeutic strategy in the control of ovarian cancer.

  16. Further exploration of MRI techniques for liver T1rho quantification.

    PubMed

    Zhao, Feng; Yuan, Jing; Deng, Min; Lu, Pu-Xuan; Ahuja, Anil T; Wang, Yi-Xiang J

    2013-12-01

    With biliary duct ligation and CCl4 induced rat liver fibrosis models, recent studies showed that MR T1rho imaging is able to detect liver fibrosis, and the degree of fibrosis is correlated with the degree of elevation of the T1rho measurements, suggesting liver T1rho quantification may play an important role for liver fibrosis early detection and grading. It has also been reported it is feasible to obtain consistent liver T1rho measurement for human subjects at 3 Tesla (3 T), and preliminary clinical data suggest liver T1rho is increased in patients with cirrhosis. In these previous studies, T1rho imaging was used with the rotary-echo spin-lock pulse for T1rho preparation, and number of signal averaging (NSA) was 2. Due to the presence of inhomogeneous B0 field, artifacts may occur in the acquired T1rho-weighted images. The method described by Dixon et al. (Magn Reson Med 1996;36:90-4), which is a hard RF pulse with 135° flip angle and same RF phase as the spin-locking RF pulse is inserted right before and after the spin-locking RF pulse, has been proposed to reduce sensitivity to B0 field inhomogeneity in T1rho imaging. In this study, we compared the images scanned by rotary-echo spin-lock pulse method (sequence 1) and the pulse modified according to Dixon method (sequence 2). When the artifacts occurred in T1rho images, we repeated the same scan until satisfactory. We accepted images if artifact in liver was less than 10% of liver area by visual estimation. When NSA =2, the breath-holding duration for data acquisition of one slice scanning was 8 sec due to a delay time of 6,000 ms for magnetization restoration. If NSA =1, the duration was shortened to be 2 sec. In previous studies, manual region of interest (ROI) analysis of T1rho map was used. In this current study, histogram analysis was also applied to evaluate liver T1rho value on T1rho maps. MRI data acquisition was performed on a 3 T clinical scanner. There were 29 subjects with 61 examinations obtained

  17. Toxoplasma gondii infection inhibits Th17-mediated spontaneous development of arthritis in interleukin-1 receptor antagonist-deficient mice.

    PubMed

    Washino, Takuya; Moroda, Masataka; Iwakura, Yoichiro; Aosai, Fumie

    2012-04-01

    Interleukin 1 receptor antagonist (IL-1Ra)-deficient BALB/c mice develop spontaneous arthritis resembling human rheumatoid arthritis. We herein report that infection with Toxoplasma gondii, an intracellular protozoan, is capable of ameliorating the spontaneous development of arthritis in IL-1Ra-deficient mice. The onset of arthritis development was delayed and the severity score of arthritis was significantly suppressed in T. gondii-infected mice. Expression of IL-12p40 mRNA from CD11c(+) cells of mesenteric lymph nodes (mLN) and spleen markedly increased at 1 week after peroral infection. While CD11c(+) cells also produced IL-10, IL-1β, and IL-6, CD4(+) T cells from T. gondii-infected mice expressed significantly high levels of T-bet and gamma interferon (IFN-γ) mRNA in both mLN and spleen. Levels of GATA-3/IL-4 mRNA or RORγt/IL-17 mRNA decreased in the infected mice, indicating Th1 cell polarization and the reduction of Th2 and Th17 cell polarization. The severity of arthritis was related to Th1 cell polarization accompanied by Th17 cell reduction, demonstrating the protective role of the T. gondii-derived Th1 response against Th17 cell-mediated arthritis in IL-1Ra-deficient mice.

  18. RhoA/Rho Kinase Mediates Neuronal Death Through Regulating cPLA2 Activation.

    PubMed

    Wu, Xiangbing; Walker, Chandler L; Lu, Qingbo; Wu, Wei; Eddelman, Daniel B; Parish, Jonathan M; Xu, Xiao-Ming

    2017-11-01

    Activation of RhoA/Rho kinase leads to growth cone collapse and neurite retraction. Although RhoA/Rho kinase inhibition has been shown to improve axon regeneration, remyelination and functional recovery, its role in neuronal cell death remains unclear. To determine whether RhoA/Rho kinase played a role in neuronal death after injury, we investigated the relationship between RhoA/Rho kinase and cytosolic phospholipase A 2 (cPLA 2 ), a lipase that mediates inflammation and cell death, using an in vitro neuronal death model and an in vivo contusive spinal cord injury model performed at the 10th thoracic (T10) vertebral level. We found that co-administration of TNF-α and glutamate induced spinal neuron death, and activation of RhoA, Rho kinase and cPLA 2 . Inhibition of RhoA, Rho kinase and cPLA 2 significantly reduced TNF-α/glutamate-induced cell death by 33, 52 and 43 %, respectively (p < 0.001). Inhibition of RhoA and Rho kinase also significantly downregulated cPLA 2 activation by 66 and 60 %, respectively (p < 0.01). Furthermore, inhibition of RhoA and Rho kinase reduced the release of arachidonic acid, a downstream substrate of cPLA 2 . The immunofluorescence staining showed that ROCK 1 or ROCK 2 , two isoforms of Rho kinase, was co-localized with cPLA 2 in neuronal cytoplasm. Interestingly, co-immunoprecipitation (Co-IP) assay showed that ROCK 1 or ROCK 2 bonded directly with cPLA 2 and phospho-cPLA 2 . When the Rho kinase inhibitor Y27632 was applied in mice with T10 contusion injury, it significantly decreased cPLA 2 activation and expression and reduced injury-induced apoptosis at and close to the lesion site. Taken together, our results reveal a novel mechanism of RhoA/Rho kinase-mediated neuronal death through regulating cPLA 2 activation.

  19. The Aryl Hydrocarbon Receptor: Differential Contribution to T Helper 17 and T Cytotoxic 17 Cell Development

    PubMed Central

    Hayes, Mark D.; Ovcinnikovs, Vitalijs; Smith, Andrew G.; Kimber, Ian; Dearman, Rebecca J.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) has been shown to be required for optimal Thelper (Th) 17 cell activation. Th17 cells provide immunity against extracellular pathogens and are implicated in autoimmune diseases. Herein, the role of the AhR in cytokine production by Th17, and by the analogous population of T cytotoxic (Tc)17 cells, has been examined. Lymph node Tc (CD8+) and Th (CD4+) cells were isolated by negative selection from naive AhR+/− and AhR−/− mice and polarised to Tc1/Th1 or Tc17/Th17 phenotypes with appropriate cytokines. Cell differentiation was assessed as a function of mRNA and protein (ELISA and flow cytometry) expression for interferon (IFN)-γ and for key Th17 cytokines. In AhR+/− mice, Th17 cells displayed an exclusive IL-17 profile, which was markedly inhibited by a selective AhR antagonist to levels observed in AhR knockout mice. Addition of the natural AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ) markedly enhanced Th17 cell activity in the heterozygotes. In contrast, Tc17 cells polarised into 3 distinct subsets: producing either IL-17 or IFN-γ alone, or both cytokines. Blocking AhR was also detrimental to Tc17 development, with reduced responses recorded in AhR−/− mice and antagonist-mediated reduction of IL-17 expression in the heterozygotes. However, Tc17 cells were largely refractory to exogenous FICZ, presumably because Tc17 cells express baseline AhR mRNA, but unlike Th17 cells, there is no marked up-regulation during polarisation. Thus, Th17 cell development is more dependent upon AhR activation than is Tc17 cell development, suggesting that endogenous AhR ligands play a much greater role in driving Th17 cell responses. PMID:25203682

  20. Rho-Kinase Inhibition During Early Cardiac Development Causes Arrhythmogenic Right Ventricular Cardiomyopathy in Mice.

    PubMed

    Ellawindy, Alia; Satoh, Kimio; Sunamura, Shinichiro; Kikuchi, Nobuhiro; Suzuki, Kota; Minami, Tatsuro; Ikeda, Shohei; Tanaka, Shinichi; Shimizu, Toru; Enkhjargal, Budbazar; Miyata, Satoshi; Taguchi, Yuhto; Handoh, Tetsuya; Kobayashi, Kenta; Kobayashi, Kazuto; Nakayama, Keiko; Miura, Masahito; Shimokawa, Hiroaki

    2015-10-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by fibrofatty changes of the right ventricle, ventricular arrhythmias, and sudden death. Though ARVC is currently regarded as a disease of the desmosome, desmosomal gene mutations have been identified only in half of ARVC patients, suggesting the involvement of other associated mechanisms. Rho-kinase signaling is involved in the regulation of intracellular transport and organizes cytoskeletal filaments, which supports desmosomal protein complex at the myocardial cell-cell junctions. Here, we explored whether inhibition of Rho-kinase signaling is involved in the pathogenesis of ARVC. Using 2 novel mouse models with SM22α- or αMHC-restricted overexpression of dominant-negative Rho-kinase, we show that mice with Rho-kinase inhibition in the developing heart (SM22α-restricted) spontaneously develop cardiac dilatation and dysfunction, myocardial fibrofatty changes, and ventricular arrhythmias, resulting in premature sudden death, phenotypes fulfilling the criteria of ARVC in humans. Rho-kinase inhibition in the developing heart results in the development of ARVC phenotypes in dominant-negative Rho-kinase mice through 3 mechanisms: (1) reduction of cardiac cell proliferation and ventricular wall thickness, (2) stimulation of the expression of the proadipogenic noncanonical Wnt ligand, Wnt5b, and the major adipogenic transcription factor, PPARγ (peroxisome proliferator activated receptor-γ), and inhibition of Wnt/β-catenin signaling, and (3) development of desmosomal abnormalities. These mechanisms lead to the development of cardiac dilatation and dysfunction, myocardial fibrofatty changes, and ventricular arrhythmias, ultimately resulting in sudden premature death in this ARVC mouse model. This study demonstrates a novel crucial role of Rho-kinase inhibition during cardiac development in the pathogenesis of ARVC in mice. © 2015 American Heart Association, Inc.

  1. RhoA-Mediated Functions in C3H10T1/2 Osteoprogenitors Are Substrate Topography Dependent.

    PubMed

    Ogino, Yoichiro; Liang, Ruiwei; Mendonça, Daniela B S; Mendonça, Gustavo; Nagasawa, Masako; Koyano, Kiyoshi; Cooper, Lyndon F

    2016-03-01

    Surface topography broadly influences cellular responses. Adherent cell activities are regulated, in part, by RhoA, a member of the Rho-family of GTPases. In this study, we evaluated the influence of surface topography on RhoA activity and associated cellular functions. The murine mesenchymal stem cell line C3H10T1/2 cells (osteoprogenitor cells) were cultured on titanium substrates with smooth topography (S), microtopography (M), and nanotopography (N) to evaluate the effect of surface topography on RhoA-mediated functions (cell spreading, adhesion, migration, and osteogenic differentiation). The influence of RhoA activity in the context of surface topography was also elucidated using RhoA pharmacologic inhibitor. Following adhesion, M and N adherent cells developed multiple projections, while S adherent cells had flattened and widespread morphology. RhoA inhibitor induced remarkable longer and thinner cytoplasmic projections on all surfaces. Cell adhesion and osteogenic differentiation was topography dependent with S < M and N surfaces. RhoA inhibition increased adhesion on S and M surfaces, but not N surfaces. Cell migration in a wound healing assay was greater on S versus M versus N surfaces and RhoA inhibitor increased S adherent cell migration, but not N adherent cell migration. RhoA inhibitor enhanced osteogenic differentiation in S adherent cells, but not M or N adherent cells. RhoA activity was surface topography roughness dependent (S < M, N). RhoA activity and -mediated functions are influenced by surface topography. Smooth surface adherent cells appear highly sensitive to RhoA function, while nano-scale topography adherent cell may utilize alternative cellular signaling pathway(s) to influence adherent cellular functions regardless of RhoA activity. © 2015 Wiley Periodicals, Inc.

  2. Inflammatory Th17 cells promote depression-like behavior in mice

    PubMed Central

    Beurel, Eléonore; Harrington, Laurie E.; Jope, Richard S.

    2012-01-01

    Background Recognition of substantial immune-neural interactions is revising dogmas about their insular actions and revealing that immune-neural interactions can substantially impact CNS functions. The inflammatory cytokine interleukin-6 promotes susceptibility to depression and drives production of inflammatory T helper 17 (Th17) T cells, raising the hypothesis that in mouse models Th17 cells promote susceptibility to depression-like behaviors. Methods Behavioral characteristics were measured in male mice administered Th17 cells, CD4+ cells, or vehicle, and in RORγT+/GFP mice or male mice treated with RORγT inhibitor or anti-IL-17A antibodies. Results Mouse brain Th17 cells were elevated by learned helplessness and chronic restraint stress, two common depression-like models. Th17 cell administration promoted learned helplessness in 89% of mice in a paradigm where no vehicle-treated mice developed learned helplessness, and impaired novelty suppressed feeding and social interaction behaviors. Mice deficient in the RORγT transcription factor necessary for Th17 cell production exhibited resistance to learned helplessness, identifying modulation of RORγT as a potential intervention. Treatment with the RORγT inhibitor SR1001, or anti-IL-17A antibodies to abrogate Th17 cell function, reduced Th17-dependent learned helplessness. Conclusions These findings indicate that Th17 cells are increased in the brain during depression-like states, promote depression-like behaviors in mice, and specifically inhibiting the production or function of Th17 cells reduces vulnerability to depression-like behavior, suggesting antidepressant effects may be attained by targeting Th17 cells. PMID:23174342

  3. Dexamethasone disrupts cytoskeleton organization and migration of T47D Human breast cancer cells by modulating the AKT/mTOR/RhoA pathway.

    PubMed

    Meng, Xian-Guo; Yue, Shou-Wei

    2014-01-01

    Glucocorticoids are commonly co-administered with chemotherapy to prevent drug-induced allergic reactions, nausea, and vomiting, and have anti-tumor functions clinically; however, the distinct effects of GC on subtypes of tumor cells, especially in breast cancer cells, are still not well understood. In this study, we aimed to clarify the effect of GC on subtypes of T47D breast cancer cells by focusing on apoptosis, cell organization and migration, and underluing molecular mechanisms. The cell scratch test was performed to observe the cell migration rate in T47D cells treated with dexamethasone (Dex). Hoechst and MTT assays were conducted to detect cell survival and rhodamine-labeled phalloidin staining to observe cytoskeleton dynamics. Related factors in the AKT/mTOR pathway were determined by Western blotting. Dex treatment could effectively inhibit T47D breast cancer cell migration with disruption of the cytoskeletal dynamic organization. Moreover, the effect of Dex on cell migration and cytoskeleton may be mediated by AKT/ mTOR/RhoA pathway. Although Dex inhibited T47D cell migration, it alone may not induce cell apoptosis in T47D cells. Dex in T47D human breast cancer cells could effectively inhibit cell migration by disrupting the cytoskeletal dynamic organization, which may be mediated by the AKT/mTOR/RhoA pathway. Our work suggests that glucocorticoid/Dex clinical use may prove helpful for the treatment of breast cancer metastasis.

  4. T(reg) cells may regulate interlukin-17 production by modulating TH1 responses in 1,3-β-glucan-induced lung inflammation in mice.

    PubMed

    Chen, Ying; Liu, Fangwei; Weng, Dong; Song, Laiyu; Li, Cuiying; Tang, Wen; Yu, Ye; Dai, Wujing; Chen, Jie

    2013-01-01

    1,3-β-glucan is considered a fungal biomarker and exposure to this agent can induce lung inflammation. Complement activation plays an important role in early immune responses to β-glucan. Previous studies showed that T-regulatory cells (Tregs) regulated 1,3-β-glucan-induced lung inflammation by modulating the maintenance of immune homeostasis in the lung. Both interleukin (IL)-17 and TH17 cells play pivotal roles in inflammation associated with lung disease and share reciprocal developmental pathways with Tregs. However, the effect of Tregs on IL-17 and TH17 responses in 1,3-β-glucan-induced lung inflammation remains unclear. In this study, mice were exposed to 1,3-β-glucan by intratracheal instillation. To investigate the effects of Tregs on IL-17 and TH17 cells in the induced lung inflammation, a Treg-depleted mice model was generated by administration of anti-CD25 mAb. The results indicated that Treg-depleted mice showed more severe pathological inflammatory changes in lung tissues. Tregs depletion reduced IL-17 expression in these tissues, and increased those of TH1 cytokines. The expression of IL-17 increased at the early phase of the inflammation response. There were no significant effects of the Tregs on expression of RORγt and IL-6 or the amount of CD4(+)IL-17(+) cells in the lungs. When taken together, the late phase of the 1,3-β-glucan-induced inflammatory response in the mice was primarily mediated by TH1 cytokines rather than IL-17. In contrast, the early phase of the inflammatory response might be mediated in part by IL-17 along with activated complement. Tregs might be required for IL-17 expression during the late phase inflammatory response in mice. The increased IL-17 mRNA observed during the 1,3-β-glucan induced inflammatory response were attributed to cells other than TH17 cells.

  5. Comparison of T2, T1rho, and diffusion metrics in assessment of liver fibrosis in rats.

    PubMed

    Zhang, Hui; Yang, Qihua; Yu, Taihui; Chen, Xiaodong; Huang, Jingwen; Tan, Cui; Liang, Biling; Guo, Hua

    2017-03-01

    To evaluate the value of T 2 , T 1 rho, and diffusion metrics in assessment of liver fibrosis in rats. Liver fibrosis in a rat model (n = 72) was induced by injection of carbon tetrachloride (CCl 4 ) at 3T. T 2 , T 1 rho, and diffusion parameters (apparent diffusion coefficient (ADC), D true ) via spin echo (SE) diffusion-weighted imaging (DWI) and stimulated echo acquisition mode (STEAM) DWI with three diffusion times (DT: 80, 106, 186 msec) were obtained in surviving rats with hepatic fibrosis (n = 52) and controls (n = 8). Liver fibrosis stage (F0-F6) was identified based on pathological results using the traditional liver fibrosis staging method for rodents. Nonparametric statistical methods and receiver operating characteristic (ROC) curve analysis were employed to determine the diagnostic accuracy. Mean T 2 , T 1 rho, ADC, and D true with DT = 186 msec correlated with the severity of fibrosis with r = 0.73, 0.83, -0.83, and -0.85 (all P < 0.001), respectively. The average areas under the ROC curve at different stages for T 1 rho and diffusion parameters (DT = 186 msec) were larger than those of T 2 and SE DWI (0.92, 0.92, and 0.92 vs. 0.86, 0.82, and 0.83). The corresponding average sensitivity and specificity for T 1 rho and diffusion parameters with a long DT were larger (89.35 and 88.90, 88.36 and 89.97, 90.16 and 87.13) than T 2 and SE DWI (90.28 and 79.93, 85.30 and 77.64, 78.21 and 82.41). The performances of T 1 rho and D true (DT = 186 msec) were comparable (average AUC: 0.92 and 0.92). Among the evaluated sequences, T 1 rho and STEAM DWI with a long DT may serve as superior imaging biomarkers for assessing liver fibrosis and monitoring disease severity. 1 J. Magn. Reson. Imaging 2017;45:741-750. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Three-dimensional T1rho-weighted MRI at 1.5 Tesla.

    PubMed

    Borthakur, Arijitt; Wheaton, Andrew; Charagundla, Sridhar R; Shapiro, Erik M; Regatte, Ravinder R; Akella, Sarma V S; Kneeland, J Bruce; Reddy, Ravinder

    2003-06-01

    To design and implement a magnetic resonance imaging (MRI) pulse sequence capable of performing three-dimensional T(1rho)-weighted MRI on a 1.5-T clinical scanner, and determine the optimal sequence parameters, both theoretically and experimentally, so that the energy deposition by the radiofrequency pulses in the sequence, measured as the specific absorption rate (SAR), does not exceed safety guidelines for imaging human subjects. A three-pulse cluster was pre-encoded to a three-dimensional gradient-echo imaging sequence to create a three-dimensional, T(1rho)-weighted MRI pulse sequence. Imaging experiments were performed on a GE clinical scanner with a custom-built knee-coil. We validated the performance of this sequence by imaging articular cartilage of a bovine patella and comparing T(1rho) values measured by this sequence to those obtained with a previously tested two-dimensional imaging sequence. Using a previously developed model for SAR calculation, the imaging parameters were adjusted such that the energy deposition by the radiofrequency pulses in the sequence did not exceed safety guidelines for imaging human subjects. The actual temperature increase due to the sequence was measured in a phantom by a MRI-based temperature mapping technique. Following these experiments, the performance of this sequence was demonstrated in vivo by obtaining T(1rho)-weighted images of the knee joint of a healthy individual. Calculated T(1rho) of articular cartilage in the specimen was similar for both and three-dimensional and two-dimensional methods (84 +/- 2 msec and 80 +/- 3 msec, respectively). The temperature increase in the phantom resulting from the sequence was 0.015 degrees C, which is well below the established safety guidelines. Images of the human knee joint in vivo demonstrate a clear delineation of cartilage from surrounding tissues. We developed and implemented a three-dimensional T(1rho)-weighted pulse sequence on a 1.5-T clinical scanner. Copyright 2003

  7. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage.

    PubMed

    Borthakur, Arijitt; Mellon, Eric; Niyogi, Sampreet; Witschey, Walter; Kneeland, J Bruce; Reddy, Ravinder

    2006-11-01

    In this article, both sodium magnetic resonance (MR) and T1rho relaxation mapping aimed at measuring molecular changes in cartilage for the diagnostic imaging of osteoarthritis are reviewed. First, an introduction to structure of cartilage, its degeneration in osteoarthritis (OA) and an outline of diagnostic imaging methods in quantifying molecular changes and early diagnostic aspects of cartilage degeneration are described. The sodium MRI section begins with a brief overview of the theory of sodium NMR of biological tissues and is followed by a section on multiple quantum filters that can be used to quantify both bi-exponential relaxation and residual quadrupolar interaction. Specifically, (i) the rationale behind the use of sodium MRI in quantifying proteoglycan (PG) changes, (ii) validation studies using biochemical assays, (iii) studies on human OA specimens, (iv) results on animal models and (v) clinical imaging protocols are reviewed. Results demonstrating the feasibility of quantifying PG in OA patients and comparison with that in healthy subjects are also presented. The section concludes with the discussion of advantages and potential issues with sodium MRI and the impact of new technological advancements (e.g. ultra-high field scanners and parallel imaging methods). In the theory section on T1rho, a brief description of (i) principles of measuring T1rho relaxation, (ii) pulse sequences for computing T1rho relaxation maps, (iii) issues regarding radio frequency power deposition, (iv) mechanisms that contribute to T1rho in biological tissues and (v) effects of exchange and dipolar interaction on T1rho dispersion are discussed. Correlation of T1rho relaxation rate with macromolecular content and biomechanical properties in cartilage specimens subjected to trypsin and cytokine-induced glycosaminoglycan depletion and validation against biochemical assay and histopathology are presented. Experimental T1rho data from osteoarthritic specimens, animal models

  8. Crucial role of rho-kinase in pressure overload-induced right ventricular hypertrophy and dysfunction in mice.

    PubMed

    Ikeda, Shohei; Satoh, Kimio; Kikuchi, Nobuhiro; Miyata, Satoshi; Suzuki, Kota; Omura, Junichi; Shimizu, Toru; Kobayashi, Kenta; Kobayashi, Kazuto; Fukumoto, Yoshihiro; Sakata, Yasuhiko; Shimokawa, Hiroaki

    2014-06-01

    Right ventricular (RV) failure is the leading cause of death in various cardiopulmonary diseases, including pulmonary hypertension. It is generally considered that the RV is vulnerable to pressure overload as compared with the left ventricle (LV). However, as compared with LV failure, the molecular mechanisms of RV failure are poorly understood, and hence therapeutic targets of the disorder remain to be elucidated. Thus, we aimed to identify molecular therapeutic targets for RV failure in a mouse model of pressure overload. To induce pressure overload to respective ventricles, we performed pulmonary artery constriction or transverse aortic constriction in mice. We first performed microarray analysis and found that the molecules related to RhoA/Rho-kinase and integrin pathways were significantly upregulated in the RV with pulmonary artery constriction compared with the LV with transverse aortic constriction. Then, we examined the responses of both ventricles to chronic pressure overload in vivo. We demonstrated that compared with transverse aortic constriction, pulmonary artery constriction caused greater extents of mortality, Rho-kinase expression (especially ROCK2 isoform), and oxidative stress in pressure-overloaded RV, reflecting the weakness of the RV in response to pressure overload. Furthermore, mice with myocardial-specific overexpression of dominant-negative Rho-kinase showed resistance to pressure overload-induced hypertrophy and dysfunction associated with reduced oxidative stress. Finally, dominant-negative Rho-kinase mice showed a significantly improved long-term survival in both pulmonary artery constriction and transverse aortic constriction as compared with littermate controls. These results indicate that the Rho-kinase pathway plays a crucial role in RV hypertrophy and dysfunction, suggesting that the pathway is a novel therapeutic target of RV failure in humans. © 2014 American Heart Association, Inc.

  9. RORγt antagonist suppresses M3 muscarinic acetylcholine receptor-induced Sjögren's syndrome-like sialadenitis.

    PubMed

    Tahara, M; Tsuboi, H; Segawa, S; Asashima, H; Iizuka-Koga, M; Hirota, T; Takahashi, H; Kondo, Y; Matsui, M; Matsumoto, I; Sumida, T

    2017-02-01

    We showed recently that M3 muscarinic acetylcholine receptor (M3R)-reactive CD3 + T cells play a pathogenic role in the development of murine autoimmune sialadenitis (MIS), which mimics Sjögren's syndrome (SS). The aim of this study was to determine the effectiveness and mechanism of action of retinoic acid-related orphan receptor-gamma t (RORγt) antagonist (A213) in MIS. Splenocytes from M3R knockout (M3R -/- ) mice immunized with murine M3R peptide mixture were inoculated into recombination-activating gene 1 knockout (Rag-1 -/- ) mice (M3R -/- →Rag-1 -/- ) with MIS. Immunized M3R -/- mice (pretransfer treatment) and M3R -/- →Rag-1 -/- mice (post-transfer treatment) were treated with A213 every 3 days. Salivary volume, severity of sialadenitis and cytokine production from M3R peptide-stimulated splenocytes and lymph node cells were examined. Effects of A213 on cytokine production were analysed by enzyme-linked immunosorbent assay (ELISA) and on T helper type 1 (Th1), Th17 and Th2 differentiation from CD4 + T cells by flow cytometry. Pretransfer A213 treatment maintained salivary volume, improved MIS and reduced interferon (IFN)-γ and interleukin (IL)-17 production significantly compared with phosphate-buffered saline (PBS) (P < 0·05). These suppressive effects involved CD4 + T cells rather than CD11c + cells. Post-transfer treatment with A213 increased salivary volume (P < 0·05), suppressed MIS (P < 0·005) and reduced IFN-γ and IL-17 production (P < 0·05). In vitro, A213 suppressed IFN-γ and IL-17 production from M3R-stimulated splenocytes and CD4 + T cells of immunized M3R -/- mice (P < 0·05). In contrast with M3R specific responses, A213 suppressed only IL-17 production from Th17 differentiated CD4 + T cells without any effect on Th1 and Th2 differentiation in vitro. Our findings suggested that RORγt antagonism is potentially suitable treatment strategy for SS-like sialadenitis through suppression of IL-17 and IFN-γ production

  10. Quantitative 17O imaging towards oxygen consumption study in tumor bearing mice at 7 T.

    PubMed

    Narazaki, Michiko; Kanazawa, Yoko; Koike, Sachiko; Ando, Koichi; Ikehira, Hiroo

    2013-06-01

    (17)O magnetic resonance imaging (MRI) using a conventional pulse sequence was explored as a method of quantitative imaging towards regional oxygen consumption rate measurement for tumor evaluation in mice. At 7 T, fast imaging with steady state (FISP) was the best among gradient echo, fast spin echo and FISP for the purpose. The distribution of natural abundance H2(17)O in mice was visualized under spatial resolution of 2.5 × 2.5mm(2) by FISP in 10 min. The signal intensity by FISP showed a linear relationship with (17)O quantity both in phantom and mice. Following the injection of 5% (17)O enriched saline, (17)O re-distribution was monitored in temporal resolution down to 5 sec with an image quality sufficient to distinguish each organ. The image of labeled water produced from inhaled (17)O2 gas was also obtained. The present method provides quantitative (17)O images under sufficient temporal and spatial resolution for the evaluation of oxygen consumption rate in each organ. Experiments using various model compounds of R-OH type clarified that the signal contribution of body constituents other than water in the present in vivo(17)O FISP image was negligible. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Deletion of RhoA in Progesterone Receptor-Expressing Cells Leads to Luteal Insufficiency and Infertility in Female Mice.

    PubMed

    El Zowalaty, Ahmed E; Li, Rong; Zheng, Yi; Lydon, John P; DeMayo, Francesco J; Ye, Xiaoqin

    2017-07-01

    Ras homolog gene family, member A (RhoA) is widely expressed throughout the female reproductive system. To assess its role in progesterone receptor-expressing cells, we generated RhoA conditional knockout mice RhoAd/d (RhoAf/f-Pgr-Cre+/-). RhoAd/d female mice had comparable mating activity, serum luteinizing hormone, prolactin, and estradiol levels and ovulation with control but were infertile with progesterone insufficiency, indicating impaired steroidogenesis in RhoAd/d corpus luteum (CL). RhoA was highly expressed in wild-type luteal cells and conditionally deleted in RhoAd/d CL. Gestation day 3.5 (D3.5) RhoAd/d ovaries had reduced numbers of CL, less defined corpus luteal cord formation, and disorganized CL collagen IV staining. RhoAd/d CL had lipid droplet and free cholesterol accumulation, indicating the availability of cholesterol for steroidogenesis, but disorganized β-actin and vimentin staining, indicating disrupted cytoskeleton integrity. Cytoskeleton is important for cytoplasmic cholesterol movement to mitochondria and for regulating mitochondria. Dramatically reduced expression of mitochondrial markers heat shock protein 60 (HSP60), voltage-dependent anion channel, and StAR was detected in RhoAd/d CL. StAR carries out the rate-limiting step of steroidogenesis. StAR messenger RNA expression was reduced in RU486-treated D3.5 wild-type CL and tended to be induced in progesterone-treated D3.5 RhoAd/d CL, with parallel changes of HSP60 expression. These data demonstrated the in vivo function of RhoA in CL luteal cell cytoskeleton integrity, cholesterol transport, StAR expression, and progesterone synthesis, and a positive feedback on StAR expression in CL by progesterone signaling. These findings provide insights into mechanisms of progesterone insufficiency.

  12. HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via geranylgeranylation and RhoA activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Haidari, Amr A.; Syk, Ingvar; Thorlacius, Henrik, E-mail: henrik.thorlacius@med.lu.se

    2014-03-28

    Highlights: • Simvastatin blocked CCL17-induced and CCR4-dependent RhoA activation in HT29 cells. • CCL17/CCR4-mediated migration of colon cancer cells was antagonised by simvastatin. • Cell migration recovered by adding Mevalonate and geranylgeranyl pyrophosphate. • Targeting HMG-CoA reductase might be useful to inhibit colon cancer metastasis. - Abstract: Background: Simvastatin is widely used to lower cholesterol levels in patients with cardiovascular diseases, although accumulating evidence suggests that statins, such as simvastatin, also exert numerous anti-tumoral effects. Aim: The aim of this study was to examine the effect of simvastatin on colon cancer cell migration. Methods: Migration assays were performed to evaluatemore » CCL17-induced colon cancer cell (HT-29) chemotaxis. In vitro tumor growth and apoptosis were assessed using a proliferation assay and annexin V assay, respectively. Active RhoA protein levels in CCL17-stimulated colon cancer cells were quantified using a G-LISA assay. Results: We found that simvastatin dose-dependently decreased CCL17-induced colon cancer cell migration. Simvastatin had no effect on colon cancer cell proliferation or apoptosis. Inhibition of beta chemokine receptor 4, CCR4, reduced CCL17-evoked activation of RhoA in colon cancer cells. Moreover, administration of mevalonate reversed the inhibitory effect of simvastatin on CCL17-induced colon cancer cell migration. Interestingly, co-incubation with geranylgeranyl pyrophosphate (GGPP) antagonized the inhibitory impact of simvastatin on colon cancer cell migration triggered by CCL17. Moreover, we observed that simvastatin decreased CCL17-induced activation of RhoA in colon cancer cells. Administration of mevalonate and GGPP reversed the inhibitory effect of simvastatin on CCL17-provoked RhoA activation in colon cancer cells. Conclusions: Taken together, our findings show for the first time that HMG-CoA reductase regulates CCL17-induced colon cancer cell

  13. The Dynamics of Treg/Th17 and the Imbalance of Treg/Th17 in Clonorchis sinensis-Infected Mice

    PubMed Central

    Hua, Hui; Li, Bo; Zhang, Bo; Yu, Qian; Li, Xiang-Yang; Liu, Ying; Pan, Wei; Liu, Xiang-Ye; Tang, Ren-Xian; Zheng, Kui-Yang

    2015-01-01

    Clonorchiasis, caused by the liver fluke Clonorchis sinensis, is a chronic parasitic infection regulated by T cell subsets. An imbalance of CD4+CD25+ Foxp3+regulatory T (Treg) and interleukin (IL)-17-secreting T cells (Th17) may control inflammation and play an important role in the pathogenesis of immune evasion. In the present study, we assessed the dynamics of Treg/Th17 and determined whether the Treg/Th17 ratio is altered in C. sinensis-infected mice. The results showed that the percentages of splenic Treg cells in CD4+ T cells were suppressed on day 14 post-infection (PI) but increased on day 56 PI, while Th17 cells were increased on day 56 PI compared with normal control (NC) mice. The Treg/Th17 ratio steadily increased from day 28 to day 56 PI. The hepatic levels of their specific transcription factors (Foxp3 for Treg and RORγt for Th17) were increased in C. sinensis-infected mice from day 14 to 56 PI, and significantly higher than those in NC mice. Meanwhile, serum levels of IL-2 and IL-17 were profoundly increased in C. sinensis-infected mice throughout the experiment; while the concentrations of IL-6 and transforming growth factor β1 (TGF-β1) peaked on day 14 PI, but then decreased on day 28 and 56 PI. Our results provide the first evidence of an increased Treg/Th17 ratio in C. sinensis-infected mice, suggesting that a Treg/Th17 imbalance may play a role in disease outcomes of clonorchiasis. PMID:26599407

  14. IL-17 Induction by ArtinM is Due to Stimulation of IL-23 and IL-1 Release and/or Interaction with CD3 in CD4+ T Cells.

    PubMed

    da Silva, Thiago Aparecido; Mariano, Vania Sammartino; Sardinha-Silva, Aline; de Souza, Maria Aparecida; Mineo, Tiago Wilson Patriarca; Roque-Barreira, Maria Cristina

    2016-01-01

    ArtinM is a D-mannose-binding lectin extracted from the seeds of Artocarpus heterophyllus that interacts with TLR2 N-glycans and activates antigen-presenting cells (APCs), as manifested by IL-12 production. In vivo ArtinM administration induces Th1 immunity and confers protection against infection with several intracellular pathogens. In the murine model of Candida albicans infection, it was verified that, in addition to Th1, ArtinM induces Th17 immunity manifested by high IL-17 levels in the treated animals. Herein, we investigated the mechanisms accounting for the ArtinM-induced IL-17 production. We found that ArtinM stimulates the IL-17 production by spleen cells in BALB/c or C57BL/6 mice, a response that was significantly reduced in the absence of IL-23, MyD88, or IL-1R. Furthermore, we showed that ArtinM directly induced the IL-23 mRNA expression and the IL-1 production by macrophages. Consistently, in cell suspensions depleted of macrophages, the IL-17 production stimulated by ArtinM was reduced by 53% and the exogenous IL-23 acted synergistically with ArtinM in promoting IL-17 production by spleen cell suspensions. We verified that the absence of IL-23, IL-1R, or MyD88 inhibited, but did not block, the IL-17 production by ArtinM-stimulated spleen cells. Therefore, we investigated whether ArtinM exerts a direct effect on CD4+ T cells in promoting IL-17 production. Indeed, spleen cell suspensions depleted of CD4+ T cells responded to ArtinM with very low levels of IL-17 release. Likewise, isolated CD4+ T cells under ArtinM stimulus augmented the expression of TGF-β mRNA and released high levels of IL-17. Considering the observed synergism between IL-23 and ArtinM, we used cells from IL-23 KO mice to assess the direct effect of lectin on CD4+ T cells. We verified that ArtinM increased the IL-17 production significantly, a response that was inhibited when the CD4+ T cells were pre-incubated with anti-CD3 antibody. In conclusion, ArtinM stimulates the production

  15. IL-17 Induction by ArtinM is Due to Stimulation of IL-23 and IL-1 Release and/or Interaction with CD3 in CD4+ T Cells

    PubMed Central

    da Silva, Thiago Aparecido; Mariano, Vania Sammartino; Sardinha-Silva, Aline; de Souza, Maria Aparecida; Mineo, Tiago Wilson Patriarca; Roque-Barreira, Maria Cristina

    2016-01-01

    ArtinM is a D-mannose-binding lectin extracted from the seeds of Artocarpus heterophyllus that interacts with TLR2 N-glycans and activates antigen-presenting cells (APCs), as manifested by IL-12 production. In vivo ArtinM administration induces Th1 immunity and confers protection against infection with several intracellular pathogens. In the murine model of Candida albicans infection, it was verified that, in addition to Th1, ArtinM induces Th17 immunity manifested by high IL-17 levels in the treated animals. Herein, we investigated the mechanisms accounting for the ArtinM-induced IL-17 production. We found that ArtinM stimulates the IL-17 production by spleen cells in BALB/c or C57BL/6 mice, a response that was significantly reduced in the absence of IL-23, MyD88, or IL-1R. Furthermore, we showed that ArtinM directly induced the IL-23 mRNA expression and the IL-1 production by macrophages. Consistently, in cell suspensions depleted of macrophages, the IL-17 production stimulated by ArtinM was reduced by 53% and the exogenous IL-23 acted synergistically with ArtinM in promoting IL-17 production by spleen cell suspensions. We verified that the absence of IL-23, IL-1R, or MyD88 inhibited, but did not block, the IL-17 production by ArtinM-stimulated spleen cells. Therefore, we investigated whether ArtinM exerts a direct effect on CD4+ T cells in promoting IL-17 production. Indeed, spleen cell suspensions depleted of CD4+ T cells responded to ArtinM with very low levels of IL-17 release. Likewise, isolated CD4+ T cells under ArtinM stimulus augmented the expression of TGF-β mRNA and released high levels of IL-17. Considering the observed synergism between IL-23 and ArtinM, we used cells from IL-23 KO mice to assess the direct effect of lectin on CD4+ T cells. We verified that ArtinM increased the IL-17 production significantly, a response that was inhibited when the CD4+ T cells were pre-incubated with anti-CD3 antibody. In conclusion, ArtinM stimulates the production

  16. A Conserved RhoGAP Limits M-phase Contractility and Coordinates with Microtubule Asters to Restrict Active RhoA to the Cell Equator During Cytokinesis

    PubMed Central

    Zanin, Esther; Desai, Arshad; Poser, Ina; Toyoda, Yusuke; Andree, Cordula; Moebius, Claudia; Bickle, Marc; Conradt, Barbara; Piekny, Alisa; Oegema, Karen

    2014-01-01

    SUMMARY During animal cell cytokinesis, the spindle directs contractile ring assembly by activating RhoA in a narrow equatorial zone. Rapid GTPase activating protein (GAP)-mediated inactivation (RhoA flux) is proposed to limit RhoA zone dimensions. Testing the significance of RhoA flux has been hampered by the fact that the GAP targeting RhoA is not known. Here, we identify M-phase GAP (MP-GAP) as the primary GAP targeting RhoA during mitosis/cytokinesis. MP-GAP inhibition caused excessive RhoA activation in M-phase leading to the uncontrolled formation of large cortical protrusions and late cytokinesis failure. RhoA zone width was broadened by attenuation of the centrosomal asters but was not affected by MP-GAP inhibition alone. Simultaneous aster attenuation and MP-GAP inhibition led to RhoA accumulation around the entire cell periphery. These results identify the major GAP restraining RhoA during cell division and delineate the relative contributions of RhoA flux and centrosomal asters in controlling RhoA zone dimensions. PMID:24012485

  17. AKAP13 Rho-GEF and PKD-Binding Domain Deficient Mice Develop Normally but Have an Abnormal Response to β-Adrenergic-Induced Cardiac Hypertrophy

    PubMed Central

    Spindler, Matthew J.; Burmeister, Brian T.; Huang, Yu; Hsiao, Edward C.; Salomonis, Nathan; Scott, Mark J.; Srivastava, Deepak; Carnegie, Graeme K.; Conklin, Bruce R.

    2013-01-01

    Background A-kinase anchoring proteins (AKAPs) are scaffolding molecules that coordinate and integrate G-protein signaling events to regulate development, physiology, and disease. One family member, AKAP13, encodes for multiple protein isoforms that contain binding sites for protein kinase A (PKA) and D (PKD) and an active Rho-guanine nucleotide exchange factor (Rho-GEF) domain. In mice, AKAP13 is required for development as null embryos die by embryonic day 10.5 with cardiovascular phenotypes. Additionally, the AKAP13 Rho-GEF and PKD-binding domains mediate cardiomyocyte hypertrophy in cell culture. However, the requirements for the Rho-GEF and PKD-binding domains during development and cardiac hypertrophy are unknown. Methodology/Principal Findings To determine if these AKAP13 protein domains are required for development, we used gene-trap events to create mutant mice that lacked the Rho-GEF and/or the protein kinase D-binding domains. Surprisingly, heterozygous matings produced mutant mice at Mendelian ratios that had normal viability and fertility. The adult mutant mice also had normal cardiac structure and electrocardiograms. To determine the role of these domains during β-adrenergic-induced cardiac hypertrophy, we stressed the mice with isoproterenol. We found that heart size was increased similarly in mice lacking the Rho-GEF and PKD-binding domains and wild-type controls. However, the mutant hearts had abnormal cardiac contractility as measured by fractional shortening and ejection fraction. Conclusions These results indicate that the Rho-GEF and PKD-binding domains of AKAP13 are not required for mouse development, normal cardiac architecture, or β-adrenergic-induced cardiac hypertrophic remodeling. However, these domains regulate aspects of β-adrenergic-induced cardiac hypertrophy. PMID:23658642

  18. Role of Rho-mediated ROCK-Semaphorin3A signaling pathway in the pathogenesis of Parkinson's disease in a mouse model.

    PubMed

    Qi, Li; Tang, Yong-Gang; Wang, Lin; He, Wei; Pan, Hong-Hua; Nie, Rong-Rong; Can, Yan

    2016-11-15

    The present study aims to elucidate the role of Rho-mediated ROCK-Semaphorin3A signaling pathway in the pathogenesis of Parkinson's disease (PD) in a mouse model. One-hundred twelve eight-week male C57BL/6 mice were selected. The mouse model of PD was constructed by intraperitoneal injection of MPTP. All mice were divided into four groups (28 mice in each group): Blank group, Model group, Rho knockout (Rho+/-) group and ROCK knockout (ROCK+/-) group. Changes of behavior of the mice were studied through automatic moving test and rotarod test. Immunohistochemistry (IHC) was used to detect the expressions of TH, CD11b and GFAP. High performance liquid chromatograph (HPLC) was performed for detection of dopamine and its metabolic product. The mRNA and protein expressions of Rho, ROCK, Sema3A, PlexinA and NRP-1 were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Rho and ROCK knockout improved the damage caused by MPTP on the behavior of mice and protected dopaminergic neurons from injury, along with the increases of dopamine and its metabolic product. The mRNA and protein expressions of Rho, ROCK, Sema3A, PlexinA and NRP-1 were increased in PD mice in the Model group compared with those in the Blank group. Compared to the Model group, the mRNA and protein expressions of Rho, ROCK, Sema3A, PlexinA and NRP-1 were reduced in the Rho+/- and ROCK+/- groups. These findings indicate that Rho and ROCK knockout may improve the behavior of mice and prevent MPTP-induced dopaminergic neurons damage by regulating Sema3A, PlexinA and NRP-1 in a mouse model of PD. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Murine Cytomegalovirus Downregulates Interleukin-17 in Mice with Retrovirus-induced Immunosuppression that are Susceptible to Experimental Cytomegalovirus Retinitis

    PubMed Central

    Blalock, Emily L.; Chien, Hsin; Dix, Richard D.

    2013-01-01

    Interleukin-17 (IL-17), a proinflammatory cytokine produced by CD4+ Th17 cells, has been associated with the pathogenesis of several autoimmune diseases including uveitis. The fate of IL-17 during HIV/AIDS, however, remains unclear, and a possible role for IL-17 in the pathogenesis of AIDS-related diseases has not been investigated. Toward these ends, we performed studies using a well-established animal model of experimental murine cytomegalovirus (MCMV) retinitis that develops in C57/BL6 mice with retrovirus-induced immunosuppression (MAIDS). After establishing baseline levels for IL-17 production in whole splenic cells of healthy mice, we observed a significant increase in IL-17 mRNA levels in whole splenic cells of mice with MAIDS of 4-weeks (MAIDS-4), 8-weeks (MAIDS-8), and 10-weeks (MAIDS-10) duration. In contrast, enriched populations of splenic CD4+ T cells, splenic macrophages, and splenic neutrophils exhibited a reproducible decrease in levels of IL-17 mRNA during MAIDS progression. To explore a possible role for IL-17 during the pathogenesis of MAIDS-related MCMV retinitis, we first demonstrated constitutive IL-17 expression in retinal photoreceptor cells of uninfected eyes of healthy mice. Subsequent studies, however, revealed a significant decrease in intraocular levels of IL-17 mRNA and protein in MCMV-infected eyes of MAIDS-10 mice during retinitis development. That MCMV infection might cause a remarkable downregulation of IL-17 production was supported further by the finding that systemic MCMV infection of healthy, MAIDS-4, or MAIDS-10 mice also significantly decreased IL-17 mRNA production by whole splenic CD4+ T cells. Based on additional studies using IL-10 −/− mice infected systemically with MCMV and IL-10 −/− mice with MAIDS infected intraocularly with MCMV, we propose that MCMV infection downregulates IL-17 production via stimulation of suppressor of cytokine signaling (SOCS)-3 and interleukin-10. PMID:23415673

  20. Ultra-low field T1 vs. T1rho at 3T and 7T: study of rotationally immobilized protein gels and animal brain tissues

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Inglis, Ben; Barr, Ian; Clarke, John

    2015-03-01

    Clinical magnetic resonance imaging (MRI) machines operating in static fields of typically 1.5 T or 3 T can capture information on slow molecular dynamics utilizing the so-called T1rho technique. This technique, in which a radiofrequency (RF) spin-lock field is applied with microtesla amplitude, has been used, for example, to determine the onset time of stroke in studies on rats. The long RF pulse, however, may exceed the specific absorption rate (SAR) limit, putting subjects at risk. Ultra-low-field (ULF) MRI, based on Superconducting Quantum Interference Devices (SQUIDs), directly detects proton signals at a static magnetic field of typically 50-250 μT. Using our ULF MRI system with adjustable static field of typically 55 to 240 μT, we systematically measured the T1 and T2 dispersion profiles of rotationally immobilized protein gels (bovine serum albumin), ex vivo pig brains, and ex vivo rat brains with induced stroke. Comparing the ULF results with T1rho dispersion obtained at 3 T and 7 T, we find that the degree of protein immobilization determines the frequency-dependence of both T1 and T1rho. Furthermore, T1rho and ULF T1 show similar results for stroke, suggesting that ULF MRI may be used to image traumatic brain injury with negligible SAR. This research was supported by the Henry H. Wheeler, Jr. Brain Imaging Center and the Donaldson Trust.

  1. IL-1 receptor antagonist-deficient mice develop autoimmune arthritis due to intrinsic activation of IL-17-producing CCR2+Vγ6+γδ T cells

    PubMed Central

    Akitsu, Aoi; Ishigame, Harumichi; Kakuta, Shigeru; Chung, Soo-hyun; Ikeda, Satoshi; Shimizu, Kenji; Kubo, Sachiko; Liu, Yang; Umemura, Masayuki; Matsuzaki, Goro; Yoshikai, Yasunobu; Saijo, Shinobu; Iwakura, Yoichiro

    2015-01-01

    Interleukin-17 (IL-17)-producing γδ T (γδ17) cells have been implicated in inflammatory diseases, but the underlying pathogenic mechanisms remain unclear. Here, we show that both CD4+ and γδ17 cells are required for the development of autoimmune arthritis in IL-1 receptor antagonist (IL-1Ra)-deficient mice. Specifically, activated CD4+ T cells direct γδ T-cell infiltration by inducing CCL2 expression in joints. Furthermore, IL-17 reporter mice reveal that the Vγ6+ subset of CCR2+ γδ T cells preferentially produces IL-17 in inflamed joints. Importantly, because IL-1Ra normally suppresses IL-1R expression on γδ T cells, IL-1Ra-deficient mice exhibit elevated IL-1R expression on Vγ6+ cells, which play a critical role in inducing them to produce IL-17. Our findings demonstrate a pathogenic mechanism in which adaptive and innate immunity induce an autoimmune disease in a coordinated manner. PMID:26108163

  2. miR-155 deficiency protects mice from experimental colitis by reducing T helper type 1/type 17 responses

    PubMed Central

    Singh, Udai P; Murphy, Angela E; Enos, Reilly T; Shamran, Haidar A; Singh, Narendra P; Guan, Honbing; Hegde, Venkatesh L; Fan, Daping; Price, Robert L; Taub, Dennis D; Mishra, Manoj K; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2014-01-01

    Inflammatory bowel disease (IBD), a chronic intestinal inflammatory condition that affects millions of people worldwide, results in high morbidity and exorbitant health-care costs. The critical features of both innate and adaptive immunity are to control inflammation and dysfunction in this equilibrium is believed to be the reason for the development of IBD. miR-155, a microRNA, is up-regulated in various inflammatory disease states, including IBD, and is a positive regulator of T-cell responses. To date, no reports have defined a function for miR-155 with regard to cellular responses in IBD. Using an acute experimental colitis model, we found that miR-155−/− mice, as compared to wild-type control mice, have decreased clinical scores, a reversal of colitis-associated pathogenesis, and reduced systemic and mucosal inflammatory cytokines. The increased frequency of CD4+ lymphocytes in the spleen and lamina propria with dextran sodium sulphate induction was decreased in miR-155−/− mice. Similarly, miR-155 deficiency abrogated the increased numbers of interferon-γ expressing CD4+ T cells typically observed in wild-type mice in this model. The frequency of systemic and mucosal T helper type 17-, CCR9-expressing CD4+ T cells was also reduced in miR-155−/− mice compared with control mice. These findings strongly support a role for miR-155 in facilitating pro-inflammatory cellular responses in this model of IBD. Loss of miR-155 also results in decreases in T helper type 1/type 17, CD11b+, and CD11c+ cells, which correlated with reduced clinical scores and severity of disease. miR-155 may serve as a potential therapeutic target for the treatment of IBD. PMID:24891206

  3. Secreted protein acidic and rich in cysteine functions in colitis via IL17A regulation in mucosal CD4+ T cells.

    PubMed

    Tanaka, Makoto; Takagi, Tomohisa; Naito, Yuji; Uchiyama, Kazuhiko; Hotta, Yuma; Toyokawa, Yuki; Ushiroda, Chihiro; Hirai, Yasuko; Aoi, Wataru; Higashimura, Yasuki; Mizushima, Katsura; Okayama, Tetsuya; Katada, Kazuhiro; Kamada, Kazuhiro; Ishikawa, Takeshi; Handa, Osamu; Itoh, Yoshito

    2018-03-01

    Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycol that regulates cell proliferation, tissue repair, and tumorigenesis. Despite evidence linking SPARC to inflammation, the mechanisms are unclear. Accordingly, the role of SPARC in intestinal inflammation was investigated. Colitis was induced in wild-type (WT) and SPARC knockout (KO) mice using trinitrobenzene sulfonic acid (TNBS). Colons were assessed for damage; leukocyte infiltration; Tnf, Ifng, Il17a, and Il10 mRNA expression; and histology. Cytokine profiling of colonic lamina propria mononuclear cells (LPMCs) was performed by flow cytometry. Naïve CD4 + T cells were isolated from WT and SPARC KO mouse spleens, and the effect of SPARC on Th17 cell differentiation was examined. Recombination activating gene 1 knockout (RAG1 KO) mice reconstituted with T cells from either WT or SPARC KO mice were investigated. Trinitrobenzene sulfonic acid exposure significantly reduced bodyweight and increased mucosal inflammation, leukocyte infiltration, and Il17a mRNA expression in WT relative to SPARC KO mice. The percentage of IL17A-producing CD4 + T cells among LPMCs from KO mice was lower than that in WT mice when both groups were exposed to TNBS. Th17 cell differentiation was suppressed in cells from SPARC KO mice. In the T cell transfer colitis model, RAG1 KO mice receiving T cells from WT mice were more severely affected than those reconstituted with cells from SPARC KO mice. Secreted protein acidic and rich in cysteine accelerates colonic mucosal inflammation via modulation of IL17A-producing CD4 + T cells. SPARC is a potential therapeutic target for conditions involving intestinal inflammation. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  4. Rho A and the Rho kinase pathway regulate fibroblast contraction: Enhanced contraction in constitutively active Rho A fibroblast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobe, Koji, E-mail: kojinobe@pharm.showa-u.ac.jp; Nobe, Hiromi; Department of Physical Therapy, Bunkyo-Gakuin University

    Research highlights: {yields} Mechanisms of fibroblast cell contraction in collagen matrix. {yields} Assessed an isometric force development using 3D-reconstituted-fibroblast fiber. {yields} Constitutively active Rho A induced the over-contraction of fibroblast cells. {yields} Rho A and Rho kinase pathway has a central role in fibroblast cell contraction. -- Abstract: Fibroblast cells play a central role in the proliferation phase of wound healing processes, contributing to force development. The intracellular signaling pathways regulating this non-muscle contraction are only partially understood. To study the relations between Rho A and contractile responses, constitutively active Rho A (CA-Rho A) fibroblast cells were reconstituted into fibersmore » and the effects of calf serum (CS) on isometric force were studied. CS-induced force in CA-Rho A fibroblast fibers was twice as large as that in wild type (NIH 3T3) fibroblast fibers. During this response, the translocation of Rho A from the cytosol to the membrane was detected by Rho A activity assays and Western blot analysis. Pre-treatment with a Rho specific inhibitor (C3-exoenzyme) suppressed translocation as well as contraction. These results indicate that Rho A activation is essential for fibroblast contraction. The Rho kinase inhibitor ( (Y27632)) inhibited both NIH 3T3 and CA-Rho A fibroblast fiber contractions. Activation of Rho A is thus directly coupled with Rho kinase activity. We conclude that the translocation of Rho A from the cytosol to the membrane and the Rho kinase pathway can regulate wound healing processes mediated by fibroblast contraction.« less

  5. Innate cellular sources of interleukin-17A regulate macrophage accumulation in cigarette- smoke-induced lung inflammation in mice.

    PubMed

    Bozinovski, Steven; Seow, Huei Jiunn; Chan, Sheau Pyng Jamie; Anthony, Desiree; McQualter, Jonathan; Hansen, Michelle; Jenkins, Brendan J; Anderson, Gary P; Vlahos, Ross

    2015-11-01

    Cigarette smoke (CS) is the major cause of chronic obstructive pulmonary disease (COPD). Interleukin-17A (IL-17A) is a pivotal cytokine that regulates lung immunity and inflammation. The aim of the present study was to investigate how IL-17A regulates CS-induced lung inflammation in vivo. IL-17A knockout (KO) mice and neutralization of IL-17A in wild-type (WT) mice reduced macrophage and neutrophil recruitment and chemokine (C-C motif) ligand 2 (CCL2), CCL3 and matrix metalloproteinase (MMP)-12 mRNA expression in response to acute CS exposure. IL-17A expression was increased in non-obese diabetic (NOD) severe combined immunodeficiency SCID) mice with non-functional B- and T-cells over a 4-week CS exposure period, where macrophages accumulated to the same extent as in WT mice. Gene expression analysis by QPCR (quantitative real-time PCR) of isolated immune cell subsets detected increased levels of IL-17A transcript in macrophages, neutrophils and NK/NKT cells in the lungs of CS-exposed mice. In order to further explore the relative contribution of innate immune cellular sources, intracellular IL-17A staining was performed. In the present study, we demonstrate that CS exposure primes natural killer (NK), natural killer T (NKT) and γδ T-cells to produce more IL-17A protein and CS alone increased the frequency of IL17+ γδ T-cells in the lung, whereas IL-17A protein was not detected in macrophages and neutrophils. Our data suggest that activation of innate cellular sources of IL-17A is an essential mediator of macrophage accumulation in CS-exposed lungs. Targeting non-conventional T-cell sources of IL-17A may offer an alternative strategy to reduce pathogenic macrophages in COPD. © 2015 Authors; published by Portland Press Limited.

  6. Innate cellular sources of interleukin-17A regulate macrophage accumulation in cigarette- smoke-induced lung inflammation in mice

    PubMed Central

    Bozinovski, Steven; Seow, Huei Jiunn; Chan, Sheau Pyng Jamie; Anthony, Desiree; McQualter, Jonathan; Hansen, Michelle; Jenkins, Brendan J.; Anderson, Gary P.

    2015-01-01

    Cigarette smoke (CS) is the major cause of chronic obstructive pulmonary disease (COPD). Interleukin-17A (IL-17A) is a pivotal cytokine that regulates lung immunity and inflammation. The aim of the present study was to investigate how IL-17A regulates CS-induced lung inflammation in vivo. IL-17A knockout (KO) mice and neutralization of IL-17A in wild-type (WT) mice reduced macrophage and neutrophil recruitment and chemokine (C-C motif) ligand 2 (CCL2), CCL3 and matrix metalloproteinase (MMP)-12 mRNA expression in response to acute CS exposure. IL-17A expression was increased in non-obese diabetic (NOD) severe combined immunodeficiency SCID) mice with non-functional B- and T-cells over a 4-week CS exposure period, where macrophages accumulated to the same extent as in WT mice. Gene expression analysis by QPCR (quantitative real-time PCR) of isolated immune cell subsets detected increased levels of IL-17A transcript in macrophages, neutrophils and NK/NKT cells in the lungs of CS-exposed mice. In order to further explore the relative contribution of innate immune cellular sources, intracellular IL-17A staining was performed. In the present study, we demonstrate that CS exposure primes natural killer (NK), natural killer T (NKT) and γδ T-cells to produce more IL-17A protein and CS alone increased the frequency of IL17+ γδ T-cells in the lung, whereas IL-17A protein was not detected in macrophages and neutrophils. Our data suggest that activation of innate cellular sources of IL-17A is an essential mediator of macrophage accumulation in CS-exposed lungs. Targeting non-conventional T-cell sources of IL-17A may offer an alternative strategy to reduce pathogenic macrophages in COPD. PMID:26201093

  7. Biochemical magnetic resonance imaging of knee articular cartilage: T1rho and T2 mapping as cartilage degeneration biomarkers.

    PubMed

    Le, Jenna; Peng, Qi; Sperling, Karen

    2016-11-01

    Osteoarthritis (OA) is a disease whose hallmark is the degeneration of articular cartilage. There is a worsening epidemic of OA in the United States today, with considerable economic costs. In order to develop more effective treatments for OA, noninvasive biomarkers that permit early diagnosis and treatment monitoring are necessary. T1rho and T2 mapping are two magnetic resonance imaging techniques that have shown great promise as noninvasive biomarkers of cartilage degeneration. Each of the two techniques is endowed with advantages and disadvantages: T1rho can discern earlier biochemical changes of OA than T2 mapping, while T2 mapping is more widely available and can be incorporated into existing imaging protocols in a more time-efficient manner than T1rho. Both techniques have been applied in numerous instances to study how cartilage is affected by OA risk factors, such as age and exercise. Additionally, both techniques have been repeatedly applied to the study of posttraumatic OA in patients with torn anterior cruciate ligaments. © 2016 New York Academy of Sciences.

  8. Small GTPase Tc10 and its homologue RhoT induce N-WASP-mediated long process formation and neurite outgrowth.

    PubMed

    Abe, Tomoyuki; Kato, Masayoshi; Miki, Hiroaki; Takenawa, Tadaomi; Endo, Takeshi

    2003-01-01

    Rho family small GTPases regulate multiple cellular functions through reorganization of the actin cytoskeleton. Among them, Cdc42 and Tc10 induce filopodia or peripheral processes in cultured cells. We have identified a member of the family, designated as RhoT, which is closely related to Tc10. Tc10 was highly expressed in muscular tissues and brain and remarkably induced during differentiation of C2 skeletal muscle cells and neuronal differentiation of PC12 and N1E-115 cells. On the other hand, RhoT was predominantly expressed in heart and uterus and induced during neuronal differentiation of N1E-115 cells. Tc10 exogenously expressed in fibroblasts generated actin-filament-containing peripheral processes longer than the Cdc42-formed filopodia, whereas RhoT produced much longer and thicker processes containing actin filaments. Furthermore, both Tc10 and RhoT induced neurite outgrowth in PC12 and N1E-115 cells, but Cdc42 did not do this by itself. Tc10 and RhoT as well as Cdc42 bound to the N-terminal CRIB-motif-containing portion of N-WASP and activated N-WASP to induce Arp2/3-complex-mediated actin polymerization. The formation of peripheral processes and neurites by Tc10 and RhoT was prevented by the coexpression of dominant-negative mutants of N-WASP. Thus, N-WASP is essential for the process formation and neurite outgrowth induced by Tc10 and RhoT. Neuronal differentiation of PC12 and N1E-115 cells induced by dibutyryl cyclic AMP and by serum starvation, respectively, was prevented by dominant-negative Cdc42, Tc10 and RhoT. Taken together, all these Rho family proteins are required for neuronal differentiation, but they exert their functions differentially in process formation and neurite extension. Consequently, N-WASP activated by these small GTPases mediates neuronal differentiation in addition to its recently identified role in glucose uptake.

  9. Interleukin-17A Promotes CD8+ T Cell Cytotoxicity To Facilitate West Nile Virus Clearance.

    PubMed

    Acharya, Dhiraj; Wang, Penghua; Paul, Amber M; Dai, Jianfeng; Gate, David; Lowery, Jordan E; Stokic, Dobrivoje S; Leis, A Arturo; Flavell, Richard A; Town, Terrence; Fikrig, Erol; Bai, Fengwei

    2017-01-01

    CD8 + T cells are crucial components of immunity and play a vital role in recovery from West Nile virus (WNV) infection. Here, we identify a previously unrecognized function of interleukin-17A (IL-17A) in inducing cytotoxic-mediator gene expression and promoting CD8 + T cell cytotoxicity against WNV infection in mice. We find that IL-17A-deficient (Il17a -/- ) mice are more susceptible to WNV infection and develop a higher viral burden than wild-type (WT) mice. Interestingly, the CD8 + T cells isolated from Il17a -/- mice are less cytotoxic and express lower levels of cytotoxic-mediator genes, which can be restored by supplying recombinant IL-17A in vitro and in vivo Importantly, treatment of WNV-infected mice with recombinant IL-17A, as late as day 6 postinfection, significantly reduces the viral burden and increases survival, suggesting a therapeutic potential for IL-17A. In conclusion, we report a novel function of IL-17A in promoting CD8 + T cell cytotoxicity, which may have broad implications in other microbial infections and cancers. Interleukin-17A (IL-17A) and CD8 + T cells regulate diverse immune functions in microbial infections, malignancies, and autoimmune diseases. IL-17A is a proinflammatory cytokine produced by diverse cell types, while CD8 + T cells (known as cytotoxic T cells) are major cells that provide immunity against intracellular pathogens. Previous studies have demonstrated a crucial role of CD8 + T cells in recovery from West Nile virus (WNV) infection. However, the role of IL-17A during WNV infection remains unclear. Here, we demonstrate that IL-17A protects mice from lethal WNV infection by promoting CD8 + T cell-mediated clearance of WNV. In addition, treatment of WNV-infected mice with recombinant IL-17A reduces the viral burden and increases survival of mice, suggesting a potential therapeutic. This novel IL-17A-CD8 + T cell axis may also have broad implications for immunity to other microbial infections and cancers, where CD8 + T cell

  10. Th1 and Th17 Immunocompetence in Humanized NOD/SCID/γC-KO mice

    PubMed Central

    Rajesh, Deepika; Zhou, Ying; Jankowska-Gan, Ewa; Ronneburg, Drew Allan; Dart, Melanie M; Torrealba, Jose; Burlingham, William J

    2010-01-01

    We evaluated the immunocompetence of human T cells in humanized NOD-scid IL2r-γ-null (Hu—NSG) mice bearing a human thymic organoid, after multilinegage reconstitution with isogeneic human leukocytes. Delayed type hypersensitivity (DTH) response was assessed by a direct footpad challenge of the immunized hu-NSG host, or by transfer of splenocytes from immunized hu-NSG, along with antigen, into footpads of CB17 SCID mice [trans-vivo (tv) DTH]. Both methods revealed cellular immunity to tetanus toxoid (TT) or collagen type V (ColV). Immunohistochemical analysis of the swollen footpads revealed infiltration of human CD45+ cells, including CD3+ T cells, CD68+ macrophages and murine Ly6G+ neutrophils. We observed a significant correlation between % circulating human CD4+ cells and the direct DTH swelling response to TT. The tvDTH response to TT was inhibited by anti-IFNγ, while the tvDTH response to collagen V was inhibited by anti IL-17 antibody, mimicking the cytokine bias of adult human T cells to these antigens. Hu-NSG mice were also capable of mounting a B cell response (primarily IgM) to TT antigen. The activation of either Th1- or Th17 - dependent cellular immune response supports the utility of Hu-NSG mice as a surrogate model of allograft rejection and autoimmunity. PMID:20298731

  11. Expression of miR-17-92 enhances anti-tumor activity of T-cells transduced with the anti-EGFRvIII chimeric antigen receptor in mice bearing human GBM xenografts

    PubMed Central

    2013-01-01

    Background Expression of miR-17-92 enhances T-cell survival and interferon (IFN)-γ production. We previously reported that miR-17-92 is down-regulated in T-cells derived from glioblastoma (GBM) patients. We hypothesized that transgene-derived co-expression of miR17-92 and chimeric antigen receptor (CAR) in T-cells would improve the efficacy of adoptive transfer therapy against GBM. Methods We constructed novel lentiviral vectors for miR-17-92 (FG12-EF1a-miR-17/92) and a CAR consisting of an epidermal growth factor receptor variant III (EGFRvIII)-specific, single-chain variable fragment (scFv) coupled to the T-cell receptor CD3ζ chain signaling module and co-stimulatory motifs of CD137 (4-1BB) and CD28 in tandem (pELNS-3C10-CAR). Human T-cells were transduced with these lentiviral vectors, and their anti-tumor effects were evaluated both in vitro and in vivo. Results CAR-transduced T-cells (CAR-T-cells) exhibited potent, antigen-specific, cytotoxic activity against U87 GBM cells that stably express EGFRvIII (U87-EGFRvIII) and, when co-transduced with miR-17-92, exhibited improved survival in the presence of temozolomide (TMZ) compared with CAR-T-cells without miR-17-92 co-transduction. In mice bearing intracranial U87-EGFRvIII xenografts, CAR-T-cells with or without transgene-derived miR-17-92 expression demonstrated similar levels of therapeutic effect without demonstrating any uncontrolled growth of CAR-T-cells. However, when these mice were re-challenged with U87-EGFRvIII cells in their brains, mice receiving co-transduced CAR-T-cells exhibited improved protection compared with mice treated with CAR-T-cells without miR-17-92 co-transduction. Conclusion These results warrant the development of novel CAR-T-cell strategies that incorporate miR-17-92 to improve therapeutic potency, especially in patients with GBM. PMID:24829757

  12. Expression of miR-17-92 enhances anti-tumor activity of T-cells transduced with the anti-EGFRvIII chimeric antigen receptor in mice bearing human GBM xenografts.

    PubMed

    Ohno, Masasuke; Ohkuri, Takayuki; Kosaka, Akemi; Tanahashi, Kuniaki; June, Carl H; Natsume, Atsushi; Okada, Hideho

    2013-01-01

    Expression of miR-17-92 enhances T-cell survival and interferon (IFN)-γ production. We previously reported that miR-17-92 is down-regulated in T-cells derived from glioblastoma (GBM) patients. We hypothesized that transgene-derived co-expression of miR17-92 and chimeric antigen receptor (CAR) in T-cells would improve the efficacy of adoptive transfer therapy against GBM. We constructed novel lentiviral vectors for miR-17-92 (FG12-EF1a-miR-17/92) and a CAR consisting of an epidermal growth factor receptor variant III (EGFRvIII)-specific, single-chain variable fragment (scFv) coupled to the T-cell receptor CD3ζ chain signaling module and co-stimulatory motifs of CD137 (4-1BB) and CD28 in tandem (pELNS-3C10-CAR). Human T-cells were transduced with these lentiviral vectors, and their anti-tumor effects were evaluated both in vitro and in vivo. CAR-transduced T-cells (CAR-T-cells) exhibited potent, antigen-specific, cytotoxic activity against U87 GBM cells that stably express EGFRvIII (U87-EGFRvIII) and, when co-transduced with miR-17-92, exhibited improved survival in the presence of temozolomide (TMZ) compared with CAR-T-cells without miR-17-92 co-transduction. In mice bearing intracranial U87-EGFRvIII xenografts, CAR-T-cells with or without transgene-derived miR-17-92 expression demonstrated similar levels of therapeutic effect without demonstrating any uncontrolled growth of CAR-T-cells. However, when these mice were re-challenged with U87-EGFRvIII cells in their brains, mice receiving co-transduced CAR-T-cells exhibited improved protection compared with mice treated with CAR-T-cells without miR-17-92 co-transduction. These results warrant the development of novel CAR-T-cell strategies that incorporate miR-17-92 to improve therapeutic potency, especially in patients with GBM.

  13. CD4 T cells play important roles in maintaining IL-17-producing γδ T-cell subsets in naive animals.

    PubMed

    Do, Jeong-Su; Visperas, Anabelle; O'Brien, Rebecca L; Min, Booki

    2012-04-01

    A proportional balance between αβ and γδ T-cell subsets in the periphery is exceedingly well maintained by a homeostatic mechanism. However, a cellular mechanism underlying the regulation remains undefined. We recently reported that a subset of developing γδ T cells spontaneously acquires interleukin (IL)-17-producing capacity even within naive animals through a transforming growth factor (TGF)β1-dependent mechanism, thus considered 'innate' IL-17-producing cells. Here, we report that γδ T cells generated within αβ T cell (or CD4 T cell)-deficient environments displayed altered cytokine profiles; particularly, 'innate' IL-17 expression was significantly impaired compared with those in wild-type mice. Impaired IL-17 production in γδ T cells was directly related to CD4 T-cell deficiency, because depletion of CD4 T cells in wild-type mice diminished and adoptive CD4 T-cell transfer into T-cell receptor β-/- mice restored IL-17 expression in γδ T cells. CD4 T cell-mediated IL-17 expression required TGFβ1. Moreover, Th17 but not Th1 or Th2 effector CD4 T cells were highly efficient in enhancing γδ T-cell IL-17 expression. Taken together, our results highlight a novel CD4 T cell-dependent mechanism that shapes the generation of IL-17+ γδ T cells in naive settings.

  14. Microbiota-activated CD103+ DCs stemming from microbiota adaptation specifically drive γδT17 proliferation and activation.

    PubMed

    Fleming, Chris; Cai, Yihua; Sun, Xuan; Jala, Venkatakrishna R; Xue, Feng; Morrissey, Samantha; Wei, Yu-Ling; Chien, Yueh-Hsiu; Zhang, Huang-Ge; Haribabu, Bodduluri; Huang, Jian; Yan, Jun

    2017-04-24

    IL-17-producing γδT cells (γδT17) promote autoinflammatory diseases and cancers. Yet, γδT17 peripheral regulation has not been thoroughly explored especially in the context of microbiota-host interaction. The potent antigen-presenting CD103 + dendritic cell (DC) is a key immune player in close contact with both γδT17 cells and microbiota. This study presents a novel cellular network among microbiota, CD103 + DCs, and γδT17 cells. Immunophenotyping of IL-17r -/- mice and IL-17r -/- IRF8 -/- mice were performed by ex vivo immunostaining and flow cytometric analysis. We observed striking microbiome differences in the oral cavity and gut of IL-17r -/- mice by sequencing 16S rRNA gene (v1-v3 region) and analyzed using QIIME 1.9.0 software platform. Principal coordinate analysis of unweighted UniFrac distance matrix showed differential clustering for WT and IL-17r -/- mice. We found drastic homeostatic expansion of γδT17 in all major tissues, most prominently in cervical lymph nodes (cLNs) with monoclonal expansion of Vγ6 γδT17 in IL-17r -/- mice. Ki-67 staining and in vitro CFSE assays showed cellular proliferation due to cell-to-cell contact stimulation with microbiota-activated CD103 + DCs. A newly developed double knockout mice model for IL-17r and CD103 + DCs (IL-17r -/- IRF8 -/- ) showed a specific reduction in Vγ6 γδT17. Vγ6 γδT17 expansion is inhibited in germ-free mice and antibiotic-treated specific pathogen-free (SPF) mice. Microbiota transfer using cohousing of IL-17r -/- mice with wildtype mice induces γδT17 expansion in the wildtype mice with increased activated CD103 + DCs in cLNs. However, microbiota transfer using fecal transplant through oral gavage to bypass the oral cavity showed no difference in colon or systemic γδT17 expansion. These findings reveal for the first time that γδT17 cells are regulated by microbiota dysbiosis through cell-to-cell contact with activated CD103 + DCs leading to drastic systemic, monoclonal

  15. Rho kinase inhibition following traumatic brain injury in mice promotes functional improvement and acute neuron survival but has little effect on neurogenesis, glial responses or neuroinflammation.

    PubMed

    Bye, Nicole; Christie, Kimberly J; Turbic, Alisa; Basrai, Harleen S; Turnley, Ann M

    2016-05-01

    Inhibition of the Rho/Rho kinase pathway has been shown to be beneficial in a variety of neural injuries and diseases. In this manuscript we investigate the role of Rho kinase inhibition in recovery from traumatic brain injury using a controlled cortical impact model in mice. Mice subjected to a moderately severe TBI were treated for 1 or 4 weeks with the Rho kinase inhibitor Y27632, and functional outcomes and neuronal and glial cell responses were analysed at 1, 7 and 35 days post-injury. We hypothesised that Y27632-treated mice would show functional improvement, with augmented recruitment of neuroblasts from the SVZ and enhanced survival of newborn neurons in the pericontusional cortex, with protection against neuronal degeneration, neuroinflammation and modulation of astrocyte reactivity and blood-brain-barrier permeability. While Rho kinase inhibition enhanced recovery of motor function after trauma, there were no substantial increases in the recruitment of DCX(+) neuroblasts or the number of BrdU(+) or EdU(+) labelled newborn neurons in the pericontusional cortex of Y27632-treated mice. Inhibition of Rho kinase significantly reduced the number of degenerating cortical neurons at 1day post-injury compared to saline controls but had no longer term effect on neuronal degeneration, with only modest effects on astrocytic reactivity and macrophage/microglial responses. Overall, this study showed that Rho kinase contributes to acute neurodegenerative processes in the injured cortex but does not play a significant role in SVZ neural precursor cell-derived adult neurogenesis, glial responses or blood-brain barrier permeability following a moderately severe brain injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Topographical Variation of Human Femoral Articular Cartilage Thickness, T1rho and T2 Relaxation Times Is Related to Local Loading during Walking.

    PubMed

    Van Rossom, Sam; Wesseling, Mariska; Van Assche, Dieter; Jonkers, Ilse

    2018-01-01

    Objective Early detection of degenerative changes in the cartilage matrix composition is essential for evaluating early interventions that slow down osteoarthritis (OA) initiation. T1rho and T2 relaxation times were found to be effective for detecting early changes in proteoglycan and collagen content. To use these magnetic resonance imaging (MRI) methods, it is important to document the topographical variation in cartilage thickness, T1rho and T2 relaxation times in a healthy population. As OA is partially mechanically driven, the relation between these MRI-based parameters and localized mechanical loading during walking was investigated. Design MR images were acquired in 14 healthy adults and cartilage thickness and T1rho and T2 relaxation times were determined. Experimental gait data was collected and processed using musculoskeletal modeling to identify weight-bearing zones and estimate the contact force impulse during gait. Variation of the cartilage properties (i.e., thickness, T1rho, and T2) over the femoral cartilage was analyzed and compared between the weight-bearing and non-weight-bearing zone of the medial and lateral condyle as well as the trochlea. Results Medial condyle cartilage thickness was correlated to the contact force impulse ( r = 0.78). Lower T1rho, indicating increased proteoglycan content, was found in the medial weight-bearing zone. T2 was higher in all weight-bearing zones compared with the non-weight-bearing zones, indicating lower relative collagen content. Conclusions The current results suggest that medial condyle cartilage is adapted as a long-term protective response to localized loading during a frequently performed task and that the weight-bearing zone of the medial condyle has superior weight bearing capacities compared with the non-weight-bearing zones.

  17. Pulmonary inflammation induced by subacute ozone is augmented in adiponectin deficient mice: role of IL-17A

    PubMed Central

    Kasahara, David I.; Kim, Hye Y.; Williams, Alison S.; Verbout, Norah G.; Tran, Jennifer; Si, Huiqing; Wurmbrand, Allison P.; Jastrab, Jordan; Hug, Christopher; Umetsu, Dale T.; Shore, Stephanie A.

    2012-01-01

    Pulmonary responses to ozone, a common air pollutant, are augmented in obese individuals. Adiponectin, an adipose derived hormone that declines in obesity, has regulatory effects on the immune system. To determine the role of adiponectin in the pulmonary inflammation induced by extended (48–72 h) low dose (0.3 ppm) exposure to ozone, adiponectin deficient (Adipo−/−) and wildtype mice were exposed to ozone or to room air. In wildtype mice, ozone exposure increased total bronchoalveolar lavage (BAL) adiponectin. Ozone induced lung inflammation, including increases in BAL neutrophils, protein (an index of lung injury), IL-6, KC, LIX and G-CSF were augmented in Adipo−/− versus wildtype mice. Ozone also increased IL-17A mRNA expression to a greater extent in Adipo−/− versus wildtype mice. Moreover, compared to control antibody, anti-IL-17A antibody attenuated ozone-induced increases in BAL neutrophils and G-CSF in Adipo−/− but not in wildtype mice, suggesting that IL-17A, by promoting G-CSF release, contributed to augmented neutrophilia in Adipo−/− mice. Flow-cytometric analysis of lung cells revealed that the number of CD45+/F4/80+/IL-17A+ macrophages and γδ T cells expressing IL-17A increased after ozone exposure in wildtype mice, and further increased in Adipo−/− mice. The IL-17+ macrophages were CD11c− (interstitial macrophages), whereas CD11c+ macrophages (alveolar macrophages) did not express IL-17A. Taken together, the data are consistent with the hypothesis that adiponectin protects against neutrophil recruitment induced by extended, low dose ozone exposure by inhibiting the induction and/or recruitment of IL-17A in interstitial macrophages and/or γδ T cells. PMID:22474022

  18. Th17 polarized cells from nonobese diabetic mice following mycobacterial adjuvant immunotherapy delay type 1 diabetes.

    PubMed

    Nikoopour, Enayat; Schwartz, Jordan A; Huszarik, Katrina; Sandrock, Christian; Krougly, Olga; Lee-Chan, Edwin; Singh, Bhagirath

    2010-05-01

    IL-17-producing T cells are regarded as potential pathogenic T cells in the induction of autoimmune diseases. Previously, we have shown that injection of adjuvants containing Mycobacterium, such as CFA or bacillus Calmette-Guérin, can prevent type 1 diabetes in NOD mice. We injected NOD mice with mycobacterial products s.c. and analyzed the IL-17-producing cells from the draining lymph nodes and spleen by restimulating whole-cell populations or CD4(+) T cells in vitro with or without IL-17-polarizing cytokines. Mice receiving CFA had a concomitant rise in the level of IL-17, IL-22, IL-10, and IFN-gamma in the draining lymph node and spleen. Adoptive transfer of splenocytes from CFA-injected NOD mice polarized with TGF-beta plus IL-6 or IL-23 delayed the development of diabetes in recipient mice. IL-17-producing cells induced by CFA maintained their IL-17-producing ability in the recipient mice. Injection of CFA also changed the cytokine profile of cells in pancreatic tissue by increasing IL-17, IL-10, and IFN-gamma cytokine gene expression. We suggest that the rise in the level of IL-17 after adjuvant therapy in NOD mice has a protective effect on type 1 diabetes development.

  19. Renoprotective Effects of Atorvastatin in Diabetic Mice: Downregulation of RhoA and Upregulation of Akt/GSK3

    PubMed Central

    Bruder-Nascimento, Thiago; Callera, Glaucia; Montezano, Augusto Cesar; Antunes, Tayze T.; He, Ying; Cat, Aurelie Nguyen Dinh; Ferreira, Nathanne S.; Barreto, Pedro A.; Olivon, Vânia C.; Tostes, Rita C.; Touyz, Rhian M.

    2016-01-01

    Potential benefits of statins in the treatment of chronic kidney disease beyond lipid-lowering effects have been described. However, molecular mechanisms involved in renoprotective actions of statins have not been fully elucidated. We questioned whether statins influence development of diabetic nephropathy through reactive oxygen species, RhoA and Akt/GSK3 pathway, known to be important in renal pathology. Diabetic mice (db/db) and their control counterparts (db/+) were treated with atorvastatin (10 mg/Kg/day, p.o., for 2 weeks). Diabetes-associated renal injury was characterized by albuminuria (albumin:creatinine ratio, db/+: 3.2 ± 0.6 vs. db/db: 12.5 ± 3.1*; *P<0.05), increased glomerular/mesangial surface area, and kidney hypertrophy. Renal injury was attenuated in atorvastatin-treated db/db mice. Increased ROS generation in the renal cortex of db/db mice was also inhibited by atorvastatin. ERK1/2 phosphorylation was increased in the renal cortex of db/db mice. Increased renal expression of Nox4 and proliferating cell nuclear antigen, observed in db/db mice, were abrogated by statin treatment. Atorvastatin also upregulated Akt/GSK3β phosphorylation in the renal cortex of db/db mice. Our findings suggest that atorvastatin attenuates diabetes-associated renal injury by reducing ROS generation, RhoA activity and normalizing Akt/GSK3β signaling pathways. The present study provides some new insights into molecular mechanisms whereby statins may protect against renal injury in diabetes. PMID:27649495

  20. Deregulation of HEF1 Impairs M-Phase Progression by Disrupting the RhoA Activation Cycle

    PubMed Central

    Dadke, Disha; Jarnik, Michael; Pugacheva, Elena N.; Singh, Mahendra K.; Golemis, Erica A.

    2006-01-01

    The focal adhesion-associated signaling protein HEF1 undergoes a striking relocalization to the spindle at mitosis, but a function for HEF1 in mitotic signaling has not been demonstrated. We here report that overexpression of HEF1 leads to failure of cells to progress through cytokinesis, whereas depletion of HEF1 by small interfering RNA (siRNA) leads to defects earlier in M phase before cleavage furrow formation. These defects can be explained mechanistically by our determination that HEF1 regulates the activation cycle of RhoA. Inactivation of RhoA has long been known to be required for cytokinesis, whereas it has recently been determined that activation of RhoA at the entry to M phase is required for cellular rounding. We find that increased HEF1 sustains RhoA activation, whereas depleted HEF1 by siRNA reduces RhoA activation. Furthermore, we demonstrate that chemical inhibition of RhoA is sufficient to reverse HEF1-dependent cellular arrest at cytokinesis. Finally, we demonstrate that HEF1 associates with the RhoA-GTP exchange factor ECT2, an orthologue of the Drosophila cytokinetic regulator Pebble, providing a direct means for HEF1 control of RhoA. We conclude that HEF1 is a novel component of the cell division control machinery and that HEF1 activity impacts division as well as cell attachment signaling events. PMID:16394104

  1. RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes.

    PubMed

    Filina, Julia V; Gabdoulkhakova, Aida G; Safronova, Valentina G

    2014-10-01

    Polymorphonuclear neutrophils (PMNs) express the high and low affinity receptors to formylated peptides (mFPR1 and mFPR2 in mice, accordingly). RhoA/ROCK (Rho activated kinase) pathway is crucial for cell motility and oxidase activity regulated via FPRs. There are contradictory data on RhoA-mediated regulation of NADPH oxidase activity in phagocytes. We have shown divergent Rho GTPases signaling via mFPR1 and mFPR2 to NADPH oxidase in PMNs from inflammatory site. The present study was aimed to find out the role of RhoA/ROCK in the respiratory burst activated via mFPR1 and mFPR2 in the bone marrow PMNs. Different kinetics of RhoA activation were detected with 0.1μM fMLF and 1μM WKYMVM operating via mFPR1 and mFPR2, accordingly. RhoA was translocated in fMLF-activated cells towards the cell center and juxtamembrane space versus uniform allocation in the resting cells. Specific inhibition of RhoA by CT04, Rho inhibitor I, weakly depressed the respiratory burst induced via mFPR1, but significantly increased the one induced via mFPR2. Inhibition of ROCK, the main effector of RhoA, by Y27632 led to the same effect on the respiratory burst. Regulation of mFPR2-induced respiratory response by ROCK was impossible under the cytoskeleton disruption by cytochalasin D, whereas it persisted in the case of mFPR1 activation. Thus we suggest RhoA to be one of the regulatory and signal transduction components in the respiratory burst through FPRs in the mouse bone marrow PMNs. Both mFPR1 and mFPR2 binding with a ligand trigger the activation of RhoA. FPR1 signaling through RhoA/ROCK increases NADPH-oxidase activity. But in FPR2 action RhoA/ROCK together with cytoskeleton-linked systems down-regulates NADPH-oxidase. This mechanism could restrain the reactive oxygen species dependent damage of own tissues during the chemotaxis of PMNs and in the resting cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Ameloblasts require active RhoA to generate normal dental enamel.

    PubMed

    Xue, Hui; Li, Yong; Everett, Eric T; Ryan, Kathleen; Peng, Li; Porecha, Rakhee; Yan, Yan; Lucchese, Anna M; Kuehl, Melissa A; Pugach, Megan K; Bouchard, Jessica; Gibson, Carolyn W

    2013-08-01

    RhoA plays a fundamental role in regulation of the actin cytoskeleton, intercellular attachment, and cell proliferation. During amelogenesis, ameloblasts (which produce the enamel proteins) undergo dramatic cytoskeletal changes and the RhoA protein level is up-regulated. Transgenic mice were generated that express a dominant-negative RhoA transgene in ameloblasts using amelogenin gene-regulatory sequences. Transgenic and wild-type (WT) molar tooth germs were incubated with sodium fluoride (NaF) or sodium chloride (NaCl) in organ culture. Filamentous actin (F-actin) stained with phalloidin was elevated significantly in WT ameloblasts treated with NaF compared with WT ameloblasts treated with NaCl or with transgenic ameloblasts treated with NaF, thereby confirming a block in the RhoA/Rho-associated protein kinase (ROCK) pathway in the transgenic mice. Little difference in quantitative fluorescence (an estimation of fluorosis) was observed between WT and transgenic incisors from mice provided with drinking water containing NaF. We subsequently found reduced transgene expression in incisors compared with molars. Transgenic molar teeth had reduced amelogenin, E-cadherin, and Ki67 compared with WT molar teeth. Hypoplastic enamel in transgenic mice correlates with reduced expression of the enamel protein, amelogenin, and E-cadherin and cell proliferation are regulated by RhoA in other tissues. Together these findings reveal deficits in molar ameloblast function when RhoA activity is inhibited. © 2013 Eur J Oral Sci.

  3. The Th1/Th2/Th17/Treg paradigm induced by stachydrine hydrochloride reduces uterine bleeding in RU486-induced abortion mice.

    PubMed

    Li, Xia; Wang, Bin; Li, Yuzhu; Wang, Li; Zhao, Xiangzhong; Zhou, Xianbin; Guo, Yuqi; Jiang, Guosheng; Yao, Chengfang

    2013-01-09

    /Treg cells were analyzed using flow cytometry. To evaluate the effect of stachydrine hydrochloride in reducing uterine bleeding via regulation of the Th1/Th2/Th17/Treg paradigm, pregnant mice were treated with RU486 (1.5mg/kg) and/or stachydrine hydrochloride (2.5mg/kg, 5mg/kg, and 10mg/kg). The serum P(4) level, uterine bleeding volume, and proportions of Th1/Th2/Th17/Treg cells at the mice maternal-fetal interface were detected. Moreover, the protein levels of cytokines (IL-12 and IL-6) and the cytokine soluble receptors were analyzed by ELISA assay, and the mRNA expression of transcription factors (T-bet, GATA-3, RORγt, and Foxp3) were detected by RT-PCR assay. Th1- and Th17-biased immunity was observed in RU486-induced abortion mice. The volume of uterine bleeding during RU486-induced abortion was negatively related to the proportions of Th1 and Th17 cells, as well as the ratios of Th1:Th2 cells and Th17:Treg cells, and positively related to the proportions of Th2 and Treg cells. Stachydrine hydrochloride promoted the protein expression of IL-12 and IL-6, as well as the mRNA expression of T-bet and RORγt, while inhibiting the mRNA expression of GATA-3 and Foxp3. Therefore, the Th1/Th2/Th17/Treg paradigm in RU486-induced abortion mice shifted to Th1 and Th17 after stachydrine hydrochloride administration. The volume of uterine bleeding during RU486-induced abortion was reduced significantly after stachydrine hydrochloride administration. The Th1/Th2/Th17/Treg paradigm is closely related to the volume of uterine bleeding in RU486-induced abortion mice. The Th1/Th2/Th17/Treg paradigm induced by stachydrine hydrochloride contributed to the reduction in uterine bleeding in RU486-induced abortion mice. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. A guanidine-rich regulatory oligodeoxynucleotide improves type-2 diabetes in obese mice by blocking T-cell differentiation

    PubMed Central

    Cheng, Xiang; Wang, Jing; Xia, Ni; Yan, Xin-Xin; Tang, Ting-Ting; Chen, Han; Zhang, Hong-Jian; Liu, Juan; Kong, Wen; Sjöberg, Sara; Folco, Eduardo; Libby, Peter; Liao, Yu-Hua; Shi, Guo-Ping

    2012-01-01

    T lymphocytes exhibit pro-inflammatory or anti-inflammatory activities in obesity and diabetes, depending on their subtypes. Guanidine-rich immunosuppressive oligodeoxynucleotides (ODNs) effectively control Th1/Th2-cell counterbalance. This study reveals a non-toxic regulatory ODN (ODNR01) that inhibits Th1- and Th17-cell polarization by binding to STAT1/3/4 and blocking their phosphorylation without affecting Th2 and regulatory T cells. ODNR01 improves glucose tolerance and insulin sensitivity in both diet-induced obese (DIO) and genetically generated obese (ob/ob) mice. Mechanistic studies show that ODNR01 suppresses Th1- and Th17-cell differentiation in white adipose tissue, thereby reducing macrophage accumulation and M1 macrophage inflammatory molecule expression without affecting M2 macrophages. While ODNR01 shows no effect on diabetes in lymphocyte-free Rag1-deficient DIO mice, it enhances glucose tolerance and insulin sensitivity in CD4+ T-cell-reconstituted Rag1-deficient DIO mice, suggesting its beneficial effect on insulin resistance is T-cell-dependent. Therefore, regulatory ODNR01 reduces obesity-associated insulin resistance through modulation of T-cell differentiation. PMID:23027613

  5. Rho-associated kinase is a therapeutic target in neuroblastoma.

    PubMed

    Dyberg, Cecilia; Fransson, Susanne; Andonova, Teodora; Sveinbjörnsson, Baldur; Lännerholm-Palm, Jessika; Olsen, Thale K; Forsberg, David; Herlenius, Eric; Martinsson, Tommy; Brodin, Bertha; Kogner, Per; Johnsen, John Inge; Wickström, Malin

    2017-08-08

    Neuroblastoma is a peripheral neural system tumor that originates from the neural crest and is the most common and deadly tumor of infancy. Here we show that neuroblastoma harbors frequent mutations of genes controlling the Rac/Rho signaling cascade important for proper migration and differentiation of neural crest cells during neuritogenesis. RhoA is activated in tumors from neuroblastoma patients, and elevated expression of Rho-associated kinase (ROCK)2 is associated with poor patient survival. Pharmacological or genetic inhibition of ROCK1 and 2, key molecules in Rho signaling, resulted in neuroblastoma cell differentiation and inhibition of neuroblastoma cell growth, migration, and invasion. Molecularly, ROCK inhibition induced glycogen synthase kinase 3β-dependent phosphorylation and degradation of MYCN protein. Small-molecule inhibition of ROCK suppressed MYCN -driven neuroblastoma growth in TH- MYCN homozygous transgenic mice and MYCN gene-amplified neuroblastoma xenograft growth in nude mice. Interference with Rho/Rac signaling might offer therapeutic perspectives for high-risk neuroblastoma.

  6. Rho-associated kinase is a therapeutic target in neuroblastoma

    PubMed Central

    Dyberg, Cecilia; Fransson, Susanne; Andonova, Teodora; Sveinbjörnsson, Baldur; Lännerholm-Palm, Jessika; Olsen, Thale K.; Martinsson, Tommy; Brodin, Bertha; Kogner, Per; Johnsen, John Inge

    2017-01-01

    Neuroblastoma is a peripheral neural system tumor that originates from the neural crest and is the most common and deadly tumor of infancy. Here we show that neuroblastoma harbors frequent mutations of genes controlling the Rac/Rho signaling cascade important for proper migration and differentiation of neural crest cells during neuritogenesis. RhoA is activated in tumors from neuroblastoma patients, and elevated expression of Rho-associated kinase (ROCK)2 is associated with poor patient survival. Pharmacological or genetic inhibition of ROCK1 and 2, key molecules in Rho signaling, resulted in neuroblastoma cell differentiation and inhibition of neuroblastoma cell growth, migration, and invasion. Molecularly, ROCK inhibition induced glycogen synthase kinase 3β-dependent phosphorylation and degradation of MYCN protein. Small-molecule inhibition of ROCK suppressed MYCN-driven neuroblastoma growth in TH-MYCN homozygous transgenic mice and MYCN gene-amplified neuroblastoma xenograft growth in nude mice. Interference with Rho/Rac signaling might offer therapeutic perspectives for high-risk neuroblastoma. PMID:28739902

  7. Iron oxide nanoparticles attenuate T helper 17 cell responses in vitro and in vivo.

    PubMed

    Hsiao, Yai-Ping; Shen, Chien-Chang; Huang, Chung-Hsiung; Lin, Yu-Chin; Jan, Tong-Rong

    2018-05-01

    Iron oxide nanoparticles (IONPs) have been shown to attenuate T helper (Th)1 and Th2 cell-mediated immunity in ovalbumin (OVA)-sensitized mice. The objective of this study is to investigate the effects of IONPs on the immune responses of Th17 cells, a subset of T cells involved in various inflammatory pathologies. For in vivo study, a murine model of delayed-type hypersensitivity (DTH) was employed. BALB/c mice received a single dose of IONPs (0.2-10 mg iron/kg) via the tail vein 1 h prior to ovalbumin (OVA) sensitization. Their footpads were subcutaneously challenged with OVA to induce DTH reactions. The expression of Th17 cell-related molecules in inflamed footpads were examined by immunohistochemistry. For in vitro study, OVA-primed splenocytes were directly exposed to IONPs (1-100 μg iron/mL), and then re-stimulated with OVA in culture. The expression of Th17 cell-related molecules were measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. IONP administration attenuated the number of interleukin (IL)-6, IL-17, the transcription factor ROR-γ, and chemokine receptor 6 positive cells in OVA-challenged footpads, whereas the number of transforming growth factor-β, IL-23 and chemokine (C-C motif) ligand 20 positive cells was not altered. Direct exposure of OVA-primed splenocytes to IONPs suppressed the production of IL-6 and IL-17, and the mRNA expression of IL-17 and ROR-γt. These data indicate that exposure to IONPs attenuates Th17 cell responses in vivo and in vitro. Copyright © 2018. Published by Elsevier B.V.

  8. Detection of hepatocellular carcinoma in transgenic mice by Gd-DTPA- and rhodamine 123-conjugated human serum albumin nanoparticles in T1 magnetic resonance imaging.

    PubMed

    Watcharin, Waralee; Schmithals, Christian; Pleli, Thomas; Köberle, Verena; Korkusuz, Hüdayi; Hübner, Frank; Waidmann, Oliver; Zeuzem, Stefan; Korf, Horst-Werner; Terfort, Andreas; Gelperina, Svetlana; Vogl, Thomas J; Kreuter, Jörg; Piiper, Albrecht

    2015-02-10

    Nanoparticle (NP)-based contrast agents that enable high resolution anatomic T1-weighted magnetic resonance imaging (MRI) offer the prospect of improving differential diagnosis of liver tumors such as hepatocellular carcinoma (HCC). In the present study, we investigated the possibility of employing novel non-toxic human serum albumin nanoparticles conjugated with Gd-DTPA and rhodamine 123 (Gd-Rho-HSA-NPs) for the detection of HCC by T1-weighted MRI. In addition, the influence of surface coating of the NPs with poloxamine 908, which alters the absorptive behavior of NPs and changes their distribution between the liver and tumor was examined. MRI of transgenic mice with endogenously formed HCCs following intravenous injection of Gd-Rho-HSA-NPs revealed a strong negative contrast of the tumors. Contrasting of the HCCs by NP-enhanced MRI required less Gd as compared to gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid-enhanced MRI, which currently provides the most sensitive detection of HCC in patients. Immunohistochemical analyses revealed that the Gd-Rho-HSA-NPs were localized to macrophages, which were - similar to HCC in patients - fewer in number in HCC as compared to the liver tissue, which is in agreement with the negative contrasting of HCC in Gd-Rho-HSA-NP-enhanced MRI. Poloxamine-coated NPs showed lower accumulation in the tumor macrophages and caused a longer lasting enhancement of the MRI signal. These data indicate that Gd-Rho-HSA-NPs enable sensitive detection of HCC by T1-weighted MRI in mice with endogenous HCC through their uptake by macrophages. Poloxamine coating of the NPs delayed the tumor localization of the NPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect and mechanism of evodiamine against ethanol-induced gastric ulcer in mice by suppressing Rho/NF-кB pathway.

