Sample records for t4 lysozyme gene

  1. An improved 96-well turbidity assay for T4 lysozyme activity.

    PubMed

    Toro, Tasha B; Nguyen, Thao P; Watt, Terry J

    2015-01-01

    T4 lysozyme (T4L) is an important model system for investigating the relationship between protein structure and function. Despite being extensively studied, a reliable, quantitative activity assay for T4L has not been developed. Here, we present an improved T4L turbidity assay as well as an affinity-based T4L expression and purification protocol. This assay is designed for 96-well format and utilizes conditions amenable for both T4L and other lysozymes. This protocol enables easy, efficient, and quantitative characterization of T4L variants and allows comparison between different lysozymes. Our method: •Is applicable for all lysozymes, with enhanced sensitivity for T4 lysozyme compared to other 96-well plate turbidity assays;•Utilizes standardized conditions for comparing T4 lysozyme variants and other lysozymes; and•Incorporates a simplified expression and purification protocol for T4 lysozyme.

  2. An improved 96-well turbidity assay for T4 lysozyme activity

    PubMed Central

    Toro, Tasha B.; Nguyen, Thao P.; Watt, Terry J.

    2015-01-01

    T4 lysozyme (T4L) is an important model system for investigating the relationship between protein structure and function. Despite being extensively studied, a reliable, quantitative activity assay for T4L has not been developed. Here, we present an improved T4L turbidity assay as well as an affinity-based T4L expression and purification protocol. This assay is designed for 96-well format and utilizes conditions amenable for both T4L and other lysozymes. This protocol enables easy, efficient, and quantitative characterization of T4L variants and allows comparison between different lysozymes. Our method: • Is applicable for all lysozymes, with enhanced sensitivity for T4 lysozyme compared to other 96-well plate turbidity assays; • Utilizes standardized conditions for comparing T4 lysozyme variants and other lysozymes; and • Incorporates a simplified expression and purification protocol for T4 lysozyme. PMID:26150996

  3. Control of Bacteriophage T4 Tail Lysozyme Activity During the Infection Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanamaru, Shuji; Ishiwata, Yasutaka; Suzuki, Toshiharu

    2010-07-19

    Bacteriophage T4 has an efficient mechanism for injecting the host Escherichia coli cell with genomic DNA. Its gene product 5 (gp5) has a needle-like structure attached to the end of a tube through which the DNA passes on its way out of the head and into the host. The gp5 needle punctures the outer cell membrane and then digests the peptidoglycan cell wall in the periplasmic space. gp5 is normally post-translationally cleaved between residues 351 and 352. The function of this process in controlling the lysozyme activity of gp5 has now been investigated. When gp5 is over-expressed in E. coli,more » two mutants (S351H and S351A) showed a reduction of cleavage products and five other mutants (S351L, S351K, S351Y, S351Q, and S351T) showed no cleavage. Furthermore, in a complementation assay at 20 C, the mutants that had no cleavage of gp5 produced a reduced number of plaques compared to wild-type T4. The crystal structure of the non-cleavage phenotype mutant of gp5, S351L, complexed with gene product 27, showed that the 18 residues in the vicinity of the potential cleavage site (disordered in the wild-type structure) had visible electron density. The polypeptide around the potential cleavage site is exposed, thus allowing access for an E. coli protease. The lysozyme activity is inhibited in the wild-type structure by a loop from the adjacent gp5 monomer that binds into the substrate-binding site. The same inhibition is apparent in the mutant structure, showing that the lysozyme is inhibited before gp5 is cleaved and, presumably, the lysozyme is activated only after gp5 has penetrated the outer membrane.« less

  4. Evolution of the bovine lysozyme gene family: changes in gene expression and reversion of function.

    PubMed

    Irwin, D M

    1995-09-01

    Recruitment of lysozyme to a digestive function in ruminant artiodactyls is associated with amplification of the gene. At least four of the approximately ten genes are expressed in the stomach, and several are expressed in nonstomach tissues. Characterization of additional lysozymelike sequences in the bovine genome has identified most, if not all, of the members of this gene family. There are at least six stomachlike lysozyme genes, two of which are pseudogenes. The stomach lysozyme pseudogenes show a pattern of concerted evolution similar to that of the functional stomach genes. At least four nonstomach lysozyme genes exist. The nonstomach lysozyme genes are not monophyletic. A gene encoding a tracheal lysozyme was isolated, and the stomach lysozyme of advanced ruminants was found to be more closely related to the tracheal lysozyme than to the stomach lysozyme of the camel or other nonstomach lysozyme genes of ruminants. The tracheal lysozyme shares with stomach lysozymes of advanced ruminants the deletion of amino acid 103, and several other adaptive sequence characteristics of stomach lysozymes. I suggest here that tracheal lysozyme has reverted from a functional stomach lysozyme. Tracheal lysozyme then represents a second instance of a change in lysozyme gene expression and function within ruminants.

  5. Co-option of bacteriophage lysozyme genes by bivalve genomes.

    PubMed

    Ren, Qian; Wang, Chunyang; Jin, Min; Lan, Jiangfeng; Ye, Ting; Hui, Kaimin; Tan, Jingmin; Wang, Zheng; Wyckoff, Gerald J; Wang, Wen; Han, Guan-Zhu

    2017-01-01

    Eukaryotes have occasionally acquired genetic material through horizontal gene transfer (HGT). However, little is known about the evolutionary and functional significance of such acquisitions. Lysozymes are ubiquitous enzymes that degrade bacterial cell walls. Here, we provide evidence that two subclasses of bivalves (Heterodonta and Palaeoheterodonta) acquired a lysozyme gene via HGT, building on earlier findings. Phylogenetic analyses place the bivalve lysozyme genes within the clade of bacteriophage lysozyme genes, indicating that the bivalves acquired the phage-type lysozyme genes from bacteriophages, either directly or through intermediate hosts. These bivalve lysozyme genes underwent dramatic structural changes after their co-option, including intron gain and fusion with other genes. Moreover, evidence suggests that recurrent gene duplication occurred in the bivalve lysozyme genes. Finally, we show the co-opted lysozymes exhibit a capacity for antibacterial action, potentially augmenting the immune function of related bivalves. This represents an intriguing evolutionary strategy in the eukaryote-microbe arms race, in which the genetic materials of bacteriophages are co-opted by eukaryotes, and then used by eukaryotes to combat bacteria, using a shared weapon against a common enemy. © 2017 The Authors.

  6. Structure of T7 RNA polymerase complexed to the transcriptional inhibitor T7 lysozyme.

    PubMed Central

    Jeruzalmi, D; Steitz, T A

    1998-01-01

    The T7 RNA polymerase-T7 lysozyme complex regulates phage gene expression during infection of Escherichia coli. The 2.8 A crystal structure of the complex reveals that lysozyme binds at a site remote from the polymerase active site, suggesting an indirect mechanism of inhibition. Comparison of the T7 RNA polymerase structure with that of the homologous pol I family of DNA polymerases reveals identities in the catalytic site but also differences specific to RNA polymerase function. The structure of T7 RNA polymerase presented here differs significantly from a previously published structure. Sequence similarities between phage RNA polymerases and those from mitochondria and chloroplasts, when interpreted in the context of our revised model of T7 RNA polymerase, suggest a conserved fold. PMID:9670025

  7. Repacking the Core of T4 lysozyme by automated design.

    PubMed

    Mooers, Blaine H M; Datta, Deepshikha; Baase, Walter A; Zollars, Eric S; Mayo, Stephen L; Matthews, Brian W

    2003-09-19

    Automated protein redesign, as implemented in the program ORBIT, was used to redesign the core of phage T4 lysozyme. A total of 26 buried or partially buried sites in the C-terminal domain were allowed to vary both their sequence and side-chain conformation while the backbone and non-selected side-chains remained fixed. A variant with seven substitutions ("Core-7") was identified as having the most favorable energy. The redesign experiment was repeated with a penalty for the presence of methionine residues. In this case the redesigned protein ("Core-10") had ten amino acid changes. The two designed proteins, as well as the constituent single mutants, and several single-site revertants were over-expressed in Escherichia coli, purified, and subjected to crystallographic and thermal analyses. The thermodynamic and structural data show that some repacking was achieved although neither redesigned protein was more stable than the wild-type protein. The use of the methionine penalty was shown to be effective. Several of the side-chain rotamers in the predicted structure of Core-10 differ from those observed. Rather than changing to new rotamers predicted by the design process, side-chains tend to maintain conformations similar to those seen in the native molecule. In contrast, parts of the backbone change by up to 2.8A relative to both the designed structure and wild-type. Water molecules that are present within the lysozyme molecule were removed during the design process. In the redesigned protein the resultant cavities were, to some degree, re-occupied by side-chain atoms. In the observed structure, however, water molecules were still bound at or near their original sites. This suggests that it may be preferable to leave such water molecules in place during the design procedure. The results emphasize the specificity of the packing that occurs within the core of a typical protein. While point substitutions within the core are tolerated they almost always result in a loss

  8. Characterization of the c-type lysozyme gene family in Anopheles gambiae.

    PubMed

    Li, Bin; Calvo, Eric; Marinotti, Osvaldo; James, Anthony A; Paskewitz, Susan M

    2005-11-07

    Seven new c-type lysozyme genes were found using the Anopheles gambiae genome sequence, increasing to eight the total number of genes in this family identified in this species. The eight lysozymes in An. gambiae have considerable variation in gene structure and expression patterns. Lys c-6 has the most unusual primary amino acid structure as the predicted protein consists of five lysozyme-like domains. Transcript abundance of each c-type lysozyme was determined by semiquantitative RT-PCR. Lys c-1, c-6 and c-7 are expressed constitutively in all developmental stages from egg to adult. Lys c-2 and c-4 also are found in all stages, but with relatively much higher levels in adults. Conversely, Lys c-3 and c-8 transcripts are highest in larvae. Lys c-1, c-6 and c-7 transcripts are found in nearly all the adult tissue samples examined while Lys c-2 and Lys c-4 are more restricted in their expression. Lys c-1 and c-2 transcripts are clearly immune responsive and are increased significantly 6-12 h post challenge with bacteria. The functional adaptive changes that may have evolved during the expansion of this gene family are briefly discussed in terms of the expression patterns, gene and protein structures.

  9. A freeze-thaw method for disintegration of Escherichia coli cells producing T7 lysozyme used in pBAD expression systems.

    PubMed

    Wanarska, Marta; Hildebrandt, Piotr; Kur, Józef

    2007-01-01

    The pLysN plasmid containing the T7 lysozyme gene under control of the lac promoter was constructed to facilitate cell disintegration after expression of recombinant proteins in arabinose-induced expression systems. The usefulness of this plasmid was tested in Escherichia coli TOP10 and E. coli LMG194 cells carrying pBADMHADgeSSB plasmid containing Deinococcus geothermalis SSB protein gene under control of the araBAD promoter. The results showed that low-level expression of T7 lysozyme did not interfere with the target SSB protein production, and that the freezing-thawing treatment was sufficient for disruption of the E. coli cells producing low amounts of T7 lysozyme.

  10. Role of cavities and hydration in the pressure unfolding of T4 lysozyme

    PubMed Central

    Nucci, Nathaniel V.; Fuglestad, Brian; Athanasoula, Evangelia A.; Wand, A. Joshua

    2014-01-01

    It is well known that high hydrostatic pressures can induce the unfolding of proteins. The physical underpinnings of this phenomenon have been investigated extensively but remain controversial. Changes in solvation energetics have been commonly proposed as a driving force for pressure-induced unfolding. Recently, the elimination of void volumes in the native folded state has been argued to be the principal determinant. Here we use the cavity-containing L99A mutant of T4 lysozyme to examine the pressure-induced destabilization of this multidomain protein by using solution NMR spectroscopy. The cavity-containing C-terminal domain completely unfolds at moderate pressures, whereas the N-terminal domain remains largely structured to pressures as high as 2.5 kbar. The sensitivity to pressure is suppressed by the binding of benzene to the hydrophobic cavity. These results contrast to the pseudo-WT protein, which has a residual cavity volume very similar to that of the L99A–benzene complex but shows extensive subglobal reorganizations with pressure. Encapsulation of the L99A mutant in the aqueous nanoscale core of a reverse micelle is used to examine the hydration of the hydrophobic cavity. The confined space effect of encapsulation suppresses the pressure-induced unfolding transition and allows observation of the filling of the cavity with water at elevated pressures. This indicates that hydration of the hydrophobic cavity is more energetically unfavorable than global unfolding. Overall, these observations point to a range of cooperativity and energetics within the T4 lysozyme molecule and illuminate the fact that small changes in physical parameters can significantly alter the pressure sensitivity of proteins. PMID:25201963

  11. Lysozymes in the animal kingdom.

    PubMed

    Callewaert, Lien; Michiels, Chris W

    2010-03-01

    Lysozymes (EC 3.2.1.17) are hydrolytic enzymes, characterized by their ability to cleave the beta-(1,4)-glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine in peptidoglycan, the major bacterial cell wall polymer. In the animal kingdom, three major distinct lysozyme types have been identified--the c-type (chicken or conventional type), the g-type (goose-type) and the i-type (invertebrate type) lysozyme. Examination of the phylogenetic distribution of these lysozymes reveals that c-type lysozymes are predominantly present in the phylum of the Chordata and in different classes of the Arthropoda. Moreover, g-type lysozymes (or at least their corresponding genes) are found in members of the Chordata, as well as in some bivalve mollusks belonging to the invertebrates. In general, the latter animals are known to produce i-type lysozymes. Although the homology in primary structure for representatives of these three lysozyme types is limited, their three-dimensional structures show striking similarities. Nevertheless, some variation exists in their catalytic mechanisms and the genomic organization of their genes. Regarding their biological role, the widely recognized function of lysozymes is their contribution to antibacterial defence but, additionally, some lysozymes (belonging to different types) are known to function as digestive enzymes.

  12. Establishment of lysozyme gene RNA interference systemand its involvement in salinity tolerance in sea cucumber (Apostichopus japonicus).

    PubMed

    Tian, Yi; Jiang, Yanan; Shang, Yanpeng; Zhang, Yu-Peng; Geng, Chen-Fan; Wang, Li-Qiang; Chang, Ya-Qing

    2017-06-01

    The lysozyme gene was silenced using RNA interference (RNAi) to analyze the function of lysozyme in sea cucumber under salt stress. The interfering efficiency of four lysozyme RNAi oligos ranged from 0.55 to 0.70. From the four oligos, p-miR-L245 was used for further interfering experiments because it had the best silencing efficiency. Peristomial film injection of p-miR-L245 (10 μg) was used for further interfering experiments. The lowest gene expression, determined by RT-PCR assay, in muscle, coelomic fluid, and parapodium occurred 48 h after p-miR-L245 injection, while that of body wall and tube foot was 96 h and 24 h, respectively. Lysozyme activity in muscle and body wall was significantly lower than the controls. The lowest lysozyme activity in muscle, body wall and parapodium, was found at 48, 72, and 48 h, respectively, which was consistent with the transcription expression of lysozyme. The lowest point of lysozyme activity was at 96 h in coelomic fluid and tube foot, which was laid behind lysozyme expression in transcription level. The expression profile of the lysozyme transcription level and lysozyme activity in the body wall and tube foot increased at 12 h after p-miR-L245 injection before the interference effect appeared. NKA gene expression was expressed at a high level in the positive control (PC) and negative control (NC) groups at 12, 24, and 48 h, while NKA was expressed at low levels in the lysozyme RNAi injection group at 12 and 24 h. The level of NKA gene expression recovered to the level of the PC and NC group at 48, 72, and 96 h after the lysozyme RNAi injection. NKCC1 gene expression was high in the PC and NC groups at 96 h, while the NKCC1 was expressed at a low level 96 h after lysozyme RNAi injection. The results suggest that lysozyme decay involves NKA and NKCC1 gene expression under salinity 18 psμ. The K + and Cl - concentration after lysozyme RNAi injection was lower than in the PC and NC group. Copyright © 2017

  13. Structure and Orientation of T4 Lysozyme Bound to the Small Heat Shock Protein α-Crystallin

    PubMed Central

    Claxton, Derek P.; Zou, Ping; Mchaourab, Hassane S.

    2008-01-01

    Summary We have determined the structural changes that accompany the formation of a stable complex between a destabilized mutant of T4 lysozyme (T4L) and the small heat-shock protein α-crystallin. Using pairs of fluorescence or spin label probes to fingerprint the T4L tertiary fold, we demonstrate that binding disrupts tertiary packing in the two domains as well as across the active site cleft. Furthermore, increased distances between i and i+4 residues of helices support a model in which the bound structure is not native-like but significantly unfolded. In the confines of the oligomer, T4L has a preferential orientation with residues in the more hydrophobic C-terminal domain sequestered in a buried environment while residues in the N-terminal domain are exposed to the aqueous solvent. Furthermore, EPR spectral lineshapes of sites in the N-terminal domain are narrower than in the folded, unbound T4L reflecting an unstructured backbone and an asymmetric pattern of contacts between T4L and α-crystallin. The net orientation is not affected by the location of the destabilizing mutation consistent with the notion that binding is not triggered by recognition of localized unfolding. Together, the structural and thermodynamic data indicate that the stably bound conformation of T4L is unfolded and support a model in which the two-modes of substrate binding originate from two discrete binding sites on the chaperone. PMID:18062989

  14. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection.

    PubMed

    Jin, Qingwen; Chen, Hong; Wang, Xingxia; Zhao, Liandong; Xu, Qingchen; Wang, Huijuan; Li, Guanyu; Yang, Xiaofan; Ma, Hongming; Wu, Haoquan; Ji, Xiaohui

    2015-01-01

    Insertion of T4 lysozyme (T4L) into the GPCR successfully enhanced GPCR protein stability and solubilization. However, the biological functions of the recombinant GPCR protein have not been analyzed. We engineered the CCR5-T4L mutant and expressed and purified the soluble recombinant protein using an E.coli expression system. The antiviral effects of this recombinant protein in THP-1 cell lines, primary human macrophages, and PBMCs from different donors were investigated. We also explored the possible mechanisms underlying the observed antiviral effects. Our data showed the biphasic inhibitory and promotion effects of different concentrations of soluble recombinant CCR5-T4L protein on R5 tropic human immunodeficiency virus-1 (HIV-1) infection in THP-1 cell lines, human macrophages, and PBMCs from clinical isolates. We demonstrated that soluble recombinant CCR5-T4L acts as a HIV-1 co-receptor, interacts with wild type CCR5, down-regulates the surface CCR5 expression in human macrophages, and interacts with CCL5 to inhibit macrophage migration. Using binding assays, we further determined that recombinant CCR5-T4L and [125I]-CCL5 compete for the same binding site on wild type CCR5. Our results suggest that recombinant CCR5-T4L protein marginally promotes HIV-1 infection at low concentrations and markedly inhibits infection at higher concentrations. This recombinant protein may be helpful in the future development of anti-HIV-1 therapeutic agents.

  15. Molecular Cloning and Characterization of a New C-type Lysozyme Gene from Yak Mammary Tissue

    PubMed Central

    Jiang, Ming Feng; Hu, Ming Jun; Ren, Hong Hui; Wang, Li

    2015-01-01

    Milk lysozyme is the ubiquitous enzyme in milk of mammals. In this study, the cDNA sequence of a new chicken-type (c-type) milk lysozyme gene (YML), was cloned from yak mammary gland tissue. A 444 bp open reading frames, which encodes 148 amino acids (16.54 kDa) with a signal peptide of 18 amino acids, was sequenced. Further analysis indicated that the nucleic acid and amino acid sequences identities between yak and cow milk lysozyme were 89.04% and 80.41%, respectively. Recombinant yak milk lysozyme (rYML) was produced by Escherichia coli BL21 and Pichia pastoris X33. The highest lysozyme activity was detected for heterologous protein rYML5 (M = 1,864.24 U/mg, SD = 25.75) which was expressed in P. pastoris with expression vector pPICZαA and it clearly inhibited growth of Staphylococcus aureus. Result of the YML gene expression using quantitative polymerase chain reaction showed that the YML gene was up-regulated to maximum at 30 day postpartum, that is, comparatively high YML can be found in initial milk production. The phylogenetic tree indicated that the amino acid sequence was similar to cow kidney lysozyme, which implied that the YML may have diverged from a different ancestor gene such as cow mammary glands. In our study, we suggest that YML be a new c-type lysozyme expressed in yak mammary glands that plays a role as host immunity. PMID:26580446

  16. Clearing of suspensions of Micrococcus lysodeikticus catalysed by lysozymes from hen, goose, and turkey egg whites, human milk, and phage T4. Assessment of potential as signal generators for homogeneous enzyme immunoassays for urinary steroids.

    PubMed

    Cooke, Delwyn G; Blackwell, Leonard F

    2007-01-01

    Lysozymes (3.2.1.17) from goose (Anser anser) egg white, turkey (Melagris gallopavo) egg white, phage T4 and human milk were compared with hen egg white lysozyme in their ability to clear a suspension of Micrococcus lysodeikticus. All of the lysozymes, except hen egg white lysozyme, catalysed the clearing of the Micrococcus lysodeikticus suspension in a biphasic fashion. Compared to hen egg white lysozyme, the total absorbance or transmission change over 5 and 20 minutes was less in all cases, except for human lysozyme. Human lysozyme was, therefore, a potential alternative, more rapid signal generator for the measurement of urinary estrone glucuronide excretion rates because of its structural similarity to hen egg white lysozyme. The apparent K(M) values for hen egg white lysozyme increased with the enzyme concentration.

  17. Absolute binding free energies between T4 lysozyme and 141 small molecules: calculations based on multiple rigid receptor configurations

    PubMed Central

    Xie, Bing; Nguyen, Trung Hai; Minh, David D. L.

    2017-01-01

    We demonstrate the feasibility of estimating protein-ligand binding free energies using multiple rigid receptor configurations. Based on T4 lysozyme snapshots extracted from six alchemical binding free energy calculations with a flexible receptor, binding free energies were estimated for a total of 141 ligands. For 24 ligands, the calculations reproduced flexible-receptor estimates with a correlation coefficient of 0.90 and a root mean square error of 1.59 kcal/mol. The accuracy of calculations based on Poisson-Boltzmann/Surface Area implicit solvent was comparable to previously reported free energy calculations. PMID:28430432

  18. Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme

    PubMed Central

    Ahalawat, Navjeet; Pandit, Subhendu; Kay, Lewis E.

    2018-01-01

    Ligand binding sites in proteins are often localized to deeply buried cavities, inaccessible to bulk solvent. Yet, in many cases binding of cognate ligands occurs rapidly. An intriguing system is presented by the L99A cavity mutant of T4 Lysozyme (T4L L99A) that rapidly binds benzene (~106 M-1s-1). Although the protein has long served as a model system for protein thermodynamics and crystal structures of both free and benzene-bound T4L L99A are available, the kinetic pathways by which benzene reaches its solvent-inaccessible binding cavity remain elusive. The current work, using extensive molecular dynamics simulation, achieves this by capturing the complete process of spontaneous recognition of benzene by T4L L99A at atomistic resolution. A series of multi-microsecond unbiased molecular dynamics simulation trajectories unequivocally reveal how benzene, starting in bulk solvent, diffuses to the protein and spontaneously reaches the solvent inaccessible cavity of T4L L99A. The simulated and high-resolution X-ray derived bound structures are in excellent agreement. A robust four-state Markov model, developed using cumulative 60 μs trajectories, identifies and quantifies multiple ligand binding pathways with low activation barriers. Interestingly, none of these identified binding pathways required large conformational changes for ligand access to the buried cavity. Rather, these involve transient but crucial opening of a channel to the cavity via subtle displacements in the positions of key helices (helix4/helix6, helix7/helix9) leading to rapid binding. Free energy simulations further elucidate that these channel-opening events would have been unfavorable in wild type T4L. Taken together and via integrating with results from experiments, these simulations provide unprecedented mechanistic insights into the complete ligand recognition process in a buried cavity. By illustrating the power of subtle helix movements in opening up multiple pathways for ligand access

  19. Determination of protein secondary structure and solvent accessibility using site-directed fluorescence labeling. Studies of T4 lysozyme using the fluorescent probe monobromobimane.

    PubMed

    Mansoor, S E; McHaourab, H S; Farrens, D L

    1999-12-07

    We report an investigation of how much protein structural information could be obtained using a site-directed fluorescence labeling (SDFL) strategy. In our experiments, we used 21 consecutive single-cysteine substitution mutants in T4 lysozyme (residues T115-K135), located in a helix-turn-helix motif. The mutants were labeled with the fluorescent probe monobromobimane and subjected to an array of fluorescence measurements. Thermal stability measurements show that introduction of the label is substantially perturbing only when it is located at buried residue sites. At buried sites (solvent surface accessibility of <40 A(2)), the destabilizations are between 3 and 5.5 kcal/mol, whereas at more exposed sites, DeltaDeltaG values of < or = 1.5 kcal/mol are obtained. Of all the fluorescence parameters that were explored (excitation lambda(max), emission lambda(max), fluorescence lifetime, quantum yield, and steady-state anisotropy), the emission lambda(max) and the steady-state anisotropy values most accurately reflect the solvent surface accessibility at each site as calculated from the crystal structure of cysteine-less T4 lysozyme. The parameters we identify allow the classification of each site as buried, partially buried, or exposed. We find that the variations in these parameters as a function of residue number reflect the sequence-specific secondary structure, the determination of which is a key step for modeling a protein of unknown structure.

  20. Molecular Characterization of a Lysozyme Gene and Its Altered Expression Profile in Crowded Beet Webworm (Loxostege sticticalis)

    PubMed Central

    Kong, Hailong; Lv, Min; Mao, Nian; Wang, Cheng; Cheng, Yunxia; Zhang, Lei; Jiang, Xingfu; Luo, Lizhi

    2016-01-01

    There is growing evidence that insects living in high-density populations exhibit an increase in immune function to counter a higher risk of disease. This phenomenon, known as density-dependent prophylaxis, has been experimentally tested in a number of insect species. Although density-dependent prophylaxis is especially prevalent in insects exhibiting density-dependent phase polyphenism, the molecular mechanism remains unclear. Our previous study demonstrated that the antibacterial activity of lysozyme is important for this process in the beet webworm Loxostege sticticalis. In this study, a lysozyme cDNA from L. sticticalis was cloned and characterized. The full-length cDNA is 1078 bp long and contains an open reading frame of 426 bp that encodes 142 amino acids. The deduced protein possesses structural characteristics of a typical c-type lysozyme and clusters with c-type lysozymes from other Lepidoptera. LsLysozyme was found to be expressed throughout all developmental stages, showing the highest level in pupae. LsLysozyme was also highly expressed in the midgut and fat body. Elevated LsLysozyme expression was observed in L. sticticalis larvae infected by Beauveria bassiana and in larvae reared under crowding conditions. In addition, the expression level of LsLysozyme in infected larvae reared at a density of 10 larvae per jar was significantly higher compared to those reared at a density of l or 30 larvae per jar. These results suggest that larval crowding affects the gene expression profile of this lysozyme. This study provides additional insight into the expression of an immune-associated lysozyme gene and helps us to better understand the immune response of L. sticticalis under crowding conditions. PMID:27575006

  1. Chromosomal position effects in chicken lysozyme gene transgenic mice are correlated with suppression of DNase I hypersensitive site formation.

    PubMed Central

    Huber, M C; Bosch, F X; Sippel, A E; Bonifer, C

    1994-01-01

    The complete chicken lysozyme gene locus is expressed copy number dependently and at a high level in macrophages of transgenic mice. Gene expression independent of genomic position can only be achieved by the concerted action of all cis regulatory elements located on the lysozyme gene domain. Position independency of expression is lost if one essential cis regulatory region is deleted. Here we compared the DNase I hypersensitive site (DHS) pattern formed on the chromatin of position independently and position dependently expressed transgenes in order to assess the influence of deletions within the gene domain on active chromatin formation. We demonstrate, that in position independently expressed transgene all DHSs are formed with the authentic relative frequency on all genes. This is not the case for position dependently expressed transgenes. Our results show that the formation of a DHS during cellular differentiation does not occur autonomously. In case essential regulatory elements of the chicken lysozyme gene domain are lacking, the efficiency of DHS formation on remaining cis regulatory elements during myeloid differentiation is reduced and influenced by the chromosomal position. Hence, no individual regulatory element on the lysozyme domain is capable of organizing the chromatin structure of the whole locus in a dominant fashion. Images PMID:7937145

  2. An improved 96-well turbidity assay for T4 lysozyme activity

    DTIC Science & Technology

    2015-05-13

    enzyme present in the reaction, resulting in a measure of activity in Unitsmg1. 10. To improve the reliability of the activity values, perform the...quantification of lysozyme activity with significantly lower enzyme concentrations, and the signal intensity can be enhanced by using greater amounts of... enzyme at the expense of a shorter linear reaction time. Several parameters of the assay are critical for obtaining reproducible activity

  3. Lipoprotein LprI of Mycobacterium tuberculosis Acts as a Lysozyme Inhibitor.

    PubMed

    Sethi, Deepti; Mahajan, Sahil; Singh, Chaahat; Lama, Amrita; Hade, Mangesh Dattu; Gupta, Pawan; Dikshit, Kanak L

    2016-02-05

    Mycobacterium tuberculosis executes numerous defense strategies for the successful establishment of infection under a diverse array of challenges inside the host. One such strategy that has been delineated in this study is the abrogation of lytic activity of lysozyme by a novel glycosylated and surface-localized lipoprotein, LprI, which is exclusively present in M. tuberculosis complex. The lprI gene co-transcribes with the glbN gene (encoding hemoglobin (HbN)) and both are synchronously up-regulated in M. tuberculosis during macrophage infection. Recombinant LprI, expressed in Escherichia coli, exhibited strong binding (Kd ≤ 2 nm) with lysozyme and abrogated its lytic activity completely, thereby conferring protection to fluorescein-labeled Micrococcus lysodeikticus from lysozyme-mediated hydrolysis. Expression of the lprI gene in Mycobacterium smegmatis (8-10-fold) protected its growth from lysozyme inhibition in vitro and enhanced its phagocytosis and survival during intracellular infection of peritoneal and monocyte-derived macrophages, known to secrete lysozyme, and in the presence of exogenously added lysozyme in secondary cell lines where lysozyme levels are low. In contrast, the presence of HbN enhanced phagocytosis and intracellular survival of M. smegmatis only in the absence of lysozyme but not under lysozyme stress. Interestingly, co-expression of the glbN-lprI gene pair elevated the invasion and survival of M. smegmatis 2-3-fold in secondary cell lines in the presence of lysozyme in comparison with isogenic cells expressing these genes individually. Thus, specific advantage against macrophage-generated lysozyme, conferred by the combination of LprI-HbN during invasion of M. tuberculosis, may have vital implications on the pathogenesis of tuberculosis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Wenjun, E-mail: wjzheng@buffalo.edu; Glenn, Paul

    2015-01-21

    The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, whichmore » is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variant—while the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L.« less

  5. Venom of Parasitoid Pteromalus puparum Impairs Host Humoral Antimicrobial Activity by Decreasing Host Cecropin and Lysozyme Gene Expression

    PubMed Central

    Fang, Qi; Wang, Bei-Bei; Ye, Xin-Hai; Wang, Fei; Ye, Gong-Yin

    2016-01-01

    Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Here, we report that Pteromalus puparum venom impairs the antimicrobial activity of its host Pieris rapae. Inhibition zone results showed that bead injection induced the antimicrobial activity of the host hemolymph but that venom inhibited it. The cDNAs encoding cecropin and lysozyme were screened. Relative quantitative PCR results indicated that all of the microorganisms and bead injections up-regulated the transcript levels of the two genes but that venom down-regulated them. At 8 h post bead challenge, there was a peak in the transcript level of the cecropin gene, whereas the peak of lysozyme gene occurred at 24 h. The transcripts levels of the two genes were higher in the granulocytes and fat body than in other tissues. RNA interference decreased the transcript levels of the two genes and the antimicrobial activity of the pupal hemolymph. Venom injections similarly silenced the expression of the two genes during the first 8 h post-treatment in time- and dose-dependent manners, after which the silence effects abated. Additionally, recombinant cecropin and lysozyme had no significant effect on the emergence rate of pupae that were parasitized by P. puparum females. These findings suggest one mechanism of impairing host antimicrobial activity by parasitoid venom. PMID:26907346

  6. Structures of a bifunctional cell wall hydrolase CwlT containing a novel bacterial lysozyme and an NlpC/P60 DL-endopeptidase.

    PubMed

    Xu, Qingping; Chiu, Hsiu-Ju; Farr, Carol L; Jaroszewski, Lukasz; Knuth, Mark W; Miller, Mitchell D; Lesley, Scott A; Godzik, Adam; Elsliger, Marc-André; Deacon, Ashley M; Wilson, Ian A

    2014-01-09

    Tn916-like conjugative transposons carrying antibiotic resistance genes are found in a diverse range of bacteria. Orf14 within the conjugation module encodes a bifunctional cell wall hydrolase CwlT that consists of an N-terminal bacterial lysozyme domain (N-acetylmuramidase, bLysG) and a C-terminal NlpC/P60 domain (γ-d-glutamyl-l-diamino acid endopeptidase) and is expected to play an important role in the spread of the transposons. We determined the crystal structures of CwlT from two pathogens, Staphylococcus aureus Mu50 (SaCwlT) and Clostridium difficile 630 (CdCwlT). These structures reveal that NlpC/P60 and LysG domains are compact and conserved modules, connected by a short flexible linker. The LysG domain represents a novel family of widely distributed bacterial lysozymes. The overall structure and the active site of bLysG bear significant similarity to other members of the glycoside hydrolase family 23 (GH23), such as the g-type lysozyme (LysG) and Escherichia coli lytic transglycosylase MltE. The active site of bLysG contains a unique structural and sequence signature (DxxQSSES+S) that is important for coordinating a catalytic water. Molecular modeling suggests that the bLysG domain may recognize glycan in a similar manner to MltE. The C-terminal NlpC/P60 domain contains a conserved active site (Cys-His-His-Tyr) that appears to be specific to murein tetrapeptide. Access to the active site is likely regulated by isomerism of a side chain atop the catalytic cysteine, allowing substrate entry or product release (open state), or catalysis (closed state). © 2013.

  7. Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage.

    PubMed

    Brok-Volchanskaya, Vera S; Kadyrov, Farid A; Sivogrivov, Dmitry E; Kolosov, Peter M; Sokolov, Andrey S; Shlyapnikov, Michael G; Kryukov, Valentine M; Granovsky, Igor E

    2008-04-01

    Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3' 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TpsiC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages.

  8. Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage

    PubMed Central

    Brok-Volchanskaya, Vera S.; Kadyrov, Farid A.; Sivogrivov, Dmitry E.; Kolosov, Peter M.; Sokolov, Andrey S.; Shlyapnikov, Michael G.; Kryukov, Valentine M.; Granovsky, Igor E.

    2008-01-01

    Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3′ 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TψC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages. PMID:18281701

  9. Expression of lysozymes from Erwinia amylovora phages and Erwinia genomes and inhibition by a bacterial protein.

    PubMed

    Müller, Ina; Gernold, Marina; Schneider, Bernd; Geider, Klaus

    2012-01-01

    Genes coding for lysozyme-inhibiting proteins (Ivy) were cloned from the chromosomes of the plant pathogens Erwinia amylovora and Erwinia pyrifoliae. The product interfered not only with activity of hen egg white lysozyme, but also with an enzyme from E. amylovora phage ΦEa1h. We have expressed lysozyme genes from the genomes of three Erwinia species in Escherichia coli. The lysozymes expressed from genes of the E. amylovora phages ΦEa104 and ΦEa116, Erwinia chromosomes and Arabidopsis thaliana were not affected by Ivy. The enzyme from bacteriophage ΦEa1h was fused at the N- or C-terminus to other peptides. Compared to the intact lysozyme, a His-tag reduced its lytic activity about 10-fold and larger fusion proteins abolished activity completely. Specific protease cleavage restored lysozyme activity of a GST-fusion. The bacteriophage-encoded lysozymes were more active than the enzymes from bacterial chromosomes. Viral lyz genes were inserted into a broad-host range vector, and transfer to E. amylovora inhibited cell growth. Inserted in the yeast Pichia pastoris, the ΦEa1h-lysozyme was secreted and also inhibited by Ivy. Here we describe expression of unrelated cloned 'silent' lyz genes from Erwinia chromosomes and a novel interference of bacterial Ivy proteins with a viral lysozyme. Copyright © 2012 S. Karger AG, Basel.

  10. Enterococcus faecalis Constitutes an Unusual Bacterial Model in Lysozyme Resistance▿

    PubMed Central

    Hébert, Laurent; Courtin, Pascal; Torelli, Riccardo; Sanguinetti, Maurizio; Chapot-Chartier, Marie-Pierre; Auffray, Yanick; Benachour, Abdellah

    2007-01-01

    Lysozyme is an important and widespread compound of the host constitutive defense system, and it is assumed that Enterococcus faecalis is one of the few bacteria that are almost completely lysozyme resistant. On the basis of the sequence analysis of the whole genome of E. faecalis V583 strain, we identified two genes that are potentially involved in lysozyme resistance, EF_0783 and EF_1843. Protein products of these two genes share significant homology with Staphylococcus aureus peptidoglycan O-acetyltransferase (OatA) and Streptococcus pneumoniae N-acetylglucosamine deacetylase (PgdA), respectively. In order to determine whether EF_0783 and EF_1843 are involved in lysozyme resistance, we constructed their corresponding mutants and a double mutant. The ΔEF_0783 mutant and ΔEF_0783 ΔEF_1843 double mutant were shown to be more sensitive to lysozyme than the parental E. faecalis JH2-2 strain and ΔEF_1843 mutant were. However, compared to other bacteria, such as Listeria monocytogenes or S. pneumoniae, the tolerance of ΔEF_0783 and ΔEF_0783 ΔEF_1843 mutants towards lysozyme remains very high. Peptidoglycan structure analysis showed that EF_0783 modifies the peptidoglycan by O acetylation of N-acetyl muramic acid, while the EF_1843 deletion has no obvious effect on peptidoglycan structure under the same conditions. Moreover, the EF_0783 and EF_1843 deletions seem to significantly affect the ability of E. faecalis to survive within murine macrophages. In all, while EF_0783 is currently involved in the lysozyme resistance of E. faecalis, peptidoglycan O acetylation and de-N-acetylation are not the main mechanisms conferring high levels of lysozyme resistance to E. faecalis. PMID:17785473

  11. Cutting edge: the relative distribution of T cells responding to chemically dominant or minor epitopes of lysozyme is not affected by CD40-CD40 ligand and B7-CD28-CTLA-4 costimulatory pathways.

    PubMed

    DiPaolo, Richard J; Unanue, Emil R

    2002-09-15

    We examined the frequencies and specificities of the CD4+ T cell responses to the protein hen egg white lysozyme in mice deficient in the CD40-CD40 ligand or B7-CD28 costimulatory pathways. The frequency of T cells was decreased by between 3- and 4-fold in CD40-/- mice, and 12-fold in B7-1/B7-2-/- mice, but surprisingly, the relative distribution of T cells responding to peptides that were presented at levels that differed by >250-fold was similar. We also examined the CD4 response after blocking the regulatory molecule CTLA-4 during immunization. We observed no difference in either the frequency or specificity of the CD4+ T cell response if CTLA-4 was blocking during priming. Thus, the T cell response was generated toward the constellation of chemically dominant and subdominant epitopes as a whole, and did not discriminate among them based on their relative abundance.

  12. Two duplicated chicken-type lysozyme genes in disc abalone Haliotis discus discus: molecular aspects in relevance to structure, genomic organization, mRNA expression and bacteriolytic function.

    PubMed

    Umasuthan, Navaneethaiyer; Bathige, S D N K; Kasthuri, Saranya Revathy; Wan, Qiang; Whang, Ilson; Lee, Jehee

    2013-08-01

    Lysozymes are crucial antibacterial proteins that are associated with catalytic cleavage of peptidoglycan and subsequent bacteriolysis. The present study describes the identification of two lysozyme genes from disc abalone Haliotis discus discus and their characterization at sequence-, genomic-, transcriptional- and functional-levels. Two cDNAs and BAC clones bearing lysozyme genes were isolated from abalone transcriptome and BAC genomic libraries, respectively and sequences were determined. Corresponding deduced amino acid sequences harbored a chicken-type lysozyme (LysC) family profile and exhibited conserved characteristics of LysC family members including active residues (Glu and Asp) and GS(S/T)DYGIFQINS motif suggested that they are LysC counterparts in disc abalone and designated as abLysC1 and abLysC2. While abLysC1 represented the homolog recently reported in Ezo abalone [1], abLysC2 shared significant identity with LysC homologs. Unlike other vertebrate LysCs, coding sequence of abLysCs were distributed within five exons interrupted by four introns. Both abLysCs revealed a broader mRNA distribution with highest levels in mantle (abLysC1) and hepatopancreas (abLysC2) suggesting their likely main role in defense and digestion, respectively. Investigation of temporal transcriptional profiles post-LPS and -pathogen challenges revealed induced-responses of abLysCs in gills and hemocytes. The in vitro muramidase activity of purified recombinant (r) abLysCs proteins was evaluated, and findings indicated that they are active in acidic pH range (3.5-6.5) and over a broad temperature range (20-60 °C) and influenced by ionic strength. When the antibacterial spectra of (r)abLysCs were examined, they displayed differential activities against both Gram positive and Gram negative strains providing evidence for their involvement in bacteriolytic function in abalone physiology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Structure-relaxation mechanism for the response of T4 lysozyme cavity mutants to hydrostatic pressure

    PubMed Central

    Lerch, Michael T.; López, Carlos J.; Yang, Zhongyu; Kreitman, Margaux J.; Horwitz, Joseph; Hubbell, Wayne L.

    2015-01-01

    Application of hydrostatic pressure shifts protein conformational equilibria in a direction to reduce the volume of the system. A current view is that the volume reduction is dominated by elimination of voids or cavities in the protein interior via cavity hydration, although an alternative mechanism wherein cavities are filled with protein side chains resulting from a structure relaxation has been suggested [López CJ, Yang Z, Altenbach C, Hubbell WL (2013) Proc Natl Acad Sci USA 110(46):E4306–E4315]. In the present study, mechanisms for elimination of cavities under high pressure are investigated in the L99A cavity mutant of T4 lysozyme and derivatives thereof using site-directed spin labeling, pressure-resolved double electron–electron resonance, and high-pressure circular dichroism spectroscopy. In the L99A mutant, the ground state is in equilibrium with an excited state of only ∼3% of the population in which the cavity is filled by a protein side chain [Bouvignies et al. (2011) Nature 477(7362):111–114]. The results of the present study show that in L99A the native ground state is the dominant conformation to pressures of 3 kbar, with cavity hydration apparently taking place in the range of 2–3 kbar. However, in the presence of additional mutations that lower the free energy of the excited state, pressure strongly populates the excited state, thereby eliminating the cavity with a native side chain rather than solvent. Thus, both cavity hydration and structure relaxation are mechanisms for cavity elimination under pressure, and which is dominant is determined by details of the energy landscape. PMID:25918400

  14. Does Warming a Lysozyme Solution Cook Ones Data?

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Burke, Michael; Judge, Russell

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.0 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubility are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to the initiation of the crystallization process. We have now measured the kinetics of this process and investigated its reversibility. An aliquot of a stock protein solution is held at a given temperature, and at periodic intervals used to set up batch crystallization experiments. The batch solutions were incubated at 20 C until macroscopic crystals were obtained, at which point the number of crystals in each well were counted. The transition effects increased with temperature, slowly falling off at 30 C with a half time (time to approx. 1/2 the t = 0 number of crystals) of approx. 5 hours, and an estimated half time of approx. 0.5 hours at 43 C. Further, the process was not reversible by simple cooling. After holding a lysozyme solution at 37 C (prior to addition of precipitant) for 16 hours, then cooling and holding it at 4 C, no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Thus every thermal excursion above the phase transition point results in a further decrease in the nucleation rate of that solution, the extent being a function of the time and temperature. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. We have previously shown that putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. We may be able to use this differential behavior to elucidate how flow affects tile lysozyme crystal growth process.

  15. Destroying activity of magnetoferritin on lysozyme amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Kopcansky, Peter; Siposova, Katarina; Melnikova, Lucia; Bednarikova, Zuzana; Timko, Milan; Mitroova, Zuzana; Antosova, Andrea; Garamus, Vasil M.; Petrenko, Viktor I.; Avdeev, Mikhail V.; Gazova, Zuzana

    2015-03-01

    Presence of protein amyloid aggregates (oligomers, protofilaments, fibrils) is associated with many diseases as diabetes mellitus or Alzheimer's disease. The interaction between lysozyme amyloid fibrils and magnetoferritin loaded with different amount of iron atoms (168 or 532 atoms) has been investigated by small-angle X-rays scattering and thioflavin T fluorescence measurements. Results suggest that magnetoferritin caused an iron atom-concentration dependent reduction of lysozyme fibril size.

  16. Interaction-component analysis of the effects of urea and its alkylated derivatives on the structure of T4-lysozyme

    NASA Astrophysics Data System (ADS)

    Yamamori, Yu; Matubayasi, Nobuyuki

    2017-06-01

    The effects of urea and its alkylated derivatives on the structure of T4-lysozyme were analyzed from the standpoint of energetics. Molecular dynamics simulations were conducted with explicit solvent, and the energy-representation method was employed to compute the free energy of transfer of the protein from pure-water solvent to the mixed solvents of water with urea, methylurea, 1,1-dimethylurea, and isopropylurea. Through the decomposition of the transfer free energy into the cosolvent and water contributions, it was observed that the former is partially cancelled by the latter and governs the total free energy of transfer. To determine the interaction component responsible for the transfer energetics, the correlations of the transfer free energy were also examined against the change in the solute-solvent interaction energy upon transfer and the corresponding changes in the electrostatic, van der Waals, and excluded-volume components. It was then found over the set of protein structures ranging from native to (partially) unfolded ones that the transfer free energy changes in parallel with the van der Waals component even when the cosolvent is alkylated. The electrostatic and excluded-volume components play minor roles in the structure modification of the protein, and the denaturing ability of alkylurea is brought by the van der Waals interaction.

  17. Folding and Function of a T4 Lysozyme Containing 10 Consecutive Alanines Illustrate the Redundancy of Information in an Amino Acid Sequence

    NASA Astrophysics Data System (ADS)

    Heinz, Dirk W.; Baase, Walt A.; Matthews, Brian W.

    1992-05-01

    Single and multiple Xaa -> Ala substitutions were constructed in the α-helix comprising residues 39-50 in bacteriophage T4 lysozyme. The variant with alanines at 10 consecutive positions (A40-49) folds normally and has activity essentially the same as wild type, although it is less stable. The crystal structure of this polyalanine mutant displays no significant change in the main-chain atoms of the helix when compared with the wild-type structure. The individual substitutions of the solvent-exposed residues Asn-40, Ser-44, and Glu-45 with alanine tend to increase the thermostability of the protein, whereas replacements of the buried or partially buried residues Lys-43 and Leu-46 are destabilizing. The melting temperature of the lysozyme in which Lys-43 and Leu-46 are retained and positions 40, 44, 45, 47, and 48 are substituted with alanine (i.e., A40-42/44-45/47-49) is increased by 3.1^circC relative to wild type at pH 3.0, but reduced by 1.6^circC at pH 6.7. In the case of the charged amino acids Glu-45 and Lys-48, the changes in melting temperature indicate that the putative salt bridge between these two residues contributes essentially nothing to the stability of the protein. The results clearly demonstrate that there is considerable redundancy in the sequence information in the polypeptide chain; not every amino acid is essential for folding. Also, further evidence is provided that the replacement of fully solvent-exposed residues within α-helices with alanines may be a general way to increase protein stability. The general approach may permit a simplification of the protein folding problem by retaining only amino acids proven to be essential for folding and replacing the remainder with alanine.

  18. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme.

    PubMed

    Quillin, M L; Breyer, W A; Griswold, I J; Matthews, B W

    2000-09-29

    To investigate the relative importance of size and polarizability in ligand binding within proteins, we have determined the crystal structures of pseudo wild-type and cavity-containing mutant phage T4 lysozymes in the presence of argon, krypton, and xenon. These proteins provide a representative sample of predominantly apolar cavities of varying size and shape. Even though the volumes of these cavities range up to the equivalent of five xenon atoms, the noble gases bind preferentially at highly localized sites that appear to be defined by constrictions in the walls of the cavities, coupled with the relatively large radii of the noble gases. The cavities within pseudo wild-type and L121A lysozymes each bind only a single atom of noble gas, while the cavities within mutants L133A and F153A have two independent binding sites, and the L99A cavity has three interacting sites. The binding of noble gases within two double mutants was studied to characterize the additivity of binding at such sites. In general, when a cavity in a protein is created by a "large-to-small" substitution, the surrounding residues relax somewhat to reduce the volume of the cavity. The binding of xenon and, to a lesser degree, krypton and argon, tend to expand the volume of the cavity and to return it closer to what it would have been had no relaxation occurred. In nearly all cases, the extent of binding of the noble gases follows the trend xenon>krypton>argon. Pressure titrations of the L99A mutant have confirmed that the crystallographic occupancies accurately reflect fractional saturation of the binding sites. The trend in noble gas affinity can be understood in terms of the effects of size and polarizability on the intermolecular potential. The plasticity of the protein matrix permits repulsion due to increased ligand size to be more than compensated for by attraction due to increased ligand polarizability. These results have implications for the mechanism of general anesthesia, the migration

  19. The Preventive Effect of L-Lysine on Lysozyme Glycation in Type 2 Diabetes.

    PubMed

    Mirmiranpour, Hossein; Khaghani, Shahnaz; Bathaie, S Zahra; Nakhjavani, Manouchehr; Kebriaeezadeh, Abbas; Ebadi, Maryam; Gerayesh-Nejad, Siavash; Zangooei, Mohammad

    2016-01-01

    Lysozyme is a bactericidal enzyme whose structure and functions change in diabetes. Chemical chaperones are small molecules including polyamines (e.g. spermine), amino acids (e.g. L-lysine) and polyols (e.g. glycerol). They can improve protein conformation in several stressful conditions such as glycation. In this study, the authors aimed to observe the effect of L-lysine as a chemical chaperone on structure and function of glycated lysozyme. In this study, in vitro and in vivo effects of L-lysine on lysozyme glycation were investigated. Lysozyme was incubated with glucose and/or L-lysine, followed by an investigation of its structure by electrophoresis, fluorescence spectroscopy, and circular dichroism spectroscopy and also assessment of its bactericidal activity against M. lysodeikticus. In the clinical trial, patients with type 2 diabetes mellitus (T2DM) were randomly divided into two groups of 25 (test and control). All patients received metformin and glibenclamide for a three months period. The test group was supplemented with 3 g/day of L-lysine. The quantity and activity of lysozyme and other parameters were then measured. Among the test group, L-lysine was found to reduce the advanced glycation end products (AGEs) in the sera of patients with T2DM and in vitro condition. This chemical chaperone reversed the alteration in lysozyme structure and function due to glycation and resulted in increased lysozyme activity. Structure and function of glycated lysozyme are significantly improved by l-lysine; therefore it can be considered an effective therapeutic supplementation in T2DM, decreasing the risk of infection in these patients.

  20. Lysis Delay and Burst Shrinkage of Coliphage T7 by Deletion of Terminator Tφ Reversed by Deletion of Early Genes

    PubMed Central

    Nguyen, Huong Minh

    2014-01-01

    ABSTRACT Bacteriophage T7 terminator Tφ is a class I intrinsic terminator coding for an RNA hairpin structure immediately followed by oligo(U), which has been extensively studied in terms of its transcription termination mechanism, but little is known about its physiological or regulatory functions. In this study, using a T7 mutant phage, where a 31-bp segment of Tφ was deleted from the genome, we discovered that deletion of Tφ from T7 reduces the phage burst size but delays lysis timing, both of which are disadvantageous for the phage. The burst downsizing could directly result from Tφ deletion-caused upregulation of gene 17.5, coding for holin, among other Tφ downstream genes, because infection of gp17.5-overproducing Escherichia coli by wild-type T7 phage showed similar burst downsizing. However, the lysis delay was not associated with cellular levels of holin or lysozyme or with rates of phage adsorption. Instead, when allowed to evolve spontaneously in five independent adaptation experiments, the Tφ-lacking mutant phage, after 27 or 29 passages, recovered both burst size and lysis time reproducibly by deleting early genes 0.5, 0.6, and 0.7 of class I, among other mutations. Deletion of genes 0.5 to 0.7 from the Tφ-lacking mutant phage decreased expression of several Tφ downstream genes to levels similar to that of the wild-type phage. Accordingly, phage T7 lysis timing is associated with cellular levels of Tφ downstream gene products. This suggests the involvement of unknown factor(s) besides the known lysis proteins, lysozyme and holin, and that Tφ plays a role of optimizing burst size and lysis time during T7 infection. IMPORTANCE E. coli PMID:24335287

  1. The Effects of Acetate Buffer Concentration on Lysozyme Solubility

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Pusey, Marc L.

    1996-01-01

    The micro-solubility column technique was employed to systematically investigate the effects of buffer concentration on tetragonal lysozyme solubility. While keeping the NaCl concentrations constant at 2%, 3%, 4%, 5% and 7%, and the pH at 4.0, we have studied the solubility of tetragonal lysozyme over an acetate buffer concentration range of 0.01M to 0.5M as a function of temperature. The lysozyme solubility decreased with increasing acetate concentration from 0.01M to 0.1M. This decrease may simply be due to the net increase in solvent ionic strength. Increasing the acetate concentration beyond 0.1M resulted in an increase in the lysozyme solubility, which reached a peak at - 0.3M acetate concentration. This increase was believed to be due to the increased binding of acetate to the anionic binding sites of lysozyme, preventing their occupation by chloride. In keeping with the previously observed reversal of the Hoffmeister series for effectiveness of anions in crystallizing lysozyme, acetate would be a less effective precipitant than chloride. Further increasing the acetate concentration beyond 0.3M resulted in a subsequent gradual decrease in the lysozyme solubility at all NaCl concentrations.

  2. A comparative study on the aggregating effects of guanidine thiocyanate, guanidine hydrochloride and urea on lysozyme aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emadi, Saeed, E-mail: emadi@iasbs.ac.ir; Behzadi, Maliheh

    Highlights: • Lysozyme aggregated in guanidine thiocyanate (1.0 and 2.0 M). • Lysozyme aggregated in guanidine hydrochloride (4 and 5 M). • Lysozyme did not aggregated at any concentration (0.5–5 M) of urea. • Unfolding pathway is more important than unfolding per se in aggregation. - Abstract: Protein aggregation and its subsequent deposition in different tissues culminate in a diverse range of diseases collectively known as amyloidoses. Aggregation of hen or human lysozyme depends on certain conditions, namely acidic pH or the presence of additives. In the present study, the effects on the aggregation of hen egg-white lysozyme via incubationmore » in concentrated solutions of three different chaotropic agents namely guanidine thiocyanate, guanidine hydrochloride and urea were investigated. Here we used three different methods for the detection of the aggregates, thioflavin T fluorescence, circular dichroism spectroscopy and atomic force microscopy. Our results showed that upon incubation with different concentrations (0.5, 1.0, 2.0, 3.0, 4.0, 5.0 M) of the chemical denaturants, lysozyme was aggregated at low concentrations of guanidine thiocyanate (1.0 and 2.0 M) and at high concentrations of guanidine hydrochloride (4 and 5 M), although no fibril formation was detected. In the case of urea, no aggregation was observed at any concentration.« less

  3. Dose-dependent effect of lysozyme upon Candida albicans biofilm

    PubMed Central

    Sebaa, Sarra; Hizette, Nicolas; Boucherit-Otmani, Zahia; Courtois, Philippe

    2017-01-01

    The present study investigated the in vitro effect of lysozyme (0–1,000 µg/ml) on Candida albicans (C. albicans) biofilm development. Investigations were conducted on C. albicans ATCC 10231 and on 10 clinical isolates from dentures. Strains were cultured aerobically at 37°C in Sabouraud broth. Yeast growth was evaluated by turbidimetry. Biofilm biomass was quantified on a polystyrene support by crystal violet staining and on acrylic surfaces by counts of colony forming units. Lysozyme affected biofilm formation to a greater extent than it affected growth. For the ATCC 10231 reference strain, lysozyme acted as a biofilm promotor on polystyrene at the highest concentration tested (1,000 µg/ml, non-physiological). When the reference strain was investigated on acrylic resin support, lysozyme acted as a significant biofilm promotor on rough resin, but less on smooth resin. The attached biomass in the presence of physiological concentrations of lysozyme (10–30 µg/ml) was significantly decreased compared with the hypothetical value of 100% using a one-sample t-test, but a comparison between the different lysozyme conditions using analysis of variance and post hoc tests did not reveal significant differences. In 10 wild strains, different patterns of biofilm formation on polystyrene were observed in the presence of lysozyme. Some strains, characterized by large amounts of biofilm formation in the presence of 1,000 µg/ml lysozyme, were poor biofilm producers at low concentrations of lysozyme. In contrast, some strains that were poor biofilm producers with a high lysozyme concentration were more inhibited by low concentrations of lysozyme. The present study emphasizes the need to develop strategies for biofilm control based on in vitro experiments, and to implement these in clinical trials prior to approval of hygiene products enriched with exocrine proteins, such as lysozyme. Further studies will extend these investigations to other Candida species, and to fungi

  4. Human T-lymphotropic virus type I-associated myelopathy and tax gene expression in CD4+ T lymphocytes.

    PubMed

    Moritoyo, T; Reinhart, T A; Moritoyo, H; Sato, E; Izumo, S; Osame, M; Haase, A T

    1996-07-01

    Infection by human T-lymphotropic virus type I (HTLV-I) is associated with adult T-cell leukemia and a slowly progressive disease of the central nervous system (CNS), HTLV-I-associated myelopathy/tropical spastic paraparesis, characterized pathologically by inflammation and white matter degeneration in the spinal cord. One of the explanations for the tissue destruction is that HTLV-I infects cells in the CNS, or HTLV-I-infected CD4+ T lymphocytes enter the CNS, and this drives local expansion of virus-specific CD8+ cytotoxic T lymphocytes, which along with cytokines cause the pathological changes. Because both in the circulation and in the cerebrospinal fluid, CD8+ cytotoxic T lymphocytes are primarily reactive to the product of the HTLV-I tax gene, we sought evidence of expression of this gene within cells in the inflammatory lesions. After using double-label in situ hybridization techniques, we now report definitive localization of HTLV-I tax gene expression in CD4+ T lymphocytes in areas of inflammation and white matter destruction. These findings lend support to a hypothetical scheme of neuropathogenesis in which HTLV-I tax gene expression provokes and sustains an immunopathological process that progressively destroys myelin and axons in the spinal cord.

  5. Off-resonance R1rho relaxation outside of the fast exchange limit: an experimental study of a cavity mutant of T4 lysozyme.

    PubMed

    Korzhnev, Dmitry M; Orekhov, Vladislav Yu; Dahlquist, Frederick W; Kay, Lewis E

    2003-05-01

    An (15)N off-resonance R(1rho) spin relaxation study of an L99A point mutant of T4 lysozyme is presented. Previous CPMG-based relaxation dispersion studies of exchange in this protein have established that the molecule interconverts between a populated ground state and an excited state (3.4%) with an exchange rate constant of 1450 s(-1) at 25 degrees C. It is shown that for the majority of residues in this protein the offset dependence of the R(1rho) relaxation rates cannot be well fit using models which are only valid in the fast exchange regime. In contrast, a recently derived expression by Trott and Palmer (J. Magn. Reson., 154, 157-160, 2002) which is valid over a wider window of exchange than other relations, is shown to fit the data well. Values of (signed) chemical shift differences between exchanging sites have been extracted and are in reasonable agreement with shift differences measured using CPMG methods. A set of simulations is presented which help establish the exchange regimes that are best suited to analysis by off-resonance R(1rho) techniques.

  6. Crystallization of lysozyme with ( R)-, ( S)- and ( RS)-2-methyl-2,4-pentanediol

    DOE PAGES

    Stauber, Mark; Jakoncic, Jean; Berger, Jacob; ...

    2015-03-01

    Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2,4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with ( R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with ( R)-MPD and ( RS)-MPD the crystal contacts are made by ( R)-MPD, demonstrating that there ismore » preferential interaction between lysozyme and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.« less

  7. Technology Optimization of Lysozyme's Fresh Maintaining Effect on Apple.

    PubMed

    Jun-Hong, Liu; Kun-Yu, Wang

    2016-10-03

    Lysozyme is a kind of alkaline globin, which functions well in the degradation of the cell wall of microbe. Currently, lysozyme is widely used in various fields, such as medicine, fruit, and vegetable industry, dairy industry, and so on. Therefore, the exploitation and utilization of lysozyme is of significant economic benefit. Taking apple as material, weight loss ratio and reducing sugar content as objectives, this paper studied the fresh-keeping effect of lysozyme. Influential factors, lysozyme concentration, soaking time, modified temperature, and reaction time were discussed in detail. The results showed that reducing sugar content was 2.043% and the weight loss ratio was the minimum in the presence of soaking time of 2 min, modified temperature of 65 °C, reaction time of 4 d, and lysozyme concentration of 0.5 g/L. © 2016 Institute of Food Technologists®.

  8. Preliminary crystallographic examination of a novel fungal lysozyme from Chalaropsis

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; He, Xiao-Min; Lyne, James E.; Stubbs, Gerald; Hash, John H.

    1990-01-01

    The lysozyme from the fungus of the Chalaropsis species has been crystallized. This lysozyme displays no sequence homology with avian, phage, or mammalian lysozymes, however, preliminary studies indicate significant sequence homology with the bacterial lysozyme from Streptomyces. Both enzymes are unusual in possessing beta-1,4-N-acetylmuramidase and beta-1,4-N,6-O-diacetylmuramidase activity. The crystals grow from solutions of ammonium sulfate during growth periods from several months to a year. The space group is P2(1)2(1)2(1) with a = 34.0 A, b = 42.6 A, c = 122.1 A. Preliminary data indicate that there is 1 molecule/asymmetric unit.

  9. A comparative study for adsorption of lysozyme from aqueous samples onto Fe3O4 magnetic nanoparticles using different ionic liquids as modifier.

    PubMed

    Kamran, Sedigheh; Absalan, Ghodratollah; Asadi, Mozaffar

    2015-12-01

    In this paper, nanoparticles of Fe3O4 as well as their modified forms with different ionic liquids (IL-Fe3O4) were prepared and used for adsorption of lysozyme. The mean size and the surface morphology of the nanoparticles were characterized by TEM, XRD and FTIR techniques. Adsorption studies of lysozyme were performed under different experimental conditions in batch system on different modified magnetic nanoparticles such as, lysozyme concentration, pH of the solution, and contact time. Experimental results were obtained under the optimum operational conditions of pH 9.0 and a contact time of 10 min when initial protein concentrations of 0.05-2.0 mg mL(-1) were used. The isotherm evaluations revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The maximum obtained adsorption capacities were 370.4, 400.0 500.0 and 526.3 mg of lysozyme for adsorption onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br] per gram of adsorbent, respectively. The Langmuir adsorption constants were 0.004, 0.019, 0.024 and 0.012 L mg(-1) for adsorptions of lysozyme onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br], respectively. The adsorption capacity of lysozyme was found to be dependent on its chemical structure, pH of the solution, temperature and type of ionic liquid as modifier. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated. Furthermore, the thermodynamic parameters were calculated. Protein could desorb from IL-Fe3O4 nanoparticles by using NaCl solution at pH 9.5 and was reused.

  10. Determination of monomer concentrations in crystallizing lysozyme solutions

    NASA Technical Reports Server (NTRS)

    Wilson, L. J.; Pusey, Marc L.

    1992-01-01

    We have developed a non-optical technique for the study of aggregation in lysozyme and other protein solutions. By monitoring the rate at which lysozyme traverses a semipermeable membrane it was possible to quantitate the degree of aggregation in supersaturated solutions. Using this technique, we have measured the concentration of monomers and larger aggregates in under- and oversaturated lysozyme solutions, and in the presence of crystals, at pH 4.0 and 3 percent NaCl (0.1M NaAc). Comparison of these concentration profiles with (110) face growth rate data supports the theory that tetragonal lysozyme crystals grow by addition of preformed aggregates and not by monomer addition. The data suggest that a considerable population of aggregates larger than dimers are present at lysozyme concentrations above 22 mg/ml. Determination of dimer concentrations, and equilibrium constants for subsequent aggregation levels, are currently underway.

  11. Concentration dependent switch in the kinetic pathway of lysozyme fibrillation: Spectroscopic and microscopic analysis

    NASA Astrophysics Data System (ADS)

    Kiran Kumar, E.; Prasad, Deepak Kumar; Prakash Prabhu, N.

    2017-08-01

    Formation of amyloid fibrils is found to be a general tendency of many proteins. Investigating the kinetic mechanisms and structural features of the intermediates and the final fibrillar state is essential to understand their role in amyloid diseases. Lysozyme, a notable model protein for amyloidogenic studies, readily formed fibrils in vitro at neutral pH in the presence of urea. It, however, showed two different kinetic pathways under varying urea concentrations when probed with thioflavin T (ThT) fluorescence. In 2 M urea, lysozyme followed a nucleation-dependent fibril formation pathway which was not altered by varying the protein concentration from 2 mg/ml to 8 mg/ml. In 4 M urea, the protein exhibited concentration dependent change in the mechanism. At lower protein concentrations, lysozyme formed fibrils without any detectable nuclei (nucleation-independent polymerization pathway). When the concentration of the protein was increased above 3 mg/ml, the protein followed nucleation-dependent polymerization pathway as observed in the case of 2 M urea condition. This was further verified using microscopic images of the fibrils. The kinetic parameters such as lag time, elongation rate, and fibrillation half-time, which were derived from ThT fluorescence changes, showed linear dependency against the initial protein concentration suggested that under the nucleation-dependent pathway conditions, the protein followed primary-nucleation mechanism without any significant secondary nucleation events. The results also suggested that the differences in the initial protein conformation might alter the mechanism of fibrillation; however, at the higher protein concentrations lysozyme shifted to nucleation-dependent pathway.

  12. Regulation and Gene Expression Profiling of NKG2D Positive Human Cytomegalovirus-Primed CD4+ T-Cells

    PubMed Central

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4+ T-cells, however recently a subset of NKG2D+ CD4+ T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D+ CD4+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D+ CD4+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D+ CD4+ T-cells, generated from HCMV-primed CD4+ T-cells. We show that the HCMV-primed NKG2D+ CD4+ T-cells possess a higher differentiated phenotype than the NKG2D– CD4+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4+ T-cells, whereas it is produced de novo in resting CD4+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D+ CD4+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression. PMID:22870231

  13. Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells.

    PubMed

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8(+) T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4(+) T-cells, however recently a subset of NKG2D(+) CD4(+) T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D(+) CD4(+) T-cells possesses effector-like functions, thus resembling the subsets of NKG2D(+) CD4(+) T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4(+) T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D(+) CD4(+) T-cells, generated from HCMV-primed CD4(+) T-cells. We show that the HCMV-primed NKG2D(+) CD4(+) T-cells possess a higher differentiated phenotype than the NKG2D(-) CD4(+) T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4(+) T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4(+) T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4(+) T-cells, whereas it is produced de novo in resting CD4(+) T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+) CD4(+) T-cells, as well as the mechanisms regulating NKG2D cell surface expression.

  14. Lysozyme Crystal

    NASA Technical Reports Server (NTRS)

    2004-01-01

    To the crystallographer, this may not be a diamond but it is just as priceless. A Lysozyme crystal grown in orbit looks great under a microscope, but the real test is X-ray crystallography. The colors are caused by polarizing filters. Proteins can form crystals generated by rows and columns of molecules that form up like soldiers on a parade ground. Shining X-rays through a crystal will produce a pattern of dots that can be decoded to reveal the arrangement of the atoms in the molecules making up the crystal. Like the troops in formation, uniformity and order are everything in X-ray crystallography. X-rays have much shorter wavelengths than visible light, so the best looking crystals under the microscope won't necessarily pass muster under the X-rays. In order to have crystals to use for X-ray diffraction studies, crystals need to be fairly large and well ordered. Scientists also need lots of crystals since exposure to air, the process of X-raying them, and other factors destroy them. Growing protein crystals in space has yielded striking results. Lysozyme's structure is well known and it has become a standard in many crystallization studies on Earth and in space.

  15. Kinetics of Competitive Adsorption between Lysozyme and Lactoferrin on Silicone Hydrogel Contact Lenses and the Effect on Lysozyme Activity.

    PubMed

    Hall, Brad; Jones, Lyndon; Forrest, James A

    2015-05-01

    To determine the effect of competitive adsorption between lysozyme and lactoferrin on silicone hydrogel contact lenses and the effect on lysozyme activity. Three commercially available silicone hydrogel contact lens materials (senofilcon A, lotrafilcon B and balafilcon A) were examined, for time points ranging from 10 s to 2 h. Total protein deposition was determined by I(125) radiolabeling of lysozyme and lactoferrin, while the activity of lysozyme was determined by a micrococcal activity assay. Senofilcon A and balafilcon A did not show any relevant competitive adsorption between lysozyme and lactoferrin. Lotrafilcon B showed reduced protein deposition due to competitive adsorption for lactoferrin at all time points and lysozyme after 7.5 min. Co-adsorption of lactoferrin and lysozyme decreased the activity of lysozyme in solution for senofilcon A and lotrafilcon B, but co-adsorption had no effect on the surface activity of lysozyme for all lens types investigated. Competition between lysozyme and lactoferrin is material specific. Co-adsorption of lysozyme and lactoferrin does not affect the activity of surface-bound lysozyme but can reduce the activity of subsequently desorbed lysozyme.

  16. Adoptive transfer of gene-engineered CD4+ helper T cells induces potent primary and secondary tumor rejection.

    PubMed

    Moeller, Maria; Haynes, Nicole M; Kershaw, Michael H; Jackson, Jacob T; Teng, Michele W L; Street, Shayna E; Cerutti, Loretta; Jane, Stephen M; Trapani, Joseph A; Smyth, Mark J; Darcy, Phillip K

    2005-11-01

    Because CD4+ T cells play a key role in aiding cellular immune responses, we wanted to assess whether increasing numbers of gene-engineered antigen-restricted CD4+ T cells could enhance an antitumor response mediated by similarly gene-engineered CD8+ T cells. In this study, we have used retroviral transduction to generate erbB2-reactive mouse T-cell populations composed of various proportions of CD4+ and CD8+ cells and then determined the antitumor reactivity of these mixtures. Gene-modified CD4+ and CD8+ T cells were shown to specifically secrete Tc1 (T cytotoxic-1) or Tc2 cytokines, proliferate, and lyse erbB2+ tumor targets following antigen ligation in vitro. In adoptive transfer experiments using severe combined immunodeficient (scid) mice, we demonstrated that injection of equivalent numbers of antigen-specific engineered CD8+ and CD4+ T cells led to significant improvement in survival of mice bearing established lung metastases compared with transfer of unfractionated (largely CD8+) engineered T cells. Transferred CD4+ T cells had to be antigen-specific (not just activated) and secrete interferon gamma (IFN-gamma) to potentiate the antitumor effect. Importantly, antitumor responses in these mice correlated with localization and persistence of gene-engineered T cells at the tumor site. Strikingly, mice that survived primary tumor challenge could reject a subsequent rechallenge. Overall, this study has highlighted the therapeutic potential of using combined transfer of antigen-specific gene-modified CD8+ and CD4+ T cells to significantly enhance T-cell adoptive transfer strategies for cancer therapy.

  17. A study of the interaction between malachite green and lysozyme by steady-state fluorescence.

    PubMed

    Ding, Fei; Liu, Wei; Liu, Feng; Li, Zhi-Yuan; Sun, Ying

    2009-09-01

    The interaction of a N-methylated diaminotriphenylmethane dye, malachite green, with lysozyme was investigated by fluorescence spectroscopic techniques under physiological conditions. The binding parameters have been evaluated by fluorescence quenching methods. The results revealed that malachite green caused the fluorescence quenching of lysozyme through a static quenching procedure. The thermodynamic parameters like DeltaH and DeltaS were calculated to be -15.33 kJ mol(-1) and 19.47 J mol(-1) K(-1) according to van't Hoff equation, respectively, which proves main interaction between malachite green and lysozyme is hydrophobic forces and hydrogen bond contact. The distance r between donor (lysozyme) and acceptor (malachite green) was obtained to be 3.82 nm according to Frster's theory. The results of synchronous fluorescence, UV/vis and three-dimensional fluorescence spectra showed that binding of malachite green with lysozyme can induce conformational changes in lysozyme. In addition, the effects of common ions on the constants of lysozyme-malachite green complex were also discussed.

  18. Hereditary Lysozyme Amyloidosis Variant p.Leu102Ser Associates with Unique Phenotype

    PubMed Central

    Nasr, Samih H.; Dasari, Surendra; Mills, John R.; Theis, Jason D.; Zimmermann, Michael T.; Fonseca, Rafael; Vrana, Julie A.; Lester, Steven J.; McLaughlin, Brooke M.; Gillespie, Robert; Highsmith, W. Edward; Lee, John J.; Dispenzieri, Angela

    2017-01-01

    Lysozyme amyloidosis (ALys) is a rare form of hereditary amyloidosis that typically manifests with renal impairment, gastrointestinal (GI) symptoms, and sicca syndrome, whereas cardiac involvement is exceedingly rare and neuropathy has not been reported. Here, we describe a 40-year-old man with renal impairment, cardiac and GI symptoms, and peripheral neuropathy. Renal biopsy specimen analysis revealed amyloidosis with extensive involvement of glomeruli, vessels, and medulla. Amyloid was also detected in the GI tract. Echocardiographic and electrocardiographic findings were consistent with cardiac involvement. Proteomic analysis of Congo red–positive renal and GI amyloid deposits detected abundant lysozyme C protein. DNA sequencing of the lysozyme gene in the patient and his mother detected a heterozygous c.305T>C alteration in exon 3, which causes a leucine to serine substitution at codon 102 (Human Genome Variation Society nomenclature: p.Leu102Ser; legacy designation: L84S). We also detected the mutant peptide in the proband’s renal and GI amyloid deposits. PolyPhen analysis predicted that the mutation damages the encoded protein. Molecular dynamics simulations suggested that the pathogenesis of ALys p.Leu102Ser is mediated by shifting the position of the central β-hairpin coordinated with an antiparallel motion of the C-terminal helix, which may alter the native-state structural ensemble of the molecule, leading to aggregation-prone intermediates. PMID:28049649

  19. A novel electrochemical aptamer-antibody sandwich assay for lysozyme detection.

    PubMed

    Ocaña, Cristina; Hayat, Akhtar; Mishra, Rupesh; Vasilescu, Alina; del Valle, Manel; Marty, Jean-Louis

    2015-06-21

    In this paper, we have reported a novel electrochemical aptamer-antibody based sandwich biosensor for the detection of lysozyme. In the sensing strategy, an anti-lysozyme aptamer was immobilized onto the carbon electrode surface by covalent binding via diazonium salt chemistry. After incubating with a target protein (lysozyme), a biotinylated antibody was used to complete the sandwich format. The subsequent additions of avidin-alkaline phosphatase as an enzyme label, and a 1-naphthyl phosphate substrate (1-NPP) allowed us to determine the concentration of lysozyme (Lys) via Differential Pulse Voltammetry (DPV) of the generated enzyme reaction product, 1-naphthol. Using this strategy, a wide detection range from 5 fM to 5 nM was obtained for a target lysozyme, with a detection limit of 4.3 fM. The control experiments were carried out by using bovine serum albumin (BSA), cytochrome c and casein. The results showed that the proposed biosensor had good specificity, stability and reproducibility for lysozyme analysis. In addition, the biosensor was applied for detecting lysozyme in spiked wine samples, and very good recovery rates were obtained in the range from 95.2 to 102.0% for lysozyme detection. This implies that the proposed sandwich biosensor is a promising analytical tool for the analysis of lysozyme in real samples.

  20. A Quantitative Comparison of Anti-HIV Gene Therapy Delivered to Hematopoietic Stem Cells versus CD4+ T Cells

    PubMed Central

    Savkovic, Borislav; Nichols, James; Birkett, Donald; Applegate, Tanya; Ledger, Scott; Symonds, Geoff; Murray, John M.

    2014-01-01

    Gene therapy represents an alternative and promising anti-HIV modality to highly active antiretroviral therapy. It involves the introduction of a protective gene into a cell, thereby conferring protection against HIV. While clinical trials to date have delivered gene therapy to CD4+T cells or to CD34+ hematopoietic stem cells (HSC), the relative benefits of each of these two cellular targets have not been conclusively determined. In the present analysis, we investigated the relative merits of delivering a dual construct (CCR5 entry inhibitor + C46 fusion inhibitor) to either CD4+T cells or to CD34+ HSC. Using mathematical modelling, we determined the impact of each scenario in terms of total CD4+T cell counts over a 10 year period, and also in terms of inhibition of CCR5 and CXCR4 tropic virus. Our modelling determined that therapy delivery to CD34+ HSC generally resulted in better outcomes than delivery to CD4+T cells. An early one-off therapy delivery to CD34+ HSC, assuming that 20% of CD34+ HSC in the bone marrow were gene-modified (G+), resulted in total CD4+T cell counts ≥180 cells/ µL in peripheral blood after 10 years. If the uninfected G+ CD4+T cells (in addition to exhibiting lower likelihood of becoming productively infected) also exhibited reduced levels of bystander apoptosis (92.5% reduction) over non gene-modified (G-) CD4+T cells, then total CD4+T cell counts of ≥350 cells/ µL were observed after 10 years, even if initially only 10% of CD34+ HSC in the bone marrow received the protective gene. Taken together our results indicate that: 1.) therapy delivery to CD34+ HSC will result in better outcomes than delivery to CD4+T cells, and 2.) a greater impact of gene therapy will be observed if G+ CD4+T cells exhibit reduced levels of bystander apoptosis over G- CD4+T cells. PMID:24945407

  1. Use of stabilizing mutations to engineer a charged group within a ligand-binding hydrophobic cavity in T4 lysozyme.

    PubMed

    Liu, Lijun; Baase, Walter A; Michael, Miya M; Matthews, Brian W

    2009-09-22

    Both large-to-small and nonpolar-to-polar mutations in the hydrophobic core of T4 lysozyme cause significant loss in stability. By including supplementary stabilizing mutations we constructed a variant that combines the cavity-creating substitution Leu99 --> Ala with the buried charge mutant Met102 --> Glu. Crystal structure determination confirmed that this variant has a large cavity with the side chain of Glu102 located within the cavity wall. The cavity includes a large disk-shaped region plus a bulge. The disk-like region is essentially nonpolar, similar to L99A, while the Glu102 substituent is located in the vicinity of the bulge. Three ordered water molecules bind within this part of the cavity and appear to stabilize the conformation of Glu102. Glu102 has an estimated pKa of about 5.5-6.5, suggesting that it is at least partially charged in the crystal structure. The polar ligands pyridine, phenol and aniline bind within the cavity, and crystal structures of the complexes show one or two water molecules to be retained. Nonpolar ligands of appropriate shape can also bind in the cavity and in some cases exclude all three water molecules. This disrupts the hydrogen-bond network and causes the Glu102 side chain to move away from the ligand by up to 0.8 A where it remains buried in a completely nonpolar environment. Isothermal titration calorimetry revealed that the binding of these compounds stabilizes the protein by 4-6 kcal/mol. For both polar and nonpolar ligands the binding is enthalpically driven. Large negative changes in entropy adversely balance the binding of the polar ligands, whereas entropy has little effect on the nonpolar ligand binding.

  2. Activity and immunodetection of lysozyme in earthworm Dendrobaena veneta (Annelida).

    PubMed

    Fiołka, Marta J; Zagaja, Mirosław P; Hułas-Stasiak, Monika; Wielbo, Jerzy

    2012-01-01

    In the present study, lysozyme-like activity against Micrococcus luteus was detected in the coelomic fluid, the extract from coelomocytes, intestine and in the homogenates from cocoons of Dendrobaena veneta. Four hours after immunization with Escherichia coli, the lysozyme activity in the coelomic fluid increased about three times and in the extract of coelomocytes - four times, in comparison to the control. In three cases: of the coelomic fluid, the homogenates from cocoons and the extract from coelomocytes, the antibody against HEWL (hen egg white lysozyme) recognized only one protein with a molecular mass of about 14.4 kDa. In the coelomic fluid, apart from the protein with molecular mass of 14.4 kDa the antibody directed against human lysozyme recognized an additional protein of 22 kDa. Using the bioautography technique after electrophoretic resolution of native proteins in acidic polyacrylamide gels, two lytic zones of M. luteus were observed in the case of the coelomic fluid and three after the analysis of the extract of coelomocytes and the egg homogenates. The results indicated the existence of several forms of lysozyme with a different electric charge in the analyzed D. veneta samples. The highest lysozyme activity in the intestine of D. veneta was observed in the midgut. The antibody directed against human lysozyme indicated a strong positive signal in epidermal and midgut cells of earthworm. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Metal-chelating active packaging film enhances lysozyme inhibition of Listeria monocytogenes.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2014-07-01

    Several studies have demonstrated that metal chelators enhance the antimicrobial activity of lysozyme. This study examined the effect of metal-chelating active packaging film on the antimicrobial activity of lysozyme against Listeria monocytogenes. Polypropylene films were surface modified by photoinitiated graft polymerization of acrylic acid (PP-g-PAA) from the food contact surface of the films to impart chelating activity based on electrostatic interactions. PP-g-PAA exhibited a carboxylic acid density of 113 ± 5.4 nmol cm(-2) and an iron chelating activity of 53.7 ± 9.8 nmol cm(-2). The antimicrobial interaction of lysozyme and PP-g-PAA depended on growth media composition. PP-g-PAA hindered lysozyme activity at low ionic strength (2.48-log increase at 64.4 mM total ionic strength) and enhanced lysozyme activity at moderate ionic strength (5.22-log reduction at 120 mM total ionic strength). These data support the hypothesis that at neutral pH, synergy between carboxylate metal-chelating films (pKa(bulk) 6.45) and lysozyme (pI 11.35) is optimal in solutions of moderate to high ionic strength to minimize undesirable charge interactions, such as lysozyme absorption onto film. These findings suggest that active packaging, which chelates metal ions based on ligand-specific interactions, in contrast to electrostatic interactions, may improve antimicrobial synergy. This work demonstrates the potential application of metal-chelating active packaging films to enhance the antimicrobial activity of membrane-disrupting antimicrobials, such as lysozyme.

  4. Synergistic cytotoxicity and mechanism of caffeine and lysozyme on hepatoma cell line HepG2

    NASA Astrophysics Data System (ADS)

    Yang, Hongchao; Li, Jingjuan; Cui, Lin; Ren, Yanqing; Niu, Liying; Wang, Xinguo; Huang, Yun; Cui, Lijian

    2018-03-01

    The influences of caffeine, lysozyme and the joint application of them on the hepatoma cell line HepG2 proliferation inhibition and cell apoptosis were observed by 3-(4, 5-dimethyl-2-thiazyl)-2, 5-diphenyl-2H-tetrazolium bromide assay and Hoechst 33342, which showed the proliferation inhibition rate of the joint application on HepG2 cells was 47.21%, significantly higher than caffeine or lysozyme, and the joint application promoted the apoptosis of HepG2 cells obviously. Van't Hoff classical thermodynamics formula, the Föster theory of non-radiation energy transfer and fluorescence phase diagram were used to manifest that the process of lysozyme binding to caffeine followed a two-state model, which was spontaneous at low temperature driven by enthalpy change, and the predominant intermolecular force was hydrogen bonding or Van der Waals force to stabilize caffeine-lysozyme complex with the distance 5.86 nm. The attenuated total reflection-Fourier transform infrared spectra indicated that caffeine decreased the relative contents of α-helix and β-turn, which inferred the structure of lysozyme tended to be "loose". Synchronous fluorescence spectra and ultraviolet spectra supported the above conclusion. The amino acid residues in the cleft of lysozyme were exposed and electropositivity was increased attributing to the loose structure, which were conducive to increasing caffeine concentration on the HepG2 cell surface by electrostatic interaction to show synergistic effect. The great quantities of microvilli on the liver cancer cell membrane surface, is beneficial for the lysozyme-caffeine compound to aggregate on cell surface to increase the concentration of caffeine to play stronger physiological role by electrostatic effect.

