Sample records for t4 mobe promotes

  1. Viewing and Editing Earth Science Metadata MOBE: Metadata Object Browser and Editor in Java

    NASA Astrophysics Data System (ADS)

    Chase, A.; Helly, J.

    2002-12-01

    Metadata is an important, yet often neglected aspect of successful archival efforts. However, to generate robust, useful metadata is often a time consuming and tedious task. We have been approaching this problem from two directions: first by automating metadata creation, pulling from known sources of data, and in addition, what this (paper/poster?) details, developing friendly software for human interaction with the metadata. MOBE and COBE(Metadata Object Browser and Editor, and Canonical Object Browser and Editor respectively), are Java applications for editing and viewing metadata and digital objects. MOBE has already been designed and deployed, currently being integrated into other areas of the SIOExplorer project. COBE is in the design and development stage, being created with the same considerations in mind as those for MOBE. Metadata creation, viewing, data object creation, and data object viewing, when taken on a small scale are all relatively simple tasks. Computer science however, has an infamous reputation for transforming the simple into complex. As a system scales upwards to become more robust, new features arise and additional functionality is added to the software being written to manage the system. The software that emerges from such an evolution, though powerful, is often complex and difficult to use. With MOBE the focus is on a tool that does a small number of tasks very well. The result has been an application that enables users to manipulate metadata in an intuitive and effective way. This allows for a tool that serves its purpose without introducing additional cognitive load onto the user, an end goal we continue to pursue.

  2. MOBE-ChIP: Probing Cell Type-Specific Binding Through Large-Scale Chromatin Immunoprecipitation.

    PubMed

    Wang, Shenqi; Lau, On Sun

    2018-01-01

    In multicellular organisms, the initiation and maintenance of specific cell types often require the activity of cell type-specific transcriptional regulators. Understanding their roles in gene regulation is crucial but probing their DNA targets in vivo, especially in a genome-wide manner, remains a technical challenge with their limited expression. To improve the sensitivity of chromatin immunoprecipitation (ChIP) for detecting the cell type-specific signals, we have developed the Maximized Objects for Better Enrichment (MOBE)-ChIP, where ChIP is performed at a substantially larger experimental scale and under low background conditions. Here, we describe the procedure in the study of transcription factors in the model plant Arabidopsis. However, with some modifications, the technique should also be implemented in other systems. Besides cell type-specific studies, MOBE-ChIP can also be used as a general strategy to improve ChIP signals.

  3. Mo/Si and Mo/Be multilayer thin films on Zerodur substrates for extreme-ultraviolet lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirkarimi, Paul B.; Bajt, Sasa; Wall, Mark A.

    2000-04-01

    Multilayer-coated Zerodur optics are expected to play a pivotal role in an extreme-ultraviolet (EUV) lithography tool. Zerodur is a multiphase, multicomponent material that is a much more complicated substrate than commonly used single-crystal Si or fused-silica substrates. We investigate the effect of Zerodur substrates on the performance of high-EUV reflectance Mo/Si and Mo/Be multilayer thin films. For Mo/Si the EUV reflectance had a nearly linear dependence on substrate roughness for roughness values of 0.06-0.36 nm rms, and the FWHM of the reflectance curves (spectral bandwidth) was essentially constant over this range. For Mo/Be the EUV reflectance was observed to decreasemore » more steeply than Mo/Si for roughness values greater than approximately 0.2-0.3 nm. Little difference was observed in the EUV reflectivity of multilayer thin films deposited on different substrates as long as the substrate roughness values were similar. (c) 2000 Optical Society of America.« less

  4. Mo/Si and Mo/Be multilayer thin films on Zerodur substrates for extreme-ultraviolet lithography.

    PubMed

    Mirkarimi, P B; Bajt, S; Wall, M A

    2000-04-01

    Multilayer-coated Zerodur optics are expected to play a pivotal role in an extreme-ultraviolet (EUV) lithography tool. Zerodur is a multiphase, multicomponent material that is a much more complicated substrate than commonly used single-crystal Si or fused-silica substrates. We investigate the effect of Zerodur substrates on the performance of high-EUV reflectance Mo/Si and Mo/Be multilayer thin films. For Mo/Si the EUV reflectance had a nearly linear dependence on substrate roughness for roughness values of 0.06-0.36 nm rms, and the FWHM of the reflectance curves (spectral bandwidth) was essentially constant over this range. For Mo/Be the EUV reflectance was observed to decrease more steeply than Mo/Si for roughness values greater than approximately 0.2-0.3 nm. Little difference was observed in the EUV reflectivity of multilayer thin films deposited on different substrates as long as the substrate roughness values were similar.

  5. Cytokines affecting CD4+T regulatory cells in transplant tolerance. III. Interleukin-5 (IL-5) promotes survival of alloantigen-specific CD4+ T regulatory cells.

    PubMed

    Hall, Bruce M; Plain, Karren M; Tran, Giang T; Verma, Nirupama D; Robinson, Catherine M; Nomura, Masaru; Boyd, Rochelle; Hodgkinson, Suzanne J

    2017-08-01

    CD4 + T cells mediate antigen-specific allograft tolerance, but die in culture without activated lymphocyte derived cytokines. Supplementation of the media with cytokine rich supernatant, from ConA activated spleen cells, preserves the capacity of tolerant cells to transfer tolerance and suppress rejection. rIL-2 or rIL-4 alone are insufficient to maintain these cells, however. We observed that activation of naïve CD4 + CD25 + FOXP3 + Treg with alloantigen and the Th2 cytokine rIL-4 induces them to express interleukin-5 specific receptor alpha (IL-5Rα) suggesting that IL-5, a Th2 cytokine that is produced later in the immune response may promote tolerance mediating Treg. This study examined if recombinant IL-5(rIL-5) promoted survival of tolerant CD4 + , especially CD4 + CD25 + T cells. CD4 + T cells, from DA rats tolerant to fully allogeneic PVG heart allografts surviving over 100days without on-going immunosuppression, were cultured with PVG alloantigen and rIL-5. The ability of these cells to adoptively transfer tolerance to specific-donor allograft and suppress normal CD4 + T cell mediated rejection in adoptive DA hosts was examined. Tolerant CD4 + CD25 + T cells' response to rIL-5 and expression of IL-5Rα was also assessed. rIL-5 was sufficient to promote transplant tolerance mediating CD4 + T cells' survival in culture with specific-donor alloantigen. Tolerant CD4 + T cells cultured with rIL-5 retained the capacity to transfer alloantigen-specific tolerance and inhibited naïve CD4 + T cells' capacity to effect specific-donor graft rejection. rIL-5 promoted tolerant CD4 + CD25 + T cells' proliferation in vitro when stimulated with specific-donor but not third-party stimulator cells. Tolerant CD4 + CD25 + T cells expressed IL-5Rα. This study demonstrated that IL-5 promoted the survival of alloantigen-specific CD4 + CD25 + T cells that mediate transplant tolerance. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. CTLA-4 blockade plus adoptive T cell transfer promotes optimal melanoma immunity in mice

    PubMed Central

    Mahvi, David A.; Meyers, Justin V.; Tatar, Andrew J.; Contreras, Amanda; Suresh, M.; Leverson, Glen E.; Sen, Siddhartha; Cho, Clifford S.

    2014-01-01

    Immunotherapeutic approaches to the treatment of advanced melanoma have relied on strategies that augment the responsiveness of endogenous tumor-specific T cell populations (e.g., CTLA-4 blockade-mediated checkpoint inhibition) or introduce exogenously-prepared tumor-specific T cell populations (e.g., adoptive cell transfer). Although both approaches have shown considerable promise, response rates to these therapies remain suboptimal. We hypothesized that a combinatorial approach to immunotherapy using both CTLA-4 blockade and non-lymphodepletional adoptive cell transfer could offer additive therapeutic benefit. C57BL/6 mice were inoculated with syngeneic B16F10 melanoma tumors transfected to express low levels of the lymphocytic choriomeningitis virus peptide GP33 (B16GP33), and treated with no immunotherapy, CTLA-4 blockade, adoptive cell transfer, or combination immunotherapy of CTLA-4 blockade with adoptive cell transfer. Combination immunotherapy resulted in optimal control of B16GP33 melanoma tumors. Combination immunotherapy promoted a stronger local immune response reflected by enhanced tumor-infiltrating lymphocyte populations, as well as a stronger systemic immune responses reflected by more potent tumor antigen-specific T cell activity in splenocytes. In addition, whereas both CTLA-4 blockade and combination immunotherapy were able to promote long-term immunity against B16GP33 tumors, only combination immunotherapy was capable of promoting immunity against parental B16F10 tumors as well. Our findings suggest that a combinatorial approach using CTLA-4 blockade with non-lymphodepletional adoptive cell transfer may promote additive endogenous and exogenous T cell activities that enable greater therapeutic efficacy in the treatment of melanoma. PMID:25658614

  7. Nocardia rubra cell-wall skeleton promotes CD4+ T cell activation and drives Th1 immune response.

    PubMed

    Wang, Guangchuan; Wu, Jie; Miao, Miao; Dou, Heng; Nan, Ning; Shi, Mingsheng; Yu, Guang; Shan, Fengping

    2017-08-01

    Several lines of evidences have shown that Nocardia rubra cell wall skeleton (Nr-CWS) has immunoregulatory and anti-tumor activities. However, there is no information about the effect of Nr-CWS on CD4 + T cells. The aim of this study was to explore the effect of Nr-CWS on the phenotype and function of CD4 + T cells. Our results of in vitro experiments showed that Nr-CWS could significantly up-regulate the expression of CD69 and CD25 on CD4 + T cells, promote the proliferation of CD4 + T cells, increase the production of IFN-γ, TNF-α and IL-2 in the supernatants, but has no significant effect on the apoptosis and death of CD4 + T cells. Results of in vivo experiments showed that Nr-CWS could promote the proliferation of CD4 + T cells, and increase the production of IL-2, IFN-γ and TNF-α (Th1 type cytokines). These data suggest that Nr-CWS can enhance the activation of CD4 + T cells, promote the proliferation of CD4 + T cells and the differentiation of CD4 + T cells to Th1 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Peng-Yeh; Tsai, Chong-Bin; Department of Ophthalmology, Chiayi Christian Hospital, Chiayi 600, Taiwan, ROC

    2013-01-18

    Highlights: ► Notch4IC modulates the ERK pathway and cell cycle to promote 3T3-L1 proliferation. ► Notch4IC facilitates 3T3-L1 differentiation by up-regulating proadipogenic genes. ► Notch4IC promotes proliferation during the early stage of 3T3-L1 adipogenesis. ► Notch4IC enhances differentiation during subsequent stages of 3T3-L1 adipogenesis. -- Abstract: Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCRmore » analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.« less

  9. Chronic exposure to trichloroethylene increases DNA methylation of the Ifng promoter in CD4+ T cells.

    PubMed

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Li, Jingyun; Cooney, Craig A

    2016-10-17

    CD4 + T cells in female MRL+/+ mice exposed to solvent and water pollutant trichloroethylene (TCE) skew toward effector/memory CD4 + T cells, and demonstrate seemingly non-monotonic alterations in IFN-γ production. In the current study we examined the mechanism for this immunotoxicity using effector/memory and naïve CD4 + T cells isolated every 6 weeks during a 40 week exposure to TCE (0.5mg/ml in drinking water). A time-dependent effect of TCE exposure on both Ifng gene expression and IFN-γ protein production was observed in effector/memory CD4 + T cells, with an increase after 22 weeks of exposure and a decrease after 40 weeks of exposure. No such effect of TCE was observed in naïve CD4 + T cells. A cumulative increase in DNA methylation in the CpG sites of the promoter of the Ifng gene was observed in effector/memory, but not naïve, CD4 + T cells over time. Also unique to the Ifng promoter was an increase in methylation variance in effector/memory compared to naïve CD4 + T cells. Taken together, the CpG sites of the Ifng promoter in effector/memory CD4 + T cells were especially sensitive to the effects of TCE exposure, which may help explain the regulatory effect of the chemical on this gene. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. A new way of telling earthquake stories: MOBEE - the MOBile Earthquake Exhibition

    NASA Astrophysics Data System (ADS)

    Tataru, Dragos; Toma-Danila, Dragos; Nastase, Eduard

    2016-04-01

    In the last decades, the demand and acknowledged importance of science outreach, in general and geophysics in particular, has grown, as demonstrated by many international and national projects and other activities performed by research institutes. The National Institute for Earth Physics (NIEP) from Romania is the leading national institution on earthquake monitoring and research, having at the same time a declared focus on informing and educating a wide audience about geosciences and especially seismology. This is more than welcome, since Romania is a very active country from a seismological point of view, but not too reactive when it comes to diminishing the possible effect of a major earthquake. Over the last few decades, the country has experienced several major earthquakes which have claimed thousands of lives and millions in property damage (1940; 1977; 1986 and 1990 Vrancea earthquakes). In this context, during a partnership started in 2014 together with the National Art University and Siveco IT company, a group of researchers from NIEP initiated the MOBile Earthquake Exhibition (MOBEE) project. The main goal was to design a portable museum to bring on the road educational activities focused on seismology, seismic hazard and Earth science. The exhibition is mainly focused on school students of all ages as it explains the main topics of geophysics through a unique combination of posters, digital animations and apps, large markets and exciting hand-on experiments, 3D printed models and posters. This project is singular in Romania and aims to transmit properly reviewed actual information, regarding the definition of earthquakes, the way natural hazards can affect people, buildings and the environment and the measures to be taken for prevent an aftermath. Many of the presented concepts can be used by teachers as a complementary way of demonstrating physics facts and concepts and explaining processes that shape the dynamic Earth features. It also involves

  11. Interleukin-10 from CD4+ follicular regulatory T cells promotes the germinal center response.

    PubMed

    Laidlaw, Brian J; Lu, Yisi; Amezquita, Robert A; Weinstein, Jason S; Vander Heiden, Jason A; Gupta, Namita T; Kleinstein, Steven H; Kaech, Susan M; Craft, Joe

    2017-10-20

    CD4 + follicular regulatory T (T fr ) cells suppress B cell responses through modulation of follicular helper T (T fh ) cells and germinal center (GC) development. We found that T fr cells can also promote the GC response through provision of interleukin-10 (IL-10) after acute infection with lymphocytic choriomeningitis virus (LCMV). Sensing of IL-10 by B cells was necessary for optimal development of the GC response. GC B cells formed in the absence of T reg cell-derived IL-10 displayed an altered dark zone state and decreased expression of the transcription factor Forkhead box protein 1 (FOXO1). IL-10 promoted nuclear translocation of FOXO1 in activated B cells. These data indicate that T fr cells play a multifaceted role in the fine-tuning of the GC response and identify IL-10 as an important mediator by which T fr cells support the GC reaction. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Vpr Promotes Macrophage-Dependent HIV-1 Infection of CD4+ T Lymphocytes

    PubMed Central

    Collins, David R.; Lubow, Jay; Lukic, Zana; Mashiba, Michael; Collins, Kathleen L.

    2015-01-01

    Vpr is a conserved primate lentiviral protein that promotes infection of T lymphocytes in vivo by an unknown mechanism. Here we demonstrate that Vpr and its cellular co-factor, DCAF1, are necessary for efficient cell-to-cell spread of HIV-1 from macrophages to CD4+ T lymphocytes when there is inadequate cell-free virus to support direct T lymphocyte infection. Remarkably, Vpr functioned to counteract a macrophage-specific intrinsic antiviral pathway that targeted Env-containing virions to LAMP1+ lysosomal compartments. This restriction of Env also impaired virological synapses formed through interactions between HIV-1 Env on infected macrophages and CD4 on T lymphocytes. Treatment of infected macrophages with exogenous interferon-alpha induced virion degradation and blocked synapse formation, overcoming the effects of Vpr. These results provide a mechanism that helps explain the in vivo requirement for Vpr and suggests that a macrophage-dependent stage of HIV-1 infection drives the evolutionary conservation of Vpr. PMID:26186441

  13. Gut-derived lipopolysaccharide promotes T-cell-mediated hepatitis in mice through Toll-like receptor 4.

    PubMed

    Lin, Yan; Yu, Le-Xing; Yan, He-Xin; Yang, Wen; Tang, Liang; Zhang, Hui-Lu; Liu, Qiong; Zou, Shan-Shan; He, Ya-Qin; Wang, Chao; Wu, Meng-Chao; Wang, Hong-Yang

    2012-09-01

    Robust clinical and epidemiologic data support the role of inflammation as a key player in hepatocellular carcinoma (HCC) development. Our previous data showed that gut-derived lipopolysaccharide (LPS) promote HCC development by activating Toll-like receptor 4 (TLR4) expressed on myeloid-derived cells. However, the effects of gut-derived LPS on other types of liver injury models are yet to be studied. The purpose of this study was to determine the importance of gut-derived LPS and TLR4 signaling in a T-cell-mediated hepatitis-Con A-induced hepatitis model, which mimic the viral hepatitis. Reduction of endotoxin using antibiotics regimen or genetic ablation of TLR4 in mice significantly alleviate Con A-induced liver injury by inhibiting the infiltration of T lymphocytes into the liver and the activation of CD4(+) T lymphocytes as well as the production of T helper 1 cytokines; in contrast, exogenous LPS can promote Con A-induced hepatitis and CD4(+) T cells activation in vivo and in vitro. Reconstitution of TLR4-expressing myeloid cells in TLR4-deficient mice restored Con A-induced liver injury and inflammation, indicating the major cell target of LPS. In addition, TLR4 may positively regulate the target hepatocellular apoptosis via the perforin/granzyme B pathway. These data suggest that gut-derived LPS and TLR4 play important positive roles in Con A-induced hepatitis and modulation of the gut microbiotia may represent a new avenue for therapeutic intervention to treat acute hepatitis induced by hepatitis virus infection, thus to prevent hepatocellular carcinoma.

  14. IL-5 promotes induction of antigen-specific CD4+CD25+ T regulatory cells that suppress autoimmunity.

    PubMed

    Tran, Giang T; Hodgkinson, Suzanne J; Carter, Nicole M; Verma, Nirupama D; Plain, Karren M; Boyd, Rochelle; Robinson, Catherine M; Nomura, Masaru; Killingsworth, Murray; Hall, Bruce M

    2012-05-10

    Immune responses to foreign and self-Ags can be controlled by regulatory T cells (Tregs) expressing CD4 and IL-2Rα chain (CD25). Defects in Tregs lead to autoimmunity, whereas induction of Ag-specific CD4+CD25+ Tregs restores tolerance. Ag-specific CD4+CD25+ FOXP3+Tregs activated by the T helper type 2 (Th2) cytokine, IL-4, and specific alloantigen promote allograft tolerance. These Tregs expressed the specific IL-5Rα and in the presence of IL-5 proliferate to specific but not third-party Ag. These findings suggest that recombinant IL-5 (rIL-5) therapy may promote Ag-specific Tregs to mediate tolerance. This study showed normal CD4+CD25+ Tregs cultured with IL-4 and an autoantigen expressed Il-5rα. Treatment of experimental autoimmune neuritis with rIL-5 markedly reduced clinical paralysis, weight loss, demyelination, and infiltration of CD4+ (Th1 and Th17) CD8+ T cells and macrophages in nerves. Clinical improvement was associated with expansion of CD4+CD25+FOXP3+ Tregs that expressed Il-5rα and proliferated only to specific autoantigen that was enhanced by rIL-5. Depletion of CD25+ Tregs or blocking of IL-4 abolished the benefits of rIL-5. Thus, rIL-5 promoted Ag-specific Tregs, activated by autoantigen and IL-4, to control autoimmunity. These findings may explain how Th2 responses, especially to parasitic infestation, induce immune tolerance. rIL-5 therapy may be able to induce Ag-specific tolerance in autoimmunity.

  15. Lung dendritic cells imprint T cell lung homing and promote lung immunity through the chemokine receptor CCR4

    PubMed Central

    Strassner, James P.

    2013-01-01

    T cell trafficking into the lung is critical for lung immunity, but the mechanisms that mediate T cell lung homing are not well understood. Here, we show that lung dendritic cells (DCs) imprint T cell lung homing, as lung DC–activated T cells traffic more efficiently into the lung in response to inhaled antigen and at homeostasis compared with T cells activated by DCs from other tissues. Consequently, lung DC–imprinted T cells protect against influenza more effectively than do gut and skin DC–imprinted T cells. Lung DCs imprint the expression of CCR4 on T cells, and CCR4 contributes to T cell lung imprinting. Lung DC–activated, CCR4-deficient T cells fail to traffic into the lung as efficiently and to protect against influenza as effectively as lung DC–activated, CCR4-sufficient T cells. Thus, lung DCs imprint T cell lung homing and promote lung immunity in part through CCR4. PMID:23960189

  16. IFN-γ promotes transendothelial migration of CD4+ T cells across the blood-brain barrier.

    PubMed

    Sonar, Sandip Ashok; Shaikh, Shagufta; Joshi, Nupura; Atre, Ashwini N; Lal, Girdhari

    2017-10-01

    Transendothelial migration (TEM) of Th1 and Th17 cells across the blood-brain barrier (BBB) has a critical role in the development of experimental autoimmune encephalomyelitis (EAE). How cytokines produced by inflammatory Th1 and Th17 cells damage the endothelial BBB and promote transendothelial migration of immune cells into the central nervous system (CNS) during autoimmunity is not understood. We therefore investigated the effect of various cytokines on brain endothelial cells. Among the various cytokines tested, such as Th1 (IFN-γ, IL-1α, IL-1β, TNF-α, IL-12), Th2 (IL-3, IL-4, IL-6 and IL-13), Th17 (IL-17A, IL-17F, IL-21, IL-22, IL-23, GM-CSF) and Treg-specific cytokines (IL-10 and TGF-β), IFN-γ predominantly showed increased expression of ICAM-1, VCAM-1, MAdCAM-1, H2-K b and I-A b molecules on brain endothelial cells. Furthermore, IFN-γ induced transendothelial migration of CD4 + T cells from the apical (luminal side) to the basal side (abluminal side) of the endothelial monolayer to chemokine CCL21 in a STAT-1-dependent manner. IFN-γ also favored the transcellular route of TEM of CD4 + T cells. Multicolor immunofluorescence and confocal microscopic analysis showed that IFN-γ induced relocalization of ICAM-1, PECAM-1, ZO-1 and VE-cadherin in the endothelial cells, which affected the migration of CD4 + T cells. These findings reveal that the IFN-γ produced during inflammation could contribute towards disrupting the BBB and promoting TEM of CD4 + T cells. Our findings also indicate that strategies that interfere with the activation of CNS endothelial cells may help in controlling neuroinflammation and autoimmunity.

  17. CD4+ Foxp3+ T cells promote aberrant immunoglobulin G production and maintain CD8+ T-cell suppression during chronic liver disease.

    PubMed

    Tedesco, Dana; Thapa, Manoj; Gumber, Sanjeev; Elrod, Elizabeth J; Rahman, Khalidur; Ibegbu, Chris C; Magliocca, Joseph F; Adams, Andrew B; Anania, Frank; Grakoui, Arash

    2017-02-01

    Persistent hepatotropic viral infections are a common etiologic agent of chronic liver disease. Unresolved infection can be attributed to nonfunctional intrahepatic CD8+ T-cell responses. In light of dampened CD8 + T-cell responses, liver disease often manifests systemically as immunoglobulin (Ig)-related syndromes due to aberrant B-cell functions. These two opposing yet coexisting phenomena implicate the potential of altered CD4 + T-cell help. Elevated CD4 + forkhead box P3-positive (Foxp3+) T cells were evident in both human liver disease and a mouse model of chemically induced liver injury despite marked activation and spontaneous IgG production by intrahepatic B cells. While this population suppressed CD8 + T-cell responses, aberrant B-cell activities were maintained due to expression of CD40 ligand on a subset of CD4 + Foxp3+ T cells. In vivo blockade of CD40 ligand attenuated B-cell abnormalities in a mouse model of liver injury. A phenotypically similar population of CD4 + Foxp3+, CD40 ligand-positive T cells was found in diseased livers explanted from patients with chronic hepatitis C infection. This population was absent in nondiseased liver tissues and peripheral blood. Liver disease elicits alterations in the intrahepatic CD4 + T-cell compartment that suppress T-cell immunity while concomitantly promoting aberrant IgG mediated manifestations. (Hepatology 2017;65:661-677). © 2016 by the American Association for the Study of Liver Diseases.

  18. A new effect of IL-4 on human γδ T cells: promoting regulatory Vδ1 T cells via IL-10 production and inhibiting function of Vδ2 T cells.

    PubMed

    Mao, Yujia; Yin, Shanshan; Zhang, Jianmin; Hu, Yu; Huang, Bo; Cui, Lianxian; Kang, Ning; He, Wei

    2016-03-01

    Interleukin 4 (IL-4) has a variety of immune functions, including helper T-cell (Th-cell) differentiation and innate immune-response processes. However, the impact of IL-4 on gamma delta (γδ) T cells remains unclear. In this study, we investigate the effects of IL-4 on the activation and proliferation of γδ T cells and the balance between variable delta 1 (Vδ1) and Vδ2 T cells in humans. The results show that IL-4 inhibits the activation of γδ T cells in the presence of γδ T-cell receptor (TCR) stimulation in a STAT6-dependent manner. IL-4 promoted the growth of activated γδ T cells and increased the levels of Vδ1 T cells, which in turn inhibited Vδ2 T-cell growth via significant IL-10 secretion. Vδ1 T cells secreted significantly less interferon gamma (IFNγ) and more IL-10 relative to Vδ2. Furthermore, Vδ1 T cells showed relatively low levels of Natural Killer Group 2D (NKG2D) expression in the presence of IL-4, suggesting that Vδ1 T cells weaken the γδ T cell-mediated anti-tumor immune response. For the first time, our findings demonstrate a negative regulatory role of IL-4 in γδ T cell-mediated anti-tumor immunity.

  19. IL-10 suppresses Th17 cells and promotes regulatory T cells in the CD4+ T cell population of rheumatoid arthritis patients.

    PubMed

    Heo, Yu-Jung; Joo, Young-Bin; Oh, Hye-Jwa; Park, Mi-Kyung; Heo, Yang-Mi; Cho, Mi-La; Kwok, Seung-Ki; Ju, Ji-Hyeon; Park, Kyung-Su; Cho, Seok Goo; Park, Sung-Hwan; Kim, Ho-Youn; Min, Jun-Ki

    2010-01-04

    Interleukin-17-producing CD4(+) T cells (Th17 cells) are the dominant pathogenic cellular component in autoimmune inflammatory diseases, including autoimmune arthritis. IL-10 promotes the generation of Foxp3(+) regulatory T cells via the IL-10 receptor signal. The objective of this study was to examine whether IL-10, which acts as an anti-inflammatory cytokine, has a suppressive effect on the activation of human Th17 cells. Expression of IL-17 and IL-10 was examined immunohistochemically in tissue obtained from rheumatoid arthritis patients. Human peripheral blood CD4(+) T cells were isolated and cultured under various stimulatory conditions. Th17 cells and regulatory T (Treg) cells were detected by flow cytometry. The gene expression of related cytokines and transcription factors were assessed by ELISA and RT-PCR. IL-17 was overexpressed in rheumatoid arthritis patients. IL-10 treatment significantly decreased the numbers of IL-17-producing and RORc-expressing cells among human CD4(+) T cells that had been activated in vitro by Th17-differentiating conditions in autoimmune arthritis patients. IL-10 induced Foxp3(+) regulatory T cells in the human CD4(+) T cell population. Our results demonstrate that IL-17 is overexpressed in autoimmune disease patients and that IL-10 suppresses IL-17 expression. IL-10 may be useful in the treatment of autoimmune diseases.

  20. Rapamycin Promotes Mouse 4T1 Tumor Metastasis that Can Be Reversed by a Dendritic Cell-Based Vaccine

    PubMed Central

    Lin, Tien-Jen; Liang, Wen-Miin; Hsiao, Pei-Wen; M. S, Pradeep; Wei, Wen-Chi; Lin, Hsin-Ting; Yin, Shu-Yi; Yang, Ning-Sun

    2015-01-01

    Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan’s National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine. PMID:26426423

  1. Endothelial Cell Stimulation Overcomes Restriction and Promotes Productive and Latent HIV-1 Infection of Resting CD4+ T Cells

    PubMed Central

    Baker, Jacob J.; Scott, Geoffrey L.; Davis, Yelena P.; Ho, Yen-Yi; Siliciano, Robert F.

    2013-01-01

    Highly active antiretroviral therapy (HAART) is able to suppress human immunodeficiency virus type 1 (HIV-1) to undetectable levels in the majority of patients, but eradication has not been achieved because latent viral reservoirs persist, particularly in resting CD4+ T lymphocytes. It is generally understood that HIV-1 does not efficiently infect resting CD4+ T cells, and latent infection in those cells may arise when infected CD4+ T lymphoblasts return to resting state. In this study, we found that stimulation by endothelial cells can render resting CD4+ T cells permissible for direct HIV infection, including both productive and latent infection. These stimulated T cells remain largely phenotypically unactivated and show a lower death rate than activated T cells, which promotes the survival of infected cells. The stimulation by endothelial cells does not involve interleukin 7 (IL-7), IL-15, CCL19, or CCL21. Endothelial cells line the lymphatic vessels in the lymphoid tissues and have frequent interactions with T cells in vivo. Our study proposes a new mechanism for infection of resting CD4+ T cells in vivo and a new mechanism for latent infection in resting CD4+ T cells. PMID:23824795

  2. IL-1R and MyD88 signalling in CD4+ T cells promote Th17 immunity and atherosclerosis.

    PubMed

    Engelbertsen, Daniel; Rattik, Sara; Wigren, Maria; Vallejo, Jenifer; Marinkovic, Goran; Schiopu, Alexandru; Björkbacka, Harry; Nilsson, Jan; Bengtsson, Eva

    2018-01-01

    The role of CD4+ T cells in atherosclerosis has been shown to be dependent on cytokine cues that regulate lineage commitment into mature T helper sub-sets. In this study, we tested the roles of IL-1R1 and MyD88 signalling in CD4+ T cells in atherosclerosis. We transferred apoe-/-myd88+/+ or apoe-/-myd88-/- CD4+ T cells to T- and B-cell-deficient rag1-/-apoe-/- mice fed high fat diet. Mice given apoe-/-myd88-/- CD4+ T cells exhibited reduced atherosclerosis compared with mice given apoe-/-myd88+/+ CD4+ T cells. CD4+ T cells from apoe-/-myd88-/- produced less IL-17 but similar levels of IFN-γ. Treatment of human CD4+ T cells with a MyD88 inhibitor inhibited IL-17 secretion in vitro. Transfer of il1r1-/- CD4+ T cells recapitulated the phenotype seen by transfer of myd88-/- CD4+ T cells with reduced lesion development and a reduction in Th17 and IL-17 production compared with wild type CD4+ T cell recipients. Relative collagen content of lesions was reduced in mice receiving il1r1-/- CD4+ T cells. We demonstrate that both IL1R and MyD88 signalling in CD4+ T cells promote Th17 immunity, plaque growth and may regulate plaque collagen levels. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.

  3. Interleukin-21-Producing CD4(+) T Cells Promote Type 2 Immunity to House Dust Mites.

    PubMed

    Coquet, Jonathan M; Schuijs, Martijn J; Smyth, Mark J; Deswarte, Kim; Beyaert, Rudi; Braun, Harald; Boon, Louis; Karlsson Hedestam, Gunilla B; Nutt, Steven L; Hammad, Hamida; Lambrecht, Bart N

    2015-08-18

    Asthma is a T helper 2 (Th2)-cell-mediated disease; however, recent findings implicate Th17 and innate lymphoid cells also in regulating airway inflammation. Herein, we have demonstrated profound interleukin-21 (IL-21) production after house dust mite (HDM)-driven asthma by using T cell receptor (TCR) transgenic mice reactive to Dermatophagoides pteronyssinus 1 and an IL-21GFP reporter mouse. IL-21-producing cells in the mediastinal lymph node (mLN) bore characteristics of T follicular helper (Tfh) cells, whereas IL-21(+) cells in the lung did not express CXCR5 (a chemokine receptor expressed by Tfh cells) and were distinct from effector Th2 or Th17 cells. Il21r(-/-) mice developed reduced type 2 responses and the IL-21 receptor (IL-21R) enhanced Th2 cell function in a cell-intrinsic manner. Finally, administration of recombinant IL-21 and IL-25 synergistically promoted airway eosinophilia primarily via effects on CD4(+) lymphocytes. This highlights an important Th2-cell-amplifying function of IL-21-producing CD4(+) T cells in allergic airway inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Architecture of the bacteriophage T4 activator MotA/promoter DNA interaction during sigma appropriation.

    PubMed

    Hsieh, Meng-Lun; James, Tamara D; Knipling, Leslie; Waddell, M Brett; White, Stephen; Hinton, Deborah M

    2013-09-20

    Gene expression can be regulated through factors that direct RNA polymerase to the correct promoter sequence at the correct time. Bacteriophage T4 controls its development in this way using phage proteins that interact with host RNA polymerase. Using a process called σ appropriation, the T4 co-activator AsiA structurally remodels the σ(70) subunit of host RNA polymerase, while a T4 activator, MotA, engages the C terminus of σ(70) and binds to a DNA promoter element, the MotA box. Structures for the N-terminal (NTD) and C-terminal (CTD) domains of MotA are available, but no structure exists for MotA with or without DNA. We report the first molecular map of the MotA/DNA interaction within the σ-appropriated complex, which we obtained by using the cleaving reagent, iron bromoacetamidobenzyl-EDTA (FeBABE). We conjugated surface-exposed, single cysteines in MotA with FeBABE and performed cleavage reactions in the context of stable transcription complexes. The DNA cleavage sites were analyzed using ICM Molsoft software and three-dimensional physical models of MotA(NTD), MotA(CTD), and the DNA to investigate shape complementarity between the protein and the DNA and to position MotA on the DNA. We found that the unusual "double wing" motif present within MotA(CTD) resides in the major groove of the MotA box. In addition, we have used surface plasmon resonance to show that MotA alone is in a very dynamic equilibrium with the MotA element. Our results demonstrate the utility of fine resolution FeBABE mapping to determine the architecture of protein-DNA complexes that have been recalcitrant to traditional structure analyses.

  5. Epigenetic modification of the PD-1 (Pdcd1) promoter in effector CD4+ T cells tolerized by peptide immunotherapy

    PubMed Central

    McPherson, Rhoanne C; Konkel, Joanne E; Prendergast, Catriona T; Thomson, John P; Ottaviano, Raffaele; Leech, Melanie D; Kay, Oliver; Zandee, Stephanie E J; Sweenie, Claire H; Wraith, David C; Meehan, Richard R; Drake, Amanda J; Anderton, Stephen M

    2014-01-01

    Clinically effective antigen-based immunotherapy must silence antigen-experienced effector T cells (Teff) driving ongoing immune pathology. Using CD4+ autoimmune Teff cells, we demonstrate that peptide immunotherapy (PIT) is strictly dependent upon sustained T cell expression of the co-inhibitory molecule PD-1. We found high levels of 5-hydroxymethylcytosine (5hmC) at the PD-1 (Pdcd1) promoter of non-tolerant T cells. 5hmC was lost in response to PIT, with DNA hypomethylation of the promoter. We identified dynamic changes in expression of the genes encoding the Ten-Eleven-Translocation (TET) proteins that are associated with the oxidative conversion 5-methylcytosine and 5hmC, during cytosine demethylation. We describe a model whereby promoter demethylation requires the co-incident expression of permissive histone modifications at the Pdcd1 promoter together with TET availability. This combination was only seen in tolerant Teff cells following PIT, but not in Teff that transiently express PD-1. Epigenetic changes at the Pdcd1 locus therefore determine the tolerizing potential of TCR-ligation. DOI: http://dx.doi.org/10.7554/eLife.03416.001 PMID:25546306

  6. Regulatory T Cell-Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0244 TITLE: Regulatory T Cell-Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival...2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Regulatory T Cell-Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival...observed effects these particles have on allograft survival. Key Words CTA Composite Tissue Allotransplantation VCA Vascularized Composite

  7. APOC3 promoter polymorphisms C-482T and T-455C are associated with the metabolic syndrome.

    PubMed

    Miller, Michael; Rhyne, Jeffrey; Chen, Hegang; Beach, Valerie; Ericson, Richard; Luthra, Kalpana; Dwivedi, Manjari; Misra, Anoop

    2007-05-01

    Despite the growing epidemic of the metabolic syndrome (MetS), few studies have evaluated genetic polymorphisms associated with the MetS phenotype. One candidate, APOC3, modulates lipid and lipoprotein metabolism and the promoter polymorphisms C-482T/T-455C are associated with loss of insulin downregulation. One hundred twenty two consecutive MetS cases were matched by age, sex and race in a 1:1 case-control design to evaluate the prevalence of common polymorphisms in the following candidate genes: APOC3, APOE, B3AR, FABP2, GNB3, LPL, and PPARalpha and PPARgamma. Compared to controls, MetS subjects exhibited a greater prevalence of APOC3 promoter polymorphisms. Specifically, the frequency of the variant C-482T and T-455C alleles was 70.5 and 81.9% of cases compared to 43.4 and 54.1% in controls, respectively (p <0.0001). Overall, APOC3 promoter variants were associated with a greater likelihood of MetS compared to wild type [C-482T (OR: 4.3; 95% CI: 2.2, 8.6 [p <0.0001]), T-455C (OR: 3.6; 95% CI: 2.0, 6.7 [p <0.0001])]. No material differences were identified between the other genetic variants tested and prevalence of MetS. These data, therefore, suggest that the APOC3 promoter polymorphisms C-482T and T-455C are associated with the MetS.

  8. Kaposi's-sarcoma-associated-herpesvirus-activated dendritic cells promote HIV-1 trans-infection and suppress CD4{sup +} T cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wan; Qin, Yan; Bai, Lei

    2013-06-05

    Infection of Kaposi's sarcoma-associated herpesvirus (KSHV) is commonly occurred in AIDS patients. KSHV and HIV-1 act cooperatively in regulating infection with each other and in human carcinogenesis. Dendritic cells (DCs), as the pivotal cells in host immunity, may be modulated by both viruses, for immunoevasion and dissemination, therefore, the interaction between DCs and each virus has been a prior focus for pathogenesis elucidation. Here, we assessed the potential effect of KSHV on DC–HIV-1 interaction. We found that KSHV stimulation could promote maturation of monocyte-derived DCs (MDDCs) and impaired the ability of MDDCs to drive proliferation of resting CD4{sup +} Tmore » cells, demonstrating the immunosuppression induced by KSHV. More importantly, KSHV-stimulated MDDCs could capture more HIV-1 and efficiently transferred these infectious viruses to Hut/CCR5 T cell line. Our results reveal the novel modulation of DC-mediated HIV-1 dissemination by KSHV, and highlight the importance of studying DC–HIV-1 interaction to elucidate HIV/AIDS pathogenesis. - Highlights: ► KSHV impaired the ability of MDDCs to drive proliferation of resting CD4{sup +} T cells. ► KSHV stimulation matured MDDCs and enhanced HIV-1 endocytosis. ► KSHV stimulated MDDCs increased ICAM-1 expression and tighten contact with T cells. ► KSHV-stimulated MDDCs promoted HIV-1 trans-infection of CD4{sup +} T cells.« less

  9. STAT4 and T-bet control follicular helper T cell development in viral infections.

    PubMed

    Weinstein, Jason S; Laidlaw, Brian J; Lu, Yisi; Wang, Jessica K; Schulz, Vincent P; Li, Ningcheng; Herman, Edward I; Kaech, Susan M; Gallagher, Patrick G; Craft, Joe

    2018-01-02

    Follicular helper T (Tfh) cells promote germinal center (GC) B cell survival and proliferation and guide their differentiation and immunoglobulin isotype switching by delivering contact-dependent and soluble factors, including IL-21, IL-4, IL-9, and IFN-γ. IL-21 and IFN-γ are coexpressed by Tfh cells during viral infections, but transcriptional regulation of these cytokines is not completely understood. In this study, we show that the T helper type 1 cell (Th1 cell) transcriptional regulators T-bet and STAT4 are coexpressed with Bcl6 in Tfh cells after acute viral infection, with a temporal decline in T-bet in the waning response. T-bet is important for Tfh cell production of IFN-γ, but not IL-21, and for a robust GC reaction. STAT4, phosphorylated in Tfh cells upon infection, is required for expression of T-bet and Bcl6 and for IFN-γ and IL-21. These data indicate that T-bet is expressed with Bcl6 in Tfh cells and is required alongside STAT4 to coordinate Tfh cell IL-21 and IFN-γ production and for promotion of the GC response after acute viral challenge. © 2018 Weinstein et al.

  10. APOC3 Promoter Polymorphisms C-482T and T-455C Are Associated with the Metabolic Syndrome1

    PubMed Central

    Miller, Michael; Rhyne, Jeffrey; Chen, Hegang; Beach, Valerie; Ericson, Richard; Luthra, Kalpana; Dwivedi, Manjari; Misra, Anoop

    2007-01-01

    Background Despite the growing epidemic of the metabolic syndrome (MetS), few studies have evaluated genetic polymorphisms associated with the MetS phenotype. One candidate, APOC3, modulates lipid and lipoprotein metabolism and the promoter polymorphisms C-482T/T-455C are associated with loss of insulin downregulation. Methods One hundred twenty two consecutive MetS cases were matched by age, sex and race in a 1:1 case-control design to evaluate the prevalence of common polymorphisms in the following candidate genes: APOC3, APOE, B3AR, FABP2, GNB3, LPL, and PPARα and PPARγ. Results Compared to controls, MetS subjects exhibited a greater prevalence of APOC3 promoter polymorphisms. Specifically, the frequency of the variant C-482T and T-455C alleles was 70.5 and 81.9% of cases compared to 43.4 and 54.1% in controls, respectively ( p <0.0001). Overall, APOC3 promoter variants were associated with a greater likelihood of MetS compared to wild type [C-482T (OR: 4.3; 95% CI: 2.2, 8.6 [p <0.0001]), T-455C (OR: 3.6; 95% CI: 2.0, 6.7 [p <0.0001])]. No material differences were identified between the other genetic variants tested and prevalence of MetS. Conclusions These data, therefore, suggest that the APOC3 promoter polymorphisms C-482T and T-455C are associated with the MetS. PMID:17416293

  11. The microbiome of the built environment and mental health.

    PubMed

    Hoisington, Andrew J; Brenner, Lisa A; Kinney, Kerry A; Postolache, Teodor T; Lowry, Christopher A

    2015-12-17

    The microbiome of the built environment (MoBE) is a relatively new area of study. While some knowledge has been gained regarding impacts of the MoBE on the human microbiome and disease vulnerability, there is little knowledge of the impacts of the MoBE on mental health. Depending on the specific microbial species involved, the transfer of microorganisms from the built environment to occupant's cutaneous or mucosal membranes has the potential to increase or disrupt immunoregulation and/or exaggerate or suppress inflammation. Preclinical evidence highlighting the influence of the microbiota on systemic inflammation supports the assertion that microorganisms, including those originating from the built environment, have the potential to either increase or decrease the risk of inflammation-induced psychiatric conditions and their symptom severity. With advanced understanding of both the ecology of the built environment, and its influence on the human microbiome, it may be possible to develop bioinformed strategies for management of the built environment to promote mental health. Here we present a brief summary of microbiome research in both areas and highlight two interdependencies including the following: (1) effects of the MoBE on the human microbiome and (2) potential opportunities for manipulation of the MoBE in order to improve mental health. In addition, we propose future research directions including strategies for assessment of changes in the microbiome of common areas of built environments shared by multiple human occupants, and associated cohort-level changes in the mental health of those who spend time in the buildings. Overall, our understanding of the fields of both the MoBE and influence of host-associated microorganisms on mental health are advancing at a rapid pace and, if linked, could offer considerable benefit to health and wellness.

  12. HTLV-1 induces a Th1-like state in CD4+CCR4+ T cells

    PubMed Central

    Araya, Natsumi; Sato, Tomoo; Ando, Hitoshi; Tomaru, Utano; Yoshida, Mari; Coler-Reilly, Ariella; Yagishita, Naoko; Yamauchi, Junji; Hasegawa, Atsuhiko; Kannagi, Mari; Hasegawa, Yasuhiro; Takahashi, Katsunori; Kunitomo, Yasuo; Tanaka, Yuetsu; Nakajima, Toshihiro; Nishioka, Kusuki; Utsunomiya, Atae; Jacobson, Steven; Yamano, Yoshihisa

    2014-01-01

    Human T-lymphotropic virus type 1 (HTLV-1) is linked to multiple diseases, including the neuroinflammatory disease HTLV-1–associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T cell leukemia/lymphoma. Evidence suggests that HTLV-1, via the viral protein Tax, exploits CD4+ T cell plasticity and induces transcriptional changes in infected T cells that cause suppressive CD4+CD25+CCR4+ Tregs to lose expression of the transcription factor FOXP3 and produce IFN-γ, thus promoting inflammation. We hypothesized that transformation of HTLV-1–infected CCR4+ T cells into Th1-like cells plays a key role in the pathogenesis of HAM/TSP. Here, using patient cells and cell lines, we demonstrated that Tax, in cooperation with specificity protein 1 (Sp1), boosts expression of the Th1 master regulator T box transcription factor (T-bet) and consequently promotes production of IFN-γ. Evaluation of CSF and spinal cord lesions of HAM/TSP patients revealed the presence of abundant CD4+CCR4+ T cells that coexpressed the Th1 marker CXCR3 and produced T-bet and IFN-γ. Finally, treatment of isolated PBMCs and CNS cells from HAM/TSP patients with an antibody that targets CCR4+ T cells and induces cytotoxicity in these cells reduced both viral load and IFN-γ production, which suggests that targeting CCR4+ T cells may be a viable treatment option for HAM/TSP. PMID:24960164

  13. T4 AsiA blocks DNA recognition by remodeling σ70 region 4

    PubMed Central

    Lambert, Lester J; Wei, Yufeng; Schirf, Virgil; Demeler, Borries; Werner, Milton H

    2004-01-01

    Bacteriophage T4 AsiA is a versatile transcription factor capable of inhibiting host gene expression as an ‘anti-σ′ factor while simultaneously promoting gene-specific expression of T4 middle genes in conjunction with T4 MotA. To accomplish this task, AsiA engages conserved region 4 of Eschericia coli σ70, blocking recognition of most host promoters by sequestering the DNA-binding surface at the AsiA/σ70 interface. The three-dimensional structure of an AsiA/region 4 complex reveals that the C-terminal α helix of region 4 is unstructured, while four other helices adopt a completely different conformation relative to the canonical structure of unbound region 4. That AsiA induces, rather than merely stabilizes, this rearrangement can be realized by comparison to the homologous structures of region 4 solved in a variety of contexts, including the structure of Thermotoga maritima σA region 4 described herein. AsiA simultaneously occupies the surface of region 4 that ordinarily contacts core RNA polymerase (RNAP), suggesting that an AsiA-bound σ70 may also undergo conformational changes in the context of the RNAP holoenzyme. PMID:15257291

  14. Cytokines and the regulation of fungus-specific CD4 T cell differentiation

    PubMed Central

    Espinosa, Vanessa; Rivera, Amariliz

    2011-01-01

    CD4 T cells play important and non-redundant roles in protection against infection with diverse fungi. Distinct CD4 T cell subsets can mediate protection against fungal disease where Th1 and Th17 CD4 T cell subsets have been found to promote fungal clearance and protective immunity against diverse fungal pathogens. The differentiation of naïve CD4 T cells into Th1 or Th17 cells is crucially controlled by their interaction with dendritic cells and instructed by cytokines. IL-12 and IFN-γ promote Th1 differentiation while TGF-β, IL-6, IL-1, IL-21 and IL-23 promote Th17 differentiation and maintenance. The production of these cytokines by DCs is in turn regulated by innate receptors triggered in response to fungal infection. In this review we will discuss the contributions of cytokines found to influence fungus-specific CD4 T cell differentiation and their role in defense against fungal disease. We will also highlight the contributions of innate receptors involved in recognition of fungi and how they shape cytokine secretion and CD4 T cell differentiation. PMID:22133343

  15. Composite conserved promoter-terminator motifs (PeSLs) that mediate modular shuffling in the diverse T4-like myoviruses.

    PubMed

    Comeau, André M; Arbiol, Christine; Krisch, Henry M

    2014-06-19

    The diverse T4-like phages (Tquatrovirinae) infect a wide array of gram-negative bacterial hosts. The genome architecture of these phages is generally well conserved, most of the phylogenetically variable genes being grouped together in a series hyperplastic regions (HPRs) that are interspersed among large blocks of conserved core genes. Recent evidence from a pair of closely related T4-like phages has suggested that small, composite terminator/promoter sequences (promoterearly stem loop [PeSLs]) were implicated in mediating the high levels of genetic plasticity by indels occurring within the HPRs. Here, we present the genome sequence analysis of two T4-like phages, PST (168 kb, 272 open reading frames [ORFs]) and nt-1 (248 kb, 405 ORFs). These two phages were chosen for comparative sequence analysis because, although they are closely related to phages that have been previously sequenced (T4 and KVP40, respectively), they have different host ranges. In each case, one member of the pair infects a bacterial strain that is a human pathogen, whereas the other phage's host is a nonpathogen. Despite belonging to phylogenetically distant branches of the T4-likes, these pairs of phage have diverged from each other in part by a mechanism apparently involving PeSL-mediated recombination. This analysis confirms a role of PeSL sequences in the generation of genomic diversity by serving as a point of genetic exchange between otherwise unrelated sequences within the HPRs. Finally, the palette of divergent genes swapped by PeSL-mediated homologous recombination is discussed in the context of the PeSLs' potentially important role in facilitating phage adaption to new hosts and environments. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. IL-7 promotes long-term in vitro survival of unique long-lived memory subset generated from mucosal effector memory CD4+ T cells in chronic colitis mice.

    PubMed

    Takahara, Masahiro; Nemoto, Yasuhiro; Oshima, Shigeru; Matsuzawa, Yu; Kanai, Takanori; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Yamamoto, Kazuhide; Watanabe, Mamoru

    2013-01-01

    Colitogenic memory CD4(+) T cells are important in the pathogenesis of inflammatory bowel disease (IBD). Although memory stem cells with high survival and self-renewal capacity were recently identified in both mice and humans, it is unclear whether a similar subset is present in chronic colitis mice. We sought to identify and purify a long-lived subset of colitogenic memory CD4(+) T cells, which may be targets for treatment of IBD. A long-lived subset of colitogenic memory CD4(+) T cells was purified using a long-term culture system. The characteristics of these cells were assessed. Interleukin (IL)-7 promoted the in vitro survival for >8 weeks of lamina propria (LP) CD4(+) T cells from colitic SCID mice previously injected with CD4(+)CD45RB(high) T cells. These cells were in a quiescent state and divided a maximum of 5 times in 4 weeks. LP CD4(+) T cells expressed higher levels of Bcl-2, integrin-α4β7, CXCR3 and CD25 after than before culture, as well as secreting high concentrations of IL-2 and low concentrations of IFN-γ and IL-17 in response to intestinal bacterial antigens. LP CD4(+) T cells from colitic mice cultured with IL-7 for 8 weeks induced more severe colitis than LP CD4(+) T cells cultured for 4 weeks. We developed a novel culture system to purify a long-lived, highly pathogenic memory subset from activated LP CD4(+) T cells. IL-7 promoted long-term in vitro survival of this subset in a quiescent state. This subset will be a novel, effective target for the treatment of IBD. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. HTLV-1-induced leukotriene B4 secretion by T cells promotes T cell recruitment and virus propagation

    PubMed Central

    Percher, Florent; Curis, Céline; Pérès, Eléonore; Artesi, Maria; Rosewick, Nicolas; Jeannin, Patricia; Gessain, Antoine; Gout, Olivier; Mahieux, Renaud; Ceccaldi, Pierre-Emmanuel; Van den Broeke, Anne; Duc Dodon, Madeleine; Afonso, Philippe V.

    2017-01-01

    The human T-lymphotropic virus type 1 (HTLV-1) is efficiently transmitted through cellular contacts. While the molecular mechanisms of viral cell-to-cell propagation have been extensively studied in vitro, those facilitating the encounter between infected and target cells remain unknown. In this study, we demonstrate that HTLV-1-infected CD4 T cells secrete a potent chemoattractant, leukotriene B4 (LTB4). LTB4 secretion is dependent on Tax-induced transactivation of the pla2g4c gene, which encodes the cytosolic phospholipase A2 gamma. Inhibition of LTB4 secretion or LTB4 receptor knockdown on target cells reduces T-cell recruitment, cellular contact formation and virus propagation in vitro. Finally, blocking the synthesis of LTB4 in a humanized mouse model of HTLV-1 infection significantly reduces proviral load. This results from a decrease in the number of infected clones while their expansion is not impaired. This study shows the critical role of LTB4 secretion in HTLV-1 transmission both in vitro and in vivo. PMID:28639618

  18. HIV Envelope gp120 Alters T Cell Receptor Mobilization in the Immunological Synapse of Uninfected CD4 T Cells and Augments T Cell Activation

    PubMed Central

    Deng, Jing; Mitsuki, Yu-ya; Shen, Guomiao; Ray, Jocelyn C.; Cicala, Claudia; Arthos, James; Dustin, Michael L.

    2016-01-01

    ABSTRACT HIV is transmitted most efficiently from cell to cell, and productive infection occurs mainly in activated CD4 T cells. It is postulated that HIV exploits immunological synapses formed between CD4 T cells and antigen-presenting cells to facilitate the targeting and infection of activated CD4 T cells. This study sought to evaluate how the presence of the HIV envelope (Env) in the CD4 T cell immunological synapse affects synapse formation and intracellular signaling to impact the downstream T cell activation events. CD4 T cells were applied to supported lipid bilayers that were reconstituted with HIV Env gp120, anti-T cell receptor (anti-TCR) monoclonal antibody, and ICAM-1 to represent the surface of HIV Env-bearing antigen-presenting cells. The results showed that the HIV Env did not disrupt immunological synapse formation. Instead, the HIV Env accumulated with TCR at the center of the synapse, altered the kinetics of TCR recruitment to the synapse and affected synapse morphology over time. The HIV Env also prolonged Lck phosphorylation at the synapse and enhanced TCR-induced CD69 upregulation, interleukin-2 secretion, and proliferation to promote virus infection. These results suggest that HIV uses the immunological synapse as a conduit not only for selective virus transmission to activated CD4 T cells but also for boosting the T cell activation state, thereby increasing its likelihood of undergoing productive replication in targeted CD4 T cells. IMPORTANCE There are about two million new HIV infections every year. A better understanding of how HIV is transmitted to susceptible cells is critical to devise effective strategies to prevent HIV infection. Activated CD4 T cells are preferentially infected by HIV, although how this is accomplished is not fully understood. This study examined whether HIV co-opts the normal T cell activation process through the so-called immunological synapse. We found that the HIV envelope is recruited to the center of the

  19. Id1 expression promotes peripheral CD4{sup +} T cell proliferation and survival upon TCR activation without co-stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chen; Jin, Rong; Wang, Hong-Cheng

    2013-06-21

    Highlights: •Id1 expression enables naïve T cell proliferation without anti-CD28 co-stimulation. •Id1 expression facilitates T cells survival when stimulated with anti-CD3. •Elevation of IL-2 production by Id1 contributes increased proliferation and survival. •Id1 potentiates NF-κB activation by anti-CD3 stimulation. -- Abstract: Although the role of E proteins in the thymocyte development is well documented, much less is known about their function in peripheral T cells. Here we demonstrated that CD4 promoter-driven transgenic expression of Id1, a naturally occurring dominant-negative inhibitor of E proteins, can substitute for the co-stimulatory signal delivered by CD28 to facilitate the proliferation and survival of naïvemore » CD4{sup +} cells upon anti-CD3 stimulation. We next discovered that IL-2 production and NF-κB activity after anti-CD3 stimulation were significantly elevated in Id1-expressing cells, which may be, at least in part, responsible for the augmentation of their proliferation and survival. Taken together, results from this study suggest an important role of E and Id proteins in peripheral T cell activation. The ability of Id proteins to by-pass co-stimulatory signals to enable T cell activation has significant implications in regulating T cell immunity.« less

  20. Inflammatory T helper 17 cells promote depression-like behavior in mice.

    PubMed

    Beurel, Eléonore; Harrington, Laurie E; Jope, Richard S

    2013-04-01

    Recognition of substantial immune-neural interactions is revising dogmas about their insular actions and revealing that immune-neural interactions can substantially impact central nervous system functions. The inflammatory cytokine interleukin-6 promotes susceptibility to depression and drives production of inflammatory T helper 17 (Th17) T cells, raising the hypothesis that in mouse models, Th17 cells promote susceptibility to depression-like behaviors. Behavioral characteristics were measured in male mice administered Th17 cells, CD4(+) cells, or vehicle and in retinoid-related orphan receptor-γT (RORγT)(+/GFP) mice or male mice treated with RORγT inhibitor or anti-interleukin-17A antibodies. Mouse brain Th17 cells were elevated by learned helplessness and chronic restraint stress, two common depression-like models. Th17 cell administration promoted learned helplessness in 89% of mice in a paradigm where no vehicle-treated mice developed learned helplessness, and impaired novelty suppressed feeding and social interaction behaviors. Mice deficient in the RORγT transcription factor necessary for Th17 cell production exhibited resistance to learned helplessness, identifying modulation of RORγT as a potential intervention. Treatment with the RORγT inhibitor SR1001, or anti-interleukin-17A antibodies to abrogate Th17 cell function, reduced Th17-dependent learned helplessness. These findings indicate that Th17 cells are increased in the brain during depression-like states, promote depression-like behaviors in mice, and specifically inhibiting the production or function of Th17 cells reduces vulnerability to depression-like behavior, suggesting antidepressant effects may be attained by targeting Th17 cells. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Nickel Sulfate Promotes IL-17A Producing CD4+ T Cells by an IL-23-Dependent Mechanism Regulated by TLR4 and Jak-STAT Pathways.

    PubMed

    Bechara, Rami; Antonios, Diane; Azouri, Hayat; Pallardy, Marc

    2017-10-01

    Allergic contact dermatitis, caused by nickel, is a delayed-type hypersensitivity reaction, and 14.5% of the general population may be affected in Europe. Among a wide range of cytokines, the IL-12 family has unique structural and immunological characteristics. Whereas IL-12p70 promotes T helper (Th) 1 cell polarization, IL-23 promotes Th17 cell development and both have been isolated from nickel-allergic patients. In this work, we were interested in understanding the mechanism behind nickel-induced Th17 cell development. We showed that nickel induced an early production of IL-23 in human monocyte-derived dendritic cells along with an increase in the expression of il-23p19 and il-12p40 mRNA. However, the production of a significant level of IL-12p70 required an additional signal such as IFN-γ. Moreover, nickel-treated monocyte-derived dendritic cells induced an increase in the percentage of IL-17A + CD4 + T cells, an effect reduced by IL-23 neutralization. We then investigated the molecular mechanism of IL-23 production. Our results showed that toll-like receptor 4, p38 mitogen-activated protein kinase, and NF-κB were involved in IL-23 production induced by nickel. However, Jak-signal transducer and activator of transcription activation seems to maintain the IL-23/IL-12p70 balance by limiting IL-23 production and promoting Th1 polarization. These results indicate that nickel-induced Th17 cell development is dependent on the production of IL-23 by human monocyte-derived dendritic cells via toll-like receptor 4, p38 mitogen-activated protein kinase, NF-κB, and Jak-signal transducer and activator of transcription pathways. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Human Naive T Cells Express Functional CXCL8 and Promote Tumorigenesis.

    PubMed

    Crespo, Joel; Wu, Ke; Li, Wei; Kryczek, Ilona; Maj, Tomasz; Vatan, Linda; Wei, Shuang; Opipari, Anthony W; Zou, Weiping

    2018-05-25

    Naive T cells are thought to be functionally quiescent. In this study, we studied and compared the phenotype, cytokine profile, and potential function of human naive CD4 + T cells in umbilical cord and peripheral blood. We found that naive CD4 + T cells, but not memory T cells, expressed high levels of chemokine CXCL8. CXCL8 + naive T cells were preferentially enriched CD31 + T cells and did not express T cell activation markers or typical Th effector cytokines, including IFN-γ, IL-4, IL-17, and IL-22. In addition, upon activation, naive T cells retained high levels of CXCL8 expression. Furthermore, we showed that naive T cell-derived CXCL8 mediated neutrophil migration in the in vitro migration assay, supported tumor sphere formation, and promoted tumor growth in an in vivo human xenograft model. Thus, human naive T cells are phenotypically and functionally heterogeneous and can carry out active functions in immune responses. Copyright © 2018 by The American Association of Immunologists, Inc.

  3. Cytokines affecting CD4+T regulatory cells in transplant tolerance. II. Interferon gamma (IFN-γ) promotes survival of alloantigen-specific CD4+T regulatory cells.

    PubMed

    Nomura, Masaru; Hodgkinson, Suzanne J; Tran, Giang T; Verma, Nirupama D; Robinson, Catherine; Plain, Karren M; Boyd, Rochelle; Hall, Bruce M

    2017-06-01

    CD4 + T cells that transfer alloantigen-specific transplant tolerance are short lived in culture unless stimulated with specific-donor alloantigen and lymphocyte derived cytokines. Here, we examined if IFN-γ maintained survival of tolerance transferring CD4 + T cells. Alloantigen-specific transplant tolerance was induced in DA rats with heterotopic adult PVG heart allografts by a short course of immunosuppression and these grafts functioned for >100days with no further immunosuppression. In previous studies, we found the CD4 + T cells from tolerant rats that transfer tolerance to an irradiated DA host grafted with a PVG heart, lose their tolerance transferring ability after 3days of culture, either with or without donor alloantigen, and effect rejection of specific-donor grafts. If cultures with specific-donor alloantigen are supplemented by supernatant from ConA activated lymphocytes the tolerance transferring cells survive, suggesting these cells depend on cytokines for their survival. In this study, we found addition of rIFN-γ to MLC with specific-donor alloantigen maintained the capacity of tolerant CD4 + T cells to transfer alloantigen-specific tolerance and their ability to suppress PVG allograft rejection mediated by co-administered naïve CD4 + T cells. IFN-γ suppressed the in vitro proliferation of tolerant CD4 + T cells. Tolerant CD4 + CD25 + T cells did not proliferate in MLC to PVG stimulator cells with no cytokine added, but did when IFN-γ was present. IFN-γ did not alter proliferation of tolerant CD4 + CD25 + T cells to third-party Lewis. Tolerant CD4 + CD25 + T cells' expression of IFN-γ receptor (IFNGR) was maintained in culture when IFN-γ was present. This study suggested that IFN-γ maintained tolerance mediating alloantigen-specific CD4 + CD25 + T cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  4. Regulation of IFN regulatory factor 4 expression in human T cell leukemia virus-I-transformed T cells.

    PubMed

    Sharma, Sonia; Grandvaux, Nathalie; Mamane, Yael; Genin, Pierre; Azimi, Nazli; Waldmann, Thomas; Hiscott, John

    2002-09-15

    IFN regulatory factor (IRF)-4 is a lymphoid/myeloid-restricted member of the IRF transcription factor family that plays an essential role in the homeostasis and function of mature lymphocytes. IRF-4 expression is tightly regulated in resting primary T cells and is transiently induced at the mRNA and protein levels after activation by Ag-mimetic stimuli such as TCR cross-linking or treatment with phorbol ester and calcium ionophore (PMA/ionomycin). However, IRF-4 is constitutively upregulated in human T cell leukemia virus type I (HTLV-I) infected T cells as a direct gene target for the HTLV-I Tax oncoprotein. In this study we demonstrate that chronic IRF-4 expression in HTLV-I-infected T lymphocytes is associated with a leukemic phenotype, and we examine the mechanisms by which continuous production of IRF-4 is achieved in HTLV-I-transformed T cells. IRF-4 expression in HTLV-1-infected cells is driven through activation of the NF-kappaB and NF-AT pathways, resulting in the binding of p50, p65, and c-Rel to the kappaB1 element and p50, c-Rel, and NF-ATp to the CD28RE element within the -617 to -209 region of the IRF-4 promoter. Furthermore, mutation of either the kappaB1 or CD28RE sites blocks Tax-mediated transactivation of the human IRF-4 promoter in T cells. These experiments constitute the first detailed analysis of human IRF-4 transcriptional regulation within the context of HTLV-I infection and transformation of CD4(+) T lymphocytes.

  5. IL-25 promotes the function of CD4+CD25+ T regulatory cells and prolongs skin-graft survival in murine models.

    PubMed

    Tang, Jiayou; Zhou, Xiaohui; Liu, Jie; Meng, Qingshu; Han, Yang; Wang, Zhulin; Fan, Huimin; Liu, Zhongmin

    2015-10-01

    Interleukin (IL)-25, also known as IL-17E, belongs to the IL-17 family of cytokines. Unlike other IL-17 family members, IL-25 promotes Th2-type immune responses, stimulating IL-4, IL-5, and IL-13 production. Here, we employed murine models of skin graft to explore the role of IL-25 in suppression of graft rejection. We found that IL-25 expression is increased during allograft rejection, and allograft rejection was enhanced in IL-25 KO mice. IL-25 KO was associated with down-regulation of Foxp3 expression in CD4+ T cells. Further, while adoptive transfer of WT regulatory T cells (Tregs) protected against allograft rejection, adoptive transfer of IL-25 deficient Tregs failed to protect against allograft rejection. Exogenous IL-25 restored Foxp3 expression and Treg function in vitro. Moreover, IL-25 promoted phosphorylation of NFAT2. Thus, IL-25 may enhance Treg function by up-regulating NFAT2 phosphorylation. Our findings suggest that IL-25 can sustain Foxp3 expression, enhance the suppressive function of Tregs, and prolong skin-graft survival. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Friends not foes: CTLA-4 blockade and mTOR inhibition cooperate during CD8+ T cell priming to promote memory formation and metabolic readiness.

    PubMed

    Pedicord, Virginia A; Cross, Justin R; Montalvo-Ortiz, Welby; Miller, Martin L; Allison, James P

    2015-03-01

    During primary Ag encounter, T cells receive numerous positive and negative signals that control their proliferation, function, and differentiation, but how these signals are integrated to modulate T cell memory has not been fully characterized. In these studies, we demonstrate that combining seemingly opposite signals, CTLA-4 blockade and rapamycin-mediated mammalian target of rapamycin inhibition, during in vivo T cell priming leads to both an increase in the frequency of memory CD8(+) T cells and improved memory responses to tumors and bacterial challenges. This enhanced efficacy corresponds to increased early expansion and memory precursor differentiation of CD8(+) T cells and increased mitochondrial biogenesis and spare respiratory capacity in memory CD8(+) T cells in mice treated with anti-CTLA-4 and rapamycin during immunization. Collectively, these results reveal that mammalian target of rapamycin inhibition cooperates with rather than antagonizes blockade of CTLA-4, promoting unrestrained effector function and proliferation, and an optimal metabolic program for CD8(+) T cell memory. Copyright © 2015 by The American Association of Immunologists, Inc.

  7. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T-lymphocytes

    PubMed Central

    Caruana, Ignazio; Savoldo, Barbara; Hoyos, Valentina; Weber, Gerrit; Liu, Hao; Kim, Eugene S.; Ittmann, Michael M.; Marchetti, Dario; Dotti, Gianpietro

    2015-01-01

    Adoptive transfer of chimeric antigen receptor (CAR)-redirected T lymphocytes (CAR-T cells) has had less striking effects in solid tumors1–3 than in lymphoid malignancies4, 5. Although active tumor-mediated immunosuppression may play a role in limiting efficacy6, functional changes in T lymphocytes following their ex vivo manipulation may also account for cultured CAR-T cells’ reduced ability to penetrate stroma-rich solid tumors. We therefore studied the capacity of human in vitro-cultured CAR-T cells to degrade components of the extracellular matrix (ECM). In contrast to freshly isolated T lymphocytes, we found that in vitro-cultured T lymphocytes lack expression of the enzyme heparanase (HPSE) that degrades heparan sulphate proteoglycans, which are main components of ECM. We found that HPSE mRNA is down regulated in in vitro-expanded T cells, which may be a consequence of p53 binding to the HPSE gene promoter. We therefore engineered CAR-T cells to express HPSE and showed improved capacity to degrade ECM, which promoted tumor T-cell infiltration and antitumor activity. Employing this strategy may enhance the activity of CAR-T cells in individuals with stroma-rich solid tumors. PMID:25849134

  8. Regulation of Id2 expression in EL4 T lymphoma cells overexpressing growth hormone.

    PubMed

    Weigent, Douglas A

    2009-01-01

    In previous studies, we have shown that overexpression of growth hormone (GH) in cells of the immune system upregulates proteins involved in cell growth and protects from apoptosis. Here, we report that overexpression of GH in EL4 T lymphoma cells (GHo) also significantly increased levels of the inhibitor of differentiation-2 (Id2). The increase in Id2 was suggested in both Id2 promoter luciferase assays and by Western analysis for Id2 protein. To identify the regulatory elements that mediate transcriptional activation by GH in the Id2 promoter, promoter deletion analysis was performed. Deletion analysis revealed that transactivation involved a 301-132bp region upstream to the Id2 transcriptional start site. The pattern in the human GHo Jurkat T lymphoma cell line paralleled that found in the mouse GHo EL4 T lymphoma cell line. Significantly less Id2 was detected in the nucleus of GHo EL4 T lymphoma cells compared to vector alone controls. Although serum increased the levels of Id2 in control vector alone cells, no difference was found in the total levels of Id2 in GHo EL4 T lymphoma cells treated with or without serum. The increase in Id2 expression in GHo EL4 T lymphoma cells measured by Id2 promoter luciferase expression and Western blot analysis was blocked by the overexpression of a dominant-negative mutant of STAT5. The results suggest that in EL4 T lymphoma cells overexpressing GH, there is an upregulation of Id2 protein that appears to involve STAT protein activity.

  9. Therapeutic efficacy of improved α-fetoprotein promoter-mediated tBid delivered by folate-PEI600-cyclodextrin nanopolymer vector in hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Bao-guang; Department of Gastrointestinal Surgery, the Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong; Liu, Li-ping

    SNPs in human AFP promoter are associated with serum AFP levels in hepatocellular carcinoma (HCC), suggesting that AFP promoter variants may generate better transcriptional activities while retaining high specificity to AFP-producing cells. We sequenced human AFP promoters, cloned 15 different genotype promoters and tested their reporter activities in AFP-producing and non-producing cells. Among various AFP variant fragments tested, EA4D exhibited the highest reporter activity and thus was selected for the further study. EA4D was fused with tBid and coupled with nano-particle vector (H1) to form pGL3-EA4D-tBid/H1. pGL3-EA4D-tBid/H1 could express a high level of tBid while retain the specificity to AFP-producingmore » cells. In a HCC tumor model, application of pGL3-EA4D-tBid/H1 significantly inhibited the growth of AFP-producing-implanted tumors with minimal side-effects, but had no effect on non-AFP-producing tumors. Furthermore, pGL3-EA4D-tBid/H1 could significantly sensitize HCC cells to sorafenib, an approved anti-HCC agent. Collectively, pGL3-EA4D-tBid/H1, a construct with the AFP promoter EA4D and the novel H1 delivery system, can specifically target and effectively suppress the AFP-producing HCC. This new therapeutic tool shows little toxicity in vitro and in vivo and it should thus be safe for further clinical tests. - Highlights: • The nano-particle vector H1 has advantages in mediating gene therapy construct pGL3-EA4D-tBid for HCC treatment. • pGL3-EA4D-tBid/H1, a construct with the AFP promoter EA4D, can specifically target the AFP-producing HCC. • pGL3-EA4D-tBid/H1effectively suppresses the proliferation and growth of AFP-producing HCC. • This novel pGL3-EA4D-tBid/H1 therapeutic tool shows little toxicity in vitro and in vivo.« less

  10. Isoguanine quartets formed by d(T4isoG4T4): tetraplex identification and stability.

    PubMed Central

    Seela, F; Wei, C; Melenewski, A

    1996-01-01

    The self-aggregation of the oligonucleotide d(T4isoG4T4) (1) is investigated. Based on ion exchange HPLC experiments and CD spectroscopy, a tetrameric structure is identified. This structure was formed in the presence of sodium ions and shows almost the same chromatographic mobility on ion exchange HPLC as d(T4G4T4) (2). The ratio of aggregate versus monomer is temperature dependent and the tetraplex of [d(T4isoG4T4)]4 is more stable than that of [d(T4G4T4)]4. A mixture of d(T4isoG4T4) and d(T4G4T4) forms mixed tetraplexes containing strands of d(T4isoG4T4) and d(T4G4T4). PMID:9016664

  11. Human umbilical cord mesenchymal stem cells increase interleukin-9 production of CD4+ T cells

    PubMed Central

    Yang, Zhou Xin; Chi, Ying; Ji, Yue Ru; Wang, You Wei; Zhang, Jing; Luo, Wei Feng; Li, Li Na; Hu, Cai Dong; Zhuo, Guang Sheng; Wang, Li Fang; Han, Zhi-Bo; Han, Zhong Chao

    2017-01-01

    Mesenchymal stem cells (MSC) are able to differentiate into cells of multiple lineage, and additionally act to modulate the immune response. Interleukin (IL)-9 is primarily produced by cluster of differentiation (CD)4+ T cells to regulate the immune response. The present study aimed to investigate the effect of human umbilical cord derived-MSC (UC-MSC) on IL-9 production of human CD4+ T cells. It was demonstrated that the addition of UC-MSC to the culture of CD4+ T cells significantly enhanced IL-9 production by CD4+ T cells. Transwell experiments suggested that UC-MSC promotion of IL-9 production by CD4+ T cells was dependent on cell-cell contact. Upregulated expression of CD106 was observed in UC-MSC co-cultured with CD4+ T cells, and the addition of a blocking antibody of CD106 significantly impaired the ability of UC-MSC to promote IL-9 production by CD4+ T cells. Therefore, the results of the present study demonstrated that UC-MSC promoted the generation of IL-9 producing cells, which may be mediated, in part by CD106. The findings may act to expand understanding and knowledge of the immune modulatory role of UC-MSC. PMID:29042945

  12. Combination CTLA-4 Blockade and 4-1BB Activation Enhances Tumor Rejection by Increasing T-Cell Infiltration, Proliferation, and Cytokine Production

    PubMed Central

    Curran, Michael A.; Kim, Myoungjoo; Montalvo, Welby; Al-Shamkhani, Aymen; Allison, James P.

    2011-01-01

    Background The co-inhibitory receptor Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) attenuates immune responses and prevent autoimmunity, however, tumors exploit this pathway to evade the host T-cell response. The T-cell co-stimulatory receptor 4-1BB is transiently upregulated on T-cells following activation and increases their proliferation and inflammatory cytokine production when engaged. Antibodies which block CTLA-4 or which activate 4-1BB can promote the rejection of some murine tumors, but fail to cure poorly immunogenic tumors like B16 melanoma as single agents. Methodology/Principal Findings We find that combining αCTLA-4 and α4-1BB antibodies in the context of a Flt3-ligand, but not a GM-CSF, based B16 melanoma vaccine promoted synergistic levels of tumor rejection. 4-1BB activation elicited strong infiltration of CD8+ T-cells into the tumor and drove the proliferation of these cells, while CTLA-4 blockade did the same for CD4+ effector T-cells. Anti-4-1BB also depressed regulatory T-cell infiltration of tumors. 4-1BB activation strongly stimulated inflammatory cytokine production in the vaccine and tumor draining lymph nodes and in the tumor itself. The addition of CTLA-4 blockade further increased IFN-γ production from CD4+ effector T-cells in the vaccine draining node and the tumor. Anti 4-1BB treatment, with or without CTLA-4 blockade, induced approximately 75% of CD8+ and 45% of CD4+ effector T-cells in the tumor to express the killer cell lectin-like receptor G1 (KLRG1). Tumors treated with combination antibody therapy showed 1.7-fold greater infiltration by these KLRG1+CD4+ effector T-cells than did those treated with α4-1BB alone. Conclusions/Significance This study shows that combining T-cell co-inhibitory blockade with αCTLA-4 and active co-stimulation with α4-1BB promotes rejection of B16 melanoma in the context of a suitable vaccine. In addition, we identify KLRG1 as a useful marker for monitoring the anti-tumor immune response elicited by

  13. T helper type 17 cells contribute to anti-tumour immunity and promote the recruitment of T helper type 1 cells to the tumour.

    PubMed

    Nuñez, Sarah; Saez, Juan Jose; Fernandez, Dominique; Flores-Santibañez, Felipe; Alvarez, Karla; Tejon, Gabriela; Ruiz, Paulina; Maldonado, Paula; Hidalgo, Yessia; Manriquez, Valeria; Bono, Maria Rosa; Rosemblatt, Mario; Sauma, Daniela

    2013-05-01

    T helper type 17 (Th17) lymphocytes are found in high frequency in tumour-burdened animals and cancer patients. These lymphocytes, characterized by the production of interleukin-17 and other pro-inflammatory cytokines, have a well-defined role in the development of inflammatory and autoimmune pathologies; however, their function in tumour immunity is less clear. We explored possible opposing anti-tumour and tumour-promoting functions of Th17 cells by evaluating tumour growth and the ability to promote tumour infiltration of myeloid-derived suppressor cells (MDSC), regulatory T cells and CD4(+)  interferon-γ(+) cells in a retinoic acid-like orphan receptor γt (RORγt) -deficient mouse model. A reduced percentage of Th17 cells in the tumour microenvironment in RORγt-deficient mice led to enhanced tumour growth, that could be reverted by adoptive transfer of Th17 cells. Differences in tumour growth were not associated with changes in the accumulation or suppressive function of MDSC and regulatory T cells but were related to a decrease in the proportion of CD4(+) T cells in the tumour. Our results suggest that Th17 cells do not affect the recruitment of immunosuppressive populations but favour the recruitment of effector Th1 cells to the tumour, thereby promoting anti-tumour responses. © 2012 Blackwell Publishing Ltd.

  14. Human in vitro induced T regulatory cells and memory T cells share common demethylation of specific FOXP3 promoter region.

    PubMed

    Bégin, Philippe; Schulze, Janika; Baron, Udo; Olek, Sven; Bauer, Rebecca N; Passerini, Laura; Baccheta, Rosa; Nadeau, Kari C

    2015-01-01

    The FOXP3 gene is the master regulator for T regulatory cells and is under tight DNA methylation control at the Treg specific demethylated region (TSDR) in its first intron. This said, methylation of its promoter region, the significance of which is unknown, has also been associated with various immune-related disease states such as asthma, food allergy, auto-immunity and cancer. Here, we used induced T regulatory cells (iTreg) as a target cell population to identify candidate hypomethylated CpG sites in the FOXP3 gene promoter to design a DNA methylation quantitative assay for this region. Three CpG sites at the promoter region showed clear demethylation pattern associated with high FOXP3 expression after activation in presence of TGFβ and were selected as primary targets to design methylation-dependent RT-PCR primers and probes. We then examined the methylation of this 'inducible-promoter-demethylated-region' (IPDR) in various FOXP3+ T cell subsets. Both naïve and memory thymic-derived Treg cells were found to be fully demethylated at both the IPDR and TSDR. Interestingly, in addition to iTregs, both CD25- and CD25(lo) conventional memory CD4+CD45RA- T cells displayed a high fraction of IPDR demethylated cells in absence of TSDR demethylation. This implies that the fraction of memory T cells should be taken in account when interpreting FOXP3 promoter methylation results from clinical studies. This approach, which is available for testing in clinical samples could have diagnostic and prognostic value in patients with immune or auto-inflammatory diseases.

  15. Plasmid DNA vaccination using skin electroporation promotes poly-functional CD4 T-cell responses.

    PubMed

    Bråve, Andreas; Nyström, Sanna; Roos, Anna-Karin; Applequist, Steven E

    2011-03-01

    Plasmid DNA vaccination using skin electroporation (EP) is a promising method able to elicit robust humoral and CD8(+) T-cell immune responses while limiting invasiveness of delivery. However, there is still only limited data available on the induction of CD4(+) T-cell immunity using this method. Here, we compare the ability of homologous prime/boost DNA vaccinations by skin EP and intramuscular (i.m.) injection to elicit immune responses by cytokine enzyme-linked immunosorbent spot (ELISPOT) assay, as well as study the complexity of CD4(+) T-cell responses to the human immunodeficiency virus antigen Gag, using multiparamater flow cytometry. We find that DNA vaccinations by skin EP and i.m. injection are capable of eliciting both single- and poly-functional vaccine-specific CD4(+) T cells. However, although DNA delivered by skin EP was administered at a five-fold lower dose it elicited significant increases in the magnitude of multiple-cytokine producers compared with i.m. immunization suggesting that the skin EP could provide greater poly-functional T-cell help, a feature associated with successful immune defense against infectious agents.

  16. Galectin-7 promotes proliferation and Th1/2 cells polarization toward Th1 in activated CD4+ T cells by inhibiting The TGFβ/Smad3 pathway.

    PubMed

    Luo, Zhenlong; Ji, Yudong; Tian, Dean; Zhang, Yong; Chang, Sheng; Yang, Chao; Zhou, Hongmin; Chen, Zhonghua Klaus

    2018-06-08

    Galectin-7 (Gal-7) has been associated with cell proliferation and apoptosis. It is known that Gal-7 antagonises TGFβ-mediated effects in hepatocytes by interacting with Smad3. Previously, we have demonstrated that Gal-7 is related to CD4+ T cells responses; nevertheless, its effect and functional mechanism on CD4+ T cells responses remain unclear. The murine CD4+ T cells were respectively cultured with Gal-7, anti-CD3/CD28 mAbs, or with anti-CD3/CD28 mAbs & Gal-7. The effects of Gal-7 on proliferation and the phenotypic changes in CD4+ T cells were assessed by flow cytometry. The cytokines from CD4+ T cells were analysed by quantitative real-time PCR. Subcellular localisation and expression of Smad3 were determined by immunofluorescence staining and Western blot, respectively. Gal-7 enhanced the proliferation of activated CD4+ T cells in a dose- and β-galactoside-dependent manner. Additionally, Gal-7 treatment did not change the ratio of Th2 cells in activated CD4+ T cells, while it increased the ratio of Th1 cells. Gal-7 also induced activated CD4+ T cells to produce a higher level of IFN-γ and TNF-α and a lower level of IL-10. Moreover, Gal-7 treatment significantly accelerated nuclear export of Smad3 in activated CD4+ T cells. These results revealed a novel role of Gal-7 in promoting proliferation and Th1/2 cells polarization toward Th1 in activated CD4+ T cells by inhibiting the TGFβ/Smad3 pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Toll like Receptor 2 engagement on CD4+ T cells promotes TH9 differentiation and function.

    PubMed

    Karim, Ahmad Faisal; Reba, Scott M; Li, Qing; Boom, W Henry; Rojas, Roxana E

    2017-09-01

    We have recently demonstrated that mycobacterial ligands engage Toll like receptor 2 (TLR2) on CD4 + T cells and up-regulate T-cell receptor (TCR) triggered Th1 responses in vitro and in vivo. To better understand the role of T-cell expressed TLR2 on CD4 + T-cell differentiation and function, we conducted a gene expression analysis of murine naïve CD4 + T-cells stimulated in the presence or absence of TLR2 co-stimulation. Unexpectedly, naïve CD4 + T-cells co-stimulated via TLR2 showed a significant up-regulation of Il9 mRNA compared to cells co-stimulated via CD28. Under TH9 differentiation, we observed up-regulation of TH9 differentiation, evidenced by increases in both percent of IL-9 secreting cells and IL-9 in culture supernatants in the presence of TLR2 agonist both in polyclonal and Ag85B cognate peptide specific stimulations. Under non-polarizing conditions, TLR2 engagement on CD4 + T-cells had minimal effect on IL-9 secretion and TH9 differentiation, likely due to a prominent effect of TLR2 signaling on IFN-γ secretion and TH1 differentiation. We also report that, TLR2 signaling in CD4 + T cells increased expression of transcription factors BATF and PU.1, known to positively regulate TH9 differentiation. These results reveal a novel role of T-cell expressed TLR2 in enhancing the differentiation and function of TH9 T cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    PubMed

    Liao, Debbie; Luo, Yunping; Markowitz, Dorothy; Xiang, Rong; Reisfeld, Ralph A

    2009-11-23

    Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer. We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+) T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression. Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  19. Developmental exposure to trichloroethylene promotes CD4{sup +} T cell differentiation and hyperactivity in association with oxidative stress and neurobehavioral deficits in MRL+/+ mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blossom, Sarah J.; Doss, Jason C.; Hennings, Leah J.

    2008-09-15

    The non adult immune system is particularly sensitive to perinatal and early life exposures to environmental toxicants. The common environmental toxicant, trichloroethylene (TCE), was shown to increase CD4+ T cell production of the proinflammatory cytokine IFN-{gamma} following a period of prenatal and lifetime exposure in autoimmune-prone MRL+/+ mice. In the current study, MRL+/+ mice were used to further examine the impact of TCE on the immune system in the thymus and periphery. Since there is considerable cross-talk between the immune system and the brain during development, the potential relationship between TCE and neurobehavioral endpoints were also examined. MRL+/+ mice weremore » exposed to 0.1 mg/ml TCE ({approx} 31 mg/kg/day) via maternal drinking water or direct exposure via the drinking water from gestation day 1 until postnatal day (PD) 42. TCE exposure did not impact gross motor skills but instead significantly altered social behaviors and promoted aggression associated with indicators of oxidative stress in brain tissues in male mice. The immunoregulatory effects of TCE involved a redox-associated promotion of T cell differentiation in the thymus that preceded the production of proinflammatory cytokines, IL-2, TNF-{alpha}, and IFN-{gamma} by mature CD4+ T cells. The results demonstrated that developmental and early life TCE exposure modulated immune function and may have important implications for neurodevelopmental disorders.« less

  20. mTORC1 promotes T-bet phosphorylation to regulate Th1 differentiation

    PubMed Central

    Chornoguz, Olesya; Hagan, Robert S.; Haile, Azeb; Arwood, Matthew L.; Gamper, Christopher J.; Banerjee, Arnob; Powell, Jonathan D.

    2017-01-01

    CD4+ T cells lacking the mTORC1 activator Rheb fail to secrete IFNγ under Th1 polarizing conditions. We hypothesized that this phenotype is due to defects in regulation of the canonical Th1 transcription factor T-bet at the level of protein phosphorylation downstream of mTORC1. To test this hypothesis, we employed targeted mass-spectrometry proteomic analysis – multiple reaction monitoring mass spectrometry (MRM-MS). We used MRM-MS to detect and quantify predicted phospho-peptides derived from T-bet. By analyzing activated murine WT and Rheb deficient CD4+ T cells, as well as murine CD4+ T cells activated in the presence of rapamycin, a pharmacologic inhibitor of mTORC1, we were able to identify 6 T-bet phosphorylation sites. Five of these are novel, and 4 sites are consistently dephosphorylated in both Rheb deficient CD4+ T-cells and T-cells treated with rapamycin, suggesting mTORC1 signaling controls their phosphorylation. Alanine mutagenesis of each of the 6 phosphorylation sites was tested for the ability to impair IFNγ expression. Single phosphorylation site mutants still support induction of IFNγ expression, however simultaneous mutation of 3 of the mTORC1-dependent sites results in significantly reduced IFNγ expression. The reduced activity of the triple mutant T-bet is associated with its failure to recruit chromatin remodeling complexes to the Ifng gene promoter. These results establish a novel mechanism by which mTORC1 regulates Th1 differentiation, through control of T-bet phosphorylation. PMID:28424242

  1. A critical role for transcription factor Smad4 in T cell function independent of transforming growth factor beta receptor signaling

    PubMed Central

    Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A.; Wan, Yisong Y.

    2014-01-01

    Summary Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. While Smad4 was dispensable for T cell generation, homeostasis and effector function, it was essential for T cell proliferation following activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity and anti-tumor immunity. PMID:25577439

  2. Functions of Vγ4 T Cells and Dendritic Epidermal T Cells on Skin Wound Healing

    PubMed Central

    Li, Yashu; Wu, Jun; Luo, Gaoxing; He, Weifeng

    2018-01-01

    Wound healing is a complex and dynamic process that progresses through the distinct phases of hemostasis, inflammation, proliferation, and remodeling. Both inflammation and re-epithelialization, in which skin γδ T cells are heavily involved, are required for efficient skin wound healing. Dendritic epidermal T cells (DETCs), which reside in murine epidermis, are activated to secrete epidermal cell growth factors, such as IGF-1 and KGF-1/2, to promote re-epithelialization after skin injury. Epidermal IL-15 is not only required for DETC homeostasis in the intact epidermis but it also facilitates the activation and IGF-1 production of DETC after skin injury. Further, the epidermal expression of IL-15 and IGF-1 constitutes a feedback regulatory loop to promote wound repair. Dermis-resident Vγ4 T cells infiltrate into the epidermis at the wound edges through the CCR6-CCL20 pathway after skin injury and provide a major source of IL-17A, which enhances the production of IL-1β and IL-23 in the epidermis to form a positive feedback loop for the initiation and amplification of local inflammation at the early stages of wound healing. IL-1β and IL-23 suppress the production of IGF-1 by DETCs and, therefore, impede wound healing. A functional loop may exist among Vγ4 T cells, epidermal cells, and DETCs to regulate wound repair.

  3. Enhanced gastric cancer growth potential of mesenchymal stem cells derived from gastric cancer tissues educated by CD4+ T cells.

    PubMed

    Xu, Rongman; Zhao, Xiangdong; Zhao, Yuanyuan; Chen, Bin; Sun, Li; Xu, Changgen; Shen, Bo; Wang, Mei; Xu, Wenrong; Zhu, Wei

    2018-04-01

    Gastric cancer mesenchymal stem cells (GC-MSCs) can promote the development of tumour growth. The tumour-promoting role of tumour-associated MSCs and T cells has been demonstrated. T cells as the major immune cells may influence and induce a pro-tumour phenotype in MSCs. This study focused on whether CD4 + T cells can affect GC-MSCs to promote gastric cancer growth. CD4 + T cells upregulation of programmed death ligand 1 (PD-L1) expression in GC-MSCs through the phosphorylated signal transducer and activator of transcription (p-STAT3) signalling pathway was confirmed by immunofluorescence, western blotting and RT-PCR. Migration of GC cells was detected by Transwell migration assay, and apoptosis of GC cells was measured by flow cytometry using annexin V/propidium iodide double staining. CD4 + T cell-primed GC-MSCs promoted GC growth in a subcutaneously transplanted tumour model in BALB/c nu/nu mice. Gastric cancer mesenchymal stem cells stimulated by activated CD4 + T cells promoted migration of GC cells and enhanced GC growth potential in BALB/c nu/nu xenografts. PD-L1 upregulation of GC-MSCs stimulated by CD4 + T cells was mediated through the p-STAT3 signalling pathway. CD4 + T cells-primed GC-MSCs have greater GC volume and growth rate-promoting role than GC-MSCs, with cancer cell-intrinsic PD-1/mammalian target of rapamycin (mTOR) signalling activation. This study showed that GC-MSCs are plastic. The immunophenotype of GC-MSCs stimulated by CD4 + T cells has major changes that may influence tumour cell growth. This research was based on the interaction between tumour cells, MSCs and immune cells, providing a new understanding of the development and immunotherapy of GC. © 2017 John Wiley & Sons Ltd.

  4. Investigation of specific interactions between T7 promoter and T7 RNA polymerase by force spectroscopy using atomic force microscope.