    PubMed

    Zhao, Zhongyan; Gong, Shilin; Wang, Shumin; Ma, Chunhua

    2015-09-01

    Evodiamine (EVD), a major alkaloid compound extracted from the dry unripened fruit Evodia fructus (Evodia rutaecarpa Benth., Rutaceae), has various pharmacological effects. The purpose of the present study was to investigate the possible anti-ulcerogenic potential of EVD and explore the underlying mechanism against ethanol-induced gastric ulcer in mice. Administration of EVD at the doses of 20, 40mg/kg body weight prior to the ethanol ingestion could effectively protect the stomach from ulceration. The gastric lesion was significantly ameliorated in the EVD group compared with that in the model group. Pre-treatment with EVD prevented the oxidative damage and decreased the levels of prostaglandin E2 (PGE2) content, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). In addition, EVD pretreatment markedly increased the serum levels of glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), decreased malonaldehyde (MDA) content in serum and activity of myeloperoxidase (MPO) in stomach tissues compared with those in the model group. In the mechanistic study, significant elevation of Rho, Rho-kinase 1 (ROCK1), ROCK2, cytosolic and nucleic NF-κBp65 expressions were observed in the gastric mucosa group, whereas EVD effectively suppressed the protein expressions of Rho, Rho-kinase 1 (ROCK1), ROCK2, cytosolic and nucleic NF-κBp65 in mice. Moreover, EVD showed protective activity on ethanol-induced GES-1 cells, while the therapeutic effects were not due to its cytotoxity. Taken together, these results strongly indicated that EVD exerted a gastro-protective effect against gastric ulceration. The underlying mechanism might be associated with the improvement of antioxidant and anti-inflammatory status through Rho/NF-κB pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. CD8+IL-17+ T Cells Mediate Neutrophilic Airway Obliteration in T-bet–Deficient Mouse Lung Allograft Recipients

    PubMed Central

    Dodd-o, Jeffrey M.; Coon, Tiffany A.; Miller, Hannah L.; Ganguly, Sudipto; Popescu, Iulia; O'Donnell, Christopher P.; Cardenes, Nayra; Levine, Melanie; Rojas, Mauricio; Weathington, Nathaniel M.; Zhao, Jing; Zhao, Yutong; McDyer, John F.

    2015-01-01

    Acute cellular rejection is a known risk factor for the development of obliterative bronchiolitis, which limits the long-term survival of lung transplant recipients. However, the T cell effector mechanisms in both of these processes remain incompletely understood. Using the mouse orthotopic lung transplant model, we investigated whether C57BL/6 T-bet−/− recipients of major histocompatibility complex (MHC)-mismatched BALB/c lung grafts develop rejection pathology and allospecific cytokine responses that differ from wild-type mice. T-bet−/− recipients demonstrated vigorous allograft rejection at 10 days, characterized by neutrophilic inflammation and predominantly CD8+ T cells producing allospecific IL-17 and/or IFN-γ, in contrast to IFN-γ–dominant responses in WT mice. CD4+ T cells produced IL-17 but not IFN-γ responses in T-bet−/− recipients, in contrast to WT controls. Costimulation blockade using anti-CD154 Ab significantly reduced allospecific CD8+IFN-γ+ responses in both T-bet−/− and WT mice but had no attenuating effect on lung rejection pathology in T-bet−/− recipients or on the development of obliterative airway inflammation that occurred only in T-bet−/− recipients. However, neutralization of IL-17A significantly attenuated costimulation blockade–resistant rejection pathology and airway inflammation in T-bet−/− recipients. In addition, CXCL1 (neutrophil chemokine) was increased in T-bet−/− allografts, and IL-17 induced CXCL1 from mouse lung epithelial cells in vitro. Taken together, our data show that T-bet–deficient recipients of complete MHC-mismatched lung allografts develop costimulation blockade–resistant rejection characterized by neutrophilia and obliterative airway inflammation that is predominantly mediated by CD8+IL-17+ T cells. Our data support T-bet–deficient mouse recipients of lung allografts as a viable animal model to study the immunopathogenesis of small airway injury in lung transplantation

  11. Oral exposure to Listeria monocytogenes in aged IL-17RKO mice: A possible murine model to study listeriosis in susceptible populations.

    PubMed

    Alam, Mohammad S; Costales, Matthew; Cavanaugh, Christopher; Pereira, Marion; Gaines, Dennis; Williams, Kristina

    2016-10-01

    Foodborne Listeria monocytogenes (LM) is a cause of serious illness and death in the US. The case-fatality rate of invasive LM infection in the elderly population is >50%. The goal of this study is to establish a murine model of oral LM infection that can be used as a surrogate for human foodborne listeriosis in the geriatric population. Adult C57BL/6 (wild-type, WT) and adult or old IL17R-KO (knock-out) mice were gavaged with a murinized LM strain (Lmo-InlA m ) and monitored for body-weight loss and survivability. Tissues were collected and assayed for bacterial burden, histology, and cytokine responses. When compared to WT mice, adult IL17R-KO mice are more susceptible to LM infection and showed increased LM burden and tissue pathology and a higher mortality rate. Older LM-infected KO-mice lost significantly (p < 0.02, ANOVA) more body-weight and had a higher bacterial burden in the liver (p = 0.03) and spleen as compared to adult mice. Uninfected, aged KO-mice showed a higher baseline pro-inflammatory response when compared to uninfected adult-KO mice. After infection, the pro-inflammatory cytokine, IFN-γ, mRNA in the liver was higher in the adult mice as compared to the old mice. The anti-inflammatory cytokine, IL-10, mRNA and regulatory T-cells (CD4 + CD25 +h or CD4 + Foxp3 + ) cells in the aged mice increased significantly after infection as compared to adult mice. Expression of the T-cell activation marker, CD25 (IL-2Rα) in the aged mice did not increase significantly over baseline. These data suggest that aged IL17R-KO mice can be used as an in vivo model to study oral listeriosis and that aged mice are more susceptible to LM infection due to dysregulation of pro- and anti-inflammatory responses compared to adult mice, resulting in a protracted clearance of the infection. Published by Elsevier Ltd.

  12. γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis.

    PubMed

    Kohlgruber, Ayano C; Gal-Oz, Shani T; LaMarche, Nelson M; Shimazaki, Moto; Duquette, Danielle; Nguyen, Hung N; Mina, Amir I; Paras, Tyler; Tavakkoli, Ali; von Andrian, Ulrich; Banks, Alexander S; Shay, Tal; Brenner, Michael B; Lynch, Lydia

    2018-05-01

    γδ T cells are situated at barrier sites and guard the body from infection and damage. However, little is known about their roles outside of host defense in nonbarrier tissues. Here, we characterize a highly enriched tissue-resident population of γδ T cells in adipose tissue that regulate age-dependent regulatory T cell (T reg ) expansion and control core body temperature in response to environmental fluctuations. Mechanistically, innate PLZF + γδ T cells produced tumor necrosis factor and interleukin (IL) 17 A and determined PDGFRα + and Pdpn + stromal-cell production of IL-33 in adipose tissue. Mice lacking γδ T cells or IL-17A exhibited decreases in both ST2 + T reg cells and IL-33 abundance in visceral adipose tissue. Remarkably, these mice also lacked the ability to regulate core body temperature at thermoneutrality and after cold challenge. Together, these findings uncover important physiological roles for resident γδ T cells in adipose tissue immune homeostasis and body-temperature control.

  13. T lymphocyte-mediated protection against Pseudomonas aeruginosa infection in granulocytopenic mice.

    PubMed Central

    Powderly, W G; Pier, G B; Markham, R B

    1986-01-01

    BALB/c mice immunized with Pseudomonas aeruginosa immunotype 1 polysaccharide develop protective T cell immunity to bacterial challenge. In vitro, T cells from immunized mice kill P. aeruginosa by production of a bactericidal lymphokine. The present study demonstrates that adoptive transfer of T cells from immunized BALB/c mice to granulocytopenic mice resulted in 97% survival on challenge with P. aeruginosa, compared with 17% survival with adoptive transfer of T cells from nonimmune BALB/c mice. This protection is specifically elicited by reexposure to the original immunizing antigen; adoptive recipients cannot withstand challenge with immunotype 3 P. aeruginosa. However, the adoptive recipients do survive simultaneous infection with both P. aeruginosa immunotypes 1 and 3. Adoptive transfer of T cells from the congenic CB.20 mice, which are unable to kill P. aeruginosa in vitro, provides only 20% protection to granulocytopenic mice. These studies indicate that transfer of specific immune T lymphocytes can significantly enhance the resistance to P. aeruginosa infection in granulocytopenic mice. PMID:2426306

  14. Enhanced p122RhoGAP/DLC-1 Expression Can Be a Cause of Coronary Spasm

    PubMed Central

    Kinjo, Takahiko; Tanaka, Makoto; Osanai, Tomohiro; Shibutani, Shuji; Narita, Ikuyo; Tanno, Tomohiro; Nishizaki, Kimitaka; Ichikawa, Hiroaki; Kimura, Yoshihiro; Ishida, Yuji; Yokota, Takashi; Shimada, Michiko; Homma, Yoshimi; Tomita, Hirofumi; Okumura, Ken

    2015-01-01

    Background We previously showed that phospholipase C (PLC)-δ1 activity was enhanced by 3-fold in patients with coronary spastic angina (CSA). We also reported that p122Rho GTPase-activating protein/deleted in liver cancer-1 (p122RhoGAP/DLC-1) protein, which was discovered as a PLC-δ1 stimulator, was upregulated in CSA patients. We tested the hypothesis that p122RhoGAP/DLC-1 overexpression causes coronary spasm. Methods and Results We generated transgenic (TG) mice with vascular smooth muscle (VSM)-specific overexpression of p122RhoGAP/DLC-1. The gene and protein expressions of p122RhoGAP/DLC-1 were markedly increased in the aorta of homozygous TG mice. Stronger staining with anti-p122RhoGAP/DLC-1 in the coronary artery was found in TG than in WT mice. PLC activities in the plasma membrane fraction and the whole cell were enhanced by 1.43 and 2.38 times, respectively, in cultured aortic vascular smooth muscle cells from homozygous TG compared with those from WT mice. Immediately after ergometrine injection, ST-segment elevation was observed in 1 of 7 WT (14%), 6 of 7 heterozygous TG (84%), and 7 of 7 homozygous TG mice (100%) (p<0.05, WT versus TGs). In the isolated Langendorff hearts, coronary perfusion pressure was increased after ergometrine in TG, but not in WT mice, despite of the similar response to prostaglandin F2α between TG and WT mice (n = 5). Focal narrowing of the coronary artery after ergometrine was documented only in TG mice. Conclusions VSM-specific overexpression of p122RhoGAP/DLC-1 enhanced coronary vasomotility after ergometrine injection in mice, which is relevant to human CSA. PMID:26624289

  15. RhoA/ROCK Signaling Pathway Mediates Shuanghuanglian Injection-Induced Pseudo-allergic Reactions.

    PubMed

    Han, Jiayin; Zhao, Yong; Zhang, Yushi; Li, Chunying; Yi, Yan; Pan, Chen; Tian, Jingzhuo; Yang, Yifei; Cui, Hongyu; Wang, Lianmei; Liu, Suyan; Liu, Jing; Deng, Nuo; Liang, Aihua

    2018-01-01

    Background: Shuanghuanglian injection (SHLI) is a famous Chinese medicine used as an intravenous preparation for the treatment of acute respiratory tract infections. In the recent years, the immediate hypersensitivity reactions induced by SHLI have attracted broad attention. However, the mechanism involved in these reactions has not yet been elucidated. The present study aims to explore the characteristics of the immediate hypersensitivity reactions induced by SHLI and deciphers the role of the RhoA/ROCK signaling pathway in these reactions. Methods: SHLI-immunized mice or naive mice were intravenously injected (i.v.) with SHLI (600 mg/kg) once, and vascular leakage in the ears was evaluated. Passive cutaneous anaphylaxis test was conducted using sera collected from SHLI-immunized mice. Naive mice were administered (i.v.) with a single dose of 150, 300, or 600 mg/kg of SHLI, and vascular leakage, histamine release, and histopathological alterations in the ears, lungs, and intestines were tested. In vitro , human umbilical vein endothelial cell (HUVEC) monolayer was incubated with SHLI (0.05, 0.1, or 0.15 mg/mL), and the changes in endothelial permeability and cytoskeleton were observed. Western blot analysis was performed and ROCK inhibitor was employed to investigate the contribution of the RhoA/ROCK signaling pathway in SHLI-induced hypersensitivity reactions, both in HUVECs and in mice. Results: Our results indicate that SHLI was able to cause immediate dose-dependent vascular leakage, edema, and exudates in the ears, lungs, and intestines, and histamine release in mice. These were pseudo-allergic reactions, as SHLI-specific IgE was not elicited during sensitization. In addition, SHLI induced reorganization of actin cytoskeleton and disrupted the endothelial barrier. The administration of SHLI directly activated the RhoA/ROCK signaling pathway both in HUVECs and in the ears, lungs, and intestines of mice. Fasudil hydrochloride, a ROCK inhibitor, ameliorated the

  16. RhoA/ROCK Signaling Pathway Mediates Shuanghuanglian Injection-Induced Pseudo-allergic Reactions

    PubMed Central

    Han, Jiayin; Zhao, Yong; Zhang, Yushi; Li, Chunying; Yi, Yan; Pan, Chen; Tian, Jingzhuo; Yang, Yifei; Cui, Hongyu; Wang, Lianmei; Liu, Suyan; Liu, Jing; Deng, Nuo; Liang, Aihua

    2018-01-01

    Background: Shuanghuanglian injection (SHLI) is a famous Chinese medicine used as an intravenous preparation for the treatment of acute respiratory tract infections. In the recent years, the immediate hypersensitivity reactions induced by SHLI have attracted broad attention. However, the mechanism involved in these reactions has not yet been elucidated. The present study aims to explore the characteristics of the immediate hypersensitivity reactions induced by SHLI and deciphers the role of the RhoA/ROCK signaling pathway in these reactions. Methods: SHLI-immunized mice or naive mice were intravenously injected (i.v.) with SHLI (600 mg/kg) once, and vascular leakage in the ears was evaluated. Passive cutaneous anaphylaxis test was conducted using sera collected from SHLI-immunized mice. Naive mice were administered (i.v.) with a single dose of 150, 300, or 600 mg/kg of SHLI, and vascular leakage, histamine release, and histopathological alterations in the ears, lungs, and intestines were tested. In vitro, human umbilical vein endothelial cell (HUVEC) monolayer was incubated with SHLI (0.05, 0.1, or 0.15 mg/mL), and the changes in endothelial permeability and cytoskeleton were observed. Western blot analysis was performed and ROCK inhibitor was employed to investigate the contribution of the RhoA/ROCK signaling pathway in SHLI-induced hypersensitivity reactions, both in HUVECs and in mice. Results: Our results indicate that SHLI was able to cause immediate dose-dependent vascular leakage, edema, and exudates in the ears, lungs, and intestines, and histamine release in mice. These were pseudo-allergic reactions, as SHLI-specific IgE was not elicited during sensitization. In addition, SHLI induced reorganization of actin cytoskeleton and disrupted the endothelial barrier. The administration of SHLI directly activated the RhoA/ROCK signaling pathway both in HUVECs and in the ears, lungs, and intestines of mice. Fasudil hydrochloride, a ROCK inhibitor, ameliorated the

  17. Viral Activation of MK2-hsp27-p115RhoGEF-RhoA Signaling Axis Causes Cytoskeletal Rearrangements, P-body Disruption and ARE-mRNA Stabilization

    PubMed Central

    Corcoran, Jennifer A.; Johnston, Benjamin P.; McCormick, Craig

    2015-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of several AIDS-related cancers, including the endothelial cell (EC) neoplasm Kaposi's sarcoma (KS). KSHV-infected ECs secrete abundant host-derived pro-inflammatory molecules and angiogenic factors that contribute to tumorigenesis. The precise contributions of viral gene products to this secretory phenotype remain to be elucidated, but there is emerging evidence for post-transcriptional regulation. The Kaposin B (KapB) protein is thought to contribute to the secretory phenotype in infected cells by binding and activating the stress-responsive kinase MK2, thereby selectively blocking decay of AU-rich mRNAs (ARE-mRNAs) encoding pro-inflammatory cytokines and angiogenic factors. Processing bodies (PBs) are cytoplasmic ribonucleoprotein foci in which ARE-mRNAs normally undergo rapid 5′ to 3′ decay. Here, we demonstrate that PB dispersion is a feature of latent KSHV infection, which is dependent on kaposin protein expression. KapB is sufficient to disperse PBs, and KapB-mediated ARE-mRNA stabilization could be partially reversed by treatments that restore PBs. Using a combination of genetic and chemical approaches we provide evidence that KapB-mediated PB dispersion is dependent on activation of a non-canonical Rho-GTPase signaling axis involving MK2, hsp27, p115RhoGEF and RhoA. PB dispersion in latently infected cells is likewise dependent on p115RhoGEF. In addition to PB dispersion, KapB-mediated RhoA activation in primary ECs caused actin stress fiber formation, increased cell motility and angiogenesis; these effects were dependent on the activity of the RhoA substrate kinases ROCK1/2. By contrast, KapB-mediated PB dispersion occurred in a ROCK1/2-independent manner. Taken together, these observations position KapB as a key contributor to viral reprogramming of ECs, capable of eliciting many of the phenotypes characteristic of KS tumor cells, and strongly contributing to the post

  18. Looking at the bright side of the rho Ophiuchi dark cloud. Far infrared spectrophotometric observations of the rho Oph cloud with the ISO

    NASA Astrophysics Data System (ADS)

    Liseau, R.; White, G. J.; Larsson, B.; Sidher, S.; Olofsson, G.; Kaas, A.; Nordh, L.; Caux, E.; Lorenzetti, D.; Molinari, S.; Nisini, B.; Sibille, F.

    1999-04-01

    We present far infrared (45-195 mu m) spectrophotometric observations with the Iso-Lws of the active star forming rho Oph main cloud (L 1688). The [C ii] 158 mu m and [O i] 63 mu m lines were detected at each of the 33 positions observed, whereas the [O i] 145 mu m line was clearly seen toward twelve. The principal observational result is that the [C ii] 158 mu m line fluxes exhibit a clear correlation with projected distance from the dominant stellar source in the field (HD 147889). We interpret this in terms of Pdr-type emission from the surface layers of the rho Ophc. The observed [C ii] 158 mu m/[O i] 63 mu m flux ratios are larger than unity everywhere. A comparison of the [C ii] 158 mu m line emission and the Fir dust continuum fluxes yields estimates of the efficiency at which the gas in the cloud converts stellar to [C ii] 158 mu m photons (chi_ {_C II},>_{ ~ },0.5%). We first develop an empirical model, which provides us with a three dimensional view of the far and bright side of the dark rho Ophc, showing that the cloud surface towards the putative energy source is concave. This model also yields quantitative estimates of the incident flux of ultraviolet radiation (G_0 ~ , \\powten{1} - \\powten{2}) and of the degree of clumpiness/texture of the cloud surface (filling of the 80({') '} beam ~ ,0.2). Subsequently, we use theoretical models of Pdr s to derive the particle density, n(H), and the temperature structures, for T_gas and T_dust, in the surface layers of the rho Ophc. T_gas is relatively low, ~ ,60 K, but higher than T_dust ( ~ ,30 K), and densities are generally found within the interval (1-3) \\powten{4} cm(-3) . These Pdr models are moderately successful in explaining the Lws observations. They correctly predict the [O i] 63 mu m and [C ii] 158 mu m line intensities and the observed absence of any molecular line emission. The models do fail, however, to reproduce the observed small [O i] 63 mu m/[O i] 145 mu m ratios. We examine several possible

  19. The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8+ T cells.

    PubMed

    Moalli, Federica; Ficht, Xenia; Germann, Philipp; Vladymyrov, Mykhailo; Stolp, Bettina; de Vries, Ingrid; Lyck, Ruth; Balmer, Jasmin; Fiocchi, Amleto; Kreutzfeldt, Mario; Merkler, Doron; Iannacone, Matteo; Ariga, Akitaka; Stoffel, Michael H; Sharpe, James; Bähler, Martin; Sixt, Michael; Diz-Muñoz, Alba; Stein, Jens V

    2018-06-06

    T cells are actively scanning pMHC-presenting cells in lymphoid organs and nonlymphoid tissues (NLTs) with divergent topologies and confinement. How the T cell actomyosin cytoskeleton facilitates this task in distinct environments is incompletely understood. Here, we show that lack of Myosin IXb (Myo9b), a negative regulator of the small GTPase Rho, led to increased Rho-GTP levels and cell surface stiffness in primary T cells. Nonetheless, intravital imaging revealed robust motility of Myo9b -/- CD8 + T cells in lymphoid tissue and similar expansion and differentiation during immune responses. In contrast, accumulation of Myo9b -/- CD8 + T cells in NLTs was strongly impaired. Specifically, Myo9b was required for T cell crossing of basement membranes, such as those which are present between dermis and epidermis. As consequence, Myo9b -/- CD8 + T cells showed impaired control of skin infections. In sum, we show that Myo9b is critical for the CD8 + T cell adaptation from lymphoid to NLT surveillance and the establishment of protective tissue-resident T cell populations. © 2018 Moalli et al.

  20. Taste responses in mice lacking taste receptor subunit T1R1

    PubMed Central

    Kusuhara, Yoko; Yoshida, Ryusuke; Ohkuri, Tadahiro; Yasumatsu, Keiko; Voigt, Anja; Hübner, Sandra; Maeda, Katsumasa; Boehm, Ulrich; Meyerhof, Wolfgang; Ninomiya, Yuzo

    2013-01-01

    The T1R1 receptor subunit acts as an umami taste receptor in combination with its partner, T1R3. In addition, metabotropic glutamate receptors (brain and taste variants of mGluR1 and mGluR4) are thought to function as umami taste receptors. To elucidate the function of T1R1 and the contribution of mGluRs to umami taste detection in vivo, we used newly developed knock-out (T1R1−/−) mice, which lack the entire coding region of the Tas1r1 gene and express mCherry in T1R1-expressing cells. Gustatory nerve recordings demonstrated that T1R1−/− mice exhibited a serious deficit in inosine monophosphate-elicited synergy but substantial residual responses to glutamate alone in both chorda tympani and glossopharyngeal nerves. Interestingly, chorda tympani nerve responses to sweeteners were smaller in T1R1−/− mice. Taste cell recordings demonstrated that many mCherry-expressing taste cells in T1R1+/− mice responded to sweet and umami compounds, whereas those in T1R1−/− mice responded to sweet stimuli. The proportion of sweet-responsive cells was smaller in T1R1−/− than in T1R1+/− mice. Single-cell RT-PCR demonstrated that some single mCherry-expressing cells expressed all three T1R subunits. Chorda tympani and glossopharyngeal nerve responses to glutamate were significantly inhibited by addition of mGluR antagonists in both T1R1−/− and T1R1+/− mice. Conditioned taste aversion tests demonstrated that both T1R1−/− and T1R1+/− mice were equally capable of discriminating glutamate from other basic taste stimuli. Avoidance conditioned to glutamate was significantly reduced by addition of mGluR antagonists. These results suggest that T1R1-expressing cells mainly contribute to umami taste synergism and partly to sweet sensitivity and that mGluRs are involved in the detection of umami compounds. PMID:23339178

  1. The atypical structure and function of newborn arterial endothelium is mediated by Rho/Rho kinase signaling.

    PubMed

    Flavahan, Sheila; Flavahan, Nicholas A

    2014-08-15

    Endothelium of fetal or newborn arteries is atypical, displaying actin stress fibers and reduced nitric oxide (NO)-mediated dilatation. This study tested the hypothesis that Rho/Rho kinase signaling, which promotes endothelial stress fibers and inhibits endothelial dilatation, contributed to this phenotype. Carotid arteries were isolated from newborn [postnatal day 1 (P1)], P7, and P21 mice. Endothelial dilatation to acetylcholine (pressure myograph) was minimal at P1, increased at P7, and further increased at P21. Inhibition of Rho (C3 transferase) or Rho kinase (Y27632, fasudil) significantly increased dilatation to acetylcholine in P1 arteries but had no effect in P7 or P21 arteries. After inhibition of NO synthase (N(G)-nitro-l-arginine methyl ester), Rho kinase inhibition no longer increased acetylcholine responses in P1 arteries. Rho kinase inhibition did not affect dilatation to the NO donor DEA-NONOate. The endothelial actin cytoskeleton was labeled with phalloidin and visualized by laser-scanning microscopy. In P1 arteries, the endothelium had prominent transcytoplasmic stress fibers, whereas in P7 and P21 arteries, the actin fibers had a significantly reduced intensity and were restricted to cell borders. Phosphorylation of myosin light chains, a Rho kinase substrate, was highest in P1 endothelium and significantly reduced in P7 and P21 endothelium (laser-scanning microscopy). In P1 arteries, inhibition of Rho (C3 transferase) or Rho kinase (Y27632) significantly reduced the intensity of actin fibers, which were restricted to cell borders. Similarly, in P1 arteries, Rho inhibition significantly reduced endothelial levels of phosphorylated myosin light chains. These results indicate that the atypical function and morphology of newborn endothelium is mediated by Rho/Rho kinase signaling. Copyright © 2014 the American Physiological Society.

  2. [Effect of Electroacupuncture Stimulation of "Guanyuan" (CV 4) and "Zusanli" (ST 36) on Spleen Lymphocytes Treg/Th 17 Immune Balance in Ulcerative Colitis Mice].

    PubMed

    Wang, Cheng-yu-lin; Zeng, Lin-lan; Geng, Yu; Wang, Xiang; Zhang, He-jiao; Yang, Hui; Wu, Qiao- feng; Yu, Shu-guang

    2016-02-01

    To observe the effect of electroacupuncture (EA) intervention on spleen T-helper 17 (Th 17) and regulatory T (Treg) cell levels in mice with ulcerative colitis (UC), so as to reveal its mechanisms underlying improvement of UC. METHODS Kunming mice were randomized into control, UC model and EA groups, with 8 mice in each group. The UC model was established by giving the mice with 3% Dextran Sulfate Sodium (DSS) for 5 days. EA (15 Hz/25 Hz, 0.1-0.2 mA) was applied at "Guanyuan" (CV 4) and bilateral "Zusanli" (ST 36, used alternatively) for 10 min, once a day for 5 days. The animals' disease activity index [DAl, = (body weight index score + stool score + bleeding score)/3; 0-4 points] were calculated. The pathological changes of colon tissues were observed by light microscopy after H. E. stain, and spleen Treg (CD⁴⁺ CD²⁵⁺ Foxp³⁺ Treg) and Th 17 (CD³⁺ CD⁸⁺ IL-17⁺ Th 17) lymphocyte levels were determined by flow cytometry. Compared to the control group, the DAl score and the ratio of Th 17/CD⁸⁺ T cells were significantly increased, while the ratio of Treg/CD⁴⁺ T cells obviously decreased in the model group (P < 0.05). After EA intervention, the increased DAI score and the ratio of Th 17/CD⁸⁺ T cells and the decreased Treg/CD⁴⁺ T cells were reversed (P < 0.05), and the inflammatory cell infiltration degree of the colon tissue was attenuated. EA intervention can improve the, UC rats' symptoms of activity state, bloody or viscidity stool and colonic inflammation, probably by regulating the balance between the spleenic Treg and Th 17 lymphocytes.

  3. Arctigenin functions as a selective agonist of estrogen receptor β to restrict mTORC1 activation and consequent Th17 differentiation.

    PubMed

    Wu, Xin; Tong, Bei; Yang, Yan; Luo, Jinque; Yuan, Xusheng; Wei, Zhifeng; Yue, Mengfan; Xia, Yufeng; Dai, Yue

    2016-12-20

    Arctigenin was previously proven to inhibit Th17 cell differentiation and thereby attenuate colitis in mice by down-regulating the activation of mechanistic target of rapamycin complex 1 (mTORC1). The present study was performed to address its underlying mechanism in view of estrogen receptor (ER). The specific antagonist PHTPP or siRNA of ERβ largely diminished the inhibitory effect of arctigenin on the mTORC1 activation in T cell lines and primary CD4+ T cells under Th17-polarization condition, suggesting that arctigenin functioned in an ERβ-dependent manner. Moreover, arctigenin was recognized to be an agonist of ERβ, which could bind to ERβ with a moderate affinity, promote dissociation of ERβ/HSP90 complex and nuclear translocation and phosphorylation of ERβ, and increase the transcription activity. Following activation of ERβ, arctigenin inhibited the activity of mTORC1 by disruption of ERβ-raptor-mTOR complex assembly. Deficiency of ERβ markedly abolished arctigenin-mediated inhibition of Th17 cell differentiation. In colitis mice, the activation of ERβ, inhibition of mTORC1 activation and Th17 response by arctigenin were abolished by PHTPP treatment. In conclusion, ERβ might be the target protein of arctigenin responsible for inhibition of mTORC1 activation and resultant prevention of Th17 cell differentiation and colitis development.

  4. Arctigenin functions as a selective agonist of estrogen receptor β to restrict mTORC1 activation and consequent Th17 differentiation

    PubMed Central

    Wu, Xin; Tong, Bei; Yang, Yan; Luo, Jinque; Yuan, Xusheng; Wei, Zhifeng; Yue, Mengfan; Xia, Yufeng; Dai, Yue

    2016-01-01

    Arctigenin was previously proven to inhibit Th17 cell differentiation and thereby attenuate colitis in mice by down-regulating the activation of mechanistic target of rapamycin complex 1 (mTORC1). The present study was performed to address its underlying mechanism in view of estrogen receptor (ER). The specific antagonist PHTPP or siRNA of ERβ largely diminished the inhibitory effect of arctigenin on the mTORC1 activation in T cell lines and primary CD4+ T cells under Th17-polarization condition, suggesting that arctigenin functioned in an ERβ-dependent manner. Moreover, arctigenin was recognized to be an agonist of ERβ, which could bind to ERβ with a moderate affinity, promote dissociation of ERβ/HSP90 complex and nuclear translocation and phosphorylation of ERβ, and increase the transcription activity. Following activation of ERβ, arctigenin inhibited the activity of mTORC1 by disruption of ERβ-raptor-mTOR complex assembly. Deficiency of ERβ markedly abolished arctigenin-mediated inhibition of Th17 cell differentiation. In colitis mice, the activation of ERβ, inhibition of mTORC1 activation and Th17 response by arctigenin were abolished by PHTPP treatment. In conclusion, ERβ might be the target protein of arctigenin responsible for inhibition of mTORC1 activation and resultant prevention of Th17 cell differentiation and colitis development. PMID:27863380

  5. Transcription Factor KLF10 Constrains IL-17-Committed Vγ4+ γδ T Cells

    PubMed Central

    Kim, Girak; Gu, Min Jeong; Kim, Soo Ji; Ko, Kwang Hyun; Kye, Yoon-Chul; Kim, Cheol Gyun; Cho, Jae-Ho; Lee, Woon-Kyu; Song, Ki-Duk; Chu, Hyuk; Park, Yeong-Min; Han, Seung Hyun; Yun, Cheol-Heui

    2018-01-01

    γδ T cells, known to be an important source of innate IL-17 in mice, provide critical contributions to host immune responses. Development and function of γδ T cells are directed by networks of diverse transcription factors (TFs). Here, we examine the role of the zinc finger TFs, Kruppel-like factor 10 (KLF10), in the regulation of IL-17-committed CD27− γδ T (γδ27−-17) cells. We found selective augmentation of Vγ4+ γδ27− cells with higher IL-17 production in KLF10-deficient mice. Surprisingly, KLF10-deficient CD127hi Vγ4+ γδ27−-17 cells expressed higher levels of CD5 than their wild-type counterparts, with hyper-responsiveness to cytokine, but not T-cell receptor, stimuli. Thymic maturation of Vγ4+ γδ27− cells was enhanced in newborn mice deficient in KLF10. Finally, a mixed bone marrow chimera study indicates that intrinsic KLF10 signaling is requisite to limit Vγ4+ γδ27−-17 cells. Collectively, these findings demonstrate that KLF10 regulates thymic development of Vγ4+ γδ27− cells and their peripheral homeostasis at steady state. PMID:29541070

  6. Cell-penetrable mouse forkhead box protein 3 alleviates experimental arthritis in mice by up-regulating regulatory T cells.

    PubMed

    Liu, Xia; Ji, Baoju; Sun, Mengyi; Wu, Weijiang; Huang, Lili; Sun, Aihua; Zong, Yangyong; Xia, Sheng; Shi, Liyun; Qian, Hui; Xu, Wenrong; Shao, Qixiang

    2015-07-01

    Regulatory T cells (T(regs)) have potential applications in clinical disease therapy, such as autoimmune diseases and transplant rejection. However, their numbers are limited. Forkhead box protein 3 (FoxP3) is a key transcription factor that controls T(reg) development and function. Here, we generated a cell-permeable fusion protein, protein transduction domain (PTD)-conjugated mouse FoxP3 protein (PTD-mFoxP3), and evaluated whether PTD-mFoxp3 can alleviate rheumatoid arthritis (RA) in the collagen-induced arthritis (CIA) mouse model. As expected, PTD-mFoxP3 was transduced into cells effectively, and inhibited T cell activation and attenuated the cell proliferation. It decreased interleukin (IL) 2 and interferon (IFN)-γ expression, and increased IL-10 expression in activated CD4(+)CD25(-) T cells. PTD-mFoxP3-transduced CD4(+)CD25(-) T cells attenuated proliferation of activated CD4(+)CD25(-) T cells. In addition, PTD-mFoxP3 blocked the Th17 differentiation programme in vitro and down-regulated IL-17 production from T cells by modulating induction and levels of retinoid-related orphan receptor gamma t (RORγt). Intra-articular delivery of PTD-mFoxP3 delayed disease incidence remarkably and alleviated autoimmune symptoms of CIA mice. Moreover, protective effects of PTD-mFoxP3 were associated with regulating the balance of T helper type 17 (Th17) and T(regs). These results suggest that PTD-mFoxP3 may be a candidate for RA therapy. © 2015 British Society for Immunology.

  7. Gamma/delta T cells are the predominant source of interleukin-17 in affected joints in collagen-induced arthritis, but not in rheumatoid arthritis.

    PubMed

    Ito, Yoshinaga; Usui, Takashi; Kobayashi, Shio; Iguchi-Hashimoto, Mikiko; Ito, Hiromu; Yoshitomi, Hiroyuki; Nakamura, Takashi; Shimizu, Masakazu; Kawabata, Daisuke; Yukawa, Naoichiro; Hashimoto, Motomu; Sakaguchi, Noriko; Sakaguchi, Shimon; Yoshifuji, Hajime; Nojima, Takaki; Ohmura, Koichiro; Fujii, Takao; Mimori, Tsuneyo

    2009-08-01

    Although interleukin-17 (IL-17)-producing gamma/delta T cells were reported to play pathogenic roles in collagen-induced arthritis (CIA), their characteristics remain unknown. The aim of this study was to clarify whether gamma/delta T cells or CD4+ T cells are the predominant IL-17-producing cells, and to determine what stimulates gamma/delta T cells to secret IL-17 in mice with CIA. The involvement of IL-17-producing gamma/delta T cells in SKG mice with autoimmune arthritis and patients with rheumatoid arthritis (RA) was also investigated. IL-17-producing cells in the affected joints of mice with CIA were counted by intracellular cytokine staining during 6 distinct disease phases, and these cells were stimulated with various combinations of cytokines or specific antigens to determine the signaling requirements. Similar studies were performed using SKG mice with arthritis and patients with RA. Gamma/delta T cells were the predominant population in IL-17-producing cells in the swollen joints of mice with CIA, and the absolute numbers of these cells increased in parallel with disease activity. IL-17-producing gamma/delta T cells expressed CC chemokine receptor 6, were maintained by IL-23 but not by type II collagen in vitro, and were induced antigen independently in vivo. Furthermore, IL-17 production by gamma/delta T cells was induced by IL-1beta plus IL-23 independently of T cell receptor. In contrast to what was observed in mice with CIA, IL-17-producing gamma/delta T cells were nearly absent in the affected joints of SKG mice and patients with RA, and Th1 cells were predominant in the joints of patients with RA. Gamma/delta T cells were antigen independently stimulated by inflammation at affected joints and produced enhanced amounts of IL-17 to exacerbate arthritis in mice with CIA but not in SKG mice with arthritis or patients with RA.

  8. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections.

    PubMed

    Conti, Heather R; Peterson, Alanna C; Brane, Lucas; Huppler, Anna R; Hernández-Santos, Nydiaris; Whibley, Natasha; Garg, Abhishek V; Simpson-Abelson, Michelle R; Gibson, Gregory A; Mamo, Anna J; Osborne, Lisa C; Bishu, Shrinivas; Ghilardi, Nico; Siebenlist, Ulrich; Watkins, Simon C; Artis, David; McGeachy, Mandy J; Gaffen, Sarah L

    2014-09-22

    Oropharyngeal candidiasis (OPC) is an opportunistic fungal infection caused by Candida albicans. OPC is frequent in HIV/AIDS, implicating adaptive immunity. Mice are naive to Candida, yet IL-17 is induced within 24 h of infection, and susceptibility is strongly dependent on IL-17R signaling. We sought to identify the source of IL-17 during the early innate response to candidiasis. We show that innate responses to Candida require an intact TCR, as SCID, IL-7Rα(-/-), and Rag1(-/-) mice were susceptible to OPC, and blockade of TCR signaling by cyclosporine induced susceptibility. Using fate-tracking IL-17 reporter mice, we found that IL-17 is produced within 1-2 d by tongue-resident populations of γδ T cells and CD3(+)CD4(+)CD44(hi)TCRβ(+)CCR6(+) natural Th17 (nTh17) cells, but not by TCR-deficient innate lymphoid cells (ILCs) or NK cells. These cells function redundantly, as TCR-β(-/-) and TCR-δ(-/-) mice were both resistant to OPC. Whereas γδ T cells were previously shown to produce IL-17 during dermal candidiasis and are known to mediate host defense at mucosal surfaces, nTh17 cells are poorly understood. The oral nTh17 population expanded rapidly after OPC, exhibited high TCR-β clonal diversity, and was absent in Rag1(-/-), IL-7Rα(-/-), and germ-free mice. These findings indicate that nTh17 and γδ T cells, but not ILCs, are key mucosal sentinels that control oral pathogens. © 2014 Conti et al.

  9. Increased CD4+CD45RA-FoxP3low cells alter the balance between Treg and Th17 cells in colitis mice.

    PubMed

    Ma, Ya-Hui; Zhang, Jie; Chen, Xue; Xie, You-Fu; Pang, Yan-Hua; Liu, Xin-Juan

    2016-11-14

    To investigate the role of regulatory T cell (Treg) subsets in the balance between Treg and T helper 17 (Th17) cells in various tissues from mice with dextran sulfate sodium-induced colitis. Treg cells, Treg cell subsets, Th17 cells, and CD4 + CD25 + FoxP3 + IL-17 + cells from the lamina propria of colon (LPC) and other ulcerative colitis (UC) mouse tissues were evaluated by flow cytometry. Forkhead box protein 3 (FoxP3), interleukin 17A (IL-17A), and RORC mRNA levels were assessed by real-time PCR, while interleukin-10 (IL-10) and IL-17A levels were detected with a Cytometric Beads Array. In peripheral blood monocytes (PBMC), mesenteric lymph node (MLN), lamina propria of jejunum (LPJ) and LPC from UC mice, Treg cell numbers were increased ( P < 0.05), and FoxP3 and IL-10 mRNA levels were decreased. Th17 cell numbers were also increased in PBMC and LPC, as were IL-17A levels in PBMC, LPJ, and serum. The number of FrI subset cells (CD4 + CD45RA + FoxP3 low ) was increased in the spleen, MLN, LPJ, and LPC. FrII subset cells (CD4 + CD45RA - FoxP3 high ) were decreased among PBMC, MLN, LPJ, and LPC, but the number of FrIII cells (CD4 + CD45RA - FoxP3 low ) and CD4 + CD25 + FoxP3 + IL-17A + cells was increased. FoxP3 mRNA levels in CD4 + CD45RA - FoxP3 low cells decreased in PBMC, MLN, LPJ, and LPC in UC mice, while IL-17A and RORC mRNA increased. In UC mice the distribution of Treg, Th17 cells, CD4 + CD45RA - FoxP3 high , and CD4 + CD45RA - FoxP3 low cells was higher in LPC relative to other tissues. Increased numbers of CD4 + CD45RA - FoxP3 low cells may cause an imbalance between Treg and Th17 cells that is mainly localized to the LPC rather than secondary lymphoid tissues.

  10. Increased CD4+CD45RA-FoxP3low cells alter the balance between Treg and Th17 cells in colitis mice

    PubMed Central

    Ma, Ya-Hui; Zhang, Jie; Chen, Xue; Xie, You-Fu; Pang, Yan-Hua; Liu, Xin-Juan

    2016-01-01

    AIM To investigate the role of regulatory T cell (Treg) subsets in the balance between Treg and T helper 17 (Th17) cells in various tissues from mice with dextran sulfate sodium-induced colitis. METHODS Treg cells, Treg cell subsets, Th17 cells, and CD4+CD25+FoxP3+IL-17+ cells from the lamina propria of colon (LPC) and other ulcerative colitis (UC) mouse tissues were evaluated by flow cytometry. Forkhead box protein 3 (FoxP3), interleukin 17A (IL-17A), and RORC mRNA levels were assessed by real-time PCR, while interleukin-10 (IL-10) and IL-17A levels were detected with a Cytometric Beads Array. RESULTS In peripheral blood monocytes (PBMC), mesenteric lymph node (MLN), lamina propria of jejunum (LPJ) and LPC from UC mice, Treg cell numbers were increased (P < 0.05), and FoxP3 and IL-10 mRNA levels were decreased. Th17 cell numbers were also increased in PBMC and LPC, as were IL-17A levels in PBMC, LPJ, and serum. The number of FrI subset cells (CD4+CD45RA+FoxP3low) was increased in the spleen, MLN, LPJ, and LPC. FrII subset cells (CD4+CD45RA-FoxP3high) were decreased among PBMC, MLN, LPJ, and LPC, but the number of FrIII cells (CD4+CD45RA-FoxP3low) and CD4+CD25+FoxP3+IL-17A+ cells was increased. FoxP3 mRNA levels in CD4+CD45RA-FoxP3low cells decreased in PBMC, MLN, LPJ, and LPC in UC mice, while IL-17A and RORC mRNA increased. In UC mice the distribution of Treg, Th17 cells, CD4+CD45RA-FoxP3high, and CD4+CD45RA-FoxP3low cells was higher in LPC relative to other tissues. CONCLUSION Increased numbers of CD4+CD45RA-FoxP3low cells may cause an imbalance between Treg and Th17 cells that is mainly localized to the LPC rather than secondary lymphoid tissues. PMID:27895423

  11. RhoA and RhoC are involved in stromal cell-derived factor-1-induced cell migration by regulating F-actin redistribution and assembly.

    PubMed

    Luo, Jixian; Li, Dingyun; Wei, Dan; Wang, Xiaoguang; Wang, Lan; Zeng, Xianlu

    2017-12-01

    Stromal cell-derived factor-1 (SDF-1) signaling is important to the maintenance and progression of T-cell acute lymphoblastic leukemia by inducing chemotaxis migration. To identify the mechanism of SDF-1 signaling in the migration of T-ALL, Jurkat acute lymphoblastic leukemia cells were used. Results showed that SDF-1 induces Jurkat cell migration by F-actin redistribution and assembly, which is dependent on Rho activity. SDF-1 induced RhoA and RhoC activation, as well as reactive oxygen species (ROS) production, which was inhibited by Rho inhibitor. The Rho-dependent ROS production led to subsequent cytoskeleton redistribution and assembly in the process of migration. Additionally, RhoA and RhoC were involved in SDF-1-induced Jurkat cell migration. Taken together, we found a SDF-1/CXCR4-RhoA and RhoC-ROS-cytoskeleton pathway that regulates Jurkat cell migration in response to SDF-1. This work will contribute to a clearer insight into the migration mechanism of acute lymphoblastic leukemia.

  12. Fibroblast growth factor 2 restrains Ras-driven proliferation of malignant cells by triggering RhoA-mediated senescence.

    PubMed

    Costa, Erico T; Forti, Fábio L; Matos, Tatiana G F; Dermargos, Alexandre; Nakano, Fábio; Salotti, Jacqueline; Rocha, Kátia M; Asprino, Paula F; Yoshihara, Celina K; Koga, Marianna M; Armelin, Hugo A

    2008-08-01

    Fibroblast growth factor 2 (FGF2) is considered to be a bona fide oncogenic factor, although results from our group and others call this into question. Here, we report that exogenous recombinant FGF2 irreversibly inhibits proliferation by inducing senescence in Ras-dependent malignant mouse cells, but not in immortalized nontumorigenic cell lines. We report the following findings in K-Ras-dependent malignant Y1 adrenocortical cells and H-Ras V12-transformed BALB-3T3 fibroblasts: (a) FGF2 inhibits clonal growth and tumor onset in nude and immunocompetent BALB/c mice, (b) FGF2 irreversibly blocks the cell cycle, and (c) FGF2 induces the senescence-associated beta-galactosidase with no accompanying signs of apoptosis or necrosis. The tyrosine kinase inhibitor PD173074 completely protected malignant cells from FGF2. In Y1 adrenal cells, reducing the constitutively high levels of K-Ras-GTP using the dominant-negative RasN17 mutant made cells resistant to FGF2 cytotoxicity. In addition, transfection of the dominant-negative RhoA-N19 into either Y1 or 3T3-B61 malignant cell lines yielded stable clonal transfectants that were unable to activate RhoA and were resistant to the FGF2 stress response. We conclude that in Ras-dependent malignant cells, FGF2 interacts with its cognate receptors to trigger a senescence-like process involving RhoA-GTP. Surprisingly, attempts to select FGF2-resistant cells from the Y1 and 3T3-B61 cell lines yielded only rare clones that (a) had lost the overexpressed ras oncogene, (b) were dependent on FGF2 for proliferation, and (c) were poorly tumorigenic. Thus, FGF2 exerted a strong negative selection that Ras-dependent malignant cells could rarely overcome.

  13. Rho-kinase inhibition acutely augments blood flow in focal cerebral ischemia via endothelial mechanisms.

    PubMed

    Shin, Hwa Kyoung; Salomone, Salvatore; Potts, E Michelle; Lee, Sae-Won; Millican, Eric; Noma, Kensuke; Huang, Paul L; Boas, David A; Liao, James K; Moskowitz, Michael A; Ayata, Cenk

    2007-05-01

    Rho-kinase is a serine threonine kinase that increases vasomotor tone via its effects on both endothelium and smooth muscle. Rho-kinase inhibition reduces cerebral infarct size in wild type, but not endothelial nitric oxide synthase deficient (eNOS-/-) mice. The mechanism may be related to Rho-kinase activation under hypoxic/ischemic conditions and impaired vasodilation because of downregulation of eNOS activity. To further implicate Rho-kinase in impaired vascular relaxation during hypoxia/ischemia, we exposed isolated vessels from rat and mouse to 60 mins of hypoxia, and showed that hypoxia reversibly abolished acetylcholine-induced eNOS-dependent relaxation, and that Rho-kinase inhibitor hydroxyfasudil partially preserved this relaxation during hypoxia. We, therefore, hypothesized that if hypoxia-induced Rho-kinase activation acutely impairs vasodilation in ischemic cortex, in vivo, then Rho-kinase inhibitors would acutely augment cerebral blood flow (CBF) as a mechanism by which they reduce infarct size. To test this, we studied the acute cerebral hemodynamic effects of Rho-kinase inhibitors in ischemic core and penumbra during distal middle cerebral artery occlusion (dMCAO) in wild-type and eNOS-/- mice using laser speckle flowmetry. When administered 60 mins before or immediately after dMCAO, Rho-kinase inhibitors hydroxyfasudil and Y-27632 reduced the area of severely ischemic cortex. However, hydroxyfasudil did not reduce the area of CBF deficit in eNOS-/- mice, suggesting that its effect on CBF within the ischemic cortex is primarily endothelium-dependent, and not mediated by its direct vasodilator effect on vascular smooth muscle. Our results suggest that Rho-kinase negatively regulates eNOS activity in acutely ischemic brain, thereby worsening the CBF deficit. Therefore, rapid nontranscriptional upregulation of eNOS activity by small molecule inhibitors of Rho-kinase may be a viable therapeutic approach in acute stroke.

  14. Effect of heat-inactivated kefir-isolated Lactobacillus kefiranofaciens M1 on preventing an allergic airway response in mice.

    PubMed

    Hong, Wei-Sheng; Chen, Yen-Po; Dai, Ting-Yeu; Huang, I-Nung; Chen, Ming-Ju

    2011-08-24

    In this study, we assessed the anti-asthmatic effects of heat-inactivated Lactobacillus kefiranofaciens M1 (HI-M1) and its fermented milk using different feeding procedures and at various dosage levels. The possible mechanisms whereby HI-M1 has anti-allergic asthmatic effects were also evaluated. Ovalbumin (OVA)-allergic asthma mice that have been orally administrated the HI-M1 samples showed strong inhibition of production of T helper cell (Th) 2 cytokines, pro-inflammatory cytokines, and Th17 cytokines in splenocytes and bronchoalveolar fluid compared to control mice. An increase in regulatory T cell population in splenocytes in the allergic asthma mice after oral administration of H1-M1 was also observed. In addition, all of the features of the asthmatic phenotype, including specific IgE production, airway inflammation, and development of airway hyperresponsiveness, were depressed in a dose-dependent manner by treatment. These findings support the possibility that oral feeding of H1-M1 may be an effective way of alleviating asthmatic symptoms in humans.

  15. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections

    PubMed Central

    Conti, Heather R.; Peterson, Alanna C.; Brane, Lucas; Huppler, Anna R.; Hernández-Santos, Nydiaris; Whibley, Natasha; Garg, Abhishek V.; Simpson-Abelson, Michelle R.; Gibson, Gregory A.; Mamo, Anna J.; Osborne, Lisa C.; Bishu, Shrinivas; Ghilardi, Nico; Siebenlist, Ulrich; Watkins, Simon C.; Artis, David; McGeachy, Mandy J.

    2014-01-01

    Oropharyngeal candidiasis (OPC) is an opportunistic fungal infection caused by Candida albicans. OPC is frequent in HIV/AIDS, implicating adaptive immunity. Mice are naive to Candida, yet IL-17 is induced within 24 h of infection, and susceptibility is strongly dependent on IL-17R signaling. We sought to identify the source of IL-17 during the early innate response to candidiasis. We show that innate responses to Candida require an intact TCR, as SCID, IL-7Rα−/−, and Rag1−/− mice were susceptible to OPC, and blockade of TCR signaling by cyclosporine induced susceptibility. Using fate-tracking IL-17 reporter mice, we found that IL-17 is produced within 1–2 d by tongue-resident populations of γδ T cells and CD3+CD4+CD44hiTCRβ+CCR6+ natural Th17 (nTh17) cells, but not by TCR-deficient innate lymphoid cells (ILCs) or NK cells. These cells function redundantly, as TCR-β−/− and TCR-δ−/− mice were both resistant to OPC. Whereas γδ T cells were previously shown to produce IL-17 during dermal candidiasis and are known to mediate host defense at mucosal surfaces, nTh17 cells are poorly understood. The oral nTh17 population expanded rapidly after OPC, exhibited high TCR-β clonal diversity, and was absent in Rag1−/−, IL-7Rα−/−, and germ-free mice. These findings indicate that nTh17 and γδ T cells, but not ILCs, are key mucosal sentinels that control oral pathogens. PMID:25200028

  16. Galectin-9 ameliorates anti-GBM glomerulonephritis by inhibiting Th1 and Th17 immune responses in mice.

    PubMed

    Zhang, Qian; Luan, Hong; Wang, Le; He, Fan; Zhou, Huan; Xu, Xiaoli; Li, Xingai; Xu, Qing; Niki, Toshiro; Hirashima, Mitsuomi; Xu, Gang; Lv, Yongman; Yuan, Jin

    2014-04-15

    Antiglomerular basement membrane glomerulonephritis (anti-GBM GN) is a Th1- and Th17-predominant autoimmune disease. Galectin-9 (Gal-9), identified as the ligand of Tim-3, functions in diverse biological processes and leads to the apoptosis of CD4(+)Tim-3(+) T cells. It is still unclear how Gal-9 regulates the functions of Th1 and Th17 cells and prevents renal injury in anti-GBM GN. In this study, Gal-9 was administered to anti-GBM GN mice for 7 days. We found that Gal-9 retarded the increase of Scr, ameliorated renal tubular injury, and reduced the formation of crescents. The infiltration of Th1 and Th17 cells into the spleen and kidneys significantly decreased in Gal-9-treated nephritic mice. The reduced infiltration of Th1 and Th17 cells might be associated with the downregulation of CCL-20, CXCL-9, and CXCL-10 mRNAs in the kidney. In parallel, the blood levels of IFN-γ and IL-17A declined in Gal-9-treated nephritic mice at days 21 and 28. In addition, an enhanced Th2 cell-mediated immune response was observed in the kidneys of nephritic mice after a 7-day injection of Gal-9. In conclusion, the protective role of Gal-9 in anti-GBM GN is associated with the inhibition of Th1 and Th17 cell-mediated immune responses and enhanced Th2 immunity in the kidney.

  17. Regulation of IL-17 Family Members by Adrenal Hormones During Experimental Sepsis in Mice

    PubMed Central

    Bosmann, Markus; Meta, Fabien; Ruemmler, Robert; Haggadone, Mikel D.; Sarma, J. Vidya; Zetoune, Firas S.; Ward, Peter A.

    2014-01-01

    Severe sepsis is a life-threatening disease that causes major morbidity and mortality. Catecholamines and glucocorticoids often have been used for the treatment of sepsis. Several recent studies have suggested a potential role of IL-17 during the development and progression of sepsis in small animal models. In this study, the cross-talk of catecholamines and glucocorticoids with members of the IL-17 family was investigated during sepsis in C57BL/6 mice. The concentrations in plasma of IL-17A, IL-17F, and the IL-17AF heterodimer all were increased greatly in mice after endotoxemia or cecal ligation and puncture as compared with sham mice. Surprisingly, when compared with IL-17A (487 pg/mL), the concentrations of IL-17F (2361 pg/mL) and the heterodimer, IL-17AF (5116 pg/mL), were much higher 12 hours after endotoxemia. After surgical removal of the adrenal glands, mice had much higher mortality after endotoxemia or cecal ligation and puncture. The absence of endogenous adrenal gland hormones (cortical and medullary) was associated with 3- to 10-fold higher concentrations of IL-17A, IL-17F, IL-17AF, and IL-23. The addition of adrenaline, noradrenaline, hydrocortisone, or dexamethasone to lipopolysaccharide-activated peritoneal macrophages dose-dependently suppressed the expression and release of IL-17s. The production of IL-17s required activation of c-Jun-N-terminal kinase, which was antagonized by both catecholamines and glucocorticoids. These data provide novel insights into the molecular mechanisms of immune modulation by catecholamines and glucocorticoids during acute inflammation. PMID:23499051

  18. Regulation of IL-17 family members by adrenal hormones during experimental sepsis in mice.

    PubMed

    Bosmann, Markus; Meta, Fabien; Ruemmler, Robert; Haggadone, Mikel D; Sarma, J Vidya; Zetoune, Firas S; Ward, Peter A

    2013-04-01

    Severe sepsis is a life-threatening disease that causes major morbidity and mortality. Catecholamines and glucocorticoids often have been used for the treatment of sepsis. Several recent studies have suggested a potential role of IL-17 during the development and progression of sepsis in small animal models. In this study, the cross-talk of catecholamines and glucocorticoids with members of the IL-17 family was investigated during sepsis in C57BL/6 mice. The concentrations in plasma of IL-17A, IL-17F, and the IL-17AF heterodimer all were increased greatly in mice after endotoxemia or cecal ligation and puncture as compared with sham mice. Surprisingly, when compared with IL-17A (487 pg/mL), the concentrations of IL-17F (2361 pg/mL) and the heterodimer, IL-17AF (5116 pg/mL), were much higher 12 hours after endotoxemia. After surgical removal of the adrenal glands, mice had much higher mortality after endotoxemia or cecal ligation and puncture. The absence of endogenous adrenal gland hormones (cortical and medullary) was associated with 3- to 10-fold higher concentrations of IL-17A, IL-17F, IL-17AF, and IL-23. The addition of adrenaline, noradrenaline, hydrocortisone, or dexamethasone to lipopolysaccharide-activated peritoneal macrophages dose-dependently suppressed the expression and release of IL-17s. The production of IL-17s required activation of c-Jun-N-terminal kinase, which was antagonized by both catecholamines and glucocorticoids. These data provide novel insights into the molecular mechanisms of immune modulation by catecholamines and glucocorticoids during acute inflammation. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Binding and Translocation of Termination Factor Rho Studied at the Single-Molecule Level

    PubMed Central

    Koslover, Daniel J.; Fazal, Furqan M.; Mooney, Rachel A.; Landick, Robert; Block, Steven M.

    2012-01-01

    Rho termination factor is an essential hexameric helicase responsible for terminating 20–50% of all mRNA synthesis in E. coli. We used single- molecule force spectroscopy to investigate Rho-RNA binding interactions at the Rho- utilization (rut) site of the ? tR1 terminator. Our results are consistent with Rho complexes adopting two states, one that binds 57 ±2 nucleotides of RNA across all six of the Rho primary binding sites, and another that binds 85 ±2 nucleotides at the six primary sites plus a single secondary site situated at the center of the hexamer. The single-molecule data serve to establish that Rho translocates 5′-to-3′ towards RNA polymerase (RNAP) by a tethered-tracking mechanism, looping out the intervening RNA between the rut site and RNAP. These findings lead to a general model for Rho binding and translocation, and establish a novel experimental approach that should facilitate additional single- molecule studies of RNA-binding proteins. PMID:22885804

  20. Arctigenin exerts anti-colitis efficacy through inhibiting the differentiation of Th1 and Th17 cells via an mTORC1-dependent pathway.

    PubMed

    Wu, Xin; Dou, Yannong; Yang, Yan; Bian, Difei; Luo, Jinque; Tong, Bei; Xia, Yufeng; Dai, Yue

    2015-08-15

    Arctigenin, the main effective constituent of Arctium lappa L. fruit, has previously been proven to dramatically attenuate dextran sulfate sodium (DSS)-induced colitis in mice, a frequently used animal model of inflammatory bowel disease (IBD). As Th1 and Th17 cells play a crucial role in the pathogenesis of IBD, the present study addressed whether and how arctigenin exerted anti-colitis efficacy by interfering with the differentiation and activation of Th1/Th17 cells. In vitro, arctigenin was shown to markedly inhibit the differentiation of Th17 cells from naïve T cells, and moderately inhibit the differentiation of Th1 cells, which was accompanied by lowered phosphorylation of STAT3 and STAT4, respectively. In contrast, arctigenin was lack of marked effect on the differentiation of either Th2 or regulatory T cells. Furthermore, arctigenin was shown to suppress the mammalian target of rapamycin complex 1 (mTORC1) pathway in T cells as demonstrated by down-regulated phosphorylation of the downstream target genes p70S6K and RPS6, and it functioned independent of two well-known upstream kinases PI3K/AKT and ERK. Arctigenin was also able to inhibit the activity of mTORC1 by dissociating raptor from mTOR. Interestingly, the inhibitory effect of arctigenin on T cell differentiation disappeared under a status of mTORC1 overactivation via knockdown of tuberous sclerosis complex 2 (TSC2, a negative regulator of mTORC1) or pretreatment of leucine (an agonist of mTOR). In DSS-induced mice, the inhibition of Th1/Th17 responses and anti-colitis effect of arctigenin were abrogated by leucine treatment. In conclusion, arctigenin ameliorates colitis through down-regulating the differentiation of Th1 and Th17 cells via mTORC1 pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Pion decay constant and the {rho}-meson mass at finite temperature in hidden local symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, M.; Shibata, A.

    1997-06-01

    We study the temperature dependence of the pion decay constant and {rho}-meson mass in the hidden local symmetry model at one loop. Using the standard imaginary time formalism, we include the thermal effect of the {rho} meson as well as that of the pion. We show that the pion gives a dominant contribution to the pion decay constant and the {rho}-meson contribution slightly decreases the critical temperature. The {rho}-meson pole mass increases as T{sup 4}/m{sub {rho}}{sup 2} at low temperature, dominated by the pion-loop effect. At high temperature, although the pion-loop effect decreases the {rho}-meson mass, the {rho}-loop contribution overcomesmore » the pion-loop contribution and the {rho}-meson mass increases with temperature. We also show that the conventional parameter a is stable as the temperature increases. {copyright} {ital 1997} {ital The American Physical Society}« less

  2. Artifacts correction for T1rho imaging with constant amplitude spin-lock

    NASA Astrophysics Data System (ADS)

    Chen, Weitian

    2017-01-01

    T1rho imaging with constant amplitude spin-lock is prone to artifacts in the presence of B1 RF and B0 field inhomogeneity. Despite significant technological progress, improvements on the robustness of constant amplitude spin-lock are necessary in order to use it for routine clinical practice. This work proposes methods to simultaneously correct for B1 RF and B0 field inhomogeneity in constant amplitude spin-lock. By setting the maximum B1 amplitude of the excitation adiabatic pulses equal to the expected constant amplitude spin-lock frequency, the spins become aligned along the effective field throughout the spin-lock process. This results in T1rho-weighted images free of artifacts, despite the spatial variation of the effective field caused by B1 RF and B0 field inhomogeneity. When the pulse is long, the relaxation effect during the adiabatic half passage may result in a non-negligible error in the mono-exponential relaxation model. A two-acquisition approach is presented to solve this issue. Simulation, phantom, and in-vivo scans demonstrate the proposed methods achieve superior image quality compared to existing methods, and that the two-acquisition method is effective in resolving the relaxation effect during the adiabatic half passage.

  3. IL-1R and MyD88 signalling in CD4+ T cells promote Th17 immunity and atherosclerosis.

    PubMed

    Engelbertsen, Daniel; Rattik, Sara; Wigren, Maria; Vallejo, Jenifer; Marinkovic, Goran; Schiopu, Alexandru; Björkbacka, Harry; Nilsson, Jan; Bengtsson, Eva

    2018-01-01

    The role of CD4+ T cells in atherosclerosis has been shown to be dependent on cytokine cues that regulate lineage commitment into mature T helper sub-sets. In this study, we tested the roles of IL-1R1 and MyD88 signalling in CD4+ T cells in atherosclerosis. We transferred apoe-/-myd88+/+ or apoe-/-myd88-/- CD4+ T cells to T- and B-cell-deficient rag1-/-apoe-/- mice fed high fat diet. Mice given apoe-/-myd88-/- CD4+ T cells exhibited reduced atherosclerosis compared with mice given apoe-/-myd88+/+ CD4+ T cells. CD4+ T cells from apoe-/-myd88-/- produced less IL-17 but similar levels of IFN-γ. Treatment of human CD4+ T cells with a MyD88 inhibitor inhibited IL-17 secretion in vitro. Transfer of il1r1-/- CD4+ T cells recapitulated the phenotype seen by transfer of myd88-/- CD4+ T cells with reduced lesion development and a reduction in Th17 and IL-17 production compared with wild type CD4+ T cell recipients. Relative collagen content of lesions was reduced in mice receiving il1r1-/- CD4+ T cells. We demonstrate that both IL1R and MyD88 signalling in CD4+ T cells promote Th17 immunity, plaque growth and may regulate plaque collagen levels. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.

  4. CD147/basigin limits lupus nephritis and Th17 cell differentiation in mice by inhibiting the interleukin-6/STAT-3 pathway.

    PubMed

    Maeda, Kayaho; Kosugi, Tomoki; Sato, Waichi; Kojima, Hiroshi; Sato, Yuka; Kamimura, Daisuke; Kato, Noritoshi; Tsuboi, Naotake; Yuzawa, Yukio; Matsuo, Seiichi; Murakami, Masaaki; Maruyama, Shoichi; Kadomatsu, Kenji

    2015-05-01

    Interleukin-17 (IL-17)-producing T cells (Th17 cells) play critical roles in the pathogenesis of immune-related diseases, including systemic lupus erythematosus. However, the fundamental mechanism regulating Th17 cell differentiation is not fully understood. Recently, we demonstrated that plasma levels of CD147/basigin (Bsg) in patients with lupus nephritis (LN) were closely associated with disease activity. but the molecular mechanism involving Bsg has been elusive. Here, we addressed the role of Bsg in the pathogenesis of LN. Injections of pristane (2,6,10,14-tetramethylpentadecane [TMPD]) were administered to Bsg(-/-) or Bsg(+/+) mice to induce LN. The mice were killed 6 months after being injected, for histologic and biochemical analyses of the kidneys and spleens. Pristane induced LN more strikingly in Bsg(-/-) mice than in Bsg(+/+) mice, even though humoral autoimmunity was similarly increased in both genotypes. The increased number of Th17, but not Th1, Treg cells, was augmented in Bsg(-/-) mice. The expression of IL-17 was also increased in the kidneys of Bsg(-/-) mice, in proportion to LN disease activity. Furthermore, treatment with anti-IL-17 antibody reduced LN disease activity in Bsg(-/-) mice. Complementary to these phenotypes of Bsg(-/-) mice, Bsg expression was enhanced in activated CD4+ T cells in vivo and in vitro. Bsg deficiency selectively augmented in vitro differentiation of naive CD4+ T cells to Th17 cells and STAT-3 phosphorylation during this differentiation. Moreover, STAT-3 phosphorylation was suppressed by crosslinking of Bsg with its antibody. Bsg plays an indispensable role in Th17 cell differentiation as a negative regulator by suppressing the IL-6/STAT-3 pathway. © 2015, American College of Rheumatology.

  5. Secretory IgM Exacerbates Tumor Progression by Inducing Accumulations of MDSCs in Mice.

    PubMed

    Tang, Chih-Hang Anthony; Chang, Shiun; Hashimoto, Ayumi; Chen, Yi-Ju; Kang, Chang Won; Mato, Anthony R; Del Valle, Juan R; Gabrilovich, Dmitry I; Hu, Chih-Chi Andrew

    2018-06-01

    Chronic lymphocytic leukemia (CLL) cells can secrete immunoglobulin M. However, it is not clear whether secretory IgM (sIgM) plays a role in disease progression. We crossed the Eμ-TCL1 mouse model of CLL, in which the expression of human TCL1 oncogene was driven by the V(H) promoter-Ig(H)-Eμ enhancer, with MD4 mice whose B cells produced B-cell receptor (membrane-bound IgM) and sIgM with specificity for hen egg lysozyme (HEL). CLL cells that developed in these MD4/Eμ-TCL1 mice reactivated a parental Ig gene allele and secreted IgM, and did not recognize HEL. The MD4/Eμ-TCL1 mice had reduced survival, increased myeloid-derived suppressor cells (MDSC), and decreased numbers of T cells. We tested whether sIgM could contribute to the accumulation of MDSCs by crossing μS -/- mice, which could not produce sIgM, with Eμ-TCL1 mice. The μS -/- /Eμ-TCL1 mice survived longer than Eμ-TCL1 mice and developed decreased numbers of MDSCs which were less able to suppress proliferation of T cells. We targeted the synthesis of sIgM by deleting the function of XBP-1s and showed that targeting XBP-1s genetically or pharmacologically could lead to decreased sIgM, accompanied by decreased numbers and reduced functions of MDSCs in MD4/Eμ-TCL1 mice. Additionally, MDSCs from μS -/- mice grafted with Lewis lung carcinoma were inefficient suppressors of T cells, resulting in slower tumor growth. These results demonstrate that sIgM produced by B cells can upregulate the functions of MDSCs in tumor-bearing mice to aggravate cancer progression. In a mouse model of CLL, production of secretory IgM led to more MDSCs, fewer T cells, and shorter survival times for the mice. Thus, secretory IgM may aggravate the progression of this cancer. Cancer Immunol Res; 6(6); 696-710. ©2018 AACR . ©2018 American Association for Cancer Research.

  6. Resveratrol Ameliorates Dysregulation of Th1, Th2, Th17, and T Regulatory Cell-Related Transcription Factor Signaling in a BTBR T + tf/J Mouse Model of Autism.

    PubMed

    Bakheet, Saleh A; Alzahrani, Mohammad Zeed; Ansari, Mushtaq Ahmad; Nadeem, Ahmed; Zoheir, Khairy M A; Attia, Sabry M; Al-Ayadhi, Laila Yousef; Ahmad, Sheikh Fayaz

    2017-09-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder. It is characterized by impaired social communication, abnormal social interactions, and repetitive behaviors and/or restricted interests. BTBR T + tf/J (BTBR) inbred mice are commonly used as a model for ASD. Resveratrol is used widely as a beneficial therapeutic in the treatment of an extensive array of pathologies, including neurodegenerative diseases. In the present study, the effect of resveratrol administration (20 and 40 mg/kg) was evaluated in both BTBR and C57BL/6 (B6) mice. Behavioral (self-grooming), Foxp3, T-bet, GATA-3, RORγt, and IL-17A in CD4 + T cells were assessed. Our study showed that BTBR control mice exhibited a distinct immune profile from that of the B6 control mice. BTBR mice were characterized by lower levels of Foxp3 + and higher levels of RORγt + , T-bet + , and GATA-3 + production in CD4 + T cells when compared with B6 control. Resveratrol (20 and 40 mg/kg) treatment to B6 and BTBR mice showed substantial induction of Foxp3 + and reduction of T-bet + , GATA-3 + , and IL-17A + expression in CD4 + cells when compared with the respective control groups. Moreover, resveratrol treatment resulted in upregulated expression of Foxp3 mRNA and decreased expression levels of T-bet, GATA-3, RORγt, and IL-17A in the spleen and brain tissues. Western blot analysis confirmed that resveratrol treatment decreased the protein expression of T-bet, GATA-3, RORγ, and IL-17 and that it increased Foxp3 in B6 and BTBR mice. Our results suggest that autism is associated with dysregulation of transcription factor signaling that can be corrected by resveratrol treatment.

  7. Severe combined immunodeficiency in Sting V154M/WT mice.

    PubMed

    Bouis, Delphine; Kirstetter, Peggy; Arbogast, Florent; Lamon, Delphine; Delgado, Virginia; Jung, Sophie; Ebel, Claudine; Jacobs, Hugues; Knapp, Anne-Marie; Jeremiah, Nadia; Belot, Alexandre; Martin, Thierry; Crow, Yanick J; André-Schmutz, Isabelle; Korganow, Anne-Sophie; Rieux-Laucat, Frédéric; Soulas-Sprauel, Pauline

    2018-05-23

    Autosomal dominant gain-of-function (GOF) mutations in human STING (Stimulator of Interferon Genes) lead to a severe autoinflammatory disease called SAVI (STING Associated Vasculopathy with onset in Infancy), associated with enhanced expression of interferon (IFN) stimulated gene (ISG) transcripts. The goal of this study was to analyze the phenotype of a new mouse model of Sting hyperactivation, and the role of type I IFN in this system. We generated a knock-in model carrying an amino acid substitution (V154M) in mouse Sting, corresponding to a recurrent mutation seen in human patients with SAVI. Hematopoietic development and tissue histology were analyzed. Lymphocyte activation and proliferation were assessed in vitro. Sting V154M/WT mice were crossed to IFNAR (IFNα/β Receptor) knock-out mice in order to evaluate the type I IFN-dependence of the mutant Sting phenotype recorded. In Sting V154M/WT mice we detected variable expression of inflammatory infiltrates in the lungs and kidneys. These mice showed a marked decrease in survival and developed a severe combined immunodeficiency disease (SCID) affecting B, T and NK cells, with an almost complete lack of antibodies and a significant expansion of monocytes and granulocytes. The blockade in B and T cell development was present from early immature stages in bone marrow and thymus. In addition, in vitro experiments revealed an intrinsic proliferative defect of mature T cells. Whilst the V154M/WT mutant demonstrated increased expression of ISGs, the SCID phenotype was not reversed in Sting V154M/WT IFNAR knock-out mice. However, the anti-proliferative defect in T cells was partially rescued by IFNAR deficiency. Sting GOF mice developed an IFN-independent SCID phenotype with a T, B and NK cell developmental defect and hypogammaglobulinemia, associated with signs of inflammation in lungs and kidneys. Only the intrinsic proliferative defect of T cells was, partially, IFN-dependent. Copyright © 2018. Published by

  8. Dissecting the Molecular Mechanism of RhoC GTPase Expression in the Normal and Malignant Breast

    DTIC Science & Technology

    2011-09-01

    and cancer. Nature reviews 2, 133-142. Valastyan, S., Reinhardt, F ., Benaich, N., Calogrias, D., Szasz, A.M., Wang, Z.C., Brock, J.E., Richardson...prostate cancer progression. Cancer cell 17, 443-454.   R ho C F IS H Normal SUM149 SUM190A Figure 1 75 75 75 0 0 0 0 200 R ea ds (R P K M ) R...RhoC A B C D Figure 3 0 5 10 15 20 25 HME MCF7 SUM149 MDA-MB-231 Fo ld E nr ic hm en t o f p 65 B in di ng p65 (-2834) p65 (-2259) p65 (-6) A B

  9. GPER inhibits diabetes-mediated RhoA activation to prevent vascular endothelial dysfunction.

    PubMed

    Li, Zilin; Cheng, Liang; Liang, Hongliang; Duan, Weixun; Hu, Jing; Zhi, Weiwei; Yang, Jinbao; Liu, Zhenhua; Zhao, Minggao; Liu, Jincheng

    2016-02-01

    The effect of estrogen receptors on diabetes-induced vascular dysfunction is critical, but ambiguous. Individuals with diabetic vascular disease may require estrogen receptor-specific targeted therapy in the future. The G protein-coupled estrogen receptor (GPER) has beneficial effects on vascular function. However, its fundamental mechanisms are unclear. The RhoA/Rho-kinase pathway contributes to diabetic vascular complications, whereas estrogen can suppress Rho-kinase function. Thus, we assumed that GPER inhibits diabetes-mediated RhoA activation to prevent vascular dysfunction. We further investigated the underlying mechanisms involved in this process. Vascular endothelial cells and ex vivo cultured ovariectomized (OVX) C57BL/6 mouse aortae were treated with high glucose (HG) alone or in combination with GPER agonist (G1). G1 treatment was also administered to OVX db/db mice for 8 weeks. An ex-vivo isovolumic myograph was used to analyze the endothelium-dependent vasodilation and endothelium-independent contraction of mouse aortae. Apoptosis, oxidative stress, and inflammation were attenuated in G1-pretreated vascular endothelial cells. G1 significantly decreased the phosphorylation of inhibitory endothelial nitric oxide (NO) synthase residue threonine 495 (eNOS Thr495), inhibited RhoA expression, and increased NO production. Additionally, G1 rescued the impaired endothelium-dependent relaxation and inhibited RhoA activation in the thoracic aorta of OVX db/db mice and ex-vivo cultured OVX C57BL/6 mouse aortae treated with HG. Estrogens acting via GPER could protect vascular endothelium, and GPER activation might elicit ERα-independent effect to inhibit RhoA/Rho-kinase pathway. Additionally, GPER activation might reduce vascular smooth muscle contraction by inhibiting RhoA activation. Thus, the results of the present study suggest a new therapeutic paradigm for end-stage vascular dysfunction by inhibiting RhoA/Rho-kinase pathway via GPER activation. Copyright

  10. High-Salt Diet Induces IL-17-Dependent Gut Inflammation and Exacerbates Colitis in Mice

    PubMed Central

    Aguiar, Sarah Leão Fiorini; Miranda, Mariana Camila Gonçalves; Guimarães, Mauro Andrade Freitas; Santiago, Helton Costa; Queiroz, Camila Pereira; Cunha, Pricila da Silva; Cara, Denise Carmona; Foureaux, Giselle; Ferreira, Anderson José; Cardoso, Valbert Nascimento; Barros, Patrícia Aparecida; Maioli, Tatiani Uceli; Faria, Ana Maria Caetano

    2018-01-01

    Excess intake of sodium is often associated with high risk for cardiovascular disease. More recently, some studies on the effects of high-salt diets (HSDs) have also demonstrated that they are able to activate Th17 cells and increase severity of autoimmune diseases. The purpose of the present study was to evaluate the effects of a diet supplemented with NaCl in the colonic mucosa at steady state and during inflammation. We showed that consumption of HSD by mice triggered a gut inflammatory reaction associated with IL-23 production, recruitment of neutrophils, and increased frequency of the IL-17-producing type 3 innate lymphoid cells (ILC3) in the colon. Moreover, gut inflammation was not observed in IL-17–/– mice but it was present, although at lower grade, in RAG−/− mice suggesting that the inflammatory effects of HSD was dependent on IL-17 but only partially on Th17 cells. Expression of SGK1, a kinase involved in sodium homeostasis, increased 90 min after ingestion of 50% NaCl solution and decreased 3 weeks after HSD consumption. Colitis induced by oral administration of either dextran sodium sulfate or 2,4,6-trinitrobenzenesulfonic acid was exacerbated by HSD consumption and this effect was associated with increased frequencies of RORγt+ CD4+ T cells and neutrophils in the colon. Therefore, our results demonstrated that consumption of HSD per se triggered a histologically detectable inflammation in the colon and also exacerbated chemically induced models of colitis in mice by a mechanism dependent on IL-17 production most likely by both ILC3 and Th17 cells. PMID:29379505

  11. Interaction between mDia1 and ROCK in Rho-induced migration and adhesion of human dental pulp cells.

    PubMed

    Cheng, L; Xu, J; Qian, Y Y; Pan, H Y; Yang, H; Shao, M Y; Cheng, R; Hu, T

    2017-01-01

    To investigate the effects of mammalian homologue of Drosophila diaphanous-1(mDia1) and Rho-associated coiled-coil-containing protein kinase (ROCK) on the migration and adhesion of dental pulp cells (DPCs). Lysophosphatidic acid (LPA) was used to activate Rho signalling. mDia1 and ROCK were inhibited by short interfering RNA and the specific inhibitor, Y-27632, respectively. The migration of DPCs was assessed using the transwell migration assay and scratch test. Formation of cytoskeleton and focal adhesions(FAs) was observed by confocal laser scanning microscopy. Cell adhesion and spreading assays were performed. Phosphorylation of focal adhesion kinase (FAK) and paxillin was detected by Western blotting, and the bands were analysed using Adobe Photoshop CS5 software. All experiments were performed at least three times, and data were analysed with one-way anova and a post hoc test. LPA-triggered activation of Rho and inhibition of ROCK significantly increased the cell migration rate. Cell migration was inhibited by silencing mDia1. mDia1 silencing and ROCK inhibition suppressed the LPA-induced formation of the cytoskeleton, FA and phosphorylation of FAK and paxillin. Inhibition of ROCK or mDia1 facilitated early cell adhesion and spreading; by contrast, the combined inhibition of ROCK and mDia1 neutralized these effects. mDia1 promoted RhoA-induced migration of DPCs, but ROCK had an opposite effect. Both mDia1 and ROCK participated in cytoskeleton formation and adhesion of DPCs. The interactions between mDia1 and ROCK might influence dental pulp repair by determining the migration and adhesion of DPCs. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. In Vivo Fluorescence Confocal Microscopy to Investigate the Role of RhoC in Inflammatory Breast Cancer

    DTIC Science & Technology

    2005-04-01

    5084. 6. Colpaert CG, Vermeulen PB, Benoy I, Soubry A, van Roy F, van Beest P, Goovaerts G, Dirix LY, van Dam P, Fox SB, Harris AL, van MarckEA...cancer. Cancer Res 1999, 59: 5079-5084. 17 14. Colpaert CG, Vermeulen PB, Benoy I, Soubry A, van Roy F, van Beest P, Goovaerts G, Dirix LY, van Dam P...Ohira S, Feng Y, Nikaido T, Konishi I: Up- regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma. Lab

  13. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway.

    PubMed

    Rajagopal, Senthilkumar; Kumar, Divya P; Mahavadi, Sunila; Bhattacharya, Sayak; Zhou, Ruizhe; Corvera, Carlos U; Bunnett, Nigel W; Grider, John R; Murthy, Karnam S

    2013-03-01

    The present study characterized the TGR5 expression and the signaling pathways coupled to this receptor that mediates the relaxation of gastric smooth muscle. TGR5 was detected in gastric muscle cells by RT-PCR and Western blotting. Treatment of cells with the TGR5-selective ligand oleanolic acid (OA) activated Gαs, but not Gαq, Gαi1, Gαi2, or Gαi3, and increased cAMP levels. OA did not elicit contraction, but caused relaxation of carbachol-induced contraction of gastric muscle cells from wild-type mice, but not tgr5(-/-) mice. OA, but not a selective exchange protein activated by cAMP (Epac) ligand (8-pCPT-2'-O-Me-cAMP), caused phosphorylation of RhoA and the phosphorylation was blocked by the PKA inhibitor, myristoylated PKI, and by the expression of phosphorylation-deficient mutant RhoA (S188A). Both OA and Epac ligand stimulated Ras-related protein 1 (Rap1) and inhibited carbachol (CCh)-induced Rho kinase activity. Expression of RhoA (S188A) or PKI partly reversed the inhibition of Rho kinase activity by OA but had no effect on inhibition by Epac ligand. However, suppression of Rap1 with siRNA blocked the inhibition of Rho kinase by Epac ligand, and partly reversed the inhibition by OA; the residual inhibition was blocked by PKI. Muscle relaxation in response to OA, but not Epac ligand, was partly reversed by PKI. We conclude that activation of TGR5 causes relaxation of gastric smooth muscle and the relaxation is mediated through inhibition of RhoA/Rho kinase pathway via both cAMP/Epac-dependent stimulation of Rap1 and cAMP/PKA-dependent phosphorylation of RhoA at Ser(188). TGR5 receptor activation on smooth muscle reveals a novel mechanism for the regulation of gut motility by bile acids.

  14. Novel Role for Interleukin-17 in Enhancing Type 1 Helper T Cell Immunity in the Female Genital Tract following Mucosal Herpes Simplex Virus 2 Vaccination.

    PubMed

    Bagri, Puja; Anipindi, Varun C; Nguyen, Philip V; Vitali, Danielle; Stämpfli, Martin R; Kaushic, Charu

    2017-12-01

    It is well established that interferon gamma (IFN-γ) production by CD4 + T cells is critical for antiviral immunity against herpes simplex virus 2 (HSV-2) genital infection. However, the role of interleukin-17A (IL-17A) production by CD4 + T cells in HSV-2 antiviral immunity is yet to be elucidated. Here we demonstrate that IL-17A plays an important role in enhancing antiviral T helper type 1 (T h 1) responses in the female genital tract (FGT) and is essential for effective protection conferred by HSV-2 vaccination. While IL-17A did not play a critical role during primary genital HSV-2 infection, seen by lack of differences in susceptibility between IL-17A-deficient ( IL-17A -/- ) and wild-type (WT) C57BL/6 mice, it was critical for mediating antiviral responses after challenge/reexposure. Compared to WT mice, IL-17A -/- mice (i) infected intravaginally and reexposed or (ii) vaccinated intranasally and challenged intravaginally demonstrated poor outcomes. Following intravaginal HSV-2 reexposure or challenge, vaccinated IL-17A -/- mice had significantly higher mortality, greater disease severity, higher viral shedding, and higher levels of proinflammatory cytokines and chemokines in vaginal secretions. Furthermore, IL-17A -/- mice had impaired T h 1 cell responses after challenge/reexposure, with significantly lower proportions of vaginal IFN-γ + CD4 + T cells. The impaired T h 1 cell responses in IL-17A -/- mice coincided with smaller populations of IFN-γ + CD4 + tissue resident memory T (T RM ) cells in the genital tract postimmunization. Taken together, these findings describe a novel role for IL-17A in regulating antiviral IFN-γ + T h 1 cell immunity in the vaginal tract. This strategy could be exploited to enhance antiviral immunity following HSV-2 vaccination. IMPORTANCE T helper type 1 (T h 1) immunity, specifically interferon gamma (IFN-γ) production by CD4 + T cells, is critical for protection against genital herpesvirus (HSV-2) infection, and

  15. Regulation of type 17 helper T-cell function by nitric oxide during inflammation

    PubMed Central

    Niedbala, Wanda; Alves-Filho, Jose C.; Fukada, Sandra Y.; Vieira, Silvio Manfredo; Mitani, Akio; Sonego, Fabiane; Mirchandani, Ananda; Nascimento, Daniele C.; Cunha, Fernando Q.; Liew, Foo Y.

    2011-01-01

    Type 17 helper T (Th17) cells are implicated in the pathogenesis many of human autoimmune diseases. Development of Th17 can be enhanced by the activation of aryl hydrocarbon receptor (AHR) whose ligands include the environmental pollutant dioxin, potentially linking environmental factors to the increased prevalence of autoimmune disease. We report here that nitric oxide (NO) can suppress the proliferation and function of polarized murine and human Th17 cells. NO also inhibits AHR expression in Th17 cells and the downstream events of AHR activation, including IL-22, IL-23 receptor, and Cyp1a1. Conversely, NO did not affect the polarization of Th17 cells from mice deficient in AHR. Furthermore, mice lacking inducible nitric oxide synthase (Nos2−/−) developed more severe experimental autoimmune encephalomyelitis than WT mice, with elevated AHR expression, increased IL-17A, and IL-22 synthesis. NO may therefore represent an important endogenous regulator to prevent overexpansion of Th17 cells and control of autoimmune diseases caused by environmental pollutants. PMID:21576463

  16. RhoA/ROCK pathway activity is essential for the correct localization of the germ plasm mRNAs in zebrafish embryos.

    PubMed

    Miranda-Rodríguez, Jerónimo Roberto; Salas-Vidal, Enrique; Lomelí, Hilda; Zurita, Mario; Schnabel, Denhi

    2017-01-01

    Zebrafish germ plasm is composed of mRNAs such as vasa and nanos and of proteins such as Bucky ball, all of which localize symmetrically in four aggregates at the distal region of the first two cleavage furrows. The coordination of actin microfilaments, microtubules and kinesin is essential for the correct localization of the germ plasm. Rho-GTPases, through their effectors, coordinate cytoskeletal dynamics. We address the participation of RhoA and its effector ROCK in germ plasm localization during the transition from two- to eight-cell embryos. We found that active RhoA is enriched along the cleavage furrow during the first two division cycles, whereas ROCK localizes at the distal region of the cleavage furrows in a similar pattern as the germ plasm mRNAs. Specific inhibition of RhoA and ROCK affected microtubules organization at the cleavage furrow; these caused the incorrect localization of the germ plasm mRNAs. The incorrect localization of the germ plasm led to a dramatic change in the number of germ cells during the blastula and 24hpf embryo stages without affecting any other developmental processes. We demonstrate that the Rho/ROCK pathway is intimately related to the determination of germ cells in zebrafish embryos. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Proanthocyanidins from the bark of Metasequoia glyptostroboides ameliorate allergic contact dermatitis through directly inhibiting T cells activation and Th1/Th17 responses.

    PubMed

    Chen, Fengyang; Ye, Xiaodi; Yang, Yadong; Teng, Tianli; Li, Xiaoyu; Xu, Shifang; Ye, Yiping

    2015-04-15

    The leaves and bark of Metasequoia glyptostroboides are used as anti-microbic, analgesic and anti-inflammatory drug for dermatic diseases in Chinese folk medicine. However, the pharmacological effects and material basis responsible for the therapeutic use of this herb have not yet been well studied. The objectives of this study were to evaluate the anti-inflammatory effects of the proanthocyanidin fraction from the bark of M. glyptostroboides (MGEB) and to elucidate its immunological mechanisms. The anti-inflammatory activity of MGEB was evaluated using 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) in mice. Its potential mechanisms were further investigated by determining its effects on Con A-induced T cell activation and Th1/Th17 responses in vitro. Both intraperitoneal injection and oral administration of MGEB significantly reduced the ear swelling in DNFB-induced ACD mice. MGEB inhibited Con A-induced proliferation and the expression levels of cell surface molecules CD69 and CD25 of T cells in vitro. MGEB also significantly decreased the production of Th1/Th17 specific cytokines (IL-2, IFN-γ and IL-17) and down-regulated their mRNA expression levels in activated T-cells. MGEB could ameliorate ACD, at least in part, through directly inhibiting T cells activation and Th1/Th17 responses. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. RhoA Regulation of Cardiomyocyte Differentiation

    PubMed Central

    Kaarbø, Mari; Crane, Denis I.; Murrell, Wayne G.

    2013-01-01

    Earlier findings from our laboratory implicated RhoA in heart developmental processes. To investigate factors that potentially regulate RhoA expression, RhoA gene organisation and promoter activity were analysed. Comparative analysis indicated strict conservation of both gene organisation and coding sequence of the chick, mouse, and human RhoA genes. Bioinformatics analysis of the derived promoter region of mouse RhoA identified putative consensus sequence binding sites for several transcription factors involved in heart formation and organogenesis generally. Using luciferase reporter assays, RhoA promoter activity was shown to increase in mouse-derived P19CL6 cells that were induced to differentiate into cardiomyocytes. Overexpression of a dominant negative mutant of mouse RhoA (mRhoAN19) blocked this cardiomyocyte differentiation of P19CL6 cells and led to the accumulation of the cardiac transcription factors SRF and GATA4 and the early cardiac marker cardiac α-actin. Taken together, these findings indicate a fundamental role for RhoA in the differentiation of cardiomyocytes. PMID:23935420

  19. Expression of tyrosine hydroxylase in CD4+ T cells contributes to alleviation of Th17/Treg imbalance in collagen-induced arthritis.

    PubMed

    Wang, Xiao-Qin; Liu, Yan; Cai, Huan-Huan; Peng, Yu-Ping; Qiu, Yi-Hua

    2016-12-01

    Tyrosine hydroxylase (TH), a rate-limiting enzyme for the synthesis of catecholamines, is expressed in T lymphocytes. However, the role of T cell-expressed TH in rheumatoid arthritis (RA) is less clear. Herein, we aimed to show the contribution of TH expression by CD4 + T cells to alleviation of helper T (Th)17/regulatory T (Treg) imbalance in collagen-induced arthritis (CIA), a mouse model of RA. CIA was prepared by intradermal injection of collagen type II (CII) at tail base of DBA1/J mice. Expression of TH in the spleen and the ankle joints was measured by real-time polymerase chain reaction and Western blot analysis. Percentages of TH-expressing Th17 and Treg cells in splenic CD4 + T cells were determined by flow cytometry. Overexpression and knockdown of TH gene in CD4 + T cells were taken to evaluate effects of TH on Th17 and Treg cells in CIA. TH expression was upregulated in both the inflamed tissues (spleen and ankle joints) and the CD4 + T cells of CIA mice. In splenic CD4 + T cells, the cells expressing TH were increased during CIA. These cells that expressed more TH in CIA were mainly Th17 cells rather than Treg cells. TH gene overexpression in CD4 + T cells from CIA mice reduced Th17 cell percentage as well as Th17-related transcription factor and cytokine expression and secretion, whereas TH gene knockdown enhanced the Th17 cell activity. In contrast, TH gene overexpression increased Treg-related cytokine expression and secretion in CD4 + T cells of CIA mice, while TH gene knockdown decreased the Treg cell changes. Collectively, these findings show that CIA induces TH expression in CD4 + T cells, particularly in Th17 cells, and suggest that the increased TH expression during CIA represents an anti-inflammatory mechanism.

  20. Leukemia-associated Rho guanine nucleotide exchange factor (LARG) plays an agonist specific role in platelet function through RhoA activation

    PubMed Central

    Zou, Siying; Teixeira, Alexandra M.; Yin, Mingzhu; Xiang, Yaozu; Xavier-Ferruccio, Juliana; Zhang, Ping-xia; Hwa, John; Min, Wang; Krause, Diane S.

    2018-01-01

    Summary Leukemia-Associated RhoGEF (LARG) is highly expressed in platelets, which are essential for maintaining normal hemostasis. We studied the function of LARG in murine and human megakaryocytes and platelets with Larg knockout, shRNA-mediated knockdown and small molecule-mediated inhibition. We found that LARG is important for human, but not murine, megakaryocyte maturation. Larg KO mice exhibit macrothrombocytopenia, internal bleeding in the ovaries and prolonged bleeding times. KO platelets have impaired aggregation, α-granule release and integrin α2bβ3 activation in response to thrombin and thromboxane, but not to ADP. The same agonist-specific reductions in platelet aggregation occur in human platelets treated with a LARG inhibitor. Larg KO platelets have reduced RhoA activation and myosin light chain phosphorylation, suggesting that Larg plays an agonist-specific role in platelet signal transduction. Using 2 different in vivo assays, Larg KO mice are protected from in vivo thrombus formation. Together, these results establish that LARG regulates human megakaryocyte maturation, and is critical for platelet function in both humans and mice. PMID:27345948

  1. Leukaemia-associated Rho guanine nucleotide exchange factor (LARG) plays an agonist specific role in platelet function through RhoA activation.

    PubMed

    Zou, Siying; Teixeira, Alexandra M; Yin, Mingzhu; Xiang, Yaozu; Xavier-Ferrucio, Juliana; Zhang, Ping-Xia; Hwa, John; Min, Wang; Krause, Diane S

    2016-08-30

    Leukemia-Associated RhoGEF (LARG) is highly expressed in platelets, which are essential for maintaining normal haemostasis. We studied the function of LARG in murine and human megakaryocytes and platelets with Larg knockout (KO), shRNA-mediated knockdown and small molecule-mediated inhibition. We found that LARG is important for human, but not murine, megakaryocyte maturation. Larg KO mice exhibit macrothrombocytopenia, internal bleeding in the ovaries and prolonged bleeding times. KO platelets have impaired aggregation, α-granule release and integrin α2bβ3 activation in response to thrombin and thromboxane, but not to ADP. The same agonist-specific reductions in platelet aggregation occur in human platelets treated with a LARG inhibitor. Larg KO platelets have reduced RhoA activation and myosin light chain phosphorylation, suggesting that Larg plays an agonist-specific role in platelet signal transduction. Using two different in vivo assays, Larg KO mice are protected from in vivo thrombus formation. Together, these results establish that LARG regulates human megakaryocyte maturation, and is critical for platelet function in both humans and mice.

  2. RhoA/Rho-Kinase in the Cardiovascular System.

    PubMed

    Shimokawa, Hiroaki; Sunamura, Shinichiro; Satoh, Kimio

    2016-01-22

    Twenty years ago, Rho-kinase was identified as an important downstream effector of the small GTP-binding protein, RhoA. Thereafter, a series of studies demonstrated the important roles of Rho-kinase in the cardiovascular system. The RhoA/Rho-kinase pathway is now widely known to play important roles in many cellular functions, including contraction, motility, proliferation, and apoptosis, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Furthermore, the important role of Rho-kinase has been demonstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. Cyclophilin A is secreted by vascular smooth muscle cells and inflammatory cells and activated platelets in a Rho-kinase-dependent manner, playing important roles in a wide range of cardiovascular diseases. Thus, the RhoA/Rho-kinase pathway plays crucial roles under both physiological and pathological conditions and is an important therapeutic target in cardiovascular medicine. Recently, functional differences between ROCK1 and ROCK2 have been reported in vitro. ROCK1 is specifically cleaved by caspase-3, whereas granzyme B cleaves ROCK2. However, limited information is available on the functional differences and interactions between ROCK1 and ROCK2 in the cardiovascular system in vivo. Herein, we will review the recent advances about the importance of RhoA/Rho-kinase in the cardiovascular system. © 2016 American Heart Association, Inc.

  3. Mangiferin corrects the imbalance of Th17/Treg cells in mice with TNBS-induced colitis.

    PubMed

    Lim, Su-Min; Jeong, Jin-Ju; Choi, Hyun Sik; Chang, Hwan Bong; Kim, Dong-Hyun

    2016-05-01

    In the previous study, 80% ethanol extract of the rhizome mixture of Anemarrhena asphodeloides and Coptidis chinensis (AC) and its main constituent mangiferin improved TNBS-induced colitis in mice by inhibiting macrophage activation related to the innate immunity. In the preliminary study, we found that AC could inhibit Th17 cell differentiation in mice with TNBS-induced colitis. Therefore, we investigated whether AC and it main constituent mangiferin are capable of inhibiting inflammation by regulating T cell differentiation related to the adaptive immunity in vitro and in vivo. AC and mangiferin potently suppressed colon shortening and myeloperoxidase activity in mice with TNBS-induced colitis. They also suppressed TNBS-induced Th17 cell differentiation and IL-17 expression, but increased TNBS-suppressed Treg cell differentiation and IL-10 expression. Moreover, AC and mangiferin strongly inhibited the expression of TNF-α and IL-17, as well as the activation of NF-κB. Furthermore, mangiferin potently inhibited the differentiation of splenocytes into Th7 cells and increased the differentiation into Treg cells in vitro. Mangiferin also inhibited RORγt and IL-17 expression and STAT3 activation in splenocytes and induced Foxp3 and IL-10 expression and STAT5 activation. Based on these findings, mangiferin may ameliorate colitis by the restoration of disturbed Th17/Treg cells and inhibition of macrophage activation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Neurodegenerative disorder FTDP-17-related tau intron 10 +16C → T mutation increases tau exon 10 splicing and causes tauopathy in transgenic mice.

    PubMed

    Umeda, Tomohiro; Yamashita, Takenari; Kimura, Tetsuya; Ohnishi, Kiyouhisa; Takuma, Hiroshi; Ozeki, Tomoko; Takashima, Akihiko; Tomiyama, Takami; Mori, Hiroshi

    2013-07-01

    Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) is a neurodegenerative disorder caused by mutations in the tau gene. Many mutations identified in FTDP-17 have been shown to affect tau exon 10 splicing in vitro, which presumably causes pathologic imbalances in exon 10(-) [3-repeat (3R)] and exon 10(+) [4-repeat (4R)] tau expression and leads to intracellular inclusions of hyperphosphorylated tau in patient brains. However, no reports have investigated this theory using model mice with a tau intronic mutation. Herein, we generated new transgenic mice harboring the tau intron 10 +16C → T mutation. We prepared a transgene construct containing intronic sequences required for exon 10 splicing in the longest tau isoform cDNA. Although mice bearing the construct without the intronic mutation showed normal developmental changes of the tau isoform from 3R tau to equal amounts of 3R and 4R tau, mice with the mutation showed much higher levels of 4R tau at the adult stage. 4R tau was selectively recovered in insoluble brain fractions in their old age. Furthermore, these mice displayed abnormal tau phosphorylation, synapse loss and dysfunction, memory impairment, glial activation, tangle formation, and neuronal loss in an age-dependent manner. These findings provide the first evidence in a mouse model that a tau intronic mutation-induced imbalance of 3R and 4R tau could be a cause of tauopathy. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. RhoE deficiency alters postnatal subventricular zone development and the number of calbindin-expressing neurons in the olfactory bulb of mouse.