  5. Expression of a DNA Replication Gene Cluster in Bacteriophage T4: Genetic Linkage and the Control of Gene Product Interactions

    PubMed Central

    Gerald, W. L.; Karam, J. D.

    1984-01-01

    The results of this study bear on the relationship between genetic linkage and control of interactions between the protein products of different cistrons. In T4 bacteriophage, genes 45 and 44 encode essential components of the phage DNA replication multiprotein complex. T4 gene 45 maps directly upstream of gene 44 relative to the overall direction of reading of this region of the phage chromosome, but it is not known whether these two genes are cotranscribed. It has been shown that a nonsense lesion of T4 gene 45 exerts a cis-dominant inhibitory effect on growth of a missense mutant of gene 44 but not on growth of phage carrying the wild-type gene 44 allele. In previous work, we confirmed these observations on polarity of the gene 45 mutation but detected no polar effects by this lesion on synthesis of either mutant or wild-type gene 44 protein. In the present study, we demonstrate that mRNA for gene 44 protein is separable by gel electrophoresis from gene 45-protein-encoding mRNA. That is, the two proteins are not synthesized from one polycistronic message, and the cis-dominant inhibitory effect of the gene 45 mutation on gene 44 function is probably expressed at a posttranslational stage. We propose that close genetic linkage, whether or not it provides shared transcriptional and translational regulatory signals for certain clusters of functionally related cistrons, may determine the intracellular compartmentalization for synthesis of proteins encoded by these clusters. In prokaryotes, such linkage-dependent compartmentation may minimize the diffusion distances between gene products that are synthesized at low levels and are destined to interact. PMID:6745641

  6. Activity of lysozyme on Lactobacillus hilgardii strains isolated from Port wine.

    PubMed

    Dias, Rita; Vilas-Boas, Eduardo; Campos, Francisco M; Hogg, Tim; Couto, José António

    2015-08-01

    This work evaluated the effect of lysozyme on lactobacilli isolated from Port wine. Bacterial growth experiments were conducted in MRS/TJ medium and inactivation studies were performed in phosphate buffer (KH2PO4), distilled water and wine supplemented with different concentrations of lysozyme. The response of bacteria to lysozyme was found to be highly strain dependent. Some strains of Lactobacillus hilgardii together with Lactobacillus collinoides and Lactobacillus fructivorans were found to be resistant to concentrations of lysozyme as high as 2000 mg/L. It was observed that among the L. hilgardii taxon the resistant strains possess an S-layer coat. Apparently, the strains of L. collinoides and L. fructivorans studied are also S-layer producers as suggested by the total protein profile obtained by SDS-PAGE. Thus, the hypothetical protective role of the S-layer against the action of lysozyme was investigated. From the various treatments used to remove the protein from the surface of the cells, the one employing LiCl (5 M) was the most effective. LiCl pre-treated cells exposed to lysozyme (2000 mg/L) in KH2PO4 buffer maintained its resistance. However, when cells were suspended in distilled water an increased sensitivity to lysozyme was observed. Moreover, it was found that the addition of ethanol (20% v/v) to the suspension medium (distilled water) triggered a strong inactivation effect especially on cells previously treated with LiCl (reduction of >6 CFU log cycles). The results suggest that the S-layer exerts a protective effect against lysozyme and that the cell suspension medium influences the bacteriolysis efficiency. It was also noted that ethanol enhances the inactivation effect of lysozyme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Consumption of Lysozyme-Rich Milk Can Alter Microbial Fecal Populations

    PubMed Central

    Desai, Prerak T.; Weimer, Bart C.; Dao, Nguyet; Kültz, Dietmar; Murray, James D.

    2012-01-01

    Human milk contains antimicrobial factors such as lysozyme and lactoferrin that are thought to contribute to the development of an intestinal microbiota beneficial to host health. However, these factors are lacking in the milk of dairy animals. Here we report the establishment of an animal model to allow the dissection of the role of milk components in gut microbiota modulation and subsequent changes in overall and intestinal health. Using milk from transgenic goats expressing human lysozyme at 68%, the level found in human milk and young pigs as feeding subjects, the fecal microbiota was analyzed over time using 16S rRNA gene sequencing and the G2 Phylochip. The two methods yielded similar results, with the G2 Phylochip giving more comprehensive information by detecting more OTUs. Total community populations remained similar within the feeding groups, and community member diversity was changed significantly upon consumption of lysozyme milk. Levels of Firmicutes (Clostridia) declined whereas those of Bacteroidetes increased over time in response to the consumption of lysozyme-rich milk. The proportions of these major phyla were significantly different (P < 0.05) from the proportions seen with control-fed animals after 14 days of feeding. Within phyla, the abundance of bacteria associated with gut health (Bifidobacteriaceae and Lactobacillaceae) increased and the abundance of those associated with disease (Mycobacteriaceae, Streptococcaceae, Campylobacterales) decreased with consumption of lysozyme milk. This study demonstrated that a single component of the diet with bioactivity changed the gut microbiome composition. Additionally, this model enabled the direct examination of the impact of lysozyme on beneficial microbe enrichment versus detrimental microbe reduction in the gut microbiome community. PMID:22752159

  8. The introduction of strain and its effects on the structure and stability of T4 lysozyme.

    PubMed

    Liu, R; Baase, W A; Matthews, B W

    2000-01-07

    In order to try to better understand the role played by strain in the structure and stability of a protein a series of "small-to-large" mutations was made within the core of T4 lysozyme. Three different alanine residues, one involved in backbone contacts, one in side-chain contacts, and the third adjacent to a small cavity, were each replaced with subsets of the larger residues, Val, Leu, Ile, Met, Phe and Trp. As expected, the protein is progressively destabilized as the size of the introduced side-chain becomes larger. There does, however, seem to be a limit to the destabilization, suggesting that a protein of a given size may be capable of maintaining only a certain amount of strain. The changes in stability vary greatly from site to site. Substitution of larger residues for both Ala42 and Ala98 substantially destabilize the protein, even though the primary contacts in one case are predominantly with side-chain atoms and in the other with backbone. The results suggest that it is neither practical nor meaningful to try to separate the effects of introduced strain on side-chains from the effects on the backbone. Substitutions at Ala129 are much less destabilizing than at sites 42 or 98. This is most easily understood in terms of the pre-existing cavity, which provides partial space to accommodate the introduced side-chains. Crystal structures were obtained for a number of the mutants. These show that the changes in structure to accommodate the introduced side-chains usually consist of essentially rigid-body displacements of groups of linked atoms, achieved through relatively small changes in torsion angles. On rare occasions, a side-chain close to the site of substitution may change to a different rotamer. When such rotomer changes occur, they permit the structure to dissipate strain by a response that is plastic rather than elastic. In one case, a surface loop moves 1.2 A, not in direct response to a mutation, but in an interaction mediated via an intermolecular

  9. An intrinsically shielded hydrogel for the adsorptive recovery of lysozyme.

    PubMed

    Wang, Lu; Zhang, Rongsheng; Eisenthal, Robert; Hubble, John

    2006-07-01

    The present paper addresses the selective recovery of lysozyme from egg white using CM-dextran (carboxymethyldextran)-based hydrogels containing Cibacron Blue as an affinity ligand and co-immobilized BSA intended to act as a shielding agent to reduce non-specific adsorption. Initial studies using pure lysozyme were conducted that indicated that the adsorption capacity increased with ligand density and that adsorption was well described by a Langmuir-type isotherm. The inclusion of BSA as a putative shielding agent did not decrease the adsorption capacity for lysozyme in single-adsorbate experiments. To assess the effectiveness of the shielding strategy, subsequent experiments were conducted with both defined lysozyme/ovalbumin mixtures and hen's-egg white. From these studies, the optimal operating conditions for lysozyme recovery have been determined. These include: optimal initial egg-white concentration [a 10% (v/v) solution of native egg white in the chosen buffer], affinity-ligand density (1.86 mM) and ligand-to-shielding-agent ratio (4:1). The purity of lysozyme obtained from egg white was improved from 69% with a non-shielded hydrogel to 94% with an intrinsically shielded hydrogel. Finally, the possibility of using a protein, rather than dextran-backbone-based, hydrogel was investigated. It was found that BSA could take the place of CM-dextran as the gel backbone in a simplified synthesis, producing a gel which also proved effective for lysozyme recovery with a 30% lysozyme in egg-white solution purified to approx. 92% in a single adsorption-desorption cycle.

  10. The solubility of the tetragonal form of hen egg white lysozyme from pH 4.0 to 5.4

    NASA Technical Reports Server (NTRS)

    Cacioppo, Elizabeth; Pusey, Marc L.

    1991-01-01

    Hen egg white lysozyme solubilities in the presence of the tetragonal crystal form have been determined. Conditions investigated cover the pH range 4.0 to 5.4, varying from 2.0 to 7.0 percent NaCl concentrations and from 4 to 25 C. In all instances, the solubilities were found to increase with temperature and decrease with increasing salt concentration. The effects of pH were more complex, showing a decreasing solubility with increasing pH at low salt concentration and an increasing solubility with increasing pH at high salt concentration.

  11. Interaction and inhibitory influence of the azo dye carmoisine on lysozyme amyloid fibrillogenesis.

    PubMed

    Basu, Anirban; Suresh Kumar, Gopinatha

    2017-07-25

    The binding of the common food colorant carmoisine and its inhibitory effect on amyloid fibrillation in lysozyme have been investigated. Since humans are increasingly exposed to various food colorants like carmoisine, such studies are highly relevant. In the presence of lysozyme, the carmoisine absorption spectrum exhibited hypochromic changes. The intrinsic fluorescence of lysozyme was also quenched on interaction. Time-resolved fluorescence results suggested that the binding mechanism involved ground state complexation. The binding was predominantly dominated by non-polyelectrolytic forces. The molecular distance between the donor (lysozyme) and the acceptor (carmoisine), calculated from FRET theory, was found to be 3.37 nm, indicating that carmoisine binds close to Trp-62/63 residues in the β-domain of the protein. Information on alterations in the microenvironment surrounding the Trp-residues was also obtained from synchronous fluorescence data. Carmoisine binding induced significant loss in the alpha helical organization of lysozyme. The binding, nevertheless, did not influence the thermal stability of lysozyme significantly. The binding reaction was exothermic and driven by large negative enthalpy and small but favourable entropic contributions. Thioflavin T assay, far-UV circular dichroism studies and AFM imaging profiles testified that carmoisine had a significant inhibitory effect on amyloid fibrillogenesis in lysozyme. Carmoisine also had a definitive defibrillating effect on existing fibrils. The results may provide new insights for designing new small molecule inhibitors for amyloid related diseases.

  12. Two Goose-Type Lysozymes in Mytilus galloprovincialis: Possible Function Diversification and Adaptive Evolution

    PubMed Central

    Wang, Qing; Zhang, Linbao; Zhao, Jianmin; You, Liping; Wu, Huifeng

    2012-01-01

    Two goose-type lysozymes (designated as MGgLYZ1 and MGgLYZ2) were identified from the mussel Mytilus galloprovincialis. MGgLYZ1 mRNA was widely expressed in the examined tissues and responded sensitively to bacterial challenge in hemocytes, while MGgLYZ2 mRNA was predominately expressed and performed its functions in hepatopancreas. However, immunolocalization analysis showed that both these lysozymes were expressed in all examined tissues with the exception of adductor muscle. Recombinant MGgLYZ1 and MGgLYZ2 could inhibit the growth of several Gram-positive and Gram-negative bacteria, and they both showed the highest activity against Pseudomonas putida with the minimum inhibitory concentration (MIC) of 0.95–1.91 µM and 1.20–2.40 µM, respectively. Protein sequences analysis revealed that MGgLYZ2 had lower isoelectric point and less protease cutting sites than MGgLYZ1. Recombinant MGgLYZ2 exhibited relative high activity at acidic pH of 4–5, while MGgLYZ1 have an optimum pH of 6. These results indicated MGgLYZ2 adapted to acidic environment and perhaps play an important role in digestion. Genomic structure analysis suggested that both MGgLYZ1 and MGgLYZ2 genes are composed of six exons with same length and five introns, indicating these genes were conserved and might originate from gene duplication during the evolution. Selection pressure analysis showed that MGgLYZ1 was under nearly neutral selection while MGgLYZ2 evolved under positive selection pressure with three positively selected amino acid residues (Y102, L200 and S202) detected in the mature peptide. All these findings suggested MGgLYZ2 perhaps served as a digestive lysozyme under positive selection pressure during the evolution while MGgLYZ1 was mainly involved in innate immune responses. PMID:23028813

  13. A population-based study of salivary lysozyme concentrations and candidal counts.

    PubMed

    Yeh, C K; Dodds, M W; Zuo, P; Johnson, D A

    1997-01-01

    The relationship between salivary lysozyme concentration and oral candida load was examined in 595 adults. Unstimulated whole saliva, and citrate-stimulated parotid and submandibular/sublingual saliva were collected from each participant. Candida colony-forming units (c.f.u.) in unstimulated whole saliva were determined. An enzyme-linked immunosorbent assay for lysozyme using commercially available antibodies was developed. This assay showed a linear relation of salivary lysozyme concentrations from 0.5 to 4.0 ng/ml. Significant negative relations were observed between lysozyme concentration and flow rate: r = -0.16 (p < 0.001) for stimulated parotid and r = -0.22 (p < 0.0001) for stimulated submandibular/sublingual saliva. The lysozyme concentration in stimulated submandibular/sublingual saliva was higher in males than in female, but no sex difference was observed for stimulated parotid saliva. The lysozyme concentration of stimulated parotid saliva was positively correlated with candida counts (r = 0.18: p < 0.005). Further study of groups according to their levels of candida in whole saliva revealed that lysozyme concentrations were higher in the high candida (> or = 1000 c.f.u./ml) group than in the zero and moderate candida categories in stimulated parotid saliva (p < 0.001): there were no concentration differences in stimulated submandibular/sublingual saliva. These results suggest that parotid lysozyme concentration increases as candida load increases.

  14. Evaluation of oriented lysozyme immobilized with monoclonal antibody

    NASA Astrophysics Data System (ADS)

    Aoyagi, Satoka; Okada, Keigo; Shigyo, Ayako; Man, Naoki; Karen, Akiya

    2008-12-01

    The orientation of a lysozyme immobilized with a monoclonal antibody was evaluated based on determination of the uppermost surface structure using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Specific peaks of the oriented lysozyme immobilized with monoclonal anti-lysozyme antibody were obtained in comparison with reference samples, non-oriented immobilized lysozyme and immobilized anti-lysozyme antibody. All samples were freeze-dried before TOF-SIMS measurement, and then each sample was measured using TOF-SIMS with a bismuth cluster ion source. TOF-SIMS spectra were analyzed to select peaks specific to the oriented immobilized lysozyme as well as to identify their chemical formula and ensemble of amino acids. The possible chemical formulae of the lysozyme fragments were then investigated with an element matching program and a residue matching program. The results from TOF-SIMS spectra analysis were compared to the amino acid sequence of the lysozyme and its three-dimensional structure registered in the protein data bank. Finally, the fragment-ion-generating regions of the oriented immobilized lysozyme were determined based on the suggested residues and the three-dimensional structure.

  15. Lysis delay and burst shrinkage of coliphage T7 by deletion of terminator Tφ reversed by deletion of early genes.

    PubMed

    Nguyen, Huong Minh; Kang, Changwon

    2014-02-01

    Bacteriophage T7 terminator Tϕ is a class I intrinsic terminator coding for an RNA hairpin structure immediately followed by oligo(U), which has been extensively studied in terms of its transcription termination mechanism, but little is known about its physiological or regulatory functions. In this study, using a T7 mutant phage, where a 31-bp segment of Tϕ was deleted from the genome, we discovered that deletion of Tϕ from T7 reduces the phage burst size but delays lysis timing, both of which are disadvantageous for the phage. The burst downsizing could directly result from Tϕ deletion-caused upregulation of gene 17.5, coding for holin, among other Tϕ downstream genes, because infection of gp17.5-overproducing Escherichia coli by wild-type T7 phage showed similar burst downsizing. However, the lysis delay was not associated with cellular levels of holin or lysozyme or with rates of phage adsorption. Instead, when allowed to evolve spontaneously in five independent adaptation experiments, the Tϕ-lacking mutant phage, after 27 or 29 passages, recovered both burst size and lysis time reproducibly by deleting early genes 0.5, 0.6, and 0.7 of class I, among other mutations. Deletion of genes 0.5 to 0.7 from the Tϕ-lacking mutant phage decreased expression of several Tϕ downstream genes to levels similar to that of the wild-type phage. Accordingly, phage T7 lysis timing is associated with cellular levels of Tϕ downstream gene products. This suggests the involvement of unknown factor(s) besides the known lysis proteins, lysozyme and holin, and that Tϕ plays a role of optimizing burst size and lysis time during T7 infection. IMPORTANCE Bacteriophages are bacterium-infecting viruses. After producing numerous progenies inside bacteria, phages lyse bacteria using their lysis protein(s) to get out and start a new infection cycle. Normally, lysis is tightly controlled to ensure phage progenies are maximally produced and released at an optimal time. Here, we have

  16. Escherichia Coli Mutations That Prevent the Action of the T4 Unf/Alc Protein Map in an RNA Polymerase Gene

    PubMed Central

    Snyder, L.; Jorissen, L.

    1988-01-01

    Bacteriophage T4 has the substituted base hydroxymethylcytosine in its DNA and presumably shuts off host transcription by specifically blocking transcription of cytosine-containing DNA. When T4 incorporates cytosine into its own DNA, the shutoff mechanism is directed back at T4, blocking its late gene expression and phage production. Mutations which permit T4 multiplication with cytosine DNA should be in genes required for host shutoff. The only such mutations characterized thus far have been in the phage unf/alc gene. The product of this gene is also required for the unfolding of the host nucleoid after infection, hence its dual name unf/alc. As part of our investigation of the mechanism of action of unf/alc, we have isolated Escherichia coli mutants which propagate cytosine T4 even if the phage are genotypically alc(+). These same E. coli mutants are delayed in the T4-induced unfolding of their nucleoid, lending strong support to the conclusion that blocking transcription and unfolding the host nucleoid are but different manifestations of the same activity. We have mapped two of the mutations, called paf mutations for prevent alc function. They both map at about 90 min, probably in the rpoB gene encoding a subunit of RNA polymerase. From the behavior of Paf mutants, we hypothesize that the unf/alc gene product of T4 interacts somehow with the host RNA polymerase to block transcription of cytosine DNA and unfold the host nucleoid. PMID:3282983

  17. Comparative insight into surfactants mediated amyloidogenesis of lysozyme.

    PubMed

    Chaturvedi, Sumit K; Khan, Javed M; Siddiqi, Mohammad K; Alam, Parvez; Khan, Rizwan H

    2016-02-01

    Electrostatic and hydrophobic interactions have an important role in the protein aggregation. In this study, we have investigated the effect of charge and hydrophobicity of oppositely charged surfactants i.e., anionic (AOT and SDS) and cationic (CTAB and DTAB) on hen egg white lysozyme at pH 9.0 and 13.0, respectively. We have employed various methods such as turbidity measurements, Rayleigh light scattering, ThT, Congo red and ANS dye binding assays, far-UV CD, atomic force microscopy, transmission electron and fluorescence microscopy. At lower molar ratio, both anionic and cationic surfactants promote amyloid fibril formation in lysozyme at pH 9.0 and 13.0, respectively. The aggregation was proportionally increased with respect to protein concentration and hydrophobicity of surfactant. The morphology of aggregates at both the pH was fibrillar in structure, as visualized by dye binding and microscopic imaging techniques. Initially, the interaction between surfactants and lysozyme was electrostatic and then hydrophobic as investigated by ITC. This study demonstrates the crucial role of charge and hydrophobicity during amyloid fibril formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Contributions of all 20 amino acids at site 96 to the stability and structure of T4 lysozyme

    PubMed Central

    Mooers, Blaine H M; Baase, Walter A; Wray, Jonathan W; Matthews, Brian W

    2009-01-01

    To try to resolve the loss of stability in the temperature-sensitive mutant of T4 lysozyme, Arg 96 → His, all of the remaining 18 naturally occurring amino acids were substituted at site 96. Also, in response to suggestions that the charged residues Lys85 and Asp89, which are 5–8 Å away, may have important effects, each of these amino acids was replaced with alanine. Crystal structures were determined for many of the variants. With the exception of the tryptophan and valine mutants R96W and R96V, the crystallographic analysis shows that the substituted side chain following the path of Arg96 in wildtype (WT). The melting temperatures of the variants decrease by up to ∼16°C with WT being most stable. There are two site 96 replacements, with lysine or glutamine, that leave the stability close to that of WT. The only element that the side chains of these residues have in common with the WT arginine is the set of three carbon atoms at the Cα, Cβ, and Cγ positions. Although each side chain is long and flexible with a polar group at the distal position, the details of the hydrogen bonding to the rest of the protein differ in each case. Also, the glutamine replacement lacks a positive charge. This shows that there is some adaptability in achieving full stabilization at this site. At the other extreme, to be maximally destabilizing a mutation at site 96 must not only eliminate favorable interactions but also introduce an unfavorable element such as steric strain or a hydrogen-bonding group that remains unsatisfied. Overall, the study highlights the essential need for atomic resolution site-specific structural information to understand and to predict the stability of mutant proteins. It can be very misleading to simply assume that conservative amino acid substitutions cause small changes in stability, whereas large stability changes are associated with nonconservative replacements. PMID:19384988

  19. Heat-Denatured Lysozyme Inactivates Murine Norovirus as a Surrogate Human Norovirus.

    PubMed

    Takahashi, Hajime; Nakazawa, Moemi; Ohshima, Chihiro; Sato, Miki; Tsuchiya, Tomoki; Takeuchi, Akira; Kunou, Masaaki; Kuda, Takashi; Kimura, Bon

    2015-07-02

    Human norovirus infects humans through the consumption of contaminated food, contact with the excrement or vomit of an infected person, and through airborne droplets that scatter the virus through the air. Being highly infectious and highly viable in the environment, inactivation of the norovirus requires a highly effective inactivating agent. In this study, we have discovered the thermal denaturing capacity of a lysozyme with known antimicrobial activity against gram-positive bacteria, as well as its inactivating effect on murine norovirus. This study is the first report on the norovirus-inactivating effects of a thermally denatured lysozyme. We observed that lysozymes heat-treated for 40 min at 100 °C caused a 4.5 log reduction in infectivity of norovirus. Transmission electron microscope analysis showed that virus particles exposed to thermally denatured lysozymes were expanded, compared to the virus before exposure. The amino acid sequence of the lysozyme was divided into three sections and the peptides of each artificially synthesised, in order to determine the region responsible for the inactivating effect. These results suggest that thermal denaturation of the lysozyme changes the protein structure, activating the region responsible for imparting an inactivating effect against the virus.

  20. FOXP3, CBLB and ITCH gene expression and cytotoxic T lymphocyte antigen 4 expression on CD4+CD25high T cells in multiple sclerosis

    PubMed Central

    Sellebjerg, F; Krakauer, M; Khademi, M; Olsson, T; Sørensen, P S

    2012-01-01

    Expression of the forkhead box protein 3 (FoxP3) transcription factor is regulated by the E3 ubiquitin ligases Itch and Cbl-b and induces regulatory activity CD4+CD25high T cells. Treatment with interferon (IFN)-β enhances regulatory T cell activity in multiple sclerosis (MS). We studied the phenotype of CD4+CD25high T cells in MS by flow cytometry and its relationship with expression of the FOXP3, ITCH and CBLB genes. We found that untreated MS patients had lower cell surface expression of cytotoxic T lymphocyte antigen 4 (CTLA-4) on CD4+CD25high T cells and higher intracellular CTLA-4 expression than healthy controls. Cell surface expression of CTLA-4 on CD4+CD25high T cells correlated with expression of FOXP3 mRNA in untreated patients and increased significantly with time from most recent injection in patients treated with IFN-β. FOXP3 mRNA expression correlated with CBLB and ITCH and T helper type 2 cytokine mRNA expression in MS patients. These data link expression of FOXP3, CBLB and ITCH mRNA and CTLA-4 expression on the surface of CD4+CD25high T cell in MS. We hypothesize that this may reflect alterations in the inhibitory effect of CTLA-4 or in regulatory T cell function. PMID:23039885

  1. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV.

    PubMed

    Tebas, Pablo; Stein, David; Tang, Winson W; Frank, Ian; Wang, Shelley Q; Lee, Gary; Spratt, S Kaye; Surosky, Richard T; Giedlin, Martin A; Nichol, Geoff; Holmes, Michael C; Gregory, Philip D; Ando, Dale G; Kalos, Michael; Collman, Ronald G; Binder-Scholl, Gwendolyn; Plesa, Gabriela; Hwang, Wei-Ting; Levine, Bruce L; June, Carl H

    2014-03-06

    CCR5 is the major coreceptor for human immunodeficiency virus (HIV). We investigated whether site-specific modification of the gene ("gene editing")--in this case, the infusion of autologous CD4 T cells in which the CCR5 gene was rendered permanently dysfunctional by a zinc-finger nuclease (ZFN)--is safe. We enrolled 12 patients in an open-label, nonrandomized, uncontrolled study of a single dose of ZFN-modified autologous CD4 T cells. The patients had chronic aviremic HIV infection while they were receiving highly active antiretroviral therapy. Six of them underwent an interruption in antiretroviral treatment 4 weeks after the infusion of 10 billion autologous CD4 T cells, 11 to 28% of which were genetically modified with the ZFN. The primary outcome was safety as assessed by treatment-related adverse events. Secondary outcomes included measures of immune reconstitution and HIV resistance. One serious adverse event was associated with infusion of the ZFN-modified autologous CD4 T cells and was attributed to a transfusion reaction. The median CD4 T-cell count was 1517 per cubic millimeter at week 1, a significant increase from the preinfusion count of 448 per cubic millimeter (P<0.001). The median concentration of CCR5-modified CD4 T cells at 1 week was 250 cells per cubic millimeter. This constituted 8.8% of circulating peripheral-blood mononuclear cells and 13.9% of circulating CD4 T cells. Modified cells had an estimated mean half-life of 48 weeks. During treatment interruption and the resultant viremia, the decline in circulating CCR5-modified cells (-1.81 cells per day) was significantly less than the decline in unmodified cells (-7.25 cells per day) (P=0.02). HIV RNA became undetectable in one of four patients who could be evaluated. The blood level of HIV DNA decreased in most patients. CCR5-modified autologous CD4 T-cell infusions are safe within the limits of this study. (Funded by the National Institute of Allergy and Infectious Diseases and others

  2. CD4 memory T cells develop and acquire functional competence by sequential cognate interactions and stepwise gene regulation

    PubMed Central

    Kaji, Tomohiro; Hijikata, Atsushi; Ishige, Akiko; Kitami, Toshimori; Watanabe, Takashi; Ohara, Osamu; Yanaka, Noriyuki; Okada, Mariko; Shimoda, Michiko; Taniguchi, Masaru

    2016-01-01

    Memory CD4+ T cells promote protective humoral immunity; however, how memory T cells acquire this activity remains unclear. This study demonstrates that CD4+ T cells develop into antigen-specific memory T cells that can promote the terminal differentiation of memory B cells far more effectively than their naive T-cell counterparts. Memory T cell development requires the transcription factor B-cell lymphoma 6 (Bcl6), which is known to direct T-follicular helper (Tfh) cell differentiation. However, unlike Tfh cells, memory T cell development did not require germinal center B cells. Curiously, memory T cells that develop in the absence of cognate B cells cannot promote memory B-cell recall responses and this defect was accompanied by down-regulation of genes associated with homeostasis and activation and up-regulation of genes inhibitory for T-cell responses. Although memory T cells display phenotypic and genetic signatures distinct from Tfh cells, both had in common the expression of a group of genes associated with metabolic pathways. This gene expression profile was not shared to any great extent with naive T cells and was not influenced by the absence of cognate B cells during memory T cell development. These results suggest that memory T cell development is programmed by stepwise expression of gatekeeper genes through serial interactions with different types of antigen-presenting cells, first licensing the memory lineage pathway and subsequently facilitating the functional development of memory T cells. Finally, we identified Gdpd3 as a candidate genetic marker for memory T cells. PMID:26714588

  3. The Antimicrobial Peptide Lysozyme Is Induced after Multiple Trauma

    PubMed Central

    Klüter, Tim; Fitschen-Oestern, Stefanie; Lippross, Sebastian; Weuster, Matthias; Pufe, Thomas; Tohidnezhad, Mersedeh; Beyer, Andreas; Seekamp, Andreas; Varoga, Deike

    2014-01-01

    The antimicrobial peptide lysozyme is an important factor of innate immunity and exerts high potential of antibacterial activity. In the present study we evaluated the lysozyme expression in serum of multiple injured patients and subsequently analyzed their possible sources and signaling pathways. Expression of lysozyme was examined in blood samples of multiple trauma patients from the day of trauma until 14 days after trauma by ELISA. To investigate major sources of lysozyme, its expression and regulation in serum samples, different blood cells, and tissue samples were analysed by ELISA and real-time PCR. Neutrophils and hepatocytes were stimulated with cytokines and supernatant of Staphylococcus aureus. The present study demonstrates the induction and release of lysozyme in serum of multiple injured patients. The highest lysozyme expression of all tested cells and tissues was detected in neutrophils. Stimulation with trauma-related factors such as interleukin-6 and S. aureus induced lysozyme expression. Liver tissue samples of patients without trauma show little lysozyme expression compared to neutrophils. After stimulation with bacterial fragments, lysozyme expression of hepatocytes is upregulated significantly. Toll-like receptor 2, a classic receptor of Gram-positive bacterial protein, was detected as a possible target for lysozyme induction. PMID:25258475

  4. Lysozyme Photochemistry as a Function of Temperature. The Protective Effect of Nanoparticles on Lysozyme Photostability

    PubMed Central

    Oliveira Silva, Catarina; Petersen, Steffen B.; Pinto Reis, Catarina; Rijo, Patrícia; Molpeceres, Jesús; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2015-01-01

    The presence of aromatic residues and their close spatial proximity to disulphide bridges makes hen egg white lysozyme labile to UV excitation. UVB induced photo-oxidation of tryptophan and tyrosine residues leads to photochemical products, such as, kynurenine, N–formylkynurenine and dityrosine and to the disruption of disulphide bridges in proteins. We here report that lysozyme UV induced photochemistry is modulated by temperature, excitation power, illumination time, excitation wavelength and by the presence of plasmonic quencher surfaces, such as gold, and by the presence of natural fluorescence quenchers, such as hyaluronic acid and oleic acid. We show evidence that the photo-oxidation effects triggered by 295 nm at 20°C are reversible and non-reversible at 10°C, 25°C and 30°C. This paper provides evidence that the 295 nm damage threshold of lysozyme lies between 0.1 μW and 0.3 μW. Protein conformational changes induced by temperature and UV light have been detected upon monitoring changes in the fluorescence emission spectra of lysozyme tryptophan residues and SYPRO® Orange. Lysozyme has been conjugated onto gold nanoparticles, coated with hyaluronic acid and oleic acid (HAOA). Steady state and time resolved fluorescence studies of free and conjugated lysozyme onto HAOA gold nanoparticles reveals that the presence of the polymer decreased the rate of the observed photochemical reactions and induced a preference for short fluorescence decay lifetimes. Size and surface charge of the HAOA gold nanoparticles have been determined by dynamic light scattering and zeta potential measurements. TEM analysis of the particles confirms the presence of a gold core surrounded by a HAOA matrix. We conclude that HAOA gold nanoparticles may efficiently protect lysozyme from the photochemical effects of UVB light and this nanocarrier could be potentially applied to other proteins with clinical relevance. In addition, this study confirms that the temperature plays a

  5. Lysozyme Photochemistry as a Function of Temperature. The Protective Effect of Nanoparticles on Lysozyme Photostability.

    PubMed

    Oliveira Silva, Catarina; Petersen, Steffen B; Pinto Reis, Catarina; Rijo, Patrícia; Molpeceres, Jesús; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2015-01-01

    The presence of aromatic residues and their close spatial proximity to disulphide bridges makes hen egg white lysozyme labile to UV excitation. UVB induced photo-oxidation of tryptophan and tyrosine residues leads to photochemical products, such as, kynurenine, N-formylkynurenine and dityrosine and to the disruption of disulphide bridges in proteins. We here report that lysozyme UV induced photochemistry is modulated by temperature, excitation power, illumination time, excitation wavelength and by the presence of plasmonic quencher surfaces, such as gold, and by the presence of natural fluorescence quenchers, such as hyaluronic acid and oleic acid. We show evidence that the photo-oxidation effects triggered by 295 nm at 20°C are reversible and non-reversible at 10°C, 25°C and 30°C. This paper provides evidence that the 295 nm damage threshold of lysozyme lies between 0.1 μW and 0.3 μW. Protein conformational changes induced by temperature and UV light have been detected upon monitoring changes in the fluorescence emission spectra of lysozyme tryptophan residues and SYPRO® Orange. Lysozyme has been conjugated onto gold nanoparticles, coated with hyaluronic acid and oleic acid (HAOA). Steady state and time resolved fluorescence studies of free and conjugated lysozyme onto HAOA gold nanoparticles reveals that the presence of the polymer decreased the rate of the observed photochemical reactions and induced a preference for short fluorescence decay lifetimes. Size and surface charge of the HAOA gold nanoparticles have been determined by dynamic light scattering and zeta potential measurements. TEM analysis of the particles confirms the presence of a gold core surrounded by a HAOA matrix. We conclude that HAOA gold nanoparticles may efficiently protect lysozyme from the photochemical effects of UVB light and this nanocarrier could be potentially applied to other proteins with clinical relevance. In addition, this study confirms that the temperature plays a

  6. Osmotic pressures and second virial coefficients for aqueous saline solutions of lysozyme

    DOE PAGES

    Moon, Y. U.; Anderson, C. O.; Blanch, H. W.; ...

    2000-03-27

    Experimental data at 25 °C are reported for osmotic pressures of aqueous solutions containing lysozyme and any one of the following salts: ammonium sulfate, ammonium oxalate and ammonium phosphate at ionic strength 1 or 3M. Data were obtained using a Wescor Colloid Membrane Osmometer at lysozyme concentrations from about 4 to 20 grams per liter at pH 4, 7 or 8. Osmotic second virial coefficients for lysozyme were calculated from the osmotic-pressure data. All coefficients were negative, increasing in magnitude with ionic strength. Furthermore, tesults are insensitive to the nature of the anion, but rise slightly in magnitude as themore » size of the anion increases.« less

  7. Effect of lysozyme or antibiotics on fecal zoonotic pathogens in nursery pigs

    USDA-ARS?s Scientific Manuscript database

    Lysozyme is a 1,4-ß-N-acetylmuramidase that has antimicrobial properties. The objective of this study was to determine the effect of lysozyme and antibiotics on zoonotic pathogen shedding in feces in nursery pigs housed without and with an indirect disease challenge. Two replicates of 600 pigs eac...

  8. Increased yield of PCR products by addition of T4 gene 32 protein to the SMART PCR cDNA synthesis system.

    PubMed

    Villalva, C; Touriol, C; Seurat, P; Trempat, P; Delsol, G; Brousset, P

    2001-07-01

    Under certain conditions, T4 gene 32 protein is known to increase the efficiency of different enzymes, such as Taq DNA polymerase, reverse transcriptase, and telomerase. In this study, we compared the efficiency of the SMART PCR cDNA synthesis kit with and without the T4 gene 32 protein. The use of this cDNA synthesis procedure, in combination with T4 gene 32 protein, increases the yield of RT-PCR products from approximately 90% to 150%. This effect is even observed for long mRNA templates and low concentrations of total RNA (25 ng). Therefore, we suggest the addition of T4 gene 32 protein in the RT-PCR mixture to increase the efficiency of cDNA synthesis, particularly in cases when low amounts of tissue are used.

  9. Quinopeptide formation associated with the disruptive effect of epigallocatechin-gallate on lysozyme fibrils.

    PubMed

    Cao, Na; Zhang, Yu-Jie; Feng, Shuang; Zeng, Cheng-Ming

    2015-01-01

    Numerous studies demonstrate that natural polyphenols can inhibit amyloid formation and disrupt preformed amyloid fibrils. In the present study, the fibril-disruptive effects of epigallocatechin-3-gallate (EGCG) were examined using lysozyme as a model protein. The results indicated that EGCG dose dependently inhibited lysozyme fibrillation and modified the peptide chains with quinonoid moieties under acidic conditions, as measured by ThT fluorescence, transmission electron microscopy, and an NBT-staining assay. Moreover, EGCG transformed the preformed lysozyme fibrils to amorphous aggregates through quinopeptide formation. The thiol blocker, N-ethylmaleimide, inhibited the disruptive effect of EGCG on preformed fibrils, suggesting that thiol groups are the binding sites for EGCG. We propose that the formation of quinone intermediates via oxidation and subsequent binding to lysozyme chains are the main processes driving the inhibition of amyloid formation and disruption of preformed fibrils by EGCG. The information presented in this study may provide fresh insight into the link between the antioxidant capacity and anti-amyloid activity of polyphenols. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Salivary lysozyme in smoking alcohol dependent persons.

    PubMed

    Waszkiewicz, Napoleon; Zalewska-Szajda, Beata; Zalewska, Anna; Waszkiewicz, Magdalena; Szajda, Slawomir Dariusz; Repka, Bernadeta; Szulc, Agata; Kepka, Alina; Minarowska, Alina; Ladny, Jerzy Robert; Zwierz, Krzysztof

    2012-01-01

    The purpose of this study was to evaluate the effect of chronic alcohol intoxication and smoking on the concentration and output of salivary lysozyme. Thirty seven men participated in the study, including 17 male smoking alcohol-dependent patients after chronic alcohol intoxication (AS), and 20 control non-smoking male social drinkers (CNS) with no history of alcohol abuse or smoking. The level of lysozyme was assessed by the radial immunodiffusion method. Significantly lower lysozyme output in the AS group compared to the CNS group was found. Moreover, gingival index was significantly higher in AS than in the CNS group. It appeared that the reduced salivary lysozyme output was more likely the result of ethanol action than smoking. In conclusion, persons addicted to alcohol and nicotine have a poorer periodontal status than non-smoking social drinkers, which may partially be due to the diminished protective effects of lysozyme present in the saliva.

  11. Stability of actin-lysozyme complexes formed in cystic fibrosis disease.

    PubMed

    Mohammadinejad, Sarah; Ghamkhari, Behnoush; Abdolmaleki, Sarah

    2016-08-21

    Finding the conditions for destabilizing actin-lysozyme complexes is of biomedical importance in preventing infections in cystic fibrosis. In this manuscript, the effects of different charge-mutants of lysozyme and salt concentration on the stability of actin-lysozyme complexes are studied using Langevin dynamics simulation. A coarse-grained model of F-actin is used in which both its twist and bending rigidities are considered. We observe that the attraction between F-actins is stronger in the presence of wild-type lysozymes relative to the mutated lysozymes of lower charges. By calculating the potential of mean force between F-actins, we conclude that the stability of actin-lysozyme complexes is decreased by reducing the charge of lysozyme mutants. The distributions of different lysozyme charge-mutants show that wild-type (+9e) lysozymes are mostly accumulated in the center of triangles formed by three adjacent F-actins, while lysozyme mutants of charges +7e and +5e occupy the bridging regions between F-actins. Low-charge mutants of lysozyme (+3e) distribute uniformly around F-actins. A rough estimate of the electrostatic energy for these different distributions proves that the distribution in which lysozymes reside in the center of triangles leads to more stable complexes. Also our results in the presence of a salt suggest that at physiological salt concentration of airway, F-actin complexes are not formed by charge-reduced mutants of lysozyme. The findings are interesting because if we can design charge-reduced lysozyme mutants with considerable antibacterial activity, they are not sequestered inside F-actin aggregates and can play their role as antibacterial agents against airway infection.

  12. Inheritance of the lysozyme inhibitor Ivy was an important evolutionary step by Yersinia pestis to avoid the host innate immune response.

    PubMed

    Derbise, Anne; Pierre, François; Merchez, Maud; Pradel, Elizabeth; Laouami, Sabrina; Ricard, Isabelle; Sirard, Jean-Claude; Fritz, Jill; Lemaître, Nadine; Akinbi, Henry; Boneca, Ivo G; Sebbane, Florent

    2013-05-15

    Yersinia pestis (the plague bacillus) and its ancestor, Yersinia pseudotuberculosis (which causes self-limited bowel disease), encode putative homologues of the periplasmic lysozyme inhibitor Ivy and the membrane-bound lysozyme inhibitor MliC. The involvement of both inhibitors in virulence remains subject to debate. Mutants lacking ivy and/or mliC were generated. We evaluated the mutants' ability to counter lysozyme, grow in serum, and/or counter leukocytes; to produce disease in wild-type, neutropenic, or lysozyme-deficient rodents; and to induce host inflammation. MliC was not required for lysozyme resistance and the development of plague. Deletion of ivy decreased Y. pestis' ability to counter lysozyme and polymorphonuclear neutrophils, but it did not affect the bacterium's ability to grow in serum or resist macrophages. Y. pestis lacking Ivy had attenuated virulence, unless animals were neutropenic or lysozyme deficient. The Ivy mutant induced inflammation to a degree similar to that of the parental strain. Last, Y. pseudotuberculosis did not require Ivy to counter lysozyme and for virulence. Ivy is required to counter lysozyme during infection, but its role as a virulence factor is species dependent. Our study also shows that a gene that is not necessary for the virulence of an ancestral bacterium may become essential in the emergence of a new pathogen.

  13. Cloning and identification of bacteriophage T4 gene 2 product gp2 and action of gp2 on infecting DNA in vivo.

    PubMed Central

    Lipinska, B; Rao, A S; Bolten, B M; Balakrishnan, R; Goldberg, E B

    1989-01-01

    We sequenced bacteriophage T4 genes 2 and 3 and the putative C-terminal portion of gene 50. They were found to have appropriate open reading frames directed counterclockwise on the T4 map. Mutations in genes 2 and 64 were shown to be in the same open reading frame, which we now call gene 2. This gene codes for a protein of 27,068 daltons. The open reading frame corresponding to gene 3 codes for a protein of 20,634 daltons. Appropriate bands on polyacrylamide gels were identified at 30 and 20 kilodaltons, respectively. We found that the product of the cloned gene 2 can protect T4 DNA double-stranded ends from exonuclease V action. Images PMID:2644202

  14. [Synergistic effects of lysozyme with EDTA-2Na on antibacterial activity].

    PubMed

    Li, Xiao-man; Wang, Xiao-yan; Gao, Xue-jun

    2015-02-18

    To evaluate the synergistic antibacterial effects of lysozyme with ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) on Enterococcus faecalis (E. faecalis) and Porphyromonas endodontalis (P. endodontalis). E. faecalis and P. endodontalis were cultured and adjusted to 10(8) CFU/mL. Then 0.3, 0.5, 1, 2, 5, 10, 50, 100, 150 and 300 g/L of lysozyme were prepared with deionized water; and the lysozyme solutions were mixed with 0.5, 1.0, 2.0 g/L of EDTA-2Na, respectively. The bacteria and lysosome with/without EDTA-2Na interacted for 15 min, then water-soluble tetrazolium (WST) working solution was added and the activity of the bacteria was calculated by measuring optical densities at 450 nm and 630 nm with microplate spectrophotometer. Regarding the pure lysozyme from 0.5 g/L to 150 g/L, more E. faecalis and P. endodontalis were inhibited when the concentration of lysozyme was higher, especially for E. faecalis. There was synergistic effect of lysozyme with EDTA-2Na on antibacterial activity, which was related to the concentration of lysozyme. On E. faecalis, the antibacterial activity of lysozyme with EDTA-2Na was 1.2-3.7 folds than the pure lysozyme when the concentration of lysozyme was 0.5-50 g/L (P<0.05), and on P. endodontalis, the antibacterial activity of lysozyme with EDTA-2Na was 1.3-3.5 folds than the pure lysozyme when the concentration of lysozyme was 0.5-10 g/L (P<0.05). When the concentration of lysozyme was higher than 100 g/L, EDTA-2Na did not show synergistic effect on the antibacterial activity (P>0.05). For E. faecalis and P. endodontalis, a low concentration of lysozyme with EDTA-2Na showed significant synergistic antibacterial activity, while a high concentration of lysozyme with EDTA-2Na did not.

  15. Kinetics and equilibria of lysozyme precipitation and crystallization in concentrated ammonium sulfate solutions.

    PubMed

    Cheng, Yu-Chia; Lobo, Raul F; Sandler, Stanley I; Lenhoff, Abraham M

    2006-05-05

    The kinetics and thermodynamics of lysozyme precipitation in ammonium sulfate solutions at pH 4 and 8 and room temperature were studied. X-ray powder diffraction (XRD) was used to characterize the structure of lysozyme precipitates. It was found that, if sufficient time was allowed, microcrystals developed following an induction period after initial lysozyme precipitation, even up to ionic strengths of 8 m and at acidic pH, where lysozyme is refractory to crystallization in ammonium sulfate. The full set of precipitation and crystallization data allowed construction of a phase diagram of lysozyme, showing the ammonium sulfate dependence. It suggests that precipitation may reflect a frustrated metastable liquid-liquid phase separation, which would allow this process to be understood within the framework of the generic phase diagram for proteins. The results also demonstrate that XRD, more frequently used for characterizing inorganic and organic polycrystalline materials, is useful both in characterizing the presence of crystals in the dense phase and in verifying the crystal form of proteins.

  16. Solubility of lysozyme in polyethylene glycol-electrolyte mixtures: the depletion interaction and ion-specific effects.

    PubMed

    Boncina, Matjaz; Rescic, Jurij; Vlachy, Vojko

    2008-08-01

    The solubility of aqueous solutions of lysozyme in the presence of polyethylene glycol and various alkaline salts was studied experimentally. The protein-electrolyte mixture was titrated with polyethylene glycol, and when precipitation of the protein occurred, a strong increase of the absorbance at 340 nm was observed. The solubility data were obtained as a function of experimental variables such as protein and electrolyte concentrations, electrolyte type, degree of polymerization of polyethylene glycol, and pH of the solution; the last defines the net charge of the lysozyme. The results indicate that the solubility of lysozyme decreases with the addition of polyethylene glycol; the solubility is lower for a polyethylene glycol with a higher degree of polymerization. Further, the logarithm of the protein solubility is a linear function of the polyethylene glycol concentration. The process is reversible and the protein remains in its native form. An increase of the electrolyte (NaCl) concentration decreases the solubility of lysozyme in the presence and absence of polyethylene glycol. The effect can be explained by the screening of the charged amino residues of the protein. The solubility experiments were performed at two different pH values (pH = 4.0 and 6.0), where the lysozyme net charge was +11 and +8, respectively. Ion-specific effects were systematically investigated. Anions such as Br(-), Cl(-), F(-), and H(2)PO(4)(-) (all in combination with Na(+)), when acting as counterions to a protein with positive net charge, exhibit a strong effect on the lysozyme solubility. The differences in protein solubility for chloride solutions with different cations Cs(+), K(+), and Na(+) (coions) were much smaller. The results at pH = 4.0 show that anions decrease the lysozyme solubility in the order F(-) < H(2)PO(4)(-) < Cl(-) < Br(-) (the inverse Hofmeister series), whereas cations follow the direct Hofmeister series (Cs(+) < K(+) < Na(+)) in this situation.

  17. Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Judge, Russell A.; Pusey, Marc L.

    1998-01-01

    The solubility of chicken egg white lysozyme, crystallized in the tetragonal form was measured in sodium chloride solutions from 1.6 to 30.7 C, using a miniature column solubility apparatus. Sodium chloride solution concentrations ranged from 1 to 7% (w/v). The solutions were buffered with 0.1 M sodium acetate buffer with the solubility being measured at pH values in 0.2 pH unit increments in the range pH 4.0 to 5.4, with data also included at pH 4.5. Lysozyme solubility was found to increase with increases in temperature and decreasing salt concentration. Solution pH has a varied and unpredictable effect on solubility.

  18. Transporters for Antiretroviral Drugs in Colorectal CD4+ T Cells and Circulating α4β7 Integrin CD4+ T Cells: Implications for HIV Microbicides.

    PubMed

    Mukhopadhya, Indrani; Murray, Graeme I; Duncan, Linda; Yuecel, Raif; Shattock, Robin; Kelly, Charles; Iannelli, Francesco; Pozzi, Gianni; El-Omar, Emad M; Hold, Georgina L; Hijazi, Karolin

    2016-09-06

    CD4+ T lymphocytes in the colorectal mucosa are key in HIV-1 transmission and dissemination. As such they are also the primary target for antiretroviral (ARV)-based rectal microbicides for pre-exposure prophylaxis. Drug transporters expressed in mucosal CD4+ T cells determine ARV distribution across the cell membrane and, most likely, efficacy of microbicides. We describe transporters for antiretroviral drugs in colorectal mucosal CD4+ T lymphocytes and compare gene expression with circulating α4β7+CD4+ T cells, which traffic to the intestine and have been shown to be preferentially infected by HIV-1. Purified total CD4+ T cells were obtained from colorectal tissue and blood samples by magnetic separation. CD4+ T cells expressing α4β7 integrin were isolated by fluorescence-activated cell sorting from peripheral blood mononuclear cells of healthy volunteers. Expressions of 15 efflux and uptake drug transporter genes were quantified using Taqman qPCR assays. Expression of efflux transporters MRP3, MRP5, and BCRP and uptake transporter CNT2 were significantly higher in colorectal CD4+ T cells compared to circulating CD4+ T cells (p = 0.01-0.03). Conversely, circulating α4β7+CD4+ T cells demonstrated significantly higher expression of OATPD compared to colorectal CD4+ T cells (p = 0.001). To the best of our knowledge this is the first report of drug transporter gene expression in colorectal CD4+ and peripheral α4β7+CD4+ T cells. The qualitative and quantitative differences in drug transporter gene expression profiles between α4β7+CD4+ T cells and total mucosal CD4+ T cells may have significant implications for the efficacy of rectally delivered ARV-microbicides. Most notably, we have identified efflux drug transporters that could be targeted by selective inhibitors or beneficial drug-drug interactions to enhance intracellular accumulation of antiretroviral drugs.

  19. Combination L-T3 and L-T4 therapy for hypothyroidism.

    PubMed

    Wartofsky, Leonard

    2013-10-01

    Because of the longstanding controversy regarding whether hypothyroid patients can be optimally replaced by treatment with levothyroxine (L-T4) alone, numerous studies have addressed potential benefits of combined therapy of triiodothyronine (T3) with L-T4. Results of these studies have failed to support a potential benefit of combined therapy. A strong argument for the addition of L-T3 to L-T4 monotherapy has been lacking until recent genetic studies indicated a rationale for such therapy among a small fraction of the hypothyroid patient population. Interest in this issue has focused on the importance of the deiodinases in maintaining the euthyroid state and the role of genetic polymorphisms in the deiodinase genes that would affect thyroid hormone concentrations in both blood and tissues. One such polymorphism in the D2 gene, Thr92Ala, is associated with reduced T4 to T3 activation in skeletal muscle and thyroid, linked to obesity and alterations in thyroid-pituitary feedback, and in responses to thyroid hormone treatment. Although our professional organizations continue to recommend L-T4 alone for the treatment of hypothyroidism, the possibility of a D2 gene polymorphism should be considered in patients on L-T4 monotherapy who continue to complain of fatigue in spite of dosage achieving low normal serum thyroid stimulating hormone levels. A suggestive clue to the presence of this polymorphism could be a higher than normal free T4/free T3 ratio. Clinicians could consider adding T3 as a therapeutic trial in selected patients. Future well controlled clinical trials will be required to more fully resolve the controversy.

  20. Detection of recombinant human lactoferrin and lysozyme produced in a bitransgenic cow.

    PubMed

    Kaiser, Germán G; Mucci, Nicolás C; González, Vega; Sánchez, Lourdes; Parrón, José A; Pérez, María D; Calvo, Miguel; Aller, Juan F; Hozbor, Federico A; Mutto, Adrián A

    2017-03-01

    Lactoferrin and lysozyme are 2 glycoproteins with great antimicrobial activity, being part of the nonspecific defensive system of human milk, though their use in commercial products is difficult because human milk is a limited source. Therefore, many investigations have been carried out to produce those proteins in biological systems, such as bacteria, yeasts, or plants. Mammals seem to be more suitable as expression systems for human proteins, however, especially for those that are glycosylated. In the present study, we developed a bicistronic commercial vector containing a goat β-casein promoter and an internal ribosome entry site fragment between the human lactoferrin and human lysozyme genes to allow the introduction of both genes into bovine adult fibroblasts in a single transfection. Embryos were obtained by somatic cell nuclear transfer, and, after 6 transferences to recipients, 3 pregnancies and 1 viable bitransgenic calf were obtained. The presence of the vector was confirmed by fluorescent in situ hybridization of skin cells. At 13 mo of life and after artificial induction of lactation, both recombinant proteins were found in the colostrum and milk of the bitransgenic calf. Human lactoferrin concentration in the colostrum was 0.0098 mg/mL and that in milk was 0.011 mg/mL; human lysozyme concentration in the colostrum was 0.0022 mg/mL and that in milk was 0.0024 mg/mL. The molar concentration of both human proteins revealed no differences in protein production of the internal ribosome entry site upstream and downstream protein. The enzymatic activity of lysozyme in the transgenic milk was comparable to that of human milk, being 6 and 10 times higher than that of bovine lysozyme present in milk. This work represents an important step to obtain multiple proteins or enhance single protein production by using animal pharming and fewer regulatory and antibiotic-resistant foreign sequences, allowing the design of humanized milk with added biological value for

  1. Combining EPR spectroscopy and X-ray crystallography to elucidate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals.

    PubMed

    Consentius, Philipp; Gohlke, Ulrich; Loll, Bernhard; Alings, Claudia; Heinemann, Udo; Wahl, Markus C; Risse, Thomas

    2017-08-09

    Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling is used to investigate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals. Within a single crystal, the oriented ensemble of spin bearing moieties results in a strong angle dependence of the EPR spectra. A quantitative description of the EPR spectra requires the determination of the unit cell orientation with respect to the sample tube and the orientation of the spin bearing moieties within the crystal lattice. Angle dependent EPR spectra were analyzed by line shape simulations using the stochastic Liouville equation approach developed by Freed and co-workers and an effective Hamiltonian approach. The gain in spectral information obtained from the EPR spectra of single crystalline samples taken at different frequencies, namely the X-band and Q-band, allows us to discriminate between motional models describing the spectra of isotropic solutions similarly well. In addition, it is shown that the angle dependent single crystal spectra allow us to identify two spin label rotamers with very similar side chain dynamics. These results demonstrate the utility of single crystal EPR spectroscopy in combination with spectral line shape simulation techniques to extract valuable dynamic information not readily available from the analysis of isotropic systems. In addition, it will be shown that the loss of electron density in high resolution diffraction experiments at room temperature does not allow us to conclude that there is significant structural disorder in the system.

  2. Binding study of lysozyme with Al(III) using chemiluminescence analysis.

    PubMed

    Liu, Jiangman; Luo, Kai; Song, Zhenghua

    2014-09-01

    The binding behavior of lysozyme with Al(III) is described using luminol as a luminescence probe by flow injection-chemiluminescence (FI-CL) analysis. It was found that the CL intensity of the luminol-lysozyme reaction could be markedly enhanced by Al(III), and the increase in CL intensity was linear with the Al(III) concentration over the range 0.3-30.0  pg  mL(-1) , with a detection limit of 0.1 pg  mL(-1) (3σ). Based on the interaction model of lysozyme with Al(III), lg[(I - I0 )/(2I0  - I)] = lgK + nlg[M], the binding constant K = 6.84 × 10(6)  L mol(-1) and the number of binding sites (n) = 0.76. The relative standard deviations were 3.2, 2.4 and 2.0% for 10.0, 20.0 and 30.0  pg  mL(-1) Al(III) (n = 7), respectively. This new method was successfully applied to continuous, quantitative monitoring of picogram level Al(III) in human saliva following oral intake of compound aluminum hydroxide tablets. It was found that Al(III) in saliva reached a maximum of 101.2  ng  mL(-1) at 3.0 h. The absorption rate constant ka , elimination rate constant k and half-life time t1/2 of Al(III) were 1.378  h(-1) , 0.264  h(-1) and 2.624  h, respectively. Copyright © 2013 John Wiley & Sons, Ltd.

  3. A survey of disease connections for CD4+ T cell master genes and their directly linked genes.

    PubMed

    Li, Wentian; Espinal-Enríquez, Jesús; Simpfendorfer, Kim R; Hernández-Lemus, Enrique

    2015-12-01

    Genome-wide association studies and other genetic analyses have identified a large number of genes and variants implicating a variety of disease etiological mechanisms. It is imperative for the study of human diseases to put these genetic findings into a coherent functional context. Here we use system biology tools to examine disease connections of five master genes for CD4+ T cell subtypes (TBX21, GATA3, RORC, BCL6, and FOXP3). We compiled a list of genes functionally interacting (protein-protein interaction, or by acting in the same pathway) with the master genes, then we surveyed the disease connections, either by experimental evidence or by genetic association. Embryonic lethal genes (also known as essential genes) are over-represented in master genes and their interacting genes (55% versus 40% in other genes). Transcription factors are significantly enriched among genes interacting with the master genes (63% versus 10% in other genes). Predicted haploinsufficiency is a feature of most these genes. Disease-connected genes are enriched in this list of genes: 42% of these genes have a disease connection according to Online Mendelian Inheritance in Man (OMIM) (versus 23% in other genes), and 74% are associated with some diseases or phenotype in a Genome Wide Association Study (GWAS) (versus 43% in other genes). Seemingly, not all of the diseases connected to genes surveyed were immune related, which may indicate pleiotropic functions of the master regulator genes and associated genes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Lysozyme encapsulated gold nanoclusters: effects of cluster synthesis on natural protein characteristics.

    PubMed

    Russell, B A; Jachimska, B; Komorek, P; Mulheran, P A; Chen, Y

    2017-03-08

    The study of gold nanoclusters (AuNCs) has seen much interest in recent history due to their unique fluorescence properties and environmentally friendly synthesis method using proteins as a growth scaffold. The differences in the physicochemical properties of lysozyme encapsulated AuNCs in comparison to natural lysozyme are characterised in order to determine the effects AuNCs have on natural protein behaviour. The hydrodynamic radius (dynamic light scattering), light absorbance (UV-Vis), electrophoretic mobility, relative density, dynamic viscosity, adsorption (quartz crystal microbalance) and circular dichroism (CD) characteristics of the molecules were studied. It was found that lysozyme forms small dimer/trimer aggregates upon the synthesis of AuNCs within the protein. The diameter of Ly-AuNCs was found to be 8.0 nm across a pH range of 2-11 indicating dimer formation, but larger aggregates with diameters >20 nm were formed between pH 3 and 6. The formation of larger aggregates limits the use of Ly-AuNCs as a fluorescent probe in this pH range. A large shift in the protein's isoelectric point was also observed, shifting from 11.0 to 4.0 upon AuNC synthesis. This resulted in major changes to the adsorption characteristics of lysozyme, observed using a QCM. A monolayer of 8 nm was seen for Ly-AuNCs at pH 4, offering further evidence that the proteins form small aggregates, unlike the natural monomer form of lysozyme. The adsorption of Ly-AuNCs was seen to decrease as pH was increased; this is in major contrast to the lysozyme adsorption behaviour. A decrease in the α-helix content was observed from 25% in natural lysozyme to 1% in Ly-AuNCs. This coincided with an increase in the β-sheet content after AuNC synthesis indicating that the natural structure of lysozyme was lost. The formation of protein dimers, the change in the protein surface charge from positive to negative, and secondary structure alteration caused by the AuNC synthesis must be considered before

  5. Genes Related to Antiviral Activity, Cell Migration, and Lysis Are Differentially Expressed in CD4+ T Cells in Human T Cell Leukemia Virus Type 1-Associated Myelopathy/Tropical Spastic Paraparesis Patients

    PubMed Central

    Pinto, Mariana Tomazini; Malta, Tathiane Maistro; Rodrigues, Evandra Strazza; Pinheiro, Daniel Guariz; Panepucci, Rodrigo Alexandre; Malmegrim de Farias, Kelen Cristina Ribeiro; Sousa, Alessandra De Paula; Takayanagui, Osvaldo Massaiti; Tanaka, Yuetsu; Covas, Dimas Tadeu

    2014-01-01

    Abstract Human T cell leukemia virus type 1 (HTLV-1) preferentially infects CD4+ T cells and these cells play a central role in HTLV-1 infection. In this study, we investigated the global gene expression profile of circulating CD4+ T cells from the distinct clinical status of HTLV-1-infected individuals in regard to TAX expression levels. CD4+ T cells were isolated from asymptomatic HTLV-1 carrier (HAC) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients in order to identify genes involved in HAM/TSP development using a microarray technique. Hierarchical clustering analysis showed that healthy control (CT) and HTLV-1-infected samples clustered separately. We also observed that the HAC and HAM/TSP groups clustered separately regardless of TAX expression. The gene expression profile of CD4+ T cells was compared among the CT, HAC, and HAM/TSP groups. The paxillin (Pxn), chemokine (C-X-C motif ) receptor 4 (Cxcr4), interleukin 27 (IL27), and granzyme A (Gzma) genes were differentially expressed between the HAC and HAM/TSP groups, regardless of TAX expression. The perforin 1 (Prf1) and forkhead box P3 (Foxp3) genes were increased in the HAM/TSP group and presented a positive correlation to the expression of TAX and the proviral load (PVL). The frequency of CD4+FOXP3+ regulatory T cells (Treg) was higher in HTLV-1-infected individuals. Foxp3 gene expression was positively correlated with cell lysis-related genes (Gzma, Gzmb, and Prf1). These findings suggest that CD4+ T cell activity is distinct between the HAC and HAM/TSP groups. PMID:24041428

  6. Genome-wide expression profiling analysis to identify key genes in the anti-HIV mechanism of CD4+ and CD8+ T cells.

    PubMed

    Gao, Lijie; Wang, Yunqi; Li, Yi; Dong, Ya; Yang, Aimin; Zhang, Jie; Li, Fengying; Zhang, Rongqiang

    2018-07-01

    Comprehensive bioinformatics analyses were performed to explore the key biomarkers in response to HIV infection of CD4 + and CD8 + T cells. The numbers of CD4 + and CD8 + T cells of HIV infected individuals were analyzed and the GEO database (GSE6740) was screened for differentially expressed genes (DEGs) in HIV infected CD4 + and CD8 + T cells. Gene Ontology enrichment, KEGG pathway analyses, and protein-protein interaction (PPI) network were performed to identify the key pathway and core proteins in anti-HIV virus process of CD4 + and CD8 + T cells. Finally, we analyzed the expressions of key proteins in HIV-infected T cells (GSE6740 dataset) and peripheral blood mononuclear cells(PBMCs) (GSE511 dataset). 1) CD4 + T cells counts and ratio of CD4 + /CD8 + T cells decreased while CD8 + T cells counts increased in HIV positive individuals; 2) 517 DEGs were found in HIV infected CD4 + and CD8 + T cells at acute and chronic stage with the criterial of P-value <0.05 and fold change (FC) ≥2; 3) In acute HIV infection, type 1 interferon (IFN-1) pathway might played a critical role in response to HIV infection of T cells. The main biological processes of the DEGs were response to virus and defense response to virus. At chronic stage, ISG15 protein, in conjunction with IFN-1 pathway might play key roles in anti-HIV responses of CD4 + T cells; and 4) The expression of ISG15 increased in both T cells and PBMCs after HIV infection. Gene expression profile of CD4 + and CD8 + T cells changed significantly in HIV infection, in which ISG15 gene may play a central role in activating the natural antiviral process of immune cells. © 2018 Wiley Periodicals, Inc.

  7. [Inactivating Effect of Heat-Denatured Lysozyme on Murine Norovirus in Bread Fillings].

    PubMed

    Takahashi, Michiko; Yasuda, Yuka; Takahashi, Hajime; Takeuchi, Akira; Kuda, Takashi; Kimura, Bon

    2018-01-01

    In this study, we investigated the viability of murine norovirus strain 1 (MNV-1), a surrogate for human norovirus, in bread fillings used for making stuffed buns and pastries. The inactivating effect of heat-denatured lysozyme, which was recently reported to have an antiviral effect, on MNV-1 contaminating the bread fillings was also examined. MNV-1 was inoculated into two types of fillings (chocolate cream, marmalade jam) at 4.5 log PFU/g, and the bread fillings were stored at 4℃ for 5 days. MNV-1 remained viable in the bread fillings during storage. However, addition of 1% heat-denatured lysozyme to the fillings resulted in a decrease of MNV-1 infectivity immediately after inoculation, in both fillings. On the fifth day of storage, MNV-1 infectivity was decreased by 1.2 log PFU/g in chocolate cream and by 0.9 log PFU/g in marmalade jam. Although the mechanism underlying the anti-norovirus effect of heat-denatured lysozyme has not been clarified, our results suggest that heat-denatured lysozyme can be used as an inactivating agent against norovirus in bread fillings.

  8. Differential usage of T-cell receptor V beta gene families by CD4+ and CD8+ T cells in patients with CD8hi common variable immunodeficiency: evidence of a post-thymic effect.

    PubMed Central

    Duchmann, R; Jaffe, J; Ehrhardt, R; Alling, D W; Strober, W

    1996-01-01

    In this study, we report that differences between T-cell receptor (TCR) V beta gene family usage in CD4+ and CD8+ T cells are significantly greater in a subgroup of patients with common variable immunodeficiency (CVI) and high levels of activated CD8+ T cells (CD8hi CVI) than in controls (P < 0.001). In CD8hi CVI patients, such differences were also significantly greater for V beta 12 than for other V beta families. As the causes of the differential usage of V beta gene families by CD4+ and CD8+ T cells are under investigation, it was interesting that the combined differences between V beta gene family usage in the CD4+ and CD8+ T-cell subpopulations as a whole were significantly lower than the combined differences between individual V beta gene family usage in either CD4+ or CD8+ T-cell subpopulations (P < 0.001 in both control and CD8hi CVI patients). Further, the pattern of V beta gene family usage in CD4+ T cells was remarkably similar to that in CD8+ T cells in both groups. These data strongly suggest that differences in V beta gene family usage arising from coselection by major histocompatibility complex (MHC) class I versus MHC class II restriction elements do not fundamentally distort 'basic' V beta gene family usage patterns. They also support the concept that differences in CD4+ and CD8+ T-cell V beta gene family usage, which were increased in CD8hi CVI, can arise from high-affinity interactions between disease-associated antigens or superantigens and T cells in the post-thymic T-cell compartment. Images Figure 6 PMID:8666443

  9. New sub-family of lysozyme-like proteins shows no catalytic activity: crystallographic and biochemical study of STM3605 protein from Salmonella Typhimurium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalska, Karolina; Brown, Roslyn N.; Li, Hui

    Phage viruses that infect prokaryotes integrate their genome into the host chromosome; thus, microbial genomes typically contain genetic remnants of both recent and ancient phage infections. Often phage genes occur in clusters of atypical G+C content that reflect integration of the foreign DNA. However, some phage genes occur in isolation without other phage gene neighbors, probably resulting from horizontal gene transfer. In these cases, the phage gene product is unlikely to function as a component of a mature phage particle, and instead may have been co-opted by the host for its own benefit. The product of one such gene frommore » Salmonella enterica serovar Typhimurium, STM3605, encodes a protein with modest sequence similarity to phage-like lysozyme (N-acetylmuramidase) but appears to lack essential catalytic residues that are strictly conserved in all lysozymes. Close homologs in other bacteria share this characteristic. The structure of the STM3605 protein was characterized by X-ray crystallography, and functional assays showed that it is a stable, folded protein whose structure closely resembles lysozyme. However, this protein is unlikely to hydrolyze peptidoglycan. Instead, STM3605 is presumed to have evolved an alternative function because it shows some lytic activity and partitions to micelles.« less

  10. Modeling Tetragonal Lysozyme Crystal Growth Rates

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2003-01-01

    Tetragonal lysozyme 110 face crystal growth rates, measured over 5 orders of magnitude in range, can be described using a model where growth occurs by 2D nucleation on the crystal surface for solution supersaturations of c/c(sub eq) less than or equal to 7 +/- 2. Based upon the model, the step energy per unit length, beta was estimated to be approx. 5.3 +/- 0.4 x 10(exp -7) erg/mol-cm, which for a step height of 56 A corresponds to barrier of approx. 7 +/- 1 k(sub B)T at 300 K. For supersaturations of c/c(sub eq) > 8, the model emphasizing crystal growth by 2D nucleation not only could not predict, but also consistently overestimated, the highest observable crystal growth rates. Kinetic roughening is hypothesized to occur at a cross-over supersaturation of c/c(sub eq) > 8, where crystal growth is postulated to occur by a different process such as adsorption. Under this assumption, all growth rate data indicated that a kinetic roughening transition and subsequent crystal growth by adsorption for all solution conditions, varying in buffer pH, temperature and precipitant concentration, occurs for c/c(sub eq)(T, pH, NaCl) in the range between 5 and 10, with an energy barrier for adsorption estimated to be approx. 20 k(sub B)T at 300 K. Based upon these and other estimates, we determined the size of the critical surface nucleate, at the crossover supersaturation and higher concentrations, to range from 4 to 10 molecules.

  11. Lysozyme adsorption onto mesoporous materials: effect of pore geometry and stability of adsorbents.

    PubMed

    Vinu, Ajayan; Miyahara, Masahiko; Hossain, Kazi Zakir; Takahashi, Motoi; Balasubramanian, Veerappan Vaithilingam; Mori, Toshiyuki; Ariga, Katsuhiko

    2007-03-01

    In this paper, adsorption of lysozyme onto two kinds of mesoporous adsorbents (KIT-5 and AISBA-15) has been investigated and the results on the effects of pore geometry and stability of the adsorbents are also discussed. The KIT-5 mesoporous silica materials possess cage-type pore geometry while the AISBA-15 adsorbent has mesopores of cylindrical type with rather large diameter (9.7 nm). Adsorption of lysozyme onto AISBA-15 aluminosilicate obeys a Langmuir isotherm, resulting in pore occupation of 25 to 30%. In contrast, the KIT-5 adsorbents showed very small adsorption capacities for the lysozyme adsorption, typically falling in 6 to 13% of pore occupation. The cage-type KIT-5 adsorbents have narrow channel (4 to 6 nm) where penetration of the lysozyme (3 x 3 x 4.5 nm) might be restricted. The KIT-5 adsorbent tends to collapse after long-time immersion in water, as indicated by XRD patterns, while the AISBA-15 adsorbent retains its regular structure even after immersion in basic water for 4 days. These facts confirm superiority of the AISBA-15 as an adsorbent as compared with the KIT-5 mesoporous silicates. This research strikingly demonstrates the selection of mesoporous materials is crucial to achieve efficient immobilization of biomaterials in aqueous environment.

  12. [Influence of Different Type of Surfactant on Bacteriolytic Activity of Lysozyme].

    PubMed

    Ivanov, R A; Soboleva, O A; Smirnov, S A; Levashov, P A

    2015-01-01

    The influence ofvarious surfactants (anionic sodium dodecyl sulfate, SDS, cationic dodecyltrimethylarnmonium bromide, DTAB, and zwitterionic cocoamidopropylbetaine, CAPB) on the activity of the chicken egg lysozyme is investigated. Lysis of Gram-positive bacteria by the enzyme was carried out at pH 7.2 and ionic strength of 0.15 M. It was found that at low SDS and DTAB concentrations (less than 1 x 10(-5) M) the bacteriolytic activity increases by 30-140%. At higher concentrations (1 x 10(-5) - 1 x 10(4) M) the activity returns to the level observed in the absence of the surfactants. The elevated activity correlated with the formation of hydrophobic lysozyme-surfactant complexes. Introduction of CAPB at concentrations above 1 x 10(-5) M sig, nificantly diminished the bacteriolytic activity due to CAPB induced aggregation of lysozyme.

  13. Study on the interaction between cinnamic acid and lysozyme

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Mei; Chen, Jian; Zhou, Qiu-Hua; Shi, Yue-Qin; Wang, Yan-Qing

    2011-02-01

    The interaction between lysozyme and cinnamic acid was investigated systematically by ultraviolet-vis absorbance, circular dichroism, fluorescence, synchronous fluorescence, and three-dimensional fluorescence spectra techniques at pH 7.40. The binding constants, quenching mechanism, and the number of binding sites were determined by the quenching of lysozyme fluorescence in presence of cinnamic acid. The results showed that the fluorescence quenching of lysozyme by cinnamic acid was a result of the formation of cinnamic acid-lysozyme complex. The hydrophobic and electrostatic interactions played major roles in stabilizing the complex; the distance r between donor and acceptor was obtained to be 2.07 nm according to Förster's theory; the effect of cinnamic acid on the conformation of lysozyme was analyzed using synchronous fluorescence, circular dichroism and three-dimensional fluorescence spectra.

  14. Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Jiwoo; Ku, Sae-Kwang; Lee, Suyeon

    Lysozyme, found in relatively high concentration in blood, saliva, tears, and milk, protects us from the ever-present danger of bacterial infection. Previous studies have reported proinflammatory responses of endothelial cells to the release of polyphosphate(PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of lysozyme and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behavior of human neutrophils, and vascular permeability were determined in PolyP-activated HUVECs and mice. Lysozyme suppressed the PolyP-mediated vascular barrier permeability, upregulation of inflammatory biomarkers, adhesion/migration of leukocytes, and activation and/ormore » production of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, lysozyme demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of lysozyme on various systemic inflammatory diseases, such as sepsis or septic shock. -- Highlights: •PolyP is shown to be an important mediator of vascular inflammation. •Lysozyme inhibited PolyP-mediated hyperpermeability. •Lysozyme inhibited PolyP-mediated septic response. •Lysozyme reduced PolyP-induced septic mortality.« less

  15. Modified lysozymes as novel broad spectrum natural antimicrobial agents in foods.

    PubMed

    Aminlari, Ladan; Hashemi, Marjan Mohammadi; Aminlari, Mahmoud

    2014-06-01

    In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram-positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram-positive and Gram-negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram-negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry. The subject described in this review article can lead to the development of methods to produce new broad-spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which

  16. The use of lysozyme modified with fluorescein for the detection of Gram-positive bacteria.

    PubMed

    Arabski, Michał; Konieczna, Iwona; Tusińska, Ewa; Wąsik, Sławomir; Relich, Inga; Zając, Krzysztof; Kamiński, Zbigniew J; Kaca, Wiesław

    2015-01-01

    Lysozyme (1,4-β-N-acetylmuramidase) is commonly applied in the food, medical, and pharmaceutical industries. In this study, we tested a novel application of fluorescein-modified lysozyme (using carboxyfluorescein with a triazine-based coupling reagent) as a new tool for the detection of Gram-positive soil bacteria. The results, obtained by cultivation methods, fluorescence analysis, and laser interferometry, showed that, after optimization, fluorescein-modified lysozyme could be used to evaluate the prevalence of Gram-positive bacteria essential in bioremediation of soils with low pH, such as those degraded by sulfur. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. CRTAM determines the CD4+ cytotoxic T lymphocyte lineage

    PubMed Central

    Takeuchi, Arata; Badr, Mohamed El Sherif Gadelhaq; Miyauchi, Kosuke; Ishihara, Chitose; Onishi, Reiko; Guo, Zijin; Sasaki, Yoshiteru; Ike, Hiroshi; Takumi, Akiko; Tsuji, Noriko M.; Murakami, Yoshinori; Katakai, Tomoya; Kubo, Masato

    2016-01-01

    Naive T cells differentiate into various effector T cells, including CD4+ helper T cell subsets and CD8+ cytotoxic T cells (CTL). Although cytotoxic CD4+ T cells (CD4+CTL) also develop from naive T cells, the mechanism of development is elusive. We found that a small fraction of CD4+ T cells that express class I–restricted T cell–associated molecule (CRTAM) upon activation possesses the characteristics of both CD4+ and CD8+ T cells. CRTAM+ CD4+ T cells secrete IFN-γ, express CTL-related genes, such as eomesodermin (Eomes), Granzyme B, and perforin, after cultivation, and exhibit cytotoxic function, suggesting that CRTAM+ T cells are the precursor of CD4+CTL. Indeed, ectopic expression of CRTAM in T cells induced the production of IFN-γ, expression of CTL-related genes, and cytotoxic activity. The induction of CD4+CTL and IFN-γ production requires CRTAM-mediated intracellular signaling. CRTAM+ T cells traffic to mucosal tissues and inflammatory sites and developed into CD4+CTL, which are involved in mediating protection against infection as well as inducing inflammatory response, depending on the circumstances, through IFN-γ secretion and cytotoxic activity. These results reveal that CRTAM is critical to instruct the differentiation of CD4+CTL through the induction of Eomes and CTL-related gene. PMID:26694968

  18. The Effects of Thermal History on Nucleation of Tetragonal Lysozyme Crystals, or Hot Protein and Cold Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael; Judge, Russell; Pusey, Marc

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.2 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubilities are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to addition of precipitant solution. Warming a lysozyme solution above the phase transition point, then cooling it back below this point, has been shown to affect the subsequent nucleation rate, as determined by the numbers and size of crystals formed, but not the growth rate for the tetragonal crystal form . We have now measured the kinetics of this process and investigated its reversibility. The transition effects are progressive with temperature, having a half time of about 1 hour at 37C at pH 4.8. After holding a lysozyme solution at 37C (prior to addition of precipitant) for 16 hours, then cooling it back to 4C no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. Putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. This differential behaviour may be exploited to elucidate how and where flow affects the lysozyme crystal growth process. The presentation will focus on the results of these and ongoing studies in this area.

  19. Simultaneous Knockout of CXCR4 and CCR5 Genes in CD4+ T Cells via CRISPR/Cas9 Confers Resistance to Both X4- and R5-Tropic Human Immunodeficiency Virus Type 1 Infection.

    PubMed

    Yu, Songlin; Yao, Yongchao; Xiao, Hongkui; Li, Jiaojiao; Liu, Quan; Yang, Yijun; Adah, Dickson; Lu, Junnan; Zhao, Siting; Qin, Li; Chen, Xiaoping

    2018-01-01

    Previous research has proven that disruption of either the CCR5 or the CXCR4 gene confers resistance to R5-tropic or X4-tropic human immunodeficiency virus type 1 (HIV-1) infection, respectively. However, the urgent need to ablate both of the co-receptors in individual post-thymic CD4+ T cells for dual protection remains. This study ablated the CCR5 and CXCR4 genes in human CD4+ cell lines and primary CD4+ T cells simultaneously using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, a well-developed, highly efficient genetic engineering tool. The efficiency of gene modification is as high as 55% for CCR5 and 36% for CXCR4 in CD4+ cell lines through infection of a single lentiviral vector (LV-X4R5), which were markedly protected from both HIV-1 NL4-3 (X4-using strain) and HIV-1 YU-2 (R5-using strain) infection. Importantly, approximately 9% of the modified GHOST (3) CXCR4+CCR5+ cells harbor four bi-allelic gene disruptions in both the CXCR4 and CCR5 loci. Moreover, co-delivery of two single-guide RNAs loaded with Cas9: ribonucleoprotein (sgX4&R5 Cas9RNP) disrupted >12% of CCR5 and 10% of CXCR4 in primary human CD4+ T cells, which were rendered resistant to HIV-1 NL4-3 and HIV-1 YU-2 in vitro. Further, the modified cells do not show discernible mutagenesis in top-ranked off-target genes by the Surveyor assay and Sanger sequencing analysis. The results demonstrate the safety and efficacy of CRISPR/Cas9 in multiplex gene modification on peripherally circulating CD4+ T cells, which may promote a functional cure for HIV-1 infection.

  20. Phage T4 endonuclease SegD that is similar to group I intron endonucleases does not initiate homing of its own gene.

    PubMed

    Sokolov, Andrey S; Latypov, Oleg R; Kolosov, Peter M; Shlyapnikov, Michael G; Bezlepkina, Tamara A; Kholod, Natalia S; Kadyrov, Farid A; Granovsky, Igor E

    2018-02-01

    Homing endonucleases are a group of site-specific endonucleases that initiate homing, a nonreciprocal transfer of its own gene into a new allele lacking this gene. This work describes a novel phage T4 endonuclease, SegD, which is homologous to the GIY-YIG family of homing endonucleases. Like other T4 homing endonucleases SegD recognizes an extended, 16bp long, site, cleaves it asymmetrically to form 3'-protruding ends and digests both unmodified DNA and modified T-even phage DNA with similar efficiencies. Surprisingly, we revealed that SegD cleavage site was identical in the genomes of segD - and segD + phages. We found that segD gene was expressed during the T4 developmental cycle. Nevertheless, endonuclease SegD was not able to initiate homing of its own gene as well as genetic recombination between phages in its site inserted into the rII locus. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Parallel tempering Monte Carlo simulations of lysozyme orientation on charged surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Yun; Zhou, Jian; Jiang, Shaoyi

    2010-02-01

    In this work, the parallel tempering Monte Carlo (PTMC) algorithm is applied to accurately and efficiently identify the global-minimum-energy orientation of a protein adsorbed on a surface in a single simulation. When applying the PTMC method to simulate lysozyme orientation on charged surfaces, it is found that lysozyme could easily be adsorbed on negatively charged surfaces with "side-on" and "back-on" orientations. When driven by dominant electrostatic interactions, lysozyme tends to be adsorbed on negatively charged surfaces with the side-on orientation for which the active site of lysozyme faces sideways. The side-on orientation agrees well with the experimental results where the adsorbed orientation of lysozyme is determined by electrostatic interactions. As the contribution from van der Waals interactions gradually dominates, the back-on orientation becomes the preferred one. For this orientation, the active site of lysozyme faces outward, which conforms to the experimental results where the orientation of adsorbed lysozyme is co-determined by electrostatic interactions and van der Waals interactions. It is also found that despite of its net positive charge, lysozyme could be adsorbed on positively charged surfaces with both "end-on" and back-on orientations owing to the nonuniform charge distribution over lysozyme surface and the screening effect from ions in solution. The PTMC simulation method provides a way to determine the preferred orientation of proteins on surfaces for biosensor and biomaterial applications.

  2. Lysis of grouped and ungrouped streptococci by lysozyme.

    PubMed

    Coleman, S E; van de Rijn, I; Bleiweis, A S

    1970-11-01

    Thirty strains of streptococci were tested for lysis with lysozyme, and 29 of these could be lysed by the following method: (i) suspension of the cells to a Klett reading of 200 units (no. 42 filter) in 0.01 m tris(hydroxymethyl)aminomethane buffer, pH 8.2, after washing twice with the buffer; (ii) addition of lysozyme to a final concentration of 250 mug/ml with incubation for 60 min at 37 C; (iii) addition of sodium lauryl sulfate (SLS) to a final concentration of 0.2% and incubation up to an additional 15 min at 37 C. Significant lysis was obtained only after the addition of SLS. (Strains of groups A, E, and G were treated with trypsin at a concentration of 200 mug/ml for 2 hr at 37 C before exposure to lysozyme.) These parameters for optimal lysis of streptococci by lysozyme were established by testing the group D Streptococcus faecalis strain 31 which lyses readily with lysozyme and the group H strain Challis which is less susceptible to the action of the enzyme. Viability of S. faecalis decreased 96% after 3 min of exposure to 250 mug of lysozyme per ml, whereas the more resistant strain Challis retained 27% of the initial viability after the same period. After 60 min, there was almost total loss of viability in each case. Variations of three methods of lysing streptococci with lysozyme were compared with respect to the decrease in turbidity and the release of protein and deoxyribonucleic acid (DNA) effected by each variation. The method presented in this paper allowed the greatest release of these cytoplasmic constituents from S. faecalis and strain Challis. Transformation experiments using DNA obtained from strain Challis (streptomycinresistant) by this method showed that the DNA released is biologically active.

