Sample records for t4 thyroid-stimulating hormone

  1. Thyroid hormones in the elderly sick: "T4 euthyroidism".

    PubMed

    Burrows, A W; Shakespear, R A; Hesch, R D; Cooper, E; Aickin, C M; Burke, C W

    1975-11-22

    Thyroid function and serum levels of triiodothyronine (T3) and thyroxine (T4) were investigated in 79 euthyroid geriatric patients. Of the 59 inpatients and 20 outpatients 35 (59%) and 2, respectively, had low T3 levels. In contrast, 7 (12%) and 6 (30%), respectively, had raised T4 levels. Two further patients were excluded from the study because of raised levels of thyroid-stimulating hormone. Thyroxine-binding globulin was greatly increased in both groups of patients, but low serum albumin levels were present in 31 (39%). Despite these changes free T3 and T4 indices closely followed total T3 and T4 levels. The difference between the two groups of patients did not correlate with body weight, diagnostic categories, age, drug treatment, or duration of stay in hospital.

  2. Thyroid hormones in the elderly sick: "T4 euthyroidism".

    PubMed Central

    Burrows, A W; Shakespear, R A; Hesch, R D; Cooper, E; Aickin, C M; Burke, C W

    1975-01-01

    Thyroid function and serum levels of triiodothyronine (T3) and thyroxine (T4) were investigated in 79 euthyroid geriatric patients. Of the 59 inpatients and 20 outpatients 35 (59%) and 2, respectively, had low T3 levels. In contrast, 7 (12%) and 6 (30%), respectively, had raised T4 levels. Two further patients were excluded from the study because of raised levels of thyroid-stimulating hormone. Thyroxine-binding globulin was greatly increased in both groups of patients, but low serum albumin levels were present in 31 (39%). Despite these changes free T3 and T4 indices closely followed total T3 and T4 levels. The difference between the two groups of patients did not correlate with body weight, diagnostic categories, age, drug treatment, or duration of stay in hospital. PMID:811313

  3. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known as...

  4. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known as...

  5. Selenium deficiency inhibits the conversion of thyroidal thyroxine (T4) to triiodothyronine (T3) in chicken thyroids.

    PubMed

    Lin, Shi-lei; Wang, Cong-wu; Tan, Si-ran; Liang, Yang; Yao, Hai-dong; Zhang, Zi-wei; Xu, Shi-wen

    2014-12-01

    Selenium (Se) influences the metabolism of thyroid hormones in mammals. However, the role of Se deficiency in the regulation of thyroid hormones in chickens is not well known. In the present study, we examined the levels of thyroidal triiodothyronine (T3), thyroidal thyroxine (T4), free triiodothyronine, free thyroxine (FT4), and thyroid-stimulating hormone in the serum and the mRNA expression levels of 25 selenoproteins in chicken thyroids. Then, principal component analysis (PCA) was performed to analyze the relationships between the selenoproteins. The results indicated that Se deficiency influenced the conversion of T4 to T3 and induced the accumulation of T4 and FT4. In addition, the mRNA expression levels of the selenoproteins were generally decreased by Se deficiency. The PCA showed that eight selenoproteins (deiodinase 1 (Dio1), Dio2, Dio3, thioredoxin reductase 2 (Txnrd2), selenoprotein i (Seli), selenoprotein u (Selu), glutathione peroxidase 1 (Gpx1), and Gpx2) have similar trends, which indicated that they may play similar roles in the metabolism of thyroid hormones. The results showed that Se deficiency inhibited the conversion of T4 to T3 and decreased the levels of the crucial metabolic enzymes of the thyroid hormones, Dio1, Dio2, and Dio3, in chickens. In addition, the decreased selenoproteins (Dio1, Dio2, Dio3, Txnrd2, Seli, Selu, Gpx1, and Gpx2) induced by Se deficiency may indirectly limit the conversion of T4 to T3 in chicken thyroids. The information presented in this study is helpful to understand the role of Se in the thyroid function of chickens.

  6. Serum thyroid stimulating hormone, total and free T4 during the neonatal period: Establishing regional reference intervals

    PubMed Central

    Sheikhbahaei, Sara; Mahdaviani, Behnaz; Abdollahi, Alireza; Nayeri, Fatemeh

    2014-01-01

    Context: Congenital hypothyroidism (CH), the most common etiology of preventable mental retardation in children, is estimated to be more prevalent among Asian population. Aims: Since thyroid function tests (TFTs) varied among different ages and geographical regions, in this study, the neonatal thyroid reference intervals in a healthy neonatal population is determined for the first time in Iran. Settings and Design: A cross-sectional study performed on 246 healthy term newborns aged between 2 days and 1 month. Materials and Methods: Blood samples were obtained by venipuncture from all subjects. The median, 2.5th, 5th, 95th, and 97.5th percentile of serum thyroid-stimulating hormone (TSH), as well as the total and free T4 were assessed among different age groups. Statistical Analysis Used: Predictive Analytics Software (PASW Statistics 18) was used for the analysis. Results: Serum TSH, total and free T4 concentration peaked in 5th to 7th days of life, continued over 2 weeks, then decreased and started reaching to adult reference range. A significant negative correlation between age and serum concentration of TSH (P = 0.02), total T4 (P = 0.01) and free T4 (P = 0.01) was found. Conclusion: This study yielded fairly different values for TFTs compared compared values found in other countries and also different from values reported for laboratory kits we used. These differences were assumed to be due to variations in ethnicity, age, and laboratory methods used. Due to the lack of international standardization, conducting multicenter studies helps in making a more precise evaluation of thyroid status in neonates. PMID:24701428

  7. Thyroid hormone transporters in health and disease: advances in thyroid hormone deiodination.

    PubMed

    Köhrle, Josef

    2007-06-01

    Thyroid hormone metabolism by the three deiodinase selenoproteins -- DIO1, DIO2, and DIO3 -- regulates the local availability of various iodothyronine metabolites and thus mediates their effects on gene expression, thermoregulation, energy metabolism, and many key reactions during the development and maintenance of an adult organism. Circulating serum levels of thyroid hormone and thyroid-stimulating hormone, used as a combined indicator of thyroid hormone status, reflect a composite picture of: thyroid secretion; tissue-specific production of T(3) by DIO1 and DIO2 activity, which both contribute to circulating levels of T(3); and degradation of the prohormone T4, of the thyromimetically active T(3), of the inactive rT(3), of other iodothyronines metabolites with a lower iodine content and of thyroid hormone conjugates. Degradation reactions are catalyzed by either DIO1 or DIO3. Aberrant expression of individual deiodinases in disease, single nucleotide polymorphisms in their genes, and novel regulators of DIO gene expression (such as bile acids) provide a more complex picture of the fine tuning and the adaptation of systemic and local bioavailability of thyroid hormones.

  8. Thyroid hormone stimulates progesterone release from human luteal cells by generating a proteinaceous factor.

    PubMed

    Datta, M; Roy, P; Banerjee, J; Bhattacharya, S

    1998-09-01

    Blood samples collected from 29 women (aged between 19 and 35 years) during the luteal phase of the menstrual cycle (between days 18 and 23 of the cycle) showed that deficiency in thyroid hormone level is related to a decrease in progesterone (P4) secretion. To observe the effect of thyroid hormone on human ovarian luteal cells, 3,5,3'-triiodothyronine (T3; 125 ng/ml) was added to luteal cells in vitro. T3 significantly stimulated progesterone release (P < 0.01) from luteal cells and this could be blocked by cycloheximide, indicating a protein mediator for the T3 effect. The T3 stimulatory effect was inhibited by anti-T3 antibody suggesting specificity of T3 action. Addition of T3 caused a more than threefold increase in cellular protein synthesis which was inhibited by cycloheximide. Preparation of partially purified thyroid hormone-induced factor (TIF) (from peak II of Sephadex G 100 chromatography of T3-incubated cells), and its addition to luteal cell incubations caused a significant increase in P4 release (P < 0.05). Incubation with trypsin or treatment with heat destroyed the stimulatory effect of TIF on P4 release, indicating the proteinaceous nature of TIF. Purified thyroid hormone-induced protein. (TIP) from rat granulosa cells and fish ovarian follicles greatly stimulated P4 release from human luteal cells. These results suggest that T3 stimulation of P4 release from human luteal cells is not direct, but is mediated through a putative protein factor, which appears to be a protein conserved through evolution as far as its biological activity is concerned.

  9. Association between thyroid hormones and TRAIL.

    PubMed

    Bernardi, Stella; Bossi, Fleur; Toffoli, Barbara; Giudici, Fabiola; Bramante, Alessandra; Furlanis, Giulia; Stenner, Elisabetta; Secchiero, Paola; Zauli, Giorgio; Carretta, Renzo; Fabris, Bruno

    2017-11-01

    Recent studies suggest that a circulating protein called TRAIL (TNF-related apoptosis-inducing ligand) might have a role in the regulation of body weight and metabolism. Interestingly, thyroid hormones seem to increase TRAIL tissue expression. This study aimed at evaluating whether overt thyroid disorders affected circulating TRAIL levels. TRAIL circulating levels were measured in euthyroid, hyperthyroid, and hypothyroid patients before and after thyroid function normalization. Univariate and multivariate analyses were performed to evaluate the correlation between thyroid hormones and TRAIL. Then, the stimulatory effect of both triiodothyronine (T3) and thyroxine (T4) on TRAIL was evaluated in vitro on peripheral blood mononuclear cells. Circulating levels of TRAIL significantly increased in hyperthyroid and decreased in hypothyroid patients as compared to controls. Once thyroid function was restored, TRAIL levels normalized. There was an independent association between TRAIL and both fT3 and fT4. Consistent with these findings, T3 and T4 stimulated TRAIL release in vitro. Here we show that thyroid hormones are associated with TRAIL expression in vivo and stimulate TRAIL expression in vitro. Given the overlap between the metabolic effects of thyroid hormones and TRAIL, this work sheds light on the possibility that TRAIL might be one of the molecules mediating thyroid hormones peripheral effects. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Effect of recombinant human thyroid stimulating hormone on serum thyroxin and thyroid scintigraphy in euthyroid cats.

    PubMed

    van Hoek, Ingrid M; Peremans, Kathelijne; Vandermeulen, Eva; Duchateau, Luc; Gommeren, Kris; Daminet, Sylvie

    2009-04-01

    This study investigated the thyroidal response to administration of recombinant human thyroid stimulating hormone (rhTSH) by means of serum total thyroxine (TT(4)) concentration and pertechnetate uptake by the thyroid gland in six healthy euthyroid spayed female cats. A pertechnetate scan was performed on day 1 to calculate thyroid/salivary gland (T/S) uptake ratio. On day 3, 25 microg rhTSH was injected intravenously. Six hours later the thyroid scan was repeated as on day 1. Blood was drawn for serum TT(4) measurement prior to injection of rhTSH and performance of the pertechnetate scan. Statistically significant differences in mean serum TT(4) concentration, T/S uptake ratio before and 6h after rhTSH administration and T/S uptake ratio between left and right lobes were noted. We can conclude that 25 microg rhTSH increases pertechnetate uptake in the thyroid glands of cats, this should be taken into account when thyroid scintigraphy after rhTSH administration is interpreted.

  11. Thyroid-stimulating hormone pituitary adenomas.

    PubMed

    Clarke, Michelle J; Erickson, Dana; Castro, M Regina; Atkinson, John L D

    2008-07-01

    Thyroid-stimulating hormone (TSH)-secreting pituitary adenomas are rare, representing < 2% of all pituitary adenomas. The authors conducted a retrospective analysis of patients with TSH-secreting or clinically silent TSH-immunostaining pituitary tumors among all pituitary adenomas followed at their institution between 1987 and 2003. Patient records, including clinical, imaging, and pathological and surgical characteristics were reviewed. Twenty-one patients (6 women and 15 men; mean age 46 years, range 26-73 years) were identified. Of these, 10 patients had a history of clinical hyperthyroidism, of whom 7 had undergone ablative thyroid procedures (thyroid surgery/(131)I ablation) prior to the diagnosis of pituitary adenoma. Ten patients had elevated TSH preoperatively. Seven patients presented with headache, and 8 presented with visual field defects. All patients underwent imaging, of which 19 were available for imaging review. Sixteen patients had macroadenomas. Of the 21 patients, 18 underwent transsphenoidal surgery at the authors' institution, 2 patients underwent transsphenoidal surgery at another facility, and 1 was treated medically. Patients with TSH-secreting tumors were defined as in remission after surgery if they had no residual adenoma on imaging and had biochemical evidence of hypo-or euthyroidism. Patients with TSH-immunostaining tumors were considered in remission if they had no residual tumor. Of these 18 patients, 9 (50%) were in remission following surgery. Seven patients had residual tumor; 2 of these patients underwent further transsphenoidal resection, 1 underwent a craniotomy, and 4 underwent postoperative radiation therapy (2 conventional radiation therapy, 1 Gamma Knife surgery, and 1 had both types of radiation treatment). Two patients had persistently elevated TSH levels despite the lack of evidence of residual tumor. On pathological analysis and immunostaining of the surgical specimen, 17 patients had samples that stained positively for

  12. Do Thyroxine and Thyroid-Stimulating Hormone Levels Reflect Urinary Iodine Concentrations?

    PubMed Central

    Soldin, Offie P.; Tractenberg, Rochelle E.; Pezzullo, John C.

    2013-01-01

    The toxicity of environmental chemicals such as nitrates, thiocynates, and perchlorates, some therapeutics, and dietary goitrogens can lower thyroidal iodine uptake and result in hypothyroidism and goiter. Iodine sufficiency, essential for normal thyroid hormone synthesis, is critical during gestation to assure that sufficient thyroxine (T4) and iodine reach the developing fetus. Spot urinary iodide (UI) measurements are used globally to indicate and monitor iodine sufficiency of populations. In individuals, however, UI are not routinely measured; instead, normal serum thyroid-stimulating hormone (TSH) and T4 concentrations serve as surrogate indicators of iodine sufficiency as well as thyroidal health. Our objective was to examine the relationship between UI concentrations and serum T4 and TSH concentrations in individuals in an ‘‘iodine-sufficient population.’’ Using a cross-sectional sample of the US population (n = 7628) from the National Health and Nutrition Examination Survey (NHANES III; 1988–1994) database, we examined the relationship among UI, T4, and TSH in pregnant and nonpregnant women and in men (15–44 years). There was a lack of relationship between UI (or UI/Cr) concentrations and serum T4 or TSH concentrations. Therefore, TSH and T4 are not appropriate markers of UI concentrations in this population. Monitoring the status of iodine nutrition of individuals in the United States may be important because serum TSH and T4 concentrations do not indicate low iodine status. PMID:15795649

  13. Thyroid-stimulating hormone and adverse left ventricular remodeling following ST-segment elevation myocardial infarction.

    PubMed

    Reindl, Martin; Feistritzer, Hans-Josef; Reinstadler, Sebastian Johannes; Mueller, Lukas; Tiller, Christina; Brenner, Christoph; Mayr, Agnes; Henninger, Benjamin; Mair, Johannes; Klug, Gert; Metzler, Bernhard

    2018-04-01

    Adverse left ventricular remodeling is one of the major determinants of heart failure and mortality in patients surviving ST-segment elevation myocardial infarction (STEMI). The hypothalamic-pituitary-thyroid axis is a key cardiovascular regulator; however, the relationship between hypothalamic-pituitary-thyroid status and post-STEMI left ventricular remodeling is unclear. We aimed to investigate the association between thyroid-stimulating hormone concentrations and the development of left ventricular remodeling following reperfused STEMI. In this prospective observational study of 102 consecutive STEMI patients, thyroid-stimulating hormone levels were measured at the first day after infarction and 4 months thereafter. Cardiac magnetic resonance scans were performed within the first week as well as at 4 months follow-up to determine infarct characteristics, myocardial function and as primary endpoint left ventricular remodeling, defined as a 20% or greater increase in left ventricular end-diastolic volume. Patients with left ventricular remodeling ( n=15, 15%) showed significantly lower concentrations of baseline (1.20 [0.92-1.91] vs. 1.73 [1.30-2.60] mU/l; P=0.02) and follow-up (1.11 [0.86-1.28] vs. 1.51 [1.15-2.02] mU/l; P=0.002) thyroid-stimulating hormone. The association between baseline thyroid-stimulating hormone and left ventricular remodeling remained significant after adjustment for major clinical (peak high-sensitivity cardiac troponin T and C-reactive protein, heart rate; odds ratio (OR) 5.33, 95% confidence interval (CI) 1.52-18.63; P=0.01) and cardiac magnetic resonance predictors of left ventricular remodeling (infarct size, microvascular obstruction, ejection fraction; OR 4.59, 95% CI 1.36-15.55; P=0.01). Furthermore, chronic thyroid-stimulating hormone was related to left ventricular remodeling independently of chronic left ventricular remodeling correlates (infarct size, ejection fraction, left ventricular end-diastolic volume, left ventricular

  14. De novo triiodothyronine formation from thyrocytes activated by thyroid-stimulating hormone.

    PubMed

    Citterio, Cintia E; Veluswamy, Balaji; Morgan, Sarah J; Galton, Valerie A; Banga, J Paul; Atkins, Stephen; Morishita, Yoshiaki; Neumann, Susanne; Latif, Rauf; Gershengorn, Marvin C; Smith, Terry J; Arvan, Peter

    2017-09-15

    The thyroid gland secretes primarily tetraiodothyronine (T 4 ), and some triiodothyronine (T 3 ). Under normal physiological circumstances, only one-fifth of circulating T 3 is directly released by the thyroid, but in states of hyperactivation of thyroid-stimulating hormone receptors (TSHRs), patients develop a syndrome of relative T 3 toxicosis. Thyroidal T 4 production results from iodination of thyroglobulin (TG) at residues Tyr 5 and Tyr 130 , whereas thyroidal T 3 production may originate in several different ways. In this study, the data demonstrate that within the carboxyl-terminal portion of mouse TG, T 3 is formed de novo independently of deiodination from T 4 We found that upon iodination in vitro , de novo T 3 formation in TG was decreased in mice lacking TSHRs. Conversely, de novo T 3 that can be formed upon iodination of TG secreted from PCCL3 (rat thyrocyte) cells was augmented from cells previously exposed to increased TSH, a TSHR agonist, a cAMP analog, or a TSHR-stimulating antibody. We present data suggesting that TSH-stimulated TG phosphorylation contributes to enhanced de novo T 3 formation. These effects were reversed within a few days after removal of the hyperstimulating conditions. Indeed, direct exposure of PCCL3 cells to human serum from two patients with Graves' disease, but not control sera, led to secretion of TG with an increased intrinsic ability to form T 3 upon in vitro iodination. Furthermore, TG secreted from human thyrocyte cultures hyperstimulated with TSH also showed an increased intrinsic ability to form T 3 Our data support the hypothesis that TG processing in the secretory pathway of TSHR-hyperstimulated thyrocytes alters the structure of the iodination substrate in a way that enhances de novo T 3 formation, contributing to the relative T 3 toxicosis of Graves' disease.

  15. Control of Pituitary Thyroid-stimulating Hormone Synthesis and Secretion by Thyroid Hormones during Xenopus Metamorphosis

    EPA Science Inventory

    Serum thyroid hormone (TH) concentrations in anuran larvae rise rapidly during metamorphosis. Such a rise in an adult anuran would inevitably trigger a negative feedback response resulting in decreased synthesis and secretion of thyroid-stimulating hormone (TSH) by the pituitary....

  16. Evaluation of recombinant human thyroid-stimulating hormone to test thyroid function in dogs suspected of having hypothyroidism.

    PubMed

    Boretti, Felicitas S; Sieber-Ruckstuhl, Nadja S; Favrot, Claude; Lutz, Hans; Hofmann-Lehmann, Regina; Reusch, Claudia E

    2006-12-01

    To evaluate the use of recombinant human (rh) thyroid-stimulating hormone (TSH) in dogs with suspected hypothyroidism. 64 dogs with clinical signs of hypothyroidism. Dogs received rhTSH (75 microg/dog, IV) at a dose independent of their body weight. Blood samples were taken before and 6 hours after rhTSH administration for determination of total serum thyroxine (T(4)) concentration. Dogs were placed into 1 of 3 groups as follows: those with normal (ie, poststimulation values indicative of euthyroidism), unchanged (ie, poststimulation values indicative of hypothyroidism; no thyroid gland stimulation), or intermediate (ie, poststimulation values between unchanged and normal values) post-TSH T(4) concentrations. Serum canine TSH (cTSH) concentration was determined in prestimulation serum (ie, before TSH administration). 14, 35, and 15 dogs had unchanged, normal, and intermediate post-TSH T(4) concentrations, respectively. Basal T(4) and post-TSH T(4) concentrations were significantly different among groups. On the basis of basal serum T(4) and cTSH concentrations alone, 1 euthyroid (normal post-TSH T(4), low basal T(4), and high cTSH concentrations) and 1 hypothyroid dog (unchanged post-TSH T(4) concentration and low to with-in reference range T(4) and cTSH concentrations) would have been misinterpreted as hypothyroid and euthyroid, respectively. Nine of the 15 dogs with intermediate post-TSHT(4) concentrations had received medication known to affect thyroid function prior to the test, and 2 of them had severe nonthyroidal disease. The TSH-stimulation test with rhTSH is a valuable diagnostic tool to assess thyroid function in selected dogs in which a diagnosis of hypothyroidism cannot be based on basal T(4) and cTSH concentrations alone.

  17. Prolonged weightlessness effect on postflight plasma thyroid hormones

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Johnson, P. C.; Driscoll, T. B.

    1977-01-01

    Blood drawn before and after spaceflight from the nine Skylab astronauts showed a statistically significant increase in mean plasma thyroxine (T-4) of 1.4 micro g/dl and in thyroid-stimulating hormone (TSH) of 4 microunits ml. Concurrent triiodothyronine (T-3) levels decreased 27 ng/dl indicating inhibited conversion of T-4 to T-3. The T-3 decrease is postulated to be a result of the increased cortisol levels noted during and following each mission. These results confirm the thyroidal changes noted after the shorter Apollo flights and show that thyroid hormone levels change during spaceflight.

  18. Stimulation of thyroid hormone secretion by thyrotropin in beluga whales, Delphinapterus leucas.

    PubMed Central

    St Aubin, D J

    1987-01-01

    Bovine thyroid stimulating hormone administered to three beluga whales, Delphinapterus leucas, was effective in producing an increase in circulating levels of triiodothyronine and thyroxine. A single dose of 10 I.U. of thyroid stimulating hormone resulted in a 145% increase in triiodothyronine and a 35% increase in thyroxine after nine hours in a whale tested within two hours after capture. The response was less pronounced in an animal tested with the same does on two occasions after four and eight weeks in captivity. In the third whale, 10 I.U. of thyroid stimulating hormone given on each of three consecutive days produced a marked increase in triiodothyronine and thyroxine. The elevation of thyroxine concentration persisted for at least two days after the last injection of thyroid stimulating hormone. A subsequent decrease in thyroxine to levels below baseline signalled the suppression of endogenous thyroid stimulating hormone. This preliminary study helps to establish a protocol for testing thyroid function in cetaceans. PMID:3651900

  19. Exercise training versus T3 and T4 hormones treatment: The differential benefits of thyroid hormones on the parasympathetic drive of infarcted rats.