    PubMed

    Ballester-Lurbe, Begoña; González-Granero, Susana; Mocholí, Enric; Poch, Enric; García-Manzanares, María; Dierssen, Mara; Pérez-Roger, Ignacio; García-Verdugo, José M; Guasch, Rosa M; Terrado, José

    2015-11-01

    The subventricular zone represents an important reservoir of progenitor cells in the adult brain. Cells from the subventricular zone migrate along the rostral migratory stream and reach the olfactory bulb, where they originate different types of interneurons. In this work, we have analyzed the role of the small GTPase RhoE/Rnd3 in subventricular zone cell development using mice-lacking RhoE expression. Our results show that RhoE null mice display a remarkable postnatal broadening of the subventricular zone and caudal rostral migratory stream. This broadening was caused by an increase in progenitor proliferation, observed in the second postnatal week but not before, and by an altered migration of the cells, which appeared in disorganized cell arrangements that impaired the appropriate contact between cells in the rostral migratory stream. In addition, the thickness of the granule cell layer in the olfactory bulb was reduced, although the density of granule cells did not differ between wild-type and RhoE null mice. Finally, the lack of RhoE expression affected the olfactory glomeruli inducing a severe reduction of calbindin-expressing interneurons in the periglomerular layer. This was already evident in the newborns and even more pronounced 15 days later when RhoE null mice displayed 89% less cells than control mice. Our results indicate that RhoE has pleiotropic functions on subventricular cells because of its role in proliferation and tangential migration, affecting mainly the development of calbindin-expressing cells in the olfactory bulb.

  6. Significance of Peptide Transporter 1 in the Intestinal Permeability of Valacyclovir in Wild-Type and PepT1 Knockout Mice

    PubMed Central

    Yang, Bei

    2013-01-01

    The purpose of this study was to quantitatively determine the contribution of PepT1 [peptide transporter 1 (SLC15A1)] to the intestinal permeability of valacyclovir, an ester prodrug of the antiviral drug acyclovir. In situ single-pass intestinal perfusions were employed (pH 6.5 × 90 minutes) to assess the effective permeability (Peff) of 100 μM [3H]valacyclovir in wild-type and PepT1 knockout mice. Acyclovir pharmacokinetics was also evaluated after oral administration of 25 nmol/g valacyclovir. In wild-type mice, jejunal uptake of valacyclovir was best described by both saturable (Km = 10.2 mM) and nonsaturable components where the saturable pathway accounted for 82% of total transport. Valacyclovir Peff was 2.4 × 10−4 cm/s in duodenum, 1.7 × 10−4 cm/s in jejunum, 2.1 × 10−4 cm/s in ileum, and 0.27 × 10−4 cm/s in colon. In Pept1 knockout mice, Peff values were about 10% of that in wild-type animals for these small intestinal segments. Valacyclovir Peff was similar in the colon of both genotypes. There were no differences in valacyclovir Peff between any of the intestinal segments of PepT1 knockout mice. Valacyclovir Peff was significantly reduced by the dipeptide glycylsarcosine and the aminocephalosporin cefadroxil, but not by the amino acids l-valine or l-histidine, the organic acid p-aminohippurate, or the organic base tetraethylammonium (all at 25 mM). PepT1 ablation resulted in 3- to 5-fold reductions in the in vivo rate and extent of valacyclovir absorption. Our findings conclusively demonstrate, using in situ and in vivo validations in genetically modified mice, that PepT1 has a major influence in improving the oral absorption of valacyclovir. PMID:23264448

  7. mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion.

    PubMed

    Liu, Lunhua; Das, Satarupa; Losert, Wolfgang; Parent, Carole A

    2010-12-14

    We studied the role of the target of rapamycin complex 2 (mTORC2) during neutrophil chemotaxis, a process that is mediated through the polarization of actin and myosin filament networks. We show that inhibition of mTORC2 activity, achieved via knock down (KD) of Rictor, severely inhibits neutrophil polarization and directed migration induced by chemoattractants, independently of Akt. Rictor KD also abolishes the ability of chemoattractants to induce cAMP production, a process mediated through the activation of the adenylyl cyclase 9 (AC9). Cells with either reduced or higher AC9 levels also exhibit specific and severe tail retraction defects that are mediated through RhoA. We further show that cAMP is excluded from extending pseudopods and remains restricted to the cell body of migrating neutrophils. We propose that the mTORC2-dependent regulation of MyoII occurs through a cAMP/RhoA-signaling axis, independently of actin reorganization during neutrophil chemotaxis. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Depletion of regulatory T cells leads to an exacerbation of delayed-type hypersensitivity arthritis in C57BL/6 mice that can be counteracted by IL-17 blockade

    PubMed Central

    Atkinson, Sara Marie; Hoffmann, Ute; Hamann, Alf; Bach, Emil; Danneskiold-Samsøe, Niels Banhos; Kristiansen, Karsten; Serikawa, Kyle; Fox, Brian; Kruse, Kim; Haase, Claus; Skov, Søren; Nansen, Anneline

    2016-01-01

    ABSTRACT Rodent models of arthritis have been extensively used in the elucidation of rheumatoid arthritis (RA) pathogenesis and are instrumental in the development of therapeutic strategies. Here we utilise delayed-type hypersensitivity arthritis (DTHA), a model in C57BL/6 mice affecting one paw with synchronised onset, 100% penetrance and low variation. We investigate the role of regulatory T cells (Tregs) in DTHA through selective depletion of Tregs and the role of IL-17 in connection with Treg depletion. Given the relevance of Tregs in RA, and the possibility of developing Treg-directed therapies, this approach could be relevant for advancing the understanding of Tregs in inflammatory arthritis. Selective depletion of Tregs was achieved using a Foxp3-DTR-eGFP mouse, which expresses the diphtheria toxin receptor (DTR) and enhanced green fluorescent protein (eGFP) under control of the Foxp3 gene. Anti-IL-17 monoclonal antibody (mAb) was used for IL-17 blockade. Numbers and activation of Tregs increased in the paw and its draining lymph node in DTHA, and depletion of Tregs resulted in exacerbation of disease as shown by increased paw swelling, increased infiltration of inflammatory cells, increased bone remodelling and increased production of inflammatory mediators, as well as increased production of anti-citrullinated protein antibodies. Anti-IL-17 mAb treatment demonstrated that IL-17 is important for disease severity in both the presence and absence of Tregs, and that IL-17 blockade is able to rescue mice from the exacerbated disease caused by Treg depletion and caused a reduction in RANKL, IL-6 and the number of neutrophils. We show that Tregs are important for the containment of inflammation and bone remodelling in DTHA. To our knowledge, this is the first study using the Foxp3-DTR-eGFP mouse on a C57BL/6 background for Treg depletion in an arthritis model, and we here demonstrate the usefulness of the approach to study the role of Tregs and IL-17 in arthritis

  9. Inhibition of AGEs/RAGE/Rho/ROCK pathway suppresses non-specific neuroinflammation by regulating BV2 microglial M1/M2 polarization through the NF-κB pathway.

    PubMed

    Chen, Jingkao; Sun, Zhaowei; Jin, Minghua; Tu, Yalin; Wang, Shengnan; Yang, Xiaohong; Chen, Qiuhe; Zhang, Xiao; Han, Yifan; Pi, Rongbiao

    2017-04-15

    The microglia-mediated neuroinflammation plays an important role in the pathogenesis of Alzheimer's disease (AD). Advanced glycation end products (AGEs)/receptor for advanced glycation end products (RAGE) or Rho/Rho kinase (ROCK) are both involved in the development of non-specific inflammation. However, there are few reports about their effects on neuroinflammation. Here, we explored the mechanism of AGEs/RAGE/Rho/ROCK pathway underlying the non-specific inflammation and microglial polarization in BV2 cells. AGEs could activate ROCK pathway in a concentration-dependent manner. ROCK inhibitor fasudil and RAGE-specific blocker FPS-ZM1 significantly inhibited AGEs-mediated activation of BV2 cells and induction of reactive oxygen species (ROS). FPS-ZM1 and fasudil exerted their anti-inflammatory effects by downregulating inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), NLRP3 and nuclear translocation of nuclear factor kappa B (NF-κB) p65. In addition, AGEs induced both M1 (CD16/32, M1 marker) and M2 (CD206, M2 marker) phenotype in BV2 cells. Fasudil and FPS-ZM1 led to a decreased M1 and increased M2 phenotype. Together, these results indicate that the AGEs/RAGE/Rho/ROCK pathway in BV2 cells could intensify the non-specific inflammation of AD, which will provide novel strategies for the development of anti-AD drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. RhoA/ROCK may involve in cardiac hypertrophy induced by experimental hyperthyroidism.

    PubMed

    Na, Wang; Peng, Guan; Jianping, Zhang; Yanzhong, Chang; Shengjiang, Guan; Li, Chu

    2012-10-01

    In this study, the role of the RhoA/Rho-kinase (RhoA/ROCK)-signaling pathway in cardiovascular dysfunction associated with hyperthyroidism was examined with the use of fasudil, a Rho-kinase inhibitor. Male Spraque-Dawley rats were treated with l-thyroxine (T(4)) alone, T(4) + low-dose fasudil (2 mg/kg/day) or T(4) + high-dose fasudil (10 mg/kg/day) and compared with control animals. Rats in the T(4) group showed an increase in the ratio of heart weight to body weight, which was ameliorated by fasudil at both low and high doses. Morphometric and hemodynamic parameters were also evaluated and confirmed that fasudil attenuated the cardiac hypertrophy induced by T(4). The extent of phosphorylation of the myosin phosphatase targeting subunit was quantified by Western blotting to evaluate the activity of Rho-kinase in the heart tissue. Both Western blotting and reverse transcriptase-polymerase chain reaction analyses revealed enhancement of Rho-kinase and activator protein 1 activity and reduction of c-FLIP(L) expression in the T(4) group, and this response was inhibited by fasudil in a dose-dependent manner. Furthermore, fasudil inhibited apoptosis induced by T(4) as evidenced by the detection of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells and the expressions of bax and bcl-2. These results suggested that the RhoA/ROCK pathway is involved in the cardiac hypertrophy induced by experimental hyperthyroidism. The antagonism of this pathway may thus be useful as an alternative target in the treatment of hyperthyroid heart disease.

  11. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway

    PubMed Central

    Rajagopal, Senthilkumar; Kumar, Divya P.; Mahavadi, Sunila; Bhattacharya, Sayak; Zhou, Ruizhe; Corvera, Carlos U.; Bunnett, Nigel W.; Grider, John R.

    2013-01-01

    The present study characterized the TGR5 expression and the signaling pathways coupled to this receptor that mediates the relaxation of gastric smooth muscle. TGR5 was detected in gastric muscle cells by RT-PCR and Western blotting. Treatment of cells with the TGR5-selective ligand oleanolic acid (OA) activated Gαs, but not Gαq, Gαi1, Gαi2, or Gαi3, and increased cAMP levels. OA did not elicit contraction, but caused relaxation of carbachol-induced contraction of gastric muscle cells from wild-type mice, but not tgr5−/− mice. OA, but not a selective exchange protein activated by cAMP (Epac) ligand (8-pCPT-2′-O-Me-cAMP), caused phosphorylation of RhoA and the phosphorylation was blocked by the PKA inhibitor, myristoylated PKI, and by the expression of phosphorylation-deficient mutant RhoA (S188A). Both OA and Epac ligand stimulated Ras-related protein 1 (Rap1) and inhibited carbachol (CCh)-induced Rho kinase activity. Expression of RhoA (S188A) or PKI partly reversed the inhibition of Rho kinase activity by OA but had no effect on inhibition by Epac ligand. However, suppression of Rap1 with siRNA blocked the inhibition of Rho kinase by Epac ligand, and partly reversed the inhibition by OA; the residual inhibition was blocked by PKI. Muscle relaxation in response to OA, but not Epac ligand, was partly reversed by PKI. We conclude that activation of TGR5 causes relaxation of gastric smooth muscle and the relaxation is mediated through inhibition of RhoA/Rho kinase pathway via both cAMP/Epac-dependent stimulation of Rap1 and cAMP/PKA-dependent phosphorylation of RhoA at Ser188. TGR5 receptor activation on smooth muscle reveals a novel mechanism for the regulation of gut motility by bile acids. PMID:23275618

  12. Erionite induces production of autoantibodies and IL-17 in C57BL/6 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zebedeo, Christian Nash; Davis, Chad; Peña, Cecelia

    Background: Erionite has similar chemical and physical properties to amphibole asbestos, which induces autoantibodies in mice. Current exposures are occurring in North Dakota due to the use of erionite-contaminated gravel. While erionite is known to cause mesothelioma and other diseases associated with asbestos, there is little known about its effects on the immune system. Objectives: We performed this study to determine whether erionite evokes autoimmune reactions in mice. Methods: Bone marrow derived macrophages (BMDM) were used to measure toxicity induced by erionite. Cytokine production by BMDM and splenocytes of C57BL/6 mice was examined by bead arrays and ELISA following exposuremore » to erionite, amphiboles and chrysotile. Wild type C57BL/6 mice were exposed to saline, erionite, amphibole asbestos (Libby 6-Mix) or chrysotile through intratracheal instillations at equal mass (60 μg/mouse). Seven months after exposure, sera were examined for anti-nuclear antibodies (ANA) and IL-17. Immunohistochemistry was used to detect immune complex deposition in the kidneys. Results: Erionite and tremolite caused increased cytokine production belonging to the T{sub H}17 profile including IL-17, IL-6, TGF-β, and TNF-α. The frequency of ANA was increased in mice treated with erionite or amphibole compared to saline-treated mice. IL-17 and TNF-α were elevated in the sera of mice treated with erionite. The frequency of immune complex deposition in the kidneys increased from 33% in saline-treated mice to 90% with erionite. Conclusions: These data demonstrate that both erionite and amphibole asbestos induce autoimmune responses in mice, suggesting a potential for adverse effects in exposed communities. - Highlights: • Erionite, a fibrous mineral, is a current public health concern in the western USA. • Erionite exposure induces antinuclear autoantibodies in exposed mice. • Erionite induces a clear Th17 cytokine response in vitro and in vivo. • These responses were

  13. IL-1β and IL-23 Promote Extrathymic Commitment of CD27+CD122− γδ T Cells to γδT17 Cells

    PubMed Central

    2017-01-01

    γδT17 cells are a subset of γδ T cells committed to IL-17 production and are characterized by the expression of IL-23R and CCR6 and lack of CD27 expression. γδT17 cells are believed to arise within a narrow time window during prenatal thymic development. In agreement with this concept, we show in this study that adult Rag1−/− recipient mice of Il23rgfp/+ (IL-23R reporter) bone marrow selectively lack IL-23R+ γδT17 cells. Despite their absence in secondary lymphoid tissues during homeostasis, γδT17 cells emerge in bone marrow chimeric mice upon induction of skin inflammation by topical treatment with imiquimod cream (Aldara). We demonstrate that IL-1β and IL-23 together are able to promote the development of bona fide γδT17 cells from peripheral CD122−IL-23R− γδ T cells, whereas CD122+ γδ T cells fail to convert into γδT17 cells and remain stable IFN-γ producers (γδT1 cells). IL-23 is instrumental in expanding extrathymically generated γδT17 cells. In particular, TCR-Vγ4+ chain–expressing CD122−IL-23R− γδ T cells are induced to express IL-23R and IL-17 outside the thymus during skin inflammation. In contrast, TCR-Vγ1+ γδ T cells largely resist this process because prior TCR engagement in the thymus has initiated their commitment to the γδT1 lineage. In summary, our data reveal that the peripheral pool of γδ T cells retains a considerable degree of plasticity because it harbors “naive” precursors, which can be induced to produce IL-17 and replenish peripheral niches that are usually occupied by thymus-derived γδT17 cells. PMID:28855314

  14. Death Receptor 5—Targeted Depletion of Interleukin-23—Producing Macrophages, Th17, and Th1/17 Associated With Defective Tyrosine Phosphatase in Mice and Patients with Rheumatoid Arthritis

    PubMed Central

    Li, Jun; Yang, PingAr; Wu, Qi; Li, Hao; Ding, Yana; Hsu, Hui-Chen; Spalding, David M.; Mountz, John D.

    2014-01-01

    Objective. Bidirectional interactions between granulocyte-macrophage colony-stimulating factor–positive (GM-CSF+) T cell and interferon regulatory factor 5–positive (IRF-5+) macrophages play a major role in autoimmunity. In the absence of SH2 domain-containing phosphatase 1 (SHP-1), GM-CSF–stimulated cells are resistant to death receptor (DR)–mediated apoptosis. The objective of this study was to determine whether TRA-8, an anti-DR5 agonistic antibody, can eliminate inflammatory macrophages and CD4 T cells in the SHP-1–defective condition. Methods. Ubiquitous Cre (Ubc.Cre) human/mouse-chimeric DR5-transgenic mice were crossed with viable SHP-1–defective motheaten (mev/mev) mice. TRA-8 was administered weekly for up to 4 weeks. The clinical scores, histopathologic severity, and macrophage and CD4 T cell phenotypes were evaluated. The role of TRA-8 in depleting inflammatory macrophages and CD4 T cells was also evaluated, using synovial fluid obtained from patients with rheumatoid arthritis (RA). Results. The levels of Inflammatory macrophages (interleukine-23–positive [IL-23+] IRF5+) and CD4 T (IL-17+GM-CSF+) cells were elevated in mev/mev mice. In DR5-transgenic mev/mev mice, DR5 expression was up-regulated in these 2 cell populations. TRA-8 treatment depleted these cells and resulted in a significant reduction of inflammation and in the titers of autoantibodies. In synovial cells from patients with RA, the expression of IRF5 and DR5 was negatively correlated with the expression of PTPN6. TRA-8, but not TRAIL, suppressed RA inflammatory macrophages and Th17 cells under conditions in which the expression of SHP-1is low. Conclusion. In contrast with TRAIL, which lacks the capability to counteract the survival signal in the absence of SHP-1, TRA-8 eliminated both IRF5+ IL-23+ M1 macrophages and pathogenic GM-CSF+ IL-17+ CD4 T cells in a SHP-1-independent manner. The results of the current study suggest that TRA-8 can deplete inflammatory cell populations

  15. Rho'ing in and out of cells: viral interactions with Rho GTPase signaling.

    PubMed

    Van den Broeke, Céline; Jacob, Thary; Favoreel, Herman W

    2014-01-01

    Rho GTPases are key regulators of actin and microtubule dynamics and organization. Increasing evidence shows that many viruses have evolved diverse interactions with Rho GTPase signaling and manipulate them for their own benefit. In this review, we discuss how Rho GTPase signaling interferes with many steps in the viral replication cycle, especially entry, replication, and spread. Seen the diversity between viruses, it is not surprising that there is considerable variability in viral interactions with Rho GTPase signaling. However, several largely common effects on Rho GTPases and actin architecture and microtubule dynamics have been reported. For some of these processes, the molecular signaling and biological consequences are well documented while for others we just begin to understand them. A better knowledge and identification of common threads in the different viral interactions with Rho GTPase signaling and their ultimate consequences for virus and host may pave the way toward the development of new antiviral drugs that may target different viruses.

  16. Spaceflight on the Bion-M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice

    PubMed Central

    Sofronova, Svetlana I.; Tarasova, Olga S.; Gaynullina, Dina; Borzykh, Anna A.; Behnke, Bradley J.; Stabley, John N.; McCullough, Danielle J.; Maraj, Joshua J.; Hanna, Mina; Muller-Delp, Judy M.; Vinogradova, Olga L.

    2015-01-01

    Conditions during spaceflight, such as the loss of the head-to-foot gravity vector, are thought to potentially alter cerebral blood flow and vascular resistance. The purpose of the present study was to determine the effects of long-term spaceflight on the functional, mechanical, and structural properties of cerebral arteries. Male C57BL/6N mice were flown 30 days in a Bion-M1 biosatellite. Basilar arteries isolated from spaceflight (SF) (n = 6), habitat control (HC) (n = 6), and vivarium control (VC) (n = 16) mice were used for in vitro functional and mechanical testing and histological structural analysis. The results demonstrate that vasoconstriction elicited through a voltage-gated Ca2+ mechanism (30–80 mM KCl) and thromboxane A2 receptors (10−8 − 3 × 10−5 M U46619) are lower in cerebral arteries from SF mice. Inhibition of Rho-kinase activity (1 μM Y27632) abolished group differences in U46619-evoked contractions. Endothelium-dependent vasodilation elicited by acetylcholine (10 μM, 2 μM U46619 preconstriction) was virtually absent in cerebral arteries from SF mice. The pressure-diameter relation was lower in arteries from SF mice relative to that in HC mice, which was not related to differences in the extracellular matrix protein elastin or collagen content or the elastin/collagen ratio in the basilar arteries. Diameter, medial wall thickness, and medial cross-sectional area of unpressurized basilar arteries were not different among groups. These results suggest that the microgravity-induced attenuation of both vasoconstrictor and vasodilator properties may limit the range of vascular control of cerebral perfusion or impair the distribution of brain blood flow during periods of stress. PMID:25593287

  17. Identification of a negative regulatory region for the exchange activity and characterization of T332I mutant of Rho guanine nucleotide exchange factor 10 (ARHGEF10).

    PubMed

    Chaya, Taro; Shibata, Satoshi; Tokuhara, Yasunori; Yamaguchi, Wataru; Matsumoto, Hiroshi; Kawahara, Ichiro; Kogo, Mikihiko; Ohoka, Yoshiharu; Inagaki, Shinobu

    2011-08-26

    The T332I mutation in Rho guanine nucleotide exchange factor 10 (ARHGEF10) was previously found in persons with slowed nerve conduction velocities and thin myelination of peripheral nerves. However, the molecular and cellular basis of the T332I mutant is not understood. Here, we show that ARHGEF10 has a negative regulatory region in the N terminus, in which residue 332 is located, and the T332I mutant is constitutively active. An N-terminal truncated ARHGEF10 mutant, ARHGEF10 ΔN (lacking amino acids 1-332), induced cell contraction that was inhibited by a Rho kinase inhibitor Y27632 and had higher GEF activity for RhoA than the wild type. The T332I mutant also showed the phenotype similar to the N-terminal truncated mutant. These data suggest that the ARHGEF10 T332I mutation-associated phenotype observed in the peripheral nerves is due to activated GEF activity of the ARHGEF10 T332I mutant.

  18. Identification of a Negative Regulatory Region for the Exchange Activity and Characterization of T332I Mutant of Rho Guanine Nucleotide Exchange Factor 10 (ARHGEF10)*

    PubMed Central

    Chaya, Taro; Shibata, Satoshi; Tokuhara, Yasunori; Yamaguchi, Wataru; Matsumoto, Hiroshi; Kawahara, Ichiro; Kogo, Mikihiko; Ohoka, Yoshiharu; Inagaki, Shinobu

    2011-01-01

    The T332I mutation in Rho guanine nucleotide exchange factor 10 (ARHGEF10) was previously found in persons with slowed nerve conduction velocities and thin myelination of peripheral nerves. However, the molecular and cellular basis of the T332I mutant is not understood. Here, we show that ARHGEF10 has a negative regulatory region in the N terminus, in which residue 332 is located, and the T332I mutant is constitutively active. An N-terminal truncated ARHGEF10 mutant, ARHGEF10 ΔN (lacking amino acids 1–332), induced cell contraction that was inhibited by a Rho kinase inhibitor Y27632 and had higher GEF activity for RhoA than the wild type. The T332I mutant also showed the phenotype similar to the N-terminal truncated mutant. These data suggest that the ARHGEF10 T332I mutation-associated phenotype observed in the peripheral nerves is due to activated GEF activity of the ARHGEF10 T332I mutant. PMID:21719701

  19. Artemisinin analogue SM934 attenuate collagen-induced arthritis by suppressing T follicular helper cells and T helper 17 cells

    PubMed Central

    Lin, Ze-Min; Yang, Xiao-Qian; Zhu, Feng-Hua; He, Shi-Jun; Tang, Wei; Zuo, Jian-Ping

    2016-01-01

    SM934 is an artemisinin analogue with immunosuppressive properties and potent therapeutic activity against lupus-like diseases in autoimmune mice. In this report, the therapeutic efficacy and underlying mechanisms of SM934 on rheumatoid arthritis (RA) was investigated using collagen-induced arthritis (CIA) in DBA/1J mice. We demonstrated that SM934 treatment alleviate the severity of arthritis in CIA mice with established manifestations. The therapeutic benefits were associated with ameliorated joint swelling and reduced extent of bone erosion and destruction. Further, administration of SM934 diminished the development of T follicular helper (Tfh) cells and Th17 cells and suppressed the production of pathogenic antibodies, without altering the proportion of germinal center B cells. Ex vivo, SM934 treatment inhibited the bovine type II collagen (CII) induced proliferation and inflammatory cytokines secretion of CII -reactive T cells. In vitro, SM934 impeded the polarization of naïve CD4+ T cells into Tfh cells and the expression of its transcript factor Bcl-6. Moreover, SM934 decreased the IL-21-producing CD4+ T cells and dampened the IL-21 downstream signaling through STAT3. These finding offered the convincing evidence that artemisinin derivative might attenuate RA by simultaneously interfering with the generation of Tfh cells and Th17 cells as well as the subsequent antibody-mediated immune responses. PMID:27897259

  20. Protection against Chlamydia psittaci in mice conferred by Lyt-2+ T cells.

    PubMed Central

    Buzoni-Gatel, D; Guilloteau, L; Bernard, F; Bernard, S; Chardès, T; Rocca, A

    1992-01-01

    A murine model was used to study the respective roles of L3T4+ and Lyt-2+ T cells in protection against Chlamydia psittaci. Donor mice were intravenously (i.v.) infected with 1 x 10(5) plaque-forming units (PFU) per mice of live C. psittaci. One month after inoculation, splenic cells from donors were transferred into syngenic recipients (5 x 10(7) cells/mouse). As measured by splenic colonization on Day 6 after i.v. challenge (1 x 10(5) PFU/mouse), transfer with primed (untreated) cells conferred a 3 log protection in this model. In vitro treatment, before transfer, of splenic cells with anti-Lyt-2 monoclonal antibody (mAb) and complement, markedly impaired the protection in comparison with control mice transferred with primed untreated cells, whereas treatment with anti-L3T4 mAb did not reduce the transferred protection. Resistance to a reinfection with C. psittaci was also studied after selective in vivo depletion of L3T4+ and Lyt-2+ T cells. One month after primary infection, mice were treated with anti-L3T4 or anti-Lyt-2 mAb and challenged thereafter (i.v., 1 x 10(5) PFU). The splenic colonization on Day 6 after challenge demonstrated that treatment with anti-Lyt-2 mAb impaired resistance against a subsequent infection with C. psittaci. Treatment with anti-L3T4 mAb in vivo had no effect on protection, as previously described in vitro. The mechanisms by which Lyt-2+ T cells could participate in the elimination of bacteria were discussed. PMID:1427980

  1. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss.

    PubMed

    Sampson, John H; Choi, Bryan D; Sanchez-Perez, Luis; Suryadevara, Carter M; Snyder, David J; Flores, Catherine T; Schmittling, Robert J; Nair, Smita K; Reap, Elizabeth A; Norberg, Pamela K; Herndon, James E; Kuan, Chien-Tsun; Morgan, Richard A; Rosenberg, Steven A; Johnson, Laura A

    2014-02-15

    Chimeric antigen receptor (CAR) transduced T cells represent a promising immune therapy that has been shown to successfully treat cancers in mice and humans. However, CARs targeting antigens expressed in both tumors and normal tissues have led to significant toxicity. Preclinical studies have been limited by the use of xenograft models that do not adequately recapitulate the immune system of a clinically relevant host. A constitutively activated mutant of the naturally occurring epidermal growth factor receptor (EGFRvIII) is antigenically identical in both human and mouse glioma, but is also completely absent from any normal tissues. We developed a third-generation, EGFRvIII-specific murine CAR (mCAR), and performed tests to determine its efficacy in a fully immunocompetent mouse model of malignant glioma. At elevated doses, infusion with EGFRvIII mCAR T cells led to cures in all mice with brain tumors. In addition, antitumor efficacy was found to be dependent on lymphodepletive host conditioning. Selective blockade with EGFRvIII soluble peptide significantly abrogated the activity of EGFRvIII mCAR T cells in vitro and in vivo, and may offer a novel strategy to enhance the safety profile for CAR-based therapy. Finally, mCAR-treated, cured mice were resistant to rechallenge with EGFRvIII(NEG) tumors, suggesting generation of host immunity against additional tumor antigens. All together, these data support that third-generation, EGFRvIII-specific mCARs are effective against gliomas in the brain and highlight the importance of syngeneic, immunocompetent models in the preclinical evaluation of tumor immunotherapies. ©2013 AACR

  2. Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice

    PubMed Central

    Garofalo, Stefano; D’Alessandro, Giuseppina; Chece, Giuseppina; Brau, Frederic; Maggi, Laura; Rosa, Alessandro; Porzia, Alessandra; Mainiero, Fabrizio; Esposito, Vincenzo; Lauro, Clotilde; Benigni, Giorgia; Bernardini, Giovanni; Santoni, Angela; Limatola, Cristina

    2015-01-01

    Mice exposed to standard (SE) or enriched environment (EE) were transplanted with murine or human glioma cells and differences in tumour development were evaluated. We report that EE exposure affects: (i) tumour size, increasing mice survival; (ii) glioma establishment, proliferation and invasion; (iii) microglia/macrophage (M/Mφ) activation; (iv) natural killer (NK) cell infiltration and activation; and (v) cerebral levels of IL-15 and BDNF. Direct infusion of IL-15 or BDNF in the brain of mice transplanted with glioma significantly reduces tumour growth. We demonstrate that brain infusion of IL-15 increases the frequency of NK cell infiltrating the tumour and that NK cell depletion reduces the efficacy of EE and IL-15 on tumour size and of EE on mice survival. BDNF infusion reduces M/Mφ infiltration and CD68 immunoreactivity in tumour mass and reduces glioma migration inhibiting the small G protein RhoA through the truncated TrkB.T1 receptor. These results suggest alternative approaches for glioma treatment. PMID:25818172

  3. Arctigenin Suppress Th17 Cells and Ameliorates Experimental Autoimmune Encephalomyelitis Through AMPK and PPAR-γ/ROR-γt Signaling.

    PubMed

    Li, Wen; Zhang, Zhihui; Zhang, Kai; Xue, Zhenyi; Li, Yan; Zhang, Zimu; Zhang, Lijuan; Gu, Chao; Zhang, Qi; Hao, Junwei; Da, Yurong; Yao, Zhi; Kong, Ying; Zhang, Rongxin

    2016-10-01

    Arctigenin is a herb compound extract from Arctium lappa and is reported to exhibit pharmacological properties, including neuronal protection and antidiabetic, antitumor, and antioxidant properties. However, the effects of arctigenin on autoimmune inflammatory diseases of the CNS, multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE) are still unclear. In this study, we demonstrated that arctigenin-treated mice are resistant to EAE; the clinical scores of arctigenin-treated mice are significantly reduced. Histochemical assays of spinal cord sections also showed that arctigenin reduces inflammation and demyelination in mice with EAE. Furthermore, the Th1 and Th17 cells in peripheral immune organs are inhibited by arctigenin in vivo. In addition, the Th1 cytokine IFN-γ and transcription factor T-bet, as well as the Th17 cytokines IL-17A, IL-17F, and transcription factor ROR-γt are significantly suppressed upon arctigenin treatment in vitro and in vivo. Interestedly, Th17 cells are obviously inhibited in CNS of mice with EAE, while Th1 cells do not significantly change. Besides, arctigenin significantly restrains the differentiation of Th17 cells. We further demonstrate that arctigenin activates AMPK and inhibits phosphorylated p38, in addition, upregulates PPAR-γ, and finally suppresses ROR-γt. These findings suggest that arctigenin may have anti-inflammatory and immunosuppressive properties via inhibiting Th17 cells, indicating that it could be a potential therapeutic drug for multiple sclerosis or other autoimmune inflammatory diseases.

  4. Sirolimus ameliorates inflammatory responses by switching the regulatory T/T helper type 17 profile in murine colitis

    PubMed Central

    Yin, Hui; Li, Xiangyong; Zhang, Bobin; Liu, Tao; Yuan, Baohong; Ni, Qian; Hu, Shilian; Gu, Hongbiao

    2013-01-01

    Inflammatory bowel disease is characterized by dysregulated immune responses in inflamed intestine, with dominance of interleukin-17 (IL-17) -producing cells and deficiency of regulatory T (Treg) cells. The aim of this study was to investigate the effect and mechanisms of sirolimus, an inhibitor of the mammalian target of rapamycin, on immune responses in a murine model of Crohn's disease. Murine colitis was induced by intrarectal administration of 2,4,6-trinitrobenzene sulphonic acid at day 0. Mice were then treated intraperitoneally with sirolimus daily for 3 days. The gross and histological appearances of the colon and the numbers, phenotype and cytokine production of lymphocytes were compared with these characteristics in a control group. Sirolimus treatment significantly decreased all macroscopic, microscopic and histopathological parameters of colitis that were analysed. The therapeutic effects of sirolimus were associated with a down-regulation of pro-inflammatory cytokines tumour necrosis factor-α, IL-6 and IL-17A. Intriguingly, sirolimus administration resulted in a prominent up-regulation of the regulatory cytokine transforming growth factor-β. Supporting the hypothesis that sirolimus directly affects the functional activity of CD4+ CD25+ Treg cells, we observed a remarkable enhancement of FoxP3 expression in colon tissues and isolated CD4+ T cells of sirolimus-treated mice. Simultaneously, sirolimus treatment led to a significant reduction in the number of CD4+ IL-17A+ T cells in the mesenteric lymph node cells as well as IL-17A production in mesenteric lymph node cells. Therefore, sirolimus may offer a promising new therapeutic strategy for the treatment of inflammatory bowel disease. PMID:23480027

  5. Systemic effects in naïve mice injected with immunomodulatory lectin ArtinM

    PubMed Central

    Oliveira Brito, Patrícia Kellen Martins; Gonçalves, Thiago Eleutério; Fernandes, Fabrício Freitas; Miguel, Camila Botelho; Rodrigues, Wellington Francisco; Lazo Chica, Javier Emílio; Roque-Barreira, Maria Cristina

    2017-01-01

    Toll-like receptors (TLR) contain N-glycans, which are important glycotargets for plant lectins, to induce immunomodulation. The lectin ArtinM obtained from Artocarpus heterophyllus interacts with TLR2 N-glycans to stimulate IL-12 production by antigen-presenting cells and to drive the immune response toward the Th1 axis, conferring resistance against intracellular pathogens. This immunomodulatory effect was demonstrated by subcutaneously injecting (s.c.) ArtinM (0.5 μg) in infected mice. In this study, we evaluated the systemic implications of ArtinM administration in naïve BALB/c mice. The mice were s.c. injected twice (7 days interval) with ArtinM (0.5, 1.0, 2.5, or 5.0 μg), LPS (positive control), or PBS (negative control) and euthanized after three days. None of the ArtinM-injected mice exhibited change in body weight, whereas the relative mass of the heart and lungs diminished in mice injected with the highest ArtinM dose (5.0 μg). Few and discrete inflammatory foci were detected in the heart, lung, and liver of mice receiving ArtinM at doses ≥2.5 μg. Moreover, the highest dose of ArtinM was associated with increased serum levels of creatine kinase MB isoenzyme (CK-MB) and globulins as well as an augmented presence of neutrophils in the heart and lung. IL-12, IFN-γ, TNF-α, and IL-10 measurements in the liver, kidney, spleen, heart, and lung homogenates revealed decreased IL-10 level in the heart and lung of mice injected with 5.0 μg ArtinM. We also found an augmented frequency of T helper and B cells in the spleen of all ArtinM-injected naïve mice, whereas the relative expressions of T-bet, GATA-3, and ROR-γt were similar to those in PBS-injected animals. Our study demonstrates that s.c. injection of high doses of ArtinM in naïve mice promotes mild inflammatory lesions and that a low immunomodulatory dose is innocuous to naïve mice. PMID:29084277

  6. Increased pulmonary RhoA expression in the nitrofen-induced congenital diaphragmatic hernia rat model.

    PubMed

    Takayasu, Hajime; Masumoto, Kouji; Hagiwara, Koki; Sasaki, Takato; Ono, Kentaro; Jimbo, Takahiro; Uesugi, Toru; Gotoh, Chikashi; Urita, Yasuhisa; Shinkai, Toko; Tanaka, Hideaki

    2015-09-01

    Persistent pulmonary hypertension remains a major cause of mortality and morbidity in cases of congenital diaphragmatic hernia (CDH). Recently, RhoA/Rho-kinase-mediated vasoconstriction has been reported to be important in the pathogenesis of pulmonary hypertension (PH). Several recent reports have described that fasudil, a potent Rho-kinase inhibitor and vasodilator, could represent a potential therapeutic option for PH. We designed this study to investigate the hypothesis that the expression level of RhoA is increased in the nitrofen-induced CDH rat model. The expression level of Wnt11, an activator of RhoA, was also evaluated. Pregnant rats were treated with or without nitrofen on gestational day 9 (D9). Fetuses were sacrificed on D17, D19 and D21 and were divided into control and CDH groups. Quantitative real-time polymerase chain reaction was performed to determine the pulmonary gene expression levels of both Wnt11 and RhoA. An immunofluorescence study was also performed to evaluate the expression and localization of RhoA. The relative mRNA expression levels of pulmonary Wnt11 and RhoA on D21 were significantly increased in the CDH group compared with the control group (p=0.016 and p=0.008, respectively). The immunofluorescence study confirmed the overexpression of RhoA in the pulmonary vessels of CDH rats on D21. Our results provide evidence that the RhoA/Rho-kinase-mediated pathway is involved in the pathogenesis of PH in the nitrofen-induced CDH rat model. Our data also suggest that the fasudil, a Rho-kinase inhibitor, could represent a therapeutic option for the treatment of PH in CDH. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. IL-17 and γδ T-lymphocytes play a critical role in innate immunity against Nocardia asteroides GUH-2

    PubMed Central

    Tam, Stanley; Maksaereekul, Saipiroon; Hyde, Dallas M.; Godinez, Ivan; Beaman, Blaine L.

    2012-01-01

    The early host response during pulmonary nocardiosis is highly dependent on neutrophils and the successful clearance of bacteria in tissue. The data presented in this study showed that IL-17 mediated the neutrophil response following intranasal inoculation with Nocardia asteroides strain GUH-2. Flow cytometry revealed that neutrophil levels in C57BL/6 mice were increased by day 1 post inoculation and remained elevated until day 3, during which time the majority of bacterial clearance occurred. Intracellular cytokine staining for IL-17 showed a 3.5- to 5-fold increase in IL-17 producing T-lymphocytes that were predominately comprised by CD4−CD8− γδ T-lymphocytes. The importance of IL-17 and γδ T-cells was determined by the in vivo administration of antibody, capable of blocking IL-17 binding or TCR δ, respectively. Neutralization of either IL-17 or γδ T-cells in Nocardia treated mice resulted in attenuated neutrophil infiltration. Paralleling this impaired neutrophil recruitment, nearly a 10-fold increase in bacterial burden was observed in both anti-IL-17 and anti-TCR δ treated animals. Together, these data indicate a protective role for IL-17 and suggest that IL-17 producing γδ T-lymphocytes contribute to neutrophil infiltration during pulmonary nocardiosis. PMID:22634423

  8. Novel Role for Interleukin-17 in Enhancing Type 1 Helper T Cell Immunity in the Female Genital Tract following Mucosal Herpes Simplex Virus 2 Vaccination

    PubMed Central

    Bagri, Puja; Anipindi, Varun C.; Nguyen, Philip V.; Vitali, Danielle; Stämpfli, Martin R.

    2017-01-01

    ABSTRACT It is well established that interferon gamma (IFN-γ) production by CD4+ T cells is critical for antiviral immunity against herpes simplex virus 2 (HSV-2) genital infection. However, the role of interleukin-17A (IL-17A) production by CD4+ T cells in HSV-2 antiviral immunity is yet to be elucidated. Here we demonstrate that IL-17A plays an important role in enhancing antiviral T helper type 1 (Th1) responses in the female genital tract (FGT) and is essential for effective protection conferred by HSV-2 vaccination. While IL-17A did not play a critical role during primary genital HSV-2 infection, seen by lack of differences in susceptibility between IL-17A-deficient (IL-17A−/−) and wild-type (WT) C57BL/6 mice, it was critical for mediating antiviral responses after challenge/reexposure. Compared to WT mice, IL-17A−/− mice (i) infected intravaginally and reexposed or (ii) vaccinated intranasally and challenged intravaginally demonstrated poor outcomes. Following intravaginal HSV-2 reexposure or challenge, vaccinated IL-17A−/− mice had significantly higher mortality, greater disease severity, higher viral shedding, and higher levels of proinflammatory cytokines and chemokines in vaginal secretions. Furthermore, IL-17A−/− mice had impaired Th1 cell responses after challenge/reexposure, with significantly lower proportions of vaginal IFN-γ+ CD4+ T cells. The impaired Th1 cell responses in IL-17A−/− mice coincided with smaller populations of IFN-γ+ CD4+ tissue resident memory T (TRM) cells in the genital tract postimmunization. Taken together, these findings describe a novel role for IL-17A in regulating antiviral IFN-γ+ Th1 cell immunity in the vaginal tract. This strategy could be exploited to enhance antiviral immunity following HSV-2 vaccination. IMPORTANCE T helper type 1 (Th1) immunity, specifically interferon gamma (IFN-γ) production by CD4+ T cells, is critical for protection against genital herpesvirus (HSV-2) infection, and

  9. Panax Notoginseng Saponin Controls IL-17 Expression in Helper T Cells

    PubMed Central

    Wei, Jia-Ru; Wen, Xiaofeng; Bible, Paul W.; Li, Zhiyu; Nussenblatt, Robert B.

    2017-01-01

    Abstract Purpose: Panax Notoginseng, a traditional Chinese medicine, is known as an anti-inflammatory herb. However, the molecular mechanism by which it controls helper T cell mediated immune responses is largely unknown. Methods: Naive CD4+ T cells isolated from healthy donors, patients with Behcet's disease, and C57BL/6 mice were polarized into Th1, Th17, and Treg cells. Proliferation and cytokine expression were measured in these cells with the presence or absence of Panax Notoginseng saponins (PNS). Genomewide expression profiles of Th1, Th17, and Treg cells were assessed using Affymetrix microarray analysis. Results: We found that PNS control the proliferation and differentiation of Th17 cells by globally downregulating the expression of inflammatory cytokines and cell cycle genes. Conclusions: These findings demonstrated that PNS function as an anti-inflammatory agent through directly targeting Th17 cell mediated immune response. PMID:28051353

  10. Intestinal IgA responses to Giardia muris in mice depleted of helper T lymphocytes and in immunocompetent mice.

    PubMed

    Heyworth, M F

    1989-04-01

    Immunocompetent mice infected with Giardia muris generate an intestinal antibody response to this parasite and clear G. muris infection. Previous work has shown that G. muris infection is prolonged in mice that have been depleted of helper (CD4+) T lymphocytes by treatment with a monoclonal antibody (mAb) directed against the murine CD4 antigen. The aim of the present study was to compare the intestinal anti-Giardia antibody response in immunocompetent mice and in mice depleted of helper T (Th) lymphocytes by treatment with anti-CD4 mAb. Immunocompetent mice generated an IgA response to G. muris, as judged by the presence of IgA on Giardia trophozoites harvested from the intestine of these animals more than 10 days after the start of the infection. The anti-Giardia IgA response was impaired in mice depleted of Th lymphocytes, as judged by virtual absence of immunofluorescent staining of trophozoites from these animals for surface-bound IgA. Clearance of G. muris infection was impaired by treatment of mice with anti-CD4 mAb. The results suggest that Th (CD4+) lymphocytes are important for the generation of a local IgA response against G. muris trophozoites in the mouse intestine and that IgA anti-trophozoite antibody may contribute to the clearance of G. muris from the intestine of immunocompetent mice.

  11. A multipronged strategy of an anti-terminator protein to overcome Rho-dependent transcription termination

    PubMed Central

    Muteeb, Ghazala; Dey, Debashish; Mishra, Saurabh; Sen, Ranjan

    2012-01-01

    One of the important role of Rho-dependent transcription termination in bacteria is to prevent gene expressions from the bacteriophage DNA. The transcription anti-termination systems of the lambdoid phages have been designed to overcome this Rho action. The anti-terminator protein N has three interacting regions, which interact with the mRNA, with the NusA and with the RNA polymerase. Here, we show that N uses all these interaction modules to overcome the Rho action. N and Rho co-occupy their overlapping binding sites on the nascent RNA (the nutR/tR1 site), and this configuration slows down the rate of ATP hydrolysis and the rate of RNA release by Rho from the elongation complex. N-RNA polymerase interaction is not too important for this Rho inactivation process near/at the nutR site. This interaction becomes essential when the elongation complex moves away from the nutR site. From the unusual NusA-dependence property of a Rho mutant E134K, a suppressor of N, we deduced that the N-NusA complex in the anti-termination machinery reduces the efficiency of Rho by removing NusA from the termination pathway. We propose that NusA-remodelling is also one of the mechanisms used by N to overcome the termination signals. PMID:23024214

  12. A multipronged strategy of an anti-terminator protein to overcome Rho-dependent transcription termination.

    PubMed

    Muteeb, Ghazala; Dey, Debashish; Mishra, Saurabh; Sen, Ranjan

    2012-12-01

    One of the important role of Rho-dependent transcription termination in bacteria is to prevent gene expressions from the bacteriophage DNA. The transcription anti-termination systems of the lambdoid phages have been designed to overcome this Rho action. The anti-terminator protein N has three interacting regions, which interact with the mRNA, with the NusA and with the RNA polymerase. Here, we show that N uses all these interaction modules to overcome the Rho action. N and Rho co-occupy their overlapping binding sites on the nascent RNA (the nutR/tR1 site), and this configuration slows down the rate of ATP hydrolysis and the rate of RNA release by Rho from the elongation complex. N-RNA polymerase interaction is not too important for this Rho inactivation process near/at the nutR site. This interaction becomes essential when the elongation complex moves away from the nutR site. From the unusual NusA-dependence property of a Rho mutant E134K, a suppressor of N, we deduced that the N-NusA complex in the anti-termination machinery reduces the efficiency of Rho by removing NusA from the termination pathway. We propose that NusA-remodelling is also one of the mechanisms used by N to overcome the termination signals.

  13. Inactivation of the small GTP binding protein Rho induces multinucleate cell formation and apoptosis in murine T lymphoma EL4.

    PubMed

    Moorman, J P; Bobak, D A; Hahn, C S

    1996-06-01

    The small G-protein Rho regulates the actin microfilament-dependent cytoskeleton. Exoenzyme C3 of Clostridium botulinum ADP-ribosylates Rho at Asn41, a modification that functionally inactivates Rho. Using a Sindbis virus-based transient gene expression system, we studied the role of Rho in murine EL4 T lymphoma cells. We generated a double subgenomic infectious Sindbis virus (dsSIN:C3) recombinant which expressed C3 in >95% of EL4 cells. This intracellular C3 resulted in modification and inactivation of virtually all endogenous Rho. dsSIN:C3 infection led to the formation of multinucleate cells, likely by inhibiting the actin microfilament-dependent step of cytokinesis. Intriguingly, in spite of the inhibition of cytokinesis, karyokinesis continued, with the result that cells containing a nuclear DNA content as high as 16N (eight nuclei) were observed. In addition, dsSIN:C3-mediated inactivation of Rho was a potent activator of apoptosis in EL4 cells. To discern whether the formation of multinucleate cells was responsible for the activation of apoptosis, 5-fluorouracil (5-FUra) was used to induce cell cycle arrest. As expected, EL4 cells treated with 5-FUra were prevented from forming multinucleate cells upon infection with dsSIN:C3. dsSIN:C3 infection, however, still caused marked apoptosis in 5-FUra-treated cells, indicating that this activation of apoptosis was independent of multinucleate cell formation.

  14. Rho GTPases and their downstream effectors in megakaryocyte biology.

    PubMed

    Pleines, Irina; Cherpokova, Deya; Bender, Markus

    2018-06-18

    Megakaryocytes differentiate from hematopoietic stem cells in the bone marrow. The transition of megakaryocytes to platelets is a complex process. Thereby, megakaryocytes extend proplatelets into sinusoidal blood vessels, where the proplatelets undergo fission to release platelets. Defects in platelet production can lead to a low platelet count (thrombocytopenia) with increased bleeding risk. Rho GTPases comprise a family of small signaling G proteins that have been shown to be master regulators of the cytoskeleton controlling many aspects of intracellular processes. The generation of Pf4-Cre transgenic mice was a major breakthrough that enabled studies in megakaryocyte-/platelet-specific knockout mouse lines and provided new insights into the central regulatory role of Rho GTPases in megakaryocyte maturation and platelet production. In this review, we will summarize major findings on the role of Rho GTPases in megakaryocyte biology with a focus on mouse lines in which knockout strategies have been applied to study the function of the best-characterized members Rac1, Cdc42 and RhoA and their downstream effector proteins.

  15. UV-induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model.

    PubMed

    Wang, Jake; Perry, Curtis J; Meeth, Katrina; Thakral, Durga; Damsky, William; Micevic, Goran; Kaech, Susan; Blenman, Kim; Bosenberg, Marcus

    2017-07-01

    Human melanomas exhibit relatively high somatic mutation burden compared to other malignancies. These somatic mutations may produce neoantigens that are recognized by the immune system, leading to an antitumor response. By irradiating a parental mouse melanoma cell line carrying three driver mutations with UVB and expanding a single-cell clone, we generated a mutagenized model that exhibits high somatic mutation burden. When inoculated at low cell numbers in immunocompetent C57BL/6J mice, YUMMER1.7 (Yale University Mouse Melanoma Exposed to Radiation) regresses after a brief period of growth. This regression phenotype is dependent on T cells as YUMMER1.7 tumors grow significantly faster in immunodeficient Rag1 -/- mice and C57BL/6J mice depleted of CD4 and CD8 T cells. Interestingly, regression can be overcome by injecting higher cell numbers of YUMMER1.7, which results in tumors that grow without effective rejection. Mice that have previously rejected YUMMER1.7 tumors develop immunity against higher doses of YUMMER1.7 tumor challenge. In addition, escaping YUMMER1.7 tumors are sensitive to anti-CTLA-4 and anti-PD-1 therapy, establishing a new model for the evaluation of immune checkpoint inhibition and antitumor immune responses. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. CD49a promotes T-cell-mediated hepatitis by driving T helper 1 cytokine and interleukin-17 production

    PubMed Central

    Chen, Yonglin; Peng, Hui; Chen, Yongyan; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2014-01-01

    It is becoming increasingly clear that the T-cell-mediated immune response is important in many diseases. In this study, we used concanavalin A (Con A) -induced hepatitis to investigate the role of CD49a in the molecular and cellular mechanism of the T-cell-mediated immune response. We found that CD49a−/− mice had significantly reduced levels of serum alanine aminotransferase and were protected from Con A-induced hepatitis. CD49a deficiency led to decreased production of interferon-γ (IFN-γ) and interleukin-17A (IL-17A) after Con A injection. Furthermore, we found that hepatic CD4+ T cells and invariant natural killer T cells up-regulated CD49a expression, along with enhanced activation after Con A injection, leading to production of inflammatory cytokines by these T cells. Blockade of CD49a in vivo ameliorated Con A-induced hepatitis with reduced production of IFN-γ and IL-17A. Hence, CD49a promoted Con A-induced hepatitis through enhancing inflammatory cytokine production (IFN-γ and IL-17A) by CD4+ T and invariant natural killer T cells. The protective effect of CD49a blockade antibody suggested a new target therapeutic molecule for intervention of T-cell-mediated liver injury. PMID:24164540

  17. Nickel Nanoparticles cause exaggerated lung and airway remodeling in mice lacking the T-box transcription factor, TBX21 (T-bet)

    PubMed Central

    2014-01-01

    Background Nickel nanoparticles (NiNPs) are increasingly used in a variety of industrial applications, including the manufacturing of multi-walled carbon nanotubes (MWCNTs). While occupational nickel exposure is a known cause of pulmonary alveolitis, fibrosis, and cancer, the health risks of NiNPs are not well understood, especially in susceptible individuals such as asthmatics. The T-box transcription factor Tbx21 (T-bet) maintains Th1 cell development and loss of T-bet is associated with a shift towards Th2 type allergic airway inflammation that characterizes asthma. The purpose of this study was to determine the role of T-bet in susceptibility to lung remodeling by NiNPs or MWCNTs. Methods Wild-type (WT) and T-bet-/- mice were exposed to NiNPs or MWCNTs (4 mg/kg) by oropharyngeal aspiration (OPA). Necropsy was performed at 1 and 21 days. Bronchoalveolar lavage fluid (BALF) was collected for differential counting of inflammatory cells and for measurement of cytokines by ELISA. The left lung was collected for histopathology. The right lung was analyzed for cytokine or mucin (MUC5AC and MUC5B) mRNAs. Results Morphometry of alcian-blue/periodic acid Schiff (AB/PAS)-stained lung tissue showed that NiNPs significantly increased mucous cell metaplasia in T-bet-/- mice at 21 days (p < 0.001) compared to WT mice, and increased MUC5AC and MUC5B mRNAs (p < 0.05). MWCNTs also increased mucous cell metaplasia in T-bet-/- mice, but to a lesser extent than NiNPs. Chronic alveolitis was also increased by NiNPs, but not MWCNTs, in T-bet-/- mice compared to WT mice at 21 days (P < 0.001). NiNPs also increased IL-13 and eosinophils (p < 0.001) in BALF from T-bet-/- mice after 1 day. Interestingly, the chemokine CCL2 in the BALF of T-bet-/- mice was increased at 1 and 21 days (p < 0.001 and p < 0.05, respectively) by NiNPs, and to a lesser extent by MWCNTs at 1 day. Treatment of T-bet-/- mice with a monoclonal anti-CCL2 antibody enhanced Ni

  18. No evidence of persisting unrepaired nuclear DNA single strand breaks in distinct types of cells in the brain, kidney, and liver of adult mice after continuous eight-week 50 Hz magnetic field exposure with flux density of 0.1 mT or 1.0 mT.

    PubMed

    Korr, Hubert; Angstman, Nicholas B; Born, Tatjana B; Bosse, Kerstin; Brauns, Birka; Demmler, Martin; Fueller, Katja; Kántor, Orsolya; Kever, Barbara M; Rahimyar, Navida; Salimi, Sepideh; Silny, Jiri; Schmitz, Christoph

    2014-01-01

    It has been hypothesized in the literature that exposure to extremely low frequency electromagnetic fields (50 or 60 Hz) may lead to human health effects such as childhood leukemia or brain tumors. In a previous study investigating multiple types of cells from brain and kidney of the mouse (Acta Neuropathologica 2004; 107: 257-264), we found increased unrepaired nuclear DNA single strand breaks (nDNA SSB) only in epithelial cells of the choroid plexus in the brain using autoradiographic methods after a continuous eight-week 50 Hz magnetic field (MF) exposure of adult mice with flux density of 1.5 mT. In the present study we tested the hypothesis that MF exposure with lower flux densities (0.1 mT, i.e., the actual exposure limit for the population in most European countries, and 1.0 mT) shows similar results to those in the previous study. Experiments and data analysis were carried out in a similar way as in our previous study. Continuous eight-week 50 Hz MF exposure with 0.1 mT or 1.0 mT did not result in increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice. MF exposure with 1.0 mT led to reduced unscheduled DNA synthesis (UDS) in epithelial cells in the choroid plexus of the fourth ventricle in the brain (EC-CP) and epithelial cells of the cortical collecting duct in the kidney, as well as to reduced mtDNA synthesis in neurons of the caudate nucleus in the brain and in EC-CP. No evidence was found for increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice after continuous eight-week 50 Hz magnetic field exposure with flux density of 0.1 mT or 1.0 mT.

  19. Estradiol Enhances CD4+ T-Cell Anti-Viral Immunity by Priming Vaginal DCs to Induce Th17 Responses via an IL-1-Dependent Pathway

    PubMed Central

    Anipindi, Varun C.; Dizzell, Sara E.; Nguyen, Philip V.; Shaler, Christopher R.; Chu, Derek K.; Jiménez-Saiz, Rodrigo; Liang, Hong; Swift, Stephanie; Nazli, Aisha; Kafka, Jessica K.; Bramson, Jonathan; Xing, Zhou; Jordana, Manel; Wan, Yonghong; Snider, Denis P.; Stampfli, Martin R.; Kaushic, Charu

    2016-01-01

    Clinical and experimental studies have shown that estradiol (E2) confers protection against HIV and other sexually transmitted infections. Here, we investigated the underlying mechanism. Better protection in E2-treated mice, immunized against genital HSV-2, coincided with earlier recruitment and higher proportions of Th1 and Th17 effector cells in the vagina post-challenge, compared to placebo-treated controls. Vaginal APCs isolated from E2-treated mice induced 10-fold higher Th17 and Th1 responses, compared to APCs from progesterone-treated, placebo-treated, and estradiol-receptor knockout mice in APC-T cell co-cultures. CD11c+ DCs in the vagina were the predominant APC population responsible for priming these Th17 responses, and a potent source of IL-6 and IL-1β, important factors for Th17 differentiation. Th17 responses were abrogated in APC-T cell co-cultures containing IL-1β KO, but not IL-6 KO vaginal DCs, showing that IL-1β is a critical factor for Th17 induction in the genital tract. E2 treatment in vivo directly induced high expression of IL-1β in vaginal DCs, and addition of IL-1β restored Th17 induction by IL-1β KO APCs in co-cultures. Finally, we examined the role of IL-17 in anti-HSV-2 memory T cell responses. IL-17 KO mice were more susceptible to intravaginal HSV-2 challenge, compared to WT controls, and vaginal DCs from these mice were defective at priming efficient Th1 responses in vitro, indicating that IL-17 is important for the generation of efficient anti-viral memory responses. We conclude that the genital mucosa has a unique microenvironment whereby E2 enhances CD4+ T cell anti-viral immunity by priming vaginal DCs to induce Th17 responses through an IL-1-dependent pathway. PMID:27148737

  20. Traumatic noise activates Rho-family GTPases through transient cellular energy depletion

    PubMed Central

    Chen, Fu-Quan; Zheng, Hong-Wei; Hill, Kayla; Sha, Su-Hua

    2012-01-01

    Small GTPases mediate transmembrane signaling and regulate the actin cytoskeleton in eukaryotic cells. Here, we characterize the auditory pathology of adult male CBA/J mice exposed to traumatic noise (2–20 kHz; 106 dB; 2 h). Loss of outer hair cells was evident 1 h after noise exposure in the basal region of the cochlea and spread apically with time, leading to permanent threshold shifts of 35, 60, and 65 dB at 8, 16, and 32 kHz. Several biochemical and molecular changes correlated temporally with the loss of cells. Immediately after exposure, the concentration of ATP decreased in cochlear tissue and reached a minimum after 1 h while the immunofluorescent signal for p-AMPKα significantly increased in sensory hair cells at that time. Levels of active Rac1 increased, whereas those of active RhoA decreased significantly 1 h after noise attaining a plateau at 1 to 3 h; the formation of a RhoA-p140mDia complex was consistent with an activation of Rho GTPase pathways. Also at 1 to 3 h after exposure, the caspase-independent cell death marker, endonuclease G, translocated to the nuclei of outer hair cells. Finally, experiments with the inner ear HEI-OC1 cell line demonstrated that the energy-depleting agent oligomycin enhanced both Rac1 activity and cell death. The sum of the results suggests that traumatic noise induces transient cellular ATP depletion and activates Rho GTPase pathways, leading to death of outer hair cells in the cochlea. PMID:22956833

  1. 17β-Estradiol suppresses Helicobacter pylori-induced gastric pathology in male hypergastrinemic INS-GAS mice

    PubMed Central

    Ohtani, Masahiro; Ge, Zhongming; García, Alexis; Rogers, Arlin B.; Muthupalani, Sureshkumar; Taylor, Nancy S.; Xu, Shilu; Watanabe, Koichiro; Feng, Yan; Marini, Robert P.; Whary, Mark T.; Wang, Timothy C.; Fox, James G.

    2011-01-01

    Helicobacter pylori-associated gastric cancer is male predominant and animal studies suggest that sex hormones influence gastric carcinogenesis. We investigated the effects of 17β-estradiol (E2) or castration on H.pylori-induced gastritis in male INS-GAS/FVB/N (Tg(Ins1-GAS)1Sbr) mice. Comparisons were made to previously evaluated sham (n = 8) and H.pylori-infected (n = 8), intact male INS-GAS mice which had developed severe corpus gastritis accompanied by atrophy, hyperplasia, intestinal metaplasia and dysplasia of the epithelium within 16 weeks postinfection (all P < 0.01). Castration at 8 weeks of age had no sparing effect on lesions in uninfected (n = 5) or H.pylori-infected mice (n = 7) but all lesion subfeatures were attenuated by E2 in H.pylori-infected mice (n = 7) (P < 0.001). Notably, inflammation was not reduced but glandular atrophy, hyperplasia, intestinal metaplasia and dysplasia were also less severe in uninfected, E2-treated mice (n = 7) (P < 0.01). Attenuation of gastric lesions by E2 was associated with lower messenger RNA (mRNA) expression of interferon (IFN)-γ (P < 0.05) and interleukin (IL)-1β (P < 0.004), and higher IL-10 (P < 0.02) as well as decreased numbers of Foxp3+ regulatory T cells when compared with infected intact males. Infected E2-treated mice also developed higher Th2-associated anti-H.pylori IgG1 responses (P < 0.05) and significantly lower Ki-67 indices of epithelial proliferation (P < 0.05). E2 elevated expression of mRNA for Foxp3 (P < 0.0001) and IL-10 (P < 0.01), and decreased IL-1β (P < 0.01) in uninfected, intact male mice compared with controls. Therefore, estrogen supplementation, but not castration, attenuated gastric lesions in H.pylori-infected male INS-GAS mice and to a lesser extent in uninfected mice, potentially by enhancing IL-10 function, which in turn decreased IFN-γ and IL-1β responses induced by H.pylori. PMID:21565825

  2. Angiotensin-(1-7) has a dual role on growth-promoting signalling pathways in rat heart in vivo by stimulating STAT3 and STAT5a/b phosphorylation and inhibiting angiotensin II-stimulated ERK1/2 and Rho kinase activity.

    PubMed

    Giani, Jorge F; Gironacci, Mariela M; Muñoz, Marina C; Turyn, Daniel; Dominici, Fernando P

    2008-05-01

    Angiotensin (ANG) II contributes to cardiac remodelling by inducing the activation of several signalling molecules, including ERK1/2, Rho kinase and members of the STAT family of proteins. Angiotensin-(1-7) is produced in the heart and inhibits the proliferative actions of ANG II, although the mechanisms of this inhibition are poorly understood. Accordingly, in the present study we examined whether ANG-(1-7) affects the ANG II-mediated activation of ERK1/2 and Rho kinase, STAT3 and STAT5a/b in rat heart in vivo. We hypothesized that ANG-(1-7) inhibits these growth-promoting pathways, counterbalancing the trophic action of ANG II. Solutions of normal saline (0.9% NaCl) containing ANG II (8 pmol kg(-1)) plus ANG-(1-7) in increasing doses (from 0.08 to 800 pmol kg(-1)) were administered via the inferior vena cava to anaesthetized male Sprague-Dawley rats. After 5 min, hearts were removed and ERK1/2, Rho kinase, STAT3 and STAT5a/b phosphorylation was determined by Western blotting using phosphospecific antibodies. Angiotensin II stimulated ERK1/2 and Rho kinase phosphorylation (2.3 +/- 0.2- and 2.1 +/- 0.2-fold increase over basal values, respectively), while ANG-(1-7) was without effect. The ANG II-mediated phosphorylation of ERK1/2 and Rho kinase was prevented in a dose-dependent manner by ANG-(1-7) and disappeared in the presence of the Mas receptor antagonist d-Ala7-ANG-(1-7). Both ANG II and ANG-(1-7) increased STAT3 and STAT5a/b phosphorylation to a similar extent (130-140% increase). The ANG-(1-7)-stimulated STAT phosphorylation was blocked by the AT(1) receptor antagonist losartan and not by d-Ala7-ANG-(1-7). Our results show a dual action of ANG-(1-7), that is, a stimulatory effect on STAT3 and 5a/b phosphorylation through AT(1) receptors and a blocking action on ANG II-stimulated ERK1/2 and Rho kinase phosphorylation through Mas receptor activation. The latter effect could be representative of a mechanism for a protective role of ANG-(1-7) in the heart by

  3. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    PubMed Central

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  4. THE ANABOLIC STEROIDS TESTOSTERONE PROPIONATE AND NANDROLONE, BUT NOT 17α-METHYLTESTOSTERONE, INDUCE CONDITIONED PLACE PREFERENCE IN ADULT MICE

    PubMed Central

    Parrilla-Carrero, Jeffrey; Figueroa, Orialis; Lugo, Alejandro; García-Sosa, Rebecca; Brito-Vargas, Paul; Cruz, Beatriz; Rivera, Melanis; Barreto-Estrada, Jennifer L.

    2009-01-01

    Anabolic androgenic steroids (AAS) are often misused by adolescents and athletes. Their effects vary according to chemical structure and metabolism, route of administration, and AAS regimen. In this study, adult C57Bl/6 male mice were systemically exposed to testosterone propionate (TP), nandrolone or 17α-methyltestosterone (17α-meT), type I, type II and type III AAS, respectively, in order to determine the hedonic or aversive properties of each drug. For this purpose, the conditioned place preference (CPP) test was employed at three different AAS doses (0.075, 0.75 and 7.5 mg/kg). Other behavioral domains monitored were light-dark transitions (side changes) and general activity. TP shifted place preference at all doses tested, and nandrolone shifted place preference at 0.75 and 7.5mg/kg, but not at 0.075 mg/kg, the lower dose tested. Conversely, mice receiving 17α-meT did not show alteration in the preference score. The lower dose of nandrolone did modify exploratory based-anxiety showing a decrease in light-dark transitions if compared to vehicle-treated animals, while mice treated with TP or 17α-meT were not affected. Our data suggest that when studying hedonic and rewarding properties of synthetic androgens, distinction has to be made based on type of AAS and metabolism. PMID:19028026

  5. The anabolic steroids testosterone propionate and nandrolone, but not 17alpha-methyltestosterone, induce conditioned place preference in adult mice.

    PubMed

    Parrilla-Carrero, Jeffrey; Figueroa, Orialis; Lugo, Alejandro; García-Sosa, Rebecca; Brito-Vargas, Paul; Cruz, Beatriz; Rivera, Mélanis; Barreto-Estrada, Jennifer L

    2009-02-01

    Anabolic androgenic steroids (AAS) are often misused by adolescents and athletes. Their effects vary according to chemical structure and metabolism, route of administration, and AAS regimen. In this study, adult C57Bl/6 male mice were systemically exposed to testosterone propionate (TP), nandrolone or 17alpha-methyltestosterone (17alpha-meT), type I, type II and type III AAS, respectively, in order to determine the hedonic or aversive properties of each drug. For this purpose, the conditioned place preference (CPP) test was employed at three different AAS doses (0.075, 0.75 and 7.5 mg/kg). Other behavioral domains monitored were light-dark transitions (side changes) and general activity. TP shifted place preference at all doses tested, and nandrolone shifted place preference at 0.75 and 7.5 mg/kg, but not at 0.075 mg/kg, the lower dose tested. Conversely, mice receiving 17alpha-meT did not show alteration in the preference score. The lower dose of nandrolone did modify exploratory-based anxiety showing a decrease in light-dark transitions if compared to vehicle-treated animals, while mice treated with TP or 17alpha-meT were not affected. Our data suggest that when studying hedonic and rewarding properties of synthetic androgens, distinction has to be made based on type of AAS and metabolism.

  6. Th17 and IL-17 Cause Acceleration of Inflammation and Fat Loss by Inducing α2-Glycoprotein 1 (AZGP1) in Rheumatoid Arthritis with High-Fat Diet.

    PubMed

    Na, Hyun Sik; Kwon, Jeong-Eun; Lee, Seung Hoon; Jhun, JooYeon; Kim, Sung-Min; Kim, Se-Young; Kim, Eun-Kyung; Jung, KyungAh; Park, Sung-Hwan; Cho, Mi-La

    2017-05-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disorder that affects the joints. High-fat diet (HFD) is a risk factor for RA and is related to inflammation but responds minimally to medication. Given the association between HFD and inflammation, it is important to understand the function of inflammation-related T cells in RA with HFD. Collagen-induced arthritis (CIA), a model of RA, was induced in HFD mice by injection of collagen II, and metabolic markers and T cells were analyzed. The metabolic index and IgG assay results were higher in HFD-CIA mice than in nonfat diet-CIA mice. Numbers of inflammation-related T cells and macrophages, such as Th1 and Th17 cells and M1 macrophages, were higher in spleens of HFD-CIA mice. HFD-CIA mice had a high level of α 2 -glycoprotein 1 (Azgp1), a soluble protein that stimulates lipolysis. To examine the association between Azgp1 and Th17 cells, the reciprocal effects of Azgp1 and IL-17 on Th17 differentiation and lipid metabolism were measured. Interestingly, Azgp1 increased the Th17 population of splenocytes. Taken together, our data suggest that the acceleration of fat loss caused by Azgp1 in RA with metabolic syndrome is related to the increase of IL-17. Mice injected with the Azgp1-overexpression vector exhibited more severe CIA compared with the mock vector-injected mice. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Leptin receptor signaling in T cells is required for Th17 differentiation.

    PubMed

    Reis, Bernardo S; Lee, Kihyun; Fanok, Melania H; Mascaraque, Cristina; Amoury, Manal; Cohn, Lillian B; Rogoz, Aneta; Dallner, Olof S; Moraes-Vieira, Pedro M; Domingos, Ana I; Mucida, Daniel

    2015-06-01

    The hormone leptin plays a key role in energy homeostasis, and the absence of either leptin or its receptor (LepR) leads to severe obesity and metabolic disorders. To avoid indirect effects and to address the cell-intrinsic role of leptin signaling in the immune system, we conditionally targeted LepR in T cells. In contrast with pleiotropic immune disorders reported in obese mice with leptin or LepR deficiency, we found that LepR deficiency in CD4(+) T cells resulted in a selective defect in both autoimmune and protective Th17 responses. Reduced capacity for differentiation toward a Th17 phenotype by lepr-deficient T cells was attributed to reduced activation of the STAT3 and its downstream targets. This study establishes cell-intrinsic roles for LepR signaling in the immune system and suggests that leptin signaling during T cell differentiation plays a crucial role in T cell peripheral effector function. Copyright © 2015 by The American Association of Immunologists, Inc.

  8. Ginger Extract Reduces the Expression of IL-17 and IL-23 in the Sera and Central Nervous System of EAE Mice.

    PubMed

    Jafarzadeh, Abdollah; Azizi, Sayyed-Vahab; Nemati, Maryam; Khoramdel-Azad, Hossain; Shamsizadeh, Ali; Ayoobi, Fatemeh; Taghipour, Zahra; Hassan, Zuhair Mohammad

    2015-12-01

    IL-17/IL-23 axis plays an important role in the pathogenesis of several autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS). The immunomodulatory properties of ginger are reported in previous studies. To evaluate the effects of ginger extract on the expression of IL-17 and IL-23 in a model of EAE. EAE was induced in C57BL/6 mice by immunization with myelin oligodendroglial glycoprotein and then treated with PBS or ginger extracts, from day +3 to +30. At day 31, mice were scarificed and the expression of IL-17 and IL-23 mRNA in spinal cord were determined by using real time-PCR. The serum levels of cytokines were measured by ELISA. The mRNA expression of IL-17, IL-23 P19 and IL-23 P40 in CNS and serum levels of IL-17 and IL-23 were significantly higher in PBS-treated EAE mice than non-EAE group (p<0.003, p<0.001, p<0.001, p<0.05 and p<0.01, respectively). In 200 mg/kg ginger-treated EAE mice the mRNA expression of IL-17, P19 and P40 in CNS and serum IL-23 levels were significantly decreased as compared to PBS-treated EAE mice (p<0.05, p<0.001, p<0.001 and p<0.05, respectively). Moreover, 300 mg/kg ginger-treated EAE group had significantly lower expression of IL-17, P19 and P40 in CNS and lower serum IL-17 and IL-23 levels than PBS-treated EAE group (p<0.02, p<0.001, p<0.001, p<0.03 and p<0.004, respectively). Ginger extract reduces the expression of IL-17 and IL-23 in EAE mice. The therapeutic potential of ginger for treatment of MS could be considered in further studies.

  9. Role of RhoA and its effectors ROCK and mDia1 in the modulation of deformation-induced FAK, ERK, p38, and MLC motogenic signals in human Caco-2 intestinal epithelial cells

    PubMed Central

    Chaturvedi, Lakshmi S.; Marsh, Harold M.

    2011-01-01

    Repetitive deformation enhances intestinal epithelial migration across tissue fibronectin. We evaluated the contribution of RhoA and its effectors Rho-associated kinase (ROK/ROCK) and mammalian diaphanous formins (mDia1) to deformation-induced intestinal epithelial motility across fibronectin and the responsible focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), p38, and myosin light chain (MLC) signaling. We reduced RhoA, ROCK1, ROCK2, and mDia1 by smart-pool double-stranded short-interfering RNAs (siRNA) and pharmacologically inhibited RhoA, ROCK, and FAK in human Caco-2 intestinal epithelial monolayers on fibronectin-coated membranes subjected to 10% repetitive deformation at 10 cycles/min. Migration was measured by wound closure. Stimulation of migration by deformation was prevented by exoenzyme C3, Y27632, or selective RhoA, ROCK1, and ROCK2 or mDia1 siRNAs. RhoA, ROCK inhibition, or RhoA, ROCK1, ROCK2, mDia1, and FAK reduction by siRNA blocked deformation-induced nuclear ERK phosphorylation without preventing ERK phosphorylation in the cytoplasmic protein fraction. Furthermore, RhoA, ROCK inhibition or RhoA, ROCK1, ROCK2, and mDia1 reduction by siRNA also blocked strain-induced FAK-Tyr925, p38, and MLC phosphorylation. These results suggest that RhoA, ROCK, mDia1, FAK, ERK, p38, and MLC all mediate the stimulation of intestinal epithelial migration by repetitive deformation. This pathway may be an important target for interventions to promote mechanotransduced mucosal healing during inflammation. PMID:21849669

  10. Arthritis is developed in Borrelia-primed and -infected mice deficient of interleukin-17.

    PubMed

    Kuo, Joseph; Warner, Thomas F; Munson, Erik L; Nardelli, Dean T; Schell, Ronald F

    2016-10-01

    Interleukin-17 (IL-17) has been shown to participate in the development of Lyme arthritis in experimental mice. For example, neutralization of IL-17 with antibodies inhibits induction of arthritis in Borrelia-primed and -infected C57BL/6 wild-type mice. We hypothesized that mice lacking IL-17 would fail to develop Borrelia-induced arthritis. IL-17-deficient and wild-type C57BL/6 mice were primed with heat-inactivated Borrelia and then infected with viable spirochetes 3 weeks later. No swelling or major histopathological changes of the hind paws were detected in IL-17-deficient or wild-type mice that were primed with Borrelia or infected with viable spirochetes. By contrast, IL-17-deficient and wild-type mice that were primed and subsequently infected with heterologous Borrelia developed severe swelling and histopathological changes of the hind paws. In addition, Borrelia-primed and -infected IL-17-deficient mice exhibited elevated gamma-interferon (IFN-γ) levels in sera and increased frequencies of IFN-γ-expressing lymphocytes in popliteal lymph nodes compared to Borrelia-primed and -infected wild-type mice. These results demonstrate that IL-17 is not required for development of severe pathology in response to infection with Borrelia burgdorferi, but may contribute to disease through an interaction with IFN-γ. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice

    PubMed Central

    Stano, Sarah; Holter, Marlena; Azenkot, Tali; Goldman, Olivia; Margolskee, Robert F.; Vasselli, Joseph R.; Sclafani, Anthony

    2015-01-01

    Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar. PMID:26157055

  12. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice.

    PubMed

    Glendinning, John I; Stano, Sarah; Holter, Marlena; Azenkot, Tali; Goldman, Olivia; Margolskee, Robert F; Vasselli, Joseph R; Sclafani, Anthony

    2015-09-01

    Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar. Copyright © 2015 the American Physiological Society.

  13. A disintegrin and metalloproteinase 17 regulates TNF and TNFR1 levels in inflammation and liver regeneration in mice

    PubMed Central

    McMahan, Ryan S.; Riehle, Kimberly J.; Fausto, Nelson

    2013-01-01

    A disintegrin and metalloproteinase 17 (ADAM17), or tumor necrosis factor (TNF)-α-converting enzyme, is a key metalloproteinase and physiological convertase for a number of putative targets that play critical roles in cytokine and growth factor signaling. These interdependent pathways are essential components of the signaling network that links liver function with the compensatory growth that occurs during liver regeneration following 2/3 partial hepatectomy (PH) or chemically induced hepatotoxicity. Despite identification of many soluble factors needed for efficient liver regeneration, very little is known about how such ligands are regulated in the liver. To directly study the role of ADAM17 in the liver, we employed two cell-specific ADAM17 knockout (KO) mouse models. Using lipopolysaccharide (LPS) as a robust stimulus for TNF release, we found attenuated levels of circulating TNF in myeloid-specific ADAM17 KO mice (ADAM17 m-KO) and, unexpectedly, in mice with hepatocyte-specific ADAM17 deletion (ADAM17 h-KO), indicating that ADAM17 expression in both cell types plays a role in TNF shedding. After 2/3 PH, induction of TNF, TNFR1, and amphiregulin (AR) was significantly attenuated in ADAM17 h-KO mice, implicating ADAM17 as the primary sheddase for these factors in the liver. Surprisingly, the extent and timing of hepatocyte proliferation were not affected after PH or carbon tetrachloride injection in ADAM17 h-KO or ADAM17 m-KO mice. We conclude that ADAM17 regulates TNF, TNFR1, and AR in the liver, and its expression in both hepatocytes and myeloid cells is important for TNF regulation after LPS injury or 2/3 PH, but is not required for liver regeneration. PMID:23639813

  14. BALB/c mice display more enhanced BCG vaccine induced Th1 and Th17 response than C57BL/6 mice but have equivalent protection.

    PubMed

    Garcia-Pelayo, M Carmen; Bachy, Véronique S; Kaveh, Daryan A; Hogarth, Philip J

    2015-01-01

    It is generally assumed that the inbred mouse strains BALB/c (H-2(d)) and C57BL/6 (H-2(b)) respond to mycobacterial infection with distinct polarisation of T helper responses, with C57BL/6 predisposed to Th1 and BALB/c to Th2. We investigated this in a BCG-immunisation, Mycobacterium bovis challenge model. Following immunisation, lung and spleen cell cytokine responses to in vitro re-stimulation with a cocktail of seven secreted, immunogenic, recombinant mycobacterial proteins were determined. In both lung and spleen, BALB/c cells produced at least 2-fold more IFN-γ, and up to 7-fold more IL-2 and IL-17 than C57BL/6 cells, whereas IL-10 production was reciprocally increased in C57BL/6 mice. These data suggest that, contrary to reports in the literature, specific mycobacterial antigens are able to induce strong Th1 and Th17 responses in BALB/c mice following BCG vaccination, whilst in C57BL/6 mice, the Th1 response is partly counterbalanced by IL-10. After subsequent M. bovis low dose challenge, protection, as measured in the lungs and dissemination to the spleen, was equivalent in BALB/c and C57BL/6 mice, indicating that BCG-induced immunity was equivalent in both strains. Thus, the differential immune responses do not appear to have a role in protection, but further, as yet unidentified, specific immune responses play a significant role. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  15. Studies on B-cell memory. III. T-dependent aspect of B memory generation in mice immunized with T-independent type-2(TI-2) antigen.

    PubMed

    Hosokawa, T; Tanaka, Y; Aoike, A; Kawai, K; Muramatsu, S

    1984-09-01

    The time course of B-cell memory development to a dinitrophenyl (DNP) T-independent type-2 (TI-2) antigen was investigated by adoptive cell transfer. Strong IgM and IgG memory developed in BALB/c mice after immunization with DNP-dextran, to be recalled by challenge with either T-dependent (TD) antigen or TI-2 antigen. However, only weak IgM memory and very feeble IgG memory were detected in athymic nude mice receiving the same immunization as euthymic mice. Once memory was established under probable T cell influence, its recall by TI-2 antigen challenge seemed independent of T cell help and did not require sharing of carriers between priming and challenge antigens. The following may be concluded. (i) Long-term IgM and IgG memory is induced by TI-2 antigen priming in the presence of functional T cells. (ii) The class switch from IgM to IgG in the memory B cell pool is driven effectively by TI-2 antigen and is probably T cell-dependent.

  16. Obesity promotes prolonged ovalbumin-induced airway inflammation modulating T helper type 1 (Th1), Th2 and Th17 immune responses in BALB/c mice.

    PubMed

    Silva, F M C; Oliveira, E E; Gouveia, A C C; Brugiolo, A S S; Alves, C C; Correa, J O A; Gameiro, J; Mattes, J; Teixeira, H C; Ferreira, A P

    2017-07-01

    Clinical and epidemiological studies indicate that obesity affects the development and phenotype of asthma by inducing inflammatory mechanisms in addition to eosinophilic inflammation. The aim of this study was to assess the effect of obesity on allergic airway inflammation and T helper type 2 (Th2) immune responses using an experimental model of asthma in BALB/c mice. Mice fed a high-fat diet (HFD) for 10 weeks were sensitized and challenged with ovalbumin (OVA), and analyses were performed at 24 and 48 h after the last OVA challenge. Obesity induced an increase of inducible nitric oxide synthase (iNOS)-expressing macrophages and neutrophils which peaked at 48 h after the last OVA challenge, and was associated with higher levels of interleukin (IL)-4, IL-9, IL-17A, leptin and interferon (IFN)-γ in the lungs. Higher goblet cell hyperplasia was associated with elevated mast cell influx into the lungs and trachea in the obese allergic mice. In contrast, early eosinophil influx and lower levels of IL-25, thymic stromal lymphopoietin (TSLP), CCL11 and OVA-specific immunoglobulin (IgE) were observed in the obese allergic mice in comparison to non-obese allergic mice. Moreover, obese mice showed higher numbers of mast cells regardless of OVA challenge. These results indicate that obesity affects allergic airway inflammation through mechanisms involving mast cell influx and the release of TSLP and IL-25, which favoured a delayed immune response with an exacerbated Th1, Th2 and Th17 profile. In this scenario, an intense mixed inflammatory granulocyte influx, classically activated macrophage accumulation and intense mucus production may contribute to a refractory therapeutic response and exacerbate asthma severity. © 2017 British Society for Immunology.

  17. Dermal γδ T Cells Do Not Freely Re-Circulate Out of Skin and Produce IL-17 to Promote Neutrophil Infiltration during Primary Contact Hypersensitivity

    PubMed Central

    Jiang, Xiaodong; Park, Chang Ook; Geddes Sweeney, Jenna; Yoo, Min Jae; Gaide, Olivier; Kupper, Thomas Seth

    2017-01-01

    The role of mouse dermal γδ T cells in inflammatory skin disorders and host defense has been studied extensively. It is known that dendritic epidermal T cells (DETC) have a monomorphic γδ T cell receptor (TCR) and reside in murine epidermis from birth. We asked if dermal γδ cells freely re-circulated out of skin, or behaved more like dermal resident memory T cells (TRM) in mice. We found that, unlike epidermal γδ T cells (DETC), dermal γδ cells are not homogeneous with regard to TCR, express the tissue resident T cell markers CD69 and CD103, bear skin homing receptors, and produce IL-17 and IL-22. We created GFP+: GFP− parabiotic mice and found that dermal γδ T cells re-circulate very slowly—more rapidly than authentic αβ TCR TRM, but more slowly than the recently described dermal αβ TCR T migratory memory cells (TMM). Mice lacking the TCR δ gene (δ-/-) had a significant reduction of 2,4-dinitrofluorobenzene (DNFB)-induced contact hypersensitivity (CHS). We created mice deficient in dermal γδ T cells but not DETC, and these mice also showed a markedly reduced CHS response after DNFB challenge. The infiltration of effector T cells during CHS was not reduced in dermal γδ T cell-deficient mice; however, infiltration of Gr-1+CD11b+ neutrophils, as well as ear swelling, was reduced significantly. We next depleted Gr-1+ neutrophils in vivo, and demonstrated that neutrophils are required for ear swelling, the accepted metric for a CHS response. Depletion of IL-17-producing dermal Vγ4+ cells and neutralization of IL-17 in vivo, respectively, also led to a significantly reduced CHS response and diminished neutrophil infiltration. Our findings here suggest that dermal γδ T cells have an intermediate phenotype of T cell residence, and play an important role in primary CHS through producing IL-17 to promote neutrophil infiltration. PMID:28081153

  18. An RNA motif advances transcription by preventing Rho-dependent termination

    PubMed Central

    Sevostyanova, Anastasia; Groisman, Eduardo A.

    2015-01-01

    The transcription termination factor Rho associates with most nascent bacterial RNAs as they emerge from RNA polymerase. However, pharmacological inhibition of Rho derepresses only a small fraction of these transcripts. What, then, determines the specificity of Rho-dependent transcription termination? We now report the identification of a Rho-antagonizing RNA element (RARE) that hinders Rho-dependent transcription termination. We establish that RARE traps Rho in an inactive complex but does not prevent Rho binding to its recruitment sites. Although translating ribosomes normally block Rho access to an mRNA, inefficient translation of an open reading frame in the leader region of the Salmonella mgtCBR operon actually enables transcription of its associated coding region by favoring an RNA conformation that sequesters RARE. The discovery of an RNA element that inactivates Rho signifies that the specificity of nucleic-acid binding proteins is defined not only by the sequences that recruit these proteins but also by sequences that antagonize their activity. PMID:26630006

  19. [Effect of the T4 on the viscera and embryo of perinatal mice].

    PubMed

    Dan, L; Ye, W; Guo, Y; Han, Y; Liu, P

    1996-02-01

    58 Female Kun Ming mice of perinatal stage (from the 15th day of pregnacy to the 21th day after birth) were fed with Tripcholorolide (T4) isolated from multiglycosides of Tripterygium wilfordii (GTW) at a doze of 0.6 mg/kg for group 1 or 0.3 mg/kg for group 2 per day for 4 weeks. Lactation was decreased in some females and some F1 off spring died. The succinic dehydrogenase (SDH) activity of the mice liver were increased due to the destruction of its mitocondian. Liver cells degenerated and glycogen decreased. Distal tubules of kidney degenerated. Heart and spleen were normal. T4 was also fed to 10 female mice from the 5th to 17th day of pregnacy. However, neither the absorbed fetus nor dead fetus increased.

  20. Increased T-helper 17 cell differentiation mediated by exosome-mediated microRNA-451 redistribution in gastric cancer infiltrated T cells.

    PubMed

    Liu, Feng; Bu, Zhouyan; Zhao, Feng; Xiao, Daping

    2018-01-01

    MicroRNA (miR)-451 is a cell metabolism-related miRNA that can mediate cell energy-consuming models by several targets. As miR-451 can promote mechanistic target of rapamycin (mTOR) activity, and increased mTOR activity is related to increased differentiation of T-helper 17 (Th17) cells, we sought to investigate whether miR-451 can redistribute from cancer cells to infiltrated T cells and enhance the distribution of Th17 cells through mTOR. Real-time PCR was used for detecting expression of miR-451 in gastric cancer, tumor infiltrated T cells and exosomes, and distribution of Th17 was evaluated by both flow cytometry and immunohistochemistry (IHC). Immunofluorescence staining was used in monitoring the exosome-enveloped miR-451 from cancer cells to T cells with different treatments, and signaling pathway change was analyzed by western blot. miR-451 decreased significantly in gastric cancer (GC) tissues but increased in infiltrated T cells and exosomes; tumor miR-451 was negatively related to infiltrated T cells and exosome miR-451. Exosome miR-451 can not only serve as an indicator for poor prognosis of post-operation GC patients but is also related to increased Th17 distribution in gastric cancer. miR-451 can redistribute from cancer cells to T cells with low glucose treatment. Decreased 5' AMP-activated protein kinase (AMPK) and increased mTOR activity was investigated in miR-451 redistributed T cells and the Th17 polarized differentiation of these T cells were also increased. Exosome miR-451 derived from tumor tissues can serve as an indicator for poor prognosis and redistribution of miR-451 from cancer cells to infiltrated T cells in low glucose treatment can enhance Th17 differentiation by enhancing mTOR activity. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  1. New and Improved T-wave Morphology Parameters to Differentiate Healthy Individuals from those with Cardiomyopathy and Coronary Artery Disease

    NASA Technical Reports Server (NTRS)

    Greco, E. C.; Schlegel, T. T.; Arenare, B.; DePalma, J. L.; Starc, V.; Rahman, M. A.; Delgado, R.

    2007-01-01

    We investigated the ability of several known as well as new ECG repolarization parameters to differentiate healthy individuals from patients with obstructive coronary artery disease (CAD) and cardiomyopathy (CM). Advanced high-fidelity 12-lead ECG tests (approx. 5-min supine) were first performed on a "training set" of 99 individuals: 33 with ischemic or dilated CM and low ejection fraction (EF less than 40%); 33 with catheterization-proven obstructive CAD but normal EF; and 33 age-/gender-matched healthy controls. The following multiple parameters of T-wave morphology (TWM) were derived via signal averaging and singular value decomposition (SVD, which yields 8 eigenvalues, rho(sub 1) greater than rho(sub 2)...greater than rho(sub 8) and studied for their retrospective accuracy in detecting underlying disease: 1) Principal component analysis ratio of the T wave (T-PCA) = 100*rho(sub 2)/rho(sub 1); 2) Relative T-wave residuum (rTWR) = 100* SIGMA (rho(sub 4)(sup 2) +...+ rho(sub 8)(sup 2)); 3) Modified complexity ratio of the T wave (T-mCR) = 100*SIGMA(rho(sub 3)(sup 2) +...+rho(sb 8) (sup 2)); and 4) Normalized 3-dimensional volume of the T wave (nTV) = 100*(rho(sub 2)*rho(sub 3)/rho(sub 1)(sup 2). All TWM parameters significantly differentiated CAD from controls (p less than 0.0001), and also CM from controls (p less than 0.0001). Retrospective areas under the ROC curve were 0.77, 0.81, 0.82, and 0.83 (CAD vs. controls) and 0.93, 0.89, 0.95 and 0.96 (CM vs. controls) for T-PCA, rTWR, T-mCR and nTV respectively. The newer TWM parameters (T-mCR and nTV) thus outperformed the more established parameters (T-PCA and rTWR), presumably by putting a greater emphasis on the third T-wave eigenvalue, which in most healthy subjects has little energy compared to the first two eigenvalues. Subsequent prospective analyses have also yielded similar results, such that we conclude that diagnostic differentiation of pathology from non-pathology may be especially aided by detecting

  2. PKCε Phosphorylates and Mediates the Cell Membrane Localization of RhoA

    PubMed Central

    Su, Tizhi; Bao, Liwei; Xie, Xiujie; Lehner, Caryn L.; Cavey, Greg S.; Teknos, Theodoros N.

    2013-01-01

    Protein kinase Cε (PKCε) signals through RhoA to modulate cell invasion and motility. In this study, the multifaceted interaction between PKCε and RhoA was defined. Phosphopeptide mapping revealed that PKCε phosphorylates RhoA at T127 and S188. Recombinant PKCε bound to recombinant RhoA in the absence of ATP indicating that the association between PKCε and RhoA does not require an active ATP-docked PKCε conformation. Activation of PKCε resulted in a dramatic coordinated translocation of PKCε and RhoA from the cytoplasm to the cell membrane using time-lapse fluorescence microscopy. Stoichiometric FRET analysis revealed that the molecular interaction between PKCε and RhoA is a biphasic event, an initial peak at the cytoplasm and a gradual prolonged increase at the cell membrane for the entire time-course (12.5 minutes). These results suggest that the PKCε-RhoA complex is assembled in the cytoplasm and subsequently recruited to the cell membrane. Kinase inactive (K437R) PKCε is able to recruit RhoA to the cell membrane indicating that the association between PKCε and RhoA is proximal to the active catalytic site and perhaps independent of a PKCε-RhoA phosphorylation event. This work demonstrates, for the first time, that PKCε phosphorylates and modulates the cell membrane translocation of RhoA. PMID:24191200

  3. Subpopulations of M-MDSCs from mice infected by an immunodeficiency-causing retrovirus and their differential suppression of T- vs B-cell responses.

    PubMed

    O'Connor, Megan A; Fu, Whitney W; Green, Kathy A; Green, William R

    2015-11-01

    Monocytic (CD11b(+)Ly6G(±/Lo)Ly6C(+)) myeloid derived suppressor cells (M-MDSCs) expand following murine retroviral LP-BM5 infection and suppress ex vivo polyclonal T-cell and B-cell responses. M-MDSCs 3 weeks post LP-BM5 infection have decreased suppression of T-cell, but not B-cell, responses and alterations in the degree of iNOS/NO dependence of suppression. M-MDSCs from LP-BM5 infected mice were sorted into four quadrant populations (Ly6C/CD11b density): all quadrants suppressed B-cell responses, but only M-MDSCs expressing the highest levels of Ly6C and CD11b (Q2) significantly suppressed T-cell responses. Further subdivision of this Q2 population revealed the Ly6C(+/Hi) M-MDSC subpopulation as the most suppressive, inhibiting T- and B-cell responses in a full, or partially, iNOS/NO-dependent manner, respectively. In contrast, the lower/moderate levels of suppression by the Ly6C(+/Lo) and Ly6C(+/Mid) M-MDSC Q2 subpopulations, whether versus T- and/or B-cells, displayed little/no iNOS dependency for suppression. These results highlight differential phenotypic and functional immunosuppressive M-MDSC subsets in a retroviral immunodeficiency model. Published by Elsevier Inc.

  4. 17 β-estradiol Protects Male Mice from Cuprizone-induced Demyelination and Oligodendrocyte Loss

    PubMed Central

    Taylor, Lorelei C; Puranam, Kasturi; Gilmore, Wendy; Ting, Jenny P-Y.; Matsushima, G.K.

    2010-01-01

    In addition to regulating reproductive functions in the brain and periphery, estrogen has trophic and neuroprotective functions in the central nervous system (CNS). Estrogen administration has been demonstrated to provide protection in several animal models of CNS disorders, including stroke, brain injury, epilepsy, Parkinson’s disease, Alzheimer’s disease, age-related cognitive decline and multiple sclerosis. Here, we use a model of toxin-induced oligodendrocyte death which results in demyelination, reactive gliosis, recruitment of oligodendrocyte precursor cells and subsequent remyelination to study the potential benefit of 17β-estradiol (E2) administration in male mice. The results indicate that E2 partially ameliorates loss of oligodendrocytes and demyelination in the corpus callosum. This protection is accompanied by a delay in microglia accumulation as well as reduced mRNA expression of the pro-inflammatory cytokine, tumor necrosis factor alpha (TNFα), and insulin-like growth factor-1 (IGF-1). E2 did not significantly alter the accumulation of astrocytes or oligodendrocyte precursor cells, or remyelination. These data obtained from a toxin-induced, T cell-independent model using male mice provide an expanded view of the beneficial effects of estrogen on oligodendrocyte and myelin preservation. PMID:20347981

  5. Merkel Cell Polyomavirus Small T Antigen Drives Cell Motility via Rho-GTPase-Induced Filopodium Formation.

    PubMed

    Stakaitytė, Gabrielė; Nwogu, Nnenna; Dobson, Samuel J; Knight, Laura M; Wasson, Christopher W; Salguero, Francisco J; Blackbourn, David J; Blair, G Eric; Mankouri, Jamel; Macdonald, Andrew; Whitehouse, Adrian

    2018-01-15

    Cell motility and migration is a complex, multistep, and multicomponent process intrinsic to progression and metastasis. Motility is dependent on the activities of integrin receptors and Rho family GTPases, resulting in the remodeling of the actin cytoskeleton and formation of various motile actin-based protrusions. Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high likelihood of recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is associated with the majority of MCC cases, and MCPyV-induced tumorigenesis largely depends on the expression of the small tumor antigen (ST). Since the discovery of MCPyV, a number of mechanisms have been suggested to account for replication and tumorigenesis, but to date, little is known about potential links between MCPyV T antigen expression and the metastatic nature of MCC. Previously, we described the action of MCPyV ST on the microtubule network and how it impacts cell motility and migration. Here, we demonstrate that MCPyV ST affects the actin cytoskeleton to promote the formation of filopodia through a mechanism involving the catalytic subunit of protein phosphatase 4 (PP4C). We also show that MCPyV ST-induced cell motility is dependent upon the activities of the Rho family GTPases Cdc42 and RhoA. In addition, our results indicate that the MCPyV ST-PP4C interaction results in the dephosphorylation of β 1 integrin, likely driving the cell motility pathway. These findings describe a novel mechanism by which a tumor virus induces cell motility, which may ultimately lead to cancer metastasis, and provides opportunities and strategies for targeted interventions for disseminated MCC. IMPORTANCE Merkel cell polyomavirus (MCPyV) is the most recently discovered human tumor virus. It causes the majority of cases of Merkel cell carcinoma (MCC), an aggressive skin cancer. However, the molecular mechanisms implicating MCPyV-encoded proteins in cancer development are yet to be fully elucidated. This study builds

  6. Spectrum of disease outcomes in mice infected with YFV-17D

    PubMed Central

    Erickson, Andrea K.

    2015-01-01

    The host and viral factors that influence disease outcome during flavivirus infections are not fully understood. Using the live attenuated yellow fever virus (YFV) vaccine strain 17D as a model system we evaluated how viral dose, inoculation route and immunopathogenesis contributed to disease outcome in mice deficient in the type I IFN response. We found that YFV-17D infection of IFN-α/β receptor knockout mice resulted in three distinct disease outcomes: no clinical signs of disease, fatal viscerotropic disease or fatal neurotropic disease. Interestingly, viral load at disease onset did not correlate with disease outcome. However, we found increased immune infiltrates in the brain tissues of mice that developed neurotropic disease. Additionally, mice that developed viscerotropic disease, as characterized by liver and spleen pathology and/or intestinal haemorrhage, had significantly elevated levels of alanine aminotransferase, monocyte chemotactic protein and IFN-inducible protein (IP)-10 as compared with mice with no clinical signs of disease or neurotropic disease. Furthermore, mice treated with recombinant IP-10 throughout YFV-17D infection showed increased mortality and an increased percentage of mice with viscerotropic disease. Our results demonstrated that viral load did not correlate with pathogenesis, and the host immune response played a pivotal role in disease outcome and contributed to YFV-17D pathogenesis in mice. PMID:25646269

  7. Spectrum of disease outcomes in mice infected with YFV-17D.

    PubMed

    Erickson, Andrea K; Pfeiffer, Julie K

    2015-06-01

    The host and viral factors that influence disease outcome during flavivirus infections are not fully understood. Using the live attenuated yellow fever virus (YFV) vaccine strain 17D as a model system we evaluated how viral dose, inoculation route and immunopathogenesis contributed to disease outcome in mice deficient in the type I IFN response. We found that YFV-17D infection of IFN-α/β receptor knockout mice resulted in three distinct disease outcomes: no clinical signs of disease, fatal viscerotropic disease or fatal neurotropic disease. Interestingly, viral load at disease onset did not correlate with disease outcome. However, we found increased immune infiltrates in the brain tissues of mice that developed neurotropic disease. Additionally, mice that developed viscerotropic disease, as characterized by liver and spleen pathology and/or intestinal haemorrhage, had significantly elevated levels of alanine aminotransferase, monocyte chemotactic protein and IFN-inducible protein (IP)-10 as compared with mice with no clinical signs of disease or neurotropic disease. Furthermore, mice treated with recombinant IP-10 throughout YFV-17D infection showed increased mortality and an increased percentage of mice with viscerotropic disease. Our results demonstrated that viral load did not correlate with pathogenesis, and the host immune response played a pivotal role in disease outcome and contributed to YFV-17D pathogenesis in mice. © 2015 The Authors.