    PubMed

    Zhang, Xiaojuan; Yao, Zhixuan; Duan, Yanting; Zhang, Xiaomei; Shi, Jinsong; Xu, Zhenghong

    2018-01-11

    The specific recognition and binding of promoter and RNA polymerase is the first step of transcription initiation in bacteria and largely determines transcription activity. Therefore, direct analysis of the interaction between promoter and RNA polymerase in vitro may be a new strategy for promoter characterization, to avoid interference due to the cell's biophysical condition and other regulatory elements. In the present study, the specific interaction between T7 promoter and T7 RNA polymerase was studied as a model system using force spectroscopy based on atomic force microscope (AFM). The specific interaction between T7 promoter and T7 RNA polymerase was verified by control experiments, and the rupture force in this system was measured as 307.2 ± 6.7 pN. The binding between T7 promoter mutants with various promoter activities and T7 RNA polymerase was analyzed. Interaction information including rupture force, rupture distance and binding percentage were obtained in vitro , and reporter gene expression regulated by these promoters was also measured according to a traditional promoter activity characterization method in vivo Using correlation analysis, it was found that the promoter strength characterized by reporter gene expression was closely correlated with rupture force and the binding percentage by force spectroscopy. These results indicated that the analysis of the interaction between promoter and RNA polymerase using AFM-based force spectroscopy was an effective and valid approach for the quantitative characterization of promoters. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. ApoE -491A/T promoter polymorphism is not an independent risk factor, but associated with the epsilon4 allele in Hungarian Alzheimer's dementia population.

    PubMed

    Juhász, Anna; Palotás, András; Janka, Zoltán; Rimanóczy, Agnes; Palotás, Miklós; Bódi, Nikoletta; Boda, Krisztina; Zana, Marianna; Vincze, Gábor; Kálmán, János

    2005-05-01

    Apolipoprotein E gene (Apo(epsilon)) has three common alleles (epsilon2, epsilon3, and epsilon4), of which epsilon4 has been shown to be associated with an increased risk for Alzheimer's disease (AD). Possible additional genetic factors, like the -491A variant of ApoE promoter may modify the development of AD, independently of the ApoE allele status. The objective of this study was to investigate whether A/T allelic polymorphism at site-491 of the ApoE promoter is associated with AD in a Hungarian population. The genomic DNA isolated from peripheral blood lymphocytes of 52 late-onset AD and 53 control individuals was used as a template for the two examined polymorphisms and PCR assay was applied. The epsilon4 allele was significantly over-represented in the AD group (28%) as compared with the control population (7%). No significant differences have been found between the control and the AD populations regarding the occurrence of the promoter A allele frequencies (control: 77%, AD: 70%). However, the AA genotype was more frequent in the AD group (48%) than in the control (10%) when the presence of epsilon4 allele was also considered. It is unlikely therefore that the -491A variant of the ApoE promoter gene is an independent risk factor in the Hungarian AD population, but a linkage disequilibrium exists between the two examined mutations.

  6. 4,4'-Dichlorodiphenyltrichloroethane (DDT) and 4,4'-dichlorodiphenyldichloroethylene (DDE) promote adipogenesis in 3T3-L1 adipocyte cell culture.

    PubMed

    Kim, Jonggun; Sun, Quancai; Yue, Yiren; Yoon, Kyong Sup; Whang, Kwang-Youn; Marshall Clark, J; Park, Yeonhwa

    2016-07-01

    4,4'-Dichlorodiphenyltrichloroethane (DDT), a chlorinated hydrocarbon insecticide, was extensively used in the 1940s and 1950s. DDT is mainly metabolically converted into 4,4'-dichlorodiphenyldichloroethylene (DDE). Even though most countries banned DDT in the 1970s, due to the highly lipophilic nature and very stable characteristics, DDT and its metabolites are present ubiquitously in the environment, including food. Recently, there are publications on relationships between exposure to insecticides, including DDT and DDE, and weight gain and altered glucose homeostasis. However, there are limited reports regarding DDT or DDE and adipogenesis, thus we investigated effects of DDT and DDE on adipogenesis using 3T3-L1 adipocytes. Treatment of DDT or DDE resulted in increased lipid accumulation accompanied by increased expression of CCAAT/enhancer-binding protein α (C/EBPα), peroxisome-proliferator activated receptor-γ (PPARγ), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), adipose triglyceride lipase, and leptin. Moreover, treatment of DDT or DDE increased protein levels of C/EBPα, PPARγ, AMP-activated protein kinase-α (AMPKα), and ACC, while significant decrease of phosphorylated forms of AMPKα and ACC were observed. These finding suggest that increased lipid accumulation caused by DDT and DDE may mediate AMPKα pathway in 3T3-L1 adipocytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. TRF2 Recruits RTEL1 to Telomeres in S Phase to Promote T-Loop Unwinding

    PubMed Central

    Sarek, Grzegorz; Vannier, Jean-Baptiste; Panier, Stephanie; Petrini, John H.J.; Boulton, Simon J.

    2015-01-01

    Summary The helicase RTEL1 promotes t-loop unwinding and suppresses telomere fragility to maintain the integrity of vertebrate telomeres. An interaction between RTEL1 and PCNA is important to prevent telomere fragility, but how RTEL1 engages with the telomere to promote t-loop unwinding is unclear. Here, we establish that the shelterin protein TRF2 recruits RTEL1 to telomeres in S phase, which is required to prevent catastrophic t-loop processing by structure-specific nucleases. We show that the TRF2-RTEL1 interaction is mediated by a metal-coordinating C4C4 motif in RTEL1, which is compromised by the Hoyeraal-Hreidarsson syndrome (HHS) mutation, RTEL1R1264H. Conversely, we define a TRF2I124D substitution mutation within the TRFH domain of TRF2, which eliminates RTEL1 binding and phenocopies the RTEL1R1264H mutation, giving rise to aberrant t-loop excision, telomere length heterogeneity, and loss of the telomere as a circle. These results implicate TRF2 in the recruitment of RTEL1 to facilitate t-loop disassembly at telomeres in S phase. PMID:25620558

  8. TRF2 recruits RTEL1 to telomeres in S phase to promote t-loop unwinding.

    PubMed

    Sarek, Grzegorz; Vannier, Jean-Baptiste; Panier, Stephanie; Petrini, John H J; Boulton, Simon J

    2015-02-19

    The helicase RTEL1 promotes t-loop unwinding and suppresses telomere fragility to maintain the integrity of vertebrate telomeres. An interaction between RTEL1 and PCNA is important to prevent telomere fragility, but how RTEL1 engages with the telomere to promote t-loop unwinding is unclear. Here, we establish that the shelterin protein TRF2 recruits RTEL1 to telomeres in S phase, which is required to prevent catastrophic t-loop processing by structure-specific nucleases. We show that the TRF2-RTEL1 interaction is mediated by a metal-coordinating C4C4 motif in RTEL1, which is compromised by the Hoyeraal-Hreidarsson syndrome (HHS) mutation, RTEL1(R1264H). Conversely, we define a TRF2(I124D) substitution mutation within the TRFH domain of TRF2, which eliminates RTEL1 binding and phenocopies the RTEL1(R1264H) mutation, giving rise to aberrant t-loop excision, telomere length heterogeneity, and loss of the telomere as a circle. These results implicate TRF2 in the recruitment of RTEL1 to facilitate t-loop disassembly at telomeres in S phase. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Mediator subunit MED1 is a T3-dependent and T3-independent coactivator on the thyrotropin β gene promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Keiji; Oda, Kasumi; Mizuta, Shumpei

    2013-10-11

    Highlights: •MED1 is a bona fide T3-dependent coactivator on TSHB promoter. •Mice with LxxLL-mutant MED1 have attenuated TSHβ mRNA and thyroid hormone levels. •MED1 activates TSHB promoter T3-dependently in cultured cells. •T3-dependent MED1 action is enhanced when SRC1/SRC2 or HDAC2 is downregulated. •MED1 is also a T3-independent GATA2/Pit1 coactivator on TSHB promoter. -- Abstract: The MED1 subunit of the Mediator transcriptional coregulator complex is a nuclear receptor-specific coactivator. A negative feedback mechanism of thyroid-stimulating hormone (TSH, or thyrotropin) expression in the thyrotroph in the presence of triiodothyronine (T3) is employed by liganded thyroid hormone receptor β (TRβ) on the TSHβmore » gene promoter, where conventional histone-modifying coactivators act as corepressors. We now provide evidence that MED1 is a ligand-dependent positive cofactor on this promoter. TSHβ gene transcription was attenuated in MED1 mutant mice in which the nuclear receptor-binding ability of MED1 was specifically disrupted. MED1 stimulated GATA2- and Pit1-mediated TSHβ gene promoter activity in a ligand-independent manner in cultured cells. MED1 also stimulated transcription from the TSHβ gene promoter in a T3-dependent manner. The transcription was further enhanced when the T3-dependent corepressors SRC1, SRC2, and HDAC2 were downregulated. Hence, MED1 is a T3-dependent and -independent coactivator on the TSHβ gene promoter.« less

  10. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition.

    PubMed

    Barber, Daniel L; Mayer-Barber, Katrin D; Feng, Carl G; Sharpe, Arlene H; Sher, Alan

    2011-02-01

    Although CD4 T cells are required for host resistance to Mycobacterium tuberculosis, they may also contribute to pathology. In this study, we examine the role of the inhibitory receptor PD-1 and its ligand PD-L1 during M. tuberculosis infection. After aerosol exposure, PD-1 knockout (KO) mice develop high numbers of M. tuberculosis-specific CD4 T cells but display markedly increased susceptibility to infection. Importantly, we show that CD4 T cells themselves drive the increased bacterial loads and pathology seen in infected PD-1 KO mice, and PD-1 deficiency in CD4 T cells is sufficient to trigger early mortality. PD-L1 KO mice also display enhanced albeit less severe susceptibility, indicating that T cells are regulated by multiple PD ligands during M. tuberculosis infection. M. tuberculosis-specific CD8 T cell responses were normal in PD-1 KO mice, and CD8 T cells only had a minor contribution to the exacerbated disease in the M. tuberculosis-infected PD-1 KO and PD-L1 KO mice. Thus, in the absence of the PD-1 pathway, M. tuberculosis benefits from CD4 T cell responses, and host resistance requires inhibition by PD-1 to prevent T cell-driven exacerbation of the infection.

  11. Synchrotron radiation circular dichroism spectroscopy study of recombinant T β4 folding

    NASA Astrophysics Data System (ADS)

    Huang, Yung-Chin; Chu, Hsueh-Liang; Chen, Peng-Jen; Chang, Chia-Ching

    Thymosin beta 4 (T β4) is a 43-amino acid small peptide, has been demonstrated that it can promote cardiac repair, wound repair, tissue protection, and involve in the proliferation of blood cell precursor stem cells of bone marrow. Moreover, T β4 has been identified as a multifunction intrinsically disordered protein, which is lacking the stable tertiary structure. Owing to the small size and disordered character, the T β4 protein degrades rapidly and the storage condition is critical. Therefore, it is not easy to reveal its folding mechanism of native T β4. However, recombinant T β4 protein (rT β4), which fused with a 5-kDa peptide in its amino-terminal, is stable and possesses identical function of T β4. Therefore, rT β4 can be used to study its folding mechanism. By using over-critical folding process, stable folding intermediates of rT β4 can be obtained. Structure analysis of folding intermediates by synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies indicate that rT β4 is a random coli major protein and its hydrophobic region becomes compact gradually. Moreover, the rT β4 folding is a two state transition. Thermal denaturation analysis indicates that rT β4 lacks stable tertiary structure. These results indicated that rT β4, similar to T β4, is an intrinsically disordered protein. Research is supported by MOST, Taiwan. MOST 103-2112-M-009-011-MY3. Corresponding author: Chia-Ching Chang; ccchang01@faculty.nctu.edu.tw.

  12. HTLV-1 bZIP factor protein targets the Rb/E2F-1 pathway to promote proliferation and apoptosis of primary CD4+ T cells

    PubMed Central

    Kawatsuki, A; Yasunaga, J-i; Mitobe, Y; Green, PL; Matsuoka, M

    2016-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that induces a fatal T-cell malignancy, adult T-cell leukemia (ATL). Among several regulatory/accessory genes in HTLV-1, HTLV-1 bZIP factor (HBZ) is the only viral gene constitutively expressed in infected cells. Our previous study showed that HBZ functions in two different molecular forms, HBZ protein and HBZ RNA. In this study, we show that HBZ protein targets retinoblastoma protein (Rb), which is a critical tumor suppressor in many types of cancers. HBZ protein interacts with the Rb/E2F-1 complex and activates the transcription of E2F-target genes associated with cell cycle progression and apoptosis. Mouse primary CD4+ T cells transduced with HBZ show accelerated G1/S transition and apoptosis, and importantly, T cells from HBZ transgenic (HBZ-Tg) mice also demonstrate enhanced cell proliferation and apoptosis. To evaluate the functions of HBZ protein alone in vivo, we generated a new transgenic mouse strain that expresses HBZ mRNA altered by silent mutations but encoding intact protein. In these mice, the numbers of effector/memory and Foxp3+ T cells were increased, and genes associated with proliferation and apoptosis were upregulated. This study shows that HBZ protein promotes cell proliferation and apoptosis in primary CD4+ T cells through activation of the Rb/E2F pathway, and that HBZ protein also confers onto CD4+ T-cell immunophenotype similar to those of ATL cells, suggesting that HBZ protein has important roles in dysregulation of CD4+ T cells infected with HTLV-1. PMID:26804169

  13. Challenges of T3 and T4 Translational Research

    ERIC Educational Resources Information Center

    Vukotich, Charles J., Jr.

    2016-01-01

    Translational research is a new and important way of thinking about research. It is a major priority of the National Institutes of Health (NIH) in the United States. NIH has created the Clinical and Translational Science Awards to promote this priority. NIH has defined T1 and T2 phases of translational research in the medical field, in order to…

  14. Non-Invasive Radiofrequency Field Treatment of 4T1 Breast Tumors Induces T-cell Dependent Inflammatory Response.

    PubMed

    Newton, Jared M; Flores-Arredondo, Jose H; Suki, Sarah; Ware, Matthew J; Krzykawska-Serda, Martyna; Agha, Mahdi; Law, Justin J; Sikora, Andrew G; Curley, Steven A; Corr, Stuart J

    2018-02-22

    Previous work using non-invasive radiofrequency field treatment (RFT) in cancer has demonstrated its therapeutic potential as it can increase intratumoral blood perfusion, localization of intravenously delivered drugs, and promote a hyperthermic intratumoral state. Despite the well-known immunologic benefits that febrile hyperthermia can induce, an investigation of how RFT could modulate the intra-tumoral immune microenvironment had not been studied. Thus, using an established 4T1 breast cancer model in immune competent mice, we demonstrate that RFT induces a transient, localized, and T-cell dependent intratumoral inflammatory response. More specifically we show that multi- and singlet-dose RFT promote an increase in tumor volume in immune competent Balb/c mice, which does not occur in athymic nude models. Further leukocyte subset analysis at 24, 48, and 120 hours after a single RFT show a rapid increase in tumoral trafficking of CD4+ and CD8+ T-cells 24 hours post-treatment. Additional serum cytokine analysis reveals an increase in numerous pro-inflammatory cytokines and chemokines associated with enhanced T-cell trafficking. Overall, these data demonstrate that non-invasive RFT could be an effective immunomodulatory strategy in solid tumors, especially for enhancing the tumoral trafficking of lymphocytes, which is currently a major hindrance of numerous cancer immunotherapeutic strategies.

  15. T Regulatory Cell Induced Foxp3 Binds the IL2, IFNγ, and TNFα Promoters in Virus-Specific CD8+ T Cells from Feline Immunodeficiency Virus Infected Cats.

    PubMed

    Wang, Yan; Nag, Mukta; Tuohy, Joanne L; De Paris, Kristina; Fogle, Jonathan E

    2018-03-01

    Polyfunctional CD8 + T cells play a critical role in controlling viremia during AIDS lentiviral infections. However, for most HIV-infected individuals, virus-specific CD8 + T cells exhibit loss of polyfunctionality, including loss of IL2, TNFα, and IFNγ. Using the feline immunodeficiency virus (FIV) model for AIDS lentiviral persistence, our laboratory has demonstrated that FIV-activated Treg cells target CD8 + T cells, leading to a reduction in IL2 and IFNγ production. Furthermore, we have demonstrated that Treg cells induce expression of the repressive transcription factor, Foxp3, in CD8 + T cells. Based upon these findings, we asked if Treg-induced Foxp3 could bind to the IL2, TNFα, and IFNγ promoter regions in virus-specific CD8 + T cells. Following coculture with autologous Treg cells, we demonstrated decreased mRNA levels of IL2 and IFNγ at weeks 4 and 8 postinfection and decreased TNFα at week 4 postinfection in virus-specific CD8 + T cells. We also clearly demonstrated Treg cell-induced Foxp3 expression in virus-specific CD8 + T cells at weeks 1, 4, and 8 postinfection. Finally, we documented Foxp3 binding to the IL2, TNFα, and IFNγ promoters at 8 weeks and 6 months postinfection in virus-specific CD8 + T cells following Treg cell coculture. In summary, the results here clearly demonstrate that Foxp3 inhibits IL2, TNFα, and IFNγ transcription by binding to their promoter regions in lentivirus-specific CD8 + T cells. We believe this is the first description of this process during the course of AIDS lentiviral infection.

  16. A critical role for transcription factor Smad4 in T cell function that is independent of transforming growth factor β receptor signaling.

    PubMed

    Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A; Wan, Yisong Y

    2015-01-20

    Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. Although Smad4 was dispensable for T cell generation, homeostasis, and effector function, it was essential for T cell proliferation after activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity, and anti-tumor immunity. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. CD49a promotes T-cell-mediated hepatitis by driving T helper 1 cytokine and interleukin-17 production

    PubMed Central

    Chen, Yonglin; Peng, Hui; Chen, Yongyan; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2014-01-01

    It is becoming increasingly clear that the T-cell-mediated immune response is important in many diseases. In this study, we used concanavalin A (Con A) -induced hepatitis to investigate the role of CD49a in the molecular and cellular mechanism of the T-cell-mediated immune response. We found that CD49a−/− mice had significantly reduced levels of serum alanine aminotransferase and were protected from Con A-induced hepatitis. CD49a deficiency led to decreased production of interferon-γ (IFN-γ) and interleukin-17A (IL-17A) after Con A injection. Furthermore, we found that hepatic CD4+ T cells and invariant natural killer T cells up-regulated CD49a expression, along with enhanced activation after Con A injection, leading to production of inflammatory cytokines by these T cells. Blockade of CD49a in vivo ameliorated Con A-induced hepatitis with reduced production of IFN-γ and IL-17A. Hence, CD49a promoted Con A-induced hepatitis through enhancing inflammatory cytokine production (IFN-γ and IL-17A) by CD4+ T and invariant natural killer T cells. The protective effect of CD49a blockade antibody suggested a new target therapeutic molecule for intervention of T-cell-mediated liver injury. PMID:24164540

  18. Interleukin 17-Producing γδT Cells Promote Hepatic Regeneration in Mice

    PubMed Central

    Rao, Raghavendra; Graffeo, Christopher S.; Gulati, Rishabh; Jamal, Mohsin; Narayan, Suchithra; Zambirinis, Constantinos; Barilla, Rocky; Deutsch, Michael; Greco, Stephanie; Ochi, Atsuo; Tomkötter, Lena; Blobstein, Reuven; Avanzi, Antonina; Tippens, Daniel M.; Gelbstein, Yisroel; Heerden, Eliza Van; Miller, George

    2014-01-01

    Background & Aims Subsets of leukocytes synergize with regenerative growth factors to promote hepatic regeneration. γδT cells are early responders to inflammation-induced injury in a number of contexts. We investigated the role of γδT cells in hepatic regeneration using mice with disruptions in Tcrd (encodes the T cell receptor δ chain) and Clec7a (encodes C-type lectin domain family 7 member a, also known as DECTIN1). Methods We performed partial hepatectomies on wild-type C57BL/6, CD45.1, Tcrd−/−, or Clec7a−/− mice. Cells were isolated from livers of patients and mice via mechanical and enzymatic digestion. γδT cells were purified by fluorescence-activated cell sorting. Results In mice, partial hepatectomy upregulated expression of CCL20 and ligands of Dectin-1, associated with recruitment and activation of γδT cells and their increased production of interleukin (IL)17 family cytokines. Recruited γδT cells induced production of IL6 by antigen-presenting cells and suppressed expression of interferon γ by natural killer T cells, promoting hepatocyte proliferation. Absence of IL17-producing γδT cells or deletion of Dectin-1 prevented development of regenerative phenotypes in subsets of innate immune cells. This slowed liver regeneration and was associated with reduced expression of regenerative growth factors and cell cycle regulators. Conversely, exogenous administration of IL17 family cytokines or Dectin-1 ligands promoted regeneration. More broadly, we found that γδT cells are required for inflammatory responses mediated by IL17 and Dectin-1. Conclusions γδT cells regulate hepatic regeneration by producing IL22 and IL17, which have direct mitogenic effects on hepatocytes and promote a regenerative phenotype in hepatic leukocytes, respectively. Dectin-1 ligation is required for γδT cells to promote hepatic regeneration. PMID:24801349

  19. Transcriptional regulation of latent feline immunodeficiency virus in peripheral CD4+ T-lymphocytes.

    PubMed

    McDonnel, Samantha J; Sparger, Ellen E; Luciw, Paul A; Murphy, Brian G

    2012-05-01

    Feline immunodeficiency virus (FIV), the lentivirus of domestic cats responsible for feline AIDS, establishes a latent infection in peripheral blood CD4+ T-cells approximately eight months after experimental inoculation. In this study, cats experimentally infected with the FIV-C strain in the asymptomatic phase demonstrated an estimated viral load of 1 infected cell per approximately 10(3) CD4+ T-cells, with about 1 copy of viral DNA per cell. Approximately 1 in 10 proviral copies was capable of transcription in the asymptomatic phase. The latent FIV proviral promoter was associated with deacetylated, methylated histones, which is consistent with a condensed chromatin structure. In contrast, the transcriptionally active FIV promoter was associated with histone acetylation and demethylation. In addition, RNA polymerase II appeared to be paused on the latent viral promoter, and short promoter-proximal transcripts were detected. Our findings for the FIV promoter in infected cats are similar to results obtained in studies of human immunodeficiency virus (HIV)-1 latent proviruses in cell culture in vitro studies. Thus, the FIV/cat model may offer insights into in vivo mechanisms of HIV latency and provides a unique opportunity to test novel therapeutic interventions aimed at eradicating latent virus.

  20. Hybrid promoters directed tBid gene expression to breast cancer cells by transcriptional targeting.

    PubMed

    Farokhimanesh, Samila; Rahbarizadeh, Fatemeh; Rasaee, Mohammad J; Kamali, Abbas; Mashkani, Baratali

    2010-01-01

    Developing cancer gene therapy constructs based on transcriptional targeting of genes to cancer cells is a new and promising modality for treatment of cancer. Introducing truncated Bid (tBid), a recently known member of the Bcl-2 family, eradicates cancer cells efficiently. For transcriptional targeting of tBid, two dual-specificity promoters, combining cancer specific core promoters and response modules, were designed. These two core promoter modules contained cancer specific promoters of MUC1 and Survivin genes accompanied by hypoxia-responsive elements and estrogen responsive elements (microenvironment condition of breast cancer cells) which were employed to achieve a higher and more specific level of tBid expression in breast cancer cells. Correlation of the level of tBid expression in normal and cancer cell lines with promoter activity was measured by RT-PCR after treatment with hypoxia and estrogen. The level of tBid expression under control of new hybrid promoters was compared with its expression under control of cytomegalovirus (CMV) promoter as a control. Our data revealed that the level of tBid expression in breast cancer cells were nearly 11 times more than normal cells because of the cancer specific promoters, although tBid expression under control of CMV promoter was almost the same in normal and cancer cell lines. Increased apoptosis was detected in the transfected breast cancer cell lines by the Caspase-3 activity assay. The application of these promoters may prove to have the advantage of tumor selective gene therapy in breast cancer cells and low-potential toxicity for normal tissues.

  1. Novel Therapy for Glioblastoma Multiforme by Restoring LRRC4 in Tumor Cells: LRRC4 Inhibits Tumor-Infitrating Regulatory T Cells by Cytokine and Programmed Cell Death 1-Containing Exosomes

    PubMed Central

    Li, Peiyao; Feng, Jianbo; Liu, Yang; Liu, Qiang; Fan, Li; Liu, Qing; She, Xiaoling; Liu, Changhong; Liu, Tao; Zhao, Chunhua; Wang, Wei; Li, Guiyuan; Wu, Minghua

    2017-01-01

    Glioblastoma multiforme (GBM) is a heterogeneous malignant brain tumor, the pathological incidence of which induces the accumulation of tumor-infiltrating lymphocytes (TILs). As a tumor suppressor gene, LRRC4 is absent in GBM cells. Here, we report that the recovery of LRRC4 in GBM cells inhibited the infiltration of tumor-infiltrating regulatory T cells (Ti-Treg), promoted the expansion of tumor-infiltrating effector T (Ti-Teff) cells and CD4+CCR4+ T cells, and enhanced the chemotaxis of CD4+CCR4+ T cells in the GBM immune microenvironment. LRRC4 was not transferred into TILs from GBM cells through exosomes but mainly exerted its inhibiting function on Ti-Treg cell expansion by directly promoting cytokine secretion. GBM cell-derived exosomes (cytokine-free and programmed cell death 1 containing) also contributed to the modulation of LRRC4 on Ti-Treg, Ti-Teff, and CD4+CCR4+ T cells. In GBM cells, LRRC4 directly bound to phosphoinositide-dependent protein kinase 1 (PDPK1), phosphorylated IKKβser181, facilitated NF-κB activation, and promoted the secretion of interleukin-6 (IL-6), CCL2, and interferon gamma. In addition, HSP90 was required to maintain the interaction between LRRC4 and PDPK1. However, the inhibition of Ti-Treg cell expansion and promotion of CD4+CCR4+ T cell chemotaxis by LRRC4 could be blocked by anti-IL-6 antibody or anti-CCL2 antibody, respectively. miR-101 is a suppressor gene in GBM. Our previous studies have shown that EZH2, EED, and DNMT3A are direct targets of miR-101. Here, we showed that miR-101 reversed the hypermethylation of the LRRC4 promoter and induced the re-expression of LRRC4 in GBM cells by directly targeting EZH2, EED, and DNMT3A. Our results reveal a novel mechanism underlying GBM microenvironment and provide a new therapeutic strategy using re-expression of LRRC4 in GBM cells to create a permissive intratumoral environment. PMID:29312296

  2. Sustained Benefit Lasting One Year from T4 Instead of T3-T4 Sympathectomy for Isolated Axillary Hyperhidrosis

    PubMed Central

    Munia, Marco Antonio S.; Wolosker, Nelson; Kaufmann, Paulo; de Campos, José Ribas Milanes; Puech-Leão, Pedro

    2008-01-01

    INTRODUCTION Level T4 video-assisted thoracoscopic sympathectomy proved superior to T3-T4 treatment for controlling axillary hyperhidrosis at the initial and six-month follow-ups of these patients. OBJECTIVE To compare the results of two levels of sympathectomy (T3-T4 vs. T4) for treating axillary sudoresis over one year of follow-up. METHODS Sixty-four patients with axillary hyperhidrosis were randomized to denervation of T3-T4 or T4 alone and followed prospectively. All patients were examined preoperatively and were followed postoperatively for one year. Axillary hyperhidrosis treatment was evaluated, along with the presence, location, and severity of compensatory hyperhidrosis and self-reported quality of life. RESULTS According to patient reports after one year, all cases of axillary hyperhidrosis were successfully treated by surgery. There were no instances of treatment failure. After six months, compensatory hyperhidrosis was present in 27 patients of the T3-T4 group (87.1%) and in 16 patients of the T4 group (48.5%). After one year, all T3-T4 patients experienced some degree of compensatory hyperhidrosis, compared to only 14 patients in the T4 group (42.4%). In addition, compensatory hyperhidrosis was less severe in the T4 patients (p < 0.01). Quality of life was poor before surgery, and it improved in both groups at six months and one year of follow-up (p = 0.002). There were no cases of mortality, no significant postoperative complications, and no need for conversion to thoracotomy in either group. CONCLUSION Both techniques were effective for treating axillary hyperhidrosis, but the T4 group showed milder compensatory hyperhidrosis and greater patient satisfaction at the one-year follow-up. PMID:19060999

  3. Burn-injury affects gut-associated lymphoid tissues derived CD4+ T cells.

    PubMed

    Fazal, Nadeem; Shelip, Alla; Alzahrani, Alhusain J

    2013-01-01

    After scald burn-injury, the intestinal immune system responds to maintain immune balance. In this regard CD4+T cells in Gut-Associated Lymphoid Tissues (GALT), like mesenteric lymph nodes (MLN) and Peyer's patches (PP) respond to avoid immune suppression following major injury such as burn. Therefore, we hypothesized that the gut CD4+T cells become dysfunctional and turn the immune homeostasis towards depression of CD4+ T cell-mediated adaptive immune responses. In the current study we show down regulation of mucosal CD4+ T cell proliferation, IL-2 production and cell surface marker expression of mucosal CD4+ T cells moving towards suppressive-type. Acute burn-injury lead to up-regulation of regulatory marker (CD25+), down regulation of adhesion (CD62L, CD11a) and homing receptor (CD49d) expression, and up-regulation of negative co-stimulatory (CTLA-4) molecule. Moreover, CD4+CD25+ T cells of intestinal origin showed resistance to spontaneous as well as induced apoptosis that may contribute to suppression of effector CD4+ T cells. Furthermore, gut CD4+CD25+ T cells obtained from burn-injured animals were able to down-regulate naïve CD4+ T cell proliferation following adoptive transfer of burn-injured CD4+CD25+ T cells into sham control animals, without any significant effect on cell surface activation markers. Together, these data demonstrate that the intestinal CD4+ T cells evolve a strategy to promote suppressive CD4+ T cell effector responses, as evidenced by enhanced CD4+CD25+ T cells, up-regulated CTLA-4 expression, reduced IL-2 production, tendency towards diminished apoptosis of suppressive CD4+ T cells, and thus lose their natural ability to regulate immune homeostasis following acute burn-injury and prevent immune paralysis.

  4. Polyfunctional CD4+ T Cells As Targets for Tuberculosis Vaccination

    PubMed Central

    Lewinsohn, Deborah A.; Lewinsohn, David M.; Scriba, Thomas J.

    2017-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of morbidity and mortality worldwide, despite the widespread use of the only licensed vaccine, Bacille Calmette Guerin (BCG). Eradication of TB will require a more effective vaccine, yet evaluation of new vaccine candidates is hampered by lack of defined correlates of protection. Animal and human studies of intracellular pathogens have extensively evaluated polyfunctional CD4+ T cells producing multiple pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-2) as a possible correlate of protection from infection and disease. In this study, we review the published literature that evaluates whether or not BCG and/or novel TB vaccine candidates induce polyfunctional CD4+ T cells and if these T cell responses correlate with vaccine-mediated protection. Ample evidence suggests that BCG and several novel vaccine candidates evaluated in animal models and humans induce polyfunctional CD4+ T cells. However, while a number of studies utilizing the mouse TB model support that polyfunctional CD4+ T cells are associated with vaccine-induced protection, other studies in mouse and human infants demonstrate no correlation between these T cell responses and protection. We conclude that induction of polyfunctional CD4+ T cells is certainly not sufficient and may not even be necessary to mediate protection and suggest that other functional attributes, such as additional effector functions, T cell differentiation state, tissue homing potential, or long-term survival capacity of the T cell may be equally or more important to promote protection. Thus, a correlate of protection for TB vaccine development remains elusive. Future studies should address polyfunctional CD4+ T cells within the context of more comprehensive immunological signatures of protection that include other functions and phenotypes of T cells as well as the full spectrum of immune cells and mediators that participate in the immune

  5. HMG I(Y) interferes with the DNA binding of NF-AT factors and the induction of the interleukin 4 promoter in T cells

    PubMed Central

    Klein-Hessling, Stefan; Schneider, Günter; Heinfling, Annette; Chuvpilo, Sergei; Serfling, Edgar

    1996-01-01

    HMG I(Y) proteins bind to double-stranded A+T oligonucleotides longer than three base pairs. Such motifs form part of numerous NF-AT-binding sites of lymphokine promoters, including the interleukin 4 (IL-4) promoter. NF-AT factors share short homologous peptide sequences in their DNA-binding domain with NF-κB factors and bind to certain NF-κB sites. It has been shown that HMG I(Y) proteins enhance NF-κB binding to the interferon β promoter and virus-mediated interferon β promoter induction. We show that HMG I(Y) proteins exert an opposite effect on the DNA binding of NF-AT factors and the induction of the IL-4 promoter in T lymphocytes. Introduction of mutations into a high-affinity HMG I(Y)-binding site of the IL-4 promoter, which decreased HMG I(Y)-binding to a NF-AT-binding sequence, the Pu-bB (or P) site, distinctly increased the induction of the IL-4 promoter in Jurkat T leukemia cells. High concentrations of HMG I(Y) proteins are able to displace NF-ATp from its binding to the Pu-bB site. High HMG I(Y) concentrations are typical for Jurkat cells and peripheral blood T lymphocytes, whereas El4 T lymphoma cells and certain T helper type 2 cell clones contain relatively low HMG I(Y) concentrations. Our results indicate that HMG I(Y) proteins do not cooperate, but instead compete with NF-AT factors for the binding to DNA even though NF-AT factors share some DNA-binding properties with NF-kB factors. This competition between HMG I(Y) and NF-AT proteins for DNA binding might be due to common contacts with minor groove nucleotides of DNA and may be one mechanism contributing to the selective IL-4 expression in certain T lymphocyte populations, such as T helper type 2 cells. PMID:8986808

  6. B cells and TCR avidity determine distinct functions of CD4+ T cells in retroviral infection1

    PubMed Central

    Ploquin, Mickaël J-Y; Eksmond, Urszula; Kassiotis, George

    2011-01-01

    The T-cell-dependent B-cell response relies on cognate interaction between B cells and CD4+ Th cells. However, the consequences of this interaction for CD4+ T cells are not entirely known. B cells generally promote CD4+ T-cell responses to pathogens, albeit to a variable degree. In contrast, CD4+ T-cell responses to self or tumor antigens are often suppressed by B cells. Here we demonstrated that interaction with B cells dramatically inhibited the function of virus-specific CD4+ T cells in retroviral infection. We have used Friend virus (FV) infection of mice as a model for retroviral infection, in which the behavior of virus-specific CD4+ T cells was monitored according to their TCR avidity. We report that avidity for antigen and interaction with B cells determine distinct aspects of the primary CD4+ T-cell response to FV infection. Virus-specific CD4+ T cells followed exclusive Th1 and T follicular helper (Tfh) differentiation. High avidity for antigen facilitated expansion during priming and enhanced the capacity for IFN-γ and IL-21 production. In contrast, Tfh differentiation was not affected by avidity for antigen. By reducing or preventing B-cell interaction we found that B cells promoted Tfh differentiation, induced programmed death 1 (PD-1) expression and inhibited IFN-γ production by virus-specific CD4+ T cells. Ultimately, B cells protected hosts from CD4+ T-cell-mediated immune pathology, at the detriment of CD4+ T-cell-mediated protective immunity. Our results suggest that B-cell presentation of vaccine antigens could be manipulated to direct the appropriate CD4+ T-cell response. PMID:21841129

  7. Interleukin 2 and interleukin 10 function synergistically to promote CD8+ T cell cytotoxicity, which is suppressed by regulatory T cells in breast cancer.

    PubMed

    Li, Xiaogang; Lu, Ping; Li, Bo; Zhang, Wanfu; Yang, Rong; Chu, Yan; Luo, Kaiyuan

    2017-06-01

    The precise role of interleukin (IL)-10 in breast cancer is not clear. Previous studies suggested a tumor-promoting role of IL-10 in breast cancer, whereas recent discoveries that IL-10 activated and expanded tumor-resident CD8 + T cells challenged the traditional view. Here, we investigated the role of IL-10 in HLA-A2-positive breast cancer patients with Grade III, Stage IIA or IIB in-situ and invasive ductal carcinoma, and compared it with that of IL-2, the canonical CD8 + T cell growth factor. We first observed that breast cancer patients presented higher serum levels of IL-2 and IL-10 than healthy controls. Upon prolonged TCR stimulation, peripheral blood CD8 + T cells from breast cancer patients tended to undergo apoptosis, which could be prevented by the addition of IL-2 and/or IL-10. The cytotoxicity of TCR-activated CD8 + T cells was also enhanced by exogenous IL-2 and/or IL-10. Interestingly, IL-2 and IL-10 demonstrated synergistic effects, since the enhancement in CD8 + T cell function when both cytokines were added was greater than the sum of the improvements mediated by each individual cytokine. IL-10 by itself could not promote the proliferation of CD8 + T cells but could significantly enhance IL-2-mediated promotion of CD8 + T cell proliferation. In addition, the cytotoxicity of tumor-infiltrating CD8 + T cells in breast tumor was elevated when both IL-2 and IL-10 were present but not when either one was absent. This synergistic effect was stopped by CD4 + CD25 + regulatory T cells (Treg), which depleted IL-2 in a cell number-dependent manner. Together, these results demonstrated that IL-2 and IL-10 could work synergistically to improve the survival, proliferation, and cytotoxicity of activated CD8 + T cells, an effect suppressible by CD4 + CD25 + Treg cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hunger-promoting hypothalamic neurons modulate effector and regulatory T-cell responses

    PubMed Central

    Matarese, Giuseppe; Procaccini, Claudio; Menale, Ciro; Kim, Jae Geun; Kim, Jung Dae; Diano, Sabrina; Diano, Nadia; De Rosa, Veronica; Dietrich, Marcelo O.; Horvath, Tamas L.

    2013-01-01

    Whole-body energy metabolism is regulated by the hypothalamus and has an impact on diverse tissue functions. Here we show that selective knockdown of Sirtuin 1 Sirt1 in hypothalamic Agouti-related peptide-expressing neurons, which renders these cells less responsive to cues of low energy availability, significantly promotes CD4+ T-cell activation by increasing production of T helper 1 and 17 proinflammatory cytokines via mediation of the sympathetic nervous system. These phenomena were associated with an impaired thymic generation of forkhead box P3 (FoxP3+) naturally occurring regulatory T cells and their reduced suppressive capacity in the periphery, which resulted in increased delayed-type hypersensitivity responses and autoimmune disease susceptibility in mice. These observations unmask a previously unsuspected role of hypothalamic feeding circuits in the regulation of adaptive immune response. PMID:23530205

  9. A promoter recognition mechanism common to yeast mitochondrial and phage t7 RNA polymerases.

    PubMed

    Nayak, Dhananjaya; Guo, Qing; Sousa, Rui

    2009-05-15

    Yeast mitochondrial (YMt) and phage T7 RNA polymerases (RNAPs) are two divergent representatives of a large family of single subunit RNAPs that are also found in the mitochondria and chloroplasts of higher eukaryotes, mammalian nuclei, and many other bacteriophage. YMt and phage T7 promoters differ greatly in sequence and length, and the YMt RNAP uses an accessory factor for initiation, whereas T7 RNAP does not. We obtain evidence here that, despite these apparent differences, both the YMt and T7 RNAPs utilize a similar promoter recognition loop to bind their respective promoters. Mutations in this element in YMt RNAP specifically disrupt mitochondrial promoter utilization, and experiments with site-specifically tethered chemical nucleases indicate that this element binds the mitochondrial promoter almost identically to how the promoter recognition loop from the phage RNAP binds its promoter. Sequence comparisons reveal that the other members of the single subunit RNAP family display loops of variable sequence and size at a position corresponding to the YMt and T7 RNAP promoter recognition loops. We speculate that these elements may be involved in promoter recognition in most or all of these enzymes and that this element's structure allows it to accommodate significant sequence and length variation to provide a mechanism for rapid evolution of new promoter specificities in this RNAP family.

  10. IL-7 receptor blockade following T cell depletion promotes long-term allograft survival

    PubMed Central

    Mai, Hoa-Le; Boeffard, Françoise; Longis, Julie; Danger, Richard; Martinet, Bernard; Haspot, Fabienne; Vanhove, Bernard; Brouard, Sophie; Soulillou, Jean-Paul

    2014-01-01

    T cell depletion is commonly used in organ transplantation for immunosuppression; however, a restoration of T cell homeostasis following depletion leads to increased memory T cells, which may promote transplant rejection. The cytokine IL-7 is important for controlling lymphopoiesis under both normal and lymphopenic conditions. Here, we investigated whether blocking IL-7 signaling with a mAb that targets IL-7 receptor α (IL-7Rα) alone or following T cell depletion confers an advantage for allograft survival in murine transplant models. We found that IL-7R blockade alone induced indefinite pancreatic islet allograft survival if anti–IL-7R treatment was started 3 weeks before graft. IL-7R blockade following anti-CD4– and anti-CD8–mediated T cell depletion markedly prolonged skin allograft survival. Furthermore, IL-7 inhibition in combination with T cell depletion synergized with either CTLA-4Ig administration or suboptimal doses of tacrolimus to induce long-term skin graft acceptance in this stringent transplant model. Together, these therapies inhibited T cell reconstitution, decreased memory T cell numbers, increased the relative frequency of Tregs, and abrogated both cellular and humoral alloimmune responses. Our data suggest that IL-7R blockade following T cell depletion has potential as a robust, immunosuppressive therapy in transplantation. PMID:24569454

  11. Interleukin 17-producing γδT cells promote hepatic regeneration in mice.

    PubMed

    Rao, Raghavendra; Graffeo, Christopher S; Gulati, Rishabh; Jamal, Mohsin; Narayan, Suchithra; Zambirinis, Constantinos P; Barilla, Rocky; Deutsch, Michael; Greco, Stephanie H; Ochi, Atsuo; Tomkötter, Lena; Blobstein, Reuven; Avanzi, Antonina; Tippens, Daniel M; Gelbstein, Yisroel; Van Heerden, Eliza; Miller, George

    2014-08-01

    Subsets of leukocytes synergize with regenerative growth factors to promote hepatic regeneration. γδT cells are early responders to inflammation-induced injury in a number of contexts. We investigated the role of γδT cells in hepatic regeneration using mice with disruptions in Tcrd (encodes the T-cell receptor δ chain) and Clec7a (encodes C-type lectin domain family 7 member a, also known as DECTIN1). We performed partial hepatectomies on wild-type C57BL/6, CD45.1, Tcrd(-/-), or Clec7a(-/-) mice. Cells were isolated from livers of patients and mice via mechanical and enzymatic digestion. γδT cells were purified by fluorescence-activated cell sorting. In mice, partial hepatectomy up-regulated expression of CCL20 and ligands of Dectin-1, which was associated with recruitment and activation of γδT cells and their increased production of interleukin (IL)-17 family cytokines. Recruited γδT cells induced production of IL-6 by antigen-presenting cells and suppressed expression of interferon gamma by natural killer T cells, promoting hepatocyte proliferation. Absence of IL-17-producing γδT cells or deletion of Dectin-1 prevented development of regenerative phenotypes in subsets of innate immune cells. This slowed liver regeneration and was associated with reduced expression of regenerative growth factors and cell cycle regulators. Conversely, exogenous administration of IL-17 family cytokines or Dectin-1 ligands promoted regeneration. More broadly, we found that γδT cells are required for inflammatory responses mediated by IL-17 and Dectin-1. γδT cells regulate hepatic regeneration by producing IL-22 and IL-17, which have direct mitogenic effects on hepatocytes and promote a regenerative phenotype in hepatic leukocytes, respectively. Dectin-1 ligation is required for γδT cells to promote hepatic regeneration. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Hoxb4 overexpression in CD4 memory phenotype T cells increases the central memory population upon homeostatic proliferation.

    PubMed

    Frison, Héloïse; Giono, Gloria; Thébault, Paméla; Fournier, Marilaine; Labrecque, Nathalie; Bijl, Janet J

    2013-01-01

    Memory T cell populations allow a rapid immune response to pathogens that have been previously encountered and thus form the basis of success in vaccinations. However, the molecular pathways underlying the development and maintenance of these cells are only starting to be unveiled. Memory T cells have the capacity to self renew as do hematopoietic stem cells, and overlapping gene expression profiles suggested that these cells might use the same self-renewal pathways. The transcription factor Hoxb4 has been shown to promote self-renewal divisions of hematopoietic stem cells resulting in an expansion of these cells. In this study we investigated whether overexpression of Hoxb4 could provide an advantage to CD4 memory phenotype T cells in engrafting the niche of T cell deficient mice following adoptive transfer. Competitive transplantation experiments demonstrated that CD4 memory phenotype T cells derived from mice transgenic for Hoxb4 contributed overall less to the repopulation of the lymphoid organs than wild type CD4 memory phenotype T cells after two months. These proportions were relatively maintained following serial transplantation in secondary and tertiary mice. Interestingly, a significantly higher percentage of the Hoxb4 CD4 memory phenotype T cell population expressed the CD62L and Ly6C surface markers, characteristic for central memory T cells, after homeostatic proliferation. Thus Hoxb4 favours the maintenance and increase of the CD4 central memory phenotype T cell population. These cells are more stem cell like and might eventually lead to an advantage of Hoxb4 T cells after subjecting the cells to additional rounds of proliferation.

  13. 21 CFR 530.4 - Advertising and promotion.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Advertising and promotion. 530.4 Section 530.4... DRUGS, FEEDS, AND RELATED PRODUCTS EXTRALABEL DRUG USE IN ANIMALS General Provisions § 530.4 Advertising and promotion. Nothing in this part shall be construed as permitting the advertising or promotion of...

  14. 21 CFR 530.4 - Advertising and promotion.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Advertising and promotion. 530.4 Section 530.4... DRUGS, FEEDS, AND RELATED PRODUCTS EXTRALABEL DRUG USE IN ANIMALS General Provisions § 530.4 Advertising and promotion. Nothing in this part shall be construed as permitting the advertising or promotion of...

  15. 21 CFR 530.4 - Advertising and promotion.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Advertising and promotion. 530.4 Section 530.4... DRUGS, FEEDS, AND RELATED PRODUCTS EXTRALABEL DRUG USE IN ANIMALS General Provisions § 530.4 Advertising and promotion. Nothing in this part shall be construed as permitting the advertising or promotion of...

  16. 21 CFR 530.4 - Advertising and promotion.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Advertising and promotion. 530.4 Section 530.4... DRUGS, FEEDS, AND RELATED PRODUCTS EXTRALABEL DRUG USE IN ANIMALS General Provisions § 530.4 Advertising and promotion. Nothing in this part shall be construed as permitting the advertising or promotion of...

  17. 21 CFR 530.4 - Advertising and promotion.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Advertising and promotion. 530.4 Section 530.4... DRUGS, FEEDS, AND RELATED PRODUCTS EXTRALABEL DRUG USE IN ANIMALS General Provisions § 530.4 Advertising and promotion. Nothing in this part shall be construed as permitting the advertising or promotion of...

  18. CD8 Follicular T Cells Promote B Cell Antibody Class Switch in Autoimmune Disease.

    PubMed

    Valentine, Kristen M; Davini, Dan; Lawrence, Travis J; Mullins, Genevieve N; Manansala, Miguel; Al-Kuhlani, Mufadhal; Pinney, James M; Davis, Jason K; Beaudin, Anna E; Sindi, Suzanne S; Gravano, David M; Hoyer, Katrina K

    2018-05-09

    CD8 T cells can play both a protective and pathogenic role in inflammation and autoimmune development. Recent studies have highlighted the ability of CD8 T cells to function as T follicular helper (Tfh) cells in the germinal center in the context of infection. However, whether this phenomenon occurs in autoimmunity and contributes to autoimmune pathogenesis is largely unexplored. In this study, we show that CD8 T cells acquire a CD4 Tfh profile in the absence of functional regulatory T cells in both the IL-2-deficient and scurfy mouse models. Depletion of CD8 T cells mitigates autoimmune pathogenesis in IL-2-deficient mice. CD8 T cells express the B cell follicle-localizing chemokine receptor CXCR5, a principal Tfh transcription factor Bcl6, and the Tfh effector cytokine IL-21. CD8 T cells localize to the B cell follicle, express B cell costimulatory proteins, and promote B cell differentiation and Ab isotype class switching. These data reveal a novel contribution of autoreactive CD8 T cells to autoimmune disease, in part, through CD4 follicular-like differentiation and functionality. Copyright © 2018 by The American Association of Immunologists, Inc.

  19. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection.

    PubMed

    Jin, Qingwen; Chen, Hong; Wang, Xingxia; Zhao, Liandong; Xu, Qingchen; Wang, Huijuan; Li, Guanyu; Yang, Xiaofan; Ma, Hongming; Wu, Haoquan; Ji, Xiaohui

    2015-01-01

    Insertion of T4 lysozyme (T4L) into the GPCR successfully enhanced GPCR protein stability and solubilization. However, the biological functions of the recombinant GPCR protein have not been analyzed. We engineered the CCR5-T4L mutant and expressed and purified the soluble recombinant protein using an E.coli expression system. The antiviral effects of this recombinant protein in THP-1 cell lines, primary human macrophages, and PBMCs from different donors were investigated. We also explored the possible mechanisms underlying the observed antiviral effects. Our data showed the biphasic inhibitory and promotion effects of different concentrations of soluble recombinant CCR5-T4L protein on R5 tropic human immunodeficiency virus-1 (HIV-1) infection in THP-1 cell lines, human macrophages, and PBMCs from clinical isolates. We demonstrated that soluble recombinant CCR5-T4L acts as a HIV-1 co-receptor, interacts with wild type CCR5, down-regulates the surface CCR5 expression in human macrophages, and interacts with CCL5 to inhibit macrophage migration. Using binding assays, we further determined that recombinant CCR5-T4L and [125I]-CCL5 compete for the same binding site on wild type CCR5. Our results suggest that recombinant CCR5-T4L protein marginally promotes HIV-1 infection at low concentrations and markedly inhibits infection at higher concentrations. This recombinant protein may be helpful in the future development of anti-HIV-1 therapeutic agents.

  20. The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma.

    PubMed

    Pai, Priya; Rachagani, Satyanarayana; Lakshmanan, Imayavaramban; Macha, Muzafar A; Sheinin, Yuri; Smith, Lynette M; Ponnusamy, Moorthy P; Batra, Surinder K

    2016-02-01

    Aberrant Wnt signaling frequently occurs in pancreatic cancer (PC) and contributes to disease progression/metastases. Likewise, the transmembrane-mucin MUC4 is expressed de novo in early pancreatic intraepithelial neoplasia (PanINs) and incrementally increases with PC progression, contributing to metastasis. To determine the mechanism of MUC4 upregulation in PC, we examined factors deregulated in early PC progression, such as Wnt/β-catenin signaling. MUC4 promoter analysis revealed the presence of three putative TCF/LEF-binding sites, leading us to hypothesize that MUC4 can be regulated by β-catenin. Immunohistochemical (IHC) analysis of rapid autopsy PC tissues showed a correlation between MUC4 and cytosolic/nuclear β-catenin expression. Knock down (KD) of β-catenin in CD18/HPAF and T3M4 cell lines resulted in decreased MUC4 transcript and protein. Three MUC4 promoter luciferase constructs, p3778, p3000, and p2700, were generated. The construct p3778, encompassing the entire MUC4 promoter, elicited increased luciferase activity in the presence of stabilized β-catenin. Mutation of the TCF/LEF site closest to the transcription start site (i.e., -2629/-2612) and furthest from the start site (i.e., -3425/-3408) reduced MUC4 promoter luciferase activity. Transfection with dominant negative TCF4 decreased MUC4 transcript and protein levels. Chromatin immunoprecipitation confirmed enrichment of β-catenin on -2629/-2612 and -3425/-3408 of the MUC4 promoter in CD18/HPAF. Functionally, CD18/HPAF and T3M4 β-catenin KD cells showed decreased migration and decreased Vimentin, N-cadherin, and pERK1/2 expression. Tumorigenicity studies in athymic nude mice showed CD18/HPAF β-catenin KD cells significantly reduced primary tumor sizes and metastases compared to scrambled control cells. We show for the first time that β-catenin directly governs MUC4 in PC. Published by Elsevier B.V.

  1. Apoptotic depletion of CD4+ T cells in idiopathic CD4+ T lymphocytopenia.

    PubMed Central

    Laurence, J; Mitra, D; Steiner, M; Lynch, D H; Siegal, F P; Staiano-Coico, L

    1996-01-01

    Progressive loss of CD4+ T lymphocytes, accompanied by opportunistic infections characteristic of the acquired immune deficiency syndrome, ahs been reported in the absence of any known etiology. The pathogenesis of this syndrome, a subset of idiopathic CD4+ T lymphocytopenia (ICL), is uncertain. We report that CD4+ T cells from seven of eight ICL patients underwent accelerated programmed cell death, a process facilitated by T cell receptor cross-linking. Apoptosis was associated with enhanced expression of Fas and Fas ligand in unstimulated cell populations, and partially inhibited by soluble anti-Fas mAb. In addition, apoptosis was suppressed by aurintricarboxylic acid, an inhibitor of calcium-dependent endonucleases and proteases, in cells from four of seven patients, The in vivo significance of these findings was supported by three factors: the absence of accelerated apoptosis in persons with stable, physiologic CD4 lymphopenia without clinical immune deficiency; detection of serum antihistone H2B autoantibodies, one consequence of DNA fragmentation, in some patients; and its selectivity, with apoptosis limited to the CD4 population in some, and occurring among CD8+ T cells predominantly in those individuals with marked depletion of both CD4+ T lymphocytes linked to clinical immune suppression have evidence for accelerated T cell apoptosis in vitro that may be pathophysiologic and amenable to therapy with apoptosis inhibitors. PMID:8609222

  2. Cutting edge: high molecular weight hyaluronan promotes the suppressive effects of CD4+CD25+ regulatory T cells.

    PubMed

    Bollyky, Paul L; Lord, James D; Masewicz, Susan A; Evanko, Stephen P; Buckner, Jane H; Wight, Thomas N; Nepom, Gerald T

    2007-07-15

    Hyaluronan is a glycosaminoglycan present in the extracellular matrix. When hyaluronan is degraded during infection and injury, low m.w. forms are generated whose interactions influence inflammation and angiogenesis. Intact high m.w. hyaluronan, conversely, conveys anti-inflammatory signals. We demonstrate that high m.w. hyaluronan enhances human CD4(+)CD25(+) regulatory T cell functional suppression of responder cell proliferation, whereas low m.w. hyaluronan does not. High m.w. hyaluronan also up-regulates the transcription factor FOXP3 on CD4(+)CD25(+) regulatory T cells. These effects are only seen with activated CD4(+)CD25(+) regulatory T cells and are associated with the expression of CD44 isomers that more highly bind high m.w. hyaluronan. At higher concentrations, high m.w. hyaluronan also has direct suppressive effects on T cells. We propose that the state of HA in the matrix environment provides contextual cues to CD4(+)CD25(+) regulatory T cells and T cells, thereby providing a link between the innate inflammatory network and the regulation of adaptive immune responses.

  3. Ena/VASP proteins regulate activated T-cell trafficking by promoting diapedesis during transendothelial migration

    PubMed Central

    Estin, Miriam L.; Thompson, Scott B.; Traxinger, Brianna; Fisher, Marlie H.; Friedman, Rachel S.; Jacobelli, Jordan

    2017-01-01

    Vasodilator-stimulated phosphoprotein (VASP) and Ena-VASP–like (EVL) are cytoskeletal effector proteins implicated in regulating cell morphology, adhesion, and migration in various cell types. However, the role of these proteins in T-cell motility, adhesion, and in vivo trafficking remains poorly understood. This study identifies a specific role for EVL and VASP in T-cell diapedesis and trafficking. We demonstrate that EVL and VASP are selectively required for activated T-cell trafficking but are not required for normal T-cell development or for naïve T-cell trafficking to lymph nodes and spleen. Using a model of multiple sclerosis, we show an impairment in trafficking of EVL/VASP-deficient activated T cells to the inflamed central nervous system of mice with experimental autoimmune encephalomyelitis. Additionally, we found a defect in trafficking of EVL/VASP double-knockout (dKO) T cells to the inflamed skin and secondary lymphoid organs. Deletion of EVL and VASP resulted in the impairment in α4 integrin (CD49d) expression and function. Unexpectedly, EVL/VASP dKO T cells did not exhibit alterations in shear-resistant adhesion to, or in crawling on, primary endothelial cells under physiologic shear forces. Instead, deletion of EVL and VASP impaired T-cell diapedesis. Furthermore, T-cell diapedesis became equivalent between control and EVL/VASP dKO T cells upon α4 integrin blockade. Overall, EVL and VASP selectively mediate activated T-cell trafficking by promoting the diapedesis step of transendothelial migration in a α4 integrin-dependent manner. PMID:28320969

  4. Synovial CD4+ T-cell-derived GM-CSF supports the differentiation of an inflammatory dendritic cell population in rheumatoid arthritis

    PubMed Central

    Reynolds, G; Gibbon, J R; Pratt, A G; Wood, M J; Coady, D; Raftery, G; Lorenzi, A R; Gray, A; Filer, A; Buckley, C D; Haniffa, M A; Isaacs, J D; Hilkens, C M U

    2016-01-01

    Objective A population of synovial inflammatory dendritic cells (infDCs) has recently been identified in rheumatoid arthritis (RA) and is thought to be monocyte-derived. Here, we investigated the role and source of granulocyte macrophage-colony-stimulating factor (GM-CSF) in the differentiation of synovial infDC in RA. Methods Production of GM-CSF by peripheral blood (PB) and synovial fluid (SF) CD4+ T cells was assessed by ELISA and flow cytometry. In vitro CD4+ T-cell polarisation experiments were performed with T-cell activating CD2/CD3/CD28-coated beads in the absence or presence of pro-Th1 or pro-Th17 cytokines. CD1c+ DC and CD16+ macrophage subsets were flow-sorted and analysed morphologically and functionally (T-cell stimulatory/polarising capacity). Results RA-SF CD4+ T cells produced abundant GM-CSF upon stimulation and significantly more than RA-SF mononuclear cells depleted of CD4+ T cells. GM-CSF-producing T cells were significantly increased in RA-SF compared with non-RA inflammatory arthritis SF, active RA PB and healthy donor PB. GM-CSF-producing CD4+ T cells were expanded by Th1-promoting but not Th17-promoting conditions. Following coculture with RA-SF CD4+ T cells, but not healthy donor PB CD4+ T cells, a subpopulation of monocytes differentiated into CD1c+ infDC; a process dependent on GM-CSF. These infDC displayed potent alloproliferative capacity and enhanced GM-CSF, interleukin-17 and interferon-γ production by CD4+ T cells. InfDC with an identical phenotype to in vitro generated cells were significantly enriched in RA-SF compared with non-RA-SF/tissue/PB. Conclusions We demonstrate a therapeutically tractable feedback loop of GM-CSF secreted by RA synovial CD4+ T cells promoting the differentiation of infDC with potent capacity to induce GM-CSF-producing CD4+ T cells. PMID:25923217

  5. Aberrant TGFβ/SMAD4 signaling contributes to epigenetic silencing of a putative tumor suppressor, RunX1T1, in ovarian cancer

    PubMed Central

    Yang, Hui-Wen; Chou, Jian-Liang; Chen, Lin-Yu; Yeh, Chia-Ming; Chen, Yu-Hsin; Lin, Ru-Inn; Su, Her-Young; Chen, Gary CW; Deatherage, Daniel E; Huang, Yi-Wen; Yan, Pearlly S; Lin, Huey-Jen; Nephew, Kenneth P; Huang, Tim H-M; Lai, Hung-Cheng

    2011-01-01

    Aberrant TGFβ signaling pathway may alter the expression of down-stream targets and promotes ovarian carcinogenesis. However, the mechanism of this impairment is not fully understood. Our previous study identified RunX1T1 as a putative SMAD4 target in an immortalized ovarian surface epithelial cell line, IOSE. In this study, we report that transcription of RunX1T1 was confirmed to be positively regulated by SMAD4 in IOSE cells and epigenetically silenced in a panel of ovarian cancer cell lines by promoter hypermethylation and histone methylation at H3 lysine 9. SMAD4 depletion increased repressive histone modifications of RunX1T1 promoter without affecting promoter methylation in IOSE cells. Epigenetic treatment can restore RunX1T1 expression by reversing its epigenetic status in MCP 3 ovarian cancer cells. When transiently treated with a demethylating agent, the expression of RunX1T1 was partially restored in MCP 3 cells, but gradual re-silencing through promoter re-methylation was observed after the treatment. Interestingly, SMAD4 knockdown accelerated this re-silencing process, suggesting that normal TGFβ signaling is essential for the maintenance of RunX1T1 expression. In vivo analysis confirmed that hypermethylation of RunX1T1 was detected in 35.7% (34/95) of ovarian tumors with high clinical stages (p = 0.035) and in 83% (5/6) of primary ovarian cancer-initiating cells. Additionally, concurrent methylation of RunX1T1 and another SMAD4 target, FBXO32 which was previously found to be hypermethylated in ovarian cancer was observed in this same sample cohort (p < 0.05). Restoration of RunX1T1 inhibited cancer cell growth. Taken together, dysregulated TGFβ/SMAD4 signaling may lead to epigenetic silencing of a putative tumor suppressor, RunX1T1, during ovarian carcinogenesis. PMID:21540640

  6. Inhibition of IRAK1/4 sensitizes T cell acute lymphoblastic leukemia to chemotherapies

    PubMed Central

    Li, Zhaoyang; Younger, Kenisha; Gartenhaus, Ronald; Joseph, Ann Mary; Hu, Fang; Baer, Maria R.; Brown, Patrick; Davila, Eduardo

    2015-01-01

    Signaling via the MyD88/IRAK pathway in T cells is indispensable for cell survival; however, it is not known whether this pathway functions in the progression of T acute lymphoblastic leukemia (T-ALL). Here, we determined that compared with thymic and peripheral T cells, T-ALL cells from patients have elevated levels of IRAK1 and IRAK4 mRNA as well as increased total and phosphorylated protein. Targeted inhibition of IRAK1 and IRAK4, either with shRNA or with a pharmacological IRAK1/4 inhibitor, dramatically impeded proliferation of T-ALL cells isolated from patients and T-ALL cells in a murine leukemia model; however, IRAK1/4 inhibition had little effect on cell death. We screened several hundred FDA-approved compounds and identified a set of drugs that had enhanced cytotoxic activity when combined with IRAK inhibition. Administration of an IRAK1/4 inhibitor or IRAK knockdown in combination with either ABT-737 or vincristine markedly reduced leukemia burden in mice and prolonged survival. IRAK1/4 signaling activated the E3 ubiquitin ligase TRAF6, increasing K63-linked ubiquitination and enhancing stability of the antiapoptotic protein MCL1; therefore, IRAK inhibition reduced MCL1 stability and sensitized T-ALL to combination therapy. These studies demonstrate that IRAK1/4 signaling promotes T-ALL progression through stabilization of MCL1 and suggest that impeding this pathway has potential as a therapeutic strategy to enhance chemotherapeutic efficacy. PMID:25642772

  7. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4+ T cells

    PubMed Central

    Bertin, Samuel; Aoki-Nonaka, Yukari; de Jong, Petrus Rudolf; Stanwood, Shawna R.; Srikanth, Sonal; Lee, Jihyung; To, Keith; Abramson, Lior; Yu, Timothy; Han, Tiffany; Touma, Ranim; Li, Xiangli; González-Navajas, José M.; Herdman, Scott; Corr, Maripat; Fu, Guo; Dong, Hui; Gwack, Yousang; Franco, Alessandra; Jefferies, Wilfred A.; Raz, Eyal

    2016-01-01

    TRPV1 is a Ca2+-permeable channel mostly studied as a pain receptor in sensory neurons. However, its role in other cell types is poorly understood. Here, we demonstrate that TRPV1 is functionally expressed in CD4+ T cells where it acts as a non-store-operated Ca2+ channel and contributes to T cell receptor (TCR)-induced Ca2+ influx, TCR signaling and T cell activation. In models of T cell-mediated colitis, TRPV1 promotes colitogenic T cell responses and intestinal inflammation. Furthermore, genetic and pharmacological inhibition of TRPV1 in human CD4+ T cells recapitulates the phenotype of murine Trpv1−/− CD4+ T cells. These findings suggest that TRPV1 inhibition could represent a new therapeutic strategy to restrain proinflammatory T cell responses. PMID:25282159

  8. c-Abl-Mediated Tyrosine Phosphorylation of the T-bet DNA-Binding Domain Regulates CD4+ T-Cell Differentiation and Allergic Lung Inflammation ▿

    PubMed Central

    Chen, An; Lee, Sang-Myeong; Gao, Beixue; Shannon, Stephen; Zhu, Zhou; Fang, Deyu

    2011-01-01

    The tyrosine kinase c-Abl is required for full activation of T cells, while its role in T-cell differentiation has not been characterized. We report that c-Abl deficiency skews CD4+ T cells to type 2 helper T cell (Th2) differentiation, and c-Abl−/− mice are more susceptible to allergic lung inflammation. c-Abl interacts with and phosphorylates T-bet, a Th1 lineage transcription factor. c-Abl-mediated phosphorylation enhances the transcriptional activation of T-bet. Interestingly, three tyrosine residues within the T-bet DNA-binding domain are the predominant sites of phosphorylation by c-Abl. Mutation of these tyrosine residues inhibits the promoter DNA-binding activity of T-bet. c-Abl regulates Th cell differentiation in a T-bet-dependent manner because genetic deletion of T-bet in CD4+ T cells abolishes c-Abl-deficiency-mediated enhancement of Th2 differentiation. Reintroduction of T-bet-null CD4+ T cells with wild-type T-bet, but not its tyrosine mutant, rescues gamma interferon (IFN-γ) production and inhibits Th2 cytokine production. Therefore, c-Abl catalyzes tyrosine phosphorylation of the DNA-binding domain of T-bet to regulate CD4+ T cell differentiation. PMID:21690296

  9. Interleukin-4 production by Follicular Helper T cells requires the conserved Il4 enhancer HS V

    PubMed Central

    Vijayanand, Pandurangan; Seumois, Grégory; Simpson, Laura J.; Abdul-Wajid, Sarah; Baumjohann, Dirk; Panduro, Marisella; Huang, Xiaozhu; Interlandi, Jeneen; Djuretic, Ivana M.; Brown, Daniel R.; Sharpe, Arlene H.; Rao, Anjana; Ansel, K. Mark

    2012-01-01

    SUMMARY Follicular helper T cells (Tfh cells) are the major producers of interleukin-4 (IL-4) in secondary lymphoid organs where humoral immune responses develop. Il4 regulation in Tfh cells appears distinct from the classical T helper 2 (Th2) cell pathway, but the underlying molecular mechanisms remain largely unknown. We found that HS V (also known as CNS2), a 3’ enhancer in the Il4 locus, is essential for IL-4 production by Tfh cells. Mice lacking HS V display marked defects in Th2 humoral immune responses, as evidenced by abrogated IgE and sharply reduced IgG1 production in vivo. In contrast, effector Th2 cells that are involved in tissue responses were far less dependent on HS V. HS V facilitated removal of repressive chromatin marks during Th2 and Tfh cell differentiation, and increased accessibility of the Il4 promoter. Thus Tfh and Th2 cells utilize distinct but overlapping molecular mechanisms to regulate Il4, a finding with important implications for understanding the molecular basis of Th2 mediated allergic diseases. PMID:22326582

  10. Transcription Factor IRF4 Promotes CD8+ T Cell Exhaustion and Limits the Development of Memory-like T Cells during Chronic Infection.

    PubMed

    Man, Kevin; Gabriel, Sarah S; Liao, Yang; Gloury, Renee; Preston, Simon; Henstridge, Darren C; Pellegrini, Marc; Zehn, Dietmar; Berberich-Siebelt, Friederike; Febbraio, Mark A; Shi, Wei; Kallies, Axel

    2017-12-19

    During chronic stimulation, CD8 + T cells acquire an exhausted phenotype characterized by expression of inhibitory receptors, down-modulation of effector function, and metabolic impairments. T cell exhaustion protects from excessive immunopathology but limits clearance of virus-infected or tumor cells. We transcriptionally profiled antigen-specific T cells from mice infected with lymphocytic choriomeningitis virus strains that cause acute or chronic disease. T cell exhaustion during chronic infection was driven by high amounts of T cell receptor (TCR)-induced transcription factors IRF4, BATF, and NFATc1. These regulators promoted expression of inhibitory receptors, including PD-1, and mediated impaired cellular metabolism. Furthermore, they repressed the expression of TCF1, a transcription factor required for memory T cell differentiation. Reducing IRF4 expression restored the functional and metabolic properties of antigen-specific T cells and promoted memory-like T cell development. These findings indicate that IRF4 functions as a central node in a TCR-responsive transcriptional circuit that establishes and sustains T cell exhaustion during chronic infection. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  11. CD4 memory T cells develop and acquire functional competence by sequential cognate interactions and stepwise gene regulation

    PubMed Central

    Kaji, Tomohiro; Hijikata, Atsushi; Ishige, Akiko; Kitami, Toshimori; Watanabe, Takashi; Ohara, Osamu; Yanaka, Noriyuki; Okada, Mariko; Shimoda, Michiko; Taniguchi, Masaru

    2016-01-01

    Memory CD4+ T cells promote protective humoral immunity; however, how memory T cells acquire this activity remains unclear. This study demonstrates that CD4+ T cells develop into antigen-specific memory T cells that can promote the terminal differentiation of memory B cells far more effectively than their naive T-cell counterparts. Memory T cell development requires the transcription factor B-cell lymphoma 6 (Bcl6), which is known to direct T-follicular helper (Tfh) cell differentiation. However, unlike Tfh cells, memory T cell development did not require germinal center B cells. Curiously, memory T cells that develop in the absence of cognate B cells cannot promote memory B-cell recall responses and this defect was accompanied by down-regulation of genes associated with homeostasis and activation and up-regulation of genes inhibitory for T-cell responses. Although memory T cells display phenotypic and genetic signatures distinct from Tfh cells, both had in common the expression of a group of genes associated with metabolic pathways. This gene expression profile was not shared to any great extent with naive T cells and was not influenced by the absence of cognate B cells during memory T cell development. These results suggest that memory T cell development is programmed by stepwise expression of gatekeeper genes through serial interactions with different types of antigen-presenting cells, first licensing the memory lineage pathway and subsequently facilitating the functional development of memory T cells. Finally, we identified Gdpd3 as a candidate genetic marker for memory T cells. PMID:26714588

  12. IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function.

    PubMed

    Noval Rivas, Magali; Burton, Oliver T; Oettgen, Hans C; Chatila, Talal

    2016-09-01

    Food allergy is a major health issue, but its pathogenesis remains obscure. Group 2 innate lymphoid cells (ILC2s) promote allergic inflammation. However their role in food allergy is largely unknown. We sought to investigate the role of ILC2s in food allergy. Food allergy-prone mice with a gain-of-function mutation in the IL-4 receptor α chain (Il4raF709) were orally sensitized with food allergens, and the ILC2 compartment was analyzed. The requirement for ILC2s in food allergy was investigated by using Il4raF709, IL-33 receptor-deficient (Il1rl1(-/-)), IL-13-deficient (Il13(-/-)), and IL-4-deficient (Il4(-/-)) mice and by adoptive transfer of in vitro-expanded ILC2s. Direct effects of ILC2s on regulatory T (Treg) cells and mast cells were analyzed in coculture experiments. Treg cell control of ILC2s was assessed in vitro and in vivo. Il4raF709 mice with food allergy exhibit increased numbers of ILC2s. IL-4 secretion by ILC2s contributes to the allergic response by reducing allergen-specific Treg cell and activating mast cell counts. IL-33 receptor deficiency in Il4raF709 Il1rl1(-/-) mice protects against allergen sensitization and anaphylaxis while reducing ILC2 induction. Adoptive transfer of wild-type and Il13(-/-) but not Il4(-/-) ILC2s restored sensitization in Il4raF709 Il1rl1(-/-) mice. Treg cells suppress ILC2s in vitro and in vivo. IL-4 production by IL-33-stimulated ILC2s blocks the generation of allergen-specific Treg cells and favors food allergy. Strategies to block ILC2 activation or the IL-33/IL-33 receptor pathway can lead to innovative therapies in the treatment of food allergy. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. The Efficiency of Delone Coverings of the Canonical Tilings T}(*(A_4)) -> T^*(A4) and T}(*(D_6)) -> T^*(D6)

    NASA Astrophysics Data System (ADS)

    Papadopolos, Zorka; Kasner, Gerald

    This chapter is devoted to the coverings of the two quasiperiodic canonical tilings T}(*(A_4)) -> T^*(A4) and T}(*(D_6)) equiv {cal T}(*(2F)) -> T^*(D6) T^*(2F), obtained by projection from the root lattices A4 and D6, respectively. In the first major part of this chapter, in Sect. 5.2, we shall introduce a Delone covering T}(*(A_4)}) -> C^sT^*(A4) of the 2-dimensional decagonal tiling T}(*(A_4)) -> T^*(A4). In the second major part of this chapter, Sect. 5.3, we summarize the results related to the Delone covering of the icosahedral tiling T}(*(D_6)) -> T^*(D6), T}(*(D_6)}) -> CT^*(D6) and determine the zero-, single-, and double- deckings and the resulting thickness of the covering. In the conclusions section, we give some suggestions as to how the definition of the Delone covering might be changed in order to reach some real (full) covering of the icosahedral tiling T}(*(D_6)) -> T^*(D6). In Section 5.2 the definition of the Delone covering is also changed in order to avoid an unnecessary large thickness of the covering.

  14. tRNA tKUUU, tQUUG, and tEUUC wobble position modifications fine-tune protein translation by promoting ribosome A-site binding.

    PubMed

    Rezgui, Vanessa Anissa Nathalie; Tyagi, Kshitiz; Ranjan, Namit; Konevega, Andrey L; Mittelstaet, Joerg; Rodnina, Marina V; Peter, Matthias; Pedrioli, Patrick G A

    2013-07-23

    tRNA modifications are crucial to ensure translation efficiency and fidelity. In eukaryotes, the URM1 and ELP pathways increase cellular resistance to various stress conditions, such as nutrient starvation and oxidative agents, by promoting thiolation and methoxycarbonylmethylation, respectively, of the wobble uridine of cytoplasmic (tK(UUU)), (tQ(UUG)), and (tE(UUC)). Although in vitro experiments have implicated these tRNA modifications in modulating wobbling capacity and translation efficiency, their exact in vivo biological roles remain largely unexplored. Using a combination of quantitative proteomics and codon-specific translation reporters, we find that translation of a specific gene subset enriched for AAA, CAA, and GAA codons is impaired in the absence of URM1- and ELP-dependent tRNA modifications. Moreover, in vitro experiments using native tRNAs demonstrate that both modifications enhance binding of tK(UUU) to the ribosomal A-site. Taken together, our data suggest that tRNA thiolation and methoxycarbonylmethylation regulate translation of genes with specific codon content.

  15. The ThPOK transcription factor differentially affects the development and function of self-specific CD8(+) T cells and regulatory CD4(+) T cells.

    PubMed

    Twu, Yuh-Ching; Teh, Hung-Sia

    2014-03-01

    The zinc finger transcription factor ThPOK plays a crucial role in CD4 T-cell development and CD4/CD8 lineage decision. In ThPOK-deficient mice, developing T cells expressing MHC class II-restricted T-cell receptors are redirected into the CD8 T-cell lineage. In this study, we investigated whether the ThPOK transgene affected the development and function of two additional types of T cells, namely self-specific CD8 T cells and CD4(+) FoxP3(+) T regulatory cells. Self-specific CD8 T cells are characterized by high expression of CD44, CD122, Ly6C, 1B11 and proliferation in response to either IL-2 or IL-15. The ThPOK transgene converted these self-specific CD8 T cells into CD4 T cells. The converted CD4(+) T cells are no longer self-reactive, lose the characteristics of self-specific CD8 T cells, acquire the properties of conventional CD4 T cells and survive poorly in peripheral lymphoid organs. By contrast, the ThPOK transgene promoted the development of CD4(+) FoxP3(+) regulatory T cells resulting in an increased recovery of CD4(+) FoxP3(+) regulatory T cells that expressed higher transforming growth factor-β-dependent suppressor activity. These studies indicate that the ThPOK transcription factor differentially affects the development and function of self-specific CD8 T cells and CD4(+) FoxP3(+) regulatory T cells. © 2013 John Wiley & Sons Ltd.

  16. Differential Transcription Factor Use by the KIR2DL4 Promoter Under Constitutive and IL-2/15-Treated Conditions

    PubMed Central

    Presnell, Steven R.; Zhang, Lei; Chlebowy, Corrin N.; Al-Attar, Ahmad; Lutz, Charles T.

    2012-01-01

    KIR2DL4 is unique among human KIR genes in expression, cellular localization, structure, and function, yet the transcription factors required for its expression have not been identified. Using mutagenesis, electrophoretic mobility shift assay, and co-transfection assays, we identified two redundant Runx binding sites in the 2DL4 promoter as essential for constitutive 2DL4 transcription, with contributions by a CRE site and initiator elements. IL-2-and IL-15-stimulated human NK cell lines increased 2DL4 promoter activity, which required functional Runx, CRE, and Ets sites. Chromatin immunoprecipitation experiments show that Runx3 and Ets1 bind the 2DL4 promoter in situ. 2DL4 promoter activity had similar transcription factor requirements in T cells. Runx, CRE, and Ets binding motifs are present in 2DL4 promoters from across primate species, but other postulated transcription factor binding sites are not preserved. Differences between 2DL4 and clonally-restricted KIR promoters suggest a model that explains the unique 2DL4 expression pattern in human NK cells. PMID:22467658

  17. Vaccine-elicited memory CD4+ T cell expansion is impaired in the lungs during tuberculosis.

    PubMed

    Carpenter, Stephen M; Yang, Jason D; Lee, Jinhee; Barreira-Silva, Palmira; Behar, Samuel M

    2017-11-01

    Immunological memory is the key biological process that makes vaccines possible. Although tuberculosis vaccines elicit protective immunity in animals, few provide durable protection. To understand why protection is transient, we evaluated the ability of memory CD4+ T cells to expand, differentiate, and control Mycobacterium tuberculosis. Both naïve and memory CD4+ T cells initially proliferated exponentially, and the accumulation of memory T cells in the lung correlated with early bacterial control. However, later during infection, memory CD4+ T cell proliferation was curtailed and no protection was observed. We show that memory CD4+ T cells are first activated in the LN and their recruitment to the lung attenuates bacterial growth. However, their interaction with Mtb-infected macrophages does not promote continued proliferation. We conclude that a lack of sustained expansion by memory-derived T cells in the lung limits the durability of their protection, linking their slower expansion with transient protection in vaccinated mice.

  18. IL-7 signaling imparts polyfunctionality and stemness potential to CD4+ T cells

    PubMed Central

    Ding, Zhi-Chun; Liu, Chufeng; Cao, Yang; Habtetsion, Tsadik; Kuczma, Michal; Pi, Wenhu; Kong, Heng; Cacan, Ercan; Greer, Susanna F.; Cui, Yan; Blazar, Bruce R.; Munn, David H.; Zhou, Gang

    2016-01-01

    ABSTRACT The functional status of CD4+ T cells is a critical determinant of antitumor immunity. Polyfunctional CD4+ T cells possess the ability to concomitantly produce multiple Th1-type cytokines, exhibiting a functional attribute desirable for cancer immunotherapy. However, the mechanisms by which these cells are induced are neither defined nor it is clear if these cells can be used therapeutically to treat cancer. Here, we report that CD4+ T cells exposed to exogenous IL-7 during antigenic stimulation can acquire a polyfunctional phenotype, characterized by their ability to simultaneously express IFNγ, IL-2, TNFα and granzyme B. This IL-7-driven polyfunctional phenotype was associated with increased histone acetylation in the promoters of the effector genes, indicative of increased chromatin accessibility. Moreover, forced expression of a constitutively active (CA) form of STAT5 recapitulated IL-7 in inducing CD4+ T-cell polyfunctionality. Conversely, the expression of a dominant negative (DN) form of STAT5 abolished the ability of IL-7 to induce polyfunctional CD4+ T cells. These in-vitro-generated polyfunctional CD4+ T cells can traffic to tumor and expand intratumorally in response to immunization. Importantly, adoptive transfer of polyfunctional CD4+ T cells following lymphodepletive chemotherapy was able to eradicate large established tumors. This beneficial outcome was associated with the occurrence of antigen epitope spreading, activation of the endogenous CD8+ T cells and persistence of donor CD4+ T cells exhibiting memory stem cell attributes. These findings indicate that IL-7 signaling can impart polyfunctionality and stemness potential to CD4+ T cells, revealing a previously unknown property of IL-7 that can be exploited in adoptive T-cell immunotherapy. PMID:27471650

  19. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells

    PubMed Central

    Dienz, Oliver; Eaton, Sheri M.; Bond, Jeffrey P.; Neveu, Wendy; Moquin, David; Noubade, Rajkumar; Briso, Eva M.; Charland, Colette; Leonard, Warren J.; Ciliberto, Gennaro; Teuscher, Cory; Haynes, Laura; Rincon, Mercedes

    2009-01-01

    Interleukin (IL) 6 is a proinflammtory cytokine produced by antigen-presenting cells and nonhematopoietic cells in response to external stimuli. It was initially identified as a B cell growth factor and inducer of plasma cell differentiation in vitro and plays an important role in antibody production and class switching in vivo. However, it is not clear whether IL-6 directly affects B cells or acts through other mechanisms. We show that IL-6 is sufficient and necessary to induce IL-21 production by naive and memory CD4+ T cells upon T cell receptor stimulation. IL-21 production by CD4+ T cells is required for IL-6 to promote B cell antibody production in vitro. Moreover, administration of IL-6 with inactive influenza virus enhances virus-specific antibody production, and importantly, this effect is dependent on IL-21. Thus, IL-6 promotes antibody production by promoting the B cell helper capabilities of CD4+ T cells through increased IL-21 production. IL-6 could therefore be a potential coadjuvant to enhance humoral immunity. PMID:19139170

  20. Effects of Neonicotinoid Pesticides on Promoter-Specific Aromatase (CYP19) Expression in Hs578t Breast Cancer Cells and the Role of the VEGF Pathway.

    PubMed

    Caron-Beaudoin, Élyse; Viau, Rachel; Sanderson, J Thomas

    2018-04-26

    Aromatase (CYP19) is a key enzyme in estrogens biosynthesis. In the mammary gland, CYP19 gene is expressed at low levels under the regulation of its I.4 promoter. In hormone-dependent breast cancer, fibroblast cells surrounding the tumor express increased levels of CYP19 mRNA due to a decrease of I.4 promoter activity and an increase of PII, I.3, and I.7 promoter activity. Little is known about the effects of environmental chemicals on the promoter-specific CYP19 expression. We aimed to determine the effects of two neonicotinoids (thiacloprid and imidacloprid) on promoter-specific CYP19 expression in Hs578t breast cancer cells and understand the signaling pathways involved. Hs578t cells were exposed to various signaling pathway stimulants or neonicotinoids for 24 h. Promoter-specific expression of CYP19 was determined by real-time quantitative polymerase chain reaction and catalytic activity of aromatase by tritiated water release assay. To our knowledge, we are the first to demonstrate that the normal I.4 promoter and the breast cancer-relevant PII, I.3, and I.7 promoters of CYP19 are active in these cells. We found that the expression of CYP19 via promoters PII, I.3, and I.7 in Hs578t cells was, in part, dependent on the activation of two VEGF signaling pathways: mitogen-activated protein kinase (MAPK) 1/3 and phospholipase C (PLC). Exposure of Hs578t cells to environmental concentrations of imidacloprid and thiacloprid resulted in a switch in CYP19 promoter usage, involving inhibition of I.4 promoter activity and an increase of PII, I.3, and I.7 promoter-mediated CYP19 expression and aromatase catalytic activity. Greater effects were seen at lower concentrations. Our results suggest that thiacloprid and imidacloprid exert their effects at least partially by inducing the MAPK 1/3 and/or PLC pathways. We demonstrated in vitro that neonicotinoids may stimulate a change in CYP19 promoter usage similar to that observed in patients with hormone-dependent breast cancer

  1. CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells

    PubMed Central

    Herrmann, Andreas; Priceman, Saul J.; Kujawski, Maciej; Xin, Hong; Cherryholmes, Gregory A.; Zhang, Wang; Zhang, Chunyan; Lahtz, Christoph; Kowolik, Claudia; Forman, Steve J.; Kortylewski, Marcin; Yu, Hua

    2014-01-01

    Intracellular therapeutic targets that define tumor immunosuppression in both tumor cells and T cells remain intractable. Here, we have shown that administration of a covalently linked siRNA to an aptamer (apt) that selectively binds cytotoxic T lymphocyte–associated antigen 4 (CTLA4apt) allows gene silencing in exhausted CD8+ T cells and Tregs in tumors as well as CTLA4-expressing malignant T cells. CTLA4 expression was upregulated in CD8+ T cells in the tumor milieu; therefore, CTLA4apt fused to a STAT3-targeting siRNA (CTLA4apt–STAT3 siRNA) resulted in internalization into tumor-associated CD8+ T cells and silencing of STAT3, which activated tumor antigen–specific T cells in murine models. Both local and systemic administration of CTLA4apt–STAT3 siRNA dramatically reduced tumor-associated Tregs. Furthermore, CTLA4apt–STAT3 siRNA potently inhibited tumor growth and metastasis in various mouse tumor models. Importantly, CTLA4 expression is observed in T cells of patients with blood malignancies, and CTLA4apt–STAT3 siRNA treatment of immunodeficient mice bearing human T cell lymphomas promoted tumor cell apoptosis and tumor growth inhibition. These data demonstrate that a CTLA4apt-based siRNA delivery strategy allows gene silencing in both tumor-associated T cells and tumor cells and inhibits tumor growth and metastasis. PMID:24892807

  2. Variants in the dopamine-4-receptor gene promoter are not associated with sensation seeking in skiers.

    PubMed

    Thomson, Cynthia J; Rajala, Amelia K; Carlson, Scott R; Rupert, Jim L

    2014-01-01

    Sensation seeking is a personality trait that has been associated with disinhibited behaviours including substance use and gambling, but also with high-risk sport practices including skydiving, paragliding, and downhill skiing. Twin studies have shown that sensation seeking is moderately heritable, and candidate genes encoding components involved in dopaminergic transmission have been investigated as contributing to this type of behaviour. To determine whether variants in the regulatory regions of the dopamine-4-receptor gene (DRD4) influenced sport-specific sensation seeking, we analyzed five polymorphisms (-1106T/C, -906T/C, -809G/A, -291C/T, 120-bp duplication) in the promoter region of the gene in a cohort of skiers and snowboarders (n = 599) that represented a broad range of sensation seeking behaviours. We grouped subjects by genotype at each of the five loci and compared impulsive sensation seeking and domain-specific (skiing) sensation seeking between groups. There were no significant associations between genotype(s) and general or domain-specific sensation seeking in the skiers and snowboarders, suggesting that while DRD4 has previously been implicated in sensation seeking, the promoter variants investigated in this study do not contribute to sensation seeking in this athlete population.

  3. Visualizing the phage T4 activated transcription complex of DNA and E. coli RNA polymerase

    PubMed Central

    James, Tamara D.; Cardozo, Timothy; Abell, Lauren E.; Hsieh, Meng-Lun; Jenkins, Lisa M. Miller; Jha, Saheli S.; Hinton, Deborah M.

    2016-01-01

    The ability of RNA polymerase (RNAP) to select the right promoter sequence at the right time is fundamental to the control of gene expression in all organisms. However, there is only one crystallized structure of a complete activator/RNAP/DNA complex. In a process called σ appropriation, bacteriophage T4 activates a class of phage promoters using an activator (MotA) and a co-activator (AsiA), which function through interactions with the σ70 subunit of RNAP. We have developed a holistic, structure-based model for σ appropriation using multiple experimentally determined 3D structures (Escherichia coli RNAP, the Thermus aquaticus RNAP/DNA complex, AsiA /σ70 Region 4, the N-terminal domain of MotA [MotANTD], and the C-terminal domain of MotA [MotACTD]), molecular modeling, and extensive biochemical observations indicating the position of the proteins relative to each other and to the DNA. Our results visualize how AsiA/MotA redirects σ, and therefore RNAP activity, to T4 promoter DNA, and demonstrate at a molecular level how the tactful interaction of transcriptional factors with even small segments of RNAP can alter promoter specificity. Furthermore, our model provides a rational basis for understanding how a mutation within the β subunit of RNAP (G1249D), which is far removed from AsiA or MotA, impairs σ appropriation. PMID:27458207

  4. c-Myc-Induced Survivin Is Essential for Promoting the Notch-Dependent T Cell Differentiation from Hematopoietic Stem Cells

    PubMed Central

    Haque, Rizwanul; Song, Jianyong; Haque, Mohammad; Lei, Fengyang; Sandhu, Praneet; Ni, Bing; Zheng, Songguo; Fang, Deyu; Yang, Jin-Ming; Song, Jianxun

    2017-01-01

    Notch is indispensable for T cell lineage commitment, and is needed for thymocyte differentiation at early phases. During early stages of T cell development, active Notch prevents other lineage potentials including B cell lineage and myeloid cell (e.g., dendritic cell) lineage. Nevertheless, the precise intracellular signaling pathways by which Notch promotes T cell differentiation remain unclear. Here we report that the transcription factor c-Myc is a key mediator of the Notch signaling–regulated T cell differentiation. In a well-established in vitro differentiation model of T lymphocytes from hematopoietic stem cells, we showed that Notch1 and 4 directly promoted c-Myc expression; dominant-negative (DN) c-Myc inhibited early T cell differentiation. Moreover, the c-Myc expression activated by Notch signaling increased the expression of survivin, an inhibitor of apoptosis (IAP) protein. We further demonstrated that over-expression of c-Myc increased the abundance of survivin and the T cell differentiation thereof, whereas dn c-Myc reduced survivin levels and concomitantly retarded the differentiation. The c-Myc–dependent survivin induction is functionally germane, because Notch-dependent T cell differentiation was canceled by the depletion of survivin. These results identify both c-Myc and survivin as important mediators of the Notch signaling–regulated differentiation of T lymphocytes from hematopoietic stem cells. PMID:28272325

  5. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes.

    PubMed Central

    Tabor, S; Richardson, C C

    1985-01-01

    The RNA polymerase gene of bacteriophage T7 has been cloned into the plasmid pBR322 under the inducible control of the lambda PL promoter. After induction, T7 RNA polymerase constitutes 20% of the soluble protein of Escherichia coli, a 200-fold increase over levels found in T7-infected cells. The overproduced enzyme has been purified to homogeneity. During extraction the enzyme is sensitive to a specific proteolysis, a reaction that can be prevented by a modification of lysis conditions. The specificity of T7 RNA polymerase for its own promoters, combined with the ability to inhibit selectively the host RNA polymerase with rifampicin, permits the exclusive expression of genes under the control of a T7 RNA polymerase promoter. We describe such a coupled system and its use to express high levels of phage T7 gene 5 protein, a subunit of T7 DNA polymerase. Images PMID:3156376

  6. [Functional analysis of Oct4 promoter in Xuhuai goat].

    PubMed

    Wei, Guanghui; Li, Dong; Zuo, Qisheng; Zhang, Yani; Zhu, Rui; Zhang, Lei; Liu, Zhiyong; Qiu, Fenglong; Li, Bichun

    2014-08-01

    The aim of this study was to determine the activity region of Oct4 (octamer-binding transcription factor 4) promoter in Xuhuai goat, and to investigate the effect of TSA (trichostatin A) and VPA(valproicacid) on Oct4 promoter activity. Specific PCR primers of Oct4 promoter including different lengths of fragments were designed by Primer 5.0, then were amplified and cloned into PGL3-Bacic luciferase reporter vector. All the reconstruction vectors were transfected into gEF, P19 and COS7 cells, respectively. After TSA and VPA treatment, the activity of dual-luciferase reporter gene in these three transfected cells was detected. In addition, the CMV promoter of pEGFP-N1 was replaced by the -1516─+30 bp fragment of Oct4 promoter, GFP fluorescence was used to detect the activity of Oct4 promoter. The results indicated that different fragments of Oct4 promoter showed different degrees of activity in gEF, P19 and COS7 cells, and the maximal activity region of Oct4 promoter was -1516─+30 bp, the basal activity region was -238─+30 bp. Positive regulatory domains existed in the region of -1516─-946 bp and -615─-96 bp, while negative regulatory domains existed in the region of -1936─-1516 bp and -946─-615 bp. The optimum induction concentration to enhance the activity of Oct4 promoter was 1 μmol/L of TSA and 4 mmol/L of VPA. The GFP expression can be started by the fragment of -1516─+30 bp. This study provides an experimental basis for revealing the mechanism of expression and regulation of Oct4 in goat.