    PubMed

    Teixeira, Rayane Brinck; Zimmer, Alexsandra; de Castro, Alexandre Luz; Carraro, Cristina Campos; Casali, Karina Rabello; Dias, Ingrid Gonçalves Machuca; Godoy, Alessandra Eifler Guerra; Litvin, Isnard Elman; Belló-Klein, Adriane; da Rosa Araujo, Alex Sander

    2018-03-01

    This study aimed to investigate whether beneficial effects of thyroid hormones are comparable to those provided by the aerobic exercise training, to verify its applicability as a therapeutic alternative to reverse the pathological cardiac remodeling post-infarction. Male rats were divided into SHAM-operated (SHAM), myocardial infarction (MI), MI subjected to exercise training (MIE), and MI who received T3 and T4 treatment (MIH) (n = 8/group). MI, MIE and MIH groups underwent an infarction surgery while SHAM was SHAM-operated. One-week post-surgery, MIE and MIH groups started the exercise training protocol (moderate intensity on treadmill), or the T3 (1.2 μg/100 g/day) and T4 (4.8 μg/100 g/day) hormones treatment by gavage, respectively, meanwhile SHAM and MI had no intervention for 9 weeks. The groups were accompanied until 74 days after surgery, when all animals were anesthetized, left ventricle echocardiography and femoral catheterization were performed, followed by euthanasia and left ventricle collection for morphological, oxidative stress, and intracellular kinases expression analysis. Thyroid hormones treatment was more effective in cardiac dilation and infarction area reduction, while exercise training provided more protection against fibrosis. Thyroid hormones treatment increased the lipoperoxidation and decreased GSHPx activity as compared to MI group, increased the t-Akt2 expression as compared to SHAM group, and increased the vascular parasympathetic drive. Thyroid hormones treatment provided differential benefits on the LV function and autonomic modulation as compared to the exercise training. Nevertheless, the redox unbalance induced by thyroid hormones highlights the importance of more studies targeting the ideal duration of this treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Thyroid hormone and obesity.

    PubMed

    Pearce, Elizabeth N

    2012-10-01

    To review several of the most recent and most important clinical studies regarding the effects of thyroid treatments on weight change, associations between thyroid status and weight, and the effects of obesity and weight change on thyroid function. Weight decreases following treatment for hypothyroidism. However, following levothyroxine treatment for overt hypothyroidism, weight loss appears to be modest and mediated primarily by loss of water weight rather than fat. There is conflicting evidence about the effects of thyroidectomy on weight. In large population studies, even among euthyroid individuals, serum thyroid-stimulating hormone is typically positively associated with body weight and BMI. Both serum thyroid-stimulating hormone and T3 are typically increased in obese compared with lean individuals, an effect likely mediated, at least in part, by leptin. Finally, there is no consistent evidence that thyroid hormone treatment induces weight loss in obese euthyroid individuals, but thyroid hormone analogues may eventually be useful for weight loss. The interrelationships between body weight and thyroid status are complex.

  1. Thyroid-stimulating Hormone (TSH): Measurement of Intracellular, Secreted, and Circulating Hormone in Xenopus laevis and Xenopus tropicalis.

    EPA Science Inventory

    Thyroid Stimulating Hormone (TSH) is a hormone produced in the pituitary that stimulates the thyroid gland to grow and produce thyroid hormone (TH). The concentration of TH controls developmental changes that take place in a wide variety of organisms. Many use the metaphoric ch...

  2. Unexplained high thyroid stimulating hormone: a "BIG" problem.

    PubMed

    Mendoza, Heidi; Connacher, Alan; Srivastava, Rajeev

    2009-01-01

    Macro-hormones and macro-enzymes are high molecular weight conjugates of hormones or enzymes, respectively, often with immunoglobulins. These are referred to as macromolecular complexes, and may cause artefactually elevated biochemical tests results. Macro enzymes of the most commonly measured serum enzymes have been identified and are recognised as a source of elevated measurements that may cause diagnostic confusion; macro-creatine kinase and macro-amylase are the two better known macro-enzymes in clinical practice. Literature on macro-hormones is largely restricted to macro-prolactin. We present a case of a clinically euthyroid patient, who had persistently elevated thyroid stimulating hormone (TSH) but free thyroxine within the reference limits. She underwent repeated thyroid investigations and thyroid hormone interference studies, until macro-TSH was identified as the most likely cause of unexplained elevated TSH. Following the identification and characterisation of this biochemical abnormality, she is no longer subject to repeated blood tests for assessment of thyroid function; the patient currently remains clinically euthyroid.

  3. Alternate pathways of thyroid hormone metabolism.

    PubMed

    Wu, Sing-Yung; Green, William L; Huang, Wen-Sheng; Hays, Marguerite T; Chopra, Inder J

    2005-08-01

    The major thyroid hormone (TH) secreted by the thyroid gland is thyroxine (T(4)). Triiodothyronine (T(3)), formed chiefly by deiodination of T(4), is the active hormone at the nuclear receptor, and it is generally accepted that deiodination is the major pathway regulating T(3) bioavailability in mammalian tissues. The alternate pathways, sulfation and glucuronidation of the phenolic hydroxyl group of iodothyronines, the oxidative deamination and decarboxylation of the alanine side chain to form iodothyroacetic acids, and ether link cleavage provide additional mechanisms for regulating the supply of active hormone. Sulfation may play a general role in regulation of iodothyronine metabolism, since sulfation of T(4) and T(3) markedly accelerates deiodination to the inactive metabolites, reverse triiodothyronine (rT(3)) and T(2). Sulfoconjugation is prominent during intrauterine development, particularly in the precocial species in the last trimester including humans and sheep, where it may serve both to regulate the supply of T(3), via sulfation followed by deiodination, and to facilitate maternal-fetal exchange of sulfated iodothyronines (e.g., 3,3'-diiodothyronine sulfate [T(2)S]). The resulting low serum T(3) may be important for normal fetal development in the late gestation. The possibility that T(2)S or its derivative, transferred from the fetus and appearing in maternal serum or urine, can serve as a marker of fetal thyroid function is being studied. Glucuronidation of TH often precedes biliary-fecal excretion of hormone. In rats, stimulation of glucuronidation by various drugs and toxins may lead to lower T(4) and T(3) levels, provocation of thyrotropin (TSH) secretion, and goiter. In man, drug induced stimulation of glucuronidation is limited to T(4), and does not usually compromise normal thyroid function. However, in hypothyroid subjects, higher doses of TH may be required to maintain euthyroidism when these drugs are given. In addition, glucuronidates and

  4. Thyroid hormone metabolism and environmental chemical exposure

    PubMed Central

    2012-01-01

    Background Polychlorinated dioxins and –furans (PCDD/Fs) and polychlorinated-biphenyls (PCBs) are environmental toxicants that have been proven to influence thyroid metabolism both in animal studies and in human beings. In recent years polybrominated diphenyl ethers (PBDEs) also have been found to have a negative influence on thyroid hormone metabolism. The lower brominated flame retardants are now banned in the EU, however higher brominated decabromo-diphenyl ether (DBDE) and the brominated flame retardant hexabromocyclododecane (HBCD) are not yet banned. They too can negatively influence thyroid hormone metabolism. An additional brominated flame retardant that is still in use is tetrabromobisphenol-A (TBBPA), which has also been shown to influence thyroid hormone metabolism. Influences of brominated flame retardants, PCDD/F’s and dioxin like-PCBs (dl-PCB’s) on thyroid hormone metabolism in adolescence in the Netherlands will be presented in this study and determined if there are reasons for concern to human health for these toxins. In the period 1987-1991, a cohort of mother-baby pairs was formed in order to detect abnormalities in relation to dioxin levels in the perinatal period. The study demonstrated that PCDD/Fs were found around the time of birth, suggesting a modulation of the setpoint of thyroid hormone metabolism with a higher 3,3’, 5,5’tetrathyroxine (T4) levels and an increased thyroid stimulating hormone (TSH). While the same serum thyroid hormone tests (- TSH and T4) were again normal by 2 years of age and were still normal at 8-12 years, adolescence is a period with extra stress on thyroid hormone metabolism. Therefore we measured serum levels of TSH, T4, 3,3’,5- triiodothyronine (T3), free T4 (FT4), antibodies and thyroxine-binding globulin (TBG) in our adolescent cohort. Methods Vena puncture was performed to obtain samples for the measurement of thyroid hormone metabolism related parameters and the current serum dioxin (PCDD/Fs), PCB

  5. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice

    PubMed Central

    Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-01-01

    2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems PMID:27420076

  6. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice.

    PubMed

    Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-07-12

    2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems.

  7. Adequate thyroid-stimulating hormone levels after levothyroxine discontinuation in the follow-up of patients with well-differentiated thyroid carcinoma.

    PubMed

    Sánchez, Reyna; Espinosa-de-los-Monteros, Ana Laura; Mendoza, Victoria; Brea, Eduardo; Hernández, Irma; Sosa, Ernesto; Mercado, Moisés

    2002-01-01

    In the follow-up of patients with well-differentiated thyroid carcinomas (WTC), a thyroid-stimulating hormone (TSH) >or=30 micro U/mL is generally accepted as adequate to perform whole body scans (WBS), determine thyroglobulin (Tg), and administer radioiodine therapeutically. These patients, inevitably rendered hypothyroid, are traditionally switched to T3 for 3-4 weeks prior to withdrawing all thyroid hormones for an additional 2-3 weeks. Neither TSH and Tg elevation dynamics nor WBS characteristics after simply interrupting L-T4 treatment without T3 administration have been evaluated. TSH, total T4 and T3, as well as FT4 were measured weekly after discontinuing L-T4 in 21 subjects (group I) and after thyroidectomy in 10 subjects (group II). WBS and Tg determination was performed upon achievement of TSH >or=30 micro U/mL. By the second week, 42% of group I patients and 70% of group II patients had TSH >or=30 micro U/mL. By the third week, 90% in group I and 100% in group II had achieved this target. Group I patients who needed 4 weeks to increase TSH received a greater cumulative radioiodine dose and had higher Tg levels. Positive WBS were found in eight cases and the incidence of a negative WBS with elevated Tg was significantly higher when evaluation occurred at the second week of L-T4 withdrawal compared to the fourth week. L-T4 interruption is a reasonable alternative to temporary T3 in preparation for radioiodine scanning and treatment.

  8. Changes of thyroid hormone levels and related gene expression in zebrafish on early life stage exposure to triadimefon.

    PubMed

    Liu, Shaoying; Chang, Juhua; Zhao, Ying; Zhu, Guonian

    2011-11-01

    In this study, zebrafish was exposed to triadimefon. Thyroid hormones levels and the expression of related genes in the hypothalamic-pituitary-thyroid (HPT) axis, including thyroid-stimulating hormone (TSH-beta), deiodinases (dio1 and dio2) and the thyroid hormone receptor (thraa and thrb) were evaluated. After triadimefon exposure, increased T4 can be explained by increased thyroid-stimulating hormone (TSH-beta). The conversion of T4 to T3 (deiodinase type I-dio1) was decreased, which reduced the T3 level. Thyroid hormone receptor beta (thrb) mRNA levels were significantly down-regulated, possibly as a response to the decreased T3 levels. The overall results indicated that triadimefon exposure could alter gene expression in the HPT axis and that mechanisms of disruption of thyroid status by triadimefon could occur at several steps in the synthesis, regulation, and action of thyroid hormones. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  9. [Advances in postoperative thyroid-stimulating hormone suppression therapy in females with thyroid cancer].

    PubMed

    Song, F; Yi, H L

    2018-05-07

    Differentiated thyroid cancer is the most common malignant carcinoma in female population.Postoperative long-term thyroid-stimulating hormone(TSH) suppression therapy can reduce the risk of recurrence for differentiated thyroid cancer and control the progress of the disease, but it also induces simultaneously subclinical hypothyroidism and imposes negative effect on female. In addition to cardiovascular disease, TSH suppression therapy can lead to the alteration of sex hormone metabolism, menstrual disorder, poor influence on pregnancy and osteoporosis. This article reviews the recent studies on postoperative TSH suppression therapy in women with thyroid cancer.

  10. Thyroid hormone stimulation of NADPH P450 reductase expression in liver and extrahepatic tissues. Regulation by multiple mechanisms.

    PubMed

    Ram, P A; Waxman, D J

    1992-02-15

    The role of thyroid hormone in regulating the expression of the flavoprotein NADPH cytochrome P450 reductase was studied in adult rats. Depletion of circulating thyroid hormone by hypophysectomy, or more selectively, by treatment with the anti-thyroid drug methimazole led to a 75-85% depletion of hepatic microsomal P450 reductase activity and protein in both male and female rats. Thyroxine substantially restored P450 reductase activity at a dose that rendered the thyroid-depleted rats euthyroid. Microsomal P450 reductase activity in several extrahepatic tissues was also dependent on thyroid hormone, but to a lesser extent than in liver (30-50% decrease in kidney, adrenal, lung, and heart but not in testis from hypothyroid rats). Hepatic P450 reductase mRNA levels were also decreased in the hypothyroid state, indicating that the loss of P450 reductase activity is not a consequence of the associated decreased availability of the FMN and FAD cofactors of P450 reductase. Parallel analysis of S14 mRNA, which has been studied extensively as a model thyroid-regulated liver gene product, indicated that P450 reductase and S14 mRNA respond similarly to these changes in thyroid state. In contrast, while the expression of S14 and several other thyroid hormone-dependent hepatic mRNAs is stimulated by feeding a high carbohydrate, fat-free diet, hepatic P450 reductase expression was not increased by this lipogenic diet. Injection of hypothyroid rats with T3 at a supraphysiologic, receptor-saturating dose stimulated a major induction of hepatic P450 reductase mRNA that was detectable 4 h after the T3 injection, and peaked at approximately 650% of euthyroid levels by 12 h. However, this same treatment stimulated a biphasic increase in P450 reductase protein and activity that required 3 days to reach normal euthyroid levels. T3 treatment of euthyroid rats also stimulated a major induction of P450 reductase mRNA that was maximal (12-fold increase) by 12 h, but in this case no major

  11. Persistent Graves' hyperthyroidism despite rapid negative conversion of thyroid-stimulating hormone-binding inhibitory immunoglobulin assay results: a case report.

    PubMed

    Ohara, Nobumasa; Kaneko, Masanori; Kitazawa, Masaru; Uemura, Yasuyuki; Minagawa, Shinichi; Miyakoshi, Masashi; Kaneko, Kenzo; Kamoi, Kyuzi

    2017-02-06

    Graves' disease is an autoimmune thyroid disorder characterized by hyperthyroidism, and patients exhibit thyroid-stimulating hormone receptor antibody. The major methods of measuring circulating thyroid-stimulating hormone receptor antibody include the thyroid-stimulating hormone-binding inhibitory immunoglobulin assays. Although the diagnostic accuracy of these assays has been improved, a minority of patients with Graves' disease test negative even on second-generation and third-generation thyroid-stimulating hormone-binding inhibitory immunoglobulins. We report a rare case of a thyroid-stimulating hormone-binding inhibitory immunoglobulin-positive patient with Graves' disease who showed rapid lowering of thyroid-stimulating hormone-binding inhibitory immunoglobulin levels following administration of the anti-thyroid drug thiamazole, but still experienced Graves' hyperthyroidism. A 45-year-old Japanese man presented with severe hyperthyroidism (serum free triiodothyronine >25.0 pg/mL; reference range 1.7 to 3.7 pg/mL) and tested weakly positive for thyroid-stimulating hormone-binding inhibitory immunoglobulins on second-generation tests (2.1 IU/L; reference range <1.0 IU/L). Within 9 months of treatment with oral thiamazole (30 mg/day), his thyroid-stimulating hormone-binding inhibitory immunoglobulin titers had normalized, but he experienced sustained hyperthyroidism for more than 8 years, requiring 15 mg/day of thiamazole to correct. During that period, he tested negative on all first-generation, second-generation, and third-generation thyroid-stimulating hormone-binding inhibitory immunoglobulin assays, but thyroid scintigraphy revealed diffuse and increased uptake, and thyroid ultrasound and color flow Doppler imaging showed typical findings of Graves' hyperthyroidism. The possible explanations for serial changes in the thyroid-stimulating hormone-binding inhibitory immunoglobulin results in our patient include the presence of thyroid-stimulating

  12. Effect of thyrotropin-releasing factor on serum thyroid-stimulating hormone

    PubMed Central

    Costom, Bruce H.; Grumbach, Melvin M.; Kaplan, Selna L.

    1971-01-01

    To test the hypothesis that the primary defect in some patients with idiopathic hypopituitary dwarfism is failure to secrete hypothalamic hypophysiotropic-releasing factors, synthetic thyrotropin-releasing factor (TRF), 500 μg, wa given intravenously, and timed venous samples obtained for determination of the concentration of plasma TSH by radioimmunoassay in three groups of subjects: (a) 11 patients without evidence of endocrine or systemic disease, (group I) (b) 8 with isolated growth hormone deficiency and normal thyroid function, (group II) and (c) 9 patients with idiopathic hypopituitary dwarfism and thyroid-stimulating hormone (TSH) deficiency (group III). The mean fasting plasma TSH value was 4.1 μU/ml in group I, and 3.9 μU/ml in group II; in both groups there was a brisk rise in plasma TSH to peak levels of 12-45 μU/ml at 30-45 min, and a fall toward base line levels at 120 min. All children in group III had basal TSH levels of < 1.5 μU/ml; one failed to respond to TRF; eight exhibited a rise in plasma TSH with peak values comparable with those in groups I and II. In four of eight children in group III who responded to TRF, the TSH response was delayed and the initial rise in plasma TSH was not detectable until 10-60 min. In these four patients, plasma TSH levels continued to rise at 120 min. The mean fasting concentration of plasma thyroxine iodide (T4) in subjects with normal thyroid function (groups I and II) was 5.6 μg/100 ml, and the mean plasma T4 level at 120 min was 6.6 μg/100 ml. This difference between fasting and postTRF plasma T4 was significant (P < 0.001) by paired analysis. Mean fasting plasma T4 concentration in group III patients was 1.3 μg/100 ml; after TRF a significant rise in T4 concentration was not detected in this group. The results indicate that TRF test is useful in distinguishing between primary hypothalamic and pituitary forms of TSH deficiency. In light of the evidence of TRF deficiency in eight of nine patients with

  13. [Effect of aceclofenac on thyroid hormone binding and thyroid function].

    PubMed

    Nadler, K; Buchinger, W; Semlitsch, G; Pongratz, R; Rainer, F

    2000-01-01

    Influences of non-steroidal anti-inflammatory drugs (NSAID) on concentrations of thyroid hormones are known for a long time. These effects could be explained with interference between NSAIDs and thyroid hormone binding. We investigated the effects of a single dose of aceclofenac on thyroid function and thyroid hormone binding in 18 healthy volunteers. Serum levels of free thyroid hormones (FT3, FT4) and thyrotropin (TSH) were measured with commercial available kids and thyroid hormone binding was estimated with a specially modified horizontal argarose-gel-electrophoresis prior to and 2 hours after receiving a single dose of aceclofenac. We found a significant decrease in T3 binding on TBG and a significant increase of albumin-bound T3. All other investigated thyroid hormone binding parameters, FT3 and FT4, showed no significant changes. We conclude that aceclofenac leads to a significant redistribution of T3 protein binding. These effects seem to be explained by T3 displacement from TBG induced by aceclofenac.

  14. Clear cell variant of follicular thyroid carcinoma with normal thyroid-stimulating hormone value: a case report

    PubMed Central

    2014-01-01

    Introduction Clear cell carcinomas of the thyroid gland with normal thyroid-stimulating hormone value are very rare, but clear cell changes are described in most reported cases of thyroidal lesions. Case presentation In this report, we describe the case of a 50-year-old Caucasian woman with a normal thyroid-stimulating hormone level who underwent surgery to treat a multi-nodular goiter. The pathology was a clear cell variant of follicular thyroid carcinoma. The tumor was 1cm in diameter and consisted of pure clear cells. Conclusion Clear cell variants of follicular thyroid carcinoma are rarely seen, especially it is misdiagnosed with metastatic renal cell carcinoma. In this report, we describe the case of a patient with a clear cell variant of follicular thyroid carcinoma with an interesting pathology. PMID:24884725

  15. A case of myxedema coma caused by isolated thyrotropin stimulating hormone deficiency and Hashimoto's thyroiditis.

    PubMed

    Iida, Keiji; Hino, Yasuhisa; Ohara, Takeshi; Chihara, Kazuo

    2011-01-01

    Myxedema coma (MC) is a rare, but often fatal endocrine emergency. The majority of cases that occur in elderly women with long-standing primary hypothyroidism are caused by particular triggers. Conversely, MC of central origin is extremely rare. Here, we report a case of MC with both central and primary origins. A 56-year-old woman was transferred to our hospital due to loss of consciousness; a chest x-ray demonstrated severe cardiomegaly. Low body temperature, bradycardia, and pericardial effusion suggested the presence of hypothyroidism. Endocrinological examination revealed undetectable levels of serum free thyroxine (T(4)) and free triiodothyronine (T(3)), whereas serum thyroid-stimulating hormone (TSH) levels were not elevated. The woman's serum anti-thyroid peroxidase antibody and anti-thyroglobulin antibody tests were positive, indicating that she had Hashimoto's thyroiditis. Provocative tests to the anterior pituitary revealed that she had TSH and growth hormone (GH) deficiency; however, GH levels were restored after supplementation with levothyroxine for 5 months. This was not only a rare case of MC with TSH deficiency and Hashimoto's thyroiditis; the patient also developed severe osteoporosis and possessed transient elevated levels of serum carcinoembryonic antigen (CEA). This atypical case may suggest the role of anterior pituitary hormone deficiencies, as well as hypothyroidism, in the regulation of bone metabolism.

  16. The Influence of Thyroid-Stimulating Hormone and Thyroid-Stimulating Hormone Receptor Antibodies on Osteoclastogenesis

    PubMed Central

    Morshed, Syed; Latif, Rauf; Zaidi, Mone; Davies, Terry F.

    2011-01-01

    Background We have shown that thyroid-stimulating hormone (TSH) has a direct inhibitory effect on osteoclastic bone resorption and that TSH receptor (TSHR) null mice display osteoporosis. To determine the stage of osteoclast development at which TSH may exert its effect, we examined the influence of TSH and agonist TSHR antibodies (TSHR-Ab) on osteoclast differentiation from murine embryonic stem (ES) cells to gain insight into bone remodeling in hyperthyroid Graves' disease. Methods Osteoclast differentiation was initiated in murine ES cell cultures through exposure to macrophage colony stimulation factor, receptor activator of nuclear factor кB ligand, vitamin D, and dexamethasone. Results Tartrate resistant acid phosphatase (TRAP)-positive osteoclasts formed in ∼12 days. This coincided with the expected downregulation of known markers of self renewal and pluripotency (including Oct4, Sox2, and REX1). Both TSH and TSHR-Abs inhibited osteoclastogenesis as evidenced by decreased development of TRAP-positive cells (∼40%–50% reduction, p = 0.0047), and by decreased expression, in a concentration-dependent manner, of osteoclast differentiation markers (including the calcitonin receptor, TRAP, cathepsin K, matrix metallo-proteinase-9, and carbonic anhydrase II). Similar data were obtained using serum immunoglobulin-Gs (IgGs) from patients with hyperthyroid Graves' disease and known TSHR-Abs. TSHR stimulators inhibited tumor necrosis factor-alpha mRNA and protein expression, but increased the expression of osteoprotegerin (OPG), an antiosteoclastogenic human soluble receptor activator of nuclear factor кB ligand receptor. Neutralizing antibody to OPG reversed the inhibitory effect of TSH on osteoclast differentiation evidencing that the TSH effect was at least in part mediated by increased OPG. Conclusion These data establish ES-derived osteoclastogenesis as an effective model system to study the regulation of osteoclast differentiation in early development

  17. Silent pituitary macroadenoma co-secreting growth hormone and thyroid stimulating hormone.

    PubMed

    Sen, Orhan; Ertorer, M Eda; Aydin, M Volkan; Erdogan, Bulent; Altinors, Nur; Zorludemir, Suzan; Guvener, Nilgun

    2005-04-01

    Silent pituitary adenomas are a group of tumors showing heterogenous morphological features with no hormonal function observed clinically. To date no explanation has been provided as to why these tumors remain "silent". We report a case of a silent macroadenoma with both growth hormone (GH) and thyroid stimulating hormone (TSH) staining and secretion but with no clinical manifestations, in particular, the absence of features of acromegaly or hyperthyroidism. The relevant literature is reviewed.