  8. T helper type 17 cells contribute to anti-tumour immunity and promote the recruitment of T helper type 1 cells to the tumour.

    PubMed

    Nuñez, Sarah; Saez, Juan Jose; Fernandez, Dominique; Flores-Santibañez, Felipe; Alvarez, Karla; Tejon, Gabriela; Ruiz, Paulina; Maldonado, Paula; Hidalgo, Yessia; Manriquez, Valeria; Bono, Maria Rosa; Rosemblatt, Mario; Sauma, Daniela

    2013-05-01

    T helper type 17 (Th17) lymphocytes are found in high frequency in tumour-burdened animals and cancer patients. These lymphocytes, characterized by the production of interleukin-17 and other pro-inflammatory cytokines, have a well-defined role in the development of inflammatory and autoimmune pathologies; however, their function in tumour immunity is less clear. We explored possible opposing anti-tumour and tumour-promoting functions of Th17 cells by evaluating tumour growth and the ability to promote tumour infiltration of myeloid-derived suppressor cells (MDSC), regulatory T cells and CD4(+)  interferon-γ(+) cells in a retinoic acid-like orphan receptor γt (RORγt) -deficient mouse model. A reduced percentage of Th17 cells in the tumour microenvironment in RORγt-deficient mice led to enhanced tumour growth, that could be reverted by adoptive transfer of Th17 cells. Differences in tumour growth were not associated with changes in the accumulation or suppressive function of MDSC and regulatory T cells but were related to a decrease in the proportion of CD4(+) T cells in the tumour. Our results suggest that Th17 cells do not affect the recruitment of immunosuppressive populations but favour the recruitment of effector Th1 cells to the tumour, thereby promoting anti-tumour responses. © 2012 Blackwell Publishing Ltd.

  9. Dectin-1 diversifies Aspergillus fumigatus–specific T cell responses by inhibiting T helper type 1 CD4 T cell differentiation

    PubMed Central

    Hohl, Tobias M.; Collins, Nichole; Leiner, Ingrid; Gallegos, Alena; Saijo, Shinobu; Coward, Jesse W.; Iwakura, Yoichiro

    2011-01-01

    Pulmonary infection of mice with Aspergillus fumigatus induces concurrent T helper type 1 (Th1) and Th17 responses that depend on Toll-like receptor/MyD88 and Dectin-1, respectively. However, the mechanisms balancing Th1 and Th17 CD4 T cell populations during infection remain incompletely defined. In this study, we show that Dectin-1 deficiency disproportionally increases Th1 responses and decreases Th17 differentiation after A. fumigatus infection. Dectin-1 signaling in A. fumigatus–infected wild-type mice reduces IFN-γ and IL-12p40 expression in the lung, thereby decreasing T-bet expression in responding CD4 T cells and enhancing Th17 responses. Absence of IFN-γ or IL-12p35 in infected mice or T-bet in responding CD4 T cells enhances Th17 differentiation, independent of Dectin-1 expression, in A. fumigatus–infected mice. Transient deletion of monocyte-derived dendritic cells also reduces Th1 and boosts Th17 differentiation of A. fumigatus–specific CD4 T cells. Our findings indicate that Dectin-1–mediated signals alter CD4 T cell responses to fungal infection by decreasing the production of IL-12 and IFN-γ in innate cells, thereby decreasing T-bet expression in A. fumigatus–specific CD4 T cells and enabling Th17 differentiation. PMID:21242294

  10. The effect of the Ras homolog gene family (Rho), member A/Rho associated coiled-coil forming protein kinase pathway in atrial fibrosis of type 2 diabetes in rats.

    PubMed

    Chen, Jinling; Li, Qingqing; Dong, Ruiqing; Gao, Huikuan; Peng, Hui; Wu, Yongquan

    2014-09-01

    Diabetes mellitus promotes atrial structural remodeling, thereby producing atrial arrhythmogenicity. Atrial arrhythmia can substantially increase the risk of premature death. The aim of this study was to investigate the role of Ras homolog gene family, member A (RhoA)/Rho associated coiled-coil forming protein kinase (ROCK) in atrial fibrosis in diabetic hearts, and the effects of fasudil hydrochloride hydrate on atrial fibrosis. An eight-week-old male Sprague-Dawley rat model of type 2 diabetes was established using a high-fat diet combined with streptozotocin [30 mg/kg, once, intraperitoneal (i.p.)]. Animals were randomly divided into three groups: Control rats, untreated diabetic rats that received vehicle, and treated diabetic rats that received Rho kinase inhibitor fasudil hydrochloride hydrate (10 mg/kg/day, i.p., for 14 weeks). The morphological features of atrial fibrosis were observed using Masson staining. The mRNA expression levels of RhoA, ROCK1, ROCK2, type-I and type-III procollagen were assessed with quantitative polymerase chain reaction. The protein levels of RhoA, ROCK1 and ROCK2 were evaluated using western blot analysis. The atria of untreated diabetic rats showed evident atrial fibrosis as compared to the control rats; the mRNA expression levels of RhoA, ROCK1, ROCK2, type-I and type-III procollagen were upregulated; and the protein levels of RhoA, ROCK1 and ROCK2 were increased. The treatment with fasudil hydrochloride hydrate significantly reduced atrial fibrosis, mRNA levels of RhoA, ROCK1, ROCK2, type-I and type-III procollagen, and the protein levels of RhoA, ROCK1 and ROCK2. The results suggested that RhoA/ROCK was involved in atrial fibrosis, and that fasudil hydrochloride hydrate ameliorates atrial fibrosis through the RhoA/ROCK pathway in rats with type 2 diabetes.

  11. RhoA/ROCK pathway is the major molecular determinant of basal tone in intact human internal anal sphincter.

    PubMed

    Rattan, Satish; Singh, Jagmohan

    2012-04-01

    The knowledge of molecular control mechanisms underlying the basal tone in the intact human internal anal sphincter (IAS) is critical for the pathophysiology and rational therapy for a number of debilitating rectoanal motility disorders. We determined the role of RhoA/ROCK and PKC pathways by comparing the effects of ROCK- and PKC-selective inhibitors Y 27632 and Gö 6850 (10(-8) to 10(-4) M), respectively, on the basal tone in the IAS vs. the rectal smooth muscle (RSM). Western blot studies were performed to determine the levels of RhoA/ROCK II, PKC-α, MYPT1, CPI-17, and MLC(20) in the unphosphorylated and phosphorylated forms, in the IAS vs. RSM. Confocal microscopic studies validated the membrane distribution of ROCK II. Finally, to confirm a direct relationship, we examined the enzymatic activities and changes in the basal IAS tone and p-MYPT1, p-CPI-17, and p-MLC(20), before and after Y 27632 and Gö 6850. Data show higher levels of RhoA/ROCK II and related downstream signal transduction proteins in the IAS vs. RSM. In addition, data show a significant correlation between the active RhoA/ROCK levels, ROCK enzymatic activity, downstream proteins, and basal IAS tone, before and after ROCK inhibitor. From these data we conclude 1) RhoA/ROCK and downstream signaling are constitutively active in the IAS, and this pathway (in contrast with PKC) is the critical determinant of the basal tone in intact human IAS; and 2) RhoA and ROCK are potential therapeutic targets for a number of rectoanal motility disorders for which currently there is no satisfactory treatment.

  12. RhoA/ROCK pathway is the major molecular determinant of basal tone in intact human internal anal sphincter

    PubMed Central

    Singh, Jagmohan

    2012-01-01

    The knowledge of molecular control mechanisms underlying the basal tone in the intact human internal anal sphincter (IAS) is critical for the pathophysiology and rational therapy for a number of debilitating rectoanal motility disorders. We determined the role of RhoA/ROCK and PKC pathways by comparing the effects of ROCK- and PKC-selective inhibitors Y 27632 and Gö 6850 (10−8 to 10−4 M), respectively, on the basal tone in the IAS vs. the rectal smooth muscle (RSM). Western blot studies were performed to determine the levels of RhoA/ROCK II, PKC-α, MYPT1, CPI-17, and MLC20 in the unphosphorylated and phosphorylated forms, in the IAS vs. RSM. Confocal microscopic studies validated the membrane distribution of ROCK II. Finally, to confirm a direct relationship, we examined the enzymatic activities and changes in the basal IAS tone and p-MYPT1, p-CPI-17, and p-MLC20, before and after Y 27632 and Gö 6850. Data show higher levels of RhoA/ROCK II and related downstream signal transduction proteins in the IAS vs. RSM. In addition, data show a significant correlation between the active RhoA/ROCK levels, ROCK enzymatic activity, downstream proteins, and basal IAS tone, before and after ROCK inhibitor. From these data we conclude 1) RhoA/ROCK and downstream signaling are constitutively active in the IAS, and this pathway (in contrast with PKC) is the critical determinant of the basal tone in intact human IAS; and 2) RhoA and ROCK are potential therapeutic targets for a number of rectoanal motility disorders for which currently there is no satisfactory treatment. PMID:22241857

  13. Two-level inhibition of galK expression by Spot 42: Degradation of mRNA mK2 and enhanced transcription termination before the galK gene

    PubMed Central

    Wang, Xun; Ji, Sang Chun; Jeon, Heung Jin; Lee, Yonho; Lim, Heon M.

    2015-01-01

    The Escherichia coli gal operon has the structure Pgal-galE-galT-galK-galM. During early log growth, a gradient in gene expression, named type 2 polarity, is established, as follows: galE > galT > galK > galM. However, during late-log growth, type 1 polarity is established in which galK is greater than galT, as follows: galE > galK > galT > galM. We found that type 2 polarity occurs as a result of the down-regulation of galK, which is caused by two different molecular mechanisms: Spot 42-mediated degradation of the galK-specific mRNA, mK2, and Spot 42-mediated Rho-dependent transcription termination at the end of galT. Because the concentration of Spot 42 drops during the transition period of the polarity type switch, these results demonstrate that type 1 polarity is the result of alleviation of Spot 42-mediated galK down-regulation. Because the Spot 42-binding site overlaps with a putative Rho-binding site, a molecular mechanism is proposed to explain how Spot 42, possibly with Hfq, enhances Rho-mediated transcription termination at the end of galT. PMID:26045496

  14. Membrane depolarization-induced RhoA/Rho-associated kinase activation and sustained contraction of rat caudal arterial smooth muscle involves genistein-sensitive tyrosine phosphorylation

    PubMed Central

    Mita, Mitsuo; Tanaka, Hitoshi; Yanagihara, Hayato; Nakagawa, Jun-ichi; Hishinuma, Shigeru; Sutherland, Cindy; Walsh, Michael P.; Shoji, Masaru

    2013-01-01

    Rho-associated kinase (ROK) activation plays an important role in K+-induced contraction of rat caudal arterial smooth muscle (Mita et al., Biochem J. 2002; 364: 431–40). The present study investigated a potential role for tyrosine kinase activity in K+-induced RhoA activation and contraction. The non-selective tyrosine kinase inhibitor genistein, but not the src family tyrosine kinase inhibitor PP2, inhibited K+-induced sustained contraction (IC50 = 11.3 ± 2.4 µM). Genistein (10 µM) inhibited the K+-induced increase in myosin light chain (LC20) phosphorylation without affecting the Ca2+ transient. The tyrosine phosphatase inhibitor vanadate induced contraction that was reversed by genistein (IC50 = 6.5 ± 2.3 µM) and the ROK inhibitor Y-27632 (IC50 = 0.27 ± 0.04 µM). Vanadate also increased LC20 phosphorylation in a genistein- and Y-27632-dependent manner. K+ stimulation induced translocation of RhoA to the membrane, which was inhibited by genistein. Phosphorylation of MYPT1 (myosin-targeting subunit of myosin light chain phosphatase) was significantly increased at Thr855 and Thr697 by K+ stimulation in a genistein- and Y-27632-sensitive manner. Finally, K+ stimulation induced genistein-sensitive tyrosine phosphorylation of proteins of ∼55, 70 and 113 kDa. We conclude that a genistein-sensitive tyrosine kinase, activated by the membrane depolarization-induced increase in [Ca2+]i, is involved in the RhoA/ROK activation and sustained contraction induced by K+. Ca2+ sensitization, myosin light chain phosphatase, RhoA, Rho-associated kinase, tyrosine kinase PMID:24133693

  15. Oxotremorine treatment reduces repetitive behaviors in BTBR T+ tf/J mice.

    PubMed

    Amodeo, Dionisio A; Yi, Julia; Sweeney, John A; Ragozzino, Michael E

    2014-01-01

    Repetitive behaviors with restricted interests is one of the core criteria for the diagnosis of autism spectrum disorder (ASD). Current pharmacotherapies that target the dopaminergic or serotonergic systems have limited effectiveness in treating repetitive behaviors. Previous research has demonstrated that administration of muscarinic cholinergic receptor (mAChR) antagonists can exacerbate motor stereotypies while mAChR agonists reduce stereotypies. The present study determined whether the mAChR agonist, oxotremorine affected repetitive behaviors in the BTBR T+ tf/J (BTBR) mouse model of autism. To test the effects of oxotremorine on repetitive behaviors, marble burying and grooming behavior were measured in BTBR mice and compared to that in C57BL/6J (B6) mice. The effects of oxotremorine on locomotor activity was also measured. Thirty minutes before each test, mice received an intraperitoneal (ip) injection of saline, 0.001 mg or 0.01 mg of oxotremorine methiodide. Saline- treated BTBR mice exhibited increased marble burying and self-grooming behavior compared to that of saline-treated B6 mice. Oxotremorine significantly reduced marble burying and self-grooming behavior in BTBR mice, but had no significant effect in B6 mice. In addition, oxotremorine did not affect locomotor activity in BTBR mice, but significantly reduced locomotor activity in B6 mice at the 0.01 mg dose. These findings demonstrate that activation of mAChRs reduces repetitive behavior in the BTBR mouse and suggest that treatment with a mAChR agonist may be effective in reducing repetitive behaviors in ASD.

  16. Huperzine A ameliorates experimental autoimmune encephalomyelitis via the suppression of T cell-mediated neuronal inflammation in mice.

    PubMed

    Wang, Jun; Chen, Fu; Zheng, Peng; Deng, Weijuan; Yuan, Jia; Peng, Bo; Wang, Ruochen; Liu, Wenjun; Zhao, Hui; Wang, Yanqing; Wu, Gencheng

    2012-07-01

    Huperzine A (HupA), a sesquiterpene alkaloid and a potent and reversible inhibitor of acetylcholinesterase, possesses potential anti-inflammatory properties and is used for the treatment of certain neurodegenerative diseases such as Alzheimer's disease. However, it is still unknown whether this chemical is beneficial in the treatment of multiple sclerosis, a progressive inflammatory disease of the central nervous system. In this study, we examined the immunomodulatory properties of HupA in experimental autoimmune encephalomyelitis (EAE), a T-cell mediated murine model of multiple sclerosis. The following results were obtained: (1) intraperitoneal injections of HupA significantly attenuate the neurological severity of EAE in mice. (2) HupA decreases the accumulation of inflammatory cells, autoimmune-related demyelination and axonal injury in the spinal cords of EAE mice. (3) HupA down-regulates mRNA levels of the pro-inflammatory cytokines (IFN-γ and IL-17) and chemokines (MCP-1, RANTES, and TWEAK) while enhancing levels of anti-inflammatory cytokines (IL-4 and IL-10) in the spinal cords of EAE mice. (4) HupA inhibits MOG(35-55) stimulation-induced T-cell proliferation and IFN-γ and IL-17 secretion in cultured splenocytes. (5) HupA inhibition of T-cell proliferation is reversed by the nicotinic acetylcholinergic receptor antagonist mecamylamine. We conclude that HupA can ameliorate EAE by suppressing autoimmune responses, inflammatory reactions, subsequent demyelination and axonal injury in the spinal cord. Therefore, HupA may have a potential therapeutic value for the treatment of multiple sclerosis and as a neuroimmunomodulatory drug to control human CNS pathology. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Colonization with Heligmosomoides polygyrus suppresses mucosal IL-17 production.

    PubMed

    Elliott, David E; Metwali, Ahmed; Leung, John; Setiawan, Tommy; Blum, Arthur M; Ince, M Nedim; Bazzone, Lindsey E; Stadecker, Miguel J; Urban, Joseph F; Weinstock, Joel V

    2008-08-15

    Helminth exposure appears to protect hosts from inappropriate inflammatory responses, such as those causing inflammatory bowel disease. A recently identified, strongly proinflammatory limb of the immune response is characterized by T cell IL-17 production. Many autoimmune type inflammatory diseases are associated with IL-17 release. Because helminths protect from these diseases, we examined IL-17 production in helminth-colonized mice. We colonized mice with Heligmosomoides polygyrus, an intestinal helminth, and analyzed IL-17 production by lamina propria mononuclear cells (LPMC) and mesenteric lymph node (MLN) cells. Colonization with H. polygyrus reduces IL-17A mRNA by MLN cells and inhibits IL-17 production by cultured LPMC and MLN cells. Helminth exposure augments IL-4 and IL-10 production. Blocking both IL-4 and IL-10, but not IL-10 alone, restores IL-17 production in vitro. Colonization of colitic IL-10-deficient mice with H. polygyrus suppresses LPMC IL-17 production and improves colitis. Ab-mediated blockade of IL-17 improves colitis in IL-10-deficient mice. Thus, helminth-associated inhibition of IL-17 production is most likely an important mechanism mediating protection from inappropriate intestinal inflammation.

  18. The Oncogenic Role of RhoGAPs in Basal-Like Breast Cancer

    DTIC Science & Technology

    2016-04-01

    somatic mutations of RhoA in peripheral T cell lymphomas (PTCLs) (16-18) and in diffuse-type gastric carcinomas (19-21). Surprisingly, unlike Rac1...Diffuse-type gastric cancers exhibited mutations in the effector binding domain of RhoA, most commonly Y42C (19-21), which prevents binding to the...Impiombato A, Perez-Garcia A, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas . Nat Genet 2014;46

  19. Liquid chromatographic determination of chloramine-T and its primary degradation product, p-toluenesulfonamide, in water

    USGS Publications Warehouse

    Dawson, Verdel K.; Davis, Ruth A.

    1997-01-01

    N-sodium-N-chloro-rho-toluenesulfonamide (chloramine-T) effectively controls bacterial gill disease (BGD) in cultured fishes, BGD, a common disease of hatchery-reared salmonids, causes more fish losses than any other disease among these species. This study describes a liquid chromatographic (LC) method that is capable of direct, simultaneous analysis of chloramine-T and its primary degradation product, rho-toluenesulfonamide (rho-TSA), in water. The procedure involves reversed-phase (C-18) LC analysis with ion suppression, using 0.01 M phosphate buffer at pH 3. The mobile phase is phosphate buffer-acetonitrile (60 + 40) at 1 mL/min. Both chemicals can be detected with a UV spectrophotometer at 229 nm; the method is linear up to 40 mg, chloramine-T or rho-TSA/L. Mean recoveries were 96.4 +/- 6.1% for water samples fortified with 0.03 mg chloramine-T/L and 95.3 +/- 4.6% for water samples fortified with 0.005 mg rho-TSA/L. Limits of detection without sample enrichment for chloramine-T and rho-TSA are 0.01 mg/L and 0.001 mg/L, respectively.

  20. Liquid chromatographic determination of chloramine-T and its primary degradation product, p-toluenesulfonamide, in water

    USGS Publications Warehouse

    Dawson, V.K.; Davis, R.A.

    1997-01-01

    N-sodium-N-chloro-rho-toluenesulfonamide (chloramine-T) effectively controls bacterial gill disease (BGD) in cultured fishes, BGD, a common disease of hatchery-reared salmonids, causes more fish losses than any other disease among these species, This study describes a liquid chromatographic (LC) method that is capable of direct, simultaneous analysis of chloramine-T and its primary degradation product, rho-toluenesulfonamide (rho-TSA), in water. The procedure involves reversed-phase (C-18) LC analysis with ion suppression, using 0.01 M phosphate buffer at pH 3. The mobile phase is phosphate buffer-acetonitrile (60 + 40) at 1 mL/min. Both chemicals can be detected with a UV spectrophotometer at 229 nm; the method is linear up to 40 mg, chloramine-T or rho-TSA/L. Mean recoveries were 96.4 +/- 6.1% for water samples fortified with 0.03 mg chloramine-T/L and 95.3 +/- 4.6% for water samples fortified with 0.005 mg rho-TSA/L. Limits of detection without sample enrichment for chloramine-T and rho-TSA are 0.01 mg/L and 0.001 mg/L, respectively.

  1. 17{alpha}-Estradiol arrests cell cycle progression at G{sub 2}/M and induces apoptotic cell death in human acute leukemia Jurkat T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, Do Youn; Park, Hae Sun; Kim, Jun Seok

    2008-09-15

    A pharmacological dose (2.5-10 {mu}M) of 17{alpha}-estradiol (17{alpha}-E{sub 2}) exerted a cytotoxic effect on human leukemias Jurkat T and U937 cells, which was not suppressed by the estrogen receptor (ER) antagonist ICI 182,780. Along with cytotoxicity in Jurkat T cells, several apoptotic events including mitochondrial cytochrome c release, activation of caspase-9, -3, and -8, PARP degradation, and DNA fragmentation were induced. The cytotoxicity of 17{alpha}-E{sub 2} was not blocked by the anti-Fas neutralizing antibody ZB-4. While undergoing apoptosis, there was a remarkable accumulation of G{sub 2}/M cells with the upregulatoin of cdc2 kinase activity, which was reflected in the Thr56more » phosphorylation of Bcl-2. Dephosphorylation at Tyr15 and phosphorylation at Thr161 of cdc2, and significant increase in the cyclin B1 level were underlying factors for the cdc2 kinase activation. Whereas the 17{alpha}-E{sub 2}-induced apoptosis was completely abrogated by overexpression of Bcl-2 or by pretreatment with the pan-caspase inhibitor z-VAD-fmk, the accumulation of G{sub 2}/M cells significantly increased. The caspase-8 inhibitor z-IETD-fmk failed to influence 17{alpha}-E{sub 2}-mediated caspase-9 activation, but it markedly reduced caspase-3 activation and PARP degradation with the suppression of apoptosis, indicating the contribution of caspase-8; not as an upstream event of the mitochondrial cytochrome c release, but to caspase-3 activation. In the presence of hydroxyurea, which blocked the cell cycle progression at the G{sub 1}/S boundary, 17{alpha}-E{sub 2} failed to induce the G{sub 2}/M arrest as well as apoptosis. These results demonstrate that the cytotoxicity of 17{alpha}-E{sub 2} toward Jurkat T cells is attributable to apoptosis mainly induced in G{sub 2}/M-arrested cells, in an ER-independent manner, via a mitochondria-dependent caspase pathway regulated by Bcl-2.« less

  2. Berberine ameliorates chronic relapsing dextran sulfate sodium-induced colitis in C57BL/6 mice by suppressing Th17 responses.

    PubMed

    Li, Yan-Hong; Xiao, Hai-Tao; Hu, Dong-Dong; Fatima, Sarwat; Lin, Cheng-Yuan; Mu, Huai-Xue; Lee, Nikki P; Bian, Zhao-Xiang

    2016-08-01

    Ulcerative colitis (UC) is an increasingly common condition particularly in developed countries. The lack of satisfactory treatment has fueled the search for alternative therapeutic strategies. In recent studies, berberine, a plant alkaloid with a long history of medicinal use in Chinese medicine, has shown beneficial effects against animal models of acute UC. However, UC usually presents as a chronic condition with frequent relapse in patients. How berberine will act on chronic UC remains unclear. In the present study, we adopted dextran sulfate sodium (DSS)-induced chronic relapsing colitis model to assess the ameliorating activity of berberine. Colitis was induced by two cycles of 2.0% DSS for five days followed by 14days of drinking water plus a third cycle consisting of DSS only for five days. The colitis mice were orally administered 20mg/kg berberine from day 13 onward for 30days and monitored daily. The body weight, stool consistency, and stool bleeding were recorded for determination of the disease activity index (DAI). At the end of treatment, animals were sacrificed and samples were collected and subjected to histological, RT-qPCR, Western blot, and LC-MS analyses. Lymphocytes were isolated from spleens and mesenteric lymph nodes (MLN) and cultured for flow cytometry analysis of IL-17 secretion from CD4(+) cells and the Th17 cell differentiation. Results showed that berberine significantly ameliorated the DAI, colon shortening, colon tissue injury, and reduction of colonic expression of tight junction (TJ) protein ZO-1 and occludin of colitis mice. Notably, berberine treatment pronouncedly reduced DSS-upregulated Th17-related cytokine (IL-17 and ROR-γt) mRNAs in the colon. Furthermore, the mRNA expression of IL-6 and IL-23, and the phosphorylation of STAT3 in colon tissues from DSS-treated mice were pronouncedly inhibited by berberine. Moreover, the up-regulation of IL-17 secretion from CD4(+) cells of spleens and MLNs caused by DSS were significantly

  3. Altered expression of regulatory T and Th17 cells in murine bronchial asthma

    PubMed Central

    Zhu, Jianbo; Liu, Xiaoying; Wang, Wenxia; Ouyang, Xiuhe; Zheng, Wentao; Wang, Qingyuan

    2017-01-01

    Alteration of the careful balance of the ratio of Th1/Th2 cell subsets impacts immune function and plays an important role in the pathogenesis of asthma. There is little research on the impact of changes on the balance of the regulatory T (Treg)/Th17 subset ratio and its possible repercussions for asthma. This investigation used a murine model of asthma to measure the expression levels of Treg and Th17 cells and the levels of their transcription factors Foxp3 and retinoic acid receptor-related orphan nuclear receptor (ROR)γt in bronchial asthma while assessing indexes of airway inflammation. Thirty female SPF BALB/c mice were divided into three equally numbered groups: a normal control, an asthma and a dexamethasone treatment group. All the airway inflammation indexes measured were more prominent in the asthma group and less so in the control group. The percentage of the lymphocyte subset CD4+CD25+Foxp3+ cells in the CD4+ cells in the asthma group was significantly lower than that in the normal control group (P<0.01). The percentage of the lymphocyte subset CD4+IL-17+ cells in the CD4+ cells in the asthma group was significantly higher than that in the normal control group (P<0.01). The ratio of CD4+CD25+Foxp3+ cells/CD4+IL-17+ cells in the asthma group decreased compared with that in the normal control group (P<0.01). The expression level of Foxp3 of the mice in the asthma group was significantly lower than that in the control group (P<0.01). The expression intensity of RORγt in the asthma group was higher than that in the normal control group (P<0.01). Finally, the Foxp3/RORγt protein expression ratio in the asthma group was significantly lower than that in the normal control group (P<0.01). The Foxp3/RORγt protein expression ratio and the airway responsiveness were negatively correlated. The average levels of inflammation markers in the dexamethasone group were intermediate between the other groups. During the course of bronchial asthma the unbalanced

  4. The RhoA/ROCK Pathway Ameliorates Adhesion and Inflammatory Infiltration Induced by AGEs in Glomerular Endothelial Cells.

    PubMed

    Rao, Jialing; Ye, Zengchun; Tang, Hua; Wang, Cheng; Peng, Hui; Lai, Weiyan; Li, Yin; Huang, Wanbing; Lou, Tanqi

    2017-01-05

    A recent study demonstrated that advanced glycation end products (AGEs) play a role in monocyte infiltration in mesangial areas in diabetic nephropathy. The Ras homolog gene family, member A Rho kinase (RhoA/ROCK) pathway plays a role in regulating cell migration. We hypothesized that the RhoA/ROCK pathway affects adhesion and inflammation in endothelial cells induced by AGEs. Rat glomerular endothelial cells (rGECs) were cultured with AGEs (80 μg/ml) in vitro. The ROCK inhibitor Y27632 (10 nmol/l) and ROCK1-siRNA were used to inhibit ROCK. We investigated levels of the intercellular adhesion molecule 1 (ICAM-1) and monocyte chemoattractant protein1 (MCP-1) in rGECs. Db/db mice were used as a diabetes model and received Fasudil (10 mg/kg/d, n = 6) via intraperitoneal injection for 12 weeks. We found that AGEs increased the expression of ICAM-1 and MCP-1 in rGECs, and the RhoA/ROCK pathway inhibitor Y27632 depressed the release of adhesion molecules. Moreover, blocking the RhoA/ROCK pathway ameliorated macrophage transfer to the endothelium. Reduced expression of adhesion molecules and amelioration of inflammatory cell infiltration in the glomerulus were observed in db/db mice treated with Fasudil. The RhoA/ROCK pathway plays a role in adhesion molecule expression and inflammatory cell infiltration in glomerular endothelial cells induced by AGEs.

  5. Rebamipide prevents peripheral arthritis and intestinal inflammation by reciprocally regulating Th17/Treg cell imbalance in mice with curdlan-induced spondyloarthritis.

    PubMed

    Min, Hong-Ki; Kim, Jae-Kyung; Lee, Seon-Yeong; Kim, Eun-Kyung; Lee, Seung Hoon; Lee, Jennifer; Kwok, Seung-Ki; Cho, Mi-La; Park, Sung-Hwan

    2016-06-27

    Spondyloarthritis (SpA) usually manifests as arthritis of the axial and peripheral joints but can also result in extra-articular manifestations such as inflammatory bowel disease. Proinflammatory cytokine interleukin-17 (IL-17) plays a crucial role in the pathogenesis of SpA. Rebamipide inhibits signal transducer and activator of transcription 3 that controls IL-17 production and Th17 cell differentiation. This study examined the effect of rebamipide on SpA development. SKG ZAP-70(W163C) mice were immunized with curdlan to induce SpA features. The mice were then intraperitoneally injected with rebamipide or vehicle 3 times a week for 14 weeks and their clinical scores were evaluated. Histological scores of the paw and spine and the length of the gut were measured at sacrifice. Immunohistochemical staining of IL-17 and tumor necrosis factor-α (TNF-α) was performed using tissue samples isolated from the axial joints, peripheral joints, and gut. Spleen tissue samples were isolated from both rebamipide- or vehicle-treated mice with SpA at 14 weeks after curdlan injection to determine the effect of rebamipide on Th17 and regulatory T (Treg) cell differentiation. Rebamipide decreased the clinical and histological scores of the peripheral joints. The total length of the gut was preserved in rebamipide-treated mice. IL-17 and TNF-α expression in the spine, peripheral joints, and gut was lower in rebamipide-treated mice than in control mice. Th17 cell differentiation was suppressed whereas Treg cell differentiation was upregulated in the spleen of rebamipide-treated mice. Rebamipide exerted beneficial effects in mice with SpA by preventing peripheral arthritis and intestinal inflammation and by regulating Th17/Treg cell imbalance, suggesting that it can be used as a potential therapeutic agent for treating arthritis to SpA patients.

  6. Complex T Cell Interactions Contribute to Helicobacter pylori Gastritis in Mice

    PubMed Central

    Gray, Brian M.; Fontaine, Clinton A.; Poe, Sara A.

    2013-01-01

    Disease due to the gastric pathogen Helicobacter pylori varies in severity from asymptomatic to peptic ulcer disease and cancer. Accumulating evidence suggests that one source of this variation is an abnormal host response. The goal of this study was to use a mouse model of H. pylori gastritis to investigate the roles of regulatory T cells (Treg) as well as proinflammatory T cells (Th1 and Th17) in gastritis, gastric T cell engraftment, and gastric cytokine production. Our results support published data indicating that severe gastritis in T cell recipient mice is due to failure of Treg engraftment, that Treg ameliorate gastritis, and that the proinflammatory response is attributable to interactions between several cell subsets and cytokines. We confirmed that gamma interferon (IFN-γ) is essential for induction of gastritis but showed that IFN-γ-producing CD4 T cells are not necessary. Interleukin 17A (IL-17A) also contributed to gastritis, but to a lesser extent than IFN-γ. Tumor necrosis factor alpha (TNF-α) and IL-17F were also elevated in association with disease. These results indicate that while H. pylori-specific CD4+ T cells and IFN-γ are both essential for induction of gastritis due to H. pylori, IFN-γ production by T cells is not essential. It is likely that other proinflammatory cytokines, such as IL-17F and TNF-α, shown to be elevated in this model, also contribute to the induction of disease. We suggest that gastritis due to H. pylori is associated with loss of immunoregulation and alteration of several cytokines and cell subsets and cannot be attributed to a single immune pathway. PMID:23264048

  7. CXCR6 regulates the recruitment of pro-inflammatory IL-17A-producing T cells into atherosclerotic aortas

    PubMed Central

    Butcher, Matthew J.; Wu, Chih-I; Waseem, Tayab

    2016-01-01

    The adaptive immune response is involved in the development and progression of atherosclerosis and IL-17A+ cells play a role in this disease. Although elevated number of CD4+ IL-17A+ (Th17) and IL-17A+TCRγδ+ T cells are found within murine atherosclerotic aortas and human plaques, the mechanisms governing IL-17A+ T-cell migration to atherosclerotic lesions are unclear. The chemokine receptor CXCR6 is expressed on several T-cell subsets and plays a pro-atherogenic role in atherosclerosis. Here, we used CXCR6-deficient (Cxcr6 GFP/GFP) apolipoprotein E-deficient (Apoe −/−) mice to investigate the involvement of CXCR6 in the recruitment IL-17A+ T cells to atherosclerotic aortas. Flow cytometric analyses revealed reductions in Th17 and IL-17A+TCRγδ+ T cells within aged Cxcr6 GFP/GFP Apoe −/− aortas, in comparison with age-matched Cxcr6 GFP/+ Apoe −/− aortas. Although CXCR6-sufficient IL-17A+ T cells efficiently migrated toward CXCL16, the migration of CXCR6-deficient IL-17A+ T cells was abolished in transwell assays. Importantly, the recruitment of Cxcr6 GFP/GFP Apoe −/− IL-17A+ T cells into the aortas of Apoe −/− recipients was markedly reduced in short-term adoptive transfer experiments. Altogether these results demonstrate an important role of CXCR6 in the regulation of pathological Th17 and IL-17A+TCRγδ+ T-cell recruitment into atherosclerotic lesions. PMID:26614640

  8. CXCR6 regulates the recruitment of pro-inflammatory IL-17A-producing T cells into atherosclerotic aortas.

    PubMed

    Butcher, Matthew J; Wu, Chih-I; Waseem, Tayab; Galkina, Elena V

    2016-05-01

    The adaptive immune response is involved in the development and progression of atherosclerosis and IL-17A(+) cells play a role in this disease. Although elevated number of CD4(+) IL-17A(+) (Th17) and IL-17A(+)TCRγδ(+) T cells are found within murine atherosclerotic aortas and human plaques, the mechanisms governing IL-17A(+) T-cell migration to atherosclerotic lesions are unclear. The chemokine receptor CXCR6 is expressed on several T-cell subsets and plays a pro-atherogenic role in atherosclerosis. Here, we used CXCR6-deficient (Cxcr6 (GFP/GFP) ) apolipoprotein E-deficient (Apoe (-/-) ) mice to investigate the involvement of CXCR6 in the recruitment IL-17A(+) T cells to atherosclerotic aortas. Flow cytometric analyses revealed reductions in Th17 and IL-17A(+)TCRγδ(+) T cells within aged Cxcr6 (GFP/GFP) Apoe (-/-) aortas, in comparison with age-matched Cxcr6 (GFP/+) Apoe (-/-) aortas. Although CXCR6-sufficient IL-17A(+) T cells efficiently migrated toward CXCL16, the migration of CXCR6-deficient IL-17A(+) T cells was abolished in transwell assays. Importantly, the recruitment of Cxcr6 (GFP/GFP) Apoe (-/-) IL-17A(+) T cells into the aortas of Apoe (-/-) recipients was markedly reduced in short-term adoptive transfer experiments. Altogether these results demonstrate an important role of CXCR6 in the regulation of pathological Th17 and IL-17A(+)TCRγδ(+) T-cell recruitment into atherosclerotic lesions. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment.

    PubMed

    Kryczek, Ilona; Wei, Shuang; Zou, Linhua; Altuwaijri, Saleh; Szeliga, Wojciech; Kolls, Jay; Chang, Alfred; Zou, Weiping

    2007-06-01

    Th17 cells play an active role in inflammation and autoimmune diseases. However, the nature and regulation of Th17 in the context of tumor immunity remain unknown. In this study, we show that parallel to regulatory T (Treg) cells, IL-17(+) CD4(+) and CD8(+) T cells are kinetically induced in multiple tumor microenvironments in mice and humans. Treg cells play a crucial role in tumor immune pathogenesis and temper immune therapeutic efficacy. IL-2 is crucial for the production and function of Treg cells. We now show that IL-2 reduces IL-17(+) T cell differentiation in the tumor microenvironment accompanied with an enhanced Treg cell compartment in vitro and in vivo. Altogether, our work demonstrates a dynamic differentiation of IL-17(+) T cells in the tumor microenvironment, reveals a novel role for IL-2 in controlling the balance between IL-17(+) and Treg cells, and provides new insight of IL-17(+) T cells in tumor immune pathology and therapy.

  10. Of mice and men: how animal models advance our understanding of T-cell function in RA.

    PubMed

    Kobezda, Tamás; Ghassemi-Nejad, Sheida; Mikecz, Katalin; Glant, Tibor T; Szekanecz, Zoltán

    2014-03-01

    The involvement of autoreactive T cells in the pathogenesis of rheumatoid arthritis (RA) as well as in autoimmune animal models of arthritis has been well established; however, unanswered questions, such as the role of joint-homing T cells, remain. Animal models of arthritis are superb experimental tools in demonstrating how T cells trigger joint inflammation, and thus can help to further our knowledge of disease mechanisms and potential therapies. In this Review, we discuss the similarities and differences in T-cell subsets and functions between RA and mouse arthritis models. For example, various T-cell subsets are involved in both human and mouse arthritis, but differences might exist in the cytokine regulation and plasticity of these cells. With regard to joint-homing T cells, an abundance of synovial T cells is present in humans compared with mice. On the other hand, local expansion of type 17 T-helper (TH17) cells is observed in some animal models, but not in RA. Finally, whereas T-cell depletion therapy essentially failed in RA, antibody targeting of T cells can work, at least preventatively, in most arthritis models. Clearly, additional human and animal studies are needed to fill the gap in our understanding of the specific contribution of T-cell subsets to arthritis in mice and men.

  11. Immunization with M2e-Displaying T7 Bacteriophage Nanoparticles Protects against Influenza A Virus Challenge

    PubMed Central

    Hashemi, Hamidreza; Pouyanfard, Somayeh; Bandehpour, Mojgan; Noroozbabaei, Zahra; Kazemi, Bahram; Saelens, Xavier; Mokhtari-Azad, Talat

    2012-01-01

    Considering the emergence of highly pathogenic influenza viruses and threat of worldwide pandemics, there is an urgent need to develop broadly-protective influenza vaccines. In this study, we demonstrate the potential of T7 bacteriophage-based nanoparticles with genetically fused ectodomain of influenza A virus M2 protein (T7-M2e) as a candidate universal flu vaccine. Immunization of mice with non-adjuvanted T7-M2e elicited M2e-specific serum antibody responses that were similar in magnitude to those elicited by M2e peptide administered in Freund’s adjuvant. Comparable IgG responses directed against T7 phage capsomers were induced following vaccination with wild type T7 or T7-M2e. T7-M2e immunization induced balanced amounts of IgG1 and IgG2a antibodies and these antibodies specifically recognized native M2 on the surface of influenza A virus-infected mammalian cells. The frequency of IFN-γ-secreting T cells induced by T7-M2e nanoparticles was comparable to those elicited by M2e peptide emulsified in Freund’s adjuvant. Emulsification of T7-M2e nanoparticles in Freund’s adjuvant, however, induced a significantly stronger T cell response. Furthermore, T7-M2e-immunized mice were protected against lethal challenge with an H1N1 or an H3N2 virus, implying the induction of hetero-subtypic immunity in our mouse model. T7-M2e-immunized mice displayed considerable weight loss and had significantly reduced viral load in their lungs compared to controls. We conclude that display of M2e on the surface of T7 phage nanoparticles offers an efficient and economical opportunity to induce cross-protective M2e-based immunity against influenza A. PMID:23029232

  12. CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice

    PubMed Central

    Bagchi, Sreya; He, Ying; Zhang, Hong; Cao, Liang; Van Rhijn, Ildiko; Moody, D. Branch; Gudjonsson, Johann E.

    2017-01-01

    A large proportion of human T cells are autoreactive to group 1 CD1 proteins, which include CD1a, CD1b, and CD1c. However, the physiological role of the CD1 proteins remains poorly defined. Here, we have generated a double-transgenic mouse model that expresses human CD1b and CD1c molecules (hCD1Tg) as well as a CD1b-autoreactive TCR (HJ1Tg) in the ApoE-deficient background (hCD1Tg HJ1Tg Apoe–/– mice) to determine the role of CD1-autoreactive T cells in hyperlipidemia-associated inflammatory diseases. We found that hCD1Tg HJ1Tg Apoe–/– mice spontaneously developed psoriasiform skin inflammation characterized by T cell and neutrophil infiltration and a Th17-biased cytokine response. Anti–IL-17A treatment ameliorated skin inflammation in vivo. Additionally, phospholipids and cholesterol preferentially accumulated in diseased skin and these autoantigens directly activated CD1b-autoreactive HJ1 T cells. Furthermore, hyperlipidemic serum enhanced IL-6 secretion by CD1b+ DCs and increased IL-17A production by HJ1 T cells. In psoriatic patients, the frequency of CD1b-autoreactive T cells was increased compared with that in healthy controls. Thus, this study has demonstrated the pathogenic role of CD1b-autoreactive T cells under hyperlipidemic conditions in a mouse model of spontaneous skin inflammation. As a large proportion of psoriatic patients are dyslipidemic, this finding is of clinical significance and indicates that self-lipid–reactive T cells might serve as a possible link between hyperlipidemia and psoriasis. PMID:28463230

  13. Differential regulation of muscarinic M2 and M3 receptor signaling in gastrointestinal smooth muscle by caveolin-1.

    PubMed

    Bhattacharya, Sayak; Mahavadi, Sunila; Al-Shboul, Othman; Rajagopal, Senthilkumar; Grider, John R; Murthy, Karnam S

    2013-08-01

    Caveolae act as scaffolding proteins for several G protein-coupled receptor signaling molecules to regulate their activity. Caveolin-1, the predominant isoform in smooth muscle, drives the formation of caveolae. The precise role of caveolin-1 and caveolae as scaffolds for G protein-coupled receptor signaling and contraction in gastrointestinal muscle is unclear. Thus the aim of this study was to examine the role of caveolin-1 in the regulation of Gq- and Gi-coupled receptor signaling. RT-PCR, Western blot, and radioligand-binding studies demonstrated the selective expression of M2 and M3 receptors in gastric smooth muscle cells. Carbachol (CCh) stimulated phosphatidylinositol (PI) hydrolysis, Rho kinase and zipper-interacting protein (ZIP) kinase activity, induced myosin phosphatase 1 (MYPT1) phosphorylation (at Thr(696)) and 20-kDa myosin light chain (MLC20) phosphorylation (at Ser(19)) and muscle contraction, and inhibited cAMP formation. Stimulation of PI hydrolysis, Rho kinase, and ZIP kinase activity, phosphorylation of MYPT1 and MLC20, and muscle contraction in response to CCh were attenuated by methyl β-cyclodextrin (MβCD) or caveolin-1 small interfering RNA (siRNA). Similar inhibition of PI hydrolysis, Rho kinase, and ZIP kinase activity and muscle contraction in response to CCh and gastric emptying in vivo was obtained in caveolin-1-knockout mice compared with wild-type mice. Agonist-induced internalization of M2, but not M3, receptors was blocked by MβCD or caveolin-1 siRNA. Stimulation of PI hydrolysis, Rho kinase, and ZIP kinase activities in response to other Gq-coupled receptor agonists such as histamine and substance P was also attenuated by MβCD or caveolin-1 siRNA. Taken together, these results suggest that caveolin-1 facilitates signaling by Gq-coupled receptors and contributes to enhanced smooth muscle function.

  14. Differential binding of RhoA, RhoB, and RhoC to protein kinase C-related kinase (PRK) isoforms PRK1, PRK2, and PRK3: PRKs have the highest affinity for RhoB.

    PubMed

    Hutchinson, Catherine L; Lowe, Peter N; McLaughlin, Stephen H; Mott, Helen R; Owen, Darerca

    2013-11-12

    Protein kinase C-related kinases (PRKs) are members of the protein kinase C superfamily of serine-threonine kinases and can be activated by binding to members of the Rho family of GTPases via a Rho-binding motif known as an HR1 domain. Three tandem HR1 domains reside at the N-terminus of the PRKs. We have assessed the ability of the HR1a and HR1b domains from the three PRK isoforms (PRK1, PRK2, and PRK3) to interact with the three Rho isoforms (RhoA, RhoB, and RhoC). The affinities of RhoA and RhoC for a construct encompassing both PRK1 HR1 domains were similar to those for the HR1a domain alone, suggesting that these interactions are mediated solely by the HR1a domain. The affinities of RhoB for both the PRK1 HR1a domain and the HR1ab didomain were higher than those of RhoA or RhoC. RhoB also bound more tightly to the didomain than to the HR1a domain alone, implicating the HR1b domain in the interaction. As compared with PRK1 HR1 domains, PRK2 and PRK3 domains bind less well to all Rho isoforms. Uniquely, however, the PRK3 domains display a specificity for RhoB that requires both the C-terminus of RhoB and the PRK3 HR1b domain. The thermal stability of the HR1a and HR1b domains was also investigated. The PRK2 HR1a domain was found to be the most thermally stable, while PRK2 HR1b, PRK3 HR1a, and PRK3 HR1b domains all exhibited lower melting temperatures, similar to that of the PRK1 HR1a domain. The lower thermal stability of the PRK2 and PRK3 HR1b domains may impart greater flexibility, driving their ability to interact with Rho isoforms.

  15. Interleukin-17 is a critical target for the treatment of ankylosing enthesitis and psoriasis-like dermatitis in mice.

    PubMed

    Ebihara, Shin; Date, Fumiko; Dong, Yupeng; Ono, Masao

    2015-06-01

    Ankylosis is a major pathological manifestation of spondyloarthropathy. The aim of this study was to evaluate the effects of anti-IL-17 therapy on spontaneous ankylosing enthesitis in mice. In this study, we used male DBA/1 mice as a spontaneous ankylosis model. Serum IL-17 concentrations were determined using enzyme-linked immunosorbent assay. Male DBA/1 mice from different litters were mixed and caged together preceding the treatment at 10 weeks (wk) of age (prophylaxis) or 21 wk of age (intervention). Treatment with anti-IL-17 antibodies or saline was initiated after caging in groups of mice and administered weekly. The onset of tarsal ankylosis was assessed by ankle swelling and histopathological examination. Pathological changes and mRNA expression levels were assessed in joints and ears obtained at the experimental end-point. We found that circulating IL-17 increased with the onset of ankylosis in male DBA/1 mice, coinciding with the onset of dermatitis. The symptoms of dermatitis corresponded to the pathological characteristics of psoriasis: acanthosis with mild hyperkeratosis, scaling, epidermal microabscess formation and augmented expression of K16, S100A8 and S100A9. Prophylactic administration of anti-IL-17 antibodies significantly prevented the development of both ankylosis and dermatitis in male DBA/1 mice caged together. On the other hand, administration of anti-IL-17 antibodies after disease onset had a lesser but significant effect on ankylosis progression but did not affect dermatitis progression. In conclusion, IL-17 is a key mediator in the pathogenic process of tarsal ankylosis and psoriasis-like dermatitis in male DBA/1 mice caged together. Thus, IL-17 is a potential therapeutic target in ankylosing enthesitis and psoriasis in humans.

  16. Pathophysiological effects of RhoA and Rho-associated kinase on cardiovascular system.

    PubMed

    Cai, Anping; Li, Liwen; Zhou, Yingling

    2016-01-01

    In past decades, growing evidence from basic and clinical researches reveal that small guanosine triphosphate binding protein ras homolog gene family, member A (RhoA) and its main effector Rho-associated kinase (ROCK) play central and complex roles in cardiovascular systems, and increasing RhoA and ROCK activity is associated with a broad range of cardiovascular diseases such as congestive heart failure, atherosclerosis, and hypertension. Favorable outcomes have been observed with ROCK inhibitors treatment. In this review, we briefly summarize the pathophysiological roles of RhoA/ROCK signaling pathway on cardiovascular system, displaying the potential benefits in the cardiovascular system with controlling RhoA/ROCK signaling pathway.

  17. Fas Promotes T Helper 17 Cell Differentiation and Inhibits T Helper 1 Cell Development by Binding and Sequestering Transcription Factor STAT1.

    PubMed

    Meyer Zu Horste, Gerd; Przybylski, Dariusz; Schramm, Markus A; Wang, Chao; Schnell, Alexandra; Lee, Youjin; Sobel, Raymond; Regev, Aviv; Kuchroo, Vijay K

    2018-03-20

    The death receptor Fas removes activated lymphocytes through apoptosis. Previous transcriptional profiling predicted that Fas positively regulates interleukin-17 (IL-17)-producing T helper 17 (Th17) cells. Here, we demonstrate that Fas promoted the generation and stability of Th17 cells and prevented their differentiation into Th1 cells. Mice with T-cell- and Th17-cell-specific deletion of Fas were protected from induced autoimmunity, and Th17 cell differentiation and stability were impaired. Fas-deficient Th17 cells instead developed a Th1-cell-like transcriptional profile, which a new algorithm predicted to depend on STAT1. Experimentally, Fas indeed bound and sequestered STAT1, and Fas deficiency enhanced IL-6-induced STAT1 activation and nuclear translocation, whereas deficiency of STAT1 reversed the transcriptional changes induced by Fas deficiency. Thus, our computational and experimental approach identified Fas as a regulator of the Th17-to-Th1 cell balance by controlling the availability of opposing STAT1 and STAT3 to have a direct impact on autoimmunity. Copyright © 2018. Published by Elsevier Inc.

  18. Rho kinase regulates the survival and transformation of cells bearing oncogenic forms of KIT, FLT3 and BCR-ABL

    PubMed Central

    Mali, Raghuveer Singh; Ramdas, Baskar; Ma, Peilin; Shi, Jianjian; Munugalavadla, Veerendra; Sims, Emily; Wei, Lei; Vemula, Sasidhar; Nabinger, Sarah C.; Goodwin, Charles B.; Chan, Rebecca J.; Traina, Fabiola; Visconte, Valeria; Tiu, Ramon V.; Lewis, Timothy A.; Stern, Andrew M.; Wen, Qiang; Crispino, John D.; Boswell, H. Scott; Kapur, Reuben

    2011-01-01

    Summary We show constitutive activation of Rho kinase (ROCK) in cells bearing oncogenic forms of KIT, FLT3 and BCR-ABL, which is dependent on PI3K and Rho GTPase. Genetic or pharmacologic inhibition of ROCK in oncogene bearing cells impaired their growth as well as the growth of acute myeloid leukemia patient derived blasts and prolonged the life span of mice bearing myeloproliferative disease. Downstream from ROCK, rapid dephosphorylation or loss of expression of myosin light chain resulted in enhanced apoptosis, reduced growth and loss of actin polymerization in oncogene bearing cells leading to significantly prolonged life span of leukemic mice. In summary, we describe a pathway involving PI3K/Rho/ROCK/MLC which may contribute to myeloproliferative disease and/or acute myeloid leukemia in humans. PMID:21907926

  19. Tetramethylpyrazine Protects Against Oxygen-Glucose Deprivation-Induced Brain Microvascular Endothelial Cells Injury via Rho/Rho-kinase Signaling Pathway.

    PubMed

    Yang, Guang; Qian, Chen; Wang, Ning; Lin, Chenyu; Wang, Yan; Wang, Guangyun; Piao, Xinxin

    2017-05-01

    Tetramethylpyrazine (TMP, also known as Ligustrazine), which is isolated from Chinese Herb Medicine Ligustium wollichii Franchat (Chuan Xiong), has been widely used in China for the treatment of ischemic stroke by Chinese herbalists. Brain microvascular endothelial cells (BMECs) are the integral parts of the blood-brain barrier (BBB), protecting BMECs against oxygen-glucose deprivation (OGD) which is important for the treatment of ischemic stroke. Here, we investigated the protective mechanisms of TMP, focusing on OGD-injured BMECs and the Rho/Rho-kinase (Rho-associated kinases, ROCK) signaling pathway. The model of OGD-injured BMECs was established in this study. BMECs were identified by von Willebrand factor III staining and exposed to fasudil, or TMP at different concentrations (14.3, 28.6, 57.3 µM) for 2 h before 24 h of OGD injury. The effect of each treatment was examined by cell viability assays, measurement of intracellular reactive oxygen species (ROS), and transendothelial electric resistance and western blot analysis (caspase-3, endothelial nitric oxide synthase (eNOS), RhoA, Rac1). Our results show that TMP significantly attenuated apoptosis and the permeability of BMECs induced by OGD. In addition, TMP could notably down-regulate the characteristic proteins in Rho/ROCK signaling pathway such as RhoA and Rac1, which triggered abnormal changes of eNOS and ROS, respectively. Altogether, our results show that TMP has a strong protective effect against OGD-induced BMECs injury and suggest that the mechanism might be related to the inhibition of the Rho/ROCK signaling pathway.

  20. Rapid allergen-induced interleukin-17 and interferon-γ secretion by skin-resident memory CD8+ T cells.

    PubMed

    Schmidt, Jonas D; Ahlström, Malin G; Johansen, Jeanne D; Dyring-Andersen, Beatrice; Agerbeck, Christina; Nielsen, Morten M; Poulsen, Steen S; Woetmann, Anders; Ødum, Niels; Thomsen, Allan R; Geisler, Carsten; Bonefeld, Charlotte M

    2017-04-01

    Skin-resident memory T (T RM ) cells are associated with immunological memory in the skin. Whether immunological memory responses to allergens in the skin are solely localized to previously allergen-exposed sites or are present globally in the skin is not clear. Furthermore, the mechanisms whereby T RM cells induce rapid recall responses need further investigation. To study whether contact allergens induce local and/or global memory, and to determine the mechanisms involved in memory responses in the skin. To address these questions, we analysed responses to contact allergens in mice and humans sensitized to 2,4-dinitrofluorobenzene and nickel, respectively. Challenge responses in both mice and humans were dramatically increased at sites previously exposed to allergens as compared with previously unexposed sites. Importantly, the magnitude of the challenge response correlated with the epidermal accumulation of interleukin (IL)-17A-producing and interferon (IFN)-γ-producing T RM cells. Moreover, IL-17A and IFN-γ enhanced allergen-induced IL-1β production in keratinocytes. We show that sensitization with contact allergens induces a strong, long-lasting local memory and a weaker, temporary global immunological memory response to the allergen that is mediated by IL-17A-producing and IFN-γ-producing CD8 + T RM cells. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Development of immune-complex glomerulonephritis in athymic mice: T cells are not required for the genesis of glomerular injury.

    PubMed

    Bagheri, Nayer; Pepple, Douglas A; Hassan, Medhat O; Harding, Clifford V; Emancipator, Steven N

    2005-03-01

    Chronic injection of dextran into normal mice elicits a glomerulonephritis (GN) that models IgA nephropathy (IgAN) in humans. Since athymic mice lack T cells but nonetheless develop antibodies to polysaccharide antigens such as dextran (DEX), we used athymic mice to study the role of T lymphocytes in the induction of this form of GN, independent of the role of T cells in antibody synthesis. Both mice given injections of diethylaminoethyl (DEAE)-DEX and uninjected mice had circulating IgM and IgA anti-DEX antibodies, which apparently arise as 'natural antibodies', but immune complex GN was observed only in the injected mice. All of 15 injected mice exhibited capillary staining for IgA and IgM; none of 12 control mice contained such IgA deposits and only one had capillary staining for IgM (both P<0.001). In addition, IgG and C3 were detected in injected but not control animals. By light microscopy, injected mice exhibited marked expansion of mesangial matrix relative to controls. Electron microscopy showed no glomerular abnormalities in control mice, whereas injected mice showed large organized fibrillar deposits principally in the mesangium. Hematuria and proteinuria were present in all 15 injected mice, but only one of 11 control mice showed hematuria or proteinuria (both P<0.001). These results indicate that chronic injection of DEAE-DEX into athymic mice generates the same clinical and histologic features of GN as in euthymic mice, suggesting that T cells are not necessary to promote GN in this model.

  2. Suppression of MIM by microRNA-182 activates RhoA and promotes breast cancer metastasis.

    PubMed

    Lei, R; Tang, J; Zhuang, X; Deng, R; Li, G; Yu, J; Liang, Y; Xiao, J; Wang, H-Y; Yang, Q; Hu, G

    2014-03-06

    Breast cancer is the most common type of cancer among women worldwide, and metastasis represents the most devastating stage of the disease. Recent studies have revealed that microRNAs (miRNA) have critical roles to regulate cancer cell invasion and metastasis. Here we present evidence to show the role of miR-182 in breast cancer metastasis. miR-182 is upregulated in the malignant cell line variants of both human MCF10 and mouse 4T1 series. Ectopic expression of miR-182 enhanced breast cancer cell motility and invasiveness, whereas miR-182 inhibition resulted in opposite changes. In nude mice, miR-182 led to increased pulmonary colonization of cancer cells. We further demonstrated that miR-182 directly targets MIM (Missing in Metastasis), which suppresses metastasis by inhibiting ras homolog family member A (RhoA) activity and stress fiber formation in breast cancer cells. Restoring MIM expression completely blocked the pro-metastasis function of miR-182, while RhoA inhibition reversed the phenotypes of both miR-182 overexpression and MIM knockdown. In breast tumor samples, miR-182 induction is linked to downregulation of MIM, RhoA activation and poor prognosis. Hence, our data delineates the molecular pathway by which miR-182 promotes breast cancer invasion and metastasis, and may have important implication for the treatment of metastatic cancers.

  3. RhoB controls coordination of adult angiogenesis and lymphangiogenesis following injury by regulating VEZF1-mediated transcription

    NASA Astrophysics Data System (ADS)

    Gerald, Damien; Adini, Irit; Shechter, Sharon; Perruzzi, Carole; Varnau, Joseph; Hopkins, Benjamin; Kazerounian, Shiva; Kurschat, Peter; Blachon, Stephanie; Khedkar, Santosh; Bagchi, Mandrita; Sherris, David; Prendergast, George C.; Klagsbrun, Michael; Stuhlmann, Heidi; Rigby, Alan C.; Nagy, Janice A.; Benjamin, Laura E.

    2013-11-01

    Mechanisms governing the distinct temporal dynamics that characterize post-natal angiogenesis and lymphangiogenesis elicited by cutaneous wounds and inflammation remain unclear. RhoB, a stress-induced small GTPase, modulates cellular responses to growth factors, genotoxic stress and neoplastic transformation. Here we show, using RhoB null mice, that loss of RhoB decreases pathological angiogenesis in the ischaemic retina and reduces angiogenesis in response to cutaneous wounding, but enhances lymphangiogenesis following both dermal wounding and inflammatory challenge. We link these unique and opposing roles of RhoB in blood versus lymphatic vasculatures to the RhoB-mediated differential regulation of sprouting and proliferation in primary human blood versus lymphatic endothelial cells. We demonstrate that nuclear RhoB-GTP controls expression of distinct gene sets in each endothelial lineage by regulating VEZF1-mediated transcription. Finally, we identify a small-molecule inhibitor of VEZF1-DNA interaction that recapitulates RhoB loss in ischaemic retinopathy. Our findings establish the first intra-endothelial molecular pathway governing the phased response of angiogenesis and lymphangiogenesis following injury.

  4. Hydroxysteroid (17β)-dehydrogenase 1-deficient female mice present with normal puberty onset but are severely subfertile due to a defect in luteinization and progesterone production.

    PubMed

    Hakkarainen, Janne; Jokela, Heli; Pakarinen, Pirjo; Heikelä, Hanna; Kätkänaho, Laura; Vandenput, Liesbeth; Ohlsson, Claes; Zhang, Fu-Ping; Poutanen, Matti

    2015-09-01

    Hydroxysteroid (17β)-dehydrogenase type 1 (HSD17B1) catalyzes the conversion of low active 17-ketosteroids, androstenedione (A-dione) and estrone (E1) to highly active 17-hydroxysteroids, testosterone (T) and E2, respectively. In this study, the importance of HSD17B1 in ovarian estrogen production was determined using Hsd17b1 knockout (HSD17B1KO) mice. In these mice, the ovarian HSD17B enzyme activity was markedly reduced, indicating a central role of HSD17B1 in ovarian physiology. The lack of Hsd17b activity resulted in increased ovarian E1:E2 and A-dione:T ratios, but we also observed reduced progesterone concentration in HSD17B1KO ovaries. Accordingly with the altered steroid production, altered expression of Star, Cyp11a1, Lhcgr, Hsd17b7, and especially Cyp17a1 was observed. The ovaries of HSD17B1KO mice presented with all stages of folliculogenesis, while the corpus luteum structure was less defined and number reduced. Surprisingly, bundles of large granular cells of unknown origin appeared in the stroma of the KO ovaries. The HSD17B1KO mice presented with severe subfertility and failed to initiate pseudopregnancy. However, the HSD17B1KO females presented with normal estrous cycle defined by vaginal smears and normal puberty appearance. This study indicates that HSD17B1 is a key enzyme in ovarian steroidogenesis and has a novel function in initiation and stabilization of pregnancy. © FASEB.

  5. T-bet-dependent NKp46+ innate lymphoid cells regulate the onset of TH17-induced neuroinflammation.

    PubMed

    Kwong, Brandon; Rua, Rejane; Gao, Yuanyuan; Flickinger, John; Wang, Yan; Kruhlak, Michael J; Zhu, Jinfang; Vivier, Eric; McGavern, Dorian B; Lazarevic, Vanja

    2017-10-01

    The transcription factor T-bet has been associated with increased susceptibility to systemic and organ-specific autoimmunity, but the mechanism by which T-bet expression promotes neuroinflammation remains unknown. In this study, we demonstrate a cardinal role of T-bet-dependent NKp46 + innate lymphoid cells (ILCs) in the initiation of CD4 + T H 17-mediated neuroinflammation. Loss of T-bet specifically in NKp46 + ILCs profoundly impaired the ability of myelin-reactive T H 17 cells to invade central nervous system (CNS) tissue and protected the mice from autoimmunity. T-bet-dependent NKp46 + ILCs localized in the meninges and acted as chief coordinators of meningeal inflammation by inducing the expression of proinflammatory cytokines, chemokines and matrix metalloproteinases, which together facilitated T cell entry into CNS parenchyma. Our findings uncover a detrimental role of T-bet-dependent NKp46 + ILCs in the development of CNS autoimmune disease.

  6. Gd-EOB-DTPA-enhanced-MR imaging in the inflammation stage of nonalcoholic steatohepatitis (NASH) in mice.

    PubMed

    Yamada, Tomomi; Obata, Atsushi; Kashiwagi, Yuto; Rokugawa, Takemi; Matsushima, Shuuichi; Hamada, Tadateru; Watabe, Hiroshi; Abe, Kohji

    2016-07-01

    The purpose of this study is to investigate the correlation between the liver kinetics of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) and liver histopathology in a mouse model of NASH by using dynamic contrast-enhanced MRI. Twenty male C57/BL6 mice aged 8weeks were fed a methionine-choline-deficient (MCD) diet for 2, 4 and 6weeks (MCD groups: MCD 2w, 4w, or 6w). Gd-EOB-DTPA-enhanced MR imaging of the liver was performed at 2, 4 and 6weeks after the MCD feeding. The signal intensity of the liver was obtained from dynamic MR images and relative enhancement (RE), and the time to maximum RE (Tmax) and half-life of elimination RE (T1/2) were calculated. After MRI scan, histopathological scores of hepatic steatosis and inflammation and blood biochemistry data, such as aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, were obtained. Plasma AST and ALT levels were significantly increased in mice fed MCD. Histopathological scores indicated that steatohepatitis progressed with the MCD feeding period from 2 to 6weeks, but significant fibrosis was observed only in mice fed MCD for 6weeks. Gd-EOB-DTPA-enhanced MRI showed that Tmax was significantly prolonged in the livers of the 6-week group compared to the control group (control, 4.0±0.7min; MCD 6w, 12.1±1.6min), although there was no alteration in the 2- and 4-week groups. T1/2 was significantly prolonged in mice fed MCD for 4 and 6weeks compared to the control group (control, 19.9±2.0min; MCD 4w, 46.7±8.7min; MCD 6w, 65.4±8.8min). The parameters of Gd-EOB-DTPA kinetics (Tmax and T1/2) in the liver were positively correlated with the liver histopathological score (steatosis vs Tmax, rho=0.69, P=0.0007; inflammation vs Tmax, rho=0.66, P=0.00155; steatosis vs T1/2, rho=0.77, P<0.0001; inflammation vs T1/2, rho=0.73, P=0.0003). The liver kinetics of Gd-EOB-DTPA correlated well with the inflammation score in the mouse model of NASH, suggesting the possibility of

  7. Characterization of diabetic nephropathy in CaM kinase IIalpha (Thr286Asp) transgenic mice.

    PubMed

    Suzuki, Hikari; Kato, Ichiro; Usui, Isao; Takasaki, Ichiro; Tabuchi, Yoshiaki; Oya, Takeshi; Tsuneyama, Koichi; Kawaguchi, Hiroshi; Hiraga, Koichi; Takasawa, Shin; Okamoto, Hiroshi; Tobe, Kazuyuki; Sasahara, Masakiyo

    2009-01-30

    Detailed studies were performed on diabetic kidneys derived from transgenic mice overexpressing the mutant form (Thr286Asp) of Ca(2+)/calmodulin-dependent protein kinase IIalpha (CaM kinase IIalpha) in pancreatic beta-cells. Kidney weight/body weight ratio, urinary albumin/creatinine ratio, serum BUN level, and mesangial/glomerular area ratio were all significantly higher in transgenic mice than in wild-type mice. cDNA microarray analysis revealed 17 up-regulated genes and 12 down-regulated genes in transgenic kidney. Among up-regulated genes, cyclin D2 (6.70-fold) and osteopontin (2.35-fold) were thought to play important roles in the progression of diabetic nephropathy. Transgenic glomeruli and tubular epithelial cells were strongly stained for osteopontin, a molecule which induces immune response. In quantitative real-time RT-PCR analyses, expressions of not only M1 macrophage marker genes but also M2 macrophage marker genes were elevated in renal cortex of transgenic mice. Overall results indicate that CaM kinase IIalpha (Thr286Asp) transgenic mice serve as an excellent model for diabetic nephropathy.

  8. Eos is redundant for T regulatory cell function, but plays an important role in IL-2 and Th17 production by CD4+ T conventional cells

    PubMed Central

    Rieder, Sadiye Amcaoglu; Metidji, Amina; Glass, Deborah Dacek; Thornton, Angela M.; Ikeda, Tohru; Morgan, Bruce A.; Shevach, Ethan M.

    2015-01-01

    Eos is a transcription factor that belongs to the Ikaros family of transcription factors. Eos has been reported to be a T regulatory cell (Treg) signature gene, to play a critical role in Treg suppressor functions, and to maintain Treg stability. We have utilized mice with a global deficiency of Eos to re-examine the role of Eos expression in both Treg and T conventional (Tconv) cells. Treg from Eos deficient (Eos−/−) mice developed normally, displayed a normal Treg phenotype, and exhibited normal suppressor function in vitro. Eos−/− Treg were as effective as Treg from wild type (WT) mice in suppression of inflammation in a model of inflammatory bowel disease. Bone marrow (BM) from Eos−/− mice was as effective as BM from WT mice in controlling T cell activation when used to reconstitute immunodeficient mice in the presence of Scurfy fetal liver cells. Surprisingly, Eos was expressed in activated Tconv cells and was required for IL-2 production, CD25 expression and proliferation in vitro by CD4+ Tconv cells. Eos−/− mice developed more severe Experimental Autoimmune Encephalomyelitis than WT mice, displayed increased numbers of effector T cells in the periphery and CNS, and amplified IL-17 production. In conclusion, our studies are not consistent with a role for Eos in Treg development and function, but demonstrate that Eos plays an important role in the activation and differentiation of Tconv cells. PMID:26062998

  9. Diet-induced obesity in mice reduces the maintenance of influenza-specific CD8+ memory T cells.

    PubMed

    Karlsson, Erik A; Sheridan, Patricia A; Beck, Melinda A

    2010-09-01

    Obesity has been associated with increasing the risk for type 2 diabetes and heart disease, but its influence on the immune response to viral infection is understudied. Memory T cells generated during a primary influenza infection are important for protection against subsequent influenza exposures. Previously, we have demonstrated that diet-induced obese (DIO) mice have increased morbidity and mortality following secondary influenza infection compared with lean mice. To determine whether the problem resided in a failure to maintain functional, influenza-specific CD8(+) memory T cells, male DIO and lean mice were infected with influenza X-31. At 84 d postinfection, DIO mice had a 10% reduction in memory T cell numbers. This reduction may have resulted from significantly reduced memory T cell expression of interleukin 2 receptor beta (IL-2R beta, CD122), but not IL-7 receptor alpha (CD127), which are both required for memory cell maintenance. Peripheral leptin resistance in the DIO mice may be a contributing factor to the impairment. Indeed, leptin receptor mRNA expression was significantly reduced in the lungs of obese mice, whereas suppressor of cytokine signaling (Socs)1 and Socs3 mRNA expression were increased. It is imperative to understand how the obese state alters memory T cells, because impairment in maintenance of functional memory responses has important implications for vaccine efficacy in an obese population.

  10. Withaferin A protects against spinal cord injury by inhibiting apoptosis and inflammation in mice.

    PubMed

    Yan, Xianlei; Huang, Guangxiang; Liu, Quan; Zheng, Jiemin; Chen, Hongmou; Huang, Qidan; Chen, Jiakang; Huang, Heqing

    2017-12-01

    Withaferin A (WFA) exhibits diverse pharmaceutical applications on human diseases, including rheumatoid arthritis, cancers and microbial infection. We evaluated the neuroprotective role of WFA using a mouse model of spinal cord injury (SCI). BALB/c mice were administrated 10 mg/kg of WFA. Gene expression was measured by real-time PCR, western blot and immunohistochemistry. Cell morphology and apoptosis were determined by H&E staining and TUNEL assay. Motor function was evaluated by the BBB functional scale for continuous 7 weeks. WFA significantly improved neurobehavioural function and alleviated histological alteration of spinal cord tissues in traumatized mice. Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) significantly increased in WFA-treated mice. Meanwhile, the expression of Nogo-A and RhoA remarkably decreased in the presence of WFA. Furthermore, the apoptotic cell death was attenuated in mice treated with WFA (31.48 ± 2.50% vs. 50.08 ± 2.08%) accompanied by decreased bax and increased bcl-2. In addition, WFA decreased the expression of pro-inflammatory mediators such as IL-1β (11.20 ± 1.96 ng/mL vs. 17.59 ± 1.42 ng/mL) and TNF-α (57.38 ± 3.57 pg/mL vs. 95.06 ± 9.13 pg/mL). The anti-inflammatory cytokines including TGF-β1 (14.32 ± 1.04 pg/mL vs. 9.37 ± 1.17 pg/mL) and IL-10 (116.80 ± 6.91 pg/mL vs. 72.33 ± 9.35 pg/mL) were elevated after WFA administration. This study demonstrated that WFA has a neuroprotective role by inhibition of apoptosis and inflammation after SCI in mice.

  11. Fine tuning of Rac1 and RhoA alters cuspal shapes by remolding the cellular geometry

    PubMed Central

    Li, Liwen; Tang, Qinghuang; Nakamura, Takashi; Suh, Jun-Gyo; Ohshima, Hayato; Jung, Han-Sung

    2016-01-01

    The anatomic and functional combinations of cusps and lophs (ridges) define the tooth shape of rodent molars, which distinguishes species. The species-specific cusp patterns result from the spatiotemporal induction of enamel knots (EKs), which require precisely controlled cellular behavior to control the epithelial invagination. Despite the well-defined roles of EK in cusp patterning, the determinants of the ultimate cuspal shapes and involvement of epithelial cellular geometry are unknown. Using two typical tooth patterns, the lophodont in gerbils and the bunodont in mice, we showed that the cuspal shape is determined by the dental epithelium at the cap stage, whereas the cellular geometry in the inner dental epithelium (IDE) is correlated with the cuspal shape. Intriguingly, fine tuning Rac1 and RhoA interconvert cuspal shapes between two species by remolding the cellular geometry. Either inhibition of Rac1 or ectopic expression of RhoA could region-distinctively change the columnar shape of IDE cells in gerbils to drive invagination to produce cusps. Conversely, RhoA reduction in mice inhibited invagination and developed lophs. Furthermore, we found that Rac1 and RhoA modulate the choices of cuspal shape by coordinating adhesion junctions, actin distribution, and fibronectin localization to drive IDE invagination. PMID:27892530

  12. Fish oil feeding enhances lymphocyte proliferation but impairs virus-specific T lymphocyte cytotoxicity in mice following challenge with influenza virus

    PubMed Central

    Byleveld, M; Pang, G T; Clancy, R L; Roberts, D C K

    2000-01-01

    The effect of a fish oil diet on virus-specific cytotoxicity and lymphocyte proliferation was investigated. Mice were fed fish oil (17 g fish oil and 3 g sunflower/100 g) or beef tallow (17 g tallow and 3 g sunflower/100 g) diets for 14 days before intranasal challenge with influenza virus. At day 5 after infection, lung virus-specific T lymphocyte, but not macrophage or natural killer (NK) cell, cytotoxicity was significantly lower in mice fed fish oil, while bronchial lymph node cell proliferation to virus was significantly higher. In mice fed fish oil, spleen cell proliferation to virus was also significantly higher following immunization. The results showed that, despite improved lymphocyte proliferation, fish oil impairs primary virus-specific T lymphocyte cytotoxicity. This impairment may explain the delayed virus clearance that we have previously reported in infected mice fed the fish oil diet. PMID:10632664

  13. Fish oil feeding enhances lymphocyte proliferation but impairs virus-specific T lymphocyte cytotoxicity in mice following challenge with influenza virus.

    PubMed

    Byleveld, M; Pang, G T; Clancy, R L; Roberts, D C

    2000-02-01

    The effect of a fish oil diet on virus-specific cytotoxicity and lymphocyte proliferation was investigated. Mice were fed fish oil (17 g fish oil and 3 g sunflower/100 g) or beef tallow (17 g tallow and 3 g sunflower/100 g) diets for 14 days before intranasal challenge with influenza virus. At day 5 after infection, lung virus-specific T lymphocyte, but not macrophage or natural killer (NK) cell, cytotoxicity was significantly lower in mice fed fish oil, while bronchial lymph node cell proliferation to virus was significantly higher. In mice fed fish oil, spleen cell proliferation to virus was also significantly higher following immunization. The results showed that, despite improved lymphocyte proliferation, fish oil impairs primary virus-specific T lymphocyte cytotoxicity. This impairment may explain the delayed virus clearance that we have previously reported in infected mice fed the fish oil diet.

  14. Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition.

    PubMed

    Mammoto, Akiko; Huang, Sui; Moore, Kimberly; Oh, Philmo; Ingber, Donald E

    2004-06-18

    Cell shape-dependent control of cell-cycle progression underlies the spatial differentials of growth that drive tissue morphogenesis, yet little is known about how cell distortion impacts the biochemical signaling machinery that is responsible for growth control. Here we show that the Rho family GTPase, RhoA, conveys the "cell shape signal" to the cell-cycle machinery in human capillary endothelial cells. Cells accumulating p27(kip1) and arrested in mid G(1) phase when spreading were inhibited by restricted extracellular matrix adhesion, whereas constitutively active RhoA increased expression of the F-box protein Skp2 required for ubiquitination-dependent degradation of p27(kip1) and restored G(1) progression in these cells. Studies with dominant-negative and constitutively active forms of mDia1, a downstream effector of RhoA, and with a pharmacological inhibitor of ROCK, another RhoA target, revealed that RhoA promoted G(1) progression by altering the balance of activities between these two downstream effectors. These data indicate that signaling proteins such as mDia1 and ROCK, which are thought to be involved primarily in cytoskeletal remodeling, also mediate cell growth regulation by coupling cell shape to the cell-cycle machinery at the level of signal transduction.

  15. Targeting RhoA/Rho kinase and p21-activated kinase signaling to prevent cancer development and progression.

    PubMed

    Chang, Yu-Wen E; Bean, Ronald R; Jakobi, Rolf

    2009-06-01

    Elevated RhoA/Rho kinase and p21-activated kinase signaling have been shown to promote cancer development and metastasis and have drawn much attention as potential targets of anti-cancer therapy. Elevated RhoA and Rho kinase activity promote cancer cell invasion and eventually lead to metastasis by disrupting E-cadherin-mediated adherens junctions and degradation of the extracellular matrix. Elevated p21-activated kinase activity promotes invasion by stimulating cell motility but also promotes cancer cell survival and growth. In this review we describe normal functions of RhoA/Rho kinase and p21-activated kinase signaling, mechanisms that lead to constitutive activation of RhoA/Rho kinase and p21-activated kinase pathways, and processes by which constitutive RhoA/Rho kinase and p21-activated kinase activity promote cancer development and progression to more aggressive and metastatic phenotypes. In addition, we summarize relevant patents on RhoA/Rho kinase and p21-activated kinase as targets of anti-cancer therapy and discuss the clinical potential of different approaches to modulate RhoA/Rho kinase and p21-activated kinase signaling.

  16. HIV infection impairs Th1 and Th17 Mycobacterium tuberculosis-specific T cell responses

    PubMed Central

    Murray, Lyle W; Satti, Iman; Meyerowitz, Jodi; Jones, Matthew; Willberg, Christian B; Ussher, James E; Goedhals, Dominique; Hurst, Jacob; Phillips, Rodney E; McShane, Helen

    2018-01-01

    Background HIV-infected individuals have a higher risk of developing active tuberculosis than HIV-uninfected individuals, but the mechanisms underpinning this are unclear. We hypothesized that depletion of specific components of Mycobacterium tuberculosis (M.tb)-specific CD4+ and CD8+ T cell responses contributed to this increased risk. Methods M.tb-specific T cell responses in 147 HIV-infected and 44 HIV-uninfected control subjects in a TB-endemic setting in Bloemfontein, South Africa were evaluated. Using a whole-blood flow cytometry assay, we measured expression of IFNγ, TNFα, IL-2 and IL-17 in CD4+ and CD8+ T cells in response to M.tb antigens (PPD, ESAT-6/CFP-10 (EC) and DosR regulon-encoded α-crystallin (Rv2031c)). Results Fewer HIV-infected individuals had detectable CD4+ and CD8+ T cell responses to PPD and Rv2031c than HIV-uninfected subjects. M.tb-specific T cells showed distinct patterns of cytokine expression comprising both Th1 (CD4 and CD8) and Th17 (CD4) cytokines, the latter at highest frequency for Rv2031c. Th17 antigen-specific responses to all antigens tested were specifically impaired in HIV-infected individuals. Conclusions HIV-associated impairment of CD4+ and CD8+ M.tb-specific T cell responses is antigen-specific, particularly impacting responses to PPD and Rv2031c. Preferential depletion of Th17 cytokine-expressing CD4+ T cells suggests this T cell subset may be key to TB susceptibility in HIV-infected individuals. PMID:29546381

  17. T cell-independent and T cell-dependent immunoglobulin G responses to polyomavirus infection are impaired in complement receptor 2-deficient mice.

    PubMed

    Szomolanyi-Tsuda, Eva; Seedhom, Mina O; Carroll, Michael C; Garcea, Robert L

    2006-08-15

    Polyomavirus (PyV) infection induces protective T cell-independent (TI) IgM and IgG antibody responses in T cell-deficient mice, but these responses are not generated by immunization with viral proteins or virus like particles. We hypothesized that innate signals contribute to the generation of isotype-switched antiviral antibody responses. We studied the role of complement receptor (CR2) engagement in TI and T cell-dependent (TD) antibody responses to PyV using CR2-deficient mice. Antiviral IgG responses were reduced by 80-40% in CR2-/- mice compared to wild type. Adoptive transfer experiments demonstrated the need for CR2 not only in TD, but also in TI IgG responses to PyV. Transfer of CR2-/- B lymphocytes to SCID mice resulted in TI antiviral IgG responses that corresponded to 10% of that seen in wild-type B cell-reconstituted mice. Thus, our studies revealed a profound dependence of TI and TD antiviral antibody responses on CR2-mediated signals in PyV-infected mice, where the viral antigen is abundant and persistent.

  18. Alterations in Intestinal Microbiota Lead to Production of Interleukin 17 by Intrahepatic γδ T-Cell Receptor-Positive Cells and Pathogenesis of Cholestatic Liver Disease.

    PubMed

    Tedesco, Dana; Thapa, Manoj; Chin, Chui Yoke; Ge, Yong; Gong, Minghao; Li, Jing; Gumber, Sanjeev; Speck, Patrick; Elrod, Elizabeth J; Burd, Eileen M; Kitchens, William H; Magliocca, Joseph F; Adams, Andrew B; Weiss, David S; Mohamadzadeh, Mansour; Grakoui, Arash

    2018-06-01

    Variants at the ABCB4 or MDR2 locus, which encodes a biliary transport protein, are associated with a spectrum of cholestatic liver diseases. Exacerbation of liver disease has been linked to increased hepatic levels of interleukin (IL) 17, yet the mechanisms of this increase are not understood. We studied mice with disruption of Mdr2 to determine how defects in liver and alteration in the microbiota contribute to production of IL17 by intrahepatic γδ T cells. We performed studies with Mdr2 -/- and littermate FVB/NJ (control) mice. IL17 was measured in serum samples by an enzyme-linked immunosorbent assay. Mice were injected with neutralizing antibodies against the γδ T-cell receptor (TCR; anti-γδ TCR) or mouse IL17A (anti-IL17A). Livers were collected and bacteria were identified in homogenates by culture procedures; TCRγδ + cells were isolated by flow cytometry. Fecal samples were collected from mice and analyzed by 16S ribosomal DNA sequencing. Cells were stimulated with antibodies or bacteria, and cytokine production was measured. We obtained tissues from 10 patients undergoing liver transplantation for primary sclerosing cholangitis or chronic hepatitis C virus infection. Tissues were analyzed for cytokine production by γδ TCR + cells. Mdr2 -/- mice had collagen deposition around hepatic bile ducts and periportal-bridging fibrosis with influx of inflammatory cells and increased serum levels of IL17 compared with control mice. Administration of anti-IL17A reduced hepatic fibrosis. Livers from Mdr2 -/- mice had increased numbers of IL17A + γδTCR + cells-particularly of IL17A + Vγ6Jγ1 γδ TCR + cells. Fecal samples from Mdr2 -/- mice were enriched in Lactobacillus, and liver tissues were enriched in Lactobacillus gasseri compared with control mice. Mdr2 -/- mice also had increased intestinal permeability. The γδ TCR + cells isolated from Mdr2 -/- livers produced IL17 in response to heat-killed L gasseri. Intraperitoneal injection of control mice

  19. Low-level laser therapy (LLLT) attenuates RhoA mRNA expression in the rat bronchi smooth muscle exposed to tumor necrosis factor-alpha.

    PubMed

    de Lima, Flávia Mafra; Bjordal, Jan M; Albertini, Regiane; Santos, Fábio V; Aimbire, Flavio

    2010-09-01

    Low-level laser therapy (LLLT) has been found to produce anti-inflammatory effects in a variety of disorders. Bronchial smooth muscle (BSM) hyperreactivity is associated with increased Ca+2 sensitivity and increased RhoA mRNA expression. In the current study, we investigated if LLLT could reduce BSM contraction force and RhoA mRNA expression in tumor necrosis factor-alpha (TNF-alpha)-induced BSM hyperreactivity. In the study, 112 male Wistar rats were divided randomly into 16 groups, and BSM was harvested and suspended in TNF-alpha baths for 6 and 24 h, respectively. Irradiation with LLLT was performed with a wavelength of 660 nm for 42 s with a dose of 1.3 J/cm2. This LLLT dose was administered once in the 6-h group and twice in the 24-h group. LLLT significantly decreased contraction force in BSM at 6 h (TNF-alpha + LLLT: 11.65+/-1.10 g/100 mg of tissue) (F=3115) and at 24 h (TNF-alpha+ LLLT: 14.15+/-1.1 g/100 mg of tissue) (F=3245, p<0.05) after TNF-alpha, respectively, when compared to vehicle-bathed groups (control). LLLT also significantly decreased the expression of RhoA mRNA in BSM segments at 6 h (1.22+/-0.20) (F=2820, p<0.05) and 24 h (2.13+/-0.20) (F=3324, p<0.05) when compared to BSM segments incubated with TNF-alpha without LLLT irradiation. We conclude that LLLT administered with this protocol, reduces RhoA mRNA expression and BSM contraction force in TNF-alpha-induced BSM hyperreactivity.

  20. Myeloid-derived suppressor cells regulate T cell and B cell responses during autoimmune disease.

    PubMed

    Crook, Kristen R; Jin, Mengyao; Weeks, Michael F; Rampersad, Rishi R; Baldi, Robert M; Glekas, Amy S; Shen, Yajuan; Esserman, Denise A; Little, Paul; Schwartz, Todd A; Liu, Peng

    2015-03-01

    MDSCs are a heterogeneous group of myeloid cells that suppress T cell activity in cancer and autoimmune disease. The effect of MDSCs on B cell function is not clear. Using the CIA model of autoimmune disease, we found an increase in M-MDSCs in the periphery of WT mice with CIA compared with naïve mice. These MDSCs were absent from the periphery of CCR2(-/-) mice that developed exacerbated disease. M-MDSCs, isolated from immunized mice, inhibited autologous CD4(+) T cell proliferation. The M-MDSC-mediated suppression of T cell proliferation was NO and IFN-γ dependent but IL-17 independent. Furthermore, we demonstrated for the first time that M-MDSCs from CIA mice also inhibited autologous B cell proliferation and antibody production. The suppression of B cells by M-MDSCs was dependent on the production of NO and PGE2 and required cell-cell contact. Administration of M-MDSCs rescued CCR2(-/-) mice from the exacerbated CIA phenotype and ameliorated disease in WT mice. Furthermore, adoptive transfer of M-MDSCs reduced autoantibody production by CCR2(-/-) and WT mice. In summary, M-MDSCs inhibit T cell and B cell function in CIA and may serve as a therapeutic approach in the treatment of autoimmune arthritis. © Society for Leukocyte Biology.

  1. Comprehensive Survey of miRNA-mRNA Interactions Reveals That Ccr7 and Cd247 (CD3 zeta) are Posttranscriptionally Controlled in Pancreas Infiltrating T Lymphocytes of Non-Obese Diabetic (NOD) Mice.

    PubMed

    Fornari, Thais A; Donate, Paula B; Assis, Amanda F; Macedo, Claudia; Sakamoto-Hojo, Elza T; Donadi, Eduardo A; Passos, Geraldo A

    2015-01-01

    In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were differentially expressed in T lymphocytes. However, the posttranscriptional control involving miRNA interactions that occur during the evolution of thymocytes into PILs remains unknown. In this study, we postulated that miRNAs are differentially expressed during this period and that these miRNAs can interact with mRNAs involved in auto-reactivity during the progression of insulitis. To test this hypothesis, we used NOD mice to perform, for the first time, a comprehensive survey of miRNA and mRNA expression as thymocytes mature into peripheral CD3+ T lymphocytes and, subsequently, into PILs. Reconstruction of miRNA-mRNA interaction networks for target prediction revealed the participation of a large set of miRNAs that regulate mRNA targets related to apoptosis, cell adhesion, cellular regulation, cellular component organization, cellular processes, development and the immune system, among others. The interactions between miR-202-3p and the Ccr7 chemokine receptor mRNA or Cd247 (Cd3 zeta chain) mRNA found in PILs are highlighted because these interactions can contribute to a better understanding of how the lack of immune homeostasis and the emergence of autoimmunity (e.g., T1D) can be associated with the decreased activity of Ccr7 or Cd247, as previously observed in NOD mice. We demonstrate that these mRNAs are controlled at the posttranscriptional level in PILs.

  2. Comprehensive Survey of miRNA-mRNA Interactions Reveals That Ccr7 and Cd247 (CD3 zeta) are Posttranscriptionally Controlled in Pancreas Infiltrating T Lymphocytes of Non-Obese Diabetic (NOD) Mice

    PubMed Central

    Macedo, Claudia; Sakamoto-Hojo, Elza T.; Donadi, Eduardo A.; Passos, Geraldo A.

    2015-01-01

    In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were differentially expressed in T lymphocytes. However, the posttranscriptional control involving miRNA interactions that occur during the evolution of thymocytes into PILs remains unknown. In this study, we postulated that miRNAs are differentially expressed during this period and that these miRNAs can interact with mRNAs involved in auto-reactivity during the progression of insulitis. To test this hypothesis, we used NOD mice to perform, for the first time, a comprehensive survey of miRNA and mRNA expression as thymocytes mature into peripheral CD3+ T lymphocytes and, subsequently, into PILs. Reconstruction of miRNA-mRNA interaction networks for target prediction revealed the participation of a large set of miRNAs that regulate mRNA targets related to apoptosis, cell adhesion, cellular regulation, cellular component organization, cellular processes, development and the immune system, among others. The interactions between miR-202-3p and the Ccr7 chemokine receptor mRNA or Cd247 (Cd3 zeta chain) mRNA found in PILs are highlighted because these interactions can contribute to a better understanding of how the lack of immune homeostasis and the emergence of autoimmunity (e.g., T1D) can be associated with the decreased activity of Ccr7 or Cd247, as previously observed in NOD mice. We demonstrate that these mRNAs are controlled at the posttranscriptional level in PILs. PMID:26606254

  3. Activation of G protein-coupled estrogen receptor 1 induces coronary artery relaxation via Epac/Rap1-mediated inhibition of RhoA/Rho kinase pathway in parallel with PKA.

    PubMed

    Yu, Xuan; Zhang, Qiao; Zhao, Yan; Schwarz, Benjamin J; Stallone, John N; Heaps, Cristine L; Han, Guichun

    2017-01-01

    Previously, we reported that cAMP/PKA signaling is involved in GPER-mediated coronary relaxation by activating MLCP via inhibition of RhoA pathway. In the current study, we tested the hypothesis that activation of GPER induces coronary artery relaxation via inhibition of RhoA/Rho kinase pathway by cAMP downstream targets, exchange proteins directly activated by cAMP (Epac) as well as PKA. Our results show that Epac inhibitors, brefeldin A (BFA, 50 μM), or ESI-09 (20 μM), or CE3F4 (100 μM), all partially inhibited porcine coronary artery relaxation response to the selective GPER agonist, G-1 (0.3-3 μM); while concurrent administration of BFA and PKI (5 μM), a PKA inhibitor, almost completely blocked the relaxation effect of G-1. The Epac specific agonist, 8-CPT-2Me-cAMP (007, 1-100 μM), induced a concentration-dependent relaxation response. Furthermore, the activity of Ras-related protein 1 (Rap1) was up regulated by G-1 (1 μM) treatment of porcine coronary artery smooth muscle cells (CASMCs). Phosphorylation of vasodilator-stimulated phosphoprotein (p-VASP) was elevated by G-1 (1 μM) treatment, but not by 007 (50 μM); and the effect of G-1 on p-VASP was blocked by PKI, but not by ESI-09, an Epac antagonist. RhoA activity was similarly down regulated by G-1 and 007, whereas ESI-09 restored most of the reduced RhoA activity by G-1 treatment. Furthermore, G-1 decreased PGF2α-induced p-MYPT1, which was partially reversed with either ESI-09 or PKI; whereas, concurrent administration of ESI-09 and PKI totally prevented the inhibitory effect of G-1. The inhibitory effects of G-1 on p- MLC levels in CASMCs were mostly restored by either ESI-09 or PKI. These results demonstrate that activation of GPER induces coronary artery relaxation via concurrent inhibition of RhoA/Rho kinase by Epac/Rap1 and PKA. GPER could be a potential drug target for preventing and treating cardiovascular diseases.

  4. Human Mammary Epithelial Cell Transformation by Rho GTPase through a Novel Mechanism

    DTIC Science & Technology

    2008-08-01

    structures, termed the terminal ductal–lobular units (TDLUs), together with interlobular fat and fibrous tissue [16,17]. Most breast cancers arise in the...that benign stages (such as typical and atypical hyperplasia ), noninvasive cancers (such as carcinoma in situ – ductal or lobular), and invasive cancers... inflammatory breast cancer and overexpression of RhoC in immortalized hMECs induces their transformation (35). Impor- tantly, given the linkage of Rho

  5. Invariant NKT cells inhibit development of the Th17 lineage

    PubMed Central

    Mars, Lennart T.; Araujo, Luiza; Kerschen, Philippe; Diem, Séverine; Bourgeois, Elvire; Van, Linh Pham; Carrié, Nadège; Dy, Michel; Liblau, Roland S.; Herbelin, André

    2009-01-01

    T cells differentiate into functionally distinct effector subsets in response to pathogen encounter. Cells of the innate immune system direct this process; CD1d-restricted invariant natural killer T (iNKT) cells, for example, can either promote or inhibit Th1 and Th2 responses. Recently, a new subset of CD4+ T helper cells, called Th17, was identified that is implicated in mucosal immunity and autoimmune disorders. To investigate the influence of iNKT cells on the differentiation of naïve T cells we used an adoptive transfer model of traceable antigen-specific CD4+ T cells. Transferred naïve CD25−CD62L+ CD4+ T cells were primed by antigen immunization of the recipient mice, permitting their expansion and Th17 differentiation. This study establishes that in vivo activation of iNKT cells during T-cell priming impedes the commitment of naïve T cells to the Th17 lineage. In vivo cytokine neutralization experiments revealed a role for IL-4, IL-10, and IFN-γ in the iNKT-cell-mediated regulation of T-cell lineage development. Moreover, by comparing IL-17 production by antigen-experienced T cells from unmanipulated wild-type mice and iNKT-cell-deficient mice, we demonstrate an enhanced Th17 response in mice lacking iNKT cells. This invigorated Th17 response reverts to physiological levels when iNKT cells are introduced into Jα18−/− mice by adoptive transfer, indicating that iNKT cells control the Th17 compartment at steady state. We conclude that iNKT cells play an important role in limiting development of the Th17 lineage and suggest that iNKT cells provide a natural barrier against Th17 responses. PMID:19325124

  6. Microsomal Prostaglandin E Synthase-1 Facilitates an Intercellular Interaction between CD4⁺ T Cells through IL-1β Autocrine Function in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Takemiya, Takako; Takeuchi, Chisen; Kawakami, Marumi

    2017-12-19

    Microsomal prostaglandin synthetase-1 (mPGES-1) is an inducible terminal enzyme that produces prostaglandin E₂ (PGE₂). In our previous study, we investigated the role of mPGES-1 in the inflammation and demyelination observed in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, using mPGES - 1 -deficient ( mPGES-1 -/- ) and wild-type (wt) mice. We found that mPGES-1 facilitated inflammation, demyelination, and paralysis and was induced in vascular endothelial cells and macrophages and microglia around inflammatory foci. Here, we investigated the role of interleukin-1β (IL-1β) in the intercellular mechanism stimulated by mPGES-1 in EAE spinal cords in the presence of inflammation. We found that the area invaded by CD4-positive (CD4⁺) T cells was extensive, and that PGE₂ receptors EP1-4 were more induced in activated CD4⁺ T cells of wt mice than in those of mPGES - 1 -/- mice. Moreover, IL-1β and IL-1 receptor 1 (IL-1r1) were produced by 65% and 48% of CD4⁺ T cells in wt mice and by 44% and 27% of CD4⁺ T cells in mPGES-1 -/- mice. Furthermore, interleukin-17 (IL-17) was released from the activated CD4⁺ T cells. Therefore, mPGES-1 stimulates an intercellular interaction between CD4⁺ T cells by upregulating the autocrine function of IL-1β in activated CD4⁺ T cells, which release IL-17 to facilitate axonal and myelin damage in EAE mice.

  7. T cell-depleted splenocytes from mice pre-immunized with neuroantigen in incomplete Freund's adjuvant involved in protection from experimental autoimmune encephalomyelitis.

    PubMed

    Zheng, Hui; Zhang, Han; Liu, Feng; Qi, Yuanyuan; Jiang, Hong

    2014-01-01

    Mice immunized with neuroantigens in incomplete Freund's adjuvant (IFA) are resistant to subsequent induction of experimental autoimmune encephalomyelitis (EAE). The mechanisms involved in this protection are complex. Studies on relevant CD4(+) or CD8(+) T cells, including effective and regulatory T cells, have been performed by others. In this work, the effects of CD4(-)-, CD8(-)- splenocytes on protection from EAE in C57BL/6 mice which were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG)35-55 in IFA were evaluated. We observed that MOG-reactive CD4(+) T cells failed to be activated and proliferate when CD4(-)-, CD8(-)- splenocytes from MOG/IFA-immunized mice were regarded as antigen-presenting cells (APC). It was shown that these APC expressed lower levels of major histocompatibility complex class II (MHC-II), CD80, and CD86 than naïve cells. In addition, CD4(-)-, CD8(-)- splenocytes from MOG/IFA-immunized mice showed significantly higher levels of IL-10 mRNA expression. When the immunized-mice were induced to develop EAE, these cells secreted significantly higher levels of IL-10 and produced lower levels of IL-6, leading to decreased secretion of IL-17 and IFN-γ from MOG-specific CD4(+) T cells. The transfer of CD4(-)-, CD8(-)- splenocytes from MOG/IFA-immunized mice was able to ameliorate the subsequent induction of EAE in recipient mice. Thus, MOG/IFA immunization can modulate CD4(-)-, CD8(-)- splenocytes by reducing the expression of antigen-presenting molecules and altering the levels of secreted cytokines. Our study reveals an additional mechanism involved in the protective effects of MOG/IFA pre-immunization in an EAE model. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Hypercholesterolemia induces T cell expansion in humanized immune mice.