  3. Influences of animal mucins on lysozyme activity in solution and on hydroxyapatite surfaces.

    PubMed

    Park, Won-Kyu; Chung, Jin-Woo; Kim, Young-Ku; Chung, Sung-Chang; Kho, Hong-Seop

    2006-10-01

    The purpose of this study was to investigate the influence of animal mucins on lysozyme activity in solution and on the surface of hydroxyapatite (HA) beads. The effects of animal mucins on lysozyme activity in solution were examined by incubating porcine gastric mucin (PGM) or bovine submaxillary mucin (BSM) with hen egg-white lysozyme (HEWL) or salivary samples. HA-immobilised animal mucins or lysozyme were used to determine the influence of animal mucins on lysozyme activity on HA surfaces. Lysozyme activity was determined by turbidity measurement of a Micrococcus lysodeikticus substrate suspension. Protein concentration was determined by ninhydrin assay. PGM inhibited the activity of HEWL and salivary lysozyme in solution. The amount of inhibition was dependent on mucin concentration, incubation time and temperature, and the structural integrity of the mucin. The inhibition of salivary lysozyme activity by PGM was greater in submandibular/sublingual saliva than in parotid saliva. The inhibition of lysozyme activity by PGM was markedly dependent on pH. However, BSM did not inhibit the in-solution lysozyme activities of HEWL and clarified saliva. Both PGM and BSM bound to HA surfaces, and HA-adsorbed animal mucins increased the subsequent adsorption of lysozyme. When HA beads were exposed to a mixture of HEWL and PGM or BSM, lysozyme activity on the HA surfaces was significantly increased. The results suggest that animal mucins affect lysozyme activity, and the effects are different on HA surfaces compared with in solution. Further research is needed to determine the effect of animal mucins on lysozyme activity in vivo.

  4. Steps wandering on the lysozyme and KDP crystals during growth in solution

    NASA Astrophysics Data System (ADS)

    Rashkovich, L. N.; Chernevich, T. G.; Gvozdev, N. V.; Shustin, O. A.; Yaminsky, I. V.

    2001-10-01

    We have applied atomic force microscopy for the study in solution of time evolution of step roughness on the crystal faces with high (pottasium dihydrophosphate: KDP) and low (lysozyme) density of kinks. It was found that the roughness increases with time revealing the time dependence as t1/4. Step velocity does not depend upon distance between steps, that is why the experimental data were interpreted on the basis of Voronkov theory, which assume, that the attachment and detachment of building units in the kinks is major limitation for crystal growth. In the frame of this theoretical model the calculation of material parameters is performed.

  5. Effects of single-walled carbon nanotubes on lysozyme gelation.

    PubMed

    Tardani, Franco; La Mesa, Camillo

    2014-09-01

    The possibility to disperse carbon nanotubes in biocompatible matrices has got substantial interest from the scientific community. Along this research line, the inclusion of single walled carbon nanotubes in lysozyme-based hydrogels was investigated. Experiments were performed at different nanotube/lysozyme weight ratios. Carbon nanotubes were dispersed in protein solutions, in conditions suitable for thermal gelation. The state of the dispersions was determined before and after thermal treatment. Rheology, dynamic light scattering and different microscopies investigated the effect that carbon nanotubes exert on gelation. The gelation kinetics and changes in gelation temperature were determined. The effect of carbon and lysozyme content on the gel properties was, therefore, determined. At fixed lysozyme content, moderate amounts of carbon nanotubes do not disturb the properties of hydrogel composites. At moderately high volume fractions in carbon nanotubes, the gels become continuous in both lysozyme and nanotubes. This is because percolating networks are presumably formed. Support to the above statements comes by rheology. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effect of Freezing Conditions on Distances and Their Distributions Derived from Double Electron Electron Resonance (DEER): A Study of Doubly-Spin-Labeled T4 Lysozyme

    PubMed Central

    Georgieva, Elka R.; Roy, Aritro S.; Grigoryants, Vladimir M.; Borbat, Petr P.; Earle, Keith A.; Scholes, Charles P.; Freed, Jack H.

    2012-01-01

    Pulsed dipolar ESR spectroscopy, DEER and DQC, require frozen samples. An important issue in the biological application of this technique is how the freezing rate and concentration of cryoprotectant could possibly affect the conformation of biomacromolecule and/or spin-label. We studied in detail the effect of these experimental variables on the distance distributions obtained by DEER from a series of doubly spin-labeled T4 lysozyme mutants. We found that the rate of sample freezing affects mainly the ensemble of spin-label rotamers, but the distance maxima remain essentially unchanged. This suggests that proteins frozen in a regular manner in liquid nitrogen faithfully maintain the distance-dependent structural properties in solution. We compared the results from rapidly freeze-quenched (≤100 μs) samples to those from commonly shock-frozen (slow freeze, 1s or longer) samples. For all the mutants studied we obtained inter-spin distance distributions, which were broader for rapidly frozen samples than for slowly frozen ones. We infer that rapid freezing trapped a larger ensemble of spin label rotamers; whereas, on the time-scale of slower freezing the protein and spin-label achieve a population showing fewer low-energy conformers. We used glycerol as a cryoprotectant in concentrations of 10% and 30% by weight. With 10% glycerol and slow freezing, we observed an increased slope of background signals, which in DEER is related to increased local spin concentration, in this case due to insufficient solvent vitrification, and therefore protein aggregation. This effect was considerably suppressed in slowly frozen samples containing 30% glycerol and rapidly frozen samples containing 10% glycerol. The assignment of bimodal distributions to tether rotamers as opposed to protein conformations is aided by comparing results using MTSL and 4-Bromo MTSL spin-labels. The latter usually produce narrower distance distributions. PMID:22341208

  7. Stability of Lysozyme in Aqueous Extremolyte Solutions during Heat Shock and Accelerated Thermal Conditions

    PubMed Central

    van Streun, Erwin L. P.; Frijlink, Henderik W.; Hinrichs, Wouter L. J.

    2014-01-01

    The purpose of this study was to investigate the stability of lysozyme in aqueous solutions in the presence of various extremolytes (betaine, hydroxyectoine, trehalose, ectoine, and firoin) under different stress conditions. The stability of lysozyme was determined by Nile red Fluorescence Spectroscopy and a bioactivity assay. During heat shock (10 min at 70°C), betaine, trehalose, ectoin and firoin protected lysozyme against inactivation while hydroxyectoine, did not have a significant effect. During accelerated thermal conditions (4 weeks at 55°C), firoin also acted as a stabilizer. In contrast, betaine, hydroxyectoine, trehalose and ectoine destabilized lysozyme under this condition. These findings surprisingly indicate that some extremolytes can stabilize a protein under certain stress conditions but destabilize the same protein under other stress conditions. Therefore it is suggested that for the screening extremolytes to be used for protein stabilization, an appropriate storage conditions should also be taken into account. PMID:24465983

  8. Stability of lysozyme in aqueous extremolyte solutions during heat shock and accelerated thermal conditions.

    PubMed

    Avanti, Christina; Saluja, Vinay; van Streun, Erwin L P; Frijlink, Henderik W; Hinrichs, Wouter L J

    2014-01-01

    The purpose of this study was to investigate the stability of lysozyme in aqueous solutions in the presence of various extremolytes (betaine, hydroxyectoine, trehalose, ectoine, and firoin) under different stress conditions. The stability of lysozyme was determined by Nile red Fluorescence Spectroscopy and a bioactivity assay. During heat shock (10 min at 70°C), betaine, trehalose, ectoin and firoin protected lysozyme against inactivation while hydroxyectoine, did not have a significant effect. During accelerated thermal conditions (4 weeks at 55°C), firoin also acted as a stabilizer. In contrast, betaine, hydroxyectoine, trehalose and ectoine destabilized lysozyme under this condition. These findings surprisingly indicate that some extremolytes can stabilize a protein under certain stress conditions but destabilize the same protein under other stress conditions. Therefore it is suggested that for the screening extremolytes to be used for protein stabilization, an appropriate storage conditions should also be taken into account.

  9. Cavity as a Source of Conformational Fluctuation and High-Energy State: High-Pressure NMR Study of a Cavity-Enlarged Mutant of T4Lysozyme

    PubMed Central

    Maeno, Akihiro; Sindhikara, Daniel; Hirata, Fumio; Otten, Renee; Dahlquist, Frederick W.; Yokoyama, Shigeyuki; Akasaka, Kazuyuki; Mulder, Frans A.A.; Kitahara, Ryo

    2015-01-01

    Although the structure, function, conformational dynamics, and controlled thermodynamics of proteins are manifested by their corresponding amino acid sequences, the natural rules for molecular design and their corresponding interplay remain obscure. In this study, we focused on the role of internal cavities of proteins in conformational dynamics. We investigated the pressure-induced responses from the cavity-enlarged L99A mutant of T4 lysozyme, using high-pressure NMR spectroscopy. The signal intensities of the methyl groups in the 1H/13C heteronuclear single quantum correlation spectra, particularly those around the enlarged cavity, decreased with the increasing pressure, and disappeared at 200 MPa, without the appearance of new resonances, thus indicating the presence of heterogeneous conformations around the cavity within the ground state ensemble. Above 200 MPa, the signal intensities of >20 methyl groups gradually decreased with the increasing pressure, without the appearance of new resonances. Interestingly, these residues closely matched those sensing a large conformational change between the ground- and high-energy states, at atmospheric pressure. 13C and 1H NMR line-shape simulations showed that the pressure-induced loss in the peak intensity could be explained by the increase in the high-energy state population. In this high-energy state, the aromatic side chain of F114 gets flipped into the enlarged cavity. The accommodation of the phenylalanine ring into the efficiently packed cavity may decrease the partial molar volume of the high-energy state, relative to the ground state. We suggest that the enlarged cavity is involved in the conformational transition to high-energy states and in the volume fluctuation of the ground state. PMID:25564860

  10. Processing of Archaebacterial Intron-Containing tRNA Gene Transcripts

    DTIC Science & Technology

    1988-07-27

    number) The overall goal of this project is to develop an understanding of tRNA gene structure and transcript processing in the halophilic Archaebacteria...containing precursor tRNAs in the halophilic Archaebecteria suggest that tRNATr p may be the only interrupted tR?4A gene in these organisms...1 August 1986 RESEARCH OBJECTIVE: To determine the mechanism of tRNA intron processing in the halophilic archaebacteria; characterize the enzyme

  11. Regenerated cellulose fiber and film immobilized with lysozyme

    USDA-ARS?s Scientific Manuscript database

    The present work reports an initial engineering approach for fabricating lysozyme-bound regenerated cellulose fiber and film. Glycine-esterified cotton was dissolved in an ionic liquid solvent 1–Butyl–3–methylimidazolium Chloride (BMIMCl) in which lysozyme was activated and covalently attached to c...

  12. Lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology in nursery pigs

    USDA-ARS?s Scientific Manuscript database

    Lysozyme is a 1,4-ß-N-acetylmuramidase that has antimicrobial properties. The objective of this experiment was to determine if lysozyme in nursery diets improved growth performance and gastrointestinal health of pigs weaned from the sow at 24 d of age. Two replicates of 96 pigs (192 total 96 males,...

  13. Lysozyme as an alternative to antibiotics improves performance in nursery pigs during an indirect immune challenge

    USDA-ARS?s Scientific Manuscript database

    Lysozyme is a 1,4-ß-N-acetylmuramidase that has antimicrobial properties. The objective of this study was to determine the effect of lysozyme and antibiotics on growth performance and immune response during an indirect immune challenge. Two replicates of 600 pigs each were weaned from the sow at 2...

  14. [Fecal sIgS and lysozyme excretion in breast feeding and formula feeding].

    PubMed

    Eschenburg, G; Heine, W; Peters, E

    1990-05-01

    The bioavailability of sIgA and lysozyme from human milk was investigated in a total of 41 infants by radial immunodiffusion and by the Micrococcus lysodeicticus method, respectively. In four different pools of human milk used for balance studies the sIgA concentrations ranged between 2,200 and 17,850 mg/l. The lysozyme concentration varied from 64.5 to 283.5 mg/l. On human milk feeding the excretion of sIgA in 19 infants was 3,200 (0-8,200) mg per litre and 9.7 (0-131) mg lysozyme per litre, respectively. Corresponding values on formula feeding in 22 infants were 1030 (0-6400) and 2.6 (0-9) mg/l. Fecal sIgA excretion was significantly higher on human milk than on formula feeding. Balances of sIgA and lysozyme intake and excretion as performed in 9 infants revealed a less than 1% fecal excretion of both the protective substances. In vitro digestion of raw human milk with pepsin at pH 2 and 3 resulted in a rapid disappearance of immunologically reactive sIgA within 30 minutes after starting the incubation, while no changes in sIgA content were detectable at pH 4. Lysozyme proved to be resistant against peptic digestion. Tryptic digestion at pH 8 did not result in a decrease of human milk sIgA within 120 minutes of incubation at 37 degrees C while under analogous conditions lysozyme concentration approached to 0. These results point at the full bioavailability of both sIgA and lysozyme from human milk. The differing resistance of these protective substances against pepsin and trypsin is apparently adapted to physiological particularities of the digestive tract in early infancy.

  15. Protective properties of lysozyme on β-amyloid pathology: implications for Alzheimer disease.

    PubMed

    Helmfors, Linda; Boman, Andrea; Civitelli, Livia; Nath, Sangeeta; Sandin, Linnea; Janefjord, Camilla; McCann, Heather; Zetterberg, Henrik; Blennow, Kaj; Halliday, Glenda; Brorsson, Ann-Christin; Kågedal, Katarina

    2015-11-01

    The hallmarks of Alzheimer disease are amyloid-β plaques and neurofibrillary tangles accompanied by signs of neuroinflammation. Lysozyme is a major player in the innate immune system and has recently been shown to prevent the aggregation of amyloid-β1-40 in vitro. In this study we found that patients with Alzheimer disease have increased lysozyme levels in the cerebrospinal fluid and lysozyme co-localized with amyloid-β in plaques. In Drosophila neuronal co-expression of lysozyme and amyloid-β1-42 reduced the formation of soluble and insoluble amyloid-β species, prolonged survival and improved the activity of amyloid-β1-42 transgenic flies. This suggests that lysozyme levels rise in Alzheimer disease as a compensatory response to amyloid-β increases and aggregation. In support of this, in vitro aggregation assays revealed that lysozyme associates with amyloid-β1-42 and alters its aggregation pathway to counteract the formation of toxic amyloid-β species. Overall, these studies establish a protective role for lysozyme against amyloid-β associated toxicities and identify increased lysozyme in patients with Alzheimer disease. Therefore, lysozyme has potential as a new biomarker as well as a therapeutic target for Alzheimer disease. Copyright © 2015. Published by Elsevier Inc.

  16. Effects of Purification on the Crystallization of Lysozyme

    NASA Technical Reports Server (NTRS)

    Ewing, Felecia L.; Forsythe, Elizabeth L.; Van Der Woerd, Mark; Pusey, Marc L.

    1996-01-01

    We have additionally purified a commercial lysozyme preparation by cation exchange chromatography, followed by recrystallization. This material is 99.96% pure with respect to macromolecular impurities. At basic pH, the purified lysozyme gave only tetragonal crystals at 20 C. Protein used directly from the bottle, prepared by dialysis against distilled water, or which did not bind to the cation exchange column had considerably altered crystallization behavior. Lysozyme which did not bind to the cation exchange column was subsequently purified by size exclusion chromatography. This material gave predominately bundles of rod-shaped crystals with some small tetragonal crystals at lower pHs. The origin of the bundled rod habit was postulated to be a thermally dependent tetragonal- orthorhombic change in the protein structure. This was subsequently ruled out on the basis of crystallization behavior and growth rate experiments. This suggests that heterogeneous forms of lysozyme may be responsible. These results demonstrate three classes of impurities: (1) small molecules, which may be removed by dialysis; (2) macromolecules, which are removable by chromatographic techniques; and (3) heterogeneous forms of the protein, which can be removed in this case by cation exchange chromatography. Of these, heterogeneous forms of the lysozyme apparently have the greatest affect on its crystallization behavior.

  17. Analysis of cytotoxic T lymphocyte associated antigen 4 gene polymorphisms in patients with ulcerative colitis.

    PubMed

    Lankarani, Kamran B; Karbasi, Ashraf; Kalantari, Tahereh; Yarmohammadi, Hooman; Saberi-Firoozi, Mehdi; Alizadeh-Naeeni, Mahvash; Taghavi, Ali R; Fattahi, Mahammad R; Ghaderi, Abbas

    2006-02-01

    Ulcerative colitis (UC) is a multifactorial disease associated with dysregulated immunity. Recently, cytotoxic T lymphocyte associated antigen 4 (CTLA-4) gene polymorphisms have been reported in association with several autoimmune diseases in several populations. In the present study, the possible implication of the CTLA-4 gene as a risk factor for UC in the Iranian population was investigated. One hundred UC patients and 100 healthy subjects were studied. CTLA-4 exon 1 position 49 (A/G: codon 17: Thr/Ala) polymorphisms were investigated by polymerase chain reaction single strand confirmation polymorphism method. Four of the patients and one of the healthy controls were excluded from the study because of incomplete DNA extraction. The allele frequencies of A and G in 96 patients (A: 66.1%; G: 33.9%) were not significantly different from the 99 control subjects (A: 63.1%; G: 36.9%, P > 0.05). No significant differences in the distribution of genotype frequencies were observed between A + 49G gene polymorphisms and UC in the Iranian population (P > 0.05). CTLA-4 polymorphism is not associated with UC in the Iranian population.

  18. Insights into Kinetics of Agitation-Induced Aggregation of Hen Lysozyme under Heat and Acidic Conditions from Various Spectroscopic Methods

    PubMed Central

    Chaari, Ali; Fahy, Christine; Chevillot-Biraud, Alexandre; Rholam, Mohamed

    2015-01-01

    Protein misfolding and amyloid formation are an underlying pathological hallmark in a number of prevalent diseases of protein aggregation ranging from Alzheimer’s and Parkinson’s diseases to systemic lysozyme amyloidosis. In this context, we have used complementary spectroscopic methods to undertake a systematic study of the self-assembly of hen egg-white lysozyme under agitation during a prolonged heating in acidic pH. The kinetics of lysozyme aggregation, monitored by Thioflavin T fluorescence, dynamic light scattering and the quenching of tryptophan fluorescence by acrylamide, is described by a sigmoid curve typical of a nucleation-dependent polymerization process. Nevertheless, we observe significant differences between the values deduced for the kinetic parameters (lag time and aggregation rate). The fibrillation process of lysozyme, as assessed by the attenuated total reflection-Fourier transform infrared spectroscopy, is accompanied by an increase in the β-sheet conformation at the expense of the α-helical conformation but the time-dependent variation of the content of these secondary structures does not evolve as a gradual transition. Moreover, the tryptophan fluorescence-monitored kinetics of lysozyme aggregation is described by three phases in which the temporal decrease of the tryptophan fluorescence quantum yield is of quasilinear nature. Finally, the generated lysozyme fibrils exhibit a typical amyloid morphology with various lengths (observed by atomic force microscopy) and contain exclusively the full-length protein (analyzed by highly performance liquid chromatography). Compared to the data obtained by other groups for the formation of lysozyme fibrils in acidic pH without agitation, this work provides new insights into the structural changes (local, secondary, oligomeric/fibrillar structures) undergone by the lysozyme during the agitation-induced formation of fibrils. PMID:26571264

  19. Impact of lysozyme on stability mechanism of nanozirconia aqueous suspension

    NASA Astrophysics Data System (ADS)

    Szewczuk-Karpisz, Katarzyna; Wiśniewska, Małgorzata

    2016-08-01

    The effect of lysozyme (LSZ) presence on the zirconium(IV) oxide (ZrO2) aqueous suspension stability was examined. The applied zirconia contains mesopores (with a diameter about 30 nm) and its mean particle size is about 100 nm. To determine the stability mechanism of ZrO2 suspension in the biopolymer presence, the adsorption and electrokinetic (surface charge density and zeta potential) measurements were performed in the pH range 3-10. The lysozyme adsorption on the nanozirconia surface proceeds mainly through electrostatic forces. Under solid-polymer repulsion conditions, there is no adsorption of lysozyme (pH < 6, CNaCl 0.01 mol/dm3). The increase of solution ionic strength to 0.2 mol/dm3 causes screening of unfavourable forces and biopolymer adsorption becomes possible. The LSZ addition to the ZrO2 suspension influences its stability. At pH 3, 4.6 and 7.6, slight improvement of the system stability was obtained. In turn, at pH 9 considerable destabilization of nanozirconia particles covered by polymeric layers occurs.

  20. Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins.

    PubMed

    Müller, Egbert; Josic, Djuro; Schröder, Tim; Moosmann, Anna

    2010-07-09

    Dynamic binding capacities and resolution of PEGylated lysozyme derivatives with varying molecular weights of poly (ethylene) glycol (PEG) with 5 kDa, 10 kDa and 30 kDa for HIC resins and columns are presented. To find the optimal range for the operating conditions, solubility studies were performed by high-throughput analyses in a 96-well plate format, and optimal salt concentrations and pH values were determined. The solubility of PEG-proteins was strongly influenced by the length of the PEG moiety. Large differences in the solubilities of PEGylated lysozymes in two different salts, ammonium sulfate and sodium chloride were found. Solubility of PEGylated lysozyme derivatives in ammonium sulfate decreases with increased length of attached PEG chains. In sodium chloride all PEGylated lysozyme derivatives are fully soluble in a concentration range between 0.1 mg protein/ml and 10 mg protein/ml. The binding capacities for PEGylated lysozyme to HIC resins are dependent on the salt type and molecular weight of the PEG polymer. In both salt solutions, ammonium sulfate and sodium chloride, the highest binding capacity of the resin was found for 5 kDa PEGylated lysozyme. For both native lysozyme and 30 kDa mono-PEGylated lysozyme the binding capacities were lower. In separation experiments on a TSKgel Butyl-NPR hydrophobic-interaction column with ammonium sulfate as mobile phase, the elution order was: native lysozyme, 5 kDa mono-PEGylated lysozyme and oligo-PEGylated lysozyme. This elution order was found to be reversed when sodium chloride was used. Furthermore, the resolution of the three mono-PEGylated forms was not possible with this column and ammonium sulfate as mobile phase. In 4 M sodium chloride a resolution of all PEGylated lysozyme forms was achieved. A tentative explanation for these phenomena can be the increased solvation of the PEG polymers in sodium chloride which changes the usual attractive hydrophobic forces in ammonium sulfate to more repulsive

  1. Molecular cloning, sequence analysis and phylogeny of first caudata g-type lysozyme in axolotl (Ambystoma mexicanum).

    PubMed

    Yu, Haining; Gao, Jiuxiang; Lu, Yiling; Guang, Huijuan; Cai, Shasha; Zhang, Songyan; Wang, Yipeng

    2013-11-01

    Lysozymes are key proteins that play important roles in innate immune defense in many animal phyla by breaking down the bacterial cell-walls. In this study, we report the molecular cloning, sequence analysis and phylogeny of the first caudate amphibian g-lysozyme: a full-length spleen cDNA library from axolotl (Ambystoma mexicanum). A goose-type (g-lysozyme) EST was identified and the full-length cDNA was obtained using RACE-PCR. The axolotl g-lysozyme sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 184 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein are 21523.0 Da and 4.37, respectively. Expression of g-lysozyme mRNA is predominantly found in skin, with lower levels in spleen, liver, muscle, and lung. Phylogenetic analysis revealed that caudate amphibian g-lysozyme had distinct evolution pattern for being juxtaposed with not only anura amphibian, but also with the fish, bird and mammal. Although the first complete cDNA sequence for caudate amphibian g-lysozyme is reported in the present study, clones encoding axolotl's other functional immune molecules in the full-length cDNA library will have to be further sequenced to gain insight into the fundamental aspects of antibacterial mechanisms in caudate.

  2. Location of Bromide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions have been shown to play a dominant role in the crystallization of chicken egg white lysozyme from salt solutions. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystal grown in bromide and chloride solutions. Five possible anion binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four of these sites corresponded to four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed.

  3. Locations of Bromide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions have been shown to play a dominant role in the crystallization of chicken egg-white lysozyme from salt solutions. Previous studies employing X-ray crystallography have found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystals grown in bromide and chloride solutions. Five possible anion-binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four further sites were found which corresponded to the four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion-binding sites in lysozyme remain unchanged even when different anions and different crystal forms of lysozyme are employed.

  4. New Late Gene, dar, Involved in DNA Replication of Bacteriophage T4 I. Isolation, Characterization, and Genetic Location.

    PubMed

    Wu, J R; Yeh, Y C

    1975-05-01

    Suppressors of gene 59-defective mutants were isolated by screening spontaneous, temperature-sensitive (ts) revertants of the amber mutant, amC5, in gene 59. Six ts revertants were isolated. No gene 59-defective ts recombinant was obtained by crossing each ts revertant with the wild type, T4D. However, suppressors of gene 59-defective mutants were obtained from two of these ts revertants. These suppressor mutants are referred to as dar (DNA arrested restoration). dar mutants specifically restored the abnormalities, both in DNA synthesis and burst size, caused by gene 59-defective mutants to normal levels. It is unlikely that dar mutants are nonsense suppressors since theý failed to suppress amber mutations in 11 other genes investigated. The genetic expression of dar is controlled by gene 55; therefore, dar is a late gene. The genetic location of dar has been mapped between genes 24 and 25, a region contiguous to late genes. dar appears to be another nonessential gene of T4 since burst sizes of dar were almost identical to those of the wild type. Mutations in dar did not affect genetic recombination and repair of UV-damaged DNA, but caused a sensitivity to hydroxyurea in progeny formation. The effect of the dar mutation on host DNA degradation cannot account for its hydroxyurea sensitivity. dar mutant alleles were recessive to the wild-type allele as judged by restoration of arrested DNA synthesis. The possible mechanisms for the suppression of defects in gene 59 are discussed.

  5. Complex coacervate core micelles with a lysozyme-modified corona.

    PubMed

    Danial, Maarten; Klok, Harm-Anton; Norde, Willem; Stuart, Martien A Cohen

    2007-07-17

    This paper describes the preparation, characterization, and enzymatic activity of complex coacervate core micelles (C3Ms) composed of poly(acrylic acid) (PAA) and poly(N-methyl-2-vinyl pyridinium iodide)-b-poly(ethylene oxide) (PQ2VP-PEO) to which the antibacterial enzyme lysozyme is end-attached. C3Ms were prepared by polyelectrolyte complex formation between PAA and mixtures containing different ratios of aldehyde and hydroxyl end-functionalized PQ2VP-PEO. This resulted in the formation of C3Ms containing 0-40% (w/w) of the aldehyde end-functionalized PQ2VP-PEO block copolymer (PQ2VP-PEO-CHO). Chemical conjugation of lysozyme was achieved via reductive amination of the aldehyde groups, which are exposed at the surface of the C3M, with the amine groups present in the side chains of the lysine residues of the protein. Dynamic and static light scattering indicated that the conjugation of lysozyme to C3Ms prepared using 10 and 20% (w/w) PQ2VP-PEO-CHO resulted in the formation of unimicellar particles. Multimicellar aggregates, in contrast, were obtained when lysozyme was conjugated to C3Ms prepared using 30 or 40% (w/w) PQ2VP-PEO-CHO. The enzymatic activity of the unimicellar lysozyme-C3M conjugates toward the hydrolysis of the bacterial substrate Micrococcus lysodeikticus was comparable to that of free lysozyme. For the multimicellar particles, in contrast, significantly reduced enzymatic rates of hydrolysis, altered circular dichroism, and red-shifted tryptophan fluorescence spectra were measured. These results are attributed to the occlusion of lysozyme in the interior of the multimicellar conjugates.

  6. Potential toxicity and affinity of triphenylmethane dye malachite green to lysozyme.

    PubMed

    Ding, Fei; Li, Xiu-Nan; Diao, Jian-Xiong; Sun, Ye; Zhang, Li; Ma, Lin; Yang, Xin-Ling; Zhang, Li; Sun, Ying

    2012-04-01

    Malachite green is a triphenylmethane dye that is used extensively in many industrial and aquacultural processes, generating environmental concerns and health problems to human being. In this contribution, the complexation between lysozyme and malachite green was verified by means of computer-aided molecular modeling, steady state and time-resolved fluorescence, and circular dichroism (CD) approaches. The precise binding patch of malachite green in lysozyme has been identified from molecular modeling and ANS displacement, Trp-62, Trp-63, and Trp-108 residues of lysozyme were earmarked to possess high-affinity for this dye, the principal forces in the lysozyme-malachite green adduct are hydrophobic and π-π interactions. Steady state fluorescence proclaimed the complex of malachite green with lysozyme yields quenching through static type, which substantiates time-resolved fluorescence measurements that lysozyme-malachite green conjugation formation has an affinity of 10(3)M(-1). Moreover, via molecular modeling and also CD data, we can safely arrive at a conclusion that the polypeptide chain of lysozyme partially destabilized upon complexation with malachite green. The data emerged here will help to further understand the toxicological action of malachite green in human body. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Gene fusions AHRR-NCOA2, NCOA2-ETV4, ETV4-AHRR, P4HA2-TBCK, and TBCK-P4HA2 resulting from the translocations t(5;8;17)(p15;q13;q21) and t(4;5)(q24;q31) in a soft tissue angiofibroma

    PubMed Central

    Panagopoulos, Ioannis; Gorunova, Ludmila; Viset, Trond; Heim, Sverre

    2016-01-01

    We present an angiofibroma of soft tissue with the karyotype 46,XY,t(4;5)(q24;q31),t(5;8;17)(p15;q13;q21) [8]/46,XY,t(1;14)(p31;q32)[2]/46,XY[3]. RNA-sequencing showed that the t(4;5)(q24;q31) resulted in recombination of the genes TBCK on 4q24 and P4HA2 on 5q31.1 with generation of an in-frame TBCK-P4HA2 and the reciprocal but out-of-frame P4HA2-TBCK fusion transcripts. The putative TBCK-P4HA2 protein would contain the kinase, the rhodanese-like domain, and the Tre-2/Bub2/Cdc16 (TBC) domains of TBCK together with the P4HA2 protein which is a component of the prolyl 4-hydroxylase. The t(5;8;17)(p15;q13;q21) three-way chromosomal translocation targeted AHRR (on 5p15), NCOA2 (on 8q13), and ETV4 (on 17q21) generating the in-frame fusions AHRR-NCOA2 and NCOA2-ETV4 as well as an out-of-frame ETV4-AHRR transcript. In the AHRR-NCOA2 protein, the C-terminal part of AHRR is replaced by the C-terminal part of NCOA2 which contains two activation domains. The NCOA2-ETV4 protein would contain the helix-loop-helix, PAS_9 and PAS_11, CITED domains, the SRC-1 domain of NCOA2 and the ETS DNA-binding domain of ETV4. No fusion gene corresponding to t(1;14)(p31;q32) was found. Our findings indicate that, in spite of the recurrence of AHRR-NCOA2 in angiofibroma of soft tissue, additional genetic events (or fusion genes) might be required for the development of this tumor. PMID:27633981

  8. Gene fusions AHRR-NCOA2, NCOA2-ETV4, ETV4-AHRR, P4HA2-TBCK, and TBCK-P4HA2 resulting from the translocations t(5;8;17)(p15;q13;q21) and t(4;5)(q24;q31) in a soft tissue angiofibroma.

    PubMed

    Panagopoulos, Ioannis; Gorunova, Ludmila; Viset, Trond; Heim, Sverre

    2016-11-01

    We present an angiofibroma of soft tissue with the karyotype 46,XY,t(4;5)(q24;q31),t(5;8;17)(p15;q13;q21)[8]/46,XY,t(1;14)(p31;q32)[2]/46,XY[3]. RNA‑sequencing showed that the t(4;5)(q24;q31) resulted in recombination of the genes TBCK on 4q24 and P4HA2 on 5q31.1 with generation of an in‑frame TBCK‑P4HA2 and the reciprocal but out‑of‑frame P4HA2‑TBCK fusion transcripts. The putative TBCK‑P4HA2 protein would contain the kinase, the rhodanese‑like domain, and the Tre‑2/Bub2/Cdc16 (TBC) domains of TBCK together with the P4HA2 protein which is a component of the prolyl 4‑hydroxylase. The t(5;8;17)(p15;q13;q21) three‑way chromosomal translocation targeted AHRR (on 5p15), NCOA2 (on 8q13), and ETV4 (on 17q21) generating the in‑frame fusions AHRR‑NCOA2 and NCOA2‑ETV4 as well as an out‑of‑frame ETV4‑AHRR transcript. In the AHRR‑NCOA2 protein, the C‑terminal part of AHRR is replaced by the C‑terminal part of NCOA2 which contains two activation domains. The NCOA2‑ETV4 protein would contain the helix‑loop‑helix, PAS_9 and PAS_11, CITED domains, the SRC‑1 domain of NCOA2 and the ETS DNA‑binding domain of ETV4. No fusion gene corresponding to t(1;14)(p31;q32) was found. Our findings indicate that, in spite of the recurrence of AHRR‑NCOA2 in angiofibroma of soft tissue, additional genetic events (or fusion genes) might be required for the development of this tumor.

  9. The Effect of Ethylene Glycol, Glycine Betaine, and Urea on Lysozyme Thermal Stability

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Leslie, Elizabeth J.; Nordstrom, Anna R.

    2010-01-01

    The four-week student project described in this article is an extension of protein thermal denaturation experiments to include effects of added cosolutes ethylene glycol, glycine betaine, and urea on the unfolding of lysozyme. The transition temperatures and van't Hoff enthalpies for unfolding are evaluated for six concentrations of each cosolute,…

  10. Binding and Inhibitory Effect of the Dyes Amaranth and Tartrazine on Amyloid Fibrillation in Lysozyme.

    PubMed

    Basu, Anirban; Suresh Kumar, Gopinatha

    2017-02-16

    Interaction of two food colorant dyes, amaranth and tartrazine, with lysozyme was studied employing multiple biophysical techniques. The dyes exhibited hypochromic changes in the presence of lysozyme. The intrinsic fluorescence of lysozyme was quenched by both dyes; amaranth was a more efficient quencher than tartrazine. The equilibrium constant of amaranth was higher than that of tartarzine. From FRET analysis, the binding distances for amaranth and tartrazine were calculated to be 4.51 and 3.93 nm, respectively. The binding was found to be dominated by non-polyelectrolytic forces. Both dyes induced alterations in the microenvironment surrounding the tryptophan and tyrosine residues of the protein, with the alterations being comparatively higher for the tryptophans than the tyrosines. The interaction caused significant loss in the helicity of lysozyme, the change being higher with amaranth. The binding of both dyes was exothermic. The binding of amaranth was enthalpy driven, while that of tartrazine was predominantly entropy driven. Amaranth delayed lysozyme fibrillation at 25 μM, while tartrazine had no effect even at 100 μM. Nevertheless, both dyes had a significant inhibitory effect on fibrillogenesis. The present study explores the potential antiamyloidogenic property of these azo dyes used as food colorants.

  11. Regulation of gene expression in autoimmune disease loci and the genetic basis of proliferation in CD4+ effector memory T cells.

    PubMed

    Hu, Xinli; Kim, Hyun; Raj, Towfique; Brennan, Patrick J; Trynka, Gosia; Teslovich, Nikola; Slowikowski, Kamil; Chen, Wei-Min; Onengut, Suna; Baecher-Allan, Clare; De Jager, Philip L; Rich, Stephen S; Stranger, Barbara E; Brenner, Michael B; Raychaudhuri, Soumya

    2014-06-01

    Genome-wide association studies (GWAS) and subsequent dense-genotyping of associated loci identified over a hundred single-nucleotide polymorphism (SNP) variants associated with the risk of rheumatoid arthritis (RA), type 1 diabetes (T1D), and celiac disease (CeD). Immunological and genetic studies suggest a role for CD4-positive effector memory T (CD+ TEM) cells in the pathogenesis of these diseases. To elucidate mechanisms of autoimmune disease alleles, we investigated molecular phenotypes in CD4+ effector memory T cells potentially affected by these variants. In a cohort of genotyped healthy individuals, we isolated high purity CD4+ TEM cells from peripheral blood, then assayed relative abundance, proliferation upon T cell receptor (TCR) stimulation, and the transcription of 215 genes within disease loci before and after stimulation. We identified 46 genes regulated by cis-acting expression quantitative trait loci (eQTL), the majority of which we detected in stimulated cells. Eleven of the 46 genes with eQTLs were previously undetected in peripheral blood mononuclear cells. Of 96 risk alleles of RA, T1D, and/or CeD in densely genotyped loci, eleven overlapped cis-eQTLs, of which five alleles completely explained the respective signals. A non-coding variant, rs389862A, increased proliferative response (p=4.75 × 10-8). In addition, baseline expression of seventeen genes in resting cells reliably predicted proliferative response after TCR stimulation. Strikingly, however, there was no evidence that risk alleles modulated CD4+ TEM abundance or proliferation. Our study underscores the power of examining molecular phenotypes in relevant cells and conditions for understanding pathogenic mechanisms of disease variants.

  12. Chitin-coated Celite as an affinity adsorbent for high-performance liquid chromatography of lysozyme.

    PubMed

    Yamada, H; Fukumura, T; Ito, Y; Imoto, T

    1985-04-01

    Preparation of chitin-coated Celite as an affinity adsorbent for high-performance liquid chromatography of lysozymes and its application to separation of N-bromosuccinimide-oxidized lysozymes are described. By pH gradient elution, two diastereomers of oxindolealanine-62-lysozyme, delta 1-acetoxytryptophan-62-lysozyme (intermediate product in the reaction in acetate buffer), and native lysozyme were all separated within 40 min.

  13. Cavity as a source of conformational fluctuation and high-energy state: high-pressure NMR study of a cavity-enlarged mutant of T4 lysozyme.

    PubMed

    Maeno, Akihiro; Sindhikara, Daniel; Hirata, Fumio; Otten, Renee; Dahlquist, Frederick W; Yokoyama, Shigeyuki; Akasaka, Kazuyuki; Mulder, Frans A A; Kitahara, Ryo

    2015-01-06

    Although the structure, function, conformational dynamics, and controlled thermodynamics of proteins are manifested by their corresponding amino acid sequences, the natural rules for molecular design and their corresponding interplay remain obscure. In this study, we focused on the role of internal cavities of proteins in conformational dynamics. We investigated the pressure-induced responses from the cavity-enlarged L99A mutant of T4 lysozyme, using high-pressure NMR spectroscopy. The signal intensities of the methyl groups in the (1)H/(13)C heteronuclear single quantum correlation spectra, particularly those around the enlarged cavity, decreased with the increasing pressure, and disappeared at 200 MPa, without the appearance of new resonances, thus indicating the presence of heterogeneous conformations around the cavity within the ground state ensemble. Above 200 MPa, the signal intensities of >20 methyl groups gradually decreased with the increasing pressure, without the appearance of new resonances. Interestingly, these residues closely matched those sensing a large conformational change between the ground- and high-energy states, at atmospheric pressure. (13)C and (1)H NMR line-shape simulations showed that the pressure-induced loss in the peak intensity could be explained by the increase in the high-energy state population. In this high-energy state, the aromatic side chain of F114 gets flipped into the enlarged cavity. The accommodation of the phenylalanine ring into the efficiently packed cavity may decrease the partial molar volume of the high-energy state, relative to the ground state. We suggest that the enlarged cavity is involved in the conformational transition to high-energy states and in the volume fluctuation of the ground state. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. The antibacterial protein lysozyme identified as the termite egg recognition pheromone.

    PubMed

    Matsuura, Kenji; Tamura, Takashi; Kobayashi, Norimasa; Yashiro, Toshihisa; Tatsumi, Shingo

    2007-08-29

    Social insects rely heavily on pheromone communication to maintain their sociality. Egg protection is one of the most fundamental social behaviours in social insects. The recent discovery of the termite-egg mimicking fungus 'termite-ball' and subsequent studies on termite egg protection behaviour have shown that termites can be manipulated by using the termite egg recognition pheromone (TERP), which strongly evokes the egg-carrying and -grooming behaviours of workers. Despite the great scientific and economic importance, TERP has not been identified because of practical difficulties. Herein we identified the antibacterial protein lysozyme as the TERP. We isolated the target protein using ion-exchange and hydrophobic interaction chromatography, and the MALDI-TOF MS analysis showed a molecular size of 14.5 kDa. We found that the TERP provided antibacterial activity against a gram-positive bacterium. Among the currently known antimicrobial proteins, the molecular size of 14.5 kDa limits the target to lysozyme. Termite lysozymes obtained from eggs and salivary glands, and even hen egg lysozyme, showed a strong termite egg recognition activity. Besides eggs themselves, workers also supply lysozyme to eggs through frequent egg-grooming, by which egg surfaces are coated with saliva containing lysozyme. Reverse transcript PCR analysis showed that mRNA of termite lysozyme was expressed in both salivary glands and eggs. Western blot analysis confirmed that lysozyme production begins in immature eggs in queen ovaries. This is the first identification of proteinaceous pheromone in social insects. Researchers have focused almost exclusively on hydrocarbons when searching for recognition pheromones in social insects. The present finding of a proteinaceous pheromone represents a major step forward in, and result in the broadening of, the search for recognition pheromones. This novel function of lysozyme as a termite pheromone illuminates the profound influence of pathogenic

  15. The Antibacterial Protein Lysozyme Identified as the Termite Egg Recognition Pheromone

    PubMed Central

    Matsuura, Kenji; Tamura, Takashi; Kobayashi, Norimasa; Yashiro, Toshihisa; Tatsumi, Shingo

    2007-01-01

    Social insects rely heavily on pheromone communication to maintain their sociality. Egg protection is one of the most fundamental social behaviours in social insects. The recent discovery of the termite-egg mimicking fungus ‘termite-ball’ and subsequent studies on termite egg protection behaviour have shown that termites can be manipulated by using the termite egg recognition pheromone (TERP), which strongly evokes the egg-carrying and -grooming behaviours of workers. Despite the great scientific and economic importance, TERP has not been identified because of practical difficulties. Herein we identified the antibacterial protein lysozyme as the TERP. We isolated the target protein using ion-exchange and hydrophobic interaction chromatography, and the MALDI-TOF MS analysis showed a molecular size of 14.5 kDa. We found that the TERP provided antibacterial activity against a gram-positive bacterium. Among the currently known antimicrobial proteins, the molecular size of 14.5 kDa limits the target to lysozyme. Termite lysozymes obtained from eggs and salivary glands, and even hen egg lysozyme, showed a strong termite egg recognition activity. Besides eggs themselves, workers also supply lysozyme to eggs through frequent egg-grooming, by which egg surfaces are coated with saliva containing lysozyme. Reverse transcript PCR analysis showed that mRNA of termite lysozyme was expressed in both salivary glands and eggs. Western blot analysis confirmed that lysozyme production begins in immature eggs in queen ovaries. This is the first identification of proteinaceous pheromone in social insects. Researchers have focused almost exclusively on hydrocarbons when searching for recognition pheromones in social insects. The present finding of a proteinaceous pheromone represents a major step forward in, and result in the broadening of, the search for recognition pheromones. This novel function of lysozyme as a termite pheromone illuminates the profound influence of pathogenic

  16. The Lysozyme from Insect (Manduca sexta) is a Cold-Adapted Enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotelo-Mundo,R.; Lopez-Zavala, A.; Garcia-Orozco, K.

    Enzymatic activity is dependent on temperature, although some proteins have evolved to retain activity at low temperatures at the expense of stability. Cold adapted enzymes are present in a variety of organisms and there is ample interest in their structure-function relationships. Lysozyme (E.C. 3.2.1.17) is one of the most studied enzymes due to its antibacterial activity against Gram positive bacteria and is also a cold adapted protein. In this work the characterization of lysozyme from the insect Manduca sexta and its activity at low temperatures is presented. Both M. sexta lysozymes natural and recombinant showed a higher content of {alpha}-helixmore » secondary structure compared to that of hen egg white lysozyme and a higher specific enzymatic activity in the range of 5-30 {sup o}C. These results together with measured thermodynamic activation parameters support the designation of M. sexta lysozyme as a cold adapted enzyme. Therefore, the insect recombinant lysozyme is feasible as a model for structure-function studies for cold-adapted proteins.« less

  17. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  18. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-10-20

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  19. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-11-03

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  20. The EWS–Oct-4 fusion gene encodes a transforming gene

    PubMed Central

    Lee, Jungwoon; Kim, Ja Young; Kang, In Young; Kim, Hye Kyoung; Han, Yong-Mahn; Kim, Jungho

    2007-01-01

    The t(6;22)(p21;q12) translocation associated with human bone and soft-tissue tumours results in a chimaeric molecule fusing the NTD (N-terminal domain) of the EWS (Ewing's sarcoma) gene to the CTD (C-terminal domain) of the Oct-4 (octamer-4) embryonic gene. Since the N-terminal domains of EWS and Oct-4 are structurally different, in the present study we have assessed the functional consequences of the EWS–Oct-4 fusion. We find that this chimaeric gene encodes a nuclear protein which binds DNA with the same sequence specificity as the parental Oct-4 protein. Comparison of the transactivation properties of EWS–Oct-4 and Oct-4 indicates that the former has higher transactivation activity for a known target reporter gene containing Oct-4 binding. Deletion analysis of the functional domains of EWS–Oct-4 indicates that the EWS (NTD), the POU domain and the CTD of EWS–Oct-4 are necessary for full transactivation potential. EWS–Oct-4 induced the expression of fgf-4 (fibroblast growth factor 4) and nanog, which are potent mitogens as well as Oct-4 downstream target genes whose promoters contain potential Oct-4-binding sites. Finally, ectopic expression of EWS–Oct-4 in Oct-4-null ZHBTc4 ES (embryonic stem) cells resulted in increased tumorigenic growth potential in nude mice. These results suggest that the oncogenic effect of the t(6;22) translocation is due to the EWS–Oct-4 chimaeric protein and that fusion of the EWS NTD to the Oct-4 DNA-binding domain produces a transforming chimaeric product. PMID:17564582

  1. Molecular Dynamics Analysis of Lysozyme Protein in Ethanol- Water Mixed Solvent

    DTIC Science & Technology

    2012-01-01

    molecular dynamics simulations of solvent effect on lysozyme protein, using water, ethanol, and different concentrations of water-ethanol mixtures as...understood. This work focuses on detailed molecular dynamics simulations of solvent effect on lysozyme protein, using water, ethanol, and different...using GROMACS molecular dynamics simulation (MD) code. Compared to water environment, the lysozyme structure showed remarkable changes in water

  2. Cytotoxic T lymphocyte antigen 4 decreases humoral and cellular immunity by adenovirus to enhance target GFP gene transfer in C57BL/6 mice.

    PubMed

    Bai, Dou; Zhu, Wei; Zhang, Yu; Long, Ling; Zhu, Naishuo

    2015-01-01

    Adenoviruses (Ad) are once potential and promising vectors for gene delivery, but the immunogenicity attenuates its transfer efficiency. Cytotoxic T lymphocyte antigen 4 (CTLA-4) can inhibit T cell immunity. Thus, we aimed to study the effect of CTLA-4 in the process of Ad-mediated gene transfer. The C57BL/6 mice were injected by Ad vectors at twice, and CTLA-4 was administrated after the first Ad injection. Then, the CD3(+)CD4(+) T cells and circulating levels of IL-2, IL-4, and anti-Ad IgG were decreased by CTLA-4, while Ad generated immune responses. The green fluorescence protein (GFP) expressions of tissues were enhanced by CTLA-4 till injection of Ad at twice. Our results indicate that CTLA-4 can inhibit humoral and cellular immunity by adenovirus generation to enhance GFP delivery, and provide a potential way to assist in Ad-mediated gene transfer.

  3. Folding Behaviors of Protein (Lysozyme) Confined in Polyelectrolyte Complex Micelle.

    PubMed

    Wu, Fu-Gen; Jiang, Yao-Wen; Chen, Zhan; Yu, Zhi-Wu

    2016-04-19

    The folding/unfolding behavior of proteins (enzymes) in confined space is important for their properties and functions, but such a behavior remains largely unexplored. In this article, we reported our finding that lysozyme and a double hydrophilic block copolymer, methoxypoly(ethylene glycol)5K-block-poly(l-aspartic acid sodium salt)10 (mPEG(5K)-b-PLD10), can form a polyelectrolyte complex micelle with a particle size of ∼30 nm, as verified by dynamic light scattering and transmission electron microscopy. The unfolding and refolding behaviors of lysozyme molecules in the presence of the copolymer were studied by microcalorimetry and circular dichroism spectroscopy. Upon complex formation with mPEG(5K)-b-PLD10, lysozyme changed from its initial native state to a new partially unfolded state. Compared with its native state, this copolymer-complexed new folding state of lysozyme has different secondary and tertiary structures, a decreased thermostability, and significantly altered unfolding/refolding behaviors. It was found that the native lysozyme exhibited reversible unfolding and refolding upon heating and subsequent cooling, while lysozyme in the new folding state (complexed with the oppositely charged PLD segments of the polymer) could unfold upon heating but could not refold upon subsequent cooling. By employing the heating-cooling-reheating procedure, the prevention of complex formation between lysozyme and polymer due to the salt screening effect was observed, and the resulting uncomplexed lysozyme regained its proper unfolding and refolding abilities upon heating and subsequent cooling. Besides, we also pointed out the important role the length of the PLD segment played during the formation of micelles and the monodispersity of the formed micelles. Furthermore, the lysozyme-mPEG(5K)-b-PLD10 mixtures prepared in this work were all transparent, without the formation of large aggregates or precipitates in solution as frequently observed in other protein

  4. Microbial community related to lysozyme digestion process for boosting waste activated sludge biodegradability.

    PubMed

    Xin, Xiao-Dong; He, Jun-Guo; Qiu, Wei; Tang, Jian; Liu, Tian-Tian

    2015-01-01

    Waste activated sludge from a lab-scale sequencing batch reactor was used to investigate the potential relation of microbial community with lysozyme digestion process for sludge solubilization. The results showed the microbial community shifted conspicuously as sludge suffered lysozyme digestion. Soluble protein and polysaccharide kept an increasing trend in solution followed with succession of microbial community. The rise of lysozyme dosage augmented the dissimilarity among communities in various digested sludge. A negative relationship presented between community diversity and lysozyme digestion process under various lysozyme/TS from 0 to 240min (correlation coefficient R(2) exceeded 0.9). Pareto-Lorenz curves demonstrated that microbial community tended to be even with sludge disintegration process by lysozyme. Finally, with diversity (H) decrease and community distribution getting even, the SCOD/TCOD increased steadily in solution which suggested the sludge with high community diversity and uneven population distribution might have tremendous potential for improving their biodegradability by lysozyme digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Atorvastatin inhibits the immediate-early response gene EGR1 and improves the functional pro of CD4+T-lymphocytes in acute coronary syndromes

    PubMed Central

    Campioni, Mara; Flego, Davide; Angelini, Giulia; Pedicino, Daniela; Giglio, Ada Francesca; Trotta, Francesco; Giubilato, Simona; Pazzano, Vincenzo; Lucci, Claudia; Iaconelli, Antonio; Ruggio, Aureliano; Biasucci, Luigi Marzio

    2017-01-01

    Background- Adaptive immune-response is associated with a worse outcome in acute coronary syndromes. Statins have anti-inflammatory activity beyond lowering lipid levels. We investigated the effects of ex-vivo and in-vivo atorvastatin treatment in acute coronary syndromes on CD4+T-cells, and the underlying molecular mechanisms. Approach and results- Blood samples were collected from 50 statin-naïve acute coronary syndrome patients. We assessed CD4+T-cell activation by flow-cytometry, the expression of 84 T-helper transcription-factors and 84 T-cell related genes by RT-qPCR, and protein expression by Western-blot, before and after 24-hours incubation with increasing doses of atorvastatin: 3-10-26 g/ml (corresponding to blood levels achieved with doses of 10-40-80 mg, respectively). After incubation, we found a significant decrease in interferon-?-producing CD4+CD28nullT-cells (P = 0.009) and a significant increase in interleukin-10-producing CD4+CD25highT-cells (P < 0.001). Atorvastatin increased the expression of 2 genes and decreased the expression of 12 genes (in particular, EGR1, FOS,CCR2 and toll like receptor-4; >3-fold changes). The in-vivo effects of atorvastatin were analyzed in 10 statin-free acute coronary syndrome patients at baseline, and after 24h and 48h of atorvastatin therapy (80 mg/daily): EGR1-gene expression decreased at 24h (P = 0.01) and 48h (P = 0.005); EGR1-protein levels decreased at 48h (P = 0.03). Conclusions-In acute coronary syndromes, the effects of atorvastatin on immune system might be partially related to the inhibition of the master regulator gene EGR1. Our finding might offer a causal explanation on why statins improve the early outcome in acute coronary syndromes. PMID:28407684

  6. The tunable pReX expression vector enables optimizing the T7-based production of membrane and secretory proteins in E. coli.

    PubMed

    Kuipers, Grietje; Karyolaimos, Alexandros; Zhang, Zhe; Ismail, Nurzian; Trinco, Gianluca; Vikström, David; Slotboom, Dirk Jan; de Gier, Jan-Willem

    2017-12-16

    To optimize the production of membrane and secretory proteins in Escherichia coli, it is critical to harmonize the expression rates of the genes encoding these proteins with the capacity of their biogenesis machineries. Therefore, we engineered the Lemo21(DE3) strain, which is derived from the T7 RNA polymerase-based BL21(DE3) protein production strain. In Lemo21(DE3), the T7 RNA polymerase activity can be modulated by the controlled co-production of its natural inhibitor T7 lysozyme. This setup enables to precisely tune target gene expression rates in Lemo21(DE3). The t7lys gene is expressed from the pLemo plasmid using the titratable rhamnose promoter. A disadvantage of the Lemo21(DE3) setup is that the system is based on two plasmids, a T7 expression vector and pLemo. The aim of this study was to simplify the Lemo21(DE3) setup by incorporating the key elements of pLemo in a standard T7-based expression vector. By incorporating the gene encoding the T7 lysozyme under control of the rhamnose promoter in a standard T7-based expression vector, pReX was created (ReX stands for Regulated gene eXpression). For two model membrane proteins and a model secretory protein we show that the optimized production yields obtained with the pReX expression vector in BL21(DE3) are similar to the ones obtained with Lemo21(DE3) using a standard T7 expression vector. For another secretory protein, a c-type cytochrome, we show that pReX, in contrast to Lemo21(DE3), enables the use of a helper plasmid that is required for the maturation and hence the production of this heme c protein. Here, we created pReX, a T7-based expression vector that contains the gene encoding the T7 lysozyme under control of the rhamnose promoter. pReX enables regulated T7-based target gene expression using only one plasmid. We show that with pReX the production of membrane and secretory proteins can be readily optimized. Importantly, pReX facilitates the use of helper plasmids. Furthermore, the use of pReX is

  7. T4 AsiA blocks DNA recognition by remodeling σ70 region 4

    PubMed Central

    Lambert, Lester J; Wei, Yufeng; Schirf, Virgil; Demeler, Borries; Werner, Milton H

    2004-01-01

    Bacteriophage T4 AsiA is a versatile transcription factor capable of inhibiting host gene expression as an ‘anti-σ′ factor while simultaneously promoting gene-specific expression of T4 middle genes in conjunction with T4 MotA. To accomplish this task, AsiA engages conserved region 4 of Eschericia coli σ70, blocking recognition of most host promoters by sequestering the DNA-binding surface at the AsiA/σ70 interface. The three-dimensional structure of an AsiA/region 4 complex reveals that the C-terminal α helix of region 4 is unstructured, while four other helices adopt a completely different conformation relative to the canonical structure of unbound region 4. That AsiA induces, rather than merely stabilizes, this rearrangement can be realized by comparison to the homologous structures of region 4 solved in a variety of contexts, including the structure of Thermotoga maritima σA region 4 described herein. AsiA simultaneously occupies the surface of region 4 that ordinarily contacts core RNA polymerase (RNAP), suggesting that an AsiA-bound σ70 may also undergo conformational changes in the context of the RNAP holoenzyme. PMID:15257291

  8. Computational study of aggregation mechanism in human lysozyme[D67H

    PubMed Central

    Patel, Dharmeshkumar

    2017-01-01

    Aggregation of proteins is an undesired phenomena that affects both human health and bioengineered products such as therapeutic proteins. Finding preventative measures could be facilitated by a molecular-level understanding of dimer formation, which is the first step in aggregation. Here we present a molecular dynamics (MD) study of dimer formation propensity in human lysozyme and its D67H variant. Because the latter protein aggregates while the former does not, they offer an ideal system for testing the feasibility of the proposed MD approach which comprises three stages: i) partially unfolded conformers involved in dimer formation are generated via high-temperature MD simulations, ii) potential dimer structures are searched using docking and refined with MD, iii) free energy calculations are performed to find the most stable dimer structure. Our results provide a detailed explanation for how a single mutation (D67H) turns human lysozyme from non-aggregating to an aggregating protein. Conversely, the proposed method can be used to identify the residues causing aggregation in a protein, which can be mutated to prevent it. PMID:28467454

  9. Lysozyme-immobilized electrospun PAMA/PVA and PSSA-MA/PVA ion-exchange nanofiber for wound healing.

    PubMed

    Tonglairoum, Prasopchai; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Opanasopit, Praneet

    2014-08-27

    Abstract This research was aimed to develop the lysozyme immobilized ion-exchange nanofiber mats for wound healing. To promote the healing process, the PSSA-MA/PVA and PAMA ion-exchange nanofiber mats were fabricated to mimic the extracellular matrix structure using electrospinning process followed by thermally crosslinked. Lysozyme was immobilized on the ion-exchane nanofibers by an adsorption method. The ion-exchange nanofibers were investigated using SEM, FTIR and XRPD. Moreover, the lysozyme-immobilized ion-exchange nanofibers were further investigated for lysozyme content and activity, lysozyme release and wound healing activity. The fiber diameters of the mats were in the nanometer range. Lysozyme was gradually absorbed into the PSSA-MA/PVA nanofiber with higher extend than that is absorbed on the PAMA/PVA nanofiber and exhibited higher activity than lysozyme-immobilized PAMA/PVA nanofiber. The total contents of lysozyme on the PSSA-MA/PVA and PAMA/PVA nanofiber were 648 and 166 µg/g, respectively. FTIR and lysozyme activity results confirmed the presence of lysozyme on the nanofiber mats. The lysozyme was released from the PSSA-MA/PVA and PAMA/PVA nanofiber in the same manner. The lysozyme-immobilized PSSA-MA/PVA nanofiber mats and lysozyme-immobilized PAMA/PVA nanofiber mats exhibited significantly faster healing rate than gauze and similar to the commercial antibacterial gauze dressing. These results suggest that these nanofiber mats could provide the promising candidate for wound healing application.

  10. Cloning and expression of autogenes encoding RNA poly,erases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  11. Granulated lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology of 10-day-old pigs

    USDA-ARS?s Scientific Manuscript database

    Lysozyme is a 1,4-ß-N-acetylmuramidase that has antimicrobial properties. The objective of this experiment was to determine the effect of a purified granulated lysozyme, compared to antibiotics, on growth performance, small intestinal morphology, and Campylobacter shedding in 10-d-old pigs. Forty-...

  12. Granulated lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology of 10-day-old pigs

    USDA-ARS?s Scientific Manuscript database

    Lysozyme is a 1,4-ß-N-acetylmuramidase that has antimicrobial properties. The objective of this experiment was to determine the efficacy of granulated lysozyme, compared to antibiotics, on growth performance, small intestinal morphology, and Campylobacter shedding in 10-d-old pigs. Forty-eight pigs ...

  13. Antimicrobial peptide lysozyme has the potential to promote mouse hair follicle growth in vitro.

    PubMed

    Su, Yongsheng; Liu, Hui; Wang, Jin; Lin, Bojie; Miao, Yong; Hu, Zhiqi

    2015-10-01

    Lysozyme is a well-known antimicrobial peptide that exists widely in mammalian skin and it is also expressed by pilosebaceous units. However, the exact location of lysozyme in hair follicles and whether it exerts any direct effects on hair follicle growth are unclear. To determine whether lysozyme affected hair growth in vitro, micro-dissected mouse vibrissae follicles (VFs) were treated in serum-free organ culture for 3 days with lysozyme (1-10μg/ml). After that, the effects of lysozyme on dermal papilla (DP) cells were also investigated. Lysozyme was mainly identified in DP and dermal sheath regions of VF by immunochemistry. In addition, 5-10μg/ml lysozyme had a promoting effect on shaft production. It was also associated with significant proliferation of matrix keratinocytes by immunofluorescence observation. Furthermore, lysozyme promoted hair growth by increasing the levels of alkaline phosphatase and lymphoid enhancer factor 1 in DP, as determined by Western blotting. These results indicate that lysozyme is a promoter of VF growth via enhancing the hair-inductive capacity of DP cells during organ culture. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Genes that characterize T3-predominant Graves' thyroid tissues.

    PubMed

    Matsumoto, Chisa; Ito, Mitsuru; Yamada, Hiroya; Yamakawa, Noriko; Yoshida, Hiroshi; Date, Arisa; Watanabe, Mikio; Hidaka, Yoh; Iwatani, Yoshinori; Miyauchi, Akira; Takano, Toru

    2013-02-01

    3,5,3'-Triiodothyronine (T(3))-predominant Graves' disease is characterized by the increasing volume of thyroid goiter resulting in poor prognosis. Although type 1 and type 2 iodothyronine deiodinases (DIO1 and DIO2 respectively) are known to be overexpressed in the thyroid tissues of T(3)-predominant Graves' disease, the pathogenesis of this disease is still unclear. The aim of our study is to identify genes that characterize T(3)-predominant Graves' disease tissue in order to clarify the molecular mechanism of this disease. mRNAs from two thyroid tissues of both typical T(3)-predominant and common-type Graves' disease were analyzed with DNA microarrays with probes for 28 869 genes. Genes identified to be differentially expressed between the two groups were further analyzed in the second and third screenings using 70 Graves' thyroid tissues by real-time quantitative RT-PCR. Twenty-three candidate genes were selected as being differentially expressed in the first screening with microarrays. Among these, seven genes, leucine-rich repeat neuronal 1 (LRRN1), bone morphogenetic protein 8a (BMP8A), N-cadherin (CDH2), phosphodiesterase 1A (PDE1A), creatine kinase mitochondrial 2 (CKMT2), integrin beta-3 (ITGB3), and protein tyrosine phosphatase non-receptor type 4 (PTPN4), were confirmed to be differentially expressed in DIO1 or DIO2 over- and underexpressing Graves' tissues. These genes are related to the characteristics of T(3)-predominant Graves' disease, such as high titer level of serum anti-TSH receptor antibody, high free T(3) to free thyroxine ratio, and a large goiter size. They might play a role in the pathogenesis of T(3)-predominant Graves' disease.

  15. Bacteriolytic Activity Of Human Interleukin-2, Chicken Egg Lysozyme In The Presence Of Potential Effectors

    PubMed Central

    Levashov, P. A.; Matolygina, D. A.; Ovchinnikova, E. D.; Atroshenko, D. L.; Savin, S. S.; Belogurova, N. G.; Smirnov, S. A.; Tishkov, V. I.; Levashov, A. V.

    2017-01-01

    The bacteriolytic activity of interleukin-2 and chicken egg lysozyme in the presence of various substances has been studied. Glycine and lysine do not affect the activity of interleukin-2 but increase that of lysozyme, showing a bell-shape concentration dependence peaking at 1.5 mM glycine and 18 mM lysine. Arginine and glutamate activate both interleukin-2 and lysozyme with a concentration dependence of the saturation type. Aromatic amino acids have almost no effect on the activity of both interleukin-2 and lysozyme. Aromatic amines, tryptamine, and tyramine activate interleukin-2 but inhibit lysozyme. Peptide antibiotics affect interleukin and lysozyme similarly and exhibit maximum activity in the micromolar range of antibiotics. Taurine has no effect on the activity of interleukin-2 and lysozyme. Mildronate showed no influence on lysozyme, but it activated interleukin-2 with the activity maximum at 3 mM. EDTA activates both interleukin-2 and lysozyme at concentrations above 0.15 mM. PMID:28740730

  16. [The estimation of systemic chemotherapy treatment administered in breast cancer on lysozyme activity in tears--preliminary report].

    PubMed

    Wojciechowska, Katarzyna; Jurowski, Piotr; Wieckowska-Szakiel, Marzena; Rózalska, Barbara

    2012-01-01

    Estimation of cytostatics influence used in breast cancer treatment on lysozyme activity in human tears depend on time of treatment. 8 women were treated at the base of chemotherapy schema: docetaxel with doxorubicin and 4 women treated with schema CMF: cyclophosphamide, methotrexate, 5-fluorouracil. Lysozyme activity in tears was assessed by measurement of diameter zone of Micrococcus lysodeicticus growth inhibition. It was revealed that both chemotherapy schema caused statistically significant reduction of diameter zone of M. lysodeicticus growth inhibition, after first and second course of chemotherapy treatment. After second chemotherapy course CMF schema induced loss of lysozyme activity in patient's tears (zero mm of M. lysodeicticus diameter zone growth inhibition). Systemic chemotherapy administered in breast cancer induce reduction of lysozyme activity in tears, that may cause higher morbidity of ocular surface infections caused by Gram-positive bacteria.

  17. Calorimetric study of mutant human lysozymes with partially introduced Ca2+ binding sites and its efficient refolding system from inclusion bodies.

    PubMed

    Koshiba, T; Tsumoto, K; Masaki, K; Kawano, K; Nitta, K; Kumagai, I

    1998-08-01

    During the process of evolution, ancestral lysozymes evolved into calcium-binding lysozymes by acquiring three critical aspartate residues at positions 86, 91 and 92. To investigate the process of the acquisition of calcium-binding ability, two of the aspartates were partially introduced into human lysozyme at positions 86, 91 and 92. These mutants (HLQ86D, HLA92D and HLQ86D/D91Q/A92D), having two critical aspartates in calcium-binding sites, were expressed in Escherichia coli as non-active inclusion bodies. For the preparation of lysozyme samples, a refolding system using thioredoxin was established. This system allowed for effective refolding of wild-type and mutant lysozymes, and 100% of activity was recovered within 4 days. The calcium ion dependence of the melting temperature (Tm) of wild-type and mutant lysozymes was investigated by differential scanning calorimetry at pH 4.5. The Tm values of wild-type, HLQ86D and HLA92D mutants were not dependent on calcium ion concentration. However, the Tm of HLQ86D/D91Q/A92D was 4 degrees higher in the presence of 50 mM CaCl2 than in its absence, and the calcium-binding constant of this mutant was estimated to be 2.25(+/-0.25)x10(2) M(-1) at pH 4.5. Moreover, the calcium-binding ability of this mutant was confirmed by the result using Sephadex G-25 gel chromatography. These results indicate that it is indispensable to have at least two aspartates at positions 86 and 92 for acquisition of calcium-binding ability. The process of the acquisition of calcium-binding site during evolution of calcium-binding lysozyme is discussed.

  18. c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4+ T cells.

    PubMed

    Gabryšová, Leona; Alvarez-Martinez, Marisol; Luisier, Raphaëlle; Cox, Luke S; Sodenkamp, Jan; Hosking, Caroline; Pérez-Mazliah, Damián; Whicher, Charlotte; Kannan, Yashaswini; Potempa, Krzysztof; Wu, Xuemei; Bhaw, Leena; Wende, Hagen; Sieweke, Michael H; Elgar, Greg; Wilson, Mark; Briscoe, James; Metzis, Vicki; Langhorne, Jean; Luscombe, Nicholas M; O'Garra, Anne

    2018-05-01

    The transcription factor c-Maf induces the anti-inflammatory cytokine IL-10 in CD4 + T cells in vitro. However, the global effects of c-Maf on diverse immune responses in vivo are unknown. Here we found that c-Maf regulated IL-10 production in CD4 + T cells in disease models involving the T H 1 subset of helper T cells (malaria), T H 2 cells (allergy) and T H 17 cells (autoimmunity) in vivo. Although mice with c-Maf deficiency targeted to T cells showed greater pathology in T H 1 and T H 2 responses, T H 17 cell-mediated pathology was reduced in this context, with an accompanying decrease in T H 17 cells and increase in Foxp3 + regulatory T cells. Bivariate genomic footprinting elucidated the c-Maf transcription-factor network, including enhanced activity of NFAT; this led to the identification and validation of c-Maf as a negative regulator of IL-2. The decreased expression of the gene encoding the transcription factor RORγt (Rorc) that resulted from c-Maf deficiency was dependent on IL-2, which explained the in vivo observations. Thus, c-Maf is a positive and negative regulator of the expression of cytokine-encoding genes, with context-specific effects that allow each immune response to occur in a controlled yet effective manner.

  19. Disease-related amyloidogenic variants of human lysozyme trigger the unfolded protein response and disturb eye development in Drosophila melanogaster.

    PubMed

    Kumita, Janet R; Helmfors, Linda; Williams, Jocy; Luheshi, Leila M; Menzer, Linda; Dumoulin, Mireille; Lomas, David A; Crowther, Damian C; Dobson, Christopher M; Brorsson, Ann-Christin

    2012-01-01

    We have created a Drosophila model of lysozyme amyloidosis to investigate the in vivo behavior of disease-associated variants. To achieve this objective, wild-type (WT) protein and the amyloidogenic variants F57I and D67H were expressed in Drosophila melanogaster using the UAS-gal4 system and both the ubiquitous and retinal expression drivers Act5C-gal4 and gmr-gal4. The nontransgenic w(1118) Drosophila line was used as a control throughout. We utilized ELISA experiments to probe lysozyme protein levels, scanning electron microscopy for eye phenotype classification, and immunohistochemistry to detect the unfolded protein response (UPR) activation. We observed that expressing the destabilized F57I and D67H lysozymes triggers UPR activation, resulting in degradation of these variants, whereas the WT lysozyme is secreted into the fly hemolymph. Indeed, the level of WT was up to 17 times more abundant than the variant proteins. In addition, the F57I variant gave rise to a significant disruption of the eye development, and this correlated to pronounced UPR activation. These results support the concept that the onset of familial amyloid disease is linked to an inability of the UPR to degrade completely the amyloidogenic lysozymes prior to secretion, resulting in secretion of these destabilized variants, thereby leading to deposition and associated organ damage.

  20. Performance of the lysozyme for promoting the waste activated sludge biodegradability.

    PubMed

    He, Jun-Guo; Xin, Xiao-Dong; Qiu, Wei; Zhang, Jie; Wen, Zhi-Dan; Tang, Jian

    2014-10-01

    The fresh waste activated sludge (WAS) from a lab-scale sequencing batch reactor was used to determine the performance of the lysozyme for promoting its biodegradability. The results showed that a strict linear relationship presented between the degree of disintegration (DDM) of WAS and the lysozyme incubation time from 0 to 240min (R(2) was 0.992, 0.995 and 0.999 in accordance with the corresponding lysozyme/TS, respectively). Ratio of net SCOD increase augmented significantly by lysozyme digestion for evaluating the sludge biodegradability changes. Moreover, the protein dominated both in the EPS and SMP. In addition, the logarithm of SMP contents in supernatant presented an increasing trend similar with the ascending logarithmic relation with the lysozyme incubation time from 0 to 240min (R(2) was 0.960, 0.959 and 0.947, respectively). The SMP, especially the soluble protein, had an important contribution to the improvement of WAS biodegradability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Surface versus bulk activity of lysozyme deposited on hydrogel contact lens materials in vitro.

    PubMed

    Omali, Negar Babaei; Subbaraman, Lakshman N; Heynen, Miriam; Ng, Alan; Coles-Brennan, Chantal; Fadli, Zohra; Jones, Lyndon

    2018-04-30

    To determine and compare the levels of surface versus bulk active lysozyme deposited on several commercially available hydrogel contact lens materials. Hydrogel contact lens materials [polymacon, omafilcon A, nelfilcon A, nesofilcon A, ocufilcon and etafilcon A with polyvinylpyrrolidone (PVP)] were incubated in an artificial tear solution for 16 h. Total activity was determined using a standard turbidity assay. The surface activity of the deposited lysozyme was determined using a modified turbidity assay. The amount of active lysozyme present within the bulk of the lens material was calculated by determining the difference between the total and surface active lysozyme. The etafilcon A materials showed the highest amount of total lysozyme activity (519 ± 8 μg/lens, average of Moist and Define), followed by the ocufilcon material (200 ± 5 μg/lens) and these two were significantly different from each other (p < 0.05). The amount of surface active lysozyme on etafilcon and ocufilcon lens materials was significantly higher than that found on all other lenses (p < 0.05). There was no active lysozyme quantified in the bulk of the nelfilcon material, as all of the active lysozyme was found on the surface (1.7 ± 0.3 μg/lens). In contrast, no active lysozyme was quantified on the surface of polymacon, with all of the active lysozyme found in the bulk of the lens material (0.6 ± 0.6 μg/lens). The surface and bulk activity of lysozyme deposited on contact lenses is material dependent. Lysozyme deposited on ionic, high water content lens materials such as etafilcon A show significantly higher surface and bulk activity than many other hydrogel lens materials. Copyright © 2018 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  2. Lysozyme pattern formation in evaporating droplets

    NASA Astrophysics Data System (ADS)

    Gorr, Heather Meloy

    Liquid droplets containing suspended particles deposited on a solid, flat surface generally form ring-like structures due to the redistribution of solute during evaporation (the "coffee ring effect"). The forms of the deposited patterns depend on complex interactions between solute(s), solvent, and substrate in a rapidly changing, far from equilibrium system. Solute self-organization during evaporation of colloidal sessile droplets has attracted the attention of researchers over the past few decades due to a variety of technological applications. Recently, pattern formation during evaporation of various biofluids has been studied due to potential applications in medical screening and diagnosis. Due to the complexity of 'real' biological fluids and other multicomponent systems, a comprehensive understanding of pattern formation during droplet evaporation of these fluids is lacking. In this PhD dissertation, the morphology of the patterns remaining after evaporation of droplets of a simplified model biological fluid (aqueous lysozyme solutions + NaCl) are examined by atomic force microscopy (AFM) and optical microscopy. Lysozyme is a globular protein found in high concentration, for example, in human tears and saliva. The drop diameters, D, studied range from the micro- to the macro- scale (1 microm -- 2 mm). In this work, the effect of evaporation conditions, solution chemistry, and heat transfer within the droplet on pattern formation is examined. In micro-scale deposits of aqueous lysozyme solutions (1 microm < D < 50 microm), the protein motion and the resulting dried residue morphology are highly influenced by the decreased evaporation time of the drop. The effect of electrolytes on pattern formation is also investigated by adding varying concentrations NaCl to the lysozyme solutions. Finally, a novel pattern recognition program is described and implemented which classifies deposit images by their solution chemistries. The results presented in this Ph

  3. Biological and Clinical Implications of Lysozyme Deposition on Soft Contact Lenses

    PubMed Central

    Omali, Negar Babaei; Subbaraman, Lakshman N.; Coles-Brennan, Chantal; Fadli, Zohra; Jones, Lyndon W.

    2015-01-01

    ABSTRACT Within a few minutes of wear, contact lenses become rapidly coated with a variety of tear film components, including proteins, lipids, and mucins. Tears have a rich and complex composition, allowing a wide range of interactions and competitive processes, with the first event observed at the interface between a contact lens and tear fluid being protein adsorption. Protein adsorption on hydrogel contact lenses is a complex process involving a variety of factors relating to both the protein in question and the lens material. Among tear proteins, lysozyme is a major protein that has both antibacterial and anti-inflammatory functions. Contact lens materials that have high ionicity and high water content have an increased affinity to accumulate lysozyme during wear, when compared with other soft lens materials, notably silicone hydrogel lenses. This review provides an overview of tear film proteins, with a specific focus on lysozyme, and examines various factors that influence protein deposition on contact lenses. In addition, the impact of lysozyme deposition on various ocular physiological responses and bacterial adhesion to lenses and the interaction of lysozyme with other tear proteins are reviewed. This comprehensive review suggests that deposition of lysozyme on contact lens materials may provide a number of beneficial effects during contact lens wear. PMID:26002002

  4. Disease-related amyloidogenic variants of human lysozyme trigger the unfolded protein response and disturb eye development in Drosophila melanogaster

    PubMed Central

    Kumita, Janet R.; Helmfors, Linda; Williams, Jocy; Luheshi, Leila M.; Menzer, Linda; Dumoulin, Mireille; Lomas, David A.; Crowther, Damian C.; Dobson, Christopher M.; Brorsson, Ann-Christin

    2012-01-01

    We have created a Drosophila model of lysozyme amyloidosis to investigate the in vivo behavior of disease-associated variants. To achieve this objective, wild-type (WT) protein and the amyloidogenic variants F57I and D67H were expressed in Drosophila melanogaster using the UAS-gal4 system and both the ubiquitous and retinal expression drivers Act5C-gal4 and gmr-gal4. The nontransgenic w1118 Drosophila line was used as a control throughout. We utilized ELISA experiments to probe lysozyme protein levels, scanning electron microscopy for eye phenotype classification, and immunohistochemistry to detect the unfolded protein response (UPR) activation. We observed that expressing the destabilized F57I and D67H lysozymes triggers UPR activation, resulting in degradation of these variants, whereas the WT lysozyme is secreted into the fly hemolymph. Indeed, the level of WT was up to 17 times more abundant than the variant proteins. In addition, the F57I variant gave rise to a significant disruption of the eye development, and this correlated to pronounced UPR activation. These results support the concept that the onset of familial amyloid disease is linked to an inability of the UPR to degrade completely the amyloidogenic lysozymes prior to secretion, resulting in secretion of these destabilized variants, thereby leading to deposition and associated organ damage.—Kumita, J. R., Helmfors, L., Williams, J., Luheshi, L. M., Menzer, L., Dumoulin, M., Lomas, D. A., Crowther, D. C., Dobson, C. M., Brorsson, A.-C. Disease-related amyloidogenic variants of human lysozyme trigger the unfolded protein response and disturb eye development in Drosophila melanogaster. PMID:21965601

  5. Mutation analysis of COL4A3 and COL4A4 genes in a Chinese autosomal-dominant Alport syndrome family.

    PubMed

    Guo, Liwei; Li, Duan; Dong, Shuangshuang; Wan, Donghao; Yang, Baosheng; Huang, Yanmei

    2017-06-01

    Autosomal dominant Alport syndrome (ADAS) accounts for 5% of all cases of Alport syndrome (AS), a primary basement membrane disorder arising from mutations in genes encoding the type IV collagen protein family.Mutations in COL4A3 and COL4A4 genes were reported to be associated with ADAS. In this study, clinical data in a large consanguineous family with seven affected members were reviewed, and genomic DNA was extracted. For mutation screening, all exons of COL4A3 and COL4A4 genes were polymerase chain reaction-amplified and direct sequenced from genomic DNA, and the mutations were analyzed by comparing with members in this family, 100 ethnicitymatched controls and the sequence of COL4A3 and COL4A4 genes from GenBank. A novel mutation determining a nucleotide change was found, i.e. c.4195 A>T (p.Met1399Leu) at 44th exon of COL4A4 gene, and this mutation showed heterozygous in all patients of this family. Also a novel intron mutation (c.4127+11 C>T) was observed at COL4A4 gene. Thus the novel missense mutation c.4195 A>T (p.Met1399Leu) and the intron mutation (c.4127+11 C>T) at COL4A4 gene might be responsible for ADAS of this family. Our results broadened the spectrum of mutations in COL4A4 and had important implications in the diagnosis, prognosis, and genetic counselling of ADAS.

  6. In vitro evaluation of a mammary gland specific expression vector encoding recombinant human lysozyme for development of transgenic dairy goat embryos.

    PubMed

    Gui, Tao; Zhang, Meiling; Chen, Jianwen; Zhang, Yuanliang; Zhou, Naru; Zhang, Yu; Tao, Jia; Sui, Liucai; Li, Yunsheng; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai

    2012-08-01

    A vector expressing human lysozyme (pBC1-hLYZ-GFP-Neo) was evaluated for gene and protein expression following liposome-mediated transformation of C-127 mouse mammary cancer cells. Cultures of G418-resistant clones were harvested 24-72 h after induction with prolactin, insulin and hydrocortisone. Target gene expression was analyzed by RT-PCR and Western blot and recombinant human lysozyme (rhLYZ) bacteriostatic activity was also evaluated. The hLYZ gene was correctly transcribed and translated in C-127 cells and hLYZ inhibited gram-positive bacterial growth, indicating the potential of this expression vector for development of a mammary gland bioreactor in goats. Guanzhong dairy goat skin fibroblasts transfected with pBC1-hLYZ-GFP-Neo were used to construct a goat embryo transgenically expressing rhLYZ by somatic nuclear transplantation with a blastocyst rate of 9.0 ± 2.8 %. These data establish the basis for cultivation of mastitis-resistant hLYZ transgenic goats.

  7. Malignant transformation of CD4+ T lymphocytes mediated by oncogenic kinase NPM/ALK recapitulates IL-2-induced cell signaling and gene expression reprogramming

    PubMed Central

    Marzec, Michal; Halasa, Krzysztof; Liu, Xiaobin; Wang, Hong Y.; Cheng, Mangeng; Baldwin, Donald; Tobias, John W.; Schuster, Stephen J.; Woetmann, Anders; Zhang, Qian; Turner, Suzanne D.; Odum, Niels; Wasik, Mariusz A.

    2013-01-01

    Anaplastic lymphoma kinase (ALK) physiologically expressed only by nervous system cells displays remarkable capacity to transform CD4+ T lymphocytes and other types of non-neural cells. Here we report that activity of nucleophosphmin (NPM)/ALK chimeric protein, the dominant form of ALK expressed in T-cell lymphomas (ALK+TCL), closely resembles cell activation induced by interleukin 2 (IL-2), the key cytokine supporting growth and survival of normal CD4+ T lymphocytes. Direct comparison of gene expression by ALK+TCL cells treated with an ALK inhibitor and IL-2-dependent ALK-TCL cells stimulated with the cytokine revealed a very similar, albeit inverse, gene regulation pattern. Depending on the analysis method, up to 67% of the modulated genes could be defined as modulated in common by NPM/ALK and IL-2. Based on the gene expression patterns, Jak/STAT and IL-2 signaling pathways topped the list of pathways identified as affected by both IL-2 and NPM/ALK. The expression dependence on NPM/ALK and IL-2 of the five selected genes: CD25 (IL-2Rα), Egr-1, Fosl-1, SOCS3, and Irf-4 was confirmed at the protein level. In both ALK+TCL and IL-2-stimulated ALK-TCL cells, CD25, SOCS3, and Irf-4 genes were activated predominantly by the STAT5 and STAT3 transcription factors, while transcription of Egr-1 and Fosl-1 was induced by the MEK-ERK pathway. Finally, we found that Egr-1, a protein not associated previously with either IL-2 or ALK, contributes to the cell proliferation. These findings indicate that NPM/ALK transforms the target CD4+ T lymphocytes, at least in part, by utilizing the pre-existing, IL-2-dependent signaling pathways. PMID:24218456

  8. The inhibitory effects of wine phenolics on lysozyme activity against lactic acid bacteria.

    PubMed

    Guzzo, F; Cappello, M S; Azzolini, M; Tosi, E; Zapparoli, G

    2011-08-15

    The lysozyme of hen's egg white is used in winemaking to control spontaneous lactic acid bacteria (LAB). A total of eight LAB strains, isolated from grape must and wine, were used to assess the inhibitory effects of wine phenolics on lysozyme activity. The presence of phenolics, extracted from grape pomace, in growth medium reduced the mortality rate due to the lysozyme activity. This effect was especially clear in the case of strains belonging to Lactobacillus uvarum, Pediococcus parvulus and Oenococccus oeni, which are more sensitive to lysozyme than L. plantarum and L. hilgardii strains. Cell lysis assays carried out on four strains sensitive to lysozyme and Micrococcus lysodeikticus ATCC 4698, used as a reference strain, confirmed the inhibition of grape pomace phenolics on the muramidase. There was no interference from non-flavonoids, flavanols and flavonol compounds, when they were tested individually, on the lysozyme activity against the strains. Anthocyanins extracted from grape skins slightly inhibited the activity only against M. lysodeikticus. However, proanthocyanidins extracted from seed berries, strongly inhibited the lysozyme. In this extract, dimers were the predominant oligomers of flavan-3-ol. The study demonstrated that the effectiveness of lysozyme against LAB in red winemaking is related to the amount of low molecular weight proanthocyanidins that are released when the grapes are macerating. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Lysozyme activity and nitroblue-tetrazolium reduction in leukaemic cells

    PubMed Central

    Catovsky, D.; Galton, D. A. G.