  18. Prenatal and Neonatal Thyroid Stimulating Hormone Levels and Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Yau, Vincent M.; Lutsky, Marta; Yoshida, Cathleen K.; Lasley, Bill; Kharrazi, Martin; Windham, Gayle; Gee, Nancy; Croen, Lisa A.

    2015-01-01

    Thyroid hormones are critical for normal brain development. This study examined autism spectrum disorders (ASD) and thyroid stimulating hormone (TSH) levels measured in mid-pregnancy maternal serum and infant blood after birth. Three groups of children born in Orange County, CA in 2000-2001 were identified: ASD (n = 78), developmental delay…

  19. Thyroid-stimulation hormone-receptor antibodies as a predictor of thyrosuppressive drug therapy outcome in Graves' disease patients.

    PubMed

    Aleksić, Aleksandar Z; Aleksić, Željka; Manić, Saška; Mitov, Vladimir; Jolić, Aleksandar

    2014-01-01

    Graves' disease is autoimmune hyperthyroidism caused by pathological stimulation of thyroid-stimulation hormone-receptor antibodies. The decision on changing the therapy can be made on time by determining the prognostic factors of thyrosuppressive drug therapy outcome. The aim of the study was to determine the significance of thyroid-stimulation hormone-receptor antibodies level on the prediction of therapy outcome. The study was prospective and involved 106 drug-treated patients with newly diagnosed Graves' disease. Thyroid-stimulation hormone-receptor antibodies level was measured at the beginning of therapy, during therapy and 12 months after it had been introduced. No statistically significant difference in the level of thyroid-stimulation hormone-receptor antibodies was found at the beginning of disease and 12 months after the introduction of thyrosuppressive drug therapy among the patients who had been in remission and those who had not. Regardless of the outcome, thyroid-stimulation hormone-receptor antibodies level significantly decreased in all patients 12 months after the therapy had been introduced. The level of thyroid-stimulation hormone-receptor antibodies at the beginning of disease and 12 months after the introduction of therapy cannot predict the outcome of thyrosuppressive drug therapy.

  20. Antitumor Responses Stimulated by Dendritic Cells Are Improved by Triiodothyronine Binding to the Thyroid Hormone Receptor β.

    PubMed

    Alamino, Vanina A; Mascanfroni, Iván D; Montesinos, María M; Gigena, Nicolás; Donadio, Ana C; Blidner, Ada G; Milotich, Sonia I; Cheng, Sheue-Yann; Masini-Repiso, Ana M; Rabinovich, Gabriel A; Pellizas, Claudia G

    2015-04-01

    Bidirectional cross-talk between the neuroendocrine and immune systems orchestrates immune responses in both physiologic and pathologic settings. In this study, we provide in vivo evidence of a critical role for the thyroid hormone triiodothyronine (T3) in controlling the maturation and antitumor functions of dendritic cells (DC). We used a thyroid hormone receptor (TR) β mutant mouse (TRβPV) to establish the relevance of the T3-TRβ system in vivo. In this model, TRβ signaling endowed DCs with the ability to stimulate antigen-specific cytotoxic T-cell responses during tumor development. T3 binding to TRβ increased DC viability and augmented DC migration to lymph nodes. Moreover, T3 stimulated the ability of DCs to cross-present antigens and to stimulate cytotoxic T-cell responses. In a B16-OVA mouse model of melanoma, vaccination with T3-stimulated DCs inhibited tumor growth and prolonged host survival, in part by promoting the generation of IFNγ-producing CD8(+) T cells. Overall, our results establish an adjuvant effect of T3-TRβ signaling in DCs, suggesting an immediately translatable method to empower DC vaccination approaches for cancer immunotherapy. ©2015 American Association for Cancer Research.

  1. Chronic food restriction and the circadian rhythms of pituitary-adrenal hormones, growth hormone and thyroid-stimulating hormone.

    PubMed

    Armario, A; Montero, J L; Jolin, T

    1987-01-01

    Adult male Sprague-Dawley rats were subjected to food restriction so that they ate 65% of food ingested by control rats. While control rats had free access to food over the 24-hour period, food-restricted rats were provided with food daily at 10 a.m. The experimental period lasted for 34 days. On day 35, rats from both experimental groups were killed at 08.00, 11.00, 14.00, 24.00 and 02.00 h. Food restriction modified the circadian rhythms of ACTH and corticosterone. In addition, total circulating corticosterone throughout the day was higher in food-restricted than in control rats. In contrast, food restriction resulted in depressed secretion of thyroid-stimulating hormone and growth hormone. The results indicate that time of food availability entrained circadian corticosterone rhythm but not thyroid-stimulating hormone and growth hormone rhythms.

  2. Thyroid Stimulating Hormone Receptor Antibodies in Thyroid Eye Disease-Methodology and Clinical Applications.

    PubMed

    Diana, Tanja; Kahaly, George J

    2018-05-02

    Thyroid stimulating hormone receptor antibodies (TSHR-Ab) cause autoimmune hyperthyroidism and are prevalent in patients with related thyroid eye disease (TED). To provide a historical perspective on TSHR-Ab and to present evidence-based recommendations for clinical contemporary use. The authors review the recent literature pertaining to TSHR-Ab in patients with TED and describe the various immunoassays currently used for detecting TSHR-Ab and their clinical applications. We provide a historical summary and description of the various methods used to detect TSHR-Ab, foremost, the functional TSHR-Ab. Increasing experimental and clinical data demonstrate the clinical usefulness of cell-based bioassays for measurements of functional TSHR-Ab in the diagnosis and management of patients with autoimmune TED and in the characterization of patients with autoimmune-induced hyperthyroidism and hypothyroidism. Thyroid stimulating hormone receptor antibodies, especially the functional stimulating antibodies, are sensitive, specific, and reproducible biomarkers for patients with autoimmune TED and correlate well with clinical disease activity and clinical severity. Unlike competitive-binding assays, bioassays have the advantage of indicating not only the presence of antibodies but also their functional activity and potency. Measurement of TSHR-Ab (especially stimulating antibodies) is a clinically useful tool for the management of patients with TED.

  3. Thyroid hormone enhanced human hepatoma cell motility involves brain-specific serine protease 4 activation via ERK signaling

    PubMed Central

    2014-01-01

    Background The thyroid hormone, 3, 3′, 5-triiodo-L-thyronine (T3), has been shown to modulate cellular processes via interactions with thyroid hormone receptors (TRs), but the secretory proteins that are regulated to exert these effects remain to be characterized. Brain-specific serine protease 4 (BSSP4), a member of the human serine protease family, participates in extracellular matrix remodeling. However, the physiological role and underlying mechanism of T3-mediated regulation of BSSP4 in hepatocellular carcinogenesis are yet to be established. Methods The thyroid hormone response element was identified by reporter and chromatin immunoprecipitation assays. The cell motility was analyzed via transwell and SCID mice. The BSSP4 expression in clinical specimens was examined by Western blot and quantitative reverse transcription polymerase chain reaction. Results Upregulation of BSSP4 at mRNA and protein levels after T3 stimulation is a time- and dose-dependent manner in hepatoma cell lines. Additionally, the regulatory region of the BSSP4 promoter stimulated by T3 was identified at positions -609/-594. BSSP4 overexpression enhanced tumor cell migration and invasion, both in vitro and in vivo. Subsequently, BSSP4-induced migration occurs through the ERK 1/2-C/EBPβ-VEGF cascade, similar to that observed in HepG2-TRα1 and J7-TRα1 cells. BSSP4 was overexpressed in clinical hepatocellular carcinoma (HCC) patients, compared with normal subjects, and positively associated with TRα1 and VEGF to a significant extent. Importantly, a mild association between BSSP4 expression and distant metastasis was observed. Conclusions Our findings collectively support a potential role of T3 in cancer cell progression through regulation of the BSSP4 protease via the ERK 1/2-C/EBPβ-VEGF cascade. BSSP4 may thus be effectively utilized as a novel marker and anti-cancer therapeutic target in HCC. PMID:24980078

  4. Thyroid hormone enhanced human hepatoma cell motility involves brain-specific serine protease 4 activation via ERK signaling.

    PubMed

    Chen, Cheng-Yi; Chung, I-Hsiao; Tsai, Ming-Ming; Tseng, Yi-Hsin; Chi, Hsiang-Cheng; Tsai, Chung-Ying; Lin, Yang-Hsiang; Wang, You-Ching; Chen, Chie-Pein; Wu, Tzu-I; Yeh, Chau-Ting; Tai, Dar-In; Lin, Kwang-Huei

    2014-07-01

    The thyroid hormone, 3, 3', 5-triiodo-L-thyronine (T3), has been shown to modulate cellular processes via interactions with thyroid hormone receptors (TRs), but the secretory proteins that are regulated to exert these effects remain to be characterized. Brain-specific serine protease 4 (BSSP4), a member of the human serine protease family, participates in extracellular matrix remodeling. However, the physiological role and underlying mechanism of T3-mediated regulation of BSSP4 in hepatocellular carcinogenesis are yet to be established. The thyroid hormone response element was identified by reporter and chromatin immunoprecipitation assays. The cell motility was analyzed via transwell and SCID mice. The BSSP4 expression in clinical specimens was examined by Western blot and quantitative reverse transcription polymerase chain reaction. Upregulation of BSSP4 at mRNA and protein levels after T3 stimulation is a time- and dose-dependent manner in hepatoma cell lines. Additionally, the regulatory region of the BSSP4 promoter stimulated by T3 was identified at positions -609/-594. BSSP4 overexpression enhanced tumor cell migration and invasion, both in vitro and in vivo. Subsequently, BSSP4-induced migration occurs through the ERK 1/2-C/EBPβ-VEGF cascade, similar to that observed in HepG2-TRα1 and J7-TRα1 cells. BSSP4 was overexpressed in clinical hepatocellular carcinoma (HCC) patients, compared with normal subjects, and positively associated with TRα1 and VEGF to a significant extent. Importantly, a mild association between BSSP4 expression and distant metastasis was observed. Our findings collectively support a potential role of T3 in cancer cell progression through regulation of the BSSP4 protease via the ERK 1/2-C/EBPβ-VEGF cascade. BSSP4 may thus be effectively utilized as a novel marker and anti-cancer therapeutic target in HCC.

  5. Hepatocyte nuclear factor 4alpha contributes to thyroid hormone homeostasis by cooperatively regulating the type 1 iodothyronine deiodinase gene with GATA4 and Kruppel-like transcription factor 9.

    PubMed

    Ohguchi, Hiroto; Tanaka, Toshiya; Uchida, Aoi; Magoori, Kenta; Kudo, Hiromi; Kim, Insook; Daigo, Kenji; Sakakibara, Iori; Okamura, Masashi; Harigae, Hideo; Sasaki, Takeshi; Osborne, Timothy F; Gonzalez, Frank J; Hamakubo, Takao; Kodama, Tatsuhiko; Sakai, Juro

    2008-06-01

    Type 1 iodothyronine deiodinase (Dio1), a selenoenzyme catalyzing the bioactivation of thyroid hormone, is highly expressed in the liver. Dio1 mRNA and enzyme activity levels are markedly reduced in the livers of hepatocyte nuclear factor 4alpha (HNF4alpha)-null mice, thus accounting for its liver-specific expression. Consistent with this deficiency, serum T4 and rT3 concentrations are elevated in these mice compared with those in HNF4alpha-floxed control littermates; however, serum T3 levels are unchanged. Promoter analysis of the mouse Dio1 gene demonstrated that HNF4alpha plays a key role in the transactivation of the mouse Dio1 gene. Deletion and substitution mutation analyses demonstrated that a proximal HNF4alpha site (direct repeat 1 [TGGACAAAGGTGC]; HNF4alpha-RE) is crucial for transactivation of the mouse Dio1 gene by HNF4alpha. Mouse Dio1 is also stimulated by thyroid hormone signaling, but a direct role for thyroid hormone receptor action has not been reported. We also showed that thyroid hormone-inducible Krüppel-like factor 9 (KLF9) stimulates the mouse Dio1 promoter very efficiently through two CACCC sequences that are located on either side of HNF4alpha-RE. Furthermore, KLF9 functions together with HNF4alpha and GATA4 to synergistically activate the mouse Dio1 promoter, suggesting that Dio1 is regulated by thyroid hormone in the mouse through an indirect mechanism requiring prior KLF9 induction. In addition, we showed that physical interactions between the C-terminal zinc finger domain (Cf) of GATA4 and activation function 2 of HNF4alpha and between the basic domain adjacent to Cf of GATA4 and a C-terminal domain of KLF9 are both required for this synergistic response. Taken together, these results suggest that HNF4alpha regulates thyroid hormone homeostasis through transcriptional regulation of the mouse Dio1 gene with GATA4 and KLF9.

  6. TSH (Thyroid-stimulating hormone) test

    MedlinePlus

    ... your blood ( hyperthyroidism ), or too little thyroid hormone ( hypothyroidism ). Symptoms of hyperthyroidism, also known as overactive thyroid, ... Bulging of the eyes Difficulty sleeping Symptoms of hypothyroidism, also known as underactive thyroid, include: Weight gain ...

  7. Higher Thyroid-Stimulating Hormone, Triiodothyronine and Thyroxine Values Are Associated with Better Outcome in Acute Liver Failure

    PubMed Central

    Sowa, Jan-Peter; Manka, Paul; Katsounas, Antonios; Syn, Wing-Kin; Führer, Dagmar; Gieseler, Robert K.; Bechmann, Lars P.; Gerken, Guido; Moeller, Lars C.; Canbay, Ali

    2015-01-01

    Introduction Changes in thyroid hormone levels, mostly as non-thyroidal illness syndrome (NTIS), have been described in many diseases. However, the relationship between acute liver failure (ALF) and thyroid hormone levels has not yet been clarified. The present study evaluates potential correlations of select thyroid functional parameters with ALF. Methods 84 consecutively recruited ALF patients were grouped according to the outcome of ALF (spontaneous recovery: SR; transplantation or death: NSR). TSH, free thyroxine (fT4), free triiodothyronine (fT3), T4, and T3 were determined. Results More than 50% of patients with ALF presented with abnormal thyroid parameters. These patients had greater risk for an adverse outcome than euthyroid patients. SR patients had significantly higher TSH, T4, and T3 concentrations than NSR patients. Albumin concentrations were significantly higher in SR than in NSR. In vitro T3 treatment was not able to rescue primary human hepatocytes from acetaminophen induced changes in mRNA expression. Conclusions In patients with ALF, TSH and total thyroid hormone levels differed significantly between SR patients and NSR patients. This might be related to diminished liver-derived transport proteins, such as albumin, in more severe forms of ALF. Thyroid parameters may serve as additional indicators of ALF severity. PMID:26147961

  8. Higher Thyroid-Stimulating Hormone, Triiodothyronine and Thyroxine Values Are Associated with Better Outcome in Acute Liver Failure.

    PubMed

    Anastasiou, Olympia; Sydor, Svenja; Sowa, Jan-Peter; Manka, Paul; Katsounas, Antonios; Syn, Wing-Kin; Führer, Dagmar; Gieseler, Robert K; Bechmann, Lars P; Gerken, Guido; Moeller, Lars C; Canbay, Ali

    2015-01-01

    Changes in thyroid hormone levels, mostly as non-thyroidal illness syndrome (NTIS), have been described in many diseases. However, the relationship between acute liver failure (ALF) and thyroid hormone levels has not yet been clarified. The present study evaluates potential correlations of select thyroid functional parameters with ALF. 84 consecutively recruited ALF patients were grouped according to the outcome of ALF (spontaneous recovery: SR; transplantation or death: NSR). TSH, free thyroxine (fT4), free triiodothyronine (fT3), T4, and T3 were determined. More than 50% of patients with ALF presented with abnormal thyroid parameters. These patients had greater risk for an adverse outcome than euthyroid patients. SR patients had significantly higher TSH, T4, and T3 concentrations than NSR patients. Albumin concentrations were significantly higher in SR than in NSR. In vitro T3 treatment was not able to rescue primary human hepatocytes from acetaminophen induced changes in mRNA expression. In patients with ALF, TSH and total thyroid hormone levels differed significantly between SR patients and NSR patients. This might be related to diminished liver-derived transport proteins, such as albumin, in more severe forms of ALF. Thyroid parameters may serve as additional indicators of ALF severity.

  9. Targeting the thyroid gland with thyroid-stimulating hormone (TSH)-nanoliposomes.

    PubMed

    Paolino, Donatella; Cosco, Donato; Gaspari, Marco; Celano, Marilena; Wolfram, Joy; Voce, Pasquale; Puxeddu, Efisio; Filetti, Sebastiano; Celia, Christian; Ferrari, Mauro; Russo, Diego; Fresta, Massimo

    2014-08-01

    Various tissue-specific antibodies have been attached to nanoparticles to obtain targeted delivery. In particular, nanodelivery systems with selectivity for breast, prostate and cancer tissue have been developed. Here, we have developed a nanodelivery system that targets the thyroid gland. Nanoliposomes have been conjugated to the thyroid-stimulating hormone (TSH), which binds to the TSH receptor (TSHr) on the surface of thyrocytes. The results indicate that the intracellular uptake of TSH-nanoliposomes is increased in cells expressing the TSHr. The accumulation of targeted nanoliposomes in the thyroid gland following intravenous injection was 3.5-fold higher in comparison to untargeted nanoliposomes. Furthermore, TSH-nanoliposomes encapsulated with gemcitabine showed improved anticancer efficacy in vitro and in a tumor model of follicular thyroid carcinoma. This drug delivery system could be used for the treatment of a broad spectrum of thyroid diseases to reduce side effects and improve therapeutic efficacy. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Peripheral thyroid hormone levels and hepatic thyroid hormone deiodinase gene expression in dairy heifers on the day of ovulation and during the early peri-implantation period.

    PubMed

    Meyerholz, Marie Margarete; Mense, Kirsten; Linden, Matthias; Raliou, Mariam; Sandra, Olivier; Schuberth, Hans-Joachim; Hoedemaker, Martina; Schmicke, Marion

    2016-09-08

    Before the onset of fetal thyroid hormone production, the transplacental delivery of maternal thyroid hormones is necessary for embryonic and fetal development. Therefore, the adaptation of maternal thyroid hormone metabolism may be important for pregnancy success and embryo survival. The aims of this study were to determine the thyroid hormone levels during the early peri-implantation period until day 18 and on the day of ovulation, to determine whether pregnancy success is dependent on a "normothyroid status" and to determine whether physiological adaptations in maternal thyroid hormone metabolism occur, which may be necessary to provide sufficient amounts of biologically active T3 to support early pregnancy. Therefore, blood samples obtained on the day of ovulation (day 0) and days 14 and 18 of the Holstein-Friesian heifers (n = 10) during the respective pregnant, non-pregnant and negative control cycles were analyzed for thyroid-stimulating-hormone (TSH), thyroxine (T4) and triiodothyronine (T3). Liver biopsies (day 18) from pregnant and respective non-pregnant heifers were analyzed for mRNA expression of the most abundant hepatic thyroid hormone deiodinase (DIO1) by real time qPCR. Although liver DIO1 mRNA expression did not differ between the pregnant and non-pregnant heifers on day 18, the serum concentrations of TSH and T3 on day 18 were higher in non-pregnant heifers compared to pregnant heifers (P < 0.05). Moreover, T3 decreased between day 0 and 18 in pregnant heifers (P < 0.001). In conclusion, no associations between thyroid hormone patterns on day 18 and pregnancy success were detected. During the early peri-implantation period, TSH and T3 may be affected by the pregnancy status because both TSH and T3 were lower on day 18 in pregnant heifers compared to non-pregnant dairy heifers. In further studies, the thyroid hormone axis should be evaluated throughout the entire gestation to confirm these data and identify other possible effects of

  11. Weight Changes in Patients with Differentiated Thyroid Carcinoma during Postoperative Long-Term Follow-up under Thyroid Stimulating Hormone Suppression

    PubMed Central

    Sohn, Seo Young; Joung, Ji Young; Cho, Yoon Young; Park, Sun Mi; Jin, Sang Man; Chung, Jae Hoon

    2015-01-01

    Background There are limited data about whether patients who receive initial treatment for differentiated thyroid cancer (DTC) gain or lose weight during long-term follow-up under thyroid stimulating hormone (TSH) suppression. This study was aimed to evaluate whether DTC patients under TSH suppression experience long-term weight gain after initial treatment. We also examined the impact of the radioactive iodine ablation therapy (RAIT) preparation method on changes of weight, comparing thyroid hormone withdrawal (THW) and recombinant human TSH (rhTSH). Methods We retrospectively reviewed 700 DTC patients who underwent a total thyroidectomy followed by either RAIT and levothyroxine (T4) replacement or T4 replacement alone. The control group included 350 age-matched patients with benign thyroid nodules followed during same period. Anthropometric data were measured at baseline, 1 to 2 years, and 3 to 4 years after thyroidectomy. Comparisons were made between weight and body mass index (BMI) at baseline and follow-up. Results Significant gains in weight and BMI were observed 3 to 4 years after initial treatment for female DTC but not in male patients. These gains among female DTC patients were also significant compared to age-matched control. Women in the THW group gained a significant amount of weight and BMI compared to baseline, while there was no increase in weight or BMI in the rhTSH group. There were no changes in weight and BMI in men according to RAIT preparation methods. Conclusion Female DTC patients showed significant gains in weight and BMI during long-term follow-up after initial treatment. These changes were seen only in patients who underwent THW for RAIT. PMID:26248858

  12. Plurihormonal pituitary adenoma immunoreactive for thyroid-stimulating hormone, growth hormone, follicle-stimulating hormone, and prolactin.

    PubMed

    Luk, Cynthia T; Kovacs, Kalman; Rotondo, Fabio; Horvath, Eva; Cusimano, Michael; Booth, Gillian L

    2012-01-01

    To describe the case of a patient with an unusual plurihormonal pituitary adenoma with immunoreactivity for thyroid-stimulating hormone (TSH), growth hormone, follicle-stimulating hormone, prolactin, and α-subunit. We report the clinical, laboratory, imaging, and pathology findings of a patient symptomatic from a plurihormonal pituitary adenoma and describe her outcome after surgical treatment. A 60-year-old woman presented to the emergency department with headaches, blurry vision, fatigue, palpitations, sweaty hands, and weight loss. Her medical history was notable for hyperthyroidism, treated intermittently with methimazole. Magnetic resonance imaging disclosed a pituitary macroadenoma (2.3 by 2.2 by 2.0 cm), and preoperative blood studies revealed elevated levels of TSH at 6.11 mIU/L, free thyroxine at 3.6 ng/dL, and free triiodothyronine at 6.0 pg/mL. She underwent an uncomplicated transsphenoidal resection of the pituitary adenoma. Immunostaining of tumor tissue demonstrated positivity for not only TSH but also growth hormone, follicle-stimulating hormone, prolactin, and α-subunit. The Ki-67 index of the tumor was estimated at 2% to 5%, and DNA repair enzyme O6-methylguanine-DNA methyltransferase immunostaining was mostly negative. Electron microscopy showed the ultrastructural phenotype of a glycoprotein-producing adenoma. Postoperatively, her symptoms and hyperthyroidism resolved. Thyrotropin-secreting pituitary adenomas are rare. Furthermore, recent reports suggest that 31% to 36% of adenomas may show evidence of secretion of multiple pituitary hormones. This case emphasizes the importance of considering pituitary causes of thyrotoxicosis and summarizes the clinical and pathology findings in a patient with a plurihormonal pituitary adenoma.