  7. 37 CFR 4.1 - Complaints regarding invention promoters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Complaints regarding invention promoters. 4.1 Section 4.1 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE, DEPARTMENT OF COMMERCE GENERAL COMPLAINTS REGARDING INVENTION PROMOTERS § 4.1 Complaints...

  8. Reactive Oxygen Species and Their Implications on CD4+ T Cells in Type 1 Diabetes.

    PubMed

    Previte, Dana M; Piganelli, Jon D

    2017-11-28

    Previous work has indicated that type 1 diabetes (T1D) pathology is highly driven by reactive oxygen species (ROS). One way in which ROS shape the autoimmune response demonstrated in T1D is by promoting CD4 + T cell activation and differentiation. As CD4 + T cells are a significant contributor to pancreatic β cell destruction in T1D, understanding how ROS impact their development, activation, and differentiation is critical. Recent Advances: CD4 + T cells themselves generate ROS via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression and electron transport chain activity. Moreover, T cells can also be exposed to exogenous ROS generated by other immune cells (e.g., macrophages and dendritic cells) and β cells. Genetically modified animals and ROS inhibitors have demonstrated that ROS blockade during activation results in CD4 + T cell hyporesponsiveness and reduced diabetes incidence. Critical Issues and Future Directions: Although the majority of studies with regard to T1D and CD4 + T cells have been done to examine the influence of redox on CD4 + T cell activation, this is not the only circumstance in which a T cell can be impacted by redox. ROS and redox have also been shown to play roles in CD4 + T cell-related tolerogenic mechanisms, including thymic selection and regulatory T cell-mediated suppression. However, the effect of these mechanisms with respect to T1D pathogenesis remains elusive. Therefore, pursuing these avenues may provide valuable insight into the global role of ROS and redox in autoreactive CD4 + T cell formation and function. Antioxid. Redox Signal. 00, 000-000.

  9. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4T cells.

    PubMed

    Arbore, Giuseppina; West, Erin E; Spolski, Rosanne; Robertson, Avril A B; Klos, Andreas; Rheinheimer, Claudia; Dutow, Pavel; Woodruff, Trent M; Yu, Zu Xi; O'Neill, Luke A; Coll, Rebecca C; Sher, Alan; Leonard, Warren J; Köhl, Jörg; Monk, Pete; Cooper, Matthew A; Arno, Matthew; Afzali, Behdad; Lachmann, Helen J; Cope, Andrew P; Mayer-Barber, Katrin D; Kemper, Claudia

    2016-06-17

    The NLRP3 inflammasome controls interleukin-1β maturation in antigen-presenting cells, but a direct role for NLRP3 in human adaptive immune cells has not been described. We found that the NLRP3 inflammasome assembles in human CD4(+) T cells and initiates caspase-1-dependent interleukin-1β secretion, thereby promoting interferon-γ production and T helper 1 (T(H)1) differentiation in an autocrine fashion. NLRP3 assembly requires intracellular C5 activation and stimulation of C5a receptor 1 (C5aR1), which is negatively regulated by surface-expressed C5aR2. Aberrant NLRP3 activity in T cells affects inflammatory responses in human autoinflammatory disease and in mouse models of inflammation and infection. Our results demonstrate that NLRP3 inflammasome activity is not confined to "innate immune cells" but is an integral component of normal adaptive T(H)1 responses. Copyright © 2016, American Association for the Advancement of Science.

  10. c-Myb Binds to a Sequence in the Proximal Region of the RAG-2 Promoter and Is Essential for Promoter Activity in T-Lineage Cells

    PubMed Central

    Wang, Qian-Fei; Lauring, Josh; Schlissel, Mark S.

    2000-01-01

    The RAG-2 gene encodes a component of the V(D)J recombinase which is essential for the assembly of antigen receptor genes in B and T lymphocytes. Previously, we reported that the transcription factor BSAP (PAX-5) regulates the murine RAG-2 promoter in B-cell lines. A partially overlapping but distinct region of the proximal RAG-2 promoter was also identified as an important element for promoter activity in T cells; however, the responsible factor was unknown. In this report, we present data demonstrating that c-Myb binds to a Myb consensus site within the proximal promoter and is critical for its activity in T-lineage cells. We show that c-Myb can transactivate a RAG-2 promoter-reporter construct in cotransfection assays and that this transactivation depends on the proximal promoter Myb consensus site. By using a chromatin immunoprecipitation (ChIP) strategy, fractionation of chromatin with anti-c-Myb antibody specifically enriched endogenous RAG-2 promoter DNA sequences. DNase I genomic footprinting revealed that the c-Myb site is occupied in a tissue-specific fashion in vivo. Furthermore, an integrated RAG-2 promoter construct with mutations at the c-Myb site was not enriched in the ChIP assay, while a wild-type integrated promoter construct was enriched. Finally, this lack of binding of c-Myb to a chromosomally integrated mutant RAG-2 promoter construct in vivo was associated with a striking decrease in promoter activity. We conclude that c-Myb regulates the RAG-2 promoter in T cells by binding to this consensus c-Myb binding site. PMID:11094072

  11. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation

    PubMed Central

    Patsoukis, Nikolaos; Bardhan, Kankana; Chatterjee, Pranam; Sari, Duygu; Liu, Bianling; Bell, Lauren N.; Karoly, Edward D.; Freeman, Gordon J.; Petkova, Victoria; Seth, Pankaj; Li, Lequn; Boussiotis, Vassiliki A.

    2015-01-01

    During activation, T cells undergo metabolic reprogramming, which imprints distinct functional fates. We determined that on PD-1 ligation, activated T cells are unable to engage in glycolysis or amino acid metabolism but have an increased rate of fatty acid β-oxidation (FAO). PD-1 promotes FAO of endogenous lipids by increasing expression of CPT1A, and inducing lipolysis as indicated by elevation of the lipase ATGL, the lipolysis marker glycerol and release of fatty acids. Conversely, CTLA-4 inhibits glycolysis without augmenting FAO, suggesting that CTLA-4 sustains the metabolic profile of non-activated cells. Because T cells utilize glycolysis during differentiation to effectors, our findings reveal a metabolic mechanism responsible for PD-1-mediated blockade of T-effector cell differentiation. The enhancement of FAO provides a mechanistic explanation for the longevity of T cells receiving PD-1 signals in patients with chronic infections and cancer, and for their capacity to be reinvigorated by PD-1 blockade. PMID:25809635

  12. Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients

    PubMed Central

    McDonald, Georgia; Deepak, Shantal; Miguel, Laura; Hall, Cleo J.; Isenberg, David A.; Magee, Anthony I.; Butters, Terry; Jury, Elizabeth C.

    2014-01-01

    Patients with the autoimmune rheumatic disease systemic lupus erythematosus (SLE) have multiple defects in lymphocyte signaling and function that contribute to disease pathogenesis. Such defects could be attributed to alterations in metabolic processes, including abnormal control of lipid biosynthesis pathways. Here, we reveal that CD4+ T cells from SLE patients displayed an altered profile of lipid raft–associated glycosphingolipids (GSLs) compared with that of healthy controls. In particular, lactosylceramide, globotriaosylceramide (Gb3), and monosialotetrahexosylganglioside (GM1) levels were markedly increased. Elevated GSLs in SLE patients were associated with increased expression of liver X receptor β (LXRβ), a nuclear receptor that controls cellular lipid metabolism and trafficking and influences acquired immune responses. Stimulation of CD4+ T cells isolated from healthy donors with synthetic and endogenous LXR agonists promoted GSL expression, which was blocked by an LXR antagonist. Increased GSL expression in CD4+ T cells was associated with intracellular accumulation and accelerated trafficking of GSL, reminiscent of cells from patients with glycolipid storage diseases. Inhibition of GSL biosynthesis in vitro with a clinically approved inhibitor (N-butyldeoxynojirimycin) normalized GSL metabolism, corrected CD4+ T cell signaling and functional defects, and decreased anti-dsDNA antibody production by autologous B cells in SLE patients. Our data demonstrate that lipid metabolism defects contribute to SLE pathogenesis and suggest that targeting GSL biosynthesis restores T cell function in SLE. PMID:24463447

  13. Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients.

    PubMed

    McDonald, Georgia; Deepak, Shantal; Miguel, Laura; Hall, Cleo J; Isenberg, David A; Magee, Anthony I; Butters, Terry; Jury, Elizabeth C

    2014-02-01

    Patients with the autoimmune rheumatic disease systemic lupus erythematosus (SLE) have multiple defects in lymphocyte signaling and function that contribute to disease pathogenesis. Such defects could be attributed to alterations in metabolic processes, including abnormal control of lipid biosynthesis pathways. Here, we reveal that CD4+ T cells from SLE patients displayed an altered profile of lipid raft-associated glycosphingolipids (GSLs) compared with that of healthy controls. In particular, lactosylceramide, globotriaosylceramide (Gb3), and monosialotetrahexosylganglioside (GM1) levels were markedly increased. Elevated GSLs in SLE patients were associated with increased expression of liver X receptor β (LXRβ), a nuclear receptor that controls cellular lipid metabolism and trafficking and influences acquired immune responses. Stimulation of CD4+ T cells isolated from healthy donors with synthetic and endogenous LXR agonists promoted GSL expression, which was blocked by an LXR antagonist. Increased GSL expression in CD4+ T cells was associated with intracellular accumulation and accelerated trafficking of GSL, reminiscent of cells from patients with glycolipid storage diseases. Inhibition of GSL biosynthesis in vitro with a clinically approved inhibitor (N-butyldeoxynojirimycin) normalized GSL metabolism, corrected CD4+ T cell signaling and functional defects, and decreased anti-dsDNA antibody production by autologous B cells in SLE patients. Our data demonstrate that lipid metabolism defects contribute to SLE pathogenesis and suggest that targeting GSL biosynthesis restores T cell function in SLE.

  14. Leukotriene B4—leukotriene B4 receptor axis promotes oxazolone-induced contact dermatitis by directing skin homing of neutrophils and CD8+ T cells

    PubMed Central

    Lv, Jiaoyan; Zou, Linlin; Zhao, Lina; Yang, Wei; Xiong, Yingluo; Li, Bingji; He, Rui

    2015-01-01

    Leukotriene B4 (LTB4) is a lipid mediator that is rapidly generated in inflammatory sites, and its functional receptor, BLT1, is mostly expressed on immune cells. Contact dermatitis is a common inflammatory skin disease characterized by skin oedema and abundant inflammatory infiltrates, primarily including neutrophils and CD8+ T cells. The role of the LTB4–BLT1 axis in contact dermatitis remains largely unknown. In this study, we found up-regulated gene expression of 5-lipoxygenase and leukotriene A4 hydrolase, two critical enzymes for LTB4 synthesis, BLT1 and elevated LTB4 levels in skin lesions of oxazolone (OXA)-induced contact dermatitis. BLT1 deficiency or blockade of LTB4 and BLT1 by the antagonists, bestatin and U-75302, respectively, in the elicitation phase caused significant decreases in ear swelling and skin-infiltrating neutrophils and CD8+ T cells, which was accompanied by significantly reduced skin expression of CXCL1, CXCL2, interferon-γ and interleukin-1β. Furthermore, neutrophil depletion during the elicitation phase of OXA-induced contact dermatitis also caused significant decreases in ear swelling and CD8+ T-cell infiltration accompanied by significantly decreased LTB4 synthesis and gene expression of CXCL2, interferon-γ and interleukin-1β. Importantly, subcutaneous injection of exogenous LTB4 restored the skin infiltration of CD8+ T cells in neutrophil-depleted mice following OXA challenge. Collectively, our results demonstrate that the LTB4–BLT1 axis contributes to OXA-induced contact dermatitis by mediating skin recruitment of neutrophils, which are a major source of LTB4 that sequentially direct CD8+ T-cell homing to OXA-challenged skin. Hence, LTB4 and BLT1 could be potential therapeutic targets for the treatment of contact dermatitis. PMID:25959240

  15. Hypoxia promotes Mycobacterium tuberculosis-specific up-regulation of granulysin in human T cells.

    PubMed

    Zenk, Sebastian F; Vollmer, Michael; Schercher, Esra; Kallert, Stephanie; Kubis, Jan; Stenger, Steffen

    2016-06-01

    Oxygen tension affects local immune responses in inflammation and infection. In tuberculosis mycobacteria avoid hypoxic areas and preferentially persist and reactivate in the oxygen-rich apex of the lung. Oxygen restriction activates antimicrobial effector mechanisms in macrophages and restricts growth of intracellular Mycobacterium tuberculosis (M.Tb). The effect of oxygen restriction on T cell-mediated antimicrobial effector mechanisms is unknown. Therefore we determined the influence of hypoxia on the expression of granulysin, an antimicrobial peptide of lymphocytes. Hypoxia increased the antigen-specific up-regulation of granulysin mRNA and protein in human CD4(+) and CD8(+) T lymphocytes. This observation was functionally relevant, because oxygen restriction supported the growth-limiting effect of antigen-specific T cells against virulent M.Tb residing in primary human macrophages. Our results provide evidence that oxygen restriction promotes the expression of granulysin and suggest that this effect-in conjunction with additional T cell-mediated immune responses-supports protection against mycobacteria. The therapeutic modulation of oxygen availability may offer a new strategy for the host-directed therapy of infectious diseases with intracellular pathogens.

  16. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis

    PubMed Central

    Roth Flach, Rachel J.; Skoura, Athanasia; Matevossian, Anouch; Danai, Laura V.; Zheng, Wei; Cortes, Christian; Bhattacharya, Samit K.; Aouadi, Myriam; Hagan, Nana; Yawe, Joseph C.; Vangala, Pranitha; Menendez, Lorena Garcia; Cooper, Marcus P.; Fitzgibbons, Timothy P.; Buckbinder, Leonard; Czech, Michael P.

    2015-01-01

    Signalling pathways that control endothelial cell (EC) permeability, leukocyte adhesion and inflammation are pivotal for atherosclerosis initiation and progression. Here we demonstrate that the Sterile-20-like mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), which has been implicated in inflammation, is abundantly expressed in ECs and in atherosclerotic plaques from mice and humans. On the basis of endothelial-specific MAP4K4 gene silencing and gene ablation experiments in Apoe−/− mice, we show that MAP4K4 in ECs markedly promotes Western diet-induced aortic macrophage accumulation and atherosclerotic plaque development. Treatment of Apoe−/− and Ldlr−/− mice with a selective small-molecule MAP4K4 inhibitor also markedly reduces atherosclerotic lesion area. MAP4K4 silencing in cultured ECs attenuates cell surface adhesion molecule expression while reducing nuclear localization and activity of NFκB, which is critical for promoting EC activation and atherosclerosis. Taken together, these results reveal that MAP4K4 is a key signalling node that promotes immune cell recruitment in atherosclerosis. PMID:26688060

  17. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells

    PubMed Central

    Spolski, Rosanne; Robertson, Avril A. B.; Klos, Andreas; Rheinheimer, Claudia; Dutow, Pavel; Woodruff, Trent M.; Yu, Zu Xi; O'Neill, Luke A.; Coll, Rebecca C.; Sher, Alan; Leonard, Warren J.; Köhl, Jörg; Monk, Pete; Cooper, Matthew A.; Arno, Matthew; Afzali, Behdad; Lachmann, Helen J.; Cope, Andrew P.; Mayer-Barber, Katrin D.; Kemper, Claudia

    2016-01-01

    The NLRP3 inflammasome controls interleukin-1β maturation in antigen-presenting cells, but a direct role for NLRP3 in human adaptive immune cells has not been described. We found that the NLRP3 inflammasome assembles in human CD4+ T cells and initiates caspase-1–dependent interleukin-1β secretion, thereby promoting interferon-γ production and T helper 1 (TH1) differentiation in an autocrine fashion. NLRP3 assembly requires intracellular C5 activation and stimulation of C5a receptor 1 (C5aR1), which is negatively regulated by surface-expressed C5aR2. Aberrant NLRP3 activity in T cells affects inflammatory responses in human autoinflammatory disease and in mouse models of inflammation and infection. Our results demonstrate that NLRP3 inflammasome activity is not confined to “innate immune cells” but is an integral component of normal adaptive TH1 responses. PMID:27313051

  18. T-4G Simulator and T-4 Ground Training Devices in USAF Undergraduate Pilot Training.

    ERIC Educational Resources Information Center

    Woodruff, Robert R.; Smith, James F.

    The objective of the project was to investigate the utility of using an A/F37A-T4G T-37 flight simulator within the context of Air Force undergraduate pilot training. Twenty-one subjects, selected from three undergraduate pilot training classes, were given contact flight training in a TP4G/EPT simulator before going to T-37 aircraft for further…

  19. Engagement of Cytotoxic T Lymphocyte–associated Antigen 4 (CTLA-4) Induces Transforming Growth Factor β (TGF-β) Production by Murine CD4+ T Cells

    PubMed Central

    Chen, Wanjun; Jin, Wenwen; Wahl, Sharon M.

    1998-01-01

    Evidence indicates that cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) may negatively regulate T cell activation, but the basis for the inhibitory effect remains unknown. We report here that cross-linking of CTLA-4 induces transforming growth factor β (TGF-β) production by murine CD4+ T cells. CD4+ T helper type 1 (Th1), Th2, and Th0 clones all secrete TGF-β after antibody cross-linking of CTLA-4, indicating that induction of TGF-β by CTLA-4 signaling represents a ubiquitous feature of murine CD4+ T cells. Stimulation of the CD3–T cell antigen receptor complex does not independently induce TGF-β, but is required for optimal CTLA-4–mediated TGF-β production. The consequences of cross-linking of CTLA-4, together with CD3 and CD28, include inhibition of T cell proliferation and interleukin (IL)-2 secretion, as well as suppression of both interferon γ (Th1) and IL-4 (Th2). Moreover, addition of anti–TGF-β partially reverses this T cell suppression. When CTLA-4 was cross-linked in T cell populations from TGF-β1 gene–deleted (TGF-β1−/−) mice, the T cell responses were only suppressed 38% compared with 95% in wild-type mice. Our data demonstrate that engagement of CTLA-4 leads to CD4+ T cell production of TGF-β, which, in part, contributes to the downregulation of T cell activation. CTLA-4, through TGF-β, may serve as a counterbalance for CD28 costimulation of IL-2 and CD4+ T cell activation. PMID:9815262

  20. Variants in the Dopamine-4-Receptor Gene Promoter Are Not Associated with Sensation Seeking in Skiers

    PubMed Central

    Thomson, Cynthia J.; Rajala, Amelia K.; Carlson, Scott R.; Rupert, Jim L.

    2014-01-01

    Sensation seeking is a personality trait that has been associated with disinhibited behaviours including substance use and gambling, but also with high-risk sport practices including skydiving, paragliding, and downhill skiing. Twin studies have shown that sensation seeking is moderately heritable, and candidate genes encoding components involved in dopaminergic transmission have been investigated as contributing to this type of behaviour. To determine whether variants in the regulatory regions of the dopamine-4-receptor gene (DRD4) influenced sport-specific sensation seeking, we analyzed five polymorphisms (−1106T/C, −906T/C, −809G/A, −291C/T, 120-bp duplication) in the promoter region of the gene in a cohort of skiers and snowboarders (n = 599) that represented a broad range of sensation seeking behaviours. We grouped subjects by genotype at each of the five loci and compared impulsive sensation seeking and domain-specific (skiing) sensation seeking between groups. There were no significant associations between genotype(s) and general or domain-specific sensation seeking in the skiers and snowboarders, suggesting that while DRD4 has previously been implicated in sensation seeking, the promoter variants investigated in this study do not contribute to sensation seeking in this athlete population. PMID:24691022

  1. Combination L-T3 and L-T4 therapy for hypothyroidism.

    PubMed

    Wartofsky, Leonard

    2013-10-01

    Because of the longstanding controversy regarding whether hypothyroid patients can be optimally replaced by treatment with levothyroxine (L-T4) alone, numerous studies have addressed potential benefits of combined therapy of triiodothyronine (T3) with L-T4. Results of these studies have failed to support a potential benefit of combined therapy. A strong argument for the addition of L-T3 to L-T4 monotherapy has been lacking until recent genetic studies indicated a rationale for such therapy among a small fraction of the hypothyroid patient population. Interest in this issue has focused on the importance of the deiodinases in maintaining the euthyroid state and the role of genetic polymorphisms in the deiodinase genes that would affect thyroid hormone concentrations in both blood and tissues. One such polymorphism in the D2 gene, Thr92Ala, is associated with reduced T4 to T3 activation in skeletal muscle and thyroid, linked to obesity and alterations in thyroid-pituitary feedback, and in responses to thyroid hormone treatment. Although our professional organizations continue to recommend L-T4 alone for the treatment of hypothyroidism, the possibility of a D2 gene polymorphism should be considered in patients on L-T4 monotherapy who continue to complain of fatigue in spite of dosage achieving low normal serum thyroid stimulating hormone levels. A suggestive clue to the presence of this polymorphism could be a higher than normal free T4/free T3 ratio. Clinicians could consider adding T3 as a therapeutic trial in selected patients. Future well controlled clinical trials will be required to more fully resolve the controversy.

  2. Enhanced interleukin-4 production in CD4+ T cells and elevated immunoglobulin E levels in antigen-primed mice by bisphenol A and nonylphenol, endocrine disruptors: involvement of nuclear factor-AT and Ca2+

    PubMed Central

    Lee, Mee H; Chung, Su W; Kang, Bok Y; Park, Jin; Lee, Choon H; Hwang, Seung Y; Kim, Tae S

    2003-01-01

    Bisphenol A (BPA) and p-nonylphenol (NP) are representative endocrine disruptors (EDs) that may have adverse effects on human health. The influence of these compounds on allergic immune responses remains unclear. In this study, we have examined the effects of BPA and NP on production of interleukin-4 (IL-4), a pro-inflammatory cytokine closely associated with allergic immune responses. Both BPA and NP significantly enhanced IL-4 production in keyhole limpet haemocyanin (KLH)-primed CD4+ T cells in a concentration-dependent manner. Treatment with BPA or NP in vivo resulted in significant increase of IL-4 production in CD4+ T cells and of antigen-specific immunoglobulin E (IgE) levels in the sera of KLH-primed mice. Furthermore, BPA and NP enhanced the activation of IL-4 gene promoter in EL4 T cells transiently transfected with IL-4 promoter/reporter constructs, and the enhancing effect mapped to a region in the IL-4 promoter containing binding sites for nuclear factor (NF)-AT. Activation of T lymphocytes by phorbol 12-myristate 13-acetate/ionomycin resulted in markedly enhanced binding activities to the NF-AT site, which significantly increased upon addition of BPA or NP, as demonstrated by the electrophoretic mobility shift assay, indicating that the transcription factor NF-AT was involved in the enhancing effect of BPA and NP on IL-4 production. The enhancement of IL-4 production by BPA or NP was significantly reduced by nitrendipine, a blocker of Ca2+ influx, and by FK506, a calcineurin inhibitor. FK506 inhibited the NF-AT–DNA binding activity and IL-4 gene promoter activity enhanced by BPA or NP. These results represent the first report describing possible enhancement of allergic response by EDs through increasing IL-4 production in CD4+ T cells and antigen-specific IgE levels in the sera via the stimulation of Ca2+/calcineurin-dependent NF-AT activation. PMID:12709020

  3. Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4

    PubMed Central

    Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M.; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L.; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A.; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L.; Burgdorf, Sven

    2016-01-01

    The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8+ T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte–associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality. PMID:27601670

  4. Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4.

    PubMed

    Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L; Burgdorf, Sven

    2016-09-20

    The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8(+) T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality.

  5. A Significant Increase of RNAi Efficiency in Human Cells by the CMV Enhancer with a tRNAlys Promoter

    PubMed Central

    Weiwei, Ma; Zhenhua, Xie; Feng, Liu; Hang, Ning; Yuyang, Jiang

    2009-01-01

    RNA interference (RNAi) is the process of mRNA degradation induced by double-stranded RNA in a sequence-specific manner. Different types of promoters, such as U6, H1, tRNA, and CMV, have been used to control the inhibitory effect of RNAi expression vectors. In the present study, we constructed two shRNA expression vectors, respectively, controlled by tRNAlys and CMV enhancer-tRNAlys promoters. Compared to the vectors with tRNAlys or U6 promoter, the vector with a CMV enhancer-tRNAlys promoter silenced pokemon more efficiently on both the mRNA and the protein levels. Meanwhile, the silencing of pokemon inhibited the proliferation of MCF7 cells, but the induction of apoptosis of MCF7 cells was not observed. We conclude that the CMV enhancer-tRNAlys promoter may be a powerful tool in driving intracellular expression of shRNA which can efficiently silence targeted gene. PMID:19859553

  6. Genome-wide characterization of vibrio phage ϕpp2 with unique arrangements of the mob-like genes

    PubMed Central

    2012-01-01

    Background Vibrio parahaemolyticus is associated with gastroenteritis, wound infections, and septicemia in human and animals. Phages can control the population of the pathogen. So far, the only one reported genome among giant vibriophages is KVP40: 244,835 bp with 26% coding regions that have T4 homologs. Putative homing endonucleases (HE) were found in Vibrio phage KVP40 bearing one segD and Vibrio cholerae phage ICP1 carrying one mobC/E and one segG. Results A newly isolated Vibrio phage ϕpp2, which was specific to the hosts of V. parahaemolyticus and V. alginolyticus, featured a long nonenveloped head of ~90 × 150 nm and tail of ~110 nm. The phage can survive at 50°C for more than one hour. The genome of the phage ϕpp2 was sequenced to be 246,421 bp, which is 1587 bp larger than KVP40. 383 protein-encoding genes (PEGs) and 30 tRNAs were found in the phage ϕpp2. Between the genomes of ϕpp2 and KVP40, 254 genes including 29 PEGs for viral structure were of high similarity, whereas 17 PEGs of KVP40 and 21 PEGs of ϕpp2 were unmatched. In both genomes, the capsid and tail genes have been identified, as well as the extensive representation of the DNA replication, recombination, and repair enzymes. In addition to the three giant indels of 1098, 1143 and 3330 nt, ϕpp2 possessed unique proteins involved in potassium channel, gp2 (DNA end protector), tRNA nucleotidyltransferase, and mob-type HEs, which were not reported in KVP40. The ϕpp2 PEG274, with strong promoters and translational initiation, was identified to be a mobE type, flanked by NrdA and NrdB/C homologs. Coincidently, several pairs of HE-flanking homologs with empty center were found in the phages of Vibrio phages ϕpp2 and KVP40, as well as in Aeromonas phages (Aeh1 and Ae65), and cyanophage P-SSM2. Conclusions Vibrio phage ϕpp2 was characterized by morphology, growth, and genomics with three giant indels and different types of HEs. The gene analysis on the required elements for transcription

  7. A novel subset of helper T cells promotes immune responses by secreting GM-CSF

    PubMed Central

    Zhang, J; Roberts, A I; Liu, C; Ren, G; Xu, G; Zhang, L; Devadas, S; Shi, Yufang

    2013-01-01

    Helper T cells are crucial for maintaining proper immune responses. Yet, they have an undefined relationship with one of the most potent immune stimulatory cytokines, granulocyte macrophage-colony-stimulating factor (GM-CSF). By depleting major cytokines during the differentiation of CD4+ T cells in vitro, we derived cells that were found to produce large amounts of GM-CSF, but little of the cytokines produced by other helper T subsets. By their secretion of GM-CSF, this novel subset of helper T cells (which we have termed ThGM cells) promoted the production of cytokines by other T-cell subtypes, including type 1 helper T cell (Th1), type 2 helper T cell (Th2), type 1 cytotoxic T cell (Tc1), type 2 cytotoxic T cell (Tc2), and naive T cells, as evidenced by the fact that antibody neutralization of GM-CSF abolished this effect. ThGM cells were found to be highly prone to activation-induced cell death (AICD). Inhibitors of TRAIL or granzymes could not block AICD in ThGM cells, whereas inhibition of FasL/Fas interaction partially rescued ThGM cells from AICD. Thus, ThGM cells are a novel subpopulation of T helper cells that produce abundant GM-CSF, exhibit exquisite susceptibility to apoptosis, and therefore play a pivotal role in the regulation of the early stages of immune responses. PMID:24076588

  8. Induced miR-99a expression represses Mtor cooperatively with miR-150 to promote regulatory T-cell differentiation

    PubMed Central

    Warth, Sebastian C; Hoefig, Kai P; Hiekel, Anian; Schallenberg, Sonja; Jovanovic, Ksenija; Klein, Ludger; Kretschmer, Karsten; Ansel, K Mark; Heissmeyer, Vigo

    2015-01-01

    Peripheral induction of regulatory T (Treg) cells provides essential protection from inappropriate immune responses. CD4+ T cells that lack endogenous miRNAs are impaired to differentiate into Treg cells, but the relevant miRNAs are unknown. We performed an overexpression screen with T-cell-expressed miRNAs in naive mouse CD4+ T cells undergoing Treg differentiation. Among 130 candidates, the screen identified 29 miRNAs with a negative and 10 miRNAs with a positive effect. Testing reciprocal Th17 differentiation revealed specific functions for miR-100, miR-99a and miR-10b, since all of these promoted the Treg and inhibited the Th17 program without impacting on viability, proliferation and activation. miR-99a cooperated with miR-150 to repress the expression of the Th17-promoting factor mTOR. The comparably low expression of miR-99a was strongly increased by the Treg cell inducer “retinoic acid”, and the abundantly expressed miR-150 could only repress Mtor in the presence of miR-99a. Our data suggest that induction of Treg cell differentiation is regulated by a miRNA network, which involves cooperation of constitutively expressed as well as inducible miRNAs. PMID:25712478

  9. Changes in Reactivity In Vitro of CD4+CD25+ and CD4+CD25− T Cell Subsets in Transplant Tolerance

    PubMed Central

    Hall, Bruce M.; Robinson, Catherine M.; Plain, Karren M.; Verma, Nirupama D.; Tran, Giang T.; Nomura, Masaru; Carter, Nicole; Boyd, Rochelle; Hodgkinson, Suzanne J.

    2017-01-01

    Transplant tolerance induced in adult animals is mediated by alloantigen-specific CD4+CD25+ T cells, yet in many models, proliferation of CD4+ T cells from hosts tolerant to specific-alloantigen in vitro is not impaired. To identify changes that may diagnose tolerance, changes in the patterns of proliferation of CD4+, CD4+CD25+, and CD4+CD25− T cells from DA rats tolerant to Piebald Virol Glaxo rat strain (PVG) cardiac allografts and from naïve DA rats were examined. Proliferation of CD4+ T cells from both naïve and tolerant hosts was similar to both PVG and Lewis stimulator cells. In mixed lymphocyte culture to PVG, proliferation of naïve CD4+CD25− T cells was greater than naïve CD4+ T cells. In contrast, proliferation of CD4+CD25− T cells from tolerant hosts to specific-donor PVG was not greater than CD4+ T cells, whereas their response to Lewis and self-DA was greater than CD4+ T cells. Paradoxically, CD4+CD25+ T cells from tolerant hosts did not proliferate to PVG, but did to Lewis, whereas naïve CD4+CD25+ T cells proliferate to both PVG and Lewis but not to self-DA. CD4+CD25+ T cells from tolerant, but not naïve hosts, expressed receptors for interferon (IFN)-γ and IL-5 and these cytokines promoted their proliferation to specific-alloantigen PVG but not to Lewis or self-DA. We identified several differences in the patterns of proliferation to specific-donor alloantigen between cells from tolerant and naïve hosts. Most relevant is that CD4+CD25+ T cells from tolerant hosts failed to proliferate or suppress to specific donor in the absence of either IFN-γ or IL-5. The proliferation to third-party and self of each cell population from tolerant and naïve hosts was similar and not affected by IFN-γ or IL-5. Our findings suggest CD4+CD25+ T cells that mediate transplant tolerance depend on IFN−γ or IL-5 from alloactivated Th1 and Th2 cells. PMID:28878770

  10. Association of functional SNP-1562C>T in MMP9 promoter with proliferative diabetic retinopathy in north Indian type 2 diabetes mellitus patients.

    PubMed

    Singh, Kanhaiya; Goyal, Prabhjot; Singh, Manju; Deshmukh, Sujit; Upadhyay, Divyesh; Kant, Sri; Agrawal, Neeraj K; Gupta, Sanjeev K; Singh, Kiran

    2017-12-01

    Retinal angiogenesis is a hallmark of diabetic retinopathy. Matrix Metalloproteinases (MMPs) are involved in degradation of extracellular matrix (ECM). Functional SNP-1562C>T in the promoter of the MMP-9 gene results increase in transcriptional activity. The present work was designed to evaluate the contribution of functional SNP-1562C>T of MMP-9 gene to the risk of proliferative diabetic retinopathy (PDR) in type 2 diabetes mellitus (T2DM) patients in north Indian Population. This Case control study comprised of a total of 645 individuals in which 320 were T2DM patients out of which 73 had PDR, 98 had non- proliferative diabetic retinopathy (NPDR), 149 T2DM cases without any eye related disease (DM) and 325 non diabetic healthy individuals as controls (non DM controls). Genotyping for SNP-1562C>T of MMP-9 was done by polymerase chain reactions followed by restriction analyses with specific endonucleases (PCR-RFLP). DNA sequencing was used to ascertain PCR-RFLP results. T allele frequency in PDR patients was 32.1%, 20.4% in NPDR, 15.4% in DM and 13.7% in controls. Statistically significant difference was observed in both allele and genotype distribution between the PDR versus non-DM control group (p<0.0001 by T allele; p=0.002 by TT and p<0.0001 by CT genotype). The present study suggests that the functional SNP-1562C>T in the promoter of the MMP-9 gene could be regarded as a major risk factor for PDR as increased MMP-9 production from high expressing T allele may promote retinal angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Regulation of the tumor marker Fascin by the viral oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1) depends on promoter activation and on a promoter-independent mechanism.

    PubMed

    Mohr, Caroline F; Gross, Christine; Bros, Matthias; Reske-Kunz, Angelika B; Biesinger, Brigitte; Thoma-Kress, Andrea K

    2015-11-01

    Adult T-cell leukemia/lymphoma is a highly infiltrative neoplasia of CD4(+) T-lymphocytes that occurs in about 5% of carriers infected with the deltaretrovirus human T-cell leukemia virus type 1 (HTLV-1). The viral oncoprotein Tax perturbs cellular signaling pathways leading to upregulation of host cell factors, amongst them the actin-bundling protein Fascin, an invasion marker of several types of cancer. However, transcriptional regulation of Fascin by Tax is poorly understood. In this study, we identified a triple mode of transcriptional induction of Fascin by Tax, which requires (1) NF-κB-dependent promoter activation, (2) a Tax-responsive region in the Fascin promoter, and (3) a promoter-independent mechanism sensitive to the Src family kinase inhibitor PP2. Thus, Tax regulates Fascin by a multitude of signals. Beyond, using Tax-expressing and virus-transformed lymphocytes as a model system, our study is the first to identify the invasion marker Fascin as a novel target of PP2, an inhibitor of metastasis. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Formononetin, a phyto-oestrogen, and its metabolites up-regulate interleukin-4 production in activated T cells via increased AP-1 DNA binding activity

    PubMed Central

    Park, Jin; Kim, Seung H; Cho, Daeho; Kim, Tae S

    2005-01-01

    Phyto-oestrogens are polyphenolic non-steroidal plant compounds with oestrogen-like biological activity. Phyto-oestrogens have many biological effects including oestrogen agonist/antagonist properties. However, the effect of phyto-oestrogens on allergic responses remains unclear. In this study we investigated whether formononetin, a phyto-oestrogen, and its metabolites, daidzein and equol, affect production of interleukin-4 (IL-4), a pro-inflammatory cytokine closely associated with allergic immune response, in primary CD4+ T cells and EL4 T lymphoma cells. Formononetin, daidzein and equol significantly enhanced IL-4 production from both CD4+ T cells and EL4 cells in a dose-dependent manner. Formononetin, daidzein and equol also enhanced IL-4 gene promoter activity in EL4 cells transiently transfected with IL-4 gene promoter constructs, but this effect was impaired in EL4 cells transfected with an IL-4 promoter construct deleted of P4 site carrying nuclear factor of activated T cells (NF-AT) and activator protein-1 (AP-1) binding sites. In addition, formononetin, daidzein and equol increased AP-1 DNA binding activities while did not affect NF-AT DNA binding activities. The enhancing effects on IL-4 production and AP-1 DNA binding activities were abrogated by specific inhibitors for phosphatidylinositol-3-kinase (PI3K), protein kinase C (PKC) and p38 mitogen-activated protein kinase (MAPK), indicating that formononetin, daidzein and equol might enhance IL-4 production by increased activation of AP-1 through the PI3-K/PKC/p38 MAPK signalling pathway. These results suggest that phyto-oestrogens and some of their metabolites may increase allergic responses via the enhancement of IL-4 production in T cells. PMID:16108819

  13. Bicarbonate increases binding affinity of Vibrio cholerae ToxT to virulence gene promoters.

    PubMed

    Thomson, Joshua J; Withey, Jeffrey H

    2014-11-01

    The major Vibrio cholerae virulence gene transcription activator, ToxT, is responsible for the production of the diarrhea-inducing cholera toxin (CT) and the major colonization factor, toxin coregulated pilus (TCP). In addition to the two primary virulence factors mentioned, ToxT is responsible for the activation of accessory virulence genes, such as aldA, tagA, acfA, acfD, tcpI, and tarAB. ToxT activity is negatively modulated by bile and unsaturated fatty acids found in the upper small intestine. Conversely, previous work identified another intestinal signal, bicarbonate, which enhances the ability of ToxT to activate production of CT and TCP. The work presented here further elucidates the mechanism for the enhancement of ToxT activity by bicarbonate. Bicarbonate was found to increase the activation of ToxT-dependent accessory virulence promoters in addition to those that produce CT and TCP. Bicarbonate is taken up into the V. cholerae cell, where it positively affects ToxT activity by increasing DNA binding affinity for the virulence gene promoters that ToxT activates regardless of toxbox configuration. The increase in ToxT binding affinity in the presence of bicarbonate explains the elevated level of virulence gene transcription. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Bicarbonate Increases Binding Affinity of Vibrio cholerae ToxT to Virulence Gene Promoters

    PubMed Central

    Thomson, Joshua J.

    2014-01-01

    The major Vibrio cholerae virulence gene transcription activator, ToxT, is responsible for the production of the diarrhea-inducing cholera toxin (CT) and the major colonization factor, toxin coregulated pilus (TCP). In addition to the two primary virulence factors mentioned, ToxT is responsible for the activation of accessory virulence genes, such as aldA, tagA, acfA, acfD, tcpI, and tarAB. ToxT activity is negatively modulated by bile and unsaturated fatty acids found in the upper small intestine. Conversely, previous work identified another intestinal signal, bicarbonate, which enhances the ability of ToxT to activate production of CT and TCP. The work presented here further elucidates the mechanism for the enhancement of ToxT activity by bicarbonate. Bicarbonate was found to increase the activation of ToxT-dependent accessory virulence promoters in addition to those that produce CT and TCP. Bicarbonate is taken up into the V. cholerae cell, where it positively affects ToxT activity by increasing DNA binding affinity for the virulence gene promoters that ToxT activates regardless of toxbox configuration. The increase in ToxT binding affinity in the presence of bicarbonate explains the elevated level of virulence gene transcription. PMID:25182489

  15. Cell-contact-dependent activation of CD4+ T cells by adhesion molecules on synovial fibroblasts.

    PubMed

    Mori, Masato; Hashimoto, Motomu; Matsuo, Takashi; Fujii, Takao; Furu, Moritoshi; Ito, Hiromu; Yoshitomi, Hiroyuki; Hirose, Jun; Ito, Yoshinaga; Akizuki, Shuji; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Ohmura, Koichiro; Mimori, Tsuneyo

    2017-05-01

    To determine how cell-cell contact with synovial fibroblasts (SF) influence on the proliferation and cytokine production of CD4 +  T cells. Naïve CD4 +  T cells were cultured with SF from rheumatoid arthritis patients, stimulated by anti-CD3/28 antibody, and CD4 +  T cell proliferation and IFN-γ/IL-17 production were analyzed. To study the role of adhesion molecules, cell contact was blocked by transwell plate or anti-intracellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1(VCAM-1) antibody. To study the direct role of adhesion molecules for CD4 +  T cells, CD161 +  or CD161 - naïve CD4 +  T cells were stimulated on plastic plates coated by recombinant ICAM-1 or VCAM-1, and the source of IFN-γ/IL-17 were analyzed. SF enhanced naïve CD4 +  T cell proliferation and IFN-γ/IL-17 production in cell-contact and in part ICAM-1-/VCAM-1-dependent manner. Plate-coated ICAM-1 and VCAM-1 enhanced naïve CD4 +  T cell proliferation and IFN-γ production, while VCAM-1 efficiently promoting IL-17 production. CD161 +  naïve T cells upregulating LFA-1 and VLA-4 were the major source of IFN-γ/IL-17 upon interaction with ICAM-1/VCAM-1. CD4 +  T cells rapidly expand and secrete IFN-γ/IL-17 upon cell-contact with SF via adhesion molecules. Interfering with ICAM-1-/VCAM-1 may be beneficial for inhibiting RA synovitis.

  16. Leishmania-infected MHC class IIhigh dendritic cells polarize CD4+ T cells toward a nonprotective T-bet+ IFN-γ+ IL-10+ phenotype.

    PubMed

    Resende, Mariana; Moreira, Diana; Augusto, Jorge; Cunha, Joana; Neves, Bruno; Cruz, Maria Teresa; Estaquier, Jérôme; Cordeiro-da-Silva, Anabela; Silvestre, Ricardo

    2013-07-01

    A differential behavior among infected and bystander dendritic cells (DCs) has been explored in different infection models. We have analyzed both populations sorted on contact with visceral Leishmania infantum on a susceptible mice model evaluating the subsequent repercussions on adaptive immune response. Our results demonstrate a clear dichotomy between the immunomodulatory abilities of bystander and infected DCs. The bystander population presents increased levels of IL-12p40 and costimulatory molecules being capable to induce CD4(+) T cell activation with immune protective capabilities. In contrast, infected DCs, which express lower costimulatory molecules and higher levels of IL-10, promote the development of Leishmania Ag-specific, nonprotective T-bet(+)IFN-γ(+)IL-10(+) CD4(+) T cells with an effector phenotype. This specific polarization was found to be dependent on IL-12p70. Splenic infected DCs recovered from chronic infected animals are similarly capable to polarize ex vivo syngeneic naive CD4(+) T cells toward a T-bet(+)IFN-γ(+)IL-10(+) phenotype. Further analysis revealed that only MHC class II(high)-infected DCs were responsible for this polarization. The adoptive transfer of such polarized CD4(+) T cells facilitates visceral leishmaniasis in BALB/c mice in a clear contrast with their counterpart generated with bystander DCs that significantly potentiate protection. Further, we demonstrated that CD4(+) T cells primed by infected DCs in an IL-10 free system, thus deprived of T-bet(+)IFN-γ(+)IL-10(+) population, restore the immune response and reduce parasite load, supporting a deleterious role of IFN-γ(+)IL-10(+) T cells in the maintenance of infection. Overall, our results highlight novel subversion mechanisms by which nonprotective T-bet(+)IFN-γ(+)IL-10(+) T cells are associated with chronicity and prolonged parasite persistence.

  17. tRNAs promote nuclear import of HIV-1 intracellular reverse transcription complexes.

    PubMed

    Zaitseva, Lyubov; Myers, Richard; Fassati, Ariberto

    2006-10-01

    Infection of non-dividing cells is a biological property of HIV-1 crucial for virus transmission and AIDS pathogenesis. This property depends on nuclear import of the intracellular reverse transcription and pre-integration complexes (RTCs/PICs). To identify cellular factors involved in nuclear import of HIV-1 RTCs, cytosolic extracts were fractionated by chromatography and import activity examined by the nuclear import assay. A near-homogeneous fraction was obtained, which was active in inducing nuclear import of purified and labeled RTCs. The active fraction contained tRNAs, mostly with defective 3' CCA ends. Such tRNAs promoted HIV-1 RTC nuclear import when synthesized in vitro. Active tRNAs were incorporated into and recovered from virus particles. Mutational analyses indicated that the anticodon loop mediated binding to the viral complex whereas the T-arm may interact with cellular factors involved in nuclear import. These tRNA species efficiently accumulated into the nucleus on their own in a energy- and temperature-dependent way. An HIV-1 mutant containing MLV gag did not incorporate tRNA species capable of inducing HIV-1 RTC nuclear import and failed to infect cell cycle-arrested cells. Here we provide evidence that at least some tRNA species can be imported into the nucleus of human cells and promote HIV-1 nuclear import.

  18. Synthesis and structure of the extended phosphazane ligand [(1,4-C6H4){N(μ-PN(t)Bu)2N(t)Bu}2](4).

    PubMed

    Sevilla, Raquel; Less, Robert J; García-Rodríguez, Raúl; Bond, Andrew D; Wright, Dominic S

    2016-02-07

    The reaction of the phenylene-bridged precursor (1,4-C6H4)[N(PCl2)2]2 with (t)BuNH2 in the presence of Et3N gives the new ligand precursor (1,4-C6H4)[N(μ-N(t)Bu)2(PNH(t)Bu)2]2, deprotonation of which with Bu2Mg gives the novel tetraanion [(1,4-C6H4){N(μ-N(t)Bu)2(PN(t)Bu)2}2](4-).

  19. IFNγ Signaling Endows DCs with the Capacity to Control Type I Inflammation during Parasitic Infection through Promoting T-bet+ Regulatory T Cells

    PubMed Central

    Lee, Hyang-Mi; Fleige, Anne; Forman, Ruth; Cho, Sunglim; Khan, Aly Azeem; Lin, Ling-Li; Nguyen, Duc T.; O'Hara-Hall, Aisling; Yin, Zhinan; Hunter, Christopher A.; Muller, Werner; Lu, Li-Fan

    2015-01-01

    IFNγ signaling drives dendritic cells (DCs) to promote type I T cell (Th1) immunity. Here, we show that activation of DCs by IFNγ is equally crucial for the differentiation of a population of T-bet+ regulatory T (Treg) cells specialized to inhibit Th1 immune responses. Conditional deletion of IFNγ receptor in DCs but not in Treg cells resulted in a severe defect in this specific Treg cell subset, leading to exacerbated immune pathology during parasitic infections. Mechanistically, IFNγ-unresponsive DCs failed to produce sufficient amount of IL-27, a cytokine required for optimal T-bet induction in Treg cells. Thus, IFNγ signalling endows DCs with the ability to efficiently control a specific type of T cell immunity through promoting a corresponding Treg cell population. PMID:25658840

  20. Transporters for Antiretroviral Drugs in Colorectal CD4+ T Cells and Circulating α4β7 Integrin CD4+ T Cells: Implications for HIV Microbicides.

    PubMed

    Mukhopadhya, Indrani; Murray, Graeme I; Duncan, Linda; Yuecel, Raif; Shattock, Robin; Kelly, Charles; Iannelli, Francesco; Pozzi, Gianni; El-Omar, Emad M; Hold, Georgina L; Hijazi, Karolin

    2016-09-06

    CD4+ T lymphocytes in the colorectal mucosa are key in HIV-1 transmission and dissemination. As such they are also the primary target for antiretroviral (ARV)-based rectal microbicides for pre-exposure prophylaxis. Drug transporters expressed in mucosal CD4+ T cells determine ARV distribution across the cell membrane and, most likely, efficacy of microbicides. We describe transporters for antiretroviral drugs in colorectal mucosal CD4+ T lymphocytes and compare gene expression with circulating α4β7+CD4+ T cells, which traffic to the intestine and have been shown to be preferentially infected by HIV-1. Purified total CD4+ T cells were obtained from colorectal tissue and blood samples by magnetic separation. CD4+ T cells expressing α4β7 integrin were isolated by fluorescence-activated cell sorting from peripheral blood mononuclear cells of healthy volunteers. Expressions of 15 efflux and uptake drug transporter genes were quantified using Taqman qPCR assays. Expression of efflux transporters MRP3, MRP5, and BCRP and uptake transporter CNT2 were significantly higher in colorectal CD4+ T cells compared to circulating CD4+ T cells (p = 0.01-0.03). Conversely, circulating α4β7+CD4+ T cells demonstrated significantly higher expression of OATPD compared to colorectal CD4+ T cells (p = 0.001). To the best of our knowledge this is the first report of drug transporter gene expression in colorectal CD4+ and peripheral α4β7+CD4+ T cells. The qualitative and quantitative differences in drug transporter gene expression profiles between α4β7+CD4+ T cells and total mucosal CD4+ T cells may have significant implications for the efficacy of rectally delivered ARV-microbicides. Most notably, we have identified efflux drug transporters that could be targeted by selective inhibitors or beneficial drug-drug interactions to enhance intracellular accumulation of antiretroviral drugs.

  1. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion.

    PubMed

    Oliphant, Christopher J; Hwang, You Yi; Walker, Jennifer A; Salimi, Maryam; Wong, See Heng; Brewer, James M; Englezakis, Alexandros; Barlow, Jillian L; Hams, Emily; Scanlon, Seth T; Ogg, Graham S; Fallon, Padraic G; McKenzie, Andrew N J

    2014-08-21

    Group 2 innate lymphoid cells (ILC2s) release interleukin-13 (IL-13) during protective immunity to helminth infection and detrimentally during allergy and asthma. Using two mouse models to deplete ILC2s in vivo, we demonstrate that T helper 2 (Th2) cell responses are impaired in the absence of ILC2s. We show that MHCII-expressing ILC2s interact with antigen-specific T cells to instigate a dialog in which IL-2 production from T cells promotes ILC2 proliferation and IL-13 production. Deletion of MHCII renders IL-13-expressing ILC2s incapable of efficiently inducing Nippostrongylus brasiliensis expulsion. Thus, during transition to adaptive T cell-mediated immunity, the ILC2 and T cell crosstalk contributes to their mutual maintenance, expansion and cytokine production. This interaction appears to augment dendritic-cell-induced T cell activation and identifies a previously unappreciated pathway in the regulation of type-2 immunity. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Effects of potassium iodide in concentrations of TSH, tT3 and tT4 in serum of subjects with sporotrichosis.

    PubMed

    Ramírez Soto, Max Carlos

    2014-08-01

    The saturated potassium iodide solution (SSKI) as treatment for sporotrichosis may cause hypothyroidism by suppressing the synthesis of thyroid hormones (tT3 and tT4 ) and the iodine excess could lead to thyrotoxicosis. Evaluating the changes in serum levels of TSH, tT3 and tT4 in euthyroid patients with sporotrichosis treated with SSKI. For the selection of euthyroid patients, TSH, tT3 and tT4 concentrations were measured for those adults and children diagnosed with sporotrichosis. Each paediatric patient was administered SSKI orally in increasing doses of 2-20 drops/3 times/day and 4-40 drops/3 times/day in adults. Serum concentrations of TSH, tT3 and tT4 were measured 20 days after started the treatment and 15 days posttreatment. Eight euthyroid patients aged between 2 to 65 years old were included. After 20 days of treatment, two suffered subclinical hypothyroidism, one developed subclinical hyperthyroidism, and one hyperthyroxinaemia euthyroid. At 15 days posttreatment only four patients were evaluated and all serum levels of TSH, tT3 and tT4 were normal. Some euthyroid patients with sporotrichosis can develop hyperthyroidism or subclinical iodine-induced hypothyroidism, during the administration of 3 or 6 g SSKI/day. © 2014 Blackwell Verlag GmbH.

  3. Limited CD4+ T cell proliferation leads to preservation of CD4+ T cell counts in SIV-infected sooty mangabeys.

    PubMed

    Chan, Ming Liang; Petravic, Janka; Ortiz, Alexandra M; Engram, Jessica; Paiardini, Mirko; Cromer, Deborah; Silvestri, Guido; Davenport, Miles P

    2010-12-22

    Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections result in chronic virus replication and progressive depletion of CD4+ T cells, leading to immunodeficiency and death. In contrast, 'natural hosts' of SIV experience persistent infection with high virus replication but no severe CD4+ T cell depletion, and remain AIDS-free. One important difference between pathogenic and non-pathogenic infections is the level of activation and proliferation of CD4+ T cells. We analysed the relationship between CD4+ T cell number and proliferation in HIV, pathogenic SIV in macaques, and non-pathogenic SIV in sooty mangabeys (SMs) and mandrills. We found that CD4+ T cell proliferation was negatively correlated with CD4+ T cell number, suggesting that animals respond to the loss of CD4+ T cells by increasing the proliferation of remaining cells. However, the level of proliferation seen in pathogenic infections (SIV in rhesus macaques and HIV) was much greater than in non-pathogenic infections (SMs and mandrills). We then used a modelling approach to understand how the host proliferative response to CD4+ T cell depletion may impact the outcome of infection. This modelling demonstrates that the rapid proliferation of CD4+ T cells in humans and macaques associated with low CD4+ T cell levels can act to 'fuel the fire' of infection by providing more proliferating cells for infection. Natural host species, on the other hand, have limited proliferation of CD4+ T cells at low CD4+ T cell levels, which allows them to restrict the number of proliferating cells susceptible to infection.

  4. Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation

    PubMed Central

    2010-01-01

    Over 50 years of biological research with bacteriophage T4 includes notable discoveries in post-transcriptional control, including the genetic code, mRNA, and tRNA; the very foundations of molecular biology. In this review we compile the past 10 - 15 year literature on RNA-protein interactions with T4 and some of its related phages, with particular focus on advances in mRNA decay and processing, and on translational repression. Binding of T4 proteins RegB, RegA, gp32 and gp43 to their cognate target RNAs has been characterized. For several of these, further study is needed for an atomic-level perspective, where resolved structures of RNA-protein complexes are awaiting investigation. Other features of post-transcriptional control are also summarized. These include: RNA structure at translation initiation regions that either inhibit or promote translation initiation; programmed translational bypassing, where T4 orchestrates ribosome bypass of a 50 nucleotide mRNA sequence; phage exclusion systems that involve T4-mediated activation of a latent endoribonuclease (PrrC) and cofactor-assisted activation of EF-Tu proteolysis (Gol-Lit); and potentially important findings on ADP-ribosylation (by Alt and Mod enzymes) of ribosome-associated proteins that might broadly impact protein synthesis in the infected cell. Many of these problems can continue to be addressed with T4, whereas the growing database of T4-related phage genome sequences provides new resources and potentially new phage-host systems to extend the work into a broader biological, evolutionary context. PMID:21129205

  5. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

    PubMed

    Xu, Hui; Yan, Yaping; Williams, Mark S; Carey, Gregory B; Yang, Jingxian; Li, Hongmei; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2010-11-01

    MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK) and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.

  6. Progesterone promotes maternal-fetal tolerance by reducing human maternal T-cell polyfunctionality and inducing a specific cytokine profile.

    PubMed

    Lissauer, David; Eldershaw, Suzy A; Inman, Charlotte F; Coomarasamy, Aravinthan; Moss, Paul A H; Kilby, Mark D

    2015-10-01

    Progesterone is a steroid hormone essential for the maintenance of human pregnancy, and its actions are thought to include promoting maternal immune tolerance of the semiallogenic fetus. We report that exposure of maternal T cells to progesterone at physiological doses induced a unique skewing of the cytokine production profile of CD4(+) and CD8(+) T cells, with reductions not only in potentially deleterious IFN-γ and TNF-α production but also in IL-10 and IL-5. Conversely, production of IL-4 was increased. Maternal T cells also became less polyfunctional, focussing cytokine production toward profiles including IL-4. This was accompanied by reduced T-cell proliferation. Using fetal and viral antigen-specific CD8(+) T-cell clones, we confirmed that this as a direct, nonantigen-specific effect. Yet human T cells lacked conventional nuclear progesterone receptors, implicating a membrane progesterone receptor. CD4(+) and CD8(+) T cells responded to progesterone in a dose-dependent manner, with subtle effects at concentrations comparable to those in maternal blood, but profound effects at concentrations similar to those at the maternal-fetal interface. This characterization of how progesterone modulates T-cell function is important in understanding the normal biology of pregnancy and informing the rational use of progesterone therapy in pregnancies at risk of fetal loss. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 4 CFR 3.1 - Appointment, promotion, and assignment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Appointment, promotion, and assignment. 3.1 Section 3.1 Accounts GOVERNMENT ACCOUNTABILITY OFFICE PERSONNEL SYSTEM EMPLOYMENT § 3.1 Appointment, promotion, and assignment. Employees of GAO shall be appointed, promoted and assigned solely on the basis of merit and...

  8. Production of IL-10 by CD4+ regulatory T cells during the resolution of infection promotes the maturation of memory CD8+ T cells

    PubMed Central

    Laidlaw, Brian J; Cui, Weiguo; Amezquita, Robert A; Gray, Simon M; Guan, Tianxia; Lu, Yisi; Kobayashi, Yasushi; Flavell, Richard A; Kleinstein, Steven H; Craft, Joe; Kaech, Susan M

    2016-01-01

    Memory CD8+ T cells are critical for host defense upon reexposure to intracellular pathogens. We found that interleukin 10 (IL-10) derived from CD4+ regulatory T cells (Treg cells) was necessary for the maturation of memory CD8+ T cells following acute infection with lymphocytic choriomeningitis virus (LCMV). Treg cell–derived IL-10 was most important during the resolution phase, calming inflammation and the activation state of dendritic cells. Adoptive transfer of IL-10-sufficient Treg cells during the resolution phase ‘restored’ the maturation of memory CD8+ T cells in IL-10-deficient mice. Our data indicate that Treg cell–derived IL-10 is needed to insulate CD8+ T cells from inflammatory signals, and reveal that the resolution phase of infection is a critical period that influences the quality and function of developing memory CD8+ T cells. PMID:26147684

  9. Critical role of the tumor suppressor tuberous sclerosis complex 1 in dendritic cell activation of CD4 T cells by promoting MHC class II expression via IRF4 and CIITA.

    PubMed

    Pan, Hongjie; O'Brien, Thomas F; Wright, Gabriela; Yang, Jialong; Shin, Jinwook; Wright, Kenneth L; Zhong, Xiao-Ping

    2013-07-15

    Dendritic cell (DC) maturation is characterized by upregulation of cell-surface MHC class II (MHC-II) and costimulatory molecules, and production of a variety of cytokines that can shape both innate and adaptive immunity. Paradoxically, transcription of the MHC-II genes, as well as its activator, CIITA, is rapidly silenced during DC maturation. The mechanisms that control CIITA/MHC-II expression and silencing have not been fully understood. We report in this article that the tumor suppressor tuberous sclerosis complex 1 (TSC1) is a critical regulator of DC function for both innate and adaptive immunity. Its deficiency in DCs results in increased mammalian target of rapamycin (mTOR) complex 1 but decreased mTORC2 signaling, altered cytokine production, impaired CIITA/MHC-II expression, and defective Ag presentation to CD4 T cells after TLR4 stimulation. We demonstrate further that IFN regulatory factor 4 can directly bind to CIITA promoters, and decreased IFN regulatory factor 4 expression is partially responsible for decreased CIITA/MHC-II expression in TSC1-deficient DCs. Moreover, we identify that CIITA/MHC-II silencing during DC maturation requires mTOR complex 1 activity. Together, our data reveal unexpected roles of TSC1/mTOR that control multifaceted functions of DCs.

  10. Limited CD4+ T cell proliferation leads to preservation of CD4+ T cell counts in SIV-infected sooty mangabeys

    PubMed Central

    Chan, Ming Liang; Petravic, Janka; Ortiz, Alexandra M.; Engram, Jessica; Paiardini, Mirko; Cromer, Deborah; Silvestri, Guido; Davenport, Miles P.

    2010-01-01

    Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections result in chronic virus replication and progressive depletion of CD4+ T cells, leading to immunodeficiency and death. In contrast, ‘natural hosts’ of SIV experience persistent infection with high virus replication but no severe CD4+ T cell depletion, and remain AIDS-free. One important difference between pathogenic and non-pathogenic infections is the level of activation and proliferation of CD4+ T cells. We analysed the relationship between CD4+ T cell number and proliferation in HIV, pathogenic SIV in macaques, and non-pathogenic SIV in sooty mangabeys (SMs) and mandrills. We found that CD4+ T cell proliferation was negatively correlated with CD4+ T cell number, suggesting that animals respond to the loss of CD4+ T cells by increasing the proliferation of remaining cells. However, the level of proliferation seen in pathogenic infections (SIV in rhesus macaques and HIV) was much greater than in non-pathogenic infections (SMs and mandrills). We then used a modelling approach to understand how the host proliferative response to CD4+ T cell depletion may impact the outcome of infection. This modelling demonstrates that the rapid proliferation of CD4+ T cells in humans and macaques associated with low CD4+ T cell levels can act to ‘fuel the fire’ of infection by providing more proliferating cells for infection. Natural host species, on the other hand, have limited proliferation of CD4+ T cells at low CD4+ T cell levels, which allows them to restrict the number of proliferating cells susceptible to infection. PMID:20591864

  11. LAG-3 Represents a Marker of CD4+ T Cells with Regulatory Activity in Patients with Bone Fracture.

    PubMed

    Wang, Jun; Ti, Yunfan; Wang, Yicun; Guo, Guodong; Jiang, Hui; Chang, Menghan; Qian, Hongbo; Zhao, Jianning; Sun, Guojing

    2018-04-19

    The lymphocyte activation gene 3 (LAG-3) is a CD4 homolog with binding affinity to MHC class II molecules. It is thought that LAG-3 exerts a bimodal function, such that co-ligation of LAG-3 and CD3 could deliver an inhibitory signal in conventional T cells, whereas, on regulatory T cells, LAG-3 expression could promote their inhibitory function. In this study, we investigated the role of LAG-3 expression on CD4 + T cells in patients with long bone fracture. We found that LAG-3 + cells represented approximately 13% of peripheral blood CD4 + T cells on average. Compared to LAG-3 - CD4 + T cells, LAG-3 + CD4 + T cells presented significantly higher Foxp3 and CTLA-4 expression. Directly ex vivo or with TCR stimulation, LAG-3 + CD4 + T cells expressed significantly higher levels of IL-10 and TGF-β than LAG-3 - CD4 + T cells. Interestingly, blocking the LAG-3-MHC class II interaction actually increased the IL-10 expression by LAG-3 + CD4 + T cells. The frequency of LAG-3 + CD4 + T cell was positively correlated with restoration of healthy bone function in long bone fracture patients. These results together suggested that LAG-3 is a marker of CD4 + T cells with regulatory function; at the same time, LAG-3 might have limited the full suppressive potential of Treg cells.

  12. Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T cell differentiation

    PubMed Central

    Ding, Xilai; Chepelev, Iouri; Zhou, Xikun; Zhao, Wei; Wei, Gang; Cui, Jun; Zhao, Keji; Wang, Helen Y.; Wang, Rong-Fu

    2014-01-01

    Epigenetic factors have been implicated in the regulation of CD4+ T cell differentiation. Jmjd3 plays a role in many biological processes, but its in vivo function in T cell differentiation remains unknown. Here, we report that Jmjd3 ablation promotes CD4+ T cell differentiation into Th2 and Th17 cells in the small intestine and colon, and inhibits T cell differentiation into Th1 cells under different cytokine-polarizing conditions and in a Th1-dependent colitis model. Jmjd3 deficiency also restrains the plasticity of the conversion of Th2, Th17 or Treg cells to Th1 cells. The skewing of T cell differentiation is concomitant with changes in the expression of key transcription factors and cytokines. H3K27me3 and H3K4me3 levels in Jmjd3-deficient cells are correlated with altered gene expression through interactions with specific transcription factors. Our results identify Jmjd3 as an epigenetic factor in T cell differentiation via changes in histone methylation and target gene expression. PMID:25531312

  13. Upstream CREs participate in the basal activity of minute virus of mice promoter P4 and in its stimulation in ras-transformed cells.

    PubMed Central

    Perros, M; Deleu, L; Vanacker, J M; Kherrouche, Z; Spruyt, N; Faisst, S; Rommelaere, J

    1995-01-01

    The activity of the P4 promoter of the parvovirus minute virus of mice (prototype strain MVMp) is stimulated in ras-transformed FREJ4 cells compared with the parental FR3T3 line. This activation may participate in the oncolytic effect of parvoviruses, given that P4 drives a transcriptional unit encoding cytotoxic nonstructural proteins. Our results suggest that the higher transcriptional activity of promoter P4 in FREJ4 cells is mediated at least in part by upstream CRE elements. Accordingly, mutations in the CRE motifs impair P4 function more strongly in the FREJ4 derivative than in its FR3T3 parent. Further evidence that these elements contribute to hyperactivity of the P4 promoter in the ras transformant is the fact that they form distinct complexes with proteins from FREJ4 and FR3T3 cell extracts. This difference can be abolished by treating the FREJ4 cell extracts with cyclic AMP-dependent protein kinase (PKA) or treating original cultures with a PKA activator. These findings can be linked with two previously reported features of ras-transformed cells: the activation of a PKA-inhibited protein kinase cascade and the reduction of PKA-induced protein phosphorylation. In keeping with these facts, P4-directed gene expression can be up- or downmodulated in vivo by exposing cells to known inhibitors or activators of PKA, respectively. PMID:7636996

  14. K48-linked KLF4 ubiquitination by E3 ligase Mule controls T-cell proliferation and cell cycle progression.

    PubMed

    Hao, Zhenyue; Sheng, Yi; Duncan, Gordon S; Li, Wanda Y; Dominguez, Carmen; Sylvester, Jennifer; Su, Yu-Wen; Lin, Gloria H Y; Snow, Bryan E; Brenner, Dirk; You-Ten, Annick; Haight, Jillian; Inoue, Satoshi; Wakeham, Andrew; Elford, Alisha; Hamilton, Sara; Liang, Yi; Zúñiga-Pflücker, Juan C; He, Housheng Hansen; Ohashi, Pamela S; Mak, Tak W

    2017-01-13

    T-cell proliferation is regulated by ubiquitination but the underlying molecular mechanism remains obscure. Here we report that Lys-48-linked ubiquitination of the transcription factor KLF4 mediated by the E3 ligase Mule promotes T-cell entry into S phase. Mule is elevated in T cells upon TCR engagement, and Mule deficiency in T cells blocks proliferation because KLF4 accumulates and drives upregulation of its transcriptional targets E2F2 and the cyclin-dependent kinase inhibitors p21 and p27. T-cell-specific Mule knockout (TMKO) mice develop exacerbated experimental autoimmune encephalomyelitis (EAE), show impaired generation of antigen-specific CD8 + T cells with reduced cytokine production, and fail to clear LCMV infections. Thus, Mule-mediated ubiquitination of the novel substrate KLF4 regulates T-cell proliferation, autoimmunity and antiviral immune responses in vivo.

  15. β-Arrestin-2-Dependent Signaling Promotes CCR4-mediated Chemotaxis of Murine T-Helper Type 2 Cells.

    PubMed

    Lin, Rui; Choi, Yeon Ho; Zidar, David A; Walker, Julia K L

    2018-06-01

    Allergic asthma is a complex inflammatory disease that leads to significant healthcare costs and reduction in quality of life. Although many cell types are implicated in the pathogenesis of asthma, CD4 + T-helper cell type 2 (Th2) cells are centrally involved. We previously reported that the asthma phenotype is virtually absent in ovalbumin-sensitized and -challenged mice that lack global expression of β-arrestin (β-arr)-2 and that CD4 + T cells from these mice displayed significantly reduced CCL22-mediated chemotaxis. Because CCL22-mediated activation of CCR4 plays a role in Th2 cell regulation in asthmatic inflammation, we hypothesized that CCR4-mediated migration of CD4 + Th2 cells to the lung in asthma may use β-arr-dependent signaling. To test this hypothesis, we assessed the effect of various signaling inhibitors on CCL22-induced chemotaxis using in vitro-polarized primary CD4 + Th2 cells from β-arr2-knockout and wild-type mice. Our results show, for the first time, that CCL22-induced, CCR4-mediated Th2 cell chemotaxis is dependent, in part, on a β-arr2-dependent signaling pathway. In addition, we show that this chemotactic signaling mechanism involves activation of P-p38 and Rho-associated protein kinase. These findings point to a proinflammatory role for β-arr2-dependent signaling and support β-arr2 as a novel therapeutic target in asthma.

  16. Deletion of BCG Hip1 protease enhances dendritic cell and CD4 T cell responses.

    PubMed

    Bizzell, Erica; Sia, Jonathan Kevin; Quezada, Melanie; Enriquez, Ana; Georgieva, Maria; Rengarajan, Jyothi

    2018-04-01

    Dendritic cells (DCs) play a key role in the generation of CD4 T cell responses to pathogens. Mycobacterium tuberculosis (Mtb) harbors immune evasion mechanisms that impair DC responses and prevent optimal CD4 T cell immunity. The vaccine strain Mycobacterium bovis Bacille Calmette-Guérin (BCG) shares many of the immune evasion proteins utilized by Mtb, but the role of these proteins in DC and T cell responses elicited by BCG is poorly understood. We previously reported that the Mtb serine protease, Hip1, promotes sub-optimal DC responses during infection. Here, we tested the hypothesis that BCG Hip1 modulates DC functions and prevents optimal antigen-specific CD4 T cell responses that limit the immunogenicity of BCG. We generated a strain of BCG lacking hip1 (BCGΔhip1) and show that it has superior capacity to induce DC maturation and cytokine production compared with the parental BCG. Furthermore, BCGΔhip1-infected DCs were more effective at driving the production of IFN-γ and IL-17 from antigen-specific CD4 T cells in vitro. Mucosal transfer of BCGΔhip1-infected DCs into mouse lungs induced robust CD4 T cell activation in vivo and generated antigen-specific polyfunctional CD4 T cell responses in the lungs. Importantly, BCGΔhip1-infected DCs enhanced control of pulmonary bacterial burden following Mtb aerosol challenge compared with the transfer of BCG-infected DCs. These results reveal that BCG employs Hip1 to impair DC activation, leading to attenuated lung CD4 T cell responses with limited capacity to control Mtb burden after challenge. ©2017 Society for Leukocyte Biology.

  17. Circulating precursor CCR7(lo)PD-1(hi) CXCR5⁺ CD4T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure.

    PubMed

    He, Jing; Tsai, Louis M; Leong, Yew Ann; Hu, Xin; Ma, Cindy S; Chevalier, Nina; Sun, Xiaolin; Vandenberg, Kirsten; Rockman, Steve; Ding, Yan; Zhu, Lei; Wei, Wei; Wang, Changqi; Karnowski, Alexander; Belz, Gabrielle T; Ghali, Joanna R; Cook, Matthew C; Riminton, D Sean; Veillette, André; Schwartzberg, Pamela L; Mackay, Fabienne; Brink, Robert; Tangye, Stuart G; Vinuesa, Carola G; Mackay, Charles R; Li, Zhanguo; Yu, Di

    2013-10-17

    Follicular B helper T (Tfh) cells support high affinity and long-term antibody responses. Here we found that within circulating CXCR5⁺ CD4T cells in humans and mice, the CCR7(lo)PD-1(hi) subset has a partial Tfh effector phenotype, whereas CCR7(hi)PD-1(lo) cells have a resting phenotype. The circulating CCR7(lo)PD-1(hi) subset was indicative of active Tfh differentiation in lymphoid organs and correlated with clinical indices in autoimmune diseases. Thus the CCR7(lo)PD-1(hi) subset provides a biomarker to monitor protective antibody responses during infection or vaccination and pathogenic antibody responses in autoimmune diseases. Differentiation of both CCR7(hi)PD-1(lo) and CCR7(lo)PD-1(hi) subsets required ICOS and BCL6, but not SAP, suggesting that circulating CXCR5⁺ helper T cells are primarily generated before germinal centers. Upon antigen reencounter, CCR7(lo)PD-1(hi) CXCR5⁺ precursors rapidly differentiate into mature Tfh cells to promote antibody responses. Therefore, circulating CCR7(lo)PD-1(hi) CXCR5⁺ CD4T cells are generated during active Tfh differentiation and represent a new mechanism of immunological early memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Early and Partial Reduction in CD4+Foxp3+ Regulatory T Cells during Colitis-Associated Colon Cancer Induces CD4+ and CD8+ T Cell Activation Inhibiting Tumorigenesis

    PubMed Central

    Olguín, Jonadab E.; Medina-Andrade, Itzel; Molina, Emmanuel; Vázquez, Armando; Pacheco-Fernández, Thalia; Saavedra, Rafael; Pérez-Plasencia, Carlos; Chirino, Yolanda I.; Vaca-Paniagua, Felipe; Arias-Romero, Luis E.; Gutierrez-Cirlos, Emma B.; León-Cabrera, Sonia A.; Rodriguez-Sosa, Miriam; Terrazas, Luis I.

    2018-01-01

    Colorectal cancer (CRC) is the second most commonly diagnosed cancer in women and the third in men in North America and Europe. CRC is associated with inflammatory responses in which intestinal pathology is caused by different cell populations including a T cell dysregulation that concludes in an imbalance between activated T (Tact) and regulatory T (Treg) cells. Treg cells are CD4+Foxp3+ cells that actively suppress pathological and physiological immune responses, contributing to the maintenance of immune homeostasis. A tumor-promoting function for Treg cells has been suggested in CRC, but the kinetics of Treg cells during CRC development are poorly known. Therefore, using a mouse model of colitis-associated colon cancer (CAC) induced by azoxymethane and dextran sodium sulfate, we observed the dynamic and differential kinetics of Treg cells in blood, spleen and mesenteric lymph nodes (MLNs) as CAC progresses, highlighting a significant reduction in Treg cells in blood and spleen during early CAC development, whereas increasing percentages of Treg cells were detected in late stages in MLNs. Interestingly, when Treg cells were decreased, Tact cells were increased and vice versa. Treg cells from late stages of CAC displayed an activated phenotype by expressing PD1, CD127 and Tim-3, suggesting an increased suppressive capacity. Suppression assays showed that T-CD4+ and T-CD8+ cells were suppressed more efficiently by MLN Treg cells from CAC animals. Finally, an antibody-mediated reduction in Treg cells during early CAC development resulted in a better prognostic value, because animals showed a reduction in tumor progression associated with an increased percentage of activated CD4+CD25+Foxp3- and CD8+CD25+ T cells in MLNs, suggesting that Treg cells suppress T cell activation at early steps during CAC development. PMID:29344269

  19. Effect of Osmotic Shock and Low Salt Concentration on Survival and Density of Bacteriophages T4B and T4Bo1

    PubMed Central

    Leibo, Stanley P.; Mazur, Peter

    1966-01-01

    Measurements of survival and buoyant densities of bacteriophages T4B, T4Bo1, and T4D have demonstrated the following: (a) After suspension in a concentrated salt solution, T4B and T4D are sensitive both to osmotic shock and to subsequent exposure to low monovalent salt concentrations. (b) Sensitivity of T4B to dilution from a concentrated salt solution is dependent on dilution rate, that of T4D is less dependent, and that of T4Bo1 is independent. (c) Sensitivity of all three phages to low salt concentrations depends on initial salt concentrations to a variable extent. (d) Density gradient profiles indicate that nearly half of osmotically shocked T4B retain their DNA. Similar analysis demonstrates that few, if any, T4Bo1 lose DNA when subjected to a treatment causing 90% loss of infectivity. (e) The effective buoyant densities of T4B and T4Bo1 depend significantly on the dilution treatments to which the phages are subjected prior to centrifugation in CsCl gradients. These data are explicable in terms of the different relative permeabilities of the phages to water and solutes, and of alterations in the counterion distribution surrounding the DNA within the phage heads. PMID:5972376

  20. Hydroquinone, a reactive metabolite of benzene, enhances interleukin-4 production in CD4+ T cells and increases immunoglobulin E levels in antigen-primed mice

    PubMed Central

    Lee, M H; Chung, S W; Kang, B Y; Kim, K-M; Kim, T S

    2002-01-01

    Exposure to cigarette smoke is known to increase the risk of the development of allergic disease. The mechanism is not well understood. In this study, we determined the effect of hydroquinone (HQ), a major metabolite of benzene present in large quantities in cigarette tar, on interleukin-4 (IL-4) production by CD4+ T cells. HQ significantly enhanced IL-4 production by keyhole limpet haemocyanin (KLH)-primed CD4+ T cells in a dose-dependent manner. The enhancing effect of HQ on IL-4 production was maximal at a concentration of 50 µm. It increased the level of IL-4 production approximately 10-fold. HQ enhanced IL-4 mRNA expression and also IL-4 gene promoter activity, suggesting that the enhancing effect of HQ on IL-4 production may occur at the transcriptional level. Furthermore, the injection of KLH-primed mice with HQ resulted in a significant increase in the levels of IL-4 and immunoglobulin E. These findings provide evidence that HQ, a major component of cigarette tar, may enhance allergic immune responses by inducing the production of IL-4 in CD4+ T cells. PMID:12153512

  1. Structural Influence on the Dominance of Virus-Specific CD4 T Cell Epitopes in Zika Virus Infection.

    PubMed

    Koblischke, Maximilian; Stiasny, Karin; Aberle, Stephan W; Malafa, Stefan; Tschouchnikas, Georgios; Schwaiger, Julia; Kundi, Michael; Heinz, Franz X; Aberle, Judith H

    2018-01-01

    Zika virus (ZIKV) has recently caused explosive outbreaks in Pacific islands, South- and Central America. Like with other flaviviruses, protective immunity is strongly dependent on potently neutralizing antibodies (Abs) directed against the viral envelope protein E. Such Ab formation is promoted by CD4 T cells through direct interaction with B cells that present epitopes derived from E or other structural proteins of the virus. Here, we examined the extent and epitope dominance of CD4 T cell responses to capsid (C) and envelope proteins in Zika patients. All patients developed ZIKV-specific CD4 T cell responses, with substantial contributions of C and E. In both proteins, immunodominant epitopes clustered at sites that are structurally conserved among flaviviruses but have highly variable sequences, suggesting a strong impact of protein structural features on immunodominant CD4 T cell responses. Our data are particularly relevant for designing flavivirus vaccines and their evaluation in T cell assays and provide insights into the importance of viral protein structure for epitope selection and antigenicity.

  2. Effects of baicalin in CD4 + CD29 + T cell subsets of ulcerative colitis patients

    PubMed Central

    Yu, Feng-Yan; Huang, Shao-Gang; Zhang, Hai-Yan; Ye, Hua; Chi, Hong-Gang; Zou, Ying; Lv, Ru-Xi; Zheng, Xue-Bao

    2014-01-01

    AIM: To evaluate the role of baicalin in ulcerative colitis (UC) with regard to the CD4+CD29+ T helper cell, its surface markers and serum inflammatory cytokines. METHODS: Flow cytometry was used to detect the percentage of CD4+CD29+ cells in patients with UC. Real time polymerase chain reaction was used to detect expression of GATA-3, forkhead box P3, T-box expressed in T cells (T-bet), and retinoic acid-related orphan nuclear hormone receptor C (RORC). Western blotting was used to analyze expression of nuclear factor-κB (NF-κB) p65, phosphorylation of NF-κB (p-NF-κB) p65, STAT4, p-STAT4, STAT6 and p-STAT6. The concentrations of interferon-γ (IFN-γ), interleukin (IL)-4, IL-5, IL-6, IL-10 and TGF-β in serum were determined by ELISA assay. RESULTS: The percentages of CD4+CD29+ T cells were lower in treatment with 40 and 20 μmol/L baicalin than in the treatment of no baicalin. Treatment with 40 or 20 μmol/L baicalin significantly upregulated expression of IL-4, TGF-β1 and IL-10, increased p-STAT6/STAT6 ratio, but downregulated expression of IFN-γ, IL-5, IL-6, RORC, Foxp3 and T-bet, and decreased ratios of T-bet/GATA-3, p-STAT4/STAT4 and p-NF-κB/NF-κB compared to the treatment of no baicalin. CONCLUSION: The results indicate that baicalin regulates immune balance and relieves the ulcerative colitis-induced inflammation reaction by promoting proliferation of CD4+CD29+ cells and modulating immunosuppressive pathways. PMID:25386078

  3. Par-4/THAP1 complex and Notch3 competitively regulated pre-mRNA splicing of CCAR1 and affected inversely the survival of T-cell acute lymphoblastic leukemia cells

    PubMed Central

    Lu, C; Li, J-Y; Ge, Z; Zhang, L; Zhou, G-P

    2013-01-01

    Although the intensification of therapy for children with T-cell acute lymphoblastic leukemia (T-ALL) has substantially improved clinical outcomes, T-ALL remains an important challenge in pediatric oncology. Here, we report that the cooperative synergy between prostate apoptosis response factor-4 (Par-4) and THAP1 induces cell cycle and apoptosis regulator 1 (CCAR1) gene expression and cellular apoptosis in human T-ALL cell line Jurkat cells, CEM cells and primary cultured neoplastic T lymphocytes from children with T-ALL. Par-4 and THAP1 collaborated to activate the promoter of CCAR1 gene. Mechanistic investigations revealed that Par-4 and THAP1 formed a protein complex by the interaction of their carboxyl termini, and THAP1 bound to CCAR1 promoter though its zinc-dependent DNA-binding domain at amino terminus. Par-4/THAP1 complex and Notch3 competitively bound to CCAR1 promoter and competitively modulated alternative pre-mRNA splicing of CCAR1, which resulted in two different transcripts and played an opposite role in T-ALL cell survival. Despite Notch3 induced a shift splicing from the full-length isoform toward a shorter form of CCAR1 mRNA by splicing factor SRp40 and SRp55, Par-4/THAP1 complex strongly antagonized this inductive effect. Our finding revealed a mechanistic rationale for Par-4/THAP1-induced apoptosis in T-ALL cells that would be of benefit to develop a new therapy strategy for T-ALL. PMID:23975424

  4. Low levels of SIV infection in sooty mangabey central-memory CD4+ T-cells is associated with limited CCR5 expression

    PubMed Central

    Paiardini, Mirko; Cervasi, Barbara; Reyes-Aviles, Elane; Micci, Luca; Ortiz, Alexandra M.; Chahroudi, Ann; Vinton, Carol; Gordon, Shari N.; Bosinger, Steven E.; Francella, Nicholas; Hallberg, Paul L.; Schlub, Timothy; Chan, Ming Liang; Riddick, Nadeene E.; Collman, Ronald G.; Apetrei, Cristian; Pandrea, Ivona; Else, James; Munch, Jan; Kirchhoff, Frank; Davenport, Miles P.; Brenchley, Jason M.; Silvestri, Guido

    2011-01-01

    Naturally SIV-infected sooty mangabeys (SMs) do not progress to AIDS despite high-level virus replication. We previously showed that the fraction of CD4+CCR5+ T-cells is lower in SMs compared to humans and macaques. Here we found that, after in vitro stimulation, SM CD4+ T-cells fail to up-regulate CCR5, and that this phenomenon is more pronounced in CD4+ central-memory T-cells (TCM). CD4+ T-cell activation was similarly uncoupled from CCR5 expression in SMs in vivo during (i) acute SIV infection and (ii) following antibody-mediated CD4+ T-cell depletion. Remarkably, CD4+ TCM of SMs that express low levels of CCR5 demonstrated reduced susceptibility to SIV infection both in vivo and in vitro when compared to CD4+ TCM of RMs. These data suggest that low CCR5 expression on SM CD4+ T-cells favors the preservation of CD4+ T-cell homeostasis and promotes an AIDS-free status by protecting CD4+ TCM from direct virus infection. PMID:21706028

  5. Monitoring α4β7 integrin expression on circulating CD4+ T cells as a surrogate marker for tracking intestinal CD4+ T cell loss in SIV infection

    PubMed Central

    Wang, Xiaolei; Xu, Huanbin; Gill, Amy F.; Pahar, Bapi; Kempf, Doty; Rasmussen, Terri; Lackner, Andrew A.; Veazey, Ronald S.

    2013-01-01

    Intestinal CD4+ T cells are rapidly and profoundly depleted in HIV-infected patients and SIV-infected macaques. However, monitoring intestinal cells in humans is difficult, and identifying surrogate markers in the blood, which correlate with loss or restoration of intestinal CD4+ T cells could be helpful in monitoring the success of therapeutic strategies and vaccine candidates. Recent studies indicate HIV utilizes the intestinal homing molecule α4β7 for attachment and signaling of CD4+ T cells, suggesting this molecule may play a central role in HIV pathogenesis. Here we compared β7HIGH integrin expression on CD4+ T cells in blood with loss of CD4+ T cells in the intestine of macaques throughout SIV infection. The loss of β7HIGH CD4+ T cells in blood closely paralleled the loss of intestinal CD4+ T cells, and proved to be a more reliable marker of intestinal CD4+ T cell loss than monitoring CCR5+ memory CD4+ T cells. These data are consistent with a recent hypothesis that α4β7 plays a role in the selective depletion of intestinal CD4+ T cells, and indicate that monitoring β7HIGH expression on CD4+ T cells in the blood may be a useful surrogate for estimating intestinal CD4+ T cell loss and restoration in HIV-infected patients. PMID:19710637

  6. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wei; Chai, Hongyan; Li, Ying

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressingmore » cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP

  7. CYP4A in tumor-associated macrophages promotes pre-metastatic niche formation and metastasis.

    PubMed

    Chen, X W; Yu, T J; Zhang, J; Li, Y; Chen, H L; Yang, G F; Yu, W; Liu, Y Z; Liu, X X; Duan, C F; Tang, H L; Qiu, M; Wang, C L; Zheng, H; Yue, J; Guo, A M; Yang, J

    2017-08-31

    Tumor-associated macrophages (TAMs) play an essential role in metastasis. However, what enables TAMs to have a superior capacity to establish pre-metastatic microenvironment in distant organs is unclear. Here we have begun to uncover the effects of cytochrome P450 (CYP) 4A in TAMs on lung pre-metastatic niche formation and metastasis. CYP4A + TAM infiltration was positively associated with metastasis, pre-metastatic niche formation and poor prognosis in breast cancer patients. The pharmacological inhibition of CYP4A reduced lung pre-metastatic niche formation (evidenced by a decrease in vascular endothelial growth factor receptor 1 positive (VEGFR1 + ) myeloid cell recruitment and pro-metastatic protein expression) and metastatic burden, accompanied with TAM polarization away from the M2 phenotype in spontaneous metastasis models of 4T1 breast cancer and B16F10 melanoma. Co-implantation of 4T1 cells with CYP4A10 high macrophages promoted lung pre-metastatic niche formation and metastasis. Depletion of TAMs disrupted lung pre-metastatic niches and thereby prevented metastasis. Treatment with the CM from CYP4A10 high M2 macrophages (M2) increased pre-metastatic niche formation and metastatic burden in the lungs, whereas CYP4A inhibition attenuated these effects. In vitro TAM polarization away from the M2 phenotype induced by CYP4A inhibition decreased VEGFR1 + myeloid cell migration and fibronectin expression, accompanied with downregulation of STAT3 signaling. Conversely, overexpression of CYP4A or exogenous addition of 20-hydroxyeicosatetraenoic acid promoted M2 polarization and cytokine production of macrophages and thereby enhanced migration of VEGFR1 + myeloid cells, which were reversed by siRNA or pharmacological inhibition of STAT3. Importantly, a combined blocking M2 macrophage-derived factors TGF-β, VEGF and SDF-1 abolished VEGFR1 + myeloid cell migration and fibroblast activation induced by CYP4A. In summary, CYP4A in TAMs is crucial for lung pre

  8. Bronchial lavage P 16INK4A gene promoter methylation and lung cancer diagnosis: A meta-analysis.

    PubMed

    Yifan, D; Qun, L; Yingshuang, H; Xulin, L; Jianjun, W; Qian, M; Yuman, Yu; Zhaoyang, R

    2015-12-01

    To evaluate the diagnostic value of bronchial lavage P16INK4A promoter methylation and lung cancer. The databases of PubMed, Medline, China National Knowledge Infrastructure, and Wanfang were electronically searched by two reviewers to find the suitable studies related to the association between P16INK4A promoter methylation and lung cancer. The P16INK4A promoter methylation rate was extracted from each included individual study. The diagnostic sensitivity, specificity, and area under the receiver operating characteristic ROC curve of bronchial lavage P16INK4Aas a biomarker for diagnosis of lung cancer were pooled by stata 11.0 software (Stata Corporation, College Station, TX, USA). At last, 10 publications were included in this meta-analysis. Of the included 10 studies, five are published in English with relatively high quality and other five papers published in Chinese have relatively low quality. The pooled sensitivity and specificity of bronchial lavage P16INK4A promoter methylation for lung cancer diagnosis were 0.61 (95% confidence interval [CI]: 0.57-0.65) and 0.81 (95% CI: 0.78-0.85), respectively, with random effect model. The ROC curve were calculated and drawn according to Bayes' theorem by stata 11.0 software. The systematic area under the ROC was 0.72 (95% CI: 0.68-0.76), which indicated that the diagnostic value of bronchial lavage P16INK4A promoter methylation for lung cancer was relatively high. Moreover, no significant publication bias was existed in this meta-analysis (t = 0.69, P > 0.05). Bronchial lavage P16INK4A promoter methylation can be a potential biomarker for diagnosis of lung cancer.

  9. Role of Gag and lipids during HIV-1 assembly in CD4+ T cells and macrophages

    PubMed Central

    Mariani, Charlotte; Desdouits, Marion; Favard, Cyril; Benaroch, Philippe; Muriaux, Delphine M.

    2014-01-01

    HIV-1 is an RNA enveloped virus that preferentially infects CD4+ T lymphocytes and also macrophages. In CD4+ T cells, HIV-1 mainly buds from the host cell plasma membrane. The viral Gag polyprotein targets the plasma membrane and is the orchestrator of the HIV assembly as its expression is sufficient to promote the formation of virus-like particles carrying a lipidic envelope derived from the host cell membrane. Certain lipids are enriched in the viral membrane and are thought to play a key role in the assembly process and the envelop composition. A large body of work performed on infected CD4+ T cells has provided important knowledge about the assembly process and the membrane virus lipid composition. While HIV assembly and budding in macrophages is thought to follow the same general Gag-driven mechanism as in T-lymphocytes, the HIV cycle in macrophage exhibits specific features. In these cells, new virions bud from the limiting membrane of seemingly intracellular compartments, where they accumulate while remaining infectious. These structures are now often referred to as Virus Containing Compartments (VCCs). Recent studies suggest that VCCs represent intracellularly sequestered regions of the plasma membrane, but their precise nature remains elusive. The proteomic and lipidomic characterization of virions produced by T cells or macrophages has highlighted the similarity between their composition and that of the plasma membrane of producer cells, as well as their enrichment in acidic lipids, some components of raft lipids and in tetraspanin-enriched microdomains. It is likely that Gag promotes the coalescence of these components into an assembly platform from which viral budding takes place. How Gag exactly interacts with membrane lipids and what are the mechanisms involved in the interaction between the different membrane nanodomains within the assembly platform remains unclear. Here we review recent literature regarding the role of Gag and lipids on HIV-1

  10. Termination of T cell priming relies on a phase of unresponsiveness promoting disengagement from APCs and T cell division.