    1973-01-01

    The cytochemical methods for lysozyme and nitroblue-tetrazolium reduction have been used to study the blast cells of acute myeloid leukaemia. Both proved useful in characterizing the cases with predominant monocytic differentiation. The demonstration of lysozyme activity helped to define two main groups: (a) with predominantly lysozyme-negative cells (myeloblastic-promyelocytic), and (b) with considerable numbers of positive cells (monoblastic-monocytic). In addition this test was also of value in the differentiation of other leukaemic disorders. Reduction of nitroblue-tetrazolium was also a feature of monocytic differentiation. The combination of these two methods with those for myeloperoxidase and non-specific esterase activity contributes to the cytological characterization of acute myeloid leukaemia. Images PMID:4511938

  10. Behavior of lysozyme adsorbed onto biological liquid crystal lipid monolayer at the air/water interface

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolong; Shi, Ruixin; Hao, Changchun; Chen, Huan; Zhang, Lei; Li, Junhua; Xu, Guoqing; Sun, Runguang

    2016-09-01

    The interaction between proteins and lipids is one of the basic problems of modern biochemistry and biophysics. The purpose of this study is to compare the penetration degree of lysozyme into 1,2-diapalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethano-lamine (DPPE) by analyzing the data of surface pressure-area (π-A) isotherms and surface pressure-time (π-T) curves. Lysozyme can penetrate into both DPPC and DPPE monolayers because of the increase of surface pressure at an initial pressure of 15 mN/m. However, the changes of DPPE are larger than DPPC, indicating stronger interaction of lysozyme with DPPE than DPPC. The reason may be due to the different head groups and phase state of DPPC and DPPE monolayers at the surface pressure of 15 mN/m. Atomic force microscopy reveals that lysozyme was absorbed by DPPC and DPPE monolayers, which leads to self-aggregation and self-assembly, forming irregular multimers and conical multimeric. Through analysis, we think that the process of polymer formation is similar to the aggregation mechanism of amyloid fibers. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201603026), and the National University Science and Technology Innovation Project of China (Grant No. 201610718013).

  11. Chronic exposure to water pollutant trichloroethylene increased epigenetic drift in CD4(+) T cells.

    PubMed

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Reisfeld, Brad; Zurlinden, Todd J; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A

    2016-05-01

    Autoimmune disease and CD4(+) T-cell alterations are induced in mice exposed to the water pollutant trichloroethylene (TCE). We examined here whether TCE altered gene-specific DNA methylation in CD4(+) T cells as a possible mechanism of immunotoxicity. Naive and effector/memory CD4(+) T cells from mice exposed to TCE (0.5 mg/ml in drinking water) for 40 weeks were examined by bisulfite next-generation DNA sequencing. A probabilistic model calculated from multiple genes showed that TCE decreased methylation control in CD4(+) T cells. Data from individual genes fitted to a quadratic regression model showed that TCE increased gene-specific methylation variance in both CD4 subsets. TCE increased epigenetic drift of specific CpG sites in CD4(+) T cells.

  12. Lysozyme and bilirubin bind to ACE and regulate its conformation and shedding.

    PubMed

    Danilov, Sergei M; Lünsdorf, Heinrich; Akinbi, Henry T; Nesterovitch, Andrew B; Epshtein, Yuliya; Letsiou, Eleftheria; Kryukova, Olga V; Piegeler, Tobias; Golukhova, Elena Z; Schwartz, David E; Dull, Randal O; Minshall, Richard D; Kost, Olga A; Garcia, Joe G N

    2016-10-13

    Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood. In this study, we identified a novel ACE gene mutation (Arg532Trp substitution in the N domain of somatic ACE) that increases blood ACE activity 7-fold and interrogated the mechanism by which this mutation significantly increases blood ACE levels. We hypothesized that this ACE mutation disrupts the binding site for blood components which may stabilize ACE conformation and diminish ACE shedding. We identified the ACE-binding protein in the blood as lysozyme and also a Low Molecular Weight (LMW) ACE effector, bilirubin, which act in concert to regulate ACE conformation and thereby influence ACE shedding. These results provide mechanistic insight into the elevated blood level of ACE observed in patients on ACE inhibitor therapy and elevated blood lysozyme and ACE levels in sarcoidosis patients.

  13. Lysozyme and bilirubin bind to ACE and regulate its conformation and shedding

    PubMed Central

    Danilov, Sergei M.; Lünsdorf, Heinrich; Akinbi, Henry T.; Nesterovitch, Andrew B.; Epshtein, Yuliya; Letsiou, Eleftheria; Kryukova, Olga V.; Piegeler, Tobias; Golukhova, Elena Z.; Schwartz, David E.; Dull, Randal O.; Minshall, Richard D.; Kost, Olga A.; Garcia, Joe G. N.

    2016-01-01

    Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood. In this study, we identified a novel ACE gene mutation (Arg532Trp substitution in the N domain of somatic ACE) that increases blood ACE activity 7-fold and interrogated the mechanism by which this mutation significantly increases blood ACE levels. We hypothesized that this ACE mutation disrupts the binding site for blood components which may stabilize ACE conformation and diminish ACE shedding. We identified the ACE-binding protein in the blood as lysozyme and also a Low Molecular Weight (LMW) ACE effector, bilirubin, which act in concert to regulate ACE conformation and thereby influence ACE shedding. These results provide mechanistic insight into the elevated blood level of ACE observed in patients on ACE inhibitor therapy and elevated blood lysozyme and ACE levels in sarcoidosis patients. PMID:27734897

  14. Locations of Halide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Adimurthy, Ganapathi; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions play an important role in the crystallization of lysozyme, and are known to bind to the crystalline protein. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. Studies using other approaches have reported more chloride ion binding sites, but their locations were not known. Knowing the precise location of these anions is also useful in determining the correct electrostatic fields surrounding the protein. In the first part of this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from the lysozyme crystals grown in bromide and chloride solutions under identical conditions. The anion locations were then obtained from standard crystallographic methods and five possible anion binding sites were found in this manner. The sole chloride ion binding site found in previous studies was confirmed. The remaining four sites were new ones for tetragonal lysozyme crystals. However, three of these new sites and the previously found one corresponded to the four unique binding sites found for nitrate ions in monoclinic crystals. This suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed. It is unlikely that there are many more anions in the tetragonal lysozyme crystal structure. Assuming osmotic equilibrium it can be shown that there are at most three more anions in the crystal channels. Some of the new anion binding sites found in this study were, as expected, in pockets containing basic residues. However, some of them were near neutral, but polar, residues. Thus, the study also showed the importance of uncharged, but polar groups, on the protein surface in determining its electrostatic field. This was important for the second part of this study where the electrostatic field

  15. Role of nuclear factor of activated T-cells and activator protein-1 in the inhibition of interleukin-2 gene transcription by cannabinol in EL4 T-cells.

    PubMed

    Yea, S S; Yang, K H; Kaminski, N E

    2000-02-01

    We previously reported that immunosuppressive cannabinoids inhibited interleukin (IL)-2 steady-state mRNA expression and secretion by phorbol-12-myristate-13-acetate plus ionomycin-activated mouse splenocytes and EL4 murine T-cells. Here we show that inhibition of IL-2 production by cannabinol, a modest central nervous system-active cannabinoid, is mediated through the inhibition of IL-2 gene transcription. Moreover, electrophoretic mobility shift assays demonstrated that cannabinol markedly inhibited the DNA binding activity of nuclear factor of activated T-cells (NF-AT) and activator protein-1 (AP-1) in a time- and concentration-dependent manner in activated EL4 cells. The inhibitory effects produced by cannabinol on AP-1 DNA binding were quite transient, showing partial recovery by 240 min after cell activation and no effect on the activity of a reporter gene under the control of AP-1. Conversely, cannabinol-mediated inhibition of NF-AT was robust and sustained as demonstrated by an NF-AT-regulated reporter gene. Collectively, these results suggest that decreased IL-2 production by cannabinol in EL4 cells is due to the inhibition of transcriptional activation of the IL-2 gene and is mediated, at least in part, through a transient inhibition of AP-1 and a sustained inhibition of NF-AT.

  16. Association of the polymorphisms 292 C>T and 1304 G>A in the SLC38A4 gene with hyperglycaemia.

    PubMed

    González-Renteria, Siblie Marbey; Loera-Castañeda, Verónica; Chairez-Hernández, Isaías; Sosa-Macias, Martha; Paniagua-Castro, Norma; Lares-Aseff, Ismael; Rodríguez-Moran, Martha; Guerrero-Romero, Fernando; Galaviz-Hernández, Carlos

    2013-01-01

    The SLC38A4 gene is related to system 'A' activity, which seems to be related to impaired gluconeogenesis. The objective of this study was to determine whether the 292 C>T and 1304 G>A polymorphisms of SLC38A4 gene are associated with hyperglycaemia in humans. A total of 227 individuals were enrolled in a case-control study, in which hyperglycaemia was defined by plasma glucose levels ≥95 mg/dL. Genotyping was carried out by using real-time polymerase chain reaction. The frequency of mutant alleles of SLC38A4 gene for single-nucleotide polymorphism (SNP) 1304 G>A was 23.6% and 30.2% for SNP 292 C>T. The frequency of allele T for the SNP 292 C>T in the case and control groups did not show significant differences, whereas the frequency of allele A for the SNP 1304 G>A was significantly higher in the case group than in the control group (p = 0.04). In the logistic regression analysis, the SNP 1304 G>A [odds ratio (OR) 1.78; 95%CI 1.04-3.05, p = 0.03] but not SNP 292 C>T (OR 1.41; 95%CI 0.80-2.47, p = 0.23) showed a significant association with hyperglycaemia. After adjusting by body mass index, waist circumference and triglycerides, the SNP 1304 G>A remained significantly associated with hyperglycaemia (OR 2.13; 95%CI 1.18-3.83, p = 0.03). Pair wise linkage disequilibrium showed correlation (D' > 0.82) between 292 C>T and 1304 G>A SNPs. Haplotype association with hyperglycaemia also showed significant association between both homozygous mutant alleles (A/T) and hyperglycaemia (OR 1.68; 95%CI 1.01-2.79, p = 0.048). Our results suggest that mutant allele A for SNP 1304 G>A of SLC38A4 gene is associated with hyperglycaemia. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Probabilistic approach to lysozyme crystal nucleation kinetics.

    PubMed

    Dimitrov, Ivaylo L; Hodzhaoglu, Feyzim V; Koleva, Dobryana P

    2015-09-01

    Nucleation of lysozyme crystals in quiescent solutions at a regime of progressive nucleation is investigated under an optical microscope at conditions of constant supersaturation. A method based on the stochastic nature of crystal nucleation and using discrete time sampling of small solution volumes for the presence or absence of detectable crystals is developed. It allows probabilities for crystal detection to be experimentally estimated. One hundred single samplings were used for each probability determination for 18 time intervals and six lysozyme concentrations. Fitting of a particular probability function to experimentally obtained data made possible the direct evaluation of stationary rates for lysozyme crystal nucleation, the time for growth of supernuclei to a detectable size and probability distribution of nucleation times. Obtained stationary nucleation rates were then used for the calculation of other nucleation parameters, such as the kinetic nucleation factor, nucleus size, work for nucleus formation and effective specific surface energy of the nucleus. The experimental method itself is simple and adaptable and can be used for crystal nucleation studies of arbitrary soluble substances with known solubility at particular solution conditions.

  18. Lysozyme as an alternative to antibiotics improves growth performance and tumor necrosis factor-a levels during an indirect immune challenge

    USDA-ARS?s Scientific Manuscript database

    Lysozyme is a 1,4-ß-N-acetylmuramidase that has antimicrobial properties. The objective of this study was to determine the effect of lysozyme and antibiotics on growth performance and immune response during an indirect disease challenge. Two replicates of 720 pigs each were weaned from the sow at ...

  19. Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, Vinod K.; Kohlbrecher, Joachim

    2016-05-01

    The interaction of three different sized (diameter 10, 18, and 28 nm) anionic silica nanoparticles with two model proteins—cationic lysozyme [molecular weight (MW) 14.7 kDa)] and anionic bovine serum albumin (BSA) (MW 66.4 kDa) has been studied by UV-vis spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The adsorption behavior of proteins on the nanoparticles, measured by UV-vis spectroscopy, is found to be very different for lysozyme and BSA. Lysozyme adsorbs strongly on the nanoparticles and shows exponential behavior as a function of lysozyme concentration irrespective of the nanoparticle size. The total amount of adsorbed lysozyme, as governed by the surface-to-volume ratio, increases on lowering the size of the nanoparticles for a fixed volume fraction of the nanoparticles. On the other hand, BSA does not show any adsorption for all the different sizes of the nanoparticles. Despite having different interactions, both proteins induce similar phase behavior where the nanoparticle-protein system transforms from one phase (clear) to two phase (turbid) as a function of protein concentration. The phase behavior is modified towards the lower concentrations for both proteins with increasing the nanoparticle size. DLS suggests that the phase behavior arises as a result of the nanoparticles' aggregation on the addition of proteins. The size-dependent modifications in the interaction potential, responsible for the phase behavior, have been determined by SANS data as modeled using the two-Yukawa potential accounting for the repulsive and attractive interactions in the systems. The protein-induced interaction between the nanoparticles is found to be short-range attraction for lysozyme and long-range attraction for BSA. The magnitude of attractive interaction irrespective of protein type is enhanced with increase in the size of the nanoparticles. The total (attractive+repulsive) potential leading to two-phase formation is found to be

  20. Resolving Single Molecule Lysozyme Dynamics with a Carbon Nanotube Electronic Circuit

    NASA Astrophysics Data System (ADS)

    Choi, Yongki; Moody, Issa S.; Perez, Israel; Sheps, Tatyana; Weiss, Gregory A.; Collins, Philip G.

    2011-03-01

    High resolution, real-time monitoring of a single lysozyme molecule is demonstrated by fabricating nanoscale electronic devices based on single-walled carbon nanotubes (SWCNT). In this sensor platform, a biomolecule of interest is attached to a single SWCNT device. The electrical conductance transduces chemical events with single molecule sensitivity and 10 microsecond resolution. In this work, enzymatic turnover by lysozyme is investigated, because the mechanistic details for its processivity and dynamics remain incompletely understood. Stochastically distributed binding events between a lysozyme and its binding substrate, peptidoglycan, are monitored via the sensor conductance. Furthermore, the magnitude and repetition rate of these events varies with pH and the presence of inhibitors or denaturation agents. Changes in the conductance signal are analyzed in terms of lysozyme's internal hinge motion, binding events, and enzymatic processing.

  1. Production of recombinant human lysozyme in the milk of transgenic pigs.

    PubMed

    Tong, Jia; Wei, HengXi; Liu, XiaoFang; Hu, WenPing; Bi, MingJun; Wang, YuanYuan; Li, QiuYan; Li, Ning

    2011-04-01

    In the swine industry pathogenic infections have a significant negative impact on neonatal survival. Piglets fed with human lysozyme, a natural antibiotic, might be more resistant to gastrointestinal infections. Here we describe the generation of transgenic swine expressing recombinant human lysozyme by somatic cell nuclear transfer. Three cloned female pigs were born, one of which expressed rhLZ at 0.32 ± 0.01 μg/ml in milk, 50-fold higher than that of the pig native lysozyme. Both the transgenic gilts and their progeny appear healthy. Introducing human lysozyme into pigs' milk has a potential to benefit the piglets by enhancing immune function and defending against pathogenic bacteria, thereby increasing the new born survival rate. This advance could be of great value to commercial swine producers.

  2. Kinetic Roughening Transition and Energetics of Tetragonal Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    Interpretation of lysozyme crystal growth rates using well-established physical theories enabled the discovery of a phenomenon possibly indicative of kinetic roughening. For example, lysozyme crystals grown above a critical supersaturation sigma, (where supersaturation sigma = ln c/c(sub eq), c = the protein concentration and c(sub eq) = the solubility concentration) exhibit microscopically rough surfaces due to the continuous addition of growth units anywhere on the surface of a crystal. The rate of crystal growth, V(sub c), for the continuous growth process is determined by the continuous flux of macromolecules onto a unit area of the crystal surface, a, from a distance, xi, per unit time due to diffusion, and a probability of attachment onto the crystal surface, expressed. Based upon models applied, the energetics of lysozyme crystal growth was determined. The magnitudes of the energy barriers of crystal growth for both the (110) and (101) faces of tetragonal lysozyme crystals are compared. Finally, evidence supportive of the kinetic roughening hypothesis is presented.

  3. Chronic exposure to water pollutant trichloroethylene increased epigenetic drift in CD4+ T cells

    PubMed Central

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Reisfeld, Brad; Zurlinden, Todd J; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A

    2016-01-01

    Aim: Autoimmune disease and CD4+ T-cell alterations are induced in mice exposed to the water pollutant trichloroethylene (TCE). We examined here whether TCE altered gene-specific DNA methylation in CD4+ T cells as a possible mechanism of immunotoxicity. Materials & methods: Naive and effector/memory CD4+ T cells from mice exposed to TCE (0.5 mg/ml in drinking water) for 40 weeks were examined by bisulfite next-generation DNA sequencing. Results: A probabilistic model calculated from multiple genes showed that TCE decreased methylation control in CD4+ T cells. Data from individual genes fitted to a quadratic regression model showed that TCE increased gene-specific methylation variance in both CD4 subsets. Conclusion: TCE increased epigenetic drift of specific CpG sites in CD4+ T cells. PMID:27092578

  4. Effects of Trichothecene Production on the Plant Defense Response and Fungal Physiology: Overexpression of the Trichoderma arundinaceum tri4 Gene in T. harzianum

    PubMed Central

    Cardoza, R. E.; McCormick, S. P.; Malmierca, M. G.; Olivera, E. R.; Alexander, N. J.; Monte, E.

    2015-01-01

    Trichothecenes are fungal sesquiterpenoid compounds, the majority of which have phytotoxic activity. They contaminate food and feed stocks, resulting in potential harm to animals and human beings. Trichoderma brevicompactum and T. arundinaceum produce trichodermin and harzianum A (HA), respectively, two trichothecenes that show different bioactive properties. Both compounds have remarkable antibiotic and cytotoxic activities, but in addition, trichodermin is highly phytotoxic, while HA lacks this activity when analyzed in vivo. Analysis of Fusarium trichothecene intermediates led to the conclusion that most of them, with the exception of the hydrocarbon precursor trichodiene (TD), have a detectable phytotoxic activity which is not directly related to the structural complexity of the intermediate. In the present work, the HA intermediate 12,13-epoxytrichothec-9-ene (EPT) was produced by expression of the T. arundinaceum tri4 gene in a transgenic T. harzianum strain that already produces TD after transformation with the T. arundinaceum tri5 gene. Purified EPT did not show antifungal or phytotoxic activity, while purified HA showed both antifungal and phytotoxic activities. However, the use of the transgenic T. harzianum tri4 strain induced a downregulation of defense-related genes in tomato plants and also downregulated plant genes involved in fungal root colonization. The production of EPT by the transgenic tri4 strain raised levels of erg1 expression and reduced squalene accumulation while not affecting levels of ergosterol. Together, these results indicate the complex interactions among trichothecene intermediates, fungal antagonists, and host plants. PMID:26150463

  5. Variability of lysozyme and lactoferrin bioactive protein concentrations in equine milk in relation to LYZ and LTF gene polymorphisms and expression.

    PubMed

    Cieslak, Jakub; Wodas, Lukasz; Borowska, Alicja; Sadoch, Jan; Pawlak, Piotr; Puppel, Kamila; Kuczynska, Beata; Mackowski, Mariusz

    2017-05-01

    Equine milk is considered to be an interesting product for human nutrition, mainly owing to its low allergenicity and significant amounts of bioactive proteins, including lysozyme (LYZ) and lactoferrin (LTF). The present study assessed the effect of genetic factors on LYZ and LTF concentration variability in mare's milk. Significant effects of horse breed and lactation stage on milk LYZ and LTF contents were observed. The highest level of LTF and the lowest concentration of LYZ were recorded for the Polish Warmblood Horse breed. The highest amounts of both proteins were found for the earliest investigated time point of lactation (5th week). Altogether 13 (nine novel) polymorphisms were found in the 5'-flanking regions of both genes, but they showed no significant relationship with milk LYZ and LTF contents. Several associations were found between selected SNPs and the LYZ gene relative transcript level. While the present study indicated the existence of intra- and interbreed variability of LYZ and LTF contents in mare's milk, this variation is rather unrelated to the 5'-flanking variants of genes encoding both proteins. This study is a good introduction for broader investigations focused on the genetic background for variability of bioactive protein contents in mare's milk. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Phase equilibria in the lysozyme-ammonium sulfate-water system.

    PubMed

    Moretti, J J; Sandler, S I; Lenhoff, A M

    2000-12-05

    Ternary phase diagrams were measured for lysozyme in ammonium sulfate solutions at pH values of 4 and 8. Lysozyme, ammonium sulfate, and water mass fractions were assayed independently by UV spectroscopy, barium chloride titration, and lyophilization respectively, with mass balances satisfied to within 1%. Protein crystals, flocs, and gels were obtained in different regions of the phase diagrams, and in some cases growth of crystals from the gel phase or from the supernatant after floc removal was observed. These observations, as well as a discontinuity in protein solubility between amorphous floc precipitate and crystal phases, indicate that the crystal phase is the true equilibrium state. The ammonium sulfate was generally found to partition unequally between the supernatant and the dense phase, in disagreement with an assumption often made in protein phase equilibrium studies. The results demonstrate the potential richness of protein phase diagrams as well as the uncertainties resulting from slow equilibration. Copyright 2000 John Wiley & Sons, Inc.

  7. Thermal denaturing of mutant lysozyme with both the OPLSAA and the CHARMM force fields.

    PubMed

    Eleftheriou, Maria; Germain, Robert S; Royyuru, Ajay K; Zhou, Ruhong

    2006-10-18

    Biomolecular simulations enabled by massively parallel supercomputers such as BlueGene/L promise to bridge the gap between the currently accessible simulation time scale and the experimental time scale for many important protein folding processes. In this study, molecular dynamics simulations were carried out for both the wild-type and the mutant hen lysozyme (TRP62GLY) to study the single mutation effect on lysozyme stability and misfolding. Our thermal denaturing simulations at 400-500 K with both the OPLSAA and the CHARMM force fields show that the mutant structure is indeed much less stable than the wild-type, which is consistent with the recent urea denaturing experiment (Dobson et al. Science 2002, 295, 1719-1722; Nature 2003, 424, 783-788). Detailed results also reveal that the single mutation TRP62GLY first induces the loss of native contacts in the beta-domain region of the lysozyme protein at high temperatures, and then the unfolding process spreads into the alpha-domain region through Helix C. Even though the OPLSAA force field in general shows a more stable protein structure than does the CHARMM force field at high temperatures, the two force fields examined here display qualitatively similar results for the misfolding process, indicating that the thermal denaturing of the single mutation is robust and reproducible with various modern force fields.

  8. High-pressure protein crystallography of hen egg-white lysozyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Hiroyuki; Nagae, Takayuki; Watanabe, Nobuhisa, E-mail: nobuhisa@nagoya-u.jp

    The crystal structure of hen egg-white lysozyme (HEWL) was analyzed under pressures of up to 950 MPa. The high pressure modified the conformation of the molecule and induced a novel phase transition in the tetragonal crystal of HEWL. Crystal structures of hen egg-white lysozyme (HEWL) determined under pressures ranging from ambient pressure to 950 MPa are presented. From 0.1 to 710 MPa, the molecular and internal cavity volumes are monotonically compressed. However, from 710 to 890 MPa the internal cavity volume remains almost constant. Moreover, as the pressure increases to 950 MPa, the tetragonal crystal of HEWL undergoes a phasemore » transition from P4{sub 3}2{sub 1}2 to P4{sub 3}. Under high pressure, the crystal structure of the enzyme undergoes several local and global changes accompanied by changes in hydration structure. For example, water molecules penetrate into an internal cavity neighbouring the active site and induce an alternate conformation of one of the catalytic residues, Glu35. These phenomena have not been detected by conventional X-ray crystal structure analysis and might play an important role in the catalytic activity of HEWL.« less

  9. Transcriptomic analysis of mouse EL4 T cells upon T cell activation and in response to protein synthesis inhibition via cycloheximide treatment.

    PubMed

    Lim, Pek Siew; Hardy, Kristine; Peng, Kaiman; Shannon, Frances M

    2016-03-01

    T cell activation involves the recognition of a foreign antigen complexed to the major histocompatibility complex on the antigen presenting T cell to the T cell receptor. This leads to activation of signaling pathways, which ultimately leads to induction of key cytokine genes responsible for eradication of foreign antigens. We used the mouse EL4 T cell as a model system to study genes that are induced as a result of T cell activation using phorbol myristate acetate (PMA) and calcium ionomycin (I) as stimuli. We were also interested to examine the importance of new protein synthesis in regulating the expression of genes involved in T cell activation. Thus we have pre-treated mouse EL4 T cells with cycloheximide, a protein synthesis inhibitor, and left the cells unstimulated or stimulated with PMA/I for 4 h. We performed microarray expression profiling of these cells to correlate the gene expression with chromatin state of T cells upon T cell activation [1]. Here, we detail further information and analysis of the microarray data, which shows that T cell activation leads to differential expression of genes and inducible genes can be further classified as primary and secondary response genes based on their protein synthesis dependency. The data is available in the Gene Expression Omnibus under accession number GSE13278.

  10. Isolation and characterization of a c-type lysozyme from the nurse shark.

    PubMed

    Hinds Vaughan, Nichole; Smith, Sylvia L

    2013-12-01

    Lysozyme is a ubiquitous antibacterial enzyme that occurs in numerous invertebrate and vertebrate species. Three forms have been described c-type, g-type and i-type which differ in primary structure. Shark lysozyme has not been characterized; here we report on the isolation and characterization of lysozyme from unstimulated shark (Ginglymostoma cirratum) leukocytes and provide amino acid sequence data across the highly conserved active site of the molecule identifying it to be a c-type lysozyme. A leukocyte lysate was applied either (a) to the first of two sequential DE-52 cellulose columns or alternatively, (b) to a DEAE-Sepharose column. Lysozyme activity in lysate and active fractions was identified by zones of lysis of Micrococcus lysodeikticus cell walls on lysoplates and zones of growth inhibition in agar diffusion assays using Planococcus citreus as the target organism. SDS-PAGE analysis revealed a 14 kDa protein which was identified as lysozyme by mass spectroscopic analysis of peptides, reactivity against anti-HEWL antibodies on a Western blot, hydrolysis of M. lysodeikticus cell walls, and inhibition of growth of P. citreus on AU-gel blots in which the area of growth inhibition correlated to a 14 kDa protein. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Optimization of cold-adapted lysozyme production from the psychrophilic yeast Debaryomyces hansenii using statistical experimental methods.

    PubMed

    Wang, Quanfu; Hou, Yanhua; Yan, Peisheng

    2012-06-01

    Statistical experimental designs were employed to optimize culture conditions for cold-adapted lysozyme production of a psychrophilic yeast Debaryomyces hansenii. In the first step of optimization using Plackett-Burman design (PBD), peptone, glucose, temperature, and NaCl were identified as significant variables that affected lysozyme production, the formula was further optimized using a four factor central composite design (CCD) to understand their interaction and to determine their optimal levels. A quadratic model was developed and validated. Compared to the initial level (18.8 U/mL), the maximum lysozyme production (65.8 U/mL) observed was approximately increased by 3.5-fold under the optimized conditions. Cold-adapted lysozymes production was first optimized using statistical experimental methods. A 3.5-fold enhancement of microbial lysozyme was gained after optimization. Such an improved production will facilitate the application of microbial lysozyme. Thus, D. hansenii lysozyme may be a good and new resource for the industrial production of cold-adapted lysozymes. © 2012 Institute of Food Technologists®

  12. 2,4-Dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading gene cluster in the soybean root-nodulating bacterium Bradyrhizobium elkanii USDA94.

    PubMed

    Hayashi, Shohei; Sano, Tomoki; Suyama, Kousuke; Itoh, Kazuhito

    2016-01-01

    Herbicides 2,4-dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading Bradyrhizobium strains possess tfdAα and/or cadABC as degrading genes. It has been reported that root-nodulating bacteria belonging to Bradyrhizobium elkanii also have tfdAα and cadA like genes but lack the ability to degrade these herbicides and that the cadA genes in 2,4-D-degrading and non-degrading Bradyrhizobium are phylogenetically different. In this study, we identified cadRABCK in the genome of a type strain of soybean root-nodulating B. elkanii USDA94 and demonstrated that the strain could degrade the herbicides when cadABCK was forcibly expressed. cadABCK-cloned Escherichia coli also showed the degrading ability. Because co-spiked phenoxyacetic acid (PAA) could induce the degradation of 2,4-D in B. elkanii USDA94, the lack of degrading ability in this strain was supposed to be due to the low inducing potential of the herbicides for the degrading gene cluster. On the other hand, tfdAα from B. elkanii USDA94 showed little potential to degrade the herbicides, but it did for 4-chlorophenoxyacetic acid and PAA. The 2,4-D-degrading ability of the cad cluster and the inducing ability of PAA were confirmed by preparing cadA deletion mutant. This is the first study to demonstrate that the cad cluster in the typical root-nodulating bacterium indeed have the potential to degrade the herbicides, suggesting that degrading genes for anthropogenic compounds could be found in ordinary non-degrading bacteria. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Viability of murine norovirus in salads and dressings and its inactivation using heat-denatured lysozyme.

    PubMed

    Takahashi, Hajime; Tsuchiya, Tomoki; Takahashi, Michiko; Nakazawa, Moemi; Watanabe, Tomoka; Takeuchi, Akira; Kuda, Takashi; Kimura, Bon

    2016-09-16

    In recent years, a number of food poisoning outbreaks due to the contamination of norovirus in ready-to-eat (RTE) foods such as salads have been reported, and this issue is regarded as a global problem. The risk of contamination of fresh vegetables with norovirus has been previously reported, but the survivability of norovirus that contaminates salads remains unknown. In addition, there have been limited reports on the control of norovirus in food products by using inactivating agents. In this study, the viability of norovirus in various types of salads and dressings was examined using murine norovirus strain 1 (MNV-1) as a surrogate for the closely related human norovirus. In addition, the inactivation of MNV-1 in salads was examined using heat-denatured lysozyme, which had been reported to inactivate norovirus. MNV-1 was inoculated in 4 types of salads (coleslaw, thousand island salad, vinaigrette salad, egg salad) and 3 types of dressings (mayonnaise, thousand island dressing, vinaigrette dressing), stored at 4°C for 5days. The results revealed that in the vinaigrette dressing, the infectivity of MNV-1 decreased by 2.6logPFU/mL in 5days, whereas in the other dressings and salads, the infectivity of MNV-1 did not show any significant decrease. Next, 1% heat-denatured lysozyme was added to the 4 types of salads, and subsequently it was found that in 2 types of salads (thousand island salad, vinaigrette salad), the infectivity of MNV-1 decreased by >4.0logPFU/g, whereas in coleslaw salad, a decrease of 3.0logPFU/g was shown. However, in egg salads, the infectivity of MNV-1 did not show such decrease. These results suggest that norovirus can survive for 5days in contaminated salads. Further, these findings also indicated that heat-denatured lysozyme had an inactivating effect on norovirus, even in salads. In the future, heat-denatured lysozyme can be used as a novel norovirus-inactivating agent, although it is essential to investigate the mechanism of inactivating

  14. DArT Markers Effectively Target Gene Space in the Rye Genome.

    PubMed

    Gawroński, Piotr; Pawełkowicz, Magdalena; Tofil, Katarzyna; Uszyński, Grzegorz; Sharifova, Saida; Ahluwalia, Shivaksh; Tyrka, Mirosław; Wędzony, Maria; Kilian, Andrzej; Bolibok-Brągoszewska, Hanna

    2016-01-01

    Large genome size and complexity hamper considerably the genomics research in relevant species. Rye ( Secale cereale L.) has one of the largest genomes among cereal crops and repetitive sequences account for over 90% of its length. Diversity Arrays Technology is a high-throughput genotyping method, in which a preferential sampling of gene-rich regions is achieved through the use of methylation sensitive restriction enzymes. We obtained sequences of 6,177 rye DArT markers and following a redundancy analysis assembled them into 3,737 non-redundant sequences, which were then used in homology searches against five Pooideae sequence sets. In total 515 DArT sequences could be incorporated into publicly available rye genome zippers providing a starting point for the integration of DArT- and transcript-based genomics resources in rye. Using Blast2Go pipeline we attributed putative gene functions to 1101 (29.4%) of the non-redundant DArT marker sequences, including 132 sequences with putative disease resistance-related functions, which were found to be preferentially located in the 4RL and 6RL chromosomes. Comparative analysis based on the DArT sequences revealed obvious inconsistencies between two recently published high density consensus maps of rye. Furthermore we demonstrated that DArT marker sequences can be a source of SSR polymorphisms. Obtained data demonstrate that DArT markers effectively target gene space in the large, complex, and repetitive rye genome. Through the annotation of putative gene functions and the alignment of DArT sequences relative to reference genomes we obtained information, that will complement the results of the studies, where DArT genotyping was deployed, by simplifying the gene ontology and microcolinearity based identification of candidate genes.

  15. Allelic variation of soybean flower color gene W4 encoding dihydroflavonol 4-reductase 2.

    PubMed

    Yan, Fan; Di, Shaokang; Rojas Rodas, Felipe; Rodriguez Torrico, Tito; Murai, Yoshinori; Iwashina, Tsukasa; Anai, Toyoaki; Takahashi, Ryoji

    2014-03-06

    Flower color of soybean is primarily controlled by six genes, viz., W1, W2, W3, W4, Wm and Wp. This study was conducted to investigate the genetic and chemical basis of newly-identified flower color variants including two soybean mutant lines, 222-A-3 (near white flower) and E30-D-1 (light purple flower), a near-isogenic line (Clark-w4), flower color variants (T321 and T369) descended from the w4-mutable line and kw4 (near white flower, Glycine soja). Complementation tests revealed that the flower color of 222-A-3 and kw4 was controlled by the recessive allele (w4) of the W4 locus encoding dihydroflavonol 4-reductase 2 (DFR2). In 222-A-3, a single base was deleted in the first exon resulting in a truncated polypeptide consisting of 24 amino acids. In Clark-w4, base substitution of the first nucleotide of the fourth intron abolished the 5' splice site, resulting in the retention of the intron. The DFR2 gene of kw4 was not expressed. The above results suggest that complete loss-of-function of DFR2 gene leads to near white flowers. Light purple flower of E30-D-1 was controlled by a new allele at the W4 locus, w4-lp. The gene symbol was approved by the Soybean Genetics Committee. In E30-D-1, a single-base substitution changed an amino acid at position 39 from arginine to histidine. Pale flowers of T369 had higher expression levels of the DFR2 gene. These flower petals contained unique dihydroflavonols that have not yet been reported to occur in soybean and G. soja. Complete loss-of-function of DFR2 gene leads to near white flowers. A new allele of the W4 locus, w4-lp regulates light purple flowers. Single amino acid substitution was associated with light purple flowers. Flower petals of T369 had higher levels of DFR2 gene expression and contained unique dihydroflavonols that are absent in soybean and G. soja. Thus, mutants of the DFR2 gene have unique flavonoid compositions and display a wide variety of flower color patterns in soybean, from near white, light purple

  16. Unfolding mechanism of lysozyme in various urea solutions: Insights from fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Bang; Zhang, Hongjia; Xi, Wenying; Zhao, Liqing; Liang, Li; Chen, Yantao

    2014-11-01

    Fluorescence spectroscopic technique is very popular in exploring the folding/unfolding process of proteins. In this paper, unfolding process of hen egg-white lysozyme was investigated in various denaturing solutions. Firstly, polymer solution theory was employed to comprehend the dependence of fluorescence quenching effect on protein concentration, and dynamic contact concentration was suggested as a critical value for related fluorescence experiment. Secondly, it was found that urea alone could not completely unfold lysozyme but did when together with DTT or HCl. Lysozyme was destabilized in concentrated urea solution, but still could maintain its spatial structure. Phase diagram of fluorescence intensities revealed that HCl could enhance the denaturing capacity of urea, resulting in the emergence of intermediate state in the thermodynamic unfolding process of lysozyme.

  17. Adsorption of lysozyme to phospholipid and meibomian lipid monolayer films.

    PubMed

    Mudgil, Poonam; Torres, Margaux; Millar, Thomas J

    2006-03-15

    It is believed that a lipid layer forms the outer layer of the pre-ocular tear film and this layer helps maintain tear film stability by lowering its surface tension. Proteins of the aqueous layer of the tear film (beneath the lipid layer) may also contribute to reducing surface tension by adsorbing to, or penetrating the lipid layer. The purpose of this study was to compare the penetration of lysozyme, a tear protein, into films of meibomian lipids and phospholipids held at different surface pressures to determine if lysozyme were part of the surface layer of the tear film. Films of meibomian lipids or phospholipids were spread onto the surface of a buffered aqueous subphase. Films were compressed to particular pressures and lysozyme was injected into the subphase. Changes in surface pressure were monitored to determine adsorption or penetration of lysozyme into the surface film. Lysozyme penetrated a meibomian lipid film at all pressures tested (max=20 mN/m). It also penetrated phosphatidylglycerol, phosphatidylserine or phosphatidylethanolamine lipid films up to a pressure of 20 mN/m. It was not able to penetrate a phosphatidylcholine film at pressures >or=10 mN/m irrespective of the temperature being at 20 or 37 degrees C. However, it was able to penetrate it at very low pressures (<10 mN/m). Epifluorescence microscopy showed that the protein either adsorbs to or penetrates the lipid layer and the pattern of mixing depended upon the lipid at the surface. These results indicate that lysozyme is present at the surface of the tear film where it contributes to decreasing the surface tension by adsorbing and penetrating the meibomian lipids. Thus it helps to stabilize the tear film.

  18. Effects of Trichothecene Production on the Plant Defense Response and Fungal Physiology: Overexpression of the Trichoderma arundinaceum tri4 Gene in T. harzianum.

    PubMed

    Cardoza, R E; McCormick, S P; Malmierca, M G; Olivera, E R; Alexander, N J; Monte, E; Gutiérrez, S

    2015-09-01

    Trichothecenes are fungal sesquiterpenoid compounds, the majority of which have phytotoxic activity. They contaminate food and feed stocks, resulting in potential harm to animals and human beings. Trichoderma brevicompactum and T. arundinaceum produce trichodermin and harzianum A (HA), respectively, two trichothecenes that show different bioactive properties. Both compounds have remarkable antibiotic and cytotoxic activities, but in addition, trichodermin is highly phytotoxic, while HA lacks this activity when analyzed in vivo. Analysis of Fusarium trichothecene intermediates led to the conclusion that most of them, with the exception of the hydrocarbon precursor trichodiene (TD), have a detectable phytotoxic activity which is not directly related to the structural complexity of the intermediate. In the present work, the HA intermediate 12,13-epoxytrichothec-9-ene (EPT) was produced by expression of the T. arundinaceum tri4 gene in a transgenic T. harzianum strain that already produces TD after transformation with the T. arundinaceum tri5 gene. Purified EPT did not show antifungal or phytotoxic activity, while purified HA showed both antifungal and phytotoxic activities. However, the use of the transgenic T. harzianum tri4 strain induced a downregulation of defense-related genes in tomato plants and also downregulated plant genes involved in fungal root colonization. The production of EPT by the transgenic tri4 strain raised levels of erg1 expression and reduced squalene accumulation while not affecting levels of ergosterol. Together, these results indicate the complex interactions among trichothecene intermediates, fungal antagonists, and host plants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Coassembly of Lysozyme and Amphiphilic Biomolecules Driven by Unimer-Aggregate Equilibrium.

    PubMed

    Tao, Yuanyuan; Ma, Xiaoteng; Cai, Yaqian; Liu, Li; Zhao, Hanying

    2018-04-12

    Synthesis and self-assembly of bioconjugates composed of proteins and synthetic molecules have been widely studied because of the potential applications in medicine, biotechnology, and nanotechnology. One of the challenging research studies in this area is to develop organic solvent-free approaches to the synthesis and self-assembly of amphiphilic bioconjugates. In this research, dialysis-assisted approach, a method based on unimer-aggregate equilibrium, was applied in the coassembly of lysozyme and conjugate of cholesterol and glutathione (Ch-GSH). In phosphate buffer solution, amphiphilic Ch-GSH conjugate self-assembles into vesicles, and the vesicle solution is dialyzed against lysozyme solution. Negatively charged Ch-GSH unimers produced in the unimer-vesicle exchange equilibrium, diffuse across the dialysis membrane and have electrostatic interaction with positively charged lysozyme, resulting in the formation of Ch-GSH-lysozyme bioconjugate. Above a critical concentration, the three-component bioconjugate molecules self-assemble into bioactive vesicles.

  20. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.

  1. Cytosolic T3-binding protein modulates dynamic alteration of T3-mediated gene expression in cells.

    PubMed

    Takeshige, Keiko; Sekido, Takashi; Kitahara, Jun-ichirou; Ohkubo, Yousuke; Hiwatashi, Dai; Ishii, Hiroaki; Nishio, Shin-ichi; Takeda, Teiji; Komatsu, Mitsuhisa; Suzuki, Satoru

    2014-01-01

    μ-Crystallin (CRYM) is also known as NADPH-dependent cytosolic T3-binding protein. A study using CRYM-null mice suggested that CRYM stores triiodothyronine (T3) in tissues. We previously established CRYM-expressing cells derived from parental GH3 cells. To examine the precise regulation of T3-responsive genes in the presence of CRYM, we evaluated serial alterations of T3-responsive gene expression by changing pericellular T3 concentrations in the media. We estimated the constitutive expression of three T3-responsive genes, growth hormone (GH), deiodinase 1 (Dio1), and deiodinase 2 (Dio2), in two cell lines. Subsequently, we measured the responsiveness of these three genes at 4, 8, 16, and 24 h after adding various concentrations of T3. We also estimated the levels of these mRNAs 24 and 48 h after removing T3. The levels of constitutive expression of GH and Dio1 were low and high in C8 cells, respectively, while Dio2 expression was not significantly different between GH3 and C8 cells. When treated with T3, Dio2 expression was significantly enhanced in C8 cells, while there were no differences in GH or Dio1 expression between GH3 and C8 cell lines. In contrast, removal of T3 retained the mRNA expression of GH and Dio2 in C8 cells. These results suggest that CRYM expression increases and sustains the T3 responsiveness of genes in cells, especially with alteration of the pericellular T3 concentration. The heterogeneity of T3-related gene expression is dependent on cellular CRYM expression in cases of dynamic changes in pericellular T3 concentration.

  2. The solubility of hen egg-white lysozyme

    NASA Technical Reports Server (NTRS)

    Howard, Sandra B.; Twigg, Pamela J.; Baird, James K.; Meehan, Edward J.

    1988-01-01

    The equilibrium solubility of chicken egg-white lysozyme in the presence of crystalline solid state was determined as a function of NaCl concentration, pH, and temperature. The solubility curves obtained represent a region of the lysozyme phase diagram. This diagram makes it possible to determine the supersaturation of a given set of conditions or to achieve identical supersaturations by different combinations of parameters. The temperature dependence of the solubility permits the evaluation of Delta-H of crystallization. The data indicate a negative heat of crystallization for the tetragonal crystal form but a positive heat of crystallization for the high-temperature orthorhombic form.

  3. The effects of temperature and NaCl concentration on tetragonal lysozyme face growth rates

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc Lee

    1994-01-01

    Measurements were made of the (110) and (101) face growth rates of the tetragonal form of hen egg white lysozyme at 0.1M sodium acetate buffer, pH 4.0, from 4 to 22 C and with 3.0%, 5.0%, and 7.0% NaCl used as the precipitating salt. The data were collected at supersaturation ratios ranging from approximately 4 to approximately 63. Both decreasing temperature and increasing salt concentrations shifted plots of the growth rate versus C/C(sat) to the right, i.e. higher supersaturations were required for comparable growth rates. The observed trends in the growth data are counter to those expected from the solubility data. If tetragonal lysozyme crystal growth is by addition of ordered aggregates from the solution, then the observed growth data could be explained as a result of the effects of lowered temperature and increased salt concentration on the kinetics and equilibrium processes governing protein-protein interactions in solution. The data indicate that temperature would be a more tractable means of controlling the growth rate for tetragonal lysozyme crystals contrary to the usual practice in, e.g., vapor diffusion protein crystal growth, where both the precipitant and protein concentrations are simultaneously increased. However, the available range for control is dependent upon the protein concentration, with the greatest growth rate control being at the lower concentration.

  4. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets.

    PubMed

    Muller, Laurent; Mitsuhashi, Masato; Simms, Patricia; Gooding, William E; Whiteside, Theresa L

    2016-02-04

    Tumor cell-derived exosomes (TEX) suppress functions of immune cells. Here, changes in the gene profiles of primary human T lymphocytes exposed in vitro to exosomes were evaluated. CD4(+) Tconv, CD8(+) T or CD4(+) CD39(+) Treg were isolated from normal donors' peripheral blood and co-incubated with TEX or exosomes isolated from supernatants of cultured dendritic cells (DEX). Expression levels of 24-27 immune response-related genes in these T cells were quantified by qRT-PCR. In activated T cells, TEX and DEX up-regulated mRNA expression levels of multiple genes. Multifactorial data analysis of ΔCt values identified T cell activation and the immune cell type, but not exosome source, as factors regulating gene expression by exosomes. Treg were more sensitive to TEX-mediated effects than other T cell subsets. In Treg, TEX-mediated down-regulation of genes regulating the adenosine pathway translated into high expression of CD39 and increased adenosine production. TEX also induced up-regulation of inhibitory genes in CD4(+) Tconv, which translated into a loss of CD69 on their surface and a functional decline. Exosomes are not internalized by T cells, but signals they carry and deliver to cell surface receptors modulate gene expression and functions of human T lymphocytes.

  5. Surface Plasmon Resonance based sensing of lysozyme in serum on Micrococcus lysodeikticus-modified graphene oxide surfaces.

    PubMed

    Vasilescu, Alina; Gáspár, Szilveszter; Gheorghiu, Mihaela; David, Sorin; Dinca, Valentina; Peteu, Serban; Wang, Qian; Li, Musen; Boukherroub, Rabah; Szunerits, Sabine

    2017-03-15

    Lysozyme is an enzyme found in biological fluids, which is upregulated in leukemia, renal diseases as well as in a number of inflammatory gastrointestinal diseases. We present here the development of a novel lysozyme sensing concept based on the use of Micrococcus lysodeikticus whole cells adsorbed on graphene oxide (GO)-coated Surface Plasmon Resonance (SPR) interfaces. M. lysodeikticus is a typical enzymatic substrate for lysozyme. Unlike previously reported sensors which are based on the detection of lysozyme through bioaffinity interactions, the bioactivity of lysozyme will be used here for sensing purposes. Upon exposure to lysozyme containing serum, the integrity of the bacterial cell wall is affected and the cells detach from the GO based interfaces, causing a characteristic decrease in the SPR signal. This allows sensing the presence of clinically relevant concentrations of lysozyme in undiluted serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Heat-denatured lysozyme could be a novel disinfectant for reducing hepatitis A virus and murine norovirus on berry fruit.

    PubMed

    Takahashi, Michiko; Okakura, Yumiko; Takahashi, Hajime; Imamura, Minami; Takeuchi, Akira; Shidara, Hiroyuki; Kuda, Takashi; Kimura, Bon

    2018-02-02

    Hepatitis A virus (HAV) is well known worldwide as a causative virus of acute hepatitis. In recent years, numerous cases of HAV infection caused by HAV-contaminated berries have occurred around the world. Because berries are often consumed without prior heating, reliable disinfection of the raw fruit is important in order to prevent HAV outbreaks. Previous studies have found that murine norovirus strain 1 (MNV-1) and human norovirus GII.4 were inactivated in heat-denatured lysozyme solution. In this study, we investigated whether or not heat-denatured lysozyme is effective in inactivating HAV and whether it could be an effective disinfectant for berries contaminated with HAV or MNV-1. We examined the inactivating effect of heat-denatured lysozyme on three strains of HAV and found that it reduced the infectivity of all three strains. We then immersed blueberries and mixed berries into solutions of HAV or MNV-1, and disinfected them by soaking them in 1% heat-denatured lysozyme for 1min. Consequently, the infectious HAV and MNV-1 contaminating the berries were decreased by >3.1 log units in all samples. Our results demonstrate that heat-denatured lysozyme effectively inactivates HAV and suggest that heat-denatured lysozyme may be an effective disinfectant for berry fruit, which is a potential source of HAV food poisoning. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. DArT Markers Effectively Target Gene Space in the Rye Genome

    PubMed Central

    Gawroński, Piotr; Pawełkowicz, Magdalena; Tofil, Katarzyna; Uszyński, Grzegorz; Sharifova, Saida; Ahluwalia, Shivaksh; Tyrka, Mirosław; Wędzony, Maria; Kilian, Andrzej; Bolibok-Brągoszewska, Hanna

    2016-01-01

    Large genome size and complexity hamper considerably the genomics research in relevant species. Rye (Secale cereale L.) has one of the largest genomes among cereal crops and repetitive sequences account for over 90% of its length. Diversity Arrays Technology is a high-throughput genotyping method, in which a preferential sampling of gene-rich regions is achieved through the use of methylation sensitive restriction enzymes. We obtained sequences of 6,177 rye DArT markers and following a redundancy analysis assembled them into 3,737 non-redundant sequences, which were then used in homology searches against five Pooideae sequence sets. In total 515 DArT sequences could be incorporated into publicly available rye genome zippers providing a starting point for the integration of DArT- and transcript-based genomics resources in rye. Using Blast2Go pipeline we attributed putative gene functions to 1101 (29.4%) of the non-redundant DArT marker sequences, including 132 sequences with putative disease resistance-related functions, which were found to be preferentially located in the 4RL and 6RL chromosomes. Comparative analysis based on the DArT sequences revealed obvious inconsistencies between two recently published high density consensus maps of rye. Furthermore we demonstrated that DArT marker sequences can be a source of SSR polymorphisms. Obtained data demonstrate that DArT markers effectively target gene space in the large, complex, and repetitive rye genome. Through the annotation of putative gene functions and the alignment of DArT sequences relative to reference genomes we obtained information, that will complement the results of the studies, where DArT genotyping was deployed, by simplifying the gene ontology and microcolinearity based identification of candidate genes. PMID:27833625

  8. Influence of the ionic liquid 1-butyl-3-methylimidazolium bromide on amyloid fibrillogenesis in lysozyme: Evidence from photophysical and imaging studies.

    PubMed

    Basu, Anirban; Bhattacharya, Subhash Chandra; Kumar, Gopinatha Suresh

    2018-02-01

    Many proteins can abnormally fold to form pathological amyloid deposits/aggregates that are responsible for various degenerative disorders called amyloidosis. Here we have examined the anti-amyloidogenic potency of an ionic liquid, 1-butyl-3-methylimidazolium bromide, using lysozyme as a model system. Thioflavin T fluorescence assay demonstrated that the ionic liquid suppressed the formation of lysozyme fibrils significantly. This observation was further confirmed by the Congo red assay. Fluorescence microscopy, intrinsic fluorescence studies, nile red fluorescence assay, ANS binding assay and circular dichroism studies also testified diminishing of the fibrillogenesis in the presence of ionic liquid. Formation of amyloid fibrils was also characterized by α to β conformational transition. From far-UV circular dichroism studies it was observed that the β-sheet content of the lysozyme samples decreased in the presence of the ionic liquid which in turn implied that fibrillogenesis was supressed by the ionic liquid. Atomic force microscopy imaging unequivocally established that the ionic liquid attenuated fibrillogenesis in lysozyme. These results may be useful for the development of more effective therapeutics for amyloidosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Activity and conformation of lysozyme in molecular solvents, protic ionic liquids (PILs) and salt-water systems.

    PubMed

    Wijaya, Emmy C; Separovic, Frances; Drummond, Calum J; Greaves, Tamar L

    2016-09-21

    Improving protein stabilisation is important for the further development of many applications in the pharmaceutical, specialty chemical, consumer product and agricultural sectors. However, protein stabilization is highly dependent on the solvent environment and, hence, it is very complex to tailor protein-solvent combinations for stable protein maintenance. Understanding solvent features that govern protein stabilization will enable selection or design of suitable media with favourable solution environments to retain protein native conformation. In this work the structural conformation and activity of lysozyme in 29 solvent systems were investigated to determine the role of various solvent features on the stability of the enzyme. The solvent systems consisted of 19 low molecular weight polar solvents and 4 protic ionic liquids (PILs), both at different water content levels, and 6 aqueous salt solutions. Small angle X-ray scattering, Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to investigate the tertiary and secondary structure of lysozyme along with the corresponding activity in various solvation systems. At low non-aqueous solvent concentrations (high water content), the presence of solvents and salts generally maintained lysozyme in its native structure and enhanced its activity. Due to the presence of a net surface charge on lysozyme, electrostatic interactions in PIL-water systems and salt solutions enhanced lysozyme activity more than the specific hydrogen-bond interactions present in non-ionic molecular solvents. At higher solvent concentrations (lower water content), solvents with a propensity to exhibit the solvophobic effect, analogous to the hydrophobic effect in water, retained lysozyme native conformation and activity. This solvophobic effect was observed particularly for solvents which contained hydroxyl moieties. Preferential solvophobic effects along with bulky chemical structures were postulated to result in less

  10. Molecular Packing, Hydrogen Bonding, and Fast Dynamics in Lysozyme/Trehalose/Glycerol and Trehalose/Glycerol Glasses at Low Hydration.

    PubMed

    Lerbret, Adrien; Affouard, Frédéric

    2017-10-12

    Water and glycerol are well-known to facilitate the structural relaxation of amorphous protein matrices. However, several studies evidenced that they may also limit fast (∼picosecond-nanosecond, ps-ns) and small-amplitude (∼Å) motions of proteins, which govern their stability in freeze-dried sugar mixtures. To determine how they interact with proteins and sugars in glassy matrices and, thereby, modulate their fast dynamics, we performed molecular dynamics (MD) simulations of lysozyme/trehalose/glycerol (LTG) and trehalose/glycerol (TG) mixtures at low glycerol and water concentrations. Upon addition of glycerol and/or water, the glass transition temperature, T g , of LTG and TG mixtures decreases, the molecular packing of glasses is improved, and the mean-square displacements (MSDs) of lysozyme and trehalose either decrease or increase, depending on the time scale and on the temperature considered. A detailed analysis of the hydrogen bonds (HBs) formed between species reveals that water and glycerol may antiplasticize the fast dynamics of lysozyme and trehalose by increasing the total number and/or the strength of the HBs they form in glassy matrices.

  11. Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property.

    PubMed

    Li, Jiwei; Ma, Jianwei; Chen, Shaojuan; Huang, Yudong; He, Jinmei

    2018-08-01

    The large-scale applications of lysozyme in the pharmaceutical industry and food industry require more efficient and cost-effective techniques for its separation/purification. In the present study, graphene oxide (GO) was encapsulated into environmentally benign sodium alginate (SA) to prepare a Ca 2+ crosslinked alginate/graphene oxide composite gel beads (Ca-SA/GO) which were then used to adsorb lysozyme from aqueous solutions. Compared with pure Ca 2+ crosslinked alginate gel beads (Ca-SA), the as-prepared Ca-SA/GO has a lower swelling degree, an improved gel stability in salt solutions, and a higher mechanical performance. This can be explained by the uniform distribution of GO sheets in the Ca-SA matrix and the existence of hydrogen bonding and high interfacial adhesion between GO filler and SA matrix demonstrated by SEM, FTIR, XRD, and TGA. Batch adsorption experiments found that the lysozyme adsorption capacity of Ca-SA/GO can reach 278.28 mg g -1 and it can be regenerated and reused at least 4 times. Moreover, in column adsorption, the Ca-SA/GO showed excellent dynamic adsorption property. With good stability, adsorption capacity, and regeneration ability, the Ca-SA/GO could be a promising adsorbent for lysozyme from aqueous solutions. Copyright © 2018. Published by Elsevier B.V.

  12. Orthorhombic lysozyme crystallization at acidic pH values driven by phosphate binding.

    PubMed

    Plaza-Garrido, Marina; Salinas-Garcia, M Carmen; Camara-Artigas, Ana

    2018-05-01

    The structure of orthorhombic lysozyme has been obtained at 298 K and pH 4.5 using sodium chloride as the precipitant and in the presence of sodium phosphate at a concentration as low as 5 mM. Crystals belonging to space group P2 1 2 1 2 1 (unit-cell parameters a = 30, b = 56, c = 73 Å, α = β = γ = 90.00°) diffracted to a resolution higher than 1 Å, and the high quality of these crystals permitted the identification of a phosphate ion bound to Arg14 and His15. The binding of this ion produces long-range conformational changes affecting the loop containing Ser60-Asn74. The negatively charged phosphate ion shields the electrostatic repulsion of the positively charged arginine and histidine residues, resulting in higher stability of the phosphate-bound lysozyme. Additionally, a low-humidity orthorhombic variant was obtained at pH 4.5, and comparison with those previously obtained at pH 6.5 and 9.5 shows a 1.5 Å displacement of the fifth α-helix towards the active-site cavity, which might be relevant to protein function. Since lysozyme is broadly used as a model protein in studies related to protein crystallization and amyloid formation, these results indicate that the interaction of some anions must be considered when analysing experiments performed at acidic pH values.

  13. Role of T-bet, the master regulator of Th1 cells, in the cytotoxicity of murine CD4+ T cells.

    PubMed

    Eshima, Koji; Misawa, Kana; Ohashi, Chihiro; Iwabuchi, Kazuya

    2018-05-01

    Although CD4 + T cells are generally regarded as helper T cells, some activated CD4 + T cells have cytotoxic properties. Given that CD4 + cytotoxic T lymphocytes (CTLs) often secrete IFN-γ, CTL activity among CD4 + T cells may be attributable to Th1 cells, where a T-box family molecule, T-bet serves as the "master regulator". However, although the essential contribution of T-bet to expression of IFN-γ has been well-documented, it remains unclear whether T-bet is involved in CD4 + T cell-mediated cytotoxicity. In this study, to investigate the ability of T-bet to confer cytolytic activity on CD4 + T cells, the T-bet gene (Tbx21) was introduced into non-cytocidal CD4 + T cell lines and their cytolytic function analyzed. Up-regulation of FasL (CD178), which provided the transfectant with cytotoxicity, was observed in Tbx21transfected CD4 + T cells but not in untransfected parental cells. In one cell line, T-bet transduction also induced perforin gene (Prf1) expression and Tbx21 transfectants efficiently killed Fas - target cells. Although T-bet was found to repress up-regulation of CD40L (CD154), which controls FasL-mediated cytolysis, the extent of CD40L up-regulation on in vitro-differentiated Th1 cells was similar to that on Th2 cells, suggesting the existence of a compensatory mechanism. These results collectively indicate that T-bet may be involved in the expression of genes, such as FasL and Prf1, which confer cytotoxicity on Th1 cells. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  14. Interaction of Lysozyme with Rhodamine B: A combined analysis of spectroscopic & molecular docking.

    PubMed

    Millan, Sabera; Satish, Lakkoji; Kesh, Sandeep; Chaudhary, Yatendra S; Sahoo, Harekrushna

    2016-09-01

    The interaction of Rhodamine B (RB) with Lysozyme (Lys) was investigated by different optical spectroscopic techniques such as absorption, fluorescence, and circular-dichroism (CD), along with molecular docking studies. The fluorescence results (including steady-state and time-resolved mode) revealed that the addition of RB effectively causes strong quenching of intrinsic fluorescence in Lysozyme and mostly, by the static quenching mechanism. Different binding and thermodynamic parameters were calculated at different temperatures and the binding constant value was found to be 2963.54Lmol(-1) at 25°C. The average distance (r0) was found to be 3.31nm according to Förster's theory of non-radiative energy transfer between Lysozyme and RB. The conformational change in Lysozyme during interaction with RB was confirmed from absorbance, synchronous fluorescence, and circular dichroism measurements. Finally, molecular docking studies were done to confirm that the dye binds with Lysozyme. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. [Cytokine-mediated regulation of expression of Gfi1 and U2afll4 genes activated by T-cells with different differentiation status in vitro].

    PubMed

    Yurova, K A; Sokhonevich, N A; Khaziakhmatova, O G; Litvinova, L S

    2016-01-01

    The dose-dependent effects of cytokines (IL-2, IL-7, and IL-15), which have a common g-chain, on mRNA expression of U2afll4 and GFi1 genes involved in regulation of alternative splicing of the Ptprc gene, have been investigated in vitro using T-lymphocyte cultures with different degrees of differentiation. IL-2, IL-7, and IL-15 caused a similar unidirectional inhibitory effect of various severity on restimulated CD45RO+ T-cells exposed to an antigen-independent activation; they caused a dose-dependent decrease of the U2af1l4 gene expression, and an increase of Gfi1 gene expression. This may suggest formation of active forms of the CD45 receptor, and also limitation of the formation of low-molecular short splice variants of the CD45RO receptor. Under conditions of antigen-independent stimulation of naive CD45RA+-cells rIL-7 and IL-15 exhibited opposite effects on U2af1l4 and Gfi1 gene expression. The increase of IL-7 concentrations in the incubation medium of naive cells was accompanied by a decrease in expression of both genes. IL-15 IL-7 exhibited opposite effects. Cytokines possessing a common g-chain (IL-2, IL-7, and IL-15) prevented antigen-independent differentiation of naive T-cells, by preventing the formation of polyclonal "surrogate" cells. In general, the study of the molecular mechanisms of genetic control determining homeostatic processes of T-cells in response to exposure to antigenic or non-antigenic treatments may be important for construction of a general model of self-maintenance and differentiation of immune cells.

  16. Expression of lysozyme in the life history of the house fly (Musca domestica l.).

    PubMed

    Nayduch, Dana; Joyner, Chester

    2013-07-01

    From egg to adult, all life history stages of house flies associate with septic environments teeming with bacteria. House fly lysozyme was first identified in the larval midgut, where it is used for digestion of microbe-rich meals because of its broad-spectrum activity against gram-positive and gram-negative bacteria as well as fungi. This study aimed to determine the temporal expression of lysozyme in the life history of house flies (from egg through adults) on both the mRNA and protein level, and to determine the tissue-specific expression of lysozyme in adult flies induced by feeding Staphylococcus aureus. From 30-min postoviposition through adulthood, all life history stages of the house fly express lysozyme on the mRNA level. In adult flies, lysozyme is expressed both locally in the alimentary canal and systemically in the fat body. Interestingly, we found that during the normal life history of flies, lysozyme protein was only detected in larval stages and older adults, likely because of ingestion of immune-stimulating levels of bacteria, not experienced during egg, pupa, and teneral adult stages. Constitutive expression on the mRNA level implies that this effector is a primary defense molecule in all stages of the house fly life history, and that a mechanism for posttranscriptional control of mature lysozyme enzyme expression may be present. Lysozyme active enzyme primarily serves both a digestive and defensive function in larval and adult flies, and may be a key player in the ability of Musca domestica L. to thrive in microbe-rich environments.

  17. Human tRNA genes function as chromatin insulators

    PubMed Central

    Raab, Jesse R; Chiu, Jonathan; Zhu, Jingchun; Katzman, Sol; Kurukuti, Sreenivasulu; Wade, Paul A; Haussler, David; Kamakaka, Rohinton T

    2012-01-01

    Insulators help separate active chromatin domains from silenced ones. In yeast, gene promoters act as insulators to block the spread of Sir and HP1 mediated silencing while in metazoans most insulators are multipartite autonomous entities. tDNAs are repetitive sequences dispersed throughout the human genome and we now show that some of these tDNAs can function as insulators in human cells. Using computational methods, we identified putative human tDNA insulators. Using silencer blocking, transgene protection and repressor blocking assays we show that some of these tDNA-containing fragments can function as barrier insulators in human cells. We find that these elements also have the ability to block enhancers from activating RNA pol II transcribed promoters. Characterization of a putative tDNA insulator in human cells reveals that the site possesses chromatin signatures similar to those observed at other better-characterized eukaryotic insulators. Enhanced 4C analysis demonstrates that the tDNA insulator makes long-range chromatin contacts with other tDNAs and ETC sites but not with intervening or flanking RNA pol II transcribed genes. PMID:22085927

  18. Refolding of denatured/reduced lysozyme at high concentration with diafiltration.

    PubMed

    Yoshii, H; Furuta, T; Yonehara, T; Ito, D; Linko, Y Y; Linko, P

    2000-06-01

    Refolding of reduced and denatured protein in vitro has been an important issue for both basic research and applied biotechnology. Refolding at low protein concentration requires large volumes of refolding buffer. Among various refolding methods, diafiltration is very useful to control the denaturant and red/ox reagents in a refolding solution. We constructed a refolding procedure of high lysozyme concentration (0.5-10 mg/ml) based on the linear reduction of the urea concentration during diafiltration under oxygen pressure. When the urea concentration in the refolding vessel was decreased from 4 M with a rate of 0.167 M/h, the refolding yields were 85% and 63% at protein concentrations, 5 mg/ml and 10 mg/ml, respectively, after 11 h. This method gave a high productivity of 40.1,microM/h of the refolding lysozyme. The change in refolding yields during the diafiltration could be simulated using the model of Hevehan and Clark.

  19. Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy.

    PubMed

    Ortiz-Aguayo, Dionisia; Del Valle, Manel

    2018-01-26

    This research develops a label-free aptamer biosensor (aptasensor) based on graphite-epoxy composite electrodes (GECs) for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS) technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN)₆] 3- /[Fe(CN)₆] 4- as redox probe. After recording the frequency response, values were fitted to its electric model using the principle of equivalent circuits. The aptasensor showed a linear response up to 5 µM for lysozyme and a limit of detection of 1.67 µM. The sensitivity of the established method was 0.090 µM -1 in relative charge transfer resistance values. The interference response by main proteins, such as bovine serum albumin and cytochrome c, has been also characterized. To finally verify the performance of the developed aptasensor, it was applied to wine analysis.

  20. Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy

    PubMed Central

    2018-01-01

    This research develops a label-free aptamer biosensor (aptasensor) based on graphite-epoxy composite electrodes (GECs) for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS) technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN)6]3−/[Fe(CN)6]4− as redox probe. After recording the frequency response, values were fitted to its electric model using the principle of equivalent circuits. The aptasensor showed a linear response up to 5 µM for lysozyme and a limit of detection of 1.67 µM. The sensitivity of the established method was 0.090 µM−1 in relative charge transfer resistance values. The interference response by main proteins, such as bovine serum albumin and cytochrome c, has been also characterized. To finally verify the performance of the developed aptasensor, it was applied to wine analysis. PMID:29373502

  1. tCRISPRi: tunable and reversible, one-step control of gene expression

    NASA Astrophysics Data System (ADS)

    Li, Xin-Tian; Jun, Yonggun; Erickstad, Michael J.; Brown, Steven D.; Parks, Adam; Court, Donald L.; Jun, Suckjoon

    2016-12-01

    The ability to control the level of gene expression is a major quest in biology. A widely used approach employs deletion of a nonessential gene of interest (knockout), or multi-step recombineering to move a gene of interest under a repressible promoter (knockdown). However, these genetic methods are laborious, and limited for quantitative study. Here, we report a tunable CRISPR-cas system, “tCRISPRi”, for precise and continuous titration of gene expression by more than 30-fold. Our tCRISPRi system employs various previous advancements into a single strain: (1) We constructed a new strain containing a tunable arabinose operon promoter PBAD to quantitatively control the expression of CRISPR-(d)Cas protein over two orders of magnitude in a plasmid-free system. (2) tCRISPRi is reversible, and gene expression is repressed under knockdown conditions. (3) tCRISPRi shows significantly less than 10% leaky expression. (4) Most important from a practical perspective, construction of tCRISPRi to target a new gene requires only one-step of oligo recombineering. Our results show that tCRISPRi, in combination with recombineering, provides a simple and easy-to-implement tool for gene expression control, and is ideally suited for construction of both individual strains and high-throughput tunable knockdown libraries.

  2. Characterization of bioactive recombinant human lysozyme expressed in milk of cloned transgenic cattle.

    PubMed

    Yang, Bin; Wang, Jianwu; Tang, Bo; Liu, Yufang; Guo, Chengdong; Yang, Penghua; Yu, Tian; Li, Rong; Zhao, Jianmin; Zhang, Lei; Dai, Yunping; Li, Ning

    2011-03-16

    There is great potential for using transgenic technology to improve the quality of cow milk and to produce biopharmaceuticals within the mammary gland. Lysozyme, a bactericidal protein that protects human infants from microbial infections, is highly expressed in human milk but is found in only trace amounts in cow milk. We have produced 17 healthy cloned cattle expressing recombinant human lysozyme using somatic cell nuclear transfer. In this study, we just focus on four transgenic cattle which were natural lactation. The expression level of the recombinant lysozyme was up to 25.96 mg/L, as measured by radioimmunoassay. Purified recombinant human lysozyme showed the same physicochemical properties, such as molecular mass and bacterial lysis, as its natural counterpart. Moreover, both recombinant and natural lysozyme had similar conditions for reactivity as well as for pH and temperature stability during in vitro simulations. The gross composition of transgenic and non-transgenic milk, including levels of lactose, total protein, total fat, and total solids were not found significant differences. Thus, our study not only describes transgenic cattle whose milk offers the similar nutritional benefits as human milk but also reports techniques that could be further refined for production of active human lysozyme on a large scale.

  3. Characterization of Bioactive Recombinant Human Lysozyme Expressed in Milk of Cloned Transgenic Cattle

    PubMed Central

    Yang, Bin; Wang, Jianwu; Tang, Bo; Liu, Yufang; Guo, Chengdong; Yang, Penghua; Yu, Tian; Li, Rong; Zhao, Jianmin; Zhang, Lei; Dai, Yunping; Li, Ning

    2011-01-01

    Background There is great potential for using transgenic technology to improve the quality of cow milk and to produce biopharmaceuticals within the mammary gland. Lysozyme, a bactericidal protein that protects human infants from microbial infections, is highly expressed in human milk but is found in only trace amounts in cow milk. Methodology/Principal Findings We have produced 17 healthy cloned cattle expressing recombinant human lysozyme using somatic cell nuclear transfer. In this study, we just focus on four transgenic cattle which were natural lactation. The expression level of the recombinant lysozyme was up to 25.96 mg/L, as measured by radioimmunoassay. Purified recombinant human lysozyme showed the same physicochemical properties, such as molecular mass and bacterial lysis, as its natural counterpart. Moreover, both recombinant and natural lysozyme had similar conditions for reactivity as well as for pH and temperature stability during in vitro simulations. The gross composition of transgenic and non-transgenic milk, including levels of lactose, total protein, total fat, and total solids were not found significant differences. Conclusions/Significance Thus, our study not only describes transgenic cattle whose milk offers the similar nutritional benefits as human milk but also reports techniques that could be further refined for production of active human lysozyme on a large scale. PMID:21436886

  4. Effect of guar gum conjugation on functional, antioxidant and antimicrobial activity of egg white lysozyme.

    PubMed

    Hamdani, Afshan Mumtaz; Wani, Idrees Ahmed; Bhat, Naseer Ahmad; Siddiqi, Raushid Ahmad

    2018-02-01

    This study was undertaken to analyze the effect of conjugation of egg-white lysozyme with guar gum. Lysozyme is an antimicrobial polypeptide that can be used for food preservation. Its antibacterial activity is limited to gram positive bacteria. Conjugation with polysaccharides like guar gum may broaden its activity against gram negatives. Conjugate was developed through Maillard reaction. Assays carried out included sugar estimation, SDS-PAGE, GPC, color, FT-IR, DSC, thermal stability, solubility, emulsifying, foaming and antioxidant activity. In addition, antimicrobial activity of the conjugate was determined against two gram positive (Staphyllococcus aureus and Enterococcus) and two gram negative pathogens (E. coli and Salmonella). Results showed higher functional properties of lysozyme-guar gum conjugate. The antioxidant properties increased from 2.02-35.80% (Inhibition of DPPH) and 1.65-4.93AAE/g (reducing power) upon guar gum conjugation. Conjugate significantly inhibited gram negative bacteria and the antibacterial activity also increased significantly against gram positive pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Variable Lysozyme Transport Dynamics on Oxidatively Functionalized Polystyrene Films.

    PubMed

    Moringo, Nicholas A; Shen, Hao; Tauzin, Lawrence J; Wang, Wenxiao; Bishop, Logan D C; Landes, Christy F

    2017-10-17

    Tuning protein adsorption dynamics at polymeric interfaces is of great interest to many biomedical and material applications. Functionalization of polymer surfaces is a common method to introduce application-specific surface chemistries to a polymer interface. In this work, single-molecule fluorescence microscopy is utilized to determine the adsorption dynamics of lysozyme, a well-studied antibacterial protein, at the interface of polystyrene oxidized via UV exposure and oxygen plasma and functionalized by ligand grafting to produce varying degrees of surface hydrophilicity, surface roughness, and induced oxygen content. Single-molecule tracking indicates lysozyme loading capacities, and surface mobility at the polymer interface is hindered as a result of all functionalization techniques. Adsorption dynamics of lysozyme depend on the extent and the specificity of the oxygen functionalities introduced to the polystyrene surface. Hindered adsorption and mobility are dominated by hydrophobic effects attributed to water hydration layer formation at the functionalized polystyrene surfaces.

  6. Salt induced reduction of lysozyme adsorption at charged interfaces

    NASA Astrophysics Data System (ADS)

    Göhring, Holger; Paulus, Michael; Salmen, Paul; Wirkert, Florian; Kruse, Theresa; Degen, Patrick; Stuhr, Susan; Rehage, Heinz; Tolan, Metin

    2015-06-01

    A study of lysozyme adsorption below a behenic acid membrane and at the solid-liquid interface between aqueous lysozyme solution and a silicon wafer in the presence of sodium chloride is presented. The salt concentration was varied between 1 mmol L-1 and 1000 mmol L-1. X-ray reflectivity data show a clear dependence of the protein adsorption on the salt concentration. Increasing salt concentrations result in a decreased protein adsorption at the interface until a complete suppression at high concentrations is reached. This effect can be attributed to a reduced attractive electrostatic interaction between the positively charged proteins and negatively charged surfaces by charge screening. The measurements at the solid-liquid interfaces show a transition from unoriented order of lysozyme in the adsorbed film to an oriented order with the short protein axis perpendicular to the solid-liquid interface with rising salt concentration.

  7. CD4+ virtual memory: Antigen-inexperienced T cells reside in the naïve, regulatory, and memory T cell compartments at similar frequencies, implications for autoimmunity.

    PubMed

    Marusina, Alina I; Ono, Yoko; Merleev, Alexander A; Shimoda, Michiko; Ogawa, Hiromi; Wang, Elizabeth A; Kondo, Kayo; Olney, Laura; Luxardi, Guillaume; Miyamura, Yoshinori; Yilma, Tilahun D; Villalobos, Itzel Bustos; Bergstrom, Jennifer W; Kronenberg, Daniel G; Soulika, Athena M; Adamopoulos, Iannis E; Maverakis, Emanual

    2017-02-01

    It is widely accepted that central and effector memory CD4 + T cells originate from naïve T cells after they have encountered their cognate antigen in the setting of appropriate co-stimulation. However, if this were true the diversity of T cell receptor (TCR) sequences within the naïve T cell compartment should be far greater than that of the memory T cell compartment, which is not supported by TCR sequencing data. Here we demonstrate that aged mice with far fewer naïve T cells, respond to the model antigen, hen eggwhite lysozyme (HEL), by utilizing the same TCR sequence as their younger counterparts. CD4 + T cell repertoire analysis of highly purified T cell populations from naive animals revealed that the HEL-specific clones displayed effector and central "memory" cell surface phenotypes even prior to having encountered their cognate antigen. Furthermore, HEL-inexperienced CD4 + T cells were found to reside within the naïve, regulatory, central memory, and effector memory T cell populations at similar frequencies and the majority of the CD4 + T cells within the regulatory and memory populations were unexpanded. These findings support a new paradigm for CD4 + T cell maturation in which a specific clone can undergo a differentiation process to exhibit a "memory" or regulatory phenotype without having undergone a clonal expansion event. It also demonstrates that a foreign-specific T cell is just as likely to reside within the regulatory T cell compartment as it would the naïve compartment, arguing against the specificity of the regulatory T cell compartment being skewed towards self-reactive T cell clones. Finally, we demonstrate that the same set of foreign and autoreactive CD4 + T cell clones are repetitively generated throughout adulthood. The latter observation argues against T cell-depleting strategies or autologous stem cell transplantation as therapies for autoimmunity-as the immune system has the ability to regenerate pathogenic clones. Published by

  8. A transcriptome-based model of central memory CD4 T cell death in HIV infection.

    PubMed

    Olvera-García, Gustavo; Aguilar-García, Tania; Gutiérrez-Jasso, Fany; Imaz-Rosshandler, Iván; Rangel-Escareño, Claudia; Orozco, Lorena; Aguilar-Delfín, Irma; Vázquez-Pérez, Joel A; Zúñiga, Joaquín; Pérez-Patrigeon, Santiago; Espinosa, Enrique

    2016-11-22

    Human central memory CD4 T cells are characterized by their capacity of proliferation and differentiation into effector memory CD4 T cells. Homeostasis of central memory CD4 T cells is considered a key factor sustaining the asymptomatic stage of Human Immunodeficiency Virus type 1 (HIV-1) infection, while progression to acquired immunodeficiency syndrome is imputed to central memory CD4 T cells homeostatic failure. We investigated if central memory CD4 T cells from patients with HIV-1 infection have a gene expression profile impeding proliferation and survival, despite their activated state. Using gene expression microarrays, we analyzed mRNA expression patterns in naive, central memory, and effector memory CD4 T cells from healthy controls, and naive and central memory CD4 T cells from patients with HIV-1 infection. Differentially expressed genes, defined by Log 2 Fold Change (FC) ≥ |0.5| and Log (odds) > 0, were used in pathway enrichment analyses. Central memory CD4 T cells from patients and controls showed comparable expression of differentiation-related genes, ruling out an effector-like differentiation of central memory CD4 T cells in HIV infection. However, 210 genes were differentially expressed in central memory CD4 T cells from patients compared with those from controls. Expression of 75 of these genes was validated by semi quantitative RT-PCR, and independently reproduced enrichment results from this gene expression signature. The results of functional enrichment analysis indicated movement to cell cycle phases G1 and S (increased CCNE1, MKI67, IL12RB2, ADAM9, decreased FGF9, etc.), but also arrest in G2/M (increased CHK1, RBBP8, KIF11, etc.). Unexpectedly, the results also suggested decreased apoptosis (increased CSTA, NFKBIA, decreased RNASEL, etc.). Results also suggested increased IL-1β, IFN-γ, TNF, and RANTES (CCR5) activity upstream of the central memory CD4 T cells signature, consistent with the demonstrated milieu in HIV infection

  9. Influence of lysozyme on the precipitation of calcium carbonate: a kinetic and morphologic study

    NASA Astrophysics Data System (ADS)

    Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Alejandro; Dominguez-Vera, Jose M.; Garcia-Ruiz, Juan M.

    2003-05-01

    Several mechanisms have been proposed to explain the interactions between proteins and mineral surfaces, among them a combination of electrostatic, stereochemical interactions and molecular recognition between the protein and the crystal surface. To identify the mechanisms of interaction in the lysozyme-calcium carbonate model system, the effect of this protein on the precipitation kinetics and morphology of calcite crystals was examined. The solution chemistry and morphology of the solid were monitored over time in a set of time-series free-drift experiments in which CaCO 3 was precipitated from solution in a closed system at 25°C and 1 atm total pressure, in the presence and absence of lysozyme. The precipitation of calcite was preceded by the precipitation of a metastable phase that later dissolved and gave rise to calcite as the sole phase. With increasing lysozyme concentration, the nucleation of both the metastable phase and calcite occurred at lower Ω calcite, indicating that lysozyme favored the nucleation of both phases. Calcite growth rate was not affected by the presence of lysozyme, at least at protein concentrations ranging from 0 mg/mL to 10 mg/mL. Lysozyme modified the habit of calcite crystals. The degree of habit modification changed with protein concentration. At lower concentrations of lysozyme, the typical rhombohedral habit of calcite crystals was modified by the expression of {110} faces, which resulted from the preferential adsorption of protein on these faces. With increasing lysozyme concentration, the growth of {110}, {100}, and finally {001} faces was sequentially inhibited. This adsorption sequence may be explained by an electrostatic interaction between lysozyme and calcite, in which the inhibition of the growth of {110}, {100}, and {001} faces could be explained by a combined effect of the density of carbonate groups in the calcite face and the specific orientation (perpendicular) of these carbonate groups with respect to the calcite

  10. fabp4 is central to eight obesity associated genes: a functional gene network-based polymorphic study.

    PubMed

    Bag, Susmita; Ramaiah, Sudha; Anbarasu, Anand

    2015-01-07

    Network study on genes and proteins offers functional basics of the complexity of gene and protein, and its interacting partners. The gene fatty acid-binding protein 4 (fabp4) is found to be highly expressed in adipose tissue, and is one of the most abundant proteins in mature adipocytes. Our investigations on functional modules of fabp4 provide useful information on the functional genes interacting with fabp4, their biochemical properties and their regulatory functions. The present study shows that there are eight set of candidate genes: acp1, ext2, insr, lipe, ostf1, sncg, usp15, and vim that are strongly and functionally linked up with fabp4. Gene ontological analysis of network modules of fabp4 provides an explicit idea on the functional aspect of fabp4 and its interacting nodes. The hierarchal mapping on gene ontology indicates gene specific processes and functions as well as their compartmentalization in tissues. The fabp4 along with its interacting genes are involved in lipid metabolic activity and are integrated in multi-cellular processes of tissues and organs. They also have important protein/enzyme binding activity. Our study elucidated disease-associated nsSNP prediction for fabp4 and it is interesting to note that there are four rsID׳s (rs1051231, rs3204631, rs140925685 and rs141169989) with disease allelic variation (T104P, T126P, G27D and G90V respectively). On the whole, our gene network analysis presents a clear insight about the interactions and functions associated with fabp4 gene network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. [Lysozyme in the treatment of juvenile laryngeal papillomatosis. A new concept in its etiopathogenesis].

    PubMed

    Altamar-Ríos, J

    1990-01-01

    The A. inform about the results achieved with lysozyme chlorhydrate in the treatment of 15 patients with juvenile laryngeal papillomatosis. The lysozyme is an electropositive enzyme which synthesis is related to the degree of proteins and vitamin B complex ingestion. Lysozyme is a component of the immunitary inespecific system, serving to prevent against HPV-DNA at the level of the secretory film of the mucociliary apparatus of the respiratory mucous membrane. Furthermore, lysozyme hydrolyzes the mucopolysaccharide of the connective tissue and inhibits the virus-DNA replication. 100-300 mgr daily during 30-60 days simultaneously with hyperproteic diet and vitamin B complex (after correction of the nutrimental deficiencies) brought about the evanishment of papillomatosis. The A. suggest that the predisposition to infection by virus DNA is primarily of immunitary origin, because of lysozyme deficiency, and secondary due to a low intake of proteins and vitamin B complex.

  12. Protein composition of different sized casein micelles in milk after the binding of lactoferrin or lysozyme.

    PubMed

    Anema, Skelte G; de Kruif, C G Kees

    2013-07-24

    Casein micelles with bound lactoferrin or lysozyme were fractionated into sizes ranging in radius from ∼50 to 100 nm. The κ-casein content decreased markedly and the αS-casein/β-casein content increased slightly as micelle size increased. For lactoferrin, higher levels were bound to smaller micelles. The lactoferrin/κ-casein ratio was constant for all micelle sizes, whereas the lactoferrin/αS-casein and lactoferrin/β-casein ratio decreased with increasing micelle size. This indicates that the lactoferrin was binding to the surface of the casein micelles. For lysozyme, higher levels bound to larger casein micelles. The lysozyme/αS-casein and lysozyme/β-casein ratios were nearly constant, whereas the lysozyme/κ-casein ratio increased with increasing micelle size, indicating that lysozyme bound to αS-casein and β-casein in the micelle core. Lactoferrin is a large protein that cannot enter the casein protein mesh; therefore, it binds to the micelle surface. The smaller lysozyme can enter the protein mesh and therefore binds to the more charged αS-casein and β-casein.