    PubMed

    Proto, Jonathan D; Doran, Amanda C; Subramanian, Manikandan; Wang, Hui; Zhang, Mingyou; Sozen, Erdi; Rymond, Christina C; Kuriakose, George; D'Agati, Vivette; Winchester, Robert; Sykes, Megan; Yang, Yong-Guang; Tabas, Ira

    2018-06-01

    Emerging data suggest that hypercholesterolemia has stimulatory effects on adaptive immunity and that these effects can promote atherosclerosis and perhaps other inflammatory diseases. However, research in this area has relied primarily on inbred strains of mice whose adaptive immune system can differ substantially from that of humans. Moreover, the genetically induced hypercholesterolemia in these models typically results in plasma cholesterol levels that are much higher than those in most humans. To overcome these obstacles, we studied human immune system-reconstituted mice (hu-mice) rendered hypercholesterolemic by treatment with adeno-associated virus 8-proprotein convertase subtilisin/kexin type 9 (AAV8-PCSK9) and a high-fat/high-cholesterol Western-type diet (WD). These mice had a high percentage of human T cells and moderate hypercholesterolemia. Compared with hu-mice that had lower plasma cholesterol, the PCSK9-WD mice developed a T cell-mediated inflammatory response in the lung and liver. Human CD4+ and CD8+ T cells bearing an effector memory phenotype were significantly elevated in the blood, spleen, and lungs of PCSK9-WD hu-mice, whereas splenic and circulating regulatory T cells were reduced. These data show that moderately high plasma cholesterol can disrupt human T cell homeostasis in vivo. This process may not only exacerbate atherosclerosis, but also contribute to T cell-mediated inflammatory diseases in the hypercholesterolemia setting.

  9. T-bet-dependent NKp46+ innate lymphoid cells regulate the onset of TH17-induced neuroinflammation

    PubMed Central

    Kwong, Brandon; Rua, Rejane; Gao, Yuanyuan; Flickinger, John; Wang, Yan; Kruhlak, Michael J.; Zhu, Jinfang; Vivier, Eric; McGavern, Dorian B.; Lazarevic, Vanja

    2017-01-01

    The transcription factor T-bet has been linked to increased susceptibility to systemic and organ-specific autoimmunity, but the mechanism by which T-bet expression promotes neuroinflammation remains unknown. In this study, we demonstrate a cardinal role for T-bet-dependent NKp46+ innate lymphoid cells (ILCs) in the initiation of CD4+ TH17-mediated neuroinflammation. Loss of T-bet specifically in NKp46+ ILCs profoundly impaired the ability of myelin-reactive TH17 cells to invade the central nervous system (CNS) tissue and protected the mice from autoimmunity. T-bet-dependent NKp46+ ILCs were localized in the meninges and acted as chief coordinators of meningeal inflammation by inducing the expression of pro-inflammatory cytokines, chemokines and matrix metalloproteinases, which in a concerted fashion facilitated T cell entry into CNS parenchyma. Our findings uncover a detrimental role of T-bet-dependent NKp46+ ILCs in the development of CNS autoimmune disease. PMID:28805812

  10. MURC, a Muscle-Restricted Coiled-Coil Protein That Modulates the Rho/ROCK Pathway, Induces Cardiac Dysfunction and Conduction Disturbance▿

    PubMed Central

    Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-01-01

    We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias. PMID:18332105

  11. MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance.

    PubMed

    Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-05-01

    We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias.

  12. Notch regulates Th17 differentiation and controls trafficking of IL-17 and metabolic regulators within Th17 cells in a context-dependent manner

    PubMed Central

    Coutaz, Manuel; Hurrell, Benjamin P.; Auderset, Floriane; Wang, Haiping; Siegert, Stefanie; Eberl, Gerard; Ho, Ping-Chih; Radtke, Freddy; Tacchini-Cottier, Fabienne

    2016-01-01

    Th17 cells play critical roles in host defense and autoimmunity. Emerging data support a role for Notch signaling in Th17 cell differentiation but whether it is a positive or negative regulator remains unclear. We report here that T cell-specific deletion of Notch receptors enhances Th17 cell differentiation in the gut, with a corresponding increase in IL-17 secretion. An increase in Th17 cell frequency was similarly observed following immunization of T cell specific Notch mutant mice with OVA/CFA. However, in this setting, Th17 cytokine secretion was impaired, and increased intracellular retention of IL-17 was observed. Intracellular IL-17 co-localized with the CD71 iron transporter in the draining lymph node of both control and Notch-deficient Th17 cells. Immunization induced CD71 surface expression in control, but not in Notch-deficient Th17 cells, revealing defective CD71 intracellular transport in absence of Notch signaling. Moreover, Notch receptor deficient Th17 cells had impaired mTORC2 activity. These data reveal a context-dependent impact of Notch on vesicular transport during high metabolic demand suggesting a role for Notch signaling in the bridging of T cell metabolic demands and effector functions. Collectively, our findings indicate a prominent regulatory role for Notch signaling in the fine-tuning of Th17 cell differentiation and effector function. PMID:27974744

  13. 17β-Estradiol Induces Overproliferation in Adenomyotic Human Uterine Smooth Muscle Cells of the Junctional Zone Through Hyperactivation of the Estrogen Receptor-Enhanced RhoA/ROCK Signaling Pathway.

    PubMed

    Sun, Fu-Qing; Duan, Hua; Wang, Sha; Li, Jin-Jiao

    2015-11-01

    Adenomyosis (ADS) is a common estrogen-dependent gynecological disease with unknown etiology. Recent models favor abnormal thickening of the junctional zone (JZ) may be the causative factor in the development of ADS. RhoA, a small guanosine triphosphatase which controls multiple cellular processes, is involved in the control of cell proliferation. Here we demonstrate that treatment of human uterine smooth muscle cells (SMCs) of the JZ with 17β-estradiol (E2) increased expression of RhoA and its downstream effectors (-associated coiled coil containing protein kinase [ROCK] 1 and ROCK2). Compared with non-ADS cells, RhoA, ROCK1, and ROCK2 were overexpressed and hyperactivated in ADS cells. These effects were suppressed in the presence of ICI 182,780, supporting an estrogen receptor (ER)-dependent mechanism. Hyperactivation of ER-enhanced RhoA/ROCK signaling was associated with overproliferation in ADS human uterine SMCs of the JZ. Moreover, E2-induced overproliferation was accompanied by downregulation of cyclin-dependent kinases inhibitors (CKIs; p21(Waf1/Cip1) and p27(Kip1)) and upregulation of cyclin-dependent kinases (CDKs) and cyclins (cyclin D1, cyclin E1, CDK2, CDK4, and CDK6). © The Author(s) 2015.

  14. Curcumin attenuates the scurfy-induced immune disorder, a model of IPEX syndrome, with inhibiting Th1/Th2/Th17 responses in mice.

    PubMed

    Lee, Gihyun; Chung, Hwan-Suck; Lee, Kyeseok; Lee, Hyeonhoon; Kim, Minhwan; Bae, Hyunsu

    2017-09-15

    Immunodysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX) is a lethal autoimmune disease caused by mutations in the Foxp3 gene scurfin (scurfy). Immunosuppressive therapy for IPEX patients has been generally ineffective and has caused severe side effects, however curcumin has shown immune regulation properties for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and inflammatory bowel diseases without side effects. The aim of this study was to investigate whether curcumin would attenuate symptoms of IPEX in mouse model and would prolong its survival period. C57BL/6 mice were separated into scurfy or wild-type litter mate groups by genotyping, and each group subsequently was separated into 2 subgroups that were fed a 1% curcumin containing or normal diet from the last day of breast-feeding. After weaning, pups were fed either a 1% curcumin containing or normal diet until all scurfy mice die for survival data. To elucidate immune cell proportions in spleen and lymph nodes, cells were analyzed by flowcytometry. Cellular cytokine production was accessed to investigate the effects of curcumin in T cell differentiation in vitro. Scurfy mice fed a 1% curcumin diet survived 4.0-fold longer compared to scurfy (92.5 days) mice fed a normal diet (23 days). A curcumin diet decreased all of the Th1/Th2/Th17 cell populations and attenuated diverse symptoms such as splenomegaly in scurfy mice. In vitro experiments showed that curcumin treatment directly decreased the Th1/Th2/Th17 cytokine production of IFN-γ, IL-4, and IL-17A in CD4 + T cells. Curcumin diet attenuated the scurfy-induced immune disorder, a model of IPEX syndrome, by inhibiting Th1/Th2/Th17 responses in mice. These results have implications for improving clinical therapy for patients with IPEX and other T cell related autoimmune diseases. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Age-related T2 changes in hindlimb muscles of mdx mice.

    PubMed

    Vohra, Ravneet S; Mathur, Sunita; Bryant, Nathan D; Forbes, Sean C; Vandenborne, Krista; Walter, Glenn A

    2016-01-01

    Magnetic resonance imaging (MRI) was used to monitor changes in the transverse relaxation time constant (T2) in lower hindlimb muscles of mdx mice at different ages. Young (5 weeks), adult (44 weeks), and old mdx (96 weeks), and age-matched control mice were studied. Young mdx mice were imaged longitudinally, whereas adult and old mdx mice were imaged at a single time-point. Mean muscle T2 and percent of pixels with elevated T2 were significantly different between mdx and control mice at all ages. In young mdx mice, mean muscle T2 peaked at 7-8 weeks and declined at 9-11 weeks. In old mdx mice, mean muscle T2 was decreased compared with young and adult mice, which could be attributed to fibrosis. MRI captured longitudinal changes in skeletal muscle integrity of mdx mice. This information will be valuable for pre-clinical testing of potential therapeutic interventions for muscular dystrophy. © 2015 Wiley Periodicals, Inc.

  16. Stress- and Rho-activated ZO-1–associated nucleic acid binding protein binding to p21 mRNA mediates stabilization, translation, and cell survival

    PubMed Central

    Nie, Mei; Balda, Maria S.; Matter, Karl

    2012-01-01

    A central component of the cellular stress response is p21WAF1/CIP1, which regulates cell proliferation, survival, and differentiation. Inflammation and cell stress often up-regulate p21 posttranscriptionally by regulatory mechanisms that are poorly understood. ZO-1–associated nucleic acid binding protein (ZONAB)/DbpA is a Y-box transcription factor that is regulated by components of intercellular junctions that are affected by cytokines and tissue damage. We therefore asked whether ZONAB activation is part of the cellular stress response. Here, we demonstrate that ZONAB promotes cell survival in response to proinflammatory, hyperosmotic, and cytotoxic stress and that stress-induced ZONAB activation involves the Rho regulator GEF-H1. Unexpectedly, stress-induced ZONAB activation does not stimulate ZONAB’s activity as a transcription factor but leads to the posttranscriptional up-regulation of p21 protein and mRNA. Up-regulation is mediated by ZONAB binding to specific sites in the 3′-untranslated region of the p21 mRNA, resulting in mRNA stabilization and enhanced translation. Binding of ZONAB to mRNA is activated by GEF-H1 via Rho stimulation and also mediates Ras-induced p21 expression. We thus identify a unique type of stress and Rho signaling activated pathway that drives mRNA stabilization and translation and links the cellular stress response to p21 expression and cell survival. PMID:22711822

  17. 17 CFR 230.702(T)-230.703(T) - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false [Reserved] 230.702(T)-230.703(T) Section 230.702(T)-230.703(T) Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Small Business Investment Companies §§ 230.702(T)-230.703(T) [Reserved] Exemptions for Cross-Border...

  18. Defective IL-17- and IL-22-dependent mucosal host response to Candida albicans determines susceptibility to oral candidiasis in mice expressing the HIV-1 transgene.

    PubMed

    Goupil, Mathieu; Cousineau-Côté, Vincent; Aumont, Francine; Sénéchal, Serge; Gaboury, Louis; Hanna, Zaher; Jolicoeur, Paul; de Repentigny, Louis

    2014-10-26

    The tissue-signaling cytokines IL-17 and IL-22 are critical to host defense against oral Candida albicans infection, by their induction of oral antimicrobial peptide expression and recruitment of neutrophils. Mucosal Th17 cells which produce these cytokines are preferentially depleted in HIV-infected patients. Here, we tested the hypothesis that defective IL-17- and IL-22-dependent host responses to C. albicans determine the phenotype of susceptibility to oropharyngeal candidiasis (OPC) in transgenic (Tg) mice expressing HIV-1. Naïve CD4+ T-cells and the differentiated Th1, Th2, Th17, Th1Th17 and Treg lineages were all profoundly depleted in cervical lymph nodes (CLNs) of these Tg mice. However, naive CD4+ cells from Tg mice maintained the capacity to differentiate into these lineages in response to polarizing cytokines in vitro. Expression of Il17, Il22, S100a8 and Ccl20 was enhanced in oral mucosal tissue of non-Tg, but not of Tg mice, after oral infection with C. albicans. Treatment of infected Tg mice with the combination of IL-17 and IL-22, but not IL-17 or Il-22 alone, significantly reduced oral burdens of C. albicans and abundance of Candida hyphae in the epithelium of tongues of infected Tg mice, and restored the ability of the Tg mice to up-regulate expression of S100a8 and Ccl20 in response to C. albicans infection. These findings demonstrate that defective IL-17- and IL-22-dependent induction of innate mucosal immunity to C. albicans is central to the phenotype of susceptibility to OPC in these HIV transgenic mice.

  19. Measurement of branching fractions and charge asymmetries in B+/--->rho+/-pi0 and B+/--->rho0pi+/- decays, and search for B0-->rho0pi0.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Knowles, D J; Morgan, S E; Penny, R C; Watson, A T; Watson, N K; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmuecker, H; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Mackay, C; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Teodorescu, L; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Layter, J; Shen, B C; Wang, K; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Erwin, R J; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Lee, S-J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljević, V; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Shorthouse, H W; Vidal, P B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Jackson, F; Lafferty, G D; Lyon, A J; Weatherall, J H; Williams, J C; Farbin, A; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; LoSecco, J M; Gabriel, T A; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; Stark, J; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Tanaka, H A; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yeche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Cristinziani, M; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Elsen, E E; Field, R C; Glanzman, T; Gowdy, S J; Grauges-Pous, E; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-07-30

    We present measurements of branching fractions and charge asymmetries in B-meson decays to rho(+)pi(0), rho(0)pi(+), and rho(0)pi(0). The data sample comprises 89x10(6) Upsilon(4S)-->BBmacr; decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We find the charge-averaged branching fractions B(B+-->rho(+)pi(0))=[10.9+/-1.9(stat)+/-1.9(syst)]x10(-6) and B(B+-->rho(0)pi(+))=(9.5+/-1.1+/-0.9)x10(-6), and we set a 90% confidence-level upper limit B(B0-->rho(0)pi(0))<2.9x10(-6). We measure the charge asymmetries ACP(pi(0))(rho(+))=0.24+/-0.16+/-0.06 and ACP(pi(+))(rho(0))=-0.19+/-0.11+/-0.02.

  20. CD8+ memory T-cell inflation renders compromised CD4+ T-cell-dependent CD8+ T-cell immunity via naïve T-cell anergy.

    PubMed

    Xu, Aizhang; Freywald, Andrew; Xie, Yufeng; Li, Zejun; Xiang, Jim

    2017-01-01

    Whether inflation of CD8 + memory T (mT) cells, which is often derived from repeated prime-boost vaccinations or chronic viral infections in the elderly, would affect late CD8 + T-cell immunity is a long-standing paradox. We have previously established an animal model with mT-cell inflation by transferring ConA-stimulated monoclonal CD8 + T cells derived from Ova-specific T-cell-receptor transgenic OTI mice into irradiation-induced lymphopenic B6 mice. In this study, we also established another two animal models with mT-cell inflation by transferring, 1) ConA-stimulated monoclonal CD8 + T cells derived from lymphocytic choriomeningitis virus glycoprotein-specific T-cell-receptor transgenic P14 mice, and 2) ConA-stimulated polyclonal CD8 + T cells derived from B6.1 mice into B6 mice with irradiation-induced lymphopenia. We vaccinated these mice with recombinant Ova-expressing Listeria monocytogenes and Ova-pulsed dendritic cells, which stimulated CD4 + T cell-independent and CD4 + T-cell-dependent CD8 + T-cell responses, respectively, and assessed Ova-specific CD8 + T-cell responses by flow cytometry. We found that Ova-specific CD8 + T-cell responses derived from the latter but not the former vaccination were significantly reduced in mice with CD8 + mT-cell inflation compared to wild-type B6 mice. We determined that naïve CD8 + T cells purified from splenocytes of mice with mT-cell inflation had defects in cell proliferation upon stimulation in vitro and in vivo and upregulated T-cell anergy-associated Itch and GRAIL molecules. Taken together, our data reveal that CD8 + mT-cell inflation renders compromised CD4 + T-cell-dependent CD8 + T-cell immunity via naïve T-cell anergy, and thus show promise for the design of efficient vaccines for elderly patients with CD8 + mT-cell inflation.

  1. Rho GTPase Involvement in Breast Cancer Migration and Invasion

    DTIC Science & Technology

    2005-03-01

    we did not observe any dissemination of cells to predicted lung, liver or bone sites as determined by pan-keratin and vimentin staining. We did...significant splenomegaly and myeloid cells in the liver , whilst mice bearing RhoA siRNA tumours were only mildly affected. This could be accounted for by 1...R. Stable suipiression of tumliorigecaicits bxto eten ou stdiesto rth opc inviv moelsto etabishthe virus-mediated RNA initeiference, Canicer Cell 2(X

  2. Rho/Rho kinase and phosphoinositide 3-kinase are parallel pathways in the development of spontaneous arterial tone in deoxycorticosterone acetate-salt hypertension.

    PubMed

    Wehrwein, Erica A; Northcott, Carrie A; Loberg, Robert D; Watts, Stephanie W

    2004-06-01

    Hypertension is characterized by abnormal vascular contractility and function. Arteries from deoxycorticosterone acetate (DOCA)-salt hypertensive rats develop spontaneous tone that is not observed in arteries from normotensive rats. Inhibition of phosphoinositide 3-kinase (PI3-kinase) by 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) reduces spontaneous tone development. The Rho/Rho-kinase pathway has been suggested to play a role in hypertension and may be dependent on PI3-kinase activity. We hypothesized that Rhokinase is involved in spontaneous tone development and that Rho/Rho-kinase is a downstream effector of PI3-kinase. Using endothelium-denuded aortic strips in isolated tissue bath, we demonstrated that (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) (Y27632) (1 microM), a Rho-kinase inhibitor, significantly reduced spontaneous tone in the DOCA aorta but that it did not affect sham aorta basal tone (DOCA 63.5 +/- 15.9 versus sham 1.2 +/- 0.4 total change in percentage of phenylephrine contraction). We examined the interaction between the PI3-kinase and Rho pathways by observing the effects of LY294002 on a Rhokinase effector, myosin phosphatase (MYPT), and Y27632 on a PI3-kinase effector, Akt, using Western blot analysis. Inhibition of PI3-kinase reduced spontaneous tone, but it had no effect on the phosphorylation status of MYPT, indicating that PI3-kinase is not a downstream effector of Rho/Rho-kinase. These data indicate that there is little interaction between the Rho/Rhokinase and PI3-kinase pathways in the DOCA-salt aorta, and the two pathways seem to operate in parallel in supporting spontaneous arterial tone. These data reflect spontaneous tone only and do not rule out the possibility of interaction between these pathways in agonist-stimulated tone.

  3. Exacerbation of spontaneous autoimmune nephritis following regulatory T cell depletion in B cell lymphoma 2-interacting mediator knock-out mice.

    PubMed

    Wang, Y M; Zhang, G Y; Wang, Y; Hu, M; Zhou, J J; Sawyer, A; Cao, Q; Wang, Y; Zheng, G; Lee, V W S; Harris, D C H; Alexander, S I

    2017-05-01

    Regulatory T cells (T regs ) have been recognized as central mediators for maintaining peripheral tolerance and limiting autoimmune diseases. The loss of T regs or their function has been associated with exacerbation of autoimmune disease. However, the temporary loss of T regs in the chronic spontaneous disease model has not been investigated. In this study, we evaluated the role of T regs in a novel chronic spontaneous glomerulonephritis model of B cell lymphoma 2-interacting mediator (Bim) knock-out mice by transient depleting T regs . Bim is a pro-apoptotic member of the B cell lymphoma 2 (Bcl-2) family. Bim knock-out (Bim -/- ) mice fail to delete autoreactive T cells in thymus, leading to chronic spontaneous autoimmune kidney disease. We found that T reg depletion in Bim -/- mice exacerbated the kidney injury with increased proteinuria, impaired kidney function, weight loss and greater histological injury compared with wild-type mice. There was a significant increase in interstitial infiltrate of inflammatory cells, antibody deposition and tubular damage. Furthermore, the serum levels of cytokines interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17α, interferon (IFN)-γ and tumour necrosis factor (TNF)-α were increased significantly after T reg depletion in Bim -/- mice. This study demonstrates that transient depletion of T regs leads to enhanced self-reactive T effector cell function followed by exacerbation of kidney disease in the chronic spontaneous kidney disease model of Bim-deficient mice. © 2017 British Society for Immunology.

  4. MAPK phosphotase 5 deficiency contributes to protection against blood-stage Plasmodium yoelii 17XL infection in mice.

    PubMed

    Cheng, Qianqian; Zhang, Qingfeng; Xu, Xindong; Yin, Lan; Sun, Lin; Lin, Xin; Dong, Chen; Pan, Weiqing

    2014-04-15

    Cell-mediated immunity plays a crucial role in the development of host resistance to asexual blood-stage malaria infection. However, little is known of the regulatory factors involved in this process. In this study, we investigated the impact of MAPK phosphotase 5 (MKP5) on protective immunity against a lethal Plasmodium yoelii 17XL blood-stage infection using MKP5 knockout C57BL/6 mice. Compared with wild-type control mice, MKP5 knockout mice developed significantly lower parasite burdens with prolonged survival times. We found that this phenomenon correlated with a rapid and strong IFN-γ-dependent cellular immune response during the acute phase of infection. Inactivation of IFN-γ by the administration of a neutralizing Ab significantly reduced the protective effects in MKP5 knockout mice. By analyzing IFN-γ production in innate and adaptive lymphocyte subsets, we observed that MKP5 deficiency specifically enhanced the IFN-γ response mediated by CD4+ T cells, which was attributable to the increased stimulatory capacity of splenic CD11c+ dendritic cells. Furthermore, following vaccination with whole blood-stage soluble plasmodial Ag, MKP5 knockout mice acquired strongly enhanced Ag-specific immune responses and a higher level of protection against subsequent P. yoelii 17XL challenge. Finally, we found the enhanced response mediated by MKP5 deficiency resulted in a lethal consequence in mice when infected with nonlethal P. yoelii 17XNL. Thus, our data indicate that MKP5 is a potential regulator of immune resistance against Plasmodium infection in mice, and that an understanding of the role of MKP5 in manipulating anti-malaria immunity may provide valuable information on the development of better control strategies for human malaria.

  5. Redundancy of primary RNA-binding functions of the bacterial transcription terminator Rho

    PubMed Central

    Shashni, Rajesh; Qayyum, M. Zuhaib; Vishalini, V.; Dey, Debashish; Sen, Ranjan

    2014-01-01

    The bacterial transcription terminator, Rho, terminates transcription at half of the operons. According to the classical model derived from in vitro assays on a few terminators, Rho is recruited to the transcription elongation complex (EC) by recognizing specific sites (rut) on the nascent RNA. Here, we explored the mode of in vivo recruitment process of Rho. We show that sequence specific recognition of the rut site, in majority of the Rho-dependent terminators, can be compromised to a great extent without seriously affecting the genome-wide termination function as well as the viability of Escherichia coli. These terminators function optimally only through a NusG-assisted recruitment and activation of Rho. Our data also indicate that at these terminators, Rho-EC-bound NusG interaction facilitates the isomerization of Rho into a translocase-competent form by stabilizing the interactions of mRNA with the secondary RNA binding site, thereby overcoming the defects of the primary RNA binding functions. PMID:25081210

  6. Heightened Avidity for Trisodium Pyrophosphate in Mice Lacking Tas1r3

    PubMed Central

    Aleman, Tiffany R.; McCaughey, Stuart A.

    2015-01-01

    Laboratory rats and mice prefer some concentrations of tri- and tetrasodium pyrophosphate (Na3HP2O7 and Na4P2O7) to water, but how they detect pyrophosphates is unknown. Here, we assessed whether T1R3 is involved. We found that relative to wild-type littermate controls, Tas1r3 knockout mice had stronger preferences for 5.6–56mM Na3HP2O7 in 2-bottle choice tests, and they licked more 17.8–56mM Na3HP2O7 in brief-access tests. We hypothesize that pyrophosphate taste in the intact mouse involves 2 receptors: T1R3 to produce a hedonically negative signal and an unknown G protein-coupled receptor to produce a hedonically positive signal; in Tas1r3 knockout mice, the hedonically negative signal produced by T1R3 is absent, leading to a heightened avidity for pyrophosphate. PMID:25452580

  7. SLAP deficiency enhances number and function of regulatory T cells preventing chronic autoimmune arthritis in SKG mice.

    PubMed

    Peterson, Lisa K; Shaw, Laura A; Joetham, Anthony; Sakaguchi, Shimon; Gelfand, Erwin W; Dragone, Leonard L

    2011-02-15

    To test if manipulating TCR complex-mediated signaling (TCR signaling) could treat autoimmune disease, we generated the double SKG Src-like adapter protein (SLAP) knockout (DSSKO) mouse model. The SKG mutation in ZAP70 and SLAP have opposing functions on the regulation of TCR signaling. The combination of these two mutations alters TCR signaling in the context of a defined genetic background, uniform environmental conditions, and a well-characterized signaling disruption. In contrast to SKG mice, DSSKO mice do not develop zymosan-induced chronic autoimmune arthritis. This arthritis prevention is not due to significant alterations in thymocyte development or repertoire selection but instead enhanced numbers of regulatory T cells (Tregs) and decreased numbers of Th17 cells skewing the ratio of Tregs to autoreactive effector T cells. Treg depletion and/or functional blockade led to the development of arthritis in DSSKO mice. In vitro suppression of effector T cell proliferation was also enhanced, demonstrating that DSSKO mice have increased numbers of Tregs with increased function. Understanding how TCR signals influence development, expansion, and function of Tregs in DSSKO mice could advance our ability to manipulate Treg biology to treat ultimately autoimmune disease.

  8. SLAP Deficiency Enhances Number and Function of Regulatory T Cells Preventing Chronic Autoimmune Arthritis in SKG Mice

    PubMed Central

    Peterson, Lisa K.; Shaw, Laura A.; Joetham, Anthony; Sakaguchi, Shimon; Gelfand, Erwin W.; Dragone, Leonard L.

    2011-01-01

    To test if manipulating TCR complex-mediated signaling (TCR signaling) could treat autoimmune disease, we generated the double SKG Src-like adapter protein (SLAP) knockout (DSSKO) mouse model. The SKG mutation in ZAP70 and SLAP have opposing functions on the regulation of TCR signaling. The combination of these two mutations alters TCR signaling in the context of a defined genetic background, uniform environmental conditions, and a well-characterized signaling disruption. In contrast to SKG mice, DSSKO mice do not develop zymosan-induced chronic autoimmune arthritis. This arthritis prevention is not due to significant alterations in thymocyte development or repertoire selection but instead enhanced numbers of regulatory T cells (Tregs) and decreased numbers of Th17 cells skewing the ratio of Tregs to autoreactive effector T cells. Treg depletion and/or functional blockade led to the development of arthritis in DSSKO mice. In vitro suppression of effector T cell proliferation was also enhanced, demonstrating that DSSKO mice have increased numbers of Tregs with increased function. Understanding how TCR signals influence development, expansion, and function of Tregs in DSSKO mice could advance our ability to manipulate Treg biology to treat ultimately autoimmune disease. PMID:21248251

  9. The atypical Rho GTPase RhoD is a regulator of actin cytoskeleton dynamics and directed cell migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blom, Magdalena; Reis, Katarina; Heldin, Johan

    RhoD belongs to the Rho GTPases, a protein family responsible for the regulation and organization of the actin cytoskeleton, and, consequently, many cellular processes like cell migration, cell division and vesicle trafficking. Here, we demonstrate that the actin cytoskeleton is dynamically regulated by increased or decreased protein levels of RhoD. Ectopic expression of RhoD has previously been shown to give an intertwined weave of actin filaments. We show that this RhoD-dependent effect is detected in several cell types and results in a less dynamic actin filament system. In contrast, RhoD depletion leads to increased actin filament-containing structures, such as corticalmore » actin, stress fibers and edge ruffles. Moreover, vital cellular functions such as cell migration and proliferation are defective when RhoD is silenced. Taken together, we present data suggesting that RhoD is an important component in the control of actin dynamics and directed cell migration. - Highlights: • Increased RhoD expression leads to loss of actin structures, e.g. stress fibers and gives rise to decreased actin dynamics. • RhoD knockdown induces various actin-containing structures such as edge ruffles, stress fibers and cortical actin, in a cell-type specific manner. • RhoD induces specific actin rearrangements depending on its subcellular localization. • RhoD knockdown has effects on cellular processes, such as directed cell migration and proliferation.« less

  10. Antenatal/early postnatal hypothyroidism increases the contribution of Rho-kinase to contractile responses of mesenteric and skeletal muscle arteries in adult rats.

    PubMed

    Gaynullina, Dina K; Sofronova, Svetlana I; Shvetsova, Anastasia A; Selivanova, Ekaterina K; Sharova, Anna P; Martyanov, Andrey A; Tarasova, Olga S

    2018-05-23

    Maternal thyroid deficiency can increase Rho-kinase procontractile influence in arteries of 2-week-old progeny. Here we hypothesized that augmented role of Rho-kinase persists in arteries from adult progeny of hypothyroid rats. Dams were treated with 6-propyl-2-thiouracil (PTU) in drinking water (0.0007%) during pregnancy and 2 weeks postpartum; control (CON) females received PTU-free water. At the age of 10-12-weeks, serum T 3 /T 4 levels did not differ between PTU and CON male offspring. Cutaneous (saphenous), mesenteric, and skeletal muscle (sural) arteries were studied by wire myography, qPCR, and Western blotting. Saphenous arteries of PTU and CON groups showed similar responses to α 1 -adrenoceptor agonist methoxamine and were equally suppressed by Rho-kinase inhibitor Y27632. Responses of mesenteric arteries also did not differ between PTU and CON, but the effects of Y27632 were more prominent in the PTU group. Sural arteries of PTU rats compared to CON demonstrated augmented responses to methoxamine, increased RhoA mRNA contents and higher levels of MYPT1 phosphorylation at Thr 855 . Intergroup differences in contractile responses and phospho-MYPT1-Thr 855 were eliminated by Y27632. Rho-kinase contribution to contractile responses of mesenteric and especially sural arteries is augmented in adult PTU rats. Therefore, maternal thyroid deficiency may have long-term detrimental consequences for vasculature in adult offspring.

  11. Activated RhoA Is a Positive Feedback Regulator of the Lbc Family of Rho Guanine Nucleotide Exchange Factor Proteins*

    PubMed Central

    Medina, Frank; Carter, Angela M.; Dada, Olugbenga; Gutowski, Stephen; Hadas, Jana; Chen, Zhe; Sternweis, Paul C.

    2013-01-01

    The monomeric Rho GTPases are essential for cellular regulation including cell architecture and movement. A direct mechanism for hormonal regulation of the RhoA-type GTPases is their modulation by the G12 and G13 proteins via RH (RGS homology) containing RhoGEFs. In addition to the interaction of the G protein α subunits with the RH domain, activated RhoA also binds to the pleckstrin homology (PH) domain of PDZRhoGEF. The latter interaction is now extended to all seven members of the homologous Lbc family of RhoGEFs which includes the RH-RhoGEFs. This is evinced by direct measurements of binding or through effects on selected signaling pathways in cells. Overexpression of these PH domains alone can block RhoA-dependent signaling in cells to various extents. Whereas activated RhoA does not modulate the intrinsic activity of the RhoGEFs, activated RhoA associated with phospholipid vesicles can facilitate increased activity of soluble RhoGEFs on vesicle-delimited substrate (RhoA-GDP). This demonstrates feasibility of the hypothesis that binding of activated RhoA to the PH domains acts as a positive feedback mechanism. This is supported by cellular studies in which mutation of this binding site on PH strongly attenuates the stimulation of RhoA observed by overexpression of five of the RhoGEF DH-PH domains. This mutation is even more dramatic in the context of full-length p115RhoGEF. The utilization of this mechanism by multiple RhoGEFs suggests that this regulatory paradigm may be a common feature in the broader family of RhoGEFs. PMID:23493395

  12. Th17 cells and IL-17 promote the skin and lung inflammation and fibrosis process in a bleomycin-induced murine model of systemic sclerosis.

    PubMed

    Lei, Ling; Zhao, Cheng; Qin, Fang; He, Zhi-Yi; Wang, Xu; Zhong, Xiao-Ning

    2016-01-01

    Systemic sclerosis (SSc) is characterised by fibrosis of the skin and internal organs, such as the lungs. Enhanced Th17 responses are associated with skin fibrosis in patients with SSc, however, whether they are associated with lung fibrosis has not been clarified. This study aimed to investigate the potential association of Th17 responses with the skin and pulmonary fibrosis as well as the potential mechanisms in a mouse bleomycin (BLM) model of SSc. BALB/c mice were injected subcutaneously with phosphate buffered saline (PBS) (control) or BLM for 28 days and the skin and pulmonary inflammation and fibrosis were characterized by histology. The percentages of circulating, skin and pulmonary infiltrating Th17 cells and the contents of collagen in mice were analysed. The levels of RORγt, IL-17A, IL-6 and TGF-β1 mRNA transcripts in the skin and lungs were determined by quantitative RTPCR and the levels of serum IL-17A, IL-6 and TGF-β1 were determined by ELISA. Furthermore, the effect of rIL-17A on the proliferation of pulmonary fibroblasts and their cytokine expression was analysed. The potential association of Th17 responses with the severity of skin and lung fibrosis was analysed. In comparison with the control mice, significantly increased skin and pulmonary inflammation and fibrosis and higher levels of hydroxyproline were detected in the BLM mice. Significantly higher frequency of circulating, skin and lung infiltrating Th17 cells and higher levels of serum, skin and lung IL-17A, TGF-β1, IL-6 and RORγt were detected in the BLM mice. The concentrations of serum IL-17A were correlated positively with the percentages of Th17 cells and the contents of skin hydroxyproline in the BLM mice. The levels of IL-17A expression were positively correlated with the skin and lung inflammatory scores as well as the skin fibrosis in the BLM mice. In addition, IL-17A significantly enhanced pulmonary fibroblast proliferation and their type I collagen, TGF-β and IL-6 expression

  13. Retinal Laminar Architecture in Human Retinitis Pigmentosa Caused by Rhodopsin Gene Mutations

    PubMed Central

    Aleman, Tomas S.; Cideciyan, Artur V.; Sumaroka, Alexander; Windsor, Elizabeth A. M.; Herrera, Waldo; White, D. Alan; Kaushal, Shalesh; Naidu, Anjani; Roman, Alejandro J.; Schwartz, Sharon B.; Stone, Edwin M.; Jacobson, Samuel G.

    2008-01-01

    Purpose. To determine the underlying retinal micropathology in subclasses of autosomal dominant retinitis pigmentosa (ADRP) caused by rhodopsin (RHO) mutations. Methods. Patients with RHO-ADRP (n = 17, ages 6–73 years), representing class A (R135W and P347L) and class B (P23H, T58R, and G106R) functional phenotypes, were studied with optical coherence tomography (OCT), and colocalized visual thresholds were determined by dark- and light-adapted chromatic perimetry. Autofluorescence imaging was performed with near-infrared light. Retinal histology in hT17M-rhodopsin mice was compared with the human results. Results. Class A patients had only cone-mediated vision. The outer nuclear layer (ONL) thinned with eccentricity and was not detectable within 3 to 4 mm of the fovea. Scotomatous extracentral retina showed loss of ONL, thickening of the inner retina, and demelanization of RPE. Class B patients had superior–inferior asymmetry in function and structure. The superior retina could have normal rod and cone vision, normal lamination (including ONL) and autofluorescence of the RPE melanin; laminopathy was found in the scotomas. With Fourier-domain-OCT, there was apparent inner nuclear layer (INL) thickening in regions with ONL thinning. Retinal regions without ONL had a thick hyporeflective layer that was continuous with the INL from neighboring regions with normal lamination. Transgenic mice had many of the laminar abnormalities found in patients. Conclusions. Retinal laminar abnormalities were present in both classes of RHO-ADRP and were related to the severity of colocalized vision loss. The results in human class B and the transgenic mice support the following disease sequence: ONL diminution with INL thickening; amalgamation of residual ONL with the thickened INL; and progressive retinal remodeling with eventual thinning. PMID:18385078

  14. STAT4 Deficiency Fails To Induce Lung Th2 or Th17 Immunity following Primary or Secondary Respiratory Syncytial Virus (RSV) Challenge but Enhances the Lung RSV-Specific CD8+ T Cell Immune Response to Secondary Challenge

    PubMed Central

    Dulek, Daniel E.; Newcomb, Dawn C.; Toki, Shinji; Goliniewska, Kasia; Cephus, Jacqueline; Reiss, Sara; Bates, John T.; Crowe, James E.; Boyd, Kelli L.; Moore, Martin L.; Zhou, Weisong

    2014-01-01

    ABSTRACT Immune-mediated lung injury is a hallmark of lower respiratory tract illness caused by respiratory syncytial virus (RSV). STAT4 plays a critical role in CD4+ Th1 lineage differentiation and gamma interferon (IFN-γ) protein expression by CD4+ T cells. As CD4+ Th1 differentiation is associated with negative regulation of CD4+ Th2 and Th17 differentiation, we hypothesized that RSV infection of STAT4−/− mice would result in enhanced lung Th2 and Th17 inflammation and impaired lung Th1 inflammation compared to wild-type (WT) mice. We performed primary and secondary RSV challenges in WT and STAT4−/− mice and used STAT1−/− mice as a positive control for the development of RSV-specific lung Th2 and Th17 inflammation during primary challenge. Primary RSV challenge of STAT4−/− mice resulted in decreased T-bet and IFN-γ expression levels in CD4+ T cells compared to those of WT mice. Lung Th2 and Th17 inflammation did not develop in primary RSV-challenged STAT4−/− mice. Decreased IFN-γ expression by NK cells, CD4+ T cells, and CD8+ T cells was associated with attenuated weight loss and enhanced viral clearance with primary challenge in STAT4−/− mice compared to WT mice. Following secondary challenge, WT and STAT4−/− mice also did not develop lung Th2 or Th17 inflammation. In contrast to primary challenge, secondary RSV challenge of STAT4−/− mice resulted in enhanced weight loss, an increased lung IFN-γ expression level, and an increased lung RSV-specific CD8+ T cell response compared to those of WT mice. These data demonstrate that STAT4 regulates the RSV-specific CD8+ T cell response to secondary infection but does not independently regulate lung Th2 or Th17 immune responses to RSV challenge. IMPORTANCE STAT4 is a protein critical for both innate and adaptive immune responses to viral infection. Our results show that STAT4 regulates the immune response to primary and secondary challenge with RSV but does not restrain RSV

  15. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function

    PubMed Central

    Chawla, Amanpreet Singh; Agrawal, Tanvi; Biswas, Moanaro; Vrati, Sudhanshu; Rath, Satyajit; George, Anna; Medigeshi, Guruprasad R.

    2017-01-01

    Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β–T cells (TCRβ–null) are highly susceptible and die over 10–18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage. PMID:28151989

  16. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function.

    PubMed

    Jain, Nidhi; Oswal, Neelam; Chawla, Amanpreet Singh; Agrawal, Tanvi; Biswas, Moanaro; Vrati, Sudhanshu; Rath, Satyajit; George, Anna; Bal, Vineeta; Medigeshi, Guruprasad R

    2017-02-01

    Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β-T cells (TCRβ-null) are highly susceptible and die over 10-18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage.

  17. 17 CFR 240.17Ad-21T - Operational capability in a Year 2000 environment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Operational capability in a Year 2000 environment. 240.17Ad-21T Section 240.17Ad-21T Commodity and Securities Exchanges SECURITIES... Company Rules § 240.17Ad-21T Operational capability in a Year 2000 environment. (a) This section applies...

  18. IL-4/IL-13 Heteroreceptor Influences Th17 Cell Conversion and Sensitivity to Regulatory T Cell Suppression To Restrain Experimental Allergic Encephalomyelitis.

    PubMed

    Barik, Subhasis; Ellis, Jason S; Cascio, Jason A; Miller, Mindy M; Ukah, Tobechukwu K; Cattin-Roy, Alexis N; Zaghouani, Habib

    2017-10-01

    IL-4 and IL-13 have been defined as anti-inflammatory cytokines that can counter myelin-reactive T cells and modulate experimental allergic encephalomyelitis. However, it is not known whether endogenous IL-4 and IL-13 contribute to the maintenance of peripheral tolerance and whether their function is coordinated with T regulatory cells (Tregs). In this study, we used mice in which the common cytokine receptor for IL-4 and IL-13, namely the IL-4Rα/IL-13Rα1 (13R) heteroreceptor (HR), is compromised and determined whether the lack of signaling by endogenous IL-4 and IL-13 through the HR influences the function of effector Th1 and Th17 cells in a Treg-dependent fashion. The findings indicate that mice-deficient for the HR (13R -/- ) are more susceptible to experimental allergic encephalomyelitis than mice sufficient for the HR (13R +/+ ) and develop early onset and more severe disease. Moreover, Th17 cells from 13R -/- mice had reduced ability to convert to Th1 cells and displayed reduced sensitivity to suppression by Tregs relative to Th17 effectors from 13R +/+ mice. These observations suggest that IL-4 and IL-13 likely operate through the HR and influence Th17 cells to convert to Th1 cells and to acquire increased sensitivity to suppression, leading to control of immune-mediated CNS inflammation. These previously unrecognized findings shed light on the intricacies underlying the contribution of cytokines to peripheral tolerance and control of autoimmunity. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. 17 CFR 230.702(T)-230.703(T) - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false [Reserved] 230.702(T)-230.703(T) Section 230.702(T)-230.703(T) Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION GENERAL RULES AND REGULATIONS, SECURITIES ACT OF 1933 Regulation E-Exemption for Securities of...

  20. IL-23 Activated γδ T Cells Affect Th17 Cells and Regulatory T Cells by Secreting IL-21 in Children with Primary Nephrotic Syndrome.

    PubMed

    Zhang, L; Yan, J; Yang, B; Zhang, G; Wang, M; Dong, S; Liu, W; Yang, H; Li, Q

    2018-01-01

    This study (1) analysed the percentage of γδ T cells, γδ T cell subsets, Th17 cells and regulatory T cells (Treg cells) and (2) determined the role of IL-23 in primary nephrotic syndrome (PNS) patients with active disease and in remission. Eighty-four patients with PNS and 51 healthy age-matched controls were included in this study. The percentage of γδ T cells, γδ T cell subsets, Th17 cells and Treg cells in peripheral blood mononuclear cells (PBMCs) were analysed by fluorescence-activated cell sorting. PMBCs from PNS patients with active disease were cultured in the presence of IL-23, IL-23 and an IL-23 antagonist, or IL23 and an anti-IL-21 monoclonal antibody (mAb). The percentage of γδ T cells, IL-23R + γδ T cells and IL-17 + γδ T cells were significantly increased in PNS patients with active disease. There was a positive correlation between the percentage of γδ T cells, IL-23R + γδ T cells, IL-17 + γδ T cells and the Th17/Treg ratio. IL-23 increased the percentage of γδ T cells and Th17 cells and decreased the percentage of Treg cells in PBMCs isolated from PNS patients with active disease. Anti-IL-21 mAb reduced the percentage of γδ T cells and Th17 cells, but increased the percentage of Treg cells. γδ T cells, IL-17 + γδ T cells and IL-23R + γδ T cells may be involved in the pathogenesis of paediatric PNS by modulating the balance of Th17/Treg cells. γδ T cells may cause an imbalance in Th17/Treg cells by secreting IL-21 in the presence of IL-23. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  1. Cadmium-coordinated supramolecule suppresses tumor growth of T-cell leukemia in mice

    PubMed Central

    Zhou, Xiaoping; Koizumi, Yukio; Zhang, Muxin; Natsui, Miyuki; Koyota, Souichi; Yamada, Manabu; Kondo, Yoshihiko; Hamada, Fumio; Sugiyama, Toshihiro

    2015-01-01

    Cadmium is a toxic pollutant with occupational and environmental significance, due to its diverse toxic effects. Supramolecules that conjugate and decontaminate toxic metals have potential for use in treatment of cadmium intoxication. In addition, metal-coordinating ability has been postulated to contribute to the cytotoxic effects of anti-tumor agents such as cisplatin or bleomycin. Thiacalixarenes, cyclic oligomers of p-alkylphenol bridged by sulfur atoms, are supramolecules known to have potent coordinating ability to metal ions. In this study, we show that cadmium-coordinated thiacalix[4]arene tetrasulfate (TC4ATS-Cd) exhibits an anti-proliferative effect against T-cell leukemia cells. Cadmium exhibited cytotoxicity with IC50 values ranging from 36 to 129 μM against epithelia-derived cancer cell lines, while TC4ATS-Cd elicited no significant cytotoxicity (IC50 > 947 μM). However, a number of T-cell leukemia cell lines exhibited marked sensitivity to TC4ATS-Cd. In Jurkat cells, toxicity of TC4ATS-Cd occurred with an IC50 of 6.9 μM, which is comparable to that of 6.5 μM observed for cadmium alone. TC4ATS-Cd induced apoptotic cell death through activation of caspase-3 in Jurkat cells. In a xenograft model, TC4ATS-Cd (13 mg/kg) treatment significantly suppressed the tumor growth of Jurkat cells in mice. In addition, TC4ATS-Cd-treated mice exhibited significantly less cadmium accumulation in liver and kidney compared to equimolar cadmium-treated mice. These results suggest that cadmium-coordinated supramolecules may have therapeutic potential for treatment of T-cell leukemia. PMID:25735932

  2. CD4+ T-Cell- and Gamma Interferon-Dependent Protection against Murine Malaria by Immunization with Linear Synthetic Peptides from a Plasmodium yoelii 17-Kilodalton Hepatocyte Erythrocyte Protein

    PubMed Central

    Charoenvit, Yupin; Majam, Victoria Fallarme; Corradin, Giampietro; Sacci, John B.; Wang, Ruobing; Doolan, Denise L.; Jones, Trevor R.; Abot, Esteban; Patarroyo, Manuel E.; Guzman, Fanny; Hoffman, Stephen L.

    1999-01-01

    Most work on protective immunity against the pre-erythrocytic stages of malaria has focused on induction of antibodies that prevent sporozoite invasion of hepatocytes, and CD8+ T-cell responses that eliminate infected hepatocytes. We recently reported that immunization of A/J mice with an 18-amino-acid synthetic linear peptide from Plasmodium yoelii sporozoite surface protein 2 (SSP2) in TiterMax adjuvant induces sterile protection that is dependent on CD4+ T cells and gamma interferon (IFN-γ). We now report that immunization of inbred A/J mice and outbred CD1 mice with each of two linear synthetic peptides from the 17-kDa P. yoelii hepatocyte erythrocyte protein (HEP17) in the same adjuvant also induces protection against sporozoite challenge that is dependent on CD4+ T cells and IFN-γ. The SSP2 peptide and the two HEP17 peptides are recognized by B cells as well as T cells, and the protection induced by these peptides appears to be directed against the infected hepatocytes. In contrast to the peptide-induced protection, immunization of eight different strains of mice with radiation-attenuated sporozoites induces protection that is absolutely dependent on CD8+ T cells. Data represented here demonstrate that CD4+ T-cell-dependent protection can be induced by immunization with linear synthetic peptides. These studies therefore provide the foundation for an approach to pre-erythrocytic-stage malaria vaccine development, based on the induction of protective CD4+ T-cell responses, which will complement efforts to induce protective antibody and CD8+ T-cell responses. PMID:10531206

  3. The RhoU/Wrch1 Rho GTPase gene is a common transcriptional target of both the gp130/STAT3 and Wnt-1 pathways

    PubMed Central

    SCHIAVONE, Davide; DEWILDE, Sarah; VALLANIA, Francesco; TURKSON, James; CUNTO, Ferdinando DI; POLI, Valeria

    2010-01-01

    STAT3 (signal transducer and activator of transcription 3) is a transcription factor activated by cytokines, growth factors and oncogenes, whose activity is required for cell survival/proliferation of a wide variety of primary tumours and tumour cell lines. Prominent among its multiple effects on tumour cells is the stimulation of cell migration and metastasis, whose functional mechanisms are however not completely characterized. RhoU/Wrch1 (Wnt-responsive Cdc42 homologue) is an atypical Rho GTPase thought to be constitutively bound to GTP. RhoU was first identified as a Wnt-1-inducible mRNA and subsequently shown to act on the actin cytoskeleton by stimulating filopodia formation and stress fibre dissolution. It was in addition recently shown to localize to focal adhesions and to Src-induced podosomes and enhance cell migration. RhoU overexpression in mammary epithelial cells stimulates quiescent cells to re-enter the cell cycle and morphologically phenocopies Wnt-1-dependent transformation. In the present study we show that Wnt-1-mediated RhoU induction occurs at the transcriptional level. Moreover, we demonstrate that RhoU can also be induced by gp130 cytokines via STAT3, and we identify two functional STAT3-binding sites on the mouse RhoU promoter. RhoU induction by Wnt-1 is independent of β-catenin, but does not involve STAT3. Rather, it is mediated by the Wnt/planar cell polarity pathway through the activation of JNK (c-Jun N-terminal kinase). Both the so-called non-canonical Wnt pathway and STAT3 are therefore able to induce RhoU, which in turn may be involved in mediating their effects on cell migration. PMID:19397496

  4. CP-25 Alleviates Experimental Sjögren's Syndrome Features in NOD/Ltj Mice and Modulates T Lymphocyte Subsets.

    PubMed

    Gu, Fang; Xu, Shixia; Zhang, Pengying; Chen, Xiaoyun; Wu, Yujing; Wang, Chun; Gao, Mei; Si, Min; Wang, Xinming; Heinrich, Korner; Wu, Huaxun; Wei, Wei

    2018-04-17

    Primary Sjögren's syndrome (pSS) is a chronic inflammatory autoimmune illness of the moisture-producing glands such as salivary glands that is characterized by various immune abnormalities. The aetiology of pSS remains unclear and there is no curative agent. In this study, we investigated the putative therapeutic effects on a NOD/Ltj mouse model of Sjögren's syndrome-like disorders of an ester derivative of paeoniflorin, paeoniflorin-6'O-benzene (termed CP-25). Our study showed that CP-25 alleviated effectively clinical manifestations in NOD/Ltj mice resulting, for example, in increased salivary flow and reduced histopathological scores. Furthermore, CP-25 decreased lymphocyte viability in NOD/Ltj mice and attenuated the infiltration of Th1 cells and Th2 cells into the salivary glands of NOD/Ltj mice. In the spleen on NOD/Ltj mice, CP-25 skewed the ratio of Th17 and regulatory T cells towards regulatory T cells. After treatment, concentrations of anti-La/SSB and IgG antibodies were reduced and the titre of the inflammatory cytokines IFN-γ, IL-4, IL-6 and IL-17A in the serum on NOD/Ltj mice was alleviated. Thus, we define CP-25 as a novel compound that is a potent therapeutic agent for pSS by modulating T lymphocyte subsets. Future studies will validate the use of CP-25 as a therapeutic strategy for the treatment of pSS. © 2018 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  5. The RhoGAP activity of CYK-4/MgcRacGAP functions non-canonically by promoting RhoA activation during cytokinesis

    PubMed Central

    Zhang, Donglei; Glotzer, Michael

    2015-01-01

    Cytokinesis requires activation of the GTPase RhoA. ECT-2, the exchange factor responsible for RhoA activation, is regulated to ensure spatiotemporal control of contractile ring assembly. Centralspindlin, composed of the Rho family GTPase-activating protein (RhoGAP) MgcRacGAP/CYK-4 and the kinesin MKLP1/ZEN-4, is known to activate ECT-2, but the underlying mechanism is not understood. We report that ECT-2-mediated RhoA activation depends on the ability of CYK-4 to localize to the plasma membrane, bind RhoA, and promote GTP hydrolysis by RhoA. Defects resulting from loss of CYK-4 RhoGAP activity can be rescued by activating mutations in ECT-2 or depletion of RGA-3/4, which functions as a conventional RhoGAP for RhoA. Consistent with CYK-4 RhoGAP activity contributing to GEF activation, the catalytic domains of CYK-4 and ECT-2 directly interact. Thus, counterintuitively, CYK-4 RhoGAP activity promotes RhoA activation. We propose that the most active form of the cytokinetic RhoGEF involves complex formation between ECT-2, centralspindlin and RhoA. DOI: http://dx.doi.org/10.7554/eLife.08898.001 PMID:26252513

  6. Rho/Rho-dependent kinase affects locomotion and actin-myosin II activity of Amoeba proteus.

    PubMed

    Kłopocka, W; Redowicz, M J

    2004-10-01

    The highly motile free-living unicellular organism Amoeba proteus has been widely used as a model to study cell motility. However, the molecular mechanisms underlying its unique locomotion are still scarcely known. Recently, we have shown that blocking the amoebae's endogenous Rac- and Rho-like proteins led to distinct and irreversible changes in the appearance of these large migrating cells as well as to a significant inhibition of their locomotion. In order to elucidate the mechanism of the Rho pathway, we tested the effects of blocking the endogenous Rho-dependent kinase (ROCK) by anti-ROCK antibodies and Y-27632, (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride, a specific inhibitor of ROCK, on migrating amoebae and the effect of the Rho and ROCK inhibition on the actin-activated Mg-ATPase of the cytosolic fraction of the amoebae. Amoebae microinjected with anti-ROCK inhibitors remained contracted and strongly attached to the glass surface and exhibited an atypical locomotion. Despite protruding many pseudopodia that were advancing in various directions, the amoebae could not effectively move. Immunofluorescence studies showed that ROCK-like protein was dispersed throughout the cytoplasm and was also found in the regions of actin-myosin II interaction during both isotonic and isometric contraction. The Mg-ATPase activity was about two- to threefold enhanced, indicating that blocking the Rho/Rho-dependent kinase activated myosin. It is possible then that in contrast to the vertebrate cells, the inactivation of Rho/Rho-dependent kinase in amoebae leads to the activation of myosin II and to the observed hypercontracted cells which cannot exert effective locomotion.

  7. Poor Mobilization in T-Cell-Deficient Nude Mice is Explained by Defective Activation of Granulocytes and Monocytes

    PubMed Central

    Wysoczynski, Marcin; Adamiak, Mateusz; Suszynska, Malwina; Abdel-Latif, Ahmed; Ratajczak, Janina; Ratajczak, Mariusz Z.

    2017-01-01

    It has been reported that both SCID mice and SCID patients poorly mobilize hematopoietic stem/progenitor cells (HSPCs) in response to granulocyte colony-stimulating factor (G-CSF). This defect has been proposed to result from a lack of naturally occurring IgM immunoglobulins to trigger activation of the complement cascade (ComC) and release of C5 cleavage fragments crucial in the mobilization process. However, SCID individuals also have T-cell deficiency, and T cells have been shown to modulate trafficking of HSPCs. To learn more about the role of T lymphocytes, we performed mobilization studies in T-lymphocyte-deficient nude mice and found that these mice respond poorly to G-CSF and zymosan but are normal mobilizers in response to AMD3100. Since nude mice have normal levels of IgM immunoglobulins in peripheral blood and may activate the ComC, we focused on the potential involvement of Gr1+ granulocytes and monocytes, which show defective maturation in these animals. Using a nude mouse mobilization model, we found further support for the proposition that proper function of Gr1+ cells is crucial for optimal mobilization of HSPCs. PMID:27436627

  8. Poor Mobilization in T-Cell-Deficient Nude Mice Is Explained by Defective Activation of Granulocytes and Monocytes.

    PubMed

    Wysoczynski, Marcin; Adamiak, Mateusz; Suszynska, Malwina; Abdel-Latif, Ahmed; Ratajczak, Janina; Ratajczak, Mariusz Z

    2017-01-24

    It has been reported that both SCID mice and SCID patients poorly mobilize hematopoietic stem/progenitor cells (HSPCs) in response to granulocyte colony-stimulating factor (G-CSF). This defect has been proposed to result from a lack of naturally occurring IgM immunoglobulins to trigger activation of the complement cascade (ComC) and release of C5 cleavage fragments crucial in the mobilization process. However, SCID individuals also have T-cell deficiency, and T cells have been shown to modulate trafficking of HSPCs. To learn more about the role of T lymphocytes, we performed mobilization studies in T-lymphocyte-deficient nude mice and found that these mice respond poorly to G-CSF and zymosan but are normal mobilizers in response to AMD3100. Since nude mice have normal levels of IgM immunoglobulins in peripheral blood and may activate the ComC, we focused on the potential involvement of Gr1+ granulocytes and monocytes, which show defective maturation in these animals. Using a nude mouse mobilization model, we found further support for the proposition that proper function of Gr1+ cells is crucial for optimal mobilization of HSPCs.

  9. T-cell-dependent control of acute Giardia lamblia infections in mice.

    PubMed

    Singer, S M; Nash, T E

    2000-01-01

    We have studied immune mechanisms responsible for control of acute Giardia lamblia and Giardia muris infections in adult mice. Association of chronic G. lamblia infection with hypogammaglobulinemia and experimental infections of mice with G. muris have led to the hypothesis that antibodies are required to control these infections. We directly tested this hypothesis by infecting B-cell-deficient mice with either G. lamblia or G. muris. Both wild-type mice and B-cell-deficient mice eliminated the vast majority of parasites between 1 and 2 weeks postinfection with G. lamblia. G. muris was also eliminated in both wild-type and B-cell-deficient mice. In contrast, T-cell-deficient and scid mice failed to control G. lamblia infections, as has been shown previously for G. muris. Treatment of wild-type or B-cell-deficient mice with antibodies to CD4 also prevented elimination of G. lamblia, confirming a role for T cells in controlling infections. By infecting mice deficient in either alphabeta- or gammadelta-T-cell receptor (TCR)-expressing T cells, we show that the alphabeta-TCR-expressing T cells are required to control parasites but that the gammadelta-TCR-expressing T cells are not. Finally, infections in mice deficient in production of gamma interferon or interleukin 4 (IL-4) and mice deficient in responding to IL-4 and IL-13 revealed that neither the Th1 nor the Th2 subset is absolutely required for protection from G. lamblia. We conclude that a T-cell-dependent mechanism is essential for controlling acute Giardia infections and that this mechanism is independent of antibody and B cells.

  10. Relative Contributions of B Cells and Dendritic Cells from Lupus-Prone Mice to CD4+ T Cell Polarization.

    PubMed

    Choi, Seung-Chul; Xu, Zhiwei; Li, Wei; Yang, Hong; Roopenian, Derry C; Morse, Herbert C; Morel, Laurence

    2018-05-01

    Mouse models of lupus have shown that multiple immune cell types contribute to autoimmune disease. This study sought to investigate the involvement of B cells and dendritic cells in supporting the expansion of inflammatory and regulatory CD4 + T cells that are critical for lupus pathogenesis. We used lupus-prone B6.NZM2410.Sle1.Sle2.Sle3 (TC) and congenic C57BL/6J (B6) control mice to investigate how the genetic predisposition of these two cell types controls the activity of normal B6 T cells. Using an allogeneic in vitro assay, we showed that TC B1-a and conventional B cells expanded Th17 cells significantly more than their B6 counterparts. This expansion was dependent on CD86 and IL-6 expression and mapped to the Sle1 lupus-susceptibility locus. In vivo, TC B cells promoted greater differentiation of CD4 + T cells into Th1 and follicular helper T cells than did B6 B cells, but they limited the expansion of Foxp3 regulatory CD4 + T cells to a greater extent than did B6 B cells. Finally, when normal B6 CD4 + T cells were introduced into Rag1 -/- mice, TC myeloid/stromal cells caused their heightened activation, decreased Foxp3 regulatory CD4 + T cell differentiation, and increased renal infiltration of Th1 and Th17 cells in comparison with B6 myeloid/stromal cells. The results show that B cells from lupus mice amplify inflammatory CD4 + T cells in a nonredundant manner with myeloid/stromal cells. Copyright © 2018 by The American Association of Immunologists, Inc.

  11. The role of T cell PPAR gamma in mice with experimental inflammatory bowel disease.

    PubMed

    Guri, Amir J; Mohapatra, Saroj K; Horne, William T; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-06-10

    Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor whose activation has been shown to modulate macrophage and T cell-mediated inflammation. The objective of this study was to investigate the mechanisms by which the deletion of PPAR gamma in T cells modulates immune cell distribution and colonic gene expression and the severity of experimental IBD. PPAR gamma flfl; CD4 Cre+ (CD4cre) or Cre- (WT) mice were challenged with 2.5% dextran sodium sulfate in their drinking water for 0, 2, or 7 days. Mice were scored on disease severity both clinically and histopathologically. Flow cytometry was used to assess lymphocyte and macrophage populations in the blood, spleen, and mesenteric lymph nodes (MLN). Global gene expression in colonic mucosa was profiled using Affymetrix microarrays. The deficiency of PPAR gamma in T cells accelerated the onset of disease and body weight loss. Examination of colon histopathology revealed significantly greater epithelial erosion, leukocyte infiltration, and mucosal thickening in the CD4cre mice on day 7. CD4cre mice had more CD8+ T cells than WT mice and fewer CD4+ FoxP3+ regulatory T cells (Treg) and IL10+ CD4+ T cells in blood and MLN, respectively. Transcriptomic profiling revealed around 3000 genes being transcriptionally altered as a result of DSS challenge in CD4cre mice. These included up-regulated mRNA expression of adhesion molecules, proinflammatory cytokines interleukin-6 (IL-6) and IL-1beta, and suppressor of cytokine signaling 3 (SOCS-3) on day 7. Gene set enrichment analysis (GSEA) showed that the ribosome and Krebs cycle pathways were downregulated while the apoptosis pathway was upregulated in colons of mice lacking PPAR gamma in T cells. The expression of PPAR gamma in T cells is involved in preventing gut inflammation by regulating colonic expression of adhesion molecules and inflammatory mediators at later stages of disease while favoring the recruitment of Treg to the mucosal inductive

  12. The Role of T cell PPAR γ in mice with experimental inflammatory bowel disease

    PubMed Central

    2010-01-01

    Background Peroxisome proliferator-activated receptor γ (PPAR γ) is a nuclear receptor whose activation has been shown to modulate macrophage and T cell-mediated inflammation. The objective of this study was to investigate the mechanisms by which the deletion of PPAR γ in T cells modulates immune cell distribution and colonic gene expression and the severity of experimental IBD. Methods PPAR γ flfl; CD4 Cre+ (CD4cre) or Cre- (WT) mice were challenged with 2.5% dextran sodium sulfate in their drinking water for 0, 2, or 7 days. Mice were scored on disease severity both clinically and histopathologically. Flow cytometry was used to assess lymphocyte and macrophage populations in the blood, spleen, and mesenteric lymph nodes (MLN). Global gene expression in colonic mucosa was profiled using Affymetrix microarrays. Results The deficiency of PPAR γ in T cells accelerated the onset of disease and body weight loss. Examination of colon histopathology revealed significantly greater epithelial erosion, leukocyte infiltration, and mucosal thickening in the CD4cre mice on day 7. CD4cre mice had more CD8+ T cells than WT mice and fewer CD4+FoxP3+ regulatory T cells (Treg) and IL10+CD4+ T cells in blood and MLN, respectively. Transcriptomic profiling revealed around 3000 genes being transcriptionally altered as a result of DSS challenge in CD4cre mice. These included up-regulated mRNA expression of adhesion molecules, proinflammatory cytokines interleukin-6 (IL-6) and IL-1β, and suppressor of cytokine signaling 3 (SOCS-3) on day 7. Gene set enrichment analysis (GSEA) showed that the ribosome and Krebs cycle pathways were downregulated while the apoptosis pathway was upregulated in colons of mice lacking PPAR γ in T cells. Conclusions The expression of PPAR γ in T cells is involved in preventing gut inflammation by regulating colonic expression of adhesion molecules and inflammatory mediators at later stages of disease while favoring the recruitment of Treg to the

  13. Redundancy of primary RNA-binding functions of the bacterial transcription terminator Rho.

    PubMed

    Shashni, Rajesh; Qayyum, M Zuhaib; Vishalini, V; Dey, Debashish; Sen, Ranjan

    2014-09-01

    The bacterial transcription terminator, Rho, terminates transcription at half of the operons. According to the classical model derived from in vitro assays on a few terminators, Rho is recruited to the transcription elongation complex (EC) by recognizing specific sites (rut) on the nascent RNA. Here, we explored the mode of in vivo recruitment process of Rho. We show that sequence specific recognition of the rut site, in majority of the Rho-dependent terminators, can be compromised to a great extent without seriously affecting the genome-wide termination function as well as the viability of Escherichia coli. These terminators function optimally only through a NusG-assisted recruitment and activation of Rho. Our data also indicate that at these terminators, Rho-EC-bound NusG interaction facilitates the isomerization of Rho into a translocase-competent form by stabilizing the interactions of mRNA with the secondary RNA binding site, thereby overcoming the defects of the primary RNA binding functions. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Streptococcus pneumoniae fructose-1,6-bisphosphate aldolase, a protein vaccine candidate, elicits Th1/Th2/Th17-type cytokine responses in mice.

    PubMed

    Elhaik Goldman, Shirin; Dotan, Shahar; Talias, Amir; Lilo, Amit; Azriel, Shalhevet; Malka, Itay; Portnoi, Maxim; Ohayon, Ariel; Kafka, Daniel; Ellis, Ronald; Elkabets, Moshe; Porgador, Angel; Levin, Ditza; Azhari, Rosa; Swiatlo, Edwin; Ling, Eduard; Feldman, Galia; Tal, Michael; Dagan, Ron; Mizrachi Nebenzahl, Yaffa

    2016-04-01

    Streptococcus pneumoniae (S. pneumoniae) is a major pathogen worldwide. The currently available polysaccharide-based vaccines significantly reduce morbidity and mortality. However, the inherent disadvantages of the currently available polysaccharide-based vaccines have motivated the search for other bacterial immunogens capable of eliciting a protective immune response against S. pneumoniae. Fructose-1,6-bisphosphate aldolase (FBA) is a glycolytic enzyme, which was found to localize to the bacterial surface, where it functions as an adhesin. Previously, immunizing mice with recombinant FBA (rFBA) in the presence of alum elicited a protective immune response against a lethal challenge with S. pneumoniae. Thus, the aim of the present study was to determine the cytokine responses that are indicative of protective immunity following immunization with rFBA. The protective effects against pneumococcal challenge in mice immunized with rFBA with complete Freund's adjuvant (CFA) in the initial immunization and with incomplete Freund's adjuvant (IFA) in booster immunizations surpassed the protective effects observed following immunization with either rFBA + alum or pVACfba. CD4+ T-cells obtained from the rFBA/CFA/IFA/IFA-immunized mice co-cultured with rFBA-pulsed antigen-presenting cells (APCs), exhibited a significantly greater proliferative ability than CD4+ T-cells obtained from the adjuvant-immunized mice co-cultured with rFBA‑pulsed APCs. The levels of the Th1-type cytokines, interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF)-α and IL-12, the Th2-type cytokines, IL-4, IL-5 and IL-10, and the Th17-type cytokine, IL-17A, significantly increased within 72 h of the initiation of co-culture with CD4+ T-cells obtained from the rFBA‑immunized mice, in comparison with the co-cultures with CD4+ T-cells obtained from the adjuvant-immunized mice. Immunizing mice with rFBA resulted in an IgG1/IgG2 ratio of 41, indicating a Th2 response with substantial Th1

  15. Effects of muscarinic receptor antagonists on cocaine discrimination in wild-type mice and in muscarinic receptor M1, M2, and M4 receptor knockout mice.

    PubMed

    Joseph, Lauren; Thomsen, Morgane

    2017-06-30

    Muscarinic M 1 /M 4 receptor stimulation can reduce abuse-related effects of cocaine and may represent avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of cocaine, including discriminative stimulus (S D ) effects, but the receptor subtypes mediating those effects are not known. A better understanding of the complex cocaine/muscarinic interactions is needed to evaluate and develop potential muscarinic-based medications. Here, knockout mice lacking M 1 , M 2 , or M 4 receptors (M 1 -/- , M 2 -/- , M 4 -/- ), as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline. Muscarinic receptor antagonists with no subtype selectivity (scopolamine), or preferential affinity at the M 1 , M 2 , or M 4 subtype (telenzepine, trihexyphenidyl; methoctramine, AQ-RA 741; tropicamide) were tested alone and in combination with cocaine. In intact animals, antagonists with high affinity at M 1 /M 4 receptors partially substituted for cocaine and increased the S D effect of cocaine, while M 2 -preferring antagonists did not substitute, and reduced the S D effect of cocaine. The cocaine-like effects of scopolamine were absent in M 1 -/- mice. The cocaine S D attenuating effects of methoctramine were absent in M 2 -/- mice and almost absent in M 1 -/- mice. The findings indicate that the cocaine-like S D effects of muscarinic antagonists are primarily mediated through M 1 receptors, with a minor contribution of M 4 receptors. The data also support our previous findings that stimulation of M 1 receptors and M 4 receptors can each attenuate the S D effect of cocaine, and show that this can also be achieved by blocking M 2 autoreceptors, likely via increased acetylcholine release. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Role for Lyt-2+ T cells in resistance to cutaneous leishmaniasis in immunized mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, J.P.; Muller, I.; Louis, J.A.

    1989-03-15

    The role of Lyt-2+ T cells in immunologic resistance to cutaneous leishmaniasis was analyzed by comparing infection patterns in resistant C57BL/6 mice and susceptible BALB/c mice induced to heal their infections after sub-lethal irradiation or i.v. immunization, with similar mice treated in vivo with anti-Lyt-2 antibodies. Administration of anti-Lyt-2 mAb resulted in a dramatic reduction in the number of lymphoid cells expressing the Lyt-2+ phenotype. Such treatment led to enhanced disease in both resistant C57BL/6 and irradiated BALB/c mice, as assessed by lesion size, but did not affect the capacity of these mice to ultimately resolve their infections. In contrast,more » anti-Lyt-2 treatment totally blocked the induction of resistance in i.v. immunized mice. These results suggest, that Lyt-2+ T cells may play a role in immunity to a Leishmania major infection and that their relative importance to resistance may depend on how resistance is induced.« less

  17. Adenoviral vector-mediated GM-CSF gene transfer improves anti-mycobacterial immunity in mice - role of regulatory T cells.

    PubMed

    Singpiel, Alena; Kramer, Julia; Maus, Regina; Stolper, Jennifer; Bittersohl, Lara Friederike; Gauldie, Jack; Kolb, Martin; Welte, Tobias; Sparwasser, Tim; Maus, Ulrich A

    2018-03-01

    Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor involved in differentiation, survival and activation of myeloid and non-myeloid cells with important implications for lung antibacterial immunity. Here we examined the effect of pulmonary adenoviral vector-mediated delivery of GM-CSF (AdGM-CSF) on anti-mycobacterial immunity in M. bovis BCG infected mice. Exposure of M. bovis BCG infected mice to AdGM-CSF either applied on 6h, or 6h and 7days post-infection substantially increased alveolar recruitment of iNOS and IL-12 expressing macrophages, and significantly increased accumulation of IFNγ pos T cells and particularly regulatory T cells (Tregs). This was accompanied by significantly reduced mycobacterial loads in the lungs of mice. Importantly, diphtheria toxin-induced depletion of Tregs did not influence mycobacterial loads, but accentuated immunopathology in AdGM-CSF-exposed mice infected with M. bovis BCG. Together, the data demonstrate that AdGM-CSF therapy improves lung protective immunity against M. bovis BCG infection in mice independent of co-recruited Tregs, which however critically contribute to limit lung immunopathology in BCG-infected mice. These data may be relevant to the development of immunomodulatory strategies to limit immunopathology-based lung injury in tuberculosis in humans. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Role of interleukin (IL)-17 and T-helper (Th)17 cells in cancer.

    PubMed

    Song, Yang; Yang, Jian Ming

    2017-11-04

    Interleukin-17 (IL-17), a pleiotropic proinflammatory cytokine, is reported to be significantly generated by a distinct subset of CD4 + T-cells, upgrading cancer-elicited inflammation and preventing cancer cells from immune surveillance. T-helper (Th)17 cells produced from naive CD4 + T cells have recently been renowned and generally accepted, gaining eminence in cancer studies and playing the effective role in context of cancer. Th17 cells are the main source of IL-17-secreting cells, It was found that other cell types produced this cytokine as well, including Group 3 innate lymphoid cells (ILC3), δγT cells, invariant natural killer T (iNKT) cells, lymphoid-tissue inducer (LTi)-like cells and Natural killer (NK) cells. Th17-associated cytokines give impetus to tumor progression, or inducing angiogenesis and metastasis. This review demonstrates an understanding on how the pro- or antitumor function of Th17 cells and IL-17 may change cancer progression, leading to the appearance of complex and pivotal biologic activities in tumor. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Dietary interventions that reduce mTOR activity rescue autistic-like behavioral deficits in mice.

    PubMed

    Wu, Jiangbo; de Theije, Caroline G M; da Silva, Sofia Lopes; Abbring, Suzanne; van der Horst, Hilma; Broersen, Laus M; Willemsen, Linette; Kas, Martien; Garssen, Johan; Kraneveld, Aletta D

    2017-01-01

    Enhanced mammalian target of rapamycin (mTOR) signaling in the brain has been implicated in the pathogenesis of autism spectrum disorder (ASD). Inhibition of the mTOR pathway improves behavior and neuropathology in mouse models of ASD containing mTOR-associated single gene mutations. The current study demonstrated that the amino acids histidine, lysine, threonine inhibited mTOR signaling and IgE-mediated mast cell activation, while the amino acids leucine, isoleucine, valine had no effect on mTOR signaling in BMMCs. Based on these results, we designed an mTOR-targeting amino acid diet (Active 1 diet) and assessed the effects of dietary interventions with the amino acid diet or a multi-nutrient supplementation diet (Active 2 diet) on autistic-like behavior and mTOR signaling in food allergic mice and in inbred BTBR T+Itpr3tf/J mice. Cow's milk allergic (CMA) or BTBR male mice were fed a Control, Active 1, or Active 2 diet for 7 consecutive weeks. CMA mice showed reduced social interaction and increased self-grooming behavior. Both diets reversed behavioral impairments and inhibited the mTOR activity in the prefrontal cortex and amygdala of CMA mice. In BTBR mice, only Active 1 diet reduced repetitive self-grooming behavior and attenuated the mTOR activity in the prefrontal and somatosensory cortices. The current results suggest that activated mTOR signaling pathway in the brain may be a convergent pathway in the pathogenesis of ASD bridging genetic background and environmental triggers (food allergy) and that mTOR over-activation could serve as a potential therapeutic target for the treatment of ASD. Copyright © 2016. Published by Elsevier Inc.

  20. T cells establish and maintain CNS viral infection in HIV-infected humanized mice.

    PubMed

    Honeycutt, Jenna B; Liao, Baolin; Nixon, Christopher C; Cleary, Rachel A; Thayer, William O; Birath, Shayla L; Swanson, Michael D; Sheridan, Patricia; Zakharova, Oksana; Prince, Francesca; Kuruc, JoAnn; Gay, Cynthia L; Evans, Chris; Eron, Joseph J; Wahl, Angela; Garcia, J Victor

    2018-06-04

    The human brain is an important site of HIV replication and persistence during antiretroviral therapy (ART). Direct evaluation of HIV infection in the brains of otherwise healthy individuals is not feasible; therefore, we performed a large-scale study of bone marrow/liver/thymus (BLT) humanized mice as an in vivo model to study HIV infection in the brain. Human immune cells, including CD4+ T cells and macrophages, were present throughout the BLT mouse brain. HIV DNA, HIV RNA, and/or p24+ cells were observed in the brains of HIV-infected animals, regardless of the HIV isolate used. HIV infection resulted in decreased numbers of CD4+ T cells, increased numbers of CD8+ T cells, and a decreased CD4+/CD8+ T cell ratio in the brain. Using humanized T cell-only mice (ToM), we demonstrated that T cells establish and maintain HIV infection of the brain in the complete absence of human myeloid cells. HIV infection of ToM resulted in CD4+ T cell depletion and a reduced CD4+/CD8+ T cell ratio. ART significantly reduced HIV levels in the BLT mouse brain, and the immune cell populations present were indistinguishable from those of uninfected controls, which demonstrated the effectiveness of ART in controlling HIV replication in the CNS and returning cellular homeostasis to a pre-HIV state.

  1. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice.

    PubMed

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-06-01

    The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcomes compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of preinvasive foci. We investigated the effects of radiation therapy in p48(Cre);LSL-Kras(G12D) (KC) and p48(Cre);LSLKras(G12D);LSL-Trp53(R172H) (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony-stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2 to 12 Gy and analyzed by flow cytometry. Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from radiation treated invasive and preinvasive pancreatic tumors had an immune-suppressive, M2-like phenotype compared with control mice. Pancreata from mice exposed to radiation had fewer CD8(+) T cells than controls, and greater numbers of CD4(+) T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. A neutralizing antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Radiation treatment causes macrophages

  2. Brain distribution and molecular cloning of the bovine GABA rho1 receptor.

    PubMed

    Rosas-Arellano, Abraham; Ochoa-de la Paz, Lenin David; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2007-03-01

    GABA(C) receptors were originally found in the mammalian retina and recent evidence shows that they are also expressed in several areas of the brain, including caudate nucleus, brain stem, pons and corpus callosum. In this study, plasma membranes from the caudate nucleus were microinjected into X. laevis oocytes. This led the oocyte plasma membrane to incorporate functional bicuculline-resistant, Cl(-) conducting bovine GABA receptors, similar to those of the retina. Immunolocalization of the GABA rho1 subunit revealed its expression in bovine neurons in the head of the caudate as well as in the olive, cuneiform and reticular nuclei of the brain stem. The same antibodies failed to show expression in the callosum and pons, where the GABA rho1 mRNA was previously detected. The cloned GABA rho1 sequence predicts a protein with 473 amino acids and 74-93% similarity to other GABA rho1 subunits. Oocytes injected with the cDNA express a non-desensitizing, homomeric receptor with a GABA EC(50)=6.0 microM and a Hill coefficient of 1.8. The results confirm the presence of GABA(C) receptor mRNAs in several areas of the mammalian brain and show that some of these areas express functional GABA rho1 receptors that have the classic GABA(C) receptor characteristics.

  3. MTORC1 EXPANDS TH17 AND IL-4+ DN T CELLS AND CONTRACTS TREGS IN SLE

    PubMed Central

    Kato, Hiroshi; Perl, Andras

    2014-01-01

    The mechanistic target of rapamycin (mTOR) is activated in CD4−CD8− double-negative (DN) T cells and its blockade is therapeutic in systemic lupus erythematosus (SLE) patients. Murine studies showed the involvement of mTOR complex 1 (mTORC1) and 2 (mTORC2) in the differentiation of Th1/Th17 cells and Th2 cells, respectively. Here, we investigated the roles of mTORC1 and mTORC2 in T-cell lineage development in SLE and matched healthy control (HC) subjects. mTORC1 activity was increased while mTORC2 was reduced as assessed by phosphorylation of their substrates pS6K or pS6RP and pAkt, respectively. Rapamycin inhibited mTORC1 and enhanced mTORC2. IL-4 expression was increased in freshly isolated CD8+ lupus T cells (SLE: 8.09±1.93%, HC: 3.61±0.49%; p=0.01). DN T cells had greater IL-4 expression than CD4+ or CD8+ T cells of SLE patients after 3 day in vitro stimulation, which was suppressed by rapamycin (control: 9.26±1.48%, rapamycin: 5.03±0.66%; p<0.001). GATA-3 expression was increased in CD8+ lupus T cells (p<0.01) and insensitive to rapamycin treatment. IFN-γ expression was reduced in all lupus T cell subsets (p=1.0×10−5) and also resisted rapamycin. IL-17 expression was increased in CD4+ lupus T cells (SLE: 3.62±0.66%, HC: 2.29±0.27%; p=0.019), which was suppressed by rapamycin (control: 3.91±0.79%, rapamycin: 2.22±0.60%; p<0.001). Frequency of Tregs was reduced in SLE (SLE: 1.83±0.25%, HC: 2.97±0.27%; p=0.0012). Rapamycin inhibited mTORC1 in Tregs and promoted their expansion. Neutralization of IL-17 but not IL-4 also expanded Tregs in SLE and HC subjects. These results indicate that mTORC1 expands IL-4+ DN T and Th17 cells and contracts Tregs in SLE. PMID:24683191

  4. Characterization of αβ and γδ T cell subsets expressing IL-17A in ruminants and swine.

    PubMed

    Elnaggar, Mahmoud M; Abdellrazeq, Gaber S; Dassanayake, Rohana P; Fry, Lindsay M; Hulubei, Victoria; Davis, William C

    2018-08-01

    As part of our ongoing program to expand immunological reagents available for research in cattle, we developed a monoclonal antibody (mAb) to bovine interleukin-17A (IL-17A), a multifunctional cytokine centrally involved in regulating innate and adaptive immune responses. Initial comparative studies demonstrated the mAb recognizes a conserved epitope expressed on orthologues of IL-17A in sheep, goats and pigs. Comparative flow cytometric analyses of lymphocyte subsets stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin revealed differences in expression of IL-17A by CD4, CD8, and γδ T cells across ruminants and swine species. Results in cattle showed the largest proportion of IL-17A + cells were CD4 + followed by γδ and CD8 + T cells. Further analysis revealed the IL-17A + γδ T cell subset was comprised of WC1.1 + , WC1.2 + , and WC1 - subsets. Analysis of the IL-17A + CD8 + T cell subset revealed it was comprised of αβ and γδ T cell subsets. Results in sheep and goats revealed IL-17A is expressed mainly by CD4 + and CD8 + T cells, with little expression by γδ T cells. Analysis of IL-17A + CD8 + T cells showed the majority were CD8 + αβ in sheep, whereas they were CD8 + γδ in goats. The majority of the sheep and goat IL-17A + γδ T cells were WC1 + . Results obtained in swine showed expression of IL-17A by CD4, CD8, and γδ T cell subsets were similar to results reported in other studies. Comparison of expression of IL-17A with IFN-γ revealed subsets co-expressed IL-17A and IFN-γ in cattle, sheep, and goats. The new mAb expands opportunities for immunology research in ruminants and swine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Cytotoxic effector functions of T cells are not required for protective immunity against fatal Rickettsia typhi infection in a murine model of infection: Role of TH1 and TH17 cytokines in protection and pathology

    PubMed Central

    Rauch, Jessica; Papp, Stefanie; Kuehl, Svenja; Richardt, Ulricke; Fleischer, Bernhard; Osterloh, Anke

    2017-01-01

    Endemic typhus caused by Rickettsia (R.) typhi is an emerging febrile disease that can be fatal due to multiple organ pathology. Here we analyzed the requirements for protection against R. typhi by T cells in the CB17 SCID model of infection. BALB/c wild-type mice generate CD4+ TH1 and cytotoxic CD8+ T cells both of which are sporadically reactivated in persistent infection. Either adoptively transferred CD8+ or CD4+ T cells protected R. typhi-infected CB17 SCID mice from death and provided long-term control. CD8+ T cells lacking either IFNγ or Perforin were still protective, demonstrating that the cytotoxic function of CD8+ T cells is not essential for protection. Immune wild-type CD4+ T cells produced high amounts of IFNγ, induced the release of nitric oxide in R. typhi-infected macrophages and inhibited bacterial growth in vitro via IFNγ and TNFα. However, adoptive transfer of CD4+IFNγ-/- T cells still protected 30–90% of R. typhi-infected CB17 SCID mice. These cells acquired a TH17 phenotype, producing high amounts of IL-17A and IL-22 in addition to TNFα, and inhibited bacterial growth in vitro. Surprisingly, the neutralization of either TNFα or IL-17A in CD4+IFNγ-/- T cell recipient mice did not alter bacterial elimination by these cells in vivo, led to faster recovery and enhanced survival compared to isotype-treated animals. Thus, collectively these data show that although CD4+ TH1 cells are clearly efficient in protection against R. typhi, CD4+ TH17 cells are similarly protective if the harmful effects of combined production of TNFα and IL-17A can be inhibited. PMID:28222146

  6. The excretory-secretory products of Echinococcus granulosus protoscoleces directly regulate the differentiation of B10, B17 and Th17 cells.

    PubMed

    Pan, Wei; Hao, Wen-Ting; Shen, Yu-Juan; Li, Xiang-Yang; Wang, Yan-Juan; Sun, Fen-Fen; Yin, Jian-Hai; Zhang, Jing; Tang, Ren-Xian; Cao, Jian-Ping; Zheng, Kui-Yang

    2017-07-21

    Excretory-secretory products (ESPs) released by helminths are well-known to regulate T cell responses in the host. However, their direct influence in the differentiation of naïve T cells, and especially B cells, remains largely unknown. This study investigated the effects of Echinococcus granulosus protoscoleces ESPs (EgPSC-ESPs) on the differentiation of IL-10-producing B cells (B10), IL-17A-producing B cells (B17) and Th17 cells. BALB/c mice injected with EgPSC were used to evaluate the in vivo profiles of B10, B17 and Th17 cells. In vitro purified CD19 + B and naïve CD4 + T cells were cultured in the presence of native, heat-inactivated or periodate-treated EgPSC-ESPs, and the differentiation of these cell subsets were compared. In contrast to the control group, infected mice showed higher frequencies of B10, B17 and Th17 cells, and higher levels of IL-10 and IL-17A in the sera. Interestingly, B17 cells were first identified to express CD19 + CD1d high . In vitro, B cells cultured with native ESPs exhibited a higher percentage of B10 cells but lower percentage of B17 and Th17 cells compared to the PBS group. Moreover, the relative expression of IL-10 and IL-17A mRNA were consistent with the altered frequencies. However, ESPs subjected to heat-inactivation or periodate treatment exhibited an inverse effect on the induction of these cell subsets. Our findings indicate that ESPs released by EgPSC can directly regulate the differentiation of B10, B17 and Th17 cells, which appear to be heat-labile and carbohydrate-dependent.

  7. Mesophilic-hydrothermal-thermophilic (M-H-T) digestion of green corn straw.

    PubMed

    Li, Dong; Wang, Qingjing; Li, Jiang; Li, Zhidong; Yuan, Yuexiang; Yan, Zhiying; Mei, Zili; Liu, Xiaofeng

    2016-02-01

    Mesophilic-hydrothermal (80-160 °C, 30 min)-thermophilic (M-H-T) digestion and control tests of mesophilic (M), thermophilic (T), hydrothermal-mesophilic (H-M), and mesophilic-thermophilic digestion (M-T) of green corn straw were conducted for a 20-day fermentation period. The results indicate that M-H-T is an efficient method to improve methane production. A maximum methane yield of 371.74 mL/g volatile solid was obtained by the M (3 days)-H (140 °C)-T (17 days) process, which was 20.44%, 16.55%, 31.44%, and 14.31% higher than the yields of the M, T, 140-M, and M-T processes. The enhanced methane production was attributed to (1) the improved hemicellulose degradation and lignin disorganization; (2) prevention of the degradation of soluble sugar, easily hydrolyzed hemicellulose and cellulose into furfural and methylfurfural; and (3) lack of formation of Maillard reaction products during initial hydrothermal treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Borrelia-primed and -infected mice deficient of interleukin-17 develop arthritis after neutralization of gamma-interferon.

    PubMed

    Kuo, Joseph; Warner, Thomas F; Schell, Ronald F

    2017-03-01

    The immune mechanisms responsible for development of Lyme arthritis are partially understood with interleukin-17 (IL-17) and gamma-interferon (IFN-γ) playing a generally accepted role. Elevated levels of IL-17 and/or IFN-γ have been reported in samples from human Lyme arthritis patients and experimental mice. In addition, IL-17 and IFN-γ have been implicated in the onset of arthritis in Borrelia-primed and -infected C57BL/6 mice. Recently, we showed that IL-17-deficient mice developed swelling and histopathological changes consistent with arthritis in the presence of high levels of IFN-γ. We hypothesized that neutralization of IFN-γ in IL-17-deficient mice would inhibit Borrelia-induced arthritis. Our results, however, showed that swelling of the hind paws and histopathological changes of arthritis did not differ between Borrelia-primed and -infected IL-17-deficient and wild-type mice with or without neutralization of IFN-γ. We also found higher levels of tumor necrosis factor alpha (TNF-α) and IL-6 in the popliteal lymph node cells of Borrelia-primed and -infected IL-17-deficient mice after neutralization of IFN-γ. These results suggest that multiple cytokines interact in the development of Borrelia-induced arthritis. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Transglutaminase-dependent RhoA activation and depletion by serotonin in vascular smooth muscle cells.

    PubMed

    Guilluy, Christophe; Rolli-Derkinderen, Malvyne; Tharaux, Pierre-Louis; Melino, Gerry; Pacaud, Pierre; Loirand, Gervaise

    2007-02-02

    The small G protein RhoA plays a major role in several vascular processes and cardiovascular disorders. Here we analyze the mechanisms of RhoA regulation by serotonin (5-HT) in arterial smooth muscle. 5-HT (0.1-10 microM) induced activation of RhoA followed by RhoA depletion at 24-72 h. Inhibition of 5-HT1 receptors reduced the early phase of RhoA activation but had no effect on 5-HT-induced delayed RhoA activation and depletion, which were suppressed by the 5-HT transporter inhibitor fluoxetine and the transglutaminase inhibitor monodansylcadaverin and in type 2 transglutaminase-deficient smooth muscle cells. Coimmunoprecipitations demonstrated that 5-HT associated with RhoA both in vitro and in vivo. This association was calcium-dependent and inhibited by fluoxetine and monodansylcadaverin. 5-HT promotes the association of RhoA with the E3 ubiquitin ligase Smurf1, and 5-HT-induced RhoA depletion was inhibited by the proteasome inhibitor MG132 and the RhoA inhibitor Tat-C3. Simvastatin, the Rho kinase inhibitor Y-27632, small interfering RNA-mediated RhoA gene silencing, and long-term 5-HT stimulation induced Akt activation. In contrast, inhibition of 5-HT-mediated RhoA degradation by MG132 prevented 5-HT-induced Akt activation. Long-term 5-HT stimulation also led to the inhibition of the RhoA/Rho kinase component of arterial contraction. Our data provide evidence that 5-HT, internalized through the 5-HT transporter, is transamidated to RhoA by transglutaminase. Transamidation of RhoA leads to RhoA activation and enhanced proteasomal degradation, which in turn is responsible for Akt activation and contraction inhibition. The observation of transamidation of 5-HT to RhoA in pulmonary artery of hypoxic rats suggests that this process could participate in pulmonary artery remodeling and hypertension.

  10. Vibrio parahaemolyticus Inhibition of Rho Family GTPase Activation Requires a Functional Chromosome I Type III Secretion System▿

    PubMed Central

    Casselli, Timothy; Lynch, Tarah; Southward, Carolyn M.; Jones, Bryan W.; DeVinney, Rebekah

    2008-01-01

    Vibrio parahaemolyticus is a leading cause of seafood-borne gastroenteritis; however, its virulence mechanisms are not well understood. The identification of type III secreted proteins has provided candidate virulence factors whose functions are still being elucidated. Genotypic strain variability contributes a level of complexity to understanding the role of different virulence factors. The ability of V. parahaemolyticus to inhibit Rho family GTPases and cause cytoskeletal disruption was examined with HeLa cells. After HeLa cells were infected, intracellular Rho activation was inhibited in response to external stimuli. In vitro activation of Rho, Rac, and Cdc42 isolated from infected HeLa cell lysates was also inhibited, indicating that the bacteria were specifically targeting GTPase activation. The inhibition of Rho family GTPase activation was retained for clinical and environmental isolates of V. parahaemolyticus and was dependent on a functional chromosome I type III secretion system (CI-T3SS). GTPase inhibition was independent of hemolytic toxin genotype and the chromasome II (CII)-T3SS. Rho inhibition was accompanied by a shift in the total actin pool to its monomeric form. These phenotypes were abrogated in a mutant strain lacking the CI-T3S effector Vp1686, suggesting that the inhibiting actin polymerization may be a downstream effect of Vp1686-dependent GTPase inhibition. Although Vp1686 has been previously characterized as a potential virulence factor in macrophages, our findings reveal an effect on cultured HeLa cells. The ability to inhibit Rho family GTPases independently of the CII-T3SS and the hemolytic toxins may provide insight into the mechanisms of virulence used by strains lacking these virulence factors. PMID:18347050

  11. Geranylgeranylacetone blocks doxorubicin-induced cardiac toxicity and reduces cancer cell growth and invasion through RHO pathway inhibition.

    PubMed

    Sysa-Shah, Polina; Xu, Yi; Guo, Xin; Pin, Scott; Bedja, Djahida; Bartock, Rachel; Tsao, Allison; Hsieh, Angela; Wolin, Michael S; Moens, An; Raman, Venu; Orita, Hajime; Gabrielson, Kathleen L

    2014-07-01

    Doxorubicin is a widely used chemotherapy for solid tumors and hematologic malignancies, but its use is limited due to cardiotoxicity. Geranylgeranylacetone (GGA), an antiulcer agent used in Japan for 30 years, has no significant adverse effects, and unexpectedly reduces ovarian cancer progression in mice. Because GGA reduces oxidative stress in brain and heart, we hypothesized that GGA would prevent oxidative stress of doxorubicin cardiac toxicity and improve doxorubicin's chemotherapeutic effects. Nude mice implanted with MDA-MB-231 breast cancer cells were studied after chronic treatment with doxorubicin, doxorubicin/GGA, GGA, or saline. Transthoracic echocardiography was used to monitor systolic heart function and xenografts evaluated. Mice were euthanized and cardiac tissue evaluated for reactive oxygen species generation, TUNEL assay, and RHO/ROCK pathway analysis. Tumor metastases were evaluated in lung sections. In vitro studies using Boyden chambers were performed to evaluate GGA effects on RHO pathway activator lysophosphatidic acid (LPA)-induced motility and invasion. We found that GGA reduced doxorubicin cardiac toxicity, preserved cardiac function, prevented TUNEL-positive cardiac cell death, and reduced doxorubicin-induced oxidant production in a nitric oxide synthase-dependent and independent manner. GGA also reduced heart doxorubicin-induced ROCK1 cleavage. Remarkably, in xenograft-implanted mice, combined GGA/doxorubicin treatment decreased tumor growth more effectively than doxorubicin treatment alone. As evidence of antitumor effect, GGA inhibited LPA-induced motility and invasion by MDA-MB-231 cells. These anti-invasive effects of GGA were suppressed by geranylgeraniol suggesting GGA inhibits RHO pathway through blocking geranylation. Thus, GGA protects the heart from doxorubicin chemotherapy-induced injury and improves anticancer efficacy of doxorubicin in breast cancer. ©2014 American Association for Cancer Research.

  12. Inhibition of RhoA/Rho kinase pathway and smooth muscle contraction by hydrogen sulfide.

    PubMed

    Nalli, Ancy D; Wang, Hongxia; Bhattacharya, Sayak; Blakeney, Bryan A; Murthy, Karnam S

    2017-10-01

    Hydrogen sulfide (H 2 S) plays an important role in smooth muscle relaxation. Here, we investigated the expression of enzymes in H 2 S synthesis and the mechanism regulating colonic smooth muscle function by H 2 S. Expression of cystathionine-γ-lyase (CSE), but not cystathionine-β-synthase (CBS), was identified in the colonic smooth muscle of rabbit, mouse, and human. Carbachol (CCh)-induced contraction in rabbit muscle strips and isolated muscle cells was inhibited by l-cysteine (substrate of CSE) and NaHS (an exogenous H 2 S donor) in a concentration-dependent fashion. H 2 S induced S-sulfhydration of RhoA that was associated with inhibition of RhoA activity. CCh-induced Rho kinase activity also was inhibited by l-cysteine and NaHS in a concentration-dependent fashion. Inhibition of CCh-induced contraction by l-cysteine was blocked by the CSE inhibitor, dl-propargylglycine (DL-PPG) in dispersed muscle cells. Inhibition of CCh-induced Rho kinase activity by l-cysteine was blocked by CSE siRNA in cultured cells and DL-PPG in dispersed muscle cells. Stimulation of Rho kinase activity and muscle contraction in response to CCh was also inhibited by l-cysteine or NaHS in colonic muscle cells from mouse and human. Collectively, our studies identified the expression of CSE in colonic smooth muscle and determined that sulfhydration of RhoA by H 2 S leads to inhibition of RhoA and Rho kinase activities and muscle contraction. The mechanism identified may provide novel therapeutic approaches to mitigate gastrointestinal motility disorders. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  13. Foxp3+ T cells inhibit antitumor immune memory modulated by mTOR inhibition.

    PubMed

    Wang, Yanping; Sparwasser, Tim; Figlin, Robert; Kim, Hyung L

    2014-04-15

    Inhibition of mTOR signaling enhances antitumor memory lymphocytes. However, pharmacologic mTOR inhibition also enhances regulatory T-cell (Treg) activity. To counter this effect, Treg control was added to mTOR inhibition in preclinical models. Tregs were controlled with CD4-depleting antibodies because CD4 depletion has high translational potential and already has a well-established safety profile in patients. The antitumor activity of the combination therapy was CD8 dependent and controlled growth of syngeneic tumors even when an adoptive immunotherapy was not used. Lymphocytes resulting from the combination therapy could be transferred into naïve mice to inhibit aggressive growth of lung metastases. The combination therapy enhanced CD8 memory formation as determined by memory markers and functional studies of immune recall. Removal of FoxP3-expressing T lymphocytes was the mechanism underlying immunologic memory formation following CD4 depletion. This was confirmed using transgenic DEREG (depletion of regulatory T cells) mice to specifically remove Foxp3(+) T cells. It was further confirmed with reciprocal studies where stimulation of immunologic memory because of CD4 depletion was completely neutralized by adoptively transferring tumor-specific Foxp3(+) T cells. Also contributing to tumor control, Tregs that eventually recovered following CD4 depletion were less immunosuppressive. These results provide a rationale for further study of mTOR inhibition and CD4 depletion in patients. ©2014 AACR.

  14. Neural activation-based sexual orientation and its correlation with free testosterone level in postoperative female-to-male transsexuals: preliminary study with 3.0-T fMRI.

    PubMed

    Kim, Gwang-Won; Kim, Seok-Kwun; Jeong, Gwang-Woo

    2016-03-01

    The purpose of this study was to evaluate the brain activation pattern associated with sexual orientation and its correlation with the level of the free testosterone (free T) in postoperative female-to-male (FtM) transsexuals using a 3.0-Tesla functional magnetic resonance imaging (fMRI). Eleven postoperative FtM transsexuals with sex reassignment surgery underwent fMRI on a 3.0-T MR scanner. Brain activity was measured while viewing erotic male and female nude pictures. The average level of free T in the FtM transsexuals was in the normal range of heterosexual men. The brain areas with predominant activities during viewing female nude pictures in contrast to male pictures included the hippocampus, parahippocampal gyrus, anterior cingulate gyrus, putamen, amygdala, hypothalamus, and insula (p < 0.005). The free T levels were positively correlated with the BOLD signal changes in the parahippocampal gyrus (Spearman's rho = 0.91, p < 0.001), hippocampus (rho = 0.90, p < 0.001), insula (rho = 0.68, p < 0.05), putamen (rho = 0.66, p < 0.05), and amygdala (rho = 0.64, p < 0.05). Compared to FtM transsexuals with deficient level of free T, the FtM transsexuals with normal range of free T showed significantly higher activities in the parahippocampal gyrus, hippocampus, insula, putamen, and amygdala during viewing female nude pictures (p < 0.005). This study revealed the specific brain activation pattern associated with sexual orientation and its correlation with free T in the postoperative FtM transsexuals. These findings are applicable in understanding the neural mechanism on sexual arousal in FtM transsexuals and their sexual orientation in connection with the free T levels.