  13. [Thyroid hormone metabolism and action].

    PubMed

    Köhrle, Josef

    2004-05-01

    Reductive deiodination of thyroid hormones at the phenolic and tyrosyl ring leads to the activation or inactivation of the thyromimetic activity inherent to thyroid hormones. Alterations in the activities of the three selenocysteine-containing enzymes, the iodothyronine deiodinases, have been reported during development and in specific cells and tissues of the adult organism. Furthermore, pathophysiological changes in the deiodinase expression lead to therapeutically relevant disturbances of the homeostasis of thyroid hormones. Metabolisation of thyroid hormones by conjugation of their phenolic 4'-OH group, their alanine side chain or cleavage of their diphenylether bridge also contributes to both local and systemic supply of thyromimetic activity or hormone degradation. Further components mediating the pleiotropic action of thyroid hormones in part include redundant T3 receptors, binding and transport proteins, metabolising enzymes and T3-regulated gene products. This is achieved in a finely tuned manner with multiple feedback control, malfunction or complete failure of individual components and networks involved in the iodothyronine metabolism and thyroid hormone action can thus be compensated or prevented.

  14. Serum Spot 14 concentration is negatively associated with thyroid-stimulating hormone level

    PubMed Central

    Chen, Yen-Ting; Tseng, Fen-Yu; Chen, Pei-Lung; Chi, Yu-Chao; Han, Der-Sheng; Yang, Wei-Shiung

    2016-01-01

    Abstract Spot 14 (S14) is a protein involved in fatty acid synthesis and was shown to be induced by thyroid hormone in rat liver. However, the presence of S14 in human serum and its relations with thyroid function status have not been investigated. The objectives of this study were to compare serum S14 concentrations in patients with hyperthyroidism or euthyroidism and to evaluate the associations between serum S14 and free thyroxine (fT4) or thyroid-stimulating hormone (TSH) levels. We set up an immunoassay for human serum S14 concentrations and compared its levels between hyperthyroid and euthyroid subjects. Twenty-six hyperthyroid patients and 29 euthyroid individuals were recruited. Data of all patients were pooled for the analysis of the associations between the levels of S14 and fT4, TSH, or quartile of TSH. The hyperthyroid patients had significantly higher serum S14 levels than the euthyroid subjects (median [Q1, Q3]: 975 [669, 1612] ng/mL vs 436 [347, 638] ng/mL, P < 0.001). In univariate linear regression, the log-transformed S14 level (logS14) was positively associated with fT4 but negatively associated with creatinine (Cre), total cholesterol (T-C), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and TSH. The positive associations between logS14 and fT4 and the negative associations between logS14 and Cre, TG, T-C, or TSH remained significant after adjustment with sex and age. These associations were prominent in females but not in males. The logS14 levels were negatively associated with the TSH levels grouped by quartile (ß = −0.3020, P < 0.001). The association between logS14 and TSH quartile persisted after adjustment with sex and age (ß = −0.2828, P = 0.001). In stepwise multivariate regression analysis, only TSH grouped by quartile remained significantly associated with logS14 level. We developed an ELISA to measure serum S14 levels in human. Female patients with hyperthyroidism had higher serum S14 levels

  15. Relational Stability of Thyroid Hormones in Euthyroid Subjects and Patients with Autoimmune Thyroid Disease

    PubMed Central

    Hoermann, Rudolf; Midgley, John E.M.; Larisch, Rolf; Dietrich, Johannes W.

    2016-01-01

    Background/Aim Operating far from its equilibrium resting point, the thyroid gland requires stimulation via feedback-controlled pituitary thyrotropin (TSH) secretion to maintain adequate hormone supply. We explored and defined variations in the expression of control mechanisms and physiological responses across the euthyroid reference range. Methods We analyzed the relational equilibria between thyroid parameters defining thyroid production and thyroid conversion in a group of 271 thyroid-healthy subjects and 86 untreated patients with thyroid autoimmune disease. Results In the euthyroid controls, the FT3-FT4 (free triiodothyronine-free thyroxine) ratio was strongly associated with the FT4-TSH ratio (tau = −0.22, p < 0.001, even after correcting for spurious correlation), linking T4 to T3 conversion with TSH-standardized T4 production. Using a homeostatic model, we estimated both global deiodinase activity and maximum thyroid capacity. Both parameters were nonlinearly and inversely associated, trending in opposite directions across the euthyroid reference range. Within the panel of controls, the subgroup with a relatively lower thyroid capacity (<2.5 pmol/s) displayed lower FT4 levels, but maintained FT3 at the same concentrations as patients with higher functional and anatomical capacity. The relationships were preserved when extended to the subclinical range in the diseased sample. Conclusion The euthyroid panel does not follow a homogeneous pattern to produce random variation among thyroid hormones and TSH, but forms a heterogeneous group that progressively displays distinctly different levels of homeostatic control across the euthyroid range. This suggests a concept of relational stability with implications for definition of euthyroidism and disease classification. PMID:27843807

  16. Stimulation by thyroid-stimulating hormone and Grave's immunoglobulin G of vascular endothelial growth factor mRNA expression in human thyroid follicles in vitro and flt mRNA expression in the rat thyroid in vivo.

    PubMed

    Sato, K; Yamazaki, K; Shizume, K; Kanaji, Y; Obara, T; Ohsumi, K; Demura, H; Yamaguchi, S; Shibuya, M

    1995-09-01

    To elucidate the pathogenesis of thyroid gland hypervascularity in patients with Graves' disease, we studied the expression of mRNAs for vascular endothelial growth factor (VEGF) and its receptor, Flt family, using human thyroid follicles in vitro and thiouracil-fed rats in vivo. Human thyroid follicles, cultured in the absence of endothelial cells, secreted de novo-synthesized thyroid hormone in response to thyroid-stimulating hormone (TSH) and Graves' IgG. The thyroid follicles produced VEGF mRNA but not flt-1 mRNA. The expression of VEGF mRNA was enhanced by insulin, tumor-promoting phorbol ester, calcium ionophore, dibutyryl cAMP, TSH, and Graves' IgG. When rats were fed thiouracil for 4 wk, their serum levels of TSH were increased at day 3. VEGF mRNA was also increased on day 3, accompanied by an increase in flt family (flt-1 and KDR/ flk-1) mRNA expression. These in vitro and in vivo findings suggest that VEGF is produced by thyroid follicles in response to stimulators of TSH receptors, via the protein kinase A and C pathways. VEGF, a secretable angiogenesis factor, subsequently stimulates Flt receptors on endothelial cells in a paracrine manner, leading to their proliferation and producing hypervascularity of the thyroid gland, as seen in patients with Graves' disease.

  17. Thyrotropin-induced hyperthyroidism caused by selective pituitary resistance to thyroid hormone. A new syndrome of "inappropriate secretion of TSH".

    PubMed Central

    Gershengorn, M C; Weintraub, B D

    1975-01-01

    An 18-yr-old woman with clinical and laboratory features of hyperthyroidism had persistently elevated serum levels of immunoreative thyrotropin (TSH). During 11 yr of follow-up there had been no evidence of a pituitary tumor. After thyrotropin-releasing hormone (TRH), there was a marked increase in TSH and secondarily in triiodothyronine (T3), the latter observation confirming the biologic activity of the TSH. Exogenous T3 raised serum T3 and several measurements of peripheral thyroid hormone effect, while decreasing serum TSH, thyroxine (T4), and thyroidal radioiodine uptake. After T3, the TRH-stimulated TSH response was decreased but was still inappropriate for the elevated serum T3 levels. Dexamethasone reduced serum TSH but did not inhibit TRH stimulation of TSH. Propylthiouracil reduced serum T4 and T3 and raised TSH. This patient represents a new syndrome of TSH-induced hyperthyroidism, differing from previous reports in the absence of an obvious pituitary tumor and in the responsiveness of the TSH to TRH stimulation and thyroid hormone suppression. This syndrome appears to be caused by a selective, partial resistance of the pituitary to the action of thyroid hormone. This case is also compared with previous reports in the literature of patients with elevated serum levels of immunoreactive TSH in the presence of elevated total and free thyroid hormones. A classification of these cases, termed "inappropriate secretion of TSH," is proposed. PMID:1159077

  18. Thyroid Hormone Regulation of Metabolism

    PubMed Central

    Mullur, Rashmi; Liu, Yan-Yun

    2014-01-01

    Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5′-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets. PMID:24692351

  19. Thyroid hormones and fetal brain development.

    PubMed

    Pemberton, H N; Franklyn, J A; Kilby, M D

    2005-08-01

    Thyroid hormones are intricately involved in the developing fetal brain. The fetal central nervous system is sensitive to the maternal thyroid status. Critical amounts of maternal T3 and T4 must be transported across the placenta to the fetus to ensure the correct development of the brain throughout ontogeny. Severe mental retardation of the child can occur due to compromised iodine intake or thyroid disease. This has been reported in areas of the world with iodine insufficiency, New Guinea, and also in mother with thyroid complications such as hypothyroxinaemia and hyperthyroidism. The molecular control of thyroid hormones by deiodinases for the activation of thyroid hormones is critical to ensure the correct amount of active thyroid hormones are temporally supplied to the fetus. These hormones provide timing signals for the induction of programmes for differentiation and maturation at specific stages of development. Understanding these molecular mechanisms further will have profound implications in the clinical management of individuals affected by abnormal maternal of fetal thyroid status.

  20. Impact of light exposure on thyroid-stimulating hormone results using the Siemens Advia Centaur TSH-3Ultra assay.

    PubMed

    Armer, Jane; Giles, Diane; Lancaster, Ian; Brownbill, Kathryn

    2017-09-01

    Background Thyroid-stimulating hormone (TSH) is used as the first-line test of thyroid function. Siemens Healthcare Diagnostics recommend that Siemens Centaur reagents must be protected from light in the assay information and on reagent packaging. We have compared the effect of light exposure on results using Siemens TSH-3Ultra and follicle-stimulating hormone reagents. The thyroid-stimulating hormone reagent includes fluoroscein thiocyanate whereas the follicle-stimulating hormone reagent does not. Methods Three levels of quality controls were analysed using SiemensTSH-3Ultra and follicle-stimulating hormone reagent packs that had been kept protected from light or exposed to light at 6-h intervals for 48 h and then at 96 h. Results Thyroid-stimulating hormone results were significantly lower after exposure of TSH-3Ultra reagent packs to light. Results were >15% lower at all three levels of quality control following 18 h of light exposure and continued to decrease until 96 h. There was no significant difference in follicle-stimulating hormone results whether reagents had been exposed to or protected from light. Conclusions Thyroid-stimulating hormone results but not follicle-stimulating hormone results are lowered after exposure of reagent packs to light. Laboratories must ensure that TSH-3Ultra reagents are not exposed to light and analyse quality control samples on every reagent pack to check that there has not been light exposure prior to delivery. The labelling on TSH-3Ultra reagent packs should reflect the significant effect of light exposure compared with the follicle-stimulating hormone reagent. We propose that the effect of light exposure on binding of fluoroscein thiocyanate to the solid phase antibody causes the falsely low results.

  1. Molecular characterization of human thyroid hormone receptor β isoform 4.

    PubMed

    Moriyama, Kenji; Yamamoto, Hiroyuki; Futawaka, Kumi; Atake, Asami; Kasahara, Masato; Tagami, Tetsuya

    2016-01-01

    Thyroid hormone exerts a pleiotropic effect on development, differentiation, and metabolism through thyroid hormone receptor (TR). A novel thyroid hormone receptor β isoform (TRβ4) was cloned using PCR from a human pituitary cDNA library as a template. We report here the characterization of TRβ4 from a molecular basis. Temporal expression of TRβ4 during the fetal period is abundant in the brain and kidney, comparable with the adult pattern. Western blot analysis revealed that TRs are ubiquitination labile proteins, while TRβ1 is potentially stable. TRβ1, peroxisome proliferator-activated receptors (PPAR), and vitamin D receptor (VDR), which belong to class II transcription factors that function via the formation of heterodimeric complexes with retinoid X receptor (RXR), were suppressed by TRβ4 in a dose-dependent manner. Thus, TRβ4 exhibits ligand-independent transcriptional silencing, possibly as a substitute for dimerized RXR. In this study, TRβ1 and TRβ4 transcripts were detected in several cell lines. Quantitative RT-PCR assay showed that the expression of TRβ4 in human embryonic carcinoma cells of the testis was suppressed by sex hormone in a reciprocal manner to TRβ1. In contrast, TRβ4 was expressed under a high dose of triiodothyronine (T3) in a reciprocal manner to TRβ1. Finally, in transiently transfected NIH-3T3 cells, green fluorescence protein (GFP)-tagged TRβ4 was mostly nuclear in both the absence and the presence of T3. By mutating defined regions of both TRβs, we found that both TRβ1 and TRβ4 had altered nuclear/cytoplasmic distribution as compared with wild-type, and different to T3 and the nuclear receptor corepressor (NCoR). Thus, site-specific DNA binding is not essential for maintaining TRβs within the nucleus.

  2. Food restriction in young Japanese quails: effects on growth, metabolism, plasma thyroid hormones and mRNA species in the thyroid hormone signalling pathway.

    PubMed

    Rønning, Bernt; Mortensen, Anne S; Moe, Børge; Chastel, Olivier; Arukwe, Augustine; Bech, Claus

    2009-10-01

    Young birds, in their post-natal growth period, may reduce their growth and metabolism when facing a food shortage. To examine how such responses can be mediated by endocrine-related factors, we exposed Japanese quail chicks to food restriction for either 2 days (age 6-8 days) or 5 days (age 6-11 days). We then measured growth and resting metabolic rate (RMR), and circulating 3,3',5-triiodo-l-thyronine (T3) and 3,5,3',5'-tetraiodothyronine (T4) levels as well as expression patterns of genes involved in growth (insulin-like growth factor-I: IGF-I) and thyroid hormone signalling (thyroid-stimulating hormone-beta: TSHbeta, type II iodothyronine deiodinase: D2, thyroid hormone receptors isoforms: TRalpha and TRbeta). The food-restricted chicks receiving a weight-maintenance diet showed reductions in structural growth and RMR. Plasma levels of both T3 and T4 were reduced in the food-restricted birds, and within the 5 days food-restricted group there was a positive correlation between RMR and T3. IGF-I mRNA showed significantly higher abundance in the liver of ad libitum fed birds at day 8 compared with food-restricted birds. In the brain, TSHbeta mRNA level tended to be lower in food-restricted quails on day 8 compared with controls. Furthermore, TRalpha expression was lower in the brain of food-restricted birds at day 8 compared with birds fed ad libitum. Interestingly, brain D2 mRNA was negatively correlated with plasma T3 levels, tending to increase with the length of food restriction. Overall, our results show that food restriction produced significant effects on circulating thyroid hormones and differentially affected mRNA species in the thyroid hormone signalling pathway. Thus, we conclude that the effects of food restriction observed on growth and metabolism were partly mediated by changes in the endocrine-related factors investigated.

  3. Evaluation of Serum Thyroid-Stimulating Hormone Concentration as a Diagnostic Test for Hyperthyroidism in Cats.

    PubMed

    Peterson, M E; Guterl, J N; Nichols, R; Rishniw, M

    2015-01-01

    In humans, measurement of serum thyroid-stimulating hormone (TSH) concentration is commonly used as a first-line discriminatory test of thyroid function. Recent reports indicate that canine TSH (cTSH) assays can be used to measure feline TSH and results can help diagnose or exclude hyperthyroidism. To investigate the usefulness of cTSH measurements as a diagnostic test for cats with hyperthyroidism. Nine hundred and seventeen cats with untreated hyperthyroidism, 32 euthyroid cats suspected of having hyperthyroidism, and 131 clinically normal cats. Prospective study. Cats referred to the Animal Endocrine Clinic for suspected hyperthyroidism were evaluated with serum T4, T3, free T4 (fT4), and TSH concentrations. Thyroid scintigraphy was used as the gold standard to confirm or exclude hyperthyroidism. Median serum TSH concentration in the hyperthyroid cats (<0.03 ng/mL) was significantly (P < .001) lower than concentrations in clinically normal cats (0.05 ng/mL) or euthyroid cats with suspected thyroid disease (0.06 ng/mL). Only 18 (2.0%) hyperthyroid cats had measurable TSH concentrations (≥0.03 ng/mL), whereas 114 (69.9%) of the 163 euthyroid cats had detectable concentrations. Combining serum TSH with T4 or fT4 concentrations lowered the test sensitivity of TSH from 98.0 to 97.0%, but markedly increased overall test specificity (from 69.9 to 98.8%). Serum TSH concentrations are suppressed in 98% of hyperthyroid cats, but concentrations are measurable in a few cats with mild-to-moderate hyperthyroidism. Measurement of serum TSH represents a highly sensitive but poorly specific test for diagnosis of hyperthyroidism and is best measured in combination with T4 and fT4. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  4. Thyroid hormones and their effects: a new perspective.

    PubMed

    Hulbert, A J

    2000-11-01

    The thyroid hormones are very hydrophobic and those that exhibit biological activity are 3',5',3,5-L-tetraiodothyronine (T4), 3',5,3-L-triiodothyronine (T3), 3',5',3-L-triiodothyronine (rT3) and 3,5',-L-diiothyronine (3,5-T2). At physiological pH, dissociation of the phenolic -OH group of these iodothyronines is an important determinant of their physical chemistry that impacts on their biological effects. When non-ionized these iodothyronines are strongly amphipathic. It is proposed that iodothyronines are normal constituents of biological membranes in vertebrates. In plasma of adult vertebrates, unbound T4 and T3 are regulated in the picomolar range whilst protein-bound T4 and T3 are maintained in the nanomolar range. The function of thyroid-hormone-binding plasma proteins is to ensure an even distrubtion throughout the body. Various iodothyronines are produced by three types of membrane-bound cellular deiodinase enzyme systems in vertebrates. The distribution of deiodinases varies between tissues and each has a distinct developmental profile. Thyroid hormones. (1) the nuclear receptor mode is especially important in the thyroid hormone axis that controls plasma and cellular levels of these hormones. (2) These hormones are strongly associated with membranes in tissues and normally rigidify these membranes. (3) They also affect the acyl composition of membrane bilayers and it is suggested that this is due to the cells responding to thyroid-hormone-induced membrane rigidificataion. Both their immediate effects on the physical state of membranes and the consequent changes in membrane composition result in several other thyroid hormone effects. Effects on metabolism may be due primarily to membrane acyl changes. There are other actions of thyroid hormones involving membrane receptors and influences on cellular interactions with the extracellulara matrix. The effects of thyroid hormones are reviewed and appear to b combinations of these various modes of action. During

  5. Thyroid hormonal disturbances related to treatment of hepatitis C with interferon-alpha and ribavirin

    PubMed Central

    Danilovic, Debora Lucia Seguro; Mendes-Correa, Maria Cassia; Chammas, Maria Cristina; Zambrini, Heverton; Marui, Suemi

    2011-01-01

    OBJECTIVE: To characterize thyroid disturbances induced by interferon-alpha and ribavirin therapy in patients with chronic hepatitis C. INTRODUCTION: Interferon-alpha is used to treat chronic hepatitis C infections. This compound commonly induces both autoimmune and non-autoimmune thyroiditis. METHODS: We prospectively selected 26 patients with chronic hepatitis C infections. Clinical examinations, hormonal evaluations, and color-flow Doppler ultrasonography of the thyroid were performed before and during antiviral therapy. RESULTS: Of the patients in our study, 54% had no thyroid disorders associated with the interferon-alpha therapy but showed reduced levels of total T3 along with a decrease in serum alanine aminotransferase. Total T4 levels were also reduced at 3 and 12 months, but free T4 and thyroid stimulating hormone (TSH) levels remained stable. A total of 19% of the subjects had autoimmune interferon-induced thyroiditis, which is characterized by an emerge of antithyroid antibodies or overt hypothyroidism. Additionally, 16% had non-autoimmune thyroiditis, which presents as destructive thyroiditis or subclinical hypothyroidism, and 11% remained in a state of euthyroidism despite the prior existence of antithyroidal antibodies. Thyrotoxicosis with destructive thyroiditis was diagnosed within three months of therapy, and ultrasonography of these patients revealed thyroid shrinkage and discordant change in the vascular patterns. DISCUSSION: Decreases in the total T3 and total T4 levels may be related to improvements in the hepatocellular lesions or inflammatory changes similar to those associated with nonthyroidal illnesses. The immune mechanisms and direct effects of interferon-alpha can be associated with thyroiditis. CONCLUSION: Interferon-alpha and ribavirin induce autoimmune and non-autoimmune thyroiditis and hormonal changes (such as decreased total T3 and total T4 levels), which occur despite stable free T4 and TSH levels. A thyroid hormonal evaluation

  6. Thyroid hormonal disturbances related to treatment of hepatitis C with interferon-alpha and ribavirin.

    PubMed

    Danilovic, Debora Lucia Seguro; Mendes-Correa, Maria Cassia; Chammas, Maria Cristina; Zambrini, Heverton; Marui, Suemi

    2011-01-01

    To characterize thyroid disturbances induced by interferon-alpha and ribavirin therapy in patients with chronic hepatitis C. Interferon-alpha is used to treat chronic hepatitis C infections. This compound commonly induces both autoimmune and non-autoimmune thyroiditis. We prospectively selected 26 patients with chronic hepatitis C infections. Clinical examinations, hormonal evaluations, and color-flow Doppler ultrasonography of the thyroid were performed before and during antiviral therapy. Of the patients in our study, 54% had no thyroid disorders associated with the interferon-alpha therapy but showed reduced levels of total T3 along with a decrease in serum alanine aminotransferase. Total T4 levels were also reduced at 3 and 12 months, but free T4 and thyroid stimulating hormone (TSH) levels remained stable. A total of 19% of the subjects had autoimmune interferon-induced thyroiditis, which is characterized by an emerge of antithyroid antibodies or overt hypothyroidism. Additionally, 16% had non-autoimmune thyroiditis, which presents as destructive thyroiditis or subclinical hypothyroidism, and 11% remained in a state of euthyroidism despite the prior existence of antithyroidal antibodies. Thyrotoxicosis with destructive thyroiditis was diagnosed within three months of therapy, and ultrasonography of these patients revealed thyroid shrinkage and discordant change in the vascular patterns. Decreases in the total T3 and total T4 levels may be related to improvements in the hepatocellular lesions or inflammatory changes similar to those associated with nonthyroidal illnesses. The immune mechanisms and direct effects of interferon-alpha can be associated with thyroiditis. Interferon-alpha and ribavirin induce autoimmune and non-autoimmune thyroiditis and hormonal changes (such as decreased total T3 and total T4 levels), which occur despite stable free T4 and TSH levels. A thyroid hormonal evaluation, including the analysis of the free T4, TSH, and antithyroid

  7. Hepatocyte Nuclear Factor 4α Contributes to Thyroid Hormone Homeostasis by Cooperatively Regulating the Type 1 Iodothyronine Deiodinase Gene with GATA4 and Krüppel-Like Transcription Factor 9▿ †

    PubMed Central

    Ohguchi, Hiroto; Tanaka, Toshiya; Uchida, Aoi; Magoori, Kenta; Kudo, Hiromi; Kim, Insook; Daigo, Kenji; Sakakibara, Iori; Okamura, Masashi; Harigae, Hideo; Sasaki, Takeshi; Osborne, Timothy F.; Gonzalez, Frank J.; Hamakubo, Takao; Kodama, Tatsuhiko; Sakai, Juro

    2008-01-01

    Type 1 iodothyronine deiodinase (Dio1), a selenoenzyme catalyzing the bioactivation of thyroid hormone, is highly expressed in the liver. Dio1 mRNA and enzyme activity levels are markedly reduced in the livers of hepatocyte nuclear factor 4α (HNF4α)-null mice, thus accounting for its liver-specific expression. Consistent with this deficiency, serum T4 and rT3 concentrations are elevated in these mice compared with those in HNF4α-floxed control littermates; however, serum T3 levels are unchanged. Promoter analysis of the mouse Dio1 gene demonstrated that HNF4α plays a key role in the transactivation of the mouse Dio1 gene. Deletion and substitution mutation analyses demonstrated that a proximal HNF4α site (direct repeat 1 [TGGACAAAGGTGC]; HNF4α-RE) is crucial for transactivation of the mouse Dio1 gene by HNF4α. Mouse Dio1 is also stimulated by thyroid hormone signaling, but a direct role for thyroid hormone receptor action has not been reported. We also showed that thyroid hormone-inducible Krüppel-like factor 9 (KLF9) stimulates the mouse Dio1 promoter very efficiently through two CACCC sequences that are located on either side of HNF4α-RE. Furthermore, KLF9 functions together with HNF4α and GATA4 to synergistically activate the mouse Dio1 promoter, suggesting that Dio1 is regulated by thyroid hormone in the mouse through an indirect mechanism requiring prior KLF9 induction. In addition, we showed that physical interactions between the C-terminal zinc finger domain (Cf) of GATA4 and activation function 2 of HNF4α and between the basic domain adjacent to Cf of GATA4 and a C-terminal domain of KLF9 are both required for this synergistic response. Taken together, these results suggest that HNF4α regulates thyroid hormone homeostasis through transcriptional regulation of the mouse Dio1 gene with GATA4 and KLF9. PMID:18426912

  8. Molecular Aspects of Thyroid Hormone Actions

    PubMed Central

    Cheng, Sheue-Yann; Leonard, Jack L.; Davis, Paul J.