  13. The effects of xylitol and sorbitol on lysozyme- and peroxidase-related enzymatic and candidacidal activities.

    PubMed

    Kim, Bum-Soo; Chang, Ji-Youn; Kim, Yoon-Young; Kho, Hong-Seop

    2015-07-01

    To investigate whether xylitol and sorbitol affect enzymatic and candidacidal activities of lysozyme, the peroxidase system, and the glucose oxidase-mediated peroxidase system. Xylitol and sorbitol were added to hen egg-white lysozyme, bovine lactoperoxidase, glucose oxidase-mediated peroxidase, and whole saliva in solution and on hydroxyapatite surfaces. The enzymatic activities of lysozyme, peroxidase, and glucose oxidase-mediated peroxidase were determined by the turbidimetric method, the NbsSCN assay, and production of oxidized o-dianisidine, respectively. Candidacidal activities were determined by comparing colony forming units using Candida albicans ATCC strains 10231, 11006, and 18804. While xylitol and sorbitol did not affect the enzymatic activity of hen egg-white lysozyme both in solution and on hydroxyapatite surfaces, they did inhibit the enzymatic activity of salivary lysozyme significantly in solution, but not on the surfaces. Xylitol and sorbitol enhanced the enzymatic activities of both bovine lactoperoxidase and salivary peroxidase significantly in a dose-dependent manner in solution, but not on the surfaces. Sorbitol, but not xylitol, inhibited the enzymatic activity of glucose oxidase-mediated peroxidase significantly. Both xylitol and sorbitol did not affect candidacidal activities of hen egg-white lysozyme, the bovine lactoperoxidase system, or the glucose oxidase-mediated bovine lactoperoxidase system. Xylitol and sorbitol inhibited salivary lysozyme activity, but enhanced both bovine lactoperoxidase and salivary peroxidase activities significantly in solution. Xylitol and sorbitol did not augment lysozyme- and peroxidase-related candidacidal activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Study on the interactions between toxic nitroanilines and lysozyme by spectroscopic approaches and molecular modeling.

    PubMed

    Gu, Yunlan; Wang, Yanqing; Zhang, Hongmei

    2018-05-05

    Being exogenous environmental pollutants, nitroanilines (NAs) are highly toxic and have mutagenic and carcinogenic activity. Being lack of studies on interactions between NAs and lysozyme at molecular level, the binding interactions of lysozyme with o-nitroaniline (oNA), m-nitroaniline (mNA) and p-nitroaniline (pNA) were investigated by means of steady-state fluorescence, synchronous fluorescence, UV-vis absorption spectroscopy, as well as molecular modeling. The experimental results revealed that the fluorescence of lysozyme is quenched by oNA and mNA through a static quenching, while the fluorescence quenching triggered by pNA is a combined dynamic and static quenching. The number of binding sites (n) and the binding constant (K b ) corresponding thermodynamic parameters ΔH ⊖ , ΔS ⊖ , ΔG ⊖ at different temperatures were calculated. The reactions between NAs and lysozyme were spontaneous and entropy driven and the binding of NAs to lysozyme induced conformation changes of lysozyme. The difference of the position of -NO 2 group affected the binding and the binding constants K b decreased in the following pattern: K b (pNA) >K b (mNA) >K b (oNA). Molecular docking studies were performed to reveal the most favorable binding sites of NAs on lysozyme. Our recently results could offer mechanistic insights into the nature of the binding interactions between NAs and lysozyme and provide information about the toxicity risk of NAs to human health. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Potential of mean force for human lysozyme camelid vhh hl6 antibody interaction studies

    NASA Astrophysics Data System (ADS)

    Wang, Yeng-Tseng; Liao, Jun-Min; Chen, Cheng-Lung; Su, Zhi-Yuan; Chen, Chang-Hung; Hu, Jeu-Jiun

    2008-04-01

    Calculating antigen-antibody interaction energies is crucial for understanding antigen-antibody associations in immunology. To shed further light into this equation, we study a separation of human lysozyme-camelid vhh hl6 antibody (cAb-HuL6) complex. The c-terminal end-to-end stretching of the lysozyme-antibody complex structures have been studied using potential of mean force (PMF) calculations based on molecular dynamics (MD) and explicit water model. For the lysozyme-antibody complex, there are six important intermediates in the c-terminal extensions process. Inclusion of our simulations may help to understand the binding mechanics of lysozyme-cAb-HuL6 antibody complex.

  16. Rates of Spontaneous Mutation in Bacteriophage T4 Are Independent of Host Fidelity Determinants

    PubMed Central

    Santos, M. E.; Drake, J. W.

    1994-01-01

    Bacteriophage T4 encodes most of the genes whose products are required for its DNA metabolism, and host (Escherichia coli) genes can only infrequently complement mutationally inactivated T4 genes. We screened the following host mutator mutations for effects on spontaneous mutation rates in T4: mutT (destruction of aberrant dGTPs), polA, polB and polC (DNA polymerases), dnaQ (exonucleolytic proofreading), mutH, mutS, mutL and uvrD (methyl-directed DNA mismatch repair), mutM and mutY (excision repair of oxygen-damaged DNA), mutA (function unknown), and topB and osmZ (affecting DNA topology). None increased T4 spontaneous mutation rates within a resolving power of about twofold (nor did optA, which is not a mutator but overexpresses a host dGTPase). Previous screens in T4 have revealed strong mutator mutations only in the gene encoding the viral DNA polymerase and proofreading 3'-exonuclease, plus weak mutators in several polymerase accessory proteins or determinants of dNTP pool sizes. T4 maintains a spontaneous mutation rate per base pair about 30-fold greater than that of its host. Thus, the joint high fidelity of insertion by T4 DNA polymerase and proofreading by its associated 3'-exonuclease appear to determine the T4 spontaneous mutation rate, whereas the host requires numerous additional systems to achieve high replication fidelity. PMID:7851754

  17. Modeling protein-small molecule interactions: structure and thermodynamics of noble gases binding in a cavity in mutant phage T4 lysozyme L99A.

    PubMed

    Mann, G; Hermans, J

    2000-09-29

    The complexes of phage T4 lysozyme L99A with noble gases have been studied by molecular dynamics simulation. In a long simulation of the complex with one Xe atom, the structure was found to undergo global conformation change involving a reversible opening and closing of the entrance to the substrate-binding site, during which the conformations of the N and C-terminal domains varied little. The distributions of Xe positions sampled in dynamics simulations were refined in terms of anisotropic Gaussian distributions via least-squares minimization of the difference between Fourier transforms. In addition, molecular transformation simulations have been applied in order to calculate the binding free energies of Xe, Kr and Ar relative to a standard state at a pressure of 1 bar. A single bound Xe is found to assume an equilibrium distribution over three adjacent preferred sites, while in a two-Xe complex, the two Xe atoms preferentially occupy two of these. The positions of the three sites agree closely with the positions of bound Xe determined in the refined crystal structure of a complex formed at a pressure of 8 bar Xe, and the calculated affinities agree well with the observed partial occupancies. At a pressure of 8 bar, a mixture of one-Xe and two-Xe complexes is present, and similarly for complexes with Kr and Ar, with single occupancy relatively more prevalent with Kr and Ar. (Binding of a third Xe atom is found to be quite unfavorable.) A comparison with simulation results for the binding of benzene to the same site leads to the conclusion that binding of Xe within cavities in proteins is common because of several favorable factors: (1) Xe has a large atomic polarizability; (2) Xe can be applied at a relatively high pressure, i.e. high chemical potential; (3) an unfavorable entropic term related to the need to orient the ligand in the binding site is absent. Finally, it is found that the model's binding energy of a water molecule in the cavity is insufficient to

  18. Heterozygous Submicroscopic Inversions Involving Olfactory Receptor–Gene Clusters Mediate the Recurrent t(4;8)(p16;p23) Translocation

    PubMed Central

    Giglio, Sabrina; Calvari, Vladimiro; Gregato, Giuliana; Gimelli, Giorgio; Camanini, Silvia; Giorda, Roberto; Ragusa, Angela; Guerneri, Silvana; Selicorni, Angelo; Stumm, Marcus; Tonnies, Holger; Ventura, Mario; Zollino, Marcella; Neri, Giovanni; Barber, John; Wieczorek, Dagmar; Rocchi, Mariano; Zuffardi, Orsetta

    2002-01-01

    The t(4;8)(p16;p23) translocation, in either the balanced form or the unbalanced form, has been reported several times. Taking into consideration the fact that this translocation may be undetected in routine cytogenetics, we find that it may be the most frequent translocation after t(11q;22q), which is the most common reciprocal translocation in humans. Case subjects with der(4) have the Wolf-Hirschhorn syndrome, whereas case subjects with der(8) show a milder spectrum of dysmorphic features. Two pairs of the many olfactory receptor (OR)–gene clusters are located close to each other, on both 4p16 and 8p23. Previously, we demonstrated that an inversion polymorphism of the OR region at 8p23 plays a crucial role in the generation of chromosomal imbalances through unusual meiotic exchanges. These findings prompted us to investigate whether OR-related inversion polymorphisms at 4p16 and 8p23 might also be involved in the origin of the t(4;8)(p16;p23) translocation. In seven case subjects (five of whom both represented de novo cases and were of maternal origin), including individuals with unbalanced and balanced translocations, we demonstrated that the breakpoints fell within the 4p and 8p OR-gene clusters. FISH experiments with appropriate bacterial-artificial-chromosome probes detected heterozygous submicroscopic inversions of both 4p and 8p regions in all the five mothers of the de novo case subjects. Heterozygous inversions on 4p16 and 8p23 were detected in 12.5% and 26% of control subjects, respectively, whereas 2.5% of them were scored as doubly heterozygous. These novel data emphasize the importance of segmental duplications and large-scale genomic polymorphisms in the evolution and pathology of the human genome. PMID:12058347

  19. Modified denatured lysozyme effectively solubilizes fullerene c60 nanoparticles in water

    NASA Astrophysics Data System (ADS)

    Siepi, Marialuisa; Politi, Jane; Dardano, Principia; Amoresano, Angela; De Stefano, Luca; Monti, Daria Maria; Notomista, Eugenio

    2017-08-01

    Fullerenes, allotropic forms of carbon, have very interesting pharmacological effects and engineering applications. However, a very low solubility both in organic solvents and water hinders their use. Fullerene C60, the most studied among fullerenes, can be dissolved in water only in the form of nanoparticles of variable dimensions and limited stability. Here the effect on the production of C60 nanoparticles by a native and denatured hen egg white lysozyme, a highly basic protein, has been systematically studied. In order to obtain a denatured, yet soluble, lysozyme derivative, the four disulfides of the native protein were reduced and exposed cysteines were alkylated by 3-bromopropylamine, thus introducing eight additional positive charges. The C60 solubilizing properties of the modified denatured lysozyme proved to be superior to those of the native protein, allowing the preparation of biocompatible highly homogeneous and stable C60 nanoparticles using lower amounts of protein, as demonstrated by dynamic light scattering, transmission electron microscopy and atomic force microscopy studies. This lysozyme derivative could represent an effective tool for the solubilization of other carbon allotropes.

  20. Unfolding and refolding details of lysozyme in the presence of β-casein micelles.

    PubMed

    Wu, Fu-Gen; Luo, Jun-Jie; Yu, Zhi-Wu

    2011-02-28

    In this work, we selected a small globular protein, lysozyme, to study how it unfolds and refolds in the presence of micelles composed of the unstructured β-casein proteins by using microcalorimetry and circular dichroism spectroscopy. It was found that a partially unfolded structure of lysozyme starts to form when the β-casein/lysozyme molar ratio is above 0.7, and the structure forms exclusively when the β-casein/lysozyme molar ratio is above 1.6. This partially unfolded state of lysozyme loses most of its tertiary structure and after heating, the denatured lysozyme molecules are trapped in the charged coatings of β-casein micelles and cannot refold upon cooling. The thus obtained protein complex can be viewed as a kind of special polyelectrolyte complex micelle. The net charge ratios of the two proteins and the ionic strength of the dispersions can significantly modulate the electrostatic and hydrophobic interactions between the two proteins. Our present work may have implications for the nanoparticle protein engineering therapy in the biomedicine field and may provide a better understanding of the principles governing the protein-protein interactions. Besides, the heating-cooling-reheating procedure employed in this work can also be used to study the unfolding and refolding details of the target protein in other protein-protein, protein-polymer and protein-small solute systems.

  1. Comparative Genomics of Four Isosphaeraceae Planctomycetes: A Common Pool of Plasmids and Glycoside Hydrolase Genes Shared by Paludisphaera borealis PX4T, Isosphaera pallida IS1BT, Singulisphaera acidiphila DSM 18658T, and Strain SH-PL62

    PubMed Central

    Ivanova, Anastasia A.; Naumoff, Daniil G.; Miroshnikov, Kirill K.; Liesack, Werner; Dedysh, Svetlana N.

    2017-01-01

    The family Isosphaeraceae accommodates stalk-free planctomycetes with spherical cells, which can be assembled in short chains, long filaments, or aggregates. These bacteria inhabit a wide variety of terrestrial environments, among those the recently described Paludisphaera borealis PX4T that was isolated from acidic boreal wetlands. Here, we analyzed its finished genome in comparison to those of three other members of the Isosphaeraceae: Isosphaera pallida IS1BT, Singulisphaera acidiphila DSM 18658T, and the uncharacterized planctomycete strain SH-PL62. The complete genome of P. borealis PX4T consists of a 7.5 Mb chromosome and two plasmids, 112 and 43 kb in size. Annotation of the genome sequence revealed 5802 potential protein-coding genes of which 2775 could be functionally assigned. The genes encoding metabolic pathways common for chemo-organotrophic bacteria, such as glycolysis, citrate cycle, pentose-phosphate pathway, and oxidative phosphorylation were identified. Several genes involved in the synthesis of peptidoglycan as well as N-methylated ornithine lipids were present in the genome of P. borealis PX4T. A total of 26 giant genes with a size >5 kb were detected. The genome encodes a wide repertoire of carbohydrate-active enzymes (CAZymes) including 44 glycoside hydrolases (GH) and 83 glycosyltransferases (GT) affiliated with 21 and 13 CAZy families, respectively. The most-represented families are GH5, GH13, GH57, GT2, GT4, and GT83. The experimentally determined carbohydrate utilization pattern agrees well with the genome-predicted capabilities. The CAZyme repertoire in P. borealis PX4T is highly similar to that in the uncharacterized planctomycete SH-PL62 and S. acidiphila DSM 18658T, but different to that in the thermophile I. pallida IS1BT. The latter strain has a strongly reduced CAZyme content. In P. borealis PX4T, many of its CAZyme genes are organized in clusters. Contrary to most other members of the order Planctomycetales, all four analyzed

  2. TCRγ4δ1-Engineered αβT Cells Exhibit Effective Antitumor Activity

    PubMed Central

    He, Kangxia; You, Hongqin; Li, Yuxia; Cui, Lianxian; Zhang, Jianmin; He, Wei

    2016-01-01

    T cell engineering with T cell receptors (TCRs) specific for tumors plays an important role in adoptive T cell transfer (ATC) therapy for cancer. Here, we present a novel strategy to redirect peripheral blood-derived αβT cells against tumors via TCRγ4δ1 gene transduction. The broad-spectrum antitumor activity of TCRδ1 cells in innate immunity is dependent on CDR3δ1. TCRγ4δ1-engineered αβT cells were prepared by lentiviral transduction and characterized by analyzing in vitro and in vivo cytotoxicity to tumors, ability of proliferation and cytokine production, and potential role in autoimmunity. Results show that TCRγ4δ1 genes were transduced to approximately 36% of polyclonal αβT cells. TCRγ4δ1-engineered αβT cells exhibited effective in vitro TCRγδ-dependent cytotoxicity against various tumor cells via the perforin-granzyme pathway. They also showed a strong proliferative capacity and robust cytokine production. TCRγ4δ1-engineered αβT cells neither expressed mixed TCR dimers nor bound/killed normal cells in vitro. More important, adoptive transfer of TCRγ4δ1-engineered αβT cells into nude mice bearing a human HepG2 cell line significantly suppressed tumor growth. Our results demonstrate a novel role for TCRγ4δ1 in gene therapy and ATC for cancer. PMID:27463149

  3. Small angle neutron scattering study on the structural variation of lysozyme in bioprotectants

    NASA Astrophysics Data System (ADS)

    Koda, Shota; Takayama, Haruki; Shibata, Tomohiko; Mori, Tatsuya; Kojima, Seiji; Park, In-Sung; Shin, Tae-Gyu

    2015-05-01

    The thermal denaturation and subsequent structural variation of lysozyme in various bioprotectant candidate solutions such as trehalose and choline acetate have been investigated by using small angle neutron scattering and differential scanning calorimetry. The gyration radius shows little change with the addition of additives in a native state at room temperature. On heating the lysozyme solution, a remarkable increase in the gyration radius is observed at temperatures above the denaturation temperature without any bioprotectants. Such an increase is suppressed by the additives owing to the intermolecular interactions between the lysozyme molecules and the bioprotectants of trehalose and choline acetate. The fractal dimension of lysozyme varies slightly with the addition of the bioprotectant solutions, and shows a remarkable drop in the vicinity of the denaturation temperature for all the solutions.

  4. Dynamics of Lysozyme in Trehalose solutions

    NASA Astrophysics Data System (ADS)

    Ghatty, Pavan; Uberbacher, Edward C.

    2008-03-01

    Anhydrobiosis in Tardigrades and Nematodes has been a topic of constant interest and intrigue in the scientific community. An increase in the concentration of Trehalose has been attributed to the ability of some organisms to survive extreme conditions of temperature, pressure and pH. Although there exist many experimental studies attributing this effect to Trehalose, the molecular details governing the interaction between Trehalose and proteins remains unclear. We have conducted a 20ns study of Lysozyme in varying concentrations of Trehalose in water. Strong and weak hydrogen bonds and hydrophobic interactions between water, Trehalose and protein seem to dictate the interactions in the system. We have observed a hydrogen bonded network of Trehalose around the protein entrapping a layer of water between itself and protein. Lysozyme remains in a near-native conformation throughout the simulation giving hints on the ability of Trehalose in preserving the structure of protiens.

  5. Silencing the hsp25 Gene Eliminates Migration Capability of the Highly Metastatic Murine 4T1 Breast Adenocarcinoma Cell

    PubMed Central

    Bausero, Maria A.; Bharti, Ajit; Page, Diana T.; Perez, Kristen D.; Eng, Jason W.-L.; Ordonez, Susana L.; Jantschitsch, Christian; Kindas-Muegge, Ingela; Ciocca, Daniel; Asea, Alexzander

    2006-01-01

    The 25-kDa heat shock protein (Hsp25) is associated with various malignancies and is expressed at high levels in biopsies as well as circulating in the serum of breast cancer patients. In this study, we used RNA interference technology to silence the hsp25 gene in 4T1 breast adenocarcinoma cells, known as a poorly immunogenic, highly metastatic cell line. We demonstrate that transfection of 4T1 cells with short interference RNA-Hsp25 dramatically inhibits proliferation as compared with control transfected cells. In addition, we show that 4T1 cells transfected with short interference RNA-Hsp25 abrogates tumor migration potential by a mechanism that is in part due to the repression of matrix metalloproteinase 9 expression and a concomitant upregulation of its antagonist, tissue inhibitor metalloproteinase 1. Taken together, these findings provide a model system for the study of metastatic potential of tumors and are suggestive of an earlier unrecognized role for Hsp25 in tumor migration. PMID:16340246

  6. Raman mapping of mannitol/lysozyme particles produced via spray drying and single droplet drying.

    PubMed

    Pajander, Jari Pekka; Matero, Sanni; Sloth, Jakob; Wan, Feng; Rantanen, Jukka; Yang, Mingshi

    2015-06-01

    This study aimed to investigate the effect of a model protein on the solid state of a commonly used bulk agent in spray-dried formulations. A series of lysozyme/mannitol formulations were spray-dried using a lab-scale spray dryer. Further, the surface temperature of drying droplet/particles was monitored using the DRYING KINETICS ANALYZER™ (DKA) with controllable drying conditions mimicking the spray-drying process to estimate the drying kinetics of the lysozyme/mannitol formulations. The mannitol polymorphism and the spatial distribution of lysozyme in the particles were examined using X-ray powder diffractometry (XRPD) and Raman microscopy. Partial Least Squares Discriminant Analysis was used for analyzing the Raman microscopy data. XRPD results indicated that a mixture of β-mannitol and α-mannitol was produced in the spray-drying process which was supported by the Raman analysis, whereas Raman analysis indicated that a mixture of α-mannitol and δ-mannitol was detected in the single particles from DKA. In addition Raman mapping indicated that the presence of lysozyme seemed to favor the appearance of α-mannitol in the particles from DKA evidenced by close proximity of lysozyme and mannitol in the particles. It suggested that the presence of lysozyme tend to induce metastable solid state forms upon the drying process.

  7. Curcumin and kaempferol prevent lysozyme fibril formation by modulating aggregation kinetic parameters.

    PubMed

    Borana, Mohanish S; Mishra, Pushpa; Pissurlenkar, Raghuvir R S; Hosur, Ramakrishna V; Ahmad, Basir

    2014-03-01

    Interaction of small molecule inhibitors with protein aggregates has been studied extensively, but how these inhibitors modulate aggregation kinetic parameters is little understood. In this work, we investigated the ability of two potential aggregation inhibiting drugs, curcumin and kaempferol, to control the kinetic parameters of aggregation reaction. Using thioflavin T fluorescence and static light scattering, the kinetic parameters such as amplitude, elongation rate constant and lag time of guanidine hydrochloride-induced aggregation reactions of hen egg white lysozyme were studied. We observed a contrasting effect of inhibitors on the kinetic parameters when aggregation reactions were measured by these two probes. The interactions of these inhibitors with hen egg white lysozyme were investigated using fluorescence quench titration method and molecular dynamics simulations coupled with binding free energy calculations. We conclude that both the inhibitors prolong nucleation of amyloid aggregation through binding to region of the protein which is known to form the core of the protein fibril, but once the nucleus is formed the rate of elongation is not affected by the inhibitors. This work would provide insight into the mechanism of aggregation inhibition by these potential drug molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Polyethyleneimine assisted-two-step polymerization to develop surface imprinted cryogels for lysozyme purification.

    PubMed

    Erol, Kadir; Köse, Kazım; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2016-10-01

    Surface imprinting strategy is one of the promising approaches to synthesize plastic antibodies while overcoming the problems in the protein imprinting research. In this study, we focused our attentions on developing two-step polymerization to imprint on the bare surface employing polyethyleneimine (PEI) assisted-coordination of template molecules, lysozyme. For this aim, we firstly synthesized poly(2-hydroxyethyl methacrylate-glycidyl methacrylate), poly(HEMA-GMA) cryogels as a bare structure. Then, we immobilized PEI onto the cryogels through the addition reaction between GMA and PEI molecules. After that, we determined the amount of free amine (NH2) groups of PEI molecules, subsequently immobilized methacrylate functionalities onto the half of them and another half was used to chelate Cu(II) ions as a mediator between template, lysozyme and PEI groups. After the characterization of the materials developed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and the micro-computed tomography (μCT), we optimized the lysozyme adsorption conditions from aqueous solution. Before performing lysozyme purification from chicken egg white, we evaluated the effects of pH, interaction time, the initial lysozyme concentration, temperature and ionic strength on the lysozyme adsorption. Moreover, the selectivity of surface imprinted cryogels was examined against cytochrome c and bovine serum albumin (BSA) as the competitors. Finally, the mathematical modeling, which was applied to describe the adsorption process, showed that the experimental data is very well-fitted to the Langmuir adsorption isotherm. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

    PubMed

    Xu, Hui; Yan, Yaping; Williams, Mark S; Carey, Gregory B; Yang, Jingxian; Li, Hongmei; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2010-11-01

    MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK) and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.

  10. Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase.

    PubMed Central

    Yen, K M; Karl, M R; Blatt, L M; Simon, M J; Winter, R B; Fausset, P R; Lu, H S; Harcourt, A A; Chen, K K

    1991-01-01

    Pseudomonas mendocina KR1 metabolizes toluene as a carbon source by a previously unknown pathway. The initial step of the pathway is hydroxylation of toluene to form p-cresol by a multicomponent toluene-4-monooxygenase (T4MO) system. The T4MO enzyme system has broad substrate specificity and provides a new opportunity for biodegradation of toxic compounds and bioconversions. Its known activities include conversion of a variety of phenyl compounds into the phenolic derivatives and the complete degradation of trichloroethylene. We have cloned and characterized a gene cluster from KR1 that determines the offO activity. To clone the T4MO genes, KR1 DNA libraries were constructed in Escherichia coli HB101 by using a broad-host-range vector and transferred to a KR1 mutant able to grow on p-cresol but not on toluene. An insert consisting of two SacI fragments of identical size (10.2 kb) was shown to complement the mutant for growth on toluene. One of the SacI fragments, when cloned into the E. coli vector pUC19, was found to direct the synthesis of indigo dye. The indigo-forming property was correlated with the presence of T4MO activity. The T4MO genes were mapped to a 3.6-kb region, and the direction of transcription was determined. DNA sequencing and N-terminal amino acid determination identified a five-gene cluster, tmoABCDE, within this region. Expression of this cluster carrying a single mutation in each gene demonstrated that each of the five genes is essential for T4MO activity. Other evidence presented indicated that none of the tmo genes was involved in the regulation of the tmo gene cluster, in the control of substrate transport for the T4MO system, or in major processing of the products of the tmo genes. It was tentatively concluded that the tmoABCDE genes encode structural polypeptides of the T4MO enzyme system. One of the tmo genes was tentatively identified as a ferredoxin gene. Images PMID:1885512

  11. Effect of ethanol as a co-solvent on the aerosol performance and stability of spray-dried lysozyme.

    PubMed

    Ji, Shuying; Thulstrup, Peter Waaben; Mu, Huiling; Hansen, Steen Honoré; van de Weert, Marco; Rantanen, Jukka; Yang, Mingshi

    2016-11-20

    In the spray drying process, organic solvents can be added to facilitate drying, accommodate certain functional excipients, and modify the final particle characteristics. In this study, lysozyme was used as a model pharmaceutical protein to study the effect of ethanol as a co-solvent on the stability and aerosol performance of spray-dried protein. Lysozyme was dissolved in solutions with various ratios of ethanol and water, and subsequently spray-dried. A change from spherical particles into wrinkled and folded particles was observed upon increasing the ratio of ethanol in the feed. The aerosol performance of the spray-dried lysozyme from ethanol-water solution was improved compared to that from pure water. The conformation of lysozyme in the ethanol-water solution and spray dried powder was altered, but the native structure of lysozyme was restored upon reconstitution in water after the spray drying process. The enzymatic activities of the spray-dried lysozyme showed no significant impact of ethanol; however, the lysozyme enzymatic activity was ca. 25% lower compared to the starting material. In conclusion, the addition of ethanol as a co-solvent in the spray drying feed for lysozyme did not compromise the conformation of the protein after drying, while it improved the inhaled aerosol performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Elasticity and Strength of Biomacromolecular Crystals: Lysozyme

    NASA Technical Reports Server (NTRS)

    Holmes, A. M.; Witherow, W. K.; Chen, L. Q.; Chernov, A. A.

    2003-01-01

    The static Young modulus, E = 0.1 to 0.5 GPa, the crystal critical strength (sigma(sub c)) and its ratio to E,sigma(sub c)/E is approximately 10(exp 3), were measured for the first time for non cross-linked lysozyme crystals in solution. By using a triple point bending apparatus, we also demonstrated that the crystals were purely elastic. Softness of protein crystals built of hard macromolecules (26 GPa for lysozyme) is explained by the large size of the macromolecules as compared to the range of intermolecular forces and by the weakness of intermolecular bonds as compared to the peptide bond strength. The relatively large reported dynamic elastic moduli (approximately 8 GPa) from resonance light scattering should come from averaging over the moduli of intracrystalline water and intra- and intermolecular bonding.

  13. Mollusk genes encoding lysine tRNA (UUU) contain introns.

    PubMed

    Matsuo, M; Abe, Y; Saruta, Y; Okada, N

    1995-11-20

    New intron-containing genes encoding tRNAs were discovered when genomic DNA isolated from various animal species was amplified by the polymerase chain reaction (PCR) with primers based on sequences of rabbit tRNA(Lys). From sequencing analysis of the products of PCR, we found that introns are present in several genes encoding tRNA(Lys) in mollusks, such as Loligo bleekeri (squid) and Octopus vulgaris (octopus). These introns were specific to genes encoding tRNA(Lys)(CUU) and were not present in genes encoding tRNA(Lys)(CUU). In addition, the sequences of the introns were different from one another. To confirm the results of our initial experiments, we isolated and sequenced genes encoding tRNA(Lys)(CUU) and tRNA(Lys)(UUU). The gene for tRNA(Lys)(UUU) from squid contained an intron, whose sequence was the same as that identified by PCR, and the gene formed a cluster with a corresponding pseudogene. Several DNA regions of 2.1 kb containing this cluster appeared to be tandemly arrayed in the squid genome. By contrast, the gene encoding tRNA(Lys)(CUU) did not contain an intron, as shown also by PCR. The tRNA(Lys)(UUU) that corresponded to the analyzed gene was isolated and characterized. The present study provides the first example of an intron-containing gene encoding a tRNA in mollusks and suggests the universality of introns in such genes in higher eukaryotes.

  14. Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1999-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Crystals have also been grown at 4 C in the absence of any other added salts using isoionic lysozyme which was titrated to pH 4.6 with dilute sulfuric acid. Four different crystal forms have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed. Crystals grown at 15 C were generally tetragonal, with space group P4(sub 3)2(sub 1)2. Crystallization at 20 C typically resulted in the formation of orthorhombic crystals, space group P2(sub 1)2(sub 1)2(sub 1). The tetragonal reversible reaction orthorhombic transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20 C and between 100 and 125 mg/ml protein concentration. Crystallization from 1.2 M magnesium sulfate at pH 7.8 gave a trigonal crystal, space group P3(sub 1)2(sub 1), a = b = 87.4, c = 73.7, gamma = 120 deg, which diffracted to 2.8 A. Crystallization from ammonium sulfate at pH 4.6, generally at lower temperatures, was also found to result in a monoclinic form. space group C2, a = 65.6, b = 95.0, c = 41.2, beta = 119.2 deg. A crystal of approximately 0.2 x 0.2 x 0.5 mm grown from bulk solution diffracted to approximately 3.5 A.

  15. Crystallization of chicken egg white lysozyme from assorted sulfate salts

    NASA Astrophysics Data System (ADS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1999-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Crystals have also been grown at 4°C in the absence of any other added salts using isoionic lysozyme which was titrated to pH 4.6 with dilute sulfuric acid. Four different crystal forms have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed. Crystals grown at 15°C were generally tetragonal, with space group P4 32 12. Crystallization at 20°C typically resulted in the formation of orthorhombic crystals, space group P2 12 12 1. The tetragonal ↔ orthorhombic transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20°C and between 100 and 125 mg/ml protein concentration. Crystallization from 1.2 M magnesium sulfate at pH 7.8 gave a trigonal crystal, space group P3 12 1, a= b=87.4, c=73.7, γ=120°, which diffracted to 2.8 Å. Crystallization from ammonium sulfate at pH 4.6, generally at lower temperatures, was also found to result in a monoclinic form, space group C2, a=65.6, b=95.0, c=41.2, β=119.2°. A crystal of ˜0.2×0.2×0.5 mm grown from bulk solution diffracted to ˜3.5 Å.

  16. Alteration of the gene expression profile of T-cell receptor αβ-modified T-cells with diffuse large B-cell lymphoma specificity.

    PubMed

    Zha, Xianfeng; Yin, Qingsong; Tan, Huo; Wang, Chunyan; Chen, Shaohua; Yang, Lijian; Li, Bo; Wu, Xiuli; Li, Yangqiu

    2013-05-01

    Antigen-specific, T-cell receptor (TCR)-modified cytotoxic T lymphocytes (CTLs) that target tumors are an attractive strategy for specific adoptive immunotherapy. Little is known about whether there are any alterations in the gene expression profile after TCR gene transduction in T cells. We constructed TCR gene-redirected CTLs with specificity for diffuse large B-cell lymphoma (DLBCL)-associated antigens to elucidate the gene expression profiles of TCR gene-redirected T-cells, and we further analyzed the gene expression profile pattern of these redirected T-cells by Affymetrix microarrays. The resulting data were analyzed using Bioconductor software, a two-fold cut-off expression change was applied together with anti-correlation of the profile ratios to render the microarray analysis set. The fold change of all genes was calculated by comparing the three TCR gene-modified T-cells and a negative control counterpart. The gene pathways were analyzed using Bioconductor and Kyoto Encyclopedia of Genes and Genomes. Identical genes whose fold change was greater than or equal to 2.0 in all three TCR gene-redirected T-cell groups in comparison with the negative control were identified as the differentially expressed genes. The differentially expressed genes were comprised of 33 up-regulated genes and 1 down-regulated gene including JUNB, FOS, TNF, INF-γ, DUSP2, IL-1B, CXCL1, CXCL2, CXCL9, CCL2, CCL4, and CCL8. These genes are mainly involved in the TCR signaling, mitogen-activated protein kinase signaling, and cytokine-cytokine receptor interaction pathways. In conclusion, we characterized the gene expression profile of DLBCL-specific TCR gene-redirected T-cells. The changes corresponded to an up-regulation in the differentiation and proliferation of the T-cells. These data may help to explain some of the characteristics of the redirected T-cells.

  17. Association of MAP4K4 gene single nucleotide polymorphism with mastitis and milk traits in Chinese Holstein cattle.

    PubMed

    Bhattarai, Dinesh; Chen, Xing; Ur Rehman, Zia; Hao, Xingjie; Ullah, Farman; Dad, Rahim; Talpur, Hira Sajjad; Kadariya, Ishwari; Cui, Lu; Fan, Mingxia; Zhang, Shujun

    2017-02-01

    The objective of the studies presented in this Research Communication was to investigate the association of single nucleotide polymorphisms present in the MAP4K4 gene with different milk traits in dairy cows. Based on previous QTL fine mapping results on bovine chromosome 11, the MAP4K4 gene was selected as a candidate gene to evaluate its effect on somatic cell count and milk traits in ChineseHolstein cows. Milk production traits including milk yield, fat percentage, and protein percentage of each cow were collected using 305 d lactation records. Association between MAP4K4 genotype and different traits and Somatic Cell Score (SCS) was performed using General Linear Regression Model of R. Two SNPs at exon 18 (c.2061T > G and c.2196T > C) with genotype TT in both SNPs were found significantly higher for somatic SCS. We found the significant effect of exon 18 (c.2061T > G) on protein percentage, milk yield and SCS. We identified SNPs at different location of MAP4K4 gene of the cattle and several of them were significantly associated with the somatic cell score and other different milk traits. Thus, MAP4K4 gene could be a useful candidate gene for selection of dairy cattle against mastitis and the identified polymorphisms might potentially be strong genetic markers.

  18. Formation of Silica-Lysozyme Composites Through Co-Precipitation and Adsorption

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Daniela B.; Stawski, Tomasz M.; Tobler, Dominique J.; Wirth, Richard; Peacock, Caroline L.; Benning, Liane G.

    2018-04-01

    Interactions between silica and proteins are crucial for the formation of biosilica and the production of novel functional hybrid materials for a range of industrial applications. The proteins control both precipitation pathway and the properties of the resulting silica-organic composites. Here we present data on the formation of silica-lysozyme composites through two different synthesis approaches (co-precipitation vs. adsorption) and show that the chemical and structural properties of these composites, when analyzed using a combination of synchrotron-based scattering (total scattering and SAXS), spectroscopic, electron microscopy and potentiometric methods vary dramatically. We document that while lysozyme was not incorporated into nor did its presence alter the molecular structure of silica, it strongly enhanced the aggregation of silica particles due to electrostatic and potentially hydrophobic interactions, leading to the formation of composites with characteristics differing from pure silica. The differences increased with increasing lysozyme content for both synthesis approaches. Yet, the absolute changes differ substantially between the two sets of composites, as lysozyme did not just affect aggregation during co-precipitation but also particle growth and likely polymerization during co-precipitation. Our results improve the fundamental understanding of how organic macromolecules interact with dissolved and nanoparticulate silica and how these interactions control the formation pathway of silica-organic composites from sodium silicate solutions, a widely available and cheap starting material.

  19. Toll-Like Receptor 4 Gene Polymorphism C1196T in Polish Women with Postmenopausal Osteoporosis - Preliminary Investigation.

    PubMed

    Kaleta, Beata; Walicka, Magdalena; Sawicka, Ada; Bogołowska-Stieblich, Agata; Górski, Andrzej; Łukaszkiewicz, Jacek; Marcinowska-Suchowierska, Ewa

    2015-01-01

    Postmenopausal osteoporosis is a systemic bone disease characterized by low bone mass after menopause. Bone remodeling is regulated by a number of factors, including the immune system. Toll-like receptors 4 (TLR4) are expressed on bone cells and modify the immune response. TLR4 gene polymorphism may take part in the development of chronic inflammation in women after menopause, which is the cause of severe bone resorption. To examine the frequency of TLR4 C1196T genotypes in postmenopausal osteoporotic and non-osteoporotic Polish women and to investigate the possible relationship between C1196T polymorphism, bone mineral density (BMD) and the incidence of osteoporotic fractures in this group of patients. The study involved 40 postmenopausal women with osteoporosis and 63 healthy postmenopausal non-osteoporotic women. BMD measurements were performed by dual-energy X-ray absorptiometry. DNA was extracted from peripheral blood. Genotyping was performed by real-time PCR using LightSNiP tests with SimpleProbe probes. Melting curve analysis of PCR amplicons enabled the identification of individual C1196T genotypes. C1196T genotype frequencies in the osteoporotic group were 88% for CC and 12% for CT. In the control group, respectively 86% and 14%. We did not observe the TT genotype. There was no association of C1196T genotypes and BMD nor the incidence of fractures but there was a correlation between genotypes and body height (p=0.035, r=0.415). Homozygous subjects for the C-allele had a lower body height with respect to heterozygous subjects. It is unlikely that TLR4 C1196T polymorphism is related to bone mineral density and fracture incidence in Polish osteoporotic women after menopause. However, our data suggests that the C allele may be associated with lower body height in this group. Due to the small number of participants, our observations should be considered as preliminary. Larger studies are needed to confirm our findings.

  20. MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells

    PubMed Central

    Brito, Jose L.R.; Walker, Brian; Jenner, Matthew; Dickens, Nicholas J.; Brown, Nicola J.M.; Ross, Fiona M.; Avramidou, Athanasia; Irving, Julie A.E.; Gonzalez, David; Davies, Faith E.; Morgan, Gareth J.

    2009-01-01

    Background The recurrent immunoglobulin translocation, t(4;14)(p16;q32) occurs in 15% of multiple myeloma patients and is associated with poor prognosis, through an unknown mechanism. The t(4;14) up-regulates fibroblast growth factor receptor 3 (FGFR3) and multiple myeloma SET domain (MMSET) genes. The involvement of MMSET in the pathogenesis of t(4;14) multiple myeloma and the mechanism or genes deregulated by MMSET upregulation are still unclear. Design and Methods The expression of MMSET was analyzed using a novel antibody. The involvement of MMSET in t(4;14) myelomagenesis was assessed by small interfering RNA mediated knockdown combined with several biological assays. In addition, the differential gene expression of MMSET-induced knockdown was analyzed with expression microarrays. MMSET gene targets in primary patient material was analyzed by expression microarrays. Results We found that MMSET isoforms are expressed in multiple myeloma cell lines, being exclusively up-regulated in t(4;14)-positive cells. Suppression of MMSET expression affected cell proliferation by both decreasing cell viability and cell cycle progression of cells with the t(4;14) translocation. These findings were associated with reduced expression of genes involved in the regulation of cell cycle progression (e.g. CCND2, CCNG1, BRCA1, AURKA and CHEK1), apoptosis (CASP1, CASP4 and FOXO3A) and cell adhesion (ADAM9 and DSG2). Furthermore, we identified genes involved in the latter processes that were differentially expressed in t(4;14) multiple myeloma patient samples. Conclusions In conclusion, dysregulation of MMSET affects the expression of several genes involved in the regulation of cell cycle progression, cell adhesion and survival. PMID:19059936

  1. The transcriptome of HIV-1 infected intestinal CD4+ T cells exposed to enteric bacteria

    PubMed Central

    Dillon, Stephanie M.; Phang, Tzu; Lee, Eric J.; Helm, Karen; Kappes, John C.; McCarter, Martin D.

    2017-01-01

    Global transcriptome studies can help pinpoint key cellular pathways exploited by viruses to replicate and cause pathogenesis. Previous data showed that laboratory-adapted HIV-1 triggers significant gene expression changes in CD4+ T cell lines and mitogen-activated CD4+ T cells from peripheral blood. However, HIV-1 primarily targets mucosal compartments during acute infection in vivo. Moreover, early HIV-1 infection causes extensive depletion of CD4+ T cells in the gastrointestinal tract that herald persistent inflammation due to the translocation of enteric microbes to the systemic circulation. Here, we profiled the transcriptome of primary intestinal CD4+ T cells infected ex vivo with transmitted/founder (TF) HIV-1. Infections were performed in the presence or absence of Prevotella stercorea, a gut microbe enriched in the mucosa of HIV-1-infected individuals that enhanced both TF HIV-1 replication and CD4+ T cell death ex vivo. In the absence of bacteria, HIV-1 triggered a cellular shutdown response involving the downregulation of HIV-1 reactome genes, while perturbing genes linked to OX40, PPAR and FOXO3 signaling. However, in the presence of bacteria, HIV-1 did not perturb these gene sets or pathways. Instead, HIV-1 enhanced granzyme expression and Th17 cell function, inhibited G1/S cell cycle checkpoint genes and triggered downstream cell death pathways in microbe-exposed gut CD4+ T cells. To gain insights on these differential effects, we profiled the gene expression landscape of HIV-1-uninfected gut CD4+ T cells exposed to bacteria. Microbial exposure upregulated genes involved in cellular proliferation, MAPK activation, Th17 cell differentiation and type I interferon signaling. Our findings reveal that microbial exposure influenced how HIV-1 altered the gut CD4+ T cell transcriptome, with potential consequences for HIV-1 susceptibility, cell survival and inflammation. The HIV-1- and microbe-altered pathways unraveled here may serve as a molecular blueprint

  2. Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations.

    PubMed

    Jiang, WenZhi; Yang, Bing; Weeks, Donald P

    2014-01-01

    The newly developed CRISPR/Cas9 system for targeted gene knockout or editing has recently been shown to function in plants in both transient expression systems as well as in primary T1 transgenic plants. However, stable transmission of genes modified by the Cas9/single guide RNA (sgRNA) system to the T2 generation and beyond has not been demonstrated. Here we provide extensive data demonstrating the efficiency of Cas9/sgRNA in causing modification of a chromosomally integrated target reporter gene during early development of transgenic Arabidopsis plants and inheritance of the modified gene in T2 and T3 progeny. Efficient conversion of a nonfunctional, out-of-frame GFP gene to a functional GFP gene was confirmed in T1 plants by the observation of green fluorescent signals in leaf tissues as well as the presence of mutagenized DNA sequences at the sgRNA target site within the GFP gene. All GFP-positive T1 transgenic plants and nearly all GFP-negative plants examined contained mutagenized GFP genes. Analyses of 42 individual T2 generation plants derived from 6 different T1 progenitor plants showed that 50% of T2 plants inherited a single T-DNA insert. The efficiency of the Cas9/sgRNA system and stable inheritance of edited genes point to the promise of this system for facile editing of plant genes.

  3. Design and evaluation of a novel nanoparticulate-based formulation encapsulating a HIP complex of lysozyme.

    PubMed

    Gaudana, Ripal; Gokulgandhi, Mitan; Khurana, Varun; Kwatra, Deep; Mitra, Ashim K

    2013-01-01

    Formulation development of protein therapeutics using polymeric nanoparticles has found very little success in recent years. Major formulation challenges include rapid denaturation, susceptibility to lose bioactivity in presence of organic solvents and poor encapsulation in polymeric matrix. In the present study, we have prepared hydrophobic ion pairing (HIP) complex of lysozyme, a model protein, using dextran sulfate (DS) as a complexing polymer. We have optimized the process of formation and dissociation of HIP complex between lysozyme and DS. The effect of HIP complexation on enzymatic activity of lysozyme was also studied. Nanoparticles were prepared and characterized using spontaneous emulsion solvent diffusion method. Furthermore, we have also investigated release of lysozyme from nanoparticles along with its enzymatic activity. Results of this study indicate that nanoparticles can sustain the release of lysozyme without compromising its enzymatic activity. HIP complexation using a polymer may also be employed to formulate sustained release dosage forms of other macromolecules with enhanced encapsulation efficiency.

  4. Characterizing protein activities on the lysozyme and nanodiamond complex prepared for bio applications.

    PubMed

    Perevedentseva, E; Cai, P-J; Chiu, Y-C; Cheng, C-L

    2011-02-01

    Recently, nanodiamond particles have attracted increasing attention as a promising nanomaterial for its biocompatibility, easy functionalization and conjugation with biomolecules, and its superb physical/chemical properties. Nanodiamonds are mainly used as markers for cell imaging, using its fluorescence or Raman signals for detection, and as carriers for drug delivery. For the success of these applications, the biomolecule associated with the nanodiamond has to retain its functionality. In this work, the protein activities of egg white lysozyme adsorbed on nanodiamond particles of different sizes is investigated. The lysozyme nanodiamond complex is used here as a protein model for analyzing its structural conformation changes and, correspondingly, its enzymatic activity after the adsorption. Fourier-transform infrared spectroscopy (FTIR) is used for the analysis of the sensitive protein secondary structure. To access the activities of the adsorbed lysozyme, a fluorescence-based assay is used. The process of adsorption is also analyzed using UV-visible spectroscopic measurements in combination with analysis of nanodiamond properties with FTIR, Raman spectroscopy, and ζ-potential measurements. It is found that the activity of lysozyme upon adsorption depends on the nanodiamond's size and surface properties, and that the nanodiamond particles can be selected and treated, which do not alter the lysozyme functional properties. Such nanodiamonds can be considered convenient nanoparticles for various bioapplications.

  5. Silencing the hsp25 gene eliminates migration capability of the highly metastatic murine 4T1 breast adenocarcinoma cell.

    PubMed

    Bausero, Maria A; Bharti, Ajit; Page, Diana T; Perez, Kristen D; Eng, Jason W-L; Ordonez, Susana L; Asea, Edwina E; Jantschitsch, Christian; Kindas-Muegge, Ingela; Ciocca, Daniel; Asea, Alexzander

    2006-01-01

    The 25-kDa heat shock protein (Hsp25) is associated with various malignancies and is expressed at high levels in biopsies as well as circulating in the serum of breast cancer patients. In this study, we used RNA interference technology to silence the hsp25 gene in 4T1 breast adenocarcinoma cells, known as a poorly immunogenic, highly metastatic cell line. We demonstrate that transfection of 4T1 cells with short interference RNA-Hsp25 dramatically inhibits proliferation as compared with control transfected cells. In addition, we show that 4T1 cells transfected with short interference RNA-Hsp25 abrogates tumor migration potential by a mechanism that is in part due to the repression of matrix metalloproteinase 9 expression and a concomitant upregulation of its antagonist, tissue inhibitor metalloproteinase 1. Taken together, these findings provide a model system for the study of metastatic potential of tumors and are suggestive of an earlier unrecognized role for Hsp25 in tumor migration. Copyright 2006 S. Karger AG, Basel.

  6. Evolution of the CD4 family: teleost fish possess two divergent forms of CD4 in addition to lymphocyte activation gene-3

    USGS Publications Warehouse

    Laing, K.J.; Zou, J.J.; Purcell, M.K.; Phillips, R.; Secombes, C.J.; Hansen, J.D.

    2006-01-01

    The T cell coreceptor CD4 is a transmembrane glycoprotein belonging to the Ig superfamily and is essential for cell-mediated immunity. Two different genes were identified in rainbow trout that resemble mammalian CD4. One (trout CD4) encodes four extracellular Ig domains reminiscent off mammalian CD4, whereas the other (CD4REL) codes for two Ig domains. Structural motifs within the amino acid sequences suggest that the two Ig domains of CD4REL duplicated to generate the four-domain molecule of CD4 and the related gene, lymphocyte activation gene-3. Here we present evidence that both of these molecules in trout are homologous to mammalian CD4 and that teleosts encode an additional CD4 family member, lymphocyte activation gene-3, which is a marker for activated T cells. The syntenic relationships of similar genes in other teleost and non-fish genomes provide evidence for the likely evolution of CD4-related molecules in vertebrates, with CD4REL likely representing the primordial form in fish. Expression of both CD4 genes is highest in the thymus and spleen, and mRNA expression of these genes is limited to surface IgM- lymphocytes, consistent with a role for T cell functionality. Finally, the intracellular regions of both CD4 and CD4REL possess the canonical CXC motif involved in the interaction off CD4 with p56LCK, implying that similar mechanisms for CD4 + T cell activation are present in all vertebrates. Our results therefore raise new questions about T cell development and functionality in lower vertebrates that cannot be answered by current mammalian models and, thus, is of fundamental importance for understanding the evolution of cell-mediated immunity in gnathosomes. Copyright ?? 2006 by The American Association of Immunologists, Inc.

  7. Isoguanine quartets formed by d(T4isoG4T4): tetraplex identification and stability.

    PubMed Central

    Seela, F; Wei, C; Melenewski, A

    1996-01-01

    The self-aggregation of the oligonucleotide d(T4isoG4T4) (1) is investigated. Based on ion exchange HPLC experiments and CD spectroscopy, a tetrameric structure is identified. This structure was formed in the presence of sodium ions and shows almost the same chromatographic mobility on ion exchange HPLC as d(T4G4T4) (2). The ratio of aggregate versus monomer is temperature dependent and the tetraplex of [d(T4isoG4T4)]4 is more stable than that of [d(T4G4T4)]4. A mixture of d(T4isoG4T4) and d(T4G4T4) forms mixed tetraplexes containing strands of d(T4isoG4T4) and d(T4G4T4). PMID:9016664

  8. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts.

    PubMed

    Liang, Miao; Wang, Libing; Liu, Xia; Qi, Wei; Su, Rongxin; Huang, Renliang; Yu, Yanjun; He, Zhimin

    2013-06-21

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts.

  9. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts

    NASA Astrophysics Data System (ADS)

    Liang, Miao; Wang, Libing; Liu, Xia; Qi, Wei; Su, Rongxin; Huang, Renliang; Yu, Yanjun; He, Zhimin

    2013-06-01

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts.

  10. Fluorescence Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Smith, Lori

    1998-01-01

    Fluorescence is one of the most powerful tools available for the study of macromolecules. For example, fluorescence can be used to study self association through methods such as anisotropy (the rotational rate of the molecule in solution), quenching (the accessibility of a bound probe to the bulk solution), and resonance energy transfer (measurement of the distance between two species). Fluorescence can also be used to study the local environment of the probe molecules, and the changes in that environment which accompany crystal nucleation and growth. However fluorescent techniques have been very much underutilized in macromolecular growth studies. One major advantage is that the fluorescent species generally must be at low concentration, typically ca 10-5 to 10-6 M. Thus one can study a very wide range of solution conditions, ranging from very high to very low protein concentration, he latter of which are not readily accessible to scattering techniques. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme (CEWL). Fluorescent probes have been attached to two different sites, ASP 101 and the N-terrninal amine, with a sought for use in different lines of study. Preliminary resonance energy transfer studies have been -carried out using pyrene acetic acid (Ex 340 mn, Em 376 nm) lysozyme as a donor and cascade blue (Ex 377 run, Em 423 nm) labeled lysozyme as an acceptor. The emission of both the pyrene and cascade blue probes was followed as a function of the salt protein concentrations. The data show an increase in cascade blue and a concomitant decrease in the pyrene fluorescence as either the salt or protein concentrations are increased, suggesting that the two species are approaching each other close enough for resonance energy transfer to occur. This data can be analyzed to measure the distance between the probe molecules and, knowing their locations on the protein molecule their distances from and orientations with respect to each

  11. Interaction of lysozyme protein with different sized silica nanoparticles and their resultant structures

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2016-05-01

    The interaction of model protein-lysozyme with three different sized anionic silica nanoparticles has been studied by UV-vis spectroscopy, dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The surface area and curvature of the nanoparticles change with size, which significantly influence their interaction with protein. The lysozyme adsorbs on the surface of the nanoparticles due to electrostatic attraction and leads to the phase transformation from one phase (clear) to two-phase (turbid) of the nanoparticle-protein system. The dominance of lysozyme induced short-range attraction over long-range electrostatic repulsion between nanoparticles is responsible for phase transformation and modeled by the two-Yukawa potential. The magnitude of the attractive interaction increases with the size of the nanoparticles as a result the phase transformation commences relatively at lower concentration of lysozyme. The structure of the nanoparticle-protein system in two-phase is characterized by the diffusion limited aggregate type of mass fractal morphology.

  12. Interaction of lysozyme protein with different sized silica nanoparticles and their resultant structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Indresh, E-mail: iykumarindresh288@gmail.com; Aswal, V. K.; Kohlbrecher, J.

    The interaction of model protein-lysozyme with three different sized anionic silica nanoparticles has been studied by UV-vis spectroscopy, dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The surface area and curvature of the nanoparticles change with size, which significantly influence their interaction with protein. The lysozyme adsorbs on the surface of the nanoparticles due to electrostatic attraction and leads to the phase transformation from one phase (clear) to two-phase (turbid) of the nanoparticle-protein system. The dominance of lysozyme induced short-range attraction over long-range electrostatic repulsion between nanoparticles is responsible for phase transformation and modeled by the two-Yukawa potential. Themore » magnitude of the attractive interaction increases with the size of the nanoparticles as a result the phase transformation commences relatively at lower concentration of lysozyme. The structure of the nanoparticle-protein system in two-phase is characterized by the diffusion limited aggregate type of mass fractal morphology.« less

  13. In Vitro Effect of Lysozyme on Albumin Deposition to Hydrogel Contact Lens Materials.

    PubMed

    Babaei Omali, Negar; Subbaraman, Lakshman N; Heynen, Miriam; Fadli, Zohra; Coles-Brennan, Chantal; Jones, Lyndon W

    2017-11-01

    Albumin deposition on contact lenses could be detrimental to contact lens (CL) wear because this may increase the risk of bacterial binding and reduce comfort. Lysozyme deposition on selected lens materials would reduce albumin deposition on lenses. This study aims to determine if lysozyme deposition on CLs could act as a barrier against subsequent albumin adsorption, using an in vitro model. Six hydrogel CL materials (etafilcon A, polymacon, nelfilcon A, omafilcon A, ocufilcon B, and nesofilcon A) were evaluated. Four CLs of each type were soaked in lysozyme solution for 16 hours at 37°C. Lysozyme-coated lenses were then placed in vials with 1.5 mL of artificial tear solution containing I-labeled albumin for 16 hours at 37°C with shaking. Four uncoated lenses of each type were used as controls. Lenses soaked in radiolabeled albumin were rinsed in a phosphate-buffered saline solution, and radioactive counts were measured directly on lenses using a gamma counter. Albumin uptake on lenses was measured using a calibration curve by plotting radioactive counts versus protein concentration. Results are reported as mean ± SD. Lysozyme-coated etafilcon A lenses exhibited lower levels of deposited albumin than uncoated etafilcon A lenses (58 ± 12 vs. 84 ± 5 ng/lens; P < .05). There were no differences in albumin adsorption between control (uncoated) and lysozyme-coated polymacon (105 ± 10 vs. 110 ± 34 ng/lens), nelfilcon A (51 ± 7 vs. 42 ± 20 ng/lens), omafilcon A (90 ± 20 vs. 80 ± 38 ng/lens), ocufilcon B (87 ± 20 vs. 115 ± 50 ng/lens), and nesofilcon A (170 ± 29 vs. 161 ± 10 ng/lens) lens materials (P > .05). Uncoated nesofilcon A lenses deposited the highest amount of albumin when compared with other uncoated lenses (P < .05). This study demonstrates that lysozyme deposited onto etafilcon A resists the deposition of albumin, which may potentially be beneficial to CL wearers.

  14. Sperm Lysozyme-Like Protein 1 (SLLP1), an intra-acrosomal oolemmal-binding sperm protein, reveals filamentous organization in protein crystal form

    PubMed Central

    Zheng, Heping; Mandal, Arabinda; Shumilin, Igor A.; Chordia, Mahendra D.; Panneerdoss, Subbarayalu; Herr, John C.; Minor, Wladek

    2016-01-01

    Sperm Lysozyme-Like Protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75Å in diameter with a 25Å central pore comprised of six monomers per helix turn repeating every 33Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally-observed SLLP1/SAS1B interaction involved in fertilization. PMID:26198801

  15. The DNA-mimic antirestriction proteins ArdA ColIB-P9, Arn T4, and Ocr T7 as activators of H-NS-dependent gene transcription.

    PubMed

    Melkina, Olga E; Goryanin, Ignatiy I; Zavilgelsky, Gennadii B

    2016-11-01

    The antirestriction proteins ArdA ColIb-P9, Arn T4 and Ocr T7 specifically inhibit type I and type IV restriction enzymes and belong to the family of DNA-mimic proteins because their three-dimensional structure is similar to the double-helical B-form DNA. It is proposed that the DNA-mimic proteins are able to bind nucleoid protein H-NS and alleviate H-NS-silencing of the transcription of bacterial genes. Escherichia coli lux biosensors were constructed by inserting H-NS-dependent promoters into a vector, thereby placing each fragment upstream of the promoterless Photorhabdus luminescens luxCDABE operon. It was demonstrated that the DNA-mimic proteins ArdA, Arn and Ocr activate the transcription of H-NS-dependent promoters of the lux operon of marine luminescent bacteria (mesophilic Aliivibrio fischeri and psychrophilic Aliivibrio logei), and the dps gene from E. coli. It was also demonstrated that the ArdA antirestriction protein, the genes of which are located on transmissive plasmids ColIb-P9, R64, PK101, decreases levels of H-NS silencing of the PluxC promoter during conjugation in the recipient bacteria. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Tissue plasminogen activator (tPA) as a reporter gene in transient gene expression.

    PubMed

    Cheng, S M; Lee, S G; Kalyan, N K; McCloud, S; Levner, M; Hung, P P

    1987-01-01

    Using the gene coding for tissue plasminogen activator (tPA) as a reporter gene, a transient gene expression system has been established. Vectors containing the full-length cDNA of tPA with its signal sequences were introduced into mammalian recipient cells by a modified gene transfer procedure. Thirty hours after transfection, the secreted tPA was found in serum-free medium and measured by a fibrin-agarose plate assay (FAPA). In this assay, tPA converts plasminogen into plasmin which then degrades high-Mr fibrin to produce cleared zones. The sizes of these zones correspond to quantities of tPA. The combination of transient tPA expression system and the FAPA provides a quick, sensitive, quantitative and non-destructive method to examine the strength of eukaryotic regulatory elements in tissue-culture cells.

  17. Inhibitors of Eicosanoid Biosynthesis Influencing the Transcripts Level of sHSP21.4 Gene Induced by Pathogen Infections, in Antheraea pernyi

    PubMed Central

    Zhang, Congfen; Dai, Lishang; Wang, Lei; Qian, Cen; Wei, Guoqing; Li, Jun; Zhu, Baojian; Liu, Chaoliang

    2015-01-01

    Small heat shock proteins (sHSPs) can regulate protein folding and protect cells from stress. To investigate the role of sHSPs in the silk-producing insect Antheraea pernyi response to microorganisms, a sHsp gene termed as Ap-sHSP21.4, was identified. This gene encoded a 21.4 kDa protein which shares the conserved structure of insect sHsps and belongs to sHSP21.4 family. Ap-sHSP21.4 was highly expressed in fat body and up-regulated in midgut and fat body of A. pernyi challenged with Escherichia coli, Beauveria bassiana and nuclear polyhedrosis virus (NPV), which was determined by quantitative real-time PCR. Meanwhile, knock down of Ap-sHSP21.4 with dsRNA result in the decrease at the expression levels of several immune response-related genes (defensin, Dopa decarboxylase, Toll1, lysozyme and Kazal-type serine protease inhibitor). Additionally, the impact of eicosanoid biosynthesis on the expression of Ap-sHSP21.4 response to NPV was determined using qPCR, inhibitors of eicosanoid biosynthesis significantly suppress Ap-HSP21.4 expression upon NPV challenge. All together, Ap-sHSP21.4 was involved in the immunity of A. pernyi against microorganism and possibly mediated by eicosanoids pathway. These results will shed light in the understanding of the pathogen-host interaction in A. pernyi. PMID:25844646

  18. Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements.

    PubMed Central

    Kuehner, D E; Heyer, C; Rämsch, C; Fornefeld, U M; Blanch, H W; Prausnitz, J M

    1997-01-01

    The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4-7 and ionic strength 0.05-5.0 M. Diffusivity data for ionic strengths up to 0.5 M were interpreted in the context of a two-body interaction model for monomers. From this analysis, two potential-of-mean-force parameters, the effective monomer charge, and the Hamaker constant were obtained. At higher ionic strength, the data were analyzed using a model that describes the diffusion coefficient of a polydisperse system of interacting protein aggregates in terms of an isodesmic, indefinite aggregation equilibrium constant. Data analysis incorporated multicomponent virial and hydrodynamic effects. The resulting equilibrium constants indicate that lysozyme does not aggregate significantly as ionic strength increases, even at salt concentrations near the point of salting-out precipitation. PMID:9414232

  19. Polymorphism rs1385129 Within Glut1 Gene SLC2A1 Is Linked to Poor CD4+ T Cell Recovery in Antiretroviral-Treated HIV+ Individuals

    PubMed Central

    Masson, Jesse J. R.; Cherry, Catherine L.; Murphy, Nicholas M.; Sada-Ovalle, Isabel; Hussain, Tabinda; Palchaudhuri, Riya; Martinson, Jeffrey; Landay, Alan L.; Billah, Baki; Crowe, Suzanne M.; Palmer, Clovis S.

    2018-01-01

    Untreated HIV infection is associated with progressive CD4+ T cell depletion, which is generally recovered with combination antiretroviral therapy (cART). However, a significant proportion of cART-treated individuals have poor CD4+ T cell reconstitution. We investigated associations between HIV disease progression and CD4+ T cell glucose transporter-1 (Glut1) expression. We also investigated the association between these variables and specific single nucleotide polymorphisms (SNPs) within the Glut1 regulatory gene AKT (rs1130214, rs2494732, rs1130233, and rs3730358) and in the Glut1-expressing gene SLC2A1 (rs1385129 and rs841853) and antisense RNA 1 region SLC2A1-AS1 (rs710218). High CD4+Glut1+ T cell percentage is associated with rapid CD4+ T cell decline in HIV-positive treatment-naïve individuals and poor T cell recovery in HIV-positive individuals on cART. Evidence suggests that poor CD4+ T cell recovery in treated HIV-positive individuals is linked to the homozygous genotype (GG) associated with SLC2A1 SNP rs1385129 when compared to those with a recessive allele (GA/AA) (odds ratio = 4.67; P = 0.04). Furthermore, poor response to therapy is less likely among Australian participants when compared against American participants (odds ratio: 0.12; P = 0.01) despite there being no difference in prevalence of a specific genotype for any of the SNPs analyzed between nationalities. Finally, CD4+Glut1+ T cell percentage is elevated among those with a homozygous dominant genotype for SNPs rs1385129 (GG) and rs710218 (AA) when compared to those with a recessive allele (GA/AA and AT/TT respectively) (P < 0.04). The heterozygous genotype associated with AKT SNP 1130214 (GT) had a higher CD4+Glut1+ T cell percentage when compared to the dominant homozygous genotype (GG) (P = 0.0068). The frequency of circulating CD4+Glut1+ T cells and the rs1385129 SLC2A1 SNP may predict the rate of HIV disease progression and CD4+ T cell recovery in untreated and

  20. Chicken-type lysozyme in channel catfish: expression analysis, lysozyme activity, and efficacy as immunostimulant against Aeromonas hydrophila infection

    USDA-ARS?s Scientific Manuscript database

    To understand whether chicken-type lysozyme (Lys-c) in channel catfish was induced by infection of Aeromonas hydrophila, the transcriptional levels of Lys-c in skin, gut, liver, spleen, posterior kidney, and blood cells in healthy channel catfish was compared to that in channel catfish infected with...

  1. Chicken-type lysozyme in channel catfish: Expression analysis, lysozyme activity and efficacy as immunostimulant against Aeromonas hydrophila infection

    USDA-ARS?s Scientific Manuscript database

    To understand whether chicken-type lysozyme (Lys-c) in channel catfish was induced by infection of Aeromonas hydrophila, the transcriptional levels of Lys-c in skin, gut, liver, spleen, posterior kidney, and blood cells in healthy channel catfish was compared to that in channel catfish infected with...

  2. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish

    PubMed Central

    Hall, Chris; Flores, Maria Vega; Storm, Thilo; Crosier, Kathy; Crosier, Phil

    2007-01-01

    Background How different immune cell compartments contribute to a successful immune response is central to fully understanding the mechanisms behind normal processes such as tissue repair and the pathology of inflammatory diseases. However, the ability to observe and characterize such interactions, in real-time, within a living vertebrate has proved elusive. Recently, the zebrafish has been exploited to model aspects of human disease and to study specific immune cell compartments using fluorescent reporter transgenic lines. A number of blood-specific lines have provided a means to exploit the exquisite optical clarity that this vertebrate system offers and provide a level of insight into dynamic inflammatory processes previously unavailable. Results We used regulatory regions of the zebrafish lysozyme C (lysC) gene to drive enhanced green fluorescent protein (EGFP) and DsRED2 expression in a manner that completely recapitulated the endogenous expression profile of lysC. Labeled cells were shown by co-expression studies and FACS analysis to represent a subset of macrophages and likely also granulocytes. Functional assays within transgenic larvae proved that these marked cells possess hallmark traits of myelomonocytic cells, including the ability to migrate to inflammatory sources and phagocytose bacteria. Conclusion These reporter lines will have utility in dissecting the genetic determinants of commitment to the myeloid lineage and in further defining how lysozyme-expressing cells participate during inflammation. PMID:17477879

  3. Modeling the Growth Rates of Tetragonal Lysozyme Crystal Faces

    NASA Technical Reports Server (NTRS)

    Li, Meirong; Nadarajah, Arunan; Pusey, Marc L.

    1998-01-01

    The measured macroscopic growth rates of the (110) and (101) faces of tetragonal lysozyme show an unexpectedly complex dependence on the supersaturation. The growth rates decay asymptotically to zero when the supersaturation is lowered to zero and increase rapidly when the supersaturation is increased. When supersaturations are increased still further the growth rates attain a maximum before starting to decrease. However, growth of these crystals is known to proceed by the classical dislocation and 2D nucleation growth mechanisms. This anomaly can be explained if growth is assumed to occur not by monomer units but by lysozyme aggregates. Analysis of the molecular packing of these crystals revealed that they were constructed of strongly bonded 4(sub 3) helices, while weaker bonds were responsible for binding the helices to each other. It follows that during crystal growth the stronger bonds are formed before the weaker ones. Thus, the growth of these crystals could be viewed as a two step process: aggregate growth units corresponding to the 4(sub 3) helix are first formed in the bulk solution by stronger intermolecular bonds and then attached to the crystal face by weaker bonds on dislocation hillocks or 2D islands. This will lead to a distribution of aggregates in the solution with monomers and lower order aggregates being predominant at low supersaturations and higher order aggregates being predominant at high supersaturations. If the crystal grows mostly by higher order aggregates, such as tetramers and octamers, it would explain the anomalous dependence of the growth rates on the supersaturation. Besides the analysis of molecular packing, a comprehensive analysis of the measured (110) and (101) growth rates was also undertaken in this study. The distribution of aggregates in lysozyme nutrient solutions at various solution conditions were determined from reversible aggregation reactions at equilibrium. The supersaturation was defined for each aggregate species

  4. Highly efficient gene transfer using a retroviral vector into murine T cells for preclinical chimeric antigen receptor-expressing T cell therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke

    Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period ofmore » pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. - Highlights: • We established highly efficient gene transduction protocols for murine T cells. • CD8{sup +} CAR-T cells had antigen-specific cytotoxic activity. • CD4{sup +} CAR-T cells secreted multiple cytokines by antigen stimulation. • This finding can contribute to the development of T-cell biology and immunotherapy.« less

  5. An electron microscopy study of the diversity of Streptococcus sanguinis cells induced by lysozyme in vitro.

    PubMed

    Hao, Yuqing; Li, Li; Li, Wei; Zhou, Xuedong; Lu, Junjun

    2010-01-01

    Bacterial virulence could be altered by the antimicrobial agents of the host. Our aim was to identify the damage and survival of Streptococcus sanguinis induced by lysozymes in vitro and to analyse the potential of oral microorganisms to shirk host defences, which cause infective endocarditis. S. sanguinis ATCC 10556 received lysozyme at concentrations of 12.5, 25, 50 and 100 microg/ml. Cells were examined by electron microscopy. The survival was assessed by colony counting and construction of a growth curve. Challenged by lysozymes, cells mainly exhibited cell wall damage, which seemed to increase with increasing lysozyme concentration and longer incubation period in the presence of ions. Cells with little as well as apparent lesion were observed under the same treatment set, and anomalous stick and huge rotund bodies were occasionally observed. After the removal of the lysozyme, some damaged cells could be reverted to its original form with brain heart infusion (BHI), and their growth curve was similar to the control cells. After further incubation in BHI containing lysozyme, S. sanguinis cell damage stopped progressing, and their growth curve was also similar to the control cells. The results suggested that the S. sanguinis lesions caused by the lysozyme in the oral cavity may be nonhomogeneous and that some damaged cells could self-repair and survive. It also indicated that S. sanguinis with damaged cell walls may survive and be transmitted in the bloodstream.

  6. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  7. Role of miRNAs in CD4 T cell plasticity during inflammation and tolerance

    PubMed Central

    Sethi, Apoorva; Kulkarni, Neeraja; Sonar, Sandip; Lal, Girdhari

    2013-01-01

    Gene expression is tightly regulated in a tuneable, cell-specific and time-dependent manner. Recent advancement in epigenetics and non-coding RNA (ncRNA) revolutionized the concept of gene regulation. In order to regulate the transcription, ncRNA can promptly response to the extracellular signals as compared to transcription factors present in the cells. microRNAs (miRNAs) are ncRNA (~22 bp) encoded in the genome, and present as intergenic or oriented antisense to neighboring genes. The strategic location of miRNA in coding genes helps in the coupled regulation of its expression with host genes. miRNA together with complex machinery called RNA-induced silencing complex (RISC) interacts with target mRNA and degrade the mRNA or inhibits the translation. CD4 T cells play an important role in the generation and maintenance of inflammation and tolerance. Cytokines and chemokines present in the inflamed microenvironment controls the differentiation and function of various subsets of CD4 T cells [Th1, Th2, Th17, and regulatory CD4 T cells (Tregs)]. Recent studies suggest that miRNAs play an important role in the development and function of all subsets of CD4 T cells. In current review, we focused on how various miRNAs are regulated by cell's extrinsic and intrinsic signaling, and how miRNAs affect the transdifferentiation of subsets of CD4 T cell and controls their plasticity during inflammation and tolerance. PMID:23386861

  8. Synergistic activity of lysozyme and antifungal agents against Candida albicans biofilms on denture acrylic surfaces.

    PubMed

    Samaranayake, Y H; Cheung, B P K; Parahitiyawa, N; Seneviratne, C J; Yau, J Y Y; Yeung, K W S; Samaranayake, L P

    2009-02-01

    Denture related oral candidiasis is a recalcitrant fungal infection not easily resolved by topical antifungals. The antimycotic protein lysozyme, in saliva is an important host defense mechanism although its activity against Candida biofilms on denture acrylic has not been evaluated. (i) To establish a clinically relevant denture acrylic assay model to develop standardized Candida albicans biofilms, and (ii) assess the inhibitory effects of lysozyme alone and, the latter combined with antifungals (nystatin, amphotericin B, ketoconazole and 5-fluorocytosine) on sessile Candida cells and, finally (iii) to visualize the accompanying ultrastructural changes. The rotating-disc biofilm reactor was used to develop standardized 48 h Candida biofilms on acrylic discs in YNB/100 mM glucose medium and the biofilm metabolic activity was monitored using a tetrazolium reduction assay. The biofilm metabolic activity was similar in 18 identical denture acrylic discs (p<0.05) thus validating the rotating-disc biofilm model. Very low concentrations of lysozyme (6.25 microg/ml) significantly (p<0.01) inhibited Candida biofilm formation indicating that lysozyme may likely regulate intra-oral Candida biofilm development. Although 100 microg/ml lysozyme killed 45% of sessile Candida cells, further increasing its concentration (up to 240 microg/ml) had no such effect. Nystatin, amphotericin B, and ketoconazole in association with 100 microg/ml lysozyme exhibited effective synergistic killing of biofilm Candida in comparison to drug-free controls. Scanning electron and confocal scanning laser microscopy analysis confirmed the latter trends. Our results indicate that agents found in biological fluids such as lysozyme could be a safe adjunct to antifungals in future treatment strategies for recalcitrant candidal infections.

  9. Tetragonal Lysozyme Interactions Studied by Site Directed Mutagenesis

    NASA Technical Reports Server (NTRS)

    Crawford, Lisa; Karr, Laurel; Pusey, Marc

    1998-01-01

    A number of recent experimental and theoretical studies have indicated that tetragonal lysozyme crystal growth proceeds by the addition of aggregates, formed by reversible self association of the solute molecules in the bulk'solution. Periodic bond chain and atomic force microscopy studies have indicated that the probable growth unit is at minimum a 43 tetramer, and most likely an octamer composed of two complete turns about the 4(sub 3) axis. If these results are correct, then there are intermolecular interactions which are only formed in the solution and others only formed at the joining of the growth unit to the crystal surface. We have set out to study these interactions, and the correctness of this hypothesis, using site directed mutagenesis of specific amino acid residues involved in the different bonds. We had initially expressed wild type lysozyme in S. cervasiae with yields of approximately 5 mg/L, which were eventually raised to approximately 40 mg/L. We are now moving the expression to the Pichia system, with anticipated yields of 300 to greater than 500 mg/L, comparable to what can be obtained from egg whites. An additional advantage of using recombinant protein is the greater genetic homogeneity of the material obtained and the absence of any other contaminating egg proteins. The first mutation experiments are TYR 23 yields PHE or ALA and ASN 113 yields ALA or ASP. Both TYR 23 and ASN 113 form part of the postulated dimerization intermolecular binding site which lead to the formation of the 4(sub 3) helix. Tyrosine also participates in an intermolecular hydrogen bond with ARG 114. The results of these and subsequent experiments will be discussed.

  10. Negative regulation of NKG2D expression by IL-4 in memory CD8 T cells.

    PubMed

    Ventre, Erwan; Brinza, Lilia; Schicklin, Stephane; Mafille, Julien; Coupet, Charles-Antoine; Marçais, Antoine; Djebali, Sophia; Jubin, Virginie; Walzer, Thierry; Marvel, Jacqueline

    2012-10-01

    IL-4 is one of the main cytokines produced during Th2-inducing pathologies. This cytokine has been shown to affect a number of immune processes such as Th differentiation and innate immune responses. However, the impact of IL-4 on CD8 T cell responses remains unclear. In this study, we analyzed the effects of IL-4 on global gene expression profiles of Ag-induced memory CD8 T cells in the mouse. Gene ontology analysis of this signature revealed that IL-4 regulated most importantly genes associated with immune responses. Moreover, this IL-4 signature overlapped with the set of genes preferentially expressed by memory CD8 T cells over naive CD8 T cells. In particular, IL-4 downregulated in vitro and in vivo in a STAT6-dependent manner the memory-specific expression of NKG2D, thereby increasing the activation threshold of memory CD8 T cells. Furthermore, IL-4 impaired activation of memory cells as well as their differentiation into effector cells. This phenomenon could have an important clinical relevance as patients affected by Th2 pathologies such as parasitic infections or atopic dermatitis often suffer from viral-induced complications possibly linked to inefficient CD8 T cell responses.

  11. Effect of Encapsulation on Antimicrobial Activity of
Herbal Extracts with Lysozyme

    PubMed Central

    Matouskova, Petra; Bokrova, Jitka; Benesova, Pavla

    2016-01-01

    Summary Resistance of microorganisms to antibiotics has increased. The use of natural components with antimicrobial properties can be of great significance to reduce this problem. The presented work is focused on the study of the effect of encapsulation of selected plant and animal antimicrobial substances (herbs, spices, lysozyme and nisin) on their activity and stability. Antimicrobial components were packaged into liposomes and polysaccharide particles (alginate, chitosan and starch). Antimicrobial activity was tested against two Gram-positive (Bacillus subtilis and Micrococcus luteus) and two Gram-negative (Escherichia coli and Serratia marcescens) bacteria. Encapsulation was successful in all types of polysaccharide particles and liposomes. The prepared particles exhibited very good long-term stability, especially in aqueous conditions. Antimicrobial activity was retained in all types of particles. Liposomes with encapsulated herb and spice extracts exhibited very good inhibitory effect against all tested bacterial strains. Most of herbal extracts had very good antimicrobial effect against the tested Gram-negative bacterial strains, while Gram-positive bacteria were more sensitive to lysozyme particles. Thus, particles with co-encapsulated herbs and lysozyme are more active against different types of bacteria, and more stable and more effective during long-term storage. Particles with encapsulated mixture of selected plant extracts and lysozyme could be used as complex antimicrobial preparation with controlled release in the production of food and food supplements, pharmaceutical and cosmetic industries. PMID:27956862

  12. Actin - Lysozyme Interactions in Model Cystic Fibrosis Sputum

    NASA Astrophysics Data System (ADS)

    Sanders, Lori; Slimmer, Scott; Angelini, Thomas; Wong, Gerard C. L.

    2003-03-01

    Cystic fibrosis sputum is a complex fluid consisting of mucin (a glycoprotein), lysozyme (a cationic polypeptide), water, salt, as well as a high concentration of a number of anionic biological polyelectrolytes such as DNA and F-actin. The interactions governing these components are poorly understood, but may have important clinical consequences. For example, the formation of these biological polyelectrolytes into ordered gel phases may contribute significantly to the observed high viscosity of CF sputum. In this work, a number of model systems containing actin, lysozyme, and KCl were created to simulate CF sputum in vitro. These model systems were studied using small angle x-ray scattering and confocal fluorescence microscopy. Preliminary results will be presented. This work was supported by NSF DMR-0071761, the Beckman Young Investigator Program, and the Cystic Fibrosis Foundation.

  13. Sperm Lysozyme-Like Protein 1 (SLLP1), an intra-acrosomal oolemmal-binding sperm protein, reveals filamentous organization in protein crystal form.

    PubMed

    Zheng, H; Mandal, A; Shumilin, I A; Chordia, M D; Panneerdoss, S; Herr, J C; Minor, W

    2015-07-01

    Sperm lysozyme-like protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15 Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75 Å in diameter with a 25 Å central pore comprised of six monomers per helix turn repeating every 33 Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan-binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan-binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally observed SLLP1/SAS1B interaction involved in fertilization. © 2015 American Society of Andrology and European Academy of Andrology.

  14. tRNA gene copy number variation in humans

    PubMed Central

    Iben, James R.; Maraia, Richard J.

    2014-01-01

    The human tRNAome consists of more than 500 interspersed tRNA genes comprising 51 anticodon families of largely unequal copy number. We examined tRNA gene copy number variation (tgCNV) in six individuals; two kindreds of two parents and a child, using high coverage whole genome sequence data. Such differences may be important because translation of some mRNAs is sensitive to the relative amounts of tRNAs and because tRNA competition determines translational efficiency vs. fidelity and production of native vs. misfolded proteins. We identified several tRNA gene clusters with CNV, which in some cases were part of larger iterations. In addition there was an isolated tRNALysCUU gene that was absent as a homozygous deletion in one of the parents. When assessed by semiquantitative PCR in 98 DNA samples representing a wide variety of ethnicities, this allele was found deleted in hetero- or homozygosity in all groups at ~50% frequency. This is the first report of copy number variation of human tRNA genes. We conclude that tgCNV exists at significant levels among individual humans and discuss the results in terms of genetic diversity and prior genome wide association studies (GWAS) that suggest the importance of the ratio of tRNALys isoacceptors in Type-2 diabetes. PMID:24342656

  15. NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia.

    PubMed

    Nagel, Stefan; Pommerenke, Claudia; Scherr, Michaela; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; MacLeod, Roderick A F; Drexler, Hans G

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem and progenitor cells (HSPCs) and during lymphopoiesis, identifying activities of nine particular genes. Four of these were expressed in HSPCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of shared target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation.

  16. NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia

    PubMed Central

    Pommerenke, Claudia; Scherr, Michaela; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; MacLeod, Roderick A. F.; Drexler, Hans G.

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem and progenitor cells (HSPCs) and during lymphopoiesis, identifying activities of nine particular genes. Four of these were expressed in HSPCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of shared target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation. PMID:28151996

  17. The influence of size, structure and hydrophilicity of model surfactants on the adsorption of lysozyme to oil-water interface--interfacial shear measurements.

    PubMed

    Baldursdottir, Stefania G; Jorgensen, Lene

    2011-10-01

    The flexibility and aggregation of proteins can cause adsorption to oil-water interfaces and thereby create challenges during formulation and processing. Protein adsorption is a complex process and the presence of surfactants further complicates the system, in which additional parameters need to be considered. The purpose of this study is to scrutinize the influence of surfactants on protein adsorption to interfaces, using lysozyme as a model protein and sorbitan monooleate 80 (S80), polysorbate 80 (T80), polyethylene-block-poly(ethylene glycol) (PE-PEG) and polyglycerol polyricinoleate (PG-PR) as model surfactants. Rheological properties, measured using a TA AR-G2 rheometer equipped with a double wall ring (DWR) geometry, were used to compare the efficacy of the surfactant in hindering lysozyme adsorption. The system consists of a ring and a Delrin® trough with a circular channel (interfacial area=1882.6 mm(2)). Oscillatory shear measurements were conducted at a constant frequency of 0.1 Hz, a temperature of 25°C, and with strain set to 1%. The adsorption of lysozyme to the oil-water interface results in the formation of a viscoelastic film. This can be prevented by addition of surfactants, in a manner depending on the concentration and the type of surfactant. The more hydrophilic surfactants are more effective in hindering lysozyme adsorption to oil-water interfaces. Additionally, the larger surfactants are more persistent in preventing film formation, whereas the smaller ones eventually give space for the lysozyme on the interface. The addition of a mixture of two different surfactants was only beneficial when the two hydrophilic surfactants were mixed, in which case a delay in the multilayer formation was detected. The method is able to detect the interfacial adsorption of lysozyme and thus the hindering of film formation by model surfactants. It can therefore aid in processing of any delivery systems for proteins in which the protein is introduced to oil

  18. Association between genes encoding components of the IL-4/IL-4 receptor pathway and dermatitis in children.

    PubMed

    Hussein, Yousri M; Shalaby, Sally M; Nassar, Amani; Alzahrani, Saad S; Alharbi, Ayman S; Nouh, Maha

    2014-07-25

    To determine whether IL-4, IL-4Rα and STAT6 polymorphisms are associated with susceptibility to dermatitis in Egyptian children. We genotyped three groups of children, consisting of 106 atopic dermatitis (AD) children, 95 non-AD children, and 100 of healthy controls, for IL-4 (-590 C/T), (-33 C/T), IL-4Rα (I50V), (Q576R) and STAT6 (2964 G/A), (2892 C/T) gene polymorphisms using PCR-RFLP assay. Total serum IgE and serum IL-4 levels were detected by ELISA. There was a non-significant association of IL-4 -590 C/T, -33 C/T polymorphisms in the children with non-AD or those with AD when compared with the controls. We identified a significant association between IL-4Rα I50V, Q576R polymorphisms and dermatitis susceptibility in AD (p=0.002, <0.001 respectively), whereas no such association was observed in non-AD group (p=0.52, 0.99 respectively). A significant association between STAT6 polymorphisms and both types of dermatitis was found. Patients who were carriers of IL4 -590C, IL-4Rα I50V G, STAT6 2964 A and STAT6 2892 T had an increased risk of AD [OR and 95% CI: 3.2 (2.5-4.2), p=0.005]. Furthermore, there was no relation between each polymorphism and serum IL-4 level (p>0.05 for each) while homozygosity for the risk alleles of IL-4, IL-4Rα and STAT6 SNPs were significantly associated with increased total IgE levels in all subjects. In Egyptian children, the IL-4Rα and the STAT6 polymorphism may play a role in susceptibility to AD. In addition, gene-gene interaction between the IL-4, the IL-4Rα and the STAT6 significantly increases an individual's susceptibility to AD. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Molecular dynamics simulations of lysozyme-lipid systems: probing the early steps of protein aggregation.