    PubMed

    Bohineust, Armelle; Garcia, Zacarias; Beuneu, Hélène; Lemaître, Fabrice; Bousso, Philippe

    2018-05-07

    T cells are primed in secondary lymphoid organs by establishing stable interactions with antigen-presenting cells (APCs). However, the cellular mechanisms underlying the termination of T cell priming and the initiation of clonal expansion remain largely unknown. Using intravital imaging, we observed that T cells typically divide without being associated to APCs. Supporting these findings, we demonstrate that recently activated T cells have an intrinsic defect in establishing stable contacts with APCs, a feature that was reflected by a blunted capacity to stop upon T cell receptor (TCR) engagement. T cell unresponsiveness was caused, in part, by a general block in extracellular calcium entry. Forcing TCR signals in activated T cells antagonized cell division, suggesting that T cell hyporesponsiveness acts as a safeguard mechanism against signals detrimental to mitosis. We propose that transient unresponsiveness represents an essential phase of T cell priming that promotes T cell disengagement from APCs and favors effective clonal expansion. © 2018 Bohineust et al.

  11. Progesterone and HMOX-1 promote fetal growth by CD8+ T cell modulation

    PubMed Central

    Solano, María Emilia; Kowal, Mirka Katharina; O’Rourke, Greta Eugenia; Horst, Andrea Kristina; Modest, Kathrin; Plösch, Torsten; Barikbin, Roja; Remus, Chressen Catharina; Berger, Robert G.; Jago, Caitlin; Ho, Hoang; Sass, Gabriele; Parker, Victoria J.; Lydon, John P.; DeMayo, Francesco J.; Hecher, Kurt; Karimi, Khalil; Arck, Petra Clara

    2015-01-01

    Intrauterine growth restriction (IUGR) affects up to 10% of pregnancies in Western societies. IUGR is a strong predictor of reduced short-term neonatal survival and impairs long-term health in children. Placental insufficiency is often associated with IUGR; however, the molecular mechanisms involved in the pathogenesis of placental insufficiency and IUGR are largely unknown. Here, we developed a mouse model of fetal-growth restriction and placental insufficiency that is induced by a midgestational stress challenge. Compared with control animals, pregnant dams subjected to gestational stress exhibited reduced progesterone levels and placental heme oxygenase 1 (Hmox1) expression and increased methylation at distinct regions of the placental Hmox1 promoter. These stress-triggered changes were accompanied by an altered CD8+ T cell response, as evidenced by a reduction of tolerogenic CD8+CD122+ T cells and an increase of cytotoxic CD8+ T cells. Using progesterone receptor– or Hmox1-deficient mice, we identified progesterone as an upstream modulator of placental Hmox1 expression. Supplementation of progesterone or depletion of CD8+ T cells revealed that progesterone suppresses CD8+ T cell cytotoxicity, whereas the generation of CD8+CD122+ T cells is supported by Hmox1 and ameliorates fetal-growth restriction in Hmox1 deficiency. These observations in mice could promote the identification of pregnancies at risk for IUGR and the generation of clinical interventional strategies. PMID:25774501

  12. Inhibition of phosphoantigen-mediated gammadelta T-cell proliferation by CD4+ CD25+ FoxP3+ regulatory T cells.

    PubMed

    Kunzmann, Volker; Kimmel, Brigitte; Herrmann, Thomas; Einsele, Hermann; Wilhelm, Martin

    2009-02-01

    Tumour growth promotes the expansion of CD4(+) CD25(+) FoxP3(+) regulatory T cells (Tregs) which suppress various arms of immune responses and might therefore contribute to tumour immunosurveillance. In this study, we found an inverse correlation between circulating Treg frequencies and phosphoantigen-induced gammadelta T-cell proliferation in cancer patients, which prompted us to address the role of Tregs in controlling the gammadelta T-cell arm of innate immune responses. In vitro, human Treg-peripheral blood mononuclear cell (PBMC) co-cultures strongly inhibited phosphoantigen-induced proliferation of gammadelta T cells and depletion of Tregs restored the impaired phosphoantigen-induced gammadelta T-cell proliferation of cancer patients. Tregs did not suppress other effector functions of gammadelta T cells such as cytokine production or cytotoxicity. Our experiments indicate that Tregs do not mediate their suppressive activity via a cell-cell contact-dependent mechanism, but rather secrete a soluble non-proteinaceous factor, which is independent of known soluble factors interacting with amino acid depletion (e.g. arginase-diminished arginine and indolamine 2,3-dioxygenase-diminished tryptophan) or nitric oxide (NO) production. However, the proliferative activity of alphabeta T cells was not affected by this cell-cell contact-independent suppressive activity induced by Tregs. In conclusion, these findings indicate a potential new mechanism by which Tregs can specifically suppress gammadelta T cells and highlight the strategy of combining Treg inhibition with subsequent gammadelta T-cell activation to enhance gammadelta T cell-mediated immunotherapy.

  13. Brucella Rough Mutant Induce Macrophage Death via Activating IRE1α Pathway of Endoplasmic Reticulum Stress by Enhanced T4SS Secretion

    PubMed Central

    Li, Peng; Tian, Mingxing; Bao, Yanqing; Hu, Hai; Liu, Jiameng; Yin, Yi; Ding, Chan; Wang, Shaohui; Yu, Shengqing

    2017-01-01

    Brucella is a Gram-negative facultative intracellular pathogen that causes the worldwide zoonosis, known as brucellosis. Brucella virulence relies mostly on its ability to invade and replicate within phagocytic cells. The type IV secretion system (T4SS) and lipopolysaccharide are two major Brucella virulence factors. Brucella rough mutants reportedly induce the death of infected macrophages, which is T4SS dependent. However, the underlying molecular mechanism remains unclear. In this study, the T4SS secretion capacities of Brucella rough mutant and its smooth wild-type strain were comparatively investigated, by constructing the firefly luciferase fused T4SS effector, BPE123 and VceC. In addition, quantitative real-time PCR and western blotting were used to analyze the T4SS expression. The results showed that T4SS expression and secretion were enhanced significantly in the Brucella rough mutant. We also found that the activity of the T4SS virB operon promoter was notably increased in the Brucella rough mutant, which depends on quorum sensing-related regulators of VjbR upregulation. Cell infection and cell death assays revealed that deletion of vjbR in the Brucella rough mutant absolutely abolished cytotoxicity within macrophages by downregulating T4SS expression. This suggests that up-regulation of T4SS promoted by VjbR in rough mutant ΔrfbE contribute to macrophage death. In addition, we found that the Brucella rough mutant induce macrophage death via activating IRE1α pathway of endoplasmic reticulum stress. Taken together, our study provide evidence that in comparison to the Brucella smooth wild-type strain, VjbR upregulation in the Brucella rough mutant increases transcription of the virB operon, resulting in overexpression of the T4SS gene, accompanied by the over-secretion of effecter proteins, thereby causing the death of infected macrophages via activating IRE1α pathway of endoplasmic reticulum stress, suggesting novel insights into the molecular

  14. Brucella Rough Mutant Induce Macrophage Death via Activating IRE1α Pathway of Endoplasmic Reticulum Stress by Enhanced T4SS Secretion.

    PubMed

    Li, Peng; Tian, Mingxing; Bao, Yanqing; Hu, Hai; Liu, Jiameng; Yin, Yi; Ding, Chan; Wang, Shaohui; Yu, Shengqing

    2017-01-01

    Brucella is a Gram-negative facultative intracellular pathogen that causes the worldwide zoonosis, known as brucellosis. Brucella virulence relies mostly on its ability to invade and replicate within phagocytic cells. The type IV secretion system (T4SS) and lipopolysaccharide are two major Brucella virulence factors. Brucella rough mutants reportedly induce the death of infected macrophages, which is T4SS dependent. However, the underlying molecular mechanism remains unclear. In this study, the T4SS secretion capacities of Brucella rough mutant and its smooth wild-type strain were comparatively investigated, by constructing the firefly luciferase fused T4SS effector, BPE123 and VceC. In addition, quantitative real-time PCR and western blotting were used to analyze the T4SS expression. The results showed that T4SS expression and secretion were enhanced significantly in the Brucella rough mutant. We also found that the activity of the T4SS virB operon promoter was notably increased in the Brucella rough mutant, which depends on quorum sensing-related regulators of VjbR upregulation. Cell infection and cell death assays revealed that deletion of vjbR in the Brucella rough mutant absolutely abolished cytotoxicity within macrophages by downregulating T4SS expression. This suggests that up-regulation of T4SS promoted by VjbR in rough mutant Δ rfbE contribute to macrophage death. In addition, we found that the Brucella rough mutant induce macrophage death via activating IRE1α pathway of endoplasmic reticulum stress. Taken together, our study provide evidence that in comparison to the Brucella smooth wild-type strain, VjbR upregulation in the Brucella rough mutant increases transcription of the virB operon, resulting in overexpression of the T4SS gene, accompanied by the over-secretion of effecter proteins, thereby causing the death of infected macrophages via activating IRE1α pathway of endoplasmic reticulum stress, suggesting novel insights into the molecular

  15. Impact of nicotine on the interplay between human periodontal ligament cells and CD4+ T cells.

    PubMed

    Ge, Xin; Liu, Ying-Feng; Wong, Yong; Wu, Li-Zheng; Tan, Ling; Liu, Fen; Wang, Xiao-Jing

    2016-09-01

    Periodontitis is a common infectious disease associated with destruction of periodontal ligaments and alveolar bones. CD4(+) T cell-mediated immune response is involved in the progression of periodontitis. Tobacco consumption increases the risk of periodontal disease. However, the impact of nicotine on the interaction between human periodontal ligament (PDL) cells and CD4(+) T cells remains unrevealed. Our study aims to investigate the effect of nicotine on PDL cells and the cocultured CD4(+) T cells. The PDL cell cultures were established by explants from healthy individuals, exposed to nicotine or α-bungarotoxin (α-BTX), and incubated solely or in combination with CD4(+) T cells. Afterwards, cell viability, secreted cytokines, and matrix metalloproteinases (MMPs) were evaluated. In monoculture of PDL cells, nicotine dramatically repressed cell viability and increased apoptosis. Meanwhile, α-BTX largely reversed the nicotine-induced apoptosis and increased viability of PDL cells. Compared with the monoculture, MMP-1, MMP-3, interleukin (IL)-1β, IL-6, IL-17, and IL-21 in supernatant of cocultures were markedly elevated after treatment with nicotine. Moreover, α-BTX significantly attenuated nicotine-triggered production of these components either in mono- or co-cultures. In addition, PDL cell-derived CXCL12 following nicotine treatment recruited CD4(+) T cells. Above all, nicotine deteriorated periodontitis partially by promoting PDL cell-CD4(+) T cell-mediated inflammatory response and matrix degradation. © The Author(s) 2015.

  16. CRTAM determines the CD4+ cytotoxic T lymphocyte lineage

    PubMed Central

    Takeuchi, Arata; Badr, Mohamed El Sherif Gadelhaq; Miyauchi, Kosuke; Ishihara, Chitose; Onishi, Reiko; Guo, Zijin; Sasaki, Yoshiteru; Ike, Hiroshi; Takumi, Akiko; Tsuji, Noriko M.; Murakami, Yoshinori; Katakai, Tomoya; Kubo, Masato

    2016-01-01

    Naive T cells differentiate into various effector T cells, including CD4+ helper T cell subsets and CD8+ cytotoxic T cells (CTL). Although cytotoxic CD4+ T cells (CD4+CTL) also develop from naive T cells, the mechanism of development is elusive. We found that a small fraction of CD4+ T cells that express class I–restricted T cell–associated molecule (CRTAM) upon activation possesses the characteristics of both CD4+ and CD8+ T cells. CRTAM+ CD4+ T cells secrete IFN-γ, express CTL-related genes, such as eomesodermin (Eomes), Granzyme B, and perforin, after cultivation, and exhibit cytotoxic function, suggesting that CRTAM+ T cells are the precursor of CD4+CTL. Indeed, ectopic expression of CRTAM in T cells induced the production of IFN-γ, expression of CTL-related genes, and cytotoxic activity. The induction of CD4+CTL and IFN-γ production requires CRTAM-mediated intracellular signaling. CRTAM+ T cells traffic to mucosal tissues and inflammatory sites and developed into CD4+CTL, which are involved in mediating protection against infection as well as inducing inflammatory response, depending on the circumstances, through IFN-γ secretion and cytotoxic activity. These results reveal that CRTAM is critical to instruct the differentiation of CD4+CTL through the induction of Eomes and CTL-related gene. PMID:26694968

  17. Lack of death receptor 4 (DR4) expression through gene promoter methylation in gastric carcinoma.

    PubMed

    Lee, Kyung Hwa; Lim, Sang Woo; Kim, Ho Gun; Kim, Dong Yi; Ryu, Seong Yeob; Joo, Jae Kyun; Kim, Jung Chul; Lee, Jae Hyuk

    2009-07-01

    To determine the underlying mechanism for the differential expression, the extent of promoter methylation in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-related genes acting downstream of TRAIL was examined in early and advanced gastric carcinomas. The extent of promoter methylation in the DR4, DR5, DcR1, DcR2, and CASP8 genes was quantified using bisulfite modification and methylation-specific polymerase chain reaction. The promoters for DcR1, DcR2, and CASP8 were largely unmethylated in early gastric carcinoma, advanced gastric carcinoma, and controls, with no significant difference among them. Protein levels of DR4, DcR1, and DcR2 as revealed by immunohistochemistry correlated with the extent of the respective promoter methylation (P < 0.05 in all cases). Hypomethylation, rather than hypermethylation, of the DR4 promoter was noted in invasive gastric malignancies, with statistical significance (P = 0.003). The promoter methylation status of TRAIL receptors in gastric carcinoma may have clinical implications for improving therapeutic strategies in patients with gastric carcinoma.

  18. 4 γδ T Cells Provide an Early Source of IL-17A and Accelerate Skin Graft Rejection.

    PubMed

    Li, Yashu; Huang, Zhenggen; Yan, Rongshuai; Liu, Meixi; Bai, Yang; Liang, Guangping; Zhang, Xiaorong; Hu, Xiaohong; Chen, Jian; Huang, Chibing; Liu, Baoyi; Luo, Gaoxing; Wu, Jun; He, Weifeng

    2017-12-01

    Activated γδ T cells have been shown to accelerate allograft rejection. However, the precise role of skin-resident γδ T cells and their subsets-Vγ5 (epidermis), Vγ1, and Vγ4 (dermis)-in skin graft rejection have not been identified. Here, using a male to female skin transplantation model, we demonstrated that Vγ4 T cells, rather than Vγ1 or Vγ5 T cells, accelerated skin graft rejection and that IL-17A was essential for Vγ4 T-cell-mediated skin graft rejection. Moreover, we found that Vγ4 T cells were required for early IL-17A production in the transplanted area, both in skin grafts and in the host epidermis around grafts. Additionally, the chemokine (C-C motif) ligand 20-chemokine receptor 6 pathway was essential for recruitment of Vγ4 T cells to the transplantation area, whereas both IL-1β and IL-23 induced IL-17A production from infiltrating cells. Lastly, Vγ4 T-cell-derived IL-17A promoted the accumulation of mature dendritic cells in draining lymph nodes to subsequently regulate αβ T-cell function after skin graft transplantation. Taken together, our data reveal that Vγ4 T cells accelerate skin graft rejection by providing an early source of IL-17A. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Bone marrow-derived mesenchymal stem cells promote cell proliferation of multiple myeloma through inhibiting T cell immune responses via PD-1/PD-L1 pathway.

    PubMed

    Chen, Dandan; Tang, Ping; Liu, Linxiang; Wang, Fang; Xing, Haizhou; Sun, Ling; Jiang, Zhongxing

    2018-05-21

    This study aims to explore the effect of bone marrow mesenchymal stem cells (BMSCs) on multiple myeloma (MM) development and the underlying mechanism. BMSCs from C57BL/6 J mice were isolated and the third passage was used for subsequent experiments. Additionally, a series of in vitro transwell coculture assays were performed to explore the effects of BMSCs on the proliferation of MM cells 5TGM1 and CD4 + T cells. Furthermore, a 5TGM1-induced MM mice model was established. Moreover, PD-L1 shRNA was transfected into BMSCs to investigate whether PD-1/PD-L1 pathway involved in BMSCs-mediated regulation of T cells and MM growth. Data revealed that BMSCs significantly promoted 5TGM1 proliferation in a dose-dependent manner. Furthermore, BMSCs administration exerted stimulatory effects on MM development in terms of shortening the mouse survival rate, promoting tumor growth, and enhancing inflammatory infiltration in the MM model mice. Moreover, BMSCs decreased the percentage of Th1 and Th17 cells, whereas increased that of Th2 and Treg cells. Their corresponding cytokines of these T cell subsets showed similar alteration in the presence of BMSCs. Additionally, BMSCs significantly suppressed CD4 + T cell proliferation. We also found that PD-L1 shRNA inhibited 5TGM1 proliferation likely through activation of CD4 + T cells. Further in vivo experiments confirmed that PD-L1 inhibition attenuated BMSCs-induced MM growth, inflammation infiltration and imbalance of Th1/Th2 and Th17/Treg. In summary, our findings demonstrated that BMSCs promoted cell proliferation of MM through inhibiting T cell immune responses via PD-1/PD-L1 pathway.

  20. Infiltrating T cells promote renal cell carcinoma (RCC) progression via altering the estrogen receptor β-DAB2IP signals.

    PubMed

    Yeh, Chiuan-Ren; Ou, Zheng-Yu; Xiao, Guang-Qian; Guancial, Elizabeth; Yeh, Shuyuan

    2015-12-29

    Previous studies indicated the T cells, one of the most common types of immune cells existing in the microenvironment of renal cell carcinoma (RCC), may influence the progression of RCC. The potential linkage of T cells and the estrogen receptor beta (ERβ), a key player to impact RCC progression, however, remains unclear. Our results demonstrate that RCC cells can recruit more T cells than non-malignant kidney cells. Using an in vitro matrigel invasion system, we found infiltrating T cells could promote RCC cells invasion via increasing ERβ expression and transcriptional activity. Mechanism dissection suggested that co-culturing T cells with RCC cells released more T cell attraction factors, including IFN-γ, CCL3 and CCL5, suggesting a positive regulatory feed-back mechanism. Meanwhile, infiltrating T cells may also promote RCC cell invasion via increased ERβ and decreased DAB2IP expressions, and knocking down DAB2IP can then reverse the T cells-promoted RCC cell invasion. Together, our results suggest that infiltrating T cells may promote RCC cell invasion via increasing the RCC cell ERβ expression to inhibit the tumor suppressor DAB2IP signals. Further mechanism dissection showed that co-culturing T cells with RCC cells could produce more IGF-1 and FGF-7, which may enhance the ERβ transcriptional activity. The newly identified relationship between infiltrating T cells/ERβ/DAB2IP signals may provide a novel therapeutic target in the development of agents against RCC.

  1. HIV-1 Antibody Neutralization Breadth Is Associated with Enhanced HIV-Specific CD4+ T Cell Responses

    PubMed Central

    Soghoian, Damien Z.; Lindqvist, Madelene; Ghebremichael, Musie; Donaghey, Faith; Carrington, Mary; Seaman, Michael S.; Kaufmann, Daniel E.; Walker, Bruce D.

    2015-01-01

    ABSTRACT Antigen-specific CD4+ T helper cell responses have long been recognized to be a critical component of effective vaccine immunity. CD4+ T cells are necessary to generate and maintain humoral immune responses by providing help to antigen-specific B cells for the production of antibodies. In HIV infection, CD4+ T cells are thought to be necessary for the induction of Env-specific broadly neutralizing antibodies. However, few studies have investigated the role of HIV-specific CD4+ T cells in association with HIV neutralizing antibody activity in vaccination or natural infection settings. Here, we conducted a comprehensive analysis of HIV-specific CD4+ T cell responses in a cohort of 34 untreated HIV-infected controllers matched for viral load, with and without neutralizing antibody breadth to a panel of viral strains. Our results show that the breadth and magnitude of Gag-specific CD4+ T cell responses were significantly higher in individuals with neutralizing antibodies than in those without neutralizing antibodies. The breadth of Gag-specific CD4+ T cell responses was positively correlated with the breadth of neutralizing antibody activity. Furthermore, the breadth and magnitude of gp41-specific, but not gp120-specific, CD4+ T cell responses were significantly elevated in individuals with neutralizing antibodies. Together, these data suggest that robust Gag-specific CD4+ T cells and, to a lesser extent, gp41-specific CD4+ T cells may provide important intermolecular help to Env-specific B cells that promote the generation or maintenance of Env-specific neutralizing antibodies. IMPORTANCE One of the earliest discoveries related to CD4+ T cell function was their provision of help to B cells in the development of antibody responses. Yet little is known about the role of CD4+ T helper responses in the setting of HIV infection, and no studies to date have evaluated the impact of HIV-specific CD4+ T cells on the generation of antibodies that can neutralize

  2. A novel differentiation pathway from CD4+ T cells to CD4T cells for maintaining immune system homeostasis

    PubMed Central

    Zhao, X; Sun, G; Sun, X; Tian, D; Liu, K; Liu, T; Cong, M; Xu, H; Li, X; Shi, W; Tian, Y; Yao, J; Guo, H; Zhang, D

    2016-01-01

    CD4+ T lymphocytes are key players in the adaptive immune system and can differentiate into a variety of effector and regulatory T cells. Here, we provide evidence that a novel differentiation pathway of CD4+ T cells shifts the balance from a destructive T-cell response to one that favors regulation in an immune-mediated liver injury model. Peripheral CD4−CD8−NK1.1− double-negative T cells (DNT) was increased following Concanavalin A administration in mice. Adoptive transfer of DNT led to significant protection from hepatocyte necrosis by direct inhibition on the activation of lymphocytes, a process that occurred primarily through the perforin-granzyme B route. These DNT converted from CD4+ rather than CD8+ T cells, a process primarily regulated by OX40. DNT migrated to the liver through the CXCR3-CXCL9/CXCL10 interaction. In conclusion, we elucidated a novel differentiation pathway from activated CD4+ T cells to regulatory DNT cells for maintaining homeostasis of the immune system in vivo, and provided key evidence that utilizing this novel differentiation pathway has potential application in the prevention and treatment of autoimmune diseases. PMID:27077809

  3. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4

    PubMed Central

    Walsh, James T.; Hendrix, Sven; Boato, Francesco; Smirnov, Igor; Zheng, Jingjing; Lukens, John R.; Gadani, Sachin; Hechler, Daniel; Gölz, Greta; Rosenberger, Karen; Kammertöns, Thomas; Vogt, Johannes; Vogelaar, Christina; Siffrin, Volker; Radjavi, Ali; Fernandez-Castaneda, Anthony; Gaultier, Alban; Gold, Ralf; Kanneganti, Thirumala-Devi; Nitsch, Robert; Zipp, Frauke; Kipnis, Jonathan

    2015-01-01

    A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell–mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4–producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4–deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4–deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell–derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4–producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration. PMID:25607842

  4. A new diarylheptanoid from Alpinia officinarum promotes the differentiation of 3T3-L1 preadipocytes.

    PubMed

    Zhang, Xuguang; Zhang, Xiaopo; Wang, Yong; Chen, Feng; Li, Youbin; Li, Yonghui; Tan, Yinfeng; Gong, Jingwen; Zhong, Xia; Li, Hailong; Zhang, Junqing

    2018-03-01

    A new diarylheptanoid, namely trans-(4R,5S)-epoxy-1,7-diphenyl-3-heptanone (1), and a new natural product, 7-(4″-hydroxy-3″-methoxyphenyl)-1-phenyl-hepta-4E,6E-dien-3-one (2), were obtained from the aqueous extract of Alpinia officinarum Hance, together with three other diarylheptanoids, 5-hydroxy-1,7-diphenyl-3-heptanone (3), 1,7-diphenyl-4E-en-3-heptanone (4) and 5-methoxy-1,7-diphenyl-3-heptanone (5). The structures were characterised mainly by analysing their physical data including IR, NMR and HRMS. This study highlights that the 4,5-epoxy moiety in 1 is rarely seen in diarylheptanoids. In addition, the five isolates were tested for their differentiation activity of 3T3-L1 preadipocytes. The results showed that these compounds could dose-dependently promote adipocyte differentiation without cytotoxicity (IC 50  > 100 μM).

  5. Donor-Derived Regulatory Dendritic Cell Infusion Maintains Donor-Reactive CD4+CTLA4hi T Cells in Non-Human Primate Renal Allograft Recipients Treated with CD28 Co-Stimulation Blockade.

    PubMed

    Ezzelarab, Mohamed B; Lu, Lien; Shufesky, William F; Morelli, Adrian E; Thomson, Angus W

    2018-01-01

    Donor-derived regulatory dendritic cell (DCreg) infusion before transplantation, significantly prolongs renal allograft survival in non-human primates. This is associated with enhanced expression of the immunoregulatory molecules cytotoxic T-lymphocyte-associated antigen (Ag) 4 (CTLA4) and programmed cell death protein 1 (PD1) by host donor-reactive T cells. In rodents and humans, CD28 co-stimulatory pathway blockade with the fusion protein CTLA4:Ig (CTLA4Ig) is associated with reduced differentiation and development of regulatory T cells (Treg). We hypothesized that upregulation of CTLA4 by donor-reactive CD4 + T cells in DCreg-infused recipients treated with CTLA4Ig, might be associated with higher incidences of donor-reactive CD4 + T cells with a Treg phenotype. In normal rhesus monkeys, allo-stimulated CD4 + CTLA4 hi , but not CD4 + CTLA4 med/lo T cells exhibited a regulatory phenotype, irrespective of PD1 expression. CTLA4Ig significantly reduced the incidence of CD4 + CTLA4 hi , but not CD4 + CTLA4 med/lo T cells following allo-stimulation, associated with a significant reduction in the CD4 + CTLA4 hi /CD4 + CTLA4 med/lo T cell ratio. In CTLA4Ig-treated renal allograft recipient monkeys, there was a marked reduction in circulating donor-reactive CD4 + CTLA4 hi T cells. In contrast, in CTLA4Ig-treated monkeys with DCreg infusion, no such reduction was observed. In parallel, the donor-reactive CD4 + CTLA4 hi /CD4 + CTLA4 med/lo T cell ratio was reduced significantly in graft recipients without DCreg infusion, but increased in those given DCreg. These observations suggest that pre-transplant DCreg infusion promotes and maintains donor-reactive CD4 + CTLA4 hi T cells with a regulatory phenotype after transplantation, even in the presence of CD28 co-stimulation blockade.

  6. M- and T-tropic HIVs Promote Apoptosis in Rat Neurons

    PubMed Central

    Bachis, Alessia; Biggio, Francesca; Major, Eugene O.; Mocchetti, Italo

    2009-01-01

    Neuronal loss, reactive astrocytes, and other abnormalities are seen in the brain of individuals with acquired immune deficiency syndrome-associated Dementia Complex (ADC). Human immunodeficiency virus-1 (HIV-1) is believed to be the main agent causing ADC. However, little is known about the molecular and cellular mechanisms of HIV-1 neurotoxicity considering that HIV-1 does not infect post-mitotic neurons and that viral load does not necessarily correlate with ADC. Various viral proteins, such as the envelope protein gp120 and the transcription activator Tat, have been shown to induce neuronal apoptosis through direct and indirect mechanisms both in vitro and in vivo. Progeny HIV-1 virions can also cause neuronal death. However, it has not been fully established yet whether HIV-1 promotes neuronal apoptosis by a direct mechanism. To explore the neurotoxic effect of HIV-1, we exposed rat cerebellar granule cells and cortical neurons in culture to two different strains of HIV-1, IIIB and BaL, T- and M-tropic strains that utilize CXCR4 and CCR5 coreceptors, respectively, to infect cells. We observed that both viruses elicit a time-dependent apoptotic cell death in these cultures without inducing a productive infection as determined by the absence of the core protein of HIV-1, p24, in cell lysates. Instead, neurons were gp 120 positive, suggesting that the envelope protein is shed by the virus and then subsequently internalized by neurons. The CXCR4 receptor antagonist AMD3100 or the CCR5 receptor inhibitor D-Ala-peptide T-amide blocked HIV IIIB and HIV Bal neurotoxicity, respectively. In contrast, the N-methyl-D-aspartate receptor blocker MK801 failed to protect neurons from HIV-mediated apoptosis, suggesting that HIV-1 neurotoxicity can be initiated by the viral protein gp 120 binding to neuronal chemokine receptors. PMID:19034668

  7. Occurrence of 4-tert-butylphenol (4-t-BP) biodegradation in an aquatic sample caused by the presence of Spirodela polyrrhiza and isolation of a 4-t-BP-utilizing bacterium.

    PubMed

    Ogata, Yuka; Toyama, Tadashi; Yu, Ning; Wang, Xuan; Sei, Kazunari; Ike, Michihiko

    2013-04-01

    Although 4-tert-butylphenol (4-t-BP) is a serious aquatic pollutant, its biodegradation in aquatic environments has not been well documented. In this study, 4-t-BP was obviously and repeatedly removed from water from four different environments in the presence of Spirodela polyrrhiza, giant duckweed, but 4-t-BP persisted in the environmental waters in the absence of S. polyrrhiza. Also, 4-t-BP was not removed from autoclaved pond water with sterilized S. polyrrhiza. These results suggest that the 4-t-BP removal from the environmental waters was caused by biodegradation stimulated by the presence of S. polyrrhiza rather than by uptake by the plant. Moreover, Sphingobium fuliginis OMI capable of utilizing 4-t-BP as a sole carbon and energy source was isolated from the S. polyrrhiza rhizosphere. Strain OMI degraded 4-t-BP via a meta-cleavage pathway, and also degraded a broad range of alkylphenols with linear or branched alkyl side chains containing two to nine carbon atoms. Root exudates of S. polyrrhiza stimulated 4-t-BP degradation and cell growth of strain OMI. Thus, the stimulating effects of S. polyrrhiza root exudates on 4-t-BP-degrading bacteria might have contributed to 4-t-BP removal in the environmental waters with S. polyrrhiza. These results demonstrate that the S. polyrrhiza-bacteria association may be applicable to the removal of highly persistent 4-t-BP from wastewaters or polluted aquatic environments.

  8. miR-664 negatively regulates PLP2 and promotes cell proliferation and invasion in T-cell acute lymphoblastic leukaemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hong; Miao, Mei-hua; Ji, Xue-qiang

    2015-04-03

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in leukaemia, particularly T-cell acute lymphoblastic leukaemia (T-ALL), has remained elusive. Here, we identified miR-664 and its predicted target gene PLP2 were differentially expressed in T-ALL using bioinformatics methods. In T-ALL cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-664, while miR-664 inhibitor could significantly inhibited the proliferation. Moreover, migration and invasion assay showed that overexpression of miR-664 could significantly promoted the migration and invasion of T-ALL cells, whereasmore » miR-664 inhibitor could reduce cell migration and invasion. luciferase assays confirmed that miR-664 directly bound to the 3'untranslated region of PLP2, and western blotting showed that miR-664 suppressed the expression of PLP2 at the protein levels. This study indicated that miR-664 negatively regulates PLP2 and promotes proliferation and invasion of T-ALL cell lines. Thus, miR-664 may represent a potential therapeutic target for T-ALL intervention. - Highlights: • miR-664 mimics promote the proliferation and invasion of T-ALL cells. • miR-664 inhibitors inhibit the proliferation and invasion of T-ALL cells. • miR-664 targets 3′ UTR of PLP2 in T-ALL cells. • miR-664 negatively regulates PLP2 in T-ALL cells.« less

  9. Regulatory CD4 T cells inhibit HIV-1 expression of other CD4 T cell subsets via interactions with cell surface regulatory proteins.

    PubMed

    Zhang, Mingce; Robinson, Tanya O; Duverger, Alexandra; Kutsch, Olaf; Heath, Sonya L; Cron, Randy Q

    2018-03-01

    During chronic HIV-1 infection, regulatory CD4 T cells (Tregs) frequently represent the largest subpopulation of CD4 T cell subsets, implying relative resistant to HIV-1. When HIV-1 infection of CD4 T cells was explored in vitro and ex vivo from patient samples, Tregs possessed lower levels of HIV-1 DNA and RNA in comparison with conventional effector and memory CD4 T cells. Moreover, Tregs suppressed HIV-1 expression in other CD4 T cells in an in vitro co-culture system. This suppression was mediated in part via multiple inhibitory surface proteins expressed on Tregs. Antibody blockade of CTLA-4, PD-1, and GARP on Tregs resulted in increased HIV-1 DNA integration and mRNA expression in neighboring CD4 T cells. Moreover, antibody blockade of Tregs inhibitory proteins resulted in increased HIV-1 LTR transcription in co-cultured CD4 T cells. Thus, Tregs inhibit HIV-1 infection of other CD4 T cell subsets via interactions with inhibitory cell surface proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. [Mechanism for synergistic effect of IRF4 and MITF on tyrosinase promoter].

    PubMed

    Song, Jian; Liu, Xueming; Li, Jiada; Liu, Huadie; Peng, Zhen; Chen, Hongsheng; Mei, Lingyun; He, Chufeng; Feng, Yong

    2018-05-28

    To investigate the mechanism for the synergistic effect of interferon regulatory factor 4 (IRF4) and microphthalmia-associated transcription factor (MITF) on tyrosinase (TYR) promoter.
 Methods: The synergistic transcriptional effect, subcellular localization, and protein-protein interaction for IRF4 and MITF were observed by luciferase assay, immunofluorescence, GST-pull down, and co-immunoprecipitation, respectively.
 Results: IRF4 and MITF proteins were co-expressed in the cell nucleus. IRF4 augmented the transcriptional function of MITF (but not the mutant MITF) to activate the expression of the TYR promoter, but with no effect on other MITF-specific target promoters. IRF4 alone did not affect TYR promoter significantly. No direct interaction between the two proteins was noted.
 Conclusion: IRF4 and MITF exert a specifically synergistic effect on activation of TYR promoter through IRF4-mediated upregulation of transcriptional function of MITF. This synergistic effect is mainly regulated by MITF; DNA might be involved in the interaction between the two proteins.

  11. Valyl-tRNA synthetase modification-dependent restriction of bacteriophage T4.

    PubMed Central

    Olson, N J; Marchin, G L

    1984-01-01

    A strain of Escherichia coli, CP 790302, severely restricts the growth of wild-type bacteriophage T4. In broth culture, most infections of single cells are abortive, although a few infected cells exhibit reduced burst sizes. In contrast, bacteriophage T4 mutants impaired in the ability to modify valyl-tRNA synthetase develop normally on this strain. Biochemical evidence indicates that the phage-modified valyl-tRNA synthetase in CP 790302 is different from that previously described. Although the enzyme is able to support normal protein synthesis, a disproportionate amount of phage structural protein (serum blocking power) fails to mature into particles of the appropriate density. The results with host strain CP 790302 are consistent with either a gratuitous inhibition of phage assembly by faulty modification or abrogation of an unknown role that valyl-tRNA synthetase might normally play in viral assembly. PMID:6374167

  12. Teneurin-4 promotes cellular protrusion formation and neurite outgrowth through focal adhesion kinase signaling

    PubMed Central

    Suzuki, Nobuharu; Numakawa, Tadahiro; Chou, Joshua; de Vega, Susana; Mizuniwa, Chihiro; Sekimoto, Kaori; Adachi, Naoki; Kunugi, Hiroshi; Arikawa-Hirasawa, Eri; Yamada, Yoshihiko; Akazawa, Chihiro

    2014-01-01

    Teneurin-4 (Ten-4), a transmembrane protein, is highly expressed in the central nervous system; however, its cellular and molecular function in neuronal differentiation remains unknown. In this study, we aimed to elucidate the function of Ten-4 in neurite outgrowth. Ten-4 expression was induced during neurite outgrowth of the neuroblastoma cell line Neuro-2a. Ten-4 protein was localized at the neurite growth cones. Knockdown of Ten-4 expression in Neuro-2a cells decreased the formation of the filopodia-like protrusions and the length of individual neurites. Conversely, overexpression of Ten-4 promoted filopodia-like protrusion formation. In addition, knockdown and overexpression of Ten-4 reduced and elevated the activation of focal adhesion kinase (FAK) and Rho-family small GTPases, Cdc42 and Rac1, key molecules for the membranous protrusion formation downstream of FAK, respectively. Inhibition of the activation of FAK and neural Wiskott-Aldrich syndrome protein (N-WASP), which is a downstream regulator of FAK and Cdc42, blocked protrusion formation by Ten-4 overexpression. Further, Ten-4 colocalized with phosphorylated FAK in the filopodia-like protrusion regions. Together, our findings show that Ten-4 is a novel positive regulator of cellular protrusion formation and neurite outgrowth through the FAK signaling pathway.—Suzuki, N., Numakawa, T., Chou, J., de Vega, S., Mizuniwa, C., Sekimoto, K., Adachi, N., Kunugi, H., Arikawa-Hirasawa, E., Yamada, Y., Akazawa, C. Teneurin-4 promotes cellular protrusion formation and neurite outgrowth through focal adhesion kinase signaling. PMID:24344332

  13. CD4+ T Cells Mediate Aspergillosis Vaccine Protection.

    PubMed

    Diaz-Arevalo, Diana; Kalkum, Markus

    2017-01-01

    Adaptive effector CD4 + T cells play essential roles in the defense against fungal infections, especially against invasive aspergillosis (IA). Such protective CD4 + T cells can be generated through immunization with specialized antifungal vaccines, as has been demonstrated for pulmonary Aspergillus fumigatus infections in mouse experiments. Adaptive transfer of fungal antigen-specific CD4 + T cells conferred protection onto non-immunized naive mice, an experimental approach that could potentially become a future treatment option for immunosuppressed IA patients, focusing on the ultimate goal to improve their otherwise dim chances for survival. Here, we describe the different techniques to analyze CD4 + T cell immune responses after immunization with a recombinant fungal protein. We present three major methods that are used to analyze the role of CD4 + T cells in protection against A. fumigatus challenge. They include (1) transplantation of CD4 + T cells from vaccinated mice into immunosuppressed naive mice, observing increasing protection of the cell recipients, (2) depletion of CD4 + T cells from vaccinated mice, which abolishes vaccine protection, and (3) T cell proliferation studies following stimulation with overlapping synthetic peptides or an intact protein vaccine. The latter can be used to validate immunization status and to identify protective T cell epitopes in vaccine antigens. In the methods detailed here, we used versions of the well-studied Asp f3 protein expressed in a bacterial host, either as the intact full length protein or its N-terminally truncated version, comprised of residues 15-168. However, these methods are generally applicable and can well be adapted to study other protein-based subunit vaccines.

  14. T-4G Methodology: Undergraduate Pilot Training T-37 Phase.

    ERIC Educational Resources Information Center

    Woodruff, Robert R.; And Others

    The report's brief introduction describes the application of T-4G methodology to the T-37 instrument phase of undergraduate pilot training. The methodology is characterized by instruction in trainers, proficiency advancement, a highly structured syllabus, the training manager concept, early exposure to instrument training, and hands-on training.…

  15. Increased peripheral CD4+ regulatory T cells persist after successful direct-acting antiviral treatment of chronic hepatitis C.

    PubMed

    Langhans, Bettina; Nischalke, Hans Dieter; Krämer, Benjamin; Hausen, Annekristin; Dold, Leona; van Heteren, Peer; Hüneburg, Robert; Nattermann, Jacob; Strassburg, Christian P; Spengler, Ulrich

    2017-05-01

    CD4 + regulatory T cells (Tregs) expand during chronic hepatitis C virus (HCV) infection, inhibit antiviral immunity and promote fibrosis. Direct-acting antiviral agents (DAA) have revolutionized HCV therapy. However, it is unclear if Tregs are normalized after DAA-induced HCV elimination. We analyzed Tregs before (baseline), at end of therapy (EOT), 12 and 24weeks (SVR12, SVR24) and long-term (51±14weeks) after EOT in 26 genotype-1-infected patients who were successfully treated with sofosbuvir (SOF) plus interferon (IFN)/ribavirin (n=12) and IFN-free DAA regimens (SOF plus daclatasvir or simeprevir; n=14). Frequency, phenotype and suppressor function of peripheral Foxp3 + CD25 + CD4 + T cells were studied by multi-color flow cytometry and co-culture inhibition assays. Frequencies and activation status of Foxp3 + CD25 + CD4 + T cells remained elevated above those of normal controls in both treatment groups even long-term after HCV elimination. Co-culture assays indicated a dose-response relationship for functional inhibition of autologous CD4 + effector T cells and confirmed that activation of Tregs remained largely unchanged over the observation period. Unlike IFN-free regimens, SOF plus IFN/ribavirin induced a transiently increased frequency of Foxp3 + CD25 + CD4 + T cells at EOT (5.0% at baseline to 6.1% at EOT; p=0.001). These Foxp3 + CD25 + CD4 + T cells co-expressed the activation markers glycoprotein A repetitions predominant (GARP; p=0.012) and tumor necrosis factor receptor superfamily, member 4 (OX-40; p=0.001) but showed unchanged in vitro inhibitory activity. Although IFN-based DAA therapy induced transient expansion of activated Foxp3 + CD25 + CD4 + T cells, neither IFN-based nor IFN-free DAA regimens normalized frequencies and activation status of Tregs one year after viral elimination. Persistence of immunosuppressive Tregs may thus contribute to complications of liver disease even long-term after HCV cure. In chronic hepatitis C virus (HCV

  16. Dectin-1/TLR2 and NOD2 Agonists Render Dendritic Cells Susceptible to Infection by X4-Using HIV-1 and Promote cis-Infection of CD4+ T Cells

    PubMed Central

    Tremblay, Michel J.

    2013-01-01

    HIV-1 pathogenesis is intimately linked with microbial infections and innate immunity during all stages of the disease. While the impact of microbial-derived products in transmission of R5-using virus to CD4+ T cells by dendritic cells (DCs) has been addressed before, very limited data are available on the effect of such compounds on DC-mediated dissemination of X4-tropic variant. Here, we provide evidence that treatment of DCs with dectin-1/TLR2 and NOD2 ligands increases cis-infection of autologous CD4+ T cells by X4-using virus. This phenomenon is most likely associated with an enhanced permissiveness of DCs to productive infection with X4 virus, which is linked to increased surface expression of CXCR4 and the acquisition of a maturation profile by DCs. The ensuing DC maturation enhances susceptibility of CD4+ T cells to productive infection with HIV-1. This study highlights the crucial role of DCs at different stages of HIV-1 infection and particularly in spreading of viral strains displaying a X4 phenotype. PMID:23844079

  17. Blockade of PD-1/PD-L1 Promotes Adoptive T-Cell Immunotherapy in a Tolerogenic Environment

    PubMed Central

    Kenna, Tony J.; Galea, Ryan; Large, Justin; Yagita, Hideo; Steptoe, Raymond J.

    2015-01-01

    Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The co-inhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PD-L1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcm-like cells. PMID:25741704

  18. Blockade of PD-1/PD-L1 promotes adoptive T-cell immunotherapy in a tolerogenic environment.

    PubMed

    Blake, Stephen J P; Ching, Alan L H; Kenna, Tony J; Galea, Ryan; Large, Justin; Yagita, Hideo; Steptoe, Raymond J

    2015-01-01

    Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The co-inhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PD-L1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcm-like cells.

  19. Riboflavin Depletion Promotes Tumorigenesis in HEK293T and NIH3T3 Cells by Sustaining Cell Proliferation and Regulating Cell Cycle-Related Gene Transcription.

    PubMed

    Long, Lin; He, Jian-Zhong; Chen, Ye; Xu, Xiu-E; Liao, Lian-Di; Xie, Yang-Min; Li, En-Min; Xu, Li-Yan

    2018-05-07

    Riboflavin is an essential component of the human diet and its derivative cofactors play an established role in oxidative metabolism. Riboflavin deficiency has been linked with various human diseases. The objective of this study was to identify whether riboflavin depletion promotes tumorigenesis. HEK293T and NIH3T3 cells were cultured in riboflavin-deficient or riboflavin-sufficient medium and passaged every 48 h. Cells were collected every 5 generations and plate colony formation assays were performed to observe cell proliferation. Subcutaneous tumorigenicity assays in NU/NU mice were used to observe tumorigenicity of riboflavin-depleted HEK293T cells. Mechanistically, gene expression profiling and gene ontology analysis were used to identify abnormally expressed genes induced by riboflavin depletion. Western blot analyses, cell cycle analyses, and chromatin immunoprecipitation were used to validate the expression of cell cycle-related genes. Plate colony formation of NIH3T3 and HEK293T cell lines was enhanced >2-fold when cultured in riboflavin-deficient medium for 10-20 generations. Moreover, we observed enhanced subcutaneous tumorigenicity in NU/NU mice following injection of riboflavin-depleted compared with normal HEK293T cells (55.6% compared with 0.0% tumor formation, respectively). Gene expression profiling and gene ontology analysis revealed that riboflavin depletion induced the expression of cell cycle-related genes. Validation experiments also found that riboflavin depletion decreased p21 and p27 protein levels by ∼20%, and increased cell cycle-related and expression-elevated protein in tumor (CREPT) protein expression >2-fold, resulting in cyclin D1 and CDK4 levels being increased ∼1.5-fold, and cell cycle acceleration. We also observed that riboflavin depletion decreased intracellular riboflavin levels by 20% and upregulated expression of riboflavin transporter genes, particularly SLC52A3, and that the changes in CREPT and SLC52A3 correlated with

  20. A Dominantly Acting Murine Allele of Mcm4 Causes Chromosomal Abnormalities and Promotes Tumorigenesis

    PubMed Central

    Bagley, Bruce N.; Keane, Thomas M.; Maklakova, Vilena I.; Marshall, Jonathon G.; Lester, Rachael A.; Cancel, Michelle M.; Paulsen, Alex R.; Bendzick, Laura E.; Been, Raha A.; Kogan, Scott C.; Cormier, Robert T.; Kendziorski, Christina; Adams, David J.; Collier, Lara S.

    2012-01-01

    Here we report the isolation of a murine model for heritable T cell lymphoblastic leukemia/lymphoma (T-ALL) called Spontaneous dominant leukemia (Sdl). Sdl heterozygous mice develop disease with a short latency and high penetrance, while mice homozygous for the mutation die early during embryonic development. Sdl mice exhibit an increase in the frequency of micronucleated reticulocytes, and T-ALLs from Sdl mice harbor small amplifications and deletions, including activating deletions at the Notch1 locus. Using exome sequencing it was determined that Sdl mice harbor a spontaneously acquired mutation in Mcm4 (Mcm4D573H). MCM4 is part of the heterohexameric complex of MCM2–7 that is important for licensing of DNA origins prior to S phase and also serves as the core of the replicative helicase that unwinds DNA at replication forks. Previous studies in murine models have discovered that genetic reductions of MCM complex levels promote tumor formation by causing genomic instability. However, Sdl mice possess normal levels of Mcms, and there is no evidence for loss-of-heterozygosity at the Mcm4 locus in Sdl leukemias. Studies in Saccharomyces cerevisiae indicate that the Sdl mutation produces a biologically inactive helicase. Together, these data support a model in which chromosomal abnormalities in Sdl mice result from the ability of MCM4D573H to incorporate into MCM complexes and render them inactive. Our studies indicate that dominantly acting alleles of MCMs can be compatible with viability but have dramatic oncogenic consequences by causing chromosomal abnormalities. PMID:23133403

  1. A dominantly acting murine allele of Mcm4 causes chromosomal abnormalities and promotes tumorigenesis.

    PubMed

    Bagley, Bruce N; Keane, Thomas M; Maklakova, Vilena I; Marshall, Jonathon G; Lester, Rachael A; Cancel, Michelle M; Paulsen, Alex R; Bendzick, Laura E; Been, Raha A; Kogan, Scott C; Cormier, Robert T; Kendziorski, Christina; Adams, David J; Collier, Lara S

    2012-01-01

    Here we report the isolation of a murine model for heritable T cell lymphoblastic leukemia/lymphoma (T-ALL) called Spontaneous dominant leukemia (Sdl). Sdl heterozygous mice develop disease with a short latency and high penetrance, while mice homozygous for the mutation die early during embryonic development. Sdl mice exhibit an increase in the frequency of micronucleated reticulocytes, and T-ALLs from Sdl mice harbor small amplifications and deletions, including activating deletions at the Notch1 locus. Using exome sequencing it was determined that Sdl mice harbor a spontaneously acquired mutation in Mcm4 (Mcm4(D573H)). MCM4 is part of the heterohexameric complex of MCM2-7 that is important for licensing of DNA origins prior to S phase and also serves as the core of the replicative helicase that unwinds DNA at replication forks. Previous studies in murine models have discovered that genetic reductions of MCM complex levels promote tumor formation by causing genomic instability. However, Sdl mice possess normal levels of Mcms, and there is no evidence for loss-of-heterozygosity at the Mcm4 locus in Sdl leukemias. Studies in Saccharomyces cerevisiae indicate that the Sdl mutation produces a biologically inactive helicase. Together, these data support a model in which chromosomal abnormalities in Sdl mice result from the ability of MCM4(D573H) to incorporate into MCM complexes and render them inactive. Our studies indicate that dominantly acting alleles of MCMs can be compatible with viability but have dramatic oncogenic consequences by causing chromosomal abnormalities.

  2. IFN-Gamma-Dependent and Independent Mechanisms of CD4⁺ Memory T Cell-Mediated Protection from Listeria Infection.

    PubMed

    Meek, Stephanie M; Williams, Matthew A

    2018-02-13

    While CD8⁺ memory T cells can promote long-lived protection from secondary exposure to intracellular pathogens, less is known regarding the direct protective mechanisms of CD4T cells. We utilized a prime/boost model in which mice are initially exposed to an acutely infecting strain of lymphocytic choriomeningitis virus (LCMV), followed by a heterologous rechallenge with Listeria monocytogenes recombinantly expressing the MHC Class II-restricted LCMV epitope, GP 61-80 (Lm-gp61). We found that heterologous Lm-gp61 rechallenge resulted in robust activation of CD4⁺ memory T cells and that they were required for rapid bacterial clearance. We further assessed the relative roles of TNF and IFNγ in the direct anti-bacterial function of CD4⁺ memory T cells. We found that disruption of TNF resulted in a complete loss of protection mediated by CD4⁺ memory T cells, whereas disruption of IFNγ signaling to macrophages results in only a partial loss of protection. The protective effect mediated by CD4T cells corresponded to the rapid accumulation of pro-inflammatory macrophages in the spleen and an altered inflammatory environment in vivo. Overall, we conclude that protection mediated by CD4⁺ memory T cells from heterologous Listeria challenge is most directly dependent on TNF, whereas IFNγ only plays a minor role.

  3. Interleukin-17A Promotes CD8+ T Cell Cytotoxicity To Facilitate West Nile Virus Clearance.

    PubMed

    Acharya, Dhiraj; Wang, Penghua; Paul, Amber M; Dai, Jianfeng; Gate, David; Lowery, Jordan E; Stokic, Dobrivoje S; Leis, A Arturo; Flavell, Richard A; Town, Terrence; Fikrig, Erol; Bai, Fengwei

    2017-01-01

    CD8 + T cells are crucial components of immunity and play a vital role in recovery from West Nile virus (WNV) infection. Here, we identify a previously unrecognized function of interleukin-17A (IL-17A) in inducing cytotoxic-mediator gene expression and promoting CD8 + T cell cytotoxicity against WNV infection in mice. We find that IL-17A-deficient (Il17a -/- ) mice are more susceptible to WNV infection and develop a higher viral burden than wild-type (WT) mice. Interestingly, the CD8 + T cells isolated from Il17a -/- mice are less cytotoxic and express lower levels of cytotoxic-mediator genes, which can be restored by supplying recombinant IL-17A in vitro and in vivo Importantly, treatment of WNV-infected mice with recombinant IL-17A, as late as day 6 postinfection, significantly reduces the viral burden and increases survival, suggesting a therapeutic potential for IL-17A. In conclusion, we report a novel function of IL-17A in promoting CD8 + T cell cytotoxicity, which may have broad implications in other microbial infections and cancers. Interleukin-17A (IL-17A) and CD8 + T cells regulate diverse immune functions in microbial infections, malignancies, and autoimmune diseases. IL-17A is a proinflammatory cytokine produced by diverse cell types, while CD8 + T cells (known as cytotoxic T cells) are major cells that provide immunity against intracellular pathogens. Previous studies have demonstrated a crucial role of CD8 + T cells in recovery from West Nile virus (WNV) infection. However, the role of IL-17A during WNV infection remains unclear. Here, we demonstrate that IL-17A protects mice from lethal WNV infection by promoting CD8 + T cell-mediated clearance of WNV. In addition, treatment of WNV-infected mice with recombinant IL-17A reduces the viral burden and increases survival of mice, suggesting a potential therapeutic. This novel IL-17A-CD8 + T cell axis may also have broad implications for immunity to other microbial infections and cancers, where CD8 + T cell

  4. Protection by and maintenance of CD4 effector memory and effector T cell subsets in persistent malaria infection.

    PubMed

    Opata, Michael M; Ibitokou, Samad A; Carpio, Victor H; Marshall, Karis M; Dillon, Brian E; Carl, Jordan C; Wilson, Kyle D; Arcari, Christine M; Stephens, Robin

    2018-04-01

    Protection at the peak of Plasmodium chabaudi blood-stage malaria infection is provided by CD4 T cells. We have shown that an increase in Th1 cells also correlates with protection during the persistent phase of malaria; however, it is unclear how these T cells are maintained. Persistent malaria infection promotes protection and generates both effector T cells (Teff), and effector memory T cells (Tem). We have previously defined new CD4 Teff (IL-7Rα-) subsets from Early (TeffEarly, CD62LhiCD27+) to Late (TeffLate, CD62LloCD27-) activation states. Here, we tested these effector and memory T cell subsets for their ability to survive and protect in vivo. We found that both polyclonal and P. chabaudi Merozoite Surface Protein-1 (MSP-1)-specific B5 TCR transgenic Tem survive better than Teff. Surprisingly, as Tem are associated with antigen persistence, Tem survive well even after clearance of infection. As previously shown during T cell contraction, TeffEarly, which can generate Tem, also survive better than other Teff subsets in uninfected recipients. Two other Tem survival mechanisms identified here are that low-level chronic infection promotes Tem both by driving their proliferation, and by programming production of Tem from Tcm. Protective CD4 T cell phenotypes have not been precisely determined in malaria, or other persistent infections. Therefore, we tested purified memory (Tmem) and Teff subsets in protection from peak pathology and parasitemia in immunocompromised recipient mice. Strikingly, among Tmem (IL-7Rαhi) subsets, only TemLate (CD62LloCD27-) reduced peak parasitemia (19%), though the dominant memory subset is TemEarly, which is not protective. In contrast, all Teff subsets reduced peak parasitemia by more than half, and mature Teff can generate Tem, though less. In summary, we have elucidated four mechanisms of Tem maintenance, and identified two long-lived T cell subsets (TemLate, TeffEarly) that may represent correlates of protection or a target for

  5. VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses

    NASA Astrophysics Data System (ADS)

    Mittelbrunn, María; Molina, Ana; Escribese, María M.; Yáñez-Mó, María; Escudero, Ester; Ursa, Ángeles; Tejedor, Reyes; Mampaso, Francisco; Sánchez-Madrid, Francisco

    2004-07-01

    The integrin 41 (VLA-4) not only mediates the adhesion and transendothelial migration of leukocytes, but also provides costimulatory signals that contribute to the activation of T lymphocytes. However, the behavior of 41 during the formation of the immune synapse is currently unknown. Here, we show that 41 is recruited to both human and murine antigen-dependent immune synapses, when the antigen-presenting cell is a B lymphocyte or a dendritic cell, colocalizing with LFA-1 at the peripheral supramolecular activation complex. However, when conjugates are formed in the presence of anti-4 antibodies, VLA-4 colocalizes with the CD3- chain at the center of the synapse. In addition, antibody engagement of 4 integrin promotes polarization toward a T helper 1 (Th1) response in human in vitro models of CD4+ T cell differentiation and naïve T cell priming by dendritic cells. The in vivo administration of anti-4 integrin antibodies also induces an immune deviation to Th1 response that dampens a Th2-driven autoimmune nephritis in Brown Norway rats. These data reveal a regulatory role of 4 integrins on T lymphocyte-antigen presenting cell cognate immune interactions.

  6. Thyroid hormones in the elderly sick: "T4 euthyroidism".

    PubMed

    Burrows, A W; Shakespear, R A; Hesch, R D; Cooper, E; Aickin, C M; Burke, C W

    1975-11-22

    Thyroid function and serum levels of triiodothyronine (T3) and thyroxine (T4) were investigated in 79 euthyroid geriatric patients. Of the 59 inpatients and 20 outpatients 35 (59%) and 2, respectively, had low T3 levels. In contrast, 7 (12%) and 6 (30%), respectively, had raised T4 levels. Two further patients were excluded from the study because of raised levels of thyroid-stimulating hormone. Thyroxine-binding globulin was greatly increased in both groups of patients, but low serum albumin levels were present in 31 (39%). Despite these changes free T3 and T4 indices closely followed total T3 and T4 levels. The difference between the two groups of patients did not correlate with body weight, diagnostic categories, age, drug treatment, or duration of stay in hospital.

  7. Thyroid hormones in the elderly sick: "T4 euthyroidism".

    PubMed Central

    Burrows, A W; Shakespear, R A; Hesch, R D; Cooper, E; Aickin, C M; Burke, C W

    1975-01-01

    Thyroid function and serum levels of triiodothyronine (T3) and thyroxine (T4) were investigated in 79 euthyroid geriatric patients. Of the 59 inpatients and 20 outpatients 35 (59%) and 2, respectively, had low T3 levels. In contrast, 7 (12%) and 6 (30%), respectively, had raised T4 levels. Two further patients were excluded from the study because of raised levels of thyroid-stimulating hormone. Thyroxine-binding globulin was greatly increased in both groups of patients, but low serum albumin levels were present in 31 (39%). Despite these changes free T3 and T4 indices closely followed total T3 and T4 levels. The difference between the two groups of patients did not correlate with body weight, diagnostic categories, age, drug treatment, or duration of stay in hospital. PMID:811313

  8. Histone demethylase JMJD3 regulates CD11a expression through changes in histone H3K27 tri-methylation levels in CD4+ T cells of patients with systemic lupus erythematosus.

    PubMed

    Yin, Heng; Wu, Haijing; Zhao, Ming; Zhang, Qing; Long, Hai; Fu, Siqi; Lu, Qianjin

    2017-07-25

    Aberrant CD11a overexpression in CD4+ T cells induces T cell auto-reactivity, which is an important factor for systemic lupus erythematosus (SLE) pathogenesis. Although many studies have focused on CD11a epigenetic regulation, little is known about histone methylation. JMJD3, as a histone demethylase, is capable of specifically removing the trimethyl group from the H3K27 lysine residue, triggering target gene activation. Here, we examined the expression and function of JMJD3 in CD4+ T cells from SLE patients. Significantly decreased H3K27me3 levels and increased JMJD3 binding were detected within the ITGAL (CD11a) promoter locus in SLE CD4+ T cells compared with those in healthy CD4+ T cells. Moreover, overexpressing JMJD3 through the transfection of pcDNA3.1-JMJD3 into healthy donor CD4+ T cells increased JMJD3 enrichment and decreased H3K27me3 enrichment within the ITGAL (CD11a) promoter and up-regulated CD11a expression, leading to T and B cell hyperactivity. Inhibition of JMJD3 via JMJD3-siRNA in SLE CD4+ T cells showed the opposite effects. These results demonstrated that histone demethylase JMJD3 regulates CD11a expression in lupus T cells by affecting the H3K27me3 levels in the ITGAL (CD11a) promoter region, and JMJD3 might thereby serve as a potential therapeutic target for SLE.

  9. Naive T cells are dispensable for memory CD4+ T cell homeostasis in progressive simian immunodeficiency virus infection.

    PubMed

    Okoye, Afam A; Rohankhedkar, Mukta; Abana, Chike; Pattenn, Audrie; Reyes, Matthew; Pexton, Christopher; Lum, Richard; Sylwester, Andrew; Planer, Shannon L; Legasse, Alfred; Park, Byung S; Piatak, Michael; Lifson, Jeffrey D; Axthelm, Michael K; Picker, Louis J

    2012-04-09

    The development of AIDS in chronic HIV/simian immunodeficiency virus (SIV) infection has been closely linked to progressive failure of CD4(+) memory T cell (T(M)) homeostasis. CD4(+) naive T cells (T(N)) also decline in these infections, but their contribution to disease progression is less clear. We assessed the role of CD4(+) T(N) in SIV pathogenesis using rhesus macaques (RMs) selectively and permanently depleted of CD4(+) T(N) before SIV infection. CD4(+) T(N)-depleted and CD4(+) T(N)-repleted RMs were created by subjecting juvenile RMs to thymectomy versus sham surgery, respectively, followed by total CD4(+) T cell depletion and recovery from this depletion. Although thymectomized and sham-treated RMs manifested comparable CD4(+) T(M) recovery, only sham-treated RMs reconstituted CD4(+) T(N). CD4(+) T(N)-depleted RMs responded to SIVmac239 infection with markedly attenuated SIV-specific CD4(+) T cell responses, delayed SIVenv-specific Ab responses, and reduced SIV-specific CD8(+) T cell responses. However, CD4(+) T(N)-depleted and -repleted groups showed similar levels of SIV replication. Moreover, CD4(+) T(N) deficiency had no significant effect on CD4(+) T(M) homeostasis (either on or off anti-retroviral therapy) or disease progression. These data demonstrate that the CD4(+) T(N) compartment is dispensable for CD4(+) T(M) homeostasis in progressive SIV infection, and they confirm that CD4(+) T(M) comprise a homeostatically independent compartment that is intrinsically capable of self-renewal.

  10. Effects of Altering Levothyroxine (L-T4) Doses on Quality of Life, Mood, and Cognition in L-T4 Treated Subjects.

    PubMed

    Samuels, Mary H; Kolobova, Irina; Niederhausen, Meike; Janowsky, Jeri S; Schuff, Kathryn G

    2018-05-01

    The brain is a critical target organ for thyroid hormone, but it is unclear whether variations in thyroid function within and near the reference range affect quality of life, mood, or cognition. A total of 138 subjects with levothyroxine (L-T4)-treated hypothyroidism and normal thyrotropin (TSH) levels underwent measures of quality of life (36-Item Short Form Health Survey, Underactive Thyroid-Dependent Quality of Life Questionnaire), mood (Profile of Mood States, Affective Lability Scale), and cognition (executive function, memory). They were then randomly assigned to receive an unchanged, higher, or lower L-T4 dose in double-blind fashion, targeting one of three TSH ranges (0.34 to 2.50, 2.51 to 5.60, or 5.61 to 12.0 mU/L). Doses were adjusted every 6 weeks based on TSH levels. Baseline measures were reassessed at 6 months. At the end of the study, by intention to treat, mean L-T4 doses were 1.50 ± 0.07, 1.32 ± 0.07, and 0.78 ± 0.08 μg/kg (P < 0.001), and mean TSH levels were 1.85 ± 0.25, 3.93 ± 0.38, and 9.49 ± 0.80 mU/L (P < 0.001), respectively, in the three arms. There were minor differences in a few outcomes between the three arms, which were no longer significant after correction for multiple comparisons. Subjects could not ascertain how their L-T4 doses had been adjusted (P = 0.55) but preferred L-T4 doses they perceived to be higher (P < 0.001). Altering L-T4 doses in hypothyroid subjects to vary TSH levels in and near the reference range does not affect quality of life, mood, or cognition. L-T4-treated subjects prefer perceived higher L-T4 doses despite a lack of objective benefit. Adjusting L-T4 doses in hypothyroid patients based on symptoms in these areas may not result in significant clinical improvement.

  11. Epigenetic Changes and Suppression of the Nuclear Factor of Activated T Cell 1 (NFATC1) Promoter in Human Lymphomas with Defects in Immunoreceptor Signaling

    PubMed Central

    Akimzhanov, Askar; Krenacs, Laszlo; Schlegel, Timm; Klein-Hessling, Stefan; Bagdi, Enikö; Stelkovics, Eva; Kondo, Eisaku; Chuvpilo, Sergei; Wilke, Philipp; Avots, Andris; Gattenlöhner, Stefan; Müller-Hermelink, Hans-Konrad; Palmetshofer, Alois; Serfling, Edgar

    2008-01-01

    The nuclear factor of activated T cell 1 (Nfatc1) locus is a common insertion site for murine tumorigenic retroviruses, suggesting a role of transcription factor NFATc1 in lymphomagenesis. Although NFATc1 is expressed in most human primary lymphocytes and mature human T- and B-cell neoplasms, we show by histochemical stainings that NFATc1 expression is suppressed in anaplastic large cell lymphomas and classical Hodgkin’s lymphomas (HLs). In HL cell lines, NFATc1 silencing correlated with a decrease in histone H3 acetylation, H3-K4 trimethylation, and Sp1 factor binding but with an increase in HP1 binding to the NFATC1 P1 promoter. Together with DNA hypermethylation of the NFATC1 P1 promoter, which we detected in all anaplastic large cell lymphoma and many HL lines, these observations reflect typical signs of transcriptional silencing. In several lymphoma lines, methylation of NFATC1 promoter DNA resulted in a “window of hypomethylation,” which is flanked by Sp1-binding sites. Together with the under-representation of Sp1 at the NFATC1 P1 promoter in HL cells, this suggests that Sp1 factors can protect P1 DNA methylation in a directional manner. Blocking immunoreceptor signaling led to NFATC1 P1 promoter silencing and to a decrease in H3 acetylation and H3-K4 methylation but not DNA methylation. This shows that histone modifications precede the DNA methylation in NFATC1 promoter silencing. PMID:18156209

  12. CD4+CD62L+ Central Memory T Cells Can Be Converted to Foxp3+ T Cells

    PubMed Central

    Zhang, Xiaolong; Chang Li, Xian; Xiao, Xiang; Sun, Rui; Tian, Zhigang; Wei, Haiming

    2013-01-01

    The peripheral Foxp3+ Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4+ T cells can be readily converted to Foxp3+ iTreg in vitro, and memory CD4+ T cells are resistant to conversion. In this study, we investigated the induction of Foxp3+ T cells from various CD4+ T-cell subsets in human peripheral blood. Though naive CD4+ T cells were readily converted to Foxp3+ T cells with TGF-β and IL-2 treatment in vitro, such Foxp3+ T cells did not express the memory marker CD45RO as do Foxp3+ T cells induced in the peripheral blood of Hepatitis B Virus (HBV) patients. Interestingly, a subset of human memory CD4+ T cells, defined as CD62L+ central memory T cells, could be induced by TGF-β to differentiate into Foxp3+ T cells. It is well known that Foxp3+ T cells derived from human CD4+CD25- T cells in vitro are lack suppressive functions. Our data about the suppressive functions of CD4+CD62L+ central memory T cell-derived Foxp3+ T cells support this conception, and an epigenetic analysis of these cells showed a similar methylation pattern in the FOXP3 Treg-specific demethylated region as the naive CD4+ T cell-derived Foxp3+ T cells. But further research showed that mouse CD4+ central memory T cells also could be induced to differentiate into Foxp3+ T cells, such Foxp3+ T cells could suppress the proliferation of effector T cells. Thus, our study identified CD4+CD62L+ central memory T cells as a novel potential source of iTreg. PMID:24155942

  13. The DNA-mimic antirestriction proteins ArdA ColIB-P9, Arn T4, and Ocr T7 as activators of H-NS-dependent gene transcription.

    PubMed

    Melkina, Olga E; Goryanin, Ignatiy I; Zavilgelsky, Gennadii B

    2016-11-01

    The antirestriction proteins ArdA ColIb-P9, Arn T4 and Ocr T7 specifically inhibit type I and type IV restriction enzymes and belong to the family of DNA-mimic proteins because their three-dimensional structure is similar to the double-helical B-form DNA. It is proposed that the DNA-mimic proteins are able to bind nucleoid protein H-NS and alleviate H-NS-silencing of the transcription of bacterial genes. Escherichia coli lux biosensors were constructed by inserting H-NS-dependent promoters into a vector, thereby placing each fragment upstream of the promoterless Photorhabdus luminescens luxCDABE operon. It was demonstrated that the DNA-mimic proteins ArdA, Arn and Ocr activate the transcription of H-NS-dependent promoters of the lux operon of marine luminescent bacteria (mesophilic Aliivibrio fischeri and psychrophilic Aliivibrio logei), and the dps gene from E. coli. It was also demonstrated that the ArdA antirestriction protein, the genes of which are located on transmissive plasmids ColIb-P9, R64, PK101, decreases levels of H-NS silencing of the PluxC promoter during conjugation in the recipient bacteria. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Phosphorus-Based Dendrimer ABP Treats Neuroinflammation by Promoting IL-10-Producing CD4(+) T Cells.

    PubMed

    Hayder, Myriam; Varilh, Marjorie; Turrin, Cédric-Olivier; Saoudi, Abdelhadi; Caminade, Anne-Marie; Poupot, Rémy; Liblau, Roland S

    2015-11-09

    Dendrimers are polyfunctional nano-objects of perfectly defined structure that can provide innovative alternatives for the treatment of chronic inflammatory diseases, including multiple sclerosis (MS). To investigate the efficiency of a recently described amino-bis(methylene phosphonate)-capped ABP dendrimer as a potential drug candidate for MS, we used the classical mouse model of MOG35-55-induced experimental autoimmune encephalomyelitis (EAE). Our study provides evidence that the ABP dendrimer prevents the development of EAE and inhibits the progression of established disease with a comparable therapeutic benefit as the approved treatment Fingolimod. We also show that the ABP dendrimer redirects the pathogenic myelin-specific CD4(+) T cell response toward IL-10 production.

  15. Donor-Derived Regulatory Dendritic Cell Infusion Maintains Donor-Reactive CD4+CTLA4hi T Cells in Non-Human Primate Renal Allograft Recipients Treated with CD28 Co-Stimulation Blockade

    PubMed Central

    Ezzelarab, Mohamed B.; Lu, Lien; Shufesky, William F.; Morelli, Adrian E.; Thomson, Angus W.

    2018-01-01

    Donor-derived regulatory dendritic cell (DCreg) infusion before transplantation, significantly prolongs renal allograft survival in non-human primates. This is associated with enhanced expression of the immunoregulatory molecules cytotoxic T-lymphocyte-associated antigen (Ag) 4 (CTLA4) and programmed cell death protein 1 (PD1) by host donor-reactive T cells. In rodents and humans, CD28 co-stimulatory pathway blockade with the fusion protein CTLA4:Ig (CTLA4Ig) is associated with reduced differentiation and development of regulatory T cells (Treg). We hypothesized that upregulation of CTLA4 by donor-reactive CD4+ T cells in DCreg-infused recipients treated with CTLA4Ig, might be associated with higher incidences of donor-reactive CD4+ T cells with a Treg phenotype. In normal rhesus monkeys, allo-stimulated CD4+CTLA4hi, but not CD4+CTLA4med/lo T cells exhibited a regulatory phenotype, irrespective of PD1 expression. CTLA4Ig significantly reduced the incidence of CD4+CTLA4hi, but not CD4+CTLA4med/lo T cells following allo-stimulation, associated with a significant reduction in the CD4+CTLA4hi/CD4+CTLA4med/lo T cell ratio. In CTLA4Ig-treated renal allograft recipient monkeys, there was a marked reduction in circulating donor-reactive CD4+CTLA4hi T cells. In contrast, in CTLA4Ig-treated monkeys with DCreg infusion, no such reduction was observed. In parallel, the donor-reactive CD4+CTLA4hi/CD4+CTLA4med/lo T cell ratio was reduced significantly in graft recipients without DCreg infusion, but increased in those given DCreg. These observations suggest that pre-transplant DCreg infusion promotes and maintains donor-reactive CD4+CTLA4hi T cells with a regulatory phenotype after transplantation, even in the presence of CD28 co-stimulation blockade. PMID:29520267

  16. Role of IL-4 receptor α-positive CD4(+) T cells in chronic airway hyperresponsiveness.

    PubMed

    Kirstein, Frank; Nieuwenhuizen, Natalie E; Jayakumar, Jaisubash; Horsnell, William G C; Brombacher, Frank

    2016-06-01

    TH2 cells and their cytokines are associated with allergic asthma in human subjects and with mouse models of allergic airway disease. IL-4 signaling through the IL-4 receptor α (IL-4Rα) chain on CD4(+) T cells leads to TH2 cell differentiation in vitro, implying that IL-4Rα-responsive CD4(+) T cells are critical for the induction of allergic asthma. However, mechanisms regulating acute and chronic allergen-specific TH2 responses in vivo remain incompletely understood. This study defines the requirements for IL-4Rα-responsive CD4(+) T cells and the IL-4Rα ligands IL-4 and IL-13 in the development of allergen-specific TH2 responses during the onset and chronic phase of experimental allergic airway disease. Development of acute and chronic ovalbumin (OVA)-induced allergic asthma was assessed weekly in CD4(+) T cell-specific IL-4Rα-deficient BALB/c mice (Lck(cre)IL-4Rα(-/lox)) and respective control mice in the presence or absence of IL-4 or IL-13. During acute allergic airway disease, IL-4 deficiency did not prevent the onset of TH2 immune responses and OVA-induced airway hyperresponsiveness or goblet cell hyperplasia, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. In contrast, deficiency of IL-13 prevented allergic asthma, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. Importantly, chronic allergic inflammation and airway hyperresponsiveness were dependent on IL-4Rα-responsive CD4(+) T cells. Deficiency in IL-4Rα-responsive CD4(+) T cells resulted in increased numbers of IL-17-producing T cells and, consequently, increased airway neutrophilia. IL-4-responsive T helper cells are dispensable for acute OVA-induced airway disease but crucial in maintaining chronic asthmatic pathology. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. CD4/CD8/Dendritic cell complexes in the spleen: CD8+ T cells can directly bind CD4+ T cells and modulate their response

    PubMed Central

    Barinov, Aleksandr; Galgano, Alessia; Krenn, Gerald; Tanchot, Corinne; Vasseur, Florence

    2017-01-01

    CD4+ T cell help to CD8+ T cell responses requires that CD4+ and CD8+ T cells interact with the same antigen presenting dendritic cell (Ag+DC), but it remains controversial whether helper signals are delivered indirectly through a licensed DC and/or involve direct CD4+/CD8+ T cell contacts and/or the formation of ternary complexes. We here describe the first in vivo imaging of the intact spleen, aiming to evaluate the first interactions between antigen-specific CD4+, CD8+ T cells and Ag+DCs. We show that in contrast to CD4+ T cells which form transient contacts with Ag+DC, CD8+ T cells form immediate stable contacts and activate the Ag+DC, acquire fragments of the DC membranes by trogocytosis, leading to their acquisition of some of the DC properties. They express MHC class II, and become able to present the specific Marilyn peptide to naïve Marilyn CD4+ T cells, inducing their extensive division. In vivo, these CD8+ T cells form direct stable contacts with motile naïve CD4+ T cells, recruiting them to Ag+DC binding and to the formation of ternary complexes, where CD4+ and CD8+ T cells interact with the DC and with one another. The presence of CD8+ T cells during in vivo immune responses leads to the early activation and up-regulation of multiple functions by CD4+ T lymphocytes. Thus, while CD4+ T cell help is important to CD8+ T cell responses, CD8+ T cells can interact directly with naïve CD4+ T cells impacting their recruitment and differentiation. PMID:28686740

  18. Epigenetic Metabolite Acetate Inhibits Class I/II Histone Deacetylases, Promotes Histone Acetylation, and Increases HIV-1 Integration in CD4+ T Cells.

    PubMed

    Bolduc, Jean-François; Hany, Laurent; Barat, Corinne; Ouellet, Michel; Tremblay, Michel J

    2017-08-15

    In this study, we investigated the effect of acetate, the most concentrated short-chain fatty acid (SCFA) in the gut and bloodstream, on the susceptibility of primary human CD4 + T cells to HIV-1 infection. We report that HIV-1 replication is increased in CD3/CD28-costimulated CD4 + T cells upon acetate treatment. This enhancing effect correlates with increased expression of the early activation marker CD69 and impaired class I/II histone deacetylase (HDAC) activity. In addition, acetate enhances acetylation of histones H3 and H4 and augments HIV-1 integration into the genome of CD4 + T cells. Thus, we propose that upon antigen presentation, acetate influences class I/II HDAC activity that transforms condensed chromatin into a more relaxed structure. This event leads to a higher level of viral integration and enhanced HIV-1 production. In line with previous studies showing reactivation of latent HIV-1 by SCFAs, we provide evidence that acetate can also increase the susceptibility of primary human CD4 + T cells to productive HIV-1 infection. IMPORTANCE Alterations in the fecal microbiota and intestinal epithelial damage involved in the gastrointestinal disorder associated with HIV-1 infection result in microbial translocation that leads to disease progression and virus-related comorbidities. Indeed, notably via production of short-chain fatty acids, bacteria migrating from the lumen to the intestinal mucosa could influence HIV-1 replication by epigenetic regulatory mechanisms, such as histone acetylation. We demonstrate that acetate enhances virus production in primary human CD4 + T cells. Moreover, we report that acetate impairs class I/II histone deacetylase activity and increases integration of HIV-1 DNA into the host genome. Therefore, it can be postulated that bacterial metabolites such as acetate modulate HIV-1-mediated disease progression. Copyright © 2017 American Society for Microbiology.

  19. Intracavitary 'T4 immunotherapy' of malignant mesothelioma using pan-ErbB re-targeted CAR T-cells.

    PubMed

    Klampatsa, Astero; Achkova, Daniela Y; Davies, David M; Parente-Pereira, Ana C; Woodman, Natalie; Rosekilly, James; Osborne, Georgina; Thayaparan, Thivyan; Bille, Andrea; Sheaf, Michael; Spicer, James F; King, Juliet; Maher, John

    2017-05-01

    Malignant mesothelioma remains an incurable cancer. We demonstrated that mesotheliomas expressed EGFR (79.2%), ErbB4 (49.0%) and HER2 (6.3%), but lacked ErbB3. At least one ErbB family member was expressed in 88% of tumors. To exploit ErbB dysregulation in this disease, patient T-cells were engineered by retroviral transduction to express a panErbB-targeted chimeric antigen receptor (CAR), co-expressed with a chimeric cytokine receptor that allows interleukin (IL)-4 mediated CAR T-cell proliferation. This combination is referred to as T4 immunotherapy. T-cells from mesothelioma patients were uniformly amenable to T4 genetic modification and expansion/enrichment thereafter using IL-4. Patient-derived T4 + T-cells were activated upon contact with a panel of four mesothelioma cell lines, leading to cytotoxicity and cytokine release in all cases. Adoptive transfer of T4 immunotherapy to SCID Beige mice with an established bioluminescent LO68 mesothelioma xenograft was followed by regression or eradication of disease in all animals. Despite the established ability of T4 immunotherapy to elicit cytokine release syndrome in SCID Beige mice, therapy was very well tolerated. These findings provide a strong rationale for the clinical evaluation of intracavitary T4 immunotherapy to treat mesothelioma. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. CD40L+ CD4+ memory T cells migrate in a CD62P-dependent fashion into reactive lymph nodes and license dendritic cells for T cell priming

    PubMed Central

    Martín-Fontecha, Alfonso; Baumjohann, Dirk; Guarda, Greta; Reboldi, Andrea; Hons, Miroslav; Lanzavecchia, Antonio; Sallusto, Federica

    2008-01-01

    There is growing evidence that the maturation state of dendritic cells (DCs) is a critical parameter determining the balance between tolerance and immunity. We report that mouse CD4+ effector memory T (TEM) cells, but not naive or central memory T cells, constitutively expressed CD40L at levels sufficient to induce DC maturation in vitro and in vivo in the absence of antigenic stimulation. CD4+ TEM cells were excluded from resting lymph nodes but migrated in a CD62P-dependent fashion into reactive lymph nodes that were induced to express CD62P, in a transient or sustained fashion, on high endothelial venules. Trafficking of CD4+ TEM cells into chronic reactive lymph nodes maintained resident DCs in a mature state and promoted naive T cell responses and experimental autoimmune encephalomyelitis (EAE) to antigens administered in the absence of adjuvants. Antibodies to CD62P, which blocked CD4+ TEM cell migration into reactive lymph nodes, inhibited DC maturation, T cell priming, and induction of EAE. These results show that TEM cells can behave as endogenous adjuvants and suggest a mechanistic link between lymphocyte traffic in lymph nodes and induction of autoimmunity. PMID:18838544

  1. T cell specific adaptor protein (TSAd) promotes interaction of Nck with Lck and SLP-76 in T cells.

    PubMed

    Hem, Cecilie Dahl; Sundvold-Gjerstad, Vibeke; Granum, Stine; Koll, Lise; Abrahamsen, Greger; Buday, Laszlo; Spurkland, Anne

    2015-07-11

    The Lck and Src binding adaptor protein TSAd (T cell specific adaptor) regulates actin polymerization in T cells and endothelial cells. The molecular details as to how TSAd regulates this process remain to be elucidated. To identify novel interaction partners for TSAd, we used a scoring matrix-assisted ligand algorithm (SMALI), and found that the Src homology 2 (SH2) domain of the actin regulator Non-catalytic region of tyrosine kinase adaptor protein (Nck) potentially binds to TSAd phosphorylated on Tyr(280) (pTyr(280)) and pTyr(305). These predictions were confirmed by peptide array analysis, showing direct binding of recombinant Nck SH2 to both pTyr(280) and pTyr(305) on TSAd. In addition, the SH3 domains of Nck interacted with the proline rich region (PRR) of TSAd. Pull-down and immunoprecipitation experiments further confirmed the Nck-TSAd interactions through Nck SH2 and SH3 domains. In line with this Nck and TSAd co-localized in Jurkat cells as assessed by confocal microscopy and imaging flow cytometry. Co-immunoprecipitation experiments in Jurkat TAg cells lacking TSAd revealed that TSAd promotes interaction of Nck with Lck and SLP-76, but not Vav1. TSAd expressing Jurkat cells contained more polymerized actin, an effect dependent on TSAd exon 7, which includes interactions sites for both Nck and Lck. TSAd binds to and co-localizes with Nck. Expression of TSAd increases both Nck-Lck and Nck-SLP-76 interaction in T cells. Recruitment of Lck and SLP-76 to Nck by TSAd could be one mechanism by which TSAd promotes actin polymerization in activated T cells.

  2. A genetic IFN/STAT1/FAS axis determines CD4 T stem cell memory levels and apoptosis in healthy controls and Adult T-cell Leukemia patients.

    PubMed

    Khouri, Ricardo; Silva-Santos, Gilvanéia; Dierckx, Tim; Menezes, Soraya Maria; Decanine, Daniele; Theys, Kristof; Silva, Aline Clara; Farré, Lourdes; Bittencourt, Achiléa; Mangino, Massimo; Roederer, Mario; Vandamme, Anne-Mieke; Van Weyenbergh, Johan

    2018-01-01

    Adult T-cell leukemia (ATL) is an aggressive, chemotherapy-resistant CD4 + CD25 + leukemia caused by HTLV-1 infection, which usually develops in a minority of patients several decades after infection. IFN + AZT combination therapy has shown clinical benefit in ATL, although its mechanism of action remains unclear. We have previously shown that an IFN-responsive FAS promoter polymorphism in a STAT1 binding site (rs1800682) is associated to ATL susceptibility and survival. Recently, CD4 T stem cell memory (T SCM ) Fas hi cells have been identified as the hierarchical cellular apex of ATL, but a possible link between FAS, apoptosis, proliferation and IFN response in ATL has not been studied. In this study, we found significant ex vivo antiproliferative, antiviral and immunomodulatory effects of IFN-α treatment in short-term culture of primary mononuclear cells from ATL patients (n = 25). Bayesian Network analysis allowed us to integrate ex vivo IFN-α response with clinical, genetic and immunological data from ATL patients, thereby revealing a central role for FAS -670 polymorphism and apoptosis in the coordinated mechanism of action of IFN-α. FAS genotype-dependence of IFN-induced apoptosis was experimentally validated in an independent cohort of healthy controls (n = 20). The same FAS -670 polymorphism also determined CD4 T SCM levels in a genome-wide twin study (p = 7 × 10 -11 , n = 460), confirming a genetic link between apoptosis and T SCM levels. Transcriptomic analysis and cell type deconvolution confirmed the FAS genotype/T SCM link and IFN-α-induced downregulation of CD4 T SCM -specific genes in ATL patient cells. In conclusion, ex vivo IFN-α treatment exerts a pleiotropic effect on primary ATL cells, with a genetic IFN/STAT1/Fas axis determining apoptosis vs. proliferation and underscoring the CD4 T SCM model of ATL leukemogenesis.

  3. Promoter binding, initiation, and elongation by bacteriophage T7 RNA polymerase. A single-molecule view of the transcription cycle.

    PubMed

    Skinner, Gary M; Baumann, Christoph G; Quinn, Diana M; Molloy, Justin E; Hoggett, James G

    2004-01-30

    A single-molecule transcription assay has been developed that allows, for the first time, the direct observation of promoter binding, initiation, and elongation by a single RNA polymerase (RNAP) molecule in real-time. To promote DNA binding and transcription initiation, a DNA molecule tethered between two optically trapped beads was held near a third immobile surface bead sparsely coated with RNAP. By driving the optical trap holding the upstream bead with a triangular oscillation while measuring the position of both trapped beads, we observed the onset of promoter binding, promoter escape (productive initiation), and processive elongation by individual RNAP molecules. After DNA template release, transcription re-initiation on the same DNA template is possible; thus, multiple enzymatic turnovers by an individual RNAP molecule can be observed. Using bacteriophage T7 RNAP, a commonly used RNAP paradigm, we observed the association and dissociation (k(off)= 2.9 s(-1)) of T7 RNAP and promoter DNA, the transition to the elongation mode (k(for) = 0.36 s(-1)), and the processive synthesis (k(pol) = 43 nt s(-1)) and release of a gene-length RNA transcript ( approximately 1200 nt). The transition from initiation to elongation is much longer than the mean lifetime of the binary T7 RNAP-promoter DNA complex (k(off) > k(for)), identifying a rate-limiting step between promoter DNA binding and promoter escape.

  4. 2,4,5-Trichlorophenoxyacetic acid (2,4,5-T)

    Integrated Risk Information System (IRIS)

    2,4,5 - Trichlorophenoxyacetic acid ( 2,4,5 - T ) ; CASRN 93 - 76 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard

  5. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch.

    PubMed

    Brown, Deborah M; Dilzer, Allison M; Meents, Dana L; Swain, Susan L

    2006-09-01

    The mechanisms whereby CD4 T cells contribute to the protective response against lethal influenza infection remain poorly characterized. To define the role of CD4 cells in protection against a highly pathogenic strain of influenza, virus-specific TCR transgenic CD4 effectors were generated in vitro and transferred into mice given lethal influenza infection. Primed CD4 effectors conferred protection against lethal infection over a broad range of viral dose. The protection mediated by CD4 effectors did not require IFN-gamma or host T cells, but did result in increased anti-influenza Ab titers compared with untreated controls. Further studies indicated that CD4-mediated protection at high doses of influenza required B cells, and that passive transfer of anti-influenza immune serum was therapeutic in B cell-deficient mice, but only when CD4 effectors were present. Primed CD4 cells also acquired perforin (Pfn)-mediated cytolytic activity during effector generation, suggesting a second mechanism used by CD4 cells to confer protection. Pfn-deficient CD4 effectors were less able to promote survival in intact BALB/c mice and were unable to provide protection in B cell-deficient mice, indicating that Ab-independent protection by CD4 effectors requires Pfn. Therefore, CD4 effectors mediate protection to lethal influenza through at least two mechanisms: Pfn-mediated cytotoxicity early in the response promoted survival independently of Ab production, whereas CD4-driven B cell responses resulted in high titer Abs that neutralized remaining virus.

  6. SOCS3 deletion in T lymphocytes suppresses development of chronic ocular inflammation via upregulation of CTLA-4 and expansion of regulatory T cells.

    PubMed

    Yu, Cheng-Rong; Kim, Sung-Hye; Mahdi, Rashid M; Egwuagu, Charles E

    2013-11-15

    Suppressors of cytokine signaling (SOCS) proteins are negative-feedback regulators of the JAK/STAT pathway, and SOCS3 contributes to host immunity by regulating the intensity and duration of cytokine signals and inflammatory responses. Mice with Socs3 deletion in myeloid cells exhibit enhanced STAT3 signaling, expansion of Th1 and Th17 cells, and develop severe experimental autoimmune encephalomyelitis. Interestingly, development of the unique IL-17/IFN-γ double-producing (Th17/IFN-γ and Tc17/IFN-γ) subsets that exhibit strong cytotoxic activities and are associated with pathogenesis of several autoimmune diseases has recently been shown to depend on epigenetic suppression of SOCS3 expression, further suggesting involvement of SOCS3 in autoimmunity and tumor immunity. In this study, we generated mice with Socs3 deletion in the CD4 T cell compartment (CD4-SOCS3 knockout [KO]) to determine in vivo effects of the loss of Socs3 in the T cell-mediated autoimmune disease, experimental autoimmune uveitis (EAU). In contrast to the exacerbation of experimental autoimmune encephalomyelitis in myeloid-specific SOCS3-deleted mice, CD4-SOCS3KO mice were protected from acute and chronic uveitis. Protection from EAU correlated with enhanced expression of CTLA-4 and expansion of IL-10-producing regulatory T cells with augmented suppressive activities. We further show that SOCS3 interacts with CTLA-4 and negatively regulates CTLA-4 levels in T cells, providing a mechanistic explanation for the expansion of regulatory T cells in CD4-SOCS3 during EAU. Contrary to in vitro epigenetic studies, Th17/IFN-γ and Tc17/IFN-γ populations were markedly reduced in CD4-SOCS3KO, suggesting that SOCS3 promotes expansion of the Th17/IFN-γ subset associated with development of severe uveitis. Thus, SOCS3 is a potential therapeutic target in uveitis and other autoinflammatory diseases.

  7. Dectin-1 diversifies Aspergillus fumigatus–specific T cell responses by inhibiting T helper type 1 CD4 T cell differentiation

    PubMed Central

    Hohl, Tobias M.; Collins, Nichole; Leiner, Ingrid; Gallegos, Alena; Saijo, Shinobu; Coward, Jesse W.; Iwakura, Yoichiro

    2011-01-01

    Pulmonary infection of mice with Aspergillus fumigatus induces concurrent T helper type 1 (Th1) and Th17 responses that depend on Toll-like receptor/MyD88 and Dectin-1, respectively. However, the mechanisms balancing Th1 and Th17 CD4 T cell populations during infection remain incompletely defined. In this study, we show that Dectin-1 deficiency disproportionally increases Th1 responses and decreases Th17 differentiation after A. fumigatus infection. Dectin-1 signaling in A. fumigatus–infected wild-type mice reduces IFN-γ and IL-12p40 expression in the lung, thereby decreasing T-bet expression in responding CD4 T cells and enhancing Th17 responses. Absence of IFN-γ or IL-12p35 in infected mice or T-bet in responding CD4 T cells enhances Th17 differentiation, independent of Dectin-1 expression, in A. fumigatus–infected mice. Transient deletion of monocyte-derived dendritic cells also reduces Th1 and boosts Th17 differentiation of A. fumigatus–specific CD4 T cells. Our findings indicate that Dectin-1–mediated signals alter CD4 T cell responses to fungal infection by decreasing the production of IL-12 and IFN-γ in innate cells, thereby decreasing T-bet expression in A. fumigatus–specific CD4 T cells and enabling Th17 differentiation. PMID:21242294

  8. Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation.