    2010-01-01

    ion transport systems, such as the Na+/H+ exchanger, or complex cellular events such as cell proliferation. Concentration of the integrin on cells of the vasculature and on tumor cells explains recently described proangiogenic effects of iodothyronines and proliferative actions of thyroid hormone on certain cancer cells, including gliomas. Thus, hormonal events that begin nongenomically result in effects in DNA-dependent effects. l-T4 is an agonist at the plasma membrane without conversion to T3. Tetraiodothyroacetic acid is a T4 analog that inhibits the actions of T4 and T3 at the integrin, including angiogenesis and tumor cell proliferation. T3 can activate phosphatidylinositol 3-kinase by a mechanism that may be cytoplasmic in origin or may begin at integrin αvβ3. Downstream consequences of phosphatidylinositol 3-kinase activation by T3 include specific gene transcription and insertion of Na, K-ATPase in the plasma membrane and modulation of the activity of the ATPase. Thyroid hormone, chiefly T3 and diiodothyronine, has important effects on mitochondrial energetics and on the cytoskeleton. Modulation by the hormone of the basal proton leak in mitochondria accounts for heat production caused by iodothyronines and a substantial component of cellular oxygen consumption. Thyroid hormone also acts on the mitochondrial genome via imported isoforms of nuclear TRs to affect several mitochondrial transcription factors. Regulation of actin polymerization by T4 and rT3, but not T3, is critical to cell migration. This effect has been prominently demonstrated in neurons and glial cells and is important to brain development. The actin-related effects in neurons include fostering neurite outgrowth. A truncated TRα1 isoform that resides in the extranuclear compartment mediates the action of thyroid hormone on the cytoskeleton. PMID:20051527

  9. Thyroid stimulating hormone and serum, plasma, and platelet brain-derived neurotrophic factor during a 3-month follow-up in patients with major depressive disorder.

    PubMed

    Baek, Ji Hyun; Kang, Eun-Suk; Fava, Maurizio; Mischoulon, David; Nierenberg, Andrew A; Lee, Dongsoo; Heo, Jung-Yoon; Jeon, Hong Jin

    2014-12-01

    Thyroid dysfunction and elevated thyroid stimulating hormone (TSH) are common in patients with depression. TSH might exert its function in the brain through blood levels of brain-derived neurotrophic factor (BDNF). BDNF decreases during depressed states and normalize after treatment. The gap is that the association between TSH and BDNF in patients with major depressive disorder (MDD) is unknown. We studied 105 subjects ≥18 years of age with MDD and measured serum, plasma, and platelet BDNF at baseline, 1 month and 3 months during antidepressant treatment. Other baseline measurements included hypothalamic-pituitary-thyroid axis hormones such as TSH, triiodothyronine (T3) and thyroxine (T4); hypothalamic-pituitary-adrenal (HPA) axis hormones and hypothalamic-pituitary-gonadal (HPG) axis hormones and prolactin. Linear mixed model effect analyses revealed that baseline TSH level was negatively associated with changes of serum BDNF from baseline to 3 months (F=7.58, p=0.007) after adjusting for age, sex, and body mass index, but was not associated with plasma and platelet BDNF. In contrast, T3 and T4, HPA axis hormones, HPG axis hormones, and prolactin were not associated with serum, plasma, or platelet BDNF levels. Patients in the highest quartile of TSH showed significantly lower serum BDNF than in the other quartiles (F=4.54, p=0.038), but no significant differences were found based on T3 and T4 levels. TSH was only measured at baseline. Higher TSH is associated with lower baseline and reduced the increase of serum BDNF levels during antidepressant treatment in patients with MDD. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Evaluation of two over-the-counter natural thyroid hormone preparations in human volunteers.

    PubMed

    Csako, G; Corso, D M; Kestner, J; Bokser, A D; Kennedy, P E; Pucino, F

    1992-04-01

    To determine the pharmacologic activity of over-the-counter (OTC) thyroid preparations. In vitro analysis and a prospective, crossover study in vivo. Tertiary care center. Two healthy adult volunteers. Three OTC preparations (Thyrotrophin PMG [bovine thyroid PMG extract], Thyro Forte [thyroid lymphogland concentrate with synergistic complex], and Thyro Complex [thyroid lyophilized gland concentrate with synergistic complex]) were analyzed in vitro. Volunteers were administered two times the manufacturer's maximum recommended daily dose of either Thyrotrophin PMG or Thyro Forte for one week, washed out for four to five weeks, and crossed over to receive the opposite tablet preparation for an additional week. The triiodothyronine (T3) and thyroxine (T4) contents of OTC preparations were measured by HPLC. Vital signs, serum total and free T4, total T3, thyroid stimulating hormone, thyroxine binding globulin, thyroglobulin, and general chemistry tests (including glucose and cholesterol) were monitored before, during, and between administration of the products. HPLC analysis of the three OTC preparations showed no T4 but did show possible T3 in two of these products. We found no definite clinical or laboratory evidence of thyroid hormone excess with either product. Healthcare professionals should advise against the use of these scientifically unsound and relatively expensive OTC thyroid preparations, of which the therapeutic efficacy is unknown.

  11. Effects of forced swimming stress on thyroid function, pituitary thyroid-stimulating hormone and hypothalamus thyrotropin releasing hormone expression in adrenalectomy Wistar rats.

    PubMed

    Sun, Qiuyan; Liu, Aihua; Ma, Yanan; Wang, Anyi; Guo, Xinhong; Teng, Weiping; Jiang, Yaqiu

    2016-11-01

    In order to study the impact that is imposed on the hypothalamic-pituitary-thyroid (HPT) axis of adrenalectomy male Wistar rats by stress caused by swimming, the blood level of triiodothyronine (T3), thyroxine (T4) and thyroid-stimulating hormone (TSH), the expression of TSHβ mRNA at the pituitary and thyrotropin releasing hormone (TRH) expression at the paraventricular nucleus (PVN) were measured. A total of 50 male Wistar rats of 6-8 weeks of age and with an average weight of 190-210 grams were randomly divided into the following two groups: The surgical (without adrenal glands) and non-surgical (adrenalectomy) group. These two groups were then divided into the following five groups, according to the time delay of sacrifice following forced swim (10 min, 2 h, 12 h and 24 h) and control (not subjected to swimming) groups. A bilateral adrenalectomy animal model was established. Serum TSH in the blood was measurement by chemiluminescent immunoassay, and cerebrum tissue were excised for the measurement of TRH expression using an immunohistochemistry assay. In addition, pituitaries were excised for the extraction of total RNA. Finally, reverse transcription-quantitative polymerase chain reaction was performed for quantitation of TSHβ. Following swimming, the serum T3, T4 and TSH, the TSHβ mRNA expression levels in the pituitary and the TRH expression in the PVN of the surgical group were gradually increased. In the non-surgical group, no significant differences were observed in the serum T3, T4 and TSH levels compared with the control group. The TSHβ mRNA expression at the pituitary showed a similar result. Furthermore, the TRH expression at PVN was gradually increased and stress from swimming could increase the blood T4, T3 and TSH levels, TSHβ mRNA expression at the pituitary and TRH expression at the PVN in adrenalectomy Wistar rats. Moreover, the index in the surgical group changed significantly compared with the non-surgical group. In conclusion, the results

  12. Influence of obesity and surgical weight loss on thyroid hormone levels.

    PubMed

    Chikunguwo, Silas; Brethauer, Stacy; Nirujogi, Vijaya; Pitt, Tracy; Udomsawaengsup, Suthep; Chand, Bipan; Schauer, Philip

    2007-01-01

    The pathophysiologic relationship between morbid obesity and thyroid hormones is not well understood. The goal of this study was to evaluate the influence of obesity and weight reduction after bariatric surgery on thyroid hormone levels. Patients who underwent gastric bypass or adjustable gastric banding at our institution, had no previous diagnosis of thyroid disorder, were not taking medication that could affect the thyroid function evaluation, and who were nonsmokers were included in this retrospective evaluation. The association between the thyroid-stimulating hormone (TSH) and free thyroxine (T(4)) levels and body mass index (BMI), and the influence of weight loss after bariatric surgery on these hormones were investigated at different points (preoperatively and 6 and 12 months after bariatric surgery). A total of 86 patients met the study criteria. The TSH levels correlated positively with BMI (P <.001, r = .91) within the BMI range of 30-67 kg/m(2). The mean BMI change from 49 to 32 kg/m(2) after bariatric surgery was associated with a mean reduction in the TSH level from 4.5 to 1.9 microU/mL. Free T(4) showed no association with BMI and was not significantly influenced by weight loss. Before bariatric surgery, 10.5% of the subjects had laboratory values consistent with subclinical hypothyroidism. After bariatric surgery, 100% of these patients experienced significant weight reduction with simultaneous resolution of their subclinical hypothyroidism. The results of our study have demonstrated a statistically significant positive association between serum TSH within the normal range and BMI. No association was found between BMI and free T(4) serum levels. The prevalence of subclinical hypothyroidism in study group was 10.5%. Weight loss after bariatric surgery improved or normalized thyroid hormone levels.

  13. WOMEN IN CANCER THEMATIC REVIEW: Thyroid-stimulating hormone in thyroid cancer: does it matter?

    PubMed

    Nieto, Hannah; Boelaert, Kristien

    2016-11-01

    Differentiated thyroid cancer is the most common endocrine malignancy and the incidence is increasing rapidly worldwide. Appropriate diagnosis and post-treatment monitoring of patients with thyroid tumours are critical. Fine needle aspiration cytology remains the gold standard for diagnosing thyroid cancer, and although there have been significant refinements to this technique, diagnostic surgery is often required for patients suspected to have malignancy. Serum thyroid-stimulating hormone (TSH) is higher in patients with malignant thyroid nodules than in those with benign disease, and TSH is proportionally increased in more aggressive tumours. Importantly, we have shown that the pre-operative serum TSH concentration independently predicts the presence of malignancy in subjects presenting with thyroid nodules. Establishing the use of TSH measurements in algorithms identifying high-risk thyroid nodules in routine clinical practice represents an exciting, cost-efficient and non-invasive approach to optimise thyroid cancer diagnosis. Binding of TSH to receptors on thyrocytes stimulates a number of growth promoting pathways both in normal and malignant thyroid cells, and TSH suppression with high doses of levothyroxine is routinely used after thyroidectomy to prevent cancer recurrence, especially in high-risk tumours. This review examines the relationship between serum TSH and thyroid cancer and reflects on the clinical potential of TSH measurements in diagnosis and disease monitoring. © 2016 Society for Endocrinology.

  14. Assessment of criteria used by veterinary practitioners to diagnose hypothyroidism in sighthounds and investigation of serum thyroid hormone concentrations in healthy Salukis.

    PubMed

    Shiel, Robert E; Sist, MaryDee; Nachreiner, Raymond F; Ehrlich, Claire P; Mooney, Carmel T

    2010-02-01

    To assess use of serum thyroid hormone concentrations by veterinarians to diagnose hypothyroidism in sighthounds and to evaluate serum thyroid hormone concentrations in healthy Salukis. Retrospective case series and cross-sectional study. 398 sighthounds of various breeds with a diagnosis of hypothyroidism and 283 healthy Salukis. Pretreatment thyroid hormone assay results from sighthounds subsequently classified as hypothyroid by practitioners were retrieved from a laboratory database. In healthy Salukis, serum concentrations of total thyroxine (T(4)), free T(4), total triiodothyronine (T(3)), free T(3), and thyroid-stimulating hormone (TSH) and antibodies against thyroglobulin and thyroid hormones were assayed. Records indicated hypothyroidism had been diagnosed in 303 (76.1%) sight-hounds on the basis of low serum thyroid hormone concentrations alone and in 30 (7.5%) others despite all thyroid hormone indices being within reference limits. Only 65 (16.3%) dogs had a high TSH concentration or positive thyroglobulin autoantibody result to support the diagnosis. In healthy Salukis, median (reference limits) serum concentrations of total T(4), free T(4), total T(3), free T(3), and TSH were 13.0 nmol/L (2.8 to 40.0 nmol/L), 12.0 pmol/L (2.0 to 30.3 pmol/L), 1.0 nmol/L (0.4 to 2.1 nmol/L), 4.0 pmol/L (1.6 to 7.7 pmol/L), and 0.18 ng/mL (0 to 0.86 ng/mL), respectively. Diagnosis of hypothyroidism by practitioners was most often made without adequate supportive laboratory evidence. Thyroid hormone values in healthy Salukis differed markedly from standard reference limits for some, but not all, thyroid hormone indices. Breed-specific reference limits should be used when interpreting thyroid hormone profiles of sighthounds.

  15. Impact of Triclosan on Female Reproduction through Reducing Thyroid Hormones to Suppress Hypothalamic Kisspeptin Neurons in Mice.

    PubMed

    Cao, Xin-Yuan; Hua, Xu; Xiong, Jian-Wei; Zhu, Wen-Ting; Zhang, Jun; Chen, Ling

    2018-01-01

    Triclosan (TCS), a broad-spectrum antimicrobial agent, is widely used in clinical settings and various personal care products. The aim of this study was to evaluate the influence of TCS on reproductive endocrine and function. Here, we show that the exposure of adult female mice to 10 or 100 mg/kg/day TCS caused prolongation of diestrus, and decreases in antral follicles and corpora lutea within 2 weeks. TCS mice showed decreases in the levels of serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and progesterone, and gonadotrophin-releasing hormone ( GnRH ) mRNA with the lack of LH surge and elevation of prolactin (PRL). TCS mice had lower kisspeptin immunoreactivity and kiss1 mRNA in anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC). Moreover, the estrogen (E2)-enhanced AVPV-kisspeptin expression was reduced in TCS mice. In addition, the serum thyroid hormones (triiodothyronine (T3) and thyroxine (T4)) in TCS mice were reduced with increases in levels of thyroid stimulating hormone (TSH) and thyroid releasing hormone (TRH). In TCS mice, the treatment with Levothyroxine (L-T4) corrected the increases in PRL, TSH and TRH; the administration of L-T4 or type-2 dopamine receptors agonist quinpirole inhibiting PRL release could rescue the decline of kisspeptin expression in AVPV and ARC; the treatment with L-T4, quinpirole or the GPR45 agonist kisspeptin-10 recovered the levels of serum LH and FSH and progesterone, and GnRH mRNA. Furthermore, TCS mice treated with L-T4 or quinpirole resumed regular estrous cycling, follicular development and ovulation. Together, these results indicate that exposing adult female mice to TCS (≥10 mg/kg) reduces thyroid hormones causing hyperprolactinemia that then suppresses hypothalamic kisspeptin expression, leading to deficits in reproductive endocrine and function.

  16. Impact of Triclosan on Female Reproduction through Reducing Thyroid Hormones to Suppress Hypothalamic Kisspeptin Neurons in Mice

    PubMed Central

    Cao, Xin-Yuan; Hua, Xu; Xiong, Jian-Wei; Zhu, Wen-Ting; Zhang, Jun; Chen, Ling

    2018-01-01

    Triclosan (TCS), a broad-spectrum antimicrobial agent, is widely used in clinical settings and various personal care products. The aim of this study was to evaluate the influence of TCS on reproductive endocrine and function. Here, we show that the exposure of adult female mice to 10 or 100 mg/kg/day TCS caused prolongation of diestrus, and decreases in antral follicles and corpora lutea within 2 weeks. TCS mice showed decreases in the levels of serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and progesterone, and gonadotrophin-releasing hormone (GnRH) mRNA with the lack of LH surge and elevation of prolactin (PRL). TCS mice had lower kisspeptin immunoreactivity and kiss1 mRNA in anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC). Moreover, the estrogen (E2)-enhanced AVPV-kisspeptin expression was reduced in TCS mice. In addition, the serum thyroid hormones (triiodothyronine (T3) and thyroxine (T4)) in TCS mice were reduced with increases in levels of thyroid stimulating hormone (TSH) and thyroid releasing hormone (TRH). In TCS mice, the treatment with Levothyroxine (L-T4) corrected the increases in PRL, TSH and TRH; the administration of L-T4 or type-2 dopamine receptors agonist quinpirole inhibiting PRL release could rescue the decline of kisspeptin expression in AVPV and ARC; the treatment with L-T4, quinpirole or the GPR45 agonist kisspeptin-10 recovered the levels of serum LH and FSH and progesterone, and GnRH mRNA. Furthermore, TCS mice treated with L-T4 or quinpirole resumed regular estrous cycling, follicular development and ovulation. Together, these results indicate that exposing adult female mice to TCS (≥10 mg/kg) reduces thyroid hormones causing hyperprolactinemia that then suppresses hypothalamic kisspeptin expression, leading to deficits in reproductive endocrine and function. PMID:29403355

  17. Thyroid hormones and menstrual cycle function in a longitudinal cohort of premenopausal women.

    PubMed

    Jacobson, Melanie H; Howards, Penelope P; Darrow, Lyndsey A; Meadows, Juliana W; Kesner, James S; Spencer, Jessica B; Terrell, Metrecia L; Marcus, Michele

    2018-05-01

    Previous studies have reported that hyperthyroid and hypothyroid women experience menstrual irregularities more often compared with euthyroid women, but reasons for this are not well-understood and studies on thyroid hormones among euthyroid women are lacking. In a prospective cohort study of euthyroid women, this study characterised the relationship between thyroid hormone concentrations and prospectively collected menstrual function outcomes. Between 2004-2014, 86 euthyroid premenopausal women not lactating or taking hormonal medications participated in a study measuring menstrual function. Serum thyroid hormones were measured before the menstrual function study began. Women then collected first morning urine voids and completed daily bleeding diaries every day for three cycles. Urinary oestrogen and progesterone metabolites (estrone 3-glucuronide (E 1 3G) and pregnanediol 3-glucuronide (Pd3G)) and follicle-stimulating hormone were measured and adjusted for creatinine (Cr). Total thyroxine (T 4 ) concentrations were positively associated with Pd3G and E 1 3G. Women with higher (vs lower) T 4 had greater luteal phase maximum Pd3G (Pd3G = 11.7 μg/mg Cr for women with high T 4 vs Pd3G = 9.5 and 8.1 μg/mg Cr for women with medium and low T 4 , respectively) and greater follicular phase maximum E 1 3G (E 1 3G = 41.7 ng/mg Cr for women with high T 4 vs E 1 3G = 34.3 and 33.7 ng/mg Cr for women with medium and low T 4 , respectively). Circulating thyroid hormone concentrations were associated with subtle differences in menstrual cycle function outcomes, particularly sex steroid hormone levels in healthy women. Results contribute to the understanding of the relationship between thyroid function and the menstrual cycle, and may have implications for fertility and chronic disease. © 2018 John Wiley & Sons Ltd.