    PubMed

    Trusova, Valeriya M; Gorbenko, Galyna P

    2017-07-10

    Using the molecular dynamics simulation, the role of lipids in the lysozyme transition into the aggregation-competent conformation has been clarified. Analysis of the changes of lysozyme secondary structure upon its interactions with the model bilayer membranes composed of phosphatidylcholine and its mixtures with phosphatidylglycerol (10, 40, and 80 mol%) within the time interval of 100 ns showed that lipid-bound protein is characterized by the increased content of β-structures. Along with this, the formation of protein-lipid complexes was accompanied by the increase in the gyration radius and the decrease in RMSD of polypeptide chain. The results obtained were interpreted in terms of the partial unfolding of lysozyme molecule on the lipid matrix, with the magnitude of this effect being increased with increasing the fraction of anionic lipids. Based on the results of molecular dynamics simulation, a hypothetical model of the nucleation of lysozyme amyloid fibrils in a membrane environment was suggested.

  20. Spectrophotometric studies on the interaction between (-)-epigallocatechin gallate and lysozyme

    NASA Astrophysics Data System (ADS)

    Ghosh, Kalyan Sundar; Sahoo, Bijaya Ketan; Dasgupta, Swagata

    2008-02-01

    Various reported antibacterial activities of (-)-epigallocatechin-3-gallate (EGCG), the major polyphenol of green tea prompted us to study its binding with lysozyme. This has been investigated by fluorescence, circular dichroism (CD) and protein-ligand docking. The binding parameters were determined using a modified Stern-Volmer equation. The thermodynamic parameters are indicative of an initial hydrophobic association. The complex is, however, held together predominantly by van der Waals interactions and hydrogen bonding. CD studies do not indicate any significant changes in the secondary structure of lysozyme. Docking studies revealed that specific interactions are observed with residues Trp 62 and Trp 63.

  1. T-cell lymphomas associated gene expression signature: Bioinformatics analysis based on gene expression Omnibus.

    PubMed

    Zhou, Lei-Lei; Xu, Xiao-Yue; Ni, Jie; Zhao, Xia; Zhou, Jian-Wei; Feng, Ji-Feng

    2018-06-01

    Due to the low incidence and the heterogeneity of subtypes, the biological process of T-cell lymphomas is largely unknown. Although many genes have been detected in T-cell lymphomas, the role of these genes in biological process of T-cell lymphomas was not further analyzed. Two qualified datasets were downloaded from Gene Expression Omnibus database. The biological functions of differentially expressed genes were evaluated by gene ontology enrichment and KEGG pathway analysis. The network for intersection genes was constructed by the cytoscape v3.0 software. Kaplan-Meier survival curves and log-rank test were employed to assess the association between differentially expressed genes and clinical characters. The intersection mRNAs were proved to be associated with fundamental processes of T-cell lymphoma cells. These intersection mRNAs were involved in the activation of some cancer-related pathways, including PI3K/AKT, Ras, JAK-STAT, and NF-kappa B signaling pathway. PDGFRA, CXCL12, and CCL19 were the most significant central genes in the signal-net analysis. The results of survival analysis are not entirely credible. Our findings uncovered aberrantly expressed genes and a complex RNA signal network in T-cell lymphomas and indicated cancer-related pathways involved in disease initiation and progression, providing a new insight for biotargeted therapy in T-cell lymphomas. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Evidence for a founder effect for the IVS4 +4 A{r_arrow}T mutation in the Fanconi anemia gene FACC in a Jewish population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verlander, P.C.; Kaporis, A.G.; Qian, L.

    1994-09-01

    Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disorder defined by hypersensitivity of cells to DNA cross-linking agents; a gene for complementation group C(FACC) has been cloned. Two common mutations, IVS4 +4 A{r_arrow}T and 322delG, and several rare mutations have recently been reported in affected individuals. We now report the development of amplification refractory mutation system (ARMS) assays for rapid, non-radioactive detection of these known mutations in FACC. Primer pairs specific for variant sequences were designed, with the 3{prime} terminal base of one primer matching the variant base. PCR products are separated by electrophoresis on 2.5% agarose gels; mutationsmore » are indicated by the presence of a band of a specific size. These ARMS assays can be multiplexed to allow screening for all known mutations in two PCR reactions. We have used these assays for detection of FACC mutations in affected individuals in the International Fanconi Anemia Registry (IFAR), and for carrier detection FACC families. IVS4 +4 A{r_arrow}T is the only FACC mutation found in Jewish FA patients and their families, of both Ashkenazi and Sephardic ancestry. This mutation was not found in any affected individual of non-Jewish origin. In addition, DNA samples from 1596 healthy Jewish individuals primarily of Ashkenazi ancestry were supplied to us by Dor Yeshorim. These samples, ascertained for carrier screening for Tay Sachs, cystic fibrosis, and other genetic diseases with a high frequency in the religious Jewish community served by this organization, were tested for both IVS4 +4 A{r_arrow}T and 322delG mutations; seventeen IVS4 +4 A{r_arrow}T are of Sephardic Jewish ancestry. We hypothesize that IVS4 +4 A{r_arrow}T is a very old mutation, predating the divergence of the Ashkenazi and Sephardic populations. Haplotype analysis with microsatellite markers is in progress.« less

  3. Low-frequency vibrational properties of lysozyme in sugar aqueous solutions: A Raman scattering and molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Lerbret, A.; Affouard, F.; Bordat, P.; Hédoux, A.; Guinet, Y.; Descamps, M.

    2009-12-01

    The low-frequency (ω <400 cm-1) vibrational properties of lysozyme in aqueous solutions of three well-known protecting sugars, namely, trehalose, maltose, and sucrose, have been investigated by means of complementary Raman scattering experiments and molecular dynamics simulations. The comparison of the Raman susceptibility χ″(ω) of lysozyme/water and lysozyme/sugar/water solutions at a concentration of 40 wt % with the χ″ of dry lysozyme suggests that the protein dynamics mostly appears in the broad peak around 60-80 cm-1 that reflects the vibrations experienced by atoms within the cage formed by their neighbors, whereas the broad shoulder around 170 cm-1 mainly stems from the intermolecular O-H⋯O stretching vibrations of water. The addition of sugars essentially induces a significant high frequency shift and intensity reduction of this band that reveal a slowing down of water dynamics and a distortion of the tetrahedral hydrogen bond network of water, respectively. Furthermore, the lysozyme vibrational densities of states (VDOS) have been determined from simulations of lysozyme in 37-60 wt % disaccharide aqueous solutions. They exhibit an additional broad peak around 290 cm-1, in line with the VDOS of globular proteins obtained in neutron scattering experiments. The influence of sugars on the computed VDOS mostly appears on the first peak as a slight high-frequency shift and intensity reduction in the low-frequency range (ω <50 cm-1), which increase with the sugar concentration and with the exposition of protein residues to the solvent. These results suggest that sugars stiffen the environment experienced by lysozyme atoms, thereby counteracting the softening of protein vibrational modes upon denaturation, observed at high temperature in the Raman susceptibility of the lysozyme/water solution and in the computed VDOS of unfolded lysozyme in water. Finally, the Raman susceptibility of sugar/water solutions and the calculated VDOS of water in the

  4. Stability of gene expression in human T cells in different gravity environments is clustered in chromosomal region 11p15.4.

    PubMed

    Thiel, Cora S; Huge, Andreas; Hauschild, Swantje; Tauber, Svantje; Lauber, Beatrice A; Polzer, Jennifer; Paulsen, Katrin; Lier, Hartwin; Engelmann, Frank; Schmitz, Burkhard; Schütte, Andreas; Layer, Liliana E; Ullrich, Oliver

    2017-01-01

    In the last decades, a plethora of in vitro studies with living human cells contributed a vast amount of knowledge about cellular and molecular effects of microgravity. Previous studies focused mostly on the identification of gravity-responsive genes, whereas a multi-platform analysis at an integrative level, which specifically evaluates the extent and robustness of transcriptional response to an altered gravity environment was not performed so far. Therefore, we investigated the stability of gene expression response in non-activated human Jurkat T lymphocytic cells in different gravity environments through the combination of parabolic flights with a suborbital ballistic rocket and 2D clinostat and centrifuge experiments, using strict controls for excluding all possible other factors of influence. We revealed an overall high stability of gene expression in microgravity and identified olfactory gene expression in the chromosomal region 11p15.4 as particularly robust to altered gravity. We identified that classical reference genes ABCA5 , GAPDH , HPRT1 , PLA2G4A , and RPL13A were stably expressed in all tested gravity conditions and platforms, while ABCA5 and GAPDH were also known to be stably expressed in U937 cells in all gravity conditions. In summary, 10-20% of all transcripts remained totally unchanged in any gravitational environment tested (between 10 -4 and 9 g), 20-40% remained unchanged in microgravity (between 10 -4 and 10 -2  g) and 97-99% were not significantly altered in microgravity if strict exclusion criteria were applied. Therefore, we suppose a high stability of gene expression in microgravity. Comparison with other stressors suggests that microgravity alters gene expression homeostasis not stronger than other environmental factors.

  5. Histone methylation mediates plasticity of human FOXP3(+) regulatory T cells by modulating signature gene expressions.

    PubMed

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-03-01

    CD4(+) FOXP3(+) regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4(+) CD25(high) CD127(low/-) Treg cells convert to two subpopulations with distinctive FOXP3(+) and FOXP3(-) phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. © 2013 John Wiley & Sons Ltd.

  6. Histone methylation mediates plasticity of human FOXP3+ regulatory T cells by modulating signature gene expressions

    PubMed Central

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-01-01

    CD4+ FOXP3+ regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4+ CD25high CD127low/− Treg cells convert to two subpopulations with distinctive FOXP3+ and FOXP3− phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. PMID:24152290

  7. Scientist prepare Lysozyme Protein Crystal

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dan Carter and Charles Sisk center a Lysozyme Protein crystal grown aboard the USML-2 shuttle mission. Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity crystal growth experiments. The goal is to compare kinetic data from microgravity experiments with data from laboratory experiments to study the equilibrium.

  8. Isothermal Titration Calorimetry and Macromolecular Visualization for the Interaction of Lysozyme and Its Inhibitors

    ERIC Educational Resources Information Center

    Wei, Chin-Chuan; Jensen, Drake; Boyle, Tiffany; O'Brien, Leah C.; De Meo, Cristina; Shabestary, Nahid; Eder, Douglas J.

    2015-01-01

    To provide a research-like experience to upper-division undergraduate students in a biochemistry teaching laboratory, isothermal titration calorimetry (ITC) is employed to determine the binding constants of lysozyme and its inhibitors, N-acetyl glucosamine trimer (NAG[subscript 3]) and monomer (NAG). The extremely weak binding of lysozyme/NAG is…

  9. Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity.

    PubMed

    Wu, Tiantian; Huang, Jiaqi; Jiang, Yangyang; Hu, Yaqin; Ye, Xingqian; Liu, Donghong; Chen, Jianchu

    2018-02-01

    Novel hydrogels based on chitosan/sodium alginate (CS-ALG) were prepared to deliver and protect lysozyme while eliminating food-borne microorganisms. These hydrogels were characterized according to the zeta potential, optical microscopy, scanning electron microscopy (SEM), UV-visible spectroscopy (UV-vis), fourier transform infrared (FT-IR), and small-angle X-ray scattering (SAXS). The results demonstrated that the resultant hydrogels were negatively charged and spherical in shape. In addition, the maximum swelling ratio was 45.66±7.62 for CS-ALG hydrogels loaded with lysozyme. The relative activity of the released lysozyme was 87.72±3.96%, indicating that CS-ALG hydrogels are promising matrices for enzyme loading and adsorption. Furthermore, a 100% bacterial clearance rate of CS/ALG loaded with lysozyme was observed to correspond to the superposition effect stimulated by CS and lysozyme, which improved the antibacterial activity against E. coli and S. aureus compared to CS/ALG, suggesting its potential use in the food industry as well as other applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Tonic LAT-HDAC7 Signals Sustain Nur77 and Irf4 Expression to Tune Naive CD4 T Cells.

    PubMed

    Myers, Darienne R; Lau, Tannia; Markegard, Evan; Lim, Hyung W; Kasler, Herbert; Zhu, Minghua; Barczak, Andrea; Huizar, John P; Zikherman, Julie; Erle, David J; Zhang, Weiguo; Verdin, Eric; Roose, Jeroen P

    2017-05-23

    CD4 + T cells differentiate into T helper cell subsets in feedforward manners with synergistic signals from the T cell receptor (TCR), cytokines, and lineage-specific transcription factors. Naive CD4 + T cells avoid spontaneous engagement of feedforward mechanisms but retain a prepared state. T cells lacking the adaptor molecule LAT demonstrate impaired TCR-induced signals yet cause a spontaneous lymphoproliferative T helper 2 (T H 2) cell syndrome in mice. Thus, LAT constitutes an unexplained maintenance cue. Here, we demonstrate that tonic signals through LAT constitutively export the repressor HDAC7 from the nucleus of CD4 + T cells. Without such tonic signals, HDAC7 target genes Nur77 and Irf4 are repressed. We reveal that Nur77 suppresses CD4 + T cell proliferation and uncover a suppressive role for Irf4 in T H 2 polarization; halving Irf4 gene-dosage leads to increases in GATA3 + and IL-4 + cells. Our studies reveal that naive CD4 + T cells are dynamically tuned by tonic LAT-HDAC7 signals. Published by Elsevier Inc.

  11. Large-scale production of functional human lysozyme from marker-free transgenic cloned cows.

    PubMed

    Lu, Dan; Liu, Shen; Ding, Fangrong; Wang, Haiping; Li, Jing; Li, Ling; Dai, Yunping; Li, Ning

    2016-03-10

    Human lysozyme is an important natural non-specific immune protein that is highly expressed in breast milk and participates in the immune response of infants against bacterial and viral infections. Considering the medicinal value and market demand for human lysozyme, an animal model for large-scale production of recombinant human lysozyme (rhLZ) is needed. In this study, we generated transgenic cloned cows with the marker-free vector pBAC-hLF-hLZ, which was shown to efficiently express rhLZ in cow milk. Seven transgenic cloned cows, identified by polymerase chain reaction, Southern blot, and western blot analyses, produced rhLZ in milk at concentrations of up to 3149.19 ± 24.80 mg/L. The purified rhLZ had a similar molecular weight and enzymatic activity as wild-type human lysozyme possessed the same C-terminal and N-terminal amino acid sequences. The preliminary results from the milk yield and milk compositions from a naturally lactating transgenic cloned cow 0906 were also tested. These results provide a solid foundation for the large-scale production of rhLZ in the future.

  12. Lysozyme as a recognition element for monitoring of bacterial population.

    PubMed

    Zheng, Laibao; Wan, Yi; Yu, Liangmin; Zhang, Dun

    2016-01-01

    Bacterial infections remain a significant challenge in biomedicine and environment safety. Increasing worldwide demand for point-of-care techniques and increasing concern on their safe development and use, require a simple and sensitive bioanalysis for pathogen detection. However, this goal is not yet achieved. A design for fluorescein isothiocyanate-labeled lysozyme (FITC-LYZ), which provides quantitative binding information for gram-positive bacteria, Micrococcus luteus, and detects pathogen concentration, is presented. The functional lysozyme is used not only as the pathogenic detection platform, but also as a tracking reagent for microbial population in antibacterial tests. A nonlinear relationship between the system response and the logarithm of the bacterial concentration was observed in the range of 1.2×10(2)-1.2×10(5) cfu mL(-1). The system has a potential for further applications and provides a facile and simple method for detection of pathogenic bacteria. Meanwhile, the fluorescein isothiocyanate -labeled lysozyme is also employed as the tracking agent for antibacterial dynamic assay, which show a similar dynamic curve compared with UV-vis test. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Growth-active peptides are produced from alpha-lactalbumin and lysozyme.

    PubMed

    Kanda, Yoshikazu; Hisayasu, Sanae; Abe, Yasuko; Katsura, Kenichiro; Mashimo, Keico

    2007-07-19

    We determined the growth-active domains of milk-growth factor (MGF), human alpha-lactalbumin (HMLA) and human lysozyme (HMLZ), and their sequences. Fetal calf serum (FCS) showed inhibitors against proteases. The growth-stimulation of IMR90 cells in CG medium (free-serum) without FCS was induced in a dose-dependent manner up to 400 ng/ml of HMLA, HMLZ or chicken lysozyme (ChLZ), and also in a time-dependent manner until 48 h but was induced gradually until 1000 ng/ml of bovine alpha-lactalbumin (BVLA). The HMLAL6-peptide (HMLAL6), a cleaved product from HMLA by Endpeptidase Lys C, was growth-stimulative. The sequence of HMLAL6 was matched to 35 amino-acid residues (from No. 59 to No. 93 of HMLA), owing to the sequences of HMLAL6R3, HMLAL6R5 and HMLAL6R7 after the reduction of HMLAL6. The sequences of the reduced peptides from MGFL7-peptide (MGFL7: a cleaved product from MGF by Endpeptidase lysine C matched to those of the peptides from HMLAL6, and were similarly identified as the partial sequence of HMLA (59-93, H(2)N-L.W.C.?.K./S.S.Q.V.P.Q.S.R.N.I.?.D.I.S.?.D.K./F.L. D.D.D.I.T.D.D.I.M.?.A.-COOH). The sequence of HMLZ is similar to that of HMLA. HMLZT7-peptide (HMLZT7), a cleaved product of HMLZ by trypsin, was confirmed to have growth-stimulating activity and it's sequence was partially identified as Y. W.?.N.D.G.K.T.P.G.A.V.N.A.?.H.L. -, owing to the results of HMLZT7R1 (reduction of HMLZT7) and HMLZA7R2 (reduction of HMLZA7-peptide (HMLZA7) cleaved product of HMLZ by Endpeptidase Arg C) and is accordingly the sequence from No. 63 to No. 97 of HMLZ. Therefore, the peptides produced from LA and LZ by proteolysis may play a role of growth-stimulation.

  14. Genetic and Immunological Studies of Bacteriophage T4 Thymidylate Synthetase

    PubMed Central

    Krauss, S. W.; Stollar, B. D.; Friedkin, M.

    1973-01-01

    Thymidylate synthetase, which appears after infection of Escherichia coli with bacteriophage T4, has been partially purified. The phage enzyme is immunologically distinct from the host enzyme and has a molecular weight of 50,000 in comparison to 68,000 for the host enzyme. A system has been developed to characterize T4 td mutants previously known to have impaired expression of phage thymidylate synthetase. For this system, an E. coli host lacking thymidylate synthetase was isolated. Known genetic suppressors were transduced into this host. The resulting isogenic hosts were infected with phage T4 td mutants. The specific activities and amounts of cross-reacting material induced by several different types of phage mutants under conditions of suppression or non-suppression have been examined. The results show that the phage carries the structural gene specifying the thymidylate synthetase which appears after phage infection, and that the combination of plaque morphology, enzyme activity assays, and an assay for immunologically cross-reacting material provides a means for identifying true amber mutants of the phage gene. Images PMID:4575286

  15. The Natural Antimicrobial Enzyme Lysozyme is Up-Regulated in Gastrointestinal Inflammatory Conditions

    PubMed Central

    Rubio, Carlos A.

    2014-01-01

    The cells that line the mucosa of the human gastrointestinal tract (GI, that is, oral cavity, oesophagus, stomach, small intestine, large intestine, and rectum) are constantly challenged by adverse micro-environmental factors, such as different pH, enzymes, and bacterial flora. With exception of the oral cavity, these microenvironments also contain remnant cocktails of secreted enzymes and bacteria from upper organs along the tract. The density of the GI bacteria varies, from 103/mL near the gastric outlet, to 1010/mL at the ileocecal valve, to 1011 to 1012/mL in the colon. The total microbial population (ca. 1014) exceeds the total number of cells in the tract. It is, therefore, remarkable that despite the prima facie inauspicious mixture of harmful secretions and bacteria, the normal GI mucosa retains a healthy state of cell renewal. To counteract the hostile microenvironment, the GI epithelia react by speeding cell exfoliation (the GI mucosa has a turnover time of two to three days), by increasing peristalsis, by eliminating bacteria through secretion of plasma cell-immunoglobulins and by increasing production of natural antibacterial compounds, such as defensin-5 and lysozyme. Only recently, lysozyme was found up-regulated in Barrett’s oesophagitis, chronic gastritis, gluten-induced atrophic duodenitis (coeliac disease), collagenous colitis, lymphocytic colitis, and Crohn’s colitis. This up-regulation is a response directed to the special types of bacteria recently detected in these diseases. The aim of lysozyme up-regulation is to protect individual mucosal segments to chronic inflammation. The molecular mechanisms connected to the crosstalk between the intraluminal bacterial flora and the production of lysozyme released by the GI mucosae, are discussed. Bacterial resistance continues to exhaust our supply of commercial antibiotics. The potential use of lysozyme to treat infectious diseases is receiving much attention. PMID:25437608

  16. Multisite-specific tRNA:m5C-methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme.

    PubMed Central

    Motorin, Y; Grosjean, H

    1999-01-01

    Several genes encoding putative RNA:5-methylcytidine-transferases (m5C-transferases) from different organisms, including yeast, have been identified by sequence homology with the recently identified 16S rRNA:m5C967-methyltransferase (gene SUN) from Escherichia coli. One of the yeast ORFs (YBL024w) was amplified by PCR, inserted in the expression vector pET28b, and the corresponding protein was hyperexpressed in E. coli BL21 (DE3). The resulting N-terminally His6-tagged recombinant Ybl024p was purified to apparent homogeneity by one-step affinity chromatography on Ni2+-NTA-agarose column. The activity and substrate specificity of the purified Ybl024p were tested in vitro using T7 transcripts of different yeast tRNAs as substrates and S-adenosyl-L-methionine as a donor of the methyl groups. The results indicate that yeast ORF YBL024w encodes S-adenosyl-L-methionine-dependent tRNA: m5C-methyltransferase that is capable of methylating cytosine to m5C at several positions in different yeast tRNAs and pre-tRNAs containing intron. Modification of tRNA occurs at all four positions (34, 40, 48, and 49) at which m5C has been found in yeast tRNAs sequenced so far. Disruption of the ORF YBL024w leads to the complete absence of m5C in total yeast tRNA. Moreover no tRNA:m5C-methyltransferase activity towards all potential m5C methylation sites was detected in the extract of the disrupted yeast strain. These results demonstrate that the protein product of a single gene is responsible for complete m5C methylation of yeast tRNA. Because this newly characterized multisite-specific modification enzyme Ybl024p is the fourth tRNA-specific methyltransferase identified in yeast, we suggest designating it as TRM4, the gene corresponding to ORF YBL024w. PMID:10445884

  17. Molecular dynamics study of unfolding of lysozyme in water and its mixtures with dimethyl sulfoxide.

    PubMed

    Sedov, Igor A; Magsumov, Timur I

    2017-09-01

    All-atom explicit solvent molecular dynamics was used to study the process of unfolding of hen egg white lysozyme in water and mixtures of water with dimethyl sulfoxide at different compositions. We have determined the kinetic parameters of unfolding at a constant temperature 450K. For each run, the time of disruption of the tertiary structure of lysozyme t u was defined as the moment when a certain structural criterion computed from the trajectory reaches its critical value. A good agreement is observed between the results obtained using several different criteria. The secondary structure according to DSSP calculations is found to be partially unfolded to the moment of disruption of tertiary structure, but some of its elements keep for a long time after that. The values of t u averaged over ten 30ns-long trajectories for each solvent composition are shown to decrease very rapidly with addition of dimethyl sulfoxide, and rather small amounts of dimethyl sulfoxide are found to change the pathway of unfolding. In pure water, despite the loss of tertiary contacts and disruption of secondary structure elements, the protein preserves its compact globular state at least over 130ns of simulation, while even at 5mol percents of dimethyl sulfoxide it loses its compactness within 30ns. The proposed methodology is a generally applicable tool to quantify the rate of protein unfolding in simulation studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The effects of biological buffers TRIS, TAPS, TES on the stability of lysozyme.

    PubMed

    Pannuru, Pavani; Rani, Anjeeta; Venkatesu, Pannuru; Lee, Ming-Jer

    2018-06-01

    To explore the mechanism of lysozyme stabilization in buffer system, we have investigated the interactions between lysozyme and the biological buffers (TRIS, TAPS, and TES) using spectroscopic techniques, including ultraviolet-visible (UV-Vis), fluorescence, thermal fluorescence, dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) spectroscopy. From the series of spectroscopic studies, it is found that the native structure of the protein remains intact in the different concentrations (0.05, 0.1, 0.25, 0.5, and 1.0M) of the biological buffer aqueous solutions at pH7.0. Moreover, all these three investigated buffers are able to protect lysozyme against thermal denaturation, particularly in high concentration (1.0M) of the buffer aqueous solutions. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Mucous lysozyme levels in hatchery coho salmon (Oncorhynchus kisutch) and spring chinook salmon (O. tshawytscha) early in the parr-smolt transformation

    USGS Publications Warehouse

    Schrock, R.M.; Smith, S.D.; Maule, A.G.; Doulos, S.K.; Rockowski, J.J.

    2001-01-01

    Mucous lysozyme concentrations were determined in juvenile coho salmon (Oncorhynchus kisutch) and spring chinook salmon (O. tshawytscha) to establish reference levels during the time associated with the parr-smolt transformation. The first reported naris and vent mucous lysozyme levels are provided for spring chinook salmon and coho salmon. Naris mucous lysozyme levels ranged between 300 and 700 ??g ml-1, vent mucous lysozyme from 100 to 300 ??g ml-1, and skin mucous lysozyme levels were below 130 ??g ml-1. Lysozyme levels in the two species showed the same relationship with the highest levels in naris mucous, and the lowest in skin mucous. A seasonal decrease occurred in both species with a significant decrease in naris mucous lysozyme between February and March. Gill ATPase levels used to monitor smolt development during the same period did not reach ranges reported for smolts for either species during emigration. Identification of seasonal levels of lysozyme activity in mucous provides an alternative determination of developmental status prior to release of fish from the hatchery when salmonids are still undergoing the parr-smolt transformation. ?? 2001 Elsevier Science B.V.

  20. The disruptive effect of lysozyme on the bacterial cell wall explored by an in-silico structural outlook.

    PubMed

    Primo, Emiliano D; Otero, Lisandro H; Ruiz, Francisco; Klinke, Sebastián; Giordano, Walter

    2018-01-01

    The bacterial cell wall, a structural unit of peptidoglycan polymer comprised of glycan strands consisting of a repeating disaccharide motif [N-acetylglucosamine (NAG) and N-acetylmuramylpentapeptide (NAM pentapeptide)], encases bacteria and provides structural integrity and protection. Lysozymes are enzymes that break down the bacterial cell wall and disrupt the bacterial life cycle by cleaving the linkage between the NAG and NAM carbohydrates. Lab exercises focused on the effects of lysozyme on the bacterial cell wall are frequently incorporated in biochemistry classes designed for undergraduate students in diverse fields as biology, microbiology, chemistry, agronomy, medicine, and veterinary medicine. Such exercises typically do not include structural data. We describe here a sequence of computer tasks designed to illustrate and reinforce both physiological and structural concepts involved in lysozyme effects on the bacterial cell-wall structure. This lab class usually lasts 3.5 hours. First, the instructor presents introductory concepts of the bacterial cell wall and the effect of lysozyme on its structure. Then, students are taught to use computer modeling to visualize the three-dimensional structure of a lysozyme in complex with bacterial cell-wall fragments. Finally, the lysozyme inhibitory effect on a bacterial culture is optionally proposed as a simple microbiological assay. The computer lab exercises described here give students a realistic understanding of the disruptive effect of lysozymes on the bacterial cell wall, a crucial component in bacterial survival. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):83-90, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  1. Pulsed electric field (PEF)-induced aggregation between lysozyme, ovalbumin and ovotransferrin in multi-protein system.

    PubMed

    Wu, Li; Zhao, Wei; Yang, Ruijin; Yan, Wenxu

    2015-05-15

    The aggregation of multi-proteins is of great interest in food processing and a good understanding of the formation of aggregates during PEF processing is needed for the application of the process to pasteurize protein-based foods. The aggregates formation of a multi-protein system (containing ovalbumin, ovotransferrin and lysozyme) was studied through turbidity, size exclusion chromatography and SDS-PAGE patterns for interaction studies and binding forces. Results from size exclusion chromatography indicated that there was no soluble aggregates formed during PEF processing. The existence of lysozyme was important to form insoluble aggregates in the chosen ovalbumin solution. The results of SDS-PAGE patterns indicated that lysozyme was prone to precipitate, and was relatively the higher component of aggregates. Citric acid could be effective in inhibiting lysozyme from interacting with other proteins during PEF processing. Blocking the free sulphydryl by N-ethylmaleimide (NEM) did not affect aggregation inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Size Exclusion Chromatography Studies of the Initial Self-Association Steps of Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Ewing, Felecia; Donovan, David; Pusey, Marc

    2000-01-01

    Nucleation is one of the least understood aspects of crystallogenesis. In the case of macromolecule nucleation, this understanding is further hampered by uncertainty over what precisely is being discussed. We define the process of solute self-association (aggregation, oligomerization, interaction, clustering, etc.) whereby n-mers (n > or = 2) having a crystallographic or nascent crystallographic arrangement leading to the critical nucleus reversibly form in the solution, to be part of the nucleation process. This reversible self-association process is a fundamental part of the nucleation process, and occurs as a function of the solute concentration. In the case of chicken egg white lysozyme, a considerable body of experimental evidence leads us to the conclusion that it also forms the crystal growth units. Size exclusion chromatography is a simple and direct method for determining the equilibrium constants for the self-association process. A Pharmacia FPLC system was used to provide accurate solution flow rates. The column, injection valve, and sample loop were all mounted within a temperature-controlled chamber. Chromatographically re-purified lysozyme was first dialyzed against the column equilibration buffer, with injection onto the column after several hours pre-incubation at the running temperature. Preliminary experiments, were carried out using a Toyopearl HW-50F column (1 x 50cm), equilibrated with 0.1 M sodium acetate, 5% sodium chloride, pH 4.6, at 15C. Protein concentrations from 0.1 to 4 mg/ml were employed (C(sub sat) = 1.2 mg/ml). The data from several different protein preparations consistently shows a progressively decreasing elution volume with increasing protein concentration, indicating that reversible self-association is occurring. The dotted line indicates the monomeric lysozyme elution volume. However, lysozyme interacts with the column matrix in these experiments, which complicates data analysis.Accordingly, we are testing silica-based HPLC

  3. High Cell Surface Expression of CD4 Allows Distinction of CD4+CD25+ Antigen-specific Effector T Cells from CD4+CD25+ Regulatory T Cells in Murine Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Li, Jinzhu; Ridgway, William; Fathman, C. Garrison; Tse, Harley Y.; Shaw, Michael K.

    2008-01-01

    Analysis of T regulatory cells (Treg) and T effector cells (Teff) in experimental autoimmune encephalomyelitis is complicated by the fact that both cell types express CD4 and CD25. We demonstrate that encephalitogenic T cells, following antigen recognition, up regulate cell surface expression of CD4. The CD4high sub-population contains all of the antigen response as shown by proliferation and cytokine secretion, and only these cells are capable of transferring EAE to naive animals. On the other hand, a FACS separable CD25+ sub-population of cells displayed consistent levels of CD4 prior to and after antigen stimulation. These cells displayed characteristics of Treg, such as expressing high levels of the Foxp3 gene and the ability to suppress mitogenic T cell responses. PMID:17920698

  4. Modular architecture of the T4 phage superfamily: A conserved core genome and a plastic periphery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comeau, Andre M.; Bertrand, Claire; Letarov, Andrei

    2007-06-05

    Among the most numerous objects in the biosphere, phages show enormous diversity in morphology and genetic content. We have sequenced 7 T4-like phages and compared their genome architecture. All seven phages share a core genome with T4 that is interrupted by several hyperplastic regions (HPRs) where most of their divergence occurs. The core primarily includes homologues of essential T4 genes, such as the virion structure and DNA replication genes. In contrast, the HPRs contain mostly novel genes of unknown function and origin. A few of the HPR genes that can be assigned putative functions, such as a series of novelmore » Internal Proteins, are implicated in phage adaptation to the host. Thus, the T4-like genome appears to be partitioned into discrete segments that fulfil different functions and behave differently in evolution. Such partitioning may be critical for these large and complex phages to maintain their flexibility, while simultaneously allowing them to conserve their highly successful virion design and mode of replication.« less

  5. The SPO11-C631T gene polymorphism and male infertility risk: a meta-analysis.

    PubMed

    Ren, Zheng-Ju; Ren, Peng-Wei; Yang, Bo; Liao, Jian; Liu, Sheng-Zhuo; Fang, Kun; Ren, Shang-Qing; Liu, Liang-Ren; Dong, Qiang

    2017-11-01

    To evaluate the association between the SPO11 gene C631T polymorphism and the risk of male infertility. We conducted a search on PubMed, Embase, Web of Science, Chinese National Knowledge Infrastructure (CNKI), China biology medical literature database (CBM), VIP, and Chinese literature database (Wan Fang) on 31 March 2016. Odds ratio (OR) and 95% confidence interval (95%CI) were used to assess the strength of associations. A total of five studies including 542 cases and 510 controls were involved in this meta-analysis. The pooled results indicated that the SPO11 gene C631T polymorphism was significantly associated with increased risk of male infertility (TT + CT vs. CC: OR = 4.14, 95%CI = 2.48-6.89; CT vs. CC: OR = 4.34, 95%CI = 2.56-7.34; T vs. C: OR = 4.35, 95%CI = 2.58-7.34). Subgroup analysis of different countries proved the relationship between SPO11 gene C631T polymorphism and male infertility risk in Chinese, but not in Iranian peoples. In conclusion, this study suggested that SPO11 gene C631T polymorphism may contribute as a genetic factor susceptible to cause male infertility. Furthermore, more large sample and representative population-based cases and well-matched controls are needed to validate our results.

  6. eNOS gene T786C, G894T and 4a4b polymorphisms and male infertility susceptibility: a meta-analysis.

    PubMed

    Chang, J; Pan, F; Tang, Q; Wu, W; Chen, M; Lu, C; Ding, H; Hu, L; Chen, D; Xia, Y; Wang, X

    2017-05-01

    The association between polymorphism of eNOS and male infertility in several studies was controversial. To explore a more precise estimation of the association, a meta-analysis of eight case-control studies, including 1,968 cases and 1,539 controls, were selected. The meta-analysis was conducted by calculating the pooled odds ratio (OR) with a 95% confidence interval (95% CI). Overall, the association between T786C and risk of male infertility was obvious (TC vs. TT: OR, 1.20; 95% CI, 1.01-1.42; CC vs. TT: OR, 3.37; 95% CI, 1.65-6.87; TC/CC vs. TT: OR, 1.47; 95% CI, 1.25-1.73; CC vs. OR, 3.18; 95% CI, 1.54-6.56; TC vs. TT: OR, 1.65; 95% CI, 1.27-2.03). However, no overall association was observed between the other two polymorphisms of eNOS (G894T and 4a4b) and male infertility. Stratified analysis showed that significantly strong association between T786C polymorphism and semen quality was present in all three types of male infertility (azoospermia, oligozoospermia and asthenozoospermia). In the subgroup analysis based on ethnicity, both T786C and 4a4b could influence the risk of male infertility in Asian and Caucasian. Further studies of polymorphisms of eNOS with their biological functions are needed to understand the role in the development of male infertility. © 2016 Blackwell Verlag GmbH.

  7. Association of CTLA-4 gene polymorphisms −318C/T and +49A/G and Hashimoto's thyroidits in Zahedan, Iran

    PubMed Central

    Narooie-Nejad, Mehrnaz; Taji, Omid; Kordi Tamandani, Dor Mohammad; Kaykhaei, Mahmoud Ali

    2017-01-01

    Hashimoto's thyroiditis (HT) is a chronic inflammation of the thyroid gland and is known as the most common autoimmune disease. Development of autoimmune destruction of thyroid cells is a multi-step process involving convergence of genetic and environmental factors. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) has an important role in homeostasis and negative regulation of immune responses, and is therefore considered to be a key element in the development of autoimmune diseases. The present study evaluated the association of the CTLA-4 gene polymorphisms 318C/T (rs5742909) and +49A/G (rs231775) with HT in an Iranian population (including 82 patients with HT and 104 healthy controls who were referred for routine premarital blood screenings). Genotyping was performed using the tetra-primer amplification refractory mutation system polymerase chain reaction technique. No significant differences were observed in genotype and allele frequencies in the single nucleotide polymorphisms (SNPs) between cases and controls. In the cases as well as in the controls, the TT genotype in the −318C/T polymorphism was absent and the predominant genotype was CC, while the predominant genotype for the +49A/G SNP was AA. As only few studies in this field have assessed Iranian and even Middle Eastern populations, additional studies with a higher number of samples are recommended to further assess the impact of −318C/T (rs5742909) and +49A/G (rs231775) polymorphisms of CTLA-4 on HT. PMID:28123718

  8. Chronic exposure to trichloroethylene increases DNA methylation of the Ifng promoter in CD4+ T cells.

    PubMed

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Li, Jingyun; Cooney, Craig A

    2016-10-17

    CD4 + T cells in female MRL+/+ mice exposed to solvent and water pollutant trichloroethylene (TCE) skew toward effector/memory CD4 + T cells, and demonstrate seemingly non-monotonic alterations in IFN-γ production. In the current study we examined the mechanism for this immunotoxicity using effector/memory and naïve CD4 + T cells isolated every 6 weeks during a 40 week exposure to TCE (0.5mg/ml in drinking water). A time-dependent effect of TCE exposure on both Ifng gene expression and IFN-γ protein production was observed in effector/memory CD4 + T cells, with an increase after 22 weeks of exposure and a decrease after 40 weeks of exposure. No such effect of TCE was observed in naïve CD4 + T cells. A cumulative increase in DNA methylation in the CpG sites of the promoter of the Ifng gene was observed in effector/memory, but not naïve, CD4 + T cells over time. Also unique to the Ifng promoter was an increase in methylation variance in effector/memory compared to naïve CD4 + T cells. Taken together, the CpG sites of the Ifng promoter in effector/memory CD4 + T cells were especially sensitive to the effects of TCE exposure, which may help explain the regulatory effect of the chemical on this gene. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. The TRPA1 ion channel is expressed in CD4+ T cells and restrains T-cell-mediated colitis through inhibition of TRPV1.

    PubMed

    Bertin, Samuel; Aoki-Nonaka, Yukari; Lee, Jihyung; de Jong, Petrus R; Kim, Peter; Han, Tiffany; Yu, Timothy; To, Keith; Takahashi, Naoki; Boland, Brigid S; Chang, John T; Ho, Samuel B; Herdman, Scott; Corr, Maripat; Franco, Alessandra; Sharma, Sonia; Dong, Hui; Akopian, Armen N; Raz, Eyal

    2017-09-01

    Transient receptor potential ankyrin-1 (TRPA1) and transient receptor potential vanilloid-1 (TRPV1) are calcium (Ca 2+ )-permeable ion channels mostly known as pain receptors in sensory neurons. However, growing evidence suggests their crucial involvement in the pathogenesis of IBD. We explored the possible contribution of TRPA1 and TRPV1 to T-cell-mediated colitis. We evaluated the role of Trpa1 gene deletion in two models of experimental colitis (ie, interleukin-10 knockout and T-cell-adoptive transfer models). We performed electrophysiological and Ca 2+ imaging studies to analyse TRPA1 and TRPV1 functions in CD4+ T cells. We used genetic and pharmacological approaches to evaluate TRPV1 contribution to the phenotype of Trpa1 -/- CD4+ T cells. We also analysed TRPA1 and TRPV1 gene expression and TRPA1 + TRPV1 + T cell infiltration in colonic biopsies from patients with IBD. We identified a protective role for TRPA1 in T-cell-mediated colitis. We demonstrated the functional expression of TRPA1 on the plasma membrane of CD4+ T cells and identified that Trpa1 -/- CD4+ T cells have increased T-cell receptor-induced Ca 2+ influx, activation profile and differentiation into Th1-effector cells. This phenotype was abrogated upon genetic deletion or pharmacological inhibition of the TRPV1 channel in mouse and human CD4+ T cells. Finally, we found differential regulation of TRPA1 and TRPV1 gene expression as well as increased infiltration of TRPA1 + TRPV1 + T cells in the colon of patients with IBD. Our study indicates that TRPA1 inhibits TRPV1 channel activity in CD4+ T cells, and consequently restrains CD4+ T-cell activation and colitogenic responses. These findings may therefore have therapeutic implications for human IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Aberrant activity of NKL homeobox gene NKX3-2 in a T-ALL subset

    PubMed Central

    Meyer, Corinna; Kaufmann, Maren; Zaborski, Margarete; MacLeod, Roderick A. F.; Drexler, Hans G.

    2018-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a hematopoietic malignancy originating from T-cell progenitors in which differentiation is blocked at early stages. Physiological expression of specific NKL homeobox genes obeys a hematopoietic NKL-code implicated in the process of lymphopoiesis while in differentiated T-cells these genes are silenced. We propose that this developmental expression pattern underlies the observation that NKL homeobox genes are the most ubiquitous group of transcription factors deregulated in T-ALL, including TLX1, TLX3, NKX2-5 and NKX3-1. Here, we describe a novel member of the NKL homeobox gene subclass, NKX3-2 (BAPX1), which is aberrantly activated in 18% of pediatric T-ALL patients analyzed while being normally expressed in developing spleen. Identification of NKX3-2 expression in T-ALL cell line CCRF-CEM qualified these cells to model its deregulation and function in a leukemic context. Genomic and chromosomal analyses demonstrated normal configuration of the NKX3-2 locus at chromosome 4p15, thus excluding cytogenetic dysregulation. Comparative expression profiling analysis of NKX3-2 patient data revealed deregulated activity of BMP- and MAPK-signalling. These candidate pathways were experimentally confirmed to mediate aberrant NKX3-2 expression. We also show that homeobox gene SIX6, plus MIR17HG and GATA3 are downstream targets of NKX3-2 and plausibly contribute to the pathogenesis of this malignancy by suppressing T-cell differentiation. Finally, NKL homeobox gene NKX2-5 was activated by NKX3-2 in CCRF-CEM and by FOXG1 in PEER, representing mutually inhibitory activators of this translocated oncogene. Together, our findings reveal a novel oncogenic NKL homeobox gene subclass member which is aberrantly expressed in a large subset of T-ALL patients and participates in a deregulated gene network likely to arise in developing spleen. PMID:29746601

  11. Aberrant activity of NKL homeobox gene NKX3-2 in a T-ALL subset.

    PubMed

    Nagel, Stefan; Meyer, Corinna; Kaufmann, Maren; Zaborski, Margarete; MacLeod, Roderick A F; Drexler, Hans G

    2018-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a hematopoietic malignancy originating from T-cell progenitors in which differentiation is blocked at early stages. Physiological expression of specific NKL homeobox genes obeys a hematopoietic NKL-code implicated in the process of lymphopoiesis while in differentiated T-cells these genes are silenced. We propose that this developmental expression pattern underlies the observation that NKL homeobox genes are the most ubiquitous group of transcription factors deregulated in T-ALL, including TLX1, TLX3, NKX2-5 and NKX3-1. Here, we describe a novel member of the NKL homeobox gene subclass, NKX3-2 (BAPX1), which is aberrantly activated in 18% of pediatric T-ALL patients analyzed while being normally expressed in developing spleen. Identification of NKX3-2 expression in T-ALL cell line CCRF-CEM qualified these cells to model its deregulation and function in a leukemic context. Genomic and chromosomal analyses demonstrated normal configuration of the NKX3-2 locus at chromosome 4p15, thus excluding cytogenetic dysregulation. Comparative expression profiling analysis of NKX3-2 patient data revealed deregulated activity of BMP- and MAPK-signalling. These candidate pathways were experimentally confirmed to mediate aberrant NKX3-2 expression. We also show that homeobox gene SIX6, plus MIR17HG and GATA3 are downstream targets of NKX3-2 and plausibly contribute to the pathogenesis of this malignancy by suppressing T-cell differentiation. Finally, NKL homeobox gene NKX2-5 was activated by NKX3-2 in CCRF-CEM and by FOXG1 in PEER, representing mutually inhibitory activators of this translocated oncogene. Together, our findings reveal a novel oncogenic NKL homeobox gene subclass member which is aberrantly expressed in a large subset of T-ALL patients and participates in a deregulated gene network likely to arise in developing spleen.

  12. A Novel Heterozygous Mutation in the T-box Protein 4 Gene in an Adult Case of Small Patella Syndrome.

    PubMed

    Oda, Tomoyuki; Matsushita, Masaki; Ono, Yohei; Kitoh, Hiroshi; Sakai, Tadahiro

    2018-01-01

    Small patella syndrome (SPS) is a rare skeletal dysplasia relating to the T-box protein 4 (TBX4) gene, which regulates the development of lower extremities. Patients typically present with recurrent patellar dislocation (RPD) in childhood or adolescence, leading to a diagnosis of SPS and subsequent treatment to improve activity levels. However, those with mild symptoms may not be diagnosed when young and present later after skeletal maturation, which might compromise treatment options. Further understanding of genetic mutations of SPS could possibly help early diagnosis and following adequate surgical treatment. In this case report, we present a surgically treated adult female case of RPD associated with SPS, carrying a novel heterozygous mutation in the TBX4 gene. A 19-year-old female presented with persistent right knee pain after an atraumatic episode ofpatellar dislocation during walking. The patient had a history of recurrent patella instability of the right knee with an onset at the age of 8 years due to a minor trauma. Patellar apprehension sign was positive bilaterally. There was radiological evidence of bilateral small patellae, hypoplastic femoral trochlea, and tibial tuberosity. A direct sequencing of the coding regions in the TBX4 gene had confirmed the diagnosis of SPS. A novel heterozygous mutation (p.L39PfsX35) was found in the patient and her father. Surgical treatment was indicated and the patient underwent an isolated medial patellofemoral ligament (MPFL) reconstruction while no distal realignment osteotomy was performed due to hypoplastic tibial tuberosity. Excellent subjective and objective outcomes were obtained at 1 year postoperatively. To the best of our knowledge, this is the first reported SPS case with a novel mutation in the TBX4 gene in an Asian population. While a satisfying short-term outcome was obtained by an isolated MPFL reconstruction, early genetic diagnosis in childhood with adequate surgical treatment (e.g., Roux

  13. Effect of mobile phone use on salivary concentrations of protein, amylase, lipase, immunoglobulin A, lysozyme, lactoferrin, peroxidase and C-reactive protein of the parotid gland.

    PubMed

    Hashemipour, M S; Yarbakht, M; Gholamhosseinian, A; Famori, H

    2014-05-01

    The possibility of side effects associated with the electromagnetic waves emitted from mobile phones is a controversial issue. The present study aimed to evaluate the effect of mobile phone use on parotid gland salivary concentrations of protein, amylase, lipase, immunoglobulin A, lysozyme, lactoferrin, peroxidase and C-reactive protein. Stimulated salivary samples were collected simultaneously from both parotid glands of 86 healthy volunteers. Salivary flow rate and salivary concentrations of proteins, amylase, lipase, lysozyme, lactoferrin, peroxidase, C-reactive protein and immunoglobulin A, were measured. Data were analysed using t-tests and one-way analyses of variance. Salivary flow rate and parotid gland salivary concentrations of protein were significantly higher on the right side compared to the left in those that predominantly held mobile phones on the right side. In addition, there was a decrease in concentrations of amylase, lipase, lysozyme, lactoferrin and peroxidase. The side of dominant mobile phone use was associated with differences in salivary flow rate and parotid gland salivary concentrations, in right-dominant users. Although mobile phone use influenced salivary composition, the relationship was not significant.

  14. Ortho-methylated 3-hydroxypyridines hinder hen egg-white lysozyme fibrillogenesis

    NASA Astrophysics Data System (ADS)

    Mariño, Laura; Pauwels, Kris; Casasnovas, Rodrigo; Sanchis, Pilar; Vilanova, Bartolomé; Muñoz, Francisco; Donoso, Josefa; Adrover, Miquel

    2015-07-01

    Protein aggregation with the concomitant formation of amyloid fibrils is related to several neurodegenerative diseases, but also to non-neuropathic amyloidogenic diseases and non-neurophatic systemic amyloidosis. Lysozyme is the protein involved in the latter, and it is widely used as a model system to study the mechanisms underlying fibril formation and its inhibition. Several phenolic compounds have been reported as inhibitors of fibril formation. However, the anti-aggregating capacity of other heteroaromatic compounds has not been studied in any depth. We have screened the capacity of eleven different hydroxypyridines to affect the acid-induced fibrillization of hen lysozyme. Although most of the tested hydroxypyridines alter the fibrillation kinetics of HEWL, only 3-hydroxy-2-methylpyridine, 3-hydroxy-6-methylpyridine and 3-hydroxy-2,6-dimethylpyridine completely abolish fibril formation. Different biophysical techniques and several theoretical approaches are combined to elucidate their mechanism of action. O-methylated 3-hydroxypyridines bind non-cooperatively to two distinct but amyloidogenic regions of monomeric lysozyme. This stabilises the protein structure, as evidenced by enhanced thermal stability, and results in the inhibition of the conformational transition that precedes fibril assembly. Our results point to o-methylated 3-hydroxypyridines as a promising molecular scaffold for the future development of novel fibrillization inhibitors.

  15. 21 CFR 862.1490 - Lysozyme (muramidase) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lysozyme (muramidase) test system. 862.1490 Section 862.1490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  16. Smallest bitter taste receptor (T2Rs) gene repertoire in carnivores.

    PubMed

    Hu, Ling-Ling; Shi, Peng

    2013-06-01

    Bitter taste reception is presumably associated with dietary selection, preventing animals from ingesting potentially harmful compounds. Accordingly, carnivores, who encounter these toxic substances less often, should have fewer genes associated with bitter taste reception compared with herbivores and omnivores. To investigate the genetic basis of bitter taste reception, we confirmed bitter taste receptor (T2R) genes previously found in the genome sequences of two herbivores (cow and horse), two omnivores (mouse and rat) and one carnivore (dog). We also identified, for the first time, the T2R repertoire from the genome of other four carnivore species (ferret, giant panda, polar bear and cat) and detected 17-20 bitter receptor genes from the five carnivore genomes, including 12-16 intact genes, 0-1 partial but putatively functional genes, and 3-8 pseudogenes. Both the intact T2R genes and the total T2R gene number among carnivores were the smallest among the tested species, supporting earlier speculations that carnivores have fewer T2R genes, herbivores an intermediate number, and omnivores the largest T2R gene repertoire. To further explain the genetic basis for this disparity, we constructed a phylogenetic tree, which showed most of the T2R genes from the five carnivores were one-to-one orthologs across the tree, suggesting that carnivore T2Rs were conserved among mammals. Similarly, the small carnivore T2R family size was likely due to rare duplication events. Collectively, these results strengthen arguments for the connection between T2R gene family size, diet and habit.

  17. Functional Micrococcus lysodeikticus layers deposited by laser technique for the optical sensing of lysozyme.

    PubMed

    Dinca, Valentina; Zaharie-Butucel, Diana; Stanica, Luciana; Brajnicov, Simona; Marascu, Valentina; Bonciu, Anca; Cristocea, Andra; Gaman, Laura; Gheorghiu, Mihaela; Astilean, Simion; Vasilescu, Alina

    2018-02-01

    Whole cell optical biosensors, made by immobilizing whole algal, bacterial or mammalian cells on various supports have found applications in several fields, from ecology and ecotoxicity testing to biopharmaceutical production or medical diagnostics. We hereby report the deposition of functional bacterial layers of Micrococcus lysodeikticus (ML) via Matrix-Assisted Pulsed Laser Evaporation (MAPLE) on poly(diallyldimethylamonium) (PDDA)-coated-glass slides and their application as an optical biosensor for the detection of lysozyme in serum. Lysozyme is an enzyme upregulated in inflammatory diseases and ML is an enzymatic substrate for this enzyme. The MAPLE-deposited bacterial interfaces were characterised by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier-Transformed Infrared Spectroscopy (FTIR), Raman and optical microscopy and were compared with control interfaces deposited via layer-by-layer on the same substrate. After MAPLE deposition and coating with graphene oxide (GO), ML-modified interfaces retained their functionality and sensitivity to lysozyme's lytic action. The optical biosensor detected lysozyme in undiluted serum in the clinically relevant range up to 10μgmL -1 , in a fast and simple manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Binding patterns and structure-affinity relationships of food azo dyes with lysozyme: a multitechnique approach.

    PubMed

    Peng, Wei; Ding, Fei; Peng, Yu-Kui; Jiang, Yu-Ting; Zhang, Li

    2013-12-18

    Food dyes serve to beguile consumers: they are often used to imitate the presence of healthful, colorful food produce such as fruits and vegetables. But considering the hurtful impact of these chemicals on the human body, it is time to thoroughly uncover the toxicity of these food dyes at the molecular level. In the present contribution, we have examined the molecular reactions of protein lysozyme with model food azo compound Color Index (C.I.) Acid Red 2 and its analogues C.I. Acid Orange 52, Solvent Yellow 2, and the core structure of azobenzene using a combination of biophysical methods at physiological conditions. Fluorescence, circular dichroism (CD), time-resolved fluorescence, UV-vis absorption as well as computer-aided molecular modeling were used to analyze food dye affinity, binding mode, energy transfer, and the effects of food dye complexation on lysozyme stability and conformation. Fluorescence emission spectra indicate complex formation at 10(-5) M dye concentration, and this corroborates time-resolved fluorescence results showing the diminution in the tryptophan (Trp) fluorescence mainly via a static type (KSV = 1.505 × 10(4) M(-1)) and Förster energy transfer. Structural analysis displayed the participation of several amino acid residues in food dye protein adducts, with hydrogen bonds, π-π and cation-π interactions, but the conformation of lysozyme was unchanged in the process, as derived from fluorescence emission, far-UV CD, and synchronous fluorescence spectra. The overall affinity of food dye is 10(4) M(-1) and there exists only one kind of binding domain in protein for food dye. These data are consistent with hydrophobic probe 8-anilino-1-naphthalenesulfonic acid (ANS) displacement, and molecular modeling manifesting the food dye binding patch was near to Trp-62 and Trp-63 residues of lysozyme. On the basis of the computational analyses, we determine that the type of substituent on the azobenzene structure has a powerful influence on the

  19. Organization of tcp, acf, and toxT genes within a ToxT-dependent operon.

    PubMed

    Brown, R C; Taylor, R K

    1995-05-01

    The toxin coregulated pilus (TCP) is required for Vibrio cholerae to colonize the human intestine. The expression of the pilin gene, tcpA, is dependent upon ToxR and upon ToxT. The toxT gene was recently mapped within the TCP biogenesis gene cluster and shown to be capable of activating a tcpA::TnphoA fusion when cloned in Escherichia coli. In this study, we determined that ToxR/ToxT activation occurs at the level of tcpA transcription. ToxT expressed in E. coli could activate a tcp operon fusion, while ToxR, ToxR with ToxS, or a ToxR-PhoA fusion failed to activate the tcp operon fusion and we could not demonstrate binding of a ToxR extract to the tcpA promoter region in DNA mobility-shift assays. The start site for the regulated promoter was shown by primer extension to lie 75 bp upstream of the first codon of tcpA. An 800-base tcpA message was identified, by Northern analysis, that correlates by size to the distance between the transcriptional start and a hairpin-loop sequence between tcpA and tcpB. The more-sensitive assay of RNase protection analysis demonstrated that a regulated transcript probably extends through the rest of the downstream tcp genes, including toxT and the adjacent accessory colonization factor (acf) genes. An in-frame tcpA deletion, but not a polar tcpA::TnphoA fusion, could be complemented for pilus surface expression by providing tcpA in trans. This evidence suggests that the tcp genes, including toxT, are organized in an operon directly activated by ToxT in a ToxR-dependent manner. Most of the toxT expression under induced conditions requires transcription of the tcpA promoter. Further investigation of how tcp::TnphoA insertions that are polar on toxT expression retain regulation showed that a low basal level of toxT expression is present in toxR and tcp::TnphoA strains. Overall, these observations support the ToxR/ToxT cascade of regulation for tcp. Once induced, toxT expression becomes autoregulatory via the tcp promoter, linking tcp

  20. Ontogenetic profile of innate immune related genes and their tissue-specific expression in brown trout, Salmo trutta (Linnaeus, 1758).

    PubMed

    Cecchini, Stefano; Paciolla, Mariateresa; Biffali, Elio; Borra, Marco; Ursini, Matilde V; Lioi, Maria B

    2013-09-01

    The innate immune system is a fundamental defense weapon of fish, especially during early stages of development when acquired immunity is still far from being completely developed. The present study aims at looking into ontogeny of innate immune system in the brown trout, Salmo trutta, using RT-PCR based approach. Total RNA extracted from unfertilized and fertilized eggs and hatchlings at 0, 1 h and 1, 2, 3, 4, 5, 6, 7 weeks post-fertilization was subjected to RT-PCR using self-designed primers to amplify some innate immune relevant genes (TNF-α, IL-1β, TGF-β and lysozyme c-type). The constitutive expression of β-actin was detected in all developmental stages. IL-1β and TNF-α transcripts were detected from 4 week post-fertilization onwards, whereas TGF-β transcript was detected only from 7 week post-fertilization onwards. Lysozyme c-type transcript was detected early from unfertilized egg stage onwards. Similarly, tissues such as muscle, ovary, heart, brain, gill, testis, liver, intestine, spleen, skin, posterior kidney, anterior kidney and blood collected from adult brown trout were subjected to detection of all selected genes by RT-PCR. TNF-α and lysozyme c-type transcripts were expressed in all tissues. IL-1β and TGF-β transcripts were expressed in all tissues except for the brain and liver, respectively. Taken together, our results show a spatial-temporal expression of some key innate immune-related genes, improving the basic knowledge of the function of innate immune system at early stage of brown trout. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Expression of recombinant human lysozyme in bacterial artificial chromosome transgenic mice promotes the growth of Bifidobacterium and inhibits the growth of Salmonella in the intestine.

    PubMed

    Dan, Lu; Liu, Shen; Shang, Shengzhe; Zhang, Huihua; Zhang, Ran; Li, Ning

    2018-04-20

    Targeted gene modification is a novel intervention strategy to increase disease resistance more quickly than traditional animal breeding. Human lysozyme, a natural, non-specific immune factor, participates in innate immunity, exerts a wide range of antimicrobial activities against pathogens, and has immuneregulatory effects. Therefore, it is a candidate gene for improved disease resistance in animals. In this study, we successfully generated a transgenic mouse model by microinjecting a modified bacterial artificial chromosome containing a recombinant human lysozyme (rhLZ) gene into the pronuclei of fertilized mouse embryos. rhLZ was expressed in serum, liver, spleen, lung, kidney, stomach, small intestine, and large intestine but not in milk. rhLZ protein concentrations in the serum of transgenic mice ranged from 2.09 to 2.60 mg/l. To examine the effect of rhLZ on intestinal microbiota, total aerobes, total anaerobes, Clostridium, Enterococcus, Streptococcus, Salmonella, Escherichia coli, Staphylococcus, Bifidobacterium, and Lactobacillus were measured in the intestines of transgenic and wild type mice. Results showed that Bifidobacteria were significantly increased (p < 0.001), whereas Salmonella were significantly decreased (p < 0.001) in transgenic mice compared to wild type mice. Our study suggests that rhLZ expression is a potential strategy to increase animal disease resistance. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Pyroelectricity in globular protein lysozyme films

    NASA Astrophysics Data System (ADS)

    Stapleton, A.; Noor, M. R.; Haq, E. U.; Silien, C.; Soulimane, T.; Tofail, S. A. M.

    2018-03-01

    Pyroelectricity is the ability of certain non-centrosymmetric materials to generate an electric charge in response to a change in temperature and finds use in a range of applications from burglar alarms to thermal imaging. Some biological materials also exhibit pyroelectricity but the examples of the effect are limited to fibrous proteins, polypeptides, and tissues and organs of animals and plants. Here, we report pyroelectricity in polycrystalline aggregate films of lysozyme, a globular protein.

  3. Development of lysozyme-combined antibacterial system to reduce sulfur dioxide and to stabilize Italian Riesling ice wine during aging process

    PubMed Central

    Chen, Kai; Han, Shun-yu; Zhang, Bo; Li, Min; Sheng, Wen-jun

    2015-01-01

    For the purpose of SO2 reduction and stabilizing ice wine, a new antibacterial technique was developed and verified in order to reduce the content of sulfur dioxide (SO2) and simultaneously maintain protein stability during ice wine aging process. Hazardous bacterial strain (lactic acid bacteria, LAB) and protein stability of Italian Riesling ice wine were evaluated in terms of different amounts of lysozyme, SO2, polyphenols, and wine pH by single-factor experiments. Subsequently, a quadratic rotation-orthogonal composite design with four variables was conducted to establish the multiple linear regression model that demonstrated the influence of different treatments on synthesis score between LAB inhibition and protein stability of ice wine. The results showed that, synthesis score can be influenced by lysozyme and SO2 concentrations on an extremely significant level (P < 0.01). Furthermore, the lysozyme-combined antibacterial system, which is specially designed for ice wine aging, was optimized step by step by response surface methodology and ridge analysis. As a result, the optimal proportion should be control in ice wine as follows: 179.31 mg L−1 lysozyme, 177.14 mg L−1 SO2, 0.60 g L−1 polyphenols, and 4.01 ice wine pH. Based on this system, the normalized synthesis score between LAB inhibition and protein stability can reach the highest point 0.920. Finally, by the experiments of verification and comparison, it was indicated that lysozyme-combined antibacterial system, which was a practical and prospective method to reduce SO2 concentration and effectively prevent contamination from hazardous LAB, can be used to stabilize ice wine during aging process. PMID:26405531

  4. Cloning and characterization of LOS1, a Saccharomyces cerevisiae gene that affects tRNA splicing.

    PubMed

    Hurt, D J; Wang, S S; Lin, Y H; Hopper, A K

    1987-03-01

    Saccharomyces cerevisiae strains carrying los1-1 mutations are defective in tRNA processing; at 37 degrees C, such strains accumulate tRNA precursors which have mature 5' and 3' ends but contain intervening sequences. Strains bearing los1-1 and an intron-containing ochre-suppressing tRNA gene, SUP4(0), also fail to suppress the ochre mutations ade2-1(0) and can1-100(0) at 34 degrees C. To understand the role of the LOS1 product in tRNA splicing, we initiated a molecular study of the LOS1 gene. Two plasmids, YEpLOS1 and YCpLOS1, that complement the los1-1 phenotype were isolated from the YEp24 and YCp50 libraries, respectively. YEpLOS1 and YCpLOS1 had overlapping restriction maps, indicating that the DNA in the overlapping segment could complement los1-1 when present in multiple or single copy. Integration of plasmid DNA at the LOS1 locus confirmed that these clones contained authentic LOS1 sequences. Southern analyses showed that LOS1 is a single copy gene. The locations of the LOS1 gene within YEpLOS1 and YCpLOS1 were determined by deletion and gamma-delta mapping. Two genomic disruptions of the LOS1 gene were constructed, i.e., an insertion of a 1.2-kilobase fragment carrying the yeast URA3 gene, los1::URA3, and a 2.4-kilobase deletion from the LOS1 gene, los1-delta V. Disruption or deletion of most of the LOS1 gene was not lethal; cells carrying the disrupted los1 alleles were viable and had phenotypes similar to those of cells carrying the los1-1 allele. Thus, it appears that the los1 gene product expedites tRNA splicing at elevated temperatures but is not essential for this process.

  5. Correlates between Models of Virulence for Mycobacterium tuberculosis among Isolates of the Central Asian Lineage: a Case for Lysozyme Resistance Testing?

    PubMed Central

    Casali, Nicola; Clark, Simon O.; Hooper, Richard; Williams, Ann; Velji, Preya; Gonzalo, Ximena

    2015-01-01

    Virulence factors (VFs) contribute to the emergence of new human Mycobacterium tuberculosis strains, are lineage dependent, and are relevant to the development of M. tuberculosis drugs/vaccines. VFs were sought within M. tuberculosis lineage 3, which has the Central Asian (CAS) spoligotype. Three isolates were selected from clusters previously identified as dominant in London, United Kingdom. Strain-associated virulence was studied in guinea pig, monocyte-derived macrophage, and lysozyme resistance assays. Whole-genome sequencing, single nucleotide polymorphism (SNP) analysis, and a literature review contributed to the identification of SNPs of interest. The animal model revealed borderline differences in strain-associated pathogenicity. Ex vivo, isolate C72 exhibited statistically significant differences in intracellular growth relative to C6 and C14. SNP candidates inducing lower fitness levels included 123 unique nonsynonymous SNPs, including three located in genes (lysX, caeA, and ponA2) previously identified as VFs in the laboratory-adapted reference strain H37Rv and shown to confer lysozyme resistance. C72 growth was most affected by lysozyme in vitro. A BLAST search revealed that all three SNPs of interest (C35F, P76Q, and P780R) also occurred in Tiruvallur, India, and in Uganda. Unlike C72, however, no single isolate identified through BLAST carried all three SNPs simultaneously. CAS isolates representative of three medium-sized human clusters demonstrated differential outcomes in models commonly used to estimate strain-associated virulence, supporting the idea that virulence varies within, not just across, M. tuberculosis lineages. Three VF SNPs of interest were identified in two additional locations worldwide, which suggested independent selection and supported a role for these SNPs in virulence. The relevance of lysozyme resistance to strain virulence remains to be established. PMID:25776753

  6. Self perceived work related stress and the relation with salivary IgA and lysozyme among emergency department nurses

    PubMed Central

    Yang, Y; Koh, D; Ng, V; Lee, C; Chan, G; Dong, F; Goh, S; Anantharaman, V; Chia, S

    2002-01-01

    Aims: To assess and compare the self perceived work related stress among emergency department (ED) and general ward (GW) nurses, and to investigate its relation with salivary IgA and lysozyme. Methods: One hundred and thirty two of 208 (63.5%) registered female ED and GW nurses participated in the study. A modified mental health professional stress scale (PSS) was used to measure self perceived stress. ELISA methods were used to determine the salivary IgA and lysozyme levels. Results: On PSS, ED nurses had higher scores (mean 1.51) than GW nurses (1.30). The scores of PSS subscales such as organisational structure and processes (OS), lack of resources (RES), and conflict with other professionals (COF) were higher in ED than in GW nurses. ED nurses had lower secretion rates of IgA (geometric mean (GM) 49.1 µg/min) and lysozyme (GM 20.0 µg/min) than GW nurses (68.2 µg/min, 30.5 µg/min). Significant correlations were observed between PSS and log IgA and lysozyme secretion rates. OS, RES, and COF were correlated with log IgA and lysozyme levels. Conclusion: ED nurses, who reported a higher level of professional stress, showed significantly lower secretion rates of salivary IgA and lysozyme compared to GW nurses. Salivary IgA and lysozyme were inversely correlated with self perceived work related stress. As these salivary biomarkers are reflective of the mucosal immunity, results support the inverse relation between stress and mucosal immunity. PMID:12468751

  7. CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells

    PubMed Central

    Herrmann, Andreas; Priceman, Saul J.; Kujawski, Maciej; Xin, Hong; Cherryholmes, Gregory A.; Zhang, Wang; Zhang, Chunyan; Lahtz, Christoph; Kowolik, Claudia; Forman, Steve J.; Kortylewski, Marcin; Yu, Hua

    2014-01-01

    Intracellular therapeutic targets that define tumor immunosuppression in both tumor cells and T cells remain intractable. Here, we have shown that administration of a covalently linked siRNA to an aptamer (apt) that selectively binds cytotoxic T lymphocyte–associated antigen 4 (CTLA4apt) allows gene silencing in exhausted CD8+ T cells and Tregs in tumors as well as CTLA4-expressing malignant T cells. CTLA4 expression was upregulated in CD8+ T cells in the tumor milieu; therefore, CTLA4apt fused to a STAT3-targeting siRNA (CTLA4apt–STAT3 siRNA) resulted in internalization into tumor-associated CD8+ T cells and silencing of STAT3, which activated tumor antigen–specific T cells in murine models. Both local and systemic administration of CTLA4apt–STAT3 siRNA dramatically reduced tumor-associated Tregs. Furthermore, CTLA4apt–STAT3 siRNA potently inhibited tumor growth and metastasis in various mouse tumor models. Importantly, CTLA4 expression is observed in T cells of patients with blood malignancies, and CTLA4apt–STAT3 siRNA treatment of immunodeficient mice bearing human T cell lymphomas promoted tumor cell apoptosis and tumor growth inhibition. These data demonstrate that a CTLA4apt-based siRNA delivery strategy allows gene silencing in both tumor-associated T cells and tumor cells and inhibits tumor growth and metastasis. PMID:24892807

  8. Tissue- and Time-Specific Expression of Otherwise Identical tRNA Genes

    PubMed Central

    Adir, Idan; Dahan, Orna; Broday, Limor; Pilpel, Yitzhak; Rechavi, Oded

    2016-01-01

    Codon usage bias affects protein translation because tRNAs that recognize synonymous codons differ in their abundance. Although the current dogma states that tRNA expression is exclusively regulated by intrinsic control elements (A- and B-box sequences), we revealed, using a reporter that monitors the levels of individual tRNA genes in Caenorhabditis elegans, that eight tryptophan tRNA genes, 100% identical in sequence, are expressed in different tissues and change their expression dynamically. Furthermore, the expression levels of the sup-7 tRNA gene at day 6 were found to predict the animal’s lifespan. We discovered that the expression of tRNAs that reside within introns of protein-coding genes is affected by the host gene’s promoter. Pairing between specific Pol II genes and the tRNAs that are contained in their introns is most likely adaptive, since a genome-wide analysis revealed that the presence of specific intronic tRNAs within specific orthologous genes is conserved across Caenorhabditis species. PMID:27560950

  9. Study on the conformation changes of Lysozyme induced by Hypocrellin A: The mechanism investigation

    NASA Astrophysics Data System (ADS)

    Ma, Fei; Huang, He-Yong; Zhou, Lin; Yang, Chao; Zhou, Jia-Hong; Liu, Zheng-Ming

    2012-11-01

    The interactions between Lysozyme and Hypocrellin A are investigated in details using time-resolved fluorescence, fourier transform infrared spectroscopy (FTIR), circular dichroism spectroscopy (CD), three-dimensional fluorescence spectra, and thermal gravimetric analysis (TGA) techniques. The results of time-resolved fluorescence suggest that the quenching mechanism is static quenching. FTIR and CD spectroscopy provide evidences of the reducing of α-helix after interaction. Hypocrellin A could change the micro-environmental of Lysozyme according to hydrophobic interaction between the aromatic ring and the hydrophobic amino acid residues, and the altered polypeptide backbone structures induce the reduction of α-helical structures. Moreover, TGA study further demonstrates the structure changes of Lysozyme on the effect of Hypocrellin A. This study could provide some important information for the derivatives of HA in pharmacy, pharmacology and biochemistry.

  10. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors

    PubMed Central

    Zuurbier, Linda; Gutierrez, Alejandro; Mullighan, Charles G.; Canté-Barrett, Kirsten; Gevaert, A. Olivier; de Rooi, Johan; Li, Yunlei; Smits, Willem K.; Buijs-Gladdines, Jessica G.C.A.M.; Sonneveld, Edwin; Look, A. Thomas; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2014-01-01

    Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients. PMID:23975177

  11. The Effect of Lysozyme on Reducing Biofilms by Staphylococcus aureus, Pseudomonas aeruginosa, and Gardnerella vaginalis: An In Vitro Examination.

    PubMed

    Hukić, Mirsada; Seljmo, Dzenita; Ramovic, Amra; Ibrišimović, Monia Avdić; Dogan, Serkan; Hukic, Jasna; Bojic, Elma Feric

    2018-05-01

    Two basic questions about lysozyme activities on the selected microorganisms were investigated, namely whether lysozyme inhibits biofilm production and which concentrations of the enzyme have the ability to change the natural biofilm producing capacity of different strains of Staphylococcus aureus (methicillin sensitive and resistant), Streptococcus pyogenes, Pseudomonas aeruginosa, and Gardnerella vaginalis. The effect of lysozyme on biofilm formation capacities of 16 strains of selected microorganisms was investigated, whereby four testing replicates have been performed in vitro using the Test Tube method, and the potential of lysozyme to change biofilm forming capacities depending on its concentration, species, and strains of microorganisms is demonstrated. A lysozyme concentration of 30 μg/ml indicated to have the highest inhibiting effect on all tested microorganisms. Furthermore, G. vaginalis was the most sensitive of them all, as its biofilm formation was inhibited in the presence of as low as 2.5 μg/ml of lysozyme. At enzyme concentrations of 7.5-50 μg/ml (with the exception of 30 μg/ml) the biofilm forming capacities of P. aeruginosa were enhanced. Depending on the strain of P. aeruginosa, the total biofilm quantity was either reduced or unaffected at lysozyme concentrations of 2.5, 5, 7.5, and 30 μg/ml. In contrast, lysozyme concentrations below 15 or 20 μg/ml did not affect or increase the volume of biofilm formation, while higher concentrations (15, 20, 25 μg/ml) reduced biofilm formation by 50% (3/6) and 30 μg/ml of biofilm reduced biofilm forming capacity of S. aureus by 100% (6/6). The results of this study are a strong foundation for further research on lysozyme as a modulator of the biofilm forming capacity of different species with the potential to aid in the development of new drugs for the treatment of oral and vaginal infections.

  12. Native and dry-heated lysozyme interactions with membrane lipid monolayers: Lipid packing modifications of a phospholipid mixture, model of the Escherichia coli cytoplasmic membrane.

    PubMed

    Derde, Melanie; Nau, Françoise; Guérin-Dubiard, Catherine; Lechevalier, Valérie; Paboeuf, Gilles; Jan, Sophie; Baron, Florence; Gautier, Michel; Vié, Véronique

    2015-04-01

    Antimicrobial resistance is currently an important public health issue. The need for innovative antimicrobials is therefore growing. The ideal antimicrobial compound should limit antimicrobial resistance. Antimicrobial peptides or proteins such as hen egg white lysozyme are promising molecules that act on bacterial membranes. Hen egg white lysozyme has recently been identified as active on Gram-negative bacteria due to disruption of the outer and cytoplasmic membrane integrity. Furthermore, dry-heating (7 days and 80 °C) improves the membrane activity of lysozyme, resulting in higher antimicrobial activity. These in vivo findings suggest interactions between lysozyme and membrane lipids. This is consistent with the findings of several other authors who have shown lysozyme interaction with bacterial phospholipids such as phosphatidylglycerol and cardiolipin. However, until now, the interaction between lysozyme and bacterial cytoplasmic phospholipids has been in need of clarification. This study proposes the use of monolayer models with a realistic bacterial phospholipid composition in physiological conditions. The lysozyme/phospholipid interactions have been studied by surface pressure measurements, ellipsometry and atomic force microscopy. Native lysozyme has proved able to absorb and insert into a bacterial phospholipid monolayer, resulting in lipid packing reorganization, which in turn has lead to lateral cohesion modifications between phospholipids. Dry-heating of lysozyme has increased insertion capacity and ability to induce lipid packing modifications. These in vitro findings are then consistent with the increased membrane disruption potential of dry heated lysozyme in vivo compared to native lysozyme. Moreover, an eggPC monolayer study suggested that lysozyme/phospholipid interactions are specific to bacterial cytoplasmic membranes. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. New Small Polypeptides Associated with DNA-Dependent RNA Polymerase of Escherichia coli after Infection with Bacteriophage T4

    PubMed Central

    Stevens, Audrey

    1972-01-01

    Four new small polypeptides are associated with DNA-dependent RNA polymerase from E. coli after infection with T4 phage. The new polypeptides are easily detected in RNA polymerase from E. coli cells labeled with amino acids after phage infection. Their molecular weights range from 10,000 to 22,000, as detected by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. All four polypeptides are found after infection with either wild-type T4 phage or T4 early amber mutants in genes 44, 42, 47, and 46. None of the polypeptides is labeled significantly before 5 min after infection at 30°. When two maturation-defective amber mutants in gene 55 of T4 phage are used for infection, a polypeptide with a molecular weight of 22,000 is absent. When a maturation-defective amber mutant in gene 33 of T4 phage is used, another small protein is absent. PMID:4551978

  14. Marker-Dependent Recombination in T4 Bacteriophage. IV. Recombinational Effects of Antimutator T4 DNA Polymerase

    PubMed Central

    Shcherbakov, V. P.; Plugina, L. A.; Kudryashova, E. A.

    1995-01-01

    Recombinational effects of the antimutator allele tsL42 of gene 43 of phage T4, encoding DNA polymerase, were studied in crosses between rIIB mutants. Recombination under tsL42-restricted conditions differed from the normal one in several respects: (1) basic recombination was enhanced, especially within very short distances; (2) mismatch repair tracts were shortened, while the contribution of mismatch repair to recombination was not changed; (3) marker interference at very short distances was augmented. We infer that the T4 DNA polymerase is directly involved in mismatch repair, performing both excision of a nonmatched single strand (by its 3' -> 5' exonuclease) and filling the resulting gap. A pathway for the mismatch repair was substantiated; it includes sequential action of endo VII (gp49) -> 3'->5' exonuclease (gp43) -> DNA polymerase (gp43) -> DNA ligase (gp30). It is argued that the marker interference at very short distances may result from the same sequence of events during the final processing of recombinational intermediates. PMID:7635281

  15. Transcriptional profiling of Epstein–Barr virus (EBV) genes and host cellular genes in nasal NK/T-cell lymphoma and chronic active EBV infection

    PubMed Central

    Zhang, Y; Ohyashiki, J H; Takaku, T; Shimizu, N; Ohyashiki, K

    2006-01-01

    Nasal NK/T-cell lymphoma is an aggressive subtype of non-Hodgkin lymphoma (NHL) that is closely associated with Epstein–Barr virus (EBV). The clonal expansion of EBV-infected NK or T cells is also seen in patients with chronic active EBV (CAEBV) infection, suggesting that two diseases might share a partially similar mechanism by which EBV affects host cellular gene expression. To understand the pathogenesis of EBV-associated NK/T-cell lymphoproliferative disorders (LPD) and design new therapies, we employed a novel EBV DNA microarray to compare patterns of EBV expression in six cell lines established from EBV-associated NK/T-cell LPD. We found that expression of BZLF1, which encodes the immediate-early gene product Zta, was expressed in SNK/T cells and the expression levels were preferentially high in cell lines from CAEBV infection. We also analyzsd the gene expression patterns of host cellular genes using a human oligonucleotide DNA microarray. We identified a subset of pathogenically and clinically relevant host cellular genes, including TNFRSF10D, CDK2, HSPCA, IL12A as a common molecular biological properties of EBV-associated NK/T-cell LPD and a subset of genes, such as PDCD4 as a putative contributor for disease progression. This study describes a novel approach from the aspects of viral and host gene expression, which could identify novel therapeutic targets in EBV-associated NK/T-cell LPD. PMID:16449999

  16. Complete genome sequence of Terriglobus saanensis type strain SP1PR4T, an Acidobacteria from tundra soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawat, Suman R.; Mannisto, Minna; Starovoytov, Valentin

    2012-01-01

    Terriglobus saanensis SP1PR4T is a novel species of the genus Terriglobus. T. saanensis is of ecological interest because it is a representative of the phylum Acidobacteria, which are dominant members of bacterial soil microbiota in Arctic ecosystems. T. saanensis is a cold-adapted acidophile and a versatile heterotroph utilizing a suite of simple sugars and complex polysaccharides. The genome contained an abundance of genes assigned to metabolism and transport of carbohydrates including gene modules encoding for carbohydrate-active enzyme (CAZyme) family involved in breakdown, utilization and biosynthesis of diverse structural and storage polysaccharides. T. saanensis SP1PR4T represents the first member of genusmore » Terriglobus with a completed genome sequence, consisting of a single replicon of 5,095,226 base pairs (bp), 54 RNA genes and 4,279 protein-coding genes. We infer that the physiology and metabolic potential of T. saanensis is adapted to allow for resilience to the nutrient-deficient conditions and fluctuating temperatures of Arctic tundra soils.« less

  17. The lupus susceptibility gene Pbx1 regulates the balance between follicular helper T cell and regulatory T cell differentiation

    PubMed Central

    Choi, Seung-Chul; Hutchinson, Tarun E.; Titov, Anton A.; Seay, Howard R.; Li, Shiwu; Brusko, Todd M.; Croker, Byron P.; Salek-Ardakani, Shahram; Morel, Laurence

    2016-01-01

    Pbx1 controls chromatin accessibility to a large number of genes and is entirely conserved between mice and humans. The Pbx1-d dominant negative isoform is more frequent in the CD4+ T cells from lupus patients than from healthy controls. Pbx1-d is associated with the production of autoreactive T cells in mice carrying the Sle1a1 lupus susceptibility locus. Transgenic expression of Pbx1-d in CD4+ T cells reproduced the phenotypes of Sle1a1 mice, with increased inflammatory functions of CD4+ T cells and impaired regulatory T cell homeostasis. Pbx1-d Tg also expanded the number of follicular helper T cells in a cell-intrinsic and antigen-specific manner that was enhanced in recall responses, and resulted in TH1-biased antibodies. Moreover, Pbx1-d Tg CD4+ T cells upregulated the expression of miR-10a, miR-21 and miR-155, which have been implicated in Treg and TFH cell homeostasis. Our results suggest that Pbx1-d impacts lupus development by regulating effector T cell differentiation and promoting TFH cells at the expense of Treg cells. In addition, our results identify Pbx1 as a novel regulator of CD4+ T cell effector function. PMID:27296664

  18. Relationship Between Equilibrium Forms of Lysozyme Crystals and Precipitant Anions

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan

    1996-01-01

    Molecular forces, such as electrostatic, hydrophobic, van der Waals and steric forces, are known to be important in determining protein interactions. These forces are affected by the solution conditions and changing the pH, temperature or the ionic strength of the solution can sharply affect protein interactions. Several investigations of protein crystallization have shown that this process is also strongly dependent on solution conditions. As the ionic strength of the solution is increased, the initially soluble protein may either crystallize or form an amorphous precipitate at high ionic strengths. Studies done on the model protein hen egg white lysozyme have shown that different crystal forms can be easily and reproducibly obtained, depending primarily on the anion used to desolubilize the protein. In this study we employ pyranine to probe the effect of various anions on the water structure. Additionally, lysozyme crystallization was carried out at these conditions and the crystal form was determined by X-ray crystallography. The goal of the study was to understand the physico-chemical basis for the effect of changing the anion concentration on the equilibrium form of lysozyme crystals. It will also verify the hypothesis that the anions, by altering the bulk water structure in the crystallizing solutions, alter the surface energy of the between the crystal faces and the solution and, consequently, the equilibrium form of the crystals.