  15. Off-resonance R1rho relaxation outside of the fast exchange limit: an experimental study of a cavity mutant of T4 lysozyme.

    PubMed

    Korzhnev, Dmitry M; Orekhov, Vladislav Yu; Dahlquist, Frederick W; Kay, Lewis E

    2003-05-01

    An (15)N off-resonance R(1rho) spin relaxation study of an L99A point mutant of T4 lysozyme is presented. Previous CPMG-based relaxation dispersion studies of exchange in this protein have established that the molecule interconverts between a populated ground state and an excited state (3.4%) with an exchange rate constant of 1450 s(-1) at 25 degrees C. It is shown that for the majority of residues in this protein the offset dependence of the R(1rho) relaxation rates cannot be well fit using models which are only valid in the fast exchange regime. In contrast, a recently derived expression by Trott and Palmer (J. Magn. Reson., 154, 157-160, 2002) which is valid over a wider window of exchange than other relations, is shown to fit the data well. Values of (signed) chemical shift differences between exchanging sites have been extracted and are in reasonable agreement with shift differences measured using CPMG methods. A set of simulations is presented which help establish the exchange regimes that are best suited to analysis by off-resonance R(1rho) techniques.

  16. Site preference, magnetism and lattice vibrations of intermetallics Lu₂Fe 17–xT x (T=Cr, Mn, Ru)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jin-Chun; Qian, Ping, E-mail: qianpinghu@sohu.com; Zhang, Zhen-Feng

    We present an atomistic study on the phase stability, site preference and lattice constants of the rare earth intermetallics Lu₂Fe 17–xT x (T=Cr, Mn, Ru). The calculated preferential occupation site of ternary element T is found to be the 4f site. The order of site preference is given as 4f, 12k, 12j and 6g for Lu₂Fe 17–xT x. The calculated lattice parameters are corresponding to the experimental results. We have calculated the magnetic moments of Lu₂Fe 17–xT x compounds. Results show that the calculated total magnetic moment of Lu₂Fe₁₇ compound is M=37.34 μ B/f.u. In addition, the total and partialmore » phonon densities of states are evaluated first for these complicated structures. - Graphical abstract: The vibrational modes are mostly excited by Fe atoms, Lu contributes to the lower frequencies modes, and the contribution of Ru atoms is the same as Fe atoms. Highlights: • There are no reports on lattice vibrations of Lu₂(Fe, T) 17–x (T=Cr, Mn, Ru) compounds. • The phase stability and site preference are evaluated first for the complex structures of Lu₂(Fe, T) 17–x (T=Cr, Mn, Ru) compounds. • The lattice inversion method to obtain the interatomic pair potential is the unique one.« less

  17. T-Lymphocytes Enable Osteoblast Maturation via IL-17F during the Early Phase of Fracture Repair

    PubMed Central

    Nam, Diane; Mau, Elaine; Wang, Yufa; Wright, David; Silkstone, David; Whetstone, Heather; Whyne, Cari; Alman, Benjamin

    2012-01-01

    While it is well known that the presence of lymphocytes and cytokines are important for fracture healing, the exact role of the various cytokines expressed by cells of the immune system on osteoblast biology remains unclear. To study the role of inflammatory cytokines in fracture repair, we studied tibial bone healing in wild-type and Rag1−/− mice. Histological analysis, µCT stereology, biomechanical testing, calcein staining and quantitative RNA gene expression studies were performed on healing tibial fractures. These data provide support for Rag1−/− mice as a model of impaired fracture healing compared to wild-type. Moreover, the pro-inflammatory cytokine, IL-17F, was found to be a key mediator in the cellular response of the immune system in osteogenesis. In vitro studies showed that IL-17F alone stimulated osteoblast maturation. We propose a model in which the Th17 subset of T-lymphocytes produces IL-17F to stimulate bone healing. This is a pivotal link in advancing our current understanding of the molecular and cellular basis of fracture healing, which in turn may aid in optimizing fracture management and in the treatment of impaired bone healing. PMID:22768215

  18. Unique Structural and Nucleotide Exchange Features of the Rho1 GTPase of Entamoeba histolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosch, Dustin E.; Wittchen, Erika S.; Qiu, Connie

    The single-celled human parasite Entamoeba histolytica possesses a dynamic actin cytoskeleton vital for its intestinal and systemic pathogenicity. The E. histolytica genome encodes several Rho family GTPases known to regulate cytoskeletal dynamics. EhRho1, the first family member identified, was reported to be insensitive to the Rho GTPase-specific Clostridium botulinum C3 exoenzyme, raising the possibility that it may be a misclassified Ras family member. Here, we report the crystal structures of EhRho1 in both active and inactive states. EhRho1 is activated by a conserved switch mechanism, but diverges from mammalian Rho GTPases in lacking a signature Rho insert helix. EhRho1 engagesmore » a homolog of mDia, EhFormin1, suggesting a role in mediating serum-stimulated actin reorganization and microtubule formation during mitosis. EhRho1, but not a constitutively active mutant, interacts with a newly identified EhRhoGDI in a prenylation-dependent manner. Furthermore, constitutively active EhRho1 induces actin stress fiber formation in mammalian fibroblasts, thereby identifying it as a functional Rho family GTPase. EhRho1 exhibits a fast rate of nucleotide exchange relative to mammalian Rho GTPases due to a distinctive switch one isoleucine residue reminiscent of the constitutively active F28L mutation in human Cdc42, which for the latter protein, is sufficient for cellular transformation. Nonconserved, nucleotide-interacting residues within EhRho1, revealed by the crystal structure models, were observed to contribute a moderating influence on fast spontaneous nucleotide exchange. Collectively, these observations indicate that EhRho1 is a bona fide member of the Rho GTPase family, albeit with unique structural and functional aspects compared with mammalian Rho GTPases.« less

  19. Antinociceptive action of DBO 17 and DBO 11 in mice: two 3,8 diazabicyclo (3.2.1.) octane derivates with selective mu opioid receptor affinity.

    PubMed

    Fadda, P; Barlocco, D; Tronci, S; Cignarella, G; Fratta, W

    1997-11-01

    Two 3,8 diazabicyclo (3.2.1.) octane derivates, namely DBO 17 and DBO 11, were studied for the opioid-like activity. In the rat brain membrane preparation binding studies, DBO 17 and DBO 11 showed a high affinity and selectivity for the mu opioid receptor (Ki's: 5.1 and 25 nM, respectively). DBO 17 and DBO 11 inhibited the nociceptive response in the hot-plate test of mice with ED50 values of 0.16 mg/kg and 0.44 mg/kg, respectively. The antinociceptive action of both DBO 17 and DBO 11 was blocked by naloxone. Tolerance to the antinociceptive action of DBO 17 and DBO 11 was present after 13 and 7 days of repeated treatment, respectively. Both DBO 17 and DBO 11 were ineffective in morphine-tolerant mice and vice versa. Chronic treatments (three times daily for seven consecutive days) of DBO 17 and DBO 11 induced a naloxone-precipitated withdrawal syndrome in DBO 17 treated mice similar to that in morphine treated mice, whereas in DBO 11 treated mice abstinence signs were virtually absent. These results indicate an interesting pharmacological profile that suggests these compounds as possible new candidates for the clinical treatment of pain.

  20. Requirements for flare reactions of joint inflammation induced in mice by cloned MT4+, Lyt-2- T cells.

    PubMed

    Klasen, I S; Ladestein, R M; van den Berg, W B; Benner, R

    1989-03-01

    Joint inflammation was induced in C57B1/6 mice by injection of cloned MT4+, Lyt-2- T cells specific for the antigen methylated bovine serum albumin (mBSA), together with mBSA. In this model, after waning of the inflammation, flare reactions can be induced by a rechallenge with the specific antigen. Herein we show that such flare reactions can still be induced several weeks after waning of the joint inflammation, as was demonstrated both in normal C57B1/6 mice and in athymic C57B1 nude mice. The results in the latter group indicate that T cells of the recipient mice are not necessary for the elicitation of flare reactions. On histologic examination, the inflammatory infiltrates in the knee joints of the nude mice appeared to be mainly granulocytic. The cloned T cells persisted and remained functionally reactive in the knee joint for at least 2 weeks in the absence of the antigen, and thus, in the absence of inflammation. In view of the similarities between induced joint inflammation in mice and rheumatoid arthritis in humans, these data may be relevant to our understanding of the processes involved in the latter disease.

  1. Heightened avidity for trisodium pyrophosphate in mice lacking Tas1r3.

    PubMed

    Tordoff, Michael G; Aleman, Tiffany R; McCaughey, Stuart A

    2015-01-01

    Laboratory rats and mice prefer some concentrations of tri- and tetrasodium pyrophosphate (Na3HP2O7 and Na4P2O7) to water, but how they detect pyrophosphates is unknown. Here, we assessed whether T1R3 is involved. We found that relative to wild-type littermate controls, Tas1r3 knockout mice had stronger preferences for 5.6-56mM Na3HP2O7 in 2-bottle choice tests, and they licked more 17.8-56mM Na3HP2O7 in brief-access tests. We hypothesize that pyrophosphate taste in the intact mouse involves 2 receptors: T1R3 to produce a hedonically negative signal and an unknown G protein-coupled receptor to produce a hedonically positive signal; in Tas1r3 knockout mice, the hedonically negative signal produced by T1R3 is absent, leading to a heightened avidity for pyrophosphate. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Lethal cutaneous disease in transgenic mice conditionally expressing type I human T cell leukemia virus Tax.

    PubMed

    Kwon, Hakju; Ogle, Louise; Benitez, Bobby; Bohuslav, Jan; Montano, Mauricio; Felsher, Dean W; Greene, Warner C

    2005-10-21

    Type I human T cell leukemia virus (HTLV-I) is etiologically linked with adult T cell leukemia, an aggressive and usually fatal expansion of activated CD4+ T lymphocytes that frequently traffic to skin. T cell transformation induced by HTLV-I involves the action of the 40-kDa viral Tax transactivator protein. Tax both stimulates the HTLV-I long terminal repeat and deregulates the expression of select cellular genes by altering the activity of specific host transcription factors, including cyclic AMP-responsive element-binding protein (CREB)/activating transcription factor, NF-kappaB/Rel, and serum response factor. To study initiating events involved in HTLV-I Tax-induced T cell transformation, we generated "Tet-off" transgenic mice conditionally expressing in a lymphocyte-restricted manner (EmuSR alpha promoter-enhancer) either wild-type Tax or mutant forms of Tax that selectively compromise the NF-kappaB (M22) or CREB/activating transcription factor (M47) activation pathways. Wild-type Tax and M47 Tax-expressing mice, but not M22-Tax expressing mice, developed progressive alopecia, hyperkeratosis, and skin lesions containing profuse activated CD4 T cell infiltrates with evidence of deregulated inflammatory cytokine production. In addition, these animals displayed systemic lymphadenopathy and splenomegaly. These findings suggest that Tax-mediated activation of NF-kappaB plays a key role in the development of this aggressive skin disease that shares several features in common with the skin disease occurring during the preleukemic stage in HTLV-I-infected patients. Of note, this skin disease completely resolved when Tax transgene expression was suppressed by administration of doxycycline, emphasizing the key role played by this viral oncoprotein in the observed pathology.

  3. RhoGAP18B Isoforms Act on Distinct Rho-Family GTPases and Regulate Behavioral Responses to Alcohol via Cofilin

    PubMed Central

    Kalahasti, Geetha; Rodan, Aylin R.; Rothenfluh, Adrian

    2015-01-01

    Responses to the effects of ethanol are highly conserved across organisms, with reduced responses to the sedating effects of ethanol being predictive of increased risk for human alcohol dependence. Previously, we described that regulators of actin dynamics, such as the Rho-family GTPases Rac1, Rho1, and Cdc42, alter Drosophila’s sensitivity to ethanol-induced sedation. The GTPase activating protein RhoGAP18B also affects sensitivity to ethanol. To better understand how different RhoGAP18B isoforms affect ethanol sedation, we examined them for their effects on cell shape, GTP-loading of Rho-family GTPase, activation of the actin-severing cofilin, and actin filamentation. Our results suggest that the RhoGAP18B-PA isoform acts on Cdc42, while PC and PD act via Rac1 and Rho1 to activate cofilin. In vivo, a loss-of-function mutation in the cofilin-encoding gene twinstar leads to reduced ethanol-sensitivity and acts in concert with RhoGAP18B. Different RhoGAP18B isoforms, therefore, act on distinct subsets of Rho-family GTPases to modulate cofilin activity, actin dynamics, and ethanol-induced behaviors. PMID:26366560

  4. Effect of 3,5,3'-Triiodothyronine (T3) administration on dio1 gene expression and T3 metabolism in normal and type 1 deiodinase-deficient mice.

    PubMed

    Maia, A L; Kieffer, J D; Harney, J W; Larsen, P R

    1995-11-01

    The type 1 deiodinase (D1) catalyzes the monodeiodination of T4 to produce T3, the active thyroid hormone. In the C3H mouse, hepatic D1 and the dio1 messenger RNA (mRNA) are only 10% that in the C57 strain, the common phenotype. Low activity cosegregated with a series of five GCT repeats located in the 5'-flanking region of the C3H dio1 gene that impaired C3H promoter potency and provided a partial explanation for the lower D1. The present studies were performed to search for additional explanations for low D1 activity in C3H mice. Previous studies have shown that T3 up-regulates the dio1 gene. Therefore, loss of the capacity to respond to endogenous T3 is a possible additional cause of the lower D1 levels in the C3H mice. The hepatic C3H dio1 mRNA increases 10- to 20 fold after T3 administration. The t3 effect occurs at a transplantation level and T3 does not alter the dio1 mRNA half-life. Despite the transcriptional response to T3, no functional thyroid response elements were identified in the 1.5-kilobase 5'-flanking region of either the C57 or C3H dio1 gene. After the same dose of exogenous T3, both dio1 mRNA and D1 of the C3H mouse respond to a greater extent than those of the C57 strain. This can be explained in part by the reduction in T3 clearance due to the lower D1 levels in C3H mice in which higher concentrations of circulating T3 are maintained. The decrease in serum T3 levels and T3 production observed in fasting and systemic illness in both human and experimental animals has been attributed in part to a decrease in hepatic D1. In contrast, despite markedly lower hepatic and renal D1 levels, serum T3 concentrations remain normal in C3H mice. The present studies suggest that the absence of stress-induced hypothalamic-pituitary suppression that allows T4 production to be maintained together with the reduced clearance of T3 and T4 via inner ring deiodination compensate for the D1 deficiency.

  5. Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice.

    PubMed

    Lazaroni, Thiago Luiz do Nascimento; Bastos, Cristiane Perácio; Moraes, Márcio Flávio Dutra; Santos, Robson Souza; Pereira, Grace Schenatto

    2016-01-01

    Inappropriate defense-alerting reaction to fear is a common feature of neuropsychiatric diseases. Therefore, impairments in brain circuits, as well as in molecular pathways underlying the neurovegetative adjustments to fear may play an essential role on developing neuropsychiatric disorders. Here we tested the hypothesis that interfering with angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis homeostasis, which appears to be essential to arterial pressure control, would affect fear memory and extinction. Mas knockout (MasKO) mice, in FVB/N background, showed normal cued fear memory and extinction, but increased freezing in response to context. Next, as FVB/N has poor performance in contextual fear memory, we tested MasKO in mixed 129xC57BL/6 background. MasKO mice behaved similarly to wild-type (WT), but memory extinction was slower in contextual fear conditioning to a weak protocol (1CS/US). In addition, delayed extinction in MasKO mice was even more pronounced after a stronger protocol (3CS/US). We showed previously that Angiotensin II receptor AT1 antagonist, losantan, rescued object recognition memory deficit in MasKO mice. Here, losartan was also effective. Memory extinction was accelerated in MasKO mice after treatment with losartan. In conclusion, we showed for the first time that Ang-(1-7)/Mas axis may modulate fear memory extinction. Furthermore, we suggest MasKO mice as an animal model to study post-traumatic stress disorder (PTSD). Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology.

    PubMed

    Szabo, Peter A; Goswami, Ankur; Mazzuca, Delfina M; Kim, Kyoungok; O'Gorman, David B; Hess, David A; Welch, Ian D; Young, Howard A; Singh, Bhagirath; McCormick, John K; Haeryfar, S M Mansour

    2017-04-01

    Toxic shock syndrome (TSS) is caused by staphylococcal and streptococcal superantigens (SAgs) that provoke a swift hyperinflammatory response typified by a cytokine storm. The precipitous decline in the host's clinical status and the lack of targeted therapies for TSS emphasize the need to identify key players of the storm's initial wave. Using a humanized mouse model of TSS and human cells, we herein demonstrate that SAgs elicit in vitro and in vivo IL-17A responses within hours. SAg-triggered human IL-17A production was characterized by remarkably high mRNA stability for this cytokine. A distinct subpopulation of CD4 + effector memory T (T EM ) cells that secrete IL-17A, but not IFN-γ, was responsible for early IL-17A production. We found mouse "T EM -17" cells to be enriched within the intestinal epithelium and among lamina propria lymphocytes. Furthermore, interfering with IL-17A receptor signaling in human PBMCs attenuated the expression of numerous inflammatory mediators implicated in the TSS-associated cytokine storm. IL-17A receptor blockade also abrogated the secondary effect of SAg-stimulated PBMCs on human dermal fibroblasts as judged by C/EBP δ expression. Finally, the early IL-17A response to SAgs was pathogenic because in vivo neutralization of IL-17A in humanized mice ameliorated hepatic and intestinal damage and reduced mortality. Together, our findings identify CD4 + T EM cells as a key effector of TSS and reveal a novel role for IL-17A in TSS immunopathogenesis. Our work thus elucidates a pathogenic, as opposed to protective, role for IL-17A during Gram-positive bacterial infections. Accordingly, the IL-17-IL-17R axis may provide an attractive target for the management of SAg-mediated illnesses. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. Progression of Human Renal Cell Carcinoma via Inhibition of RhoA-ROCK Axis by PARG1.

    PubMed

    Miyazaki, Junichiro; Ito, Keiichi; Fujita, Tomonobu; Matsuzaki, Yuriko; Asano, Takako; Hayakawa, Masamichi; Asano, Tomohiko; Kawakami, Yutaka

    2017-04-01

    Renal cell carcinoma (RCC) is the most lethal urological malignancy with high risk of recurrence; thus, new prognostic biomarkers are needed. In this study, a new RCC antigen, PTPL1 associated RhoGAP1 (PARG1), was identified by using serological identification of recombinant cDNA expression cloning with sera from RCC patients. PARG1 protein was found to be differentially expressed in RCC cells among patients. High PARG1 expression is significantly correlated with various clinicopathological factors relating to cancer cell proliferation and invasion, including G3 percentage (P = .0046), Ki-67 score (p expression is also correlated with high recurrence of N0M0 patients (P = .0084) and poor prognosis in RCC patients (P = .0345). Multivariate analysis has revealed that high PARG1 expression is an independent factor for recurrence (P = .0149) of N0M0 RCC patients. In in vitro studies, depletion of PARG1by siRNA in human RCC cell lines inhibited their proliferation through inducing G1 cell cycle arrest via upregulation of p53 and subsequent p21 Cip1/Waf1 , which are mediated by increased RhoA-ROCK activities. Similarly, PARG1 depletion cells inhibited invasion ability via increasing RhoA-ROCK activities in the RCC cell lines. Conversely, overexpression of PARG1 on human embryonic kidney cell line HEK293T promotes its cell proliferation and invasion. These results indicate that PARG1 plays crucial roles in progression of human RCC in increasing cell proliferation and invasion ability via inhibition of the RhoA-ROCK axis, and PARG1 is a poor prognostic marker, particularly for high recurrence of N0M0 RCC patients. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells.

    PubMed

    Luz-Crawford, Patricia; Kurte, Monica; Bravo-Alegría, Javiera; Contreras, Rafael; Nova-Lamperti, Estefania; Tejedor, Gautier; Noël, Danièle; Jorgensen, Christian; Figueroa, Fernando; Djouad, Farida; Carrión, Flavio

    2013-06-04

    Mesenchymal stem cells (MSCs) are adult, multipotent, stem cells with immunomodulatory properties. The mechanisms involved in the capacity of MSCs to inhibit the proliferation of proinflammatory T lymphocytes, which appear responsible for causing autoimmune disease, have yet to be fully elucidated. One of the underlying mechanisms studied recently is the ability of MSCs to generate T regulatory (Treg) cells in vitro and in vivo from activated peripheral blood mononuclear cells (PBMC), T-CD4+ and also T-CD8(+) cells. In the present work we investigated the capacity of MSCs to generate Treg cells using T-CD4(+) cells induced to differentiate toward the proinflammatory Th1 and Th17 lineages. MSCs were obtained from mouse bone marrow and characterized according to their surface antigen expression and their multilineage differentiation potential. CD4(+) T cells isolated from mouse spleens were induced to differentiate into Th1 or Th17 cells and co-cultured with MSCs added at day 0, 2 or 4 of the differentiation processes. After six days, CD25, Foxp3, IL-17 and IFN-γ expression was assessed by flow cytometry and helios and neuropilin 1 mRNA levels were assessed by RT-qPCR. For the functional assays, the 'conditioned' subpopulation generated in the presence of MSCs was cultured with concanavalin A-activated CD4(+) T cells labeled with carboxyfluorescein succinimidyl ester. Finally, we used the encephalomyelitis autoimmune diseases (EAE) mouse model, in which mice were injected with MSCs at day 18 and 30 after immunization. At day 50, the mice were euthanized and draining lymph nodes were extracted for Th1, Th17 and Treg detection by flow cytometry. MSCs were able to suppress the proliferation, activation and differentiation of CD4(+) T cells induced to differentiate into Th1 and Th17 cells. This substantial suppressive effect was associated with an increase of the percentage of functional induced CD4(+)CD25(+)Foxp3(+) regulatory T cells and IL-10 secretion. However

  9. Tyrphostin AG17 inhibits adipocyte differentiation in vivo and in vitro.

    PubMed

    Camacho, Alberto; Segoviano-Ramírez, Juan Carlos; Sánchez-Garcia, Adriana; de Jesus Herrera-de la Rosa, Jose; García-Juarez, Jaime; Hernandez-Puente, Carlos Alberto; Calvo-Anguiano, Geovana; Maltos-Uro, Sergio Rodolfo; Olguin, Alejandra; Gojon-Romanillos, Gabriel; Gojon-Zorrilla, Gabriel; Ortiz-Lopez, Rocio

    2018-05-29

    Excessive subcutaneous adiposity in obesity is associated to positive white adipocyte tissue (WAT) differentiation (adipogenesis) and WAT expandability. Here, we hypothesized that supplementation with the insulin inhibitor and mitochondrial uncoupler, Tyrphostin (T-AG17), in vitro and in vivo inhibits adipogenesis and adipocyte hypertrophy. We used a 3T3-L1 proadipocyte cell line to identify the potential effect of T-AG17 on adipocyte differentiation and fat accumulation in vitro. We evaluated the safety of T-AG17 and its effects on physiological and molecular metabolic parameters including hormonal profile, glucose levels, adipogenesis and adipocyte hypertrophy in a diet-induced obesity model using C57BL/6 mice. We found that T-AG17 is effective in preventing adipogenesis and lipid synthesis in the 3T3-L1 cell line, as evidenced by a significant decrease in oil red staining (p < 0.05). In obese C57BL/6 mice, oral administration of T-AG17 (0.175 mg/kg for 2 weeks) lead to decreased fat accumulation and WAT hypertrophy. Further, T-AG17 induced adipocyte apoptosis by activating caspase-3. In the hepatocytes of obese mice, T-AG17 promoted an increase in the size of lipid inclusions, which was accompanied by glycogen accumulation. T-AG17 did not alter serum biochemistry, including glucose, insulin, leptin, free fatty acids, creatinine, and aspartate aminotransferase. T-AG17 promotes adipocyte apoptosis in vivo and is an effective modulator of adipocyte differentiation and WAT hypertrophy in vitro and in vivo. Therefore, T-AG17 may be useful as a pharmacological obesity treatment.

  10. CCL20, (gamma)(delta) T cells, and IL-22 in corneal epithelial healing

    USDA-ARS?s Scientific Manuscript database

    After corneal epithelial abrasion, leukocytes and platelets rapidly enter the corneal stroma, and CCR6 (+) IL-17(+) gamma delta T cells migrate into the epithelium. Gamma delta T-cell-deficient (TCRd(-/-)) mice have significantly reduced inflammation and epithelial wound healing. Epithelial CCL20 mR...

  11. Regulated Localization Is Sufficient for Hormonal Control of Regulator of G Protein Signaling Homology Rho Guanine Nucleotide Exchange Factors (RH-RhoGEFs)*

    PubMed Central

    Carter, Angela M.; Gutowski, Stephen; Sternweis, Paul C.

    2014-01-01

    The regulator of G protein signaling homology (RH) Rho guanine nucleotide exchange factors (RhoGEFs) (p115RhoGEF, leukemia-associated RhoGEF, and PDZ-RhoGEF) contain an RH domain and are specific GEFs for the monomeric GTPase RhoA. The RH domains interact specifically with the α subunits of G12 heterotrimeric GTPases. Activated Gα13 modestly stimulates the exchange activity of both p115RhoGEF and leukemia-associated RhoGEF but not PDZ-RhoGEF. Because all three RH-RhoGEFs can localize to the plasma membrane upon expression of activated Gα13, cellular localization of these RhoGEFs has been proposed as a mechanism for controlling their activity. We use a small molecule-regulated heterodimerization system to rapidly control the localization of RH-RhoGEFs. Acute localization of the proteins to the plasma membrane activates RhoA within minutes and to levels that are comparable with activation of RhoA by hormonal stimulation of G protein-coupled receptors. The catalytic activity of membrane-localized RhoGEFs is not dependent on activated Gα13. We further show that the conserved RH domains can rewire two different RacGEFs to activate Rac1 in response to a traditional activator of RhoA. Thus, RH domains act as independent detectors for activated Gα13 and are sufficient to modulate the activity of RhoGEFs by hormones via mediating their localization to substrate, membrane-associated RhoA. PMID:24855647

  12. Intracranial delivery of Interleukin-17A via adeno-associated virus fails to induce physical and learning disabilities and neuroinflammation in mice but improves glucose metabolism through AKT signaling pathway

    PubMed Central

    Yang, Junling; Kou, Jinghong; Lim, Jeong-Eun; Lalonde, Robert; Fukuchi, Ken-ichiro

    2015-01-01

    Interleukin-17A (IL-17A) is generally considered as one of the pathogenic factors involved in multiple sclerosis (MS). Indirect evidence for this is that IL-17A-producing T helper 17 (Th17) cells preferentially accumulate in lesions of MS and experimental autoimmune encephalomyelitis (EAE). However, a direct involvement of IL-17A in MS pathogenesis is still an open question. In this study, we overexpressed IL-17A in the brains of mice (IL-17A-in-Brain mice) via recombinant adeno-associated virus serotype 5 (rAAV5)-mediated gene delivery. In spite of high levels of IL-17A expression in the brain and blood, IL-17A-in-Brain mice exhibit no inflammatory responses and no abnormalities in motor coordination and spatial orientation. Unexpectedly, IL-17A-in-Brain mice show decreases in body weight and adipose tissue mass and an improvement in glucose tolerance and insulin sensitivity. IL-17A enhances glucose uptake in PC12 cells by activation of AKT. Our results provide direct evidence for the first time that IL-17A overexpression in the central nervous system does not cause physical and learning disabilities and neuroinflammation and suggest that IL-17A may regulate glucose metabolism through the AKT signaling pathway. PMID:26562537

  13. Polysaccharides from the Chinese medicinal herb Achyranthes bidentata enhance anti-malarial immunity during Plasmodium yoelii 17XL infection in mice.

    PubMed

    Zhu, Xiaotong; Pan, Yanyan; Zheng, Li; Cui, Liwang; Cao, Yaming

    2012-02-20

    Clinical immunity to malaria in human populations is developed after repeated exposure to malaria. Regulation and balance of host immune responses may lead to optimal immunity against malaria parasite infection. Polysaccharides (ABPS) derived from the Chinese herb ox knee Achyranthes bidentata possess immuno-modulatory functions. The aim of this study is to use the rodent malaria model Plasmodium yoelii 17XL (P. y17XL) to examine whether pretreatment with ABPS will modulate host immunity against malaria infection and improve the outcome of the disease. To determine whether ABPS could modulate immunity against malaria, mice were pretreated with ABPS prior to blood-stage infection by P. y17XL. Host survival and parasitaemia were monitored daily. The effect of pretreatment on host immune responses was studied through the quantitation of cytokines, dendritic cell populations, and natural regulatory T cells (Treg). Pretreatment with ABPS prior to infection significantly extended the survival time of mice after P. y17XL infection. At three and five days post-infection, ABPS pretreated mice developed stronger Th1 immune responses against malaria infection with the number of F4/80+CD36+ macrophages and levels of IFN-γ, TNF-α and nitric oxide being significantly higher than in the control group. More importantly, ABPS-treated mice developed more myeloid (CD11c+CD11b+) and plasmacytoid dendritic cells (CD11c+CD45R+/B220+) than control mice. ABPS pretreatment also resulted in modulated expression of MHC-II, CD86, and especially Toll-like receptor 9 by CD11c+ dendritic cells. In comparison, pretreatment with ABPS did not alter the number of natural Treg or the production of the anti-inflammatory cytokine IL-10. Pretreatment with the immuno-modulatory ABPS selectively enhanced Th1 immune responses to control the proliferation of malaria parasites, and prolonged the survival of mice during subsequent malaria infection.

  14. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine

    PubMed Central

    Wheeler, David S.; Underhill, Suzanne M.; Stolz, Donna B.; Murdoch, Geoffrey H.; Thiels, Edda; Romero, Guillermo; Amara, Susan G.

    2015-01-01

    Acute amphetamine (AMPH) exposure elevates extracellular dopamine through a variety of mechanisms that include inhibition of dopamine reuptake, depletion of vesicular stores, and facilitation of dopamine efflux across the plasma membrane. Recent work has shown that the DAT substrate AMPH, unlike cocaine and other nontransported blockers, can also stimulate endocytosis of the plasma membrane dopamine transporter (DAT). Here, we show that when AMPH enters the cytoplasm it rapidly stimulates DAT internalization through a dynamin-dependent, clathrin-independent process. This effect, which can be observed in transfected cells, cultured dopamine neurons, and midbrain slices, is mediated by activation of the small GTPase RhoA. Inhibition of RhoA activity with C3 exotoxin or a dominant-negative RhoA blocks AMPH-induced DAT internalization. These actions depend on AMPH entry into the cell and are blocked by the DAT inhibitor cocaine. AMPH also stimulates cAMP accumulation and PKA-dependent inactivation of RhoA, thus providing a mechanism whereby PKA- and RhoA-dependent signaling pathways can interact to regulate the timing and robustness of AMPH’s effects on DAT internalization. Consistent with this model, the activation of D1/D5 receptors that couple to PKA in dopamine neurons antagonizes RhoA activation, DAT internalization, and hyperlocomotion observed in mice after AMPH treatment. These observations support the existence of an unanticipated intracellular target that mediates the effects of AMPH on RhoA and cAMP signaling and suggest new pathways to target to disrupt AMPH action. PMID:26553986

  15. Pituitary-adrenal responses to oxotremorine and acute stress in male and female M1 muscarinic receptor knockout mice: comparisons to M2 muscarinic receptor knockout mice.

    PubMed

    Rhodes, M E; Rubin, R T; McKlveen, J M; Karwoski, T E; Fulton, B A; Czambel, R K

    2008-05-01

    Both within the brain and in the periphery, M(1) muscarinic receptors function primarily as postsynaptic receptors and M(2) muscarinic receptors function primarily as presynaptic autoreceptors. In addition to classical parasympathetic effectors, cholinergic stimulation of central muscarinic receptors influences the release of adrenocorticotrophic hormone (ACTH) and corticosterone. We previously reported that oxotremorine administration to male and female M(2) receptor knockout and wild-type mice increased ACTH to a significantly greater degree in knockout males compared to all other groups, and that M(2) knockout mice of both sexes were significantly more responsive to the mild stress of saline injection than were wild-type mice. These results accord with the primary function of M(2) receptors as presynaptic autoreceptors. In the present study, we explored the role of the M(1) receptor in pituitary-adrenal responses to oxotremorine and saline in male and female M(1) knockout and wild-type mice. Because these mice responded differently to the mild stress of saline injection than did the M(2) knockout and wild-type mice, we also determined hormone responses to restraint stress in both M(1) and M(2) knockout and wild-type mice. Male and female M(1) knockout and wild-type mice were equally unresponsive to the stress of saline injection. Oxotremorine increased both ACTH and corticosterone in M(1) wild-type mice to a significantly greater degree than in knockout mice. In both M(1) knockout and wild-type animals, ACTH responses were greater in males compared to females, and corticosterone responses were greater in females compared to males. Hormone responses to restraint stress were increased in M(2) knockout mice and decreased in M(1) knockout mice compared to their wild-type counterparts. These findings suggest that M(1) and M(2) muscarinic receptor subtypes differentially influence male and female pituitary-adrenal responses to cholinergic stimulation and stress. The

  16. Partial reconstitution of the CD4+-T-cell compartment in CD4 gene knockout mice restores responses to tuberculosis DNA vaccines.

    PubMed

    D'Souza, Sushila; Romano, Marta; Korf, Johanna; Wang, Xiao-Ming; Adnet, Pierre-Yves; Huygen, Kris

    2006-05-01

    Reactivation tuberculosis (TB) is a serious problem in immunocompromised individuals, especially those with human immunodeficiency virus (HIV) coinfection. The adaptive immune response mediated by CD4+ and CD8+ T cells is known to confer protection against TB. Hence, vaccines against TB are designed to activate these two components of the immune system. Anti-TB DNA vaccines encoding the immunodominant proteins Ag85A, Ag85B, and PstS-3 from Mycobacterium tuberculosis are ineffective in mice lacking CD4+ T cells (CD4-/- mice). In this study, we demonstrate that reconstitution of the T-cell compartment in CD4-/- mice restores vaccine-specific antibody and gamma interferon (IFN-gamma) responses to these DNA vaccines. The magnitude of the immune responses correlated with the extent of reconstitution of the CD4+-T-cell compartment. Reconstituted mice vaccinated with DNA encoding PstS-3, known to encode a dominant D(b)-restricted CD8+-T-cell epitope, displayed CD8+-T-cell responses not observed in CD4-/- mice. M. tuberculosis challenge in reconstituted mice led to the extravasation of IFN-gamma-producing CD4+ and CD8+ T cells into lungs, the primary site of bacterial replication. Importantly, a reconstitution of 12 to 15% of the CD4+-T-cell compartment resulted in Ag85B plasmid DNA-mediated protection against a challenge M. tuberculosis infection. Our findings provide evidence that anti-TB DNA vaccines could be effective in immunodeficient individuals after CD4+-T-lymphocyte reconstitution, as may occur following antiretroviral therapy in HIV+ patients.

  17. Role of Rho kinase isoforms in murine allergic airway responses.

    PubMed

    Zhu, M; Liu, P-Y; Kasahara, D I; Williams, A S; Verbout, N G; Halayko, A J; Fedulov, A; Shoji, T; Williams, E S; Noma, K; Shore, S A; Liao, J K

    2011-10-01

    Inhibition of Rho-associated coiled-coil forming kinases (ROCKs) reduces allergic airway responses in mice. The purpose of this study was to determine the roles of the two ROCK isoforms, ROCK1 and ROCK2, in these responses. Wildtype (WT) mice and heterozygous ROCK1 and ROCK2 knockout mice (ROCK1(+/-) and ROCK2(+/-), respectively) were sensitised and challenged with ovalbumin. ROCK expression and activation were assessed by western blotting. Airway responsiveness was measured by forced oscillation. Bronchoalveolar lavage was performed and the lungs were fixed for histological assessment. Compared with WT mice, ROCK1 and ROCK2 expression were 50% lower in lungs of ROCK1(+/-) and ROCK2(+/-) mice, respectively, without changes in the other isoform. In WT lungs, ROCK activation increased after ovalbumin challenge and was sustained for several hours. This activation was reduced in ROCK1(+/-) and ROCK2(+/-) lungs. Airway responsiveness was comparable in WT, ROCK1(+/-), and ROCK2(+/-) mice challenged with PBS. Ovalbumin challenge caused airway hyperresponsiveness in WT, but not ROCK1(+/-) or ROCK2(+/-) mice. Lavage eosinophils and goblet cell hyperplasia were significantly reduced in ovalbumin-challenged ROCK1(+/-) and ROCK2(+/-) versus WT mice. Ovalbumin-induced changes in lavage interleukin-13, interleukin-5 and lymphocytes were also reduced in ROCK1(+/-) mice. In conclusion, both ROCK1 and ROCK2 are important in regulating allergic airway responses.

  18. The enhanced susceptibility of ADAM-17 hypomorphic mice to DSS-induced colitis is not ameliorated by loss of RIPK3, revealing an unexpected function of ADAM-17 in necroptosis

    PubMed Central

    Luzius, Anne; Saggau, Carina; Ruder, Barbara; Bolik, Julia; Schmidt-Arras, Dirk; Linkermann, Andreas; Becker, Christoph; Rosenstiel, Philip; Rose-John, Stefan; Adam, Dieter

    2018-01-01

    The disintegrin metalloprotease ADAM17 has a critical role in intestinal inflammation and regeneration in mice, as illustrated by the dramatically increased susceptibility of ADAM17 hypomorphic (ADAM17ex/ex) mice to dextran sulfate sodium (DSS)-induced colitis. Similarly, necroptosis has been implicated in inflammatory responses in the intestine. In this study, we have investigated the contribution of necroptosis to ADAM17-regulated intestinal inflammation in vivo by crossing ADAM17ex/ex mice with mice that lack the necroptotic core protein RIPK3. Despite the loss of RIPK3, ADAM17ex/ex/RIPK3−/− mice showed the same increased susceptibility as ADAM17ex/ex mice in both acute and chronic models of DSS-induced colitis. Mice of both genotypes revealed comparable results with regard to weight loss, disease activity index and colitis-associated changes of inner organs. Histopathological analyses confirmed similar tissue destruction, loss of barrier integrity, immune cell infiltration, and cell death; serum analyses revealed similar levels of the pro-inflammatory cytokine KC. Resolving these unexpected findings, ADAM17ex/ex mice did not show phosphorylation of RIPK3 and its necroptotic interaction partner MLKL during DSS-induced colitis, although both proteins were clearly expressed. Consistent with these findings, murine embryonic fibroblasts derived from ADAM17ex/ex mice were protected from tumor necrosis factor (TNF)-induced necroptosis and failed to show phosphorylation of MLKL and RIPK3 after induction of necroptosis by TNF, revealing a novel, undescribed role of the protease ADAM17 in necroptosis. PMID:29560122

  19. The enhanced susceptibility of ADAM-17 hypomorphic mice to DSS-induced colitis is not ameliorated by loss of RIPK3, revealing an unexpected function of ADAM-17 in necroptosis.

    PubMed

    Fuchslocher Chico, Johaiber; Falk-Paulsen, Maren; Luzius, Anne; Saggau, Carina; Ruder, Barbara; Bolik, Julia; Schmidt-Arras, Dirk; Linkermann, Andreas; Becker, Christoph; Rosenstiel, Philip; Rose-John, Stefan; Adam, Dieter

    2018-02-27

    The disintegrin metalloprotease ADAM17 has a critical role in intestinal inflammation and regeneration in mice, as illustrated by the dramatically increased susceptibility of ADAM17 hypomorphic (ADAM17 ex/ex ) mice to dextran sulfate sodium (DSS)-induced colitis. Similarly, necroptosis has been implicated in inflammatory responses in the intestine. In this study, we have investigated the contribution of necroptosis to ADAM17-regulated intestinal inflammation in vivo by crossing ADAM17 ex/ex mice with mice that lack the necroptotic core protein RIPK3. Despite the loss of RIPK3, ADAM17 ex/ex /RIPK3 -/- mice showed the same increased susceptibility as ADAM17 ex/ex mice in both acute and chronic models of DSS-induced colitis. Mice of both genotypes revealed comparable results with regard to weight loss, disease activity index and colitis-associated changes of inner organs. Histopathological analyses confirmed similar tissue destruction, loss of barrier integrity, immune cell infiltration, and cell death; serum analyses revealed similar levels of the pro-inflammatory cytokine KC. Resolving these unexpected findings, ADAM17 ex/ex mice did not show phosphorylation of RIPK3 and its necroptotic interaction partner MLKL during DSS-induced colitis, although both proteins were clearly expressed. Consistent with these findings, murine embryonic fibroblasts derived from ADAM17 ex/ex mice were protected from tumor necrosis factor (TNF)-induced necroptosis and failed to show phosphorylation of MLKL and RIPK3 after induction of necroptosis by TNF, revealing a novel, undescribed role of the protease ADAM17 in necroptosis.

  20. The atypical chemokine receptor ACKR2 drives pulmonary fibrosis by tuning influx of CCR2+ and CCR5+ IFNγ-producing γδT cells in mice.

    PubMed

    Russo, Remo Castro; Savino, Benedetta; Mirolo, Massimiliano; Buracchi, Chiara; Germano, Giovanni; Anselmo, Achille; Zammataro, Luca; Pasqualini, Fabio; Mantovani, Alberto; Locati, Massimo; Teixeira, Mauro M

    2018-02-22

    Chemokines coordinate lung inflammation and fibrosis by acting on chemokine receptors expressed on leukocytes and other cell types. Atypical chemokine receptors (ACKRs) bind, internalize and degrade chemokines, tuning homeostasis and immune responses. ACKR2 recognizes and decreases levels of inflammatory CC chemokines. The role of ACKR2 in fibrogenesis is unknown. Investigate the role of ACKR2 in the context of pulmonary fibrosis. The effects of ACKR2 expression and deficiency during inflammation and fibrosis were analyzed using a bleomycin-model of fibrosis, ACKR2-deficient mice, bone marrow chimeras and antibody-mediated leukocyte depletion. ACKR2 was up-regulated acutely in response to bleomycin and normalized over time. ACKR2-/- mice showed reduced lethality and lung fibrosis. Bone marrow chimeras showed that lethality and fibrosis depended on ACKR2 expression in pulmonary resident (non-hematopoietic) cells but not on leukocytes. ACKR2-/- mice exhibited decreased expression of tissue remodeling genes, reduced leukocyte influx, pulmonary injury, and dysfunction. ACKR2-/- mice had early-increased levels of CCL5, CCL12, CCL17 and IFNγ, and increased number of CCR2+ and CCR5+ IFNγ-producing γδT cells in the airways counterbalanced by low Th17 lymphocyte influx. There was reduced accumulation of IFNγ-producing γδT cells in CCR2-/- and CCR5-/- mice. Moreover, depletion of γδT cells worsened the clinical symptoms induced by bleomycin and reversed the phenotype of ACKR2-/- mice exposed to bleomycin. ACKR2 controls the CC chemokine expression that drives the influx of CCR2+ and CCR5+ IFNγ-producing γδT cells tuning the Th17 response that mediate pulmonary fibrosis triggered by bleomycin instillation.

  1. Assessment of local pulse wave velocity distribution in mice using k-t BLAST PC-CMR with semi-automatic area segmentation.

    PubMed

    Herold, Volker; Herz, Stefan; Winter, Patrick; Gutjahr, Fabian Tobias; Andelovic, Kristina; Bauer, Wolfgang Rudolf; Jakob, Peter Michael

    2017-10-16

    Local aortic pulse wave velocity (PWV) is a measure for vascular stiffness and has a predictive value for cardiovascular events. Ultra high field CMR scanners allow the quantification of local PWV in mice, however these systems are yet unable to monitor the distribution of local elasticities. In the present study we provide a new accelerated method to quantify local aortic PWV in mice with phase-contrast cardiovascular magnetic resonance imaging (PC-CMR) at 17.6 T. Based on a k-t BLAST (Broad-use Linear Acquisition Speed-up Technique) undersampling scheme, total measurement time could be reduced by a factor of 6. The fast data acquisition enables to quantify the local PWV at several locations along the aortic blood vessel based on the evaluation of local temporal changes in blood flow and vessel cross sectional area. To speed up post processing and to eliminate operator bias, we introduce a new semi-automatic segmentation algorithm to quantify cross-sectional areas of the aortic vessel. The new methods were applied in 10 eight-month-old mice (4 C57BL/6J-mice and 6 ApoE (-/-) -mice) at 12 adjacent locations along the abdominal aorta. Accelerated data acquisition and semi-automatic post-processing delivered reliable measures for the local PWV, similiar to those obtained with full data sampling and manual segmentation. No statistically significant differences of the mean values could be detected for the different measurement approaches. Mean PWV values were elevated for the ApoE (-/-) -group compared to the C57BL/6J-group (3.5 ± 0.7 m/s vs. 2.2 ± 0.4 m/s, p < 0.01). A more heterogeneous PWV-distribution in the ApoE (-/-) -animals could be observed compared to the C57BL/6J-mice, representing the local character of lesion development in atherosclerosis. In the present work, we showed that k-t BLAST PC-MRI enables the measurement of the local PWV distribution in the mouse aorta. The semi-automatic segmentation method based on PC-CMR data allowed rapid determination of

  2. Modulation of prepulse inhibition through both M1 and M4 muscarinic receptors in mice

    PubMed Central

    Thomsen, Morgane; Wess, Jürgen; Fulton, Brian S.; Fink-Jensen, Anders; Caine, S. Barak

    2014-01-01

    Rationale Muscarinic cholinergic M1 and M4 receptors may participate in schizophrenia's etiology, and have been proposed as targets for antipsychotic medications. Objective Here we investigated the involvement of these receptors in behavioral measures pertinent to schizophrenia using knockout mice lacking M1 receptors (M1−/−), M4 receptors (M4−/−) or both (M1−/−M4−/−). Methods We measured prepulse inhibition of startle (PPI) without drugs, and after treatment with scopolamine (0.32–1.8 mg/kg), xanomeline (3.2 mg/kg) oxotremorine (0.032–0.1 mg/kg), clozapine (1.0–5.6 mg/kg), or haloperidol (0.32–3.2 mg/kg). Results In female (but not male) mice, combined deletion of both M1 and M4 receptors decreased PPI relative to wild-type mice, while knockout of either receptor alone had no significant effect. Scopolamine disrupted PPI in wild-type and M4−/− mice, but not in female M1−/−M4−/− or female M1−/− mice. When administered before scopolamine, xanomeline restored PPI in wild-type mice and M1−/− mice, but not in M4−/− mice. In contrast, pretreatment with oxotremorine increased PPI regardless of genotype. Effects of clozapine and haloperidol on PPI were not hindered by either mutation. Conclusions Deletion of both M1 and M4 receptors can disrupt PPI, suggesting that (at least partially redundant) M1 and M4 receptor-dependent functions are involved in sensorimotor gating mechanisms. PPI-disrupting effects of muscarinic antagonists appeared dependent upon M1 receptor blockade. Our data also suggest that xanomeline exerts antipsychotic-like effects mainly through M4 receptor stimulation, while stimulation of non-M1/M4 subtypes may also have antipsychotic potential. Finally, our results do not support a role of M1/M4 receptors in mediating antipsychotic-like effects of clozapine. PMID:20013114

  3. T Cell CX3CR1 Mediates Excess Atherosclerotic Inflammation in Renal Impairment

    PubMed Central

    Dong, Lei; Nordlohne, Johannes; Ge, Shuwang; Hertel, Barbara; Melk, Anette; Rong, Song; Haller, Hermann

    2016-01-01

    Reduced kidney function increases the risk for atherosclerosis and cardiovascular death. Leukocytes in the arterial wall contribute to atherosclerotic plaque formation. We investigated the role of fractalkine receptor CX3CR1 in atherosclerotic inflammation in renal impairment. Apoe−/− (apolipoprotein E) CX3CR1−/− mice with renal impairment were protected from increased aortic atherosclerotic lesion size and macrophage accumulation. Deficiency of CX3CR1 in bone marrow, only, attenuated atherosclerosis in renal impairment in an independent atherosclerosis model of LDL receptor–deficient (LDLr−/−) mice as well. Analysis of inflammatory leukocytes in atherosclerotic mixed bone-marrow chimeric mice (50% wild-type/50% CX3CR1−/− bone marrow into LDLr−/− mice) showed that CX3CR1 cell intrinsically promoted aortic T cell accumulation much more than CD11b+CD11c+ myeloid cell accumulation and increased IL-17-producing T cell counts. In vitro, fewer TH17 cells were obtained from CX3CR1−/− splenocytes than from wild-type splenocytes after polarization with IL-6, IL-23, and TGFβ. Polarization of TH17 or TREG cells, or stimulation of splenocytes with TGFβ alone, increased T cell CX3CR1 reporter gene expression. Furthermore, TGFβ induced CX3CR1 mRNA expression in wild-type cells in a dose- and time-dependent manner. In atherosclerotic LDLr−/− mice, CX3CR1+/− T cells upregulated CX3CR1 and IL-17A production in renal impairment, whereas CX3CR1−/− T cells did not. Transfer of CX3CR1+/− but not Il17a−/− T cells into LDLr−/−CX3CR1−/− mice increased aortic lesion size and aortic CD11b+CD11c+ myeloid cell accumulation in renal impairment. In summary, T cell CX3CR1 expression can be induced by TGFβ and is instrumental in enhanced atherosclerosis in renal impairment. PMID:26449606

  4. Dynamic Viral Dissemination in Mice Infected with Yellow Fever Virus Strain 17D

    PubMed Central

    Erickson, Andrea K.

    2013-01-01

    Arboviruses such as yellow fever virus (YFV) are transmitted between arthropod vectors and vertebrate hosts. While barriers limiting arbovirus population diversity have been observed in mosquitoes, whether barriers exist in vertebrate hosts is unclear. To investigate whether arboviruses encounter bottlenecks during dissemination in the vertebrate host, we infected immunocompetent mice and immune-deficient mice lacking alpha/beta interferon (IFN-α/β) receptors (IFNAR−/− mice) with a pool of genetically marked viruses to evaluate dissemination and host barriers. We used the live attenuated vaccine strain YFV-17D, which contains many mutations compared with virulent YFV. We found that intramuscularly injected immunocompetent mice did not develop disease and that viral dissemination was restricted. Conversely, 32% of intramuscularly injected IFNAR−/− mice developed disease. By following the genetically marked viruses over time, we found broad dissemination in IFNAR−/− mice followed by clearance. The patterns of viral dissemination were similar in mice that developed disease and mice that did not develop disease. Unlike our previous results with poliovirus, these results suggest that YFV-17D encounters no major barriers during dissemination within a vertebrate host in the absence of the type I IFN response. PMID:24027319

  5. 46 CFR 34.17-1 - Application-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Application-T/ALL. 34.17-1 Section 34.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-1 Application—T/ALL. (a) Where a fixed foam extinguishing system is...

  6. 46 CFR 34.17-1 - Application-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Application-T/ALL. 34.17-1 Section 34.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-1 Application—T/ALL. (a) Where a fixed foam extinguishing system is...

  7. Mammalian target of rapamycin (mTOR)/nitric oxide system possibly modulate antidepressant-like effect of 17α-ethinyl estradiol in ovariectomized mice.

    PubMed

    Saeedi Saravi, Seyed Soheil; Arefidoust, Alireza; Saeedi Saravi, Seyed Sobhan; Yaftian, Rahele; Bayati, Mahdi; Salehi, Milad; Dehpour, Ahmad Reza

    2017-05-01

    Due to a close association between depressive disorders and altered estrogen levels, this study was conducted to examine the hypothesis that antidepressant-like effect of ethinyl estradiol (EE 2) in ovariectomized mice is modulated by mammalian target of rapamycin (mTOR)/nitric oxide pathways. Female mice were undergone bilateral ovariectomy and different doses of EE 2 were intraperitoenally injected alone and combined with specific mTOR inhibitor, rapamycin, non-specific NOS inhibitor, L-NAME, nNOS inhibitor, 7-NI, NO precursor, l-arginine, and selective PDE5I, sildenafil. After locomotion assessment, immobility times were recorded in FST and TST. Moreover, hippocampal mTOR expression was assessed using western blot assay. The hippocampal concentrations of nitrite, a major metabolite of NO, were measured. Although EE 2 demonstrated a significant antidepressant-like activity in OVX mice, acute rapamycin exerted an unmarked decrease of the anti-immobility effect of EE 2 in FST and TST (P>0.05). In contrast, combination of minimal effective dose of EE 2 with sub- effective doses of either L-NAME (10mg/kg) or 7-NI (25mg/kg) resulted in a robust antidepressant-like effect in OVX mice. Administration of either L-NAME or 7-NI enhanced the decreased antidepressant activity of EE 2 induced by combination with rapamycin. Moreover, decrement of hippocampal mTOR expression in OVX mice was significantly enhanced by acute EE 2 . The increased hippocampal nitrite concentrations caused by ovariectomy were also reversed by EE 2 administration. The study demonstrated that acute treatment with lowest dose of EE 2 exerts significant antidepressant-like behavior in OVX mice, possibly, through mTOR activation. This effect seems to be also mediated by the suppression of nitric oxide pathway. Copyright © 2017. Published by Elsevier Masson SAS.

  8. 46 CFR 34.17-15 - Piping-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Piping-T/ALL. 34.17-15 Section 34.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-15 Piping—T/ALL. (a) All piping, valves, and fittings shall meet the applicable...

  9. Expression of the T Helper 17-Associated Cytokines IL-17A and IL-17F in Asthma and COPD

    PubMed Central

    Doe, Camille; Bafadhel, Mona; Siddiqui, Salman; Desai, Dhananjay; Mistry, Vijay; Rugman, Paul; McCormick, Margaret; Woods, Joanne; May, Richard; Sleeman, Matthew A.; Anderson, Ian K.

    2010-01-01

    Background: Asthma and COPD are characterized by airway dysfunction and inflammation. Neutrophilic airway inflammation is a common feature of COPD and is recognized in asthma, particularly in severe disease. The T helper (Th) 17 cytokines IL-17A and IL-17F have been implicated in the development of neutrophilic airway inflammation, but their expression in asthma and COPD is uncertain. Methods: We assessed IL-17A and IL-17F expression in the bronchial submucosa from 30 subjects with asthma, 10 ex-smokers with mild to moderate COPD, and 27 nonsmoking and 14 smoking control subjects. Sputum IL-17 concentration was measured in 165 subjects with asthma and 27 with COPD. Results: The median (interquartile range) IL-17A cells/mm2 submucosa was increased in mild to moderate asthma (2.1 [2.4]) compared with healthy control subjects (0.4 [2.8]) but not in severe asthma (P = .04). In COPD, IL-17A+ cells/mm2 submucosa were increased (0.5 [3.7]) compared with nonsmoking control subjects (0 [0]) but not compared with smoking control subjects (P = .046). IL-17F+ cells/mm2 submucosa were increased in severe asthma (2.7 [3.6]) and mild to moderate asthma (1.6 [1.0]) compared with healthy controls subjects (0.7 [1.4]) (P = .001) but was not increased in subjects with COPD. IL-17A and IL-17F were not associated with increased neutrophilic inflammation, but IL-17F was correlated with the submucosal eosinophil count (rs = 0.5, P = .005). The sputum IL-17 concentration in COPD was increased compared with asthma (2 [0-7] pg/mL vs 0 [0-2] pg/mL, P < .0001) and was correlated with post-bronchodilator FEV1% predicted (r = −0.5, P = .008) and FEV1/FVC (r = −0.4, P = .04). Conclusions: Our findings support a potential role for the Th17 cytokines IL-17A and IL-17F in asthma and COPD, but do not demonstrate a relationship with neutrophilic inflammation. PMID:20538817

  10. Expression of gamma-aminobutyric acid rho 1 and rho 1 Delta 450 as gene fusions with the green fluorescent protein.

    PubMed

    Martinez-Torres, A; Miledi, R

    2001-02-13

    The functional characteristics and cellular localization of the gamma aminobutyric acid (GABA) rho 1 receptor and its nonfunctional isoform rho 1 Delta 450 were investigated by expressing them as gene fusions with the enhanced version of the green fluorescent protein (GFP). Oocytes injected with rho 1-GFP had receptors that gated chloride channels when activated by GABA. The functional characteristics of these receptors were the same as for those of wild-type rho 1 receptors. Fluorescence, because of the chimeric receptors expressed, was over the whole oocyte but was more intense near the cell surface and more abundant in the animal hemisphere. Similar to the wild type, rho 1 Delta 450-GFP did not lead to the expression of functional GABA receptors, and injected oocytes failed to generate currents even after exposure to high concentrations of GABA. Nonetheless, the fluorescence displayed by oocytes expressing rho 1 Delta 450-GFP was distributed similarly to that of rho 1-GFP. Mammalian cells transfected with the rho 1-GFP or rho 1 Delta 450-GFP constructs showed mostly intracellularly distributed fluorescence in confocal microscope images. A sparse localization of fluorescence was observed in the plasma membrane regardless of the cell line used. We conclude that rho 1 Delta 450 is expressed and transported close to, and perhaps incorporated into, the plasma membrane. Thus, rho 1- and rho 1 Delta 450-GFP fusions provide a powerful tool to visualize the traffic of GABA type C receptors.

  11. Effects of dietary glutamine on the homeostasis of CD4+ T cells in mice with dextran sulfate sodium-induced acute colitis.

    PubMed

    Hsiung, Yuan-Chin; Liu, Jun-Jen; Hou, Yu-Chen; Yeh, Chiu-Li; Yeh, Sung-Ling

    2014-01-01

    This study investigated the effects of dietary glutamine (Gln) on T-helper (Th) and T regulatory (Treg) cell homeostasis and colonic inflammatory mediator expression in mice with dextran sulfate sodium (DSS)-induced colitis. Mice were randomly assigned to 4 groups with 2 normal control (C and G) and 2 DSS-treated groups (DC and DG). The C and DC groups were fed a common semipurified diet, while the G and DG groups received an identical diet except that part of the casein was replaced by Gln, which provided 25% of the total amino acid nitrogen. Mice were fed the diets for 10 days. On day 6, mice in the normal control groups were given distilled water, while those in the DSS groups were given distilled water containing 1.5% DSS for 5 d. At the end of the experiment, the mice were sacrificed for further examination. Results showed that DC group had higher plasma haptoglobin, colonic weight, immunoglobulin G, inflammatory cytokine and nuclear factor (NF)-κB protein levels. Gln administration lowered inflammatory mediators and NF-κB/IκBα ratio in colitis. Compared with the DC group, the percentages of interleukin-17F and interferon-γ in blood and transcription factors, T-bet and RAR-related orphan receptor-γt, gene expressions in mesenteric lymph nodes were lower, whereas blood Foxp3 was higher in the DG group. Also, DG group had lower colon injury score. These results suggest that Gln administration suppressed Th1/Th17 and Th-associated cytokine expressions and upregulated the expression of Tregs, which may modulate the balance of Th/Treg and reduce inflammatory reactions in DSS-induced colitis.

  12. Molecular characterization of a novel RhoGAP, RRC-1 of the nematode Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delawary, Mina; Nakazawa, Takanobu; Tezuka, Tohru

    2007-06-01

    The GTPase-activating proteins for Rho family GTPases (RhoGAP) transduce diverse intracellular signals by negatively regulating Rho family GTPase-mediated pathways. In this study, we have cloned and characterized a novel RhoGAP for Rac1 and Cdc42, termed RRC-1, from Caenorhabditis elegans. RRC-1 was highly homologous to mammalian p250GAP and promoted GTP hydrolysis of Rac1 and Cdc42 in cells. The rrc-1 mRNA was expressed in all life stages. Using an RRC-1::GFP fusion protein, we found that RRC-1 was localized to the coelomocytes, excretory cell, GLR cells, and uterine-seam cell in adult worms. These data contribute toward understanding the roles of Rho family GTPasesmore » in C. elegans.« less

  13. EspO1-2 Regulates EspM2-Mediated RhoA Activity to Stabilize Formation of Focal Adhesions in Enterohemorrhagic Escherichia coli-Infected Host Cells

    PubMed Central

    Iyoda, Sunao; Izumiya, Hidemasa; Watanabe, Haruo; Ohnishi, Makoto; Terajima, Jun

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) Sakai strain encodes two homologous type III effectors, EspO1-1 and EspO1-2. These EspO1s have amino acid sequence homology with Shigella OspE, which targets integrin-linked kinase to stabilize formation of focal adhesions (FAs). Like OspE, EspO1-1 was localized to FAs in EHEC-infected cells, but EspO1-2 was localized in the cytoplasm. An EHEC ΔespO1-1ΔespO1-2 double mutant induced cell rounding and FA loss in most of infected cells, but neither the ΔespO1-1 nor ΔespO1-2 single mutant did. These results suggested that EspO1-2 functioned in the cytoplasm by a different mechanism from EspO1-1 and OspE. Since several type III effectors modulate Rho GTPase, which contributes to FA formation, we investigated whether EspO1-2 modulates the function of these type III effectors. We identified a direct interaction between EspO1-2 and EspM2, which acts as a RhoA guanine nucleotide exchange factor. Upon ectopic co-expression, EspO1-2 co-localized with EspM2 in the cytoplasm and suppressed EspM2-mediated stress fiber formation. Consistent with these findings, an ΔespO1-1ΔespO1-2ΔespM2 triple mutant did not induce cell rounding in epithelial cells. These results indicated that EspO1-2 interacted with EspM2 to regulate EspM2-mediated RhoA activity and stabilize FA formation during EHEC infection. PMID:23409096

  14. Leptin deficiency impairs maturation of dendritic cells and enhances induction of regulatory T and Th17 cells

    PubMed Central

    Moraes-Vieira, Pedro M.M.; Larocca, Rafael A.; Bassi, Enio J.; Peron, Jean Pierre S.; Andrade-Oliveira, Vinícius; Wasinski, Frederick; Araujo, Ronaldo; Thornley, Thomas; Quintana, Francisco J.; Basso, Alexandre S.; Strom, Terry B.; Câmara, Niels O.S.

    2016-01-01

    Leptin is an adipose-secreted hormone that plays an important role in both metabolism and immunity. Leptin has been shown to induce Th1-cell polarization and inhibit Th2-cell responses. Additionally, leptin induces Th17-cell responses, inhibits regulatory T (Treg) cells and modulates autoimmune diseases. Here, we investigated whether leptin mediates its activity on T cells by influencing dendritic cells (DCs) to promote Th17 and Treg-cell immune responses in mice. We observed that leptin deficiency (i) reduced the expression of DC maturation markers, (ii) decreased DC production of IL-12, TNF-α, and IL-6, (iii) increased DC production of TGF-β, and (iv) limited the capacity of DCs to induce syngeneic CD4+ T-cell proliferation. As a consequence of this unique phenotype, DCs generated under leptin-free conditions induced Treg or TH17 cells more efficiently than DCs generated in the presence of leptin. These data indicate important roles for leptin in DC homeostasis and the initiation and maintenance of inflammatory and regulatory immune responses by DCs. PMID:24271843

  15. Modulation of elevated plus maze behavior after chronic exposure to the anabolic steroid 17alpha-methyltestosterone in adult mice.

    PubMed

    Rojas-Ortiz, Yoel Antonio; Rundle-González, Valerie; Rivera-Ramos, Isamar; Jorge, Juan Carlos

    2006-01-01

    Exposure to supraphysiological doses of androgens may disrupt affective components of behavior. In this study, behavior of adult C57Bl/6 male mice was studied after exposure to the anabolic androgenic steroid (AAS) 17alpha-methyltestosterone (17alpha-meT; 7.5 mg/kg) via a subcutaneous osmotic pump for 17 days. Controls received vehicle implants (0.9% NaCl + 30% cyclodextrine). On day 15, experimental animals were challenged with an ethanol (EtOH) injection (i.p.; 1 g/kg) while controls received saline injections. Five minutes after the injection, animals were tested in an automated elevated plus maze (EPM) or in automated activity chambers. In addition, injection-free animals were tested for ethanol consumption on day 16 after an overnight water deprivation period. Whereas chronic exposure to 17alpha-meT did not modulate open arm behavior, EtOH-exposed animals made more entries into the open arms than controls (P < 0.05). A significant reduction of risk assessment behaviors (rearing, flat approach behavior, and stretch attended posture) over the EPM was noted for EtOH-exposed animals whereas a reduction in stretch attended postures was observed among 17alpha-meT-exposed animals. Locomotor activity, and light-dark transitions in activity chambers remained unaltered. Exposure to AAS did not modulate EtOH consumption. Our data suggest that exposure to a supraphysiological dose of 17alpha-meT has minimal effects on exploratory-based anxiety.

  16. A Salmonella typhimurium-translocated Glycerophospholipid:Cholesterol Acyltransferase Promotes Virulence by Binding to the RhoA Protein Switch Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaRock, Doris L.; Brzovic, Peter S.; Levin, Itay

    Salmonella enterica serovar typhimurium translocates a glycerophospholipid: cholesterol acyltransferase (SseJ) into the host cytosol after its entry into mammalian cells. SseJ is recruited to the cytoplasmic face of the host cell phagosome membrane where it is activated upon binding the small GTPase, RhoA. SseJ is regulated similarly to cognate eukaryotic effectors, as only the GTP-bound form of RhoA family members stimulates enzymatic activity. Using NMR and biochemistry, this work demonstrates that SseJ competes effectively with Rhotekin, ROCK, and PKN1 in binding to a similar RhoA surface. The RhoA surface that binds SseJ includes the regulatory switch regions that control activationmore » of mammalian effectors. These data were used to create RhoA mutants with altered SseJ binding and activation. This structure-function analysis supports a model in which SseJ activation occurs predominantly through binding to residues within switch region II. We further defined the nature of the interaction between SseJ and RhoA by constructing SseJ mutants in the RhoA binding surface. These data indicate that SseJ binding to RhoA is required for recruitment of SseJ to the endosomal network and for full Salmonella virulence for inbred susceptible mice, indicating that regulation of SseJ by small GTPases is an important virulence strategy of this bacterial pathogen. The dependence of a bacterial effector on regulation by a mammalian GTPase defines further how intimately host pathogen interactions have coevolved through similar and divergent evolutionary strategies.« less

  17. Inorganic arsenic represses interleukin-17A expression in human activated Th17 lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morzadec, Claudie; Macoch, Mélinda; Robineau, Marc

    2012-08-01

    Trivalent inorganic arsenic [As(III)] is an efficient anticancer agent used to treat patients suffering from acute promyelocytic leukemia. Recently, experimental studies have clearly demonstrated that this metalloid can also cure lymphoproliferative and/or pro-inflammatory syndromes in different murine models of chronic immune-mediated diseases. T helper (Th) 1 and Th17 lymphocytes play a central role in development of these diseases, in mice and humans, especially by secreting the potent pro-inflammatory cytokine interferon-γ and IL-17A, respectively. As(III) impairs basic functions of human T cells but its ability to modulate secretion of pro-inflammatory cytokines by differentiated Th lymphocytes is unknown. In the present study,more » we demonstrate that As(III), used at concentrations clinically achievable in plasma of patients, has no effect on the secretion of interferon-γ from Th1 cells but almost totally blocks the expression and the release of IL-17A from human Th17 lymphocytes co-stimulated for five days with anti-CD3 and anti-CD28 antibodies, in the presence of differentiating cytokines. In addition, As(III) specifically reduces mRNA levels of the retinoic-related orphan receptor (ROR)C gene which encodes RORγt, a key transcription factor controlling optimal IL-17 expression in fully differentiated Th17 cells. The metalloid also blocks initial expression of IL-17 gene induced by the co-stimulation, probably in part by impairing activation of the JNK/c-Jun pathway. In conclusion, our results demonstrate that As(III) represses expression of the major pro-inflammatory cytokine IL-17A produced by human Th17 lymphocytes, thus strengthening the idea that As(III) may be useful to treat inflammatory immune-mediated diseases in humans. -- Highlights: ► Arsenic inhibits secretion of IL-17A from human naïve and memory Th17 lymphocytes. ► Arsenic represses early expression of IL-17A gene in human activated T lymphocytes. ► Arsenic interferes with

  18. Trans fatty acids exacerbate dextran sodium sulphate-induced colitis by promoting the up-regulation of macrophage-derived proinflammatory cytokines involved in T helper 17 cell polarization.

    PubMed

    Okada, Y; Tsuzuki, Y; Sato, H; Narimatsu, K; Hokari, R; Kurihara, C; Watanabe, C; Tomita, K; Komoto, S; Kawaguchi, A; Nagao, S; Miura, S

    2013-12-01

    Numerous reports have shown that a diet containing large amounts of trans fatty acids (TFAs) is a major risk factor for metabolic disorders. Although recent studies have shown that TFAs promote intestinal inflammation, the underlying mechanisms are unknown. In this study, we examined the effects of dietary fat containing TFAs on dextran sodium sulphate (DSS)-induced colitis. C57 BL/6 mice were fed a diet containing 1·3% TFAs (mainly C16:1, C18:1, C18:2, C20:1, C20:2 and C22:1), and then colitis was induced with 1·5% DSS. Colonic damage was assessed, and the mRNA levels of proinflammatory cytokines and major regulators of T cell differentiation were measured. The TFA diet reduced survival and exacerbated histological damage in mice administered DSS compared with those fed a TFA-free diet. The TFA diet significantly elevated interleukin (IL)-6, IL-12p40, IL-23p19 and retinoic acid-related orphan receptor (ROR)γt mRNA levels in the colons of DSS-treated animals. Moreover, IL-17A mRNA levels were elevated significantly by the TFA diet, with or without DSS treatment. We also examined the expression of proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and peritoneal macrophages. These cells were exposed to TFAs (linoelaidic acid or elaidic acid) with or without LPS and the mRNA levels of various cytokines were measured. IL-23p19 mRNA levels were increased significantly by TFAs in the absence of LPS. Cytokine expression was also higher in LPS-stimulated cells exposed to TFAs than in unexposed LPS-stimulated cells. Collectively, our results suggest that TFAs exacerbate colonic inflammation by promoting Th17 polarization and by up-regulating the expression of proinflammatory cytokines in the inflamed colonic mucosa. © 2013 British Society for Immunology.

  19. Rho-associated coiled-coil containing kinases (ROCK)

    PubMed Central

    Julian, Linda; Olson, Michael F

    2014-01-01

    Rho-associated coiled-coil containing kinases (ROCK) were originally identified as effectors of the RhoA small GTPase.1–5 They belong to the AGC family of serine/threonine kinases6 and play vital roles in facilitating actomyosin cytoskeleton contractility downstream of RhoA and RhoC activation. Since their discovery, ROCK kinases have been extensively studied, unveiling their manifold functions in processes including cell contraction, migration, apoptosis, survival, and proliferation. Two mammalian ROCK homologs have been identified, ROCK1 (also called ROCK I, ROKβ, Rho-kinase β, or p160ROCK) and ROCK2 (also known as ROCK II, ROKα, or Rho kinase), hereafter collectively referred to as ROCK. In this review, we will focus on the structure, regulation, and functions of ROCK. PMID:25010901

  20. Arthritis is inhibited in Borrelia-primed and infected interleukin-17A-deficient mice after administration of anti-gamma-interferon, anti-tumor necrosis factor alpha and anti-interleukin-6 antibodies.

    PubMed

    Kuo, Joseph; Warner, Thomas F; Schell, Ronald F

    2017-08-31

    The role that cytokines play in the induction of Lyme arthritis is gradually being delineated. We showed previously that severe arthritis developed in a T-cell-driven murine model, even in mice lacking interleukin-17A (IL-17A) and administered anti-gamma-interferon (IFN-γ) antibody. Increased levels of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), two pro-inflammatory cytokines, were detected in cultures of popliteal lymph node cells obtained from these mice. We hypothesized that concomitantly administered anti-IL-6, anti-TNF-α and anti-IFN-γ antibodies would inhibit the development of arthritis in IL-17A-deficient mice. Our results showed that swelling of the hind paws and histopathological changes consistent with arthritis were significantly reduced in IL-17A-deficient mice that administered the three anti-cytokine antibodies. These results suggest that treatment with multiple anti-cytokine antibodies can abrogate the induction of Lyme arthritis in mice. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Anti-IL17 treatment ameliorates Down syndrome phenotypes in mice.

    PubMed

    Rueda, Noemí; Vidal, Verónica; García-Cerro, Susana; Narcís, Josep Oriol; Llorens-Martín, María; Corrales, Andrea; Lantigua, Sara; Iglesias, Marcos; Merino, Jesús; Merino, Ramón; Martínez-Cué, Carmen

    2018-05-16

    Down syndrome (DS) is characterized by structural and functional anomalies that are present prenatally and that lead to intellectual disabilities. Later in life, the cognitive abilities of DS individuals progressively deteriorate due to the development of Alzheimer's disease (AD)-associated neuropathology (i.e., β-amyloid (Aβ) plaques, neurofibrillary tangles (NFTs), neurodegeneration, synaptic pathology, neuroinflammation and increased oxidative stress). Increasing evidence has shown that among these pathological processes, neuroinflammation plays a predominant role in AD etiopathology. In AD mouse models, increased neuroinflammation appears earlier than Aβ plaques and NFTs, and in DS and AD models, neuroinflammation exacerbates the levels of soluble and insoluble Aβ species, favoring neurodegeneration. The Ts65Dn (TS) mouse, the most commonly used murine model of DS, recapitulates many alterations present in both DS and AD individuals, including enhanced neuroinflammation. In this study, we observed an altered neuroinflammatory milieu in the hippocampus of the TS mouse model. Pro-inflammatory mediators that were elevated in the hippocampus of this model included pro-inflammatory cytokine IL17A, which has a fundamental role in mediating brain damage in neuroinflammatory processes. Here, we analyzed the ability of an anti-IL17A antibody to reduce the neuropathological alterations that are present in TS mice during early neurodevelopmental stages (i.e., hippocampal neurogenesis and hypocellularity) or that are aggravated in later-life stages (i.e., cognitive abilities, cholinergic neuronal loss and increased cellular senescence, APP expression, Aβ peptide expression and neuroinflammation). Administration of anti-IL17 for 5 months, starting at the age of 7 months, partially improved the cognitive abilities of the TS mice, reduced the expression of several pro-inflammatory cytokines and the density of activated microglia and normalized the APP and Aβ 1

  2. Expression loss and revivification of RhoB gene in ovary carcinoma carcinogenesis and development.

    PubMed

    Liu, Yingwei; Song, Na; Ren, Kexing; Meng, Shenglan; Xie, Yao; Long, Qida; Chen, Xiancheng; Zhao, Xia

    2013-01-01

    RhoB, a member of small GTPases belonging to the Ras protein superfamily, might have a suppressive activity in cancer progression. Here, expression of RhoB gene was evaluated in human benign, borderline and malignant ovary tumors by immunostaining, with normal ovary tissue as control. Malignant tumors were assessed according to Federation Internationale de Gynecologie Obstetrique (FIGO) guidelines and classified in stage I-IV. Revivification of RhoB gene was investigated by analyzing the effect of histone deacetylase (HDAC) inhibitor trichostatin (TSA) and methyltransferase inhibitor 5-azacytidine (5-Aza) on ovarian cancer cells via RT-PCR and western blot. Apoptosis of ovary cancer cells was detected using flowcytometry and fluorescence microscopy. Subsequently, RhoB expression is detected in normal ovary epithelium, borderline tumors, and decreases significantly or lost in the majority of ovarian cancer specimen (P<0.05). RhoB expression decreases significantly from stage II (71.4%) to stage III (43.5%) to stage IV (18.2%, P<0.05). TSA can both significantly revive the RhoB gene and mediate apoptosis of ovarian cancer cells, but 5-Aza couldn't. Interference into Revivification of RhoB gene results in reduction of ovary carcinoma cell apoptosis. It is proposed that loss of RhoB expression occurs frequently in ovary carcinogenesis and progression and its expression could be regulated by histone deacetylation but not by promoter hypermethylation, which may serve as a prospective gene treatment target for the patients with ovarian malignancy not responding to standard therapies.

  3. Identification of a Novel, Putative Rho-specific GDP/GTP Exchange Factor and a RhoA-binding Protein: Control of Neuronal Morphology

    PubMed Central

    Gebbink, Martijn F.B.G.; Kranenburg, Onno; Poland, Mieke; van Horck, Francis P.G.; Houssa, Brahim; Moolenaar, Wouter H.

    1997-01-01

    The small GTP-binding protein Rho has been implicated in the control of neuronal morphology. In N1E-115 neuronal cells, the Rho-inactivating C3 toxin stimulates neurite outgrowth and prevents actomyosin-based neurite retraction and cell rounding induced by lysophosphatidic acid (LPA), sphingosine-1-phosphate, or thrombin acting on their cognate G protein–coupled receptors. We have identified a novel putative GDP/GTP exchange factor, RhoGEF (190 kD), that interacts with both wild-type and activated RhoA, but not with Rac or Cdc42. RhoGEF, like activated RhoA, mimics receptor stimulation in inducing cell rounding and in preventing neurite outgrowth. Furthermore, we have identified a 116-kD protein, p116Rip, that interacts with both the GDP- and GTP-bound forms of RhoA in N1E-115 cells. Overexpression of p116Rip stimulates cell flattening and neurite outgrowth in a similar way to dominant-negative RhoA and C3 toxin. Cells overexpressing p116Rip fail to change their shape in response to LPA, as is observed after Rho inactivation. Our results indicate that (a) RhoGEF may link G protein–coupled receptors to RhoA activation and ensuing neurite retraction and cell rounding; and (b) p116Rip inhibits RhoA-stimulated contractility and promotes neurite outgrowth. PMID:9199174

  4. Intravaginal Chlamydia trachomatis Challenge Infection Elicits TH1 and TH17 Immune Responses in Mice That Promote Pathogen Clearance and Genital Tract Damage

    PubMed Central

    Quispe Calla, Nirk E.; Pavelko, Stephen D.; Cherpes, Thomas L.

    2016-01-01

    While ascension of Chlamydia trachomatis into the upper genital tract of women can cause pelvic inflammatory disease and Fallopian tube damage, most infections elicit no symptoms or overt upper genital tract pathology. Consistent with this asymptomatic clinical presentation, genital C. trachomatis infection of women generates robust TH2 immunity. As an animal model that modeled this response would be invaluable for delineating bacterial pathogenesis and human host defenses, herein we explored if pathogen-specific TH2 immunity is similarly elicited by intravaginal (ivag) infection of mice with oculogenital C. trachomatis serovars. Analogous to clinical infection, ascension of primary C. trachomatis infection into the mouse upper genital tract produced no obvious tissue damage. Clearance of ivag challenge infection was mediated by interferon (IFN)-γ-producing CD4+ T cells, while IFN-γ signaling blockade concomitant with a single ivag challenge promoted tissue damage by enhancing Chlamydia-specific TH17 immunity. Likewise, IFN-γ and IL-17 signaling blockade or CD4+ T cell depletion eliminated the genital pathology produced in untreated controls by multiple ivag challenge infections. Conversely, we were unable to detect formation of pathogen-specific TH2 immunity in C. trachomatis-infected mice. Together, our work revealed C. trachomatis infection of mice generates TH1 and TH17 immune responses that promote pathogen clearance and immunopathological tissue damage. Absence of Chlamydia-specific TH2 immunity in these mice newly highlights the need to identify experimental models of C. trachomatis genital infection that more closely recapitulate the human host response. PMID:27606424

  5. IL-17+ γδ T cells as kick-starters of inflammation.

    PubMed

    Papotto, Pedro H; Ribot, Julie C; Silva-Santos, Bruno

    2017-05-18

    Shortly after the discovery of interleukin 17 (IL-17)-producing CD4 + helper T cells (T H 17 cells), it was found that γδ T cells can also secrete large amounts of this pro-inflammatory cytokine. A decade later, it is now known that IL-17 + γδ T cells (γδ17 T cells) are often the main providers of IL-17A in various models of inflammatory diseases, while they also contribute to protective immune responses to infectious organisms. Due to an intricate thymic program of differentiation, γδ17 T cells are able to respond faster than T H 17 cells do and thus predominate in the early stages of inflammatory responses. Here we review the current knowledge of the development, activation and pathophysiological functions of γδ17 T cells, aiming to increase the awareness in the community of the therapeutic potential of this 'other side' of IL-17-mediated immune responses.

  6. Extremely low frequency electromagnetic fields promote mesenchymal stem cell migration by increasing intracellular Ca2+ and activating the FAK/Rho GTPases signaling pathways in vitro.

    PubMed

    Zhang, Yingchi; Yan, Jiyuan; Xu, Haoran; Yang, Yong; Li, Wenkai; Wu, Hua; Liu, Chaoxu

    2018-05-21

    The ability of mesenchymal stem cells (MSCs) to migrate to the desired tissues or lesions is crucial for stem cell-based regenerative medicine and tissue engineering. Optimal therapeutics for promoting MSC migration are expected to become an effective means for tissue regeneration. Electromagnetic fields (EMF), as a noninvasive therapy, can cause a lot of biological changes in MSCs. However, whether EMF can promote MSC migration has not yet been reported. We evaluated the effects of EMF on cell migration in human bone marrow-derived MSCs. With the use of Helmholtz coils and an EMF stimulator, 7.5, 15, 30, 50, and 70 Hz/1 mT EMF was generated. Additionally, we employed the L-type calcium channel blocker verapamil and the focal adhesion kinase (FAK) inhibitor PF-573228 to investigate the role of intracellular calcium content, cell adhesion proteins, and the Rho GTPase protein family (RhoA, Rac1, and Cdc42) in EMF-mediated MSC migration. Cell adhesion proteins (FAK, talin, and vinculin) were detected by Western blot analysis. The Rho GTPase protein family activities were assessed by G-LISA, and F-actin levels, which reflect actin cytoskeletal organization, were detected using immunofluorescence. All the 7.5, 15, 30, 50, and 70 Hz/1 mT EMF promoted MSC migration. EMF increased MSC migration in an intracellular calcium-dependent manner. Notably, EMF-enhanced migration was mediated by FAK activation, which was critical for the formation of focal contacts, as evidenced by increased talin and vinculin expression. Moreover, RhoA, Rac1, and Cdc42 were activated by FAK to increase cytoskeletal organization, thus promoting cell contraction. EMF promoted MSC migration by increasing intracellular calcium and activating the FAK/Rho GTPase signaling pathways. This study provides insights into the mechanisms of MSC migration and will enable the rational design of targeted therapies to improve MSC engraftment.

  7. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Hsieh-Hsun; Chang, Chi-Sen; Division of Gastroenterology, Taichung Veterans General Hospital, Taichung 402, Taiwan

    2013-01-01

    Our previous study demonstrated the therapeutic potential of gallic acid (GA) for controlling tumor metastasis through its inhibitory effect on the motility of AGS cells. A noteworthy finding in our previous experiment was increased RhoB expression in GA-treated cells. The aim of this study was to evaluate the role of RhoB expression on the inhibitory effects of GA on AGS cells. By applying the transfection of RhoB siRNA into AGS cells and an animal model, we tested the effect of GA on inhibition of tumor growth and RhoB expression. The results confirmed that RhoB-siRNA transfection induced GA to inhibit AGSmore » cells’ invasive growth involving blocking the AKT/small GTPase signals pathway and inhibition of NF-κB activity. Finally, we evaluated the effect of GA on AGS cell metastasis by colonization of tumor cells in nude mice. It showed GA inhibited tumor cells growth via the expression of RhoB. These data support the inhibitory effect of GA which was shown to inhibit gastric cancer cell metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Thus, GA might be a potential agent in treating gastric cancer. Highlights: ► GA could downregulate AKT signal via increased expression of RhoB. ► GA inhibits metastasis in vitro in gastric carcinoma. ► GA inhibits tumor growth in nude mice model.« less

  8. Small-molecule RORγt antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms.

    PubMed

    Xiao, Sheng; Yosef, Nir; Yang, Jianfei; Wang, Yonghui; Zhou, Ling; Zhu, Chen; Wu, Chuan; Baloglu, Erkan; Schmidt, Darby; Ramesh, Radha; Lobera, Mercedes; Sundrud, Mark S; Tsai, Pei-Yun; Xiang, Zhijun; Wang, Jinsong; Xu, Yan; Lin, Xichen; Kretschmer, Karsten; Rahl, Peter B; Young, Richard A; Zhong, Zhong; Hafler, David A; Regev, Aviv; Ghosh, Shomir; Marson, Alexander; Kuchroo, Vijay K

    2014-04-17

    We identified three retinoid-related orphan receptor gamma t (RORγt)-specific inhibitors that suppress T helper 17 (Th17) cell responses, including Th17-cell-mediated autoimmune disease. We systemically characterized RORγt binding in the presence and absence of drugs with corresponding whole-genome transcriptome sequencing. RORγt acts as a direct activator of Th17 cell signature genes and a direct repressor of signature genes from other T cell lineages; its strongest transcriptional effects are on cis-regulatory sites containing the RORα binding motif. RORγt is central in a densely interconnected regulatory network that shapes the balance of T cell differentiation. Here, the three inhibitors modulated the RORγt-dependent transcriptional network to varying extents and through distinct mechanisms. Whereas one inhibitor displaced RORγt from its target loci, the other two inhibitors affected transcription predominantly without removing DNA binding. Our work illustrates the power of a system-scale analysis of transcriptional regulation to characterize potential therapeutic compounds that inhibit pathogenic Th17 cells and suppress autoimmunity. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Natural killer T cell facilitated engraftment of rat skin but not islet xenografts in mice.

    PubMed

    Gordon, Ethel J; Kelkar, Vinaya

    2009-01-01

    We have studied cellular components required for xenograft survival mediated by anti-CD154 monoclonal antibody (mAb) and a transfusion of donor spleen cells and found that the elimination of CD4(+) but not CD8(+) cells significantly improves graft survival. A contribution of other cellular components, such as natural killer (NK) cells and natural killer T (NKT) cells, for costimulation blockade-induced xenograft survival has not been clearly defined. We therefore tested the hypothesis that NK or NKT cells would promote rat islet and skin xenograft acceptance in mice. Lewis rat islets or skin was transplanted into wild type B6 mice or into B6 mice that were Jalpha18(null), CD1(null), or beta2 microglobulin (beta2M)(null) NK 1.1 depleted, or perforin(null). Graft recipients were pretreated with an infusion of donor derived spleen cells and a brief course of anti-CD154 mAb treatments. Additional groups received mAb or cells only. We first observed that the depletion of NK1.1 cells does not significantly interfere with graft survival in C57BL/6 (B6) mice. We used NKT cell deficient B6 mice to test the hypothesis that NKT cells are involved in islet and skin xenograft survival in our model. These mice bear a null mutation in the gene for the Jalpha18 component of the T-cell receptor. The component is uniquely associated with NKT cells. We found no difference in islet xenograft survival between Jalpha18(null) and wild type B6 mice. In contrast, median skin graft survival appeared shorter in Jalpha18(null) recipients. These data imply a role for Jalpha18(+) NKT cells in skin xenograft survival in treated mice. In order to confirm this inference, we tested skin xenograft survival in B6 CD1(null) mice because NKT cells are CD1 restricted. Results of these trials demonstrate that the absence of CD1(+) cells adversely affects rat skin graft survival. An additional assay in beta2M(null) mice demonstrated a requirement for major histocompatibility complex (MHC) class I

  10. Prevention and reversal of experimental autoimmune thyroiditis (EAT) in mice by administration of anti-L3T4 monoclonal antibody at different stages of disease development.

    PubMed

    Stull, S J; Kyriakos, M; Sharp, G C; Braley-Mullen, H

    1988-11-01

    Experimental autoimmune thyroiditis (EAT) can be induced in CBA/J mice following the transfer of spleen cells from mouse thyroglobulin (MTg)-sensitized donors that have been activated in vitro with MTg. Since L3T4+ T cells are required to transfer EAT in this model, the present study was undertaken to assess the effectiveness of the anti-L3T4 monoclonal antibody (mAb) GK1.5 in preventing or arresting the development of EAT. Spleen cells from mice given mAb GK1.5 prior to sensitization with MTg and adjuvant could not transfer EAT to normal recipients and cells from these mice did not proliferate in vitro to MTg. Donor mice given GK1.5 before immunization did not develop anti-MTg autoantibody and recipients of cells from such mice also produced little anti-MTg. GK1.5 could also prevent the proliferation and activation of sensitized effector cell precursors when added to in vitro cultures. When a single injection of mAb GK1.5 was given to recipients of in vitro-activated spleen cells, EAT was reduced whether the mAb was given prior to cell transfer or as late as 19 days after cell transfer. Whereas the incidence and severity of EAT was consistently reduced by injecting recipient mice with GK1.5, the same mice generally had no reduction in anti-MTg autoantibody. Since EAT is consistently induced in control recipients by 14-19 days after cell transfer, the ability of mAb GK1.5 to inhibit EAT when injected 14 or 19 days after cell transfer indicates that a single injection of the mAb GK1.5 can cause reversal of the histopathologic lesions of EAT in mice. These studies further establish the important role of L3T4+ T cells in the pathogenesis of EAT in mice and also suggest that therapy with an appropriate mAb may be an effective treatment for certain autoimmune diseases even when the therapy is initiated late in the course of the disease.

  11. Rho GTPases at the crossroad of signaling networks in mammals: impact of Rho-GTPases on microtubule organization and dynamics.

    PubMed

    Wojnacki, José; Quassollo, Gonzalo; Marzolo, María-Paz; Cáceres, Alfredo

    2014-01-01

    Microtubule (MT) organization and dynamics downstream of external cues is crucial for maintaining cellular architecture and the generation of cell asymmetries. In interphase cells RhoA, Rac, and Cdc42, conspicuous members of the family of small Rho GTPases, have major roles in modulating MT stability, and hence polarized cell behaviors. However, MTs are not mere targets of Rho GTPases, but also serve as signaling platforms coupling MT dynamics to Rho GTPase activation in a variety of cellular conditions. In this article, we review some of the key studies describing the reciprocal relationship between small Rho-GTPases and MTs during migration and polarization.

  12. Salt-responsive gut commensal modulates TH17 axis and disease.

    PubMed

    Wilck, Nicola; Matus, Mariana G; Kearney, Sean M; Olesen, Scott W; Forslund, Kristoffer; Bartolomaeus, Hendrik; Haase, Stefanie; Mähler, Anja; Balogh, András; Markó, Lajos; Vvedenskaya, Olga; Kleiner, Friedrich H; Tsvetkov, Dmitry; Klug, Lars; Costea, Paul I; Sunagawa, Shinichi; Maier, Lisa; Rakova, Natalia; Schatz, Valentin; Neubert, Patrick; Frätzer, Christian; Krannich, Alexander; Gollasch, Maik; Grohme, Diana A; Côrte-Real, Beatriz F; Gerlach, Roman G; Basic, Marijana; Typas, Athanasios; Wu, Chuan; Titze, Jens M; Jantsch, Jonathan; Boschmann, Michael; Dechend, Ralf; Kleinewietfeld, Markus; Kempa, Stefan; Bork, Peer; Linker, Ralf A; Alm, Eric J; Müller, Dominik N

    2017-11-30

    A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (T H 17) cells, which can also contribute to hypertension. Induction of T H 17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating T H 17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased T H 17 cells and increased blood pressure. Our results connect high salt intake to the gut-immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.

  13. Activity-dependent rapid local RhoA synthesis is required for hippocampal synaptic plasticity.

    PubMed

    Briz, Victor; Zhu, Guoqi; Wang, Yubin; Liu, Yan; Avetisyan, Mariam; Bi, Xiaoning; Baudry, Michel

    2015-02-04

    Dendritic protein synthesis and actin cytoskeleton reorganization are important events required for the consolidation of hippocampal LTP and memory. However, the temporal and spatial relationships between these two processes remain unclear. Here, we report that treatment of adult rat hippocampal slices with BDNF or with tetraethylammonium (TEA), which induces a chemical form of LTP, produces a rapid and transient increase in RhoA protein levels. Changes in RhoA were restricted to dendritic spines of CA3 and CA1 and require de novo protein synthesis regulated by mammalian target of rapamycin (mTOR). BDNF-mediated stimulation of RhoA activity, cofilin phosphorylation, and actin polymerization were completely suppressed by protein synthesis inhibitors. Furthermore, intrahippocampal injections of RhoA antisense oligodeoxynucleotides inhibited theta burst stimulation (TBS)-induced RhoA upregulation in dendritic spines and prevented LTP consolidation. Addition of calpain inhibitors after BDNF or TEA treatment maintained RhoA levels elevated and prolonged the effects of BDNF and TEA on actin polymerization. Finally, the use of isoform-selective calpain inhibitors revealed that calpain-2 was involved in RhoA synthesis, whereas calpain-1 mediated RhoA degradation. Overall, this mechanism provides a novel link between dendritic protein synthesis and reorganization of the actin cytoskeleton in hippocampal dendritic spines during LTP consolidation. Copyright © 2015 the authors 0270-6474/15/352269-14$15.00/0.

  14. 17β-Estradiol administration promotes delayed cutaneous wound healing in 40-week ovariectomised female mice.

    PubMed

    Mukai, Kanae; Nakajima, Yukari; Urai, Tamae; Komatsu, Emi; Nasruddin; Sugama, Junko; Nakatani, Toshio

    2016-10-01

    This study investigated the effect of 17β-estradiol on wound healing in 40-week ovariectomised female mice. Thirty-six-week-old female mice were divided into three groups: medication with 17β-estradiol after ovariectomy (OVX + 17β-estradiol), ovariectomy (OVX) and sham (SHAM). The mice received two full-thickness wounds, and the OVX + 17β-estradiol group was administered 17β-estradiol at 0·01 g/day until healing. In the OVX + 17β-estradiol group, the ratio of wound area was significantly smaller than those of the OVX and SHAM groups on days 1-3, 5, 6, 8-12 and 9-12, respectively, the numbers of neutrophils and macrophages were significantly smaller than those on days 3 and 7, the ratio of re-epithelialisation was significantly higher than those on days 3 and 11, the ratio of myofibroblasts was significantly higher than those on day 11 and smaller on day 14, and the ratio of collagen fibres was significantly larger than that of the OVX group on days 7-14. We found that 17β-estradiol administration promotes cutaneous wound healing in 40-week female mice by reducing wound area, shortening inflammatory response, and promoting re-epithelialisation, collagen deposition and wound contraction. Our results suggest that cutaneous wound healing that is delayed because of ageing is promoted by exogenous and continuous 17β-estradiol administration. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  15. Bone marrow transplantation alters lung antigen presenting cells to promote TH17 response and the development of pneumonitis and fibrosis following gammaherpesvirus infection

    PubMed Central

    Zhou, Xiaofeng; Loomis-King, Hillary; Gurczynski, Stephen J.; Wilke, Carol A.; Konopka, Kristine E.; Ptaschinski, Catherine; Coomes, Stephanie M; Iwakura, Yoichiro; van Dyk, Linda F.; Lukacs, Nicholas W.; Moore, Bethany B.

    2015-01-01

    Hematopoietic stem cell transplantation (HSCT) efficacy is limited by numerous pulmonary complications. We developed a model of syngeneic bone marrow transplant (BMT) followed by infection with murine gamma herpesvirus (γHV-68) that results in pneumonitis and fibrosis and mimics human “non-infectious” HSCT complications. BMT mice experience increased early lytic replication, but establish viral latency by 21 days post infection (dpi). CD4 T cells in BMT mice are skewed towards IL-17A rather than IFN-γ production. Transplantation of bone marrow from Il-17a−/− donors or treatment with anti-IL-17A neutralization antibodies at late stages attenuates pneumonitis and fibrosis in infected BMT mice, suggesting that hematopoietic-derived IL-17A is essential for development of pathology. IL-17A directly influences activation and extracellular matrix production by lung mesenchymal cells. Lung CD11c+ cells of BMT mice secrete more TGF-β1, and pro-TH17 mRNAs for IL-23 and IL-6, and less TH1-promoting cytokine mRNA for IFN-γ but slightly more IL-12 mRNA in response to viral infection. Adoptive transfer of non-BMT lung CD11c-enriched cells restores robust TH1 response and suppresses aberrant TH17 response in BMT mice to improve lung pathology. Our data suggest “non-infectious” HSCT lung complications may reflect preceding viral infections and demonstrate that IL-17A neutralization may offer therapeutic advantage even after disease onset. PMID:26376362

  16. Combined effect of IL-17 and blockade of nitric oxide biosynthesis on haematopoiesis in mice.

    PubMed

    Krstić, A; Santibanez, J F; Okić, I; Mojsilović, S; Kocić, J; Jovcić, G; Milenković, P; Bugarski, D

    2010-05-01

    The study was undertaken to extend our investigation concerning both the in vivo activity of interleukin (IL)-17 and the specific role of nitric oxide (NO) in IL-17-induced effects in the process of haematopoiesis. CBA mice were simultaneously treated with IL-17 and/or nitric oxide synthase (NOS) inhibitor, l-NAME, for 5 days and changes within various haematopoietic cell lineages in bone marrow, spleen and peripheral blood were analysed. Findings showed that administration of both IL-17 and l-NAME stimulated increase in net haematopoiesis in normal mice. IL-17-enhanced myelopoiesis was characterized by stimulation of both femoral and splenic haematopoietic progenitor cells and morphologically recognizable granulocytes. Additionally, IL-17 induced alterations in the frequency of erythroid progenitor cells in both bone marrow and spleen, accompanied with their mobilization to the peripheral blood. As a consequence of these changes in the erythroid cell compartments, significant reticulocytosis was observed, which evidenced that in IL-17-treated mice effective erythropoiesis occurred. Exposure of mice to NOS inhibitor also increased the number of both granulocyte-macrophage and erythroid progenitors in bone marrow and spleens, and these alterations were followed by the mobilization of erythroid progenitors and elevated content of reticulocytes in peripheral blood. The specific role of NO in IL-17-induced haematopoiesis was demonstrated only in the IL-17-reducing effect on bone marrow late stage erythroid progenitors, CFU-E. The results demonstrated the involvement of both IL-17 and NO in the regulation of haematopoietic cell activity in various haematopoietic compartments. They further suggest that IL-17 effects are differentially mediated depending on the haematopoietic microenvironments.