  18. Thyroid-Stimulating Hormone Receptor Antibodies in Pregnancy: Clinical Relevance

    PubMed Central

    Bucci, Ines; Giuliani, Cesidio; Napolitano, Giorgio

    2017-01-01

    Graves’ disease is the most common cause of thyrotoxicosis in women of childbearing age. Approximately 1% of pregnant women been treated before, or are being treated during pregnancy for Graves’ hyperthyroidism. In pregnancy, as in not pregnant state, thyroid-stimulating hormone (TSH) receptor (TSHR) antibodies (TRAbs) are the pathogenetic hallmark of Graves’ disease. TRAbs are heterogeneous for molecular and functional properties and are subdivided into activating (TSAbs), blocking (TBAbs), or neutral (N-TRAbs) depending on their effect on TSHR. The typical clinical features of Graves’ disease (goiter, hyperthyroidism, ophthalmopathy, dermopathy) occur when TSAbs predominate. Graves’ disease shows some peculiarities in pregnancy. The TRAbs disturb the maternal as well as the fetal thyroid function given their ability to cross the placental barrier. The pregnancy-related immunosuppression reduces the levels of TRAbs in most cases although they persist in women with active disease as well as in women who received definitive therapy (radioiodine or surgery) before pregnancy. Changes of functional properties from stimulating to blocking the TSHR could occur during gestation. Drug therapy is the treatment of choice for hyperthyroidism during gestation. Antithyroid drugs also cross the placenta and therefore decrease both the maternal and the fetal thyroid hormone production. The management of Graves’ disease in pregnancy should be aimed at maintaining euthyroidism in the mother as well as in the fetus. Maternal and fetal thyroid dysfunction (hyperthyroidism as well as hypothyroidism) are in fact associated with several morbidities. Monitoring of the maternal thyroid function, TRAbs measurement, and fetal surveillance are the mainstay for the management of Graves’ disease in pregnancy. This review summarizes the biochemical, immunological, and therapeutic aspects of Graves’ disease in pregnancy focusing on the role of the TRAbs in maternal and fetal

  19. The Genetics of the Thyroid Stimulating Hormone Receptor: History and Relevance

    PubMed Central

    Yin, Xiaoming; Latif, Rauf

    2010-01-01

    Background The thyroid stimulating hormone receptor (TSHR) is the key regulator of thyrocyte function. The gene for the TSHR on chromosome 14q31 has been implicated as coding for the major autoantigen in the autoimmune hyperthyroidism of Graves' disease (GD) to which T cells and autoantibodies are directed. Summary The TSHR is a seven-transmembrane domain receptor that undergoes complex posttranslational processing. In this brief review, we look at the genetics of this important autoantigen and its influence on a variety of tissue functions in addition to its role in the induction of GD. Conclusions There is convincing evidence that the TSH receptor gene confers increased susceptibility for GD, but not Hashimoto's thyroiditis. GD is associated with polymorphisms in the intron 1 gene region. How such noncoding nucleotide changes influence disease susceptibility remains uncertain, but is likely to involve TSHR splicing variants and/or microRNAs arising from this gene region. Whether such influences are confined to the thyroid gland or whether they influence cell function in the many extrathyroidal sites of TSHR expression remains unknown. PMID:20578897

  20. Milrinone and thyroid hormone stimulate myocardial membrane Ca2+-ATPase activity and share structural homologies.

    PubMed Central

    Mylotte, K M; Cody, V; Davis, P J; Davis, F B; Blas, S D; Schoenl, M

    1985-01-01

    We have recently shown that thyroid hormone in physiological concentrations stimulates sarcolemma-enriched rabbit-myocardial-membrane Ca2+-ATPase in vitro. In this study, milrinone [2-methyl-5-cyano-(3,4'-bipyridin)-6(1H)-one], a cardiac inotropic agent, was thyromimetic in the same system. At clinically achievable concentrations (50-500 nM), milrinone significantly stimulated membrane Ca2+-ATPase in vitro. This action was antagonized by W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide], an agent that also blocks thyroid hormone action on the Ca2+-ATPase, at concentrations as low as 5 microM. Progressive additions of milrinone to membranes incubated with a fixed concentration of thyroxine (0.10 nM) or triiodothyronine resulted in a progressive obliteration of the thyroid hormone effect on Ca2+-ATPase. Amrinone [5-amino-(3,4'-bipyridin)-6(1H)-one], the parent bipyridine of milrinone, had no effect on myocardial Ca2+-ATPase activity. X-ray crystallographic analysis of milrinone and amrinone revealed structural homologies between the phenolic ring of thyroxine and the substituted ring of milrinone, whereas amrinone did not share these homologies. The mechanism(s) of the inotropic actions of thyroxine and of milrinone is not clearly understood, but these observations implicate Ca2+-ATPase, a calcium pump-associated enzyme, as one mediator of the effects on the heart of these two compounds. PMID:2933747

  1. Maternal thyroid hormone trajectories during pregnancy and child behavioral problems.

    PubMed

    Endendijk, Joyce J; Wijnen, Hennie A A; Pop, Victor J M; van Baar, Anneloes L

    2017-08-01

    There is ample evidence demonstrating the importance of maternal thyroid hormones, assessed at single trimesters in pregnancy, for child cognition. Less is known, however, about the course of maternal thyroid hormone concentrations during pregnancy in relation to child behavioral development. Child sex might be an important moderator, because there are sex differences in externalizing and internalizing behavioral problems. The current study examined the associations between maternal thyroid hormone trajectories versus thyroid assessments at separate trimesters of pregnancy and child behavioral problems, as well as sex differences in these associations. In 442 pregnant mothers, serum levels of TSH and free T4 (fT4) were measured at 12, 24, and 36weeks gestation. Both mothers and fathers reported on their children's behavioral problems, between 23 and 60months of age. Latent growth mixture modeling was used to determine the number of different thyroid hormone trajectories. Three trajectory groups were discerned: 1) highest and non-increasing TSH with lowest fT4 that decreased least of the three trajectories; 2) increasing TSH and decreasing fT4 at intermediate levels; 3) lowest and increasing TSH with highest and decreasing fT4. Children of mothers with the most flattened thyroid hormone trajectories (trajectory 1) showed the most anxiety/depression symptoms. The following trimester-specific associations were found: 1) lower first-trimester fT4 was associated with more child anxiety/depression, 2) higher first-trimester TSH levels were related to more attention problems in boys only. A flattened course of maternal thyroid hormone concentrations during pregnancy was a better predictor of child anxiety/depression than first-trimester fT4 levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Thyroid hormone concentrations in captive and free-ranging West Indian manatees (Trichechus manatus).

    PubMed

    Ortiz, R M; MacKenzie, D S; Worthy, G A

    2000-12-01

    Because thyroid hormones play a critical role in the regulation of metabolism, the low metabolic rates reported for manatees suggest that thyroid hormone concentrations in these animals may also be reduced. However, thyroid hormone concentrations have yet to be examined in manatees. The effects of captivity, diet and water salinity on plasma total triiodothyronine (tT(3)), total thyroxine (tT(4)) and free thyroxine (fT(4)) concentrations were assessed in adult West Indian manatees (Trichechus manatus). Free-ranging manatees exhibited significantly greater tT(4) and fT(4) concentrations than captive adults, regardless of diet, indicating that some aspect of a captive existence results in reduced T(4) concentrations. To determine whether this reduction might be related to feeding, captive adults fed on a mixed vegetable diet were switched to a strictly sea grass diet, resulting in decreased food consumption and a decrease in body mass. However, tT(4) and fT(4) concentrations were significantly elevated over initial values for 19 days. This may indicate that during periods of reduced food consumption manatees activate thyroid-hormone-promoted lipolysis to meet water and energetic requirements. Alterations in water salinity for captive animals did not induce significant changes in thyroid hormone concentrations. In spite of lower metabolic rates, thyroid hormone concentrations in captive manatees were comparable with those for other terrestrial and marine mammals, suggesting that the low metabolic rate in manatees is not attributable to reduced circulating thyroid hormone concentrations.

  3. Effect of an anti-inflammatory dose of prednisone on thyroid hormone monitoring in hypothyroid dogs.

    PubMed

    O'Neill, Sarah H; Frank, Linda A; Reynolds, Lisa M

    2011-04-01

    It is not uncommon for a hypothyroid dog to be receiving concurrent corticosteroids. As hypothyroid dogs receiving thyroid supplement need periodic monitoring, knowledge of whether prednisone alters thyroid hormone concentrations would be useful to determine whether testing can or should be done while the dog is receiving therapy and whether dose adjustments are appropriate. In this study, the effect of short-term anti-inflammatory prednisone was determined in dogs with naturally occurring hypothyroidism. Eight adult dogs were given prednisone (1.0 mg/kg, orally) daily for 7 days and then on alternate days for 14 days. Serum total thyroxine (T(4) ), free T(4) (fT(4) ), and thyroid-stimulating hormone (TSH) were measured on days 7, 21 and 28 and compared with baseline data. Total T(4) concentrations were significantly decreased after 7 days of anti-inflammatory prednisone, but were not significantly altered from baseline on days 21 or 28. Free T(4) and TSH concentrations were not significantly altered from baseline at any point during the study. Two dogs had decreased total T(4) concentrations on day 7, which may have resulted in an alteration in thyroid supplementation. Results showed that administration of prednisone at a dosage of 1 mg/kg, orally, once daily for 7 days decreased total T(4) , while fT(4) was unchanged, suggesting that fT(4) may be less affected by daily prednisone administration. Anti-inflammatory doses of prednisone administered every other day did not interfere with thyroid hormone monitoring. © 2010 The Authors. Journal compilation © 2010 ESVD and ACVD.

  4. Screening the Tox21 10K library for thyroid stimulating hormone receptor agonist and antagonist activity (SOT annual meeting)

    EPA Science Inventory

    Thyroid-stimulating hormone (TSH) regulates thyroid hormone (TH) production via binding to its receptor (TSHR). The roles of TSHR in human pathologies including hyper/hypothyroidism, Grave’s disease, and thyroid cancer are known, but it is currently unknown whether TSHR is an imp...

  5. Treatment room length-of-stay and patient throughput with radioiodine thyroid remnant ablation in differentiated thyroid cancer: comparison of thyroid-stimulating hormone stimulation methods.

    PubMed

    Vallejo Casas, Juan Antonio; Mena Bares, Luisa M; Gálvez, María Angeles; Marlowe, Robert J; Latre Romero, José M; Martínez-Paredes, María

    2011-09-01

    We sought to empirically compare treatment room length-of-stay and patient throughput for recombinant human thyroid-stimulating hormone (rhTSH)-aided thyroid remnant ablation with thyroid hormone withdrawal (THW)-aided ablation in patients with differentiated thyroid carcinoma (DTC). We retrospectively reviewed charts of all eligible (near) totally thyroidectomized patients with DTC undergoing ablation and 1-year ablation success evaluation at our tertiary referral centre from January 2003 to February 2009 (N=274). M1 disease caused exclusion unless discovered by a postablation scan or present when rhTSH was the only tolerable stimulation method. We extracted data on the length-of-stay, defined as the time between treatment room admission and discharge, and patient throughput, defined as patients ablated per treatment room per week. The treatment room discharge criterion was a whole-body dose rate of less than 60 μSv/h at 50 cm. The treatment groups (rhTSH, n=187; THW, n=87) had mostly statistically similar characteristics, but differed in primary tumour status distribution. In addition, at ablation, the rhTSH patients had a greater prevalence of prior diagnostic scintigraphy, higher mean serum TSH, and shorter interval since surgery, and received a 5.6% larger mean ablation activity. On average, rhTSH patients had a significantly lower peak whole-body dose rate (57.1 vs. 83.4 μSv/h at 50 cm; P<0.0001) and a significantly shorter treatment room stay than did the THW patients (1.41 vs. 2.02 days; P<0.001). rhTSH use allowed significantly more patients to be ablated per room per week (2.7 vs. 1.2; P<0.001). Relative to THW, rhTSH use to aid ablation reduced mean treatment room length-of-stay by almost one-third and more than doubled the average weekly patient throughput, both of which were significant differences.

  6. A thyroid hormone receptor mutation that dissociates thyroid hormone regulation of gene expression in vivo

    PubMed Central

    Machado, Danielle S.; Sabet, Amin; Santiago, Leticia A.; Sidhaye, Aniket R.; Chiamolera, Maria I.; Ortiga-Carvalho, Tania M.; Wondisford, Fredric E.

    2009-01-01

    Resistance to thyroid hormone (RTH) is most often due to point mutations in the β-isoform of the thyroid hormone (TH) receptor (TR-β). The majority of mutations involve the ligand-binding domain, where they block TH binding and receptor function on both stimulatory and inhibitory TH response elements. In contrast, a few mutations in the ligand-binding domain are reported to maintain TH binding and yet cause RTH in certain tissues. We introduced one such naturally occurring human RTH mutation (R429Q) into the germline of mice at the TR-β locus. R429Q knock-in (KI) mice demonstrated elevated serum TH and inappropriately normal thyroid-stimulating hormone (TSH) levels, consistent with hypothalamic–pituitary RTH. In contrast, 3 hepatic genes positively regulated by TH (Dio1, Gpd1, and Thrsp) were increased in R429Q KI animals. Mice were then rendered hypothyroid, followed by graded T3 replacement. Hypothyroid R429Q KI mice displayed elevated TSH subunit mRNA levels, and T3 treatment failed to normally suppress these levels. T3 treatment, however, stimulated pituitary Gh levels to a greater degree in R429Q KI than in control mice. Gsta, a hepatic gene negatively regulated by TH, was not suppressed in R429Q KI mice after T3 treatment, but hepatic Dio1 and Thrsp mRNA levels increased in response to TH. Cardiac myosin heavy chain isoform gene expression also showed a specific defect in TH inhibition. In summary, the R429Q mutation is associated with selective impairment of TH-mediated gene repression, suggesting that the affected domain, necessary for TR homodimerization and corepressor binding, has a critical role in negative gene regulation by TH. PMID:19439650

  7. The mechanism of the calorigenic action of thyroid hormone. Stimulation of Na plus + K plus-activated adenosinetriphosphatase activity.

    PubMed

    Ismail-Beigi, F; Edelman, I S

    1971-06-01

    In an earlier study, we proposed that thyroid hormone stimulation of energy utilization by the Na(+) pump mediates the calorigenic response. In this study, the effects of triiodothyronine (T(3)) on total oxygen consumption (Q(OO2)), the ouabain-sensitive oxygen consumption [Q(OO2)(t)], and NaK-ATPase in liver, kidney, and cerebrum were measured. In liver, approximately 90% of the increase in Q(OO2) produced by T(3) in either thyroidectomized or euthyroid rats was attributable to the increase in Q(OO2)(t). In kidney, the increase in Q(OO2)(t) accounted for 29% of the increase in Q(OO2) in thyroidectomized and 46% of the increase in Q(OO2) in euthyroid rats. There was no demonstrable effect of T(3) in euthyroid rats on Q(OO2) or Q(OO2)(t) of cerebral slices. The effects of T(3) on NaK-ATPase activity in homogenates were as follows: In liver +81% from euthyroid rats and +54% from hypothyroid rats. In kidney, +21% from euthyroid rats and +69% from hypothyroid rats. T(3) in euthyroid rats produced no significant changes in NaK-ATPase or Mg-ATPase activity of cerebral homogenates. Liver plasma membrane fractions showed a 69% increase in NaK-ATPase and no significant changes in either Mg-ATPase or 5'-nucleotidase activities after T(3) injection. These results indicate that thyroid hormones stimulate NaK-ATPase activity differentially. This effect may account, at least in part, for the calorigenic effects of these hormones.

  8. [Thyroid proteins in endemic goitre and their relationship to the intrathyroidal thyroid hormone concentration].

    PubMed

    Platzer, S; Groebner, P; Hausen, A; Obendorf, L; Riccabona, G

    1980-02-01

    According to several reports we suspected that the pathogenesis of endemic goitre cannot be explained by iodine deficiency only, but that other--partially endogenous--goitrogenic factors must be present. We therefore studied 16 cases of "euthyroid" endemic goitre from the endemic goitre area of the province of Bolzano in Italy. After fractionation of tissue homogenates, T 4 and T 3 were measured by RIA and the I concentration was also termined. Thyroglobulin and its fractions were measured by ultracentrifuge procedures after assessment of the total protein concentration. Evaluation of the present results suggests that an insufficient synthesis of thyroglobulin in the examined goitres induces an inadequate adaptation of the organism to iodine deficiency, which, in turn, decreases the thyroid hormone concentration in thyroid tissue and enhances goitrogenesis. Considering the normal iodine content of the examined tissues, there obviously seems to be two intrathyroidal iodine pools, one of which supplies the body with thyroid hormones under pituitary stimulation even though its thyroglobulin pool is reduced, while a significant amount of the thyroidal iodine pool is bound in metabolically inert protein molecules and therefore increases the goitrogenic effect of iodine deficiency.

  9. Thyroid hormones regulate anxiety in the male mouse.

    PubMed

    Buras, Alexander; Battle, Loxley; Landers, Evan; Nguyen, Tien; Vasudevan, Nandini

    2014-02-01

    Thyroid hormone levels are implicated in mood disorders in the adult human but the mechanisms remain unclear partly because, in rodent models, more attention has been paid to the consequences of perinatal hypo and hyperthyroidism. Thyroid hormones act via the thyroid hormone receptor (TR) α and β isoforms, both of which are expressed in the limbic system. TR's modulate gene expression via both unliganded and liganded actions. Though the thyroid hormone receptor (TR) knockouts and a transgenic TRα1 knock-in mouse have provided us valuable insight into behavioral phenotypes such as anxiety and depression, it is not clear if this is because of the loss of unliganded actions or liganded actions of the receptor or due to locomotor deficits. We used a hypothyroid mouse model and supplementation with tri-iodothyronine (T3) or thyroxine (T4) to investigate the consequences of dysthyroid hormone levels on behaviors that denote anxiety. Our data from the open field and the light-dark transition tests suggest that adult onset hypothyroidism in male mice produces a mild anxiogenic effect that is possibly due to unliganded receptor actions. T3 or T4 supplementation reverses this phenotype and euthyroid animals show anxiety that is intermediate between the hypothyroid and thyroid hormone supplemented groups. In addition, T3 but not T4 supplemented animals have lower spine density in the CA1 region of the hippocampus and in the central amygdala suggesting that T3-mediated rescue of the hypothyroid state might be due to lower neuronal excitability in the limbic circuit. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Effect of zinc supplementation on the status of thyroid hormones and Na, K, And Ca levels in blood following ethanol feeding.

    PubMed

    Pathak, R; Dhawan, D; Pathak, A

    2011-05-01

    The influence of zinc (Zn) on the serum levels of triiodothyronine (T(3)), thyroxine (T(4)), thyroid-stimulating hormone (TSH) and sodium (Na), potassium (K), and calcium (Ca) was evaluated following ethanol toxicity to the rats. To achieve this, male Wistar rats (150-195 g) were given 3 ml of 30% ethanol orally, and zinc was given in the form of zinc sulfate (227 mg/l) in their drinking water daily for 8 weeks. Ethanol feeding resulted in a slight decrease in T(3) and T(4) levels and a significant increase in thyroid-stimulating hormone concentration, which may be due to the direct stimulatory effect of ethanol on thyroid. Interestingly, when zinc was given to these rats, all the above levels were brought quite close to their normal levels, thus indicating the positive role of zinc in thyroid hormone metabolism. Serum Zn and Ca levels were found to be reduced, but Na levels were raised upon ethanol feeding. Restoration of normal levels of these metals upon zinc supplementation to ethanol fed rats confirms that zinc has potential in alleviating some of the altered thyroid functions following ethanol administration.

  11. Lipid profile and thyroid hormone status in the last trimester of pregnancy in single-humped camels (Camelus dromedarius).

    PubMed

    Omidi, Arash; Sajedi, Zhila; Montazer Torbati, Mohammad Bagher; Ansari Nik, Hossein

    2014-04-01

    Changes in lipid metabolism have been shown to occur during pregnancy. The thyroid hormones affect lipid metabolism. The present study was carried out to find out whether the last trimester of pregnancy affects thyroid hormones, thyroid-stimulating hormone (TSH), lipid, and lipoprotein profile in healthy dromedary camels. Twenty clinical healthy dromedary camels aged between 4-5 years were divided into two equal groups: (1) pregnant camels in their last trimester of pregnancy and (2) non-pregnant age-matched controls. Thyroid function tests were carried out by measuring serum levels of TSH, free thyroxin (fT4), total thyroxin (T4), free triiodothyronine (fT3), and total triiodothyronine (T3) by commercially available radio immunoassay kits. Total cholesterol (TC), triglyceride (TG), and high-density lipoprotein (HDL) cholesterol were analyzed using enzymatic/spectrophotometric methods while low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL), and total lipid (TL) were calculated using Friedewald's and Raylander's formula, respectively. Serum levels of TSH and thyroid hormones except fT4 did not show any significant difference between pregnant and non-pregnant camels. fT4 level was lower in the pregnant camels (P < 0.05). Serum levels of total cholesterol, triglyceride, total lipid, LDL cholesterol, HDL cholesterol, and VLDL did not show significant difference between pregnant and non-pregnant camels. All of these variables in pregnant camels were higher than non-pregnant. Based on the results of this study, the fetus load may not alter the thyroid status of the camel and the concentrations of thyroid hormones were not correlated with TSH and lipid profile levels in the healthy pregnant camels.

  12. Thyroid hormone receptor inhibits hepatoma cell migration through transcriptional activation of Dickkopf 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Hsiang-Cheng; Liao, Chen-Hsin; Huang, Ya-Hui

    Highlights: •T{sub 3} affects DKK4 mRNA and protein expression in HepG2-TR cells. •Regulation of DKK4 by T{sub 3} is at transcriptional level. •DKK4 overexpression suppresses hepatoma cell metastasis. -- Abstract: Triiodothyronine (T{sub 3}) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T{sub 3}/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein thatmore » antagonizes the canonical Wnt signaling pathway, is induced by T{sub 3} at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T{sub 3}-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T{sub 3} response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T{sub 3} responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T{sub 3}/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.« less

  13. Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis

    PubMed Central

    Roepke, Torsten K.; King, Elizabeth C.; Reyna-Neyra, Andrea; Paroder, Monika; Purtell, Kerry; Koba, Wade; Fine, Eugene; Lerner, Daniel J.; Carrasco, Nancy; Abbott, Geoffrey W.

    2009-01-01

    Thyroid dysfunction affects 1–4% of the population worldwide, causing defects including neurodevelopmental disorders, dwarfism and cardiac arrhythmia. Here, we show that KCNQ1 and KCNE2 form a TSH-stimulated, constitutively-active, thyrocyte K+ channel required for normal thyroid hormone biosynthesis. Targeted disruption of Kcne2 impaired thyroid iodide accumulation up to 8-fold, impaired maternal milk ejection and halved milk T4 content, causing hypothyroidism, 50% reduced litter size, dwarfism, alopecia, goiter, and cardiac abnormalities including hypertrophy, fibrosis, and reduced fractional shortening. The alopecia, dwarfism and cardiac abnormalities were alleviated by T3/T4 administration to pups, by supplementing dams with T4 pre- and postpartum, or by pre-weaning surrogacy with Kcne2+/+ dams; conversely these symptoms were elicited in Kcne2+/+ pups by surrogacy with Kcne2−/− dams. The data identify a critical thyrocyte K+ channel, provide a possible novel therapeutic avenue for thyroid disorders, and predict an endocrine component to some previously-identified KCNE2- and KCNQ1-linked human cardiac arrhythmias. PMID:19767733

  14. The different requirement of L-T4 therapy in congenital athyreosis compared with adult-acquired hypothyroidism suggests a persisting thyroid hormone resistance at the hypothalamic-pituitary level.

    PubMed

    Bagattini, Brunella; Cosmo, Caterina Di; Montanelli, Lucia; Piaggi, Paolo; Ciampi, Mariella; Agretti, Patrizia; Marco, Giuseppina De; Vitti, Paolo; Tonacchera, Massimo

    2014-11-01

    Levothyroxine (l-T4) is commonly employed to correct hormone deficiency in children with congenital hypothyroidism (CH) and in adult patients with iatrogenic hypothyroidism. To compare the daily weight-based dosage of the replacement therapy with l-T4 in athyreotic adult patients affected by CH and adult patients with thyroid nodular or cancer diseases treated by total thyroidectomy. A total of 36 adult patients (27 females and nine males) aged 18-29 years were studied; 13 patients (age: 21.5±2.1, group CH) had athyreotic CH treated with l-T4 since the first days of life. The remaining 23 patients (age: 24±2.7, group AH) had hypothyroidism after total thyroidectomy (14 patients previously affected by nodular disease and nine by thyroid carcinoma with clinical and biochemical remission). Patient weight, serum free thyroid hormones, TSH, thyroglobulin (Tg), anti-Tg, and anti-thyroperoxidase antibodies were measured. Required l-T4 dosage was evaluated. At the time of the observations, all patients presented free thyroid hormones within the normal range and TSH between 0.8 and 2 μIU/ml. Patients had undetectable Tg and anti-thyroid antibodies. The daily weight-based dosage of the replacement therapy with l-T4 to reach euthyroidism in patients of group CH was significantly higher than that in those of group AH (2.16±0.36 vs 1.73±0.24 μg/kg, P<0.005). Patients of group CH treated with l-T4 had significantly higher serum TSH levels than patients of group AH (P=0.05) as well as higher FT4 concentrations. To correct hypothyroidism, patients of group CH required a daily l-T4 dose/kg higher than group AH patients, despite higher levels of TSH. The different requirement of replacement therapy between adult patients with congenital and those with surgical athyroidism could be explained by a lack of thyroid hormones since fetal life in CH, which could determine a different set point of the hypothalamus-pituitary-thyroid axis. © 2014 European Society of Endocrinology.