  19. Characterization of CTLA-4 Structure and Expression on Human T Cells

    DTIC Science & Technology

    1993-10-01

    prevents induction of anergy in T-cell plastic B cells. J. Immunol. 143:2714. clones. Nature 356:607. 7. Selvakumar , A., B. K. Mohanraj, R . L. Eddy, T... r ~n~~1 Form Approved ,, "൘ rmi OCUMENTATION PAGE orm Ap.r•ved Onorraoe is estimated Ic Ae.C.. I e 1C.;W fp$ei . ý’~t.cr.cenq Ile Urn* fo 1’ e...associated antigen," CTLA-4 (13). The genes for the geninterestid to the r 5 iacids o both human and mouse CI’IA-4 share a similar exon and J3

  20. Lysozyme revisited: crystallographic evidence for distortion of an N-acetylmuramic acid residue bound in site D.

    PubMed

    Strynadka, N C; James, M N

    1991-07-20

    A structure of the trisaccharide 2-acetamido-2-deoxy-D-muramic acid-beta (1----4)-2-acetamido-2-deoxy-D-glucose-beta (1----4)-2-acetamido-2-deoxy-D-muramic acid (NAM-NAG-NAM), bound to subsites B, C and D in the active-site cleft of hen egg-white lysozyme has been determined and refined at 1.5 A resolution. The resulting atomic co-ordinates indicate that the NAM residue in site D is distorted from the full 4C1 chair conformation to one in which the ring atoms C-1, C-2, O-5 and C-5 are approximately coplanar, and the hydroxymethyl group is positioned axially (a conformation best described as a sofa). This finding supports the original proposals that suggested the ground-state conformation of the sugar bound in site D is strained to one that more closely resembles the geometry required for the oxocarbonium-ion transition state, the next step along the reaction pathway. Additionally, detailed analysis at 1.5 A resolution of the environments of the catalytic residues Glu35 and Asp52 provides new information on the properties that may allow lysozyme to promote the stabilization of an unusually long-lived oxocarbonium-ion transition state. Intermolecular interactions between the N-acetylmuramic acid residue in site D and the lysozyme molecule that contribute to the saccharide ring distortion include: close packing of the O-3' lactyl group with a hydrogen-bonded "platform" of enzyme residues (Asp52, Asn46, Asn59, Ser50 and Asp48), a close contact between the hydroxymethyl group of ring D and the 2'-acetamido group of ring C and a strong hydrogen-bonded interaction between the NH group of Val109 and O-6 of ring D that stabilizes the observed quasi-axial orientation of the -CH2OH group. Additionally, the structure of this complex shows a strong hydrogen bond between the carboxyl group of Glu35 and the beta-anomeric hydroxyl group of the NAM residue in site D. The hydrogen-bonded environment of Asp52 in the native enzyme and in the complex coupled with the very unfavorable

  1. Partial reconstitution of the CD4+-T-cell compartment in CD4 gene knockout mice restores responses to tuberculosis DNA vaccines.

    PubMed

    D'Souza, Sushila; Romano, Marta; Korf, Johanna; Wang, Xiao-Ming; Adnet, Pierre-Yves; Huygen, Kris

    2006-05-01

    Reactivation tuberculosis (TB) is a serious problem in immunocompromised individuals, especially those with human immunodeficiency virus (HIV) coinfection. The adaptive immune response mediated by CD4+ and CD8+ T cells is known to confer protection against TB. Hence, vaccines against TB are designed to activate these two components of the immune system. Anti-TB DNA vaccines encoding the immunodominant proteins Ag85A, Ag85B, and PstS-3 from Mycobacterium tuberculosis are ineffective in mice lacking CD4+ T cells (CD4-/- mice). In this study, we demonstrate that reconstitution of the T-cell compartment in CD4-/- mice restores vaccine-specific antibody and gamma interferon (IFN-gamma) responses to these DNA vaccines. The magnitude of the immune responses correlated with the extent of reconstitution of the CD4+-T-cell compartment. Reconstituted mice vaccinated with DNA encoding PstS-3, known to encode a dominant D(b)-restricted CD8+-T-cell epitope, displayed CD8+-T-cell responses not observed in CD4-/- mice. M. tuberculosis challenge in reconstituted mice led to the extravasation of IFN-gamma-producing CD4+ and CD8+ T cells into lungs, the primary site of bacterial replication. Importantly, a reconstitution of 12 to 15% of the CD4+-T-cell compartment resulted in Ag85B plasmid DNA-mediated protection against a challenge M. tuberculosis infection. Our findings provide evidence that anti-TB DNA vaccines could be effective in immunodeficient individuals after CD4+-T-lymphocyte reconstitution, as may occur following antiretroviral therapy in HIV+ patients.

  2. Developing tTA Transgenic Rats for Inducible and Reversible Gene Expression

    PubMed Central

    Zhou, Hongxia; Huang, Cao; Yang, Min; Landel, Carlisle P; Xia, Pedro Yuxing; Liu, Yong-Jian; Xia, Xu Gang

    2009-01-01

    To develop transgenic lines for conditional expression of desired genes in rats, we generated several lines of the transgenic rats carrying the tetracycline-controlled transactivator (tTA) gene. Using a vigorous, ubiquitous promoter to drive the tTA transgene, we obtained widespread expression of tTA in various tissues. Expression of tTA was sufficient to strongly activate its reporter gene, but was below the toxicity threshold. We examined the dynamics of Doxycycline (Dox)-regulated gene expression in transgenic rats. In the two transmittable lines, tTA-mediated activation of the reporter gene was fully subject to regulation by Dox. Dox dose-dependently suppressed tTA-activated gene expression. The washout time for the effects of Dox was dose-dependent. We tested a complex regime of Dox administration to determine the optimal effectiveness and washout duration. Dox was administered at a high dose (500 μg/ml in drinking water) for two days to reach the effective concentration, and then was given at a low dose (20 μg/ml) to maintain effectiveness. This regimen of Dox administration can achieve a quick switch between ON and OFF statuses of tTA-activated gene expression. In addition, administration of Dox to pregnant rats fully suppressed postnatal tTA-activated gene expression in their offspring. Sufficient levels of Dox are present in mother's milk to produce maximal efficacy in nursing neonates. Administration of Dox to pregnant or nursing rats can provide a continual suppression of tTA-dependent gene expression during embryonic and postnatal development. The tTA transgenic rat allows for inducible and reversible gene expression in the rat; this important tool will be valuable in the development of genetic rat models of human diseases. PMID:19214245

  3. T-Box Genes in the Kidney and Urinary Tract.

    PubMed

    Kispert, A

    2017-01-01

    T-box (Tbx) genes encode an ancient group of transcription factors that play important roles in patterning, specification, proliferation, and differentiation programs in vertebrate organogenesis. This is testified by severe organ malformation syndromes in mice homozygous for engineered null alleles of specific T-box genes and by the large number of human inherited organ-specific diseases that have been linked to mutations in these genes. One of the organ systems that has not been associated with loss of specific T-box gene function in human disease for long is the excretory system. However, this has changed with the finding that mutations in TBX18, a member of a vertebrate-specific subgroup within the Tbx1-subfamily of T-box transcription factor genes, cause congenital anomalies of the kidney and urinary tract, predominantly hydroureter and ureteropelvic junction obstruction. Gene expression analyses, loss-of-function studies, and lineage tracing in the mouse suggest a primary role for this transcription factor in specifying the ureteric mesenchyme in the common anlage of the kidney, the ureter, and the bladder. We review the function of Tbx18 in ureterogenesis and discuss the body of evidence that Tbx18 and other members of the T-box gene family, namely, Tbx1, Tbx2, Tbx3, and Tbx20, play additional roles in development and homeostasis of other components of the excretory system in vertebrates. © 2017 Elsevier Inc. All rights reserved.

  4. Functionalization of multiwalled carbon nanotubes by microwave irradiation for lysozyme attachment: comparison of covalent and adsorption methods by kinetics of thermal inactivation

    NASA Astrophysics Data System (ADS)

    Puentes-Camacho, Daniel; Velázquez, Enrique F.; Rodríguez-Félix, Dora E.; Castillo-Ortega, Mónica; Sotelo-Mundo, Rogerio R.; del Castillo-Castro, Teresa

    2017-12-01

    Proteins suffer changes in their tertiary structure when they are immobilized, and enzymatic activity is affected due to the low biocompatibility of some supporting materials. In this work immobilization of lysozyme on carbon nanotubes previously functionalized by microwave irradiation was studied. The effectiveness of the microwave-assisted acid treatment of carbon nanotubes was evaluated by XPS, TEM, Raman and FTIR spectroscopy. The carboxylic modification of nanotube surfaces by this fast, simple and feasible method allowed the physical adsorption and covalent linking of active lysozyme onto the carbonaceous material. Thermal inactivation kinetics, thermodynamic parameters and storage stability were studied for adsorbed and covalent enzyme complexes. A major stability was found for lysozyme immobilized by the covalent method, the activation energy for inactivation of the enzyme was higher for the covalent method and it was stable after 50 d of storage at 4 °C. The current study highlights the effect of protein immobilization method on the biotechnological potential of nanostructured biocatalysts.

  5. Crystallization and evaluation of hen egg-white lysozyme crystals for protein pH titration in the crystalline state.

    PubMed

    Iwai, Wakari; Yagi, Daichi; Ishikawa, Takuya; Ohnishi, Yuki; Tanaka, Ichiro; Niimura, Nobuo

    2008-05-01

    To observe the ionized status of the amino acid residues in proteins at different pH (protein pH titration in the crystalline state) by neutron diffraction, hen egg-white lysozyme was crystallized over a wide pH range (2.5-8.0). Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined. At pH < 4.5 the border between the metastable region and the nucleation region shifted to the left (lower precipitant concentration) in the phase diagram, and at pH > 4.5 the border shifted to the right (higher precipitant concentration). The qualities of these crystals were characterized using the Wilson plot method. The qualities of all crystals at different pH were more or less equivalent (B-factor values within 25-40). It is expected that neutron diffraction analysis of these crystals of different pH provides equivalent data in quality for discussions of protein pH titration in the crystalline state of hen egg-white lysozyme.

  6. T-Box Genes in Drosophila Mesoderm Development.

    PubMed

    Reim, I; Frasch, M; Schaub, C

    2017-01-01

    In Drosophila there are eight genes encoding transcription factors of the T-box family, which are known to exert a variety of crucial developmental functions during ectodermal patterning processes, neuronal cell specification, mesodermal tissue development, and the development of extraembryonic tissues. In this review, we focus on the prominent roles of Drosophila T-box genes in mesodermal tissues. First, we describe the contributions of brachyenteron (byn) and optomotor-blind-related-gene-1 (org-1) to the development of the visceral mesoderm. Second, we provide an overview on the functions of the three Dorsocross paralogs (Doc1-3) and the two Tbx20-related paralogs (midline and H15) during Drosophila heart development. Third, we portray the roles of org-1 and midline/H15 in the specification of individual body wall and organ-attached muscles, including the function of org-1 in the transdifferentiation of certain heart-attached muscles during metamorphosis. The functional analysis of these evolutionarily conserved T-box genes, along with their interactions with other types of transcription factors and various signaling pathways, has provided key insights into the regulation of Drosophila visceral mesoderm, muscle, and heart development. © 2017 Elsevier Inc. All rights reserved.

  7. Science Study Aids 6: Lysozyme - The Cooperative Enzyme.

    ERIC Educational Resources Information Center

    Boeschen, John; Alderton, Gordon

    This publication is the sixth of a series of seven supplementary investigative materials for use in secondary science classes providing up-to-date research-related investigations. This unit is structured for grade levels 10 through 12. It is concerned with the crystallization of an enzyme, lysozyme, from egg white. The first part of this guide…

  8. Crystallization of Chicken Egg-White Lysozyme from Ammonium Sulfate

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Pusey, Marc L.

    1997-01-01

    Chicken egg-white lysozyme was crystallized from ammonium sulfate over the pH range 4.0-7.8, with protein concentrations from 100 to 150 mg/ml. Crystals were obtained by vapor-diffusion or batch-crystallization methods. The protein crystallized in two morphologies with an apparent morphology dependence on temperature and protein concentration. In general, tetragonal crystals could be grown by lowering the protein concentration or temperature. Increasing the temperature or protein concentration resulted in the growth of orthorhombic crystals. Representative crystals of each morphology were selected for X-ray analysis. The tetragonal crystals belonged to the P4(sub 3)2(sub 1)2 space group with crystals grown at ph 4.4 having unit-cell dimensions of a = b = 78.7 1, c=38.6 A and diffracting to beyond 2.0 A. The orthorhombic crystals, grown at pH 4.8, were of space group P2(sub 1)2(sub 1)2 and had unit-cell dimensions of a = 30.51, b = 56.51 and c = 73.62 A.

  9. Cell-cell contact regulates gene expression in CDK4-transformed mouse podocytes.

    PubMed

    Sakairi, Toru; Abe, Yoshifusa; Jat, Parmijit S; Kopp, Jeffrey B

    2010-10-01

    We transformed mouse podocytes by ectopic expression of cyclin-dependent kinase 4 (CDK4). Compared with podocytes transformed with a thermo-sensitive SV40 large T antigen mutant tsA58U19 (tsT podocytes), podocytes transformed with CDK4 (CDK4 podocytes) exhibited significantly higher expression of nephrin mRNA. Synaptopodin mRNA expression was significantly lower in CDK4 podocytes and in tsT podocytes under growth-permissive conditions (33°C) compared with tsT podocytes under growth-restricted conditions (37°C), which suggests a role for cell cycle arrest in synaptopodin mRNA expression. Confluent CDK4 podocytes showed significantly higher mRNA expression levels for nephrin, synaptopodin, Wilms tumor 1, podocalyxin, and P-cadherin compared with subconfluent cultures. We carried out experiments to clarify roles of various factors in the confluent podocyte cultures; our findings indicate that cell-cell contact promotes expression of five podocyte marker genes studied, that cellular quiescence increases synaptopodin and podocalyxin mRNA expression, and that soluble factors play a role in nephrin mRNA expression. Our findings suggest that CDK4 podocytes are useful tools to study podocyte biology. Furthermore, the role of cell-cell contact in podocyte gene expression may have relevance for podocyte function in vivo.

  10. Association of endothelial nitric oxide synthase gene variants (-786 T>C, intron 4 b/a VNTR and 894 G>T) with idiopathic recurrent pregnancy loss: A case-control study with haplotype and in silico analysis.

    PubMed

    Azani, Alireza; Hosseinzadeh, Asghar; Azadkhah, Roya; Zonouzi, Ali Akbar Poursadegh; Zonouzi, Ahmad Poursadegh; Aftabi, Younes; Khani, Hourieh; Heidary, Leida; Danaii, Shahla; Bargahi, Nasrin; Pouladi, Nasser; Hosseini, Sayed Mostafa

    2017-08-01

    Many lines of evidence suggest that reduced production of nitric oxide (NO) due to single nucleotide polymorphisms in endothelial nitric oxide synthase (eNOS) gene may affect the implantation and maintenance of pregnancy. Accordingly, our objective was to investigate whether the eNOS polymorphisms (-786 T>C, intron 4 b/a VNTR and 894 G>T) and haplotypes may be associated with increased susceptibility to recurrent pregnancy loss (RPL). A total of 130 women with a history of two or more unexplained consecutive first trimester miscarriages and 110 ethnically matched women with at least two normal pregnancies and no history of pregnancy loss were included in the study as cases and controls, respectively. To identify the genotypes, we used polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP) methods In addition, an in silico analysis was conducted to predict the possible effects of the eNOS 894 G>T polymorphism on the structure and function of eNOS mRNA and protein using prediction servers. Our findings revealed that the prevalence of eNOS -786 T>C polymorphism, eNOS -786C allele and TC+CC genotype in cases were significantly higher than those in healthy controls (p<0.05). Also, the combination genotypes -786TT/4b4a and -786TT/894GG were significantly associated with reduced risk of RPL. We also found that the C-4a-G haplotype of the eNOS gene studied polymorphisms was significantly associated with a predisposition to RPL (odds ratio, 3.219; 95% confidence interval, 1.649-6.282; p=0.0003). The in silico analysis showed that the eNOS 894 G>T polymorphism couldn't affects eNOS mRNA and protein significantly. Our findings provide evidence to support the hypothesis that eNOS -786 T>C polymorphism and the -786C-4a-894G haplotype are associated with the high risk of RPL. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Glucuronic Acid Utilization Gene Cluster from Bacillus stearothermophilus T-6

    PubMed Central

    Shulami, Smadar; Gat, Orit; Sonenshein, Abraham L.; Shoham, Yuval

    1999-01-01

    A λ-EMBL3 genomic library of Bacillus stearothermophilus T-6 was screened for hemicellulolytic activities, and five independent clones exhibiting β-xylosidase activity were isolated. The clones overlap each other and together represent a 23.5-kb chromosomal segment. The segment contains a cluster of xylan utilization genes, which are organized in at least three transcriptional units. These include the gene for the extracellular xylanase, xylanase T-6; part of an operon coding for an intracellular xylanase and a β-xylosidase; and a putative 15.5-kb-long transcriptional unit, consisting of 12 genes involved in the utilization of α-d-glucuronic acid (GlcUA). The first four genes in the potential GlcUA operon (orf1, -2, -3, and -4) code for a putative sugar transport system with characteristic components of the binding-protein-dependent transport systems. The most likely natural substrate for this transport system is aldotetraouronic acid [2-O-α-(4-O-methyl-α-d-glucuronosyl)-xylotriose] (MeGlcUAXyl3). The following two genes code for an intracellular α-glucuronidase (aguA) and a β-xylosidase (xynB). Five more genes (kdgK, kdgA, uxaC, uxuA, and uxuB) encode proteins that are homologous to enzymes involved in galacturonate and glucuronate catabolism. The gene cluster also includes a potential regulatory gene, uxuR, the product of which resembles repressors of the GntR family. The apparent transcriptional start point of the cluster was determined by primer extension analysis and is located 349 bp from the initial ATG codon. The potential operator site is a perfect 12-bp inverted repeat located downstream from the promoter between nucleotides +170 and +181. Gel retardation assays indicated that UxuR binds specifically to this sequence and that this binding is efficiently prevented in vitro by MeGlcUAXyl3, the most likely molecular inducer. PMID:10368143

  12. Internal control regions for transcription of eukaryotic tRNA genes.

    PubMed Central

    Sharp, S; DeFranco, D; Dingermann, T; Farrell, P; Söll, D

    1981-01-01

    We have identified the region within a eukaryotic tRNA gene required for initiation of transcription. These results were obtained by systematically constructing deletions extending from the 5' or the 3' flanking regions into a cloned Drosophila tRNAArg gene by using nuclease BAL 31. The ability of the newly generated deletion clones to direct the in vitro synthesis of tRNA precursors was measured in transcription systems from Xenopus laevis oocytes, Drosophila Kc cells, and HeLa cells. Two control regions within the coding sequence were identified. The first was essential for transcription and was contained between nucleotides 8 and 25 of the mature tRNA sequence. Genes devoid of the second control region, which was contained between nucleotides 50 and 58 of the mature tRNA sequence, could be transcribed but with reduced efficiency. Thus, the promoter regions within a tRNA gene encode the tRNA sequences of the D stem and D loop, the invariant uridine at position 8, and the semi-invariant G-T-psi-C sequence. Images PMID:6947245

  13. Cytotoxic T-lymphocyte-associated protein 4 gene polymorphism is related to rheumatoid arthritis in Egyptian population.

    PubMed

    Fattah, Shaimaa A; Ghattas, Maivel H; Saleh, Samy M; Abo-Elmatty, Dina M

    2017-02-01

    Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a CD28-family receptor expressed on T-cells which suppresses T cell proliferation. CTLA-4 -318C/T polymorphism is involved in regulation of CTLA-4 expression. The study aimed to investigate the genetic association of CTLA-4 -318C/T polymorphism with rheumatoid arthritis (RA) and the activity and severity of the disease in the Egyptian population. A single nucleotide polymorphism (rs5742909) in CTLA-4 was genotyped in 100 RA patients and 100 healthy controls using polymerase chain reaction-restriction fragment length polymorphism. Diagnostic tests were measured for RA patients. The frequency of T allele in RA patients was significantly higher than in the control subjects (p = 0.002). CT and TT genotypes had high C-reactive protein, erythrocyte sedimentation rate and disease activity score 28 while CC genotype had a high rheumatoid factor. A minor allele of CTLA-4 rs5742909 polymorphism was associated with RA and the activity but not the severity of the disease.

  14. Cloning and characterization of LOS1, a Saccharomyces cerevisiae gene that affects tRNA splicing.

    PubMed Central

    Hurt, D J; Wang, S S; Lin, Y H; Hopper, A K

    1987-01-01

    Saccharomyces cerevisiae strains carrying los1-1 mutations are defective in tRNA processing; at 37 degrees C, such strains accumulate tRNA precursors which have mature 5' and 3' ends but contain intervening sequences. Strains bearing los1-1 and an intron-containing ochre-suppressing tRNA gene, SUP4(0), also fail to suppress the ochre mutations ade2-1(0) and can1-100(0) at 34 degrees C. To understand the role of the LOS1 product in tRNA splicing, we initiated a molecular study of the LOS1 gene. Two plasmids, YEpLOS1 and YCpLOS1, that complement the los1-1 phenotype were isolated from the YEp24 and YCp50 libraries, respectively. YEpLOS1 and YCpLOS1 had overlapping restriction maps, indicating that the DNA in the overlapping segment could complement los1-1 when present in multiple or single copy. Integration of plasmid DNA at the LOS1 locus confirmed that these clones contained authentic LOS1 sequences. Southern analyses showed that LOS1 is a single copy gene. The locations of the LOS1 gene within YEpLOS1 and YCpLOS1 were determined by deletion and gamma-delta mapping. Two genomic disruptions of the LOS1 gene were constructed, i.e., an insertion of a 1.2-kilobase fragment carrying the yeast URA3 gene, los1::URA3, and a 2.4-kilobase deletion from the LOS1 gene, los1-delta V. Disruption or deletion of most of the LOS1 gene was not lethal; cells carrying the disrupted los1 alleles were viable and had phenotypes similar to those of cells carrying the los1-1 allele. Thus, it appears that the los1 gene product expedites tRNA splicing at elevated temperatures but is not essential for this process. Images PMID:3031485

  15. Sustained Benefit Lasting One Year from T4 Instead of T3-T4 Sympathectomy for Isolated Axillary Hyperhidrosis

    PubMed Central

    Munia, Marco Antonio S.; Wolosker, Nelson; Kaufmann, Paulo; de Campos, José Ribas Milanes; Puech-Leão, Pedro

    2008-01-01

    INTRODUCTION Level T4 video-assisted thoracoscopic sympathectomy proved superior to T3-T4 treatment for controlling axillary hyperhidrosis at the initial and six-month follow-ups of these patients. OBJECTIVE To compare the results of two levels of sympathectomy (T3-T4 vs. T4) for treating axillary sudoresis over one year of follow-up. METHODS Sixty-four patients with axillary hyperhidrosis were randomized to denervation of T3-T4 or T4 alone and followed prospectively. All patients were examined preoperatively and were followed postoperatively for one year. Axillary hyperhidrosis treatment was evaluated, along with the presence, location, and severity of compensatory hyperhidrosis and self-reported quality of life. RESULTS According to patient reports after one year, all cases of axillary hyperhidrosis were successfully treated by surgery. There were no instances of treatment failure. After six months, compensatory hyperhidrosis was present in 27 patients of the T3-T4 group (87.1%) and in 16 patients of the T4 group (48.5%). After one year, all T3-T4 patients experienced some degree of compensatory hyperhidrosis, compared to only 14 patients in the T4 group (42.4%). In addition, compensatory hyperhidrosis was less severe in the T4 patients (p < 0.01). Quality of life was poor before surgery, and it improved in both groups at six months and one year of follow-up (p = 0.002). There were no cases of mortality, no significant postoperative complications, and no need for conversion to thoracotomy in either group. CONCLUSION Both techniques were effective for treating axillary hyperhidrosis, but the T4 group showed milder compensatory hyperhidrosis and greater patient satisfaction at the one-year follow-up. PMID:19060999

  16. Growth and dissolution kinetics of tetragonal lysozyme

    NASA Technical Reports Server (NTRS)

    Monaco, L. A.; Rosenberger, F.

    1993-01-01

    The growth and dissolution kinetics of lysozyme in a 25 ml solution bridge inside a closed growth cell was investigated. It was found that, under all growth conditions, the growth habit forming (110) and (101) faces grew through layer spreading with different growth rate dependence on supersaturation/temperature. On the other hand, (100) faces which formed only at low temperatures underwent a thermal roughening transition around 12 C.

  17. The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study we show that possible conformational changes induced by heating are stable and apparently non- reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for 4 weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 h at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.

  18. Effects of food-borne exposure of juvenile rainbow trout (Oncorhynchus mykiss) to emerging brominated flame retardants 1,2-bis(2,4,6-tribromophenoxy)ethane and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate.

    PubMed

    Giraudo, Maeva; Douville, Mélanie; Letcher, Robert J; Houde, Magali

    2017-05-01

    Brominated flame retardants (BFRs) represent a large group of chemicals used in a variety of household and commercial products to prevent fire propagation. The environmental persistence and toxicity of some of the most widely used BFRs has resulted in a progressive ban worldwide and the development of novel BFRs for which the knowledge on environmental health impacts remains limited. The objectives of this study were to evaluate the effects of two emerging BFRs, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB), in diet exposed juvenile rainbow trout (Oncorhynchus mykiss). Both compounds were detected in fish carcasses at 76% and 2% of the daily dosage of BTBPE and EH-TBB, respectively, indicating accumulation of BTBPE and by contrast extensive depuration/metabolism of EH-TBB. Liver gene transcription analysis using RNA-sequencing indicated that the chronic 28-d dietary exposure of trout to EH-TBB down-regulated one single gene related to endocrine-mediated processes, whereas BTBPE impacted the transcription of 33 genes, including genes involved in the immune response, reproduction, and oxidative stress. Additional analysis using qRT-PCR after 48-h and 28-d of exposure confirmed the impact of BTBPE on immune related genes in the liver (apolipoprotein A-I, lysozyme) and the head-kidney (complement c3-4). However, the activity of lysozymes measured at the protein level did not reflect transcriptomic results. Overall, results suggested an impact on immune-related gene transcription in BTBPE exposed fish, as well as oxidative stress and endocrine disruption potentials. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. Combined pulmonary involvement in hereditary lysozyme amyloidosis with associated pulmonary sarcoidosis: a case report.

    PubMed

    McCarthy, Cormac; Deegan, Alexander P; Garvey, John F; McDonnell, Timothy J

    2013-12-17

    Sarcoidosis is a multisystem inflammatory disorder of unknown cause which can affect any organ system. Autosomal dominant lysozyme amyloidosis is a very rare form of hereditary amyloidosis. The Arg64 variant is extraordinarily rare with each family showing a particular pattern of organ involvement, however while Sicca syndrome, gastrointestinal involvement and renal failure are common, lymph node involvement is very rare. In this case report we describe the first reported case of sarcoidosis in association with hereditary lysozyme amyloidosis.

  20. ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum

    PubMed Central

    Chen, Wenjie; Zhang, Bo; Wang, Daowen; Liu, Dengcai; Zhang, Huaigang

    2017-01-01

    Blue aleurone is a useful and interesting trait in common wheat that was derived from related species. Here, transcriptomes of blue and white aleurone were compared for isolating Blue aleurone 1 (Ba1) transferred from Thinopyrum ponticum. In the genes involved in anthocyanin biosynthesis, only a basic helix-loop-helix (bHLH) transcription factor, ThMYC4E, had a higher transcript level in blue aleurone phenotype, and was homologous to the genes on chromosome 4 of Triticum aestivum. ThMYC4E carried the characteristic domains (bHLH-MYC_N, HLH and ACT-like) of a bHLH transcription factor, and clustered with genes regulating anthocyanin biosynthesis upon phylogenetic analysis. The over-expression of ThMYC4E regulated anthocyanin biosynthesis with the coexpression of the MYB transcription factor ZmC1 from maize. ThMYC4E existed in the genomes of the addition, substitution and near isogenic lines with the blue aleurone trait derived from Th. ponticum, and could not be detected in any germplasm of T. urartu, T. monococcum, T. turgidum, Aegilops tauschii or T. aestivum, with white aleurone. These results suggested that ThMYC4E was candidate Ba1 gene controlling the blue aleurone trait in T. aestivum genotypes carrying Th. ponticum introgression. The ThMYC4E isolation aids in better understanding the genetic mechanisms of the blue aleurone trait and in its more effective use during wheat breeding. PMID:28704468

  1. Expression of tyrosine hydroxylase in CD4+ T cells contributes to alleviation of Th17/Treg imbalance in collagen-induced arthritis.

    PubMed

    Wang, Xiao-Qin; Liu, Yan; Cai, Huan-Huan; Peng, Yu-Ping; Qiu, Yi-Hua

    2016-12-01

    Tyrosine hydroxylase (TH), a rate-limiting enzyme for the synthesis of catecholamines, is expressed in T lymphocytes. However, the role of T cell-expressed TH in rheumatoid arthritis (RA) is less clear. Herein, we aimed to show the contribution of TH expression by CD4 + T cells to alleviation of helper T (Th)17/regulatory T (Treg) imbalance in collagen-induced arthritis (CIA), a mouse model of RA. CIA was prepared by intradermal injection of collagen type II (CII) at tail base of DBA1/J mice. Expression of TH in the spleen and the ankle joints was measured by real-time polymerase chain reaction and Western blot analysis. Percentages of TH-expressing Th17 and Treg cells in splenic CD4 + T cells were determined by flow cytometry. Overexpression and knockdown of TH gene in CD4 + T cells were taken to evaluate effects of TH on Th17 and Treg cells in CIA. TH expression was upregulated in both the inflamed tissues (spleen and ankle joints) and the CD4 + T cells of CIA mice. In splenic CD4 + T cells, the cells expressing TH were increased during CIA. These cells that expressed more TH in CIA were mainly Th17 cells rather than Treg cells. TH gene overexpression in CD4 + T cells from CIA mice reduced Th17 cell percentage as well as Th17-related transcription factor and cytokine expression and secretion, whereas TH gene knockdown enhanced the Th17 cell activity. In contrast, TH gene overexpression increased Treg-related cytokine expression and secretion in CD4 + T cells of CIA mice, while TH gene knockdown decreased the Treg cell changes. Collectively, these findings show that CIA induces TH expression in CD4 + T cells, particularly in Th17 cells, and suggest that the increased TH expression during CIA represents an anti-inflammatory mechanism.

  2. Susceptibility background for type 2 diabetes in eleven Mexican Indigenous populations: HNF4A gene analysis.

    PubMed

    Granados-Silvestre, M A; Ortiz-López, M G; Granados, J; Canizales-Quinteros, S; Peñaloza-Espinosa, Rosenda I; Lechuga, C; Acuña-Alonzo, V; Sánchez-Pozos, K; Menjivar, M

    2017-12-01

    The genetic risk of developing type 2 diabetes (T2D) increases in parallel with the proportion of Native American ancestry. Mestizo Mexicans have a 70% Native Amerindian genetic background. The T130I polymorphism in the HNF4A gene has been associated with early-onset T2D in mestizo Mexicans. Thus, the aim of the present study was to evaluate the frequency and relationship of the T130I variant in the HNF4A gene with risk factors for developing T2D in eleven indigenous groups from Mexico. In two groups, all exons of the HNF4A gene were directly sequenced; in the remaining the T130I polymorphism was analyzed by restriction fragment length polymorphism. Ancestry informative markers were assessed to confirm the Amerindian component. An additional analysis of EHH was carried out. Interestingly, HNF4A gene screening revealed only the presence of the T130I polymorphism. The range frequency of the risk allele (T) in the indigenous groups was from 2.7 to 16%. Genotypic frequencies (T130I/I130I) were higher and significantly different from those of all of the populations included in the HapMap Project (P < 0.005). EHH scores suggest a positive selection for T130I polymorphism. Metabolic traits indicate a relationship between the T130I/I130I genotypes with high triglyceride concentrations in the indigenous groups (P < 0.005). These results strongly suggest that the high frequency of the T130I polymorphism and its biological relationship with dysfunction in lipid metabolism in Mexican indigenous groups is a risk factor for the developing of T2D in Mexicans.

  3. Ultrasensitive detection of lysozyme in droplet-based microfluidic devices.

    PubMed

    Giuffrida, Maria Chiara; Cigliana, Giovanni; Spoto, Giuseppe

    2018-05-01

    Lysozyme (LYS) is a bacteriolytic enzyme, available in secretions such as saliva, tears and human milk. LYS is an important defence molecule of the innate immune system, and its overexpression can be a consequence of diseases such as leukemia, kidney disease and sarcoidosis. This paper reports on a digital microfluidic-based approach that combines the gold nanoparticle-enhanced chemiluminescence with aptamer interaction to detect human lysozyme into droplets 20 nanoliters in volume. The described method allows identifying LYS with a 44.6 femtomolar limit of detection, using sample volume as low as 1μL and detection time in the range of 10min. We used luminol to generate the chemiluminescence and demonstrated that the compartmentalization of LYS in droplets also comprising gold nanoparticles provided enhanced luminescence. We functionalized the gold nanoparticles with a thiolated aptamer to achieve the required selectivity that allowed us to detect LYS in human serum. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Characterization of amyloidogenesis of hen egg lysozyme in concentrated ethanol solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holley, Mikel; Eginton, Chris; Schaefer, David

    We show that hen egg white lysozyme [HEWL] reproducibly forms amyloid fibrils in 80% ethanol at 22 deg. C with constant agitation. Fibril formation occurs over a time course of approximately 30 days, displays polymerization nucleation kinetics, and demonstrates a marked decrease in {alpha}-helical structure. Seeding with as little as 0.05% v/v of fibrils cleaved into smaller seed fragments by sonication abolishes the lag phase. Thioflavin T assays confirm the amyloid nature of the fibrils. Atomic force microscopy reveals unbranched amyloid fibrils with lengths varying between 1 and 3 {mu}m and heights ranging from 6-12 nm. The formation of amyloidmore » fibrils in predominantly organic solvents demonstrates that the basic principles guiding fibril formation arise from interactions of the peptide backbone rather than from interactions between the amino acid side chains.« less

  5. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    NASA Astrophysics Data System (ADS)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-02-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is Treg-/Foxp3-independent, requires IL-10 and is overcome by IL-1β. TNFi-exposed IL-17+ CD4+ T cells are molecularly and functionally distinct, with a unique gene signature characterized by expression of IL10 and IKZF3 (encoding Aiolos). We show that Aiolos binds conserved regions in the IL10 locus in IL-17+ CD4+ T cells. Furthermore, IKZF3 and IL10 expression levels correlate in primary CD4+ T cells and Aiolos overexpression is sufficient to drive IL10 in these cells. Our data demonstrate that TNF-α blockade induces IL-10 in CD4+ T cells including Th17 cells and suggest a role for the transcription factor Aiolos in the regulation of IL-10 in CD4+ T cells.

  6. Partial complementation of the UV sensitivity of E. coli and yeast excision repair mutants by the cloned denV gene of bacteriophage T4.

    PubMed

    Chenevert, J M; Naumovski, L; Schultz, R A; Friedberg, E C

    1986-04-01

    The denV gene of bacteriophage T4 was reconstituted from two overlapping DNA fragments cloned in M13 vectors. The coding region of the intact gene was tailored into a series of plasmid vectors containing different promoters suitable for expression of the gene in E. coli and in yeast. Induction of the TAC promoter with IPTG resulted in overexpression of the gene, which was lethal to E. coli. Expression of the TACdenV gene in the absence of IPTG, or the use of the yeast GAL1 or ADH promoters resulted in partial complementation of the UV sensitivity of uvrA, uvrB, uvrC and recA mutants of E. coli and rad1, rad2, rad3, rad4 and rad10 mutants of S. cerevisiae. The extent of denV-mediated reactivation of excision-defective mutants was approximately equal to that of photoreactivation of such strains. Excision proficient E. coli cells transformed with a plasmid containing the denV gene were slightly more resistant to ultraviolet (UV) radiation than control cells without the denV gene. On the other hand, excision proficient yeast cells were slightly more sensitive to killing by UV radiation following transformation with a plasmid containing the denV gene. This effect was more pronounced in yeast mutants of the RAD52 epistasis group.

  7. Carboxymethyl chitosan-poly(amidoamine) dendrimer core-shell nanoparticles for intracellular lysozyme delivery.

    PubMed

    Zhang, Xiaoyang; Zhao, Jun; Wen, Yan; Zhu, Chuanshun; Yang, Jun; Yao, Fanglian

    2013-11-06

    Intracellular delivery of native, active proteins is challenging due to the fragility of most proteins. Herein, a novel polymer/protein polyion complex (PIC) nanoparticle with core-shell structure was prepared. Carboxymethyl chitosan-grafted-terminal carboxyl group-poly(amidoamine) (CM-chitosan-PAMAM) dendrimers were synthesized by amidation and saponification reactions. (1)H NMR was used to characterize CM-chitosan-PAMAM dendrimers. The TEM images and results of lysozyme loading efficiency indicated that CM-chitosan-PAMAM dendrimers could self-assemble into core-shell nanoparticles, and lysozyme was efficiently encapsulated inside the core of CM-chitosan-PAMAM dendrimer nanoparticles. Activity of lysozyme was completely inhibited by CM-chitosan-PAMAM Dendrimers at physiological pH, whereas it was released into the medium and exhibited a significant enzymatic activity in an acidic intracellular environment. Moreover, the CM-chitosan-PAMAM dendrimer nanoparticles did not exhibit significant cytotoxicity in the range of concentrations below 3.16 mg/ml. The results indicated that these CM-chitosan-PAMAM dendrimers have excellent properties as highly potent and non-toxic intracellular protein carriers, which would create opportunities for novel applications in protein delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Association of genetic variants and expression levels of porcine FABP4 and FABP5 genes.

    PubMed

    Ballester, M; Puig-Oliveras, A; Castelló, A; Revilla, M; Fernández, A I; Folch, J M

    2017-12-01

    The FABP4 and FABP5 genes, coding for fatty acid transport proteins, have long been studied as positional candidate genes for SSC4 QTL affecting fat deposition and composition traits in pigs. Polymorphisms in these genes, FABP4:g.2634_2635insC and FABP5:g.3000T>G, have previously been associated with fatness traits in an Iberian by Landrace cross (IBMAP). The aim of the present work was to evaluate the functional implication of these genetic variants. For this purpose, FABP4 and FABP5 mRNA expression levels in 114 BC1_LD animals (25% Iberian × 75% Landrace) were analyzed using real-time quantitative PCR in backfat and muscle. FABP4 gene expression in backfat, but not in muscle, was associated with FABP4:g.2634_2635insC. In contrast, FABP5:g.3000T>G was not associated with gene expression levels. An expression-based genome-wide association study highlighted the FABP4:g.2634_2635insC polymorphism as the polymorphism most associated with FABP4 gene expression in backfat. Furthermore, other genomic regions associated in trans with the mRNA expression of FABP4 in backfat and FABP5 in muscle were also identified. Finally, two putative transcription binding sites for PPARG and NR4A2 may be affected by the FABP4:g.2634_2635insC polymorphism, modifying FABP4 gene expression. Our results reinforce FABP4 as a candidate gene for fatness traits on SSC4. © 2017 Stichting International Foundation for Animal Genetics.

  9. Transient GFP expression in Nicotiana plumbaginifolia suspension cells: the role of gene silencing, cell death and T-DNA loss.

    PubMed

    Weld, R; Heinemann, J; Eady, C

    2001-03-01

    The transient nature of T-DNA expression was studied with a gfp reporter gene transferred to Nicotiana plumbaginifolia suspension cells from Agrobacterium tumefaciens. Individual GFP-expressing protoplasts were isolated after 4 days' co-cultivation. The protoplasts were cultured without selection and 4 weeks later the surviving proto-calluses were again screened for GFP expression. Of the proto-calluses initially expressing GFP, 50% had lost detectable GFP activity during the first 4 weeks of culture. Multiple T-DNA copies of the gfp gene were detected in 10 of 17 proto-calluses lacking visible GFP activity. The remaining 7 cell lines contained no gfp sequences. Our results confirm that transiently expressed T-DNAs can be lost during growth of somatic cells and demonstrate that transiently expressing cells frequently integrate multiple T-DNAs that become silenced. In cells competent for DNA uptake, cell death and gene silencing were more important barriers to the recovery of stably expressing transformants than lack of T-DNA integration.

  10. HTLV-1-induced leukotriene B4 secretion by T cells promotes T cell recruitment and virus propagation

    PubMed Central

    Percher, Florent; Curis, Céline; Pérès, Eléonore; Artesi, Maria; Rosewick, Nicolas; Jeannin, Patricia; Gessain, Antoine; Gout, Olivier; Mahieux, Renaud; Ceccaldi, Pierre-Emmanuel; Van den Broeke, Anne; Duc Dodon, Madeleine; Afonso, Philippe V.

    2017-01-01

    The human T-lymphotropic virus type 1 (HTLV-1) is efficiently transmitted through cellular contacts. While the molecular mechanisms of viral cell-to-cell propagation have been extensively studied in vitro, those facilitating the encounter between infected and target cells remain unknown. In this study, we demonstrate that HTLV-1-infected CD4 T cells secrete a potent chemoattractant, leukotriene B4 (LTB4). LTB4 secretion is dependent on Tax-induced transactivation of the pla2g4c gene, which encodes the cytosolic phospholipase A2 gamma. Inhibition of LTB4 secretion or LTB4 receptor knockdown on target cells reduces T-cell recruitment, cellular contact formation and virus propagation in vitro. Finally, blocking the synthesis of LTB4 in a humanized mouse model of HTLV-1 infection significantly reduces proviral load. This results from a decrease in the number of infected clones while their expansion is not impaired. This study shows the critical role of LTB4 secretion in HTLV-1 transmission both in vitro and in vivo. PMID:28639618

  11. Regulation of IFN regulatory factor 4 expression in human T cell leukemia virus-I-transformed T cells.

    PubMed

    Sharma, Sonia; Grandvaux, Nathalie; Mamane, Yael; Genin, Pierre; Azimi, Nazli; Waldmann, Thomas; Hiscott, John

    2002-09-15

    IFN regulatory factor (IRF)-4 is a lymphoid/myeloid-restricted member of the IRF transcription factor family that plays an essential role in the homeostasis and function of mature lymphocytes. IRF-4 expression is tightly regulated in resting primary T cells and is transiently induced at the mRNA and protein levels after activation by Ag-mimetic stimuli such as TCR cross-linking or treatment with phorbol ester and calcium ionophore (PMA/ionomycin). However, IRF-4 is constitutively upregulated in human T cell leukemia virus type I (HTLV-I) infected T cells as a direct gene target for the HTLV-I Tax oncoprotein. In this study we demonstrate that chronic IRF-4 expression in HTLV-I-infected T lymphocytes is associated with a leukemic phenotype, and we examine the mechanisms by which continuous production of IRF-4 is achieved in HTLV-I-transformed T cells. IRF-4 expression in HTLV-1-infected cells is driven through activation of the NF-kappaB and NF-AT pathways, resulting in the binding of p50, p65, and c-Rel to the kappaB1 element and p50, c-Rel, and NF-ATp to the CD28RE element within the -617 to -209 region of the IRF-4 promoter. Furthermore, mutation of either the kappaB1 or CD28RE sites blocks Tax-mediated transactivation of the human IRF-4 promoter in T cells. These experiments constitute the first detailed analysis of human IRF-4 transcriptional regulation within the context of HTLV-I infection and transformation of CD4(+) T lymphocytes.

  12. The Polyketide Synthase Gene pks4 of Trichoderma reesei Provides Pigmentation and Stress Resistance

    PubMed Central

    Atanasova, Lea; Knox, Benjamin P.; Kubicek, Christian P.; Baker, Scott E.

    2013-01-01

    Species of the fungal genus Trichoderma (Hypocreales, Ascomycota) are well-known for their production of various secondary metabolites. Nonribosomal peptides and polyketides represent a major portion of these products. In a recent phylogenomic investigation of Trichoderma polyketide synthase (PKS)-encoding genes, the pks4 from T. reesei was shown to be an orthologue of pigment-forming PKSs involved in synthesis of aurofusarin and bikaverin in Fusarium spp. In this study, we show that deletion of this gene in T. reesei results in loss of green conidial pigmentation and in pigmentation alteration of teleomorph structures. It also has an impact on conidial cell wall stability and the antagonistic abilities of T. reesei against other fungi, including formation of inhibitory metabolites. In addition, deletion of pks4 significantly influences the expression of other PKS-encoding genes of T. reesei. To our knowledge, this is the first indication that a low-molecular-weight pigment-forming PKS is involved in defense, mechanical stability, and stress resistance in fungi. PMID:24036343

  13. The protective effect of salicylic acid on lysozyme against riboflavin-mediated photooxidation

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wang, Hongbao; Cheng, Lingli; Zhu, Hui; Wang, Mei; Wang, Shi-Long

    2011-06-01

    As a metabolite of aspirin in vivo, salicylic acid was proved to protect lysozyme from riboflavin-mediated photooxidation in this study. The antioxidative properties of salicylic acid were further studied by using time-resolved laser flash photolysis of 355 nm. It can quench the triplet state of riboflavin via electron transfer from salicylic acid to the triplet state of riboflavin with a reaction constant of 2.25 × 10 9 M -1 s -1. Mechanism of antioxidant activities of salicylic acid on lysozyme oxidation was discussed. Salicylic acid can serve as a potential antioxidant to quench the triplet state of riboflavin and reduce oxidative pressure.

  14. Na+ influx via Orai1 inhibits intracellular ATP-induced mTORC2 signaling to disrupt CD4 T cell gene expression and differentiation.

    PubMed

    Miao, Yong; Bhushan, Jaya; Dani, Adish; Vig, Monika

    2017-05-11

    T cell effector functions require sustained calcium influx. However, the signaling and phenotypic consequences of non-specific sodium permeation via calcium channels remain unknown. α-SNAP is a crucial component of Orai1 channels, and its depletion disrupts the functional assembly of Orai1 multimers. Here we show that α-SNAP hypomorph, hydrocephalus with hopping gait, Napa hyh/hyh mice harbor significant defects in CD4 T cell gene expression and Foxp3 regulatory T cell (Treg) differentiation. Mechanistically, TCR stimulation induced rapid sodium influx in Napa hyh/hyh CD4 T cells, which reduced intracellular ATP, [ATP] i . Depletion of [ATP] i inhibited mTORC2 dependent NFκB activation in Napa hyh/hyh cells but ablation of Orai1 restored it. Remarkably, TCR stimulation in the presence of monensin phenocopied the defects in Napa hyh/hyh signaling and Treg differentiation, but not IL-2 expression. Thus, non-specific sodium influx via bonafide calcium channels disrupts unexpected signaling nodes and may provide mechanistic insights into some divergent phenotypes associated with Orai1 function.

  15. Na+ influx via Orai1 inhibits intracellular ATP-induced mTORC2 signaling to disrupt CD4 T cell gene expression and differentiation

    PubMed Central

    Miao, Yong; Bhushan, Jaya; Dani, Adish; Vig, Monika

    2017-01-01

    T cell effector functions require sustained calcium influx. However, the signaling and phenotypic consequences of non-specific sodium permeation via calcium channels remain unknown. α-SNAP is a crucial component of Orai1 channels, and its depletion disrupts the functional assembly of Orai1 multimers. Here we show that α-SNAP hypomorph, hydrocephalus with hopping gait, Napahyh/hyh mice harbor significant defects in CD4 T cell gene expression and Foxp3 regulatory T cell (Treg) differentiation. Mechanistically, TCR stimulation induced rapid sodium influx in Napahyh/hyh CD4 T cells, which reduced intracellular ATP, [ATP]i. Depletion of [ATP]i inhibited mTORC2 dependent NFκB activation in Napahyh/hyh cells but ablation of Orai1 restored it. Remarkably, TCR stimulation in the presence of monensin phenocopied the defects in Napahyh/hyh signaling and Treg differentiation, but not IL-2 expression. Thus, non-specific sodium influx via bonafide calcium channels disrupts unexpected signaling nodes and may provide mechanistic insights into some divergent phenotypes associated with Orai1 function. DOI: http://dx.doi.org/10.7554/eLife.25155.001 PMID:28492364

  16. Impact of karyotype organization on interlocus recombination between T cell receptor genes in Equidae.

    PubMed

    Drbalova, Jitka; Musilova, Petra; Kubickova, Svatava; Sebestova, Hana; Vahala, Jiri; Rubes, Jiri

    2014-01-01

    The T cell receptor (TCR) genes (TRA, TRB, TRD and TRG) reside in 3 different chromosomal regions. During the maturation of T lymphocytes, the TCR genes are rearranged by site-specific recombination, a process that also predisposes T cells to aberrant rearrangements. Illegitimate recombination between the TCR genes occurs at a low level in healthy individuals, but this frequency may correlate with the risk of lymphoma. The aim of this work was to investigate interlocus recombination in equids. Illegitimate rearrangements were studied in peripheral blood lymphocytes by FISH with painting and BAC probes and by sequencing of PCR products, and the frequencies of recombination were assessed in horses and 4 other equids. The presence of several trans-rearrangement products between the TRA and TRG genes was verified by PCR in all investigated equids. Frequencies of trans-rearrangements in horses are higher than in humans, and colocalization of the TCR genes on the same chromosome increases the incidence of trans-rearrangements between them. The orientation of the TCR genes does not impact interlocus recombination itself but does affect the viability of cells carrying its products and consequently the number of trans-rearrangements observed in lymphocytes.

  17. Hoc protein regulates the biological effects of T4 phage in mammals.

    PubMed

    Dabrowska, Krystyna; Zembala, Maria; Boratynski, Janusz; Switala-Jelen, Kinga; Wietrzyk, Joanna; Opolski, Adam; Szczaurska, Katarzyna; Kujawa, Marek; Godlewska, Joanna; Gorski, Andrzej

    2007-06-01

    We previously investigated the biological, non-antibacterial effects of bacteriophage T4 in mammals (binding to cancer cells in vitro and attenuating tumour growth and metastases in vivo); we selected the phage mutant HAP1 that was significantly more effective than T4. In this study we describe a non-sense mutation in the hoc gene that differentiates bacteriophage HAP1 and its parental strain T4. We found no substantial effects of the mutation on the mutant morphology, and its effects on electrophoretic mobility and hydrodynamic size were moderate. Only the high ionic strength of the environment resulted in a size difference of about 10 nm between T4 and HAP1. We compared the antimetastatic activity of the T2 phage, which does not express protein Hoc, with those of T4 and HAP1 (B16 melanoma lung colonies). We found that HAP1 and T2 decreased metastases with equal effect, more strongly than did T4. We also investigated concentrations of T4 and HAP1 in the murine blood, tumour (B16), spleen, liver, or muscle. We found that HAP1 was rapidly cleared from the organism, most probably by the liver. Although HAP1 was previously defined to bind cancer cells more effectively (than T4), its rapid elimination precluded its higher concentration in tumours.

  18. Membrane crystallization of lysozyme: kinetic aspects

    NASA Astrophysics Data System (ADS)

    Profio, Gianluca Di; Curcio, Efrem; Cassetta, Alberto; Lamba, Doriano; Drioli, Enrico

    2003-10-01

    The relevant kinetic aspects related to an innovative method of biological macromolecules crystallization based on microporous hydrophobic membranes, used both as active surfaces to promote heterogeneous nucleation and as a mass-transfer apparatus to concentrate macromolecular solutions by solvent removal in vapour phase, have been evaluated. Polypropylene membranes, supplied in the form of hollow fibres, have been aligned in a versatile system, designed for an on-line spectrophotometric monitoring of hen egg white lysozyme crystallizing solutions (experimental conditions: 0.1 M NaAc/HAc Buffer pH 4.6, 0.5-5.8% wt/vol NaCl, 20°C). The turbidity measurements have been exploited in order to follow: (i) the induction time of crystallization, (ii) the early stage nucleation kinetics based on the Rayleigh scattering theory, and (iii) the crystal growth rate (coupled with data evaluated from image-analysis carried out by optical microscopy) under a model hypothesis of exponential growth of clusters. The crystals have been qualitatively assessed by an X-ray crystallographic analysis carried out at the synchrotron light laboratory ELETTRA.

  19. Production of transgenic-cloned pigs expressing large quantities of recombinant human lysozyme in milk.

    PubMed

    Lu, Dan; Liu, Shen; Shang, Shengzhe; Wu, Fangfang; Wen, Xiao; Li, Zhiyuan; Li, Yan; Hu, Xiaoxiang; Zhao, Yaofeng; Li, Qiuyan; Li, Ning

    2015-01-01

    Human lysozyme is a natural non-specific immune factor in human milk that plays an important role in the defense of breastfed infants against pathogen infection. Although lysozyme is abundant in human milk, there is only trace quantities in pig milk. Here, we successfully generated transgenic cloned pigs with the expression vector pBAC-hLF-hLZ-Neo and their first generation hybrids (F1). The highest concentration of recombinant human lysozyme (rhLZ) with in vitro bioactivity was 2759.6 ± 265.0 mg/L in the milk of F0 sows. Compared with wild-type milk, rhLZ milk inhibited growth of Escherichia coli K88 during the exponential growth phase. Moreover, rhLZ in milk from transgenic sows was directly absorbed by the intestine of piglets with no observable anaphylactic reaction. Our strategy may provide a powerful tool for large-scale production of this important human protein in pigs to improve resistance to pathogen infection.

  20. Lysozyme immobilization onto PVC catheters grafted with NVCL and HEMA for reduction of bacterial adhesion

    NASA Astrophysics Data System (ADS)

    Guadarrama-Zempoalteca, Yesica; Díaz-Gómez, Luis; Meléndez-Ortiz, H. Iván; Concheiro, Angel; Alvarez-Lorenzo, Carmen; Bucio, Emilio

    2016-09-01

    The aim of the present work was to functionalize poly(vinyl chloride) (PVC) urinary catheters with grafted copolymers that can improve the biocompatibility and serve as binding points of lysozyme. PVC catheters were modified by grafting a mixture of N-vinylcaprolactam (NVCL) and 2-hydroxyethylmethacrylate (HEMA) applying a gamma-ray pre-irradiation method. The effect of absorbed dose, monomer concentration, temperature, and reaction time on the grafting percentage was evaluated. The grafted catheters were characterized regarding surface composition (FTIR-ATR spectroscopy), thermal properties (DSC and TGA) and swelling in aqueous medium. Lysozyme was directly coupled onto PVC-g-(NVCL/HEMA) previously activated using carbonyldiimidazole. Antimicrobial lytic activity of the modified catheters over time was tested against Micrococcus lysodeikticus. Lysozyme diminished the adhesion of Staphylococcus aureus onto the functionalized catheters, which may be suitable to prevent biofilm formation.

  1. Spaceflight effects on T lymphocyte distribution, function and gene expression

    PubMed Central

    Gridley, Daila S.; Slater, James M.; Luo-Owen, Xian; Rizvi, Asma; Chapes, Stephen K.; Stodieck, Louis S.; Ferguson, Virginia L.; Pecaut, Michael J.

    2009-01-01

    The immune system is highly sensitive to stressors present during spaceflight. The major emphasis of this study was on the T lymphocytes in C57BL/6NTac mice after return from a 13-day space shuttle mission (STS-118). Spleens and thymuses from flight animals (FLT) and ground controls similarly housed in animal enclosure modules (AEM) were evaluated within 3–6 h after landing. Phytohemagglutinin-induced splenocyte DNA synthesis was significantly reduced in FLT mice when based on both counts per minute and stimulation indexes (P < 0.05). Flow cytometry showed that CD3+ T and CD19+ B cell counts were low in spleens from the FLT group, whereas the number of NK1.1+ natural killer (NK) cells was increased (P < 0.01 for all three populations vs. AEM). The numerical changes resulted in a low percentage of T cells and high percentage of NK cells in FLT animals (P < 0.05). After activation of spleen cells with anti-CD3 monoclonal antibody, interleukin-2 (IL-2) was decreased, but IL-10, interferon-γ, and macrophage inflammatory protein-1α were increased in FLT mice (P < 0.05). Analysis of cancer-related genes in the thymus showed that the expression of 30 of 84 genes was significantly affected by flight (P < 0.05). Genes that differed from AEM controls by at least 1.5-fold were Birc5, Figf, Grb2, and Tert (upregulated) and Fos, Ifnb1, Itgb3, Mmp9, Myc, Pdgfb, S100a4, Thbs, and Tnf (downregulated). Collectively, the data show that T cell distribution, function, and gene expression are significantly modified shortly after return from the spaceflight environment. PMID:18988762

  2. The effect of supportive E. coli mastitis treatment on PMN chemiluminescence and subpopulations of T lymphocytes.

    PubMed

    Markiewicz, H; Krumrych, W; Gehrke, M

    2013-01-01

    The aim of this field study was to assess the impact of a single i.m. injection of lysozyme dimer and flunixin meglumine in combination with intramammary and systemic antibiotic on chemiluminescence of PMN (polymorphonuclear leucocytes) and subpopulations of lymphocyte T in blood of cows with E. coli mastitis. Examinations were performed on 30 dairy cows affected with naturally occurring acute form of E. coli mastitis. Cows were randomly divided into three groups according to the method of treatment. The first group was treated with approved intramammary antibiotic product, the same antibiotic in i.m. injection and one injection of flunixin meglumine on the first day of therapy. Next group was treated with the same antibiotic and additionally one injection of lysozyme dimer on the first day of therapy. The third one was treated only with an antibiotic and served as a control group. Blood samples were taken before treatment and on days 3 and 7. In samples haematology indices were determined, spontaneous and opsonised zymosan stimulated CL and PMA measurements were performed and the subpopulations of T lymphocyte (CD2(+), CD4(+), CD8(+)) were assayed in whole blood. There was no effect of the applied supportive treatment on the value of morphological blood indices. A significant influence of the time of sample collection on the level of CL and dynamics of lymphocytes T subpopulation was demonstrated. A single injection of flunixin meglumine or lysozyme dimer on the day of the beginning of treatment of E. coli mastitis, does not affect the level of neutrophil chemiluminescence and the percentage of T lymphocytes in the blood of mastitic cows in the analysed period of time.

  3. The effect of physical exercise on salivary secretion of MUC5B, amylase and lysozyme.

    PubMed

    Ligtenberg, Antoon J M; Brand, Henk S; van den Keijbus, Petra A M; Veerman, Enno C I

    2015-11-01

    Saliva secretion is regulated by the autonomic nervous system. Parasympathic stimuli increase the secretion of water and mucin MUC5B, whereas sympathetic stimuli such as physical exercise increase the secretion of amylase and other proteins. In the present study we investigated the effect of physical exercise, as a sympathetic stimulus, on salivary flow rate and output of MUC5B, amylase, lysozyme and total protein. Unstimulated whole saliva was collected before exercise (1), after 10 min exercise with moderate intensity by running with a heart rate around 130 beats per minute (2), followed by 10 min exercise with high intensity by running to exhaustion (3) and after 30 min recovery (4). Salivary flow rate, protein and MUC5B concentration, and amylase and lysozyme activity were determined. Saliva protein composition was analysed using SDS-PAGE and immunoblotting. Salivary flow rate, protein and lysozyme secretion increased after exercise with moderate intensity and increased further after exercise with high intensity (p<0.01). Amylase and MUC5B increased after exercise with moderate intensity (p<0.0001), but did not differ significantly between moderate and high exercise intensity. SDS-PAGE analysis and immunoblotting showed that, especially after exercise with high intensity, the concentrations of several other salivary proteins, including MUC7, albumin, and extra-parotid glycoprotein, also increased. Exercise may not only lead to the anticipated increase in amylase and protein secretion, but also to an increase in salivary flow rate and MUC5B secretion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. HTLV-1-infected thymic epithelial cells convey the virus to CD4+ T lymphocytes.

    PubMed

    Carvalho Barros, Luciana Rodrigues; Linhares-Lacerda, Leandra; Moreira-Ramos, Klaysa; Ribeiro-Alves, Marcelo; Machado Motta, Maria Cristina; Bou-Habib, Dumith Chequer; Savino, Wilson

    2017-12-01

    The human T-lymphotropic virus type-1 (HTLV-1) is the causative agent of adult T cell leukemia/lymphoma (ATL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). CD4 + T cells are the main target of HTLV-1, but other cell types are known to be infected, including immature lymphocytes. Developing T cells undergo differentiation in the thymus, through migration and interaction with the thymic microenvironment, in particular with thymic epithelial cells (TEC) the major component of this three dimensional meshwork of non-lymphoid cells. Herein, we show that TEC express the receptors for HTLV-1 and can be infected by this virus through cell-cell contact and by cell-free virus suspensions. The expression of anti-apoptosis, chemokine and adhesion molecules genes are altered in HTLV-1-infected TEC, although gene expression of antigen presentation molecules remained unchanged. Furthermore, HTLV-1-infected TEC transmitted the virus to a CD4 + T cell line and to CD4 + T cells from healthy donors, during in vitro cellular co-cultures. Altogether, our data point to the possibility that the human thymic epithelial cells play a role in the establishment and progression of HTLV-1 infection, functioning as a reservoir and transmitting the virus to maturing CD4 + T lymphocytes, which in turn will cause disease in the periphery. Copyright © 2017. Published by Elsevier GmbH.

  5. T-Box Genes in Drosophila Limb Development.

    PubMed

    Pflugfelder, G O; Eichinger, F; Shen, J

    2017-01-01

    T-box genes are essential for limb development in vertebrates and arthropods. The Drosophila genome encodes eight T-box genes, six of which are expressed in limb ontogenesis. The Tbx20-related gene pair midline and H15 is essential for dorso-ventral patterning of the Drosophila legs. The three Tbx6-related Dorsocross genes are required for epithelial remodeling during wing development. The Drosophila gene optomotor-blind (omb) is the only member of the Tbx2 subfamily in the fly and is predominantly involved in wing development. Omb is essential for wing development and is sufficient to promote the development of a second wing pair. Targeted manipulations of omb expression have shown that the bulk omb requirement for wing development can be deconstructed into a number of individual functions. Even though omb expression in the wing disc is symmetrical with regard to the anterior/posterior (A/P) compartment boundary, anterior and posterior knockdowns have distinct consequences: Anterior Omb is required for the maintenance of a straight A/P lineage restriction boundary. Posterior Omb suppresses formation of an apical epithelial fold along the A/P boundary. Drosophila T-box gene expression is not confined to the ectoderm-derived epithelia of the imaginal discs. Both Doc and Omb are prominently expressed in leg disc muscle precursor cells. Omb is also strongly expressed in a tracheal branch that invades the extracellular matrix of the wing disc. The function of Doc and Omb in the latter tissues is not known, indicative of the many questions still open in the field. © 2017 Elsevier Inc. All rights reserved.

  6. Thiacarbocyanine as ligand in dye-affinity chromatography for protein purification. II. Dynamic binding capacity using lysozyme as a model.

    PubMed

    Boto, R E F; Anyanwu, U; Sousa, F; Almeida, P; Queiroz, J A

    2009-09-01

    A constant development of dye-affinity chromatography to replace more traditional techniques is verified, with the aim of increasing specificity in the purification of biomolecules. The establishment of a new dye-affinity chromatographic support imposes their complete characterization, namely with relation to the binding capacity for proteins, in order to evaluate its applicability on global purification processes. Following previous studies, the adsorption of lysozyme onto a thiacarbocyanine dye immobilized on beaded cellulose was investigated. The effect of different parameters, such as temperature, ionic strength, pH, protein concentration and flow rate, on the dynamic binding capacity of the support to retain lysozyme was also studied. Increasing the temperature and the lysozyme concentration had a positive effect on the dynamic binding capacity (DBC), whereas increasing the ionic strength and the flow rate resulted in the opposite. It was also discovered that the pH used had an important impact on the lysozyme binding onto the immobilized dye. The maximum DBC value obtained for lysozyme was 8.6 mg/mL, which was achieved at 30 degrees C and pH 9 with a protein concentration of 0.5 mg/mL and a flow rate of 0.05 mL/min. The dissociation constant (K(d)) obtained was 2.61 +/- 0.36 x 10(-5 )m, proving the affinity interaction between the thiacarbocyanine dye ligand and the lysozyme. Copyright (c) 2009 John Wiley & Sons, Ltd.

  7. Effects of molecular weight of hyaluronic acid on its viscosity and enzymatic activities of lysozyme and peroxidase.

    PubMed

    Kim, Jihoon; Chang, Ji-Youn; Kim, Yoon-Young; Kim, Moon-Jong; Kho, Hong-Seop

    2018-05-01

    To investigate the effects of the molecular weight of hyaluronic acid on its viscosity and enzymatic activities of lysozyme and peroxidase in solution and on the hydroxyapatite surface. Hyaluronic acids of four different molecular weights (10 kDa, 100 kDa, 1 MDa, and 2 MDa), hen egg-white lysozyme, bovine lactoperoxidase, and human whole saliva were used. Viscosity values of hyaluronic acids were measured using a cone-and-plate viscometer at six different concentrations (0.1-5.0 mg/mL). Enzymatic activities of lysozyme and peroxidase were examined by hydrolysis of fluorescein-labeled Micrococcus lysodeikticus and oxidation of fluorogenic 2',7'-dichlorofluorescein to fluorescing 2',7'-dichlorofluorescein, respectively. In solution assays, only 2 MDa-hyaluronic acid significantly inhibited lysozyme activities in saliva. In surface assays, hyaluronic acids inhibited lysozyme and peroxidase activities; the inhibitory activities were more apparent with high-molecular-weight ones in saliva than in purified enzymes. The 100 kDa-hyaluronic acid at 5.0 mg/mL, 1 MDa-one at 0.5 mg/mL, and 2 MDa-one at 0.2 mg/mL showed viscosity values similar to those of human whole saliva at a shear rate range required for normal oral functions. The differences among the influences of the three conditions on the enzymatic activities were not statistically significant. High-molecular-weight hyaluronic acids at low concentration and low-molecular-weight ones at high concentration showed viscosity values similar to those of human whole saliva. Inhibitory effects of hyaluronic acids on lysozyme and peroxidase activities were more significant with high-molecular-weight ones on the surface and in saliva compared with in solution and on purified enzymes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Listeria arpJ gene modifies T helper type 2 subset differentiation.

    PubMed

    Kanoh, Makoto; Maruyama, Saho; Shen, Hua; Matsumoto, Akira; Shinomiya, Hiroto; Przybilla, Karin; Gouin, Edith; Cossart, Pascale; Goebel, Werner; Asano, Yoshihiro

    2015-07-15

    Although the T-cell subset differentiation pathway has been characterized extensively from the view of host gene regulation, the effects of genes of the pathogen on T-cell subset differentiation during infection have yet to be elucidated. Especially, the bacterial genes that are responsible for this shift have not yet been determined. Utilizing a single-gene-mutation Listeria panel, we investigated genes involved in the host-pathogen interaction that are required for the initiation of T-cell subset differentiation in the early phase of pathogen infection. We demonstrate that the induction of T helper types 1 and 2 (Th1 and Th2) subsets are separate phenomena and are mediated by distinct Listeria genes. We identified several candidate Listeria genes that appear to be involved in the host-Listeria interaction. Among them, arpJ is the strongest candidate gene for inhibiting Th2 subset induction. Furthermore, the analysis utilizing arpJ-deficient Listeria monocytogenes (Lm) revealed that the tumor necrosis factor (TNF) superfamily (Tnfsf) 9-TNF receptor superfamily (Tnfrsf) 9 interaction inhibits the Th2 response during Lm infection. arpJ is the candidate gene for inhibiting Th2 T-cell subset induction. The arpJ gene product influences the expression of Tnfsf/Tnfrsf on antigen-presenting cells and inhibits the Th2 T-cell subset differentiation during Listeria infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Pattern similarity study of functional sites in protein sequences: lysozymes and cystatins

    PubMed Central

    Nakai, Shuryo; Li-Chan, Eunice CY; Dou, Jinglie

    2005-01-01

    Background Although it is generally agreed that topography is more conserved than sequences, proteins sharing the same fold can have different functions, while there are protein families with low sequence similarity. An alternative method for profile analysis of characteristic conserved positions of the motifs within the 3D structures may be needed for functional annotation of protein sequences. Using the approach of quantitative structure-activity relationships (QSAR), we have proposed a new algorithm for postulating functional mechanisms on the basis of pattern similarity and average of property values of side-chains in segments within sequences. This approach was used to search for functional sites of proteins belonging to the lysozyme and cystatin families. Results Hydrophobicity and β-turn propensity of reference segments with 3–7 residues were used for the homology similarity search (HSS) for active sites. Hydrogen bonding was used as the side-chain property for searching the binding sites of lysozymes. The profiles of similarity constants and average values of these parameters as functions of their positions in the sequences could identify both active and substrate binding sites of the lysozyme of Streptomyces coelicolor, which has been reported as a new fold enzyme (Cellosyl). The same approach was successfully applied to cystatins, especially for postulating the mechanisms of amyloidosis of human cystatin C as well as human lysozyme. Conclusion Pattern similarity and average index values of structure-related properties of side chains in short segments of three residues or longer were, for the first time, successfully applied for predicting functional sites in sequences. This new approach may be applicable to studying functional sites in un-annotated proteins, for which complete 3D structures are not yet available. PMID:15904486

  10. Understanding the poor iontophoretic transport of lysozyme across the skin: when high charge and high electrophoretic mobility are not enough.

    PubMed

    Dubey, S; Kalia, Y N

    2014-06-10

    The original aim of the study was to investigate the transdermal iontophoretic delivery of lysozyme and to gain further insight into the factors controlling protein electrotransport. Initial experiments were done using porcine skin. Lysozyme transport was quantified by using an activity assay based on the lysis of Micrococcus lysodeikticus and was corrected for the release of endogenous enzyme from the skin during current application. Cumulative iontophoretic permeation of lysozyme during 8h at 0.5mA/cm(2) (0.7mM; pH6) was surprisingly low (5.37±3.46μg/cm(2) in 8h) as compared to electrotransport of cytochrome c (Cyt c) and ribonuclease A (RNase A) under similar conditions (923.0±496.1 and 170.71±92.13μg/cm(2), respectively) - despite its having a higher electrophoretic mobility. The focus of the study then became to understand and explain the causes of its poor iontophoretic transport. Lowering formulation pH to 5 increased histidine protonation in the protein and decreased the ionisation of fixed negative charges in the skin (pI ~4.5) and resulted in a small but statistically significant increase in permeation. Co-iontophoresis of acetaminophen revealed a significant inhibition of electroosmosis; inhibition factors of 12-16 were indicative of strong lysozyme binding to skin. Intriguingly, lidocaine electrotransport, which is due almost exclusively to electromigration, was also decreased (approximately 2.7-fold) following skin pre-treatment by lysozyme iontophoresis (cf. iontophoresis of buffer solution) - suggesting that lysozyme was also able to influence subsequent cation electromigration. In order to elucidate the site of skin binding, different porcine skin models were tested (dermatomed skin with thicknesses of 250 and 750μm, tape-stripped skin and heat-separated dermis). Although no difference was seen between permeation across 250 and 750μm dermatomed skin (13.57±12.20 and 5.37±3.46μg/cm(2), respectively), there was a statistically significant

  11. Activity of chitosan-lysozyme nanoparticles on the growth, membrane integrity, and β-1,3-glucanase production by Aspergillus parasiticus.

    PubMed

    Hernández-Téllez, Cynthia Nazareth; Rodríguez-Córdova, Francisco Julián; Rosas-Burgos, Ema Carina; Cortez-Rocha, Mario Onofre; Burgos-Hernández, Armando; Lizardi-Mendoza, Jaime; Torres-Arreola, Wilfrido; Martínez-Higuera, Aarón; Plascencia-Jatomea, Maribel

    2017-10-01

    Synthesis of nanocomposites from antimicrobial biopolymers such as chitosan (CS) and lysozyme (LZ) is an important and promising area in bionanotechnology. Chitosan-lysozyme (CS-LZ) nanoparticles (NPs) were prepared by the nanoprecipitation method, using commercial chitosan of 153 kDa. TEM and dynamic light scattering (DLS) analysis were carried out to evaluate the morphology, size, dispersion, and Z potential. Association efficiency of lysozyme was determined using Coomassie blue assay. The antifungal activity of NPs against Aspergillus parasiticus was evaluated through cell viability (XTT), germination and morphometry of spores, and reducing sugars production; the effects on membrane integrity and cell wall were also analyzed. NPs' size were found in the range of 13.4 and 11.8 nm for CS-LZ and CS NPs, respectively, and high Z potential value was observed in both NPs. Also, high association of lysozyme was presented in the CS matrix. With respect to the biological responses, CS-LZ NPs reduced the viability of A. parasiticus and a strong inhibitory effect on the germination of spores (100% of inhibition) was observed at 24 h in in vitro assays. CS-LZ and CS NPs affected the membrane integrity and the cell wall of spores of fungi with respect to control, which is consistent with the low amount of reducing sugars detected. CS-LZ NPs prepared by nanoprecipitation promise to be a viable and safe alternative for use in biological systems, with a possible low or null impact to humans and biota. However, the potential benefits and the environmental and health implications of NPs need to be globally discussed due to its possible negative effects.

  12. Detecting differentially expressed genes in heterogeneous diseases using half Student's t-test.

    PubMed

    Hsu, Chun-Lun; Lee, Wen-Chung

    2010-12-01

    Microarray technology provides information about hundreds and thousands of gene-expression data in a single experiment. To search for disease-related genes, researchers test for those genes that are differentially expressed between the case subjects and the control subjects. The authors propose a new test, the 'half Student's t-test', specifically for detecting differentially expressed genes in heterogeneous diseases. Monte-Carlo simulation shows that the test maintains the nominal α level quite well for both normal and non-normal distributions. Power of the half Student's t is higher than that of the conventional 'pooled' Student's t when there is heterogeneity in the disease under study. The power gain by using the half Student's t can reach ∼10% when the standard deviation of the case group is 50% larger than that of the control group. Application to a colon cancer data reveals that when the false discovery rate (FDR) is controlled at 0.05, the half Student's t can detect 344 differentially expressed genes, whereas the pooled Student's t can detect only 65 genes. Or alternatively, if only 50 genes are to be selected, the FDR for the pooled Student's t has to be set at 0.0320 (false positive rate of ∼3%), but for the half Student's t, it can be at as low as 0.0001 (false positive rate of about one per ten thousands). The half Student's t-test is to be recommended for the detection of differentially expressed genes in heterogeneous diseases.

  13. [Risk of type 2 diabetes mellitus in the Kyrgyz population in the presence of ADIPOQ (G276T), KCNJ11 (Glu23Lys), TCF7L2 (IVS3C>T) gene polymorphisms].

    PubMed

    Isakova, Zh T; Talaibekova, E T; Asambaeva, D A; Kerimkulova, A S; Lunegova, O S; Aldasheva, N M; Aldashev, A A

    To analyze the association of genotype combinations of the polymorphic markers G276T in the ADIPOQ gene, Glu23Lys in the KCNJ11 gene, and IVS3C>T in the TCF7L2 gene with the development of type 2 diabetes mellitus (T2DM) in the Kyrgyz population. The investigation enrolled 23 Kyrgyz people, of whom there were 114 patients with T2DM and 109 without T2DM (a control group). T2DM was diagnosed in accordance with the WHO criteria (1999). The genotypes of ADIPOQ (G276T), KCNJ11 (Glu23Lys), and TCF7L2 (IVS3C>T) gene polymorphisms were identified using the restriction fragment length polymorphism analysis. When typing at the polymorphic loci G276T in the ADIPOQ gene, Glu23Lys in the KCNJ11 gene, and IVS3C>T in the TCF7L2 gene, the development of T2DM in the Kyrgyz population was associated with the T allele (odds ratio (OR), 1.68; p=0.025), the heterozygous G276T genotype (OR 1,8; p=0.036) in the ADIPOQ gene; the 23Lys allele (OR, 1.62; p=0.019) in the KCNJ11 gene; a two-locus genotype combination in the genes ADIPOQ/KCNJ11: G276T/Glu23Lys (OR, 4.88; p=0.0013), G276G/Lys23Lys (OR, 4.65; p=0.019), G276T/Glu23Glu (OR, 3.10; p=0.022), a two-locus genotype combination in the genes ADIPOQ/TCF7L2: G276T/СС (OR, 1.97; p=0.04); two-locus genotype combinations in the genes KCNJ11/TCF7L2: Lys23Lys/CC (ОR, 2.65; p=0.042), Glu23Lys/CT (OR, 3.88; p=0.027); and a three-locus genotype combination in the genes ADIPOQ/KCNJ11/TCF7L2: G276T/Glu23Lys/CT (OR, 14.48; p=0.02). The development of T2DM in the Kyrgyz population is genetically determined by ADIPOQ (G276T) gene, KCNJ11 (Glu23Lys), and TCF7L (IVS3C>T) gene polymorphisms with the predisposing value of the T allele of the heterozygous G276T genotype in the ADIPOQ gene; the 23Lys allele in the KCNJ1 gene; as well as by genotype combinations in the genes ADIPOQ/KCNJ11 (G276T/Glu23Lys, G276G/Lys23Lys, G276T/Glu23Glu); ADIPOQ/TCF7L2 (G276T/SS); KCNJ11/TCF7L2 (Lys23Lys/CC, Glu23Lys/CT); ADIPOQ/KCNJ11/TCF7L2 (G276T/Glu23Lys /CT). The IVS3C>T

  14. Effect of glycerol and dimethyl sulfoxide on the phase behavior of lysozyme: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Gögelein, Christoph; Wagner, Dana; Cardinaux, Frédéric; Nägele, Gerhard; Egelhaaf, Stefan U.

    2012-01-01

    Salt, glycerol, and dimethyl sulfoxide (DMSO) are used to modify the properties of protein solutions. We experimentally determined the effect of these additives on the phase behavior of lysozyme solutions. Upon the addition of glycerol and DMSO, the fluid-solid transition and the gas-liquid coexistence curve (binodal) shift to lower temperatures and the gap between them increases. The experimentally observed trends are consistent with our theoretical predictions based on the thermodynamic perturbation theory and the Derjaguin-Landau-Verwey-Overbeek model for the lysozyme-lysozyme pair interactions. The values of the parameters describing the interactions, namely the refractive indices, dielectric constants, Hamaker constant and cut-off length, are extracted from literature or are experimentally determined by independent experiments, including static light scattering, to determine the second virial coefficient. We observe that both, glycerol and DMSO, render the potential more repulsive, while sodium chloride reduces the repulsion.

  15. Crystallization and evaluation of hen egg-white lysozyme crystals for protein pH titration in the crystalline state

    PubMed Central

    Iwai, Wakari; Yagi, Daichi; Ishikawa, Takuya; Ohnishi, Yuki; Tanaka, Ichiro; Niimura, Nobuo

    2008-01-01

    To observe the ionized status of the amino acid residues in proteins at different pH (protein pH titration in the crystalline state) by neutron diffraction, hen egg-white lysozyme was crystallized over a wide pH range (2.5–8.0). Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined. At pH < 4.5 the border between the metastable region and the nucleation region shifted to the left (lower precipitant concentration) in the phase diagram, and at pH > 4.5 the border shifted to the right (higher precipitant concentration). The qualities of these crystals were characterized using the Wilson plot method. The qualities of all crystals at different pH were more or less equivalent (B-factor values within 25–40). It is expected that neutron diffraction analysis of these crystals of different pH provides equivalent data in quality for discussions of protein pH titration in the crystalline state of hen egg-white lysozyme. PMID:18421167

  16. Presentation of antigen to T lymphocytes by non-immune B-cell hybridoma clones: evidence for specific and non-specific presentation

    NASA Technical Reports Server (NTRS)

    Cohly, H. H.; Morrison, D. R.; Atassi, M. Z.

    1988-01-01

    Non-immune SJL (H-2s) spleen cells were fused with (H-2d) Balb/c 653-myeloma cells and the hybridomas were cloned by two limiting dilutions. The resulting hybrid B- cell clones were tested for their antigen presentation capability to SJL T-cell lines that were specific for either lysozyme or myoglobin. In proliferative assays, 53% of the antigen presenting B-cell clones were able to present both myoglobin and lysozyme (general presenters) while the other 47% presented specifically either myoglobin or lysozyme (specific presenters). The ability to selectively present either myoglobin or lysozyme indicates that antigen presentation at the clonal level can be specific or non-specific depending on the particular B-cell clone.

  17. Presentation of antigen to T lymphocytes by non-immune B-cell hybridoma clones: evidence for specific and non-specific presentation

    NASA Technical Reports Server (NTRS)

    Cohly, H. H.; Morrison, D. R.; Zouhair Atassi, M. Z.

    1989-01-01

    Non-immune SJL (H-2s) spleen cells were fused with non-secreting, non-antigen presenting (H-2d) Balb/c 653-myeloma cells and the hybridomas were cloned by two limiting dilutions. The resulting hybrid B-cell clones were tested for their antigen presentation capability to SJL T-cell lines that were specific for either lysozyme or myoglobin. In proliferative assays, 53% of the antigen presenting B-cell clones presented both myoglobin and lysozyme (general presenters) while the other 47% presented specifically either myoglobin or lysozyme (specific presenters). The ability to selectively present either myoglobin or lysozyme indicates that antigen presentation at the clonal level can be specific or non-specific depending on the particular B-cell clone.

  18. Quantifying Main Trends in Lysozyme Nucleation: The Effects of Precipitant Concentration, Supersaturation and Impurities

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Leardi, Riccardo; Judge, Russell A.; Pusey, Marc L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Full factorial experimental design incorporating multi-linear regression analysis of the experimental data allows quick identification of main trends and effects using a limited number of experiments. In this study these techniques were employed to identify the effect of precipitant concentration, supersaturation, and the presence of an impurity, the physiological lysozyme dimer, on the nucleation rate and crystal dimensions of the tetragonal forin of chicken egg white lysozyme. Decreasing precipitant concentration, increasing supers aturation, and increasing impurity, were found to increase crystal numbers. The crystal axial ratio decreased with increasing precipitant concentration, independent of impurity.

  19. Oligo-dT anchored cDNA-SCoT: a novel differential display method for analyzing differential gene expression in response to several stress treatments in mango (Mangifera indica L.).

    PubMed

    Luo, Cong; He, Xin-Hua; Hu, Ying; Yu, Hai-xia; Ou, Shi-Jin; Fang, Zhong-Bin

    2014-09-15

    Differential display is a powerful technique for analyzing differences in gene expression. Oligo-dT cDNAstart codon targeted marker (cDNA-SCoT) technique is a novel, simple, cheap, rapid, and efficient method for differential gene expression research. In the present study, the oligo-dT anchored cDNA-SCoT technique was exploited to identify differentially expressed genes during several stress treatments in mango. A total of 37 primers combined with oligo-dT anchor primers 3side amplified approximately 150 fragments of 150 bp to 1500 bp in length. Up to 100 fragments were differentially expressed among the stress treatments and control samples, among which 92 were obtained and sequenced. Out of the 92 transcript derived fragments (TDFs), 70% were highly homologous to known genes, and 30% encoded unclassified proteins with unknown functions. The expression pattern of nine genes with known functions involved in several abiotic stresses in other species was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) under cold (4 °C), salinity (NaCl), polyethylene glycol (PEG, MW 6000), and heavy metal treatments in leaves and stems at different time points (0, 24, 48, and 72 h). The expression patterns of the genes (TDF4, TDF7, TDF23, TDF45, TDF49, TDF50, TDF57, TDF91 and TDF92) that had direct or indirect relationships with cold, salinity, drought and heavy metal stress response were analyzed through qRT-PCR. The possible roles of these genes are discussed. This study suggests that the oligo-dT anchored cDNA-SCoT differential display method is a useful tool to serve as an initial step for characterizing transcriptional changes induced by abiotic stresses and provide gene information for further study and application in genetic improvement and breeding in mango. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. DNA packaging and the pathway of bacteriophage T4 head assembly.