    PubMed

    Kesler, Cristina T; Pereira, Ethel R; Cui, Cheryl H; Nelson, Gregory M; Masuck, David J; Baish, James W; Padera, Timothy P

    2015-09-01

    The angiopoietin (Ang) ligands are potential therapeutic targets for lymphatic related diseases, which include lymphedema and cancer. Ang-1 and Ang-2 functions are established, but those of Ang-4 are poorly understood. We used intravital fluorescence microscopy to characterize Ang-4 actions on T241 murine fibrosarcoma-associated vessels in mice. The diameters of lymphatic vessels draining Ang-4- or VEGF-C (positive control)-expressing tumors increased to 123 and 135 μm, respectively, and parental, mock-transduced (negative controls) and tumors expressing Ang-1 or Ang-2 remained at baseline (∼60 μm). Ang-4 decreased human dermal lymphatic endothelial cell (LEC) monolayer permeability by 27% while increasing human dermal blood endothelial cell (BEC) monolayer permeability by 200%. In vivo, Ang-4 stimulated a 4.5-fold increase in tumor-associated blood vessel permeability compared with control when measured using intravital quantitative multiphoton microscopy. Ang-4 activated receptor signaling in both LECs and BECs, evidenced by tyrosine kinase with Ig and endothelial growth factor homology domains-2 (TIE2) receptor, protein kinase B, and Erk1,2 phosphorylation detectable by immunoblotting. These data suggest that Ang-4 actions are mediated through cell-type-specific networks and that lymphatic vessel dilation occurs secondarily to increased vascular leakage. Ang-4 also promoted survival of LECs. Thus, blocking Ang-4 may prune the draining lymphatic vasculature and decrease interstitial fluid pressure (IFP) by reducing vascular permeability. © FASEB.

  9. Heme oxygenase-1 restores impaired GARPCD4⁺CD25⁺ regulatory T cells from patients with acute coronary syndrome by upregulating LAP and GARP expression on activated T lymphocytes.

    PubMed

    Liu, Yuzhou; Zhao, Xiaoqi; Zhong, Yucheng; Meng, Kai; Yu, Kunwu; Shi, Huairui; Wu, Bangwei; Tony, Hasahya; Zhu, Jianghao; Zhu, Ruirui; Peng, Yudong; Mao, Yi; Cheng, Peng; Mao, Xiaobo; Zeng, Qiutang

    2015-01-01

    Accumulating evidence shows that the pathological autoreactive immune response is responsible for plaque rupture and the subsequent onset of acute coronary syndrome (ACS). Naturally occurring CD4(+)CD25(+)regulatory T cells (nTregs) are indispensable in suppressing the pathological autoreactive immune response and maintaining immune homeostasis. However, the number and the suppressive function of glycoprotein-A repetitions predominant (GARP) (+) CD4(+) CD25(+) activated nTregs were impaired in patients with ACS. Recent evidence suggests that heme oxygenase-1 (HO-1) can regulate the adaptive immune response by promoting the expression of Foxp3. We therefore hypothesized that HO-1 may enhance the function of GARP(+) CD4(+) CD25(+)Tregs in patients with ACS and thus regulate immune imbalance. T lymphocytes were isolated from healthy volunteers (control, n=30) and patients with stable angina (SA, n=40) or ACS (n=51). Half of these cells were treated with an HO-1 inducer (hemin) for 48 h, and the other half were incubated with complete RPMI-1640 medium. The frequencies of T-helper 1 (Th1), Th2, Th17 and latency-associated peptide (LAP) (+)CD4(+) T cells and the expression of Foxp3 and GARP by CD4(+)CD25(+)T cells were then assessed by measuring flow cytometry after stimulation in vitro. The suppressive function of activated Tregs was measured by thymidine uptake. The levels of transforming growth factor-1 (TGF-β1) in the plasma were measured using enzyme-linked immunosorbent assay (ELISA). The expression levels of the genes encoding these proteins were analyzed by real-time polymerase chain reaction. Patients with ACS exhibited an impaired number and suppressive function of GARP(+) CD4(+) CD25(+)Tregs and a mixed Th1/Th17-dominant T cell response when compared with the SA and control groups. The expression of LAP in T cells was also lower in patients with ACS compared to patients with SA and the control individuals. Treatment with an HO-1 inducer enhanced the

  10. Selective pre-priming of HA-specific CD4 T cells restores immunological reactivity to HA on heterosubtypic influenza infection.

    PubMed

    Alam, Shabnam; Chan, Cory; Qiu, Xing; Shannon, Ian; White, Chantelle L; Sant, Andrea J; Nayak, Jennifer L

    2017-01-01

    A hallmark of the immune response to influenza is repeated encounters with proteins containing both genetically conserved and variable components. Therefore, the B and T cell repertoire is continually being remodeled, with competition between memory and naïve lymphocytes. Our previous work using a mouse model of secondary heterosubtypic influenza infection has shown that this competition results in a focusing of CD4 T cell response specificity towards internal virion proteins with a selective decrease in CD4 T cell reactivity to the novel HA epitopes. Strikingly, this shift in CD4 T cell specificity was associated with a diminished anti-HA antibody response. Here, we sought to determine whether the loss in HA-specific reactivity that occurs as a consequence of immunological memory could be reversed by selectively priming HA-specific CD4 T cells prior to secondary infection. Using a peptide-based priming strategy, we found that selective expansion of the anti-HA CD4 T cell memory repertoire enhanced HA-specific antibody production upon heterosubtypic infection. These results suggest that the potentially deleterious consequences of repeated exposure to conserved influenza internal virion proteins could be reversed by vaccination strategies that selectively arm the HA-specific CD4 T cell compartment. This could be a potentially useful pre-pandemic vaccination strategy to promote accelerated neutralizing antibody production on challenge with a pandemic influenza strain that contains few conserved HA epitopes.

  11. Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage.

    PubMed

    Brok-Volchanskaya, Vera S; Kadyrov, Farid A; Sivogrivov, Dmitry E; Kolosov, Peter M; Sokolov, Andrey S; Shlyapnikov, Michael G; Kryukov, Valentine M; Granovsky, Igor E

    2008-04-01

    Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3' 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TpsiC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages.

  12. Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage

    PubMed Central

    Brok-Volchanskaya, Vera S.; Kadyrov, Farid A.; Sivogrivov, Dmitry E.; Kolosov, Peter M.; Sokolov, Andrey S.; Shlyapnikov, Michael G.; Kryukov, Valentine M.; Granovsky, Igor E.

    2008-01-01

    Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3′ 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TψC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages. PMID:18281701

  13. 26 CFR 1.846-4T - Effective dates (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Effective dates (temporary). 1.846-4T Section 1.846-4T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Other Insurance Companies § 1.846-4T Effective dates (temporary). (a) [Reserved...

  14. Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fibrosis.

    PubMed

    Wehr, Alexander; Baeck, Christer; Heymann, Felix; Niemietz, Patricia Maria; Hammerich, Linda; Martin, Christian; Zimmermann, Henning W; Pack, Oliver; Gassler, Nikolaus; Hittatiya, Kanishka; Ludwig, Andreas; Luedde, Tom; Trautwein, Christian; Tacke, Frank

    2013-05-15

    Chronic liver injury characteristically results in hepatic inflammation, which represents a prerequisite for organ fibrosis. Although NKT cells are abundantly present in liver and involved in hepatic inflammation, molecular mechanisms of their recruitment in liver fibrosis remained elusive. We hypothesized that chemokine receptor CXCR6 and its ligand CXCL16 control NKT cell migration and functionality in liver fibrosis. In patients with chronic liver diseases (n = 58), CXCR6 and CXCL16 expression was intrahepatically upregulated compared with controls. In murine liver, Cxcl16 was strongly expressed by endothelium and macrophages, whereas lymphocyte populations (NKT, NK, CD4 T, CD8 T cells) expressed CXCR6. Intravital two-photon microscopy imaging of Cxcr6(+/gfp) and Cxcr6(gfp/gfp) mice and chemotaxis studies in vitro revealed that CXCR6 specifically controls hepatic NKT cell accumulation during the early response upon experimental liver damage. Hepatic invariant NKT cells expressed distinct proinflammatory cytokines including IFN-γ and IL-4 upon injury. CXCR6-deficient mice were protected from liver fibrosis progression in two independent experimental models. Macrophage infiltration and protein levels of inflammatory cytokines IFN-γ, TNF-α, and IL-4 were also reduced in fibrotic livers of Cxcr6(-/-) mice, corroborating that hepatic NKT cells provide essential cytokine signals perpetuating hepatic inflammation and fibrogenesis. Adoptive transfer of NKT cells, but not CD4 T cells, isolated from wild type livers restored hepatic fibrosis in Cxcr6(-/-) mice upon experimental steatohepatitis. Our results demonstrate that hepatic NKT cells accumulate CXCR6-dependent early upon injury, thereby accentuating the inflammatory response in the liver and promoting hepatic fibrogenesis. Interfering with CXCR6/CXCL16 might therefore bear therapeutic potential in liver fibrosis.

  15. Complete Genome Sequence of the Broad-Host-Range Vibriophage KVP40: Comparative Genomics of a T4-Related Bacteriophage

    PubMed Central

    Miller, Eric S.; Heidelberg, John F.; Eisen, Jonathan A.; Nelson, William C.; Durkin, A. Scott; Ciecko, Ann; Feldblyum, Tamara V.; White, Owen; Paulsen, Ian T.; Nierman, William C.; Lee, Jong; Szczypinski, Bridget; Fraser, Claire M.

    2003-01-01

    The complete genome sequence of the T4-like, broad-host-range vibriophage KVP40 has been determined. The genome sequence is 244,835 bp, with an overall G+C content of 42.6%. It encodes 386 putative protein-encoding open reading frames (CDSs), 30 tRNAs, 33 T4-like late promoters, and 57 potential rho-independent terminators. Overall, 92.1% of the KVP40 genome is coding, with an average CDS size of 587 bp. While 65% of the CDSs were unique to KVP40 and had no known function, the genome sequence and organization show specific regions of extensive conservation with phage T4. At least 99 KVP40 CDSs have homologs in the T4 genome (Blast alignments of 45 to 68% amino acid similarity). The shared CDSs represent 36% of all T4 CDSs but only 26% of those from KVP40. There is extensive representation of the DNA replication, recombination, and repair enzymes as well as the viral capsid and tail structural genes. KVP40 lacks several T4 enzymes involved in host DNA degradation, appears not to synthesize the modified cytosine (hydroxymethyl glucose) present in T-even phages, and lacks group I introns. KVP40 likely utilizes the T4-type sigma-55 late transcription apparatus, but features of early- or middle-mode transcription were not identified. There are 26 CDSs that have no viral homolog, and many did not necessarily originate from Vibrio spp., suggesting an even broader host range for KVP40. From these latter CDSs, an NAD salvage pathway was inferred that appears to be unique among bacteriophages. Features of the KVP40 genome that distinguish it from T4 are presented, as well as those, such as the replication and virion gene clusters, that are substantially conserved. PMID:12923095

  16. Steel tanks T5 and T4 with overhead pipeline between. Redwood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Steel tanks T5 and T4 with overhead pipeline between. Redwood tanks seen in background - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  17. Relative Contributions of B Cells and Dendritic Cells from Lupus-Prone Mice to CD4+ T Cell Polarization.

    PubMed

    Choi, Seung-Chul; Xu, Zhiwei; Li, Wei; Yang, Hong; Roopenian, Derry C; Morse, Herbert C; Morel, Laurence

    2018-05-01

    Mouse models of lupus have shown that multiple immune cell types contribute to autoimmune disease. This study sought to investigate the involvement of B cells and dendritic cells in supporting the expansion of inflammatory and regulatory CD4 + T cells that are critical for lupus pathogenesis. We used lupus-prone B6.NZM2410.Sle1.Sle2.Sle3 (TC) and congenic C57BL/6J (B6) control mice to investigate how the genetic predisposition of these two cell types controls the activity of normal B6 T cells. Using an allogeneic in vitro assay, we showed that TC B1-a and conventional B cells expanded Th17 cells significantly more than their B6 counterparts. This expansion was dependent on CD86 and IL-6 expression and mapped to the Sle1 lupus-susceptibility locus. In vivo, TC B cells promoted greater differentiation of CD4 + T cells into Th1 and follicular helper T cells than did B6 B cells, but they limited the expansion of Foxp3 regulatory CD4 + T cells to a greater extent than did B6 B cells. Finally, when normal B6 CD4 + T cells were introduced into Rag1 -/- mice, TC myeloid/stromal cells caused their heightened activation, decreased Foxp3 regulatory CD4 + T cell differentiation, and increased renal infiltration of Th1 and Th17 cells in comparison with B6 myeloid/stromal cells. The results show that B cells from lupus mice amplify inflammatory CD4 + T cells in a nonredundant manner with myeloid/stromal cells. Copyright © 2018 by The American Association of Immunologists, Inc.

  18. Human Merkel cell polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1 translation regulator

    PubMed Central

    Shuda, Masahiro; Kwun, Hyun Jin; Feng, Huichen; Chang, Yuan; Moore, Patrick S.

    2011-01-01

    Merkel cell polyomavirus (MCV) is the recently discovered cause of most Merkel cell carcinomas (MCCs), an aggressive form of nonmelanoma skin cancer. Although MCV is known to integrate into the tumor cell genome and to undergo mutation, the molecular mechanisms used by this virus to cause cancer are unknown. Here, we show that MCV small T (sT) antigen is expressed in most MCC tumors, where it is required for tumor cell growth. Unlike the closely related SV40 sT, MCV sT transformed rodent fibroblasts to anchorage- and contact-independent growth and promoted serum-free proliferation of human cells. These effects did not involve protein phosphatase 2A (PP2A) inhibition. MCV sT was found to act downstream in the mammalian target of rapamycin (mTOR) signaling pathway to preserve eukaryotic translation initiation factor 4E–binding protein 1 (4E-BP1) hyperphosphorylation, resulting in dysregulated cap-dependent translation. MCV sT–associated 4E-BP1 serine 65 hyperphosphorylation was resistant to mTOR complex (mTORC1) and mTORC2 inhibitors. Steady-state phosphorylation of other downstream Akt-mTOR targets, including S6K and 4E-BP2, was also increased by MCV sT. Expression of a constitutively active 4E-BP1 that could not be phosphorylated antagonized the cell transformation activity of MCV sT. Taken together, these experiments showed that 4E-BP1 inhibition is required for MCV transformation. Thus, MCV sT is an oncoprotein, and its effects on dysregulated cap-dependent translation have clinical implications for the prevention, diagnosis, and treatment of MCV-related cancers. PMID:21841310

  19. Merkel Cell Polyomavirus Large T Antigen Has Growth-Promoting and Inhibitory Activities

    PubMed Central

    Cheng, Jingwei; Rozenblatt-Rosen, Orit; Paulson, Kelly G.; Nghiem, Paul

    2013-01-01

    Merkel cell carcinoma (MCC) is a rare and aggressive form of skin cancer. In at least 80% of all MCC, Merkel cell polyomavirus (MCPyV) DNA has undergone clonal integration into the host cell genome, and most tumors express the MCPyV large and small T antigens. In all cases of MCC reported to date, the integrated MCPyV genome has undergone mutations in the large T antigen. These mutations result in expression of a truncated large T antigen that retains the Rb binding or LXCXE motif but deletes the DNA binding and helicase domains. However, the transforming functions of full-length and truncated MCPyV large T antigen are unknown. We compared the transforming activities of full-length, truncated, and alternatively spliced 57kT forms of MCPyV large T antigen. MCPyV large T antigen could bind to Rb but was unable to bind to p53. Furthermore, MCPyV-truncated large T antigen was more effective than full-length and 57kT large T antigen in promoting the growth of human and mouse fibroblasts. In contrast, expression of the MCPyV large T antigen C-terminal 100 residues could inhibit the growth of several different cell types. These data imply that the deletion of the C terminus of MCPyV large T antigen found in MCC serves not only to disrupt viral replication but also results in the loss of a distinct growth-inhibitory function intrinsic to this region. PMID:23514892

  20. Infiltrating T Cells Promote Bladder Cancer Progression via Increasing IL1→Androgen Receptor→HIF1α→VEGFa Signals.

    PubMed

    Tao, Le; Qiu, Jianxin; Jiang, Ming; Song, Wenbin; Yeh, Shuyuan; Yu, Hong; Zang, Lijuan; Xia, Shujie; Chang, Chawnshang

    2016-08-01

    The tumor microenvironment impacts tumor progression and individual cells, including CD4(+) T cells, which have been detected in bladder cancer tissues. The detailed mechanism of how these T cells were recruited to the bladder cancer tumor and their impact on bladder cancer progression, however, remains unclear. Using a human clinical bladder cancer sample survey and in vitro coculture system, we found that bladder cancer has a greater capacity to recruit T cells than surrounding normal bladder tissues. The consequences of higher levels of recruited T cells in bladder cancer included increased bladder cancer metastasis. Mechanism dissection revealed that infiltrating T cells might function through secreting the cytokine IL1, which increases the recruitment of T cells to bladder cancer and enhances the bladder cancer androgen receptor (AR) signaling that results in increased bladder cancer cell invasion via upregulation of hypoxia-inducible factor-1α (HIF1α)/VEGFa expression. Interruption of the IL1→AR→HIF1α→VEGFa signals with inhibitors of HIF1α or VEGFa partially reversed the enhanced bladder cancer cell invasion. Finally, in vivo mouse models of xenografted bladder cancer T24 cells with CD4(+) T cells confirmed in vitro coculture studies and concluded that infiltrating CD4(+) T cells can promote bladder cancer metastasis via modulation of the IL1→AR→HIF1α→VEGFa signaling. Future clinical trials using small molecules to target this newly identified signaling pathway may facilitate the development of new therapeutic approaches to better suppress bladder cancer metastasis. Mol Cancer Ther; 15(8); 1943-51. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. TLR4 ligands LPS and MPLA differentially regulate effector and memory CD8+ T cell differentiation

    PubMed Central

    Cui, Weiguo; Joshi, Nikhil S.; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M.

    2014-01-01

    Vaccines formulated with non-replicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in antibody production has been well studied, but how they influence memory CD8+ T cell differentiation remains poorly defined. Here we implemented dendritic cell (DC)-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8+ T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8+ T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8+ T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8+ T cells, but also promoted their terminal differentiation and contraction; thus, fewer memory CD8+ T cells formed and MPLA-primed animals were less protected against secondary infection compared to those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8+ T cells. Lastly, we demonstrated that the LPS-TLR4-derived “pro-memory” signals were MyD88, but not Trif, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8+ T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection. PMID:24659688

  2. Citrus aurantium L. dry extracts promote C/ebpβ expression and improve adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Raciti, Gregory Alexander; Fiory, Francesca; Campitelli, Michele; Desiderio, Antonella; Spinelli, Rosa; Longo, Michele; Nigro, Cecilia; Pepe, Giacomo; Sommella, Eduardo; Campiglia, Pietro; Formisano, Pietro; Beguinot, Francesco; Miele, Claudia

    2018-01-01

    Metabolic and/or endocrine dysfunction of the white adipose tissue (WAT) contribute to the development of metabolic disorders, such as Type 2 Diabetes (T2D). Therefore, the identification of products able to improve adipose tissue function represents a valuable strategy for the prevention and/or treatment of T2D. In the current study, we investigated the potential effects of dry extracts obtained from Citrus aurantium L. fruit juice (CAde) on the regulation of 3T3-L1 cells adipocyte differentiation and function in vitro. We found that CAde enhances terminal adipocyte differentiation of 3T3-L1 cells raising the expression of CCAAT/enhancer binding protein beta (C/Ebpβ), peroxisome proliferator activated receptor gamma (Pparγ), glucose transporter type 4 (Glut4) and fatty acid binding protein 4 (Fabp4). CAde improves insulin-induced glucose uptake of 3T3-L1 adipocytes, as well. A focused analysis of the phases occurring in the pre-adipocytes differentiation to mature adipocytes furthermore revealed that CAde promotes the early differentiation stage by up-regulating C/ebpβ expression at 2, 4 and 8 h post the adipogenic induction and anticipating the 3T3-L1 cell cycle entry and progression during mitotic clonal expansion (MCE). These findings provide evidence that the exposure to CAde enhances in vitro fat cell differentiation of pre-adipocytes and functional capacity of mature adipocytes, and pave the way to the development of products derived from Citrus aurantium L. fruit juice, which may improve WAT functional capacity and may be effective for the prevention and/or treatment of T2D.

  3. Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Zhanshan; Qian, Guangfang; Zang, Yan

    Diffuse large B cell lymphoma (DLBCL) is a common and aggressive cancer caused by the malignant transformation of B cells. Although it has been established that the follicular helper T (Tfh) cells play a central role in B cell development, little information is available on their involvement in DLBCL pathogenesis. We studied the role of the peripheral Tfh equivalent, the CXCR5{sup +} CD4{sup +} T cells, in DLBCL. Data showed that compared to CXCR5{sup -} CD4{sup +} T cells, CXCR5{sup +} CD4{sup +} T cells were significantly more effective at promoting the proliferation as well as inhibiting the apoptosis ofmore » primary autologous DLBCL tumor cells. Surprisingly, we found that at equal cell numbers, CXCR5{sup +} CD4{sup +} T cells in DLBCL patients secreted significantly less interleukin (IL)-21 than CXCR5{sup -} CD4{sup +} T cells, while the level of IL-10 secretion was significant elevated in the CXCR5{sup +} compartment compared to the CXCR5{sup -} compartment. Neutralization of IL-10 in the primary DLBCL-CXCR5{sup +} CD4{sup +} T cell coculture compromised the CXCR5{sup +} CD4{sup +} T cell-mediated pro-tumor effects, in a manner that was dependent on the concentration of anti-IL-10 antibodies. The CXCR5{sup +} compartment also contained significantly lower frequencies of cytotoxic CD4{sup +} T cells than the CXCR5{sup -} compartment. In conclusion, our investigations discovered a previously unknown pro-tumor role of CXCR5-expressing circulating CD4{sup +} T cells, which assisted the survival and proliferation of primary DLBCL cells through IL-10. - Highlights: • We studied the role of the peripheral Tfh in DLBCL. • Tfh were effective at promoting the proliferation of primary DLBCL tumor cells. • Tfh were effective at inhibiting the apoptosis of primary DLBCL tumor cells. • IL-10 secretion in Tfh was significant elevated in DLBCL. • Neutralization of IL-10 compromised Tfh-mediated pro-tumor effects.« less

  4. CD4+ Primary T Cells Expressing HCV-Core Protein Upregulate Foxp3 and IL-10, Suppressing CD4 and CD8 T Cells

    PubMed Central

    Aguado, Enrique; Garcia-Cozar, Francisco

    2014-01-01

    Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127lowPD-1highTIM-3high regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein. PMID:24465502

  5. An improved 96-well turbidity assay for T4 lysozyme activity.

    PubMed

    Toro, Tasha B; Nguyen, Thao P; Watt, Terry J

    2015-01-01

    T4 lysozyme (T4L) is an important model system for investigating the relationship between protein structure and function. Despite being extensively studied, a reliable, quantitative activity assay for T4L has not been developed. Here, we present an improved T4L turbidity assay as well as an affinity-based T4L expression and purification protocol. This assay is designed for 96-well format and utilizes conditions amenable for both T4L and other lysozymes. This protocol enables easy, efficient, and quantitative characterization of T4L variants and allows comparison between different lysozymes. Our method: •Is applicable for all lysozymes, with enhanced sensitivity for T4 lysozyme compared to other 96-well plate turbidity assays;•Utilizes standardized conditions for comparing T4 lysozyme variants and other lysozymes; and•Incorporates a simplified expression and purification protocol for T4 lysozyme.

  6. An improved 96-well turbidity assay for T4 lysozyme activity

    PubMed Central

    Toro, Tasha B.; Nguyen, Thao P.; Watt, Terry J.

    2015-01-01

    T4 lysozyme (T4L) is an important model system for investigating the relationship between protein structure and function. Despite being extensively studied, a reliable, quantitative activity assay for T4L has not been developed. Here, we present an improved T4L turbidity assay as well as an affinity-based T4L expression and purification protocol. This assay is designed for 96-well format and utilizes conditions amenable for both T4L and other lysozymes. This protocol enables easy, efficient, and quantitative characterization of T4L variants and allows comparison between different lysozymes. Our method: • Is applicable for all lysozymes, with enhanced sensitivity for T4 lysozyme compared to other 96-well plate turbidity assays; • Utilizes standardized conditions for comparing T4 lysozyme variants and other lysozymes; and • Incorporates a simplified expression and purification protocol for T4 lysozyme. PMID:26150996

  7. The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity.

    PubMed

    Yi, Woelsung; Gupta, Sanjay; Ricker, Edd; Manni, Michela; Jessberger, Rolf; Chinenov, Yurii; Molina, Henrik; Pernis, Alessandra B

    2017-08-15

    Post-transcriptional modifications can control protein abundance, but the extent to which these alterations contribute to the expression of T helper (T H ) lineage-defining factors is unknown. Tight regulation of Bcl6 expression, an essential transcription factor for T follicular helper (T FH ) cells, is critical as aberrant T FH cell expansion is associated with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here we show that lack of the SLE risk variant Def6 results in deregulation of Bcl6 protein synthesis in T cells as a result of enhanced activation of the mTORC1-4E-BP-eIF4E axis, secondary to aberrant assembly of a raptor-p62-TRAF6 complex. Proteomic analysis reveals that this pathway selectively controls the abundance of a subset of proteins. Rapamycin or raptor deletion ameliorates the aberrant T FH cell expansion in mice lacking Def6. Thus deregulation of mTORC1-dependent pathways controlling protein synthesis can result in T-cell dysfunction, indicating a mechanism by which mTORC1 can promote autoimmunity.Excessive expansion of the T follicular helper (T FH ) cell pool is associated with autoimmune disease and Def6 has been identified as an SLE risk variant. Here the authors show that Def6 limits proliferation of T FH cells in mice via alteration of mTORC1 signaling and inhibition of Bcl6 expression.

  8. Breast cancer instructs dendritic cells to prime interleukin 13–secreting CD4+ T cells that facilitate tumor development

    PubMed Central

    Aspord, Caroline; Pedroza-Gonzalez, Alexander; Gallegos, Mike; Tindle, Sasha; Burton, Elizabeth C.; Su, Dan; Marches, Florentina; Banchereau, Jacques; Palucka, A. Karolina

    2007-01-01

    We previously reported (Bell, D., P. Chomarat, D. Broyles, G. Netto, G.M. Harb, S. Lebecque, J. Valladeau, J. Davoust, K.A. Palucka, and J. Banchereau. 1999. J. Exp. Med. 190: 1417–1426) that breast cancer tumors are infiltrated with mature dendritic cells (DCs), which cluster with CD4+ T cells. We now show that CD4+ T cells infiltrating breast cancer tumors secrete type 1 (interferon γ) as well as high levels of type 2 (interleukin [IL] 4 and IL-13) cytokines. Immunofluorescence staining of tissue sections revealed intense IL-13 staining on breast cancer cells. The expression of phosphorylated signal transducer and activator of transcription 6 in breast cancer cells suggests that IL-13 actually delivers signals to cancer cells. To determine the link between breast cancer, DCs, and CD4+ T cells, we implanted human breast cancer cell lines in nonobese diabetic/LtSz-scid/scid β2 microglobulin–deficient mice engrafted with human CD34+ hematopoietic progenitor cells and autologous T cells. There, CD4+ T cells promote early tumor development. This is dependent on DCs and can be partially prevented by administration of IL-13 antagonists. Thus, breast cancer targets DCs to facilitate its development. PMID:17438063

  9. In situ targeting of dendritic cells sets tolerogenic environment and ameliorates CD4+ T-cell response in the postischemic liver.

    PubMed

    Funken, Dominik; Ishikawa-Ankerhold, Hellen; Uhl, Bernd; Lerchenberger, Maximilian; Rentsch, Markus; Mayr, Doris; Massberg, Steffen; Werner, Jens; Khandoga, Andrej

    2017-11-01

    CD4 + T cells recruited to the liver play a key role in the pathogenesis of ischemia/reperfusion (I/R) injury. The mechanism of their activation during alloantigen-independent I/R is not completely understood. We hypothesized that liver-resident dendritic cells (DCs) interact with CD4 + T cells in the postischemic liver and that modulation of DCs or T-cell-DC interactions attenuates liver inflammation. In mice, warm hepatic I/R (90/120-240 min) was induced. Tolerogenic DCs were generated in situ by pretreatment of animals with the vitamin D analog paricalcitol. A mAb-CD44 was used for blockade of CD4 + T-cell-DC interactions. As shown by 2-photon in vivo microscopy as well as confocal microscopy, CD4 + T cells were closely colocalized with DCs in the postischemic liver. Pretreatment with paricalcitol attenuated I/R-induced maturation of DCs (flow cytometry), CD4 + T-cell recruitment into the liver (intravital microscopy), and hepatocellular/microvascular damage (intravital microscopy, alanine aminotransferase/aspartate aminotransferase, histology). However, interruption of T-cell-DC interaction increased proinflammatory DC maturation and even enhanced tissue damage. Simultaneous treatment with an anti-CD44mAb completely abolished the beneficial effect of paricalcitol on T-cell migration and tissue injury. Our study demonstrates for the first time that hepatic DCs interact with CD4 + T cells in the postischemic liver in vivo ; modulation of DCs and/or generation of tolerogenic DCs attenuates intrahepatic CD4 + T-cell recruitment and reduces I/R injury; and interruption of CD44-dependent CD4 + T-cell-DC interactions enhances tissue injury by preventing the modulatory effect of hepatic DCs on T cells, especially type 1 T helper effector cells. Thus, hepatic DCs are strongly involved in the promotion of CD4 + T-cell-dependent postischemic liver inflammation.-Funken, D., Ishikawa-Ankerhold, H., Uhl, B., Lerchenberger, M., Rentsch, M., Mayr, D., Massberg, S., Werner, J

  10. Recombinant vaccines of a CD4+ T-cell epitope promote efficient control of Paracoccidioides brasiliensis burden by restraining primary organ infection.

    PubMed

    Holanda, Rodrigo Assunção; Muñoz, Julián Esteban; Dias, Lucas Santos; Silva, Leandro Buffoni Roque; Santos, Julliana Ribeiro Alves; Pagliari, Sthefany; Vieira, Érica Leandro Marciano; Paixão, Tatiane Alves; Taborda, Carlos Pelleschi; Santos, Daniel Assis; Bruña-Romero, Oscar

    2017-09-01

    Paracoccidioidomycosis (PCM) is an infectious disease endemic to South America, caused by the thermally dimorphic fungi Paracoccidioides. Currently, there is no effective human vaccine that can be used in prophylactic or therapeutic regimes. We tested the hypothesis that the immunogenicity of the immunodominant CD4+ T-cell epitope (P10) of Paracoccidioides brasiliensis gp43 antigen might be significantly enhanced by using a hepatitis B virus-derived particle (VLP) as an antigen carrier. This chimera was administered to mice as a (His)6-purified protein (rPbT) or a replication-deficient human type 5 adenoviral vector (rAdPbT) in an immunoprophylaxis assay. The highly virulent Pb18 yeast strain was used to challenge our vaccine candidates. Fungal challenge evoked robust P10-specific memory CD4+ T cells secreting protective Th-1 cytokines in most groups of immunized mice. Furthermore, the highest level of fungal burden control was achieved when rAdPbT was inoculated in a homologous prime-boost regimen, with 10-fold less CFU recovering than in non-vaccinated mice. Systemic Pb18 spreading was only prevented when rAdPbT was previously inoculated. In summary, we present here VLP/P10 formulations as vaccine candidates against PCM, some of which have demonstrated for the first time their ability to prevent progression of this pernicious fungal disease, which represents a significant social burden in developing countries.

  11. 32 CFR 1630.46 - Class 4-T: Treaty alien.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Class 4-T: Treaty alien. 1630.46 Section 1630.46 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.46 Class 4-T: Treaty alien. In Class 4-T shall be placed any registrant who is an alien who...

  12. 32 CFR 1630.46 - Class 4-T: Treaty alien.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Class 4-T: Treaty alien. 1630.46 Section 1630.46 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.46 Class 4-T: Treaty alien. In Class 4-T shall be placed any registrant who is an alien who...

  13. 32 CFR 1630.46 - Class 4-T: Treaty alien.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Class 4-T: Treaty alien. 1630.46 Section 1630.46 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.46 Class 4-T: Treaty alien. In Class 4-T shall be placed any registrant who is an alien who...

  14. 32 CFR 1630.46 - Class 4-T: Treaty alien.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Class 4-T: Treaty alien. 1630.46 Section 1630.46 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.46 Class 4-T: Treaty alien. In Class 4-T shall be placed any registrant who is an alien who...

  15. 32 CFR 1630.46 - Class 4-T: Treaty alien.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Class 4-T: Treaty alien. 1630.46 Section 1630.46 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.46 Class 4-T: Treaty alien. In Class 4-T shall be placed any registrant who is an alien who...

  16. MTORC1 EXPANDS TH17 AND IL-4+ DN T CELLS AND CONTRACTS TREGS IN SLE

    PubMed Central

    Kato, Hiroshi; Perl, Andras

    2014-01-01

    The mechanistic target of rapamycin (mTOR) is activated in CD4−CD8− double-negative (DN) T cells and its blockade is therapeutic in systemic lupus erythematosus (SLE) patients. Murine studies showed the involvement of mTOR complex 1 (mTORC1) and 2 (mTORC2) in the differentiation of Th1/Th17 cells and Th2 cells, respectively. Here, we investigated the roles of mTORC1 and mTORC2 in T-cell lineage development in SLE and matched healthy control (HC) subjects. mTORC1 activity was increased while mTORC2 was reduced as assessed by phosphorylation of their substrates pS6K or pS6RP and pAkt, respectively. Rapamycin inhibited mTORC1 and enhanced mTORC2. IL-4 expression was increased in freshly isolated CD8+ lupus T cells (SLE: 8.09±1.93%, HC: 3.61±0.49%; p=0.01). DN T cells had greater IL-4 expression than CD4+ or CD8+ T cells of SLE patients after 3 day in vitro stimulation, which was suppressed by rapamycin (control: 9.26±1.48%, rapamycin: 5.03±0.66%; p<0.001). GATA-3 expression was increased in CD8+ lupus T cells (p<0.01) and insensitive to rapamycin treatment. IFN-γ expression was reduced in all lupus T cell subsets (p=1.0×10−5) and also resisted rapamycin. IL-17 expression was increased in CD4+ lupus T cells (SLE: 3.62±0.66%, HC: 2.29±0.27%; p=0.019), which was suppressed by rapamycin (control: 3.91±0.79%, rapamycin: 2.22±0.60%; p<0.001). Frequency of Tregs was reduced in SLE (SLE: 1.83±0.25%, HC: 2.97±0.27%; p=0.0012). Rapamycin inhibited mTORC1 in Tregs and promoted their expansion. Neutralization of IL-17 but not IL-4 also expanded Tregs in SLE and HC subjects. These results indicate that mTORC1 expands IL-4+ DN T and Th17 cells and contracts Tregs in SLE. PMID:24683191

  17. FOXP3, CBLB and ITCH gene expression and cytotoxic T lymphocyte antigen 4 expression on CD4+CD25high T cells in multiple sclerosis

    PubMed Central

    Sellebjerg, F; Krakauer, M; Khademi, M; Olsson, T; Sørensen, P S

    2012-01-01

    Expression of the forkhead box protein 3 (FoxP3) transcription factor is regulated by the E3 ubiquitin ligases Itch and Cbl-b and induces regulatory activity CD4+CD25high T cells. Treatment with interferon (IFN)-β enhances regulatory T cell activity in multiple sclerosis (MS). We studied the phenotype of CD4+CD25high T cells in MS by flow cytometry and its relationship with expression of the FOXP3, ITCH and CBLB genes. We found that untreated MS patients had lower cell surface expression of cytotoxic T lymphocyte antigen 4 (CTLA-4) on CD4+CD25high T cells and higher intracellular CTLA-4 expression than healthy controls. Cell surface expression of CTLA-4 on CD4+CD25high T cells correlated with expression of FOXP3 mRNA in untreated patients and increased significantly with time from most recent injection in patients treated with IFN-β. FOXP3 mRNA expression correlated with CBLB and ITCH and T helper type 2 cytokine mRNA expression in MS patients. These data link expression of FOXP3, CBLB and ITCH mRNA and CTLA-4 expression on the surface of CD4+CD25high T cell in MS. We hypothesize that this may reflect alterations in the inhibitory effect of CTLA-4 or in regulatory T cell function. PMID:23039885

  18. TIGIT expressing CD4+T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia

    PubMed Central

    Catakovic, Kemal; Gassner, Franz Josef; Ratswohl, Christoph; Zaborsky, Nadja; Rebhandl, Stefan; Schubert, Maria; Steiner, Markus; Gutjahr, Julia Christine; Pleyer, Lisa; Egle, Alexander; Hartmann, Tanja Nicole; Greil, Richard; Geisberger, Roland

    2018-01-01

    ABSTRACT While research on T cell exhaustion in context of cancer particularly focuses on CD8+ cytotoxic T cells, the role of inhibitory receptors on CD4+ T-helper cells have remained largely unexplored. TIGIT is a recently identified inhibitory receptor on T cells and natural killer (NK) cells. In this study, we examined TIGIT expression on T cell subsets from CLL patients. While we did not observe any differences in TIGIT expression in CD8+ T cells of healthy controls and CLL cells, we found an enrichment of TIGIT+ T cells in the CD4+ T cell compartment in CLL. Intriguingly, CLL patients with an advanced disease stage displayed elevated numbers of CD4+ TIGIT+ T cells compared to low risk patients. Autologous CLL-T cell co-culture assays revealed that depleting CD4+ TIGIT+ expressing T cells from co-cultures significantly decreased CLL viability. Accordingly, a supportive effect of TIGIT+CD4+ T cells on CLL cells in vitro could be recapitulated by blocking the interaction of TIGIT with its ligands using TIGIT-Fc molecules, which also impeded the T cell specific production of CLL-prosurvival cytokines. Our data reveal that TIGIT+CD4+T cells provide a supportive microenvironment for CLL cells, representing a potential therapeutic target for CLL treatment. PMID:29296521

  19. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73.

    PubMed

    van Doorn, Remco; Zoutman, Willem H; Dijkman, Remco; de Menezes, Renee X; Commandeur, Suzan; Mulder, Aat A; van der Velden, Pieter A; Vermeer, Maarten H; Willemze, Rein; Yan, Pearlly S; Huang, Tim H; Tensen, Cornelis P

    2005-06-10

    To analyze the occurrence of promoter hypermethylation in primary cutaneous T-cell lymphoma (CTCL) on a genome-wide scale, focusing on epigenetic alterations with pathogenetic significance. DNA isolated from biopsy specimens of 28 patients with CTCL, including aggressive CTCL entities (transformed mycosis fungoides and CD30-negative large T-cell lymphoma) and an indolent entity (CD30-positive large T-cell lymphoma), were investigated. For genome-wide DNA methylation screening, differential methylation hybridization using CpG island microarrays was applied, which allows simultaneous detection of the methylation status of 8640 CpG islands. Bisulfite sequence analysis was applied for confirmation and detection of hypermethylation of eight selected tumor suppressor genes. The DNA methylation patterns of CTCLs emerging from differential methylation hybridization analysis included 35 CpG islands hypermethylated in at least four of the 28 studied CTCL samples when compared with benign T-cell samples. Hypermethylation of the putative tumor suppressor genes BCL7a (in 48% of CTCL samples), PTPRG (27%), and thrombospondin 4 (52%) was confirmed and demonstrated to be associated with transcriptional downregulation. BCL7a was hypermethylated at a higher frequency in aggressive (64%) than in indolent (14%) CTCL entities. In addition, the promoters of the selected tumor suppressor genes p73 (48%), p16 (33%), CHFR (19%), p15 (10%), and TMS1 (10%) were hypermethylated in CTCL. Malignant T cells of patients with CTCL display widespread promoter hypermethylation associated with inactivation of several tumor suppressor genes involved in DNA repair, cell cycle, and apoptosis signaling pathways. In view of this, CTCL may be amenable to treatment with demethylating agents.

  20. Binding of nucleotides by T4 DNA ligase and T4 RNA ligase: optical absorbance and fluorescence studies.

    PubMed Central

    Cherepanov, A V; de Vries, S

    2001-01-01

    The interaction of nucleotides with T4 DNA and RNA ligases has been characterized using ultraviolet visible (UV-VIS) absorbance and fluorescence spectroscopy. Both enzymes bind nucleotides with the K(d) between 0.1 and 20 microM. Nucleotide binding results in a decrease of absorbance at 260 nm due to pi-stacking with an aromatic residue, possibly phenylalanine, and causes red-shifting of the absorbance maximum due to hydrogen bonding with the exocyclic amino group. T4 DNA ligase is shown to have, besides the catalytic ATP binding site, another noncovalent nucleotide binding site. ATP bound there alters the pi-stacking of the nucleotide in the catalytic site, increasing its optical extinction. The K(d) for the noncovalent site is approximately 1000-fold higher than for the catalytic site. Nucleotides quench the protein fluorescence showing that a tryptophan residue is located in the active site of the ligase. The decrease of absorbance around 298 nm suggests that the hydrogen bonding interactions of this tryptophan residue are weakened in the ligase-nucleotide complex. The excitation/emission properties of T4 RNA ligase indicate that its ATP binding pocket is in contact with solvent, which is excluded upon binding of the nucleotide. Overall, the spectroscopic analysis reveals important similarities between T4 ligases and related nucleotidyltransferases, despite the low sequence similarity. PMID:11721015

  1. Hyper-reactive cloned mice generated by direct nuclear transfer of antigen-specific CD4+ T cells.

    PubMed

    Kaminuma, Osamu; Katayama, Kazufumi; Inoue, Kimiko; Saeki, Mayumi; Nishimura, Tomoe; Kitamura, Noriko; Shimo, Yusuke; Tofukuji, Soichi; Ishida, Satoru; Ogonuki, Narumi; Kamimura, Satoshi; Oikawa, Mami; Katoh, Shigeki; Mori, Akio; Shichijo, Michitaka; Hiroi, Takachika; Ogura, Atsuo

    2017-06-01

    T-cell receptor (TCR)-transgenic mice have been employed for evaluating antigen-response mechanisms, but their non-endogenous TCR might induce immune response differently than the physiologically expressed TCR Nuclear transfer cloning produces animals that retain the donor genotype in all tissues including germline and immune systems. Taking advantage of this feature, we generated cloned mice that carry endogenously rearranged TCR genes from antigen-specific CD4 + T cells. We show that T cells of the cloned mice display distinct developmental pattern and antigen reactivity because of their endogenously pre-rearranged TCRα (rTα) and TCRβ (rTβ) alleles. These alleles were transmitted to the offspring, allowing us to establish a set of mouse lines that show chronic-type allergic phenotypes, that is, bronchial and nasal inflammation, upon local administrations of the corresponding antigens. Intriguingly, the existence of either rTα or rTβ is sufficient to induce in vivo hypersensitivity. These cloned mice expressing intrinsic promoter-regulated antigen-specific TCR are a unique animal model with allergic predisposition for investigating CD4 + T-cell-mediated pathogenesis and cellular commitment in immune diseases. © 2017 The Authors.

  2. Interleukin 4-producing CD4+ T cells in the skin of cats with allergic dermatitis.

    PubMed

    Roosje, P J; Dean, G A; Willemse, T; Rutten, V P M G; Thepen, T

    2002-03-01

    Lesional skin of cats with allergic dermatitis has a cellular infiltrate and a CD4/CD8 ratio comparable to that in humans with atopic dermatitis. CD4+ helper T cells and in particular cells belonging to the Th2 subset play an important role in disease pathogenesis in humans. We investigated the cytokine pattern of CD4+ T cells in situ, with special emphasis on the putative presence of cells producing interleukin 4 (IL4), in cats with allergic dermatitis. Immunohistochemical procedures were used to determine that CD4+ T cells in lesional and nonlesional skin of cats with allergic dermatitis can produce IL4, as occurs in humans. Lesional and nonlesional skin of cats with allergic dermatitis had significantly more IL4+ T cells (P = 0.001) than did skin of healthy control cats. Double staining indicated that all IL4+ cells were positive for pan-T or CD4 markers. Double labeling for mast cell chymase and IL4 stained primarily different cells. Western blotting demonstrated cross-reactivity between the antibody against human IL4 and a feline recombinant IL4. These results indicate that IL4 is primarily produced by CD4+ T cells and is also present in clinically uninvolved skin, indicating a role in the pathogenesis of allergic dermatitis in cats.

  3. Cytoskeletal perturbation induced by herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T).

    PubMed

    Zhao, Y; Li, W; Chou, I N

    1987-01-01

    To understand the mechanisms of toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), we have studied their effects on the cytoskeletal organization, particularly microtubules (MT) and microfilaments (MF), DNA synthesis, and the synthesis and composition of cytoskeletal proteins in mouse 3T3 cells. Exposure of cells to 2,4-D or 2,4,5-T resulted in a dose-dependent inhibition of DNA synthesis; 50% inhibition occurred at 2.21 mM and 0.90 mM for 2,4-D and 2,4,5-T, respectively. Furthermore, a strong synergistic inhibition of DNA synthesis was produced by mixtures (each having a total concentration of 1.25 mM) of 2,4-D with 2,4,5-T. Similarly, 2,4,5-T is more potent than 2,4-D in causing cytoskeletal perturbation as revealed by fluorescence microscopy. Treatment of cells with 2,4-D (2.5 mM) or 2,4,5-T (1.25 mM) for 20 h resulted in severe MT aggregation and the appearance of large bundles, which were organized in a rope-like structure in the former and a dramatic octopus-like pattern in the latter. Further, MT bundling is particularly severe in the cell center. Under these conditions, marked changes in MF organization also occurred as evidenced by clustering and crisscrossing of MF in the perinuclear region. A 1:1 mixture (final = 1.25 mM) of 2,4-D and 2,4,5-T, a formulation equivalent to Agent Orange composition, also induced a dramatic perturbation to the organization of MT and MF, resulting in the formation of ring-like structures. MT bundling is still apparent, especially around the outer edge of the "rings." MF are localized predominantly along the cell periphery, where they appear to be aggregated tightly forming patches. Surprisingly, the synthesis and composition of cytoskeletal proteins, which are resistant to detergent extraction but released by CaCl2, are essentially unaffected by 2,4-D or 2,4,5-T. These results suggest that the dramatic perturbation of the cytoskeletal morphology caused by these herbicides

  4. NF-κB RelA renders tumor-associated macrophages resistant to and capable of directly suppressing CD8+ T cells for tumor promotion.

    PubMed

    Li, Liwen; Han, Lei; Sun, Fan; Zhou, Jingjiao; Ohaegbulam, Kim C; Tang, Xudong; Zang, Xingxing; Steinbrecher, Kris A; Qu, Zhaoxia; Xiao, Gutian

    2018-01-01

    Activation of the inflammatory transcription factor NF-κB in tumor-associated macrophages (TAMs) is assumed to contribute to tumor promotion. However, whether and how NF-κB drives the antitumor macrophages to become pro-tumorigenic have not been determined in any cancer type yet. Similarly, how TAMs repress CD8 + cytotoxic T lymphocytes (CTLs) remains largely unknown, although their importance in regulatory T (Treg) cell regulation and tumor promotion has been well appreciated. Here, using an endogenous lung cancer model we uncover a direct crosstalk between TAMs and CTLs. TAMs suppress CTLs through the T-cell inhibitory molecule B7x (B7-H4/B7S1) in a cell-cell contact manner, whereas CTLs kill TAMs in a tumor antigen-specific manner. Remarkably, TAMs secrete the known T-cell suppressive cytokine interleukin-10 (IL-10) to activate, but not to repress, CTLs. Notably, one major role of cell-intrinsic NF-κB RelA is to drive TAMs to suppress CTLs for tumor promotion. It induces B7x expression in TAMs directly, and restricts IL-10 expression indirectly by repressing expression of the NF-κB cofactor Bcl3 and subsequent Bcl3/NF-κB1-mediated transcription of IL-10. It also renders TAMs resistant to CTLs by up-regulating anti-apoptotic genes. These studies help understand how immunity is shaped in lung tumorigenesis, and suggest a RelA-targeted immunotherapy for this deadliest cancer.

  5. Differentiation of Effector CD4 T Cell Populations*

    PubMed Central

    Zhu, Jinfang; Yamane, Hidehiro; Paul, William E.

    2012-01-01

    CD4 T cells play critical roles in mediating adaptive immunity to a variety of pathogens. They are also involved in autoimmunity, asthma, and allergic responses as well as in tumor immunity. During TCR activation in a particular cytokine milieu, naive CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, Th17, and iTreg, as defined by their pattern of cytokine production and function. In this review, we summarize the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation. PMID:20192806

  6. Task-shifting of CD4 T cell count monitoring by the touchscreen-based Muse™ Auto CD4/CD4% single-platform system for CD4 T cell numeration: Implication for decentralization in resource-constrained settings.

    PubMed

    Kouabosso, André; Mossoro-Kpinde, Christian Diamant; Bouassa, Ralph-Sydney Mboumba; Longo, Jean De Dieu; Mbeko Simaleko, Marcel; Grésenguet, Gérard; Bélec, Laurent

    2018-04-01

    The accuracy of CD4 T cell monitoring by the recently developed flow cytometry-based CD4 T cell counting Muse™ Auto CD4/CD4% Assay analyzer (EMD Millipore Corporation, Merck Life Sciences, KGaA, Darmstadt, Germany) was evaluated in trained lay providers against laboratory technicians. After 2 days of training on the Muse™ Auto CD4/CD4% analyzer, EDTA-blood samples from 6 HIV-positive and 4 HIV-negative individuals were used for CD4 T cell counting in triplicate in parallel by 12 trained lay providers as compared to 10 lab technicians. Mean number of CD4 T cells in absolute number was 829 ± 380 cells/μl by lay providers and 794 ± 409 cells/μl by technicians (P > 0.05); and in percentage 36.2 ± 14.8%CD4 by lay providers and 36.1 ± 15.0%CD4 by laboratory technician (P > 0.05). The unweighted linear regression and Passing-Bablok regression analyses on CD4 T cell results expressed in absolute count revealed moderate correlation between CD4 T cell counts obtained by lay providers and lab technicians. The mean absolute bias measured by Bland-Altman analysis between CD4 T cell/μl obtained by lay providers and lab technicians was -3.41 cells/μl. Intra-assay coefficient of variance (CV) of Muse™ Auto CD4/CD4% in absolute number was 10.1% by lay providers and 8.5% by lab technicians (P > 0.05), and in percentage 5.5% by lay providers and 4.4% by lab technicians (P > 0.05). The inter-assay CV of Muse™ Auto CD4/CD4% in absolute number was 13.4% by lay providers and 10.3% by lab technicians (P > 0.05), and in percentage 7.8% by lay providers and 6.9% by lab technicians (P > 0.05). The study demonstrates the feasibility of CD4 T cell counting using the alternative flow cytometer Muse™ Auto CD4/CD4% analyzer by trained lay providers and therefore the practical possibility of decentralization CD4 T cell counting to health community centers. Copyright © 2018. Published by Elsevier B.V.

  7. CD4+CD25hiFOXP3+ cells in cord blood of neonates born from filaria infected mother are negatively associated with CD4+Tbet+ and CD4+RORγt+ T cells.

    PubMed

    Ateba-Ngoa, Ulysse; Mombo-Ngoma, Ghyslain; Zettlmeissl, Eva; van der Vlugt, Luciën E P M; de Jong, Sanne E; de Jong, Sanne; Matsiegui, Pierre-Blaise; Ramharter, Michael; Kremsner, Peter G; Yazdanbakhsh, Maria; Adegnika, Ayola Akim

    2014-01-01

    Children who have been exposed in utero to maternal filarial infection are immunologically less responsive to filarial antigens, have less pathology, and are more susceptible to acquire infection than offspring of uninfected mothers. Moreover children from filaria infected mothers have been shown to be less responsive to vaccination as a consequence of an impairment of their immune response. However, it is not well known how in utero exposure to parasite antigens affects cellular immune responses. Here, 30 pregnant women were examined for the presence of microfilaria of Loa loa and Mansonella perstans in peripheral blood. At delivery, cord blood mononuclear cells (CBMC) were obtained and the CD4+T cells were phenotyped by expression of the transcription factors Tbet, RORγt, and FOXP3. No significant difference was observed between newborns from infected versus uninfected mothers in the frequencies of total CD4+T cells and CD4+T cells subsets including CD4+Tbet+, CD4+RORγt+ T and CD4+CD25hiFOXP3+ T cells. However, there was a negative association between CD4+CD25hiFOXP3+T cells and CD4+Tbet+ as well as CD4+RORγt+ T cells in the infected group only (B = -0.242, P = 0.002; B = -0.178, P = 0.013 respectively). Our results suggest that filarial infection during pregnancy leads to an expansion of functionally active regulatory T cells that keep TH1 and TH17 in check.

  8. Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor

    PubMed Central

    Richardson, Max W.; Ellebrecht, Christoph T.; Glover, Joshua A.; Secreto, Anthony J.; Kulikovskaya, Irina; Yi, Yanjie; Wang, Jianbin; Dufendach, Keith A.; Holmes, Michael C.; Collman, Ronald G.

    2017-01-01

    HIV is adept at avoiding naturally generated T cell responses; therefore, there is a need to develop HIV-specific T cells with greater potency for use in HIV cure strategies. Starting with a CD4-based chimeric antigen receptor (CAR) that was previously used without toxicity in clinical trials, we optimized the vector backbone, promoter, HIV targeting moiety, and transmembrane and signaling domains to determine which components augmented the ability of T cells to control HIV replication. This re-engineered CAR was at least 50-fold more potent in vitro at controlling HIV replication than the original CD4 CAR, or a TCR-based approach, and substantially better than broadly neutralizing antibody-based CARs. A humanized mouse model of HIV infection demonstrated that T cells expressing optimized CARs were superior at expanding in response to antigen, protecting CD4 T cells from infection, and reducing viral loads compared to T cells expressing the original, clinical trial CAR. Moreover, in a humanized mouse model of HIV treatment, CD4 CAR T cells containing the 4-1BB costimulatory domain controlled HIV spread after ART removal better than analogous CAR T cells containing the CD28 costimulatory domain. Together, these data indicate that potent HIV-specific T cells can be generated using improved CAR design and that CAR T cells could be important components of an HIV cure strategy. PMID:29023549

  9. T cells promote the regeneration of neural precursor cells in the hippocampus of Alzheimer's disease mice.

    PubMed

    Liu, Jing; Ma, Yuxin; Tian, Sumin; Zhang, Li; Zhao, Mengmeng; Zhang, Yaqiong; Xu, Dachuan

    2014-08-15

    Alzheimer's disease is closely associated with disorders of neurogenesis in the brain, and growing evidence supports the involvement of immunological mechanisms in the development of the disease. However, at present, the role of T cells in neuronal regeneration in the brain is unknown. We injected amyloid-beta 1-42 peptide into the hippocampus of six BALB/c wild-type mice and six BALB/c-nude mice with T-cell immunodeficiency to establish an animal model of Alzheimer's disease. A further six mice of each genotype were injected with same volume of normal saline. Immunohistochemistry revealed that the number of regenerated neural progenitor cells in the hippocampus of BALB/c wild-type mice was significantly higher than that in BALB/c-nude mice. Quantitative fluorescence PCR assay showed that the expression levels of peripheral T cell-associated cytokines (interleukin-2, interferon-γ) and hippocampal microglia-related cytokines (interleukin-1β, tumor necrosis factor-α) correlated with the number of regenerated neural progenitor cells in the hippocampus. These results indicate that T cells promote hippocampal neurogenesis in Alzheimer's disease and T-cell immunodeficiency restricts neuronal regeneration in the hippocampus. The mechanism underlying the promotion of neuronal regeneration by T cells is mediated by an increased expression of peripheral T cells and central microglial cytokines in Alzheimer's disease mice. Our findings provide an experimental basis for understanding the role of T cells in Alzheimer's disease.

  10. Normalization of CD4+ T Cell Metabolism Reverses Lupus

    PubMed Central

    Yin, Yiming; Choi, Seung-Chul; Xu, Zhiwei; Perry, Daniel J.; Seay, Howard; Croker, Byron P.; Sobel, Eric S.; Brusko, Todd M.; Morel, Laurence

    2015-01-01

    Systemic Lupus Erythematosus (SLE) is an autoimmune disease in which autoreactive CD4+ T cells play an essential role. CD4+ T cells rely on glycolysis for inflammatory effector functions, but recent studies have shown that mitochondrial metabolism supports their chronic activation. How these processes contribute to lupus is unclear. Here, we show that both glycolysis and mitochondrial oxidative metabolism are elevated in CD4+ T cells from lupus-prone B6.Sle1.Sle2.Sle3 (TC) mice as compared to non-autoimmune controls. In vitro, both the mitochondrial metabolism inhibitor metformin and the glucose metabolism inhibitor 2-Deoxy-D-glucose (2DG) reduced IFNγ production, although at different stages of activation. Metformin also restored the defective IL-2 production by TC CD4+ T cells. In vivo, treatment of TC mice and other lupus models with a combination of metformin and 2DG normalized T cell metabolism and reversed disease biomarkers. Further, CD4+ T cells from SLE patients also exhibited enhanced glycolysis and mitochondrial metabolism that correlated with their activation status, and their excessive IFNγ production was significantly reduced by metformin in vitro. These results suggest that normalization of T cell metabolism through the dual inhibition of glycolysis and mitochondrial metabolism is a promising therapeutic venue for SLE. PMID:25673763

  11. RORC2 is involved in T cell polarization through interaction with the FOXP3 promoter.

    PubMed

    Burgler, Simone; Mantel, Pierre-Yves; Bassin, Claudio; Ouaked, Nadia; Akdis, Cezmi A; Schmidt-Weber, Carsten B

    2010-06-01

    The process of Th cell differentiation toward polarized effector T cells tailors specific immunity against invading pathogens while allowing tolerance against commensal microorganisms, harmless allergens, or autologous Ags. Identification of the mechanisms underlying this polarization process is therefore central to understand how the immune system confers immunity and tolerance. The present study demonstrates that retinoic acid receptor-related orphan receptor C2 (RORC2), a key transcription factor in Th17 cell development, inhibits FOXP3 expression in human T cells. Although overexpression of RORC2 in naive T cells reduces levels of FOXP3, small interfering RNA-mediated knockdown of RORC2 enhances its expression. RORC2 mediates this inhibition at least partially by binding to two out of four ROR-responsive elements on the FOXP3 promoter. Knockdown of RORC2 promotes high FOXP3 levels and decreased expression of proinflammatory cytokines beta form of pro-IL-1, IL-6, IL-17A, IFN-gamma, and TNF-alpha in differentiating naive T cells, suggesting that the role of RORC2 in Th17 cell development involves not only induction of Th17-characteristic genes, but also suppression of regulatory T cell-specific programs. Together, this study identifies RORC2 as a polarizing factor in transcriptional cross-regulation and provides novel viewpoints on the control of immune tolerance versus effector immune responses.

  12. Preclinical Assessment of CAR T-Cell Therapy Targeting the Tumor Antigen 5T4 in Ovarian Cancer

    PubMed Central

    Owens, Gemma L.; Sheard, Victoria E.; Kalaitsidou, Milena; Blount, Daniel; Lad, Yatish; Cheadle, Eleanor J.; Edmondson, Richard J.; Kooner, Gurdeep; Gilham, David E.

    2018-01-01

    Chimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome both quantitative and qualitative shortfalls of the host immune system relating to the detection and subsequent destruction of tumors. The identification of antigens expressed specifically on the surface of tumor cells is a critical first step in the ability to utilize CAR T cells for the treatment of cancer. The 5T4 is a tumor-associated antigen which is expressed on the cell surface of most solid tumors including ovarian cancer. Matched blood and tumor samples were collected from 12 patients with ovarian cancer; all tumors were positive for 5T4 expression by immunohistochemistry. Patient T cells were effectively transduced with 2 different anti-5T4 CAR constructs which differed in their affinity for the target antigen. Co-culture of CAR T cells with matched autologous tumor disaggregates resulted in antigen-specific secretion of IFN-gamma. Furthermore, assessment of the efficacy of anti-5T4 CAR T cells in a mouse model resulted in therapeutic benefit against established ovarian tumors. These results demonstrate proof of principle that 5T4 is an attractive target for immune intervention in ovarian cancer and that patient T cells engineered to express a 5T4-specific CAR can recognize and respond physiologically to autologous tumor cells. PMID:29239915

  13. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity

    PubMed Central

    Adusumilli, Prasad S.; Cherkassky, Leonid; Villena-Vargas, Jonathan; Colovos, Christos; Servais, Elliot; Plotkin, Jason; Jones, David R.; Sadelain, Michel

    2015-01-01

    Translating the recent success of chimeric antigen receptor (CAR) T cell therapy for hematological malignancies to solid tumors will necessitate overcoming several obstacles, including inefficient T cell tumor infiltration and insufficient functional persistence. Taking advantage of an orthotopic model that faithfully mimics human pleural malignancy, we evaluated two routes of administration of mesothelin-targeted T cells using the M28z CAR. We found that intra-pleurally administered CAR T cells vastly out-performed systemically infused T cells, requiring 30-fold fewer M28z T cells to induce long-term complete remissions. Following intrapleural T cell administration, prompt in vivo antigen-induced T cell activation allowed robust CAR T cell expansion and effector differentiation, resulting in enhanced anti-tumor efficacy and functional T cell persistence for 200 days. Regional T cell administration also promoted efficient elimination of extrathoracic tumor sites. This therapeutic efficacy was dependent on early CD4+ T cell activation associated with a higher intra-tumoral CD4/CD8 cell ratios and CD28-dependent CD4+ T cell-mediated cytotoxicity. In contrast, intravenously delivered CAR T cells, even when accumulated at equivalent numbers in the pleural tumor, did not achieve comparable activation, tumor eradication or persistence. The remarkable ability of intrapleurally administered T cells to circulate and persist supports the concept of delivering optimal CAR T cell therapy through “regional distribution centers.” Based on these results, we are opening a phase I clinical trial to evaluate the safety of intrapleural administration of mesothelin-targeted CAR T cells in patients with primary or secondary pleural malignancies. PMID:25378643

  14. Adoptive cell therapy for lymphoma with CD4 T cells depleted of CD137-expressing regulatory T cells.

    PubMed

    Goldstein, Matthew J; Kohrt, Holbrook E; Houot, Roch; Varghese, Bindu; Lin, Jack T; Swanson, Erica; Levy, Ronald

    2012-03-01

    Adoptive immunotherapy with antitumor T cells is a promising novel approach for the treatment of cancer. However, T-cell therapy may be limited by the cotransfer of regulatory T cells (T(reg)). Here, we explored this hypothesis by using 2 cell surface markers, CD44 and CD137, to isolate antitumor CD4 T cells while excluding T(regs). In a murine model of B-cell lymphoma, only CD137(neg)CD44(hi) CD4 T cells infiltrated tumor sites and provided protection. Conversely, the population of CD137(pos)CD44hi CD4 T cells consisted primarily of activated T(regs). Notably, this CD137(pos) T(reg) population persisted following adoptive transfer and maintained expression of FoxP3 as well as CD137. Moreover, in vitro these CD137(pos) cells suppressed the proliferation of effector cells in a contact-dependent manner, and in vivo adding the CD137(pos)CD44(hi) CD4 cells to CD137(neg)CD44(hi) CD4 cells suppressed the antitumor immune response. Thus, CD137 expression on CD4 T cells defined a population of activated T(regs) that greatly limited antitumor immune responses. Consistent with observations in the murine model, human lymphoma biopsies also contained a population of CD137(pos) CD4 T cells that were predominantly CD25(pos)FoxP3(pos) T(regs). In conclusion, our findings identify 2 surface markers that can be used to facilitate the enrichment of antitumor CD4 T cells while depleting an inhibitory T(reg) population.

  15. Respiratory Syncytial Virus (RSV) Infects CD4+ T Cells: Frequency of Circulating CD4+ RSV+ T Cells as a Marker of Disease Severity in Young Children.

    PubMed

    Raiden, Silvina; Sananez, Inés; Remes-Lenicov, Federico; Pandolfi, Julieta; Romero, Cecilia; De Lillo, Leonardo; Ceballos, Ana; Geffner, Jorge; Arruvito, Lourdes

    2017-04-01

    Although human airway epithelial cells are the main target of respiratory syncytial virus (RSV), it also infects immune cells, such as macrophages and B cells. Whether T cells are permissive to RSV infection is unknown. We sought to analyze the permissiveness of CD4+ T cells to RSV infection. CD4+ and CD8+ T cells from cord blood, healthy young children, and adults were challenged by RSV or cocultured with infected HEp-2 cells. Infection, phenotype, and cytokine production by T cells were analyzed by flow cytometry or enzyme-linked immunosorbent assay. Expression of RSV antigens by circulating CD4+ T cells from infected children was analyzed by flow cytometry, and disease severity was defined by standard criteria. CD4+ and CD8+ T cells were productively infected by RSV. Infection decreased interleukin 2 and interferon γ production as well as the expression of CD25 and Ki-67 by activated CD4+ T cells. Respiratory syncytial virus antigens were detected in circulating CD4+ and CD8+ T cells during severe RSV infection of young children. Interestingly, the frequency of CD4+ RSV+ T cells positively correlated with disease severity. Respiratory syncytial virus infects CD4+ and CD8+ T cells and compromises T-cell function. The frequency of circulating CD4+ RSV+ T cells might represent a novel marker of severe infection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  16. Co-administration of plasmid-encoded granulocyte-macrophage colony-stimulating factor increases human immunodeficiency virus-1 DNA vaccine-induced polyfunctional CD4+ T-cell responses

    PubMed Central

    Santana, Vinicius Canato; Almeida, Rafael Ribeiro; Ribeiro, Susan Pereira; Ferreira, Luís Carlos de Souza; Kalil, Jorge; Rosa, Daniela Santoro; Cunha-Neto, Edecio

    2015-01-01

    T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity. PMID:26602876

  17. Induction and function of virus-specific CD4+ T cell responses

    PubMed Central

    Whitmire, Jason K.

    2010-01-01

    CD4+ T cells -- often referred to as T-helper cells -- play a central role in immune defense and pathogenesis. Virus infections and vaccines stimulate and expand populations of antigen-specific CD4+ T cells in mice and in man. These virus-specific CD4+ T cells are extremely important in antiviral protection: deficiencies in CD4+ T cells are associated with virus reactivation, generalized susceptibility to opportunistic infections, and poor vaccine efficacy. As described below, CD4+ T cells influence effector and memory CD8+ T cell responses, humoral immunity, and the antimicrobial activity of macrophages and are involved in recruiting cells to sites of infection. This review summarizes a few key points about the dynamics of the CD4+ T cell response to virus infection, the positive role of pro-inflammatory cytokines in the differentiation of virus-specific CD4+ T cells, and new areas of investigation to improve vaccines against virus infection. PMID:21236461

  18. CD4+CD25hiFOXP3+ Cells in Cord Blood of Neonates Born from Filaria Infected Mother Are Negatively Associated with CD4+Tbet+ and CD4+RORγt+ T Cells

    PubMed Central

    Zettlmeissl, Eva; van der Vlugt, Luciën E. P. M.; de Jong, Sanne; Matsiegui, Pierre-Blaise; Ramharter, Michael; Kremsner, Peter G.; Yazdanbakhsh, Maria; Adegnika, Ayola Akim

    2014-01-01

    Background Children who have been exposed in utero to maternal filarial infection are immunologically less responsive to filarial antigens, have less pathology, and are more susceptible to acquire infection than offspring of uninfected mothers. Moreover children from filaria infected mothers have been shown to be less responsive to vaccination as a consequence of an impairment of their immune response. However, it is not well known how in utero exposure to parasite antigens affects cellular immune responses. Methodology Here, 30 pregnant women were examined for the presence of microfilaria of Loa loa and Mansonella perstans in peripheral blood. At delivery, cord blood mononuclear cells (CBMC) were obtained and the CD4+T cells were phenotyped by expression of the transcription factors Tbet, RORγt, and FOXP3. Results No significant difference was observed between newborns from infected versus uninfected mothers in the frequencies of total CD4+T cells and CD4+T cells subsets including CD4+Tbet+, CD4+RORγt+ T and CD4+CD25hiFOXP3+ T cells. However, there was a negative association between CD4+CD25hiFOXP3+T cells and CD4+Tbet+ as well as CD4+RORγt+ T cells in the infected group only (B = −0.242, P = 0.002; B = −0.178, P = 0.013 respectively). Conclusion Our results suggest that filarial infection during pregnancy leads to an expansion of functionally active regulatory T cells that keep TH1 and TH17 in check. PMID:25531674

  19. The cryo-thermal therapy eradicated melanoma in mice by eliciting CD4+ T-cell-mediated antitumor memory immune response.

    PubMed

    He, Kun; Liu, Ping; Xu, Lisa X

    2017-03-23

    Tumor metastasis is a major concern in tumor therapy. In our previous studies, a novel tumor therapeutic modality of the cryo-thermal therapy has been presented, highlighting its effect on the suppression of distal metastasis and leading to long-term survival in 4T1 murine mammary carcinoma model. To demonstrate the therapeutic efficacy in other aggressive tumor models and further investigate the mechanism of long-term survival induced, in this study, spontaneous metastatic murine B16F10 melanoma model was used. The cryo-thermal therapy induced regression of implanted melanoma and prolonged long-term survival while inhibiting lung metastasis. It also promoted the activation of CD4 + CD25 - conventional T cells, while reduced the percentage of CD4 + CD25 + regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) in the spleen, lung and blood. Furthermore, the cryo-thermal therapy enhanced the cytolytic function of CD8 + T cells and induced differentiation of CD8 + T cells into memory stem T cell (T SCM ), and differentiation of CD4 + T cells into dominant CD4-CTL, Th1 and Tfh subsets in the spleen for 90 days after the treatment. It was found that good therapeutic effect was mainly dependent on CD4 + T cells providing a durable memory antitumor immune response. At the same time, significant increase of serum IFN-γ was also observed to provide an ideal microenvironment of antitumor immunity. Further study showed that the rejection of re-challenge of B16F10 but not GL261 tumor in the treated mice in 45 or 60 days after the treatment, implied a strong systemic and melanoma-specific memory antitumor immunity induced by the treatment. Thus the cryo-thermal therapy would be considered as a new therapeutic strategy to prevent tumor recurrence and metastasis with potential clinical applications in the near future.

  20. Non-canonical NF-κB signalling and ETS1/2 cooperatively drive C250T mutant TERT promoter activation.

    PubMed

    Li, Yinghui; Zhou, Qi-Ling; Sun, Wenjie; Chandrasekharan, Prashant; Cheng, Hui Shan; Ying, Zhe; Lakshmanan, Manikandan; Raju, Anandhkumar; Tenen, Daniel G; Cheng, Shi-Yuan; Chuang, Kai-Hsiang; Li, Jun; Prabhakar, Shyam; Li, Mengfeng; Tergaonkar, Vinay

    2015-10-01

    Transcriptional reactivation of TERT, the catalytic subunit of telomerase, is necessary for cancer progression in about 90% of human cancers. The recent discovery of two prevalent somatic mutations-C250T and C228T-in the TERT promoter in various cancers has provided insight into a plausible mechanism of TERT reactivation. Although the two hotspot mutations create a similar binding motif for E-twenty-six (ETS) transcription factors, we show that they are functionally distinct, in that the C250T unlike the C228T TERT promoter is driven by non-canonical NF-κB signalling. We demonstrate that binding of ETS to the mutant TERT promoter is insufficient in driving its transcription but this process requires non-canonical NF-κB signalling for stimulus responsiveness, sustained telomerase activity and hence cancer progression. Our findings highlight a previously unrecognized role of non-canonical NF-κB signalling in tumorigenesis and elucidate a fundamental mechanism for TERT reactivation in cancers, which if targeted could have immense therapeutic implications.

  1. IL-1β and IL-23 Promote Extrathymic Commitment of CD27+CD122− γδ T Cells to γδT17 Cells

    PubMed Central

    2017-01-01

    γδT17 cells are a subset of γδ T cells committed to IL-17 production and are characterized by the expression of IL-23R and CCR6 and lack of CD27 expression. γδT17 cells are believed to arise within a narrow time window during prenatal thymic development. In agreement with this concept, we show in this study that adult Rag1−/− recipient mice of Il23rgfp/+ (IL-23R reporter) bone marrow selectively lack IL-23R+ γδT17 cells. Despite their absence in secondary lymphoid tissues during homeostasis, γδT17 cells emerge in bone marrow chimeric mice upon induction of skin inflammation by topical treatment with imiquimod cream (Aldara). We demonstrate that IL-1β and IL-23 together are able to promote the development of bona fide γδT17 cells from peripheral CD122−IL-23R− γδ T cells, whereas CD122+ γδ T cells fail to convert into γδT17 cells and remain stable IFN-γ producers (γδT1 cells). IL-23 is instrumental in expanding extrathymically generated γδT17 cells. In particular, TCR-Vγ4+ chain–expressing CD122−IL-23R− γδ T cells are induced to express IL-23R and IL-17 outside the thymus during skin inflammation. In contrast, TCR-Vγ1+ γδ T cells largely resist this process because prior TCR engagement in the thymus has initiated their commitment to the γδT1 lineage. In summary, our data reveal that the peripheral pool of γδ T cells retains a considerable degree of plasticity because it harbors “naive” precursors, which can be induced to produce IL-17 and replenish peripheral niches that are usually occupied by thymus-derived γδT17 cells. PMID:28855314

  2. Reactive glia promote development of CD103+ CD69+ CD8+ T-cells through programmed cell death-ligand 1 (PD-L1).

    PubMed

    Prasad, Sujata; Hu, Shuxian; Sheng, Wen S; Chauhan, Priyanka; Lokensgard, James R

    2018-06-01

    Previous work from our laboratory has demonstrated in vivo persistence of CD103 + CD69 + brain resident memory CD8 + T-cells (bT RM ) following viral infection, and that the PD-1: PD-L1 pathway promotes development of these T RM cells within the brain. Although glial cells express low basal levels of PD-L1, its expression is upregulated upon IFN-γ-treatment, and they have been shown to modulate antiviral T-cell effector responses through the PD-1: PD-L1 pathway. We performed flow cytometric analysis of cells from co-cultures of mixed glia and CD8 + T-cells obtained from wild type mice to investigate the role of glial cells in the development of bT RM . In this study, we show that interactions between reactive glia and anti-CD3 Ab-stimulated CD8 + T-cells promote development of CD103 + CD69 + CD8 + T-cells through engagement of the PD-1: PD-L1 pathway. These studies used co-cultures of primary murine glial cells obtained from WT animals along with CD8 + T-cells obtained from either WT or PD-1 KO mice. We found that αCD3 Ab-stimulated CD8 + T-cells from WT animals increased expression of CD103 and CD69 when co-cultured with primary murine glial cells. In contrast, significantly reduced expression of CD103 and CD69 was observed using CD8 + T-cells from PD-1 KO mice. We also observed that reactive glia promoted high levels of CD127, a marker of memory precursor effector cells (MPEC), on CD69 + CD8 + T-cells, which promotes development of T RM cells. Interestingly, results obtained using T-cells from PD-1 KO animals showed significantly reduced expression of CD127 on CD69 + CD8 + cells. Additionally, blocking of glial PD-L1 resulted in decreased expression of CD103, along with reduced CD127 on CD69 + CD8 + T-cells. Taken together, these results demonstrate a role for activated glia in promoting development of bT RM through the PD-1: PD-L1 pathway. © 2018 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  3. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity.

    PubMed

    Wang, Dongrui; Aguilar, Brenda; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R; Forman, Stephen J; Brown, Christine E

    2018-05-17

    Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.

  4. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity

    PubMed Central

    Wang, Dongrui; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R.; Forman, Stephen J.; Brown, Christine E.

    2018-01-01

    Chimeric antigen receptor–modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy. PMID:29769444

  5. T4 Syndrome: A Scoping Review of the Literature.

    PubMed

    Karas, Steve; Pannone, Albert

    2017-02-01

    The purpose of this scoping review was to identify any available evidence regarding T4 syndrome. Databases were searched from inception through October 2015 and included PubMed, CINAHL, PEDro, Google Scholar, Osteomed-DR; Index to Chiropractic Literature, PROSPERO, and Chiroaccess. All studies with information about T4 syndrome that were published in a peer-reviewed journal or textbook were included. The information was organized in the format of the International Classification of Functioning, Disability, and Health. Studies were ranked using Sackett's levels of evidence. Eight articles met the inclusion criteria. Studied areas included theoretical pathophysiology and symptom etiology, diagnosis, symptoms, treatment, and outcomes of T4 syndrome. The methodological quality of included studies was low. T4 syndrome is a diagnosis of exclusion that appears to be rare. It has been treated conservatively in the literature using mobilization and exercise. There is no high-quality evidence published about T4 syndrome, and we caution clinicians when considering it as a primary means to determine patient care. Copyright © 2016. Published by Elsevier Inc.

  6. 9.4T Human MRI: Preliminary Results

    PubMed Central

    Vaughan, Thomas; DelaBarre, Lance; Snyder, Carl; Tian, Jinfeng; Akgun, Can; Shrivastava, Devashish; Liu, Wanzahn; Olson, Chris; Adriany, Gregor; Strupp, John; Andersen, Peter; Gopinath, Anand; van de Moortele, Pierre-Francois; Garwood, Michael; Ugurbil, Kamil

    2014-01-01

    This work reports the preliminary results of the first human images at the new high-field benchmark of 9.4T. A 65-cm-diameter bore magnet was used together with an asymmetric 40-cm-diameter head gradient and shim set. A multichannel transmission line (transverse electromagnetic (TEM)) head coil was driven by a programmable parallel transceiver to control the relative phase and magnitude of each channel independently. These new RF field control methods facilitated compensation for RF artifacts attributed to destructive interference patterns, in order to achieve homogeneous 9.4T head images or localize anatomic targets. Prior to FDA investigational device exemptions (IDEs) and internal review board (IRB)-approved human studies, preliminary RF safety studies were performed on porcine models. These data are reported together with exit interview results from the first 44 human volunteers. Although several points for improvement are discussed, the preliminary results demonstrate the feasibility of safe and successful human imaging at 9.4T. PMID:17075852

  7. NAD+ protects against EAE by regulating CD4+ T-cell differentiation

    PubMed Central

    Tullius, Stefan G.; Biefer, Hector Rodriguez Cetina; Li, Suyan; Trachtenberg, Alexander J.; Edtinger, Karoline; Quante, Markus; Krenzien, Felix; Uehara, Hirofumi; Yang, Xiaoyong; Kissick, Haydn T.; Kuo, Winston P.; Ghiran, Ionita; de la Fuente, Miguel A.; Arredouani, Mohamed S.; Camacho, Virginia; Tigges, John C.; Toxavidis, Vasilis; El Fatimy, Rachid; Smith, Brian D.; Vasudevan, Anju; ElKhal, Abdallah

    2014-01-01

    CD4+ T cells are involved in the development of autoimmunity, including multiple sclerosis (MS). Here we show that nicotinamide adenine dinucleotide (NAD+) blocks experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by inducing immune homeostasis through CD4+IFNγ+IL-10+ T cells and reverses disease progression by restoring tissue integrity via remyelination and neuroregeneration. We show that NAD+ regulates CD4+ T-cell differentiation through tryptophan hydroxylase-1 (Tph1), independently of well-established transcription factors. In the presence of NAD+, the frequency of T-bet−/− CD4+IFNγ+ T cells was twofold higher than wild-type CD4+ T cells cultured in conventional T helper 1 polarizing conditions. Our findings unravel a new pathway orchestrating CD4+ T-cell differentiation and demonstrate that NAD+ may serve as a powerful therapeutic agent for the treatment of autoimmune and other diseases. PMID:25290058

  8. Memory CD4+ T cells: beyond “helper” functions

    PubMed Central

    Boonnak, Kobporn; Subbarao, Kanta

    2012-01-01

    In influenza virus infection, antibodies, memory CD8+ T cells, and CD4+ T cells have all been shown to mediate immune protection, but how they operate and interact with one another to mediate efficient immune responses against virus infection is not well understood. In this issue of the JCI, McKinstry et al. have identified unique functions of memory CD4+ T cells beyond providing “help” for B cell and CD8+ T cell responses during influenza virus infection. PMID:22820285

  9. Opioid maintenance therapy restores CD4+ T cell function by normalizing CD4+CD25(high) regulatory T cell frequencies in heroin user.

    PubMed

    Riss, Gina-Lucia; Chang, Dae-In; Wevers, Carolin; Westendorf, Astrid M; Buer, Jan; Scherbaum, Norbert; Hansen, Wiebke

    2012-08-01

    There is an increasing body of evidence that heroin addiction is associated with severe alterations in immune function, which might contribute to an increased risk to contract infectious diseases like hepatitis B and C or HIV. However, the impact of heroin consumption on the CD4(+) T cell compartment is not well understood. Therefore, we analyzed the frequency and functional phenotype of CD4(+) T cells as well as immune-suppressive CD4(+)CD25(high) regulatory T cells (Tregs) isolated from the peripheral blood of opiate addicts currently abusing heroin (n=27) in comparison to healthy controls (n=25) and opiate addicts currently in opioid maintenance treatment (OMT; n=27). Interestingly, we detected a significant increase in the percentage of CD4(+)CD25(high) Tregs in the peripheral blood of heroin addicted patients in contrast to patients in OMT. The proliferative response of CD4(+) T cells upon stimulation with anti-CD3 and anti-CD28 antibodies was significantly decreased in heroin users, but could be restored by depletion of CD25(high) regulatory T cells from CD4(+) T cells to similar values as observed from healthy controls and patients in OMT. These results suggest that impaired immune responses observed in heroin users are related to the expansion of CD4(+)CD25(high) Tregs and more importantly, can be restored by OMT. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. A novel polymorphism in the PAI-1 gene promoter enhances gene expression. A novel pro-thrombotic risk factor?

    PubMed

    Liguori, Renato; Quaranta, Sandro; Di Fiore, Rosanna; Elce, Ausilia; Castaldo, Giuseppe; Amato, Felice

    2014-12-01

    Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor of tissue-type plasminogen activator in plasma and the most important regulator of the fibrinolytic pathway. The 4G/5G polymorphism (rs1799889) in the PAI-1 promoter is associated with altered PAI-1 transcription. We have identified a new 4G/5G allele, in which a T is inserted near the 4G tract or replaces a G in the 5G tract, forming a T plus 4G (T4G) region. This new variant was first identified in two women, one had experienced juvenile myocardial infarction, the other repeated miscarriage; both had increased PAI-1 plasma activity. In view of the important influence of this promoter region on PAI-1 protein plasma level, we performed in vitro evaluation of the effects of the T4G variant on the transcription activity of the PAI-1 gene promoter. In silico prediction analysis showed that presence of the T4G allele disrupts the E-Box region upstream of the T4G variant, altering the affinity of the target sequence for E-Box binding factors like upstream stimulatory factor-1 (USF-1). Basal T4G promoter activity was 50% higher compared to 4G and 5G variants, but it was less stimulated by USF-1 overexpression. We also analyzed the effects of IL-1β and IL-6 on the PAI-1 promoter activity of our three constructs and showed that the T4G variant was less affected by IL-1β than the other variants. These findings indicate that the T4G variant may be a novel risk factor for thrombotic events. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Potent Inhibition of HIV-1 Replication in Resting CD4 T Cells by Resveratrol and Pterostilbene

    PubMed Central

    Chan, Chi N.; Trinité, Benjamin

    2017-01-01

    ABSTRACT HIV-1 infection of resting CD4 T cells plays a crucial and numerically dominant role during virus transmission at mucosal sites and during subsequent acute replication and T cell depletion. Resveratrol and pterostilbene are plant stilbenoids associated with several health-promoting benefits. Resveratrol has been shown to inhibit the replication of several viruses, including herpes simplex viruses 1 and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus. Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse transcription. Here, we demonstrate that resveratrol and pterostilbene completely block HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxynucleoside triphosphate (dNTP) levels. These findings are consistent with the reported ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells. This study supports the potential use of resveratrol, pterostilbene, or related compounds as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations. PMID:28652233

  12. Potent Inhibition of HIV-1 Replication in Resting CD4 T Cells by Resveratrol and Pterostilbene.

    PubMed

    Chan, Chi N; Trinité, Benjamin; Levy, David N

    2017-09-01

    HIV-1 infection of resting CD4 T cells plays a crucial and numerically dominant role during virus transmission at mucosal sites and during subsequent acute replication and T cell depletion. Resveratrol and pterostilbene are plant stilbenoids associated with several health-promoting benefits. Resveratrol has been shown to inhibit the replication of several viruses, including herpes simplex viruses 1 and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus. Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse transcription. Here, we demonstrate that resveratrol and pterostilbene completely block HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxynucleoside triphosphate (dNTP) levels. These findings are consistent with the reported ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells. This study supports the potential use of resveratrol, pterostilbene, or related compounds as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations. Copyright © 2017 American Society for Microbiology.

  13. Dynamics of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells.

    PubMed

    Katri, Patricia; Ruan, Shigui

    2004-11-01

    Stilianakis and Seydel (Bull. Math. Biol., 1999) proposed an ODE model that describes the T-cell dynamics of human T-cell lymphotropic virus I (HTLV-I) infection and the development of adult T-cell leukemia (ATL). Their model consists of four components: uninfected healthy CD4+ T-cells, latently infected CD4+ T-cells, actively infected CD4+ T-cells, and ATL cells. Mathematical analysis that completely determines the global dynamics of this model has been done by Wang et al. (Math. Biosci., 2002). In this note, we first modify the parameters of the model to distinguish between contact and infectivity rates. Then we introduce a discrete time delay to the model to describe the time between emission of contagious particles by active CD4+ T-cells and infection of pure cells. Using the results in Culshaw and Ruan (Math. Biosci., 2000) in the analysis of time delay with respect to cell-free viral spread of HIV, we study the effect of time delay on the stability of the endemically infected equilibrium. Numerical simulations are presented to illustrate the results.

  14. CD40L Expression Allows CD8+ T Cells to Promote Their Own Expansion and Differentiation through Dendritic Cells

    PubMed Central

    Tay, Neil Q.; Lee, Debbie C. P.; Chua, Yen Leong; Prabhu, Nayana; Gascoigne, Nicholas R. J.; Kemeny, David M.

    2017-01-01

    CD8+ T cells play an important role in providing protective immunity against a wide range of pathogens, and a number of different factors control their activation. Although CD40L-mediated CD40 licensing of dendritic cells (DCs) by CD4+ T cells is known to be necessary for the generation of a robust CD8+ T cell response, the contribution of CD8+ T cell-expressed CD40L on DC licensing is less clear. We have previously shown that CD8+ T cells are able to induce the production of IL-12 p70 by DCs in a CD40L-dependent manner, providing some evidence that CD8+ T cell-mediated activation of DCs is possible. To better understand the role of CD40L on CD8+ T cell responses, we generated and characterized CD40L-expressing CD8+ T cells both in vitro and in vivo. We found that CD40L was expressed on 30–50% of effector CD8+ T cells when stimulated and that this expression was transient. The expression of CD40L on CD8+ T cells promoted the proliferation and differentiation of both the CD40L-expressing CD8+ T cells and the bystander effector CD8+ T cells. This process occurred via a cell-extrinsic manner and was mediated by DCs. These data demonstrate the existence of a mechanism where CD8+ T cells and DCs cooperate to maximize CD8+ T cell responses. PMID:29163545

  15. The RON Receptor Tyrosine Kinase Promotes Metastasis by Triggering MBD4-Dependent DNA Methylation Reprogramming

    PubMed Central

    Cunha, Stéphanie; Lin, Yi-Chun; Goossen, Elizabeth A.; DeVette, Christa I.; Albertella, Mark R.; Thomson, Stuart; Mulvihill, Mark J.; Welm, Alana L.

    2017-01-01

    SUMMARY Metastasis is the major cause of death in cancer patients, yet the genetic and epigenetic programs that drive metastasis are poorly understood. Here, we report an epigenetic reprogramming pathway that is required for breast cancer metastasis. Concerted differential DNA methylation is initiated by the activation of the RON receptor tyrosine kinase by its ligand, macrophage stimulating protein (MSP). Through PI3K signaling, RON/MSP promotes expression of the G:T mismatch-specific thymine glycosylase MBD4. RON/MSP and MBD4-dependent aberrant DNA methylation results in the misregulation of a specific set of genes. Knockdown of MBD4 reverses methylation at these specific loci and blocks metastasis. We also show that the MBD4 glycosylase catalytic residue is required for RON/MSP-driven metastasis. Analysis of human breast cancers revealed that this epigenetic program is significantly associated with poor clinical outcome. Furthermore, inhibition of Ron kinase activity with a pharmacological agent blocks metastasis of patient-derived breast tumor grafts in vivo. PMID:24388747

  16. Simultaneous Knockout of CXCR4 and CCR5 Genes in CD4+ T Cells via CRISPR/Cas9 Confers Resistance to Both X4- and R5-Tropic Human Immunodeficiency Virus Type 1 Infection.

    PubMed

    Yu, Songlin; Yao, Yongchao; Xiao, Hongkui; Li, Jiaojiao; Liu, Quan; Yang, Yijun; Adah, Dickson; Lu, Junnan; Zhao, Siting; Qin, Li; Chen, Xiaoping

    2018-01-01

    Previous research has proven that disruption of either the CCR5 or the CXCR4 gene confers resistance to R5-tropic or X4-tropic human immunodeficiency virus type 1 (HIV-1) infection, respectively. However, the urgent need to ablate both of the co-receptors in individual post-thymic CD4+ T cells for dual protection remains. This study ablated the CCR5 and CXCR4 genes in human CD4+ cell lines and primary CD4+ T cells simultaneously using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, a well-developed, highly efficient genetic engineering tool. The efficiency of gene modification is as high as 55% for CCR5 and 36% for CXCR4 in CD4+ cell lines through infection of a single lentiviral vector (LV-X4R5), which were markedly protected from both HIV-1 NL4-3 (X4-using strain) and HIV-1 YU-2 (R5-using strain) infection. Importantly, approximately 9% of the modified GHOST (3) CXCR4+CCR5+ cells harbor four bi-allelic gene disruptions in both the CXCR4 and CCR5 loci. Moreover, co-delivery of two single-guide RNAs loaded with Cas9: ribonucleoprotein (sgX4&R5 Cas9RNP) disrupted >12% of CCR5 and 10% of CXCR4 in primary human CD4+ T cells, which were rendered resistant to HIV-1 NL4-3 and HIV-1 YU-2 in vitro. Further, the modified cells do not show discernible mutagenesis in top-ranked off-target genes by the Surveyor assay and Sanger sequencing analysis. The results demonstrate the safety and efficacy of CRISPR/Cas9 in multiplex gene modification on peripherally circulating CD4+ T cells, which may promote a functional cure for HIV-1 infection.

  17. PI3Kδ promotes CD4(+) T-cell interactions with antigen-presenting cells by increasing LFA-1 binding to ICAM-1.

    PubMed

    Garçon, Fabien; Okkenhaug, Klaus

    2016-05-01

    Activation of T lymphocytes by peptide/major histocompatibility complex on antigen-presenting cells (APCs) involves dynamic contacts between the two cells, during which T cells undergo marked morphological changes. These interactions are facilitated by integrins. Activation of the T cells increases the binding of the integrin lymphocyte function-associated antigen 1 (LFA-1) expressed by T cells to intercellular adhesion molecule (ICAM)-1 and ICAM-2 expressed by APCs. The signalling pathways that control integrin affinities are incompletely defined. The phosphoinositide 3-kinases (PI3Ks) generate second-messenger signalling molecules that control cell growth, proliferation, differentiation and trafficking. Here we show that in T cells, PI3Kδ attenuates the activation of Rac1, but sustains the activation of Rap1. Consequently, PI3Kδ increases LFA-1-dependent adhesion to form stable conjugates with APCs. Increased Rap1 activity and LFA-1 adhesion were only in part mediated by the downstream kinase Akt, suggesting the involvement of additional phosphatidylinositol(3,4,5)P3-binding proteins. These results establish a link between PI3K activity, cytoskeletal changes and integrin binding and help explain the impaired T-cell-dependent immune responses in PI3Kδ-deficient mice.