  15. Mechanism of action of a nanomolar potent, allosteric antagonist of the thyroid-stimulating hormone receptor

    PubMed Central

    van Koppen, Chris J; de Gooyer, Marcel E; Karstens, Willem-Jan; Plate, Ralf; Conti, Paolo GM; van Achterberg, Tanja AE; van Amstel, Monique GA; Brands, Jolanda HGM; Wat, Jesse; Berg, Rob JW; Lane, J Robert D; Miltenburg, Andre MM; Timmers, C Marco

    2012-01-01

    BACKGROUND AND PURPOSE Graves' disease (GD) is an autoimmune disease in which the thyroid is overactive, producing excessive amounts of thyroid hormones, caused by thyroid-stimulating hormone (TSH) receptor-stimulating immunoglobulins (TSIs). Many GD patients also suffer from thyroid eye disease (Graves' ophthalmopathy or GO), as TSIs also activate TSH receptors in orbital tissue. We recently developed low molecular weight (LMW) TSH receptor antagonists as a novel therapeutic strategy for the treatment of GD and GO. Here, we determined the molecular pharmacology of a prototypic, nanomolar potent LMW TSH receptor antagonist, Org 274179-0. EXPERIMENTAL APPROACH Using CHO cells heterogeneously expressing human TSH receptors and rat FRTL-5 cells endogenously expressing rat TSH receptors, we determined the potency and efficacy of Org 274179-0 at antagonizing TSH- and TSI-induced TSH receptor signalling and its cross-reactivity at related follicle-stimulating hormone and luteinizing hormone receptors. We analysed the allosteric mode of interaction of Org 274179-0 and determined whether it is an inverse agonist at five naturally occurring, constitutively active TSH receptor mutants. KEY RESULTS Nanomolar concentrations of Org 274179-0 completely inhibited TSH (and TSI)-mediated TSH receptor activation with little effect on the potency of TSH, in accordance with an allosteric mechanism of action. Conversely, increasing levels of TSH receptor stimulation only marginally reduced the antagonist potency of Org 274179-0. Org 274179-0 fully blocked the increased basal activity of all the constitutively active TSH receptor mutants tested with nanomolar potencies. CONCLUSIONS AND IMPLICATIONS Nanomolar potent TSH receptor antagonists like Org 274179-0 have therapeutic potential for the treatment of GD and GO. PMID:22014107

  16. Hyperthyroidism due to inappropriate secretion of thyroid-stimulating hormone: diagnosis and management.

    PubMed

    Hermus, A; Ross, H; van Liessum, P; Naber, A; Smals, A; Kloppenborg, P

    1991-06-01

    The case histories of three patients with hyperthyroidism due to overproduction of thyroid-stimulating hormone (TSH) by the pituitary gland are described. In the first patient treatment with the T3-metabolite 3,5,3'-triiodothyroacetic acid (TRIAC) led to complete clinical and biochemical normalization. In the second patient treatment with the dopaminergic agonist bromocriptine led to a temporal amelioration of hyperthyroidism. In the third patient, who was the only one with a proven pituitary adenoma, hypersecretion of TSH could be controlled by administration of the somatostatin analogue octreotide. It is emphasized that patients with this disorder should preferably not be treated with thyrostatic drugs, radioactive iodine or thyroid surgery. The success rate of these treatment modalities is lower than normal, they may lead to an increase of goiter size, and they potentially may promote growth or development of a TSH-producing adenoma. Treatment should be aimed at diminishing TSH hypersecretion.

  17. Thyroid hormone effects on mitochondrial energetics.

    PubMed

    Harper, Mary-Ellen; Seifert, Erin L

    2008-02-01

    Thyroid hormones are the major endocrine regulators of metabolic rate, and their hypermetabolic effects are widely recognized. The cellular mechanisms underlying these metabolic effects have been the subject of much research. Thyroid hormone status has a profound impact on mitochondria, the organelles responsible for the majority of cellular adenosine triphosphate (ATP) production. However, mechanisms are not well understood. We review the effects of thyroid hormones on mitochondrial energetics and principally oxidative phosphorylation. Genomic and nongenomic mechanisms have been studied. Through the former, thyroid hormones stimulate mitochondriogenesis and thereby augment cellular oxidative capacity. Thyroid hormones induce substantial modifications in mitochondrial inner membrane protein and lipid compositions. Results are consistent with the idea that thyroid hormones activate the uncoupling of oxidative phosphorylation through various mechanisms involving inner membrane proteins and lipids. Increased uncoupling appears to be responsible for some of the hypermetabolic effects of thyroid hormones. ATP synthesis and turnover reactions are also affected. There appear to be complex relationships between mitochondrial proton leak mechanisms, reactive oxygen species production, and thyroid status. As the majority of studies have focused on the effects of thyroid status on rat liver preparations, there is still a need to address fundamental questions regarding thyroid hormone effects in other tissues and species.

  18. Effects of thyroidal, gonadal and adrenal hormones on tissue respiration of streaked frog, Rana limnocharis, at low temperature.

    PubMed

    Gupta, B B; Chakrabarty, P

    1990-01-01

    In vivo and in vitro effects of thyroidal, gonadal and adrenal hormones were studied on the rate of liver and skeletal muscle respiration in both the sexes of R. limnocharis during active and inactive phases of the annual activity cycle. Triiodothyronine (L-T3) and thyroxine (L-T4) did not stimulate tissue (liver and muscle) respiration in any of the experiments irrespective of season, sex and temperature. Testosterone, estradiol and corticosterone stimulated O2 uptake significantly irrespective of season, sex and temperature. Adrenaline and nor-adrenaline also stimulated tissue respiration significantly during the winter month. Since the ambient temperature was low even during the active phase (max. temperature 21 degrees C), it seems that the frog might have developed tissue sensitivity for gonadal and adrenal hormones at low temperatures when thyroid hormones are calorigenically ineffective.

  19. The impact of thyroid hormones on patients with hepatocellular carcinoma.

    PubMed

    Pinter, Matthias; Haupt, Lukas; Hucke, Florian; Bota, Simona; Bucsics, Theresa; Trauner, Michael; Peck-Radosavljevic, Markus; Sieghart, Wolfgang

    2017-01-01

    Hypothyroidism has recently been proposed as predisposing factor for HCC development. However, the role of thyroid hormones (TH) in established HCC is largely unclear. We investigated the impact of TH on clinical characteristics and prognosis of HCC patients. Of 838 patients diagnosed with nonsurgical HCC at the Division of Gastroenterology and Hepatology/Medical University of Vienna between 1992 and 2012, 667 patients fulfilled the inclusion criteria. The associations of thyroid function tests with patient, liver, and tumor characteristics as well as their impact on overall survival (OS) were investigated. Thyroid hormone substitution was more often observed in patients with low thyroid-stimulating hormone (TSH) concentration and in patients with elevated free tetraiodthyronine (fT4). Patients with high TSH (>3.77uU/ml) concentrations had larger tumors, while the opposite was true for patients with low TSH (<0.44uU/ml) concentrations. Subjects with elevated fT4 (>1.66ng/dl) were more likely to have elevated CRP. While TSH was only associated with OS in univariate analysis (≤1.7 vs. >1.7uU/ml, median OS (95%CI), 12.3 (8.9-15.7 months) vs. 7.3 months (5.4-9.2 months); p = 0.003), fT4 (≤1.66 vs. >1.66ng/dl, median OS (95%CI), 10.6 (7.5-13.6 months) vs. 3.3 months (2.2-4.3 months); p = 0.007) remained an independent prognostic factor for OS (HR (95%CI) for fT4>1.66ng/dl, 2.1 (1.3-3.3); p = 0.002) in multivariate analysis. TSH and fT4 were associated with prognostic factors of HCC (i.e., tumor size, CRP level). Elevated fT4 concentrations were independently associated with poor prognosis in HCC. Further studies are needed to characterize the role of TH in HCC in detail.

  20. Persistence of a circadian rhythmicity for thyroid hormones in plasma and thyroid of hibernating male Rana ridibunda.

    PubMed

    Kühn, E R; Delmotte, N M; Darras, V M

    1983-06-01

    The presence and circadian rhythmicity of thyroid hormones was studied in plasma and the thyroid gland of male Rana ridibunda before and during hibernation. Hibernating January frogs do have a lower T3 and T4 content of their thyroid gland whereas plasma levels of T3 are maintained and of T4 increased compared to fed September or October frogs. It seems likely that the increased photoperiod in January will be responsible for this increased T4 secretion, since controlled laboratory experiments performed in December did not reveal any influence of low temperature on circulating T3 or T4 levels. Also feeding does not influence circulating levels and thyroid content of thyroid hormones in frogs kept at room temperature during the month of January. A circadian rhythmicity of T3 and T4 in the thyroid gland is present in fed October frogs and in non fed December frogs acclimated at 5 degrees C for 12 days with an acrophase for T3 at approximately 1500 h and for T4 at around 1900 h, whereas in plasma only T3 does have circadian variations (acrophase about midnight) but not T4. When December frogs are acclimated to room temperature for 12 days, frogs are active again, but do not eat and have a lower body weight than frogs hibernating at 5 degrees C. Their T3 content of the thyroid gland has disappeared, but T4 thyroid content and plasma levels of T3 and T4 are maintained. As in hibernating frogs, no circadian variations in T4 plasma concentrations are present whereas the circadian thyroid T4 rhythm disappears. At the same time a dampening in rhythmicity for plasma T3 as judged by the significantly lower amplitude occurs. It is concluded that the persistence of circulating levels of thyroid hormones and of a circadian cyclicity for T3 in plasma in non feeding hibernating frogs may reflect the special metabolic state e.g. availability of food reserves in these animals.

  1. Thyroid Hormone in the Clinic and Breast Cancer.

    PubMed

    Hercbergs, Aleck; Mousa, Shaker A; Leinung, Matthew; Lin, Hung-Yun; Davis, Paul J

    2018-06-01

    There is preclinical and recent epidemiological evidence that thyroid hormone supports breast cancer. These observations raise the issue of whether management of breast cancer in certain settings should include consideration of reducing the possible contribution of thyroid hormone to the advancement of the disease. In a preliminary experience, elimination of the clinical action of endogenous L-thyroxine (T 4 ) in patients with advanced solid tumors, including breast cancer, has favorably affected the course of the cancer, particularly when coupled with administration of exogenous 3,5,3'-triiodo-L-thyronine (T 3 ) (euthyroid hypothyroxinemia). We discuss in the current brief review the possible clinical settings in which to consider whether endogenous thyroid hormone-or exogenous thyroid hormone in the patient with hypothyroidism and coincident breast cancer-is significantly contributing to breast cancer outcome.

  2. Role of thyroidal and testicular hormones in regulation of tissue respiration in male air-breathing fish, Clarias batrachus (Linn.).

    PubMed

    Lynshiang, D S; Gupta, B B

    2000-07-01

    In vivo and in vitro effects of thyroidal hormones (MIT, DIT, T3, T4), propyl thiouracil (PTU), testosterone and cyproterone acetate were studied on the rate of tissue (liver, muscle, kidney and brain) respiration of adult male C. batrachus during winter and summer/rainy seasons. Monoiodotyrosine (MIT) and diiodothyrosine (DIT) increased the respiratory rate in a dose-dependent and temperature-independent manner. Triiodothyronine (T3) and thyroxine (T4) stimulated tissue respiration during summer/rainy months but not during winter. PTU decreased tissue respiration during summer/rainy season and also at simulated low temperature. Testosterone invariably stimulated the rate of respiration of the tissues, while in vivo treatment with cyproterone acetate significantly decreased the metabolic rate of all the tissues. The findings suggest that in C. batrachus MIT and DIT may be more important than T3 and T4 at low temperature, endogenous thyroid hormones are involved indirectly in energy metabolism even during winter/at low temperature and testicular hormones are actively involved in the respiration.

  3. Intrathyroidal iodine metabolism in the rat. The influence of diet and the administration of thyroid-stimulating hormone

    PubMed Central

    Barnaby, C. F.; Davidson, Ailsa M.; Plaskett, L. G.

    1965-01-01

    1. Ratios of mono[131I]iodotyrosine and di[131I]iodotyrosine (R values) and the incorporation of 131I into iodothyronines have been estimated in rat thyroid glands from 30min. to 38hr. after the administration of [131I]iodide. 2. In rats receiving a powdered low-iodine diet the R values were close to unity and did not change with time after the administration of [131I]iodide. In rats receiving a commercial pellet diet the R values fell from a mean of 0·8 at 30min. after [131I]iodide administration to 0·49 at 38hr. 3. Administration of 0·5–2·0i.u. of thyroid-stimulating hormone before giving the injection of [131I]iodide caused a small diminution in the R value when the time between injecting [131I]iodide and killing the animal was 16hr. or more. 4. Iodothyronines represented a greater percentage of the total thyroid-gland radioactivity in the iodine-deficient animals than in animals fed on the pellet diet. Thyroid-stimulating hormone had little effect, if any, on the iodothyronine contents. PMID:14342520

  4. Thyroid Hormones and Moderate Exposure to Perchlorate during Pregnancy in Women in Southern California.

    PubMed

    Steinmaus, Craig; Pearl, Michelle; Kharrazi, Martin; Blount, Benjamin C; Miller, Mark D; Pearce, Elizabeth N; Valentin-Blasini, Liza; DeLorenze, Gerald; Hoofnagle, Andrew N; Liaw, Jane

    2016-06-01

    Findings from national surveys suggest that everyone in the United States is exposed to perchlorate. At high doses, perchlorate, thiocyanate, and nitrate inhibit iodide uptake into the thyroid and decrease thyroid hormone production. Small changes in thyroid hormones during pregnancy, including changes within normal reference ranges, have been linked to cognitive function declines in the offspring. We evaluated the potential effects of low environmental exposures to perchlorate on thyroid function. Serum thyroid hormones and anti-thyroid antibodies and urinary perchlorate, thiocyanate, nitrate, and iodide concentrations were measured in 1,880 pregnant women from San Diego County, California, during 2000-2003, a period when much of the area's water supply was contaminated from an industrial plant with perchlorate at levels near the 2007 California regulatory standard of 6 μg/L. Linear regression was used to evaluate associations between urinary perchlorate and serum thyroid hormone concentrations in models adjusted for urinary creatinine and thiocyanate, maternal age and education, ethnicity, and gestational age at serum collection. The median urinary perchlorate concentration was 6.5 μg/L, about two times higher than in the general U.S. Adjusted associations were identified between increasing log10 perchlorate and decreasing total thyroxine (T4) [regression coefficient (β) = -0.70; 95% CI: -1.06, -0.34], decreasing free thyroxine (fT4) (β = -0.053; 95% CI: -0.092, -0.013), and increasing log10 thyroid-stimulating hormone (β = 0.071; 95% CI: 0.008, 0.133). These results suggest that environmental perchlorate exposures may affect thyroid hormone production during pregnancy. This could have implications for public health given widespread perchlorate exposure and the importance of thyroid hormone in fetal neurodevelopment. Steinmaus C, Pearl M, Kharrazi M, Blount BC, Miller MD, Pearce EN, Valentin-Blasini L, DeLorenze G, Hoofnagle AN, Liaw J. 2016. Thyroid

  5. Disruption of thyroid hormone functions by low dose exposure of tributyltin: an in vitro and in vivo approach.

    PubMed

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha

    2014-09-15

    Triorganotins, such as tributyltin chloride (TBTCl), are environmental contaminants that are commonly found in the antifouling paints used in ships and other vessels. The importance of TBTCl as an endocrine-disrupting chemical (EDC) in different animal models is well known; however, its adverse effects on the thyroid gland are less understood. Hence, in the present study, we aimed to evaluate the thyroid-disrupting effects of this chemical using both in vitro and in vivo approaches. We used HepG2 hepatocarcinoma cells for the in vitro studies, as they are a thyroid hormone receptor (TR)-positive and thyroid responsive cell line. For the in vivo studies, Swiss albino male mice were exposed to three doses of TBTCl (0.5, 5 and 50μg/kg/day) for 45days. TBTCl showed a hypo-thyroidal effect in vivo. Low-dose treatment of TBTCl exposure markedly decreased the serum thyroid hormone levels via the down-regulation of the thyroid peroxidase (TPO) and thyroglobulin (Tg) genes by 40% and 25%, respectively, while augmenting the thyroid stimulating hormone (TSH) levels. Thyroid-stimulating hormone receptor (TSHR) expression was up-regulated in the thyroid glands of treated mice by 6.6-fold relative to vehicle-treated mice (p<0.05). In the transient transactivation assays, TBTCl suppressed T3 mediated transcriptional activity in a dose-dependent manner. In addition, TBTCl was found to decrease the expression of TR. The present study thus indicates that low concentrations of TBTCl suppress TR transcription by disrupting the physiological concentrations of T3/T4, followed by the recruitment of NCoR to TR, providing a novel insight into the thyroid hormone-disrupting effects of this chemical. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. New Insights into Thyroid Hormone Action

    PubMed Central

    Mendoza, Arturo; Hollenberg, Anthony N.

    2017-01-01

    Thyroid hormones (TH) are endocrine messengers essential for normal development and function of virtually every vertebrate. The hypothalamic-pituitary-thyroid axis is exquisitely modulated to maintain nearly constant TH (T4 and T3) concentrations in circulation. However peripheral tissues and the CNS control the intracellular availability of TH, suggesting that circulating concentrations of TH are not fully representative of what each cell type sees. Indeed, recent work in the field has identified that TH transporters, deiodinases and thyroid hormone receptor coregulators can strongly control tissue-specific sensitivity to a set amount of TH. Furthermore, the mechanism by which the thyroid hormone receptors regulate target gene expression can vary by gene, tissue and cellular context. This review will highlight novel insights into the machinery that controls the cellular response to TH, which include unique signaling cascades. These findings shed new light into the pathophysiology of human diseases caused by abnormal TH signaling. PMID:28174093

  7. Evaluation of thyroid stimulating hormone (TSH) alone as a first-line thyroid function test (TFT) in Papua New Guinea.

    PubMed

    Kende, M; Kandapu, S

    2002-01-01

    In the Port Moresby General Hospital, the Chemical Pathology Department assays both thyroid stimulating hormone (TSH) and free thyroxine (FT4) on all requests for a thyroid function test (TFT). The cost of assaying both tests is obviously higher than either test alone. In order to minimize the cost of a TFT we aimed to determine if TSH or FT4 alone as a first-line test would be adequate in assessing the thyroid hormone status of patients. We analyzed TFT records from January 1996 to May 2000 in the Port Moresby General Hospital. A total of 3089 TSH and 2867 FT4 were assayed at an annual reagent cost of Papua New Guinea kina 14,500. When TSH alone is used as a first-line test at the Port Moresby General Hospital, the biochemical status of 95% of patients will be appropriately categorized as euthyroidism, hypothyroidism or hyperthyroidism with only 5% discrepant (ie, normal TSH with abnormal FT4) results. In contrast, using FT4 alone as a first-line test correctly classifies only 84% of TFTs. Euthyroid status is observed in 50% of patients and FT4 assays on these samples will be excluded appropriately if a TSH-only protocol is adopted. Furthermore, we will save a quarter of the yearly cost of TFTs on reagents alone by performing TSH only. We conclude that TSH alone is an adequate first-line thyroid function test in Papua New Guinea and when it is normal no further FT4 test is necessary unless clinically indicated.

  8. Thyroid Hormone, Cancer, and Apoptosis.

    PubMed

    Lin, Hung-Yun; Chin, Yu-Tan; Yang, Yu-Chen S H; Lai, Husan-Yu; Wang-Peng, Jacqueline; Liu, Leory F; Tang, Heng-Yuan; Davis, Paul J

    2016-06-13

    Thyroid hormones play important roles in regulating normal metabolism, development, and growth. They also stimulate cancer cell proliferation. Their metabolic and developmental effects and growth effects in normal tissues are mediated primarily by nuclear hormone receptors. A cell surface receptor for the hormone on integrin [alpha]vβ3 is the initiation site for effects on tumor cells. Clinical hypothyroidism may retard cancer growth, and hyperthyroidism was recently linked to the prevalence of certain cancers. Local levels of thyroid hormones are controlled through activation and deactivation of iodothyronine deiodinases in different organs. The relative activities of different deiodinases that exist in tissues or organs also affect the progression and development of specific types of cancers. In this review, the effects of thyroid hormone on signaling pathways in breast, brain, liver, thyroid, and colon cancers are discussed. The importance of nuclear thyroid hormone receptor isoforms and of the hormone receptor on the extracellular domain of integrin [alpha]vβ3 as potential cancer risk factors and therapeutic targets are addressed. We analyze the intracellular signaling pathways activated by thyroid hormones in cancer progression in hyperthyroidism or at physiological concentrations in the euthyroid state. Determining how to utilize the deaminated thyroid hormone analog (tetrac), and its nanoparticulate derivative to reduce risks of cancer progression, enhance therapeutic outcomes, and prevent cancer recurrence is also deliberated. © 2016 American Physiological Society. Compr Physiol 6:1221-1237, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  9. Cancer risk and clinicopathological characteristics of thyroid nodules harboring thyroid-stimulating hormone receptor gene mutations.

    PubMed

    Mon, Sann Y; Riedlinger, Gregory; Abbott, Collette E; Seethala, Raja; Ohori, N Paul; Nikiforova, Marina N; Nikiforov, Yuri E; Hodak, Steven P

    2018-05-01

    Thyroid-stimulating hormone receptor (TSHR) gene mutations play a critical role in thyroid cell proliferation and function. They are found in 20%-82% of hyperfunctioning nodules, hyperfunctioning follicular thyroid cancers (FTC), and papillary thyroid cancers (PTC). The diagnostic importance of TSHR mutation testing in fine needle aspiration (FNA) specimens remains unstudied. To examine the association of TSHR mutations with the functional status and surgical outcomes of thyroid nodules, we evaluated 703 consecutive thyroid FNA samples with indeterminate cytology for TSHR mutations using next-generation sequencing. Testing for EZH1 mutations was performed in selected cases. The molecular diagnostic testing was done as part of standard of care treatment, and did not require informed consent. TSHR mutations were detected in 31 (4.4%) nodules and were located in exons 281-640, with codon 486 being the most common. Allelic frequency ranged from 3% to 45%. Of 16 cases (12 benign, 3 FTC, 1 PTC) with surgical correlation, 15 had solitary TSHR mutations and 1 PTC had comutation with BRAF V600E. Hyperthyroidism was confirmed in all 3 FTC (2 overt, 1 subclinical). Of 5 nodules with solitary TSHR mutations detected at high allelic frequency, 3 (60%) were FTC. Those at low allelic frequency (3%-22%) were benign. EZH1 mutations were detected in 2 of 4 TSHR-mutant malignant nodules and neither of 2 benign nodules. We report that TSHR mutations occur in ∼5% thyroid nodules in a large consecutive series with indeterminate cytology. TSHR mutations may be associated with an increased cancer risk when present at high allelic frequency, even when the nodule is hyperfunctioning. Benign nodules were however most strongly correlated with TSHR mutations at low allelic frequency. © 2018 Wiley Periodicals, Inc.