    PubMed Central

    Hsiao, C L; Black, L W

    1977-01-01

    A cold-sensitive mutation in the structural gene for a minor phage T4 capsid protein (p20) leads to formation of heads containing p20 and cleaved head proteins and empty of DNA. Such heads can be filled with DNA and converted to active phages in vivo uponshift to high temperature. It appears that p20 has two distinct roles in head assembly: first, in construction of the prehead shell (blocked by ts and am mutation) and, second,in DNA packaging (blocked by cs mutation). The latter function is closely associated with gene 17 product, previously known to be required for DNA packagaing. Temperature shift studies of cs-ts double mutants and other observations allow determination of phage function required for DNA packaging. Contrary to previous proposals, we find that T4 DNA packaging is not directly coupled to and can follow DNA synthesis, protein cleavage, prehead core removal, and gene 21-mediated cleavage-induced increase in head volume. Our evidence suggests that an altered head assembly pathway exists and that DNA packaging is probably initiated by DNA-capsid (p20) interaction. Images PMID:269421

  1. A gene regulatory network armature for T-lymphocyte specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fung, Elizabeth-sharon

    Choice of a T-lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly-regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification; tests of the short-term Notchdependence of these gene expression changes; and perturbation analyses of the effects of overexpression of two essential transcription factors, namely PU.l and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through whichmore » T-cell precursors progress from primitive multipotency to T-lineage commitment. Distinct parts of the path reveal separate contributions of Notch signaling, GATA-3 activity, and downregulation of PU.l. Using BioTapestry, the results have been assembled into a draft gene regulatory network for the specification of T-cell precursors and the choice of T as opposed to myeloid dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfil against Egr-2 and of TCF-l against PU.l as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose-dependence of GATA-3 effects; the gene-specific modulation of PU.l activity based on Notch activity; the lack of direct opposition between PU.l and GATA-3; and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.« less

  2. Virus-induced dysfunction of CD4+CD25+ T cells in patients with HTLV-I-associated neuroimmunological disease.

    PubMed

    Yamano, Yoshihisa; Takenouchi, Norihiro; Li, Hong-Chuan; Tomaru, Utano; Yao, Karen; Grant, Christian W; Maric, Dragan A; Jacobson, Steven

    2005-05-01

    CD4(+)CD25(+) Tregs are important in the maintenance of immunological self tolerance and in the prevention of autoimmune diseases. As the CD4(+)CD25(+) T cell population in patients with human T cell lymphotropic virus type I-associated (HTLV-I-associated) myelopathy/tropical spastic paraparesis (HAM/TSP) has been shown to be a major reservoir for this virus, it was of interest to determine whether the frequency and function of CD4(+)CD25(+) Tregs in HAM/TSP patients might be affected. In these cells, both mRNA and protein expression of the forkhead transcription factor Foxp3, a specific marker of Tregs, were lower than those in CD4(+)CD25(+) T cells from healthy individuals. The virus-encoded transactivating HTLV-I tax gene was demonstrated to have a direct inhibitory effect on Foxp3 expression and function of CD4(+)CD25(+) T cells. This is the first report to our knowledge demonstrating the role of a specific viral gene product (HTLV-I Tax) on the expression of genes associated with Tregs (in particular, foxp3) resulting in inhibition of Treg function. These results suggest that direct human retroviral infection of CD4(+)CD25(+) T cells may be associated with the pathogenesis of HTLV-I-associated neurologic disease.

  3. Hoxb4 overexpression in CD4 memory phenotype T cells increases the central memory population upon homeostatic proliferation.

    PubMed

    Frison, Héloïse; Giono, Gloria; Thébault, Paméla; Fournier, Marilaine; Labrecque, Nathalie; Bijl, Janet J

    2013-01-01

    Memory T cell populations allow a rapid immune response to pathogens that have been previously encountered and thus form the basis of success in vaccinations. However, the molecular pathways underlying the development and maintenance of these cells are only starting to be unveiled. Memory T cells have the capacity to self renew as do hematopoietic stem cells, and overlapping gene expression profiles suggested that these cells might use the same self-renewal pathways. The transcription factor Hoxb4 has been shown to promote self-renewal divisions of hematopoietic stem cells resulting in an expansion of these cells. In this study we investigated whether overexpression of Hoxb4 could provide an advantage to CD4 memory phenotype T cells in engrafting the niche of T cell deficient mice following adoptive transfer. Competitive transplantation experiments demonstrated that CD4 memory phenotype T cells derived from mice transgenic for Hoxb4 contributed overall less to the repopulation of the lymphoid organs than wild type CD4 memory phenotype T cells after two months. These proportions were relatively maintained following serial transplantation in secondary and tertiary mice. Interestingly, a significantly higher percentage of the Hoxb4 CD4 memory phenotype T cell population expressed the CD62L and Ly6C surface markers, characteristic for central memory T cells, after homeostatic proliferation. Thus Hoxb4 favours the maintenance and increase of the CD4 central memory phenotype T cell population. These cells are more stem cell like and might eventually lead to an advantage of Hoxb4 T cells after subjecting the cells to additional rounds of proliferation.

  4. [C677T-SNP of methylenetetrahydrofolate reductase gene and breast cancer in Mexican women].

    PubMed

    Calderón-Garcidueñas, Ana Laura; Cerda-Flores, Ricardo Martín; Castruita-Ávila, Ana Lilia; González-Guerrero, Juan Francisco; Barrera-Saldaña, Hugo Alberto

    2017-01-01

    Low-penetrance susceptibility genes such as 5,10-methylenetetrahydrofolate reductase gene (MTHFR) have been considered in the progression of breast cancer (BC). Cancer is a result of genetic, environmental and epigenetic interactions; therefore, these genes should be studied in environmental context, because the results can vary between populations and even within the same country. The objective was to analyze the allelic and genotypic frequencies of the MTHFR C667T SNP in Mexican Mestizo patients with BC and controls from Northeastern Mexico. 243 patients and 118 healthy women were studied. The analysis of the polymorphism was performed with a DNA microarray. Once the frequency of the polymorphism was obtained, Hardy-Weinberg equilibrium test was carried out for the genotypes. Chi square test was used to compare the distribution of frequencies. The allele frequency in patients was: C = 0.5406; T = 0.4594 and in controls C = 0.5678, T = 0.4322. Genotype in BC patients was: C / C = 29.9%, C / T = 48.3% and T / T = 21.8. The distribution in controls was: C / C = 31.4%, C / T = 50.8%, T / T = 17.8% (chi squared 0.77, p = 0.6801). Northeastern Mexican women in this study showed no association between MTFHR C667T SNP and the risk of BC. It seems that the contribution of this polymorphism to BC in Mexico varies depending on various factors, both genetic and environmental.

  5. Quantifying Main Trends in Lysozyme Nucleation: The Effect of Precipitant Concentration and Impurities

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Full factorial experiment design incorporating multi-linear regression analysis of the experimental data allows the main trends and effects to be quickly identified while using only a limited number of experiments. These techniques were used to identify the effect of precipitant concentration and the presence of an impurity, the physiological lysozyme dimer, on the nucleation rate and crystal dimensions of the tetragonal form of chicken egg white lysozyme. Increasing precipitant concentration was found to decrease crystal numbers, the magnitude of this effect also depending on the supersaturation. The presence of the dimer generally increased nucleation. The crystal axial ratio decreased with increasing precipitant concentration independent of impurity.

  6. Protecting Gram-negative bacterial cell envelopes from human lysozyme: Interactions with Ivy inhibitor proteins from Escherichia coli and Pseudomonas aeruginosa.

    PubMed

    Liu, Zhihong; García-Díaz, Beatriz; Catacchio, Bruno; Chiancone, Emilia; Vogel, Hans J

    2015-11-01

    Lysozymes play an important role in host defense by degrading peptidoglycan in the cell envelopes of pathogenic bacteria. Several Gram-negative bacteria can evade this mechanism by producing periplasmic proteins that inhibit the enzymatic activity of lysozyme. The Escherichia coli inhibitor of vertebrate lysozyme, Ivyc and its Pseudomonas aeruginosa homolog, Ivyp1 have been shown to be potent inhibitors of hen egg white lysozyme (HEWL). Since human lysozyme (HL) plays an important role in the innate immune response, we have examined the binding of HL to Ivyc and Ivyp1. Our results show that Ivyp1 is a weaker inhibitor of HL than Ivyc even though they inhibit HEWL with similar potency. Calorimetry experiments confirm that Ivyp1 interacts more weakly with HL than HEWL. Analytical ultracentrifugation studies revealed that Ivyp1 in solution is a monomer and forms a 30kDa heterodimer with both HL and HEWL, while Ivyc is a homodimer that forms a tetramer with both enzymes. The interaction of Ivyp1 with HL was further characterized by NMR chemical shift perturbation experiments. In addition to the characteristic His-containing Ivy inhibitory loop that binds into the active site of lysozyme, an extended loop (P2) between the final two beta-strands also participates in forming protein-protein interactions. The P2 loop is not conserved in Ivyc and it constitutes a flexible region in Ivyp1 that becomes more rigid in the complex with HL. We conclude that differences in the electrostatic interactions at the binding interface between Ivy inhibitors and distinct lysozymes determine the strength of this interaction. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Isolation of an invertebrate-type lysozyme from the nephridia of the echiura, Urechis unicinctus, and its recombinant production and activities.

    PubMed

    Oh, Hye Young; Kim, Chan-Hee; Go, Hye-Jin; Park, Nam Gyu

    2018-05-09

    Invertebrates, unlike vertebrates which have adaptive immune system, rely heavily on the innate immune system for the defense against pathogenic bacteria. Lysozymes, along with other immune effectors, are regarded as an important group in this defense. An invertebrate-type (i-type) lysozyme, designated Urechis unicinctus invertebrate-type lysozyme, Uu-ilys, has been isolated from nephridia of Urechis unicinctus using a series of high performance liquid chromatography (HPLC), and ultrasensitive radial diffusion assay (URDA) as a bioassay system. Analyses of the primary structure and cDNA cloning revealed that Uu-ilys was approximately 14 kDa and composed of 122 amino acids (AAs) of which the precursor had a total of 160 AAs containing a signal peptide of 18 AAs and a pro-sequence of 20 AAs encoded by the nucleotide sequence of 714 bp that comprises a 5' untranslated region (UTR) of 42 bp, an open reading frame (ORF) of 483 bp, and a 3' UTR of 189 bp. Multiple sequence alignment showed Uu-ilys has high homology to i-type lysozymes from several annelids. Relatively high transcriptional expression levels of Uu-ilys was detected in nephridia, anal vesicle, and intestine. The native Uu-ilys exhibited comparable lysozyme enzymatic and antibacterial activities to hen egg white lysozyme. Collectively, these data suggest that Uu-ilys, the isolated antibacterial protein, plays a role in the immune defense mechanism of U. unicinctus. Recombinant Uu-ilys (rUu-ilys) produced in a bacterial expression system showed significantly decreased lysozyme lytic activity from that of the native while its potency on radial diffusion assay detecting antibacterial activity was retained, which may indicate the non-enzymatic antibacterial capacity of Uu-ilys. Copyright © 2018. Published by Elsevier Ltd.

  8. Apoptotic depletion of CD4+ T cells in idiopathic CD4+ T lymphocytopenia.

    PubMed Central

    Laurence, J; Mitra, D; Steiner, M; Lynch, D H; Siegal, F P; Staiano-Coico, L

    1996-01-01

    Progressive loss of CD4+ T lymphocytes, accompanied by opportunistic infections characteristic of the acquired immune deficiency syndrome, ahs been reported in the absence of any known etiology. The pathogenesis of this syndrome, a subset of idiopathic CD4+ T lymphocytopenia (ICL), is uncertain. We report that CD4+ T cells from seven of eight ICL patients underwent accelerated programmed cell death, a process facilitated by T cell receptor cross-linking. Apoptosis was associated with enhanced expression of Fas and Fas ligand in unstimulated cell populations, and partially inhibited by soluble anti-Fas mAb. In addition, apoptosis was suppressed by aurintricarboxylic acid, an inhibitor of calcium-dependent endonucleases and proteases, in cells from four of seven patients, The in vivo significance of these findings was supported by three factors: the absence of accelerated apoptosis in persons with stable, physiologic CD4 lymphopenia without clinical immune deficiency; detection of serum antihistone H2B autoantibodies, one consequence of DNA fragmentation, in some patients; and its selectivity, with apoptosis limited to the CD4 population in some, and occurring among CD8+ T cells predominantly in those individuals with marked depletion of both CD4+ T lymphocytes linked to clinical immune suppression have evidence for accelerated T cell apoptosis in vitro that may be pathophysiologic and amenable to therapy with apoptosis inhibitors. PMID:8609222

  9. Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T cell differentiation

    PubMed Central

    Ding, Xilai; Chepelev, Iouri; Zhou, Xikun; Zhao, Wei; Wei, Gang; Cui, Jun; Zhao, Keji; Wang, Helen Y.; Wang, Rong-Fu

    2014-01-01

    Epigenetic factors have been implicated in the regulation of CD4+ T cell differentiation. Jmjd3 plays a role in many biological processes, but its in vivo function in T cell differentiation remains unknown. Here, we report that Jmjd3 ablation promotes CD4+ T cell differentiation into Th2 and Th17 cells in the small intestine and colon, and inhibits T cell differentiation into Th1 cells under different cytokine-polarizing conditions and in a Th1-dependent colitis model. Jmjd3 deficiency also restrains the plasticity of the conversion of Th2, Th17 or Treg cells to Th1 cells. The skewing of T cell differentiation is concomitant with changes in the expression of key transcription factors and cytokines. H3K27me3 and H3K4me3 levels in Jmjd3-deficient cells are correlated with altered gene expression through interactions with specific transcription factors. Our results identify Jmjd3 as an epigenetic factor in T cell differentiation via changes in histone methylation and target gene expression. PMID:25531312

  10. Diamond Nanogel-Embedded Contact Lenses Mediate Lysozyme-Dependent Therapeutic Release

    PubMed Central

    2015-01-01

    Temporarily implanted devices, such as drug-loaded contact lenses, are emerging as the preferred treatment method for ocular diseases like glaucoma. Localizing the delivery of glaucoma drugs, such as timolol maleate (TM), can minimize adverse effects caused by systemic administration. Although eye drops and drug-soaked lenses allow for local treatment, their utility is limited by burst release and a lack of sustained therapeutic delivery. Additionally, wet transportation and storage of drug-soaked lenses result in drug loss due to elution from the lenses. Here we present a nanodiamond (ND)-embedded contact lens capable of lysozyme-triggered release of TM for sustained therapy. We find that ND-embedded lenses composed of enzyme-cleavable polymers allow for controlled and sustained release of TM in the presence of lysozyme. Retention of drug activity is verified in primary human trabecular meshwork cells. These results demonstrate the translational potential of an ND-embedded lens capable of drug sequestration and enzyme activation. PMID:24506583

  11. Analysis of the genes encoding neuroligins NLGN3 and NLGN4 in Bulgarian patients with autism.

    PubMed

    Avdjieva-Tzavella, D M; Todorov, T P; Todorova, A P; Kirov, A V; Hadjidekova, S P; Rukova, B B; Litvinenko, I O; Hristova-Naydenova, D N; Tincheva, R S; Toncheva, D I

    2012-01-01

    Many studies have supported a genetic aetiology for autism. Neuroligins are postsynaptically located cell-adhesion molecules. Mutations in two X-linked neuroligin genes, NLGN3 and NLGN4, have been implicated in pathogenesis of autism. In order to confirm these causative mutations in our autistic population and to determine their frequency we screened 20 individuals affected with autism. We identified one patient with a point mutation in NLGN4 gene that substituted a Met for Thr 787 - c.2360C > T, p.(Thr787Met) and three patients with identical polymorphisms in the same gene: c.933C > T, p.(Thr311Thr) in combination with c.[1777C > T+1779C > G, p.(Leu593Leu)]. All patients tested for NLGN3 mutations were negative. These results indicate that mutations in these genes are responsible for at most a small fraction of autism cases.

  12. Complexation of lysozyme with adsorbed PtBS-b-SCPI block polyelectrolyte micelles on silver surface.

    PubMed

    Papagiannopoulos, Aristeidis; Christoulaki, Anastasia; Spiliopoulos, Nikolaos; Vradis, Alexandros; Toprakcioglu, Chris; Pispas, Stergios

    2015-01-20

    We present a study of the interaction of the positively charged model protein lysozyme with the negatively charged amphiphilic diblock polyelectrolyte micelles of poly(tert-butylstyrene-b-sodium (sulfamate/carboxylate)isoprene) (PtBS-b-SCPI) on the silver/water interface. The adsorption kinetics are monitored by surface plasmon resonance, and the surface morphology is probed by atomic force microscopy. The micellar adsorption is described by stretched-exponential kinetics, and the micellar layer morphology shows that the micelles do not lose their integrity upon adsorption. The complexation of lysozyme with the adsorbed micellar layers depends on the micelles arrangement and density in the underlying layer, and lysozyme follows the local morphology of the underlying roughness. When the micellar adsorbed amount is small, the layers show low capacity in protein complexation and low resistance in loading. When the micellar adsorbed amount is high, the situation is reversed. The adsorbed layers both with or without added protein are found to be irreversibly adsorbed on the Ag surface.

  13. Interaction of lysozyme with a tear film lipid layer model: A molecular dynamics simulation study.

    PubMed

    Wizert, Alicja; Iskander, D Robert; Cwiklik, Lukasz

    2017-12-01

    The tear film is a thin multilayered structure covering the cornea. Its outermost layer is a lipid film underneath of which resides on an aqueous layer. This tear film lipid layer (TFLL) is itself a complex structure, formed by both polar and nonpolar lipids. It was recently suggested that due to tear film dynamics, TFLL contains inhomogeneities in the form of polar lipid aggregates. The aqueous phase of tear film contains lachrymal-origin proteins, whereby lysozyme is the most abundant. These proteins can alter TFLL properties, mainly by reducing its surface tension. However, a detailed nature of protein-lipid interactions in tear film is not known. We investigate the interactions of lysozyme with TFLL in molecular details by employing coarse-grained molecular dynamics simulations. We demonstrate that lysozyme, due to lateral restructuring of TFLL, is able to penetrate the tear lipid film embedded in inverse micellar aggregates. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Amoebicidal Activity of Milk, Apo-lactoferrin, sIgA and Lysozyme

    PubMed Central

    León-Sicairos, Nidia; López-Soto, Fernando; Reyes-López, Magda; Godínez-Vargas, Delfino; Ordaz-Pichardo, Cynthia; de la Garza, Mireya

    2006-01-01

    Objectives: To identify amoebicidal components in human milk and the effect of iron on the amoebicidal activity. Design: Investigation in axenic cultures of Entamoeba histolytica trophozoites. Methods: Amoebas were treated with 5%–20% of human, bovine and swine milk, with 10% of human milk fractions (i.e., casein, proteins except casein and fat) or with 1 mg/ml of human milk apo-lactoferrin, human secretory immunoglobulin type A (sIgA) and chicken egg-white lysozyme (i.e., purified proteins). Milk proteins were detected using immunoblot. Confocal microscopy was used to define the interaction of milk proteins (100 μM each) and amoebas. Experiments were done at least three times in triplicate, and mean and standard deviations were calculated. Results: Human and bovine milk were amoebicidal showing a concentration-dependent effect. The amoebicidal effect was increased in the absence of iron. Milk protein fractions, with the exception of casein, were the components responsible for the amoebicidal activity found. Apo-lactoferrin, sIgA and lysozyme were identified in the amoebicidal milk protein fraction. Apo-lactoferrin showed the major amoebicidal effect. These proteins, either alone or in combination, showed a killing effect on the trophozoites. They bound to the amoebic membrane causing cell rounding, lipid disruption and damage. Conclusions: Milk proteins such as apo-lactoferrin, sIgA and lysozyme are able to kill Entamoeba histolytica trophozoites. This study confirms the importance of feeding breast milk to newborns. PMID:16809402

  15. Lysozyme activates Enterococcus faecium to induce necrotic cell death in macrophages.

    PubMed

    Gröbner, Sabine; Fritz, Evelyn; Schoch, Friederike; Schaller, Martin; Berger, Alexander C; Bitzer, Michael; Autenrieth, Ingo B

    2010-10-01

    Enterococci are commensal organisms in the alimentary tract. However, they can cause a variety of life-threatening infections, especially in nosocomial settings. We hypothesized that induction of cell death might enable these facultative pathogenic bacteria to evade the innate immune response and to cause infections of their host. We demonstrate that E. faecium when exposed to lysozyme induces cell death in macrophages in vitro and in vivo. Flow cytometric analyses of J774A.1 macrophages infected with E. faecium revealed loss of cell membrane integrity indicated by uptake of propidium iodide and decrease of the inner mitochondrial transmembrane potential DeltaPsi(m). Inhibition of caspases, treatment of macrophages with cytochalasin D, or rifampicin did not prevent cells from dying, suggesting cell death mechanisms that are independent of caspase activation, bacterial uptake, and intracellular bacterial replication. Characteristics of necrotic cell death were demonstrated by both lack of procaspase 3 activation and cell shrinkage, electron microscopy, and release of lactate dehydrogenase. Pretreatment of E. faecium with lysozyme and subsequently with broad spectrum protease considerably reduced cell death, suggesting that a bacterial surface protein is causative for cell death induction. Moreover, in a mouse peritonitis model we demonstrated that E. faecium induces cell death of peritoneal macrophages in vivo. Altogether, our results show that enterococci, under specific conditions such as exposure to lysozyme, induce necrotic cell death in macrophages, which might contribute to disseminated infections by these facultative pathogenic bacteria.

  16. Pressure-Accelerated Dissociation of Amyloid Fibrils in Wild-Type Hen Lysozyme

    PubMed Central

    Shah, Buddha R.; Maeno, Akihiro; Matsuo, Hiroshi; Tachibana, Hideki; Akasaka, Kazuyuki

    2012-01-01

    The dynamics of amyloid fibrils, including their formation and dissociation, could be of vital importance in life. We studied the kinetics of dissociation of the amyloid fibrils from wild-type hen lysozyme at 25°C in vitro as a function of pressure using Trp fluorescence as a probe. Upon 100-fold dilution of 8 mg ml−1 fibril solution in 80 mM NaCl, pH 2.2, no immediate change occurred in Trp fluorescence, but at pressures of 50–450 MPa the fluorescence intensity decreased rapidly with time (kobs = 0.00193 min−1 at 0.1 MPa, 0.0348 min−1 at 400 MPa). This phenomenon is attributable to the pressure-accelerated dissociation of amyloid fibrils into monomeric hen lysozyme. From the pressure dependence of the rates, which reaches a plateau at ∼450 MPa, we determined the activation volume ΔV0‡ = −32.9 ± 1.7 ml mol(monomer)−1 and the activation compressibility Δκ‡ = −0.0075 ± 0.0006 ml mol(monomer)−1 bar−1 for the dissociation reaction. The negative ΔV0‡ and Δκ‡ values are consistent with the notion that the amyloid fibril from wild-type hen lysozyme is in a high-volume and high-compressibility state, and the transition state for dissociation is coupled with a partial hydration of the fibril. PMID:22225805

  17. Critical biological parameters modulate affinity as a determinant of function in T-cell receptor gene-modified T-cells.

    PubMed

    Spear, Timothy T; Wang, Yuan; Foley, Kendra C; Murray, David C; Scurti, Gina M; Simms, Patricia E; Garrett-Mayer, Elizabeth; Hellman, Lance M; Baker, Brian M; Nishimura, Michael I

    2017-11-01

    T-cell receptor (TCR)-pMHC affinity has been generally accepted to be the most important factor dictating antigen recognition in gene-modified T-cells. As such, there is great interest in optimizing TCR-based immunotherapies by enhancing TCR affinity to augment the therapeutic benefit of TCR gene-modified T-cells in cancer patients. However, recent clinical trials using affinity-enhanced TCRs in adoptive cell transfer (ACT) have observed unintended and serious adverse events, including death, attributed to unpredicted off-tumor or off-target cross-reactivity. It is critical to re-evaluate the importance of other biophysical, structural, or cellular factors that drive the reactivity of TCR gene-modified T-cells. Using a model for altered antigen recognition, we determined how TCR-pMHC affinity influenced the reactivity of hepatitis C virus (HCV) TCR gene-modified T-cells against a panel of naturally occurring HCV peptides and HCV-expressing tumor targets. The impact of other factors, such as TCR-pMHC stabilization and signaling contributions by the CD8 co-receptor, as well as antigen and TCR density were also evaluated. We found that changes in TCR-pMHC affinity did not always predict or dictate IFNγ release or degranulation by TCR gene-modified T-cells, suggesting that less emphasis might need to be placed on TCR-pMHC affinity as a means of predicting or augmenting the therapeutic potential of TCR gene-modified T-cells used in ACT. A more complete understanding of antigen recognition by gene-modified T-cells and a more rational approach to improve the design and implementation of novel TCR-based immunotherapies is necessary to enhance efficacy and maximize safety in patients.

  18. The association of RANK gene C421T and C575T polymorphisms with bone mineral density in postmenopausal Turkish women.

    PubMed

    Işleten, Banu; Durmaz, Burak; Durmaz, Berrin; Onay, Hüseyin; Ozkınay, Ferda; Durmaz, Asude; Turan, Volkan; Oztekin, Kemal

    2013-10-01

    To investigate the association between C421T polymorphism within exon 4, C575T polymorphism within exon 6 of the RANK gene and bone mineral density (BMD) variations in postmenopausal Turkish women. One hundred seventy-eight postmenopausal women (patients = 100 and controls = 78) who applied to Ege University Faculty of Medicine, Department of Physical Medicine and Rehabilitation, for osteoporosis examination were analyzed. BMDs of the lumbar spine and femoral sites were measured. Patient and control groups were established based on their T-score values being above and/or below -1. After venous blood sampling, C421T and C575T polymorphisms of the RANK gene were assessed through PCR process following DNA extraction. Genotype frequencies for the C421T and C575T polymorphisms were compared between the control group and the patient group. No significant difference was detected between the two groups for both polymorphisms. There was also no significant difference between the control and patient groups in terms of the combined genotype (p = 0.752) and the combined haplotype analysis of the C421T and C575T polymorphisms (p = 0.723). In the control and patient groups separately, no significant differences in BMD values either at the femoral sites or at the lumbar spine were detected between the combined genotypes of the two polymorphisms. The genotypes, combined genotypes and allele frequencies of C421T and C575T polymorphisms of the RANK gene have not been found to be associated with BMD in Turkish women. Further studies including both sexes and more cases are required.

  19. The effects of hyaluronic acid incorporated as a wetting agent on lysozyme denaturation in model contact lens materials.

    PubMed

    Weeks, Andrea; Boone, Adrienne; Luensmann, Doerte; Jones, Lyndon; Sheardown, Heather

    2013-09-01

    Conventional and silicone hydrogels as models for contact lenses were prepared to determine the effect of the presence of hyaluronic acid on lysozyme sorption and denaturation. Hyaluronic acid was loaded into poly(2-hydroxyethyl methacrylate) and poly(2-hydroxyethyl methacrylate)/TRIS--methacryloxypropyltris (trimethylsiloxy silane) hydrogels, which served as models for conventional and silicone hydrogel contact lens materials. The hyaluronic acid was cross-linked using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide in the presence of dendrimers. Active lysozyme was quantified using a Micrococcus lysodeikticus assay while total lysozyme was determined using 125-I radiolabeled protein. To examine the location of hyaluronic acid in the gels, 6-aminofluorescein labeled hyaluronic acid was incorporated into the gels using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide chemistry and the gels were examined using confocal laser scanning microscopy. Hyaluronic acid incorporation significantly reduced lysozyme sorption in poly(2-hydroxyethyl methacrylate) (p < 0.00001) and poly(2-hydroxyethyl methacrylate)/TRIS--methacryloxypropyltris (trimethylsiloxy silane) (p < 0.001) hydrogels, with the modified materials sorbing only 20% and 16% that of the control, respectively. More importantly, hyaluronic acid also decreased lysozyme denaturation in poly(2-hydroxyethyl methacrylate) (p < 0.005) and poly(2-hydroxyethyl methacrylate)/TRIS--methacryloxypropyltris (trimethylsiloxy silane) (p < 0.02) hydrogels. The confocal laser scanning microscopy results showed that the hyaluronic acid distribution was dependent on both the material type and the molecular weight of hyaluronic acid. This study demonstrates that hyaluronic acid incorporated as a wetting agent has the potential to reduce lysozyme sorption and denaturation in contact lens applications. The distribution of hyaluronic acid within hydrogels appears to affect denaturation, with more surface mobile, lower

  20. White shrimp (Litopenaeus vannamei) recombinant lysozyme has antibacterial activity against Gram negative bacteria: Vibrio alginolyticus, Vibrio parahemolyticus and Vibrio cholerae.

    PubMed

    de-la-Re-Vega, Enrique; García-Galaz, Alfonso; Díaz-Cinco, Martha E; Sotelo-Mundo, Rogerio R

    2006-03-01

    C-type lysozyme has been described as an antibacterial component of the shrimp innate defence system. We determined quantitatively the antibacterial activity of white shrimp (Litopenaeus vannamei) recombinant lysozyme against three Gram negative bacteria: Vibrio alginolyticus, Vibrio parahemolyticus and Vibrio cholerae, using a turbidimetric assay with live bacteria and differential bacterial viable count after interaction with the protein. In conclusion, the antibacterial activity of recombinant shrimp lysozyme against Vibrio sp. is at least equal to the values against the Gram positive M. luteus and more active against the shrimp pathogens V. alginolyticus and V. parahemolyticus.

  1. Characterisation of an epigenetically altered CD4+ CD28+ Kir+ T cell subset in autoimmune rheumatic diseases by multiparameter flow cytometry

    PubMed Central

    Strickland, Faith M; Patel, Dipak; Somers, Emily; Robida, Aaron M; Pihalja, Michael; Swartz, Richard; Marder, Wendy; Richardson, Bruce

    2016-01-01

    Objectives Antigen-specific CD4+ T cells epigenetically modified with DNA methylation inhibitors overexpress genes normally suppressed by this mechanism, including CD11a, CD70, CD40L and the KIR gene family. The altered cells become autoreactive, losing restriction for nominal antigen and responding to self-class II major histocompatibility complex (MHC) molecules without added antigen, and are sufficient to cause a lupus-like disease in syngeneic mice. T cells overexpressing the same genes are found in patients with active lupus. Whether these genes are co-overexpressed on the same or different cells is unknown. The goal of this study was to determine whether these genes are overexpressed on the same or different T cells and whether this subset of CD4+ T cells is also present in patients with lupus and other rheumatic diseases. Methods Multicolour flow cytometry was used to compare CD11a, CD70, CD40L and KIR expression on CD3+CD4+CD28+ T cells to their expression on experimentally demethylated CD3+CD4+CD28+ T cells and CD3+CD4+CD28+ T cells from patients with active lupus and other autoimmune diseases. Results Experimentally demethylated CD4+ T cells and T cells from patients with active lupus have a CD3+CD4+CD28+CD11ahiCD70+CD40LhiKIR+ subset, and the subset size is proportional to lupus flare severity. A similar subset is found in patients with other rheumatic diseases including rheumatoid arthritis, systemic sclerosis and Sjögren's syndrome but not retroperitoneal fibrosis. Conclusions Patients with active autoimmune rheumatic diseases have a previously undescribed CD3+CD4+CD28+CD11ahiCD70+CD40LhiKIR+ T cell subset. This subset may play an important role in flares of lupus and related autoimmune rheumatic diseases, provide a biomarker for disease activity and serve as a novel therapeutic target for the treatment of lupus flares. PMID:27099767

  2. Characterization of avian T-cell receptor γ genes

    PubMed Central

    Six, Adrien; Rast, Jonathan P.; McCormack, Wayne T.; Dunon, Dominique; Courtois, David; Li, Yue; Chen, Chen-lo H.; Cooper, Max D.

    1996-01-01

    In birds and mammals T cells develop along two discrete pathways characterized by expression of either the αβ or the γδ T-cell antigen receptors (TCRs). To gain further insight into the evolutionary significance of the γδ T-cell lineage, the present studies sought to define the chicken TCRγ locus. A splenic cDNA library was screened with two polymerase chain reaction products obtained from genomic DNA using primers for highly conserved regions of TCR and immunoglobulin genes. This strategy yielded cDNA clones with characteristics of mammalian TCR γ chains, including canonical residues considered important for proper folding and stability. Northern blot analysis with the TCRγ cDNA probe revealed 1.9-kb transcripts in the thymus, spleen, and a γδ T-cell line, but not in B or αβ T-cell lines. Three multimember Vγ subfamilies, three Jγ gene segments, and a single constant region Cγ gene were identified in the avian TCRγ locus. Members of each of the three Vγ subfamilies were found to undergo rearrangement in parallel during the first wave of thymocyte development. TCRγ repertoire diversification was initiated on embryonic day 10 by an apparently random pattern of V-Jγ recombination, nuclease activity, and P- and N-nucleotide additions to generate a diverse repertoire of avian TCRγ genes early in ontogeny. PMID:8986811

  3. Single Nucleotide Polymorphisms in IL8 and TLR4 Genes as Candidates for Digital Dermatitis Resistance/Susceptibility in Holstein Cattle.

    PubMed

    El-Shafaey, El-Sayed; Ateya, Ahmed; Ramadan, Hazem; Saleh, Rasha; Elseady, Yousef; Abo El Fadl, Eman; El-Khodery, Sabry

    2017-04-03

    Relatedness between single nucleotide polymorphisms in IL8 and TLR4 genes and digital dermatitis resistance/susceptibility was investigated in seventy Holstein dairy cows. Animals were assigned into two groups, affected group (n = 35) and resistant group (n = 35) based on clinical signs and previous history of farm clinical records. Blood samples were collected for DNA extraction to ampliy fragments of 267-bp and 382-bp for IL8 and TLR4 genes, respectively. PCR-DNA sequencing revealed three SNPs in each of IL8 and TLR4 genes. The identified SNPs associated with digital dermatitis resistance were C94T, A220G, and T262A for IL8 and C118T for TLR4. However, the G349C and C355A SNPs in TLR4 gene were associated with digital dermatitis susceptibility. Chi-square analysis for comparison the distribution of all identified SNPs in both IL8 and TLR4 genes between resistant and affected animals showed no significant variation among the identified SNPs in IL8 gene. Meanwhile, there was a significant variation in case of TLR4 gene. As a pilot study, the present results revealed that identified SNPs in IL8 and TLR4 genes can be used as a genetic marker and predisposing factor for resistance/susceptibility to digital dermatitis in dairy cows. However, TLR4 gene may be a potential candidate for such disease.

  4. T-cell receptor gene therapy: critical parameters for clinical success.

    PubMed

    Linnemann, Carsten; Schumacher, Ton N M; Bendle, Gavin M

    2011-09-01

    T-cell receptor (TCR) gene therapy aims to induce immune reactivity against tumors by introducing genes encoding a tumor-reactive TCR into patient T cells. This approach has been extensively tested in preclinical mouse models, and initial clinical trials have demonstrated the feasibility and potential of TCR gene therapy as a cancer treatment. However, data obtained from preclinical and clinical studies suggest that both the therapeutic efficacy and the safety of TCR gene therapy can be and needs to be further enhanced. This review highlights those strategies that can be followed to develop TCR gene therapy into a clinically relevant treatment option for cancer patients.

  5. Genetic variants of ACE (Insertion/Deletion) and AGT (M268T) genes in patients with diabetes and nephropathy.

    PubMed

    Shaikh, Rozeena; Shahid, Syed M; Mansoor, Qaisar; Ismail, Muhammad; Azhar, Abid

    2014-06-01

    Diabetes mellitus (DM) has been a growing epidemic worldwide and poses a major socio-economic challenge. The leading cause of DM death is nephropathy due to end-stage renal disease (ESRD). This study aims to identify the possible association of I/D variants of the ACE gene and M268T (rs699) of the AGT gene of renin-angiotensin-aldosterone system (RAAS). Study subjects include 115 patients with DM, 110 with diabetic nephropathy (DN) and 110 controls. Fasting blood samples were collected for biochemical analyses and PCR amplification of specific regions of the ACE and AGT genes using primers. The distribution of ACE (I/D) II 28.8%, ID 35.6% and DD 35.6% while in DN II 24.5%, ID 41% and DD 34.5%. The AGT (M268T) genotypes were distributed in DM as TT 30.4%, MT 66.9% and MM 2.6% while in DN subjects TT 56.4%, MT 42.7% and MM 0.9%. Significant differences were observed in the DD genotype and D allele of the ACE gene and the TT genotype and T allele of AGT genes between diabetic patients with and without nephropathy. The study may conclude that the D allele polymorphism in the ACE gene and the T allele polymorphism in AGT gene may be considered as genetic risk factors for the development of nephropathy in diabetes. © The Author(s) 2014.

  6. Interaction of lactoferrin and lysozyme with casein micelles.

    PubMed

    Anema, Skelte G; de Kruif, C G Kees

    2011-11-14

    On addition of lactoferrin (LF) to skim milk, the turbidity decreases. The basic protein binds to the caseins in the casein micelles, which is then followed by a (partial) disintegration of the casein micelles. The amount of LF initially binding to casein micelles follows a Langmuir adsorption isotherm. The kinetics of the binding of LF could be described by first-order kinetics and similarly the disintegration kinetics. The disintegration was, however, about 10 times slower than the initial adsorption, which allowed investigating both phenomena. Kinetic data were also obtained from turbidity measurements, and all data could be described with one equation. The disintegration of the casein micelles was further characterized by an activation energy of 52 kJ/mol. The initial increase in hydrodynamic size of the casein micelles could be accounted for by assuming that it would go as the cube root of the mass using the adsorption and disintegration kinetics as determined from gel electrophoresis. The results show that LF binds to casein micelles and that subsequently the casein micelles partly disintegrate. All micelles behave in a similar manner as average particle size decreases. Lysozyme also bound to the casein micelles, and this binding followed a Langmuir adsorption isotherm. However, lysozyme did not cause the disintegration of the casein micelles.

  7. Histone modifier gene mutations in peripheral T-cell lymphoma not otherwise specified.

    PubMed

    Ji, Meng-Meng; Huang, Yao-Hui; Huang, Jin-Yan; Wang, Zhao-Fu; Fu, Di; Liu, Han; Liu, Feng; Leboeuf, Christophe; Wang, Li; Ye, Jing; Lu, Yi-Ming; Janin, Anne; Cheng, Shu; Zhao, Wei-Li

    2018-04-01

    Due to heterogeneous morphological and immunophenotypic features, approximately 50% of peripheral T-cell lymphomas are unclassifiable and categorized as peripheral T-cell lymphomas, not otherwise specified. These conditions have an aggressive course and poor clinical outcome. Identification of actionable biomarkers is urgently needed to develop better therapeutic strategies. Epigenetic alterations play a crucial role in tumor progression. Histone modifications, particularly methylation and acetylation, are generally involved in chromatin state regulation. Here we screened the core set of genes related to histone methylation ( KMT2D , SETD2 , KMT2A , KDM6A ) and acetylation ( EP300 , CREBBP ) and identified 59 somatic mutations in 45 of 125 (36.0%) patients with peripheral T-cell lymphomas, not otherwise specified. Histone modifier gene mutations were associated with inferior progression-free survival time of the patients, irrespective of chemotherapy regimens, but an increased response to the histone deacetylase inhibitor chidamide. In vitro , chidamide significantly inhibited the growth of EP300-mutated T-lymphoma cells and KMT2D-mutated T-lymphoma cells when combined with the hypomethylating agent decitabine. Mechanistically, decitabine acted synergistically with chidamide to enhance the interaction of KMT2D with transcription factor PU.1, regulated H3K4me-associated signaling pathways, and sensitized T-lymphoma cells to chidamide. In a xenograft KMT2D-mutated T-lymphoma model, dual treatment with chidamide and decitabine significantly retarded tumor growth and induced cell apoptosis through modulation of the KMT2D/H3K4me axis. Our work thus contributes to the understanding of aberrant histone modification in peripheral T-cell lymphomas, not otherwise specified and the stratification of a biological subset that can benefit from epigenetic treatment. Copyright© 2018 Ferrata Storti Foundation.

  8. Purification and Characterization of Recombinant Human Lysozyme from Eggs of Transgenic Chickens.

    PubMed

    Wu, Hanyu; Cao, Dainan; Liu, Tongxin; Zhao, Jianmin; Hu, Xiaoxiang; Li, Ning

    2015-01-01

    Transgenic chickens as bioreactors have several advantages, such as the simple establishment procedure, correct glycosylation profile of expressed proteins, etc. Lysozyme is widely used in food industry, livestock farming, and medical field as a replacement of antibiotics because of its antibacterial and complement system-modulating activity. In this study, we used RT-PCR, Western blot, and immunofluorescence to detect the expression of recombinant human lysozyme (rhLY) in the transgenic chicken. We demonstrated that the transgene of rhLY was genetically stable across different generations. We next optimized the purification procedure of rhLY from the transgenic eggs by utilizing two steps of cation-exchange chromatography and one gel-filtration chromatography. About 6 mg rhLY with the purity exceeding 90% was obtained from ten eggs, and the purification efficiency was about 75%. The purified rhLY had similar physicochemical and biological properties in molecular mass and antibacterial activity compared to the commercial human lysozyme. Additionally, both of them exhibited thermal stability at 60°C and tolerated an extensive pH range of 2 to 11. In conclusion, our study proved that the transgenic chickens we have previously generated were genetically stable and suitable for the production of active rhLY. We also provided a pipeline for purifying the recombinant proteins from transgenic eggs, which could be useful for other studies.

  9. Purification and Characterization of Recombinant Human Lysozyme from Eggs of Transgenic Chickens

    PubMed Central

    Wu, Hanyu; Cao, Dainan; Liu, Tongxin; Zhao, Jianmin; Hu, Xiaoxiang; Li, Ning

    2015-01-01

    Transgenic chickens as bioreactors have several advantages, such as the simple establishment procedure, correct glycosylation profile of expressed proteins, etc. Lysozyme is widely used in food industry, livestock farming, and medical field as a replacement of antibiotics because of its antibacterial and complement system-modulating activity. In this study, we used RT-PCR, Western blot, and immunofluorescence to detect the expression of recombinant human lysozyme (rhLY) in the transgenic chicken. We demonstrated that the transgene of rhLY was genetically stable across different generations. We next optimized the purification procedure of rhLY from the transgenic eggs by utilizing two steps of cation-exchange chromatography and one gel-filtration chromatography. About 6 mg rhLY with the purity exceeding 90% was obtained from ten eggs, and the purification efficiency was about 75%. The purified rhLY had similar physicochemical and biological properties in molecular mass and antibacterial activity compared to the commercial human lysozyme. Additionally, both of them exhibited thermal stability at 60°C and tolerated an extensive pH range of 2 to 11. In conclusion, our study proved that the transgenic chickens we have previously generated were genetically stable and suitable for the production of active rhLY. We also provided a pipeline for purifying the recombinant proteins from transgenic eggs, which could be useful for other studies. PMID:26713728

  10. Gene 1.7 of bacteriophage T7 confers sensitivity of phage growth to dideoxythymidine.

    PubMed

    Tran, Ngoc Q; Rezende, Lisa F; Qimron, Udi; Richardson, Charles C; Tabor, Stanley

    2008-07-08

    Bacteriophage T7 DNA polymerase efficiently incorporates dideoxynucleotides into DNA, resulting in chain termination. Dideoxythymidine (ddT) present in the medium at levels not toxic to Escherichia coli inhibits phage T7. We isolated 95 T7 phage mutants that were resistant to ddT. All contained a mutation in T7 gene 1.7, a nonessential gene of unknown function. When gene 1.7 was expressed from a plasmid, T7 phage resistant to ddT still arose; analysis of 36 of these mutants revealed that all had a single mutation in gene 5, which encodes T7 DNA polymerase. This mutation changes tyrosine-526 to phenylalanine, which is known to increase dramatically the ability of T7 DNA polymerase to discriminate against dideoxynucleotides. DNA synthesis in cells infected with wild-type T7 phage was inhibited by ddT, suggesting that it resulted in chain termination of DNA synthesis in the presence of gene 1.7 protein. Overexpression of gene 1.7 from a plasmid rendered E. coli cells sensitive to ddT, indicating that no other T7 proteins are required to confer sensitivity to ddT.

  11. In TCR-Stimulated T-cells, N-ras Regulates Specific Genes and Signal Transduction Pathways

    PubMed Central

    Lynch, Stephen J.; Zavadil, Jiri; Pellicer, Angel

    2013-01-01

    It has been recently shown that N-ras plays a preferential role in immune cell development and function; specifically: N-ras, but not H-ras or K-ras, could be activated at and signal from the Golgi membrane of immune cells following a low level T-cell receptor stimulus. The goal of our studies was to test the hypothesis that N-ras and H-ras played distinct roles in immune cells at the level of the transcriptome. First, we showed via mRNA expression profiling that there were over four hundred genes that were uniquely differentially regulated either by N-ras or H-ras, which provided strong evidence in favor of the hypothesis that N-ras and H-ras have distinct functions in immune cells. We next characterized the genes that were differentially regulated by N-ras in T cells following a low-level T-cell receptor stimulus. Of the large pool of candidate genes that were differentially regulated by N-ras downstream of TCR ligation, four genes were verified in qRT-PCR-based validation experiments (Dntt, Slc9a6, Chst1, and Lars2). Finally, although there was little overlap between individual genes that were regulated by N-ras in unstimulated thymocytes and stimulated CD4+ T-cells, there was a nearly complete correspondence between the signaling pathways that were regulated by N-ras in these two immune cell types. PMID:23755101

  12. Clonal expansion of T-cell receptor beta gene segment in the retrocochlear lesions of EAE mice.

    PubMed

    Cheng, K C; Lee, K M; Yoo, T J

    1998-01-01

    It has been reported that the T cell receptor V beta 8.2 (TcrbV8.2) gene segment is predominantly expressed in encephalomyelitic T cells responding to myelin basic protein (MBP) in experimental allergic encephalomyelitis (EAE) mice. We have demonstrated retrocochlear hearing loss in EAE mice in previous studies. Administration of a monoclonal antibody specific to the T cell receptor V beta 8 (TcrbV8) subfamily prevented both this type of hearing loss and the central nerve disease. In this study, we examined the role of the TcrbV8.2 gene segment in the retrocochlear lesions of EAE mice. A clonal expression of T cell receptor beta chain gene segment (TcrbV8.2-TcrbD2-TcrbJ2.7) was identified in the retrocochlear lesions. The TcrbV8.2 gene segment appears to recombine only with TcrbJ2.1 (32.1%) and TcrbJ2.7 (67.9%) gene segments. The TcrbJ2.7 gene segment has also been previously identified as the dominant TcrbJ gene in the lymph nodes of EAE mice. Only TcrbD2, with a length of 4 amino acids, was observed recombining with these TcrbV8.2 sequences. G and C nucleotides are predominantly expressed at the N regions between the V-D and D-J junctions. This dominant TcrbV gene segment (TcrbV8.2-TcrbD2-TcrbJ2.7) observed in the retrocochlear lesions has been identified in the MBP-specific T cells from the lymph nodes of EAE mice. These results suggest that a small subset of antigen-specific T cells migrate to, and expand at, the retrocochlear lesions, which leads to hearing loss.

  13. HIV infection-induced transcriptional program in renal tubular epithelial cells activates a CXCR2-driven CD4+ T-cell chemotactic response.

    PubMed

    Chen, Ping; Yi, Zhengzi; Zhang, Weijia; Klotman, Mary E; Chen, Benjamin K

    2016-07-31

    Viral replication and interstitial inflammation play important roles in the pathogenesis of HIV-associated nephropathy. Cell-cell interactions between renal tubule epithelial cells (RTECs) and HIV-infected T cells can trigger efficient virus internalization and viral gene expression by RTEC. To understand how HIV replication initiates HIV-associated nephropathy, we studied the cellular response of RTECs to HIV, examining the transcriptional profiles of primary RTECs exposed to cell-free HIV or HIV-infected T cells. HIV-induced gene expression in hRTECs was examined in vitro by Illumina RNA deep sequencing and revealed an innate response to HIV, which was subclassified by gene ontology biological process terms. Chemokine responses were examined by CD4 T-cell chemotaxis assays. As compared with cell-free virus infection, exposure to HIV-infected T cells elicited a stronger upregulation of inflammatory and immune response genes. A major category of upregulated genes are chemokine/cytokine families involved in inflammation and immune response, including inflammatory cytokines CCL20, IL6 and IL8-related chemokines: IL8, CXCL1, CXCL2, CXCL3, CXCL5 and CXCL6. Supernatants from virus-exposed RTECs contained strong chemoattractant activity on primary CD4 T cells, which was potently blocked by a CXCR2 antagonist that antagonizes IL8-related chemokines. We observed a preferential migration of CXCR2-expressing, central memory CD4 T cells in response to HIV infection of RTECs. Interactions between primary RTECs and HIV-infected T cells result in potent induction of inflammatory response genes and release of cytokines/chemokines from RTECs that can attract additional T cells. Activation of these genes reflects an innate response to HIV by nonimmune cells.

  14. TLR4 ligands LPS and MPLA differentially regulate effector and memory CD8+ T cell differentiation

    PubMed Central

    Cui, Weiguo; Joshi, Nikhil S.; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M.

    2014-01-01

    Vaccines formulated with non-replicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in antibody production has been well studied, but how they influence memory CD8+ T cell differentiation remains poorly defined. Here we implemented dendritic cell (DC)-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8+ T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8+ T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8+ T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8+ T cells, but also promoted their terminal differentiation and contraction; thus, fewer memory CD8+ T cells formed and MPLA-primed animals were less protected against secondary infection compared to those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8+ T cells. Lastly, we demonstrated that the LPS-TLR4-derived “pro-memory” signals were MyD88, but not Trif, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8+ T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection. PMID:24659688

  15. Enhanced pathogenicity of diabetogenic T cells escaping a non-MHC gene-controlled near death experience.

    PubMed

    Choisy-Rossi, Caroline-Morgane; Holl, Thomas M; Pierce, Melissa A; Chapman, Harold D; Serreze, David V

    2004-09-15

    For unknown reasons, the common MHC class I variants encoded by the H2g7 haplotype (Kd, Db) aberrantly elicit autoreactive CD8 T cell responses essential to type 1 diabetes development when expressed in NOD mice, but not other strains. In this study, we show that interactive non-MHC genes allow a NOD-derived diabetogenic CD8 T cell clonotype (AI4) to be negatively selected at far greater efficiency in C57BL/6 mice congenically expressing H2g7 (B6.H2g7). However, the few AI4 T cells escaping negative selection in B6.H2g7 mice are exported from the thymus more efficiently, and are more functionally aggressive than those of NOD origin. This provides mechanistic insight to previous findings that resistant mouse strains carry some genes conferring greater diabetes susceptibility than the corresponding NOD allele. In the B6.H2g7 stock, non-MHC gene-controlled elevations in TCR expression are associated with both enhanced negative selection of diabetogenic CD8 T cells and increased aggressiveness of those escaping this process. An implication of this finding is that the same phenotype, in this case relatively high TCR expression levels, could have double-edged sword effects, contributing to type 1 diabetes resistance at one level of T cell development, but at another actually promoting pathogenesis. Copyright 2004 The American Association of Immunologists, Inc.

  16. Interaction of thioflavin T with amyloid fibrils: stoichiometry and affinity of dye binding, absorption spectra of bound dye.

    PubMed

    Sulatskaya, Anna I; Kuznetsova, Irina M; Turoverov, Konstantin K

    2011-10-06

    The fluorescence of the benzothiazole dye thioflavin T (ThT) is a well-known test for amyloid fibril formation. It has now become evident that ThT can also be used for structural investigations of amyloid fibrils and even for the treatment of amyloid diseases. In this case, one of the most urgent problems is an accurate determination of ThT-amyloid fibril binding parameters: the number of binding modes, stoichiometry, and binding constant for each mode. To obtain information concerning the ThT-amyloid fibril binding parameters, we propose to use absorption spectrophotometry of solutions prepared by equilibrium microdialysis. This approach is inherently designed for the determination of dye-receptor binding parameters. However, it has been very rarely used in the study of dye-protein interactions and has never been used to study the binding parameters of ThT or its analogues to amyloid fibrils. We showed that, when done in corpore, this approach enables the determination of not only binding parameters but also the absorption spectrum and molar extinction coefficient of ThT bound to sites of different binding modes. The proposed approach was used for the examination of lysozyme amyloid fibrils. Two binding modes were found for the ThT-lysozyme amyloid fibril interaction. These binding modes have significantly different binding constants (K(b1) = 7.5 × 10(6) M(-1), K(b2) = 5.6 × 10(4) M(-1)) and a different number of dye binding sites on the amyloid fibrils per protein molecule (n(1) = 0.11, n(2) = 0.24). The absorption spectra of ThT bound to sites of different modes differ from each other (ε(b1,max) = 5.1 × 10(4) M(-1) cm(-1), ε(b2,max) = 6.7 × 10(4) M(-1)cm(-1), λ(max) = 449 nm) and significantly differ from that of free ThT in aqueous solution (ε(max) = 3.2 × 10(4) M(-1)cm(-1), λ(max) = 412 nm). © 2011 American Chemical Society

  17. 1236 C/T and 3435 C/T polymorphisms of the ABCB1 gene in Mexican breast cancer patients.

    PubMed

    Gutierrez-Rubio, S A; Quintero-Ramos, A; Durán-Cárdenas, A; Franco-Topete, R A; Castro-Cervantes, J M; Oceguera-Villanueva, A; Jiménez-Pérez, L M; Balderas-Peña, L M A; Morgan-Villela, G; Del-Toro-Arreola, A; Daneri-Navarro, A

    2015-02-13

    MDR1, which is encoded by the ABCB1 gene, is involved in multidrug resistance (hydrophobic), as well as the elimination of xenotoxic agents. The association between ABCB1 gene polymorphisms and breast cancer risk in different populations has been described previously; however, the results have been inconclusive. In this study, we examined the association between polymorphisms 3435 C/T and 1236 C/T in the ABCB1 gene and breast cancer development in Mexican women according to their menopausal status and molecular classification. Molecular subtypes as well as allele and genotype frequencies were analyzed. A total of 248 women with initial breast cancer diagnosis and 180 ethnically matched, healthy, unrelated individuals were enrolled. Polymerase chain reaction-restriction fragment length polymorphism was performed to detect polymorphisms 3435 C/T and 1236 C/T in the ABCB1 gene. Premenopausal T allele carriers of the 3435 C/T polymorphism showed a 2-fold increased risk of breast cancer with respect to the reference and postmenopausal groups, as well as triple-negative expression regarding the luminal A/B molecular subrogated subtypes. In contrast, the CT genotype of the 1236 polymorphism was a protective factor against breast cancer. We conclude that the T allele carrier of the 3435 C/T polymorphism in the ABCB1 gene in combination with an estrogen receptor-negative status may be an important risk factor for breast cancer development in premenopausal women.

  18. The effect of protein–precipitant interfaces and applied shear on the nucleation and growth of lysozyme crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reis, Nuno M.; Chirgadze, Dimitri Y.; Blundell, Tom L.

    The nucleation of lysozyme in microbatch experiments was linked to the formation of protein–precipitant interfaces. The use of oscillatory shear allowed decreasing the nucleation rate and extending the growth period for lysozyme crystals, presumably through the control of the number of interfaces and removal of impurities or defects. This paper is concerned with the effect of protein–precipitant interfaces and externally applied shear on the nucleation and growth kinetics of hen egg-white lysozyme crystals. The early stages of microbatch crystallization of lysozyme were explored using both optical and confocal fluorescence microscopy imaging. Initially, an antisolvent (precipitant) was added to a proteinmore » drop and the optical development of the protein–precipitant interface was followed with time. In the presence of the water-soluble polymer poly(ethylene glycol) (PEG) a sharp interface was observed to form immediately within the drop, giving an initial clear separation between the lighter protein solution and the heavier precipitant. This interface subsequently became unstable and quickly developed within a few seconds into several unstable ‘fingers’ that represented regions of high concentration-gradient interfaces. Confocal microscopy demonstrated that the subsequent nucleation of protein crystals occurred preferentially in the region of these interfaces. Additional experiments using an optical shearing system demonstrated that oscillatory shear significantly decreased nucleation rates whilst extending the growth period of the lysozyme crystals. The experimental observations relating to both nucleation and growth have relevance in developing efficient and reliable protocols for general crystallization procedures and the controlled crystallization of single large high-quality protein crystals for use in X-ray crystallography.« less

  19. An electrochemical aptasensor based on a TiO2/three-dimensional reduced graphene oxide/PPy nanocomposite for the sensitive detection of lysozyme.

    PubMed

    Wang, Minghua; Zhai, Shuyong; Ye, Zihan; He, Linghao; Peng, Donglai; Feng, Xiaozhong; Yang, Yanqin; Fang, Shaoming; Zhang, Hongzhong; Zhang, Zhihong

    2015-04-14

    A sensitive aptasensor based on a nanocomposite of hollow titanium dioxide nanoball, three-dimensional reduced graphene oxide, and polypyrrole (TiO2/3D-rGO/PPy) was developed for lysozyme detection. A lysozyme aptamer was easily immobilized onto the TiO2/3D-rGO/PPy nanocomposite matrix by assembling the aptamer onto graphene through simple π-stacking interactions and electrostatic interactions between PPy molecular chains and aptamer strands. In the presence of lysozyme, the aptamer on the adsorbent layer catches the target on the electrode interface, which generates a barrier for electrons and inhibits electron transfer, subsequently resulting in decreased electrochemically differential pulse voltammetric signals of a gold electrode modified with TiO2/3D-rGO/PPy. Using this strategy, a low limit of detection of 0.085 ng mL(-1) (5.5 pM) for detecting lysozyme was observed within the detection range of 0.1-50 ng mL(-1) (0.007-3.5 nM). The aptasensor also presents high specificity for lysozyme, which is unaffected by the coexistence of other proteins. Such an aptasensor opens a rapid, selective, and sensitive route to lysozyme detection. This finding indicates that the TiO2/3D-rGO/PPy nanocomposite could be used as an electrochemical biosensor for detecting proteins in the biomedical field.

  20. Microcalorimetric study of thermal unfolding of lysozyme in water/glycerol mixtures: An analysis by solvent exchange model

    NASA Astrophysics Data System (ADS)

    Spinozzi, Francesco; Ortore, Maria Grazia; Sinibaldi, Raffaele; Mariani, Paolo; Esposito, Alessandro; Cinelli, Stefania; Onori, Giuseppe

    2008-07-01

    Folded protein stabilization or destabilization induced by cosolvent in mixed aqueous solutions has been studied by differential scanning microcalorimetry and related to difference in preferential solvation of native and denatured states. In particular, the thermal denaturation of a model system formed by lysozyme dissolved in water in the presence of the stabilizing cosolvent glycerol has been considered. Transition temperatures and enthalpies, heat capacity, and standard free energy changes have been determined when applying a two-state denaturation model to microcalorimetric data. Thermodynamic parameters show an unexpected, not linear, trend as a function of solvent composition; in particular, the lysozyme thermodynamic stability shows a maximum centered at water molar fraction of about 0.6. Using a thermodynamic hydration model based on the exchange equilibrium between glycerol and water molecules from the protein solvation layer to the bulk, the contribution of protein-solvent interactions to the unfolding free energy and the changes of this contribution with solvent composition have been derived. The preferential solvation data indicate that lysozyme unfolding involves an increase in the solvation surface, with a small reduction of the protein-preferential hydration. Moreover, the derived changes in the excess solvation numbers at denaturation show that only few solvent molecules are responsible for the variation of lysozyme stability in relation to the solvent composition.

  1. tRNADB-CE: tRNA gene database well-timed in the era of big sequence data.

    PubMed

    Abe, Takashi; Inokuchi, Hachiro; Yamada, Yuko; Muto, Akira; Iwasaki, Yuki; Ikemura, Toshimichi

    2014-01-01

    The tRNA gene data base curated by experts "tRNADB-CE" (http://trna.ie.niigata-u.ac.jp) was constructed by analyzing 1,966 complete and 5,272 draft genomes of prokaryotes, 171 viruses', 121 chloroplasts', and 12 eukaryotes' genomes plus fragment sequences obtained by metagenome studies of environmental samples. 595,115 tRNA genes in total, and thus two times of genes compiled previously, have been registered, for which sequence, clover-leaf structure, and results of sequence-similarity and oligonucleotide-pattern searches can be browsed. To provide collective knowledge with help from experts in tRNA researches, we added a column for enregistering comments to each tRNA. By grouping bacterial tRNAs with an identical sequence, we have found high phylogenetic preservation of tRNA sequences, especially at the phylum level. Since many species-unknown tRNAs from metagenomic sequences have sequences identical to those found in species-known prokaryotes, the identical sequence group (ISG) can provide phylogenetic markers to investigate the microbial community in an environmental ecosystem. This strategy can be applied to a huge amount of short sequences obtained from next-generation sequencers, as showing that tRNADB-CE is a well-timed database in the era of big sequence data. It is also discussed that batch-learning self-organizing-map with oligonucleotide composition is useful for efficient knowledge discovery from big sequence data.

  2. Resonance scattering spectra of micrococcus lysodeikticus and its application to assay of lysozyme activity.

    PubMed

    Jiang, Zhi-Liang; Huang, Guo-Xia

    2007-02-01

    Several methods, including turbidimetric and colorimetric methods, have been reported for the detection of lysozyme activity. However, there is no report about the resonance scattering spectral (RSS) assay, which is based on the catalytic effect of lysozyme on the hydrolysis of micrococcus lysodeikticus (ML) and its resonance scattering effect. ML has 5 resonance scattering peaks at 360 400, 420, 470, and 520 nm with the strongest one at 470 nm. The concentration of ML in the range of 2.0x10(6)-9.3x10(8) cells/ml is proportional to the RS intensity at 470 nm (I(470 nm)). A new catalytic RSS method has been proposed for 0.24-40.0 U/ml (or 0.012-2.0 mug/ml) lysozyme activity, with a detection limit (3sigma) of 0.014 U/ml (or 0.0007 microg/ml). Saliva samples were assayed by this method, and it is in agreement with the results of turbidimetric method. The slope, intercept and the correlation coefficient of the regression analysis of the 2 assays were 0.9665, -87.50, and 0.9973, respectively. The assay has high sensitivity and simplicity.

  3. Copper(II) directs formation of toxic amorphous aggregates resulting in inhibition of hen egg white lysozyme fibrillation under alkaline salt-mediated conditions.

    PubMed

    Ghosh, Sudeshna; Pandey, Nitin K; Banerjee, Priyanka; Chaudhury, Koel; Nagy, Nóra Veronika; Dasgupta, Swagata

    2015-01-01

    Hen egg white lysozyme (HEWL) adopts a molten globule-like state at high pH (~12.75) and is found to form amyloid fibrils at alkaline pH. Here, we report that Cu(II) inhibits self-association of HEWL at pH 12.75 both at 37 and 65 °C. A significant reduction in Thioflavin T fluorescence intensity, attenuation in β-sheet content and reduction in hydrophobic exposure were observed with increasing Cu(II) stoichiometry. Electron paramagnetic resonance spectroscopy suggests a 4N type of coordination pattern around Cu(II) during fibrillation. Cu(II) is also capable of altering the cytotoxicity of the proteinaceous aggregates. Fibrillar species of diverse morphology were found in the absence of Cu(II) with the generation of amorphous aggregates in the presence of Cu(II), which are more toxic compared to the fibrils alone.

  4. Serum soluble interleukin-2 receptor level is more sensitive than angiotensin-converting enzyme or lysozyme for diagnosis of sarcoidosis and may be a marker of multiple organ involvement.

    PubMed

    Thi Hong Nguyen, Chuyen; Kambe, Naotomo; Kishimoto, Izumi; Ueda-Hayakawa, Ikuko; Okamoto, Hiroyuki

    2017-07-01

    Skin lesions in sarcoidosis are often the initial symptoms that enable the dermatologist to be the first to diagnose this granulomatosis. However, diagnosis is sometimes very problematic. In 2015, the diagnostic criteria for sarcoidosis were updated in Japan, with elevated serum soluble interleukin-2 receptor (sIL-2R) replacing negative tuberculin reaction. Therefore, we assessed the clinical utility of sIL-2R compared with two other common markers, angiotensin-converting enzyme (ACE) and lysozyme, in patients who visited the dermatology clinic. Data from 72 patients showed that sIL-2R was more sensitive than both ACE and lysozyme in supporting a diagnosis of sarcoidosis (52.8%) compared with ACE (29%) and lysozyme (26.4%). Additionally, the sIL-2R level was significantly higher in patients with multiple organ involvement and parenchymal infiltration. Patients with elevated sIL-2R levels had higher serum ACE and lysozyme levels, a higher incidence of pulmonary involvement, more severe chest radiographic stage and a high incidence of expression-specific signs by imaging analysis. Receiver-operator curve analysis showed that sIL-2R was a better marker at the threshold cut-off point compared with ACE and lysozyme for identifying patients with multiple organ involvement, detecting patients with pulmonary disease and parenchymal infiltration as well as predicting the presence of specific signs in the diagnosis of sarcoidosis. Moreover, the kinetics of sIL-2R levels correlated closely with clinical manifestations, in contrast to the modest changes of ACE and lysozyme levels during the follow-up period. In conclusion, sIL-2R may be considered a good marker for diagnosis and a potential indicator of disease activity. © 2017 Japanese Dermatological Association.

  5. Riboflavin Depletion Promotes Tumorigenesis in HEK293T and NIH3T3 Cells by Sustaining Cell Proliferation and Regulating Cell Cycle-Related Gene Transcription.

    PubMed

    Long, Lin; He, Jian-Zhong; Chen, Ye; Xu, Xiu-E; Liao, Lian-Di; Xie, Yang-Min; Li, En-Min; Xu, Li-Yan

    2018-05-07

    Riboflavin is an essential component of the human diet and its derivative cofactors play an established role in oxidative metabolism. Riboflavin deficiency has been linked with various human diseases. The objective of this study was to identify whether riboflavin depletion promotes tumorigenesis. HEK293T and NIH3T3 cells were cultured in riboflavin-deficient or riboflavin-sufficient medium and passaged every 48 h. Cells were collected every 5 generations and plate colony formation assays were performed to observe cell proliferation. Subcutaneous tumorigenicity assays in NU/NU mice were used to observe tumorigenicity of riboflavin-depleted HEK293T cells. Mechanistically, gene expression profiling and gene ontology analysis were used to identify abnormally expressed genes induced by riboflavin depletion. Western blot analyses, cell cycle analyses, and chromatin immunoprecipitation were used to validate the expression of cell cycle-related genes. Plate colony formation of NIH3T3 and HEK293T cell lines was enhanced >2-fold when cultured in riboflavin-deficient medium for 10-20 generations. Moreover, we observed enhanced subcutaneous tumorigenicity in NU/NU mice following injection of riboflavin-depleted compared with normal HEK293T cells (55.6% compared with 0.0% tumor formation, respectively). Gene expression profiling and gene ontology analysis revealed that riboflavin depletion induced the expression of cell cycle-related genes. Validation experiments also found that riboflavin depletion decreased p21 and p27 protein levels by ∼20%, and increased cell cycle-related and expression-elevated protein in tumor (CREPT) protein expression >2-fold, resulting in cyclin D1 and CDK4 levels being increased ∼1.5-fold, and cell cycle acceleration. We also observed that riboflavin depletion decreased intracellular riboflavin levels by 20% and upregulated expression of riboflavin transporter genes, particularly SLC52A3, and that the changes in CREPT and SLC52A3 correlated with

  6. Primary undifferentiated small round cell sarcoma of the deep abdominal wall with a novel variant of t(10;19) CIC-DUX4 gene fusion.

    PubMed

    Tsukamoto, Yoshitane; Futani, Hiroyuki; Yoshiya, Shinichi; Watanabe, Takahiro; Kihara, Takako; Matsuo, Shohei; Hirota, Seiichi

    2017-10-01

    We experienced a 38-year-old Japanese male with t(10;19) CIC-DUX4 -positive undifferentiated small round cell sarcoma in the deep abdominal wall. Three months before his first visit to our hospital, he noticed a mass in his right abdominal wall. Computed tomography on admission revealed a solid abdominal tumor 70×53mm in size and multiple small tumors in both lungs. The biopsy of the abdominal tumor revealed undifferentiated small round cell sarcoma, suggestive of Ewing sarcoma. Under the clinical diagnosis of Ewing-like sarcoma of the abdominal wall with multiple lung metastases, several cycles of ICE (ifosfamide, carboplatin and etoposide) therapy were performed. After the chemotherapy, the lung metastases disappeared, while the primary lesion rapidly grew. Additional VDC (vincristine, doxorubicin and cyclophosphamide) therapy was carried out without apparent effect. Although the surgical removal of the primary lesion was done, peritoneal dissemination and a huge metastatic liver tumor appeared thereafter. The patient died of disease progression two months after the surgery. The total clinical course was approximately one year, showing that the tumor was extremely aggressive. The tumor cells of the surgical specimen were positive for CD99, WT1, calretinin, INI1, ERG and Fli1 by immunohistochemistry. Fusion gene analyses using the frozen surgical material revealed negativity for EWSR1-Fli1, EWSR1-ERG and t(4;19) CIC-DUX4 fusions, but positivity for t(10;19) CIC-DUX4 fusion. Thus, we made a final pathological diagnosis of t(10;19) CIC-DUX4-positive undifferentiated small round cell sarcoma. To our knowledge, this is the 13th case of t(10;19) CIC-DUX4 undifferentiated small round cell sarcoma with precise clinicopathological information. Especially in our case, two types of t(10;19) CIC-DUX4 fusion transcripts were observed, both of which are in-frame and novel. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. The Structure of Gene Product 6 of Bacteriophage T4, the Hinge-Pin of the Baseplate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksyuk, Anastasia A.; Leiman, Petr G.; Shneider, Mikhail M.

    2009-07-21

    The baseplate of bacteriophage T4 is a multicomponent protein complex, which controls phage attachment to the host. It assembles from six wedges and a central hub. During infection the baseplate undergoes a large conformational change from a dome-shaped to a flat, star-shaped structure. We report the crystal structure of the C-terminal half of gene product (gp) 6 and investigate its motion with respect to the other proteins during the baseplate rearrangement. Six gp6 dimers interdigitate, forming a ring that maintains the integrity of the baseplate in both conformations. One baseplate wedge contains an N-terminal dimer of gp6, whereas neighboring wedgesmore » are tied together through the C-terminal dimer of gp6. The dimeric interactions are preserved throughout the rearrangement of the baseplate. However, the hinge angle between the N- and C-terminal parts of gp6 changes by {approx}15{sup o}, accounting for a 10 {angstrom} radial increase in the diameter of the gp6 ring.« less

  8. High quality draft genome sequence of Brachymonas chironomi AIMA4T (DSM 19884T) isolated from a Chironomus sp. egg mass

    DOE PAGES

    Laviad, Sivan; Lapidus, Alla; Han, James; ...

    2015-05-27

    Brachymonas chironomi strain AIMA4T (Halpern et al., 2009) is a Gram-negative, non-motile, aerobic, chemoorganotroph bacterium. B. chironomi is a member of the Comamonadaceae, a family within the class Betaproteobacteria. This species was isolated from a chironomid (Diptera; Chironomidae) egg mass, sampled from a waste stabilization pond in northern Israel. Phylogenetic analysis based on the 16S rRNA gene sequences placed strain AIMA4T in the genus Brachymonas. Here we describe the features of this organism, together with the complete genome sequence and annotation. We find the DNA GC content is 63.5%. The chromosome length is 2,509,395 bp. It encodes 2,382 proteins andmore » 68 RNA genes. Brachymonas chironomi genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project.« less

  9. Correlations of CTLA-4 gene polymorphisms and hepatitis C chronic infection.

    PubMed

    Danilovic, Debora L S; Mendes-Correa, Maria C; Lima, Erika U; Zambrini, Heverton; K Barros, Raffaelle; Marui, Suemi

    2012-05-01

    Cytotoxic T lymphocyte-associated factor 4 (CTLA-4) functions as a negative regulator of T cell-mediated immune response. Molecular changes associated to CTLA-4 gene polymorphisms could reduce its ability to suppress and control lymphocyte proliferation. To evaluate the frequency of CTLA-4 gene polymorphisms in chronic hepatitis C virus (HCV) infected patients and correlate to clinical and histological findings. We evaluated 112 HCV-infected subjects prospectively selected and 183 healthy controls. Clinical and liver histological data were analysed. -318C > T, A49G and CT60 CTLA-4 single-nucleotide polymorphisms (SNPs) were studied by PCR-RFLP and AT(n) polymorphism by DNA fragment analysis by capillary electrophoresis in automatic sequencer. Eight AT repetitions in 3'UTR region were more frequent in HCV-infected subjects. We found a positive association of -318C and + 49G with HCV genotype 3 (P = 0.008, OR 9.13, P = 0.004, OR 2.49 respectively) and an inverse association of both alleles with HCV genotype 1 (P = 0.020, OR 0.19, P = 0.002, OR 0.38 respectively). Allele + 49G was also associated to aminotransferases quotients > 3 (qALT, P = 0.034, qAST, P = 0.041). Allele G of CT60 SNP was also associated with qAST > 3 (P = 0.012). Increased number of AT repetitions was positively associated to severe necroinflammatory activity scores in liver biopsies (P = 0.045, OR 4.62). CTLA-4 gene polymorphisms were associated to HCV-infection. Eight AT repetitions were more prevalent in HCV-infected subjects. -318C and + 49G alleles were associated to genotypes 1 and 3 infections and increased number of AT repetitions in 3'UTR region favoured severe necroinflammatory activity scores in liver biopsies. © 2011 John Wiley & Sons A/S.

  10. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma.

    PubMed

    Keu, Khun Visith; Witney, Timothy H; Yaghoubi, Shahriar; Rosenberg, Jarrett; Kurien, Anita; Magnusson, Rachel; Williams, John; Habte, Frezghi; Wagner, Jamie R; Forman, Stephen; Brown, Christine; Allen-Auerbach, Martin; Czernin, Johannes; Tang, Winson; Jensen, Michael C; Badie, Behnam; Gambhir, Sanjiv S

    2017-01-18

    High-grade gliomas are aggressive cancers that often become rapidly fatal. Immunotherapy using CD8 + cytotoxic T lymphocytes (CTLs), engineered to express both herpes simplex virus type 1 thymidine kinase (HSV1-TK) and interleukin-13 (IL-13) zetakine chimeric antigen receptor (CAR), is a treatment strategy with considerable potential. To optimize this and related immunotherapies, it would be helpful to monitor CTL viability and trafficking to glioma cells. We show that noninvasive positron emission tomography (PET) imaging with 9-[4-[ 18 F]fluoro-3-(hydroxymethyl)butyl]guanine ([ 18 F]FHBG) can track HSV1-tk reporter gene expression present in CAR-engineered CTLs. [ 18 F]FHBG imaging was safe and enabled the longitudinal imaging of T cells stably transfected with a PET reporter gene in patients. Further optimization of this imaging approach for monitoring in vivo cell trafficking should greatly benefit various cell-based therapies for cancer. Copyright © 2017, American Association for the Advancement of Science.

  11. Fully moderated T-statistic for small sample size gene expression arrays.

    PubMed

    Yu, Lianbo; Gulati, Parul; Fernandez, Soledad; Pennell, Michael; Kirschner, Lawrence; Jarjoura, David

    2011-09-15

    Gene expression microarray experiments with few replications lead to great variability in estimates of gene variances. Several Bayesian methods have been developed to reduce this variability and to increase power. Thus far, moderated t methods assumed a constant coefficient of variation (CV) for the gene variances. We provide evidence against this assumption, and extend the method by allowing the CV to vary with gene expression. Our CV varying method, which we refer to as the fully moderated t-statistic, was compared to three other methods (ordinary t, and two moderated t predecessors). A simulation study and a familiar spike-in data set were used to assess the performance of the testing methods. The results showed that our CV varying method had higher power than the other three methods, identified a greater number of true positives in spike-in data, fit simulated data under varying assumptions very well, and in a real data set better identified higher expressing genes that were consistent with functional pathways associated with the experiments.

  12. The Efficiency of Delone Coverings of the Canonical Tilings T}(*(A_4)) -> T^*(A4) and T}(*(D_6)) -> T^*(D6)

    NASA Astrophysics Data System (ADS)

    Papadopolos, Zorka; Kasner, Gerald

    This chapter is devoted to the coverings of the two quasiperiodic canonical tilings T}(*(A_4)) -> T^*(A4) and T}(*(D_6)) equiv {cal T}(*(2F)) -> T^*(D6) T^*(2F), obtained by projection from the root lattices A4 and D6, respectively. In the first major part of this chapter, in Sect. 5.2, we shall introduce a Delone covering T}(*(A_4)}) -> C^sT^*(A4) of the 2-dimensional decagonal tiling T}(*(A_4)) -> T^*(A4). In the second major part of this chapter, Sect. 5.3, we summarize the results related to the Delone covering of the icosahedral tiling T}(*(D_6)) -> T^*(D6), T}(*(D_6)}) -> CT^*(D6) and determine the zero-, single-, and double- deckings and the resulting thickness of the covering. In the conclusions section, we give some suggestions as to how the definition of the Delone covering might be changed in order to reach some real (full) covering of the icosahedral tiling T}(*(D_6)) -> T^*(D6). In Section 5.2 the definition of the Delone covering is also changed in order to avoid an unnecessary large thickness of the covering.

  13. The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.

    2001-01-01

    Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study, we show that possible conformational changes induced by heating are stable and apparently non-reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for four weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 hours at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.

  14. High-quality draft genome sequence of Sedimenticola selenatireducens strain AK4OH1T, a gammaproteobacterium isolated from estuarine sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, Tiffany S.; Giovannelli, Donato; Yee, Nathan

    Sedimenticola selenatireducens strain AK4OH1 T (= DSM 17993 T = ATCC BAA-1233 T) is a microaerophilic bacterium isolated from sediment from the Arthur Kill intertidal strait between New Jersey and Staten Island, NY. S. selenatireducens is Gram-negative and belongs to the Gammaproteobacteria. Strain AK4OH1 T was the first representative of its genus to be isolated for its unique coupling of the oxidation of aromatic acids to the respiration of selenate. It is a versatile heterotroph and can use a variety of carbon compounds, but can also grow lithoautotrophically under hypoxic and anaerobic conditions. Furthermore, the draft genome comprises 4,588,530 bpmore » and 4276 predicted protein-coding genes including genes for the anaerobic degradation of 4-hydroxybenzoate and benzoate. We report the main features of the genome of S. selenatireducens strain AK4OH1 T.« less

  15. High-quality draft genome sequence of Sedimenticola selenatireducens strain AK4OH1T, a gammaproteobacterium isolated from estuarine sediment

    DOE PAGES

    Louie, Tiffany S.; Giovannelli, Donato; Yee, Nathan; ...

    2016-09-08

    Sedimenticola selenatireducens strain AK4OH1 T (= DSM 17993 T = ATCC BAA-1233 T) is a microaerophilic bacterium isolated from sediment from the Arthur Kill intertidal strait between New Jersey and Staten Island, NY. S. selenatireducens is Gram-negative and belongs to the Gammaproteobacteria. Strain AK4OH1 T was the first representative of its genus to be isolated for its unique coupling of the oxidation of aromatic acids to the respiration of selenate. It is a versatile heterotroph and can use a variety of carbon compounds, but can also grow lithoautotrophically under hypoxic and anaerobic conditions. Furthermore, the draft genome comprises 4,588,530 bpmore » and 4276 predicted protein-coding genes including genes for the anaerobic degradation of 4-hydroxybenzoate and benzoate. We report the main features of the genome of S. selenatireducens strain AK4OH1 T.« less

  16. Production, crystallization and X-ray characterization of chemically glycosylated hen egg-white lysozyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Jaramillo, F. J., E-mail: javier@lec.ugr.es; Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, E-18071; Pérez-Banderas, F.

    The feasibility of glycosylation post-purification has been demonstrated by introducing glucose into the model protein lysozyme via a novel reaction that is compatible with biological samples. The crystallization of glycoproteins is one of the challenges to be confronted by the crystallographic community in the frame of what is known as glycobiology. The state of the art for the crystallization of glycoproteins is not promising and removal of the carbohydrate chains is generally suggested since they are flexible and a source of heterogeneity. In this paper, the feasibility of introducing glucose into the model protein hen egg-white lysozyme via a post-purificationmore » glycosylation reaction that may turn any protein into a model glycoprotein whose carbohydrate fraction can be manipulated is demonstrated.« less

  17. Association of a NOD2 Gene Polymorphism and T-Helper 17 Cells With Presumed Ocular Toxoplasmosis

    PubMed Central

    Dutra, Míriam S.; Béla, Samantha R.; Peixoto-Rangel, Alba L.; Fakiola, Michaela; Cruz, Ariane G.; Gazzinelli, Andrea; Quites, Humberto F.; Bahia-Oliveira, Lilian M. G.; Peixe, Ricardo G.; Campos, Wesley R.; Higino-Rocha, Anna C.; Miller, Nancy E.; Blackwell, Jenefer M.; Antonelli, Lis R.; Gazzinelli, Ricardo T.

    2013-01-01

    Retinochoroiditis manifests in patients infected with Toxoplasma gondii. Here, we assessed 30 sibships and 89 parent/case trios of presumed ocular toxoplasmosis (POT) to evaluate associations with polymorphisms in the NOD2 gene. Three haplotype-tagging single-nucleotide polymorphisms (tag-SNPs) within the NOD2 gene were genotyped. The family-based association test showed that the tag-SNP rs3135499 is associated with retinochoroiditis (P = .039). We then characterized the cellular immune response of 59 cases of POT and 4 cases of active ocular toxoplasmosis (AOT). We found no differences in levels of interferon γ (IFN-γ) and interleukin 2 produced by T-helper 1 cells when comparing patients with AOT or POT to asymptomatic individuals. Unexpectedly, we found an increased interleukin 17A (IL-17A) production in patients with POT or OAT. In patients with POT or AOT, the main cellular source of IL-17A was CD4+CD45RO+T-bet−IFN-γ− T-helper 17 cells. Altogether, our results suggest that NOD2 influences the production of IL-17A by CD4+ T lymphocytes and might contribute to the development of ocular toxoplasmosis. PMID:23100559

  18. Association of a NOD2 gene polymorphism and T-helper 17 cells with presumed ocular toxoplasmosis.

    PubMed

    Dutra, Míriam S; Béla, Samantha R; Peixoto-Rangel, Alba L; Fakiola, Michaela; Cruz, Ariane G; Gazzinelli, Andrea; Quites, Humberto F; Bahia-Oliveira, Lilian M G; Peixe, Ricardo G; Campos, Wesley R; Higino-Rocha, Anna C; Miller, Nancy E; Blackwell, Jenefer M; Antonelli, Lis R; Gazzinelli, Ricardo T

    2013-01-01

    Retinochoroiditis manifests in patients infected with Toxoplasma gondii. Here, we assessed 30 sibships and 89 parent/case trios of presumed ocular toxoplasmosis (POT) to evaluate associations with polymorphisms in the NOD2 gene. Three haplotype-tagging single-nucleotide polymorphisms (tag-SNPs) within the NOD2 gene were genotyped. The family-based association test showed that the tag-SNP rs3135499 is associated with retinochoroiditis (P = .039). We then characterized the cellular immune response of 59 cases of POT and 4 cases of active ocular toxoplasmosis (AOT). We found no differences in levels of interferon γ (IFN-γ) and interleukin 2 produced by T-helper 1 cells when comparing patients with AOT or POT to asymptomatic individuals. Unexpectedly, we found an increased interleukin 17A (IL-17A) production in patients with POT or OAT. In patients with POT or AOT, the main cellular source of IL-17A was CD4(+)CD45RO(+)T-bet(-)IFN-γ(-) T-helper 17 cells. Altogether, our results suggest that NOD2 influences the production of IL-17A by CD4(+) T lymphocytes and might contribute to the development of ocular toxoplasmosis.

  19. Lysozyme as an alternative to growth promoting antibiotics in swine production

    USDA-ARS?s Scientific Manuscript database

    Lysozyme is a naturally occurring enzyme found in bodily secretions such as tears, saliva, and milk. It functions as an antimicrobial agent by cleaving the peptidoglycan component of bacterial cell walls, which leads to cell death. Antibiotics are also antimicrobials and have been fed at subtherape...

  20. Molecular Dynamics Analysis of Lysozyme Protein in Ethanol-Water Mixed Solvent Environment

    NASA Astrophysics Data System (ADS)

    Ochije, Henry Ikechukwu

    Effect of protein-solvent interaction on the protein structure is widely studied using both experimental and computational techniques. Despite such extensive studies molecular level understanding of proteins and some simple solvents is still not fully understood. This work focuses on detailed molecular dynamics simulations to study of solvent effect on lysozyme protein, using water, alcohol and different concentrations of water-alcohol mixtures as solvents. The lysozyme protein structure in water, alcohol and alcohol-water mixture (0-12% alcohol) was studied using GROMACS molecular dynamics simulation code. Compared to water environment, the lysozome structure showed remarkable changes in solvents with increasing alcohol concentration. In particular, significant changes were observed in the protein secondary structure involving alpha helices. The influence of alcohol on the lysozyme protein was investigated by studying thermodynamic and structural properties. With increasing ethanol concentration we observed a systematic increase in total energy, enthalpy, root mean square deviation (RMSD), and radius of gyration. a polynomial interpolation approach. Using the resulting polynomial equation, we could determine above quantities for any intermediate alcohol percentage. In order to validate this approach, we selected an intermediate ethanol percentage and carried out full MD simulation. The results from MD simulation were in reasonably good agreement with that obtained using polynomial approach. Hence, the polynomial approach based method proposed here eliminates the need for computationally intensive full MD analysis for the concentrations within the range (0-12%) studied in this work.