  17. Involvement of Rho kinase in the pathogenesis of acute pulmonary embolism-induced polystyrene microspheres in rats.

    PubMed

    Toba, M; Nagaoka, T; Morio, Y; Sato, K; Uchida, K; Homma, N; Takahashi, K

    2010-03-01

    Acute pulmonary embolism (PE) is a life-threatening disease, and several vasoconstrictors, including endothelin-1 (ET-1), play a key role in vasoconstriction and hypoxemia during the development of PE. Rho kinase is activated by various vasoconstrictors resulting in vascular contraction and remodeling. Recent evidence has revealed an important role of Rho kinase in the pathogenesis of systemic and pulmonary vascular diseases. However, contribution of Rho kinase in PE remains unclear. We thus investigated the role of Rho kinase in the PE rat model induced by intrajugular administration of polystyrene microspheres (mean diameter, 26 microm). At 6 h following the administration of microspheres (1.5 ml/kg), right ventricular systolic pressure (RVSP) was higher in the PE than in the control rats (15.8 +/- 1.6 vs. 32.9 +/- 7.5 mmHg). Arterial oxygen tension was lower (92.3 +/- 12.5 vs. 66.0 +/- 17.7 Torr), and alveolar-arterial difference in oxygen partial pressure was higher (3.9 +/- 3.8 vs. 36.5 +/- 26.9 Torr) in the PE rats. Western blotting analysis revealed upregulation and downregulation in expression of vascular cell adhesion molecule-1 and endothelial nitric oxide synthase in lungs from the PE rats, respectively, and radioimmunoassay demonstrated an increase in plasma ET-1 levels. Lung Rho kinase alpha expression was greater in the PE rats. At 5 h following administration of microspheres (0.75 ml/kg), intravenous Rho kinase inhibitors HA1077 and Y27632 (3 mg/kg each) attenuated elevation of RVSP (22.0 +/- 3.7, 17.1 +/- 3.2, 14.3 +/- 2.6 mmHg, PE, PE+HA1077, PE+Y27632) and the severity of hypoxemia (66.3 +/- 16.2, 94.9 +/- 23.0, 89.1 +/- 8.5 Torr, PE, PE+HA1077, PE+Y27632) in the PE rats. These results suggest that pulmonary endothelial dysfunction and activation of Rho kinase may contribute to the potentiation of vasoconstriction and hypoxemia in the PE rats.

  18. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors.

    PubMed

    Regales, Lucia; Balak, Marissa N; Gong, Yixuan; Politi, Katerina; Sawai, Ayana; Le, Carl; Koutcher, Jason A; Solit, David B; Rosen, Neal; Zakowski, Maureen F; Pao, William

    2007-08-29

    The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer. To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFR(T790M) alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFR(L858R+T790M)-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFR(T790M)-expressing animals develop tumors with longer latency than EGFR(L858R+T790M)-bearing mice and in the absence of additional kinase domain mutations. These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFR(T790M) alone or in conjunction with drug-sensitive EGFR kinase domain mutations.

  19. The effects of anti-Fas ribozyme on T lymphocyte apoptosis in mice model with chronic obstructive pulmonary disease.

    PubMed

    Zhuo, Song-Ming; Li, Si-Cong; Lin, Yong-Qun; Yu, Hai-Bin; Li, Na

    2017-10-01

    In this study, we aimed to investigate the effects of anti-Fas ribozyme on the apoptosis of T lymphocytes (T cells) in mice model with chronic obstructive pulmonary disease (COPD). Male 6-week-old C57BL/6 mice were used to establish the COPD model by exposure to cigarette smoke. The COPD mice were sacrificed for spleen dissection and T cell isolation. T cells were randomly divided into four groups (n=10 per group). Group A was used as the control. B, C, and D groups were transfected with empty lentivirus, anti-Fas ribozyme, and an anti-Fas ribozyme mutant, respectively. The expression of Fas mRNA and protein in the T cells were evaluated using qPCR and Western blot, respectively. Flow cytometry was used to evaluate the apoptosis of CD 4+ T cells and calculate the ratio of CD 4+ to CD 8+ T cells (CD 4+ /CD 8+ ). Anti-Fas ribozyme significantly inhibited the expression of Fas in the T cells of COPD mice. In addition, the number of apoptotic CD 4+ T cells and CD 4+ /CD 8+ of the C and D groups were significantly lower and higher than those of group A, respectively ( P <0.05). The apoptotic CD 4+ T cells and CD 4+ CD 8+ of the C group were significantly lower and higher than those of group D, respectively ( P <0.05). Anti-Fas ribozyme significantly inhibited the expression of Fas, increased CD 4+ /CD 8+ , and inhibited the apoptosis of T cells in COPD mice.

  20. Ginsenoside Rb1 inhibits autophagy through regulation of Rho/ROCK and PI3K/mTOR pathways in a pressure-overload heart failure rat model.

    PubMed

    Yang, Tianrui; Miao, Yunbo; Zhang, Tong; Mu, Ninghui; Ruan, Libo; Duan, Jinlan; Zhu, Ying; Zhang, Rongping

    2018-06-01

    This study was designed to explore the relationship between ginsenoside Rb1 (Grb1) and high-load heart failure (HF) in rats. The parameters of cardiac systolic function (left ventricular posterior wall thickness (LVPWT), left ventricular internal diastolic diameter (LVID), fraction shortening (FS) and mitral valves (MVs)) of rat hearts in each group were inspected by echocardiogram. The expressions of rat myocardial contractile proteins, autophagy-related proteins and the activation of Rho/ROCK and PI3K/mTOR pathways were detected by Western blot. LVPWT, FS, MVs and the expression of myocardial contractile proteins α-MHC, apoptosis-related proteins Bcl-2 and signalling pathway involved proteins pAkt and mTOR were significantly reduced in the HF, HF+5 mg/kg Grb1 (HF+Grb1-5) and HF+Grb1+arachidonic acid (AA) groups with LVID, β-MHC, cell apoptosis, cell autophagy and Rho/ROCK significantly increased compared with the control group, of which the tendency was contrary to the HF+20 mg/kg Grb1 (HF+Grb1-20) group compared with the HF group (P < 0.05). In the HF+Grb1+AA group, there was no significant change in the above indexes compared with the HF group. The results indicated that Grb1 can exert anti-HF function by inhibiting cardiomyocyte autophagy of rats through regulation of Rho/ROCK and PI3K/mTOR pathways. © 2018 Royal Pharmaceutical Society.

  1. Macrophage differentiation induced by PMA is mediated by activation of RhoA/ROCK signaling.

    PubMed

    Yang, Lifeng; Dai, Fan; Tang, Lian; Le, Yulan; Yao, Wenjuan

    2017-01-01

    In order to investigate the effects of RhoA/ROCK signaling in macrophage differentiation, we used 100 ng/mL PMA to induce macrophage differentiation from U937 cells in vitro. The observation of cell morphology and the expression of CD68 and SR-A were performed to confirm the differentiation induced by PMA. Western blot analysis showed that the expression of ROCK1 and ROCK2 and the phosphorylation of MYPT1 were significantly increased after PMA treatment. Pulldown assay showed that the activation of RhoA was obviously enhanced when U937 cells were treated with PMA. In order to further demonstrate whether RhoA/ROCK signaling could mediate the macrophage differentiation induced by PMA, we successfully suppressed the expression of RhoA, ROCK1 and ROCK2 by performing siRNA technology in U937 cells, respectively. The macrophage differentiation and the expression of CD68 and SR-A were significantly inhibited by the suppression of RhoA, ROCK1 or ROCK2 in PMA-induced U937 cells, indicating that the macrophage differentiation induced by PMA is associated with RhoA/ROCK signaling pathway. In addition, we pretreated U937 cells with Y27632 (ROCK inhibitor, 20 μM) for 30 min and then observed the macrophage differentiation induced by PMA. The result illustrated that Y27632 pretreatment obviously inhibited PMA-induced differentiation and the expression of CD68 and SR-A. In conclusion, the activation of RhoA/ROCK signaling is responsible for the macrophage differentiation induced by PMA.

  2. Effects of sodium fluoride on blood cellular and humoral immunity in mice.

    PubMed

    Guo, Hongrui; Kuang, Ping; Luo, Qin; Cui, Hengmin; Deng, Huidan; Liu, Huan; Lu, Yujiao; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Li, Yinglun; Wang, Xun; Zhao, Ling

    2017-10-17

    Exposure to high fluorine can cause toxicity in human and animals. Currently, there are no systematic studies on effects of high fluorine on blood cellular immunity and humoral immunity in mice. We evaluated the alterations of blood cellular immunity and humoral immunity in mice by using flow cytometry and ELISA. In the cellular immunity, we found that sodium fluoride (NaF) in excess of 12 mg/Kg resulted in a significant decrease in the percentages of CD3 + , CD3 + CD4 + , CD3 + CD8 + T lymphocytes in the peripheral blood. Meanwhile, serum T helper type 1 (Th1) cytokines including interleukin (IL)-2, interferon (IFN)-γ, tumor necrosis factor (TNF), and Th2 cytokines including IL-4, IL-6, IL-10, and Th17 cytokine (IL-17A) contents were decreased. In the humoral immunity, NaF reduced the peripheral blood percentages of CD19 + B lymphocytes and serum immunoglobulin A (IgA), immunoglobulin G (IgG) and immunoglobulin M (IgM). The above results show that NaF can reduce blood cellular and humoral immune function in mice, providing an excellent animal model for clinical studies on immunotoxicity-related fluorosis.

  3. Immunocytochemical evidence for PDBu-induced activation of RhoA/ROCK in human internal anal sphincter smooth muscle cells

    PubMed Central

    Singh, Jagmohan; Maxwell, Pinckney J.

    2011-01-01

    Studies were performed to determine the unknown status of PKC and RhoA/ROCK in the phorbol 12,13-dibutyrate (PDBu)-stimulated state in the human internal anal sphincter (IAS) smooth muscle cells (SMCs). We determined the effects of PDBu (10−7 M), the PKC activator, on PKCα and RhoA and ROCK II translocation in the human IAS SMCs. We used immunocytochemistry and fluorescence microcopy in the basal state, following PDBu, and before and after PKC inhibitor calphostin C (10−6 M), cell-permeable RhoA inhibitor C3 exoenzyme (2.5 μg/ml), and ROCK inhibitor Y 27632 (10−6 M). We also determined changes in the SMC lengths via computerized digital micrometry. In the basal state PKCα was distributed almost uniformly throughout the cell, whereas RhoA and ROCK II were located in the higher intensities toward the periphery. PDBu caused significant translocation of PKCα, RhoA, and ROCK II. PDBu-induced translocation of PKCα was attenuated by calphostin C and not by C3 exoenzyme and Y 27632. However, PDBu-induced translocation of RhoA was blocked by C3 exoenzyme, and that of ROCK II was attenuated by both C3 exoenzyme and Y 27632. Contraction of the human IAS SMCs caused by PDBu in parallel with RhoA/ROCK II translocation was attenuated by C3 exoenzyme and Y 27632 but not by calphostin C. In human IAS SMCs RhoA/ROCK compared with PKC are constitutively active, and contractility by PDBu is associated with RhoA/ROCK activation rather than PKC. The relative contribution of RhoA/ROCK vs. PKC in the pathophysiology and potential therapy for the IAS dysfunction remains to be determined. PMID:21566015

  4. Upregulated STAT3 and RhoA signaling in colorectal cancer (CRC) regulate the invasion and migration of CRC cells.

    PubMed

    Zhang, G-Y; Yang, W-H; Chen, Z

    2016-05-01

    We aimed to reveal the expression and activation of signal transducers and activators of transcription 3 (STAT3) and RhoA/Rho-associated coiled-coil forming kinase 1 (ROCK1) signaling in CRC tissues, and to investigate the regulatory role of STAT3 and RhoA signaling in the invasion and migration of colorectal cancer cells. We examined the expression of STAT3, RhoA and ROCK1 in CRC tissues with real-time PCR and Western blotting methods. And then we examined the interaction between STAT3 and RhoA/ROCK1 signaling in CRC HT-29 cells with gain-of-function and loss-of-function strategies. In addition, we determined the regulation by STAT3 and RhoA/ROCK1 on the invasion and migration of CRC HT-29 cells. Our study demonstrated a significant upregulation of RhoA and ROCK1 expression and STAT3-Y705 phosphorylation in 32 CRC specimens, compared to the 17 normal CRC tissues. Further study demonstrated there was a coordination between STAT3 and RhoA/Rock signaling in the HT-29 cells. Moreover, STAT3 knockdown or RhoA knockdown significantly repressed the migration and invasion in HT-29 cells and vice versa. STAT3 and RhoA signaling regulate the invasion and migration of CRC cells, implying the orchestrated and oncogenic roles of STAT3 and RhoA/ROCK1 signaling in CRC.

  5. Pivotal role of IL-6 in the hyperinflammatory responses to subacute ozone in adiponectin-deficient mice

    PubMed Central

    Kim, Hye Y.; Mathews, Joel A.; Verbout, Norah G.; Williams, Alison S.; Wurmbrand, Allison P.; Ninin, Fernanda M. C.; Neto, Felippe L.; Benedito, Leandro A. P.; Hug, Christopher; Umetsu, Dale T.; Shore, Stephanie A.

    2013-01-01

    Adiponectin is an adipose-derived hormone with anti-inflammatory activity. Following subacute ozone exposure (0.3 ppm for 24–72 h), neutrophilic inflammation and IL-6 are augmented in adiponectin-deficient (Adipo−/−) mice. The IL-17/granulocyte colony-stimulating factor (G-CSF) axis is required for this increased neutrophilia. We hypothesized that elevated IL-6 in Adipo−/− mice contributes to their augmented responses to ozone via effects on IL-17A expression. Therefore, we generated mice deficient in both adiponectin and IL-6 (Adipo−/−/IL-6−/−) and exposed them to ozone or air. In ozone-exposed mice, bronchoalveolar lavage (BAL) neutrophils, IL-6, and G-CSF, and pulmonary Il17a mRNA expression were greater in Adipo−/− vs. wild-type mice, but reduced in Adipo−/−/IL-6−/− vs. Adipo−/− mice. IL-17A+ F4/80+ cells and IL-17A+ γδ T cells were also reduced in Adipo−/−/IL-6−/− vs. Adipo−/− mice exposed to ozone. Only BAL neutrophils were reduced in IL-6−/− vs. wild-type mice. In wild-type mice, IL-6 was expressed in Gr-1+F4/80−CD11c− cells, whereas in Adipo−/− mice F4/80+CD11c+ cells also expressed IL-6, suggesting that IL-6 is regulated by adiponectin in these alveolar macrophages. Transcriptomic analysis identified serum amyloid A3 (Saa3), which promotes IL-17A expression, as the gene most differentially augmented by ozone in Adipo−/− vs. wild-type mice. After ozone, Saa3 mRNA expression was markedly greater in Adipo−/− vs. wild-type mice but reduced in Adipo−/−/IL-6−/− vs. Adipo−/− mice. In conclusion, our data support a pivotal role of IL-6 in the hyperinflammatory condition observed in Adipo−/− mice after ozone exposure and suggest that this role of IL-6 involves its ability to induce Saa3, IL-17A, and G-CSF. PMID:24381131

  6. Internal Pudental Artery Dysfunction in Diabetes Mellitus Is Mediated by NOX1-Derived ROS-, Nrf2-, and Rho Kinase-Dependent Mechanisms.

    PubMed

    Alves-Lopes, Rhéure; Neves, Karla B; Montezano, Augusto C; Harvey, Adam; Carneiro, Fernando S; Touyz, Rhian M; Tostes, Rita C

    2016-10-01

    Oxidative stress plays an important role in diabetes mellitus (DM)-associated vascular injury. DM is an important risk factor for erectile dysfunction. Functional and structural changes in internal pudendal arteries (IPA) can lead to erectile dysfunction. We hypothesized that downregulation of nuclear factor E2-related factor 2 (Nrf2), consequent to increased nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1)-derived reactive oxygen species (ROS), impairs IPA function in DM. IPA and vascular smooth muscle cells from C57BL/6 (control) and NOX1 knockout mice were used. DM was induced by streptozotocin in C57BL/6 mice. Functional properties of IPA were assessed using a myograph, protein expression and peroxiredoxin oxidation by Western blot, RNA expression by polymerase chain reaction, carbonylation by oxyblot assay, ROS generation by lucigenin, nitrotyrosine, and amplex red, and Rho kinase activity and nuclear accumulation of Nrf2 by ELISA. IPA from diabetic mice displayed increased contractions to phenylephrine (control 138.5±9.5 versus DM 191.8±15.5). ROS scavenger, Nrf2 activator, NOX1 and Rho kinase inhibitors normalized vascular function. High glucose increased ROS generation in IPA vascular smooth muscle cell. This effect was abrogated by Nrf2 activation and not observed in NOX1 knockout vascular smooth muscle cell. High glucose also increased levels of nitrotyrosine, protein oxidation/carbonylation, and Rho kinase activity, but reduced Nrf2 activity and expression of Nrf2-regulated genes (catalase [25.6±0.05%], heme oxygenase-1 [21±0.1%], and quinone oxidoreductase 1 [22±0.1%]) and hydrogen peroxide levels. These effects were not observed in vascular smooth muscle cell from NOX1 knockout mice. In these cells, high glucose increased hydrogen peroxide levels. In conclusion, Rho kinase activation, via NOX1-derived ROS and downregulation of Nrf2 system, impairs IPA function in DM. These data suggest that Nrf2 is vasoprotective in DM

  7. Expression Loss and Revivification of RhoB Gene in Ovary Carcinoma Carcinogenesis and Development

    PubMed Central

    Liu, Yingwei; Song, Na; Ren, Kexing; Meng, Shenglan; Xie, Yao; Long, Qida; Chen, Xiancheng; Zhao, Xia

    2013-01-01

    RhoB, a member of small GTPases belonging to the Ras protein superfamily, might have a suppressive activity in cancer progression. Here, expression of RhoB gene was evaluated in human benign, borderline and malignant ovary tumors by immunostaining, with normal ovary tissue as control. Malignant tumors were assessed according to Federation Internationale de Gynecologie Obstetrique (FIGO) guidelines and classified in stage I-IV. Revivification of RhoB gene was investigated by analyzing the effect of histone deacetylase (HDAC) inhibitor trichostatin (TSA) and methyltransferase inhibitor 5-azacytidine (5-Aza) on ovarian cancer cells via RT-PCR and western blot. Apoptosis of ovary cancer cells was detected using flowcytometry and fluorescence microscopy. Subsequently, RhoB expression is detected in normal ovary epithelium, borderline tumors, and decreases significantly or lost in the majority of ovarian cancer specimen (P<0.05). RhoB expression decreases significantly from stage II (71.4%) to stage III (43.5%) to stage IV (18.2%, P<0.05). TSA can both significantly revive the RhoB gene and mediate apoptosis of ovarian cancer cells, but 5-Aza couldn’t. Interference into Revivification of RhoB gene results in reduction of ovary carcinoma cell apoptosis. It is proposed that loss of RhoB expression occurs frequently in ovary carcinogenesis and progression and its expression could be regulated by histone deacetylation but not by promoter hypermethylation, which may serve as a prospective gene treatment target for the patients with ovarian malignancy not responding to standard therapies. PMID:24223801

  8. RhoA/Rho-kinase signaling: a therapeutic target in pulmonary hypertension.

    PubMed

    Barman, Scott A; Zhu, Shu; White, Richard E

    2009-01-01

    Pulmonary arterial hypertension (PAH) is a devastating disease characterized by progressive elevation of pulmonary arterial pressure and vascular resistance due to pulmonary vasoconstriction and vessel remodeling as well as inflammation. Rho-kinases (ROCKs) are one of the best-described effectors of the small G-protein RhoA, and ROCKs are involved in a variety of cellular functions including muscle cell contraction, proliferation and vascular inflammation through inhibition of myosin light chain phosphatase and activation of downstream mediators. A plethora of evidence in animal models suggests that heightened RhoA/ROCK signaling is important in the pathogenesis of pulmonary hypertension by causing enhanced constriction and remodeling of the pulmonary vasculature. Both animal and clinical studies suggest that ROCK inhibitors are effective for treatment of severe PAH with minimal risk, which supports the premise that ROCKs are important therapeutic targets in pulmonary hypertension and that ROCK inhibitors are a promising new class of drugs for this devastating disease.

  9. Alterations of idiotypic profiles: The cellular basis of T15 dominance in BALB/c mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wemhoff, G.A.; Quintans, J.

    1987-01-01

    Phosphorylcholine (PC) is a component of cell walls and membranes from a variety of widely distributed microorganisms. It is highly immunogenic in mice and most murine strains have circulating anti-PC antibodies which are known to confer protection against certain bacterial infections. BALB/c mice offer a striking example of a high responsiveness to PC, a propensity to generate PC-binding myelomas, and a great restriction of idiotype expression in anti-PC antibodies; in fact, most BALB/c anti-PC IgM antibodies express the T15 idiotype marker. Although it has been suspected that T15 dominance is somewhat related to the continuous antigenic load presented by microorganismalmore » flora found in conventional mice, a complete experimental account of how antigenic selection brings about such extreme idiotypic dominance is not yet available. In the studies presented below, we investigated the role played by the host environment, T cells, and antigen in affecting the generation of the anti-PC T15 idiotype profile in lethally irradiated adoptive hosts reconstituted with syngeneic neonatal liver cells. The results presented herein indicate that the transfer of mature carrier-primed T cells with neonatal liver cells does not influence the generation of the T15 idiotype profile. We also demonstrated that anti-T15 idiotype suppressed mice, used as lethally irradiated hosts of immature immunocompetent cells, allow an increased rate of reconstitution of the anti-PC response when compared to nonsuppressed hosts. Since the administration of a T15+ anti-PC antibody inhibits both reconstitution and idiotype expansion, we conclude that T15+ B cells do not self-promote themselves. In contrast, we observed that exposure of adoptive hosts to PC antigens can enhance the anti-PC response and alter the idiotypic profile in favor of T15-bearing clones.« less

  10. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice.

    PubMed

    Bassi, Maria R; Larsen, Mads A B; Kongsgaard, Michael; Rasmussen, Michael; Buus, Søren; Stryhn, Anette; Thomsen, Allan R; Christensen, Jan P

    2016-02-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested.

  11. The proteinase-activated receptor-2 mediates phagocytosis in a Rho-dependent manner in human keratinocytes.

    PubMed

    Scott, Glynis; Leopardi, Sonya; Parker, Lorelle; Babiarz, Laura; Seiberg, Miri; Han, Rujiing

    2003-09-01

    Recent work shows that the G-protein-coupled receptor proteinase activated receptor-2 activates signals that stimulate melanosome uptake in keratinocytes in vivo and in vitro. The Rho family of GTP-binding proteins is involved in cytoskeletal remodeling during phagocytosis. We show that proteinase-activated receptor-2 mediated phagocytosis in human keratinocytes is Rho dependent and that proteinase-activated receptor-2 signals to activate Rho. In contrast, Rho activity did not affect either proteinase-activated receptor-2 activity or mRNA and protein levels. We explored the signaling mechanisms of proteinase-activated receptor-2 mediated Rho activation in human keratinocytes and show that activation of proteinase-activated receptor-2, either through specific proteinase-activated receptor-2 activating peptides or through trypsinization, elevates cAMP in keratinocytes. Proteinase-activated receptor-2 mediated Rho activation was pertussis toxin insensitive and independent of the protein kinase A signaling pathway. These data are the first to show that proteinase-activated receptor-2 mediated phagocytosis is Rho dependent and that proteinase-activated receptor-2 signals to Rho and cAMP in keratinocytes. Because phagocytosis of melanosomes is recognized as an important mechanism for melanosome transfer to keratinocytes, these results suggest that Rho is a critical signaling intermediate in melanosome uptake in keratinocytes.

  12. MIP-2 causes differential activation of RhoA in mouse aortic versus pulmonary artery endothelial cells

    PubMed Central

    Moldobaeva, Aigul; Baek, Amy; Wagner, Elizabeth M.

    2008-01-01

    Previously, we have shown that endothelial cell chemotaxis to the proangiogenic chemokine MIP-2 (macrophage inflammatory protein-2), is much greater in mouse aortic endothelial cells (EC) than pulmonary arterial endothelial cells (PA EC). This was true despite the observation that both cell types display comparable levels of the ligand receptor, CXCR2 (8). Since the systemic arterial circulation is proangiogenic in the adult lung and the pulmonary circulation is relatively resistant to neovascularization, we questioned whether the observed functional heterogeneity is related to inherent differences in cell signaling cascades of the two EC subtypes. Specifically, we measured activation of Rac1 and RhoA, both thought to be involved in EC cell migration. Rac1 showed inconsistent and minimal changes in both cell types after MIP-2 treatment (p>0.05). However, activated RhoA was increased upon exposure to MIP-2 only in aortic EC (61% increase; p<0.05). Decreased RhoA activation after treatment of aortic EC with specific siRNA for RhoA resulted in a functional decrease in EC chemotaxis to MIP-2 (17% increase; p<0.05). Additionally, increased RhoA activation in PA EC with adenoviral infection of RhoA caused an increase in PA EC chemotaxis to MIP-2 (46% increase; p<0.05). Inhibition of RhoA activity with the Rho kinase inhibitor, Y27632 blocked aortic EC chemotaxis and stress fiber formation. Thus, RhoA activation is increased after MIP-2 treatment in mouse aortic endothelial cells but not in pulmonary artery endothelial cells. We conclude that RhoA is part of a signaling pathway essential for aortic cell migration after CXCR2 ligation. This result provides one explanation for the difference in chemotaxis observed in these two endothelial subtypes that express similar levels of CXCR2. PMID:17662312

  13. CD147 modulates the differentiation of T-helper 17 cells in patients with rheumatoid arthritis.

    PubMed

    Yang, Hui; Wang, Jian; Li, Yu; Yin, Zhen-Jie; Lv, Ting-Ting; Zhu, Ping; Zhang, Yan

    2017-01-01

    The role of CD147 in regulation of rheumatoid arthritis (RA) is not fully elucidated. The aim of this study was to investigate the effect of cell-to-cell contact of activated CD14 + monocytes with CD4 + T cells, and the modulatory role of CD147 on T-helper 17 (Th17) cells differentiation in patients with RA. Twenty confirmed active RA patients and twenty normal controls were enrolled. CD4 + T cells and CD14 + monocytes were purified by magnetic beads cell sorting. Cells were cultured under different conditions in CD4 + T cells alone, direct cell-to-cell contact co-culture of CD4 + and CD14 + cells, or indirect transwell co-culture of CD4 + /CD14 + cells in response to LPS and anti-CD3 stimulation with or without anti-CD147 antibody pretreatments. The proportion of IL-17-producing CD4 + T cells (defined as Th17 cells) was determined by flow cytometry. The levels of interleukin (IL)-17, IL-6, and IL-1β in the supernatants of cultured cells were measured by ELISA. The optimal condition for in vitro induction of Th17 cells differentiation was co-stimulation with 0.1 μg/mL of LPS and 100 ng/mL of anti-CD3 for 3 days under direct cell-to-cell contact co-culture of CD4 + and CD14 + cells. Anti-CD147 antibody reduced the proportion of Th17 cells, and also inhibited the productions of IL-17, IL-6, and IL-1β in PBMC culture from RA patients. The current results revealed that Th17 differentiation required cell-to-cell contact with activated monocytes. CD147 promoted the differentiation of Th17 cells by regulation of cytokine production, which provided the evidence for pathogenesis and potential therapeutic targets for RA. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  14. Crucial role of gamma interferon-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2, and Th17 responses in the control of Brucella melitensis infection in mice.

    PubMed

    Vitry, Marie-Alice; De Trez, Carl; Goriely, Stanislas; Dumoutier, Laure; Akira, Shizuo; Ryffel, Bernhard; Carlier, Yves; Letesson, Jean-Jacques; Muraille, Eric

    2012-12-01

    Brucella spp. are facultative intracellular bacterial pathogens responsible for brucellosis, a worldwide zoonosis that causes abortion in domestic animals and chronic febrile disease associated with serious complications in humans. There is currently no approved vaccine against human brucellosis, and antibiotic therapy is long and costly. Development of a safe protective vaccine requires a better understanding of the roles played by components of adaptive immunity in the control of Brucella infection. The importance of lymphocyte subsets in the control of Brucella growth has been investigated separately by various research groups and remains unclear or controversial. Here, we used a large panel of genetically deficient mice to compare the importance of B cells, transporter associated with antigen processing (TAP-1), and major histocompatibility complex class II-dependent pathways of antigen presentation as well as T helper 1 (Th1), Th2, and Th17-mediated responses on the immune control of Brucella melitensis 16 M infection. We clearly confirmed the key function played by gamma interferon (IFN-γ)-producing Th1 CD4(+) T cells in the control of B. melitensis infection, whereas IFN-γ-producing CD8(+) T cells or B cell-mediated humoral immunity plays only a modest role in the clearance of bacteria during primary infection. In the presence of a Th1 response, Th2 or Th17 responses do not really develop or play a positive or negative role during the course of B. melitensis infection. On the whole, these results could improve our ability to develop protective vaccines or therapeutic treatments against brucellosis.

  15. RhoA GTPase inhibition organizes contraction during epithelial morphogenesis

    PubMed Central

    Mason, Frank M.; Xie, Shicong; Vasquez, Claudia G.; Tworoger, Michael

    2016-01-01

    During morphogenesis, contraction of the actomyosin cytoskeleton within individual cells drives cell shape changes that fold tissues. Coordination of cytoskeletal contractility is mediated by regulating RhoA GTPase activity. Guanine nucleotide exchange factors (GEFs) activate and GTPase-activating proteins (GAPs) inhibit RhoA activity. Most studies of tissue folding, including apical constriction, have focused on how RhoA is activated by GEFs to promote cell contractility, with little investigation as to how GAPs may be important. Here, we identify a critical role for a RhoA GAP, Cumberland GAP (C-GAP), which coordinates with a RhoA GEF, RhoGEF2, to organize spatiotemporal contractility during Drosophila melanogaster apical constriction. C-GAP spatially restricts RhoA pathway activity to a central position in the apical cortex. RhoGEF2 pulses precede myosin, and C-GAP is required for pulsation, suggesting that contractile pulses result from RhoA activity cycling. Finally, C-GAP expression level influences the transition from reversible to irreversible cell shape change, which defines the onset of tissue shape change. Our data demonstrate that RhoA activity cycling and modulating the ratio of RhoGEF2 to C-GAP are required for tissue folding. PMID:27551058

  16. Human T-cell responses to oral streptococci in human PBMC-NOD/SCID mice.

    PubMed

    Salam, M A; Nakao, R; Yonezawa, H; Watanabe, H; Senpuku, H

    2006-06-01

    We investigated cellular and humoral immune responses to oral biofilm bacteria, including Streptococcus mutans, Streptococcus anginosus, Streptococcus sobrinus, and Streptococcus sanguinis, in NOD/SCID mice immunized with human peripheral blood mononuclear cells (hu-PBMC-NOD/SCID mice) to explore the pathogenicity of each of those organisms in dental and oral inflammatory diseases. hu-PBMC-NOD/SCID mice were immunized by intraperitoneal injections with the whole cells of the streptococci once a week for 3 weeks. FACS analyses were used to determine the percentages of various hu-T cell types, as well as intracellular cytokine production of interleukin-4 and interferon-gamma. Serum IgG and IgM antibody levels in response to the streptococci were also determined by enzyme-linked immunosorbent assay. S. anginosus induced a significant amount of the proinflammatory cytokine interferon-gamma in CD4(+) and CD8(+) T cells in comparison with the other streptococci. However, there was no significant differences between the streptococci in interleukin-4 production by CD4(+) and CD8(+) T cells after inoculation. Further, S. mutans significantly induced human anti-S. mutans IgG, IgG(1), IgG(2), and IgM antibodies in comparison with the other organisms. In conclusion, S. anginosus up-regulated Th1 and Tc1 cells, and S. mutans led to increasing levels of their antibodies, which was associated with the induction of Th2 cells. These results may contribute to a better understanding of human lymphocyte interactions to biofilm bacteria, along with their impact on dental and mucosal inflammatory diseases, as well as endocarditis.

  17. Two Molecular Clouds near M17

    NASA Astrophysics Data System (ADS)

    Wilson, T. L.; Hanson, M. M.; Muders, D.

    2003-06-01

    We present fully sampled images in the C18O J=2-1 line extending over 13'×23', made with the Heinrich Hertz Telescope (HHT) on Mount Graham, AZ. The HHT has a resolution of 35" at the line frequency. This region includes two molecular clouds. Cloud A, to the north, is more compact, while cloud B is to the west of the H II region M17. Cloud B contains the well-known source M17SW. In C18O we find 13 maxima in cloud A and 39 in cloud B. Sixteen sources in cloud B are in M17SW, mapped previously with higher resolution. In cloud B, sources outside M17SW have line widths comparable to those in M17SW. In comparison, cloud A has lower C18O line intensities and smaller line widths but comparable densities and sizes. Maps of the cores of these clouds were also obtained in the J=5-4 line of CS, which traces higher H2 densities. Our images of the cores of clouds A and B show that for VLSR<=20 km s-1, the peaks of the CS emission are shifted closer to the H II region than the C18O maxima, so higher densities are found toward the H II region. Our CS data give additional support to the already strong evidence that M17SW and nearby regions are heated and compressed by the H II region. Our data show that cloud A has a smaller interaction with the H II region. We surmise that M17SW was an initially denser region, and the turn-on of the H II region will make this the next region of massive star formation. Outside of M17SW, the only other obvious star formation region may be in cloud A, since there is an intense millimeter dust continuum peak found by Henning et al. (1998) but no corresponding C18O maximum. If the CO/H2 ratio is constant, the dust must have a temperature of ~100 K or the H2 density is greater than 106 cm-3 or both to reconcile the C18O and dust data. Alternatively, if the CO/H2 ratio is low, perhaps much of the CO is depleted.

  18. Critical functions of RhoB in support of glioblastoma tumorigenesis

    PubMed Central

    Ma, Yufang; Gong, Yuanying; Cheng, Zhixiang; Loganathan, Sudan; Kao, Crystal; Sarkaria, Jann N.; Abel, Ty W.; Wang, Jialiang

    2015-01-01

    Background RhoB is a member of the Rho small GTPase family that regulates cytoskeletal dynamics and vesicle trafficking. The RhoB homologs, RhoA and RhoC, have been shown to promote cancer progression and metastasis. In contrast, the functions of RhoB in human cancers are context dependent. Although expression of RhoB inversely correlates with disease progression in several epithelial cancers, recent data suggest that RhoB may support malignant phenotypes in certain cancer types. Methods We assessed RhoB protein levels in glioma surgical specimens and patient-derived xenografts. The roles of RhoB in glioblastoma were determined by loss-of-function and gain-of-function assays in vitro and in vivo. The impact on p53 and STAT3 signaling was investigated. Results RhoB expression was similar in tumor specimens compared with normal neural tissues obtained from epilepsy surgery. RhoB was expressed in the vast majority of xenograft tumors and spheroid cultures. Knockdown of RhoB induced cell-cycle arrest and apoptosis and compromised in vivo tumorigenic potential. However, overexpression of wild-type RhoB or a constitutively active mutant (RhoB-V14) did not significantly affect cell growth, which suggests that RhoB is not a rate-limiting oncogenic factor and is consistent with the scarcity of RhoB mutations in human cancer. Knockdown of RhoB reduced basal STAT3 activity and impaired cytokine-induced STAT3 activation. In glioblastoma tumors retaining wild-type p53, depletion of RhoB also activated p53 and induced expression of p21CIP1/WAF1. Conclusions Our data suggest that RhoB belongs to an emerging class of “nononcogene addiction” factors that are essential for maintenance of malignant phenotypes in human cancers. PMID:25216671

  19. The Roles of T Helper 1, T Helper 17 and Regulatory T Cells in the Pathogenesis of Sarcoidosis.

    PubMed

    Mortaz, Esmaeil; Rezayat, Fatemeh; Amani, Davar; Kiani, Arda; Garssen, Johan; Adcock, Ian M; Velayati, Aliakbar

    2016-08-01

    Sarcoidosis is a systemic granulomatous disorder of unidentified etiology, with a heterogeneous clinical presentation. It is characterized by a reduced delayed-type hypersensitivity to tuberculin and common antigens. The balance between Th1, Th17 and Regulatory T(Treg) cells controls T-cell proliferation and activation.The Th17/Treg ratio in the peripheral blood and bronchoalveolar lavage fluidis increased in patients with active sarcoidosis. Amplified IL-17A expression in granulomas and the presence of IL-17A+, IL-17A+IL-4+ and IL-17A+IFN-γ+ memory T helper cells in the circulation and BAL indicate Th17 cell involvement in granuloma induction and/or maintenance in sarcoidosis. Sarcoidosis should therefore be considered as a Th1/Th17 multisystem disorder and anti-IL-17/Th17 approaches that control and reduce IL-17Amay be an option, therefore, for the treatment of sarcoidosis.Here we provide a short overview as to the role of Th17 cells as critical cells in the pathogenesis of sarcoidosis.

  20. Viral RNA-Unprimed Rig-I Restrains Stat3 Activation in the Modulation of Regulatory T Cell/Th17 Cell Balance.

    PubMed

    Yang, Hui; Guo, He-Zhou; Li, Xian-Yang; Lin, Jian; Zhang, Wu; Zhao, Jun-Mei; Zhang, Hong-Xin; Chen, Sai-Juan; Chen, Zhu; Zhu, Jiang

    2017-07-01

    Innate immunity activation by viral RNA-primed retinoid acid inducible gene-I (Rig-I) in CD4 + T cells antagonizes TGFβ signaling to suppress the differentiation of regulatory T cells (Tregs). However, how viral RNA-unliganded Rig-I (apo-Rig-I) modulates Treg generation remains unclear. In this article, we show that, in the absence of viral infection, Treg differentiation of Rig-I -/- CD4 + T cells was compromised, in the presence of increased generation of Th17 cells and overactivation of Stat3, a critical regulator tilting the Treg/Th17 cell balance. Mechanistically, apo-Rig-I physically associates with Stat3, thereby inhibiting Jak1's association with Stat3 while facilitating Shp2's association to inhibit p-Stat3 levels. Interestingly, inhibition of Stat3 ameliorates the Treg/Th17 imbalance and the colitis observed in Rig-I -/- mice. Collectively, these results uncover an independent functional contribution of the apo-Rig-I/Stat3 interaction in the maintenance of Treg/Th17 cell balance. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. 17 CFR 240.17h-2T - Risk assessment reporting requirements for brokers and dealers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Risk assessment reporting... Organizations § 240.17h-2T Risk assessment reporting requirements for brokers and dealers. (a) Reporting requirements of risk assessment information required to be maintained by section 240.17h-1T. (1) Every broker...

  2. WinRho: Rh immune globulin prepared by ion exchange for intravenous use.

    PubMed Central

    Bowman, J M; Friesen, A D; Pollock, J M; Taylor, W E

    1980-01-01

    An Rh immune globulin [Rh IgG] for intravenous use, WinRho, has been prepared by the Winnipeg Rh Institute by a modification of the ion-exchange column method of Hoppe and colleagues. When administered to Rh-negative male and nonpregnant female volunteers WinRho was found to be nonpyrogenic, nontoxic, safe and protective against Rh alloimmunization. In a clinical trial with 240 microgram given at about 28 weeks' gestation and 120 microgram given after delivery to Rh-negative women at risk of Rh immunization WinRho was effective in preventing Rh immunization. Of the 870 women carrying Rh-positive fetuses who were treated with WinRho during pregnancy and were not tested several months after delivery 14 would have shown evidence of Rh immunization by the time of delivery if WinRho had been ineffective; none showed such evidence. Of the 1122 women carrying Rh-positive fetuses who were retested 4 to 6 months after delivery 83 would have shown evidence of Rh immunization at that time if WinRho had been ineffective; only 1 showed such evidence. The efficiency of yield of anti-D with the modified method of production, the fct that it can be given intravenously (a route that causes the patient less discomfort and immediately results in high anti-D levels) and the lower levels of contaminating IgA and IgM make WinRho the preparation of choice for preventing Rh immunization. PMID:6161687

  3. Treatment in vitro with PPARα and PPARγ ligands drives M1-to-M2 polarization of macrophages from T. cruzi-infected mice.

    PubMed

    Penas, Federico; Mirkin, Gerardo A; Vera, Marcela; Cevey, Ágata; González, Cintia D; Gómez, Marisa I; Sales, María Elena; Goren, Nora B

    2015-05-01

    Trypanosoma cruzi, the etiological agent of Chagas' disease, induces a persistent inflammatory response. Macrophages are a first line cell phenotype involved in the clearance of infection. Upon parasite uptake, these cells increase inflammatory mediators like NO, TNF-α, IL-1β and IL-6, leading to parasite killing. Although desired, inflammatory response perpetuation and exacerbation may lead to tissue damage. Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent nuclear transcription factors that, besides regulating lipid and carbohydrate metabolism, have a significant anti-inflammatory effect. This is mediated through the interaction of the receptors with their ligands. PPARγ, one of the PPAR isoforms, has been implicated in macrophage polarization from M1, the classically activated phenotype, to M2, the alternatively activated phenotype, in different models of metabolic disorders and infection. In this study, we show for the first time that, besides PPARγ, PPARα is also involved in the in vitro polarization of macrophages isolated from T. cruzi-infected mice. Polarization was evidenced by a decrease in the expression of NOS2 and proinflammatory cytokines and the increase in M2 markers like Arginase I, Ym1, mannose receptor and TGF-β. Besides, macrophage phagocytic activity was significantly enhanced, leading to increased parasite load. We suggest that modulation of the inflammatory response by both PPARs might be due, at least in part, to a change in the profile of inflammatory macrophages. The potential use of PPAR agonists as modulators of overt inflammatory response during the course of Chagas' disease deserves further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The estradiol 17-β concentration in mice after treated with ethanolic leaf extract of Azadirachta indica (neem)

    NASA Astrophysics Data System (ADS)

    Sitasiwi, Agung Janika; Isdadiyanto, Sri; Mardiati, Siti Muflichatun

    2017-05-01

    This research was conducted to determine the effect of ethanolic leaf extract of Azadirachta indica (Neem) on plasma estradiol 17-β synthesis in mice. Thirty virgin female mice (Swiss Webster strain) between 2.5 and 3 months old (25 ± 2.5 g body weight) were used as the experimental sample. The mice were divided into five groups: K-group were administered tap water; K+ group were administered contraceptive pills; P1 to P3 group were administered orally with ethanolic A. indica leaf extract at doses of 8.4, 11.2, and 14 mg/animal/day, respectively. The regularity of the estrous cycle was monitored during treatment. The mice were sacrificed after being treated orally for 21 days and blood was collected by cardiac puncture under chloroform anesthesia. The estradiol concentration was measured by ELISA. Ovaries were processed with the paraffin method and HE staining. Our results showed that the estrous cycle irregularity of treated groups was higher than K-group. The estradiol concentration was significantly different (p<0.05) compared to the control group (25.02 ± 1.16 pg/mL in the control group and 18.86 ± 2.21 pg/mL in treated group but there was no significant difference (p>0.05) between the treated groups. The atresia follicle number was significantly different (p<0.05), not compared to the control group but between treated groups also. It can be concluded that Neem extracts disrupt the estradiol 17-β concentration by interference with follicle development in the ovaries so that the regularity of estrous cycle was disrupted.

  5. Coffee consumption in aged mice increases energy production and decreases hepatic mTOR levels.

    PubMed

    Takahashi, Keita; Yanai, Shuichi; Shimokado, Kentaro; Ishigami, Akihito

    2017-06-01

    Coffee, one of the world's most consumed beverages, has many benefits. Some studies have reported the effects of coffee on aging. The aim of this study was to investigate the locomotor activity, energy metabolism, and lipid metabolism of aged (20-mo-old) mice given coffee. Aged C57 BL/6 NCr mice were divided into three groups: controls that were not given coffee (n = 9), a group that received 0.1% caffeinated coffee (n = 9), and a group that received 0.1% decaffeinated coffee (n = 9). This regimen continued for 17 wk until mice reached the age of 24 mo. Regular and decaffeinated coffee consumption decreased plasma-free fatty acid levels, increased hepatic adenosine triphosphate content, and decreased total mammalian target of rapamycin (mTOR) and phosphorylated mTOR (p-mTOR) protein content in the liver. However, no differences were found in the protein or activity levels of Akt, adenosine monophosphate-activated protein kinase (AMPK), p70 S6 kinase, or sterol regulatory element-binding protein 1, proteins that are upstream or downstream of the mTOR complex 1 (mTORC1)-related pathways. Regular coffee consumption increased food and water intake, locomotor activity, the volume of carbon dioxide production, and the respiration exchange ratio. Regular and decaffeinated coffee consumption decreased hepatic total mTOR and p-mTOR levels independently of Akt and AMPK pathways in aged mice. Because decreased mTORC1 activity is known to have antiaging effects, coffee consumption during old age may retard aging. Moreover, coffee consumption by the aged population had a positive effect on behavioral energy and lipid metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Plasma IL-17A levels in patients with late-life depression.

    PubMed

    Saraykar, Smita; Cao, Bo; Barroso, Lucelia S; Pereira, Kelly S; Bertola, Laiss; Nicolau, Mariana; Ferreira, Jessica D; Dias, Natalia S; Vieira, Erica L; Teixeira, Antonio L; Silva, Ana Paula M; Diniz, Breno S

    2018-01-01

    A consistent body of research has confirmed that patients with major depressive disorder (MDD) have increased concentrations of pro-inflammatory cytokines, including IL-6, TNF-α, IL-1β, the soluble IL-2 receptor, and C-reactive protein, compared to controls; however, there is limited information on IL-17A in MDD. Moreover, information about IL-17A in older populations, i.e., patients with late-life depression (LLD), is conspicuously missing from the literature. The purpose of this study was to investigate the role of IL-17A in LLD. A convenience sample of 129 individuals, 74 with LLD and 55 non-depressed controls, were enrolled in this study. The Mann-Whitney U test was used to compare plasma IL-17A levels between LLD and controls subjects, and Spearman's rank order correlation was used to investigate correlation of these levels with clinical, neuropsychological, and cognitive assessments. Plasma IL-17A levels were not statistically different between LLD patients and controls (p = 0.94). Among all subjects (LLD + control), plasma IL-17A did not correlate significantly with depressive symptoms (rho = -0.009, p = 0.92) but a significant correlation was observed with cognitive assessments (rho = 0.22, p = 0.01). Our findings do not support an association between plasma IL-17A levels and LLD. Nevertheless, IL-17A may be associated with cognitive impairment in LLD patients. If this finding is confirmed in future longitudinal studies, modulation of the T-helper 17 cell (Th17) immune response may be a treatment target for cognitive impairment in this population.

  7. Coupling constant for N*(1535)N{rho}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Jujun; Graduate University of Chinese Academy of Sciences, Beijing 100049; Wilkin, Colin

    2008-05-15

    The value of the N*(1535)N{rho} coupling constant g{sub N*N{rho}} derived from the N*(1535){yields}N{rho}{yields}N{pi}{pi} decay is compared with that deduced from the radiative decay N*(1535){yields}N{gamma} using the vector-meson-dominance model. On the basis of an effective Lagrangian approach, we show that the values of g{sub N*N{rho}} extracted from the available experimental data on the two decays are consistent, though the error bars are rather large.

  8. 46 CFR 34.17-20 - Discharge outlets-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Discharge outlets-T/ALL. 34.17-20 Section 34.17-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-20 Discharge outlets—T/ALL. (a) Discharge outlets shall be of an approved...

  9. 46 CFR 34.17-20 - Discharge outlets-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Discharge outlets-T/ALL. 34.17-20 Section 34.17-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-20 Discharge outlets—T/ALL. (a) Discharge outlets shall be of an approved...

  10. Protective Vaccine Efficacy of the Complete Form of PPE39 Protein from Mycobacterium tuberculosis Beijing/K Strain in Mice.

    PubMed

    Kim, Ahreum; Hur, Yun-Gyoung; Gu, Sunwha; Cho, Sang-Nae

    2017-11-01

    The aim of this study was to evaluate the protective efficacy of MTBK_24820, a complete form of PPE39 protein derived from a predominant Beijing/K strain of Mycobacterium tuberculosis in South Korea. Mice were immunized with MTKB_24820, M. bovis Bacilli Calmette-Guérin (BCG), or adjuvant prior to a high-dosed Beijing/K strain aerosol infection. After 4 and 9 weeks, bacterial loads were determined and histopathologic and immunologic features in the lungs and spleens of the M. tuberculosis -infected mice were analyzed. Putative immunogenic T-cell epitopes were examined using synthetic overlapping peptides. Successful immunization of MTBK_24820 in mice was confirmed by increased IgG responses ( P < 0.05) and recalled gamma interferon (IFN-γ), interleukin-2 (IL-2), IL-6, and IL-17 responses ( P < 0.05 or P < 0.01) to MTBK_24820. After challenge with the Beijing/K strain, an approximately 0.5 to 1.0 log 10 reduction in CFU in lungs and fewer lung inflammation lesions were observed in MTBK_24820-immunized mice compared to those for control mice. Moreover, MTBK_24820 immunization elicited significantly higher numbers of CD4 + T cells producing protective cytokines, such as IFN-γ and IL-17, in lungs and spleens ( P < 0.01) and CD4 + multifunctional T cells producing IFN-γ, tumor necrosis factor alpha (TNF-α), and/or IL-17 ( P < 0.01) than in control mice, suggesting protection comparable to that of BCG against the hypervirulent Beijing/K strain. The dominant immunogenic T-cell epitopes that induced IFN-γ production were at the N terminus (amino acids 85 to 102 and 217 to 234). Its vaccine potential, along with protective immune responses in vivo , may be informative for vaccine development, particularly in regions where the M. tuberculosis Beijing/K-strain is frequently isolated from TB patients. Copyright © 2017 American Society for Microbiology.

  11. Aberrant Production of Th1/Th2/Th17-Related Cytokines in Serum of C57BL/6 Mice after Short-Term Formaldehyde Exposure

    PubMed Central

    Wei, Haiyan; Tan, Kehong; Sun, Rongli; Yin, Lihong; Zhang, Juan; Pu, Yuepu

    2014-01-01

    Previous studies have shown that formaldehyde (FA) could cause immunotoxicity by changing the number of T lymphocytes and that cytokines play a pivotal role in the regulation of T lymphocytes. However, the previously used cytokine detection methods are difficult to use in the measurement of several cytokines in a small amount of sample for one test. Therefore, the cytometric bead array (CBA) technique was used. CBA showed better analytical efficiency and sensitivity than the previous methods. C57BL/6 mice were exposed to the control (normal saline), low FA concentration (0.5 mg/kg), and high FA concentration (2 mg/kg) for 1 week or 1 month. The contents of cytokines, including Th1-related cytokines (IL-2, IFN-γ, and tumor necrosis factor), Th2-related cytokines (IL-4, IL-6, and IL-10), and Th17-related cytokines (IL-17A), were measured by using the BD FACS Canto II Flow Cytometer and analyzed by FCAP ArrayTM Software. Th1/Th2/Th17-related cytokines showed a slightly decreasing trend after low FA exposure. Conversely, a significantly increasing trend was found after high FA exposure. Th1/Th2/Th17-related cytokines all serve important functions in the immune reactions in mice after FA exposure. PMID:25264680

  12. Reduced beta 2-microglobulin mRNA levels in transgenic mice expressing a designed hammerhead ribozyme.

    PubMed Central

    Larsson, S; Hotchkiss, G; Andäng, M; Nyholm, T; Inzunza, J; Jansson, I; Ahrlund-Richter, L

    1994-01-01

    We have generated three artificial hammerhead ribozymes, denoted 'Rz-b', 'Rz-c' and 'Rz-d', with different specificities for exon II of the mouse beta-2-microglobulin (beta 2M) mRNA. In this study we tested for ribozyme mediated reduction of beta 2M mRNA in a cell line and in transgenic mice. Transfections of either of the Rz-b, Rz-c or Rz-d plasmids into a mouse cell-line (NIH/3T3) revealed reductions of beta 2M mRNA substrate in each case. Ribozyme expression in individual transfected clones was accompanied with an up to 80% reduction of beta 2M mRNA levels. Rz-c was selected for a transgenic study. Seven Rz-c transgenic founder animals were identified from which three ribozyme expressing families were established and analysed. Expression of the ribozyme transgene was tested for and detected in lung, kidney and spleen. Expression was accompanied with reduction of the beta 2M mRNA levels of heterozygous (Rz+/-) animals compared to non-transgenic litter mates. The effect was most pronounced in lung with more than 90% beta 2M mRNA reduction in individual mice. In summary, expression of our ribozymes in a cell free system, in a cell-line and in transgenic mice were all accompanied with reductions of beta 2M mRNA levels. Images PMID:8036151

  13. PKCλ/ι regulates Th17 differentiation and house dust mite-induced allergic airway inflammation.

    PubMed

    Yang, Yingying; Dong, Panpan; Zhao, Jing; Zhou, Wei; Zhou, Yonghua; Xu, Yongliang; Mei, Congjin; Guo, Fukun; Zheng, Yi; Yang, Jun-Qi

    2018-03-01

    Asthma is a chronic airway inflammation in which Th2 and Th17 cells play critical roles in its pathogenesis. We have reported that atypical protein kinase (PKC) λ/ι is a new regulator for Th2 differentiation and function. However, the role of PKCλ/ι for Th17 cells remains elusive. In this study, we explored the effect of PKCλ/ι on Th17 cells in the context of ex vivo cell culture systems and an in vivo murine model of allergic airway inflammation with the use of activated T cell-specific conditional PKCλ/ι-deficient mice. Our findings indicate that PKCλ/ι regulates Th17 cells. The secretion of Th17 effector cytokines, including IL-17, IL-21 and IL-22, were inhibited from PKCλ/ι-deficient T cells under non-skewing or Th17-skewing culture conditions. Moreover, the impaired Th17 differentiation and function by the PKCλ/ι-deficiency was associated with the downregulation of Stat3 and Rorγt, key Th17 transcription factors. We developed a model of Th17 and neutrophil-involved allergic airway inflammation by intratracheal inoculation of house dust mites. PKCλ/ι-deficiency significantly inhibited airway inflammations. The infiltrating cells in the lungs and bronchoalveolar lavage fluids were significantly reduced in conditional PKCλ/ι-deficient mice. Th17 effector cytokines were reduced in the bronchoalveolar lavage fluids and lungs at protein and mRNA levels. Thus, PKCλ/ι emerges as a critical regulator of Th17 differentiation and allergic airway hyperresponsiveness. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. RhoA/Rho-kinase triggers epithelial-mesenchymal transition in mesothelial cells and contributes to the pathogenesis of dialysis-related peritoneal fibrosis

    PubMed Central

    Wang, Qinglian; Yang, Xiaowei; Xu, Ying; Shen, Zhenwei; Cheng, Hongxia; Cheng, Fajuan; Liu, Xiang; Wang, Rong

    2018-01-01

    Peritoneal fibrosis (PF) with associated peritoneal dysfunction is almost invariably observed in long-term peritoneal dialysis (PD) patients. Advanced glycation end products (AGEs) are pro-oxidant compounds produced in excess during the metabolism of glucose and are present in high levels in standard PD solutions. The GTPase RhoA has been implicated in PF, but its specific role remains poorly understood. Here, we studied the effects of RhoA/Rho-kinase signaling in AGEs-induced epithelial-mesenchymal transition (EMT) in human peritoneal mesothelial cells (HPMCs), and evaluated morphological and molecular changes in a rat model of PD-related PF. Activation of RhoA/Rho-kinase and activating protein-1 (AP-1) was assessed in HPMCs using pull-down and electrophoretic mobility shift assays, respectively, while expression of transforming growth factor-β, fibronectin, α-smooth muscle actin, vimentin, N-cadherin, and E-cadherin expression was assessed using immunohistochemistry and western blot. AGEs exposure activated Rho/Rho-kinase in HPMCs and upregulated EMT-related genes via AP-1. These changes were prevented by the Rho-kinase inhibitors fasudil and Y-27632, and by the AP-1 inhibitor curcumin. Importantly, fasudil normalized histopathological and molecular alterations and preserved peritoneal function in rats. These data support the therapeutic potential of Rho-kinase inhibitors in PD-related PF. PMID:29581852

  15. Upregulating CD4+CD25+FOXP3+ regulatory T cells in pancreatic lymph nodes in diabetic NOD mice by adjuvant immunotherapy.

    PubMed

    Tian, Bole; Hao, Jianqiang; Zhang, Yu; Tian, Lei; Yi, Huimin; O'Brien, Timothy D; Sutherland, David E R; Hering, Bernhard J; Guo, Zhiguang

    2009-01-27

    Immunotherapy with Complete Freund's adjuvant (CFA) is effective in ameliorating autoimmunity in diabetic nonobese diabetic (NOD) mice. We investigated whether CFA treatment up-regulates CD4+CD25+Foxp3+ regulatory T cells and increases transforming growth factor (TGF)-beta1 production in diabetic NOD mice. New-onset diabetic NOD mice were treated with CFA and exendin-4, a potent analog of glucagon-like peptide-1. Reversal of diabetes was determined by monitoring blood glucose level. Ameliorating autoimmunity through immunoregulation was assessed by adoptive transfer. Regulatory T cells in the peripheral blood, spleen, thymus, and pancreatic nodes were measured. TGF-beta1 in plasma and the insulin content in the pancreas were also measured. Immunostainings for insulin and BrdU were performed. New-onset diabetes could be reversed in 38% of NOD mice treated with CFA alone and in 86% of NOD mice treated with both CFA and exendin-4. Diabetes adoptive transfer by splenocytes from CFA-treated NOD mice was delayed. The percentage of CD4+CD25+Foxp3+ regulatory T cells in the pancreatic lymph nodes of CFA-treated NOD mice was significantly increased at 1, 5, and 15 to 17 weeks after treatment. TGF-beta1 in the plasma of CFA-treated NOD mice was also significantly increased. Combining CFA with exendin-4 treatment significantly increased the insulin content and the numbers of insulin and BrdU double-labeled beta cells in the islets. Our results demonstrated that CFA treatment ameliorates autoimmunity in diabetic NOD mice by up-regulating CD4=CD25+Foxp3+ regulatory T cells and increasing TGF-beta1 production. Exendin-4 enhanced the effect of CFA on reversing diabetes in NOD mice by stimulating beta-cell replication.

  16. γδ T-cell-deficient mice show alterations in mucin expression, glycosylation, and goblet cells but maintain an intact mucus layer.

    PubMed

    Kober, Olivia I; Ahl, David; Pin, Carmen; Holm, Lena; Carding, Simon R; Juge, Nathalie

    2014-04-01

    Intestinal homeostasis is maintained by a hierarchy of immune defenses acting in concert to minimize contact between luminal microorganisms and the intestinal epithelial cell surface. The intestinal mucus layer, covering the gastrointestinal tract epithelial cells, contributes to mucosal homeostasis by limiting bacterial invasion. In this study, we used γδ T-cell-deficient (TCRδ(-/-)) mice to examine whether and how γδ T-cells modulate the properties of the intestinal mucus layer. Increased susceptibility of TCRδ(-/-) mice to dextran sodium sulfate (DSS)-induced colitis is associated with a reduced number of goblet cells. Alterations in the number of goblet cells and crypt lengths were observed in the small intestine and colon of TCRδ(-/-) mice compared with C57BL/6 wild-type (WT) mice. Addition of keratinocyte growth factor to small intestinal organoid cultures from TCRδ(-/-) mice showed a marked increase in crypt growth and in both goblet cell number and redistribution along the crypts. There was no apparent difference in the thickness or organization of the mucus layer between TCRδ(-/-) and WT mice, as measured in vivo. However, γδ T-cell deficiency led to reduced sialylated mucins in association with increased gene expression of gel-secreting Muc2 and membrane-bound mucins, including Muc13 and Muc17. Collectively, these data provide evidence that γδ T cells play an important role in the maintenance of mucosal homeostasis by regulating mucin expression and promoting goblet cell function in the small intestine.

  17. Taste information derived from T1R-expressing taste cells in mice.

    PubMed

    Yoshida, Ryusuke; Ninomiya, Yuzo

    2016-03-01

    The taste system of animals is used to detect valuable nutrients and harmful compounds in foods. In humans and mice, sweet, bitter, salty, sour and umami tastes are considered the five basic taste qualities. Sweet and umami tastes are mediated by G-protein-coupled receptors, belonging to the T1R (taste receptor type 1) family. This family consists of three members (T1R1, T1R2 and T1R3). They function as sweet or umami taste receptors by forming heterodimeric complexes, T1R1+T1R3 (umami) or T1R2+T1R3 (sweet). Receptors for each of the basic tastes are thought to be expressed exclusively in taste bud cells. Sweet (T1R2+T1R3-expressing) taste cells were thought to be segregated from umami (T1R1+T1R3-expressing) taste cells in taste buds. However, recent studies have revealed that a significant portion of taste cells in mice expressed all T1R subunits and responded to both sweet and umami compounds. This suggests that sweet and umami taste cells may not be segregated. Mice are able to discriminate between sweet and umami tastes, and both tastes contribute to behavioural preferences for sweet or umami compounds. There is growing evidence that T1R3 is also involved in behavioural avoidance of calcium tastes in mice, which implies that there may be a further population of T1R-expressing taste cells that mediate aversion to calcium taste. Therefore the simple view of detection and segregation of sweet and umami tastes by T1R-expressing taste cells, in mice, is now open to re-examination. © 2016 Authors; published by Portland Press Limited.

  18. Subchronic toxicity studies of t-butyl alcohol in rats and mice.

    PubMed

    Lindamood, C; Farnell, D R; Giles, H D; Prejean, J D; Collins, J J; Takahashi, K; Maronpot, R R

    1992-07-01

    The purpose of this study was to evaluate the toxicity of t-butyl alcohol, an important commodity chemical, an additive to unleaded gasoline, and a contaminant of drinking water. Ninety-day toxicity studies were conducted in B6C3F1 mice and Fischer 344 (F344) rats of both sexes using dosed water. Dose levels of t-butyl alcohol were 0, 0.25, 0.5, 1, 2, and 4% (w/v). Lethality was observed at the 4% level of both sexes and species. Weight-gain depression was present in all dose levels of male rats; 4% female rats; 1, 2, and 4% male mice; and 2 and 4% female mice. Water consumption was increased at lower dose levels in male rats and decreased in the higher dose levels of both sexes of rats and female mice. Clinical signs in rats were ataxia in both sexes and hypoactivity in males. Clinical signs in mice were ataxia, abnormal posture, and hypoactivity. In rats, urine volumes were reduced, in association with crystalluria. Gross lesions at necropsy were urinary tract calculi, renal pelvic and ureteral dilatation, and thickening of the urinary bladder mucosa. Microscopic lesions were hyperplasia of transitional epithelia and inflammation of the urinary bladder. In male rats treated with t-butyl alcohol, microscopic renal changes were suggestive of alpha-2 mu-globulin nephropathy. No-effect levels for the urinary tract lesions were 1% in male rats and mice (803.7 mg/kg/day for the male rats and 1565.8 mg/kg/day for the male mice) and 2% in female rats and mice (1451.5 mg/kg/day for the female rats and 4362.9 mg/kg/day for the female mice). The results indicate that in rodents the urinary tract is the target organ for t-butyl alcohol toxicity, and males are more sensitive to t-butyl alcohol toxicity than females.

  19. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease.

    PubMed

    Tang, Y; Bian, Z; Zhao, L; Liu, Y; Liang, S; Wang, Q; Han, X; Peng, Y; Chen, X; Shen, L; Qiu, D; Li, Z; Ma, X

    2011-11-01

    Mechanisms associated with the progression of simple steatosis to non-alcoholic fatty liver disease (NAFLD) remain undefined. Regulatory T cells (T(regs)) play a critical role in regulating inflammatory processes in non-alcoholic steatohepatitis (NASH) and because T helper type 17 (Th17) functionally oppose T(reg)-mediated responses, this study focused on characterizing the role of Th17 cells using a NAFLD mouse model. C57BL/6 mice were fed either a normal diet (ND) or high fat (HF) diet for 8 weeks. Mice in the HF group had a significantly higher frequency of liver Th17 cells compared to ND-fed mice. Neutralization of interleukin (IL)-17 in HF mice ameliorated lipopolysaccharide (LPS)-induced liver injury reflected by decreased serum alanine aminotransferase (ALT) levels and reduced inflammatory cell infiltrates in the liver. In vitro, HepG2 cells cultured in the presence of free fatty acids (FFA; oleic acid and palmitic acid) for 24 h and IL-17 developed steatosis via insulin-signalling pathway interference. IL-17 and FFAs synergized to induce IL-6 production by HepG2 cells and murine primary hepatocytes which, in combination with transforming growth factor (TGF-β), expanded Th17 cells. It is likely that a similar process occurs in NASH patients, as there were significant levels of IL-17(+) cell infiltrates in NASH patient livers. The hepatic expression of Th17 cell-related genes [retinoid-related orphan receptor gamma (ROR)γt, IL-17, IL-21 and IL-23] was also increased significantly in NASH patients compared to healthy controls. Th17 cells and IL-17 were associated with hepatic steatosis and proinflammatory response in NAFLD and facilitated the transition from simple steatosis to steatohepatitis. Strategies designed to alter the balance between Th17 cells and T(regs) should be explored as a means of preventing progression to NASH and advanced liver diseases in NAFLD patients. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for

  20. A humanized IgG but not IgM antibody is effective in prophylaxis and therapy of yellow fever infection in an AG129/17D-204 peripheral challenge mouse model.

    PubMed

    Thibodeaux, Brett A; Garbino, Nina C; Liss, Nathan M; Piper, Joseph; Schlesinger, Jacob J; Blair, Carol D; Roehrig, John T

    2012-04-01

    Yellow fever virus (YFV), a member of the genus Flavivirus, is a mosquito-borne virus found in tropical regions of Africa and South America that causes severe hepatic disease and death in humans. Despite the availability of effective vaccines, YFV is responsible for an estimated 200,000 cases and 30,000 deaths annually. There are currently no prophylactic or therapeutic strategies approved for use in human YFV infections. Furthermore, implementation of YFV 17D-204 vaccination campaigns has become problematic due to an increase in reported post-vaccinal adverse events. We have created human/murine chimeric MAbs of a YFV-reactive murine monoclonal antibody (mMAb), 2C9, that was previously shown to protect mice from lethal YFV infection and to have therapeutic activity. The new chimeric (cMAbs) were constructed by fusion of the m2C9 IgG gene variable regions with the constant regions of human IgG and IgM and expressed in Sp2 murine myelomas. The 2C9 cMAbs (2C9-cIgG and 2C9-cIgM) reacted with 17D-204 vaccine strain in an enzyme-linked immunosorbent assay and neutralized virus in vitro similarly to the parent m2C9. Both m2C9 and 2C9-cIgG when administered prophylactically 24h prior to infection protected AG129 mice from peripheral 17D-204 challenge at antibody concentrations ≥1.27 μg/mouse; however, the 2C9-cIgM did not protect even at a dose of 127 μg/mouse. The 17D-204 infection of AG129 mice is otherwise uniformly lethal. While the m2C9 was shown previously to be therapeutically effective in YFV-infected BALB/c mice at day 4 post-infection, the m2C9 and 2C9-cIgG demonstrated therapeutic activity only when administered 1 day post-infection in 17D-204-infected AG129 mice. Published by Elsevier B.V.

  1. Vγ4+γδT Cells Aggravate Severe H1N1 Influenza Virus Infection-Induced Acute Pulmonary Immunopathological Injury via Secreting Interleukin-17A.

    PubMed

    Xue, Chunxue; Wen, Mingjie; Bao, Linlin; Li, Hui; Li, Fengdi; Liu, Meng; Lv, Qi; An, Yunqing; Zhang, Xulong; Cao, Bin

    2017-01-01

    The influenza A (H1N1) pdm09 virus remains a critical global health concern and causes high levels of morbidity and mortality. Severe acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the major outcomes among severely infected patients. Our previous study found that interleukin (IL)-17A production by humans or mice infected with influenza A (H1N1) pdm09 substantially contributes to ALI and subsequent morbidity and mortality. However, the cell types responsible for IL-17A production during the early stage of severe influenza A (H1N1) pdm09 infection remained unknown. In this study, a mouse model of severe influenza A (H1N1) pdm09 infection was established. Our results show that, in the lungs of infected mice, the percentage of γδT cells, but not the percentages of CD4 + Th and CD8 + Tc cells, gradually increased and peaked at 3 days post-infection (dpi). Further analysis revealed that the Vγ4 + γδT subset, but not the Vγ1 + γδT subset, was significantly increased among the γδT cells. At 3 dpi, the virus induced significant increases in IL-17A in the bronchoalveolar lavage fluid (BALF) and serum. IL-17A was predominantly secreted by γδT cells (especially the Vγ4 + γδT subset), but not CD4 + Th and CD8 + Tc cells at the early stage of infection, and IL-1β and/or IL-23 were sufficient to induce IL-17A production by γδT cells. In addition to secreting IL-17A, γδT cells secreted interferon (IFN)-γ and expressed both an activation-associated molecule, natural killer group 2, member D (NKG2D), and an apoptosis-associated molecule, FasL. Depletion of γδT cells or the Vγ4 + γδT subset significantly rescued the virus-induced weight loss and improved the survival rate by decreasing IL-17A secretion and reducing immunopathological injury. This study demonstrated that, by secreting IL-17A, lung Vγ4 + γδT cells, at least, in part mediated influenza A (H1N1) pdm09-induced immunopathological injury. This mechanism might

  2. Biochemical changes after subchronic and chronic interaction of Schistosoma mansoni infection in Swiss albino mice with two specific compounds.

    PubMed

    Hanna, Laila S; Medhat, Amina M; Abdel-Menem, Hanan A

    2003-04-01

    In Egypt, infection with Schistosoma mansoni (S.m.) and residues of pesticides have been considered as major environmental pollutants that adversely affect health. Effects of diazinon (DZN) and/or praziquantel (PZQ) on the levels of plasma triiodothyronine (T3), thyroxine (T4), activities of brain acetylcholinesterase (AchE) and liver alanine aminotransferase (ALT) in addition to blood reduced glutathione (GSH) in healthy and S.m. infected mice were investigated after 9 and 17 weeks of either infection or intoxication with DZN. Triiodothyronine showed significant differences among the different treatments. The group of mice treated with PZQ showed the highest levels of T3 at both time intervals. Thyroxine level showed significant differences between the two time intervals. The lowest levels of T4 were observed in the infected-PZQ group at week 17. The maximum inhibition of brain AchE activity was noticed in DZN-PZQ treated group after 9 and 17 weeks. The different treatments significantly reduced the activities of liver ALT. The highest decrease was recorded in the infected-DZN-PZQ group at week 9. All treatments significantly lowered the levels of blood GSH after 9 weeks.

  3. Analysis of Kalirin-7 Knockout Mice Reveals Different Effects in Female Mice

    PubMed Central

    Mazzone, Christopher M.; Larese, Taylor P.; Kiraly, Drew D.; Eipper, Betty A.

    2012-01-01

    Estradiol treatment of ovariectomized rodents is known to affect the morphology of dendritic spines and produce behavioral and cognitive effects. Kalirin-7 (Kal7), a postsynaptic density (PSD)-localized Rho-guanine nucleotide exchange factor, is important for dendritic spine formation and stability. Male Kal7 knockout [Kal7(KO)] mice exhibit a number of abnormal behavioral and biochemical phenotypes. Given that chronic 17β-estradiol (E2) replacement of ovariectomized rats enhanced Kal7 expression in the hippocampus and primary hippocampal cultures, we assessed the behavioral and biochemical effects of chronic E2 treatment of ovariectomized female wild-type and Kal7(KO) mice. Both intact and ovariectomized Kal7(KO) female mice exhibited decreased anxiety-like behavior compared with the corresponding wild type in the elevated zero maze and were unaffected by E2 treatment. Chronic E2 decreased locomotor activity in the open field and enhanced performance in a passive-avoidance fear conditioning task, which were both unaffected by genotype. Kal7(KO) female mice engaged in significantly more object exploration, both familiar and novel, than did wild-type females. E2 enhanced the acute locomotor response to cocaine, with no significant effect of genotype. Similar to Kal7(KO) males, Kal7(KO) females had decreased levels of N-methyl-d-aspartate receptor 2B in hippocampal PSD fractions with no effect of E2 treatment. The differing behavioral effects of Kal7 ablation in female and male mice may offer insight into the molecular underpinnings of these differences. PMID:22989522

  4. A new strategy based on SmRho protein loaded chitosan nanoparticles as a candidate oral vaccine against schistosomiasis.

    PubMed

    Oliveira, Carolina R; Rezende, Cíntia M F; Silva, Marina R; Pêgo, Ana Paula; Borges, Olga; Goes, Alfredo M

    2012-01-01

    Schistosomiasis is one of the most important neglected tropical diseases and an effective control is unlikely in the absence of improved sanitation and vaccination. A new approach of oral vaccination with alginate coated chitosan nanoparticles appears interesting because their great stability and the ease of target accessibility, besides of chitosan and alginate immunostimulatory properties. Here we propose a candidate vaccine based on the combination of chitosan-based nanoparticles containing the antigen SmRho and coated with sodium alginate. Our results showed an efficient performance of protein loading of nanoparticles before and after coating with alginate. Characterization of the resulting nanoparticles reported a size around 430 nm and a negative zeta potential. In vitro release studies of protein showed great stability of coated nanoparticles in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Further in vivo studies was performed with different formulations of chitosan nanoparticles and it showed that oral immunization was not able to induce high levels of antibodies, otherwise intramuscular immunization induced high levels of both subtypes IgG1 and IgG2a SmRho specific antibodies. Mice immunized with nanoparticles associated to CpG showed significant modulation of granuloma reaction. Mice from all groups immunized orally with nanoparticles presented significant levels of protection against infection challenge with S. mansoni worms, suggesting an important role of chitosan in inducing a protective immune response. Finally, mice immunized with nanoparticles associated with the antigen SmRho plus CpG had 38% of the granuloma area reduced and also presented 48% of protection against of S. mansoni infection. Taken together, this results support this new strategy as an efficient delivery system and a potential vaccine against schistosomiasis.

  5. Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice.

    PubMed Central

    Zhou, X; Paulsson, G; Stemme, S; Hansson, G K

    1998-01-01

    Atherosclerosis is an inflammatory-fibrotic response to accumulation of cholesterol in the artery wall. In hypercholesterolemia, low density lipoproteins (LDL) accumulate and are oxidized to proinflammatory compounds in the arterial intima, leading to activation of endothelial cells, macrophages, and T lymphocytes. We have studied immune cell activation and the autoimmune response to oxidized LDL in atherosclerotic apo E-knockout mice. Autoantibodies to oxidized LDL exhibited subclass specificities indicative of T cell help, and the increase in antibody titers in peripheral blood was associated with increased numbers of cytokine-expressing T cells in the spleen. In addition to T cell-dependent antibodies, IgM antibodies to oxidized LDL were also increased in apo E-knockout mice. This suggests that both T cell-dependent and T cell-independent epitopes may be present on oxidized LDL. In moderate hypercholesterolemia, IgG antibodies were largely of the IgG2a isotype, suggesting that T cell help was provided by proinflammatory T helper (Th) 1 cells, which are prominent components of atherosclerotic lesions. In severe hypercholesterolemia induced by cholesterol feeding of apo E-knockout mice, a switch to Th2-dependent help was evident. It was associated with a loss of IFN-gamma-producing Th1 cells in the spleen, whereas IL-4-producing Th2 cells were more resistant to hypercholesterolemia. IFN-gamma but not IL-4 mRNA was detected in atherosclerotic lesions of moderately hypercholesterolemic apo E-knockout mice, but IL-4 mRNA appeared in the lesions when mice were made severely hypercholesterolemic by cholesterol feeding. These data show that IFN-gamma-producing Th1 cells infiltrate atherosclerotic lesions and provide T cell help for autoimmune responses to oxidized LDL in apo E-knockout mice. However, severe hypercholesterolemia is associated with a switch from Th1 to Th2, which results not only in the formation of IgG1 autoantibodies to oxidized LDL, but also in the

  6. Anti-IL-23 receptor monoclonal antibody prevents CD4+ T cell-mediated colitis in association with decreased systemic Th1 and Th17 responses.

    PubMed

    Imamura, Emiko; Taguchi, Katsunari; Sasaki-Iwaoka, Haruna; Kubo, Satoshi; Furukawa, Shigetada; Morokata, Tatsuaki

    2018-04-05

    Experimental colitis studies, including T cell-mediated colitis, indicate that IL-23 rather than IL-12 orchestrates intestinal inflammation in inflammatory bowel disease (IBD). Previous studies have identified the roles of IL-12 and IL-23 using mice deficient for their specific subunits, p35 and p19, respectively. However, these studies do not completely reflect the difference in roles between IL-12 and IL-23, especially since the discovery of novel IL-12 family cytokines, which also include p35 or p19 subunits. Here, to clarify the contribution of IL-12 and IL-23 in T cell-mediated colitis, we compared the efficacy of a monoclonal antibody (mAb) to an IL-23-specific receptor subunit with that of an anti-IL-12/23p40 mAb in a naive CD4 + T cell transfer model of experimental colitis, which is associated with enhanced Th1 and Th17 responses. Both antibodies almost completely prevented the development of colitis and showed reduced associated histological changes, including mucosal hyperplasia, infiltration of inflammatory cells and loss of goblet cells. The anti-IL-23 receptor mAb inhibited not only the systemic Th17-response but also the Th1-response, both of which were up-regulated in this model. These results suggest that IL-23, but not IL-12, signaling is critical for the development of colitis. Blockade of IL-23 signaling is a promising therapeutic approach for IBD. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. mCLCA3 Modulates IL-17 and CXCL-1 Induction and Leukocyte Recruitment in Murine Staphylococcus aureus Pneumonia

    PubMed Central

    Dietert, Kristina; Reppe, Katrin; Mundhenk, Lars; Witzenrath, Martin; Gruber, Achim D.

    2014-01-01

    The human hCLCA1 and its murine ortholog mCLCA3 (calcium-activated chloride channel regulators) are exclusively expressed in mucus cells and linked to inflammatory airway diseases with increased mucus production, such as asthma, cystic fibrosis and chronic obstructive pulmonary disease. Both proteins have a known impact on the mucus cell metaplasia trait in these diseases. However, growing evidence points towards an additional role in innate immune responses. In the current study, we analyzed Staphylococcus aureus pneumonia, an established model to study pulmonary innate immunity, in mCLCA3-deficient and wild-type mice, focusing on the cellular and cytokine-driven innate inflammatory response. We compared clinical signs, bacterial clearance, leukocyte immigration and cytokine responses in the bronchoalveolar compartment, as well as pulmonary vascular permeability, histopathology, mucus cell number and mRNA expression levels of selected genes (mClca1 to 7, Muc5ac, Muc5b, Muc2, Cxcl-1, Cxcl-2, Il-17). Deficiency of mCLCA3 resulted in decreased neutrophilic infiltration into the bronchoalveolar space during bacterial infection. Only the cytokines IL-17 and the murine CXCL-8 homolog CXCL-1 were decreased on mRNA and protein levels during bacterial infection in mCLCA3-deficient mice compared to wild-type controls. However, no differences in clinical outcome, histopathology or mucus cell metaplasia were observed. We did not find evidence for regulation of any other CLCA homolog that would putatively compensate for the lack of mCLCA3. In conclusion, mCLCA3 appears to modulate leukocyte response via IL-17 and murine CXCL-8 homologs in acute Staphylococcus aureus pneumonia which is well in line with the proposed function of hCLCA1 as a signaling molecule acting on alveolar macrophages. PMID:25033194

  8. Magnolol Attenuates Concanavalin A-induced Hepatic Fibrosis, Inhibits CD4+ T Helper 17 (Th17) Cell Differentiation and Suppresses Hepatic Stellate Cell Activation: Blockade of Smad3/Smad4 Signalling.

    PubMed

    Zhang, Hongjun; Ju, Baoling; Zhang, Xiaoli; Zhu, Yanfei; Nie, Ying; Xu, Yuanhong; Lei, Qiuxia

    2017-06-01

    Magnolol is a pharmacological biphenolic compound extracted from Chinese herb Magnolia officinalis, which displays anti-inflammatory and antioxidant effects. This study was aimed at exploring the potential effect of magnolol on immune-related liver fibrosis. Herein, BALB/c mice were injected with concanavalin A (ConA, 8 mg/kg/week) up to 6 weeks to establish hepatic fibrosis, and magnolol (10, 20, 30 mg/kg/day) was given to these mice orally throughout the whole experiment. We found that magnolol preserved liver function and attenuated liver fibrotic injury in vivo. In response to ConA stimulation, the CD4 + T cells preferred to polarizing towards CD4 + T helper 17 (Th17) cells in liver. Magnolol was observed to inhibit Th17 cell differentiation in ConA-treated liver in addition to suppressing interleukin (IL)-17A generation. Hepatic stellate cells were activated in fibrotic liver as demonstrated by increased alpha smooth muscle actin (α-SMA) and desmin. More transforming growth factor (TGF)-β1 and activin A were secreted into the serum. Magnolol suppressed this abnormal HSC activation. Furthermore, the phosphorylation of Smad3 in its linker area (Thr179, Ser 204/208/213) was inhibited by magnolol. In vitro, the recombinant IL-17A plus TGF-β1 or activin A induced activation of human LX2 HSCs and promoted their collagen production. Smad3/Smad4 signalling pathway was activated in LX2 cells exposed to the fibrotic stimuli, as illustrated by the up-regulated phospho-Smad3 and the enhanced interaction between Smad3 and Smad4. These alterations were suppressed by magnolol. Collectively, our study reveals a novel antifibrotic effect of magnolol on Th17 cell-mediated fibrosis. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  9. Use of Synthetic Isoprenoids to Target Protein Prenylation and Rho GTPases in Breast Cancer Invasion

    PubMed Central

    Chen, Min; Knifley, Teresa; Subramanian, Thangaiah; Spielmann, H. Peter; O’Connor, Kathleen L.

    2014-01-01

    Dysregulation of Ras and Rho family small GTPases drives the invasion and metastasis of multiple cancers. For their biological functions, these GTPases require proper subcellular localization to cellular membranes, which is regulated by a series of post-translational modifications that result in either farnesylation or geranylgeranylation of the C-terminal CAAX motif. This concept provided the rationale for targeting farnesyltransferase (FTase) and geranylgeranyltransferases (GGTase) for cancer treatment. However, the resulting prenyl transferase inhibitors have not performed well in the clinic due to issues with alternative prenylation and toxicity. As an alternative, we have developed a unique class of potential anti-cancer therapeutics called Prenyl Function Inhibitors (PFIs), which are farnesol or geranyl-geraniol analogs that act as alternate substrates for FTase or GGTase. Here, we test the ability of our lead PFIs, anilinogeraniol (AGOH) and anilinofarnesol (AFOH), to block the invasion of breast cancer cells. We found that AGOH treatment effectively decreased invasion of MDA-MB-231 cells in a two-dimensional (2D) invasion assay at 100 µM while it blocked invasive growth in three-dimensional (3D) culture model at as little as 20 µM. Notably, the effect of AGOH on 3D invasive growth was phenocopied by electroporation of cells with C3 exotransferase. To determine if RhoA and RhoC were direct targets of AGOH, we performed Rho activity assays in MDA-MB-231 and MDA-MB-468 cells and found that AGOH blocked RhoA and RhoC activation in response to LPA and EGF stimulation. Notably, the geranylgeraniol analog AFOH was more potent than AGOH in inhibiting RhoA and RhoC activation and invasive growth. Interestingly, neither AGOH nor AFOH impacted 3D growth of MCF10A cells. Collectively, this study demonstrates that AGOH and AFOH dramatically inhibit breast cancer invasion, at least in part by blocking Rho function, thus, suggesting that targeting prenylation by using

  10. The NZM2410-derived lupus susceptibility locus Sle2c1 increases TH17 polarization and induces nephritis in Fas-deficient mice

    PubMed Central

    Xu, Zhiwei; Cuda, Carla M.; Croker, Byron P.; Morel, Laurence

    2010-01-01

    Objective Sle2 is a lupus susceptibility locus that has been linked toglomerulonephritis in the NZM2410mouse. Byitself, Sle2 does not induce any autoimmune pathology, but results into the accumulation of B1a cells. This study was designed to assess the contribution of Sle2 to autoimmune pathogenesis. Methods Sle2 or its sub-congenic intervals (Sle2a, Sle2b and Sle2c) were bred to Fas-deficient B6.lpr mice. Lymphoid phenotypes, focused on T cells, were assessed by flow cytometry, and histopathology was compared between cohorts of B6.Sle2.lpr congenics and B6.lpr mice aged up to 6 mo old. Results Sle2 synergized with lpr, resulting in a greatly accelerated lymphadenopathy that largely targeted T cells, and mapped to the Sle2c1 locus. This locus has been identified as the main contributor to B1a cell expansion. Further analyses showed that Sle2c1 expression skewed the differentiation and polarization of Fas-deficient T cells, with a reduction of the CD4+ CD25+ Foxp3+ regulatory T cell subset and an expansion of the TH17 cells. This was associated with a high level of T cell infiltrates that promoted severe nephritis and dermatitis in the B6.Sle2c1.lpr mice. Conclusion These results show that Sle2c1 contributes to lupus pathogenesis by affecting T cell differentiation in combination with other susceptibility loci such as lpr. The significance of the co-segregation of this phenotype and B1a cell expansion in Sle2c1-expressing mice for lupus pathogenesis is discussed. PMID:21360506

  11. Activated Rho Kinase Mediates Diabetes-Induced Elevation of Vascular Arginase Activation and Contributes to Impaired Corpora Cavernosa Relaxation: Possible Involvement of p38 MAPK Activation

    PubMed Central

    Nunes, Kenia P.; Yao, Lin; Liao, James K.; Webb, R. Clinton; Caldwell, Ruth B.; Caldwell, R. William

    2013-01-01

    Introduction Activated RhoA/Rho kinase (ROCK) has been implicated in diabetes-induced erectile dysfunction. Earlier studies have demonstrated involvement of ROCK pathway in the activation of arginase in endothelial cells. However, signaling pathways activated by ROCK in the penis remain unclear. Aim We tested whether ROCK and p38 MAPK are involved in the elevation of arginase activity and subsequent impairment of corpora cavernosal (CC) relaxation in diabetes. Methods Eight weeks after streptozotocin-induced diabetes, vascular functional studies, arginase activity assay, and protein expression of RhoA, ROCK, phospho-p38 MAPK, p38 MAPK, phospho-MYPT-1Thr850, MYPT-1 and arginase levels were assessed in CC tissues from nondiabetic wild type (WT), diabetic (D) WT (WT + D), partial ROCK 2+/− knockout (KO), and ROCK 2+/− KO + D mice. Main Outcome Measures The expression of RhoA, ROCK 1 and 2, phosphorylation of MYPT-1Thr850 and p38 MAPK, arginase activity/expression, endothelial- and nitrergic-dependent relaxation of CC was assayed. Results Diabetes significantly reduced maximum relaxation (Emax) to both endothelium-dependent acetylcholine (WT + D: Emax; 61 ± 4% vs. WT: Emax; 75 ± 2%) and nitrergic nerve stimulation. These effects were associated with increased expression of active RhoA, ROCK 2, phospho-MYPT-1Thr850, phospho-p38 MAPK, arginase II, and activity of corporal arginase (1.6-fold) in WT diabetic CC. However, this impairment in CC of WT + D mice was absent in heterozygous ROCK 2+/− KO + D mice for acetylcholine (Emax: 80 ± 5%) and attenuated for nitrergic nerve-induced relaxation. CC of ROCK 2+/− KO + D mice showed much less ROCK activity, did not exhibit p38 MAPK activation, and had reduced arginase activity and arginase II expression. These findings indicate that ROCK 2 mediates diabetes-induced elevation of arginase activity. Additionally, pretreatment of WT diabetic CC with inhibitors of arginase (ABH) or p38 MAPK (SB203580) partially prevented

  12. Myc requires RhoA/SRF to reprogram glutamine metabolism.

    PubMed

    Haikala, Heidi M; Marques, Elsa; Turunen, Mikko; Klefström, Juha

    2018-05-04

    RhoA regulates actin cytoskeleton but recent evidence suggest a role for this conserved Rho GTPase also in other cellular processes, including transcriptional control of cell proliferation and survival. Interestingy, loss of RhoA is synthetic lethal with oncogenic Myc, a master transcription factor that turns on anabolic metabolism to promote cell growth in many cancers. We show evidence indicating that the synthetic lethal interaction between RhoA loss and Myc arises from deficiency in glutamine utilization, resulting from impaired co-regulation of glutaminase expression and anaplerosis by Myc and RhoA - serum response factor (SRF) pathway. The results suggest metabolic coordination between Myc and RhoA/SRF in sustaining cancer cell viability and indicate RhoA/SRF as a potential vulnerability in cancer cells for therapeutic targeting.

  13. REVISITING {rho}{sup 1} CANCRI e: A NEW MASS DETERMINATION OF THE TRANSITING SUPER-EARTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endl, Michael; Cochran, William D.; MacQueen, Phillip J.

    2012-11-01

    We present a mass determination for the transiting super-Earth {rho}{sup 1} Cancri e based on nearly 700 precise radial velocity (RV) measurements. This extensive RV data set consists of data collected by the McDonald Observatory planet search and published data from Lick and Keck observatories. We obtained 212 RV measurements with the Tull Coude Spectrograph at the Harlan J. Smith 2.7 m Telescope and combined them with a new Doppler reduction of the 131 spectra that we have taken in 2003-2004 with the High-Resolution Spectrograph (HRS) at the Hobby-Eberly Telescope for the original discovery of {rho}{sup 1} Cancri e. Usingmore » this large data set we obtain a five-planet Keplerian orbital solution for the system and measure an RV semi-amplitude of K = 6.29 {+-} 0.21 m s{sup -1} for {rho}{sup 1} Cnc e and determine a mass of 8.37 {+-} 0.38 M {sub Circled-Plus }. The uncertainty in mass is thus less than 5%. This planet was previously found to transit its parent star, which allowed them to estimate its radius. Combined with the latest radius estimate from Gillon et al., we obtain a mean density of {rho} = 4.50 {+-} 0.20 g cm{sup -3}. The location of {rho}{sup 1} Cnc e in the mass-radius diagram suggests that the planet contains a significant amount of volatiles, possibly a water-rich envelope surrounding a rocky core.« less

  14. RhoA/rho kinase signaling reduces connexin43 expression in high glucose-treated glomerular mesangial cells with zonula occludens-1 involvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xi; Department of Pharmaceutical Engineering, Ocean College, Hainan University, Haikou 570228; Chen, Cheng

    RhoA/Rho kinase (ROCK) signaling has been suggested to be involved in diabetic nephropathy (DN) pathogenesis. Altered expression of connexin43 (Cx43) has been found in kidneys of diabetic animals. Both of them have been found to regulate nuclear factor kappa-B (NF-κB) activation in high glucose-treated glomerular mesangial cells (GMCs). The aim of this study was to investigate the relationship between RhoA/ROCK signaling and Cx43 in the DN pathogenesis. We found that upregulation of Cx43 expression inhibited NF-κB p65 nuclear translocation induced by RhoA/ROCK signaling in GMCs. Inhibition of RhoA/ROCK signaling attenuated the high glucose-induced decrease in Cx43. F-actin accumulation and anmore » enhanced interaction between zonula occludens-1 (ZO-1) and Cx43 were observed in high glucose-treated GMCs. ZO-1 depletion or disruption of F-actin formation also inhibited the reduction in Cx43 protein levels induced by high glucose. In conclusion, activated RhoA/ROCK signaling induces Cx43 degradation in GMCs cultured in high glucose, depending on F-actin regulation. Increased F-actin induced by RhoA/ROCK signaling promotes the association between ZO-1 and Cx43, which possibly triggered Cx43 endocytosis, a mechanism of NF-κB activation in high glucose-treated GMCs. - Highlights: • RhoA/ROCK signaling induces Cx43 degradation in GMCs. • F-actin and ZO-1 have functions in the regulation of Cx43 by RhoA/ROCK signaling. • We reveal the relationship between RhoA/ROCK and Cx43 in the activation of NF-κB.« less

  15. In vitro generated Th17 cells support the expansion and phenotypic stability of CD4(+)Foxp3(+) regulatory T cells in vivo.

    PubMed

    Zhou, Qiong; Hu, Ya; Howard, O M Zack; Oppenheim, Joost J; Chen, Xin

    2014-01-01

    CD4(+) T cells stimulate immune responses through distinct patterns of cytokine produced by Th1, Th2 or Th17 cells, or inhibit immune responses through Foxp3-expressing regulatory T cells (Tregs). Paradoxically, effector T cells were recently shown to activate Tregs, however, it remains unclear which Th subset is responsible for this effect. In this study, we found that Th17 cells expressed the highest levels of TNF among in vitro generated Th subsets, and most potently promoted expansion and stabilized Foxp3 expression by Tregs when co-transferred into Rag1(-/-) mice. Both TNF and IL-2 produced by Th17 cells contributed to this effect. The stimulatory effect of Th17 cells on Tregs was largely abolished when co-transferred with TNFR2-deficient Tregs. Furthermore, Tregs deficient in TNFR2 also supported a much lower production of IL-17A and TNF expression by co-transferred Th17 cells. Thus, our data indicate that the TNF-TNFR2 pathway plays a crucial role in the reciprocal stimulatory effect of Th17 cells and Tregs. This bidirectional interaction should be taken into account when designing therapy targeting Th17 cells, Tregs, TNF and TNFR2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Vitamin A supplementation leads to increases in regulatory CD4+Foxp3+LAP+ T cells in mice.

    PubMed

    Medeiros, Samara R; Pinheiro-Rosa, Natalia; Lemos, Luisa; Loli, Flavia G; Pereira, Alline G; Santiago, Andrezza F; Pinter, Ester C; Alves, Andrea C; Oliveira, Jamil S; Cara, Denise C; Maioli, Tatiani U; Faria, Ana Maria C

    2015-10-01

    Dietary compounds, including micronutrients such as vitamin A and its metabolite retinoic acid, directly influence the development and function of the immune system. In this study, we show that either dietary deficiency of or supplementation with vitamin A had immunologic effects in mice that were fed these diets during their development (for 8 wk during the postweaning period). Deficient mice presented higher levels of interferon-γ, interleukin (IL)-6, transforming growth factor-β, IL-17, and IL-10 in the gut-associated lymphoid tissues and draining lymph nodes, indicating a proinflammatory shift in the gut mucosa. Serum immunoglobulin G levels also were elevated in these mice. Conversely, supplemented mice showed higher frequencies of CD4+Foxp3+LAP+ regulatory T cells in gut lymphoid tissues and spleen, suggesting that vitamin A supplementation in the diet may be beneficial in pathologic situations such as inflammatory bowel diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Andes Virus Nucleocapsid Protein Directs Basal Endothelial Cell Permeability by Activating RhoA

    PubMed Central

    Gorbunova, Elena E.; Simons, Matthew J.; Gavrilovskaya, Irina N.

    2016-01-01

    ABSTRACT Andes virus (ANDV) predominantly infects microvascular endothelial cells (MECs) and nonlytically causes an acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). In HPS patients, virtually every pulmonary MEC is infected, MECs are enlarged, and infection results in vascular leakage and highly lethal pulmonary edema. We observed that MECs infected with the ANDV hantavirus or expressing the ANDV nucleocapsid (N) protein showed increased size and permeability by activating the Rheb and RhoA GTPases. Expression of ANDV N in MECs increased cell size by preventing tuberous sclerosis complex (TSC) repression of Rheb-mTOR-pS6K. N selectively bound the TSC2 N terminus (1 to 1403) within a complex containing TSC2/TSC1/TBC1D7, and endogenous TSC2 reciprocally coprecipitated N protein from ANDV-infected MECs. TSCs normally restrict RhoA-induced MEC permeability, and we found that ANDV infection or N protein expression constitutively activated RhoA. This suggests that the ANDV N protein alone is sufficient to activate signaling pathways that control MEC size and permeability. Further, RhoA small interfering RNA, dominant-negative RhoA(N19), and the RhoA/Rho kinase inhibitors fasudil and Y27632 dramatically reduced the permeability of ANDV-infected MECs by 80 to 90%. Fasudil also reduced the bradykinin-directed permeability of ANDV and Hantaan virus-infected MECs to control levels. These findings demonstrate that ANDV activation of RhoA causes MEC permeability and reveal a potential edemagenic mechanism for ANDV to constitutively inhibit the basal barrier integrity of infected MECs. The central importance of RhoA activation in MEC permeability further suggests therapeutically targeting RhoA, TSCs, and Rac1 as potential means of resolving capillary leakage during hantavirus infections. PMID:27795403

  18. Isochoric p-{rho}-T measurements on 1,1-difluoroethane (R152a) from 158 to 400 K and 1,1,1-trifluoroethane (R143a) from 166 to 400 K at pressures to 35 MPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magee, J.W.

    1998-09-01

    The p-{rho}-T relationships have been measured for 1,1-difluoroethane (R152a) and 1,1,1-trifluoroethane (R143a) by an isochoric method with gravimetric determinations of the amount of substance. Temperatures ranged from 158 to 400K for R152a and from 166 to 400 K for R143a, while pressures were up to 35 MPa. Measurements were conducted on compressed liquid samples. Determinations of saturated liquid densities were made by extrapolating each isochore to the vapor pressure, and determining the temperature and density at the intersection. Published p-{rho}-T data are in good agreement with this study. For the p-{rho}-T apparatus, the uncertainty of the temperature is {+-}0.03 K,more » and for pressure it is {+-}0.01% at p > 3 MPa and {+-}0.05% at p > 3 MPa and {+-}0.05% at p < 3MPa. The principal source of uncertainty is the cell volume ({approximately}28.5 cm{sup 3}), which has a standard uncertainty of {+-}0.003 cm{sup 3}. When all components of experimental uncertainty are considered, the expanded relative uncertainty (with a coverage factor k = 2 and thus a two-standard deviation estimate) of the density measurement is estimated to be {+-}0.05%.« less

  19. γδ T-cell-deficient mice show alterations in mucin expression, glycosylation, and goblet cells but maintain an intact mucus layer

    PubMed Central

    Kober, Olivia I.; Ahl, David; Pin, Carmen; Holm, Lena; Carding, Simon R.