  18. The Majority of HIV Type 1 DNA in Circulating CD4+ T Lymphocytes Is Present in Non-Gut-Homing Resting Memory CD4+ T Cells

    PubMed Central

    Xu, Yin; Bailey, Michelle; Seddiki, Nabila; Suzuki, Kazuo; Murray, John M.; Gao, Yuan; Yan, Celine; Cooper, David A.; Kelleher, Anthony D.; Koelsch, Kersten K.; Zaunders, John

    2013-01-01

    Abstract Memory CD4+ T lymphocytes in peripheral blood that express integrins α4ß7 preferentially recirculate through gut-associated lymphoid tissue (GALT), a proposed site of significant HIV-1 replication. Tregs and activated CD4+ T cells in GALT could also be particularly susceptible to infection. We therefore hypothesized that infection of these subsets of memory CD4+ T cells may contribute disproportionately to the HIV-1 reservoir. A cross-sectional study of CD4+ T cell subsets of memory CD45RO+ cells in peripheral blood mononuclear cells (PBMCs) was conducted using leukapheresis from eight subjects with untreated chronic HIV-1 infection. Real-time polymerase chain reaction (PCR) was used to quantify total and integrated HIV-1 DNA levels from memory CD4+ T cells sorted into integrin β7+ vs. β7−, CD25+CD127low Treg vs. CD127high, and activated CD38+ vs. CD38−. More than 80% of total HIV-1 DNA was found to reside in the integrin β7-negative non-gut-homing subset of CD45RO+ memory CD4+ T cells. Less than 10% was found in highly purified Tregs or CD38+ activated memory cells. Similarly, integrated HIV-1 DNA copies were found to be more abundant in resting non-gut-homing memory CD4+ T cells (76%) than in their activated counterparts (23%). Our investigations showed that the majority of both total and integrated HIV-1 DNA was found within non-gut-homing resting CD4+ T cells. PMID:23971972

  19. Comparison of only T3 and T3–T4 sympathectomy for axillary hyperhidrosis regarding treatment effect and compensatory sweating

    PubMed Central

    Yuncu, Gökhan; Turk, Figen; Ozturk, Gökhan; Atinkaya, Cansel

    2013-01-01

    OBJECTIVES Patients diagnosed with axillary hyperhidrosis can face psychosocial issues that can ultimately hinder their quality of life both privately and socially. The routine treatment for axillary hyperhidrosis is T3–T4 sympathectomy, but compensatory sweating is a serious side effect that is commonly seen with this approach. This study was designed to evaluate whether a T3 sympathectomy was effective for the treatment of axillary hyperhidrosis and whether this treatment led to less compensatory sweating than T3–T4 sympathectomies among our 60-patient population. METHODS One hundred and twenty endoscopic thoracic sympathectomies were performed on 60 patients who had axillary hyperhidrosis. The sympathectomies were accomplished by means of a single-lumen endotracheal tube and a single port. The axillary hyperhidrosis patients were randomly divided into two groups with 17 patients in Group 1 undergoing T3–T4 sympathectomies and 43 in Group 2 undergoing only T3 sympathectomies. We analysed the data associated with the resolution of axillary hyperhidrosis, the degree of patient satisfaction with the surgical outcome and the quality of life in parallel with compensatory sweating after the procedure as reported by the patient and confirmed by the examiner. Moreover, the results were compared statistically. RESULTS No statistically significant difference was observed between the groups based on age (P = 0.56), gender (P = 0.81), duration of the surgery (P = 0.35) or postoperative satisfaction levels (P = 0.45). However, the incidence and degree of compensatory sweating were lower in the T3 group than the T3–T4 group at the 1-year follow-up (P = 0.008). CONCLUSIONS T3 sympathectomy was as effective as T3–T4 sympathectomy for the treatment of axillary hyperhidrosis based on the patients’ reported postoperative satisfaction, and the T3 group demonstrated lower compensatory sweating at the 1-year follow-up. PMID:23644731

  20. Th1 differentiation drives the accumulation of intravascular, non-protective CD4 T cells during tuberculosis

    PubMed Central

    Sallin, Michelle A.; Sakai, Shunsuke; Kauffman, Keith D.; Young, Howard A.; Zhu, Jinfang; Barber, Daniel L.

    2017-01-01

    SUMMARY Recent data indicate that the differentiation state of Th1 cells determines their protective capacity against tuberculosis. Therefore, we examined the role of Th1 polarizing factors in the generation of protective and non-protective subsets of Mtb-specific Th1 cells. We find IL-12/23p40 promotes Th1 cell expansion and maturation beyond the CD73+CXCR3+T-betdim stage, and T-bet prevents deviation of Th1 cells into Th17 cells. Nevertheless, IL-12/23p40 and T-bet are also essential for the production of a prominent subset of intravascular CX3CR1+KLRG1+ Th1 cells that persists poorly and can neither migrate into the lung parenchyma nor control Mtb growth. Furthermore, T-bet suppresses development of CD69+CD103+ tissue resident phenotype effectors in lung. In contrast, Th1 cell-derived IFNγ inhibits the accumulation of intravascular CX3CR1+KLRG1+ Th1 cells. Thus, although IL-12 and T-bet are essential host survival factors, they simultaneously oppose lung CD4 T cell responses at several levels, demonstrating the dual nature of Th1 polarization in tuberculosis. PMID:28355562

  1. Incorporation of T4 bacteriophage in electrospun fibres.

    PubMed

    Korehei, R; Kadla, J

    2013-05-01

    Antibacterial food packaging materials, such as bacteriophage-activated electrospun fibrous mats, may address concerns triggered by waves of bacterial food contamination. To address this, we investigated several efficient methods for incorporating T4 bacteriophage into electrospun fibrous mats. The incorporation of T4 bacteriophage using simple suspension electrospinning led to more than five orders of magnitude decrease in bacteriophage activity. To better maintain bacteriophage viability, emulsion electrospinning was developed where the T4 bacteriophage was pre-encapsulated in an alginate reservoir via an emulsification process and subsequently electrospun into fibres. This resulted in an increase in bacteriophage viability, but there was still two orders of magnitude drop in activity. Using a coaxial electrospinning process, full bacteriophage activity could be maintained. In this process, a core/shell fibre structure was formed with the T4 bacteriophage being directly incorporated into the fibre core. The core/shell fibre encapsulated bacteriophage exhibited full bacteriophage viability after storing for several weeks at +4°C. Coaxial electrospinning was shown to be capable of encapsulating bacteriophages with high loading capacity, high viability and long storage time. These results are significant in the context of controlling and preventing bacterial infections in perishable foods during storage. © 2013 The Society for Applied Microbiology.

  2. AZD1775 sensitizes T cell acute lymphoblastic leukemia cells to cytarabine by promoting apoptosis over DNA repair.

    PubMed

    Ford, James B; Baturin, Dmitry; Burleson, Tamara M; Van Linden, Annemie A; Kim, Yong-Mi; Porter, Christopher C

    2015-09-29

    While some children with acute lymphoblastic leukemia (ALL) have excellent prognoses, the prognosis for adults and children with T cell ALL is more guarded. Treatment for T-ALL is heavily dependent upon antimetabolite chemotherapeutics, including cytarabine. Targeted inhibition of WEE1 with AZD1775 has emerged as a strategy to sensitize cancer cells to cytarabine and other chemotherapeutics. We sought to determine if this strategy would be effective for T-ALL with clinically relevant anti-leukemia agents. We found that AZD1775 sensitizes T-ALL cells to several traditional anti-leukemia agents, acting synergistically with cytarabine by enhancing DNA damage and apoptosis. In addition to increased phosphorylation of H2AX at serine 139 (γH2AX), AZD1775 led to increased phosphorylation of H2AX at tyrosine 142, a signaling event associated with promotion of apoptosis over DNA repair. In a xenograft model of T-ALL, the addition of AZD1775 to cytarabine slowed leukemia progression and prolonged survival. Inhibition of WEE1 with AZD1775 sensitizes T-ALL to several anti-leukemia agents, particularly cytarabine and that mechanistically, AZD1775 promotes apoptosis over DNA repair in cells treated with cytarabine. These data support the development of clinical trials including AZD1775 in combination with conventional chemotherapy for acute leukemia.

  3. AZD1775 sensitizes T cell acute lymphoblastic leukemia cells to cytarabine by promoting apoptosis over DNA repair

    PubMed Central

    Burleson, Tamara M.; Van Linden, Annemie A.; Kim, Yong-Mi; Porter, Christopher C.

    2015-01-01

    While some children with acute lymphoblastic leukemia (ALL) have excellent prognoses, the prognosis for adults and children with T cell ALL is more guarded. Treatment for T-ALL is heavily dependent upon antimetabolite chemotherapeutics, including cytarabine. Targeted inhibition of WEE1 with AZD1775 has emerged as a strategy to sensitize cancer cells to cytarabine and other chemotherapeutics. We sought to determine if this strategy would be effective for T-ALL with clinically relevant anti-leukemia agents. We found that AZD1775 sensitizes T-ALL cells to several traditional anti-leukemia agents, acting synergistically with cytarabine by enhancing DNA damage and apoptosis. In addition to increased phosphorylation of H2AX at serine 139 (γH2AX), AZD1775 led to increased phosphorylation of H2AX at tyrosine 142, a signaling event associated with promotion of apoptosis over DNA repair. In a xenograft model of T-ALL, the addition of AZD1775 to cytarabine slowed leukemia progression and prolonged survival. Inhibition of WEE1 with AZD1775 sensitizes T-ALL to several anti-leukemia agents, particularly cytarabine. Mechanistically, AZD1775 promotes apoptosis over DNA repair in cells treated with cytarabine. These data support the development of clinical trials including AZD1775 in combination with conventional chemotherapy for acute leukemia. PMID:26334102

  4. Conventional CD4+ T cells present bacterial antigens to induce cytotoxic and memory CD8+ T cell responses.

    PubMed

    Cruz-Adalia, Aránzazu; Ramirez-Santiago, Guillermo; Osuna-Pérez, Jesús; Torres-Torresano, Mónica; Zorita, Virgina; Martínez-Riaño, Ana; Boccasavia, Viola; Borroto, Aldo; Martínez Del Hoyo, Gloria; González-Granado, José María; Alarcón, Balbino; Sánchez-Madrid, Francisco; Veiga, Esteban

    2017-11-17

    Bacterial phagocytosis and antigen cross-presentation to activate CD8 + T cells are principal functions of professional antigen presenting cells. However, conventional CD4 + T cells also capture and kill bacteria from infected dendritic cells in a process termed transphagocytosis (also known as transinfection). Here, we show that transphagocytic T cells present bacterial antigens to naive CD8 + T cells, which proliferate and become cytotoxic in response. CD4 + T-cell-mediated antigen presentation also occurs in vivo in the course of infection, and induces the generation of central memory CD8 + T cells with low PD-1 expression. Moreover, transphagocytic CD4 + T cells induce protective anti-tumour immune responses by priming CD8 + T cells, highlighting the potential of CD4 + T cells as a tool for cancer immunotherapy.

  5. 26 CFR 1.469-4T - Definition of activity (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Definition of activity (temporary). 1.469-4T Section 1.469-4T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-4T Definition of activity (temporary). (a) Overview—(1)...

  6. 26 CFR 1.469-4T - Definition of activity (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 6 2013-04-01 2013-04-01 false Definition of activity (temporary). 1.469-4T Section 1.469-4T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-4T Definition of activity (temporary). (a) Overview—(1)...

  7. 26 CFR 1.469-4T - Definition of activity (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Definition of activity (temporary). 1.469-4T Section 1.469-4T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-4T Definition of activity (temporary). (a) Overview—(1)...

  8. 26 CFR 1.469-4T - Definition of activity (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 6 2012-04-01 2012-04-01 false Definition of activity (temporary). 1.469-4T Section 1.469-4T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-4T Definition of activity (temporary). (a) Overview—(1)...

  9. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    PubMed

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. © 2014 UICC.

  10. Adipose-derived stem cells were impaired in restricting CD4+T cell proliferation and polarization in type 2 diabetic ApoE-/- mouse.

    PubMed

    Liu, Ming-Hao; Li, Ya; Han, Lu; Zhang, Yao-Yuan; Wang, Di; Wang, Zhi-Hao; Zhou, Hui-Min; Song, Ming; Li, Yi-Hui; Tang, Meng-Xiong; Zhang, Wei; Zhong, Ming

    2017-07-01

    Atherosclerosis (AS) is the most common and serious complication of type 2 diabetes mellitus (T2DM) and is accelerated via chronic systemic inflammation rather than hyperglycemia. Adipose tissue is the major source of systemic inflammation in abnormal metabolic state. Pro-inflammatory CD4 + T cells play pivotal role in promoting adipose inflammation. Adipose-derived stem cells (ADSCs) for fat regeneration have potent ability of immunosuppression and restricting CD4 + T cells as well. Whether T2DM ADSCs are impaired in antagonizing CD4 + T cell proliferation and polarization remains unclear. We constructed type 2 diabetic ApoE -/- mouse models and tested infiltration and subgroups of CD4 + T cell in stromal-vascular fraction (SVF) in vivo. Normal/T2DM ADSCs and normal splenocytes with or without CD4 sorting were separated and co-cultured at different scales ex vivo. Immune phenotypes of pro- and anti-inflammation of ADSCs were also investigated. Flow cytometry (FCM) and ELISA were applied in the experiments above. CD4 + T cells performed a more pro-inflammatory phenotype in adipose tissue in T2DM ApoE -/- mice in vivo. Restriction to CD4 + T cell proliferation and polarization was manifested obviously weakened after co-cultured with T2DM ADSCs ex vivo. No obvious distinctions were found in morphology and growth type of both ADSCs. However, T2DM ADSCs acquired a pro-inflammatory immune phenotype, with secreting less PGE2 and expressing higher MHC-II and co-stimulatory molecules (CD40, CD80). Normal ADSCs could also obtain the phenotypic change after cultured with T2DM SVF supernatant. CD4 + T cell infiltration and pro-inflammatory polarization exist in adipose tissue in type 2 diabetic ApoE -/- mice. T2DM ADSCs had impaired function in restricting CD4 + T lymphocyte proliferation and pro-inflammatory polarization due to immune phenotypic changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Non-water-suppressed 1 H FID-MRSI at 3T and 9.4T.

    PubMed

    Chang, Paul; Nassirpour, Sahar; Avdievitch, Nikolai; Henning, Anke

    2018-08-01

    This study investigates metabolite concentrations using metabolite-cycled 1 H free induction decay (FID) magnetic resonance spectroscopic imaging (MRSI) at ultra-high fields. A non-lipid-suppressed and slice-selective ultra-short echo time (TE) 1 H FID MRSI sequence was combined with a low-specific absorption rate (SAR) asymmetric inversion adiabatic pulse to enable non-water-suppressed metabolite mapping using metabolite-cycling at 9.4T. The results were compared to a water-suppressed FID MRSI sequence, and the same study was performed at 3T for comparison. The scan times for performing single-slice metabolite mapping with a nominal voxel size of 0.4 mL were 14 and 17.5 min on 3T and 9.4T, respectively. The low-SAR asymmetric inversion adiabatic pulse enabled reliable non-water-suppressed metabolite mapping using metabolite cycling at both 3T and 9.4T. The spectra and maps showed good agreement with the water-suppressed FID MRSI ones at both field strengths. A quantitative analysis of metabolite ratios with respect to N-acetyl aspartate (NAA) was performed. The difference in Cre/NAA was statistically significant, ∼0.1 higher for the non-water-suppressed case than for water suppression (from 0.73 to 0.64 at 3T and from 0.69 to 0.59 at 9.4T). The difference is likely because of chemical exchange effects of the water suppression pulses. Small differences in mI/NAA were also statistically significant, however, are they are less reliable because the metabolite peaks are close to the water peak that may be affected by the water suppression pulses or metabolite-cycling inversion pulse. We showed the first implementation of non-water-suppressed metabolite-cycled 1 H FID MRSI at ultra-high fields. An increase in Cre/NAA was seen for the metabolite-cycled case. The same methodology was further applied at 3T and similar results were observed. Magn Reson Med 80:442-451, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society

  12. Influence of A-21T and C-262T genetic polymorphisms at the promoter region of the catalase (CAT) on gene expression.

    PubMed

    Saify, Khyber; Saadat, Iraj; Saadat, Mostafa

    2016-09-01

    Catalase (CAT, OMIM: 115500) is one of the major antioxidant enzymes, which plays an important role in the clearance of reactive oxygen species. Three genetic polymorphisms of A-21T (rs7943316), C-262T (rs1001179), and C-844T (rs769214) in the promoter region of the CAT have been reported. It has been suggested that these polymorphisms may alter the recognition sites of transcriptional factors, therefore it might be concluded that these polymorphisms may alter the expression levels of the gene. The aim of the present study is to evaluate the associations between these genetic variations and the CAT mRNA levels in human peripheral blood cells. The present study consisted of 47 healthy students of Shiraz University (south-west Iran). Genotypes of the CAT polymorphisms were determined by PCR based method. The quantitative CAT mRNA expression levels were investigated using quantitative real-time PCR. Analysis of variance revealed significant differences between the study genotypes (For A-21T polymorphism: F = 7.45; df = 2, 44; P = 0.002; For C-262T polymorphism: F = 15.17; df = 2, 44; P < 0.001). The studied polymorphisms showed linkage disequilibrium (D' = 1.0, r 2  = 0.1813, χ 2  = 17.03, P < 0.0001). The mRNA levels of CAT in the AC/TT, TC/TC, TC/TT, and TC/TC diplotypes significantly were higher than the mRNA levels in AC/AC diplotype. There was a significant difference between the study genotypes (F = 9.24; df = 5, 41; P < 0.001). The TC/TC and TT/TT diplotypes showed about 2 and 4 folds CAT mRNA levels compared with the AC/AC diplotype. The present findings indicated that these polymorphisms were significantly associated with the gene expression.

  13. The C(-260)>T gene polymorphism in the promoter of the CD14 monocyte receptor gene is not associated with acute myocardial infarction.

    PubMed

    Longobardo, M T; Cefalù, A B; Pezzino, F; Noto, D; Emmanuele, G; Barbagallo, C M; Fiore, B; Monastero, R; Castello, A; Molini, V; Notarbartolo, A; Travali, S; Averna, M R

    2003-11-01

    CD surface molecules mediates cell activation and signaling. In particular, CD14 on blood monocytes mediate monocyte/macrophage activation by lipopolysaccharide. Lipopolysaccharide and its receptor, CD14, have been implicated in atherogenesis. It has been recently shown that a C(-260)T polymorphism in the promoter of the CD14 receptor may be a risk factor for coronary artery disease. Recently this association has been questioned because no increased risk was found with the T allele, even in the homozygous state. In the present study we investigated a possible association between the C(-260)T polymorphism in the CD14 promoter and acute myocardial infarction. Two hundred and thrteen patients with and acute myocardial infarction 213 healthy controls were included in the study. Genotype frequencies of the C(-260)T polymorphism in the CD14 promoter were determined by polimerase chain reaction and the amplified product was cleaved with HaeIII. The frequency of the T allele was not significantly different in patients compared with controls. In this study we were not able to detect differences of frequency of the allele T (-260) in the promoter of the CD14 receptor gene in survivors of myocardial infarction and controls.

  14. Acquisition of T regulatory function in cathepsin L-inhibited T cells by eye-derived CTLA-2alpha during inflammatory conditions.

    PubMed

    Sugita, Sunao; Horie, Shintaro; Nakamura, Orie; Maruyama, Kazuichi; Takase, Hiroshi; Usui, Yoshihiko; Takeuchi, Masaru; Ishidoh, Kazumi; Koike, Masato; Uchiyama, Yasuo; Peters, Christoph; Yamamoto, Yoshimi; Mochizuki, Manabu

    2009-10-15

    Pigment epithelium isolated from the eye possesses immunosuppressive properties such as regulatory T (Treg) cell induction; e.g., cultured retinal pigment epithelium (RPE) converts CD4(+) T cells into Treg cells in vitro. RPE constitutively expresses a novel immunosuppressive factor, CTLA-2alpha, which is a cathepsin L (CathL) inhibitor, and this molecule acts via RPE to induce Treg cells. To clarify CTLA-2alpha's role in the T cell response to RPE in ocular inflammation, we used the experimental autoimmune uveitis (EAU) animal model to examine this new immunosuppressive property of RPE. In EAU models, TGF-beta, but not IFN-gamma inflammatory cytokines, promotes the up-regulation of the expression of CTLA-2alpha in RPE. Similarly, CTLA-2alpha via RPE was able to promote TGF-beta production by the CD4(+) T cells. The RPE-exposed T cells (RPE-induced Treg cells) greatly produced TGF-beta and suppressed bystander effector T cells. There was less expression of CathL by the RPE-exposed T cells, and CathL-inhibited T cells were able to acquire the Treg phenotype. Moreover, CathL-deficient mice spontaneously produced Treg cells, with the increase in T cells potentially providing protection against ocular inflammation. More importantly, CD4(+) T cells from EAU in CathL knockout mice or rCTLA-2alpha from EAU animals were found to contain a high population of forkhead box p3(+) T cells. In both EAU models, there was significant suppression of the ocular inflammation. These results indicate that RPE secretes CTLA-2alpha, thereby enabling the bystander T cells to be converted into Treg cells via TGF-beta promotion.

  15. Gastrodin stimulates anticancer immune response and represses transplanted H22 hepatic ascitic tumor cell growth: Involvement of NF-κB signaling activation in CD4 + T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Guangwen; Yang, Tianming; Wang, Chaoyuan

    2013-06-15

    Gastrodia elata Blume (G. elata) is a famous restorative food in East Asia. It can be used as an auxiliary reagent in hepatocellular carcinoma (HCC) treatment. Previous studies unveiled that G. elata exhibited immunomodulatory activities. To explore the active ingredients contributing to its immunomodulatory activities, gastrodin, vanillin, and parishin B were purified from G. elata and their anti-HCC effects were assessed in vivo. Among these compounds, only gastrodin was capable of repressing transplanted H22 ascitic hepatic tumor cell growth in vivo with low toxicity. Further investigations were designed to explore the effects of gastrodin on the immune system of tumor-bearingmore » mice and potential molecular mechanisms underlying these effects. Our data showed that gastrodin ameliorated tumor cell transplantation-induced activation of endogenous pro-apoptotic pathway in CD4 + T cells and abnormalities in serum cytokine profiles in host animals. These events enhanced cytotoxic activities of natural killer and CD8 + T cells against H22 hepatic cancer cells. Gastrodin administration specifically upregulated mRNA levels of several nuclear factor κB (NF-κB) responsive genes in CD4 + T cells but not in CD8 + T cells. Chromatin immunoprecipitation assay showed that gastrodin increased the association of NF-κB p65 subunit to the promoter regions of IL-2 and Bcl-2 encoding genes in CD4 + T cells. Our investigations demonstrated that gastrodin is the main active ingredient contributing to the anticancer immunomodulatory properties of G. elata. Promoting NF-κB-mediated gene transcription in CD4 + T cells is implicated in its immunomodulatory activity. - Highlights: • Gastrodin stimulates anticancer immune response. • Gastrodin represses tumor transplantation-induced CD4 + T cell apoptosis. • Gastrodin activates NF-κB activity in CD4 + T cells.« less

  16. SOCS3 Deletion in T-Lymphocytes Suppresses Development of Chronic Ocular Inflammation Via Up-regulation of CTLA-4 and Expansion of Regulatory T cells

    PubMed Central

    Yu, Cheng-Rong; Kim, Sung-Hye; Mahdi, Rashid M.; Egwuagu, Charles E.

    2013-01-01

    Suppressors of cytokine signaling (SOCS) proteins are negative-feedback regulators of JAK/STAT pathway and SOCS3 contributes to host immunity by regulating the intensity/duration of cytokine signals and inflammatory responses. Mice with Socs3 deletion in myeloid cells exhibit enhanced STAT3-signaling, expansion of Th1 and Th17 cells and developed severe experimental autoimmune encephalomyelitis (EAE). Interestingly, development of the unique IL-17/IFN-γ-double producing (Th17/IFN-γ and Tc17/IFN-γ) subsets that exhibit strong cytotoxic activities and associated with pathogenesis of several autoimmune diseases, has recently been shown to depend on epigenetic suppression of SOCS3 expression, further suggesting involvement of SOCS3 in autoimmunity and tumor immunity. In this study, we generated mice with Socs3 deletion in CD4 T cell compartment (CD4-SOCS3KO) to determine in vivo effects of the loss of Socs3 in the T cell-mediated autoimmune disease, experimental autoimmune uveitis (EAU). In contrast to the exacerbation of EAE in myeloid-specific SOCS3-deleted mice, CD4-SOCS3KO mice were protected from acute and chronic uveitis. Protection from EAU correlated with enhanced expression of CTLA4 and expansion of IL-10 producing Tregs with augmented suppressive activities. We further show that SOCS3 interacts with CTLA4 and negatively regulates CTLA4 levels in T cells, providing mechanistic explanation for the expansion of Tregs in CD4-SOCS3 during EAU. Contrary to in vitro epigenetic studies, Th17/IFN-γ and Tc17/IFN-γ populations were markedly reduced in CD4-SOCS3KO, suggesting that SOCS3 promotes expansion of Th17/IFN-γ subset associated with development of severe uveitis. Thus, SOCS3 is a potential therapeutic target in uveitis and other auto-inflammatory diseases. PMID:24101549

  17. Plant-growth promoting Candida sp. AVGB4 with capability of 4-nitroaniline biodegradation under drought stress.

    PubMed

    Silambarasan, Sivagnanam; Vangnai, Alisa S

    2017-05-01

    This study focused on rhizospheric yeast capable of degrading a priority pollutant, 4-nitroaniline (4-NA), under drought stress. Candida sp. AVGB4 (AVGB4) inhabiting in soil was isolated and characterized with plant-growth promoting (PGP) traits. 4-NA-dependent growth kinetic and biodegradation kinetics were analyzed and revealed 4-NA complete degradation and tolerance property. AVGB4 proliferation, PGP activities, and 4-NA degradation activity were well maintained under drought stress induced by PEG-6000 incorporation, and could be strengthened in the presence of succinate, an organic compound generally found in plant root exudates. The in vitro experiments proved that AVGB4 significantly enhanced plant growth and increased the shoot and root biomass of Vigna radiata plant in the absence or presence of 4-NA. The overall results including cytogenotoxicity and phytotoxicity test with legumes indicated that not only AVGB4 was capable of 4-NA detoxification facilitating plants to cope with chemical-toxicity stress, but it also has advantageous role in promoting plant growth and sustainable rhizoremediation of 4-NA contaminated sites. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Sinorhizobium meliloti Phage ΦM9 Defines a New Group of T4 Superfamily Phages with Unusual Genomic Features but a Common T=16 Capsid

    PubMed Central

    Johnson, Matthew C.; Tatum, Kelsey B.; Lynn, Jason S.; Brewer, Tess E.; Lu, Stephen; Washburn, Brian K.

    2015-01-01

    ABSTRACT Relatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of the Sinorhizobium meliloti-infecting T4 superfamily phage ΦM9. This phage and its close relative Rhizobium phage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-like S. meliloti phages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 and S. meliloti phage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide. IMPORTANCE Despite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long

  19. Cooperativity of HIV-Specific Cytolytic CD4 T Cells and CD8 T Cells in Control of HIV Viremia

    PubMed Central

    Johnson, Susan; Eller, Michael; Teigler, Jeffrey E.; Maloveste, Sebastien M.; Schultz, Bruce T.; Soghoian, Damien Z.; Lu, Richard; Oster, Alexander F.; Chenine, Agnès-Laurence; Alter, Galit; Dittmer, Ulf; Marovich, Mary; Robb, Merlin L.; Michael, Nelson L.; Bolton, Diane

    2015-01-01

    ABSTRACT CD4+ T cells play a pivotal role in the control of chronic viral infections. Recently, nontraditional CD4+ T cell functions beyond helper effects have been described, and a role for cytolytic CD4+ T cells in the control of HIV infection has been suggested. We define here the transcriptional, phenotypic, and functional profiles of HIV-specific cytolytic CD4+ T cells. Fluidigm BioMark and multiparameter flow cytometric analysis of HIV-specific cytolytic CD4+ T cells revealed a distinct transcriptional signature compared to Th1 CD4+ cells but shared similar features with HIV-specific cytolytic CD8+ T cells. Furthermore, HIV-specific cytolytic CD4+ T cells showed comparable killing activity relative to HIV-specific CD8+ T cells and worked cooperatively in the elimination of virally infected cells. Interestingly, we found that cytolytic CD4+ T cells emerge early during acute HIV infection and tightly follow acute viral load trajectory. This emergence was associated to the early viral set point, suggesting an involvement in early control, in spite of CD4 T cell susceptibility to HIV infection. Our data suggest cytolytic CD4+ T cells as an independent subset distinct from Th1 cells that show combined activity with CD8+ T cells in the long-term control of HIV infection. IMPORTANCE The ability of the immune system to control chronic HIV infection is of critical interest to both vaccine design and therapeutic approaches. Much research has focused on the effect of the ability of CD8+ T cells to control the virus, while CD4+ T cells have been overlooked as effectors in HIV control due to the fact that they are preferentially infected. We show here that a subset of HIV-specific CD4+ T cells cooperate in the cytolytic control of HIV replication. Moreover, these cells represent a distinct subset of CD4+ T cells showing significant transcriptional and phenotypic differences compared to HIV-specific Th1 cells but with similarities to CD8+ T cells. These findings are

  20. IL-21 Promotes Late Activator APC-Mediated T Follicular Helper Cell Differentiation in Experimental Pulmonary Virus Infection

    PubMed Central

    Yoo, Jae-Kwang; Braciale, Thomas J.

    2014-01-01

    IL-21 is a type-I cytokine that has pleiotropic immuno-modulatory effects. Primarily produced by activated T cells including NKT and TFH cells, IL-21 plays a pivotal role in promoting TFH differentiation through poorly understood cellular and molecular mechanisms. Here, employing a mouse model of influenza A virus (IAV) infection, we demonstrate that IL-21, initially produced by NKT cells, promotes TFH differentiation by promoting the migration of late activator antigen presenting cell (LAPC), a recently identified TFH inducer, from the infected lungs into the draining lymph nodes (dLN). LAPC migration from IAV-infected lung into the dLN is CXCR3-CXCL9 dependent. IL-21-induced TNF-α production by conventional T cells is critical to stimulate CXCL9 expression by DCs in the dLN, which supports LAPC migration into the dLN and ultimately facilitates TFH differentiation. Our results reveal a previously unappreciated mechanism for IL-21 modulation of TFH responses during respiratory virus infection. PMID:25251568

  1. Targeting Janus tyrosine kinase 3 (JAK3) with an inhibitor induces secretion of TGF-β by CD4+ T cells

    PubMed Central

    Cetkovic-Cvrlje, Marina; Olson, Marin; Ghate, Ketaki

    2012-01-01

    Regulatory T cells (Tregs) are critical for the peripheral maintenance of the autoreactive T cells in autoimmune disorders such as type 1 diabetes (T1D). Pharmacological inhibition of Janus tyrosine kinase 3 (JAK3) has been proposed as a basis for new treatment modalities against autoimmunity and allogeneic responses. Targeting JAK3 with an inhibitor has previously been shown to exhibit protective action against the development of T1D in non-obese diabetic (NOD) mice. As the mechanism of such preventative action has been unknown, we hypothesized that JAK3 inhibition induces generation of Tregs. Here, we show that the JAK3 inhibitor 4-(4′-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P131) suppresses proliferation of short-term cultured NOD CD4+ T cells through induction of apoptosis, while promoting survival of a particular population of long-term cultured cells. It was found that the surviving cells were not of the CD4+CD25+FoxP3+ phenotype. They secreted decreased amounts of IL-10, IL-4 and interferon (IFN)-γ compared to the cells not exposed to the optimal concentrations of JAK3 inhibitor. However, an elevated transforming growth factor (TGF)-β secretion was detected in their supernatants. In vivo treatment of prediabetic NOD mice with WHI-P131 did not affect the frequency and number of splenic and pancreatic lymph node CD4+FoxP3+ Tregs, while generating an elevated numbers of CD4+FoxP3− TGF-β-secreting T cells. In conclusion, our data suggest an induction of TGF-β-secreting CD4+ T cells as the underlying mechanism for antidiabetogenic effects obtained by the treatment with a JAK3 inhibitor. To our knowledge, this is the first report of the JAK3 inhibitor activity in the context of the murine Tregs. PMID:22728763

  2. Expansion and productive HIV-1 infection of Foxp3 positive CD4 T cells at pleural sites of HIV/TB co-infection

    PubMed Central

    Hirsch, Christina S; Baseke, Joy; Kafuluma, John Lusiba; Nserko, Mary; Mayanja-Kizza, Harriet; Toossi, Zahra

    2016-01-01

    Background CD4 T-cells expressing Foxp3 are expanded systemically during active tuberculosis (TB) regardless of HIV-1 co-infection. Foxp3+ CD4 T cells are targets of HIV-1 infection. However, expansion of HIV-1 infected Foxp3+ CD4 T cells at sites of HIV/TB co-infection, and whether they contribute to promotion of HIV-1 viral activity is not known. Methods Pleural fluid mononuclear cells (PFMC) from HIV/TB co-infected patients with pleural TB were characterized by immune-staining and FACS analysis for surface markers CD4, CD127, CCR5, CXCR4, HLA-DR and intracellular expression of Foxp3, HIVp24, IFN-γ and Bcl-2. Whole PFMC and bead separated CD4+CD25+CD127− T cells were assessed for HIV-1 LTR strong stop (SS) DNA by real-time PCR, which represents viral DNA post cell entry and initiation of reverse transcription. Results High numbers of HIV-1 p24 positive Foxp3+ and Foxp3+CD127− CD4 T cells were identified in PFMC from HIV/TB co-infected subjects. CD4+Foxp3+CD127− T cells displayed high expression of the cellular activation marker, HLA-DR. Further, expression of the HIV-1 co-receptors, CCR5 and CXCR4, were higher on CD4+Foxp3+T cells compared to CD4+Foxp3− T cells. Purified CD4+CD25+CD127− T cells isolated from PFMC of HIV/TB co-infected patients, were over 90% CD4+Foxp3+T cells, and exhibited higher HIV-1 SS DNA as compared to whole PFMC, and as compared to CD4+CD25+CD127− T cells from an HIV-infected subject with pleural mesothelioma. HIV-1 p24+ Foxp3+ CD4+T cells from HIV/TB patients higher in Bcl-2 expression as compared to both HIV-1 p24+ Foxp3− CD4 T cells, and Foxp3+ CD4+T cells without HIV-p24 expression. Conclusion Foxp3+ CD4 T cells in PFMC from HIV/TB co-infected subjects are predisposed to productive HIV-1 infection and have survival advantage as compared to Foxp3 negative CD4 T cells. PMID:28124031

  3. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    PubMed

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Method to adjust multilayer film stress induced deformation of optics

    DOEpatents

    Spiller, Eberhard A.; Mirkarimi, Paul B.; Montcalm, Claude; Bajt, Sasa; Folta, James A.

    2000-01-01

    Stress compensating systems that reduces/compensates stress in a multilayer without loss in reflectivity, while reducing total film thickness compared to the earlier buffer-layer approach. The stress free multilayer systems contain multilayer systems with two different material combinations of opposite stress, where both systems give good reflectivity at the design wavelengths. The main advantage of the multilayer system design is that stress reduction does not require the deposition of any additional layers, as in the buffer layer approach. If the optical performance of the two systems at the design wavelength differ, the system with the poorer performance is deposited first, and then the system with better performance last, thus forming the top of the multilayer system. The components for the stress reducing layer are chosen among materials that have opposite stress to that of the preferred multilayer reflecting stack and simultaneously have optical constants that allow one to get good reflectivity at the design wavelength. For a wavelength of 13.4 nm, the wavelength presently used for extreme ultraviolet (EUV) lithography, Si and Be have practically the same optical constants, but the Mo/Si multilayer has opposite stress than the Mo/Be multilayer. Multilayer systems of these materials have practically identical reflectivity curves. For example, stress free multilayers can be formed on a substrate using Mo/Be multilayers in the bottom of the stack and Mo/Si multilayers at the top of the stack, with the switch-over point selected to obtain zero stress. In this multilayer system, the switch-over point is at about the half point of the total thickness of the stack, and for the Mo/Be--Mo/Si system, there may be 25 deposition periods Mo/Be to 20 deposition periods Mo/Si.

  5. Cyanidin-3-glucoside suppresses Th2 cytokines and GATA-3 transcription factor in EL-4 T cells.

    PubMed

    Pyo, Myoung Yun; Yoon, Soo Jeong; Yu, Yeonsil; Park, Sunyoung; Jin, Mirim

    2014-01-01

    Allergic disease is dominated by Th2 immune responses. Interleukin (IL)-4 and IL-13, representative Th2 cytokines, play pivotal roles in the pathogenic activation of the Th2 immune response. In this study, we found that cyanidin-3-glucoside chloride (C3G), an anthocyanin suppressed IL-4 and IL-13 produced in activated EL-4 T cells but not Th1 cytokines including IL-2, interferon-γ, or IL-12. IL-4 and IL-13 mRNA levels and luciferase activation in cells transiently transfected with IL-4 and IL-13 promoter reporter plasmids were significantly inhibited by C3G, suggesting that suppression might be, at least in part, regulated at the transcriptional level. Data from western blot and reverse transcription-polymerase chain reaction analyses of transcription factors involved in cytokine expression suggested that expression of GATA-3, but not T-bet, was downregulated in the nucleus by C3G. Taken together, our data indicate that C3G may has potential as an anti-allergic agent suppressing Th2 activation by downregulating Th2 cytokines and the GATA3 transcription factor in allergies.

  6. Heterogeneity of Human CD4(+) T Cells Against Microbes.

    PubMed

    Sallusto, Federica

    2016-05-20

    CD4(+) T helper (Th) cells play a central role in the adaptive immune response by providing help to B cells and cytotoxic T cells and by releasing different types of cytokines in tissues to mediate protection against a wide range of pathogenic microorganisms. These functions are performed by different types of Th cells endowed with distinct migratory capacities and effector functions. Here we discuss how studies of the human T cell response to microbes have advanced our understanding of Th cell functional heterogeneity, in particular with the discovery of a distinct Th1 subset involved in the response to Mycobacteria and the characterization of two types of Th17 cells specific for extracellular bacteria or fungi. We also review new approaches to dissect at the clonal level the human CD4(+) T cell response induced by pathogens or vaccines that have revealed an unexpected degree of intraclonal diversification and propose a progressive and selective model of CD4(+) T cell differentiation.

  7. Selenium deficiency inhibits the conversion of thyroidal thyroxine (T4) to triiodothyronine (T3) in chicken thyroids.

    PubMed

    Lin, Shi-lei; Wang, Cong-wu; Tan, Si-ran; Liang, Yang; Yao, Hai-dong; Zhang, Zi-wei; Xu, Shi-wen

    2014-12-01

    Selenium (Se) influences the metabolism of thyroid hormones in mammals. However, the role of Se deficiency in the regulation of thyroid hormones in chickens is not well known. In the present study, we examined the levels of thyroidal triiodothyronine (T3), thyroidal thyroxine (T4), free triiodothyronine, free thyroxine (FT4), and thyroid-stimulating hormone in the serum and the mRNA expression levels of 25 selenoproteins in chicken thyroids. Then, principal component analysis (PCA) was performed to analyze the relationships between the selenoproteins. The results indicated that Se deficiency influenced the conversion of T4 to T3 and induced the accumulation of T4 and FT4. In addition, the mRNA expression levels of the selenoproteins were generally decreased by Se deficiency. The PCA showed that eight selenoproteins (deiodinase 1 (Dio1), Dio2, Dio3, thioredoxin reductase 2 (Txnrd2), selenoprotein i (Seli), selenoprotein u (Selu), glutathione peroxidase 1 (Gpx1), and Gpx2) have similar trends, which indicated that they may play similar roles in the metabolism of thyroid hormones. The results showed that Se deficiency inhibited the conversion of T4 to T3 and decreased the levels of the crucial metabolic enzymes of the thyroid hormones, Dio1, Dio2, and Dio3, in chickens. In addition, the decreased selenoproteins (Dio1, Dio2, Dio3, Txnrd2, Seli, Selu, Gpx1, and Gpx2) induced by Se deficiency may indirectly limit the conversion of T4 to T3 in chicken thyroids. The information presented in this study is helpful to understand the role of Se in the thyroid function of chickens.

  8. CD8+ memory T-cell inflation renders compromised CD4+ T-cell-dependent CD8+ T-cell immunity via naïve T-cell anergy.

    PubMed

    Xu, Aizhang; Freywald, Andrew; Xie, Yufeng; Li, Zejun; Xiang, Jim

    2017-01-01

    Whether inflation of CD8 + memory T (mT) cells, which is often derived from repeated prime-boost vaccinations or chronic viral infections in the elderly, would affect late CD8 + T-cell immunity is a long-standing paradox. We have previously established an animal model with mT-cell inflation by transferring ConA-stimulated monoclonal CD8 + T cells derived from Ova-specific T-cell-receptor transgenic OTI mice into irradiation-induced lymphopenic B6 mice. In this study, we also established another two animal models with mT-cell inflation by transferring, 1) ConA-stimulated monoclonal CD8 + T cells derived from lymphocytic choriomeningitis virus glycoprotein-specific T-cell-receptor transgenic P14 mice, and 2) ConA-stimulated polyclonal CD8 + T cells derived from B6.1 mice into B6 mice with irradiation-induced lymphopenia. We vaccinated these mice with recombinant Ova-expressing Listeria monocytogenes and Ova-pulsed dendritic cells, which stimulated CD4 + T cell-independent and CD4 + T-cell-dependent CD8 + T-cell responses, respectively, and assessed Ova-specific CD8 + T-cell responses by flow cytometry. We found that Ova-specific CD8 + T-cell responses derived from the latter but not the former vaccination were significantly reduced in mice with CD8 + mT-cell inflation compared to wild-type B6 mice. We determined that naïve CD8 + T cells purified from splenocytes of mice with mT-cell inflation had defects in cell proliferation upon stimulation in vitro and in vivo and upregulated T-cell anergy-associated Itch and GRAIL molecules. Taken together, our data reveal that CD8 + mT-cell inflation renders compromised CD4 + T-cell-dependent CD8 + T-cell immunity via naïve T-cell anergy, and thus show promise for the design of efficient vaccines for elderly patients with CD8 + mT-cell inflation.

  9. Transactivation of the proximal promoter of human oxytocin gene by TR4 orphan receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C.-P.; Lee, Y.-F.; Chang, C.

    2006-12-08

    The human testicular receptor 4 (TR4) shares structural homology with members of the nuclear receptor superfamily. Some other members of this superfamily were able to regulate the transcriptional activity of the human oxytocin (OXT) promoter by binding to the first DR0 regulatory site. However, little investigation was conducted systematically in the study of the second dDR4 site of OXT proximal promoter, and the relationship between the first and the second sites of OXT promoter. Here, we demonstrated for the first time that TR4 could increase the proximal promoter activity of the human OXT gene via DR0, dDR4, and OXT (bothmore » DR0 and dDR4) elements, respectively. TR4 might induce OXT gene expression through the OXT element in a dose-dependent manner. However, there is no synergistic effect between DR0 and dDR4 elements during TR4 transactivation. Taken together, these results suggested that TR4 should be one of important regulators of OXT gene expression.« less

  10. Streptomyces cameroonensis sp. nov., a Geldanamycin Producer That Promotes Theobroma cacao Growth.

    PubMed

    Boudjeko, Thaddée; Tchinda, Romaric Armel Mouafo; Zitouni, Mina; Nana, Joëlle Aimée Vera Tchatchou; Lerat, Sylvain; Beaulieu, Carole

    2017-03-31

    The taxonomy of an actinobacterial strain, designated JJY4 T , was established using a polyphasic approach. JJY4 T was isolated from the rhizosphere of Chromolaena odorata in Yaoundé (Cameroon) during a project for the selection of biological control agents. Strain JJY4 T exhibited antimicrobial activities against bacteria, fungi, and oomycetes. Strain JJY4 T also exhibited the traits of plant growth-promoting rhizobacteria such as the solubilization of inorganic phosphate, production of siderophores and indole-3-acetic acid, and 1-aminocyclopropane-1-carboxylate deaminase activity. In planta assays performed on cocoa plantlets confirmed that strain JJY4 T exhibited strong abilities to promote plant growth and protect against Phytophthora megakarya, the main causal agent of cocoa pod rot. The formation of rugose-ornamented spores in spiral spore chains by strain JJY4 T is a typical feature of members found in the Streptomyces violaceusniger clade and, similar to some members of the clade, strain JJY4 T produces geldanamycin. A phylogenetic analysis based on 16S rRNA gene sequences confirmed this classification and suggests that strain JJY4 T be added to the subclade constituted of the type strains Streptomyces malaysiensis DSM 41697 T and Streptomyces samsunensis DSM 42010 T . However, DNA-DNA relatedness and physiological characteristics allowed for the differentiation of strain JJY4 T from its closest phylogenetic relatives. Based on these results, strain JJY4 T (=NRRL B-65369, =NBRC 112705) appears to represent a novel species in the S. violaceusniger clade for which the proposed name is Streptomyces cameroonensis sp. nov.

  11. Non-canonical NF-κB signalling and ETS1/2 cooperatively drive C250T mutant TERT promoter activation

    PubMed Central

    Li, Yinghui; Zhou, Qi-Ling; Sun, Wenjie; Chandrasekharan, Prashant; Cheng, Hui Shan; Ying, Zhe; Lakshmanan, Manikandan; Raju, Anandhkumar; Tenen, Daniel G.; Cheng, Shi-Yuan; Chuang, Kai-Hsiang; Li, Jun; Prabhakar, Shyam; Li, Mengfeng; Tergaonkar, Vinay

    2016-01-01

    Transcriptional reactivation of TERT, the catalytic subunit of telomerase, is necessary for cancer progression in about 90% of human cancers. The recent discovery of two prevalent somatic mutations—C250T and C228T—in the TERT promoter in various cancers has provided insight into a plausible mechanism of TERT reactivation. Although the two hotspot mutations create a similar binding motif for E-twenty-six (ETS) transcription factors, we show that they are functionally distinct, in that the C250T unlike the C228T TERT promoter is driven by non-canonical NF-κB signalling. We demonstrate that binding of ETS to the mutant TERT promoter is insufficient in driving its transcription but this process requires non-canonical NF-κB signalling for stimulus responsiveness, sustained telomerase activity and hence cancer progression. Our findings highlight a previously unrecognized role of non-canonical NF-κB signalling in tumorigenesis and elucidate a fundamental mechanism for TERT reactivation in cancers, which if targeted could have immense therapeutic implications. PMID:26389665

  12. CD4 T cells play important roles in maintaining IL-17-producing γδ T-cell subsets in naive animals.

    PubMed

    Do, Jeong-Su; Visperas, Anabelle; O'Brien, Rebecca L; Min, Booki

    2012-04-01

    A proportional balance between αβ and γδ T-cell subsets in the periphery is exceedingly well maintained by a homeostatic mechanism. However, a cellular mechanism underlying the regulation remains undefined. We recently reported that a subset of developing γδ T cells spontaneously acquires interleukin (IL)-17-producing capacity even within naive animals through a transforming growth factor (TGF)β1-dependent mechanism, thus considered 'innate' IL-17-producing cells. Here, we report that γδ T cells generated within αβ T cell (or CD4 T cell)-deficient environments displayed altered cytokine profiles; particularly, 'innate' IL-17 expression was significantly impaired compared with those in wild-type mice. Impaired IL-17 production in γδ T cells was directly related to CD4 T-cell deficiency, because depletion of CD4 T cells in wild-type mice diminished and adoptive CD4 T-cell transfer into T-cell receptor β-/- mice restored IL-17 expression in γδ T cells. CD4 T cell-mediated IL-17 expression required TGFβ1. Moreover, Th17 but not Th1 or Th2 effector CD4 T cells were highly efficient in enhancing γδ T-cell IL-17 expression. Taken together, our results highlight a novel CD4 T cell-dependent mechanism that shapes the generation of IL-17+ γδ T cells in naive settings.

  13. IQGAP1 promotes CXCR4 chemokine receptor function and trafficking via EEA-1+ endosomes

    PubMed Central

    Bamidele, Adebowale O.; Kremer, Kimberly N.; Hirsova, Petra; Clift, Ian C.; Gores, Gregory J.; Billadeau, Daniel D.

    2015-01-01

    IQ motif–containing GTPase-activating protein 1 (IQGAP1) is a cytoskeleton-interacting scaffold protein. CXCR4 is a chemokine receptor that binds stromal cell–derived factor-1 (SDF-1; also known as CXCL12). Both IQGAP1 and CXCR4 are overexpressed in cancer cell types, yet it was unclear whether these molecules functionally interact. Here, we show that depleting IQGAP1 in Jurkat T leukemic cells reduced CXCR4 expression, disrupted trafficking of endocytosed CXCR4 via EEA-1+ endosomes, and decreased efficiency of CXCR4 recycling. SDF-1–induced cell migration and activation of extracellular signal-regulated kinases 1 and 2 (ERK) MAPK were strongly inhibited, even when forced overexpression restored CXCR4 levels. Similar results were seen in KMBC and HEK293 cells. Exploring the mechanism, we found that SDF-1 treatment induced IQGAP1 binding to α-tubulin and localization to CXCR4-containing endosomes and that CXCR4-containing EEA-1+ endosomes were abnormally located distal from the microtubule (MT)-organizing center (MTOC) in IQGAP1-deficient cells. Thus, IQGAP1 critically mediates CXCR4 cell surface expression and signaling, evidently by regulating EEA-1+ endosome interactions with MTs during CXCR4 trafficking and recycling. IQGAP1 may similarly promote CXCR4 functions in other cancer cell types. PMID:26195666

  14. Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta.

    PubMed

    Liu, Victoria C; Wong, Larry Y; Jang, Thomas; Shah, Ali H; Park, Irwin; Yang, Ximing; Zhang, Qiang; Lonning, Scott; Teicher, Beverly A; Lee, Chung

    2007-03-01

    CD4+CD25+ T regulatory (T(reg)) cells were initially described for their ability to suppress autoimmune diseases in animal models. An emerging interest is the potential role of T(reg) cells in cancer development and progression because they have been shown to suppress antitumor immunity. In this study, CD4+CD25- T cells cultured in conditioned medium (CM) derived from tumor cells, RENCA or TRAMP-C2, possess similar characteristics as those of naturally occurring T(reg) cells, including expression of Foxp3, a crucial transcription factor of T(reg) cells, production of low levels of IL-2, high levels of IL-10 and TGF-beta, and the ability to suppress CD4+CD25- T cell proliferation. Further investigation revealed a critical role of tumor-derived TGF-beta in converting CD4+CD25- T cells into T(reg) cells because a neutralizing Ab against TGF-beta, 1D11, completely abrogated the induction of T(reg) cells. CM from a nontumorigenic cell line, NRP-152, or irradiated tumor cells did not convert CD4+CD25- T cells to T(reg) cells because they produce low levels of TGF-beta in CM. Finally, we observed a reduced tumor burden in animals receiving 1D11. The reduction in tumor burden correlated with a decrease in tumor-derived TGF-beta. Treatment of 1D11 also reduced the conversion of CD4+ T cells into T(reg) cells and subsequent T(reg) cell-mediated suppression of antitumor immunity. In summary, we have demonstrated that tumor cells directly convert CD4+CD25- T cells to T(reg) cells through production of high levels of TGF-beta, suggesting a possible mechanism through which tumor cells evade the immune system.

  15. Blimp-1–mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis

    PubMed Central

    Cobb, Dustin A.; Bhadra, Rajarshi

    2016-01-01

    CD8, but not CD4, T cells are considered critical for control of chronic toxoplasmosis. Although CD8 exhaustion has been previously reported in Toxoplasma encephalitis (TE)–susceptible model, our current work demonstrates that CD4 not only become exhausted during chronic toxoplasmosis but this dysfunction is more pronounced than CD8 T cells. Exhausted CD4 population expressed elevated levels of multiple inhibitory receptors concomitant with the reduced functionality and up-regulation of Blimp-1, a transcription factor. Our data demonstrates for the first time that Blimp-1 is a critical regulator for CD4 T cell exhaustion especially in the CD4 central memory cell subset. Using a tamoxifen-dependent conditional Blimp-1 knockout mixed bone marrow chimera as well as an adoptive transfer approach, we show that CD4 T cell–intrinsic deletion of Blimp-1 reversed CD8 T cell dysfunction and resulted in improved pathogen control. To the best of our knowledge, this is a novel finding, which demonstrates the role of Blimp-1 as a critical regulator of CD4 dysfunction and links it to the CD8 T cell dysfunctionality observed in infected mice. The critical role of CD4-intrinsic Blimp-1 expression in mediating CD4 and CD8 T cell exhaustion may provide a rational basis for designing novel therapeutic approaches. PMID:27481131

  16. TLR4 ligands lipopolysaccharide and monophosphoryl lipid a differentially regulate effector and memory CD8+ T Cell differentiation.

    PubMed

    Cui, Weiguo; Joshi, Nikhil S; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M

    2014-05-01

    Vaccines formulated with nonreplicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in Ab production has been well studied, but how they influence memory CD8(+) T cell differentiation remains poorly defined. In this study we implemented dendritic cell-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8(+) T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8(+) T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8(+) T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8(+) T cells, but it also promoted their terminal differentiation and contraction; thus, fewer memory CD8(+) T cells formed, and MPLA-primed animals were less protected against secondary infection compared with those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8(+) T cells. Lastly, we demonstrated that the LPS-TLR4-derived "pro-memory" signals were MyD88, but not Toll/IL-1R domain-containing adapter inducing IFN-β, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8(+) T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection.

  17. Cutting Edge: 2B4-Mediated Coinhibition of CD4+ T Cells Underlies Mortality in Experimental Sepsis.

    PubMed

    Chen, Ching-Wen; Mittal, Rohit; Klingensmith, Nathan J; Burd, Eileen M; Terhorst, Cox; Martin, Greg S; Coopersmith, Craig M; Ford, Mandy L

    2017-09-15

    Sepsis is a leading cause of death in the United States, but the mechanisms underlying sepsis-induced immune dysregulation remain poorly understood. 2B4 (CD244, SLAM4) is a cosignaling molecule expressed predominantly on NK cells and memory CD8 + T cells that has been shown to regulate T cell function in models of viral infection and autoimmunity. In this article, we show that 2B4 signaling mediates sepsis lymphocyte dysfunction and mortality. 2B4 expression is increased on CD4 + T cells in septic animals and human patients at early time points. Importantly, genetic loss or pharmacologic inhibition of 2B4 significantly increased survival in a murine cecal ligation and puncture model. Further, CD4-specific conditional knockouts showed that 2B4 functions on CD4 + T cell populations in a cell-intrinsic manner and modulates adaptive and innate immune responses during sepsis. Our results illuminate a novel role for 2B4 coinhibitory signaling on CD4 + T cells in mediating immune dysregulation. Copyright © 2017 by The American Association of Immunologists, Inc.

  18. Comparative effect of Citrus sinensis and carbimazole on serum T4, T3 and TSH levels.

    PubMed

    Uduak, Okon Akpan; Ani, Elemi John; Etoh, Emmauel Columba Inyang; Macstephen, Adienbo Ologbagno

    2014-05-01

    There are previous independent reports on the anti-thyroid property of Citrus sinensis. This isoflavones and phenolic acid-rich natural agent is widely consumed as dietary supplement, thus the need to investigate its comparative effect with a standard anti-thyroid drug on T4, T3 and thyroid stimulating hormone (TSH) levels. To compare the effect of Citrus sinensis and carbimazole (CARB) on blood levels of thyroid hormones (T4 and T3) and TSH. Male wistar albino rats weighing 100-150 g were employed in this research. The rats were randomly assigned to four groups of seven rats per group. Group I served as control and were administered distilled water while groups II-IV were administered with 1500 mg/kg of Citrus sinensis (fresh orange juice; FOJ), 0.1 μg/g of levothyroxine (LVT) and 0.01 mg/g of CARB, respectively, per oral once daily for 28 days. The animals were sacrificed under chloroform anaesthesia and blood sample collected by cardiac puncture and processed by standard method to obtain serum. TSH, T4 and T3 were assayed with the serum using ARIA II automated radioimmunoassay instrument. The results showed that TSH level was significantly (P < 0.05) decreased in LVT treated group compared with the FOJ group. T4 was significantly (P < 0.05) decreased in the FOJ and CARB groups compared with the control and LVT groups. LVT significantly increased T4 when compared with FOJ group. T3 was significantly (P < 0.05) decreased in the CARB group compared with the control. These findings suggest that FOJ alters thyroid hormones metabolism to reduce their serum levels with a compensatory elevations of TSH level in a direction similar to CARB.

  19. Comparative effect of Citrus sinensis and carbimazole on serum T4, T3 and TSH levels

    PubMed Central

    Uduak, Okon Akpan; Ani, Elemi John; Etoh, Emmauel Columba Inyang; Macstephen, Adienbo Ologbagno

    2014-01-01

    Background: There are previous independent reports on the anti-thyroid property of Citrus sinensis. This isoflavones and phenolic acid-rich natural agent is widely consumed as dietary supplement, thus the need to investigate its comparative effect with a standard anti-thyroid drug on T4, T3 and thyroid stimulating hormone (TSH) levels. Objective: To compare the effect of Citrus sinensis and carbimazole (CARB) on blood levels of thyroid hormones (T4 and T3) and TSH. Materials and Methods: Male wistar albino rats weighing 100-150 g were employed in this research. The rats were randomly assigned to four groups of seven rats per group. Group I served as control and were administered distilled water while groups II-IV were administered with 1500 mg/kg of Citrus sinensis (fresh orange juice; FOJ), 0.1 μg/g of levothyroxine (LVT) and 0.01 mg/g of CARB, respectively, per oral once daily for 28 days. The animals were sacrificed under chloroform anaesthesia and blood sample collected by cardiac puncture and processed by standard method to obtain serum. TSH, T4 and T3 were assayed with the serum using ARIA II automated radioimmunoassay instrument. Results: The results showed that TSH level was significantly (P < 0.05) decreased in LVT treated group compared with the FOJ group. T4 was significantly (P < 0.05) decreased in the FOJ and CARB groups compared with the control and LVT groups. LVT significantly increased T4 when compared with FOJ group. T3 was significantly (P < 0.05) decreased in the CARB group compared with the control. Conclusion: These findings suggest that FOJ alters thyroid hormones metabolism to reduce their serum levels with a compensatory elevations of TSH level in a direction similar to CARB. PMID:25013255

  20. Different competitive capacities of Stat4- and Stat6-deficient CD4+ T cells during lymphophenia-driven proliferation.

    PubMed

    Sanchez-Guajardo, Vanesa; Borghans, José A M; Marquez, Maria-Elena; Garcia, Sylvie; Freitas, Antonio A

    2005-02-01

    The outcome of an immune response relies on the competitive capacities acquired through differentiation of CD4(+) T cells into Th1 or Th2 effector cells. Because Stat4 and Stat6 proteins are implicated in the Th1 vs Th2 generation and maintenance, respectively, we compare in this study the kinetics of Stat4(-/-) and Stat6(-/-) CD4(+) T cells during competitive bone marrow reconstitution and lymphopenia-driven proliferation. After bone marrow transplantation, both populations reconstitute the peripheral T cell pools equally well. After transfer into lymphopenic hosts, wild-type and Stat6(-/-) CD4(+) T cells show a proliferation advantage, which is early associated with the expression of an active phospho-Stat4 and the down-regulation of Stat6. Despite these differences, Stat4- and Stat6-deficient T cells reach similar steady state numbers. However, when both Stat4(-/-) and Stat6(-/-) CD4(+) T cells are coinjected into the same hosts, the Stat6(-/-) cells become dominant and out-compete Stat4(-/-) cells. These findings suggest that cell activation, through the Stat4 pathway and the down-regulation of Stat6, confers to pro-Th1 T cells a slight proliferation advantage that in a competitive situation has major late repercussions, because it modifies the final homeostatic equilibrium of the populations and favors the establishment of Th1 CD4(+) T cell dominance.

  1. CP-25 attenuates the inflammatory response of fibroblast-like synoviocytes co-cultured with BAFF-activated CD4(+) T cells.

    PubMed

    Jia, Xiaoyi; Wei, Fang; Sun, Xiaojing; Chang, Yan; Xu, Shu; Yang, Xuezhi; Wang, Chun; Wei, Wei

    2016-08-02

    Total glucosides of paeony (TGP) is the first anti-inflammatory immune regulatory drug approved for the treatment of rheumatoid arthritis in China. A novel compound, paeoniflorin-6'-O-benzene sulfonate (code CP-25), comes from the structural modification of paeoniflorin (Pae), which is the effective active ingredient of TGP. The aim of the present study is to investigate the effect of CP-25 on adjuvant arthritis (AA) fibroblast-like synoviocytes (FLS) co-cultured with BAFF-activated CD4(+) T cells and the expression of BAFF-R in CD4(+) T cells. The mRNA expression of BAFF and its receptors was assessed by qPCR. The expression of BAFF receptors in CD4(+) T cells was analyzed by flow cytometry. The effect of CP-25 on AA rats was evaluated by their joint histopathology. The cell culture growth of thymocytes and FLS was detected by cell counting kit (CCK-8). The concentrations of IL-1β, TNF-α, and IL-6 were measured by Enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of BAFF and BAFF-R were enhanced in the mesenteric lymph nodes of AA rats, TACI expression was reduced, and BCMA had no change. The expression of BAFF-R in CD4(+) T cells was also enhanced. CP-25 alleviated the joint histopathology and decreased the expression of BAFF-R in CD4(+) T cells from AA rats in vivo. In vitro, CP-25 inhibited the abnormal cell culture growth of BAFF-stimulated thymocytes and FLS. In the co-culture system, IL-1β, IL-6 and TNF-α production was enhanced by FLS co-cultured with BAFF-activated CD4(+) T cells. Moreover, BAFF-stimulated CD4(+) T cells promoted the cell culture growth of FLS. The addition of CP-25 decreased the expression of BAFF-R in CD4(+) T cells and inhibited the cell culture growth and cytokine secretion ability of FLS co-cultured with BAFF-activated CD4(+) T cells. The present study indicates that CP-25 may repress the cell culture growth and cytokine secretion ability of FLS, and its inhibitory effects might be associated with its ability

  2. CD4+ CD25+ Regulatory T Cells Impair HIV-1-Specific CD4 T Cell Responses by Upregulating Interleukin-10 Production in Monocytes

    PubMed Central

    Kwon, Douglas S.; Angin, Mathieu; Hongo, Tomoyuki; Law, Kenneth M.; Johnson, Jessica; Porichis, Filippos; Hart, Meghan G.; Pavlik, David F.; Tighe, Daniel P.; Kavanagh, Daniel G.; Streeck, Hendrik; Addo, Marylyn M.

    2012-01-01

    T cell dysfunction in the presence of ongoing antigen exposure is a cardinal feature of chronic viral infections with persistent high viremia, including HIV-1. Although interleukin-10 (IL-10) has been implicated as an important mediator of this T cell dysfunction, the regulation of IL-10 production in chronic HIV-1 infection remains poorly understood. We demonstrated that IL-10 is elevated in the plasma of individuals with chronic HIV-1 infection and that blockade of IL-10 signaling results in a restoration of HIV-1-specific CD4 T cell proliferation, gamma interferon (IFN-γ) secretion, and, to a lesser extent, IL-2 production. Whereas IL-10 blockade leads to restoration of IFN-γ secretion by HIV-1-specific CD4 T cells in all categories of subjects investigated, significant enhancement of IL-2 production and improved proliferation of CD4 T helper cells are restricted to viremic individuals. In peripheral blood mononuclear cells (PBMCs), this IL-10 is produced primarily by CD14+ monocytes, but its production is tightly controlled by regulatory T cells (Tregs), which produce little IL-10 directly. When Tregs are depleted from PBMCs of viremic individuals, the effect of the IL-10 signaling blockade is abolished and IL-10 production by monocytes decreases, while the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), increases. The regulation of IL-10 by Tregs appears to be mediated primarily by contact or paracrine-dependent mechanisms which involve IL-27. This work describes a novel mechanism by which regulatory T cells control IL-10 production and contribute to dysfunctional HIV-1-specific CD4 T cell help in chronic HIV-1 infection and provides a unique mechanistic insight into the role of regulatory T cells in immune exhaustion. PMID:22496237

  3. Influence of PAI-1 gene promoter-675 (4G/5G) polymorphism on fibrinolytic activity after cardiac surgery employing cardiopulmonary bypass.

    PubMed

    Ozolina, Agnese; Strike, Eva; Jaunalksne, Inta; Serova, Jelena; Romanova, Tatjana; Zake, Liene Nikitina; Sabelnikovs, Olegs; Vanags, Indulis

    2012-01-01

    The plasminogen activator inhibitor type-1 (PAI-1) gene promoter contains 675 (4G/5G) polymorphism. The aim of this study was evaluate the effect of the PAI-1 promoter-675 (4G/5G) polymorphism on the concentrations of PAI-1 and tissue plasminogen activator/PAI-1 (t-PA/PAI-1) complex and bleeding volume after on-pump cardiac surgery. A total of 90 patients were included in the study at Pauls Stradins Clinical University Hospital. Seven patients were excluded due to surgical bleeding. Eighty-three patients were classified according to the PAI-1 genotype: 21 patients had the 4G/4G genotype; 42, the 4G/5G genotype; and 20, the 5G/5G genotype. The following fibrinolysis parameters were recorded: the PAI-1 level preoperatively, D-dimer level at 0, 6, and 24 hours after surgery, and t-PA/PAI-1 complex level 24 hours postoperatively. A postoperative bleeding volume was registered in mL 24 hours after surgery. The patients with the 5G/5G genotype had significantly lower preoperative PAI-1 levels (17 [SD, 10.8] vs. 24 ng/mL [SD, 9.6], P=0.04), higher D-dimer levels at 6 hours (371 [SD, 226] vs. 232 ng/mL [SD, 185], P=0.03) and 24 hours (326 [SD, 207] vs. 209 ng/mL [SD, 160], P=0.04), and greater postoperative blood loss (568 [SD, 192] vs. 432 mL [168], P=0.02) compared with the 4G/4G carriers. There were no significant differences in the levels of the t-PA/PAI-1 complex comparing different genotype groups. The carriers of the 5G/5G genotype showed the lower preoperative PAI-1 levels, greater chest tube blood loss, and higher D-dimer levels indicating that the 5G/5G carriers may have enhanced fibrinolysis.

  4. Microstructure Evolution during Dissimilar Friction Stir Welding of AA7003-T4 and AA6060-T4.

    PubMed

    Dong, Jialiang; Zhang, Datong; Zhang, Weiwen; Zhang, Wen; Qiu, Cheng

    2018-02-27

    In this work, the dissimilar joint of AA7003-T4 and 6060-T4 alloy has been produced by friction stir welding (FSW). The microstructure was examined by optical microscope (OM), electron back scattered diffraction (EBSD), transmission electron microscopy (TEM), and the mechanical properties of the joint were investigated. It is demonstrated that sound dissimilar joint can be produced through FSW. In the nugget; precipitations dissolve into the matrix and η' reprecipitate subsequently; and the elongated aluminum grains are replaced by fine and equiaxed grains due to dynamic recrystallization (DRX). In the heat affected zone (HAZ), coarse β' and η precipitates are formed and the aluminum grains are coarser as compared to the base materials. In the thermo-mechanical affected zone (TMAZ), equiaxed and elongated grains coexist due to incomplete DRX. The ultimate tensile strength of the dissimilar joint is 159.2 MPa and its elongation is 10.4%. The weak area exists in the HAZ of 6060 alloy, which is placed in the retreating side during FSW. The correlations between the microstucture and mechanical properties of the dissimilar joint are discussed.

  5. Activation pathways of synovial T lymphocytes. Expression and function of the UM4D4/CDw60 antigen.

    PubMed Central

    Fox, D A; Millard, J A; Kan, L; Zeldes, W S; Davis, W; Higgs, J; Emmrich, F; Kinne, R W

    1990-01-01

    Accumulating evidence implicates a central role for synovial T cells in the pathogenesis of rheumatoid arthritis, but the activation pathways that drive proliferation and effector function of these cells are not known. We have recently generated a novel monoclonal antibody against a rheumatoid synovial T cell line that recognizes an antigen termed UM4D4 (CDw60). This antigen is expressed on a minority of peripheral blood T cells, and represents the surface component of a distinct pathway of human T cell activation. The current studies were performed to examine the expression and function of UM4D4 on T cells obtained from synovial fluid and synovial membranes of patients with rheumatoid arthritis and other forms of inflammatory joint disease. The UM4D4 antigen is expressed at high surface density on about three-fourths of synovial fluid T cells and on a small subset of synovial fluid natural killer cells; in synovial tissue it is present on more than 90% of T cells in lymphoid aggregates, and on approximately 50% of T cells in stromal infiltrates In addition, UM4D4 is expressed in synovial tissue on a previously undescribed population of HLA-DR/DP-negative non-T cells with a dendritic morphology. Anti-UM4D4 was co-mitogenic for both RA and non-RA synovial fluid mononuclear cells, and induced IL-2 receptor expression. The UM4D4/CDw60 antigen may represent a functional activation pathway for synovial compartment T cells, which could play an important role in the pathogenesis of inflammatory arthritis. Images PMID:2212003

  6. Role of T-bet, the master regulator of Th1 cells, in the cytotoxicity of murine CD4+ T cells.

    PubMed

    Eshima, Koji; Misawa, Kana; Ohashi, Chihiro; Iwabuchi, Kazuya

    2018-05-01

    Although CD4 + T cells are generally regarded as helper T cells, some activated CD4 + T cells have cytotoxic properties. Given that CD4 + cytotoxic T lymphocytes (CTLs) often secrete IFN-γ, CTL activity among CD4 + T cells may be attributable to Th1 cells, where a T-box family molecule, T-bet serves as the "master regulator". However, although the essential contribution of T-bet to expression of IFN-γ has been well-documented, it remains unclear whether T-bet is involved in CD4 + T cell-mediated cytotoxicity. In this study, to investigate the ability of T-bet to confer cytolytic activity on CD4 + T cells, the T-bet gene (Tbx21) was introduced into non-cytocidal CD4 + T cell lines and their cytolytic function analyzed. Up-regulation of FasL (CD178), which provided the transfectant with cytotoxicity, was observed in Tbx21transfected CD4 + T cells but not in untransfected parental cells. In one cell line, T-bet transduction also induced perforin gene (Prf1) expression and Tbx21 transfectants efficiently killed Fas - target cells. Although T-bet was found to repress up-regulation of CD40L (CD154), which controls FasL-mediated cytolysis, the extent of CD40L up-regulation on in vitro-differentiated Th1 cells was similar to that on Th2 cells, suggesting the existence of a compensatory mechanism. These results collectively indicate that T-bet may be involved in the expression of genes, such as FasL and Prf1, which confer cytotoxicity on Th1 cells. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  7. Characterization and isolation of a T-DNA tagged banana promoter active during in vitro culture and low temperature stress.

    PubMed

    Santos, Efrén; Remy, Serge; Thiry, Els; Windelinckx, Saskia; Swennen, Rony; Sági, László

    2009-06-24

    Next-generation transgenic plants will require a more precise regulation of transgene expression, preferably under the control of native promoters. A genome-wide T-DNA tagging strategy was therefore performed for the identification and characterization of novel banana promoters. Embryogenic cell suspensions of a plantain-type banana were transformed with a promoterless, codon-optimized luciferase (luc+) gene and low temperature-responsive luciferase activation was monitored in real time. Around 16,000 transgenic cell colonies were screened for baseline luciferase activity at room temperature 2 months after transformation. After discarding positive colonies, cultures were re-screened in real-time at 26 degrees C followed by a gradual decrease to 8 degrees C. The baseline activation frequency was 0.98%, while the frequency of low temperature-responsive luciferase activity was 0.61% in the same population of cell cultures. Transgenic colonies with luciferase activity responsive to low temperature were regenerated to plantlets and luciferase expression patterns monitored during different regeneration stages. Twenty four banana DNA sequences flanking the right T-DNA borders in seven independent lines were cloned via PCR walking. RT-PCR analysis in one line containing five inserts allowed the identification of the sequence that had activated luciferase expression under low temperature stress in a developmentally regulated manner. This activating sequence was fused to the uidA reporter gene and back-transformed into a commercial dessert banana cultivar, in which its original expression pattern was confirmed. This promoter tagging and real-time screening platform proved valuable for the identification of novel promoters and genes in banana and for monitoring expression patterns throughout in vitro development and low temperature treatment. Combination of PCR walking techniques was efficient for the isolation of candidate promoters even in a multicopy T-DNA line

  8. In Vivo Selection of CD4+ T Cells Transduced with a Gamma-Retroviral Vector Expressing a Single-Chain Intrabody Targeting HIV-1 Tat

    PubMed Central

    Braun, Stephen E.; Taube, Ran; Zhu, Quan; Wong, Fay Eng; Murakami, Akikazu; Kamau, Erick; Dwyer, Markryan; Qiu, Gang; Daigle, Janet; Carville, Angela; Johnson, R. Paul

    2012-01-01

    Abstract We evaluated the potential of an anti–human immunodeficiency virus (HIV) Tat intrabody (intracellular antibody) to promote the survival of CD4+ cells after chimeric simian immunodeficiency virus (SIV)/HIV (SHIV) infection in rhesus macaques. Following optimization of stimulation and transduction conditions, purified CD4+ T cells were transduced with GaLV-pseudotyped retroviral vectors expressing either an anti-HIV-1 Tat or a control single-chain intrabody. Ex vivo intrabody-gene marking was highly efficient, averaging four copies per CD4+ cell. Upon reinfusion of engineered autologous CD4+ cells into two macaques, high levels of gene marking (peak of 0.6% and 6.8% of peripheral blood mononuclear cells (PBMCs) and 0.3% or 2.2% of the lymph node cells) were detected in vivo. One week post cell infusion, animals were challenged with SHIV 89.6p and the ability of the anti-HIV Tat intrabody to promote cell survival was evaluated. The frequency of genetically modified CD4+ T cells progressively decreased, concurrent with loss of CD4+ cells and elevated viral loads in both animals. However, CD4+ T cells expressing the therapeutic anti-Tat intrabody exhibited a relative survival advantage over an 8- and 21-week period compared with CD4+ cells expressing a control intrabody. In one animal, this survival benefit of anti-Tat transduced cells was associated with a reduction in viral load. Overall, these results indicate that a retrovirus-mediated anti-Tat intrabody provided significant levels of gene marking in PBMCs and peripheral tissues and increased relative survival of transduced cells in vivo. PMID:22734618

  9. Epidermal Cadm1 expression promotes autoimmune alopecia via enhanced T cell adhesion and cytotoxicity.

    PubMed

    Giangreco, Adam; Hoste, Esther; Takai, Yoshimi; Rosewell, Ian; Watt, Fiona M

    2012-02-01

    Autoimmune alopecia is characterized by an extensive epidermal T cell infiltrate that mediates hair follicle destruction. We have investigated the role of cell adhesion molecule 1 (Cadm1; Necl2) in this disease. Cadm1 is expressed by epidermal cells and mediates heterotypic adhesion to lymphocytes expressing class 1-restricted T cell-associated molecule (CRTAM). Using a murine autoimmune alopecia model, we observed an increase in early-activated cytotoxic (CD8-restricted, CRTAM-expressing) T cells, which preferentially associated with hair follicle keratinocytes expressing Cadm1. Coculture with Cadm1-transduced MHC-matched APCs stimulated alopecic lymph node cells to release IL-2 and IFN-γ. Overexpression of Cadm1 in cultured human keratinocytes did not promote cytokine secretion, but led to increased adhesion of alopecic cytotoxic T cells and enhanced T cell cytotoxicity in an MHC-independent manner. Epidermal overexpression of Cadm1 in transgenic mice led to increased autoimmune alopecia susceptibility relative to nontransgenic littermate controls. Our findings reveal that Cadm1 expression in the hair follicle plays a role in autoimmune alopecia.

  10. Th40 cells (CD4+CD40+ Tcells) drive a more severe form of Experimental Autoimmune Encephalomyelitis than conventional CD4 T cells

    PubMed Central

    Vaitaitis, Gisela M.; Yussman, Martin G.; Waid, Dan M.; Wagner, David H.

    2017-01-01

    CD40-CD154 interaction is critically involved in autoimmune diseases, and CD4 T cells play a dominant role in the Experimental Autoimmune Encephalomyelitis (EAE) model of Multiple Sclerosis (MS). CD4 T cells expressing CD40 (Th40) are pathogenic in type I diabetes but have not been evaluated in EAE. We demonstrate here that Th40 cells drive a rapid, more severe EAE disease course than conventional CD4 T cells. Adoptively transferred Th40 cells are present in lesions in the CNS and are associated with wide spread demyelination. Primary Th40 cells from EAE-induced donors adoptively transfer EAE without further in-vitro expansion and without requiring the administration of the EAE induction regimen to the recipient animals. This has not been accomplished with primary, non-TCR-transgenic donor cells previously. If co-injection of Th40 donor cells with Freund’s adjuvant (CFA) in the recipient animals is done, the disease course is more severe. The CFA component of the EAE induction regimen causes generalized inflammation, promoting expansion of Th40 cells and infiltration of the CNS, while MOG-antigen shapes the antigen-specific TCR repertoire. Those events are both necessary to precipitate disease. In MS, viral infections or trauma may induce generalized inflammation in susceptible individuals with subsequent disease onset. It will be important to further understand the events leading up to disease onset and to elucidate the contributions of the Th40 T cell subset. Also, evaluating Th40 levels as predictors of disease onset would be highly useful because if either the generalized inflammation event or the TCR-honing can be interrupted, disease onset may be prevented. PMID:28192476

  11. Synthesis and characterization of T[Ni(CN){sub 4}].2pyz with T=Fe, Ni; pyz=pyrazine: Formation of T-pyz-Ni bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemus-Santana, A.A.; Rodriguez-Hernandez, J.; Institute of Materials Science and Technology, University of Havana

    2011-08-15

    The formation of T-pyz-Ni bridges (pyz=pyrazine) in the T[Ni(CN){sub 4}].2pyz series is known for T=Mn, Zn, Cd and Co but not with T=Fe, Ni. In this contribution the existence of such bridges also for T=Fe, Ni is discussed. The obtained pillared solids, T[Ni(CN){sub 4}].2pyz, were characterized from XRD, TG, UV-Vis, IR, Raman, Moessbauer and magnetic data. Their crystal structures were refined in the orthorhombic Pmna space group from XRD powder patterns. The structural behavior of these solids on cooling down to 77 K was also studied. In the 180-200 K temperature range the occurrence of a structural transition to amore » monoclinic structure (P2{sub 1}/c space group) was observed. No temperature induced spin transition was observed for Fe[Ni(CN){sub 4}].2pyz. The iron (II) was found to be in high spin electronic state and this configuration is preserved on cooling down to 2 K. The magnetic data indicate the occurrence of a low temperature weak anti-ferromagnetic interaction between T metal centers within the T[Ni(CN){sub 4}] layer. In the paramagnetic region for Ni[Ni(CN){sub 4}].2pyz, a reversible temperature induced spin transition for the inner Ni atom was detected. - Graphical abstract: Rippled sheets structure for the pillared solids T[Ni(CN){sub 4}].2pyz. The pyrazine molecule is found forming T-pyz-Ni bridges between neighboring layers. Highlights: > Pillared 2D solids. > Inorganic-organic solids. > Assembling of molecular blocks. > From 1D and 2D building blocks to 3D solids.« less

  12. A novel formulation of L-thyroxine (L-T4) reduces the problem of L-T4 malabsorption by coffee observed with traditional tablet formulations.

    PubMed

    Vita, Roberto; Saraceno, Giovanna; Trimarchi, Francesco; Benvenga, Salvatore

    2013-02-01

    The purpose of this work is to evaluate if the coffee-associated malabsorption of tablet levothyroxine (L-T4) is reduced by soft gel capsule. We recruited 8 patients with coffee-associated L-T4 malabsorption including one hypothyroid patient. For 6 months, the patients were switched to the capsule maintaining the L-T4 daily dose. Patients took the capsule with water, having coffee 1 h later (proper habit, PH) on days 1-90, or with coffee ≤ 5 min later (improper habit, IH) on days 91-180. After 6 months, 2 patients volunteered for an acute loading test of 600 μg L-T4 (capsule) ingested with water (PH) or with coffee (IH). In the single hypothyroid patient, the post-switch TSH ranged 0.06-0.16 mU/L (PH) versus 5.8-22.4 mU/L pre-switch (PH) and 0.025-0.29 mU/L (IH) versus 26-34 mU/L pre-switch (IH). In the other 7 patients, post-switch TSH was 0.41 ± 0.46 (PH) versus 0.28 ± 0.20 pre-switch (PH) (P = 0.61) and 0.34 ± 0.30 (IH) versus 1.23 ± 1.47 pre-switch (IH) (P < 0.001). Importantly, TSH levels in PH versus IH habit did not differ post-switch (P = 0.90), but they did pre-switch (P < 0.0001). The proportions of post-switch TSH levels <0.10 mU/L with PH (33.3 %) or with IH (33.3 %) were borderline significantly greater than the corresponding pre-switch levels with PH (10.3 %) (P = 0.088) or with IH (0 %) (P = 0.0096). In the two volunteers, the L-T4 loading test showed that coffee influenced L-T4 pharmacokinetics minimally. Soft gel capsules can be used in patients who are unable/unwilling to change their IH of taking L-T4.

  13. Critical role of γ4 chain in the expression of functional Vγ4Vδ1 T cell receptor of gastric tumour-infiltrating γδT lymphocytes.

    PubMed

    Jiang, Y; Tang, F; Li, Z; Cui, L; He, W

    2012-01-01

    4Vδ1 T cell receptor (TCRγ4δ1)-expressing γδT cells were the most dominant subset in gastric tumour-infiltrating γδT cells (γδTIL) we recently analyzed. To study the essential roles of γ and δ chains in assembly and function of TCRγ4δ1, we sequenced and constructed them into lentiviral vectors for the reconstitution of TCRγ4δ1 using different modalities of transduction. We were able to efficiently reconstitute TCRγ4δ1 with functional activities when both γ4 and δ1 chains are coexpressed in TCR-negative J.RT3-T3.5 cells. However, the expression of δ1 chain is greatly diminished when γ4 expression is absent, suggesting that the coexpressing γ4 is critical in maintaining the folding and stability of δ1 product. To functionally study the reconstituted TCRγ4δ1, we examined the cytolytic activity of TCRγ4δ1-reconstituted J.RT3-T3.5 cells and cytokine secretion and found the receptors are fully functional, but their functionality also requires the presence of γ4. Our results demonstrated that γ4 is critical for the stability of δ1 and the function of TCRγ4δ1. © 2011 The Authors. Scandinavian Journal of Immunology © 2011 Blackwell Publishing Ltd.

  14. Promoter polymorphisms of ST3GAL4 and ST6GAL1 genes and associations with risk of premalignant and malignant lesions of the cervix.

    PubMed

    Rivera-Juarez, Maria de Los Angeles; Rosas-Murrieta, Nora Hilda; Mendieta-Carmona, Victoriano; Hernandez-Pacheco, Raquel Esneidy; Zamora-Ginez, Irma; Rodea-Avila, Carlos; Apresa-Garcia, Teresa; Garay-Villar, Onix; Aguilar-Lemarroy, Adriana; Jave-Suarez, Luis Felipe; Diaz-Orea, Maria Alicia; Milflores-Flores, Lorena; Reyes-Salinas, Juan Salvador; Ceja-Utrera, Francisco Javier; Vazquez-Zamora, Victor Javier; Vargas-Maldonado, Tomas; Reyes-Carmona, Sandra; Sosa-Jurado, Francisca; Santos-Lopez, Gerardo; Reyes-Leyva, Julio; Vallejo-Ruiz, Veronica

    2014-01-01

    Sialyltransferase gene expression is altered in several cancers, including examples in the cervix. Transcriptional regulation of the responsible genes depends on different promoters. We aimed to determine the association of single-nucleotide polymorphisms in the B3 promoter of the ST3GAL4 gene and the P1 promoter of the ST6GAL1 gene with cervical premalignant lesions or cervical cancer. A blood sample and/or cervical scrapes were obtained from 104 women with normal cytology, 154 with premalignant lesions and 100 with cervical cancer. We also included 119 blood samples of random donors. The polymorphisms were identified by sequencing from PCR products. For the B3 promoter, a fragment of 506 bp (from nucleotide -408 to +98) was analyzed, and for the P1 promoter a 490 bp (-326 to +164) fragment. The polymorphism analysis showed that at SNP rs10893506, genotypes CC and CT of the ST3GAL4 B3 promoter were associated with the presence of premalignant lesions (OR=2.89; 95%CI 1.72-4.85) and cervical cancer (OR=2.23; 95%CI 1.27-3.91). We detected only one allele of each polymorphism in the ST6GAL1 P1 promoter. We did not detect any genetic variability in the P1 promoter region in our study population. Our results suggest that the rs10893506 polymorphism -22C/T may increase susceptibility to premalignant and malignant lesions of the cervix.

  15. α4β7+ CD4+ Effector/Effector Memory T Cells Differentiate into Productively and Latently Infected Central Memory T Cells by Transforming Growth Factor β1 during HIV-1 Infection.

    PubMed

    Cheung, Ka-Wai; Wu, Tongjin; Ho, Sai Fan; Wong, Yik Chun; Liu, Li; Wang, Hui; Chen, Zhiwei

    2018-04-15

    HIV-1 transmission occurs mainly through mucosal tissues. During mucosal transmission, HIV-1 preferentially infects α 4 β 7 + gut-homing CCR7 - CD4 + effector/effector memory T cells (T EM ) and results in massive depletion of these cells and other subsets of T EM in gut-associated lymphoid tissues. However, besides being eliminated by HIV-1, the role of T EM during the early stage of infection remains inconclusive. Here, using in vitro -induced α 4 β 7 + gut-homing T EM (α 4 β 7 + T EM ), we found that α 4 β 7 + T EM differentiated into CCR7 + CD4 + central memory T cells (T CM ). This differentiation was HIV-1 independent but was inhibited by SB431542, a specific transforming growth factor β (TGF-β) receptor I kinase inhibitor. Consistently, T EM -to-T CM differentiation was observed in α 4 β 7 + T EM stimulated with TGF-β1 (TGF-β). The T CM properties of the TGF-β-induced T EM -derived T CM (α 4 β 7 + T CM ) were confirmed by their enhanced CCL19 chemotaxis and the downregulation of surface CCR7 upon T cell activation in vitro Importantly, the effect of TGF-β on T CM differentiation also held in T EM directly isolated from peripheral blood. To investigate the significance of the TGF-β-dependent T EM -to-T CM differentiation in HIV/AIDS pathogenesis, we observed that both productively and latently infected α 4 β 7 + T CM could differentiate from α 4 β 7 + T EM in the presence of TGF-β during HIV-1 infection. Collectively, this study not only provides a new insight for the plasticity of T EM but also suggests that the TGF-β-dependent T EM -to-T CM differentiation is a previously unrecognized mechanism for the formation of latently infected T CM after HIV-1 infection. IMPORTANCE HIV-1 is the causative agent of HIV/AIDS, which has led to millions of deaths in the past 30 years. Although the implementation of highly active antiretroviral therapy has remarkably reduced the HIV-1-related morbidity and mortality, HIV-1 is not eradicated in

  16. 6-mercaptopurine promotes energetic failure in proliferating T cells

    PubMed Central

    Fernández-Ramos, Ana A.; Marchetti-Laurent, Catherine; Poindessous, Virginie; Antonio, Samantha; Laurent-Puig, Pierre; Bortoli, Sylvie; Loriot, Marie-Anne; Pallet, Nicolas

    2017-01-01

    The anticancer drug 6-mercaptopurine (6-MP) inhibits de novo purine synthesis and acts as an antiproliferative agent by interfering with protein, DNA and RNA synthesis and promoting apoptosis. Metabolic reprogramming is crucial for tumor progression to foster cancer cells growth and proliferation, and is regulated by mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) as well as the oncogenes Myc and hypoxia inducible factor 1α (HIF-1α). We hypothesized that 6-MP impacts metabolic remodeling through its action on nucleotide synthesis. The aim of our study is to provide a comprehensive characterization of the metabolic changes induced by 6-MP in leukemic T cells. Our results indicate that exposition to 6-MP rapidly reduces intracellular ATP concentration, leading to the activation of AMPK. In turn, mTOR, an AMPK target, was inhibited, and the expression of HIF-1α and Myc was reduced upon 6-MP incubation. As a consequence of these inhibitions, glucose and glutamine fluxes were strongly decreased. Notably, no difference was observed on glucose uptake upon exposition to 6-MP. In conclusion, our findings provide new insights into how 6-MP profoundly impacts cellular energetic metabolism by reducing ATP production and decreasing glycolytic and glutaminolytic fluxes, and how 6-MP modifies human leukemic T cells metabolism with potential antiproliferative effects. PMID:28574837

  17. 6-mercaptopurine promotes energetic failure in proliferating T cells.

    PubMed

    Fernández-Ramos, Ana A; Marchetti-Laurent, Catherine; Poindessous, Virginie; Antonio, Samantha; Laurent-Puig, Pierre; Bortoli, Sylvie; Loriot, Marie-Anne; Pallet, Nicolas

    2017-06-27

    The anticancer drug 6-mercaptopurine (6-MP) inhibits de novo purine synthesis and acts as an antiproliferative agent by interfering with protein, DNA and RNA synthesis and promoting apoptosis. Metabolic reprogramming is crucial for tumor progression to foster cancer cells growth and proliferation, and is regulated by mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) as well as the oncogenes Myc and hypoxia inducible factor 1α (HIF-1α). We hypothesized that 6-MP impacts metabolic remodeling through its action on nucleotide synthesis. The aim of our study is to provide a comprehensive characterization of the metabolic changes induced by 6-MP in leukemic T cells. Our results indicate that exposition to 6-MP rapidly reduces intracellular ATP concentration, leading to the activation of AMPK. In turn, mTOR, an AMPK target, was inhibited, and the expression of HIF-1α and Myc was reduced upon 6-MP incubation. As a consequence of these inhibitions, glucose and glutamine fluxes were strongly decreased. Notably, no difference was observed on glucose uptake upon exposition to 6-MP. In conclusion, our findings provide new insights into how 6-MP profoundly impacts cellular energetic metabolism by reducing ATP production and decreasing glycolytic and glutaminolytic fluxes, and how 6-MP modifies human leukemic T cells metabolism with potential antiproliferative effects.