    2014-01-01

    Intestinal homeostasis is maintained by a hierarchy of immune defenses acting in concert to minimize contact between luminal microorganisms and the intestinal epithelial cell surface. The intestinal mucus layer, covering the gastrointestinal tract epithelial cells, contributes to mucosal homeostasis by limiting bacterial invasion. In this study, we used γδ T-cell-deficient (TCRδ−/−) mice to examine whether and how γδ T-cells modulate the properties of the intestinal mucus layer. Increased susceptibility of TCRδ−/− mice to dextran sodium sulfate (DSS)-induced colitis is associated with a reduced number of goblet cells. Alterations in the number of goblet cells and crypt lengths were observed in the small intestine and colon of TCRδ−/− mice compared with C57BL/6 wild-type (WT) mice. Addition of keratinocyte growth factor to small intestinal organoid cultures from TCRδ−/− mice showed a marked increase in crypt growth and in both goblet cell number and redistribution along the crypts. There was no apparent difference in the thickness or organization of the mucus layer between TCRδ−/− and WT mice, as measured in vivo. However, γδ T-cell deficiency led to reduced sialylated mucins in association with increased gene expression of gel-secreting Muc2 and membrane-bound mucins, including Muc13 and Muc17. Collectively, these data provide evidence that γδ T cells play an important role in the maintenance of mucosal homeostasis by regulating mucin expression and promoting goblet cell function in the small intestine. PMID:24503767

  20. A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex.

    PubMed

    Hwang, Jae-Ung; Vernoud, Vanessa; Szumlanski, Amy; Nielsen, Erik; Yang, Zhenbiao

    2008-12-23

    Highly elongated eukaryotic cells (e.g., neuronal axons, fungal hyphae, and pollen tubes) are generated through continuous apically restricted growth (tip growth), which universally requires tip-localized Rho GTPases. We used the oscillating pollen tube as a model system to determine the function and regulation of Rho GTPases in tip growth. Our previous work showed that the spatiotemporal dynamics of the apical cap of the activated Rho-like GTPase from Plant 1 (ROP1) are critical for tip growth in pollen tubes. However, the underlying mechanism for the generation and maintenance of this dynamic apical cap is poorly understood. A screen for mutations that enhance ROP1-overexpression-induced depolarization of pollen-tube growth identified REN1 (ROP1 enhancer 1) in Arabidopsis, whose null mutations turn elongated pollen tubes into bulbous cells. REN1 encodes a novel Rho GTPase-activating protein (RhoGAP) required for restricting the ROP1 activity to the pollen-tube tip. REN1 was localized to exocytic vesicles accumulated in the pollen-tube apex, as well as to the apical plasma membrane at the site of ROP1 activation. The apical localization of REN1 and its function in controlling growth polarity was compromised by disruption of ROP1-dependent F-actin and vesicular trafficking, which indicates that REN1 targeting and function is regulated by ROP1 downstream signaling. Our findings suggest that the REN1 RhoGAP controls a negative-feedback-based global inhibition of ROP1. This function provides a critical self-organizing mechanism, by which ROP signaling is spatially limited to the growth site and temporally oscillates during continuous tip growth. Similar spatiotemporal control of Rho GTPase signaling may also play an important role in cell-polarity control in other systems, including tip growth in fungi and cell movement in animals.

  1. Effective adoptive transfer of haploidentical tumor-specific T cells in B16-melanoma bearing mice.

    PubMed

    Cui, Nai-peng; Xie, Shao-jian; Han, Jin-sheng; Ma, Zhen-feng; Chen, Bao-ping; Cai, Jian-hui

    2012-03-01

    Adoptive transfer of allogeneic tumor-specific T cells often results in severe graft-versus-host disease (GVHD). Here, we sought to maximize graft-versus-tumor and minimize GVHD by using haploidentical T cells in pre-irradiated B16-melanoma bearing mice. C57BL/6 mice bearing B16-melanoma tumors were irradiated with 0, 5, or 7 Gy total body irradiation (TBI), or 7 Gy TBI plus bone marrow transplantation. Tumor areas were measured every 3 days to assess the influence of irradiation treatment on tumor regression. B16-melanoma bearing mice were irradiated with 7 Gy TBI; sera and spleens were harvested at days 1, 3, 5, 7, 9, 11, and 13 after irradiation. White blood cell levels were measured and transforming growth factor β1 (TGF-b1) and interleukin 10 (IL-10) levels in serum were detected using enzyme-linked immunosorbent assay (ELISA) kits. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry were performed to test TGF-b1, IL-10 and Foxp3 mRNA levels and the proportion of CD4+CD25+Foxp3+ T-regulatory cells (Tregs) in spleens. B16-melanoma bearing C57BL/6 mice were irradiated with 7 Gy TBI followed by syngeneic (Syn1/Syn2) or haploidentical (Hap1/Hap2), dendritic cell-induced cytotoxic T lymphocytes (DC-CTLs) treatment, tumor areas and system GVHD were observed every 3 days. Mice were killed 21 days after the DC-CTLs adoptive transfer; histologic analyses of eyes, skin, liver, lungs, and intestine were then performed. Irradiation with 7 Gy TBI on the B16-melanoma-bearing mice did not influence tumor regression compared to the control group; however, it down-regulated the proportion of Tregs in spleens and the TGF-b1 and IL-10 levels in sera and spleens, suggesting inhibition of autoimmunity and intervention of tumor microenvironment. Adoptive transfer of haploidentical DC-CTLs significantly inhibited B16-melanoma growth. GVHD assessment and histology analysis showed no significant difference among the groups. Adoptive transfer of

  2. Effects of a Rhodiola rosea L. extract on the acquisition, expression, extinction, and reinstatement of morphine-induced conditioned place preference in mice.

    PubMed

    Mattioli, Laura; Titomanlio, Federica; Perfumi, Marina

    2012-05-01

    Opioid addiction is a chronic, recurrent brain disease that is characterised by compulsive drug seeking and a high rate of relapse even after long periods of abstinence. Prevention of relapse is the primary goal of addiction treatment and is still the major limitation in drug therapy. The present study investigated the effects of a Rhodiola rosea L. hydroalcoholic extract (RHO), a well-known traditional oriental medicine, on establishment and reinstatement of morphine-induced conditioned place preference (CPP) in mice. CPP was induced by intraperitoneal injection of morphine (10 mg/kg) as an 8-day conditioning schedule. The effects of RHO on the rewarding properties of morphine were tested in mice receiving oral administration of RHO (10, 15, and 20 mg/kg) 60 min prior to each morphine injection (acquisition) or prior to the CPP test on day 9 (expression). Once established, CPP was extinguished by repeated testing, during which conditioned mice were injected daily with different doses of RHO. Finally, the efficacy of RHO in blocking reinstatement of CPP provoked by priming injections and physical stress was also evaluated. RHO administration showed dose dependency for prevention of establishment of CPP and was effective in facilitating extinction of morphine-induced CPP. RHO suppressed both priming- and stress-induced reinstatement of CPP in a dose-dependent manner. In conclusion, as RHO was effective for reducing craving and vulnerability to relapse, it might be a very effective natural remedy for the treatment of opioid addiction.

  3. [99mTc-octreotide receptor scintigraphy in NCI-H446 small cell lung cancer nude mice model].

    PubMed

    Li, Chao; Zuo, Shuyao; Wang, Xufu; Liu, Xinfeng; Wang, Guoming; Wu, Fengyu

    2015-01-01

    For highly aggressive small cell lung cancer (SCLC), early diagnosis is important for its prognosis, but the current inspection methods are more limited, with poor specificity of the traditional imaging methods, and the high cost of PET/CT, difficult to popularization and application. SCLC is kind of neuroendocrine tumors, high expression of somatostatin receptors, which is the cornerstone of its early molecular imaging diagnosis. The aim of this study is to observe the biodistribution and metabolism of 99mTc-octreotide in normal and the human SCLC bearing nude mice. Dynamic and static scintigraphy at 0.5 h, 2 h, 3 h, 4 h were performed in both normal and tumor bearing nude mice after intravenous injection of 99mTc-octreotide. The technique of drawing region of interest (ROI) was used to obtain the averaged pixel counts and the activity-time (A-T) curve of brain, heart, lung, liver, kidney, tumor, respectively. ① The biodistribution study in normal nude mice showed highest uptake in kidney and liver, lower in lung and heart, lowest in brain. Most 99mTc-octreotide was excreted via kidney. ② All tumors were displayed clearly at 3 h postinjection of 99mTc-octreotide. The averaged T/N ratio at 0.5 h, 2 h, 3 h, 4 h postinjection of 99mTc-octreotide was 1.163 ± 0.03, 2.08 ± 0.12, 3.03 ± 0.23, 2.689 ± 0.31, respectively (F=51.69, P<0.000,1). The radioactivity of tumor was lower than liver, and similar with the lung. The curve of tumor showed a radioactivity peak at 2 min-3 min postinjection. 99mTc-octreotide receptor imaging on nude mice bearing SCLC shares high positive rate, especially at 3 h postinjection.

  4. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Min Sook; Woo, Min-Yeong; Department of Biomedical Sciences, The Graduate School, Ajou University

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with themore » WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.« less

  5. Selective Impairment of TH17-Differentiation and Protection against Autoimmune Arthritis after Overexpression of BCL2A1 in T Lymphocytes.

    PubMed

    Iglesias, Marcos; Augustin, Juan Jesús; Alvarez, Pilar; Santiuste, Inés; Postigo, Jorge; Merino, Jesús; Merino, Ramón

    2016-01-01

    The inhibition of apoptotic cell death in T cells through the dysregulated expression of BCL2 family members has been associated with the protection against the development of different autoimmune diseases. However, multiple mechanisms were proposed to be responsible for such protective effect. The purpose of this study was to explore the effect of the T-cell overexpression of BCL2A1, an anti-apoptotic BCL2 family member without an effect on cell cycle progression, in the development of collagen-induced arthritis. Our results demonstrated an attenuated development of arthritis in these transgenic mice. The protective effect was unrelated to the suppressive activity of regulatory T cells but it was associated with a defective activation of p38 mitogen-activated protein kinase in CD4+ cells after in vitro TCR stimulation. In addition, the in vitro and in vivo TH17 differentiation were impaired in BCL2A1 transgenic mice. Taken together, we demonstrated here a previously unknown role for BCL2A1 controlling the activation of CD4+ cells and their differentiation into pathogenic proinflammatory TH17 cells and identified BCL2A1 as a potential target in the control of autoimmune/inflammatory diseases.

  6. Comprehensive behavioral study of mGluR3 knockout mice: implication in schizophrenia related endophenotypes

    PubMed Central

    2014-01-01

    Background We previously performed systematic association studies of glutamate receptor gene family members with schizophrenia, and found positive associations of polymorphisms in the GRM3 (a gene of metabotropic glutamate receptor 3: mGluR3) with the disorder. Physiological roles of GRM3 in brain functions and its functional roles in the pathogenesis of schizophrenia remain to be resolved. Results We generated mGluR3 knockout (KO) mice and conducted comprehensive behavioral analyses. KO mice showed hyperactivity in the open field, light/dark transition, and 24-hour home cage monitoring tests, impaired reference memory for stressful events in the Porsolt forced swim test, impaired contextual memory in cued and contextual fear conditioning test, and impaired working memory in the T-Maze forced alternation task test. Hyperactivity and impaired working memory are known as endophenotypes of schizophrenia. We examined long-term synaptic plasticity by assessing long-term potentiation (LTP) in the CA1 region in the hippocampi of KO and wild-type (WT) mice. We observed no differences in the amplitude of LTP between the two genotypes, suggesting that mGluR3 is not essential for LTP in the CA1 region of the mouse hippocampus. As hyperactivity is typically associated with increased dopaminergic transmission, we performed in vivo microdialysis measurements of extracellular dopamine in the nucleus accumbens of KO and WT mice. We observed enhancements in the methamphetamine (MAP)-induced release of dopamine in KO mice. Conclusions These results demonstrate that a disturbance in the glutamate-dopamine interaction may be involved in the pathophysiology of schizophrenia-like behavior, such as hyperactivity in mGluR3 KO mice. PMID:24758191

  7. Induction of alternative proinflammatory cytokines accounts for sustained psoriasiform skin inflammation in IL-17C+IL-6KO mice

    PubMed Central

    Fritz, Yi; Klenotic, Philip A.; Swindell, William R.; Yin, ZhiQiang; Groft, Sarah G.; Zhang, Li; Baliwag, Jaymie; Camhi, Maya I.; Diaconu, Doina; Young, Andrew B.; Foster, Alexander M.; Johnston, Andrew; Gudjonsson, Johann E.; McCormick, Thomas S.; Ward, Nicole L.

    2016-01-01

    IL-6 inhibition has been unsuccessful in treating psoriasis, despite high levels of tissue and serum IL-6 in patients. Additionally, de novo psoriasis onset has been reported following IL-6 blockade in rheumatoid arthritis patients. To explore mechanisms underlying these clinical observations, we backcrossed an established psoriasiform mouse model (IL-17C+ mice) with IL-6 deficient mice (IL-17C+KO) and examined the cutaneous phenotype. IL-17C+KO mice initially exhibited decreased skin inflammation, however this decrease was transient and reversed rapidly, concomitant with increases in skin Tnf, Il36α/β/γ, Il24, Epgn and S100a8/a9 to levels higher than those found in IL-17C+ mice. Comparison of IL-17C+ and IL-17C+KO mouse skin transcriptomes with that of human psoriasis skin, revealed significant correlation among transcripts of psoriasis patient skin and IL-17C+KO mouse skin, and confirmed an exacerbation of the inflammatory signature in IL-17C+KO mice that aligns closely with human psoriasis. Transcriptional analyses of IL-17C+ and IL-17C+KO primary keratinocytes confirmed increased expression of proinflammatory molecules, suggesting that in the absence of IL-6, keratinocytes increase production of numerous additional proinflammatory cytokines. These preclinical findings may provide insight into why arthritis patients being treated with IL-6 inhibitors develop new onset psoriasis and why IL-6 blockade for the treatment of psoriasis has not been clinically effective. PMID:27984037

  8. Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function.

    PubMed

    Schmucker, Christine; Seeliger, Mathias; Humphries, Pete; Biel, Martin; Schaeffel, Frank

    2005-01-01

    The mouse eye has become an important model in vision research. However, it is not known how visual acuity changes with luminance. Therefore, grating acuity of mice was measured at different luminances in an automated optomotor paradigm. Furthermore, mutant mice lacking either rods (RHO-/- and CNGB1-/-) or cones (CNGA3-/-), or both, were studied to determine the rod and cone contribution to visual acuity. Freely ranging individual mice were automatically tracked at a 25-Hz sampling rate with a self-programmed video system in a large rotating optomotor drum. The drum had a square-wave grating inside with adjustable spatial frequency. The angular speed of the mice with respect to the center of the drum and the angular orientation of the snout-tail body axis were analyzed. In addition, the motor activity of the wild-type mice was recorded at different luminances. The optomotor drum provided reliable data on visual input to the mouse's behavior and was convenient to use, since the experimenter's had only to place the mice individually in a Perspex cylinder. Optomotor grating acuity of the wild-type mice was limited to 0.3 to 0.4 cyc/deg. Maximum optomotor responses were obtained at 0.1 to 0.2 cyc/deg. The importance of visual input declined monotonically with decreasing luminance (30 cd/m2, 100%; 0.1 cd/m2, 76.4%; 0.005 cd/m2, 45.9%; and darkness, -9%). Mice lacking functional rods were able to resolve gratings up to 0.1 cyc/deg at 30 cd/m2. Surprisingly, mice lacking functional cones had an optomotor acuity that was similar to the wild-type. Double-knockout mice without rods and cones had no detectable grating acuity. Because the visual system of the mouse is more responsive at bright luminances, experiments in which visual input is important should be performed in photopic conditions (30 cd/m2 or even more). Apparently, spatial vision is governed by the rod system, which is not saturated in the mesopic or low photopic range. Mice lacking both rods and cones have no

  9. Comprehensive analysis of T cell epitope discovery strategies using 17DD yellow fever virus structural proteins and BALB/c (H2d) mice model.

    PubMed

    Maciel, Milton; Kellathur, Srinivasan N; Chikhlikar, Pryia; Dhalia, Rafael; Sidney, John; Sette, Alessandro; August, Thomas J; Marques, Ernesto T A

    2008-08-15

    Immunomics research uses in silico epitope prediction, as well as in vivo and in vitro approaches. We inoculated BALB/c (H2d) mice with 17DD yellow fever vaccine to investigate the correlations between approaches used for epitope discovery: ELISPOT assays, binding assays, and prediction software. Our results showed a good agreement between ELISPOT and binding assays, which seemed to correlate with the protein immunogenicity. PREDBALB/c prediction software partially agreed with the ELISPOT and binding assay results, but presented low specificity. The use of prediction software to exclude peptides containing no epitopes, followed by high throughput screening of the remaining peptides by ELISPOT, and the use of MHC-biding assays to characterize the MHC restrictions demonstrated to be an efficient strategy. The results allowed the characterization of 2 MHC class I and 17 class II epitopes in the envelope protein of the YF virus in BALB/c (H2d) mice.

  10. T cell source of type 1 cytokines determines illness patterns in respiratory syncytial virus-infected mice.

    PubMed Central

    Tang, Y. W.; Graham, B. S.

    1997-01-01

    Manipulation of the cytokine microenvironment at the time of vaccination can influence immune responses to remote challenge, providing a strategy to study the molecular pathogenesis of respiratory syncytial virus (RSV) vaccine-enhanced disease in the mouse model. Although treatment with antibody against IL-4 or recombinant IL-12 (rIL-12) at the time of formalin-inactivated RSV vaccination induced a similar shift in the pattern of cytokine mRNA expression upon live virus challenge, anti-IL-4 treated mice had increased CD8+ cytotoxic T lymphocyte activity and reduced illness compared with rIL-12-treated mice. To define effector mechanisms responsible for these patterns, CD4+ and/or CD8+ T lymphocytes were selectively depleted in vivo at the time of RSV challenge. In rIL-12-treated mice, CD4+ lymphocytes made the largest contribution to IFN-gamma mRNA, RSV clearance, and illness, while in anti-IL-4 treated mice, CD8+ lymphocytes were the major effector. The effector responsible for virus clearance also mediated illness, suggesting that efficiency of virus clearance determined disease expression. These results demonstrate that the phenotype of effector cells involved in the immune response to virus challenge may be a more important determinant of disease than patterns of cytokine expression classically assigned to Th1 and Th2 lymphocytes. PMID:9151790

  11. Dietary Omega-3 Fatty Acids Suppress Experimental Autoimmune Uveitis in Association with Inhibition of Th1 and Th17 Cell Function

    PubMed Central

    Shoda, Hiromi; Yanai, Ryoji; Yoshimura, Takeru; Nagai, Tomohiko; Kimura, Kazuhiro; Sobrin, Lucia; Connor, Kip M.; Sakoda, Yukimi; Tamada, Koji; Ikeda, Tsunehiko; Sonoda, Koh-Hei

    2015-01-01

    Omega (ω)–3 long-chain polyunsaturated fatty acids (LCPUFAs) inhibit the production of inflammatory mediators and thereby contribute to the regulation of inflammation. Experimental autoimmune uveitis (EAU) is a well-established animal model of autoimmune retinal inflammation. To investigate the potential effects of dietary intake of ω-3 LCPUFAs on uveitis, we examined the anti-inflammatory properties of these molecules in comparison with ω-6 LCPUFAs in a mouse EAU model. C57BL/6 mice were fed a diet containing ω-3 LCPUFAs or ω-6 LCPUFAs for 2 weeks before as well as after the induction of EAU by subcutaneous injection of a fragment of human interphotoreceptor retinoid-binding protein emulsified with complete Freund’s adjuvant. Both clinical and histological scores for uveitis were smaller for mice fed ω-3 LCPUFAs than for those fed ω-6 LCPUFAs. The concentrations of the T helper 1 (Th1) cytokine interferon-γ and the Th17 cytokine interleukin-17 in intraocular fluid as well as the production of these cytokines by lymph node cells were reduced for mice fed ω-3 LCPUFAs. Furthermore, the amounts of mRNAs for the Th1- and Th17-related transcription factors T-bet and RORγt, respectively, were reduced both in the retina and in lymph node cells of mice fed ω-3 LCPUFAs. Our results thus show that a diet enriched in ω-3 LCPUFAs suppressed uveitis in mice in association with inhibition of Th1 and Th17 cell function. PMID:26393358

  12. In vivo replication of T4 and T7 bacteriophages in germ-free mice colonized with Escherichia coli.

    PubMed

    Weiss, Marietta; Denou, Emmanuel; Bruttin, Anne; Serra-Moreno, Ruth; Dillmann, Marie-Lise; Brüssow, Harald

    2009-10-10

    The gut transit of T4 phages was studied in axenic mice mono-colonized with the non-pathogenic Escherichia coli strain K-12. Thirty minutes, 1 and 2 h after phage feeding, T4 phage had reached the jejunum, ileum and cecum, respectively. Phage was found in the lumen and was also associated with the mucosa. One day later no phage was detected in the feces. Compared to germ-free control animals, oral T4 phage led to a 300-fold higher fecal phage titer in mice mono-colonized with E. coli strain WG-5. The in vivo T4 phage replication was transient and reached peak fecal titers about 8 h after oral phage application followed by a rapid titer decrease over two days. Similar data were obtained in mice colonized with E. coli strain Nissle. In contrast, orally applied T7 phage experienced a massive and sustained in vivo replication in mice mono-colonized with E. coli strain WG-5 irrespective whether phage or E. coli host was applied first. T7 phage replication occurred mainly in the large intestine. High titers of T7 phage and high E. coli cell counts coexisted in the feces. The observation of only 20% T7 phage-resistant fecal E. coli colonies suggests a refuge model where phage-sensitive E. coli cells are physically or physiologically protected from phage infection in the gut. The difference between T7 and T4 with respect to gut replication might partly reflect their distinct in vitro capacity to replicate on slowly growing cells.

  13. Contribution of Rho kinase to the early phase of the calcium-contraction coupling in airway smooth muscle.

    PubMed

    Mbikou, Prisca; Fajmut, Ales; Brumen, Milan; Roux, Etienne

    2011-02-01

    We investigated theoretically and experimentally the role of Rho kinase (RhoK) in Ca(2+)-contraction coupling in rat airways. Isometric contraction was measured on tracheal, extrapulmonary and intrapulmonary bronchial rings. Intracellular [Ca(2+)] was recorded in freshly isolated tracheal myocytes. Stimulation by carbachol (0.3 and 10 μm) and 50 mm external KCl induced a short-time, Hill-shaped contraction obtained within 90 s, followed by a sustained or an additional delayed contraction. Responses of [Ca(2+)](i) to acetylcholine consisted in a fast peak followed by a plateau and, in 42% of the cells, superimposed Ca(2+) oscillations. The RhoK inhibitor Y27632 (10 μm) did not alter the [Ca(2+)](i) response. Whatever the agonist, Y27632 did not modify the basal tension but decreased the amplitude of the short-duration response, without altering the additional delayed contraction. The Myosin Light Chain Phosphatase (MLCP) inhibitor calyculin A increased the basal tension and abolished the effect of RhoK. KN93 (Ca(2+)-calmodulin-dependent protein kinase II inhibitor) and DIDS (inhibitor of Ca(2+)-activated Cl(-) channels) had no influence on the RhoK effect. We built a theoretical model of Ca(2+)-dependent active/inactive RhoK ratio and subsequent RhoK-dependent MLCP inactivation, which was further coupled with a four-state model of the contractile apparatus and Ca(2+)-dependent MLCK activation. The model explains the time course of the short-duration contraction and the role of RhoK by Ca(2+)-dependent activation of MLCK and RhoK, which inactivates MLCP. Oscillatory and non-oscillatory [Ca(2+)](i) responses result in a non-oscillatory contraction, the amplitude of which is encoded by the plateau value and oscillation frequency. In conclusion, Ca(2+)-dependent but CaMK II-independent RhoK activation contributes to the early phase of the contractile response via MLCP inhibition.

  14. Role of Melatonin in the Regulation of Differentiation of T Cells Producing Interleukin-17 (Th17).

    PubMed

    Kuklina, E M; Glebezdina, N S; Nekrasova, I V

    2016-03-01

    We studied the ability of melatonin in physiological and pharmacological concentrations to induce and/or regulate differentiation of T cells producing IL-17 (Th17). This hormone produced the opposite effect on CD4+T cells, which depended on their activation status. Melatonin induced the synthesis of IL-17A by intact T cells, but had little effect on activated cells. Melatonin in high (pharmacological) concentration decreased the intracellular expression of this cytokine under conditions of polyclonal activation. Melatonin had a dose-depended effect. Taking into the fact that Th17 cells play an important role in the immune defense, it can be suggested that the regulation of their activity by melatonin contributes to this process.

  15. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/ Rho kinase pathways targeted to lipid rafts.

    PubMed

    Burger, Dylan; Montezano, Augusto C; Nishigaki, Nobuhiro; He, Ying; Carter, Anthony; Touyz, Rhian M

    2011-08-01

    Circulating microparticles are increased in cardiovascular disease and may themselves promote oxidative stress and inflammation. Molecular mechanisms underlying their formation and signaling are unclear. We investigated the role of reactive oxygen species (ROS), Rho kinase, and lipid rafts in microparticle formation and examined their functional significance in endothelial cells (ECs). Microparticle formation from angiotensin II (Ang II)-stimulated ECs and apolipoprotein E(-/-) mice was assessed by annexin V or by CD144 staining and electron microscopy. Ang II promoted microparticle formation and increased EC O(2)(-) generation and Rho kinase activity. Ang II-stimulated effects were inhibited by irbesartan (Ang II receptor type I blocker) and fasudil (Rho kinase inhibitor). Methyl-β-cyclodextrin and nystatin, which disrupt lipid rafts/caveolae, blocked microparticle release. Functional responses, assessed in microparticle-stimulated ECs, revealed increased O(2)(-) production, enhanced vascular cell adhesion molecule/platelet-EC adhesion molecule expression, and augmented macrophage adhesion. Inhibition of epidermal growth factor receptor blocked the prooxidative and proinflammatory effects of microparticles. In vitro observations were confirmed in apolipoprotein E(-/-) mice, which displayed vascular inflammation and high levels of circulating endothelial microparticles, effects that were reduced by apocynin. We demonstrated direct actions of Ang II on endothelial microparticle release, mediated through NADPH oxidase, ROS, and Rho kinase targeted to lipid rafts. Microparticles themselves stimulated endothelial ROS formation and inflammatory responses. Our findings suggest a feedforward system whereby Ang II promotes EC injury through its own endothelial-derived microparticles.

  16. Attenuated EAN in TNF-α Deficient Mice Is Associated with an Altered Balance of M1/M2 Macrophages

    PubMed Central

    Zhang, Hong-Liang; Hassan, Mohammed Y.; Zheng, Xiang-Yu; Azimullah, Sheikh; Quezada, Hernan Concha; Amir, Naheed; Elwasila, Mohamed; Mix, Eilhard; Adem, Abdu; Zhu, Jie

    2012-01-01

    The role of tumor necrosis factor (TNF)-α and its receptors in neuroautoimmune and neuroinflammatory diseases has been controversial. On the basis of our previous studies, we hereby aimed to further clarify TNF-α’s mechanism of action and to explore the potential role of TNF-α receptor (TNFR)1 as a therapeutic target in experimental autoimmune neuritis (EAN). EAN was induced by immunization with P0 peptide 180–199 in TNF-α knockout (KO) mice and anti-TNFR1 antibodies were used to treat EAN. Particularly, the effects of TNF-α deficiency and TNFR1 blockade on macrophage functions were investigated. The onset of EAN in TNF-α KO mice was markedly later than that in wild type (WT) mice. From day 14 post immunization, the clinical signs of TNF-α KO mice were significantly milder than those of their WT counterparts. Further, we showed that the clinical severity of WT mice treated with anti-TNFR1 antibodies was less severe than that of the control WT mice receiving PBS. Nevertheless, no difference with regard to the clinical signs of EAN or inflammatory infiltration in cauda equina was seen between TNF-α KO and WT mice with EAN after blockade of TNFR1. Although TNF-α deficiency did not alter the proliferation of lymphocytes in response to either antigenic or mitogenic stimuli, it down-regulated the production of interleukin (IL)-12 and nitric oxide (NO), and enhanced the production of IL-10 in macrophages. Increased ratio of regulatory T cells (Tregs) and reduced production of interferon (IFN)-γ in cauda equina infiltrating cells, and elevated levels of IgG2b antibodies against P0 peptide 180–199 in sera were found in TNF-α KO mice with EAN. In conclusion, TNF-α deficiency attenuates EAN via altering the M1/M2 balance of macrophages. PMID:22666471

  17. Regulatory T cells decrease invariant natural killer T cell-mediated pregnancy loss in mice.

    PubMed

    Li, L; Tu, J; Jiang, Y; Zhou, J; Schust, D J

    2017-05-01

    Pregnancy loss is the commonest complication of pregnancy. The causes of pregnancy loss are poorly understood. It has been reported that stimulation of invariant natural killer T (iNKT) cells using α-galactosylceramide (αGC) induces pregnancy loss in mice. Here we investigated the mechanisms, especially the role of regulatory T (Treg) cells, in iNKT cell-mediated pregnancy loss. We found that injection of αGC rapidly induced fetal resorption, activated decidual iNKT cells, decreased the percentage of decidual Treg cells and their interleukin (IL)-10 and transforming growth factor (TGF)-β production, and upregulated the levels of interferon (IFN)-γ, tumor necrosis factor-α, IL-4, and IL-10 in serum. Adoptive transfer of iNKT cells from wild-type (WT) and IL-4 -/- mice but not IFN-γ -/- mice into αGC-treated iNKT cell-deficient Jα18 -/- mice restored αGC-induced pregnancy loss. Adoptive transfer of Treg cells downregulated α-GC-induced pregnancy loss in WT mice. Finally, co-culture with αGC-stimulated decidual iNKT cells decreased the production of IL-10 and TGF-β in decidual Treg cells and inhibited their suppressive activity. These findings suggest that activation of iNKT cells induces pregnancy loss in mice in an IFN-γ-dependent manner. In addition, inhibition of the function of decidual Treg cells has an important role in iNKT cell-mediated pregnancy loss.

  18. B cells regulate thymic CD8+T cell differentiation in lupus-prone mice.

    PubMed

    Xing, Chen; Zhu, Gaizhi; Xiao, He; Fang, Ying; Liu, Xiaoling; Han, Gencheng; Chen, Guojiang; Hou, Chunmei; Shen, Beifen; Li, Yan; Ma, Ning; Wang, Renxi

    2017-10-27

    Previous studies have shown that under normal physiological conditions thymic B cells play a critical function in T cell negative selection. We tested the effect of thymic B cells on thymic T-cell differentiation in autoimmune diseases including systemic lupus erythematosus (SLE). We found that thymic B cells and CD8 - CD4 + and CD4 - CD8 + T cells increased, whereas CD4 + CD8 + T cells decreased in lupus-prone mice. Once B cells were reduced, the change was reversed. Furthermore, we found that B cells blocked thymic immature single positive (ISP) CD4 - CD8 + CD3 lo/- RORγt - T cells progression into CD4 + CD8 + T cells. Interestingly, we found a novel population of thymic immature T cells (CD4 - CD8 + CD3 lo RORγt + ) that were induced into mature CD4 - CD8 + CD3 + RORγt + T cells by B cells in lupus-prone mice. Importantly, we found that IgG, produced by thymic B cells, played a critical role in the differentiation of thymic CD8 + ISP and mature RORγt + CD8 + T cells in lupus-prone mice. In conclusion, B cells blocked the differentiation from thymic CD8 + ISP and induced the differentiation of a novel immature CD4 - CD8 + CD3 lo RORγt + T cells into mature RORγt + CD8 + T cells by secreting IgG antibody in lupus-prone mice.

  19. Evidence for B{sup 0}{yields}{rho}{sup 0}{rho}{sup 0} Decays and Implications for the Cabibbo-Kobayashi-Maskawa Angle {alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, B.; Bona, M.; Boutigny, D.

    2007-03-16

    We search for the decays B{sup 0}{yields}{rho}{sup 0}{rho}{sup 0}, B{sup 0}{yields}{rho}{sup 0}f{sub 0}(980), and B{sup 0}{yields}f{sub 0}(980)f{sub 0}(980) in a sample of about 384x10{sup 6} {upsilon}(4S){yields}BB decays collected with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at Stanford Linear Accelerator Center. We find evidence for B{sup 0}{yields}{rho}{sup 0}{rho}{sup 0} with 3.5{sigma} significance and measure the branching fraction B=(1.07{+-}0.33{+-}0.19)x10{sup -6} and longitudinal polarization fraction f{sub L}=0.87{+-}0.13{+-}0.04, where the first uncertainty is statistical, and the second is systematic. The uncertainty on the Cabibbo-Kobayashi-Maskawa quark-mixing matrix unitarity angle {alpha} due to penguin contributions in B{yields}{rho}{rho} decays is 18 deg.more » at the 1{sigma} level. We also set upper limits on the B{sup 0}{yields}{rho}{sup 0}f{sub 0}(980) and B{sup 0}{yields}f{sub 0}(980)f{sub 0}(980) decay rates.« less

  20. Paricalcitol modulates ACE2 shedding and renal ADAM17 in NOD mice beyond proteinuria.

    PubMed

    Riera, Marta; Anguiano, Lidia; Clotet, Sergi; Roca-Ho, Heleia; Rebull, Marta; Pascual, Julio; Soler, Maria Jose

    2016-03-15

    Circulating and renal activity of angiotensin-converting enzyme 2 (ACE2) is increased in non-obese diabetic (NOD) mice. Because paricalcitol has been reported to protect against diabetic nephropathy, we investigated the role of paricalcitol in modulating ACE2 in these mice. In addition, renal ADAM17, a metalloprotease implied in ACE2 shedding, was assessed. NOD female and non-diabetic control mice were studied for 21 days after diabetes onset and divided into various treatment groups. Diabetic animals received either vehicle; 0.4 or 0.8 μg/kg paricalcitol, aliskiren, or a combination of paricalcitol and aliskiren. We then studied the effect of paricalcitol on ACE2 expression in proximal tubular epithelial cells. Paricalcitol alone or in combination with aliskiren resulted in significantly reduced circulating ACE2 activity in NOD mice but there were no changes in urinary albumin excretion. Serum renin activity was significantly decreased in mice that received aliskiren but no effect was found when paricalcitol was used alone. Renal content of ADAM17 was significantly decreased in animals that received a high dose of paricalcitol. Renal and circulating oxidative stress (quantified by plasma H2O2 levels and immunolocalization of nitrotyrosine) were reduced in high-dose paricalcitol-treated mice compared with non-treated diabetic mice. In culture, paricalcitol incubation resulted in a significant increase in ACE2 expression compared with nontreated cells. In NOD mice with type 1 diabetes, paricalcitol modulates ACE2 activity, ADAM17, and oxidative stress renal content independently from the glycemic profile and urinary albumin excretion. In tubular cells, paricalcitol may modulate ACE2 by blocking its shedding. In the early stage of diabetic nephropathy, paricalcitol treatment counterbalances the effect of diabetes on circulating ACE2 activity. Our results suggest that additional use of paricalcitol may be beneficial in treating patients with diabetes under standard

  1. Type17 T-cells in Central Nervous System Autoimmunity and Tumors

    PubMed Central

    Okada, Hideho; Khoury, Samia J.

    2012-01-01

    Interleukin-17 (IL-17) producing Type17 T-cells, specifically T-helper (Th)17 cells reactive to central nervous system (CNS) autoantigens, manifest a higher migratory capability to the CNS parenchyma compared with other T-cell subpopulations due to their ability to penetrate the blood brain barrier (BBB). In the field of cancer immunotherapy, there are now a number of cell therapy approaches including early studies using T-cells transduced with chimeric antigen receptors in hematologic malignancy, suggesting that the use of T-cells or genetically modified T-cells could have a significant role in effective cancer therapy. However, the successful application of this strategy in solid tumors, such as CNS tumors, requires careful consideration of critical factors to improve the tumor-homing of T-cells. The current review is dedicated to discuss recent findings on the role of Type17 T-cells in CNS autoimmunity and cancer. The insight gained from these findings may lead to the development of novel therapeutic and prophylactic strategies for CNS autoimmunity and tumors. PMID:22454247

  2. Hyperoxia Inhibits T Cell Activation in Mice

    NASA Astrophysics Data System (ADS)

    Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.

    2013-02-01

    , spleens were removed and the splenocytes were isolated and kept as individual biological samples. We have also examined transcription factors (JASPAR) and pathways of the immune system to help us understand the mechanism of regulation. Results: Our recent mouse immunology experiment aboard STS-131 suggests that the early T cell immune response was inhibited in animals that have been exposed to spaceflight, even 24 hours after return to earth. Moreover, recent experiments in hyperoxic mice show that many of the same genes involved in early T cell activation were altered. Specifically, expression of IL-2Rα, Cxcl2, TNFα, FGF2, LTA and BCL2 genes are dysregulated in mice exposed to hyperoxia. Conclusions: If these hyperoxia-induced changes of gene expression in early T cell activation are additive to the changes seen in the microgravity of spaceflight, there could be an increased infection risk to EVA astronauts, which should be addressed prior to conducting a Mars or other long-term mission.

  3. Exacerbation of spontaneous autoimmune nephritis following regulatory T cell depletion in B cell lymphoma 2‐interacting mediator knock‐out mice

    PubMed Central

    Wang, Y. M.; Zhang, G. Y.; Wang, Y.; Hu, M.; Zhou, J. J.; Sawyer, A.; Cao, Q.; Wang, Y.; Zheng, G.; Lee, V. W. S.; Harris, D. C. H.

    2017-01-01

    Summary Regulatory T cells (Tregs) have been recognized as central mediators for maintaining peripheral tolerance and limiting autoimmune diseases. The loss of Tregs or their function has been associated with exacerbation of autoimmune disease. However, the temporary loss of Tregs in the chronic spontaneous disease model has not been investigated. In this study, we evaluated the role of Tregs in a novel chronic spontaneous glomerulonephritis model of B cell lymphoma 2‐interacting mediator (Bim) knock‐out mice by transient depleting Tregs. Bim is a pro‐apoptotic member of the B cell lymphoma 2 (Bcl‐2) family. Bim knock‐out (Bim–/–) mice fail to delete autoreactive T cells in thymus, leading to chronic spontaneous autoimmune kidney disease. We found that Treg depletion in Bim–/– mice exacerbated the kidney injury with increased proteinuria, impaired kidney function, weight loss and greater histological injury compared with wild‐type mice. There was a significant increase in interstitial infiltrate of inflammatory cells, antibody deposition and tubular damage. Furthermore, the serum levels of cytokines interleukin (IL)−2, IL‐4, IL‐6, IL‐10, IL‐17α, interferon (IFN)‐γ and tumour necrosis factor (TNF)‐α were increased significantly after Treg depletion in Bim–/– mice. This study demonstrates that transient depletion of Tregs leads to enhanced self‐reactive T effector cell function followed by exacerbation of kidney disease in the chronic spontaneous kidney disease model of Bim‐deficient mice. PMID:28152566

  4. Mice expressing T4826I-RYR1 are viable but exhibit sex- and genotype-dependent susceptibility to malignant hyperthermia and muscle damage

    PubMed Central

    Yuen, Benjamin; Boncompagni, Simona; Feng, Wei; Yang, Tianzhong; Lopez, Jose R.; Matthaei, Klaus I.; Goth, Samuel R.; Protasi, Feliciano; Franzini-Armstrong, Clara; Allen, Paul D.; Pessah, Isaac N.

    2012-01-01

    Mutation T4825I in the type 1 ryanodine receptor (RYR1T4825I/+) confers human malignant hyperthermia susceptibility (MHS). We report a knock-in mouse line that expresses the isogenetic mutation T4826I. Heterozygous RYR1T4826I/+ (Het) or homozygous RYR1T4826I/T4826I (Hom) mice are fully viable under typical rearing conditions but exhibit genotype- and sex-dependent susceptibility to environmental conditions that trigger MH. Hom mice maintain higher core temperatures than WT in the home cage, have chronically elevated myoplasmic[Ca2+]rest, and present muscle damage in soleus with a strong sex bias. Mice subjected to heat stress in an enclosed 37°C chamber fail to trigger MH regardless of genotype, whereas heat stress at 41°C invariably triggers fulminant MH in Hom, but not Het, mice within 20 min. WT and Het female mice fail to maintain euthermic body temperature when placed atop a bed whose surface is 37°C during halothane anesthesia (1.75%) and have no hyperthermic response, whereas 100% Hom mice of either sex and 17% of the Het males develop fulminant MH. WT mice placed on a 41°C bed maintain body temperature while being administered halothane, and 40% of the Het females and 100% of the Het males develop fulminant MH within 40 min. Myopathic alterations in soleus were apparent by 12 mo, including abnormally distributed and enlarged mitochondria, deeply infolded sarcolemma, and frequent Z-line streaming regions, which were more severe in males. These data demonstrate that an MHS mutation within the S4-S5 cytoplasmic linker of RYR1 confers genotype- and sex-dependent susceptibility to pharmacological and environmental stressors that trigger fulminant MH and promote myopathy.—Yuen, B., Boncompagni, S., Feng, W., Yang, T., Lopez, J. R., Matthaei, K. I., Goth, S. R., Protasi, F., Franzini-Armstrong, C., Allen, P. D., Pessah, I. N. Mice expressing T4826I-RYR1 are viable but exhibit sex- and genotype-dependent susceptibility to malignant hyperthermia and muscle

  5. Prolonged Intake of Dietary Lipids Alters Membrane Structure and T Cell Responses in LDLr-/- Mice.

    PubMed

    Pollock, Abigail H; Tedla, Nicodemus; Hancock, Sarah E; Cornely, Rhea; Mitchell, Todd W; Yang, Zhengmin; Kockx, Maaike; Parton, Robert G; Rossy, Jérémie; Gaus, Katharina

    2016-05-15

    Although it is recognized that lipids and membrane organization in T cells affect signaling and T cell activation, to what extent dietary lipids alter T cell responsiveness in the absence of obesity and inflammation is not known. In this study, we fed low-density lipoprotein receptor knockout mice a Western high-fat diet for 1 or 9 wk and examined T cell responses in vivo along with T cell lipid composition, membrane order, and activation ex vivo. Our data showed that high levels of circulating lipids for a prolonged period elevated CD4(+) and CD8(+) T cell proliferation and resulted in an increased proportion of CD4(+) central-memory T cells within the draining lymph nodes following induction of contact hypersensitivity. In addition, the 9-wk Western high-fat diet elevated the total phospholipid content and monounsaturated fatty acid level, but decreased saturated phosphatidylcholine and sphingomyelin within the T cells. The altered lipid composition in the circulation, and of T cells, was also reflected by enhanced membrane order at the activation site of ex vivo activated T cells that corresponded to increased IL-2 mRNA levels. In conclusion, dietary lipids can modulate T cell lipid composition and responses in lipoprotein receptor knockout mice even in the absence of excess weight gain and a proinflammatory environment. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. Rho-dependent kinase is involved in agonist-activated calcium entry in rat arteries

    PubMed Central

    Ghisdal, Philippe; Vandenberg, Greet; Morel, Nicole

    2003-01-01

    The present study was aimed at investigating whether, besides its pivotal role in Ca2+-independent contraction of smooth muscle, Rho-kinase is involved in the mechanisms underlying the Ca2+ signal activated by noradrenaline in arteries. In rat aorta and mesenteric artery, the Rho-kinase inhibitor Y-27632 (10 μM) completely relaxed the contraction evoked by noradrenaline (1 μM) and simultaneously inhibited the Ca2+ signal by 54 ± 1 % (mesenteric artery) and 71 ± 15 % (aorta), and the cell membrane depolarisation by 56 ± 11 % (mesenteric artery). A similar effect was observed in arteries contracted by AlF4−, while in KCl-contracted arteries, Y-27632 decreased tension without changing cytosolic Ca2+. The same effects were observed with another inhibitor of Rho-kinase (HA1077) but not with an inhibitor of protein kinase C (Ro-31–8220). Effects of Y-27632 were not prevented by incubating the artery in 25 mM KCl, with K+ channel blockers or with the Ca2+ channel blocker nimodipine. Y-27632 did not affect either the increase in the production of inositol phosphates activated by noradrenaline, or the release of Ca2+ from non-mitochondrial stores evoked by InsP3 in permeabilised aortic cells, or the Ca2+ signals evoked by thapsigargin or caffeine. The capacitative Ca2+ entry activated by thapsigargin was not impaired by Y-27632, but the entry of Ba2+ activated by noradrenaline in the presence of nimodipine was blocked by 10 μM Y-27632. These results indicate that Rho-kinase is involved in noradrenaline activation of a Ca2+ entry distinct from voltage- or store-operated channels in rat arteries. PMID:12853654

  7. Induction of Alternative Proinflammatory Cytokines Accounts for Sustained Psoriasiform Skin Inflammation in IL-17C+IL-6KO Mice.

    PubMed

    Fritz, Yi; Klenotic, Philip A; Swindell, William R; Yin, Zhi Qiang; Groft, Sarah G; Zhang, Li; Baliwag, Jaymie; Camhi, Maya I; Diaconu, Doina; Young, Andrew B; Foster, Alexander M; Johnston, Andrew; Gudjonsson, Johann E; McCormick, Thomas S; Ward, Nicole L

    2017-03-01

    IL-6 inhibition has been unsuccessful in treating psoriasis, despite high levels of tissue and serum IL-6 in patients. In addition, de novo psoriasis onset has been reported after IL-6 blockade in patients with rheumatoid arthritis. To explore mechanisms underlying these clinical observations, we backcrossed an established psoriasiform mouse model (IL-17C+ mice) with IL-6-deficient mice (IL-17C+KO) and examined the cutaneous phenotype. IL-17C+KO mice initially exhibited decreased skin inflammation; however, this decrease was transient and reversed rapidly, concomitant with increases in skin Tnf, Il36α/β/γ, Il24, Epgn, and S100a8/a9 to levels higher than those found in IL-17C+ mice. A comparison of IL-17C+ and IL-17C+KO mouse skin transcriptomes with that of human psoriasis skin revealed significant correlation among transcripts of skin of patients with psoriasis and IL-17C+KO mouse skin, and confirmed an exacerbation of the inflammatory signature in IL-17C+KO mice that aligns closely with human psoriasis. Transcriptional analyses of IL-17C+ and IL-17C+KO primary keratinocytes confirmed increased expression of proinflammatory molecules, suggesting that in the absence of IL-6, keratinocytes increase production of numerous additional proinflammatory cytokines. These preclinical findings may provide insight into why patients with arthritis being treated with IL-6 inhibitors develop new onset psoriasis and why IL-6 blockade for the treatment of psoriasis has not been clinically effective. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Attenuated atherosclerotic lesions in apoE-Fcγ chain-deficient hyperlipidemic mouse model is associated with inhibition of Th17 cells and promotion of Tregs1

    PubMed Central

    Pong Ng, Hang; Burris, Ramona L.; Nagarajan, Shanmugam

    2011-01-01

    Though the presence of anti-oxLDL IgG is well documented in clinical and animal studies, the role for FcγRs to the progression of atherosclerosis has not been studied in detail. In the present study, we investigated the role for activating FcγR in the progression of atherosclerosis using apoE-Fcγ chain double knockout (DKO) mice. Relative to apoE KO mice, arterial lesion formation was significantly decreased in apoE-Fcγ chain DKO mice. Bone marrow chimera studies showed reduced lesions in apoE KO mice receiving the bone marrow of apoE-Fcγ chain DKO mice. Compared to apoE KO mice, anti-oxLDL IgG1 (Th2) and IgG2a (Th1), IL-10, and IFN-γ secretion by activated T cells were increased in apoE-Fc γ chain DKO mice. These findings suggest that reduced atherosclerotic lesion in apoE-Fcγ chain DKO mice is not due to Th1/Th2 imbalance. Interestingly, number of Th17 cells and the secretion of IL-17 by activated CD4+ cells were decreased in apoE-Fcγ chain DKO mice. Notably, the number of T-regulatory cells, expression of mRNA, and secretion of TGF-β and IL-10 were increased in apoE-Fcγ chain DKO mice. Furthermore, secretions of IL-6 and STAT-3 phosphorylation essential for Th17 cell genesis were reduced in apoE-Fcγ chain DKO mice. Importantly, decrease in Th17 cells in apoE-Fcγ chain DKO mice was due to reduced IL-6 release by antigen presenting cells of apoE-Fcγ chain DKO mice. Collectively, our data suggest that activating FcγR promotes atherosclerosis by inducing Th17 response in the hyperlipidemic apoE KO mouse model. PMID:22043015

  9. Th 17 Cells and Nesfatin-1 are associated with Spontaneous Abortion in the CBA/j × DBA/2 Mouse Model

    PubMed Central

    Chung, Yiwa; Kim, Heejeong; Im, Eunji; Kim, Philjae; Yang, Hyunwon

    2015-01-01

    The pregnancy and abortion process involves a complex mechanism with various immune cells present in the implantation sites and several hormones associated with pregnancy, such as leptin, ghrelin and nesfatin-1. However, the mechanism underlying spontaneous abortion by maternal T helper 17 (Th17) present in the implantation sites and nesfatin-1, which is of anorexigenic hormones, is not fully understood so far. Therefore, the purpose of this study was to examine the possible roles of Th17 cells present in the implantation sites and nesfatin-1 expressed in the uterus on spontaneous abortion using the CBA/j × DBA/2 mouse model. Th17 transcription factor, ROR-γt mRNA expression was significantly increased in the abortion sites compared with the implantation sites of abortion model mice on day 14.5 and 19.5 of pregnancy. In addition, the expression levels of IL-17A mRNA were significantly higher in abortion sites than in implantation sites on day 14.5 and 19.5. Moreover, the nesfatin-1/NUCB2 protein and mRNA levels were increased in abortion sites compared with levels in implantation sites of both normal pregnant and abortion model mice on day 14.5 of pregnancy. Interestingly, nesfatin- 1/NUCB2 serum levels were not changed throughout the whole pregnancy in abortion model mice, but its serum level was dramatically increased on day 14.5, and then rapidly decreased on day 19.5 in normal pregnant mice. In this study, we showed for the first time the expression of nesfatin-1/NUCB2 mRNA and protein in implantation sites during pregnancy. The present results suggest that Th17 cells in the uterus may play an important role in the period of implantation and for maintenance of pregnancy. Furthermore, the present results suggest that Th17 cells in implantation sites may be a key regulator for maintenance of pregnancy and provides evidence that activation of these cells may be regulated by nesfatin-1/NUCB2. Further study is needed to elucidate the role of nesfatin-1 expressed

  10. Impact of T-cell-specific Smad4 deficiency on the development of autoimmune diabetes in NOD mice

    PubMed Central

    Kim, Donghee; Lee, Song Mi; Jun, Hee-Sook

    2017-01-01

    Type 1 diabetes results from autoimmune-mediated pancreatic beta-cell destruction and transforming growth factor-beta (TGF-β) is known to play a preventive role in type 1 diabetes in non-obese diabetic (NOD) mice. In this study, we investigated the role of Smad4, a key molecule for Smad-dependent TGF-β signaling, in T cells of NOD mice in the pathogenesis of autoimmune diabetes. We generated T-cell-specific Smad4 knockout (Smad4 tKO) NOD mice and assessed the pathological and immunological changes. Smad4 tKO showed earlier onset and increased incidence of diabetes than wild type (WT) NOD mice. Pathological features such as insulitis, anti-glutamic acid decarboxylase auto-antibody levels and serum IFN-γ levels were significantly increased in Smad4 tKO compared with WT NOD mice. Proportion and number of activated/memory CD4+ T cell were significantly increased in pancreatic lymph nodes of Smad4 tKO compared with WT NOD mice. However, the proportion and function of regulatory T cells was not different. Effector CD4+ T cells from Smad4 tKO were more resistant to suppression by regulatory T cells than effector cells from WT NOD mice. The proliferative potential of effector T cells from Smad4 tKO was significantly elevated compared with WT NOD mice, and activation of sterol regulatory element binding protein-1c (SREBP-1c) in T cells of Smad4 tKO NOD mice was correlated with this proliferative activity. We conclude that Smad4 deletion in T cells of NOD mice accelerated the development of autoimmune diabetes and increased the incidence of the disease by dysregulation of T cell activation at least in part via SREBP-1c activation. PMID:27686408

  11. Impact of T-cell-specific Smad4 deficiency on the development of autoimmune diabetes in NOD mice.

    PubMed

    Kim, Donghee; Lee, Song Mi; Jun, Hee-Sook

    2017-03-01

    Type 1 diabetes results from autoimmune-mediated pancreatic beta-cell destruction and transforming growth factor-beta (TGF-β) is known to play a preventive role in type 1 diabetes in non-obese diabetic (NOD) mice. In this study, we investigated the role of Smad4, a key molecule for Smad-dependent TGF-β signaling, in T cells of NOD mice in the pathogenesis of autoimmune diabetes. We generated T-cell-specific Smad4 knockout (Smad4 tKO) NOD mice and assessed the pathological and immunological changes. Smad4 tKO showed earlier onset and increased incidence of diabetes than wild type (WT) NOD mice. Pathological features such as insulitis, anti-glutamic acid decarboxylase auto-antibody levels and serum IFN-γ levels were significantly increased in Smad4 tKO compared with WT NOD mice. Proportion and number of activated/memory CD4 + T cell were significantly increased in pancreatic lymph nodes of Smad4 tKO compared with WT NOD mice. However, the proportion and function of regulatory T cells was not different. Effector CD4 + T cells from Smad4 tKO were more resistant to suppression by regulatory T cells than effector cells from WT NOD mice. The proliferative potential of effector T cells from Smad4 tKO was significantly elevated compared with WT NOD mice, and activation of sterol regulatory element binding protein-1c (SREBP-1c) in T cells of Smad4 tKO NOD mice was correlated with this proliferative activity. We conclude that Smad4 deletion in T cells of NOD mice accelerated the development of autoimmune diabetes and increased the incidence of the disease by dysregulation of T cell activation at least in part via SREBP-1c activation.

  12. T lymphocytes from mice immunized with irradiated sporozoites eliminated malaria from hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, S.L.; Isenbarger, D.; Long, G.W.

    When mice are immunized with radiation-attenuated sporozoites they are solidly protected against sporozoite challenge by an immune response that has been shown to require CD8+ lymphocytes in several strains of mice. The target of this CD8+ T-cell-dependent immunity has not been established. Immune BALB/c mice were shown to develop malaria-specific. CD8+ T-cell-dependent inflammatory infiltrates in their livers after challenge with Plasmodium berghei sporozoites. Spleen cells from immune BALB/c and C57BL/6 mice eliminated hepatocytes infected with the liver stage of P. berghei in vitro. The activity against infected hepatocytes is not inhibited by antibodies to interferon-y and is not present inmore » culture supernatants. It is generally restricted, an indication that malaria antigens on the hepatocyte surface are recognized by immune T-effector cells.« less

  13. Naringin attenuates MLC phosphorylation and NF-κB activation to protect sepsis-induced intestinal injury via RhoA/ROCK pathway.

    PubMed

    Li, Zhiling; Gao, Ming; Yang, Bingchang; Zhang, Huali; Wang, Kangkai; Liu, Zuoliang; Xiao, Xianzhong; Yang, Mingshi

    2018-07-01

    Sepsis is commonly associated with excessive stimulation of host immune system and result in multi-organ failure dysfunction. Naringin has been reported to exhibit a variety of biological effects. The present study aimed to investigate the protective effect of naringin on sepsis-induced injury of intestinal barrier function in vivo and in vitro. Mice were randomly divided into 4 groups named sham (n = 20), CLP + vehicle (n = 20), CLP + NG (30 mg/kg) (n = 20) and CLP + NG (60 mg/kg) (n = 20) groups. Sepsis was induced by cecal ligation and puncture (CLP). H&E staining and transmission electron microscopy (TEM) were performed to observe intestinal mucosal morphology. ELISA was used to determine the intestinal permeability and inflammatory response in vivo and in vitro. Western blot and RhoA activity assay were performed to determine the levels of tight junction proteins and the activation of indicated signaling pathways. MTT assay was used to determine cell viability. Naringin improved survival rate of CLP mice and alleviated sepsis-induced intestinal mucosal injury. Furthermore, naringin improved impaired intestinal permeability and inhibited the release of TNF-α and IL-6, while increased IL-10 level in CLP mice and lipopolysaccharide (LPS)-stimulated MODE-K cells in a dose-dependent manner. Naringin increased the expression of tight junction proteins ZO-1 and claudin-1 via RhoA/ROCK/NF-κB/MLCK/MLC signaling pathway in vivo and in vitro. Naringin improved sepsis-induced intestinal injury via RhoA/ROCK/NF-κB/MLCK/MLC signaling pathway in vivo and in vitro. Copyright © 2018. Published by Elsevier Masson SAS.

  14. Transgenic expression of Map3k4 rescues T-associated sex reversal (Tas) in mice

    PubMed Central

    Warr, Nick; Siggers, Pam; Carré, Gwenn-Aël; Bogani, Debora; Brixey, Rachel; Akiyoshi, Mika; Tachibana, Makoto; Teboul, Lydia; Wells, Sara; Sanderson, Jeremy; Greenfield, Andy

    2014-01-01

    Disorders of sex development in the human population range in severity from mild genital defects to gonadal sex reversal. XY female development has been associated with heterozygous mutations in several genes, including SOX9, WT1 and MAP3K1. In contrast, XY sex reversal in mice usually requires complete absence of testis-determining gene products. One exception to this involves T-associated sex reversal (Tas), a phenomenon characterized by the formation of ovotestes or ovaries in XY mice hemizygous for the hairpin-tail (Thp) or T-Orleans (TOrl) deletions on proximal mouse chromosome 17. We recently reported that mice heterozygous for a null allele of Map3k4, which resides in the Thp deletion, exhibit XY ovotestis development and occasional gonadal sex reversal on the sensitized C57BL/6J-YAKR (B6-YAKR) genetic background, reminiscent of the Tas phenotype. However, these experiments did not exclude the possibility that loss of other loci in the Thp deletion, or other effects of the deletion itself, might contribute to Tas. Here, we show that disruption to Sry expression underlies XY gonadal defects in B6-YAKR embryos harbouring the Thp deletion and that a functional Map3k4 bacterial artificial chromosome rescues these abnormalities by re-establishing a normal Sry expression profile. These data demonstrate that Map3k4 haploinsufficiency is the cause of T-associated sex reversal and that levels of this signalling molecule are a major determinant of the expression profile of Sry. PMID:24452333

  15. IL-17 Contributes to Cell-Mediated Defense against Pulmonary Yersinia pestis Infection1

    PubMed Central

    Lin, Jr-Shiuan; Kummer, Lawrence W.; Szaba, Frank M.; Smiley, Stephen T.

    2010-01-01

    Pneumonic plague is one of the world’s most deadly infectious diseases. The causative bacterium, Yersinia pestis, has the potential to be exploited as a biological weapon and no vaccine is available. Vaccinating B cell-deficient mice with D27-pLpxL, a live attenuated Y. pestis strain, induces cell-mediated protection against lethal pulmonary Y. pestis challenge. Here we demonstrate that prime/boost vaccination with D27-pLpxL confers better protection than prime-only vaccination. The improved survival does not result from enhanced bacterial clearance, but is associated with increased levels of IL-17 mRNA and protein in the lungs of challenged mice. The boost also increases pulmonary numbers of IL-17-producing CD4 T cells. Interestingly, the vast majority of these cells simultaneously produce canonical type 1 and type 17 cytokines; most produce IL-17 and TNFα, and many produce IL-17, TNFα and IFNγ. Neutralizing IL-17 counteracts the improved survival associated with prime/boost vaccination without significantly impacting bacterial burden. Thus, IL-17 appears to mediate the enhanced protection conferred by booster immunization. Although neutralizing IL-17 significantly reduces neutrophil recruitment to the lungs of mice challenged with Y. pestis, this impact is equally evident in mice that receive one or two immunizations with D27-pLpxL, suggesting it cannot suffice to account for the improved survival that results from booster immunization. We conclude that IL-17 plays a yet to be identified role in host defense that enhances protection against pulmonary Y. pestis challenge, and we suggest that pneumonic plague vaccines should aim to induce mixed type 1 and type 17 cellular responses. PMID:21172869

  16. Rho/Rock cross-talks with transforming growth factor-β/Smad pathway participates in lung fibroblast-myofibroblast differentiation.

    PubMed

    Ji, Hong; Tang, Haiying; Lin, Hongli; Mao, Jingwei; Gao, Lili; Liu, Jia; Wu, Taihua

    2014-11-01

    The differentiation of fibroblasts, which are promoted by transforming growth factor-β (TGF-β)/Smad, is involved in the process of pulmonary fibrosis. The Rho/Rho-associated coiled-coil-forming protein kinase (Rock) pathway may regulate the fibroblast differentiation and myofibroblast expression of α-smooth muscle actin (α-SMA), however, the mechanism is not clear. The aim of the present study was to evaluate the role of Rho/Rock and TGF-β/Smad in TGF-β1-induced lung fibroblasts differentiation. Human embryonic lung fibroblasts were stimulated by TGF-β1, Y-27632 (inhibitor of Rho/Rock signaling) and staurosporine (inhibitor of TGF-β/Smad signaling). The α-SMA expression, cell cycle progression, content of the extracellular matrix (ECM) in cell culture supernatants and the expression of RhoA, RhoC, Rock1 and Smad2 were detected. The results demonstrated that α-SMA-positive cells significantly increased following TGF-β1 stimulation. Rho/Rock and TGF-β/Smad inhibitors suppressed TGF-β1-induced lung fibroblast differentiation. The inhibitors increased G 0 /G 1 and decreased S and G 2 /M percentages. The concentrations of the ECM proteins in the supernatant were significantly increased by TGF-β1 stimulation, whereas they were decreased by inhibitor stimulation. RhoA, RhoC, Rock1, Smad2 and tissue inhibitor of metalloproteinase-1 were upregulated by TGF-β1 stimulation. The Rho/Rock inhibitor downregulated Smad2 expression and the TGF-β/Smad inhibitor downregulated RhoA, RhoC and Rock1 expression. Therefore, the Rho/Rock pathway and Smad signaling were involved in the process of lung fibroblasts transformation, induced by TGF-β1, to myofibroblasts. The two pathways may undergo cross-talk in the lung fibroblasts differentiation in vitro .

  17. Protective Role of γδ T Cells in Cigarette Smoke and Influenza Infection

    PubMed Central

    Hong, M. J.; Gu, B. H.; Madison, M.; Landers, C.; Tung, H. Y.; Kim, M.; Yuan, X.; You, R.; MacHado, A. A.; Gilbert, B. E.; Soroosh, P.; Elloso, M.; Song, L.; Chen, M.; Corry, D. B.; Diehl, G.; Kheradmand, F.

    2017-01-01

    Airborne pathogens commonly trigger severe respiratory failure or death in smokers with lung disease. Cigarette smoking compromises the effectiveness of innate immunity against infections but the underlying mechanisms responsible for defective acquired immune responses in smokers remains less clear. We found that mice exposed to chronic cigarette smoke recovered poorly from primary Influenza A pneumonia with reduced type I and II interferons (IFNs) and viral-specific immunoglobulins, but recruited gamma delta (γδ) T cells to the lungs that predominantly expressed interleukin 17A (IL-17A). Il-17a-/- mice exposed to smoke and infected with Influenza A also recruited γδ T cells to the lungs, but in contrast to wild type mice, expressed increased IFNs, made protective influenza specific antibodies, and recovered from infection. Depletion of IL-17A with blocking antibodies significantly increased T-bet expression in γδ T cells and improved recovery from acute Influenza A infection in air, but not smoke exposed mice. In contrast, when exposed to smoke, γδ T cell deficient mice failed to mount an effective immune response to Influenza A and showed increased mortality. Our findings demonstrate a protective role for γδ T cells in smokers and suggest that smoke-induced increase in IL-17A inhibits the transcriptional programs required for their optimal anti-viral responses. PMID:29091081

  18. Comparison of angiotensin-(1-7), losartan and their combination on atherosclerotic plaque formation in apolipoprotein E knockout mice.

    PubMed

    Yang, Jianmin; Sun, Yu; Dong, Mei; Yang, Xiaoyan; Meng, Xiao; Niu, Rongrong; Guan, Juan; Zhang, Yun; Zhang, Cheng

    2015-06-01

    Inhibition of the classical renin-angiotensin system (RAS) has been proved to reduce atherosclerosis. Recently, angiotensin-(1-7) [Ang-(1-7)], a new component of RAS, has been shown to attenuate atherosclerosis formation. However, direct comparison of Ang-(1-7) and angiotensin II type 1 receptor blocker (ARB) on atherogenesis is sparse. Here, we investigated whether large dose of Ang-(1-7) and losartan are equivalent or the combination of both is superior in reducing atherosclerotic plaque formation. In vivo, we established an atherosclerosis model in ApoE-/- mice. All mice were fed a high fat diet during experiments. Mice were divided into control, Ang-(1-7), losartan, Ang-(1-7)+losartan groups for 4 weeks treatment. Ang-(1-7) did not change the blood pressure (BP) levels, while losartan produced a significant decrease in systolic BP. The attenuation of Ang-(1-7) and losartan in atherosclerosis plaque formation was similar. However, the decrease of atherosclerosis in mice with combination of Ang-(1-7) and losartan was more remarkable relative to that of Ang-(1-7) or losartan alone. The decreases of macrophages infiltration, superoxide production and improvement of endothelium function in aortic lesions were more significant in combination group. In vitro study, we found that combination of Ang-(1-7) and losartan notably inhibited VSMCs proliferation and migration. The anti-atherosclerosis effects of Ang-(1-7) and losartan in early lesion formation were equivalent. Combination use of both agents further enhanced the beneficial effects. Ang-(1-7) might add additional beneficial effect for patients with adequate ARB treatment. Copyright © 2015. Published by Elsevier Ireland Ltd.

  19. Blocking IL-17A Alleviates Diabetic Retinopathy in Rodents.

    PubMed

    Qiu, Ao-Wang; Liu, Qing-Huai; Wang, Jun-Ling

    2017-01-01

    Interleukin (IL)-17A, a proinflammatory cytokine, has been implicated in several autoimmune diseases. However, it is unclear whether IL-17A is involved in diabetic retinopathy (DR), one of the most serious complications of autoimmune diabetes. This study aimed to demonstrate that IL-17A exacerbates DR by affecting retinal Müller cell function. High glucose (HG)-treated rat Müller cell line (rMC-1) was exposed to IL-17A, anti-IL-17A-neutralizing monoclonal antibody (mAb) or/and anti-IL-17 receptor (R)A-neutralizing mAb for 24 h. For in vivo study, DR was induced by intraperitoneal injections of streptozotocin (STZ). DR model mice were treated with anti-IL-17A mAb or anti-IL-17RA mAb in the vitreous cavity. Mice that were prepared for retinal angiography were sacrificed two weeks after intravitreal injection, while the rest were sacrificed two days after intravitreal injection. IL-17A production and IL-17RA expression were increased in both HG-treated rMC-1 and DR retina. HG induced rMC-1 activation and dysfunction, as determined by the increased GFAP, VEGF and glutamate levels as well as the downregulated GS and EAAT1 expression. IL-17A exacerbated the HG-induced rMC-1 functional disorders, whereas either anti-IL-17A mAb or anti-IL-17RA mAb alleviated the HG-induced rMC-1 disorders. Intravitreal injections with anti-IL-17A mAb or anti-IL-17RA mAb in DR model mice reduced Müller cell dysfunction, vascular leukostasis, vascular leakage, tight junction protein downregulation and ganglion cell apoptosis in the retina. IL-17A aggravates DR-like pathology at least partly by impairing retinal Müller cell function. Blocking IL-17A is a potential therapeutic strategy for DR. © 2017 The Author(s)Published by S. Karger AG, Basel.

  20. T-cell-specific deletion of Mof blocks their differentiation and results in genomic instability in mice

    PubMed Central

    Pandita, Tej K.

    2013-01-01

    Ataxia telangiectasia patients develop lymphoid malignancies of both B- and T-cell origin. Similarly, ataxia telangiectasia mutated (Atm)-deficient mice exhibit severe defects in T-cell maturation and eventually develop thymomas. The function of ATM is known to be influenced by the mammalian orthologue of the Drosophila MOF (males absent on the first) gene. Here, we report the effect of T-cell-specific ablation of the mouse Mof (Mof) gene on leucocyte trafficking and survival. Conditional Mof Flox/Flox (Mof F/F) mice expressing Cre recombinase under control of the T-cell-specific Lck proximal promoter (Mof F/F/Lck-Cre +) display a marked reduction in thymus size compared with Mof F/F/Lck-Cre – mice. In contrast, the spleen size of Mof F/F/Lck-Cre + mice was increased compared with control Mof F/F/Lck-Cre – mice. The thymus of Mof F/F/Lck-Cre + mice contained significantly reduced T cells, whereas thymic B cells were elevated. Within the T-cell population, CD4+CD8+ double-positive T-cell levels were reduced, whereas the immature CD4–CD8– double-negative (DN) population was elevated. Defective T-cell differentiation is also evident as an increased DN3 (CD44–CD25+) population, the cell stage during which T-cell receptor rearrangement takes place. The differentiation defect in T cells and reduced thymus size were not rescued in a p53-deficient background. Splenic B-cell distributions were similar between Mof F/F/Lck-Cre + and Mof F/F/Lck-Cre – mice except for an elevation of the κ light-chain population, suggestive of an abnormal clonal expansion. T cells from Mof F/F/Lck-Cre + mice did not respond to phytohaemagglutinin (PHA) stimulation, whereas LPS-stimulated B cells from Mof F/F/Lck-Cre + mice demonstrated spontaneous genomic instability. Mice with T-cell-specific loss of MOF had shorter lifespans and decreased survival following irradiation than did Mof F/F/Lck-Cre – mice. These observations suggest that Mof plays a critical role in T

  1. T-cell-specific deletion of Mof blocks their differentiation and results in genomic instability in mice.

    PubMed

    Gupta, Arun; Hunt, Clayton R; Pandita, Raj K; Pae, Juhee; Komal, K; Singh, Mayank; Shay, Jerry W; Kumar, Rakesh; Ariizumi, Kiyoshi; Horikoshi, Nobuo; Hittelman, Walter N; Guha, Chandan; Ludwig, Thomas; Pandita, Tej K

    2013-05-01

    Ataxia telangiectasia patients develop lymphoid malignancies of both B- and T-cell origin. Similarly, ataxia telangiectasia mutated (Atm)-deficient mice exhibit severe defects in T-cell maturation and eventually develop thymomas. The function of ATM is known to be influenced by the mammalian orthologue of the Drosophila MOF (males absent on the first) gene. Here, we report the effect of T-cell-specific ablation of the mouse Mof (Mof) gene on leucocyte trafficking and survival. Conditional Mof(Flox/Flox) (Mof (F/F)) mice expressing Cre recombinase under control of the T-cell-specific Lck proximal promoter (Mof(F/F)/Lck-Cre(+)) display a marked reduction in thymus size compared with Mof(F/F)/Lck-Cre(-) mice. In contrast, the spleen size of Mof(F/F)/Lck-Cre(+) mice was increased compared with control Mof(F/F)/Lck-Cre(-) mice. The thymus of Mof(F/F)/Lck-Cre(+) mice contained significantly reduced T cells, whereas thymic B cells were elevated. Within the T-cell population, CD4(+)CD8(+) double-positive T-cell levels were reduced, whereas the immature CD4(-)CD8(-) double-negative (DN) population was elevated. Defective T-cell differentiation is also evident as an increased DN3 (CD44(-)CD25(+)) population, the cell stage during which T-cell receptor rearrangement takes place. The differentiation defect in T cells and reduced thymus size were not rescued in a p53-deficient background. Splenic B-cell distributions were similar between Mof(F/F)/Lck-Cre(+) and Mof(F/F)/Lck-Cre(-) mice except for an elevation of the κ light-chain population, suggestive of an abnormal clonal expansion. T cells from Mof(F/F)/Lck-Cre(+) mice did not respond to phytohaemagglutinin (PHA) stimulation, whereas LPS-stimulated B cells from Mof(F/F)/Lck-Cre(+) mice demonstrated spontaneous genomic instability. Mice with T-cell-specific loss of MOF had shorter lifespans and decreased survival following irradiation than did Mof(F/F)/Lck-Cre(-) mice. These observations suggest that Mof plays a critical

  2. RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development

    PubMed Central

    Martin-Vilchez, Samuel; Whitmore, Leanna; Asmussen, Hannelore; Zareno, Jessica; Horwitz, Rick; Newell-Litwa, Karen

    2017-01-01

    Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later maturation. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine precursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synapses. Our observations demonstrate that specific combinations of RhoGTPase regulatory proteins temporally balance RhoGTPase activity during post-synaptic spine development. PMID:28114311

  3. Development of New Mouse Lung Tumor Models Expressing EGFR T790M Mutants Associated with Clinical Resistance to Kinase Inhibitors

    PubMed Central

    Regales, Lucia; Balak, Marissa N.; Gong, Yixuan; Politi, Katerina; Sawai, Ayana; Le, Carl; Koutcher, Jason A.; Solit, David B.; Rosen, Neal; Zakowski, Maureen F.; Pao, William

    2007-01-01

    Background The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer. Methodology/Principal Findings To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFRT790M alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFRL858R+T790M-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFRT790M-expressing animals develop tumors with longer latency than EGFRL858R+T790M-bearing mice and in the absence of additional kinase domain mutations. Conclusions/Significance These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFRT790M alone or in conjunction with drug-sensitive EGFR kinase domain mutations. PMID:17726540

  4. Reversal effect and mechanism of Ginkgo biloba exocarp extracts in multidrug resistance of mice S180 tumor cells

    PubMed Central

    Hu, Bi-Yuan; Gu, Yun-Hao; Cao, Chen-Jie; Wang, Jun; Han, Dong-Dong; Tang, Ying-Chao; Chen, Hua-Sheng; Xu, Aihua

    2016-01-01

    The aim of the present study was to investigate the reversal effect and its related mechanism of Ginkgo biloba exocarp extracts (GBEEs) in obtained multidrug resistance (MDR) of mice S180 tumor cells in vitro and in vivo. In order to simulate the clinical PFC [cis-dichlorodiamineplatinum, cisplatin (DDP) + fluorouracil (FU), FU+cyclophosphamide and cyclophosphamide] scheme, a gradually increasing dose was administered in a phased induction in order to induce S180 cells in vivo and to make them obtain multidrug resistance. The results in vitro demonstrated that GBEE could significantly increase the IC50 of DDP on S180 MDR cells, increase the accumulation of Adriamycin (ADR) and rhodamine 123 (Rho 123), and reduce the efflux of Rho 123 of S180 MDR cells. The results from the in vivo treatment with a combination of GBEE and DDP to S180 MDR ascites tumor in mice demonstrated that each dose of GBEE could effectively reverse the drug-resistance of S180 MDR cells to DDP in order to extend the survival time of mice with ascite tumors and inhibit tumor growth in solid tumor mice. In addition, GBEE effectively inhibited the expression of MDR-1 mRNA and multidrug resistance-associated protein-1 mRNA in S180 MDR cells of ascites tumor in mice and improved the expression levels of cytokines, including interleukin (IL)-3, IL-18 and interferon-γ in the blood serum of S180 MDR tumor-bearing mice. The present study showed that the mechanism of GBEE reversal of MDR may be associated with the inhibition of the functional activity of P-glycoprotein, the downregulation of drug resistance related gene expression of S180 MDR cells and the improvement of the production of related serum cytokines of S180 MDR tumor mice. PMID:27698692

  5. RHGF-2 Is an Essential Rho-1 Specific RhoGEF that binds to the Multi-PDZ Domain Scaffold Protein MPZ-1 in Caenorhabditis elegans

    PubMed Central

    Lin, Li; Tran, Thuy; Hu, Shuang; Cramer, Todd; Komuniecki, Richard; Steven, Robert M.

    2012-01-01

    RhoGEF proteins activate the Rho family of small GTPases and thus play a key role in regulating fundamental cellular processes such as cell morphology and polarity, cell cycle progression and gene transcription. We identified a Caenorhabditis elegans RhoGEF protein, RHGF-2, as a binding partner of the C. elegans multi-PDZ domain scaffold protein MPZ-1 (MUPP1 in mammals). RHGF-2 exhibits significant identity to the mammalian RhoGEFs PLEKHG5/Tech/Syx and contains a class I C-terminal PDZ binding motif (SDV) that interacts most strongly to MPZ-1 PDZ domain eight. RHGF-2 RhoGEF activity is specific to the C. elegans RhoA homolog RHO-1 as determined by direct binding, GDP/GTP exchange and serum response element-driven reporter activity. rhgf-2 is an essential gene since rhgf-2 deletion mutants do not elongate during embryogenesis and hatch as short immobile animals that arrest development. Interestingly, the expression of a functional rhgf-2::gfp transgene appears to be exclusively neuronal and rhgf-2 overexpression results in loopy movement with exaggerated body bends. Transient expression of RHGF-2 in N1E-115 neuroblastoma cells prevents neurite outgrowth similar to constitutive RhoA activation in these cells. Together, these observations indicate neuronally expressed RHGF-2 is an essential RHO-1 specific RhoGEF that binds most strongly to MPZ-1 PDZ domain eight and is required for wild-type C. elegans morphology and growth. PMID:22363657

  6. T Cell Development in Mice Lacking All T Cell Receptor ζ Family Members (ζ, η, and FcεRIγ)

    PubMed Central

    Shores, Elizabeth W.; Ono, Masao; Kawabe, Tsutomo; Sommers, Connie L.; Tran, Tom; Lui, Kin; Udey, Mark C.; Ravetch, Jeffrey; Love, Paul E.

    1998-01-01

    The ζ family includes ζ, η, and FcεRIγ (Fcγ). Dimers of the ζ family proteins function as signal transducing subunits of the T cell antigen receptor (TCR), the pre-TCR, and a subset of Fc receptors. In mice lacking ζ/η chains, T cell development is impaired, yet low numbers of CD4+ and CD8+ T cells develop. This finding suggests either that pre-TCR and TCR complexes lacking a ζ family dimer can promote T cell maturation, or that in the absence of ζ/η, Fcγ serves as a subunit in TCR complexes. To elucidate the role of ζ family dimers in T cell development, we generated mice lacking expression of all of these proteins and compared their phenotype to mice lacking only ζ/η or Fcγ. The data reveal that surface complexes that are expressed in the absence of ζ family dimers are capable of transducing signals required for α/β–T cell development. Strikingly, T cells generated in both ζ/η−/− and ζ/η−/−–Fcγ−/− mice exhibit a memory phenotype and elaborate interferon γ. Finally, examination of different T cell populations reveals that ζ/η and Fcγ have distinct expression patterns that correlate with their thymus dependency. A possible function for the differential expression of ζ family proteins may be to impart distinctive signaling properties to TCR complexes expressed on specific T cell populations. PMID:9529325

  7. Smad4 in T cells plays a protective role in the development of autoimmune Sjögren's syndrome in the nonobese diabetic mouse.

    PubMed

    Kim, Donghee; Kim, Jae Young; Jun, Hee-Sook

    2016-12-06

    We investigated the role of Smad4, a signaling molecule of the TGF-beta pathway, in T cells on the pathology of Sjögren's syndrome (SS) in nonobese diabetic (NOD) mice, an animal model of SS. T cell-specific Smad4-deleted (Smad4fl/fl,CD4-Cre; Smad4 tKO) NOD mice had accelerated development of SS compared with wild-type (Smad4+/+,CD4-Cre; WT) NOD mice, including increased lymphocyte infiltration into exocrine glands, decreased tear and saliva production, and increased levels of autoantibodies at 12 weeks of age. Activated/memory T cells and cytokine (IFN-γ, IL-17)-producing T cells were increased in Smad4 tKO NOD mice, however the proportion and function of regulatory T (Treg) cells were not different between Smad4 tKO and WT NOD mice. Effector T (Teff) cells from Smad4 tKO NOD mice were less sensitive than WT Teff cells to suppression by Treg cells. Th17 differentiation capability of Teff cells was similar between Smad4 tKO and WT NOD mice, but IL-17 expression was increased under inducible Treg skewing conditions in T cells from Smad4 tKO NOD mice. Our results demonstrate that disruption of the Smad4 pathway in T cells of NOD mice increases Teff cell activation resulting in upregulation of Th17 cells, indicating that Smad4 in T cells has a protective role in the development of SS in NOD mice.

  8. γδT cells but not αβT cells contribute to sepsis-induced white matter injury and motor abnormalities in mice.

    PubMed

    Zhang, Xiaoli; Rocha-Ferreira, Eridan; Li, Tao; Vontell, Regina; Jabin, Darakhshan; Hua, Sha; Zhou, Kai; Nazmi, Arshed; Albertsson, Anna-Maj; Sobotka, Kristina; Ek, Joakim; Thornton, Claire; Hagberg, Henrik; Mallard, Carina; Leavenworth, Jianmei W; Zhu, Changlian; Wang, Xiaoyang

    2017-12-20

    Infection and sepsis are associated with brain white matter injury in preterm infants and the subsequent development of cerebral palsy. In the present study, we used a neonatal mouse sepsis-induced white matter injury model to determine the contribution of different T cell subsets (αβT cells and γδT cells) to white matter injury and consequent behavioral changes. C57BL/6J wild-type (WT), T cell receptor (TCR) δ-deficient (Tcrd -/- , lacking γδT cells), and TCRα-deficient (Tcra -/- , lacking αβT cells) mice were administered with lipopolysaccharide (LPS) at postnatal day (PND) 2. Brain myelination was examined at PNDs 12, 26, and 60. Motor function and anxiety-like behavior were evaluated at PND 26 or 30 using DigiGait analysis and an elevated plus maze. White matter development was normal in Tcrd -/- and Tcrα -/- compared to WT mice. LPS exposure induced reductions in white matter tissue volume in WT and Tcrα -/- mice, but not in the Tcrd -/- mice, compared with the saline-treated groups. Neither LPS administration nor the T cell deficiency affected anxiety behavior in these mice as determined with the elevated plus maze. DigiGait analysis revealed motor function deficiency after LPS-induced sepsis in both WT and Tcrα -/- mice, but no such effect was observed in Tcrd -/- mice. Our results suggest that γδT cells but not αβT cells contribute to sepsis-induced white matter injury and subsequent motor function abnormalities in early life. Modulating the activity of γδT cells in the early stages of preterm white matter injury might represent a novel therapeutic strategy for the treatment of perinatal brain injury.

  9. Antibody response is required for protection from Theiler's virus-induced encephalitis in C57BL/6 mice in the absence of CD8{sup +} T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, B.-S.; Palma, Joann P.; Lyman, Michael A.

    2005-09-15

    Intracerebral infection of susceptible mice with Theiler's murine encephalomyelitis virus (TMEV) induces immune-mediated demyelinating disease and this system serves as a relevant infectious model for human multiple sclerosis. It was previously shown that {beta}{sub 2}M-deficient C57BL/6 mice lacking functional CD8{sup +} T cells display increased viral persistence and enhanced susceptibility to TMEV-induced demyelination, and yet the majority of mice are free of clinical signs. To understand the mechanisms involved in this general resistance of C57BL/6 mice in the absence of CTL responses, mice ({mu}MT) deficient in the B-cell compartment lacking membrane IgM molecules were treated with anti-CD8 antibody and thenmore » infected with TMEV. Although little difference in the proliferative responses of peripheral T cells to UV-inactivated TMEV and the resistance to demyelinating disease was observed between virus-infected {mu}MT and control B6 mice, the levels of CD4{sup +} T cells were higher in the CNS of {mu}MT mice. However, after treatment with anti-CD8 antibody, 100% of the mice displayed clinical gray matter disease and prolonged viral persistence in {mu}MT mice, while only 10% of B6 mice showed clinical symptoms and very low viral persistence. Transfusion of sera from TMEV-infected B6 mice into anti-CD8 antibody-treated {mu}MT mice partially restored resistance to virus-induced encephalitis. These results indicate that the early anti-viral antibody response is also important in the protection from TMEV-induced encephalitis particularly in the absence of CD8{sup +} T cells.« less

  10. Reciprocity between Regulatory T Cells and Th17 Cells: Relevance to Polarized Immunity in Leprosy

    PubMed Central

    Sadhu, Soumi; Khaitan, Binod Kumar; Joshi, Beenu; Sengupta, Utpal; Nautiyal, Arvind Kumar; Mitra, Dipendra Kumar

    2016-01-01

    T cell defect is a common feature in lepromatous or borderline lepromatous leprosy (LL/BL) patients in contrast to tuberculoid or borderline tuberculoid type (TT/BT) patients. Tuberculoid leprosy is characterized by strong Th1-type cell response with localized lesions whereas lepromatous leprosy is hallmarked by its selective Mycobacterium leprae specific T cell anergy leading to disseminated and progressive disease. FoxP3+ Regulatory T cells (Treg) which are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases also dampen proinflammatory T cells that include T helper 17 (Th17) cells. This study is aimed at evaluating the role of Treg cells in influencing other effector T cells and its relationship with the cytokine polarized state in leprosy patients. Peripheral blood mononuclear cells from of BT/TT (n = 15) and BL/LL (n = 15) patients were stimulated with M. leprae antigen (WCL) in presence of golgi transport inhibitor monensin for FACS based intracellular cytokine estimation. The frequency of Treg cells showed >5-fold increase in BL/LL in comparison to BT/TT and healthy contacts. These cells produced suppressive cytokine, IL-10 in BL/LL as opposed to BT/TT (p = 0.0200) indicating their suppressive function. The frequency of Th17 cells (CD4, CD45RO, IL-17) was, however, higher in BT/TT. Significant negative correlation (r = -0.68, P = 0.03) was also found between IL-10 of Treg cells and IL-17+ T cells in BL/LL. Blocking IL-10/TGF-β restored the IL-17+ T cells in BL/LL patients. Simultaneously, presence of Th17 related cytokines (TGF-β, IL-6, IL-17 and IL-23) decreased the number of FoxP3+ Treg cells concomitantly increasing IL-17 producing CD4+ cells in lepromatous leprosy. Higher frequency of Programmed Death-1/PD-1+ Treg cells and its ligand, PDL-1 in antigen presenting cells (APCs) was found in BL/LL patients. Inhibition of this pathway led to rescue of IFN-γ and IL-17 producing T cells

  11. Mice with mutant Inf2 show impaired podocyte and slit diaphragm integrity in response to protamine-induced kidney injury.

    PubMed

    Subramanian, Balajikarthick; Sun, Hua; Yan, Paul; Charoonratana, Victoria T; Higgs, Henry N; Wang, Fang; Lai, Ka-Man V; Valenzuela, David M; Brown, Elizabeth J; Schlöndorff, Johannes S; Pollak, Martin R

    2016-08-01

    Mutations in the INF2 (inverted formin 2) gene, encoding a diaphanous formin family protein that regulates actin cytoskeleton dynamics, cause human focal segmental glomerulosclerosis (FSGS). INF2 interacts directly with certain other mammalian diaphanous formin proteins (mDia) that function as RhoA effector molecules. FSGS-causing INF2 mutations impair these interactions and disrupt the ability of INF2 to regulate Rho/Dia-mediated actin dynamics in vitro. However, the precise mechanisms by which INF2 regulates and INF2 mutations impair glomerular structure and function remain unknown. Here, we characterize an Inf2 R218Q point-mutant (knockin) mouse to help answer these questions. Knockin mice have no significant renal pathology or proteinuria at baseline despite diminished INF2 protein levels. INF2 mutant podocytes do show impaired reversal of protamine sulfate-induced foot process effacement by heparin sulfate perfusion. This is associated with persistent podocyte cytoplasmic aggregation, nephrin phosphorylation, and nephrin and podocin mislocalization, as well as impaired recovery of mDia membrane localization. These changes were partially mimicked in podocyte outgrowth cultures, in which podocytes from knockin mice show altered cellular protrusions compared to those from wild-type mice. Thus, in mice, normal INF2 function is not required for glomerular development but normal INF2 is required for regulation of the actin-based behaviors necessary for response to and/or recovery from injury. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. Up-regulation of Rho-associated kinase 1/2 by glucocorticoids promotes migration, invasion and metastasis of melanoma.

    PubMed

    Huang, Gao-Xiang; Wang, Yan; Su, Jie; Zhou, Peng; Li, Bo; Yin, Li-Juan; Lu, Jian

    2017-12-01

    Although glucocorticoids (GCs) regulate proliferation, differentiation and apoptosis of tumor cells, their influence on metastasis of tumor cells is poorly understood. Melanoma is a type of skin cancers with high metastasis. We investigated the effect of GCs on metastasis of melanoma cells and its mechanism. We found that GCs significantly promoted the adhesion, migration, invasion of melanoma cells in vitro and lung metastasis in experimental melanoma metastasis mice. Dexamethasone (Dex), a synthetic GC, did not change the RhoA, RhoB and RhoC signalings, but significantly increased the expression and activity of Rho-associated kinase 1/2 (ROCK1/2). The effect of Dex was to increase ROCK1/2 stability mediated by glucocorticoid receptor. Inhibiting ROCK1/2 activity with Y-27632, a ROCK1/2 inhibitor abrogated the pro-migration and pro-metastasis effects of GCs in vitro and in vivo, indicating that ROCK1/2 mediated the pro-metastasis effects of GCs. Activation of PI3K/AKT also contributed to the pro-migration and pro-invasion effects of Dex partially through up-regulating ROCK1/2 expression. Additionally, Dex also down-regulated the expression of tissue inhibitors of matrix metalloproteinase-2. Taken together, our findings provide new data to understand the possible promoting roles and mechanisms of GCs in melanoma metastasis. Copyright © 2017. Published by Elsevier B.V.

  13. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenicmore » mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. - Highlights: • This study explore contribution of DNA damage to neurodegeneration in Parkinson's disease mice. • A53T-α-Syn MEF cells show a prolonged DNA damage repair process and senescense phenotype. • DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice. • DNA damage decrease the number of nigrostriatal dopaminergic neurons. • Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages.« less

  14. Expansion of Pathogen-Specific T-Helper 1 and T-Helper 17 Cells in Pulmonary Tuberculosis With Coincident Type 2 Diabetes Mellitus

    PubMed Central

    Kumar, Nathella Pavan; Sridhar, Rathinam; Banurekha, Vaithilingam V.; Jawahar, Mohideen S.; Nutman, Thomas B.; Babu, Subash

    2013-01-01

    Background. Type 2 diabetes mellitus (DM) is a major risk factor for the development of active pulmonary tuberculosis, although the immunological mechanisms underlying this interaction remain unexplored. The influence of poorly controlled diabetes on pathogen-specific T-helper 1 (Th1) and T-helper 17 (Th17) responses have not been examined. Methods. To identify the role of Th1 and Th17 cells in tuberculosis with coincident DM, we examined mycobacteria-specific immune responses in the whole blood of individuals who had tuberculosis with DM and compared them to those in individuals who had tuberculosis without DM. Results. Tuberculosis coincident with DM is characterized by elevated frequencies of monofunctional and dual-functional CD4+ Th1 cells following Mycobacterium tuberculosis antigen stimulation and elevated frequencies of Th17 subsets at both baseline and following antigen stimulation. This was associated with increased systemic (plasma) levels of both Th1 and Th17 cytokines and decreased baseline frequencies of natural regulatory T cells but not interleukin 10 or transforming growth factor β. Conclusions. Therefore, our data reveal that tuberculosis in persons with DM is characterized by elevated frequencies of Th1 and Th17 cells, indicating that DM is associated with an alteration in the immune response to tuberculosis, leading to a biased induction of Th1- and Th17-mediated cellular responses and likely contributing to increased immune pathology in M. tuberculosis infection. PMID:23715661

  15. The dual specificity PI3K/mTOR inhibitor PKI-587 displays efficacy against T-cell acute lymphoblastic leukemia (T-ALL).

    PubMed

    Gazi, Mohiuddin; Moharram, Sausan A; Marhäll, Alissa; Kazi, Julhash U

    2017-04-28

    Although significant improvements have been made in the treatment of acute lymphoblastic leukemia (ALL), there is a substantial subset of high-risk T-cell ALL (T-ALL) patients with relatively poor prognosis. Like in other leukemia types, alterations of the PI3K/mTOR pathway are predominant in ALL which is also responsible for treatment failure and relapse. In this study, we show that relapsed T-ALL patients display an enrichment of the PI3K/mTOR pathway. Using a panel of inhibitors targeting multiple components of the PI3K/mTOR pathway, we observed that the dual-specific PI3K/mTOR inhibitor PKI-587 was the most selective inhibitor for T-ALL cells dependent on the PI3K/mTOR pathway. Furthermore, we observed that PKI-587 blocked proliferation and colony formation of T-ALL cell lines. Additionally, PKI-587 selectively abrogated PI3K/mTOR signaling without affecting MAPK signaling both in in vitro and in vivo. Inhibition of the PI3K/mTOR pathway using PKI-587 delayed tumor progression, reduced tumor load and enhanced the survival rate in immune-deficient mouse xenograft models without inducing weight loss in the inhibitor treated mice. This preclinical study shows beneficial effects of PKI-587 on T-ALL that warrants further investigation in the clinical setting. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Distinctive and selective route of PI3K/PKCα-PKCδ/RhoA-Rac1 signaling in osteoclastic cell migration.

    PubMed

    Kim, Jin-Man; Kim, Mi Yeong; Lee, Kyunghee; Jeong, Daewon

    2016-12-05

    Cell migration during specialized stages of osteoclast precursors, mononuclear preosteoclasts, and multinucleated mature osteoclasts remain uncertain. M-CSF- and osteopontin-induced osteoclastic cell migration was inhibited by function-blocking monoclonal antibodies specific to the integrin αv and β3 subunits, suggesting that integrin αvβ3 mediates migratory signaling induced by M-CSF and osteopontin. M-CSF and osteopontin stimulation was shown to regulate two branched signaling processes, PI3K/PKCα/RhoA axis and PI3K/PKCδ/Rac1 axis. Interestingly, inactivation of RhoA or Rac1 blocked preosteoclast and mature osteoclast migration but not osteoclast precursor migration in a transwell-based cell migration assay. Moreover, the inhibitory effect on preosteoclast and mature osteoclast migration induced by Rac1 inactivation was more effective than that by RhoA inactivation. Collectively, our findings suggest that osteoclast precursor migration depends on PI3K/PKCα-PKCδ signaling mediated via integrin αvβ3 bypassing RhoA and Rac1, whereas preosteoclast and mature osteoclast migration relies on PI3K/PKCα-PKCδ/RhoA-Rac1 axis signaling mediated via integrin αvβ3 with increased dependency on PKCδ/Rac1 signaling route as differentiation progresses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Rho GTPase protein Cdc42 is critical for postnatal cartilage development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagahama, Ryo; Department of Orthodontics, School of Dentistry, Showa University, Tokyo; Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp

    2016-02-19

    Cdc42, a small Rho GTPase family member, has been shown to regulate multiple cellular functions in vitro, including actin cytoskeletal reorganization, cell migration, proliferation, and gene expression. However, its tissue-specific roles in vivo remain largely unknown, especially in postnatal cartilage development, as cartilage-specific Cdc42 inactivated mice die within a few days after birth. In this study, we investigated the physiological functions of Cdc42 during cartilage development after birth using tamoxifen-induced cartilage-specific inactivated Cdc42 conditional knockout (Cdc42 {sup fl/fl}; Col2-CreERT) mice, which were generated by crossing Cdc42 flox mice (Cdc42 {sup fl/fl}) with tamoxifen-induced type II collagen (Col2) Cre transgenic mice using a Cre/loxP system.more » The gross morphology of the Cdc42 cKO mice was shorter limbs and body, as well as reduced body weight as compared with the controls. In addition, severe defects were found in growth plate chondrocytes of the long bones, characterized by a shorter proliferating zone (PZ), wider hypertrophic zone (HZ), and loss of columnar organization of proliferating chondrocytes, resulting in delayed endochondral bone formation associated with abnormal bone growth. Our findings demonstrate the importance of Cdc42 for cartilage development during both embryonic and postnatal stages. - Highlights: • Tamoxifen-induced cartilage specific inactivated Cdc42 mutant mice were generated. • Cdc42 mutant mice were shorter limbs and body. • Severe defects were found in growth plate chondrocytes.« less

  18. Citron kinase controls abscission through RhoA and anillin

    PubMed Central

    Gai, Marta; Camera, Paola; Dema, Alessandro; Bianchi, Federico; Berto, Gaia; Scarpa, Elena; Germena, Giulia; Di Cunto, Ferdinando

    2011-01-01

    The small GTPase RhoA plays a crucial role in the different stages of cytokinesis, including contractile ring formation, cleavage furrow ingression, and midbody abscission. Citron kinase (CIT-K), a protein required for cytokinesis and conserved from insects to mammals, is currently considered a cytokinesis-specific effector of active RhoA. In agreement with previous observations, we show here that, as in Drosophila cells, CIT-K is specifically required for abscission in mammalian cells. However, in contrast with the current view, we provide evidence that CIT-K is an upstream regulator rather than a downstream effector of RhoA during late cytokinesis. In addition, we show that CIT-K is capable of physically and functionally interacting with the actin-binding protein anillin. Active RhoA and anillin are displaced from the midbody in CIT-K-depleted cells, while only anillin, but not CIT-K, is affected if RhoA is inactivated in late cytokinesis. The overexpression of CIT-K and of anillin leads to abscission delay. However, the delay produced by CIT-K overexpression can be reversed by RhoA inactivation, while the delay produced by anillin overexpression is RhoA-independent. Altogether, these results indicate that CIT-K is a crucial abscission regulator that may promote midbody stability through active RhoA and anillin. PMID:21849473

  19. On How Fas Apoptosis-Independent Pathways Drive T Cell Hyperproliferation and Lymphadenopathy in lpr Mice.

    PubMed

    Balomenos, Dimitrios; Shokri, Rahman; Daszkiewicz, Lidia; Vázquez-Mateo, Cristina; Martínez-A, Carlos

    2017-01-01

    Fas induces massive apoptosis in T cells after repeated in vitro T cell receptor (TCR) stimulation and is critical for lymphocyte homeostasis in Fas-deficient ( lpr ) mice. Although the in vitro Fas apoptotic mechanism has been defined, there is a large conceptual gap between this in vitro phenomenon and the pathway that leads to in vivo development of lymphadenopathy and autoimmunity. A striking abnormality in lpr mice is the excessive proliferation of CD4 + and CD8 + T cells, and more so of the double-negative TCR + CD4 - CD8 - B220 + T cells. The basis of lpr T cell hyperproliferation remains elusive, as it cannot be explained by Fas-deficient apoptosis. T cell-directed p21 overexpression reduces hyperactivation/hyperproliferation of all lpr T cell subtypes and lymphadenopathy in lpr mice. p21 controls expansion of repeatedly stimulated T cells without affecting apoptosis. These results confirm a direct link between hyperactivation/hyperproliferation, autoreactivity, and lymphadenopathy in lpr mice and, with earlier studies, suggest that Fas apoptosis-independent pathways control lpr T cell hyperproliferation. lpr T cell hyperproliferation could be an indirect result of the defective apoptosis of repeatedly stimulated lpr T cells. Nonetheless, in this perspective, we argue for an alternative setting, in which lack of Fas would directly cause lpr T cell hyperactivation/hyperproliferation in vivo . We propose that Fas/Fas ligand (FasL) acts as an activation inhibitor of recurrently stimulated T cells, and that its disruption causes overexpansion of T cells in lpr mice. Research to define the underlying mechanism of this Fas/FasL effect could resolve the phenotype of lpr mice and lead to therapeutics for related human syndromes.

  20. Impaired antibody response against T-dependent antigens in rhino mice.

    PubMed

    Takaoki, M; Kawaji, H

    1980-05-01

    The antibody response in rhino mice, which carry a mutant gene hrrh, to thymus-dependent (TD) or thymus-independent (TI) antigens was compared with that of phenotypically normal littermates. The magnitude of antibody response to TD antigens in rhino mice decreased as they grew up, whereas the antibody response to TI antigens in rhino mice was indistinguishable from that of littermates. A transfer of thymus cells from littermates to rhino mice resulted in the partial restoration of the responsiveness to TD antigens. The experiments employing adoptive transfer of spleen cells from rhino mice to the irradiated normal mice suggested that the hyporesponsiveness of TD antigens of adult rhino mice was mainly due to the defect in the T helper cell activities rather than either the increase of the suppressor cells or defects in other cell types.