  18. AtlasT4SS: a curated database for type IV secretion systems.

    PubMed

    Souza, Rangel C; del Rosario Quispe Saji, Guadalupe; Costa, Maiana O C; Netto, Diogo S; Lima, Nicholas C B; Klein, Cecília C; Vasconcelos, Ana Tereza R; Nicolás, Marisa F

    2012-08-09

    The type IV secretion system (T4SS) can be classified as a large family of macromolecule transporter systems, divided into three recognized sub-families, according to the well-known functions. The major sub-family is the conjugation system, which allows transfer of genetic material, such as a nucleoprotein, via cell contact among bacteria. Also, the conjugation system can transfer genetic material from bacteria to eukaryotic cells; such is the case with the T-DNA transfer of Agrobacterium tumefaciens to host plant cells. The system of effector protein transport constitutes the second sub-family, and the third one corresponds to the DNA uptake/release system. Genome analyses have revealed numerous T4SS in Bacteria and Archaea. The purpose of this work was to organize, classify, and integrate the T4SS data into a single database, called AtlasT4SS - the first public database devoted exclusively to this prokaryotic secretion system. The AtlasT4SS is a manual curated database that describes a large number of proteins related to the type IV secretion system reported so far in Gram-negative and Gram-positive bacteria, as well as in Archaea. The database was created using the RDBMS MySQL and the Catalyst Framework based in the Perl programming language and using the Model-View-Controller (MVC) design pattern for Web. The current version holds a comprehensive collection of 1,617 T4SS proteins from 58 Bacteria (49 Gram-negative and 9 Gram-Positive), one Archaea and 11 plasmids. By applying the bi-directional best hit (BBH) relationship in pairwise genome comparison, it was possible to obtain a core set of 134 clusters of orthologous genes encoding T4SS proteins. In our database we present one way of classifying orthologous groups of T4SSs in a hierarchical classification scheme with three levels. The first level comprises four classes that are based on the organization of genetic determinants, shared homologies, and evolutionary relationships: (i) F-T4SS, (ii) P-T4SS, (iii

  19. TLR4 signaling in effector CD4+ T cells regulates TCR activation and experimental colitis in mice

    PubMed Central

    González-Navajas, José M.; Fine, Sean; Law, Jason; Datta, Sandip K.; Nguyen, Kim P.; Yu, Mandy; Corr, Maripat; Katakura, Kyoko; Eckman, Lars; Lee, Jongdae; Raz, Eyal

    2010-01-01

    TLRs sense various microbial products. Their function has been best characterized in DCs and macrophages, where they act as important mediators of innate immunity. TLR4 is also expressed on CD4+ T cells, but its physiological function on these cells remains unknown. Here, we have shown that TLR4 triggering on CD4+ T cells affects their phenotype and their ability to provoke intestinal inflammation. In a model of spontaneous colitis, Il10–/–Tlr4–/– mice displayed accelerated development of disease, with signs of overt colitis as early as 8 weeks of age, when compared with Il10–/– and Il10–/–Tlr9–/– mice, which did not develop colitis by 8 months. Similar results were obtained in a second model of colitis in which transfer of naive Il10–/–Tlr4–/– CD4+ T cells into Rag1–/– recipients sufficient for both IL-10 and TLR4 induced more aggressive colitis than the transfer of naive Il10–/– CD4+ T cells. Mechanistically, LPS stimulation of TLR4-bearing CD4+ T cells inhibited ERK1/2 activation upon subsequent TCR stimulation via the induction of MAPK phosphatase 3 (MKP-3). Our data therefore reveal a tonic inhibitory role for TLR4 signaling on subsequent TCR-dependent CD4+ T cell responses. PMID:20051628

  20. CD4 T-Cell Memory Generation and Maintenance

    PubMed Central

    Gasper, David J.; Tejera, Melba Marie; Suresh, M.

    2014-01-01

    Immunologic memory is the adaptive immune system's powerful ability to remember a previous antigen encounter and react with accelerated vigor upon antigen re-exposure. It provides durable protection against reinfection with pathogens and is the foundation for vaccine-induced immunity. Unlike the relatively restricted immunologic purview of memory B cells and CD8 T cells, the field of CD4 T-cell memory must account for multiple distinct lineages with diverse effector functions, the issue of lineage commitment and plasticity, and the variable distribution of memory cells within each lineage. Here, we discuss the evidence for lineage-specific CD4 T-cell memory and summarize the known factors contributing to memory-cell generation, plasticity, and long-term maintenance. PMID:24940912

  1. Role of human pregnane X receptor in tamoxifen- and 4-hydroxytamoxifen-mediated CYP3A4 induction in primary human hepatocytes and LS174T cells.

    PubMed

    Sane, Rucha S; Buckley, Donna J; Buckley, Arthur R; Nallani, Srikanth C; Desai, Pankaj B

    2008-05-01

    Previously we observed that the antiestrogens tamoxifen and 4-hydroxytamoxifen (4OHT) induce CYP3A4 in primary human hepatocytes and activate human pregnane X receptor (PXR) in cell-based reporter assays. Given the complex cross-talk between nuclear receptors, tissue-specific expression of CYP3A4, and the potential for tamoxifen and 4OHT to interact with a myriad of receptors, this study was undertaken to gain mechanistic insights into the inductive effects of tamoxifen and 4OHT. First, we observed that transfection of the primary cultures of human hepatocytes with PXR-specific small interfering RNA reduced the PXR mRNA expression and the extent of CYP3A4 induction by tamoxifen and 4OHT by 50%. Second, in LS174T colon carcinoma cells, which were observed to have significantly lower PXR expression relative to human hepatocytes, neither tamoxifen nor 4OHT induced CYP3A4. Third, N-desmethyltamoxifen, which did not induce CYP3A4 in human hepatocytes, also did not activate PXR in LS174T cells. We then used cell-based reporter assay to evaluate the effects of other receptors such as glucocorticoid receptor GR alpha and estrogen receptor ER alpha on the transcriptional activation of PXR. The cotransfection of GR alpha in LS174T cells augmented PXR activation by tamoxifen and 4OHT. On the other hand, the presence of ER alpha inhibited PXR-mediated basal activation of CYP3A4 promoter, possibly via competing for common cofactors such as steroid receptor coactivator 1 and glucocorticoid receptor interacting protein 1. Collectively, our findings suggest that the CYP3A4 induction by tamoxifen and 4OHT is primarily mediated by PXR but the overall stoichiometry of other nuclear receptors and transcription cofactors also contributes to the extent of the inductive effect.

  2. IL-15 signaling promotes adoptive effector T-cell survival and memory formation in irradiation-induced lymphopenia.

    PubMed

    Xu, Aizhang; Bhanumathy, Kalpana Kalyanasundaram; Wu, Jie; Ye, Zhenmin; Freywald, Andrew; Leary, Scot C; Li, Rongxiu; Xiang, Jim

    2016-01-01

    Lymphopenia promotes naïve T-cell homeostatic proliferation and adoptive effector T-cell survival and memory formation. IL-7 plays a critical role in homeostatic proliferation, survival and memory formation of naïve T-cells in lymphopenia, and its underlying molecular mechanism has also been well studied. However, the mechanism for adoptively transferred effector T-cell survival and memory formation is not fully understood. Here, we transferred in vitro-activated transgenic OT-I CD8(+) effector T-cells into irradiation (600 rads)-induced lymphopenic C57BL/6, IL-7 knockout (KO) and IL-15 KO mice, and investigated the survival and memory formation of transferred T-cells in lymphopenia. We demonstrate that transferred T-cells prolong their survival and enhance their memory in lymphopenic mice, in a manner that depends on IL-15 signaling, but not IL-7. We determine that in vitro stimulation of naïve or effector T-cells with IL-7 and IL-15 reduces IL-7Rα, and increases and/or maintains IL-15Rβ expression, respectively. Consistent with these findings, the expression of IL-7Rα and IL-15Rβ is down- and up-regulated, respectively, in vivo on transferred T-cells in an early phase post T-cell transfer in lymphopenia. We further show that in vitro IL-15 restimulation-induced memory T-cells (compared to IL-2 restimulation-induced effector T-cells) and in vivo transferred T-cells in irradiated IL-15-sufficient C57BL/6 mice (compared to IL-15-deficient IL-15 KO mice) have increased mitochondrial content, but less NADH and lower mitochondrial potential (ΔΨm), and demonstrate greater phosphorylation of signal transducers and activators of transcription-5 (STAT5) and Unc-51-like kinase-1 (ULK1), and higher expression of B-cell leukemia/lymphoma-2 (Bcl2) and memory-, autophagy- and mitochondrial biogenesis-related molecules. Irradiation-induced lymphopenia promotes effector T-cell survival via IL-15 signaling the STAT5/Bcl2 pathway, enhances T-cell memory formation via IL

  3. Barium promotes anchorage-independent growth and invasion of human HaCaT keratinocytes via activation of c-SRC kinase.

    PubMed

    Thang, Nguyen Dinh; Yajima, Ichiro; Kumasaka, Mayuko Y; Ohnuma, Shoko; Yanagishita, Takeshi; Hayashi, Rumiko; Shekhar, Hossain U; Watanabe, Daisuke; Kato, Masashi

    2011-01-01

    Explosive increases in skin cancers have been reported in more than 36 million patients with arsenicosis caused by drinking arsenic-polluted well water. This study and previous studies showed high levels of barium as well as arsenic in the well water. However, there have been no reports showing a correlation between barium and cancer. In this study, we examined whether barium (BaCl(2)) may independently have cancer-related effects on human precancerous keratinocytes (HaCaT). Barium (5-50 µM) biologically promoted anchorage-independent growth and invasion of HaCaT cells in vitro. Barium (5 µM) biochemically enhanced activities of c-SRC, FAK, ERK and MT1-MMP molecules, which regulate anchorage-independent growth and/or invasion. A SRC kinase specific inhibitor, protein phosphatase 2 (PP2), blocked barium-mediated promotion of anchorage-independent growth and invasion with decreased c-SRC kinase activity. Barium (2.5-5 µM) also promoted anchorage-independent growth and invasion of fibroblasts (NIH3T3) and immortalized nontumorigenic melanocytes (melan-a), but not transformed cutaneous squamous cell carcinoma (HSC5 and A431) and malignant melanoma (Mel-ret) cells, with activation of c-SRC kinase. Taken together, our biological and biochemical findings newly suggest that the levels of barium shown in drinking well water independently has the cancer-promoting effects on precancerous keratinocytes, fibroblast and melanocytes in vitro.

  4. Hoc protein regulates the biological effects of T4 phage in mammals.

    PubMed

    Dabrowska, Krystyna; Zembala, Maria; Boratynski, Janusz; Switala-Jelen, Kinga; Wietrzyk, Joanna; Opolski, Adam; Szczaurska, Katarzyna; Kujawa, Marek; Godlewska, Joanna; Gorski, Andrzej

    2007-06-01

    We previously investigated the biological, non-antibacterial effects of bacteriophage T4 in mammals (binding to cancer cells in vitro and attenuating tumour growth and metastases in vivo); we selected the phage mutant HAP1 that was significantly more effective than T4. In this study we describe a non-sense mutation in the hoc gene that differentiates bacteriophage HAP1 and its parental strain T4. We found no substantial effects of the mutation on the mutant morphology, and its effects on electrophoretic mobility and hydrodynamic size were moderate. Only the high ionic strength of the environment resulted in a size difference of about 10 nm between T4 and HAP1. We compared the antimetastatic activity of the T2 phage, which does not express protein Hoc, with those of T4 and HAP1 (B16 melanoma lung colonies). We found that HAP1 and T2 decreased metastases with equal effect, more strongly than did T4. We also investigated concentrations of T4 and HAP1 in the murine blood, tumour (B16), spleen, liver, or muscle. We found that HAP1 was rapidly cleared from the organism, most probably by the liver. Although HAP1 was previously defined to bind cancer cells more effectively (than T4), its rapid elimination precluded its higher concentration in tumours.

  5. CD4+ Foxp3+ T-cells contribute to myocardial ischemia-reperfusion injury.

    PubMed

    Mathes, Denise; Weirather, Johannes; Nordbeck, Peter; Arias-Loza, Anahi-Paula; Burkard, Matthias; Pachel, Christina; Kerkau, Thomas; Beyersdorf, Niklas; Frantz, Stefan; Hofmann, Ulrich

    2016-12-01

    The present study analyzed the effect of CD4 + Forkhead box protein 3 negative (Foxp3 - ) T-cells and Foxp3 + CD4 + T-cells on infarct size in a mouse myocardial ischemia-reperfusion model. We examined the infarct size as a fraction of the area-at-risk as primary study endpoint in mice after 30minutes of coronary ligation followed by 24hours of reperfusion. CD4 + T-cell deficient MHC-II KO mice showed smaller histologically determined infarct size (34.5±4.7% in MHCII KO versus 59.4±4.9% in wildtype (WT)) and better preserved ejection fraction determined by magnetic resonance tomography (56.9±2.8% in MHC II KO versus 39.0±4.2% in WT). MHC-II KO mice also displayed better microvascular perfusion than WT mice after 24hours of reperfusion. Also CD4 + T-cell sufficient OT-II mice, which express an in this context irrelevant T-cell receptor, revealed smaller infarct sizes compared to WT mice. However, MHC-II blocking anti-I-A/I-E antibody treatment was not able to reduce infarct size indicating that autoantigen recognition is not required for the activation of CD4 + T-cells during reperfusion. Flow-cytometric analysis also did not detect CD4 + T-cell activation in heart draining lymph nodes in response to 24hours of ischemia-reperfusion. Adoptive transfer of CD4 + T-cells in CD4 KO mice increased the infarct size only when including the Foxp3 + CD25 + subset. Depletion of CD4 + Foxp3 + T-cells in DEREG mice enabling specific conditional ablation of this subset by treatment with diphtheria toxin attenuated infarct size as compared to diphtheria toxin treated WT mice. CD4 + Foxp3 + T-cells enhance myocardial ischemia-reperfusion injury. CD4 + T-cells exert injurious effects without the need for prior activation by MHC-II restricted autoantigen recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. ImmunoPET Imaging of Murine CD4+ T Cells Using Anti-CD4 Cys-Diabody: Effects of Protein Dose on T Cell Function and Imaging.

    PubMed

    Freise, Amanda C; Zettlitz, Kirstin A; Salazar, Felix B; Lu, Xiang; Tavaré, Richard; Wu, Anna M

    2017-08-01

    Molecular imaging of CD4 + T cells throughout the body has implications for monitoring autoimmune disease and immunotherapy of cancer. Given the key role of these cells in regulating immunity, it is important to develop a biologically inert probe. GK1.5 cys-diabody (cDb), a previously developed anti-mouse CD4 antibody fragment, was tested at different doses to assess its effects on positron emission tomography (PET) imaging and CD4 + T cell viability, proliferation, CD4 expression, and function. The effect of protein dose on image contrast (lymphoid tissue-to-muscle ratio) was assessed by administering different amounts of 89 Zr-labeled GK1.5 cDb to mice followed by PET imaging and ex vivo biodistribution analysis. To assess impact of GK1.5 cDb on T cell biology, GK1.5 cDb was incubated with T cells in vitro or administered intravenously to C57BL/6 mice at multiple protein doses. CD4 expression and T cell proliferation were analyzed with flow cytometry and cytokines were assayed. For immunoPET imaging, the lowest protein dose of 2 μg of 89 Zr-labeled GK1.5 cDb resulted in significantly higher % injected dose/g in inguinal lymph nodes (ILN) and spleen compared to the 12-μg protein dose. In vivo administration of GK1.5 cDb at the high dose of 40 μg caused a transient decrease in CD4 expression in spleen, blood, lymph nodes, and thymus, which recovered within 3 days postinjection; this effect was reduced, although not abrogated, when 2 μg was administered. Proliferation was inhibited in vivo in ILN but not the spleen by injection of 40 μg GK1.5 cDb. Concentrations of GK1.5 cDb in excess of 25 nM significantly inhibited CD4 + T cell proliferation and interferon-γ production in vitro. Overall, using low-dose GK1.5 cDb minimized biological effects on CD4 + T cells. Low-dose GK1.5 cDb yields high-contrast immunoPET images with minimal effects on T cell biology in vitro and in vivo and may be a useful tool for investigating CD4 + T cells in the context of

  7. CD4 T cell subsets in the Mucosa are CD28+Ki-67−HLA-DR−CD69+ but show differential infection based on α4β7 receptor expression during acute SIV infection

    PubMed Central

    Kader, Muhamuda; Bixler, Sandra; Roederer, Mario; Veazey, Ronald; Mattapallil, Joseph J.

    2009-01-01

    Background CD4 T cell depletion in the mucosa has been well documented during acute HIV and SIV infections. The demonstration the HIV/SIV can use the α4β7 receptor for viral entry suggests that these viruses selectively target CD4 T cells in the mucosa that express high levels of α4β7 receptor. Methods Mucosal samples obtained from SIV infected rhesus macaques during the early phase of infection were used for immunophenotypic analysis. CD4 T cell subsets were sorted based on the expression of β7 and CD95 to quantify the level of SIV infection in different subsets of CD4 T cells. Changes in IL-17, IL-21, IL-23 and TGFβ mRNA expression was determined using Taqman PCR. Results CD4 T cells in the mucosa were found to harbor two major population of cells; ~25% of CD4 T cells expressed the α4+β7hi phenotype, whereas the rest of the 75% expressed an α4+β7int phenotype. Both the subsets were predominantly CD28+Ki-67− HLA-DR− but CD69+, and expressed detectable levels of CCR5 on their surface. Interestingly, however, α4+β7hiCD4 T cells were found to harbor more SIV than the α4+β7int subsets at day 10 pi. Early infection was associated with a dramatic increase in the expression of IL-17, and IL-17 promoting cytokines IL-21, IL-23, and TGFβ that stayed high even after the loss of mucosal CD4 T cells. Conclusions Our results suggest that the differential expression of the α4β7 receptor contributes to the differences in the extent of infection in CD4 T cell subsets in the mucosa. Early infection associated dysregulation of the IL-17 network in mucosal tissues involves other non-Th-17 cells that likely contributes to the pro-inflammatory environment in the mucosa during acute stages of SIV infection. PMID:19863675

  8. Normal T-cell activation in elite controllers with preserved CD4+ T-cell counts.

    PubMed

    Bansal, Anju; Sterrett, Sarah; Erdmann, Nathan; Westfall, Andrew O; Dionne-Odom, Jodie; Overton, Edgar T; Goepfert, Paul A

    2015-11-01

    HIV elite controllers suppress HIV viremia without antiretroviral therapy (ART), yet previous studies demonstrated that elite controllers maintain an activated T-cell phenotype. Chronic immune activation has detrimental consequences and thus ART has been advocated for all elite controllers. However, elite controllers are not a clinically homogenous group. Since CD4% is among the best predictors of AIDS-related events, in the current study, we assessed whether this marker can be used to stratify elite controllers needing ART. Sixteen elite controllers were divided into two groups based on CD4% (EC > 40% and EC ≤40%), and T-cell subsets were analyzed for markers of memory/differentiation (CD45RA, CCR7, CD28), activation (CD38/HLA-DR), immunosenescence (CD57), costimulation (CD73, CD28) and exhaustion (PD-1, CD160, Tim-3). Monocyte subsets (CD14, CD16) were also analyzed and sCD14 levels were quantified using ELISA. In the EC group, expression of activation, exhaustion, and immunosensescence markers on T cells were significantly reduced compared with the EC group and similar to the seronegative controls. The EC group expressed higher levels of costimulatory molecules CD28 and CD73 and had lower levels of monocyte activation (HLA-DR expression) with a reduced frequency of inflammatory monocyte (CD14 CD16) subset. Furthermore, the EC group maintained a stable CD4% during a median follow-up of 6 years. Elite controllers with preserved CD4T cells (EC) have normal T-cell and monocyte phenotypes and therefore may have limited benefit from ART. CD4% can be an important marker for evaluating future studies aimed at determining the need for ART in this group of individuals.

  9. Surface-promoted hydrolysis of 2,4,6-trinitrotoluene and 2,4-dinitroanisole on pyrogenic carbonaceous matter.

    PubMed

    Ding, Kai; Byrnes, Cory; Bridge, Jarrod; Grannas, Amanda; Xu, Wenqing

    2018-04-01

    This study investigates the fate of sorbed nitroaromatics on the surface of pyrogenic carbonaceous matter (PCM) to assess the feasibility of a PCM-promoted hydrolysis. The degradation of two nitroaromatic compounds, 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroanisole, was observed at pH 7 in the presence of graphite powder, a model PCM. By contrast, no decay occurred without graphite. Using TNT as a model compound, our results suggest that TNT decay demonstrated a strong pH dependence, with no reaction at pH 3-5 but rapid degradation at pH 6-10. Moreover, by fitting TNT decay at different pH conditions along with its sorption kinetics to the Langmuir Kinetic Model, our results suggest that the base-catalyzed hydrolysis was important. The activation energy for TNT decay was obtained by measuring reaction rates at different temperatures with or without graphite and no significant difference was observed. However, the addition of tetramethylammonium cation was able to promote TNT decay possibly due to its ability to attract more OH - from the aqueous solution, leading to an increase in the sorbed OH - concentrations. Nitrite and a Meisenheimer complex were identified as degradation products for TNT. Other PCM, such as biochar, also demonstrated a comparable ability in promoting TNT decay at pH 7. Furthermore, a rapid degradation of TNT at pH 7 was observed when biochar was used as a soil amendment (4% by weight). Our results suggest that PCM can facilitate TNT and 2,4-dinitroanisole decay via a surface-promoted hydrolysis at neutral pH conditions, suggesting a promising alternative for in situ soil remediation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Lgr4 promotes prostate tumorigenesis through the Jmjd2a/AR signaling pathway.

    PubMed

    Zhang, Jianwei; Li, Qi; Zhang, Shaojin; Xu, Quanquan; Wang, Tianen

    2016-11-15

    Lgr4 (leucine-rich repeat domain containing G protein-coupled receptor 4) is implicated in the transcriptional regulation of multiple histone demethylases in the progression of diverse cancers, but there are few reports concerning the molecular mechanism by which Lgr4 regulates histone demethylase activation in prostate cancer (PCa) progression. As Jmjd2a is a histone demethylase, in the current study, we investigated the relationship between interaction Lgr4 with Jmjd 2a and Jmjd2a/androgen receptor (AR) signaling pathway in PCa progression. Firstly, Lgr4 was overexpressed by transfecting pcDNA3.1(+)/Lgr4 plasmids into PCa (LNCaP and PC-3) cell lines. Next, we found that Lgr4 overexpression promoted Jmjd2a mRNA expression, reduced cell apoptosis and arrested cell cycle in the S phase, these effects were reversed by Jmjd2a silencing. Moreover, Lgr4 overexpression markedly elevated AR levels and its interaction with Jmjd2a, which was tested by co-immunoprecipitation and luciferase reporter assays. Furthermore, interaction AR with PSA promoter (containing an AR response element) was obviously improved by Lgr4 overexpression, and PSA silencing reduced Lgr4-induced cell apoptosis and cell cycle arrest in PCa cells. Taken together, Lgr4 may be a novel tumor marker providing new mechanistic insights into PCa progression. Lgr4 activates Jmjd2a/AR signaling pathway to promote interaction AR with PSA promoter, causing reduction of PCa apoptosis and cell cycle arrest. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Ginsenoside Rb1 promotes browning through regulation of PPARγ in 3T3-L1 adipocytes.

    PubMed

    Mu, Qianqian; Fang, Xin; Li, Xiaoke; Zhao, Dandan; Mo, Fangfang; Jiang, Guangjian; Yu, Na; Zhang, Yi; Guo, Yubo; Fu, Min; Liu, Jun-Li; Zhang, Dongwei; Gao, Sihua

    2015-10-23

    Browning of white adipocyte tissue (WAT) has received considerable attention due to its potential implication in preventing obesity and related comorbidities. Ginsenoside Rb1 is reported to improve glycolipid metabolism and reduce body weight in obese animals. However whether the body reducing effect mediates by browning effect remains unclear. For this purpose, 3T3-L1 adipocytes were used to study the effect of ginsenoside Rb1 on browning adipocytes specific genes and oxygen consumptions. The results demonstrate that 10 μM of ginsenoside Rb1 increases basal glucose uptake and promoted browning evidenced by significant increases in mRNA expressions of UCP-1, PGC-1α and PRDM16 in 3T3-L1 mature adipocytes. Further, ginsenoside Rb1 also increases PPARγ activity. And the browning effect is abrogated by GW9692, a PPARγ antagonist. In addition, ginsenoside Rb1 increases basal respiration rate, ATP production and uncoupling capacity in 3T3-L1 adipocytes. Those effects are also blunted by GW9692. The results suggest that ginsenoside Rb1 promote browning of 3T3-L1 adipocytes through induction of PPARγ. Our finding offer a new source to discover browning agonists and also useful to understand and extend the applications of ginseng and its constituents. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Increased autophagy in CD4+ T cells of rheumatoid arthritis patients results in T-cell hyperactivation and apoptosis resistance.

    PubMed

    van Loosdregt, Jorg; Rossetti, Maura; Spreafico, Roberto; Moshref, Maryam; Olmer, Merissa; Williams, Gary W; Kumar, Pavanish; Copeland, Dana; Pischel, Ken; Lotz, Martin; Albani, Salvatore

    2016-12-01

    Rheumatoid arthritis (RA) is an autoimmune disease hallmarked by aberrant cellular homeostasis, resulting in hyperactive CD4 + T cells that are more resistant to apoptosis. Both hyperactivation and resistance to apoptosis may contribute to the pathogenicity of CD4 + T cells in the autoimmune process. A better knowledge of the mechanisms determining such impaired homeostasis could contribute significantly to both the understanding and the treatment of the disease. Here we investigated whether autophagy, is dysregulated in CD4 + T cells of RA patients, resulting in disturbed T-cell homeostasis. We demonstrate that the rate of autophagy is significantly increased in CD4 + T cells from RA patients, and that increased autophagy is also a feature of in vitro activated CD4 + T cells. The increased apoptosis resistance observed in CD4 + T cells from RA patients was significantly reversed upon autophagy inhibition. These mechanisms may contribute to RA pathogenesis, as autophagy inhibition reduced both arthritis incidence and disease severity in a mouse collagen induced arthritis mouse model. Conversely, in Atg5 flox/flox -CD4-Cre + mice, in which all T cells are autophagy deficient, T cells showed impaired activation and proliferation. These data provide novel insight into the pathogenesis of RA and underscore the relevance of autophagy as a promising therapeutic target. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. MiR-32 promotes gastric carcinoma tumorigenesis by targeting Kruppel-like factor 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Chao; Yu, Jianchun, E-mail: yu_jchpumch@163.com; Liu, Yuqin

    Gastric cancer (GC) is a prevalent malignant cancer worldwide and is highly lethal because of its fast growth. Currently, the clinical therapy options for GC remain limited. MiR-32 has been reported as an oncogenic microRNA in many cancers, but its role in GC is unclear. Here, we found that miR-32 was overexpressed in GC tissues compared with adjacent normal tissue, and miR-32 was higher in GC patients' plasma compared with healthy individuals. Furthermore, we have identified miR-32 to be oncogenic, by promoting gastric cell proliferation, migration and invasion. We also identified Kruppel-like factor 4 (KLF4) as a direct target ofmore » miR-32. Knockdown of KLF4 promoted proliferation, migration and invasion of GC cells. We conclude that miR-32 promotes GC cell proliferation, migration and invasion by targeting KLF4, suggesting that the miR-32-KLF4 pathway may be useful in clinical diagnosis and therapeutics. - Highlights: • miR-32 was overexpression in GC tissues than adjacent normal tissue. • miR-32 was higher in GC patients' plasma compared with healthy people. • miR-32 promotes GC cell proliferation, migration and invasion by targeting KLF4.« less

  14. Histone Deacetylase Inhibition Promotes Osteoblast Maturation by Altering the Histone H4 Epigenome and Reduces Akt Phosphorylation*

    PubMed Central

    Dudakovic, Amel; Evans, Jared M.; Li, Ying; Middha, Sumit; McGee-Lawrence, Meghan E.; van Wijnen, Andre J.; Westendorf, Jennifer J.

    2013-01-01

    Bone has remarkable regenerative capacity, but this ability diminishes during aging. Histone deacetylase inhibitors (HDIs) promote terminal osteoblast differentiation and extracellular matrix production in culture. The epigenetic events altered by HDIs in osteoblasts may hold clues for the development of new anabolic treatments for osteoporosis and other conditions of low bone mass. To assess how HDIs affect the epigenome of committed osteoblasts, MC3T3 cells were treated with suberoylanilide hydroxamic acid (SAHA) and subjected to microarray gene expression profiling and high-throughput ChIP-Seq analysis. As expected, SAHA induced differentiation and matrix calcification of osteoblasts in vitro. ChIP-Seq analysis revealed that SAHA increased histone H4 acetylation genome-wide and in differentially regulated genes, except for the 500 bp upstream of transcriptional start sites. Pathway analysis indicated that SAHA increased the expression of insulin signaling modulators, including Slc9a3r1. SAHA decreased phosphorylation of insulin receptor β, Akt, and the Akt substrate FoxO1, resulting in FoxO1 stabilization. Thus, SAHA induces genome-wide H4 acetylation and modulates the insulin/Akt/FoxO1 signaling axis, whereas it promotes terminal osteoblast differentiation in vitro. PMID:23940046

  15. Marker-Dependent Recombination in T4 Bacteriophage. IV. Recombinational Effects of Antimutator T4 DNA Polymerase

    PubMed Central

    Shcherbakov, V. P.; Plugina, L. A.; Kudryashova, E. A.

    1995-01-01

    Recombinational effects of the antimutator allele tsL42 of gene 43 of phage T4, encoding DNA polymerase, were studied in crosses between rIIB mutants. Recombination under tsL42-restricted conditions differed from the normal one in several respects: (1) basic recombination was enhanced, especially within very short distances; (2) mismatch repair tracts were shortened, while the contribution of mismatch repair to recombination was not changed; (3) marker interference at very short distances was augmented. We infer that the T4 DNA polymerase is directly involved in mismatch repair, performing both excision of a nonmatched single strand (by its 3' -> 5' exonuclease) and filling the resulting gap. A pathway for the mismatch repair was substantiated; it includes sequential action of endo VII (gp49) -> 3'->5' exonuclease (gp43) -> DNA polymerase (gp43) -> DNA ligase (gp30). It is argued that the marker interference at very short distances may result from the same sequence of events during the final processing of recombinational intermediates. PMID:7635281

  16. Trigger-happy resident memory CD4+ T cells inhabit the human lungs.

    PubMed

    Oja, A E; Piet, B; Helbig, C; Stark, R; van der Zwan, D; Blaauwgeers, H; Remmerswaal, E B M; Amsen, D; Jonkers, R E; Moerland, P D; Nolte, M A; van Lier, R A W; Hombrink, P

    2018-05-01

    Resident memory T cells (T RM ) reside in the lung epithelium and mediate protective immunity against respiratory pathogens. Although lung CD8 + T RM have been extensively characterized, the properties of CD4 + T RM remain unclear. Here we determined the transcriptional signature of CD4 + T RM , identified by the expression of CD103, retrieved from human lung resection material. Various tissue homing molecules were specifically upregulated on CD4 + T RM , whereas expression of tissue egress and lymph node homing molecules were low. CD103 + T RM expressed low levels of T-bet, only a small portion expressed Eomesodermin (Eomes), and although the mRNA levels for Hobit were increased, protein expression was absent. On the other hand, the CD103 + T RM showed a Notch signature. CD4 + CD103 + T RM constitutively expressed high transcript levels of numerous cytotoxic mediators that was functionally reflected by a fast recall response, magnitude of cytokine production, and a high degree of polyfunctionality. Interestingly, the superior cytokine production appears to be because of an accessible interferon-γ (IFNγ) locus and was partially because of rapid translation of preformed mRNA. Our studies provide a molecular understanding of the maintenance and potential function of CD4 + T RM in the human lung. Understanding the specific properties of CD4 + T RM is required to rationally improve vaccine design.

  17. Naive T cells are dispensable for memory CD4+ T cell homeostasis in progressive simian immunodeficiency virus infection

    PubMed Central

    Okoye, Afam A.; Rohankhedkar, Mukta; Abana, Chike; Pattenn, Audrie; Reyes, Matthew; Pexton, Christopher; Lum, Richard; Sylwester, Andrew; Planer, Shannon L.; Legasse, Alfred; Park, Byung S.; Piatak, Michael; Lifson, Jeffrey D.; Axthelm, Michael K.

    2012-01-01

    The development of AIDS in chronic HIV/simian immunodeficiency virus (SIV) infection has been closely linked to progressive failure of CD4+ memory T cell (TM) homeostasis. CD4+ naive T cells (TN) also decline in these infections, but their contribution to disease progression is less clear. We assessed the role of CD4+ TN in SIV pathogenesis using rhesus macaques (RMs) selectively and permanently depleted of CD4+ TN before SIV infection. CD4+ TN-depleted and CD4+ TN-repleted RMs were created by subjecting juvenile RMs to thymectomy versus sham surgery, respectively, followed by total CD4+ T cell depletion and recovery from this depletion. Although thymectomized and sham-treated RMs manifested comparable CD4+ TM recovery, only sham-treated RMs reconstituted CD4+ TN. CD4+ TN-depleted RMs responded to SIVmac239 infection with markedly attenuated SIV-specific CD4+ T cell responses, delayed SIVenv-specific Ab responses, and reduced SIV-specific CD8+ T cell responses. However, CD4+ TN-depleted and -repleted groups showed similar levels of SIV replication. Moreover, CD4+ TN deficiency had no significant effect on CD4+ TM homeostasis (either on or off anti-retroviral therapy) or disease progression. These data demonstrate that the CD4+ TN compartment is dispensable for CD4+ TM homeostasis in progressive SIV infection, and they confirm that CD4+ TM comprise a homeostatically independent compartment that is intrinsically capable of self-renewal. PMID:22451717

  18. Mutagenesis of the lac promoter region in M13 mp10 phage DNA by 4'-hydroxymethyl-4,5',8-trimethylpsoralen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piette, J.; Decuyper-Debergh, D.; Gamper, H.

    Double-stranded M13 phage DNA (M13 mp10 replicative form) was photoreacted with 4'-hydroxymethyl-4,5',8-trimethylpsoralen, using light of wavelength greater than 320 nm or greater than 390 nm to generate predominantly crosslinks or monoadducts, respectively. The damaged DNAs were scored for inactivation and mutagenesis after transfection into Escherichia coli. The appearance of light-blue or colorless plaques on indicator medium showed that mutation had occurred in the lac insert of the viral DNA. A comparison of the consequences of the two phototreatments with psoralen supports the idea that crosslinks are both more lethal and more mutagenic than monoadducts. Numerous mutant clones partially or totallymore » deficient in beta-galactosidase were plaque-purified and amplified. The viral DNA of each clone was sequenced by the dideoxy chain-terminating procedure. All of the observed base-pair changes were mapped to the lac promoter region and consisted of 3 transition, 14 transversion, and 6 single base-pair frame-shift mutations. The predominant mutation was a T.A----G.C transversion.« less

  19. Microstructure Evolution during Dissimilar Friction Stir Welding of AA7003-T4 and AA6060-T4

    PubMed Central

    Dong, Jialiang; Zhang, Datong; Zhang, Weiwen; Zhang, Wen; Qiu, Cheng

    2018-01-01

    In this work, the dissimilar joint of AA7003-T4 and 6060-T4 alloy has been produced by friction stir welding (FSW). The microstructure was examined by optical microscope (OM), electron back scattered diffraction (EBSD), transmission electron microscopy (TEM), and the mechanical properties of the joint were investigated. It is demonstrated that sound dissimilar joint can be produced through FSW. In the nugget; precipitations dissolve into the matrix and η′ reprecipitate subsequently; and the elongated aluminum grains are replaced by fine and equiaxed grains due to dynamic recrystallization (DRX). In the heat affected zone (HAZ), coarse β′ and η precipitates are formed and the aluminum grains are coarser as compared to the base materials. In the thermo-mechanical affected zone (TMAZ), equiaxed and elongated grains coexist due to incomplete DRX. The ultimate tensile strength of the dissimilar joint is 159.2 MPa and its elongation is 10.4%. The weak area exists in the HAZ of 6060 alloy, which is placed in the retreating side during FSW. The correlations between the microstucture and mechanical properties of the dissimilar joint are discussed. PMID:29495463

  20. Structure and mechanism of the phage T4 recombination mediator protein UvsY

    DOE PAGES

    Gajewski, Stefan; Waddell, Michael Brett; Vaithiyalingam, Sivaraja; ...

    2016-03-07

    The UvsY recombination mediator protein is critical for efficient homologous recombination in bacteriophage T4 and is the functional analog of the eukaryotic Rad52 protein. During T4 homologous recombination, the UvsX recombinase has to compete with the prebound gp32 single-stranded binding protein for DNA-binding sites and UvsY stimulates this filament nucleation event. We report here the crystal structure of UvsY in four similar open-barrel heptameric assemblies and provide structural and biophysical insights into its function. The UvsY heptamer was confirmed in solution by centrifugation and light scattering, and thermodynamic analyses revealed that the UvsY–ssDNA interaction occurs within the assembly via twomore » distinct binding modes. Using surface plasmon resonance, we also examined the binding of UvsY to both ssDNA and the ssDNA–gp32 complex. These analyses confirmed that ssDNA can bind UvsY and gp32 independently and also as a ternary complex. They also showed that residues located on the rim of the heptamer are required for optimal binding to ssDNA, thus identifying the putative ssDNA-binding surface. We propose a model in which UvsY promotes a helical ssDNA conformation that disfavors the binding of gp32 and initiates the assembly of the ssDNA–UvsX filament.« less

  1. Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes.

    PubMed

    Westhorpe, Clare L V; Norman, M Ursula; Hall, Pam; Snelgrove, Sarah L; Finsterbusch, Michaela; Li, Anqi; Lo, Camden; Tan, Zhe Hao; Li, Songhui; Nilsson, Susan K; Kitching, A Richard; Hickey, Michael J

    2018-02-21

    Although effector CD4 + T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4 + T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4 + T cells. Following intravascular deposition of antigen in glomeruli, effector CD4 + T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII + immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4 + T-cell-dependent glomerular inflammation. These findings indicate that MHCII + monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4 + T cells within glomerular capillaries, leading to antigen-dependent inflammation.

  2. IFNγ-producing CD4+ T lymphocytes: the double-edged swords in tuberculosis.

    PubMed

    Kumar, Pawan

    2017-12-01

    IFNγ-producing CD4 + T cells (IFNγ + CD4 + T cells) are the key orchestrators of protective immunity against Mycobacterium tuberculosis (Mtb). Primarily, these cells act by enabling Mtb-infected macrophages to enforce phagosome-lysosome fusion, produce reactive nitrogen intermediates (RNIs), and activate autophagy pathways. However, TB is a heterogeneous disease and a host of clinical and experimental findings has also implicated IFNγ + CD4 + T cells in TB pathogenesis. High frequency of IFNγ + CD4 + T cells is the most invariable feature of the active disease. Active TB patients mount a heightened IFNγ + CD4 + T cell response to mycobacterial antigens and demonstrate an IFNγ-inducible transcriptomic signature. IFNγ + CD4 + T cells have also been shown to mediate TB-associated immune reconstitution inflammatory syndrome (TB-IRIS) observed in a subset of antiretroviral therapy (ART)-treated HIV- and Mtb-coinfected people. The pathological face of IFNγ + CD4 + T cells during mycobacterial infection is further uncovered by studies in the animal model of TB-IRIS and in Mtb-infected PD-1 -/- mice. This manuscript encompasses the evidence supporting the dual role of IFNγ + CD4 + T cells during Mtb infection and sheds light on immune mechanisms involved in protection versus pathogenesis.

  3. Homeostasis of naive and memory CD4+ T cells: IL-2 and IL-7 differentially regulate the balance between proliferation and Fas-mediated apoptosis.

    PubMed

    Jaleco, Sara; Swainson, Louise; Dardalhon, Valérie; Burjanadze, Maryam; Kinet, Sandrina; Taylor, Naomi

    2003-07-01

    Cytokines play a crucial role in the maintenance of polyclonal naive and memory T cell populations. It has previously been shown that ex vivo, the IL-7 cytokine induces the proliferation of naive recent thymic emigrants (RTE) isolated from umbilical cord blood but not mature adult-derived naive and memory human CD4(+) T cells. We find that the combination of IL-2 and IL-7 strongly promotes the proliferation of RTE, whereas adult CD4(+) T cells remain relatively unresponsive. Immunological activity is controlled by a balance between proliferation and apoptotic cell death. However, the relative contributions of IL-2 and IL-7 in regulating these processes in the absence of MHC/peptide signals are not known. Following exposure to either IL-2 or IL-7 alone, RTE, as well as mature naive and memory CD4(+) T cells, are rendered only minimally sensitive to Fas-mediated cell death. However, in the presence of the two cytokines, Fas engagement results in a high level of caspase-dependent apoptosis in both RTE as well as naive adult CD4(+) T cells. In contrast, equivalently treated memory CD4(+) T cells are significantly less sensitive to Fas-induced cell death. The increased susceptibility of RTE and naive CD4(+) T cells to Fas-induced apoptosis correlates with a significantly higher IL-2/IL-7-induced Fas expression on these T cell subsets than on memory CD4(+) T cells. Thus, IL-2 and IL-7 regulate homeostasis by modulating the equilibrium between proliferation and apoptotic cell death in RTE and mature naive and memory T cell subsets.

  4. Structural, elastic and electronic properties of typical NdMgT4 (T = Co, Ni, Cu) alloys from ab initio calculation

    NASA Astrophysics Data System (ADS)

    Wang, Na; Zhang, Wei-bing; Tang, Bi-yu; Gao, Hai-Tao; He, En-jie; Wang, Lei

    2018-07-01

    The crystal structure, elastic and magnetic properties of important ternary Mg-based alloys NdMgT4 (T = Co, Ni, Cu) have been studied using reliable ab initio calculations. Both cohesive energy and charge density difference suggest that three alloys have good structural stability with the order: NdMgCo4 > NdMgNi4 > NdMgCu4. It shows that NdMgCo4 alloy has magnetic moments with the Co atoms being the main contribution, which is also in agreement with the calculated electronic structures. We find that NdMgT4 (T = Co, Ni, Cu) alloys are all ductile materials with bulk-to-shear modulus (B/G) values higher than 1.75. The trends of calculated values for the shear moduli Cs and C44 are consistent with that of shear modulus G and young's modulus E, proving that NdMgT4 (T = Co, Ni, Cu) alloys exhibit good plasticity with the trend: NdMgNi4 > NdMgCu4 > NdMgCo4. These calculated results give the basis guidance for the design of rare earth-magnesium-transition metal (R-Mg-T) alloys with improved mechanical properties.

  5. Dopamine receptor D4 promoter hypermethylation increases the risk of drug addiction.

    PubMed

    Ji, Huihui; Xu, Xuting; Liu, Guili; Liu, Huifen; Wang, Qinwen; Shen, Wenwen; Li, Longhui; Xie, Xiaohu; Hu, Haochang; Xu, Lei; Zhou, Wenhua; Duan, Shiwei

    2018-02-01

    Heroin and methylamphetamine (METH) are two addictive drugs that cause serious problems for society. Dopamine receptor D4 (DRD4), a key receptor in the dopaminergic system, may facilitate the development of drug addiction. The aim of the present study was to investigate the association between the promoter methylation level of DRD4 gene and drug addiction. Bisulfite pyrosequencing technology was used to measure the methylation levels of DRD4 promoter in 60 drug addicts and 52 matched controls. Significantly higher levels of DRD4 CpG1 and CpG4 methylation were detected in METH and heroin drug addicts compared with controls (P<0.05). Male METH addicts exhibited significantly higher DRD4 CpG1, CpG2 and CpG4 methylation levels compared with sex-matched controls (P<0.05). In heroin addicts, a positive correlation was observed between depression-dejection and DRD4 CpG5 methylation (r=0.537, P=0.039) whereas there was a negative correlation between drug usage frequency and CpG1 methylation (r=-0.632, P=0.011). In METH addicts, methylation levels were not significantly associated with depression-dejection and drug usage frequency. In addition, luciferase assays demonstrated that the target sequence of the DRD4 promoter upregulates gene expression. The results of the present study suggest that DNA methylation of DRD4 may be responsible for the pathophysiology of drug addiction.

  6. Activation requirements and responses to TLR ligands in human CD4+ T cells: comparison of two T cell isolation techniques.

    PubMed

    Lancioni, Christina L; Thomas, Jeremy J; Rojas, Roxana E

    2009-05-15

    Direct regulation of T cell function by microbial ligands through Toll-like receptors (TLR) is an emerging area of T cell biology. Currently either immunomagnetic cell sorting (IMACS) or fluorescence-activated cell sorting (FACS), are utilized to isolate T-cell subsets for such studies. However, it is unknown to what extent differences in T cell purity between these isolation techniques influence T cell functional assays. We compared the purity, response to mitogen, activation requirements, and response to TLR ligands between human CD4(+) T cells isolated either by IMACS (IMACS-CD4(+)) or by IMACS followed by FACS (IMACS/FACS-CD4(+)). As expected, IMACS-CD4(+) were less pure than IMACS/FACS-CD4(+) (92.5%+/-1.4% versus 99.7%+/-0.2%, respectively). Consequently, IMACS-CD4(+) proliferated and produced cytokines in response to mitogen alone and had lower activation requirements compared to IMACS/FACS-CD4(+). In addition IMACS-CD4(+) but not IMACS/FACS-CD4(+) responses were upregulated by the TLR-4 ligand lipopolysaccharide (LPS). On the other hand, TLR-2 and TLR-5 engagement induced costimulation in both IMACS-CD4(+) and highly purified IMACS-/FACS-CD4(+). Altogether these results indicate that small differences in cell purity can significantly alter T cell responses to TLR ligands. This study stresses the importance of a stringent purification method when investigating the role of microbial ligands in T cell function.

  7. In vivo replication of T4 and T7 bacteriophages in germ-free mice colonized with Escherichia coli.

    PubMed

    Weiss, Marietta; Denou, Emmanuel; Bruttin, Anne; Serra-Moreno, Ruth; Dillmann, Marie-Lise; Brüssow, Harald

    2009-10-10

    The gut transit of T4 phages was studied in axenic mice mono-colonized with the non-pathogenic Escherichia coli strain K-12. Thirty minutes, 1 and 2 h after phage feeding, T4 phage had reached the jejunum, ileum and cecum, respectively. Phage was found in the lumen and was also associated with the mucosa. One day later no phage was detected in the feces. Compared to germ-free control animals, oral T4 phage led to a 300-fold higher fecal phage titer in mice mono-colonized with E. coli strain WG-5. The in vivo T4 phage replication was transient and reached peak fecal titers about 8 h after oral phage application followed by a rapid titer decrease over two days. Similar data were obtained in mice colonized with E. coli strain Nissle. In contrast, orally applied T7 phage experienced a massive and sustained in vivo replication in mice mono-colonized with E. coli strain WG-5 irrespective whether phage or E. coli host was applied first. T7 phage replication occurred mainly in the large intestine. High titers of T7 phage and high E. coli cell counts coexisted in the feces. The observation of only 20% T7 phage-resistant fecal E. coli colonies suggests a refuge model where phage-sensitive E. coli cells are physically or physiologically protected from phage infection in the gut. The difference between T7 and T4 with respect to gut replication might partly reflect their distinct in vitro capacity to replicate on slowly growing cells.

  8. Unique coordination of pyrazine in T[Ni(CN){sub 4}].2pyz with T=Mn, Zn, Cd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemus-Santana, A.A.; Rodriguez-Hernandez, J.; Castillo, L.F. del, E-mail: lfelipe@servidor.unam.m

    2009-04-15

    The materials under study, T[Ni(CN){sub 4}].2pyz with T=Mn, Zn, Cd, were prepared by separation of T[Ni(CN){sub 4}] layers in citrate aqueous solution to allow the intercalation of the pyrazine molecules. The obtained solids were characterized from chemical analyses, X-ray diffraction, infrared, Raman, thermogravimetry, UV-Vis, magnetic and adsorption data. Their crystal structure was solved from ab initio using direct methods and then refined by the Rietveld method. A unique coordination for pyrazine to metal centers at neighboring layers was observed. The pyrazine molecule is found forming a bridge between Ni and T atoms, quite different from the proposed structures for T=Fe,more » Ni where it remains coordinated to two T atoms to form a vertical pillar between neighboring layers. The coordination of pyrazine to both Ni and T atoms minimizes the material free volume and leads to form a hydrophobic framework. On heating the solids remain stable up to 140 deg. C. No CO{sub 2} and H{sub 2} adsorption was observed in the small free spaces of their frameworks. - Graphical abstract: Framework for T[Ni(CN){sub 4}].2pyz with T=Mn, Zn, Cd.« less

  9. Combination of an agonistic anti-CD40 monoclonal antibody and the COX-2 inhibitor celecoxib induces anti-glioma effects by promotion of type-1 immunity in myeloid cells and T-cells

    PubMed Central

    Kosaka, Akemi; Ohkuri, Takayuki

    2014-01-01

    Malignant gliomas are heavily infiltrated by immature myeloid cells that mediate immuno-suppression. Agonistic CD40 monoclonal antibody (mAb) has been shown to activate myeloid cells and promote antitumor immunity. Our previous study has also demonstrated blockade of cyclooxygenase-2 (COX-2) reduces immunosuppressive myeloid cells, thereby suppressing glioma development in mice. We therefore hypothesized that a combinatory strategy to modulate myeloid cells via two distinct pathways, i.e., CD40/CD40L stimulation and COX-2 blockade, would enhance anti-glioma immunity. We used three different mouse glioma models to evaluate therapeutic effects and underlying mechanisms of a combination regimen with an agonist CD40 mAb and the COX-2 inhibitor celecoxib. Treatment of glioma-bearing mice with the combination therapy significantly prolonged survival compared with either anti-CD40 mAb or celecoxib alone. The combination regimen promoted maturation of CD11b+ cells in both spleen and brain, and enhanced Cxcl10 while suppressing Arg1 in CD11b+Gr-1+ cells in the brain. Anti-glioma activity of the combination regimen was T-cell dependent because depletion of CD4+ and CD8+ cells in vivo abrogated the anti-glioma effects. Furthermore, the combination therapy significantly increased the frequency of CD8+ T-cells, enhanced IFN-γ-production and reduced CD4+CD25+Foxp3+ T regulatory cells in the brain, and induced tumor-antigen-specific T-cell responses in lymph nodes. Our findings suggest that the combination therapy of anti-CD40 mAb with celecoxib enhances anti-glioma activities via promotion of type-1 immunity both in myeloid cells and T-cells. PMID:24878890

  10. Shp1 regulates T cell homeostasis by limiting IL-4 signals

    PubMed Central

    Johnson, Dylan J.; Pao, Lily I.; Dhanji, Salim; Murakami, Kiichi

    2013-01-01

    The protein-tyrosine phosphatase Shp1 is expressed ubiquitously in hematopoietic cells and is generally viewed as a negative regulatory molecule. Mutations in Ptpn6, which encodes Shp1, result in widespread inflammation and premature death, known as the motheaten (me) phenotype. Previous studies identified Shp1 as a negative regulator of TCR signaling, but the severe systemic inflammation in me mice may have confounded our understanding of Shp1 function in T cell biology. To define the T cell–intrinsic role of Shp1, we characterized mice with a T cell–specific Shp1 deletion (Shp1fl/fl CD4-cre). Surprisingly, thymocyte selection and peripheral TCR sensitivity were unaltered in the absence of Shp1. Instead, Shp1fl/fl CD4-cre mice had increased frequencies of memory phenotype T cells that expressed elevated levels of CD44. Activation of Shp1-deficient CD4+ T cells also resulted in skewing to the Th2 lineage and increased IL-4 production. After IL-4 stimulation of Shp1-deficient T cells, Stat 6 activation was sustained, leading to enhanced Th2 skewing. Accordingly, we observed elevated serum IgE in the steady state. Blocking or genetic deletion of IL-4 in the absence of Shp1 resulted in a marked reduction of the CD44hi population. Therefore, Shp1 is an essential negative regulator of IL-4 signaling in T lymphocytes. PMID:23797092

  11. Preferential susceptibility of Th9 and Th2 CD4+ T cells to X4-tropic HIV-1 infection.

    PubMed

    Orlova-Fink, Nina; Chowdhury, Fatema Z; Sun, Xiaoming; Harrington, Sean; Rosenberg, Eric S; Yu, Xu G; Lichterfeld, Mathias

    2017-10-23

    The functional polarization of CD4 T cells determines their antimicrobial effector profile, but may also impact the susceptibility to infection with HIV-1. Here, we analyzed the susceptibility of CD4 T cells with different functional polarization to infection with X4 and R5-tropic HIV-1. CD4 T cells with a Th1, Th2, Th17, and Th9 polarization were subjected to in-vitro infection assays with X4, R5, or vesicular stomatitis virus-G protein-pseudotyped HIV-1. In addition, we sorted differentially polarized CD4 T-cell subsets from individuals treated with antiretroviral therapy and analyzed the tropism of viral env sequences. Th9-polarized CD4 T cells and, to a lesser extent, Th2-polarized CD4 T cells expressed higher surface levels of CXCR4, and are more permissive to X4-tropic infection in vitro. In contrast, Th1 and Th17 CD4 T cells exhibited stronger surface expression of CCR5, and were more susceptible to infection with R5-tropic viruses. Correspondingly, the distribution of X4-tropic viral sequences in antiretroviral therapy-treated HIV-1-infected patients was biased toward Th9/Th2 cells, whereas R5-tropic sequences were more frequently observed in Th17 cells. CD4 T-cell polarization is associated with a distinct susceptibility to X4 and R5-tropic HIV-1 infection.

  12. Profiling MHC II immunopeptidome of blood-stage malaria reveals that cDC1 control the functionality of parasite-specific CD4 T cells.

    PubMed

    Draheim, Marion; Wlodarczyk, Myriam F; Crozat, Karine; Saliou, Jean-Michel; Alayi, Tchilabalo Dilezitoko; Tomavo, Stanislas; Hassan, Ali; Salvioni, Anna; Demarta-Gatsi, Claudia; Sidney, John; Sette, Alessandro; Dalod, Marc; Berry, Antoine; Silvie, Olivier; Blanchard, Nicolas

    2017-11-01

    In malaria, CD4 Th1 and T follicular helper (T FH ) cells are important for controlling parasite growth, but Th1 cells also contribute to immunopathology. Moreover, various regulatory CD4 T-cell subsets are critical to hamper pathology. Yet the antigen-presenting cells controlling Th functionality, as well as the antigens recognized by CD4 T cells, are largely unknown. Here, we characterize the MHC II immunopeptidome presented by DC during blood-stage malaria in mice. We establish the immunodominance hierarchy of 14 MHC II ligands derived from conserved parasite proteins. Immunodominance is shaped differently whether blood stage is preceded or not by liver stage, but the same ETRAMP-specific dominant response develops in both contexts. In naïve mice and at the onset of cerebral malaria, CD8α + dendritic cells (cDC1) are superior to other DC subsets for MHC II presentation of the ETRAMP epitope. Using in vivo depletion of cDC1, we show that cDC1 promote parasite-specific Th1 cells and inhibit the development of IL-10 + CD4 T cells. This work profiles the P. berghei blood-stage MHC II immunopeptidome, highlights the potency of cDC1 to present malaria antigens on MHC II, and reveals a major role for cDC1 in regulating malaria-specific CD4 T-cell responses. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  13. Characterization of CD4+ T cell-mediated cytotoxicity in patients with multiple myeloma.

    PubMed

    Zhang, Xiaole; Gao, Lei; Meng, Kai; Han, Chunting; Li, Qiang; Feng, Zhenjun; Chen, Lei

    2018-05-01

    Multiple myeloma (MM) is an incurable cancer characterized by the development of malignant plasma cells. The CD8 T cell-mediated cytotoxicity is considered a major player in antitumor immunity, but in MM patients, the CD8 T cells displayed senescence markers and were functionally impaired. To investigate whether cytotoxic CD4 T cells could act as a treatment alternative in MM, we examined the frequency and function of naturally occurring cytotoxic CD4 T cells in MM patients. The cytotoxic CD4 T cells were identified as granzyme-A, granzyme B-, and perforin-expressing CD4 T cells, and their frequencies were significantly upregulated in MM patients when compared with healthy controls. The frequencies of cytotoxic CD4 T cells in MM patients were not associated with the frequencies of cytotoxic CD8 T cells, but were negatively associated with disease severity. Interestingly, the expression levels of inhibitory molecules, including PD-1 and CTLA-4, were significantly lower in cytotoxic CD4 T cells than in cytotoxic CD8 T cells. When co-incubated with autologous CD38 + CD138 + plasma cells, CD4 T cells were capable of eliminating plasma cells with varying degrees of efficacy. In MM patients, the frequency of circulating plasma cells was negatively correlated with the frequency of cytotoxic CD4 T cells. Therefore, CD4 T cell-mediated cytotoxicity existed naturally in MM patients and could potentially act as an option in antitumor therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. High Cell Surface Expression of CD4 Allows Distinction of CD4+CD25+ Antigen-specific Effector T Cells from CD4+CD25+ Regulatory T Cells in Murine Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Li, Jinzhu; Ridgway, William; Fathman, C. Garrison; Tse, Harley Y.; Shaw, Michael K.

    2008-01-01

    Analysis of T regulatory cells (Treg) and T effector cells (Teff) in experimental autoimmune encephalomyelitis is complicated by the fact that both cell types express CD4 and CD25. We demonstrate that encephalitogenic T cells, following antigen recognition, up regulate cell surface expression of CD4. The CD4high sub-population contains all of the antigen response as shown by proliferation and cytokine secretion, and only these cells are capable of transferring EAE to naive animals. On the other hand, a FACS separable CD25+ sub-population of cells displayed consistent levels of CD4 prior to and after antigen stimulation. These cells displayed characteristics of Treg, such as expressing high levels of the Foxp3 gene and the ability to suppress mitogenic T cell responses. PMID:17920698

  15. Isolation of CD4+CD25+ regulatory T cells for clinical trials.

    PubMed

    Hoffmann, Petra; Boeld, Tina J; Eder, Ruediger; Albrecht, Julia; Doser, Kristina; Piseshka, Biserka; Dada, Ashraf; Niemand, Claudia; Assenmacher, Mario; Orsó, Evelyn; Andreesen, Reinhard; Holler, Ernst; Edinger, Matthias

    2006-03-01

    The adoptive transfer of donor CD4+CD25+ regulatory T cells has been shown to protect from lethal graft-versus-host disease after allogeneic bone marrow transplantation in murine disease models. Efficient isolation strategies that comply with good manufacturing practice (GMP) guidelines are prerequisites for the clinical application of human CD4+CD25+ regulatory T cells. Here we describe the isolation of CD4+CD25+ T cells with regulatory function from standard leukapheresis products by using a 2-step magnetic cell-separation protocol performed under GMP conditions. The generated cell products contained on average 49.5% CD4+CD25high T cells that phenotypically and functionally represented natural CD4+CD25+ regulatory T cells and showed a suppressive activity comparable to that of CD4+CD25+ regulatory T-cell preparations purified by non-GMP-approved fluorescence-activated cell sorting.

  16. Central memory CD4 T cells are associated with incomplete restoration of the CD4 T cell pool after treatment-induced long-term undetectable HIV viraemia.

    PubMed

    Rallón, Norma; Sempere-Ortells, José M; Soriano, Vincent; Benito, José M

    2013-11-01

    It is unclear to what extent T cell reconstitution may be possible in HIV-1-infected individuals on continuous successful highly active antiretroviral therapy (HAART). Herein, we analysed distinct phenotypic markers of immune recovery in patients with undetectable viraemia for 8 years, taking as reference untreated patients and healthy controls. Seventy-two subjects were examined: 28 HIV-1+ patients on successful long-term HAART, 24 HIV-1+ untreated viraemic patients and 20 age-matched healthy controls. Analysis of naive and memory CD4 and CD8 T cells was combined with measurements of activation status (expression of CD38) and with thymic function (expression of CD31). Statistical significance was determined by non-parametric tests. After long-term HAART, the majority of parameters were normalized compared with age-matched control values, including T cell activation and thymic function. However, absolute counts of naive and central memory CD4 T cells remained below normal levels. The only parameters significantly associated with CD4 counts at the end of follow-up were the pre-HAART CD4 count ( β ± SD = 0.54 ± 0.16, P = 0.003) and the level of CD4 central memory cells at the end of follow-up (β ± SD = 1.18 ± 0.23, P < 0.0001). Only patients starting HAART with CD4 counts >350 cells/mm(3) reached a complete normalization of CD4 counts. Even after long-term successful HAART, complete CD4 restoration may be attainable only in patients starting therapy with moderately high CD4 counts, prompting early initiation of antiretroviral therapy. Incomplete CD4 restoration may be associated with a defective restoration of central memory CD4 T cells, a cell subset with a pivotal role in T cell homeostasis.

  17. γδ T cells affect IL-4 production and B-cell tolerance

    PubMed Central

    Huang, Yafei; Heiser, Ryan A.; Detanico, Thiago O.; Getahun, Andrew; Kirchenbaum, Greg A.; Casper, Tamara L.; Aydintug, M. Kemal; Carding, Simon R.; Ikuta, Koichi; Huang, Hua; Cambier, John C.; Wysocki, Lawrence J.; O’Brien, Rebecca L.; Born, Willi K.

    2015-01-01

    γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4–producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels. Its B cells expressed IL-4–regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4–inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance. PMID:25535377

  18. γδ T cells affect IL-4 production and B-cell tolerance.

    PubMed

    Huang, Yafei; Heiser, Ryan A; Detanico, Thiago O; Getahun, Andrew; Kirchenbaum, Greg A; Casper, Tamara L; Aydintug, M Kemal; Carding, Simon R; Ikuta, Koichi; Huang, Hua; Cambier, John C; Wysocki, Lawrence J; O'Brien, Rebecca L; Born, Willi K

    2015-01-06

    γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4-producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels. Its B cells expressed IL-4-regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4-inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance.

  19. Barium Promotes Anchorage-Independent Growth and Invasion of Human HaCaT Keratinocytes via Activation of c-SRC Kinase

    PubMed Central

    Thang, Nguyen Dinh; Yajima, Ichiro; Kumasaka, Mayuko Y.; Ohnuma, Shoko; Yanagishita, Takeshi; Hayashi, Rumiko; Shekhar, Hossain U.; Watanabe, Daisuke; Kato, Masashi

    2011-01-01

    Explosive increases in skin cancers have been reported in more than 36 million patients with arsenicosis caused by drinking arsenic-polluted well water. This study and previous studies showed high levels of barium as well as arsenic in the well water. However, there have been no reports showing a correlation between barium and cancer. In this study, we examined whether barium (BaCl2) may independently have cancer-related effects on human precancerous keratinocytes (HaCaT). Barium (5–50 µM) biologically promoted anchorage-independent growth and invasion of HaCaT cells in vitro. Barium (5 µM) biochemically enhanced activities of c-SRC, FAK, ERK and MT1-MMP molecules, which regulate anchorage-independent growth and/or invasion. A SRC kinase specific inhibitor, protein phosphatase 2 (PP2), blocked barium-mediated promotion of anchorage-independent growth and invasion with decreased c-SRC kinase activity. Barium (2.5–5 µM) also promoted anchorage-independent growth and invasion of fibroblasts (NIH3T3) and immortalized nontumorigenic melanocytes (melan-a), but not transformed cutaneous squamous cell carcinoma (HSC5 and A431) and malignant melanoma (Mel-ret) cells, with activation of c-SRC kinase. Taken together, our biological and biochemical findings newly suggest that the levels of barium shown in drinking well water independently has the cancer-promoting effects on precancerous keratinocytes, fibroblast and melanocytes in vitro. PMID:22022425

  20. The T4 Phage DNA Mimic Protein Arn Inhibits the DNA Binding Activity of the Bacterial Histone-like Protein H-NS*

    PubMed Central

    Ho, Chun-Han; Wang, Hao-Ching; Ko, Tzu-Ping; Chang, Yuan-Chih; Wang, Andrew H.-J.

    2014-01-01

    The T4 phage protein Arn (Anti restriction nuclease) was identified as an inhibitor of the restriction enzyme McrBC. However, until now its molecular mechanism remained unclear. In the present study we used structural approaches to investigate biological properties of Arn. A structural analysis of Arn revealed that its shape and negative charge distribution are similar to dsDNA, suggesting that this protein could act as a DNA mimic. In a subsequent proteomic analysis, we found that the bacterial histone-like protein H-NS interacts with Arn, implying a new function. An electrophoretic mobility shift assay showed that Arn prevents H-NS from binding to the Escherichia coli hns and T4 p8.1 promoters. In vitro gene expression and electron microscopy analyses also indicated that Arn counteracts the gene-silencing effect of H-NS on a reporter gene. Because McrBC and H-NS both participate in the host defense system, our findings suggest that T4 Arn might knock down these mechanisms using its DNA mimicking properties. PMID:25118281

  1. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    NASA Astrophysics Data System (ADS)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-02-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is Treg-/Foxp3-independent, requires IL-10 and is overcome by IL-1β. TNFi-exposed IL-17+ CD4+ T cells are molecularly and functionally distinct, with a unique gene signature characterized by expression of IL10 and IKZF3 (encoding Aiolos). We show that Aiolos binds conserved regions in the IL10 locus in IL-17+ CD4+ T cells. Furthermore, IKZF3 and IL10 expression levels correlate in primary CD4+ T cells and Aiolos overexpression is sufficient to drive IL10 in these cells. Our data demonstrate that TNF-α blockade induces IL-10 in CD4+ T cells including Th17 cells and suggest a role for the transcription factor Aiolos in the regulation of IL-10 in CD4+ T cells.

  2. miRNA profiling of human naive CD4 T cells links miR-34c-5p to cell activation and HIV replication.

    PubMed

    Amaral, Andreia J; Andrade, Jorge; Foxall, Russell B; Matoso, Paula; Matos, Ana M; Soares, Rui S; Rocha, Cheila; Ramos, Christian G; Tendeiro, Rita; Serra-Caetano, Ana; Guerra-Assunção, José A; Santa-Marta, Mariana; Gonçalves, João; Gama-Carvalho, Margarida; Sousa, Ana E

    2017-02-01

    Cell activation is a vital step for T-cell memory/effector differentiation as well as for productive HIV infection. To identify novel regulators of this process, we used next-generation sequencing to profile changes in microRNA expression occurring in purified human naive CD4 T cells in response to TCR stimulation and/or HIV infection. Our results demonstrate, for the first time, the transcriptional up-regulation of miR-34c-5p in response to TCR stimulation in naive CD4 T cells. The induction of this miR was further consistently found to be reduced by both HIV-1 and HIV-2 infections. Overexpression of miR-34c-5p led to changes in the expression of several genes involved in TCR signaling and cell activation, confirming its role as a novel regulator of naive CD4 T-cell activation. We additionally show that miR-34c-5p promotes HIV-1 replication, suggesting that its down-regulation during HIV infection may be part of an anti-viral host response. © 2016 The Authors.

  3. CD4+ T Cell Help Guides Formation of CD103+ Lung-Resident Memory CD8+ T Cells during Influenza Viral Infection

    PubMed Central

    Laidlaw, Brian J.; Zhang, Nianzhi; Marshall, Heather D.; Staron, Mathew M.; Guan, Tianxia; Hu, Yinghong; Cauley, Linda S.; Craft, Joe; Kaech, Susan M.

    2014-01-01

    SUMMARY Tissue-resident memory T (Trm) cells provide enhanced protection against infection at mucosal sites. Here we found that CD4+ T cells are important for the formation of functional lung-resident CD8+ T cells after influenza virus infection. In the absence of CD4+ T cells, CD8+ T cells displayed reduced expression of CD103 (Itgae), were mislocalized away from airway epithelia, and demonstrated an impaired ability to recruit CD8+ T cells to the lung air-ways upon heterosubtypic challenge. CD4+ T cell-derived interferon-γ was necessary for generating lung-resident CD103+ CD8+ Trm CD8 T cells. Furthermore, expression of the transcription factor T-bet was increased in “unhelped” lung Trm cells, and a reduction in T-bet rescued CD103 expression in the absence of CD4+ T cell help. Thus, CD4+ T cell-dependent signals are important to limit expression of T-bet and allow for the development of CD103+ CD8+ Trm cells in the lung airways following respiratory infection. PMID:25308332

  4. Primary Murine CD4+ T Cells Fail to Acquire the Ability to Produce Effector Cytokines When Active Ras Is Present during Th1/Th2 Differentiation

    PubMed Central

    Janardhan, Sujit V.; Marks, Reinhard; Gajewski, Thomas F.

    2014-01-01

    Constitutive Ras signaling has been shown to augment IL-2 production, reverse anergy, and functionally replace many aspects of CD28 co-stimulation in CD4+ T cells. These data raise the possibility that introduction of active Ras into primary T cells might result in improved functionality in pathologic situations of T cell dysfunction, such as cancer or chronic viral infection. To test the biologic effects of active Ras in primary T cells, CD4+ T cells from Coxsackie-Adenovirus Receptor Transgenic mice were transduced with an adenovirus encoding active Ras. As expected, active Ras augmented IL-2 production in naive CD4+ T cells. However, when cells were cultured for 4 days under conditions to promote effector cell differentiation, active Ras inhibited the ability of CD4+ T cells to acquire a Th1 or Th2 effector cytokine profile. This differentiation defect was not due to deficient STAT4 or STAT6 activation by IL-12 or IL-4, respectively, nor was it associated with deficient induction of T-bet and GATA-3 expression. Impaired effector cytokine production in active Ras-transduced cells was associated with deficient demethylation of the IL-4 gene locus. Our results indicate that, despite augmenting acute activation of naïve T cells, constitutive Ras signaling inhibits the ability of CD4+ T cells to properly differentiate into Th1/Th2 effector cytokine-producing cells, in part by interfering with epigenetic modification of effector gene loci. Alternative strategies to potentiate Ras pathway signaling in T cells in a more regulated fashion should be considered as a therapeutic approach to improve immune responses in vivo. PMID:25397617

  5. Parasitic Nematode-Induced CD4+Foxp3+T Cells Can Ameliorate Allergic Airway Inflammation

    PubMed Central

    Kang, Shin Ae; Park, Mi-Kyung; Cho, Min Kyoung; Park, Sang Kyun; Jang, Min Seong; Yang, Bo-Gie; Jang, Myoung Ho; Kim, Dong-Hee; Yu, Hak Sun

    2014-01-01

    Background The recruitment of CD4+CD25+Foxp3+T (Treg) cells is one of the most important mechanisms by which parasites down-regulate the immune system. Methodology/Principal Findings We compared the effects of Treg cells from Trichinella spiralis-infected mice and uninfected mice on experimental allergic airway inflammation in order to understand the functions of parasite-induced Treg cells. After four weeks of T. spiralis infection, we isolated Foxp3-GFP-expressing cells from transgenic mice using a cell sorter. We injected CD4+Foxp3+ cells from T. spiralis-infected [Inf(+)Foxp3+] or uninfected [Inf(-)Foxp3+] mice into the tail veins of C57BL/6 mice before the induction of inflammation or during inflammation. Inflammation was induced by ovalbumin (OVA)-alum sensitization and OVA challenge. The concentrations of the Th2-related cytokines IL-4, IL-5, and IL-13 in the bronchial alveolar lavage fluid and the levels of OVA-specific IgE and IgG1 in the serum were lower in mice that received intravenous application of Inf(+)Foxp3+ cells [IV(inf):+(+) group] than in control mice. Some features of allergic airway inflammation were ameliorated by the intravenous application of Inf(-)Foxp3+ cells [IV(inf):+(-) group], but the effects were less distinct than those observed in the IV(inf):+(+) group. We found that Inf(+)Foxp3+ cells migrated to inflammation sites in the lung and expressed higher levels of Treg-cell homing receptors (CCR5 and CCR9) and activation markers (Klrg1, Capg, GARP, Gzmb, OX40) than did Inf(-)Foxp3+ cells. Conclusion/Significance T. spiralis infection promotes the proliferation and functional activation of Treg cells. Parasite-induced Treg cells migrate to the inflammation site and suppress immune responses more effectively than non-parasite-induced Treg cells. The adoptive transfer of Inf(+)Foxp3+ cells is an effective method for the treatment and prevention of allergic airway diseases in mice and is a promising therapeutic approach for the treatment

  6. Bystander CD4+ T lymphocytes survive in HIV-infected human lymphoid tissue

    NASA Technical Reports Server (NTRS)

    Grivel, Jean-Charles; Biancotto, Angelique; Ito, Yoshinori; Lima, Rosangela G.; Margolis, Leonid B.

    2003-01-01

    HIV infection is associated with depletion of CD4(+) T cells. The mechanisms of this phenomenon remain to be understood. In particular, it remains controversial whether and to what extent uninfected ("bystander") CD4(+) T cells die in HIV-infected individuals. We address this question using a system of human lymphoid tissue ex vivo. Tissue blocks were inoculated with HIV-1. After productive infection was established, they were treated with the reverse transcriptase inhibitor nevirapine to protect from infection those CD4(+) T cells that had not yet been infected. These CD4(+) T cells residing in HIV-infected tissue are by definition bystanders. Our results demonstrate that after nevirapine application the number of bystander CD4(+) T cells is conserved. Thus, in the context of HIV-infected human lymphoid tissue, productive HIV infection kills infected cells but is not sufficient to cause the death of a significant number of uninfected CD4(+) T cells.

  7. Eight new T4.5-T7.5 dwarfs discovered in the UKIDSS Large Area Survey Data Release 1

    NASA Astrophysics Data System (ADS)

    Lodieu, N.; Pinfield, D. J.; Leggett, S. K.; Jameson, R. F.; Mortlock, D. J.; Warren, S. J.; Burningham, B.; Lucas, P. W.; Chiu, K.; Liu, M. C.; Venemans, B. P.; McMahon, R. G.; Allard, F.; Baraffe, I.; Barrado y Navascués, D.; Carraro, G.; Casewell, S. L.; Chabrier, G.; Chappelle, R. J.; Clarke, F.; Day-Jones, A. C.; Deacon, N. R.; Dobbie, P. D.; Folkes, S. L.; Hambly, N. C.; Hewett, P. C.; Hodgkin, S. T.; Jones, H. R. A.; Kendall, T. R.; Magazzù, A.; Martín, E. L.; McCaughrean, M. J.; Nakajima, T.; Pavlenko, Y.; Tamura, M.; Tinney, C. G.; Zapatero Osorio, M. R.

    2007-08-01

    We present eight new T4.5-T7.5 dwarfs identified in the UKIRT (United Kingdom Infrared Telescope) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) Data Release 1 (DR1). In addition we have recovered the T4.5 dwarf SDSSJ020742.91+000056.2 and the T8.5 dwarf ULASJ003402.77-005206.7. Photometric candidates were picked up in two-colour diagrams over 190deg2 (DR1) and selected in at least two filters. All candidates exhibit near-infrared spectra with strong methane and water absorption bands characteristic of T dwarfs and the derived spectral types follow the unified scheme of Burgasser et al.. We have found six new T4.5-T5.5 dwarfs, one T7 dwarf, one T7.5 dwarf and recovered a T4.5 dwarf and a T8.5 dwarf. We provide distance estimates which lie in the 15-85pc range; the T7.5 and T8.5 dwarfs are probably within 25pc of the Sun. We conclude with a discussion of the number of T dwarfs expected after completion of the LAS, comparing these initial results to theoretical simulations. Based on observations made with the United Kingdom Infrared Telescope, operated by the Joint Astronomy Centre on behalf of the UK Particle Physics and Astronomy Research Council. E-mail: nlodieu@iac.es ‡ Alfred P. Sloan Research Fellow.

  8. Structural, Electronic, and Thermodynamic Properties of Tetragonal t-SixGe3−xN4

    PubMed Central

    Han, Chenxi; Chai, Changchun; Fan, Qingyang; Yang, Jionghao; Yang, Yintang

    2018-01-01

    The structural, mechanical, anisotropic, electronic, and thermal properties of t-Si3N4, t-Si2GeN4, t-SiGe2N4, and t-Ge3N4 in the tetragonal phase are systematically investigated in the present work. The mechanical stability is proved by the elastic constants of t-Si3N4, t-Si2GeN4, t-SiGe2N4, and t-Ge3N4. Moreover, they all demonstrate brittleness, because B/G < 1.75, and v < 0.26. The elastic anisotropy of t-Si3N4, t-Si2GeN4, t-SiGe2N4, and t-Ge3N4 is characterized by Poisson’s ratio, Young’s modulus, the percentage of elastic anisotropy for bulk modulus AB, the percentage of elastic anisotropy for shear modulus AG, and the universal anisotropic index AU. The electronic structures of t-Si3N4, t-Si2GeN4, t-SiGe2N4, and t-Ge3N4 are all wide band gap semiconductor materials, with band gaps of 4.26 eV, 3.94 eV, 3.83 eV, and 3.25 eV, respectively, when using the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional. Moreover, t-Ge3N4 is a quasi-direct gap semiconductor material. The thermodynamic properties of t-Si3N4, t-Si2GeN4, t-SiGe2N4, and t-Ge3N4 are investigated utilizing the quasi-harmonic Debye model. The effects of temperature and pressure on the thermal expansion coefficient, heat capacity, Debye temperature, and Grüneisen parameters are discussed in detail. PMID:29518943

  9. CD4 T Cell Responses in Latent and Chronic Viral Infections

    PubMed Central

    Walton, Senta; Mandaric, Sanja; Oxenius, Annette

    2013-01-01

    The spectrum of tasks which is fulfilled by CD4 T cells in the setting of viral infections is large, ranging from support of CD8 T cells and humoral immunity to exertion of direct antiviral effector functions. While our knowledge about the differentiation pathways, plasticity, and memory of CD4 T cell responses upon acute infections or immunizations has significantly increased during the past years, much less is still known about CD4 T cell differentiation and their beneficial or pathological functions during persistent viral infections. In this review we summarize current knowledge about the differentiation, direct or indirect antiviral effector functions, and the regulation of virus-specific CD4 T cells in the setting of persistent latent or active chronic viral infections with a particular emphasis on herpes virus infections for the former and chronic lymphocytic choriomeningitis virus infection for the latter. PMID:23717308

  10. Protective CD8 Memory T Cell Responses to Mouse Melanoma Are Generated in the Absence of CD4 T Cell Help

    PubMed Central

    Steinberg, Shannon M.; Zhang, Peisheng; Turk, Mary Jo

    2011-01-01

    Background We have previously demonstrated that temporary depletion of CD4 T cells in mice with progressive B16 melanoma, followed by surgical tumor excision, induces protective memory CD8 T cell responses to melanoma/melanocyte antigens. We also showed that persistence of these CD8 T cells is supported, in an antigen-dependent fashion, by concurrent autoimmune melanocyte destruction. Herein we explore the requirement of CD4 T cell help in priming and maintaining this protective CD8 T cell response to melanoma. Methodology and Principal Findings To induce melanoma/melanocyte antigen-specific CD8 T cells, B16 tumor bearing mice were depleted of regulatory T cells (Treg) by either temporary, or long-term continuous treatment with anti-CD4 (mAb clone GK1.5). Total depletion of CD4 T cells led to significant priming of IFN-γ-producing CD8 T cell responses to TRP-2 and gp100. Surprisingly, treatment with anti-CD25 (mAb clone PC61), to specifically deplete Treg cells while leaving help intact, was ineffective at priming CD8 T cells. Thirty to sixty days after primary tumors were surgically excised, mice completely lacking CD4 T cell help developed autoimmune vitiligo, and maintained antigen-specific memory CD8 T cell responses that were highly effective at producing cytokines (IFN-γ, TNF-α, and IL-2). Mice lacking total CD4 T cell help also mounted protection against re-challenge with B16 melanoma sixty days after primary tumor excision. Conclusions and Significance This work establishes that CD4 T cell help is dispensable for the generation of protective memory T cell responses to melanoma. Our findings support further use of CD4 T cell depletion therapy for inducing long-lived immunity to cancer. PMID:22046294

  11. Methylation of an intragenic alternative promoter regulates transcription of GARP.

    PubMed

    Haupt, Sonja; Söntgerath, Viktoria Sophie Apollonia; Leipe, Jan; Schulze-Koops, Hendrik; Skapenko, Alla

    2016-02-01

    Alternative promoter usage has been proposed as a mechanism regulating transcriptional and translational diversity in highly elaborated systems like the immune system in humans. Here, we report that transcription of human glycoprotein A repetitions predominant (GARP) in regulatory CD4 T cells (Tregs) is tightly regulated by two alternative promoters. An intragenic promoter contains several CpGs and acts as a weak promoter that is demethylated and initiates transcription Treg-specifically. The strong up-stream promoter containing a CpG-island is, in contrast, fully demethylated throughout tissues. Transcriptional activity of the strong promoter was surprisingly down-regulated upon demethylation of the weak promoter. This demethylation-induced transcriptional attenuation regulated the magnitude of GARP expression and correlated with disease activity in rheumatoid arthritis. Treg-specific GARP transcription was initiated by synergistic interaction of forkhead box protein 3 (Foxp3) with nuclear factor of activated T cells (NFAT) and was underpinned by permissive chromatin remodeling caused by release of the H3K4 demethylase, PLU-1. Our findings describe a novel function of alternative promoters in regulating the extent of transcription. Moreover, since GARP functions as a transporter of transforming growth factor β (TGFβ), a cytokine with broad pleiotropic traits, GARP transcriptional attenuation by alternative promoters might provide a mechanism regulating peripheral TGFβ to avoid unwanted harmful effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Peptidylarginine deiminase 4 promotes age-related organ fibrosis

    PubMed Central

    Erpenbeck, Luise; Savchenko, Alexander; Hayashi, Hideki; Cherpokova, Deya; Gallant, Maureen; Mauler, Maximilian; Cifuni, Stephen M.

    2017-01-01

    Aging promotes inflammation, a process contributing to fibrosis and decline in organ function. The release of neutrophil extracellular traps (NETs [NETosis]), orchestrated by peptidylarginine deiminase 4 (PAD4), damages organs in acute inflammatory models. We determined that NETosis is more prevalent in aged mice and investigated the role of PAD4/NETs in age-related organ fibrosis. Reduction in fibrosis was seen in the hearts and lungs of aged PAD4−/− mice compared with wild-type (WT) mice. An increase in left ventricular interstitial collagen deposition and a decline in systolic and diastolic function were present only in WT mice, and not in PAD4−/− mice. In an experimental model of cardiac fibrosis, cardiac pressure overload induced NETosis and significant platelet recruitment in WT but not PAD4−/− myocardium. DNase 1 was given to assess the effects of extracellular chromatin. PAD4 deficiency or DNase 1 similarly protected hearts from fibrosis. We propose a role for NETs in cardiac fibrosis and conclude that PAD4 regulates age-related organ fibrosis and dysfunction. PMID:28031479

  13. ShopSmart 4 Health: results of a randomized controlled trial of a behavioral intervention promoting fruit and vegetable consumption among socioeconomically disadvantaged women.

    PubMed

    Ball, Kylie; McNaughton, Sarah A; Le, Ha Nd; Abbott, Gavin; Stephens, Lena D; Crawford, David A

    2016-08-01

    Behavioral interventions show potential for promoting increased fruit and vegetable consumption in the general population. However, little is known about their effectiveness or cost-effectiveness among socioeconomically disadvantaged groups, who are less likely to consume adequate fruit and vegetables. This study investigated the effects and costs of a behavior change intervention for increasing fruit and vegetable purchasing and consumption among socioeconomically disadvantaged women. ShopSmart 4 Health was a randomized controlled trial involving a 3-mo retrospective baseline data collection phase [time (T) 0], a 6-mo intervention (T1-T2), and a 6-mo no-intervention follow-up (T3). Socioeconomically disadvantaged women who were primary household shoppers in Melbourne, Australia, were randomly assigned to either a behavior change intervention arm (n = 124) or a control arm (n = 124). Supermarket transaction (sales) data and surveys measured the main outcomes: fruit and vegetable purchases and self-reported fruit and vegetable consumption. An analysis of supermarket transaction data showed no significant intervention effects on vegetable or fruit purchasing at T2 or T3. Participants in the behavior change intervention arm reported consumption of significantly more vegetables during the intervention (T2) than did controls, with smaller intervention effects sustained at 6 mo postintervention (T3). Relative to controls, vegetable consumption increased by ∼0.5 serving · participant(-1) · d(-1) from baseline to T2 and remained 0.28 servings/d higher than baseline at T3 among those who received the intervention. There was no intervention effect on reported fruit consumption. The behavior change intervention cost A$3.10 (in Australian dollars) · increased serving of vegetables(-1) · d(-1)CONCLUSIONS: This behavioral intervention increased vegetable consumption among socioeconomically disadvantaged women. However, the lack of observed effects on fruit

  14. Pyroptosis drives CD4 T-cell depletion in HIV-1 infection

    PubMed Central

    Doitsh, Gilad; Galloway, Nicole LK; Geng, Xin; Yang, Zhiyuan; Monroe, Kathryn M.; Zepeda, Orlando; Hunt, Peter W.; Hatano, Hiroyu; Sowinski, Stefanie; Muñoz-Arias, Isa; Greene, Warner C.

    2014-01-01

    The pathway causing CD4 T-cell death in HIV-infected hosts remains poorly understood. Apoptosis has been proposed as the key mechanism for CD4 T-cell loss. We now show that caspase-3-mediated apoptosis accounts for the death of only a small fraction of productively infected cells. The remaining >95% of quiescent lymphoid CD4 T-cells die by caspase-1-mediated pyroptosis triggered by abortive viral infection. Pyroptosis corresponds to an intensely inflammatory form of programmed cell death where cytoplasmic contents and pro-inflammatory cytokines including IL-1β, are released. This death pathway thus links the two signature events in HIV infection––CD4 T-cell depletion and chronic inflammation––and creates a vicious pathogenic cycle where dying CD4 T-cells release inflammatory signals that attract more cells to die. This cycle can be broken by caspase-1 inhibitors shown to be safe in humans, raising the possibility of a new class of “anti-AIDS” therapeutics targeting the host rather than the virus. PMID:24356306

  15. Imaging CD4 T Cell Interstitial Migration in the Inflamed Dermis

    PubMed Central

    Gaylo, Alison; Overstreet, Michael G.; Fowell, Deborah J.

    2016-01-01

    The ability of CD4 T cells to carry out effector functions is dependent upon the rapid and efficient migration of these cells in inflamed peripheral tissues through an as-yet undefined mechanism. The application of multiphoton microscopy to the study of the immune system provides a tool to measure the dynamics of immune responses within intact tissues. Here we present a protocol for non-invasive intravital multiphoton imaging of CD4 T cells in the inflamed mouse ear dermis. Use of a custom imaging platform and a venous catheter allows for the visualization of CD4 T cell dynamics in the dermal interstitium, with the ability to interrogate these cells in real-time via the addition of blocking antibodies to key molecular components involved in motility. This system provides advantages over both in vitro models and surgically invasive imaging procedures. Understanding the pathways used by CD4 T cells for motility may ultimately provide insight into the basic function of CD4 T cells as well as the pathogenesis of both autoimmune diseases and pathology from chronic infections. PMID:27078264

  16. Genetic recombination induced by DNA double-strand break in bacteriophage T4: nature of the left/right bias.

    PubMed

    Shcherbakov, Victor P; Shcherbakova, Tamara; Plugina, Lidiya; Sizova, Svetlana; Kudryashova, Elena; Granovsky, Igor

    2008-06-01

    The experimental system combining double-strand breaks (DSBs), produced site-specifically by SegC endonuclease, with the famous advantages of the bacteriophage T4 rII mutant recombination analysis was used here to elucidate the origin of the recombination bias on two sides of the DSB, especially pronounced in gene 39 (topoisomerase II) and gene 59 (41-helicase loader) mutants. Three sources were found to contribute to the bias: (1) the SegC endonuclease may remain bound to the end of the broken DNA and thus protect it from exonuclease degradation; (2) in heteroduplex heterozygotes (HHs), arising as the recombinant products in the left-hand crosses, the transcribed strands are of rII mutant phenotype, so they, in contrast to the right-hand HHs, do not produce plaques on the lawn of the lambda-lysogenic host; and (3) the intrinsic polarity of T4 chromosome, reflected in transcription, may be a cause for discrimination of promoter-proximal and promoter-distal DNA sequences. It is shown that the apparent recombination bias does not imply one-sidedness of the DSB repair but just reflects a different depth of the end processing. It is inferred that the cause, underlying the "intrinsic" bias, might be interference between strand exchange and transcription. Topoisomerase and helicase functions are necessary to turn the process in favor of strand exchange. The idea is substantiated that the double-stranded to single-stranded DNA transition edge (not ss-DNA tip) serves as an actual recombinogenic element.

  17. Functional Heterogeneity in the CD4+ T Cell Response to Murine γ-Herpesvirus 68

    PubMed Central

    Hu, Zhuting; Blackman, Marcia A.; Kaye, Kenneth M.; Usherwood, Edward J.

    2015-01-01

    CD4+ T cells are critical for the control of virus infections, T cell memory and immune surveillance. Here we studied the differentiation and function of murine γ-herpesvirus 68 (MHV-68)-specific CD4+ T cells using gp150-specific TCR transgenic mice. This allowed a more detailed study of the characteristics of the CD4+ T cell response than previously available approaches for this virus. Most gp150-specific CD4+ T cells expressed T-bet and produced IFN-γ, indicating MHV-68 infection triggered differentiation of CD4+ T cells largely into the Th1 subset, whereas some became TFH and Foxp3+ regulatory T cells. These CD4+ T cells were protective against MHV-68 infection, in the absence of CD8+ T cells and B cells, and protection depended on IFN-γ secretion. Marked heterogeneity was observed in the CD4+ T cells, based on Ly6C expression. Ly6C expression positively correlated with IFN-γ, TNF-α and granzyme B production, T-bet and KLRG1 expression, proliferation and CD4+ T cell-mediated cytotoxicity. Ly6C expression inversely correlated with survival, CCR7 expression and secondary expansion potential. Ly6C+ and Ly6C− gp150-specific CD4+ T cells were able to interconvert in a bidirectional manner upon secondary antigen exposure in vivo. These results indicate that Ly6C expression is closely associated with antiviral activity in effector CD4+ T cells, but inversely correlated with memory potential. Interconversion between Ly6C+ and Ly6C− cells may maintain a balance between the two antigen-specific CD4+ T cell populations during MHV-68 infection. These findings have significant implications for Ly6C as a surface marker to distinguish functionally distinct CD4+ T cells during persistent virus infection. PMID:25662997

  18. Depletion of CD52-positive cells inhibits the development of central nervous system autoimmune disease, but deletes an immune-tolerance promoting CD8 T-cell population. Implications for secondary autoimmunity of alemtuzumab in multiple sclerosis.

    PubMed

    von Kutzleben, Stephanie; Pryce, Gareth; Giovannoni, Gavin; Baker, David

    2017-04-01

    The objective was to determine whether CD52 lymphocyte depletion can act to promote immunological tolerance induction by way of intravenous antigen administration such that it could be used to either improve efficiency of multiple sclerosis (MS) inhibition or inhibit secondary autoimmunities that may occur following alemtuzumab use in MS. Relapsing experimental autoimmune encephalomyelitis was induced in ABH mice and immune cell depletion was therapeutically applied using mouse CD52 or CD4 (in conjunction with CD8 or CD20) depleting monoclonal antibodies. Immunological unresponsiveness was then subsequently induced using intravenous central nervous system antigens and responses were assessed clinically. A dose-response of CD4 monoclonal antibody depletion indicated that the 60-70% functional CD4 T-cell depletion achieved in perceived failed trials in MS was perhaps too low to even stop disease in animals. However, more marked (~75-90%) physical depletion of CD4 T cells by CD4 and CD52 depleting antibodies inhibited relapsing disease. Surprisingly, in contrast to CD4 depletion, CD52 depletion blocked robust immunological unresponsiveness through a mechanism involving CD8 T cells. Although efficacy was related to the level of CD4 T-cell depletion, the observations that CD52 depletion of CD19 B cells was less marked in lymphoid organs than in the blood provides a rationale for the rapid B-cell hyper-repopulation that occurs following alemtuzumab administration in MS. That B cells repopulate in the relative absence of T-cell regulatory mechanisms that promote immune tolerance may account for the secondary B-cell autoimmunities, which occur following alemtuzumab treatment of MS. © 2016 The Authors. Immunology Published by John Wiley & Sons Ltd.

  19. Helminth-conditioned dendritic cells prime CD4+ T cells to IL-4 production in vivo.

    PubMed

    Connor, Lisa M; Tang, Shiau-Choot; Camberis, Mali; Le Gros, Graham; Ronchese, Franca

    2014-09-15

    Dendritic cells (DC) are critical for the initiation of immune responses; however, their role in priming IL-4-producing Th2 cells in vivo is not fully understood. We used a model of intradermal injection with fluorescent-labeled, nonviable larvae from the helminth parasite nonviable Nippostrongylus brasiliensis L3 larvae (Nb), a strong inducer of Th2 responses, together with IL-4-GFP reporter mice that enable a sensitive detection of IL-4 production to examine the contribution of DC to the priming of IL-4-producing CD4(+) T cells in vivo. We found that parasite material is taken up by two distinct DC populations in draining lymph nodes: a mostly CD11c(int)MHC class II (MHCII)(hi)CD11b(+)Ly6C(-) dermal DC population and a CD11c(hi)MHCII(int)CD11b(+)Ly6C(+) monocyte-derived DC population. After Nb treatment, these two DC populations appeared in the draining lymph nodes in comparable numbers and with similar kinetics; however, treatment with pertussis toxin blocked the migration of dermal DC and the priming of IL-4-producing T cells, but only partially affected monocyte-derived DC numbers. In line with this observation, transfer of OVA-loaded CD11c(int)MHCII(hi) DC from Nb-treated mice into naive hosts could sensitize OVA-specific CD4(+) T cells to IL-4 production, whereas transfer of CD11c(int)MHCII(hi) DC from naive mice, or CD11c(hi)MHCII(int) DC from Nb-treated or naive mice, induced CD4(+) T cell expansion but no IL-4 production. Phenotypic analysis of Nb-loaded CD11c(int)MHCII(hi) DC revealed expression of programmed death ligand 2, CD301b, IFN regulatory factor 4, and moderate upregulation of OX40 ligand. However, thymic stromal lymphopoietin and OX40 ligand were not required for Th2 priming. Thus, our data suggest that appropriate stimuli can induce DC to express the unique signals sufficient to direct CD4(+) T cells to Th2 differentiation. Copyright © 2014 by The American Association of Immunologists, Inc.

  20. Intracellular signaling required for CCL25-stimulated T cell adhesion mediated by the integrin alpha4beta1.

    PubMed

    Parmo-Cabañas, Marisa; García-Bernal, David; García-Verdugo, Rosa; Kremer, Leonor; Márquez, Gabriel; Teixidó, Joaquin

    2007-08-01

    The alpha4beta1 integrin is expressed on thymocytes and mediates cell attachment to its ligands CS-1/fibronectin (CS-1/FN) and VCAM-1 in the thymus. The chemokine CCL25 is highly expressed in the thymus, where it binds to its receptor CCR9 on thymocytes promoting migration and activation. We show here that alpha4beta1 and CCR9 are coexpressed mainly on double- and single-positive thymocytes and that CCL25 strongly stimulates CD4(+)CD8(+) and CD4(+)CD8(-) adhesion to CS-1/FN and VCAM-1. CCL25 rapidly activated the GTPases Rac and Rap1 on thymocytes, and this activation was required for stimulation of adhesion, as detected using the CCR9(+)/alpha4beta1(+) human T cell line Molt-4. To study the role on CCL25-stimulated adhesion of the Rac downstream effector Wiskott-Aldrich syndrome protein family verproline-homologous protein 2 (WAVE2) as well as of Rap1-GTP-interacting proteins, regulator of adhesion and cell polarization enriched in lymphoid tissues (RAPL) and Rap1-GTP-interacting adapter molecule (RIAM), we knocked down their expression and tested transfectant attachment to alpha4beta1 ligands. We found that WAVE2 and RAPL but not RIAM were required for efficient triggering by CCL25 of T cell adhesion to CS-1/FN and VCAM-1. Although Rac and Rap1 activation was required during early steps of T cell adhesion stimulated by CCL25, WAVE2 was needed for the development of actin-dependent T cell spreading subsequent to adhesion strengthening but not during initial alpha4beta1-ligand interactions. These results suggest that regulation by CCL25 of adhesion of thymocyte subpopulations mediated by alpha4beta1 could contribute to control their trafficking in the thymus during maturation, and identify Rac-WAVE2 and Rap1-RAPL as pathways whose activation is required in inside-out signaling, leading to stimulated adhesion.

  1. eNOS gene T786C, G894T and 4a4b polymorphisms and male infertility susceptibility: a meta-analysis.

    PubMed

    Chang, J; Pan, F; Tang, Q; Wu, W; Chen, M; Lu, C; Ding, H; Hu, L; Chen, D; Xia, Y; Wang, X

    2017-05-01

    The association between polymorphism of eNOS and male infertility in several studies was controversial. To explore a more precise estimation of the association, a meta-analysis of eight case-control studies, including 1,968 cases and 1,539 controls, were selected. The meta-analysis was conducted by calculating the pooled odds ratio (OR) with a 95% confidence interval (95% CI). Overall, the association between T786C and risk of male infertility was obvious (TC vs. TT: OR, 1.20; 95% CI, 1.01-1.42; CC vs. TT: OR, 3.37; 95% CI, 1.65-6.87; TC/CC vs. TT: OR, 1.47; 95% CI, 1.25-1.73; CC vs. OR, 3.18; 95% CI, 1.54-6.56; TC vs. TT: OR, 1.65; 95% CI, 1.27-2.03). However, no overall association was observed between the other two polymorphisms of eNOS (G894T and 4a4b) and male infertility. Stratified analysis showed that significantly strong association between T786C polymorphism and semen quality was present in all three types of male infertility (azoospermia, oligozoospermia and asthenozoospermia). In the subgroup analysis based on ethnicity, both T786C and 4a4b could influence the risk of male infertility in Asian and Caucasian. Further studies of polymorphisms of eNOS with their biological functions are needed to understand the role in the development of male infertility. © 2016 Blackwell Verlag GmbH.

  2. Esophageal ultrasound (EUS) assessment of T4 status in NSCLC patients.

    PubMed

    Kuijvenhoven, Jolanda C; Crombag, Laurence; Breen, David P; van den Berk, Inge; Versteegh, Michel I M; Braun, Jerry; Winkelman, Toon A; van Boven, Wimjan; Bonta, Peter I; Rabe, Klaus F; Annema, Jouke T

    2017-12-01

    Mediastinal and central large vessels (T4) invasion by lung cancer is often difficult to assess preoperatively due to the limited accuracy of computed tomography (CT) scan of the chest. Esophageal ultrasound (EUS) can visualize the relationship of para-esophageally located lung tumors to surrounding mediastinal structures. To assess the value of EUS for detecting mediastinal invasion (T4) of centrally located lung tumors. Patients who underwent EUS for the diagnosis and staging of lung cancer and in whom the primary tumor was detected by EUS and who subsequently underwent surgical- pathological staging (2000-2016) were retrospectively selected from two university hospitals in The Netherlands. T status of the lung tumor was reviewed based on EUS, CT and thoracotomy findings. Surgical- pathological staging was the reference standard. In 426 patients, a lung malignancy was detected by EUS of which 74 subjects subsequently underwent surgical- pathological staging. 19 patients (26%) were diagnosed with stage T4 based on vascular (n=8, 42%) or mediastinal (n=8, 42%) invasion or both (n=2, 11%), one patient (5%) had vertebral involvement. Sensitivity, specificity, PPV and NPV for assessing T4 status were: for EUS (n=74); 42%, 95%, 73%, 83%, for chest CT (n=66); 76%, 61%, 41%, 88% and the combination of EUS and chest CT (both positive or negative for T4, (n=34); 83%, 100%, 100% 97%. EUS has a high specificity and NPV for the T4 assessment of lung tumors located para-esophageally and offers further value to chest CT scan. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. IL-4-secreting eosinophils promote endometrial stromal cell proliferation and prevent Chlamydia-induced upper genital tract damage.

    PubMed

    Vicetti Miguel, Rodolfo D; Quispe Calla, Nirk E; Dixon, Darlene; Foster, Robert A; Gambotto, Andrea; Pavelko, Stephen D; Hall-Stoodley, Luanne; Cherpes, Thomas L

    2017-08-15

    Genital Chlamydia trachomatis infections in women typically are asymptomatic and do not cause permanent upper genital tract (UGT) damage. Consistent with this presentation, type 2 innate and T H 2 adaptive immune responses associated with dampened inflammation and tissue repair are elicited in the UGT of Chlamydia -infected women. Primary C. trachomatis infection of mice also causes no genital pathology, but unlike women, does not generate Chlamydia -specific T H 2 immunity. Herein, we explored the significance of type 2 innate immunity for restricting UGT tissue damage in Chlamydia -infected mice, and in initial studies intravaginally infected wild-type, IL-10 -/- , IL-4 -/- , and IL-4Rα -/- mice with low-dose C. trachomatis inoculums. Whereas Chlamydia was comparably cleared in all groups, IL-4 -/- and IL-4Rα -/- mice displayed endometrial damage not seen in wild-type or IL-10 -/- mice. Congruent with the aberrant tissue repair in mice with deficient IL-4 signaling, we found that IL-4Rα and STAT6 signaling mediated IL-4-induced endometrial stromal cell (ESC) proliferation ex vivo, and that genital administration of an IL-4-expressing adenoviral vector greatly increased in vivo ESC proliferation. Studies with IL-4-IRES-eGFP (4get) reporter mice showed eosinophils were the main IL-4-producing endometrial leukocyte (constitutively and during Chlamydia infection), whereas studies with eosinophil-deficient mice identified this innate immune cell as essential for endometrial repair during Chlamydia infection. Together, our studies reveal IL-4-producing eosinophils stimulate ESC proliferation and prevent Chlamydia -induced endometrial damage. Based on these results, it seems possible that the robust type 2 immunity elicited by Chlamydia infection of human genital tissue may analogously promote repair processes that reduce phenotypic disease expression.

  4. Prognostic significance of 5T4 oncofetal antigen expression in colorectal carcinoma.

    PubMed Central

    Starzynska, T.; Marsh, P. J.; Schofield, P. F.; Roberts, S. A.; Myers, K. A.; Stern, P. L.

    1994-01-01

    The 5T4 oncofetal antigen is a 72 kDa glycoprotein defined by a monoclonal antibody raised against human placental trophoblast and is expressed in many different carcinomas but detected only at low levels in some normal epithelia. Immunohistochemical analysis of the patterns of expression in colorectal carcinomas has indicated a significant association between the presence of the antigen in tumour cells and metastatic spread. The 5T4 antigen phenotype of 72 colorectal cancers has been compared with the clinical outcome of the patients in order to assess its relationship with prognosis. Forty per cent of tumours were 5T4 positive; the remainder were either unlabelled or exhibited stroma-associated labelling only. There was a significant correlation between 5T4 expression in the malignant cells and unfavourable course of disease (P < 0.001). The 5 year survival with 5T4-positive tumours was 22% compared with 75% for patients with 5T4-negative tumours; median survival was 24 versus > 90 months respectively. Stratified analysis showed that 5T4 antigen tumour positivity was acting independently of each of stage, site of tumour, age or sex. There were significant differences in survival for patients with Dukes' B and C stage carcinomas (P = 0.001 and P = 0.034). The results suggest that in colorectal cancer immunohistochemical assessment of 5T4 expression may be useful in identifying patients at high risk for tumour recurrence and for whom additional treatment strategies might be most appropriate. Images Figure 1 PMID:8180020

  5. CD4(+) T-cell help amplifies innate signals for primary CD8(+) T-cell immunity.

    PubMed

    Bedoui, Sammy; Heath, William R; Mueller, Scott N

    2016-07-01

    CD8(+) T cells provide an important component of protection against intracellular infections and cancer. Immune responses by these T cells involve a primary phase of effector expansion and differentiation, followed by a contraction phase leading to memory formation and, if antigen is re-encountered, a secondary expansion phase with more rapid differentiation. Both primary and secondary phases of CD8(+) T-cell immunity have been shown to depend on CD4(+) T-cell help, although during certain infections the primary phase is variable in this requirement. One explanation for such variability relates to the strength of associated inflammatory signals, with weak signals requiring help. Here, we focus on our studies that have dissected the requirements for help in the primary phase of the CTL response to herpes simplex virus, elucidating intricate interactions and communications between CD4(+) T cells, various dendritic cell subsets, and CD8(+) T cells. We place our studies in the context of others and describe a simple model of help where CD40 signaling amplifies innate signals to enable efficient CD8(+) T-cell expansion and differentiation. This model facilitates CTL induction to various different agents, without altering the qualitative innate signals that direct other important arms of immunity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. T cell costimulation via the integrin VLA-4 inhibits the actin-dependent centralization of signaling microclusters containing the adaptor SLP-76.

    PubMed

    Nguyen, Ken; Sylvain, Nicholas R; Bunnell, Stephen C

    2008-06-01

    Antigen-dependent T cell activation drives the formation of signaling microclusters containing the adaptor SLP-76. Costimulatory integrins regulate SLP-76 phosphorylation and could influence SLP-76 microclusters in the integrin-rich periphery of the immune synapse. We report that costimulation by the integrin VLA-4 (alpha4beta1) required SLP-76 domains implicated in microcluster assembly. Pro-adhesive ligands enlarged the contact and increased the number of SLP-76 microclusters regardless of their costimulatory potential. Costimulatory VLA-4 ligands also prevented the centralization of SLP-76, promoted microcluster persistence, prolonged lateral interactions between SLP-76 and its upstream kinase, ZAP-70, and retained SLP-76 in tyrosine-phosphorylated peripheral structures. SLP-76 centralization was driven by dynamic actin polymerization and was correlated with inward actin flows. VLA-4 ligation retarded these flows, even in the absence of SLP-76. These data suggest a widely applicable model of costimulation, in which integrins promote sustained signaling by attenuating cytoskeletal movements that drive the centralization and inactivation of SLP-76 microclusters.

  7. Simian Virus 40 Large T Antigen Interacts with Human TFIIB-Related Factor and Small Nuclear RNA-Activating Protein Complex for Transcriptional Activation of TATA-Containing Polymerase III Promoters

    PubMed Central

    Damania, Blossom; Mital, Renu; Alwine, James C.

    1998-01-01

    The TATA-binding protein (TBP) is common to the basal transcription factors of all three RNA polymerases, being associated with polymerase-specific TBP-associated factors (TAFs). Simian virus 40 large T antigen has previously been shown to interact with the TBP-TAFII complexes, TFIID (B. Damania and J. C. Alwine, Genes Dev. 10:1369–1381, 1996), and the TBP-TAFI complex, SL1 (W. Zhai, J. Tuan, and L. Comai, Genes Dev. 11:1605–1617, 1997), and in both cases these interactions are critical for transcriptional activation. We show a similar mechanism for activation of the class 3 polymerase III (pol III) promoter for the U6 RNA gene. Large T antigen can activate this promoter, which contains a TATA box and an upstream proximal sequence element but cannot activate the TATA-less, intragenic VAI promoter (a class 2, pol III promoter). Mutants of large T antigen that cannot activate pol II promoters also fail to activate the U6 promoter. We provide evidence that large T antigen can interact with the TBP-containing pol III transcription factor human TFIIB-related factor (hBRF), as well as with at least two of the three TAFs in the pol III-specific small nuclear RNA-activating protein complex (SNAPc). In addition, we demonstrate that large T antigen can cofractionate and coimmunoprecipitate with the hBRF-containing complex TFIIIB derived from HeLa cells infected with a recombinant adenovirus which expresses large T antigen. Hence, similar to its function with pol I and pol II promoters, large T antigen interacts with TBP-containing, basal pol III transcription factors and appears to perform a TAF-like function. PMID:9488448

  8. BTLA interaction with HVEM expressed on CD8(+) T cells promotes survival and memory generation in response to a bacterial infection.

    PubMed

    Steinberg, Marcos W; Huang, Yujun; Wang-Zhu, Yiran; Ware, Carl F; Cheroutre, Hilde; Kronenberg, Mitchell

    2013-01-01

    The B and T lymphocyte attenuator (BTLA) is an Ig super family member that binds to the herpes virus entry mediator (HVEM), a TNF receptor super family (TNFRSF) member. Engagement of BTLA by HVEM triggers inhibitory signals, although recent evidence indicates that BTLA also may act as an activating ligand for HVEM. In this study, we reveal a novel role for the BTLA-HVEM pathway in promoting the survival of activated CD8(+) T cells in the response to an oral microbial infection. Our data show that both BTLA- and HVEM-deficient mice infected with Listeria monocytogenes had significantly reduced numbers of primary effector and memory CD8(+) T cells, despite normal proliferation and expansion compared to controls. In addition, blockade of the BTLA-HVEM interaction early in the response led to significantly reduced numbers of antigen-specific CD8(+) T cells. HVEM expression on the CD8(+) T cells as well as BTLA expression on a cell type other than CD8(+) T lymphocytes, was required. Collectively, our data demonstrate that the function of the BTLA-HVEM pathway is not limited to inhibitory signaling in T lymphocytes, and instead, that BTLA can provide crucial, HVEM-dependent signals that promote survival of antigen activated CD8(+) T cell during bacterial infection.

  9. Autoreactive T Cells and Chronic Fungal Infection Drive Esophageal Carcinogenesis

    PubMed Central

    Zhu, Feng; Willette-Brown, Jami; Song, Na-Young; Lomada, Dakshayani; Song, Yongmei; Xue, Liyan; Gray, Zane; Zhao, Zitong; Davis, Sean R.; Sun, Zhonghe; Zhang, Peilin; Wu, Xiaolin; Zhan, Qimin; Richie, Ellen R.; Hu, Yinling

    2018-01-01

    SUMMARY Humans with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a T cell–driven autoimmune disease caused by impaired central tolerance, are susceptible to developing chronic fungal infection and esophageal squamous cell carcinoma (ESCC). However, the relationship between autoreactive T cells and chronic fungal infection in ESCC development remains unclear. We find that kinase-dead Ikkα knockin mice develop phenotypes reminiscent of APECED, including impaired central tolerance, autoreactive T cells, chronic fungal infection, and ESCCs expressing specific human ESCC markers. Using this model, we investigated the potential link between ESCC and fungal infection. Autoreactive CD4 T cells permit fungal infection and incite tissue injury and inflammation. Antifungal treatment or depletion of autoreactive CD4 T cells rescues, whereas oral fungal administration promotes, ESCC development. Inhibition of inflammation or EGFR activity decreases fungal burden. Importantly, fungal infection is highly associated with ESCCs in non-autoimmune human patients. Therefore, autoreactive T cells and chronic fungal infection, fostered by inflammation and epithelial injury, promote ESCC development. PMID:28407484

  10. A Functional Variant of SMAD4 Enhances Thoracic Aortic Aneurysm and Dissection Risk through Promoting Smooth Muscle Cell Apoptosis and Proteoglycan Degradation.

    PubMed

    Wang, Ying; Huang, Hao-Yue; Bian, Guang-Liang; Yu, Yun-Sheng; Ye, Wen-Xue; Hua, Fei; Chen, Yi-Huan; Shen, Zhen-Ya

    2017-07-01

    Recent studies indicate important roles for SMAD4 in SMCs proliferation, extracellular matrix maintenance, and blood vessel remodeling. However, the genetic effects of SMAD4 in the pathogenesis of thoracic aortic aneurysm and dissection (TAAD) are still largely unknown. Here we identified a functional variant of SMAD4 which might be involved in the pathological progression of TAAD. Five tagging SNPs of SMAD4 were genotyped in 202 TAAD cases and 400 controls using MALDI-TOF. rs12455792 CT or TT variant genotypes was associated with an significantly elevated TAAD risk (adjusted OR=1.58, 95%CI=1.09-2.30) under a dominant genetic model. It was located in the 5'UTR and predicted to influence transcription activity and RNA folding of SMAD4. In luciferase reporter assay, rs12455792 T allele markedly decreased luciferase activities. Accordingly, SMAD4 expression in tissues was lower in patients with CT or TT genotypes, compared with CC. Movat's pentachrome showed that rs12455792 T allele enhanced SMCs loss and fibers accumulation. With angiotensin II induction, rate of Apoptotic SMCs was significantly higher while SMAD4 silenced. Moreover, rs12455792 T allele also increased Versican degradation via ADAMTS-4. In conclusion, this variant might promote SMCs apoptosis and proteoglycans degradation, and further facilitate the progress of TAAD. Our findings identified rs12455792 as a predictor for progression of vascular media pathological changes related thoracic aortic disorders. Copyright © 2017. Published by Elsevier B.V.

  11. Selective Expansion of Memory CD4+ T cells By Mitogenic Human CD28 Generates Inflammatory Cytokines and Regulatory T cells

    PubMed Central

    Singh, Manisha; Basu, Sreemanti; Camell, Christina; Couturier, Jacob; Nudelman, Rodolfo J.; Medina, Miguel A.; Rodgers, John R.; Lewis, Dorothy E.

    2009-01-01

    Co-stimulatory signals are important for development of effector and regulatory T cells. In this case, CD28 signaling is usually considered inert in the absence of signaling through the TCR. By contrast, mitogenic rat CD28 mAbs reportedly expand regulatory T cells without TCR stimulation. We found that a commercially available human CD28 mAb (ANC28) stimulated PBMCs without TCR co-ligation or cross-linking; ANC28 selectively expanded CD4+CD25+FoxP3−(T effector) and CD4+CD25+FoxP3+ (Treg) cells. ANC28 stimulated the CD45RO+ CD4+ (memory) population whereas CD45RA+CD4+ (naïve) cells did not respond. ANC28 also induced inflammatory cytokines. Treg induced by ANC28 retain the Treg phenotype longer than did co-stimulated Treg. Treg induced by ANC28 suppressed CD25− T cells through a contact-dependent mechanism. Purity influenced the response of CD4+CD25+ cells because bead-purified CD4+CD25+ cells (85–90% pure) responded strongly to ANC28, whereas 98% pure FACS-sorted CD4+CD25 bright (T-reg) did not respond. Purified CD4+CD25int cells responded similarly to the bead-purified CD4+CD25+ cells. Thus, pre-activated CD4+ T cells (CD25int) respond to ANC28 rather than Treg (CD25bright). The ability of ANC28 to expand both effectors producing inflammatory cytokines as well as suppressive regulatory T cells might be useful for ex vivo expansion of therapeutic T cells. PMID:18446791

  12. A Chimera Containing CD4+ and CD8+ T-Cell Epitopes of the Leishmania donovani Nucleoside Hydrolase (NH36) Optimizes Cross-Protection against Leishmania amazonesis Infection.

    PubMed

    Alves-Silva, Marcus Vinícius; Nico, Dirlei; Morrot, Alexandre; Palatnik, Marcos; Palatnik-de-Sousa, Clarisa B

    2017-01-01

    The Leishmania donovani nucleoside hydrolase (NH36) and NH A34480 of Leishmania amazonensis share 93% of sequence identity. In mice, the NH36 induced protection against visceral leishmaniasis is mediated by a CD4+ T cell response against its C-terminal domain (F3). Besides this CD4+ Th1 response, prevention and cure of L. amazonensis infection require also additional CD8+ and regulatory T-cell responses to the NH36 N-terminal (F1 domain). We investigated if mice vaccination with F1 and F3 domains cloned in tandem, in a recombinant chimera, with saponin, optimizes the vaccine efficacy against L. amazonensis infection above the levels promoted by the two admixed domains or by each domain independently. The chimera induced the highest IgA, IgG, and IgG2a anti-NH36 antibody, IDR, IFN-γ, and IL-10 responses, while TNF-α was more secreted by mice vaccinated with F3 or all F3-contaning vaccines. Additionally, the chimera and the F1 vaccine also induced the highest proportions of CD4+ and CD8+ T cells secreting IL-2, TNF-α, or IFN-γ alone, TNF-α in combination with IL-2 or IFN-γ, and of CD4+ multifunctional cells secreting IL-2, TNF-α, and IFN-γ. Correlating with the immunological results, the strongest reductions of skin lesions sizes were determined by the admixed domains (80%) and by the chimera (84%), which also promoted the most pronounced and significant reduction of the parasite load (99.8%). Thus, the epitope presentation in a recombinant chimera optimizes immunogenicity and efficacy above the levels induced by the independent or admixed F1 and F3 domains. The multiparameter analysis disclosed that the Th1-CD4+ T helper response induced by the chimera is mainly directed against its FRYPRPKHCHTQVA epitope. Additionally, the YPPEFKTKL epitope of F1 induced the second most important CD4+ T cell response, and, followed by the DVAGIVGVPVAAGCT, FMLQILDFYTKVYE, and ELLAITTVVGNQ sequences, also the most potent CD8+ T cell responses and IL-10 secretion. Remarkably

  13. A Chimera Containing CD4+ and CD8+ T-Cell Epitopes of the Leishmania donovani Nucleoside Hydrolase (NH36) Optimizes Cross-Protection against Leishmania amazonesis Infection

    PubMed Central

    Alves-Silva, Marcus Vinícius; Nico, Dirlei; Morrot, Alexandre; Palatnik, Marcos; Palatnik-de-Sousa, Clarisa B.

    2017-01-01

    The Leishmania donovani nucleoside hydrolase (NH36) and NH A34480 of Leishmania amazonensis share 93% of sequence identity. In mice, the NH36 induced protection against visceral leishmaniasis is mediated by a CD4+ T cell response against its C-terminal domain (F3). Besides this CD4+ Th1 response, prevention and cure of L. amazonensis infection require also additional CD8+ and regulatory T-cell responses to the NH36 N-terminal (F1 domain). We investigated if mice vaccination with F1 and F3 domains cloned in tandem, in a recombinant chimera, with saponin, optimizes the vaccine efficacy against L. amazonensis infection above the levels promoted by the two admixed domains or by each domain independently. The chimera induced the highest IgA, IgG, and IgG2a anti-NH36 antibody, IDR, IFN-γ, and IL-10 responses, while TNF-α was more secreted by mice vaccinated with F3 or all F3-contaning vaccines. Additionally, the chimera and the F1 vaccine also induced the highest proportions of CD4+ and CD8+ T cells secreting IL-2, TNF-α, or IFN-γ alone, TNF-α in combination with IL-2 or IFN-γ, and of CD4+ multifunctional cells secreting IL-2, TNF-α, and IFN-γ. Correlating with the immunological results, the strongest reductions of skin lesions sizes were determined by the admixed domains (80%) and by the chimera (84%), which also promoted the most pronounced and significant reduction of the parasite load (99.8%). Thus, the epitope presentation in a recombinant chimera optimizes immunogenicity and efficacy above the levels induced by the independent or admixed F1 and F3 domains. The multiparameter analysis disclosed that the Th1-CD4+ T helper response induced by the chimera is mainly directed against its FRYPRPKHCHTQVA epitope. Additionally, the YPPEFKTKL epitope of F1 induced the second most important CD4+ T cell response, and, followed by the DVAGIVGVPVAAGCT, FMLQILDFYTKVYE, and ELLAITTVVGNQ sequences, also the most potent CD8+ T cell responses and IL-10 secretion. Remarkably

  14. Distinct susceptibility of HIV vaccine vector-induced CD4 T cells to HIV infection

    PubMed Central

    Niu, Qingli; Hou, Wei; Churchyard, Gavin; Nitayaphan, Sorachai; Pitisuthithum, Punnee; Rerks-Ngarm, Supachai; Franchini, Genoveffa

    2018-01-01

    The concerns raised from adenovirus 5 (Ad5)-based HIV vaccine clinical trials, where excess HIV infections were observed in some vaccine recipients, have highlighted the importance of understanding host responses to vaccine vectors and the HIV susceptibility of vector-specific CD4 T cells in HIV vaccination. Our recent study reported that human Ad5-specific CD4 T cells induced by Ad5 vaccination (RV156A trial) are susceptible to HIV. Here we further investigated the HIV susceptibility of vector-specific CD4 T cells induced by ALVAC, a canarypox viral vector tested in the Thai trial RV144, as compared to Ad5 vector-specific CD4 T cells in the HVTN204 trial. We showed that while Ad5 vector-specific CD4 T cells were readily susceptible to HIV, ALVAC-specific CD4 T cells in RV144 PBMC were substantially less susceptible to both R5 and X4 HIV in vitro. The lower HIV susceptibility of ALVAC-specific CD4 T cells was associated with the reduced surface expression of HIV entry co-receptors CCR5 and CXCR4 on these cells. Phenotypic analyses identified that ALVAC-specific CD4 T cells displayed a strong Th1 phenotype, producing higher levels of IFN-γ and CCL4 (MIP-1β) but little IL-17. Of interest, ALVAC and Ad5 vectors induced distinct profiles of vector-specific CD8 vs. CD4 T-cell proliferative responses in PBMC, with ALVAC preferentially inducing CD8 T-cell proliferation, while Ad5 vector induced CD4 T-cell proliferation. Depletion of ALVAC-, but not Ad5-, induced CD8 T cells in PBMC led to a modest increase in HIV infection of vector-specific CD4 T cells, suggesting a role of ALVAC-specific CD8 T cells in protecting ALVAC-specific CD4 T cells from HIV. Taken together, our data provide strong evidence for distinct HIV susceptibility of CD4 T cells induced by different vaccine vectors and highlight the importance of better evaluating anti-vector responses in HIV vaccination. PMID:29474461

  15. Computational modeling of heterogeneity and function of CD4+ T cells

    PubMed Central

    Carbo, Adria; Hontecillas, Raquel; Andrew, Tricity; Eden, Kristin; Mei, Yongguo; Hoops, Stefan; Bassaganya-Riera, Josep

    2014-01-01

    The immune system is composed of many different cell types and hundreds of intersecting molecular pathways and signals. This large biological complexity requires coordination between distinct pro-inflammatory and regulatory cell subsets to respond to infection while maintaining tissue homeostasis. CD4+ T cells play a central role in orchestrating immune responses and in maintaining a balance between pro- and anti- inflammatory responses. This tight balance between regulatory and effector reactions depends on the ability of CD4+ T cells to modulate distinct pathways within large molecular networks, since dysregulated CD4+ T cell responses may result in chronic inflammatory and autoimmune diseases. The CD4+ T cell differentiation process comprises an intricate interplay between cytokines, their receptors, adaptor molecules, signaling cascades and transcription factors that help delineate cell fate and function. Computational modeling can help to describe, simulate, analyze, and predict some of the behaviors in this complicated differentiation network. This review provides a comprehensive overview of existing computational immunology methods as well as novel strategies used to model immune responses with a particular focus on CD4+ T cell differentiation. PMID:25364738

  16. Prolonged CD4 T cell lymphopenia increases morbidity and mortality after renal transplantation.

    PubMed

    Ducloux, Didier; Courivaud, Cécile; Bamoulid, Jamal; Vivet, Bérengère; Chabroux, Aline; Deschamps, Marina; Rebibou, Jean-Michel; Ferrand, Christophe; Chalopin, Jean-Marc; Tiberghien, Pierre; Saas, Philippe

    2010-05-01

    Prolonged CD4 T cell lymphopenia after administration of polyclonal anti-thymocyte globulins increases the rate of posttransplantation morbidity, but whether impaired immune reconstitution affects survival is unknown. We studied the effect of CD4 T cell lymphopenia on survival in 302 consecutive prevalent renal transplant recipients and the role of thymic function in CD4 T cell reconstitution and posttransplantation outcomes in 100 consecutive incident renal transplant recipients. We followed the prevalent cohort for a mean duration of 92 months. Of these 302 patients, 81 (27%) had persistent CD4 T cell counts <300/mm3 and 36 (12%) died during follow-up. We observed a higher death rate in patients with CD4 T cell lymphopenia persisting for >1 year (24.1 versus 7.6%; P < 0.001). Furthermore, in Cox regression analysis, CD4 T cell lymphopenia associated with a nearly five-fold risk for death (adjusted hazard ratio [HR] 4.63; 95% confidence interval [CI] 1.91 to 10.65; P = 0.001). In the incident cohort, we estimated thymic function by T cell receptor excision circles (TRECs) per 150,000 CD3+ cells, which predicted efficient CD4 T cell reconstitution. Higher pretransplantation TREC values associated with lower risks for cancer (adjusted HR 0.39; 95% CI 0.15 to 0.97; P = 0.046) and infection (HR 0.29; 95% CI 0.11 to 0.78; P = 0.013). In summary, prolonged polyclonal anti-thymocyte globulin-induced CD4 T cell lymphopenia is an independent risk factor for death. Determination of pretransplantation thymic function may identify patients at higher risk for CD4 T cell lymphopenia and posttransplantation morbidity, including cancer and infections.

  17. Cannabidiol promotes browning in 3T3-L1 adipocytes.

    PubMed

    Parray, Hilal Ahmad; Yun, Jong Won

    2016-05-01

    Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity. Thus, a wide variety of dietary agents that contribute to browning of white adipocytes have been identified. The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes. CBD enhanced expression of a core set of brown fat-specific marker genes (Ucp1, Cited1, Tmem26, Prdm16, Cidea, Tbx1, Fgf21, and Pgc-1α) and proteins (UCP1, PRDM16, and PGC-1α). Increased expression of UCP1 and other brown fat-specific markers contributed to the browning of 3T3-L1 adipocytes possibly via activation of PPARγ and PI3K. In addition, CBD increased protein expression levels of CPT1, ACSL, SIRT1, and PLIN while down-regulating JNK2, SREBP1, and LPL. These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis. In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism. Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity.

  18. Serosal Cavities Contain Two Populations of Innate-like integrin α4highCD4+ T Cells, Integrin α4β1+α6β1+α4β7- and α4β1+α6β1-α4β7+ Cells.

    PubMed

    Yang, Jeong In; Park, Chanho; Kho, Inseong; Lee, Sujin; Suh, Kyung-Suk; Kim, Tae Jin

    2017-12-01

    We previously reported peritoneal innate-like integrin α4 (CD49d) high CD4 + T cells that provided help for B-1a cells. Here we analyzed the expression of various integrin chains on the peritoneal and pleural integrin α4 high CD4 + T cells and investigated the functional heterogeneity of the subpopulations based on the integrin expression. Pleural cavity contained a lower ratio of integrin α4 high CD4 + T cells to integrin α4 low CD4 + T cells than peritoneal cavity, but the pleural integrin α4 high CD4 + T cells have the same characteristics of the peritoneal integrin α4 high CD4 + T cells. Most of integrin α4 high CD4 + T cells were integrin β1 high β7 - , but a minor population of integrin α4 high CD4 + T cells was integrin β1 + β7 + . Interestingly, the integrin α4 high β1 high β7 - CD4 + T cells expressed high levels of integrin α4β1 and α6β1, whereas integrin α4 high β1 + β7 + CD4 + T cells expressed high levels of integrin α4β1 and α4β7, suggesting an alternative expression of integrin α6β1 or α4β7 in combination with α4β1 in respective major and minor populations of integrin α4 high CD4 + T cells. The minor population, integrin α4 high β1 + β7 + CD4 + T cells, were different from the integrin α4 high β1 high β7 - CD4 + T cells in that they secreted a smaller amount of Th1 cytokines upon stimulation and expressed lower levels of Th1-related chemokine receptors CCR5 and CXCR3 than the integrin α4 high β 1 high β 7 - CD4 + T cells. In summary, the innate-like integrin α4 high CD4 + T cells could be divided into 2 populations, integrin α4β1 + α6β1 + α4β7 - and α4β1 + α6β1 - α4β7 + cells. The functional significance of serosal integrin α4β7 + CD4 + T cells needed to be investigated especially in view of mucosal immunity.

  19. Protection by universal influenza vaccine is mediated by memory CD4 T cells.

    PubMed

    Valkenburg, Sophie A; Li, Olive T W; Li, Athena; Bull, Maireid; Waldmann, Thomas A; Perera, Liyanage P; Peiris, Malik; Poon, Leo L M

    2018-07-05

    There is a diverse array of influenza viruses which circulate between different species, reassort and drift over time. Current seasonal influenza vaccines are ineffective in controlling these viruses. We have developed a novel universal vaccine which elicits robust T cell responses and protection against diverse influenza viruses in mouse and human models. Vaccine mediated protection was dependent on influenza-specific CD4 + T cells, whereby depletion of CD4 + T cells at either vaccination or challenge time points significantly reduced survival in mice. Vaccine memory CD4 + T cells were needed for early antibody production and CD8 + T cell recall responses. Furthermore, influenza-specific CD4 + T cells from vaccination manifested primarily Tfh and Th1 profiles with anti-viral cytokine production. The vaccine boosted H5-specific T cells from human PBMCs, specifically CD4 + and CD8 + T effector memory type, ensuring the vaccine was truly universal for its future application. These findings have implications for the development and optimization of T cell activating vaccines for universal immunity against influenza. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Role of LAP+CD4+ T cells in the tumor microenvironment of colorectal cancer.

    PubMed

    Zhong, Wu; Jiang, Zhi-Yuan; Zhang, Lei; Huang, Jia-Hao; Wang, Shi-Jun; Liao, Cun; Cai, Bin; Chen, Li-Sheng; Zhang, Sen; Guo, Yun; Cao, Yun-Fei; Gao, Feng

    2017-01-21

    To investigate the abundance and potential functions of LAP + CD4 + T cells in colorectal cancer (CRC). Proportions of LAP + CD4 + T cells were examined in peripheral blood and tumor/paratumor tissues of CRC patients and healthy controls using flow cytometry. Expression of phenotypic markers such as forkhead box (Fox)p3, cytotoxic T-lymphocyte-associated protein (CTLA)-4, chemokine CC receptor (CCR)4 and CCR5 was measured using flow cytometry. LAP - CD4 + and LAP + CD4 + T cells were isolated using a magnetic cell-sorting system and cell purity was analyzed by flow cytometry. Real-time quantitative polymerase chain reaction was used to measure expression of cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β. The proportion of LAP + CD4 + T cells was significantly higher in peripheral blood from patients (9.44% ± 3.18%) than healthy controls (1.49% ± 1.00%, P < 0.001). Among patients, the proportion of LAP + CD4 + T cells was significantly higher in tumor tissues (11.76% ± 3.74%) compared with paratumor tissues (3.87% ± 1.64%, P < 0.001). We also observed positive correlations between the proportion of LAP + CD4 + T cells and TNM stage ( P < 0.001), distant metastasis ( P < 0.001) and serum level of carcinoembryonic antigen ( P < 0.05). Magnetic-activated cell sorting gave an overall enrichment of LAP + CD4 + T cells (95.02% ± 2.87%), which was similar for LAP - CD4 + T cells (94.75% ± 2.76%). In contrast to LAP - CD4 + T cells, LAP + CD4 + T cells showed lower Foxp3 expression but significantly higher levels of CTLA-4, CCR4 and CCR5 ( P < 0.01). LAP + CD4 + T cells expressed significantly larger amounts of IL-10 and TGF-β but lower levels of IL-2, IL-4, IL-17 and interferon-γ, compared with LAP - CD4 + T cells. LAP + CD4 + T cells accumulated in the tumor microenvironment of CRC patients and were involved in immune evasion mediated by IL-10 and TGF-β.

  1. Human germinal center CD4+CD57+ T cells act differently on B cells than do classical T-helper cells.

    PubMed

    Bouzahzah, F; Bosseloir, A; Heinen, E; Simar, L J

    1995-01-01

    We have isolated two subtypes of helper T cells from human tonsils: CD4+CD57+ cells, mostly located in the germinal center (GC), and CD4+CD57- cells, distributed through the interfollicular areas but also present in the GC. In a functional study, we have compared the capacities of these T-cell subtypes to stimulate B cells in cocultures. In order to block T-cell proliferation while maintaining their activation level, we pretreated isolated T cells with mitomycin C prior to culture in the presence of B cells and added polyclonal activators such as PHA and Con A, combined or not with IL-2. Contrary to CD4+ CD57- cells, CD4+CD57+ cells did not markedly enhance B-cell proliferation. Even when sIgD.B cells typical of germinal center cells were tested, the CD4+CD57+ cells had no significant effect. This is in accordance with the location of these cells: They mainly occupy the light zones of the GC where few B cells divide. Even when added to preactivated, actively proliferating cells, CD4+CD57 cells failed to modulate B-cell multiplication. On the supernatants of B-cell-T-cell cocultures, we examined by the ELISA technique the effect of T cells on Ig synthesis. Contrary to CD57+ T cells, whose effect was strong, CD57- T cells weakly stimulated Ig synthesis. More IgM than IgG was generally found. Because CD57 antigen is a typical marker of natural killer cells, we tested the cytolytic activity of tonsillar CD4+CD57+ cells on K562 target cells. Unlike NK cells, neither CD4+CD57+ nor CD4+CD57- cells exhibit any cytotoxicity. Thus, germinal center CD4+CD57+ cells are not cytolytic and do not strongly stimulate either B-cell proliferation or Ig secretion. CD4+CD57- cells, however, enhance B-cell proliferation and differentiation, thus acting like the classical helper cells of the T-dependent areas.

  2. c-Fos-activated synthesis of nuclear phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P₂] promotes global transcriptional changes.

    PubMed

    Ferrero, Gabriel O; Renner, Marianne L; Gil, Germán A; Rodríguez-Berdini, Lucia; Caputto, Beatriz L

    2014-08-01

    c-Fos is a well-recognized member of the AP-1 (activator protein-1) family of transcription factors. In addition to this canonical activity, we previously showed that cytoplasmic c-Fos activates phospholipid synthesis through a mechanism independent of its genomic AP-1 activity. c-Fos associates with particular enzymes of the lipid synthesis pathway at the endoplasmic reticulum and increases the Vmax of the reactions without modifying the Km values. This lipid synthesis activation is associated with events of differentiation and proliferation that require high rates of membrane biogenesis. Since lipid synthesis also occurs in the nucleus, and different phospholipids have been assigned transcription regulatory functions, in the present study we examine if c-Fos also acts as a regulator of phospholipid synthesis in the nucleus. Furthermore, we examine if c-Fos modulates transcription through its phospholipid synthesis activator capacity. We show that nuclear-localized c-Fos associates with and activates PI4P5K (phosphatidylinositol-4-monophosphate 5-kinase), but not with PI4KIIIβ (type IIIβ phosphatidylinositol 4-kinase) thus promoting PtdIns(4,5)P₂ (phosphatidylinositol 4,5-bisphosphate) formation, which, in turn, promotes transcriptional changes. We propose c-Fos as a key regulator of nuclear PtdIns(4,5)P₂ synthesis in response to growth signals that results in c-Fos-dependent transcriptional changes promoted by the newly synthesized lipids.

  3. Isolation of a new herpes virus from human CD4 sup + T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frenkel, N.; Schirmer, E.C.; Wyatt, L.S.

    1990-01-01

    A new human herpes virus has been isolated from CD4{sup +} T cells purified from peripheral blood mononuclear cells of a healthy individual (RK), following incubation of the cells under conditions promoting T-cell activation. The virus could not be recovered from nonactivated cells. Cultures of lymphocytes infected with the RK virus exhibited a cytopathic effect, and electron microscopic analyses revealed a characteristic herpes virus structure. RK virus DNA did not hybridize with large probes derived from herpes simplex virus, Epstein-Barr virus, varicella-zoster virus, and human cytomegalovirus. The genetic relatedness of the RK virus to the recently identified T-lymphotropic human herpesmore » virus 6 (HHV-6) was investigated by restriction enzyme analyses using 21 different enzymes and by blot hydridization analyses using 11 probes derived from two strains of HHV-6 (Z29 and U1102). Whereas the two HHV-6 strains exhibited only limited restriction enzyme polymorphism, cleavage of the RK virus DNA yielded distinct patterns. Of the 11 HHV-6 DNA probes tested, only 6 cross-hybridized with DNA fragments derived from the RK virus. Taken together, the maximal homology amounted to 31 kilobases of the 75 kilobases tested. The authors conclude that the RK virus is distinct from previously characterized human herpesviruses. The authors propose to designate it as the prototype of a new herpes virus, the seventh human herpes virus identified to date.« less

  4. All the king's horses and 2,4,5-T was the best tool of all; yet 2,4,5-T had a very great fall. All of the facts midst all of the din couldn't put T back together again

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walstad, J.D.; Dost, F.N.

    1986-09-01

    On January 30 and February 11, 1985, the Environmental Protection Agency (EPA) canceled the use of 2,4,5-T and of silvex, a chemical analog of 2,4,5-T. These actions climaxed the most controversial and turbulent period in the history of forest pest management. Beginning in 1969, stories about 2,4,5-T safety generated intense social activism, litigation, and sometimes violence. Foresters, farmers, ranchers, politicians, manufacturers, environmentalists, scientists, regulatory officials, and local citizens entered the debate. The role of government in pesticide regulation and the integrity of industry and science were being challenged. Although 2,4,5-T and silvex are no longer used, questions remain. Were themore » ultimate decisions the result of scientific evidence and analysis, or were they a response to public opinion that with all the smoke there must be fire somewhere. Can forestry professionals help the nation avoid controversies of this nature in the future.« less

  5. Yang-Baxter deformations of W2,4 × T1,1 and the associated T-dual models

    NASA Astrophysics Data System (ADS)

    Sakamoto, Jun-ichi; Yoshida, Kentaroh

    2017-08-01

    Recently, for principal chiral models and symmetric coset sigma models, Hoare and Tseytlin proposed an interesting conjecture that the Yang-Baxter deformations with the homogeneous classical Yang-Baxter equation are equivalent to non-abelian T-dualities with topological terms. It is significant to examine this conjecture for non-symmetric (i.e., non-integrable) cases. Such an example is the W2,4 ×T 1 , 1 background. In this note, we study Yang-Baxter deformations of type IIB string theory defined on W2,4 ×T 1 , 1 and the associated T-dual models, and show that this conjecture is valid even for this case. Our result indicates that the conjecture would be valid beyond integrability.

  6. Fabrication of 6FDA-durene membrane incorporated with zeolite T and aminosilane grafted zeolite T for CO2/CH4 separation

    NASA Astrophysics Data System (ADS)

    Jusoh, Norwahyu; Fong Yeong, Yin; Keong Lau, Kok; Shariff, Azmi Mohd

    2017-08-01

    In the present work, zeolite T and aminosilane grafted zeolite T are embedded into 6FDA-durene polyimide phase for the fabrication of mixed matrix membranes (MMMs). FESEM images demonstrated that the improvement of interfacial adhesion between zeolite and polymer phases in MMM loaded with aminosilane grafted zeolite T was not significant as compared to zeolite T/6FDA-durene MMM. From the gas permeation test, CO2/CH4 selectivity up to 26.4 was achieved using MMM containing aminosilane grafted zeolite T, while MMM loaded with ungrafted zeolite T showed CO2/CH4 selectivity of 19.1. In addition, MMM incorporated with aminosilane grafted zeolite T particles successfully lies on Robeson upper bound 2008, which makes it an attractive candidate for CO2/CH4 separation.

  7. Preserved immune functionality and high CMV-specific T-cell responses in HIV-infected individuals with poor CD4+ T-cell immune recovery.

    PubMed

    Gómez-Mora, Elisabet; García, Elisabet; Urrea, Victor; Massanella, Marta; Puig, Jordi; Negredo, Eugenia; Clotet, Bonaventura; Blanco, Julià; Cabrera, Cecilia

    2017-09-15

    Poor CD4 + T-cell recovery after cART has been associated with skewed T-cell maturation, inflammation and immunosenescence; however, T-cell functionality in those individuals has not been fully characterized. In the present study, we assessed T-cell function by assessing cytokine production after polyclonal, CMV and HIV stimulations of T-cells from ART-suppressed HIV-infected individuals with CD4 + T-cell counts >350 cells/μL (immunoconcordants) or <350 cells/μL (immunodiscordants). A group of HIV-uninfected individuals were also included as controls. Since CMV co-infection significantly affected T-cell maturation and polyfunctionality, only CMV + individuals were analyzed. Despite their reduced and skewed CD4 + T-cell compartment, immunodiscordant individuals showed preserved polyclonal and HIV-specific responses. However, CMV response in immunodiscordant participants was significantly different from immunoconcordant or HIV-seronegative individuals. In immunodiscordant subjects, the magnitude of IFN-γ + CD8 + and IL-2 + CD4 + T-cells in response to CMV was higher and differently associated with the CD4 + T-cell maturation profile., showing an increased frequency of naïve, central memory and EMRA CMV-specific CD4 + T-cells. In conclusion, CD4 + and CD8 + T-cell polyfunctionality was not reduced in immunodiscordant individuals, although heightened CMV-specific immune responses, likely related to subclinical CMV reactivations, may be contributing to the skewed T-cell maturation and the higher risk of clinical progression observed in those individuals.

  8. 3,3′-Diindolylmethane Ameliorates Experimental Autoimmune Encephalomyelitis by Promoting Cell Cycle Arrest and Apoptosis in Activated T Cells through MicroRNA Signaling Pathways

    PubMed Central

    Rouse, Michael; Rao, Roshni; Nagarkatti, Mitzi

    2014-01-01

    3,3′-Diindolylmethane (DIM) is a naturally derived indole found in cruciferous vegetables that has great potential as a novel and effective therapeutic agent. In the current study, we investigated the effects of DIM post-treatment on the regulation of activated T cells during the development of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. We demonstrated that the administration of DIM 10 days after EAE induction was effective at ameliorating disease parameters, including inflammation and central nervous system cellular infiltration. MicroRNA (miRNA) microarray analysis revealed an altered miRNA profile in brain infiltrating CD4+ T cells following DIM post-treatment of EAE mice. Additionally, bioinformatics analysis suggested the involvement of DIM-induced miRNAs in pathways and processes that halt cell cycle progression and promote apoptosis. Additional studies confirmed that DIM impacted these cellular processes in activated T cells. Further evidence indicated that DIM treatment significantly upregulated several miRNAs (miR-200c, miR-146a, miR-16, miR-93, and miR-22) in brain CD4+ T cells during EAE while suppressing their associated target genes. Similarly, we found that overexpression of miR-16 in primary CD4+ T cells led to significant downregulation of both mRNA and protein levels of cyclin E1 and B-cell lymphoma-2, which play important roles in regulating cell cycle progression and apoptosis. Collectively, these studies demonstrate that DIM post-treatment leads to the amelioration of EAE development by suppressing T-cell responses through the induction of select miRNAs that control cell cycle progression and mediate apoptosis. PMID:24898268

  9. Calcium-mediated shaping of naive CD4 T-cell phenotype and function

    PubMed Central

    Guichard, Vincent; Bonilla, Nelly; Durand, Aurélie; Audemard-Verger, Alexandra; Guilbert, Thomas; Martin, Bruno

    2017-01-01

    Continuous contact with self-major histocompatibility complex ligands is essential for the survival of naive CD4 T cells. We have previously shown that the resulting tonic TCR signaling also influences their fate upon activation by increasing their ability to differentiate into induced/peripheral regulatory T cells. To decipher the molecular mechanisms governing this process, we here focus on the TCR signaling cascade and demonstrate that a rise in intracellular calcium levels is sufficient to modulate the phenotype of mouse naive CD4 T cells and to increase their sensitivity to regulatory T-cell polarization signals, both processes relying on calcineurin activation. Accordingly, in vivo calcineurin inhibition leads the most self-reactive naive CD4 T cells to adopt the phenotype of their less self-reactive cell-counterparts. Collectively, our findings demonstrate that calcium-mediated activation of the calcineurin pathway acts as a rheostat to shape both the phenotype and effector potential of naive CD4 T cells in the steady-state. PMID:29239722

  10. Core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual modal MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Li, Fenfen; Zhi, Debo; Luo, Yufeng; Zhang, Jiqian; Nan, Xiang; Zhang, Yunjiao; Zhou, Wei; Qiu, Bensheng; Wen, Longping; Liang, Gaolin

    2016-06-01

    T1-T2 dual modal magnetic resonance imaging (MRI) has attracted considerable interest because it offers complementary diagnostic information, leading to more precise diagnosis. To date, a number of nanostructures have been reported as T1-T2 dual modal MR contrast agents (CAs). However, hybrids of nanocubes with both iron and gadolinium (Gd) elements as T1-T2 dual modal CAs have not been reported. Herein, we report the synthesis of novel core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual-modal CAs and their application for enhanced T1-T2 MR imaging of rat livers. A relaxivity study at 1.5 T indicated that our Fe3O4/Gd2O3 nanocubes have an r1 value of 45.24 mM-1 s-1 and an r2 value of 186.51 mM-1 s-1, which were about two folds of those of Gd2O3 nanoparticles and Fe3O4 nanocubes, respectively. In vivo MR imaging of rats showed both T1-positive and T2-negative contrast enhancements in the livers. We envision that our Fe3O4/Gd2O3 nanocubes could be applied as T1-T2 dual modal MR CAs for a wide range of theranostic applications in the near future.T1-T2 dual modal magnetic resonance imaging (MRI) has attracted considerable interest because it offers complementary diagnostic information, leading to more precise diagnosis. To date, a number of nanostructures have been reported as T1-T2 dual modal MR contrast agents (CAs). However, hybrids of nanocubes with both iron and gadolinium (Gd) elements as T1-T2 dual modal CAs have not been reported. Herein, we report the synthesis of novel core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual-modal CAs and their application for enhanced T1-T2 MR imaging of rat livers. A relaxivity study at 1.5 T indicated that our Fe3O4/Gd2O3 nanocubes have an r1 value of 45.24 mM-1 s-1 and an r2 value of 186.51 mM-1 s-1, which were about two folds of those of Gd2O3 nanoparticles and Fe3O4 nanocubes, respectively. In vivo MR imaging of rats showed both T1-positive and T2-negative contrast enhancements in the livers. We envision that our Fe3O4/Gd2O3 nanocubes

  11. TCRγ4δ1-Engineered αβT Cells Exhibit Effective Antitumor Activity

    PubMed Central

    He, Kangxia; You, Hongqin; Li, Yuxia; Cui, Lianxian; Zhang, Jianmin; He, Wei

    2016-01-01

    T cell engineering with T cell receptors (TCRs) specific for tumors plays an important role in adoptive T cell transfer (ATC) therapy for cancer. Here, we present a novel strategy to redirect peripheral blood-derived αβT cells against tumors via TCRγ4δ1 gene transduction. The broad-spectrum antitumor activity of TCRδ1 cells in innate immunity is dependent on CDR3δ1. TCRγ4δ1-engineered αβT cells were prepared by lentiviral transduction and characterized by analyzing in vitro and in vivo cytotoxicity to tumors, ability of proliferation and cytokine production, and potential role in autoimmunity. Results show that TCRγ4δ1 genes were transduced to approximately 36% of polyclonal αβT cells. TCRγ4δ1-engineered αβT cells exhibited effective in vitro TCRγδ-dependent cytotoxicity against various tumor cells via the perforin-granzyme pathway. They also showed a strong proliferative capacity and robust cytokine production. TCRγ4δ1-engineered αβT cells neither expressed mixed TCR dimers nor bound/killed normal cells in vitro. More important, adoptive transfer of TCRγ4δ1-engineered αβT cells into nude mice bearing a human HepG2 cell line significantly suppressed tumor growth. Our results demonstrate a novel role for TCRγ4δ1 in gene therapy and ATC for cancer. PMID:27463149

  12. Prolonged CD4 T Cell Lymphopenia Increases Morbidity and Mortality after Renal Transplantation

    PubMed Central

    Courivaud, Cécile; Bamoulid, Jamal; Vivet, Bérengère; Chabroux, Aline; Deschamps, Marina; Rebibou, Jean-Michel; Ferrand, Christophe; Chalopin, Jean-Marc; Tiberghien, Pierre; Saas, Philippe

    2010-01-01

    Prolonged CD4 T cell lymphopenia after administration of polyclonal anti-thymocyte globulins increases the rate of posttransplantation morbidity, but whether impaired immune reconstitution affects survival is unknown. We studied the effect of CD4 T cell lymphopenia on survival in 302 consecutive prevalent renal transplant recipients and the role of thymic function in CD4 T cell reconstitution and posttransplantation outcomes in 100 consecutive incident renal transplant recipients. We followed the prevalent cohort for a mean duration of 92 months. Of these 302 patients, 81 (27%) had persistent CD4 T cell counts <300/mm3 and 36 (12%) died during follow-up. We observed a higher death rate in patients with CD4 T cell lymphopenia persisting for >1 year (24.1 versus 7.6%; P < 0.001). Furthermore, in Cox regression analysis, CD4 T cell lymphopenia associated with a nearly five-fold risk for death (adjusted hazard ratio [HR] 4.63; 95% confidence interval [CI] 1.91 to 10.65; P = 0.001). In the incident cohort, we estimated thymic function by T cell receptor excision circles (TRECs) per 150,000 CD3+ cells, which predicted efficient CD4 T cell reconstitution. Higher pretransplantation TREC values associated with lower risks for cancer (adjusted HR 0.39; 95% CI 0.15 to 0.97; P = 0.046) and infection (HR 0.29; 95% CI 0.11 to 0.78; P = 0.013). In summary, prolonged polyclonal anti-thymocyte globulin–induced CD4 T cell lymphopenia is an independent risk factor for death. Determination of pretransplantation thymic function may identify patients at higher risk for CD4 T cell lymphopenia and posttransplantation morbidity, including cancer and infections. PMID:20203160

  13. 41 CFR 101-25.103-4 - Disposition of promotional materials, trading stamps, or bonus goods.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... promotional materials, trading stamps, or bonus goods. 101-25.103-4 Section 101-25.103-4 Public Contracts and... materials, trading stamps, or bonus goods. (a) Agencies shall, through the lowest appropriate activity, arrange for transfer of promotional materials, trading stamps, or bonus goods, without reimbursement in...

  14. 41 CFR 101-25.103-4 - Disposition of promotional materials, trading stamps, or bonus goods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... promotional materials, trading stamps, or bonus goods. 101-25.103-4 Section 101-25.103-4 Public Contracts and... materials, trading stamps, or bonus goods. (a) Agencies shall, through the lowest appropriate activity, arrange for transfer of promotional materials, trading stamps, or bonus goods, without reimbursement in...

  15. 41 CFR 101-25.103-4 - Disposition of promotional materials, trading stamps, or bonus goods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... promotional materials, trading stamps, or bonus goods. 101-25.103-4 Section 101-25.103-4 Public Contracts and... materials, trading stamps, or bonus goods. (a) Agencies shall, through the lowest appropriate activity, arrange for transfer of promotional materials, trading stamps, or bonus goods, without reimbursement in...

  16. 41 CFR 101-25.103-4 - Disposition of promotional materials, trading stamps, or bonus goods.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... promotional materials, trading stamps, or bonus goods. 101-25.103-4 Section 101-25.103-4 Public Contracts and... materials, trading stamps, or bonus goods. (a) Agencies shall, through the lowest appropriate activity, arrange for transfer of promotional materials, trading stamps, or bonus goods, without reimbursement in...

  17. 41 CFR 101-25.103-4 - Disposition of promotional materials, trading stamps, or bonus goods.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... promotional materials, trading stamps, or bonus goods. 101-25.103-4 Section 101-25.103-4 Public Contracts and... materials, trading stamps, or bonus goods. (a) Agencies shall, through the lowest appropriate activity, arrange for transfer of promotional materials, trading stamps, or bonus goods, without reimbursement in...

  18. Cell membrane-anchored MUC4 promotes tumorigenicity in epithelial carcinomas

    PubMed Central

    Xia, Pengpeng; Choi, Agnes Hakyung; Deng, Zengping; Yang, Yuqian; Zhao, Jing; Wang, Yiting; Hardwidge, Philip R.; Zhu, Guoqiang

    2017-01-01

    The cell surface membrane-bound mucin protein MUC4 promotes tumorigenicity, aggressive behavior, and poor outcomes in various types of epithelial carcinomas, including pancreatic, breast, colon, ovarian, and prostate cancer. This review summarizes the theories and findings regarding MUC4 function, and its role in epithelial carcinogenesis. Based on these insights, we developed an outline of the processes and mechanisms by which MUC4 critically supports the propagation and survival of cancer cells in various epithelial organs. MUC4 may therefore be a useful prognostic and diagnostic tool that improves our ability to eradicate various forms of cancer. PMID:27829225

  19. Cell membrane-anchored MUC4 promotes tumorigenicity in epithelial carcinomas.

    PubMed

    Xia, Pengpeng; Choi, Agnes Hakyung; Deng, Zengping; Yang, Yuqian; Zhao, Jing; Wang, Yiting; Hardwidge, Philip R; Zhu, Guoqiang

    2017-02-21

    The cell surface membrane-bound mucin protein MUC4 promotes tumorigenicity, aggressive behavior, and poor outcomes in various types of epithelial carcinomas, including pancreatic, breast, colon, ovarian, and prostate cancer. This review summarizes the theories and findings regarding MUC4 function, and its role in epithelial carcinogenesis. Based on these insights, we developed an outline of the processes and mechanisms by which MUC4 critically supports the propagation and survival of cancer cells in various epithelial organs. MUC4 may therefore be a useful prognostic and diagnostic tool that improves our ability to eradicate various forms of cancer.

  20. PD-1 and PD-L1 Up-regulation Promotes T-cell Apoptosis in Gastric Adenocarcinoma.

    PubMed

    Chiu, Ying-Ming; Tsai, Chung-Lin; Kao, Jung-Ta; Hsieh, Chin-Tung; Shieh, Dong-Chen; Lee, Yi-Ju; Tsay, Gregory J; Cheng, Ken-Sheng; Wu, Yi-Ying

    2018-04-01

    The programmed death 1 (PD-1) receptor and its ligand (PD-L1) play pivotal roles in regulating host immune responses. However, the inhibitory effects of this pathway on the function of tumor infiltrating T lymphocytes in gastric adenocarcinoma patients are not well-defined. We characterized the expression of PD-1 and PD-L1 in peripheral blood and tumor infiltrating cells and analyzed the association between PD-1/PD-L1 expression and disease progression in a cohort of 60 patients with Helicobacter pylori infection, including 18 with gastric adenocarcinoma, 23 with gastritis, and 19 asymptomatic controls. Relative to controls, the expression of PD-1 on peripheral blood and tumor infiltrating T cells increased with disease progression. In vitro, T cells induced PD-L1 expression on primary gastric adenocarcinoma epithelial cells in an IFN-γ-dependent manner, which in turn promoted T cells apoptosis. Blocking of PD-L1 reversed this effect. This study provides evidence for a new therapeutic target in gastric adenocarcinoma patients. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation.

    PubMed

    Bajgain, Pradip; Tawinwung, Supannikar; D'Elia, Lindsey; Sukumaran, Sujita; Watanabe, Norihiro; Hoyos, Valentina; Lulla, Premal; Brenner, Malcolm K; Leen, Ann M; Vera, Juan F

    2018-05-10

    The adoptive transfer of T cells redirected to tumor via chimeric antigen receptors (CARs) has produced clinical benefits for the treatment of hematologic diseases. To extend this approach to breast cancer, we generated CAR T cells directed against mucin1 (MUC1), an aberrantly glycosylated neoantigen that is overexpressed by malignant cells and whose expression has been correlated with poor prognosis. Furthermore, to protect our tumor-targeted cells from the elevated levels of immune-inhibitory cytokines present in the tumor milieu, we co-expressed an inverted cytokine receptor linking the IL4 receptor exodomain with the IL7 receptor endodomain (4/7ICR) in order to transform the suppressive IL4 signal into one that would enhance the anti-tumor effects of our CAR T cells at the tumor site. First (1G - CD3ζ) and second generation (2G - 41BB.CD3ζ) MUC1-specific CARs were constructed using the HMFG2 scFv. Following retroviral transduction transgenic expression of the CAR±ICR was assessed by flow cytometry. In vitro CAR/ICR T cell function was measured by assessing cell proliferation and short- and long-term cytotoxic activity using MUC1+ MDA MB 468 cells as targets. In vivo anti-tumor activity was assessed using IL4-producing MDA MB 468 tumor-bearing mice using calipers to assess tumor volume and bioluminescence imaging to track T cells. In the IL4-rich tumor milieu, 1G CAR.MUC1 T cells failed to expand or kill MUC1+ tumors and while co-expression of the 4/7ICR promoted T cell expansion, in the absence of co-stimulatory signals the outgrowing cells exhibited an exhausted phenotype characterized by PD-1 and TIM3 upregulation and failed to control tumor growth. However, by co-expressing 2G CAR.MUC1 (signal 1 - activation + signal 2 - co-stimulation) and 4/7ICR (signal 3 - cytokine), transgenic T cells selectively expanded at the tumor site and produced potent and durable tumor control in vitro and in vivo. Our findings demonstrate the feasibility of targeting breast

  2. Trichloroethylene-induced alterations in DNA methylation were enriched in polycomb protein binding sites in effector/memory CD4+ T cells

    PubMed Central

    Gilbert, Kathleen M.; Blossom, Sarah J.; Reisfeld, Brad; Erickson, Stephen W.; Vyas, Kanan; Maher, Mary; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A.; Bhattacharyya, Sudeepa

    2017-01-01

    Abstract Exposure to industrial solvent and water pollutant trichloroethylene (TCE) can promote autoimmunity, and expand effector/memory (CD62L) CD4+ T cells. In order to better understand etiology reduced representation bisulfite sequencing was used to study how a 40-week exposure to TCE in drinking water altered methylation of ∼337 770 CpG sites across the entire genome of effector/memory CD4+ T cells from MRL+/+ mice. Regardless of TCE exposure, 62% of CpG sites in autosomal chromosomes were hypomethylated (0–15% methylation), and 25% were hypermethylated (85–100% methylation). In contrast, only 6% of the CpGs on the X chromosome were hypomethylated, and 51% had mid-range methylation levels. In terms of TCE impact, TCE altered (≥ 10%) the methylation of 233 CpG sites in effector/memory CD4+ T cells. Approximately 31.7% of these differentially methylated sites occurred in regions known to bind one or more Polycomb group (PcG) proteins, namely Ezh2, Suz12, Mtf2 or Jarid2. In comparison, only 23.3% of CpG sites not differentially methylated by TCE were found in PcG protein binding regions. Transcriptomics revealed that TCE altered the expression of ∼560 genes in the same effector/memory CD4+ T cells. At least 80% of the immune genes altered by TCE had binding sites for PcG proteins flanking their transcription start site, or were regulated by other transcription factors that were in turn ordered by PcG proteins at their own transcription start site. Thus, PcG proteins, and the differential methylation of their binding sites, may represent a new mechanism by which TCE could alter the function of effector/memory CD4+ T cells. PMID:29129997

  3. Association between P16INK4a Promoter Methylation and Non-Small Cell Lung Cancer: A Meta-Analysis

    PubMed Central

    Zhu, Siwei; Hua, Feng; Zhao, Hui; Xu, Hongrui; You, Jiacong; Sun, Linlin; Wang, Weiqiang; Chen, Jun; Zhou, Qinghua

    2013-01-01

    Background Aberrant methylation of CpG islands acquired in tumor cells in promoter regions plays an important role in carcinogenesis. Accumulated evidence demonstrates P16INK4a gene promoter hypermethylation is involved in non-small cell lung carcinoma (NSCLC), indicating it may be a potential biomarker for this disease. The aim of this study is to evaluate the frequency of P16INK4a gene promoter methylation between cancer tissue and autologous controls by summarizing published studies. Methods By searching Medline, EMBSE and CNKI databases, the open published studies about P16INK4a gene promoter methylation and NSCLC were identified using a systematic search strategy. The pooled odds of P16INK4A promoter methylation in lung cancer tissue versus autologous controls were calculated by meta-analysis method. Results Thirty-four studies, including 2 652 NSCLC patients with 5 175 samples were included in this meta-analysis. Generally, the frequency of P16INK4A promoter methylation ranged from 17% to 80% (median 44%) in the lung cancer tissue and 0 to 80% (median 15%) in the autologous controls, which indicated the methylation frequency in cancer tissue was much higher than that in autologous samples. We also find a strong and significant correlation between tumor tissue and autologous controls of P16INK4A promoter methylation frequency across studies (Correlation coefficient 0.71, 95% CI:0.51–0.83, P<0.0001). And the pooled odds ratio of P16INK4A promoter methylation in cancer tissue was 3.45 (95% CI: 2.63–4.54) compared to controls under random-effect model. Conclusion Frequency of P16INK4a promoter methylation in cancer tissue was much higher than that in autologous controls, indicating promoter methylation plays an important role in carcinogenesis of the NSCLC. Strong and significant correlation between tumor tissue and autologous samples of P16INK4A promoter methylation demonstrated a promising biomarker for NSCLC. PMID:23577085

  4. Human leucocyte antigen class I-redirected anti-tumour CD4+ T cells require a higher T cell receptor binding affinity for optimal activity than CD8+ T cells.

    PubMed

    Tan, M P; Dolton, G M; Gerry, A B; Brewer, J E; Bennett, A D; Pumphrey, N J; Jakobsen, B K; Sewell, A K

    2017-01-01

    CD4 + T helper cells are a valuable component of the immune response towards cancer. Unfortunately, natural tumour-specific CD4 + T cells occur in low frequency, express relatively low-affinity T cell receptors (TCRs) and show poor reactivity towards cognate antigen. In addition, the lack of human leucocyte antigen (HLA) class II expression on most cancers dictates that these cells are often unable to respond to tumour cells directly. These deficiencies can be overcome by transducing primary CD4 + T cells with tumour-specific HLA class I-restricted TCRs prior to adoptive transfer. The lack of help from the co-receptor CD8 glycoprotein in CD4 + cells might result in these cells requiring a different optimal TCR binding affinity. Here we compared primary CD4 + and CD8 + T cells expressing wild-type and a range of affinity-enhanced TCRs specific for the HLA A*0201-restricted NY-ESO-1- and gp100 tumour antigens. Our major findings are: (i) redirected primary CD4 + T cells expressing TCRs of sufficiently high affinity exhibit a wide range of effector functions, including cytotoxicity, in response to cognate peptide; and (ii) optimal TCR binding affinity is higher in CD4 + T cells than CD8 + T cells. These results indicate that the CD4 + T cell component of current adoptive therapies using TCRs optimized for CD8 + T cells is below par and that there is room for substantial improvement. © 2016 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.

  5. Cytotoxic CD4 T Cells—Friend or Foe during Viral Infection?

    PubMed Central

    Juno, Jennifer A.; van Bockel, David; Kent, Stephen J.; Kelleher, Anthony D.; Zaunders, John J.; Munier, C. Mee Ling

    2017-01-01

    CD4 T cells with cytotoxic function were once thought to be an artifact due to long-term in vitro cultures but have in more recent years become accepted and reported in the literature in response to a number of viral infections. In this review, we focus on cytotoxic CD4 T cells in the context of human viral infections and in some infections that affect mice and non-human primates. We examine the effector mechanisms used by cytotoxic CD4 cells, the phenotypes that describe this population, and the transcription factors and pathways that lead to their induction following infection. We further consider the cells that are the predominant targets of this effector subset and describe the viral infections in which CD4 cytotoxic T lymphocytes have been shown to play a protective or pathologic role. Cytotoxic CD4 T cells are detected in the circulation at much higher levels than previously realized and are now recognized to have an important role in the immune response to viral infections. PMID:28167943

  6. Low-dose controlled release of mTOR inhibitors maintains T cell plasticity and promotes central memory T cells.

    PubMed

    Gammon, Joshua M; Gosselin, Emily A; Tostanoski, Lisa H; Chiu, Yu-Chieh; Zeng, Xiangbin; Zeng, Qin; Jewell, Christopher M

    2017-10-10

    An important goal for improving vaccine and immunotherapy technologies is the ability to provide further control over the specific phenotypes of T cells arising from these agents. Along these lines, frequent administration of rapamycin (Rapa), a small molecule inhibitor of the mammalian target of rapamycin (mTOR), exhibits a striking ability to polarize T cells toward central memory phenotypes (T CM ), or to suppress immune function, depending on the concentrations and other signals present during administration. T CM exhibit greater plasticity and proliferative capacity than effector memory T cells (T EFF ) and, therefore, polarizing vaccine-induced T cells toward T CM is an intriguing strategy to enhance T cell expansion and function against pathogens or tumors. Here we combined biodegradable microparticles encapsulating Rapa (Rapa MPs) with vaccines composed of soluble peptide antigens and molecular adjuvants to test if this approach allows polarization of differentiating T cells toward T CM . We show Rapa MPs modulate DC function, enhancing secretion of inflammatory cytokines at very low doses, and suppressing function at high doses. While Rapa MP treatment reduced - but did not stop - T cell proliferation in both CD4 + and CD8 + transgenic T cell co-cultures, the expanding CD8 + T cells differentiated to higher frequencies of T CM at low doses of MP Rapa MPs. Lastly, we show in mice that local delivery of Rapa MPs to lymph nodes during vaccination either suppresses or enhances T cell function in response to melanoma antigens, depending on the dose of drug in the depots. In particular, at low Rapa MP doses, vaccines increased antigen-specific T CM , resulting in enhanced T cell expansion measured during subsequent booster injections over at least 100days. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Reduced MUC4 expression is a late event in breast carcinogenesis and is correlated with increased infiltration of immune cells as well as promoter hypermethylation in invasive breast carcinoma.

    PubMed

    Cho, Jin Seong; Park, Min Ho; Lee, Ji Shin; Yoon, Jung Han

    2015-01-01

    Altered expression of MUC4 is associated with tumor progression and immune surveillance, but the potential involvement of MUC4 in breast carcinogenesis has not been rigorously assessed. Immunohistochemical staining with anti-MUC4 antibody was performed in a total of 324 patients with 26 normal breasts, 25 usual ductal hyperplasia, 76 ductal carcinoma in situ, and 198 invasive breast carcinoma (IBC) using tissue microarray. Immunohistochemical staining for CD8, CD57, and CD1a and methylation-specific polymerase chain reaction were also performed in IBC. Reduced MUC4 expression in IBC was significantly higher than in usual ductal hyperplasia and ductal carcinoma in situ (P<0.001 and P<0.01, respectively). Reduced MUC4 expression in IBC was significantly correlated with promoter hypermethylation (P<0.05). No association between MUC4 expression and patient outcomes was identified. Intratumoral CD8 T cells and stromal CD57 natural killer cells were significantly increased in the reduced MUC4 expression group compared with those in the normal expression group (P<0.01 and P<0.05, respectively). Our results suggest that tumor progression in breast epithelium is accompanied by reduced MUC4 protein expression. Reduced MUC4 expression correlates with increased tumor-infiltrating CD8 T and NK cells as well as promoter hypermethylation in IBC.

  8. The simultaneous ex vivo detection of low-frequency antigen-specific CD4+ and CD8+ T-cell responses using overlapping peptide pools.

    PubMed

    Singh, Satwinder Kaur; Meyering, Maaike; Ramwadhdoebe, Tamara H; Stynenbosch, Linda F M; Redeker, Anke; Kuppen, Peter J K; Melief, Cornelis J M; Welters, Marij J P; van der Burg, Sjoerd H

    2012-11-01

    The ability to measure antigen-specific T cells at the single-cell level by intracellular cytokine staining (ICS) is a promising immunomonitoring tool and is extensively applied in the evaluation of immunotherapy of cancer. The protocols used to detect antigen-specific CD8+ T-cell responses generally work for the detection of antigen-specific T cells in samples that have undergone at least one round of in vitro pre-stimulation. Application of a common protocol but now using long peptides as antigens was not suitable to simultaneously detect antigen-specific CD8+ and CD4+ T cells directly ex vivo in cryopreserved samples. CD8 T-cell reactivity to monocytes pulsed with long peptides as antigens ranged between 5 and 25 % of that observed against monocytes pulsed with a direct HLA class I fitting minimal CTL peptide epitope. Therefore, we adapted our ICS protocol and show that the use of tenfold higher concentration of long peptides to load APC, the use of IFN-α and poly(I:C) to promote antigen processing and improve T-cell stimulation, does allow for the ex vivo detection of low-frequency antigen-specific CD8+ and CD4+ T cells in an HLA-independent setting. While most of the improvements were related to increasing the ability to measure CD8+ T-cell reactivity following stimulation with long peptides to at least 50 % of the response detected when using a minimal peptide epitope, the final analysis of blood samples from vaccinated patients successfully showed that the adapted ICS protocol also increases the ability to ex vivo detect low-frequency p53-specific CD4+ T-cell responses in cryopreserved PBMC samples.

  9. Regulation of CD4 T cells and their effects on immunopathological inflammation following viral infection.

    PubMed

    Bhattacharyya, Mitra; Madden, Patrick; Henning, Nathan; Gregory, Shana; Aid, Malika; Martinot, Amanda J; Barouch, Dan H; Penaloza-MacMaster, Pablo

    2017-10-01

    CD4 T cells help immune responses, but knowledge of how memory CD4 T cells are regulated and how they regulate adaptive immune responses and induce immunopathology is limited. Using adoptive transfer of virus-specific CD4 T cells, we show that naive CD4 T cells undergo substantial expansion following infection, but can induce lethal T helper type 1-driven inflammation. In contrast, memory CD4 T cells exhibit a biased proliferation of T follicular helper cell subsets and were able to improve adaptive immune responses in the context of minimal tissue damage. Our analyses revealed that type I interferon regulates the expansion of primary CD4 T cells, but does not seem to play a critical role in regulating the expansion of secondary CD4 T cells. Strikingly, blockade of type I interferon abrogated lethal inflammation by primary CD4 T cells following viral infection, despite that this treatment increased the numbers of primary CD4 T-cell responses. Altogether, these data demonstrate important aspects of how primary and secondary CD4 T cells are regulated in vivo, and how they contribute to immune protection and immunopathology. These findings are important for rational vaccine design and for improving adoptive T-cell therapies against persistent antigens. © 2017 John Wiley & Sons Ltd.

  10. Psoriasis associated with idiopathic CD4+ T-cell lymphopenia: a regulatory T-cell defect?

    PubMed

    Baroudjian, B; Viguier, M; Battistella, M; Beneton, N; Pagès, C; Gener, G; Bégon, E; Bachelez, H

    2014-07-01

    Idiopathic CD4(+) lymphocytopenia (ICL) is a rare immunodeficiency syndrome of unknown origin for which the increased risks of opportunistic infections and of malignancies have been well established; however, skin dysimmune diseases, including psoriasis, have been scarcely reported up to now. We report herein the severe course of psoriasis in four patients with ICL, and show evidence for a defect in the skin recruitment of regulatory CD4(+) FoxP3(+) T cells. These data raise the apparent paradigm of the occurrence of a severe immunomediated disease together with a profound T-cell defect, a model that might also apply to other immune deficiencies associated with psoriasis. © 2014 British Association of Dermatologists.

  11. DNMT3B -579 G>T Promoter Polymorphism and the Risk of Gastric Cancer in the West of Iran.

    PubMed

    Ahmadi, Kulsom; Soleimani, Azam; Irani, Shiva; Kiani, Aliasghar; Ghanadi, Kourosh; Noormohamadi, Zahra; Sakinejad, Foroozan

    2018-06-01

    Many studies have suggested that modulation of DNMT3B function caused by single nucleotide polymorphisms of the DNMT3B promoter region may underlie the susceptibility to various cancers such as tumors of the digestive system. The aim of this study was to investigate the effect of -579 G>T polymorphism in the promoter of the DNMT3B gene on risk of gastric cancer in a population from West Iran. We conducted a case-control study in 100 gastric cancer patients and 112 cancer-free controls to assess the correlation between DNMT3B -579 G>T (rs1569686) polymorphism and the risk of gastric cancer. Detection of genotypes of DNMT3B G39179T polymorphism was analyzed by PCR-RFLP. There was no significant difference in the distribution of DNMT3B -579 G>T genotypes between the cases and controls. However, in the stratified analysis by clinicopathological characteristic types, we found that statistically, the risk susceptibility to gastric cancer was significantly associated with tumor grade II and GT/TT genotype of patients, compared to patients having GG genotype, (OR = 5.4737, 95% CI = 1.4746. 20.3184, P = 0.01). Our study suggested that the -579 T allele may increase the relative risk for the progression of clinicopathological characteristic of tumor grade of gastric cancer patients.

  12. CTLA4 Promotes Tyk2-STAT3-Dependent B-cell Oncogenicity.

    PubMed

    Herrmann, Andreas; Lahtz, Christoph; Nagao, Toshikage; Song, Joo Y; Chan, Wing C; Lee, Heehyoung; Yue, Chanyu; Look, Thomas; Mülfarth, Ronja; Li, Wenzhao; Jenkins, Kurt; Williams, John; Budde, Lihua E; Forman, Stephen; Kwak, Larry; Blankenstein, Thomas; Yu, Hua

    2017-09-15

    CTL-associated antigen 4 (CTLA4) is a well-established immune checkpoint for antitumor immune responses. The protumorigenic function of CTLA4 is believed to be limited to T-cell inhibition by countering the activity of the T-cell costimulating receptor CD28. However, as we demonstrate here, there are two additional roles for CTLA4 in cancer, including via CTLA4 overexpression in diverse B-cell lymphomas and in melanoma-associated B cells. CTLA4-CD86 ligation recruited and activated the JAK family member Tyk2, resulting in STAT3 activation and expression of genes critical for cancer immunosuppression and tumor growth and survival. CTLA4 activation resulted in lymphoma cell proliferation and tumor growth, whereas silencing or antibody-blockade of CTLA4 in B-cell lymphoma tumor cells in the absence of T cells inhibits tumor growth. This inhibition was accompanied by reduction of Tyk2/STAT3 activity, tumor cell proliferation, and induction of tumor cell apoptosis. The CTLA4-Tyk2-STAT3 signal pathway was also active in tumor-associated nonmalignant B cells in mouse models of melanoma and lymphoma. Overall, our results show how CTLA4-induced immune suppression occurs primarily via an intrinsic STAT3 pathway and that CTLA4 is critical for B-cell lymphoma proliferation and survival. Cancer Res; 77(18); 5118-28. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. A Study of Predictive Factors Affecting Health: Promoting Behaviors of North Korean Adolescent Refugees.

    PubMed

    Noh, Jin-Won; Yun, Hyo-Young; Park, Hyunchun; Yu, Shi-Eun

    2015-09-01

    The present study aimed to analyze the factors that could affect the health-promoting behaviors of North Korean adolescent refugees residing in South Korea. Questions about their sociodemographic variables, subjective health status, healthy living habits, and health-promoting behaviors were asked. Statistically significant differences were found in religion (t=2.30, p<0.05), having family members in South Korea (t=2.02, p<0.05), and subjective health status (t=4.96, p<0.01). Scores on health-responsible behaviors were higher with higher age (t=2.90, p<0.01) and for subjects without family or friends (t=2.43, p<0.05). Higher physical-activity behaviors were observed in males (t=3.32, p<0.01), in those with better subjective health status (t=3.46, p<0.05) and lower body mas index (t=3.48, p<0.05), and in smokers (t=3.17, p<0.01). Nutritional behaviors were higher in those who followed a religion (t=2.17, p<0.05). Spiritual growth behaviors were higher in those who followed a religion (t=4.21, p<0.001), had no family in South Korea (t=2.04, p<0.05), and had higher subjective health status (t=5.74, p<0.01). Scores on interpersonal relationships and stress-management behaviors were higher for those with higher subjective health status. A multiple regression analysis showed greater effects on health-promoting behaviors when subjective health status was better. Older people and non-smokers exhibited more health-responsible behaviors, while more physical-activity behaviors and spiritual growth activities were observed when subjective health status was better. Interpersonal relationship behaviors had positive effects on those with good subjective heath status and on non-smokers. Based on the results of the current study, an alternative was suggested for promoting health in North Korean adolescent refugees.

  14. Positive and negative regulation by SLP-76/ADAP and Pyk2 of chemokine-stimulated T-lymphocyte adhesion mediated by integrin α4β1

    PubMed Central

    Dios-Esponera, Ana; Isern de Val, Soledad; Sevilla-Movilla, Silvia; García-Verdugo, Rosa; García-Bernal, David; Arellano-Sánchez, Nohemí; Cabañas, Carlos; Teixidó, Joaquin

    2015-01-01

    Stimulation by chemokines of integrin α4β1–dependent T-lymphocyte adhesion is a crucial step for lymphocyte trafficking. The adaptor Vav1 is required for chemokine-activated T-cell adhesion mediated by α4β1. Conceivably, proteins associating with Vav1 could potentially modulate this adhesion. Correlating with activation by the chemokine CXCL12 of T-lymphocyte attachment to α4β1 ligands, a transient stimulation in the association of Vav1 with SLP-76, Pyk2, and ADAP was observed. Using T-cells depleted for SLP-76, ADAP, or Pyk2, or expressing Pyk2 kinase–inactive forms, we show that SLP-76 and ADAP stimulate chemokine-activated, α4β1-mediated adhesion, whereas Pyk2 opposes T-cell attachment. While CXCL12-promoted generation of high-affinity α4β1 is independent of SLP-76, ADAP, and Pyk2, the strength of α4β1-VCAM-1 interaction and cell spreading on VCAM-1 are targets of regulation by these three proteins. GTPase assays, expression of activated or dominant-negative Rac1, or combined ADAP and Pyk2 silencing indicated that Rac1 activation by CXCL12 is a common mediator response in SLP-76–, ADAP-, and Pyk2-regulated cell adhesion involving α4β1. Our data strongly suggest that chemokine-stimulated associations between Vav1, SLP-76, and ADAP facilitate Rac1 activation and α4β1-mediated adhesion, whereas Pyk2 opposes this adhesion by limiting Rac1 activation. PMID:26202465

  15. 4,4,4-trifluoro-3-(indole-3-)butyric acid promotes root elongation in Lactuca sativa independent of ethylene synthesis and pH

    NASA Technical Reports Server (NTRS)

    Zhang, Nenggang; Hasenstein, Karl H.

    2002-01-01

    We studied the mode of action of 4,4,4-trifluoro-3- (indole-3-) butyric acid (TFIBA), a recently described root growth stimulator, on primary root growth of Lactuca sativa L. seedlings. TFIBA (100 micromoles) promoted elongation of primary roots by 40% in 72 h but inhibited hypocotyl growth by 35%. TFIBA induced root growth was independent of pH. TFIBA did not affect ethylene production, but reduced the inhibitory effect of ethylene on root elongation. TFIBA promoted root growth even in the presence of the ethylene biosynthesis inhibitor L-alpha-(2-aminoethoxyvinyl)glycine. TFIBA and the ethylene-binding inhibitor silver thiosulphate (STS) had a similar effect on root elongation. The results indicate that TFIBA-stimulated root elongation was neither pH-dependent nor related to inhibition of ethylene synthesis, but was possibly related to ethylene action.

  16. The SNP g.1311T>C associated with the absence of β-casein in goat milk influences CSN2 promoter activity.

    PubMed

    Cosenza, G; Iannaccone, M; Pico, B A; Ramunno, L; Capparelli, R

    2016-10-01

    Quantitative individual differences in the amount of β-casein in goat milk are determined by at least nine alleles. In particular, two alleles (CSN2(0) and CSN2(01) ) are associated with an undetectable amount of this protein in milk. The CSN2(01) allele is characterized by a single nucleotide substitution at position 373 of the seventh exon (AJ011018:g.8915C>T), responsible for the formation of a premature stop codon at the 182 position. Herein, we report the contribution of the SNP g.1311T>C, which demonstrates a linkage with the SNP AJ011018:g.8915C>T, to the promoter transcriptional activity. Particularly, we indicate that the nucleotide C at position 1311 negatively affects the promoter activity of the CSN2 gene. © 2016 Stichting International Foundation for Animal Genetics.

  17. The granulocyte-macrophage colony-stimulating factor promoter cis-acting element CLE0 mediates induction signals in T cells and is recognized by factors related to AP1 and NFAT.

    PubMed Central

    Masuda, E S; Tokumitsu, H; Tsuboi, A; Shlomai, J; Hung, P; Arai, K; Arai, N

    1993-01-01

    Expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene in T cells is activated by the combination of phorbol ester (phorbol myristate acetate) and calcium ionophore (A23187), which mimic antigen stimulation through the T-cell receptor. We have previously shown that a fragment containing bp -95 to +27 of the mouse GM-CSF promoter can confer inducibility to reporter genes in the human Jurkat T-cell line. Here we use an in vitro transcription system to demonstrate that a cis-acting element (positions -54 to -40), referred to as CLE0, is a target for the induction signals. We observed induction with templates containing intact CLE0 but not with templates with deleted or mutated CLE0. We also observed that two distinct signals were required for the stimulation through CLE0, since only extracts from cells treated with both phorbol myristate acetate and A23187 supported optimal induction. Stimulation probably was mediated by CLE0-binding proteins because depletion of these proteins specifically reduced GM-CSF transcription. One of the binding factors possessed biochemical and immunological features identical to those of the transcription factor AP1. Another factor resembled the T-cell-specific factor NFAT. The characteristics of these two factors are consistent with their involvement in GM-CSF induction. The presence of CLE0-like elements in the promoters of interleukin-3 (IL-3), IL-4, IL-5, GM-CSF, and NFAT sites in the IL-2 promoter suggests that the factors we detected, or related factors that recognize these sites, may account for the coordinate induction of these genes during T-cell activation. Images PMID:8246960

  18. Two-stage AMPA receptor trafficking in classical conditioning and selective role for glutamate receptor subunit 4 (tGluA4) flop splice variant

    PubMed Central

    Zheng, Zhaoqing; Sabirzhanov, Boris

    2012-01-01

    Previously, we proposed a two-stage model for an in vitro neural correlate of eyeblink classical conditioning involving the initial synaptic incorporation of glutamate receptor A1 (GluA1)-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid type receptors (AMPARs) followed by delivery of GluA4-containing AMPARs that support acquisition of conditioned responses. To test specific elements of our model for conditioning, selective knockdown of GluA4 AMPAR subunits was used using small-interfering RNAs (siRNAs). Recently, we sequenced and characterized the GluA4 subunit and its splice variants from pond turtles, Trachemys scripta elegans (tGluA4). Analysis of the relative abundance of mRNA expression by real-time RT-PCR showed that the flip/flop variants of tGluA4, tGluA4c, and a novel truncated variant tGluA4trc1 are major isoforms in the turtle brain. Here, transfection of in vitro brain stem preparations with anti-tGluA4 siRNA suppressed conditioning, tGluA4 mRNA and protein expression, and synaptic delivery of tGluA4-containing AMPARs but not tGluA1 subunits. Significantly, transfection of abducens motor neurons by nerve injections of tGluA4 flop rescue plasmid prior to anti-tGluA4 siRNA application restored conditioning and synaptic incorporation of tGluA4-containing AMPARs. In contrast, treatment with rescue plasmids for tGluA4 flip or tGluA4trc1 failed to rescue conditioning. Finally, treatment with a siRNA directed against GluA1 subunits inhibited conditioning and synaptic delivery of tGluA1-containing AMPARs and importantly, those containing tGluA4. These data strongly support our two-stage model of conditioning and our hypothesis that synaptic incorporation of tGluA4-containing AMPARs underlies the acquisition of in vitro classical conditioning. Furthermore, they suggest that tGluA4 flop may have a critical role in conditioning mechanisms compared with the other tGluA4 splice variants. PMID:22490558

  19. CXCR4 blockade decreases CD4+ T cell exhaustion and improves survival in a murine model of polymicrobial sepsis.

    PubMed

    Ramonell, Kimberly M; Zhang, Wenxiao; Hadley, Annette; Chen, Ching-Wen; Fay, Katherine T; Lyons, John D; Klingensmith, Nathan J; McConnell, Kevin W; Coopersmith, Craig M; Ford, Mandy L

    2017-01-01

    Sepsis is a dysregulated systemic response to infection involving many inflammatory pathways and the induction of counter-regulatory anti-inflammatory processes that results in a state of immune incompetence and can lead to multi-organ failure. CXCR4 is a chemokine receptor that, following ligation by CXCL12, directs cells to bone marrow niches and also plays an important role in T cell cosignaling and formation of the immunological synapse. Here, we investigated the expression and function of CXCR4 in a murine model of polymicrobial sepsis. Results indicate that CXCR4 is selectively upregulated on naïve CD4+ and CD8+ T cells and CD4+ central memory T cells following the induction of sepsis, and that CXCR4 antagonism resulted in a significant decrease in sepsis-induced mortality. We probed the mechanistic basis for these findings and found that CXCR4 antagonism significantly increased the number of peripheral CD4+ and CD8+ T cells following sepsis. Moreover, mice treated with the CXCR4 antagonist contained fewer PD-1+ LAG-3+ 2B4+ cells, suggesting that blockade of CXCR4 mitigates CD4+ T cell exhaustion during sepsis. Taken together, these results characterize CXCR4 as an important pathway that modulates immune dysfunction and mortality following sepsis, which may hold promise as a target for future therapeutic intervention in septic patients.

  20. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    PubMed

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.