  10. Polybrominated diphenyl ether (PBDE) exposures and thyroid hormones in children at age 3 years.

    PubMed

    Vuong, Ann M; Braun, Joseph M; Webster, Glenys M; Thomas Zoeller, R; Hoofnagle, Andrew N; Sjödin, Andreas; Yolton, Kimberly; Lanphear, Bruce P; Chen, Aimin

    2018-08-01

    Polybrominated diphenyl ethers (PBDEs) reduce serum thyroid hormone concentrations in animal studies, but few studies have examined the impact of early-life PBDE exposures on thyroid hormone disruption in childhood. We used data from 162 mother-child pairs from the Health Outcomes and Measures of the Environment Study (2003-2006, Cincinnati, OH). We measured PBDEs in maternal serum at 16 ± 3 weeks gestation and in child serum at 1-3 years. Thyroid hormones were measured in serum at 3 years. We used multiple informant models to investigate associations between prenatal and early-life PBDE exposures and thyroid hormone levels at age 3 years. Prenatal PBDEs were associated with decreased thyroid stimulating hormone (TSH) levels at age 3 years. A 10-fold increase in prenatal ∑PBDEs (BDE-28, -47, -99, -100, and -153) was associated with a 27.6% decrease (95% CI -40.8%, -11.3%) in TSH. A ten-fold increase in prenatal ∑PBDEs was associated with a 0.25 pg/mL (0.07, 0.43) increase in free triiodothyronine (FT 3 ). Child sex modified associations between prenatal PBDEs and thyroid hormones, with significant decrements in TSH among females and decreased free T 4 (FT 4 ) in males. Prenatal ∑PBDEs were not associated with TT 4 , FT 4 , or total T 3 . These findings suggest an inverse relationship between prenatal ∑PBDEs and TSH at 3 years. Associations may be sexually dimorphic, with an inverse relationship between prenatal BDE-47 and -99 and TSH in females and null associations among males. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Combination L-T3 and L-T4 therapy for hypothyroidism.

    PubMed

    Wartofsky, Leonard

    2013-10-01

    Because of the longstanding controversy regarding whether hypothyroid patients can be optimally replaced by treatment with levothyroxine (L-T4) alone, numerous studies have addressed potential benefits of combined therapy of triiodothyronine (T3) with L-T4. Results of these studies have failed to support a potential benefit of combined therapy. A strong argument for the addition of L-T3 to L-T4 monotherapy has been lacking until recent genetic studies indicated a rationale for such therapy among a small fraction of the hypothyroid patient population. Interest in this issue has focused on the importance of the deiodinases in maintaining the euthyroid state and the role of genetic polymorphisms in the deiodinase genes that would affect thyroid hormone concentrations in both blood and tissues. One such polymorphism in the D2 gene, Thr92Ala, is associated with reduced T4 to T3 activation in skeletal muscle and thyroid, linked to obesity and alterations in thyroid-pituitary feedback, and in responses to thyroid hormone treatment. Although our professional organizations continue to recommend L-T4 alone for the treatment of hypothyroidism, the possibility of a D2 gene polymorphism should be considered in patients on L-T4 monotherapy who continue to complain of fatigue in spite of dosage achieving low normal serum thyroid stimulating hormone levels. A suggestive clue to the presence of this polymorphism could be a higher than normal free T4/free T3 ratio. Clinicians could consider adding T3 as a therapeutic trial in selected patients. Future well controlled clinical trials will be required to more fully resolve the controversy.

  12. Recent Advances in Thyroid Hormone Regulation: Toward a New Paradigm for Optimal Diagnosis and Treatment

    PubMed Central

    Hoermann, Rudolf; Midgley, John E. M.; Larisch, Rolf; Dietrich, Johannes W.

    2017-01-01

    In thyroid health, the pituitary hormone thyroid-stimulating hormone (TSH) raises glandular thyroid hormone production to a physiological level and enhances formation and conversion of T4 to the biologically more active T3. Overstimulation is limited by negative feedback control. In equilibrium defining the euthyroid state, the relationship between TSH and FT4 expresses clusters of genetically determined, interlocked TSH–FT4 pairs, which invalidates their statistical correlation within the euthyroid range. Appropriate reactions to internal or external challenges are defined by unique solutions and homeostatic equilibria. Permissible variations in an individual are much more closely constrained than over a population. Current diagnostic definitions of subclinical thyroid dysfunction are laboratory based, and do not concur with treatment recommendations. An appropriate TSH level is a homeostatic concept that cannot be reduced to a fixed range consideration. The control mode may shift from feedback to tracking where TSH becomes positively, rather than inversely related with FT4. This is obvious in pituitary disease and severe non-thyroid illness, but extends to other prevalent conditions including aging, obesity, and levothyroxine (LT4) treatment. Treatment targets must both be individualized and respect altered equilibria on LT4. To avoid amalgamation bias, clinically meaningful stratification is required in epidemiological studies. In conclusion, pituitary TSH cannot be readily interpreted as a sensitive mirror image of thyroid function because the negative TSH–FT4 correlation is frequently broken, even inverted, by common conditions. The interrelationships between TSH and thyroid hormones and the interlocking elements of the control system are individual, dynamic, and adaptive. This demands a paradigm shift of its diagnostic use. PMID:29375474

  13. Developmental toxicity and thyroid hormone-disrupting effects of 2,4-dichloro-6-nitrophenol in Chinese rare minnow (Gobiocypris rarus).

    PubMed

    Chen, Rui; Yuan, Lilai; Zha, Jinmiao; Wang, Zijian

    2017-04-01

    In the present study, to evaluate embryonic toxicity and the thyroid-disrupting effects of 2,4-dichloro-6-nitrophenol (DCNP), embryos and adults of Chinese rare minnow (Gobiocypris rarus) were exposed to 2, 20, and 200μg/L DCNP. In the embryo-larval assay, increased percentages of mortality and occurrence of malformations, decreased percentage of hatching, and decreased body length and body weight were observed after DCNP treatment. Moreover, the whole-body T3 levels were significantly increased at 20 and 200μg/L treatments, whereas the T4 levels were markedly decreased significantly (p<0.05) for all DCNP concentrations. In the adult fish assay, plasma T3 levels were significantly increased whereas plasma T4 levels were significantly reduced in the fish treated with 20 and 200μg/L (p<0.05). In addition, DCNP exposure significantly changed the transcription levels of thyroid system related genes, including dio1, dio2, me, nis, tr, and ttr. The increased responsiveness of thyroid hormone and mRNA expression levels of thyroid system related genes suggested that DCNP could disrupt the thyroid hormone synthesis and transport pathways. Therefore, our findings provide new insights of DCNP as a thyroid hormone-disrupting chemical. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of endotoxin and radio-detoxified endotoxin on the serum T4 level of rats and response of their thyroid gland to exogenous TSH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertok, L.; Nagy, S.U.

    Experiments were performed to demonstrate that, while the shock-inducing dose of parent (toxic) endotoxin significantly decreases the serum T4 level of rats and inhibits the T4 response given to exogenous thyroid stimulating hormone (TSH), the radio-detoxified (/sup 60/Co-gamma, 150 kGy) endotoxin preparation does not inhibit the response to exogenous TSH. It also decreases serum T4 level to a lesser extent than untreated endotoxin.

  15. Radioiodine thyroid remnant ablation after recombinant human thyrotropin or thyroid hormone withdrawal in patients with high-risk differentiated thyroid cancer.

    PubMed

    Pitoia, Fabián; Marlowe, Robert J; Abelleira, Erika; Faure, Eduardo N; Bueno, Fernanda; Schwarzstein, Diego; Lutfi, Rubén Julio; Niepomniszcze, Hugo

    2012-01-01

    To supplement limited relevant literature, we retrospectively compared ablation and disease outcomes in high-risk differentiated thyroid carcinoma (DTC) patients undergoing radioiodine thyroid remnant ablation aided by recombinant human thyrotropin (rhTSH) versus thyroid hormone withdrawal/withholding (THW). Our cohort was 45 consecutive antithyroglobulin antibody- (TgAb-) negative, T3-T4/N0-N1-Nx/M0 adults ablated with high activities at three referral centers. Ablation success comprised negative (<1 μg/L) stimulated serum thyroglobulin (Tg) and TgAb, with absent or <0.1% scintigraphic thyroid bed uptake. "No evidence of disease" (NED) comprised negative unstimulated/stimulated Tg and no suspicious neck ultrasonography or pathological imaging or biopsy. "Persistent disease" was failure to achieve NED, "recurrence," loss of NED status. rhTSH patients (n = 18) were oftener ≥45 years old and higher stage (P = 0.01), but otherwise not different than THW patients (n = 27) at baseline. rhTSH patients were significantly oftener successfully ablated compared to THW patients (83% versus 67%, P < 0.02). After respective 3.3 yr and 4.5 yr mean follow-ups (P = 0.02), NED was achieved oftener (72% versus 59%) and persistent disease was less frequent in rhTSH patients (22% versus 33%) (both comparisons P = 0.03). rhTSH stimulation is associated with at least as good outcomes as is THW in ablation of high-risk DTC patients.

  16. Clinical Consequences of Mutations in Thyroid Hormone Receptor-α1

    PubMed Central

    van Mullem, Alies A.; Visser, Theo J.; Peeters, Robin P.

    2014-01-01

    Thyroid hormone (TH) exerts its biological activity via the TH receptors TRα1 and TRβ1/2, which are encoded by the THRA and THRB genes. The first patients with mutations in THRB were identified decades ago. These patients had a clinical syndrome of resistance to TH associated with high serum TH and nonsuppressed thyroid-stimulating hormone levels. Until recently, no patients with mutations in THRA had been identified. In an attempt to predict the clinical phenotype of such patients, different TRα1 mutant mouse models have been generated. These mice have a variable phenotype depending on the location and severity of the mutation. Recently, the first humans with mutations in THRA were identified. Their phenotype consists of relatively low serum T4 and high serum T3 levels (and thus an elevated T3/T4 ratio), growth retardation, delayed mental and bone development, and constipation. While, in retrospect, certain features present in humans can also be found in mouse models, the first humans carrying a defect in TRα1 were not suspected of having a THRA gene mutation initially. The current review focuses on the clinical consequences of TRα1 mutations. PMID:24847461

  17. Potential protective effect of Pistacia lentiscus oil against chlorpyrifos-induced hormonal changes and oxidative damage in ovaries and thyroid of female rats.

    PubMed

    Chebab, Samira; Mekircha, Fatiha; Leghouchi, Essaid

    2017-12-01

    The purpose of this study was to evaluate the protective effect of Pistacia lentiscus oil (PLO), known for its antioxidant properties, on chlorpyrifos (CPF)-induced alterations in the thyroid, reproductive hormone levels, and oxidative damage in the ovaries and thyroid of adult Wistar rats. The animals were treated with orally administered PLO (2 mL/kg), CPF (6.75 mg/kg), and a combination of CPF and PLO for 30 days. Serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone (Pg), estradiol (E 2 ), triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone (TSH) were assessed using chemiluminescence assay. Malondialdehyde (MDA), protein carbonyl (PC), and reduced glutathione (GSH) levels were examined in the ovaries and thyroid glands. The oil principal volatile compounds detected by gas chromatography analysis were: myrcene, α-pinene and limonene (26.21, 22.66 and 10.33%, respectively). No significant differences were observed between serum concentrations of TSH and FSH in the examined experimental groups. However, serum concentrations of LH, E 2 , Pg, T3, and T4 decreased significantly in CPF-treated rats in comparison with the controls. The body weight and relative weight of ovaries and thyroids in this group were also significantly reduced. The MDA and PC content increased significantly, while the GSH content was markedly depressed in the thyroid and ovaries of rats treated with CPF. Co-administration of PLO and CPF effectively ameliorated the adverse effects; the oxidative damage was reduced and the levels of thyroid and reproductive hormones restored to a normal range. In conclusion, it appears that PLO substantially alleviates the CPF-induced oxidative damage and hormonal alterations. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Thyroid hormones and changes in body weight and metabolic parameters in response to weight loss diets: the POUNDS LOST trial.

    PubMed

    Liu, G; Liang, L; Bray, G A; Qi, L; Hu, F B; Rood, J; Sacks, F M; Sun, Q

    2017-06-01

    The role of thyroid hormones in diet-induced weight loss and subsequent weight regain is largely unknown. To examine the associations between thyroid hormones and changes in body weight and resting metabolic rate (RMR) in a diet-induced weight loss setting. Data analysis was conducted among 569 overweight and obese participants aged 30-70 years with normal thyroid function participating in the 2-year Prevention of Obesity Using Novel Dietary Strategies (POUNDS) LOST randomized clinical trial. Changes in body weight and RMR were assessed during the 2-year intervention. Thyroid hormones (free triiodothyronine (T3), free thyroxine (T4), total T3, total T4 and thyroid-stimulating hormone (TSH)), anthropometric measurements and biochemical parameters were assessed at baseline, 6 months and 24 months. Participants lost an average of 6.6 kg of body weight during the first 6 months and subsequently regained an average of 2.7 kg of body weight over the remaining period from 6 to 24 months. Baseline free T3 and total T3 were positively associated, whereas free T4 was inversely associated, with baseline body weight, body mass index and RMR. Total T4 and TSH were not associated with these parameters. Higher baseline free T3 and free T4 levels were significantly associated with a greater weight loss during the first 6 months (P<0.05) after multivariate adjustments including dietary intervention groups and baseline body weight. Comparing extreme tertiles, the multivariate-adjusted weight loss±s.e. was -3.87±0.9 vs -5.39±0.9 kg for free T3 (P trend =0.02) and -4.09±0.9 vs -5.88±0.9 kg for free T4 (P trend =0.004). The thyroid hormones did not predict weight regain in 6-24 months. A similar pattern of associations was also observed between baseline thyroid hormones and changes in RMR. In addition, changes in free T3 and total T3 levels were positively associated with changes in body weight, RMR, body fat mass, blood pressure, glucose, insulin, triglycerides and leptin

  19. Thyroid Hormones and Changes in Body Weight and Metabolic Parameters in Response to Weight-Loss Diets: The POUNDS LOST Trial

    PubMed Central

    Liu, Gang; Liang, Liming; Bray, George A.; Qi, Lu; Hu, Frank B.; Rood, Jennifer; Sacks, Frank M.; Sun, Qi

    2017-01-01

    Background The role of thyroid hormones in diet-induced weight loss and subsequent weight regain is largely unknown. Objectives To examine the associations between thyroid hormones and changes in body weight and resting metabolic rate (RMR) in a diet-induced weight-loss setting. Subjects/Methods Data analysis was conducted among 569 overweight and obese participants aged 30–70 years with normal thyroid function participating in the 2-year POUNDS LOST randomized clinical trial. Changes in body weight and RMR were assessed during the 2-year intervention. Thyroid hormones (free triiodothyronine [T3], free thyroxine [T4], total T3, total T4, and thyroid stimulating hormone [TSH]), anthropometric measurements, and biochemical parameters were assessed at baseline, 6 months, and 24 months. Results Participants lost an average of 6.6 kg of body weight during the first 6 months and subsequently regained an average of 2.7 kg of body weight over the remaining period from 6–24 months. Baseline free T3 and total T3 were positively associated, whereas free T4 was inversely associated, with baseline body weight, body mass index, and RMR. Total T4 and TSH were not associated with these parameters. Higher baseline free T3 and free T4 levels were significantly associated with a greater weight loss during the first 6 months (P<0.05) after multivariate adjustments including dietary intervention groups and baseline body weight. Comparing extreme tertiles, the multivariate-adjusted weight loss ± standard error was −3.87±0.9 vs −5.39±0.9 kg for free T3 (P trend=0.02) and −4.09±0.9 vs −5.88±0.9 kg for free T4 (P trend=0.004). The thyroid hormones did not predict weight regain in 6–24 months. A similar pattern of associations was also observed between baseline thyroid hormones and changes in RMR. In addition, changes in free T3 and total T3 levels were positively associated with changes in body weight, RMR, body fat mass, blood pressure, glucose, insulin, triglycerides

  20. Effects of oral administration of levothyroxine sodium on serum concentrations of thyroid gland hormones and responses to injections of thyrotropin-releasing hormone in healthy adult mares.

    PubMed

    Sommardahl, Carla S; Frank, Nicholas; Elliott, Sarah B; Webb, Latisha L; Refsal, Kent R; Denhart, Joseph W; Thompson, Donald L

    2005-06-01

    To determine the effects of levothyroxine sodium (L-T4) on serum concentrations of thyroid gland hormones and responses to injections of thyrotropin-releasing hormone (TRH) in euthyroid horses. 12 healthy adult mares. 8 horses received an incrementally increasing dosage of L-T4 (24, 48, 72, or 96 mg of L-T4/d) for weeks 1 to 8. Each dose was provided for 2 weeks. Four additional horses remained untreated. Serum concentrations of total triiodothyronine (tT3), total thyroxine (tT4), free T3 (fT3), free T4 (fT4), and thyroid-stimulating hormone (TSH) were measured in samples obtained at weeks 0, 2, 4, 6, and 8; 1.2 mg of TRH was then administered i.v., and serum concentrations of thyroid gland hormones were measured 2 and 4 hours after injection. Serum reverseT3 (rT3) concentration was also measured in the samples collected at weeks 0 and 8. Treated horses lost a significant amount of weight (median, 19 kg). Significant treatment-by-time effects were detected for serum tT3, tT4, fT3, fT4, and TSH concentrations, and serum tT4 concentrations were positively correlated (r, 0.95) with time (and therefore dosage) in treated horses. Mean +/- SD serum rT3 concentration significantly increased in treated horses (3.06 +/- 0.51 nmol/L for week 8 vs 0.74 +/- 0.22 nmol/L for week 0). Serum tT3, tT4, fT3, and TSH concentrations in response to TRH injections differed significantly between treated and untreated horses. Administration of levothyroxine sodium increased serum tT4 concentrations and blunted responses toTRH injection in healthy euthyroid horses.

  1. Resistance to thyroid hormone due to defective thyroid receptor alpha.

    PubMed

    Moran, Carla; Chatterjee, Krishna

    2015-08-01

    Thyroid hormones act via nuclear receptors (TRα1, TRβ1, TRβ2) with differing tissue distribution; the role of α2 protein, derived from the same gene locus as TRα1, is unclear. Resistance to thyroid hormone alpha (RTHα) is characterised by tissue-specific hypothyroidism associated with near-normal thyroid function tests. Clinical features include dysmorphic facies, skeletal dysplasia (macrocephaly, epiphyseal dysgenesis), growth retardation, constipation, dyspraxia and intellectual deficit. Biochemical abnormalities include low/low-normal T4 and high/high-normal T3 concentrations, a subnormal T4/T3 ratio, variably reduced reverse T3, raised muscle creatine kinase and mild anaemia. The disorder is mediated by heterozygous, loss-of-function, mutations involving either TRα1 alone or both TRα1 and α2, with no discernible phenotype attributable to defective α2. Whole exome sequencing and diagnostic biomarkers may enable greater ascertainment of RTHα, which is important as thyroxine therapy reverses some metabolic abnormalities and improves growth, constipation, dyspraxia and wellbeing. The genetic and phenotypic heterogeneity of RTHα and its optimal management remain to be elucidated. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Tissue-specific thyroid hormone regulation of gene transcripts encoding iodothyronine deiodinases and thyroid hormone receptors in striped parrotfish (Scarus iseri).

    PubMed

    Johnson, Kaitlin M; Lema, Sean C

    2011-07-01

    In fish as in other vertebrates, the diverse functions of thyroid hormones are mediated at the peripheral tissue level through iodothyronine deiodinase (dio) enzymes and thyroid hormone receptor (tr) proteins. In this study, we examined thyroid hormone regulation of mRNAs encoding the three deiodinases dio1, dio2 and dio3 - as well as three thyroid hormone receptors trαA, trαB and trβ - in initial phase striped parrotfish (Scarus iseri). Parrotfish were treated with dissolved phase T(3) (20 nM) or methimazole (3 mM) for 3 days. Treatment with exogenous T(3) elevated circulating T(3), while the methimazole treatment depressed plasma T(4). Experimentally-induced hyperthyroidism increased the relative abundance of transcripts encoding trαA and trβ in the liver and brain, but did not affect trαB mRNA levels in either tissue. In both sexes, methimazole-treated fish exhibited elevated dio2 transcripts in the liver and brain, suggesting enhanced outer-ring deiodination activity in these tissues. Accordingly, systemic hyperthyroidism elevated relative dio3 transcript levels in these same tissues. In the gonad, however, patterns of transcript regulation were distinctly different with elevated T(3) increasing mRNAs encoding dio2 in testicular and ovarian tissues and dio3, trαA and trαB in the testes only. Thyroid hormone status did not affect dio1 transcript abundance in the liver, brain or gonads. Taken as a whole, these results demonstrate that thyroidal status influences relative transcript abundance for dio2 and dio3 in the liver, provide new evidence for similar patterns of dio2 and dio3 mRNA regulation in the brain, and make evident that fish exhibit tr subtype-specific transcript abundance changes to altered thyroid status. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Thyroid hormone action on intermediary metabolism. Part I: respiration, thermogenesis and carbohydrate metabolism.

    PubMed

    Müller, M J; Seitz, H J

    1984-01-02

    The effect of thyroid hormones on mitochondrial respiration are summarized: T3 directly stimulates mitochondrial respiration and the synthesis of adenosine 5'-triphosphate (ATP). Cytosolic ATP availability is increased by a thyroid hormone-induced increase in adenine nucleotide translocation across the mitochondrial membrane; the steady state ATP concentration and the cytosolic ATP/adenosine 5'-diphosphate (ADP) ratio is even decreased in hyperthyroid tissues because of the simultaneous stimulation of the synthesis and consumption of ATP. With regard to the thyroid hormone-induced energy wasting processes, heart work, intra- and interorgan futile cycling and Na+/K+-ATPase are involved to varying degrees. As a consequence of the thyroid hormone-induced hydrolysis of ATP, thermogenesis is increased in hyper- and decreased in hypothyroidism. Despite an increased rate of glucose utilization, clinical and experimental hyperthyroidism is often characterized by an abnormal oral glucose tolerance test. This finding is due to the thyroid hormone-induced increase in intestinal glucose absorption as well as the still enhanced endogenous glucose production in the liver. Hypothyroid patients show a reduced glucose tolerance test because of a decrease in intestinal glucose absorption and a sometimes reduced glucose turnover. The thyroid hormone-induced alterations in glucose metabolism are most probably not due to alterations in serum insulin levels and/or to a peripheral insulin resistance at the receptor level.

  4. Thyroid hormones and coronary artery calcification in euthyroid men and women.

    PubMed

    Zhang, Yiyi; Kim, Bo-Kyoung; Chang, Yoosoo; Ryu, Seungho; Cho, Juhee; Lee, Won-Young; Rhee, Eun-Jung; Kwon, Min-Jung; Rampal, Sanjay; Zhao, Di; Pastor-Barriuso, Roberto; Lima, Joao A; Shin, Hocheol; Guallar, Eliseo

    2014-09-01

    Overt and subclinical hypothyroidism are risk factors for atherosclerosis. It is unclear whether thyroid hormone levels within the normal range are also associated with atherosclerosis measured by coronary artery calcium (CAC). We conducted a cross-sectional study of 41 403 apparently healthy young and middle-aged men and women with normal thyroid hormone levels. Free thyroxin, free triiodothyronine, and thyroid-stimulating hormone levels were measured by electrochemiluminescent immunoassay. CAC score was measured by multidetector computed tomography. The multivariable adjusted CAC ratios comparing the highest versus the lowest quartile of thyroid hormones were 0.74 (95% confidence interval, 0.60-0.91; P for trend <0.001) for free thyroxin, 0.81 (0.66-1.00; P for trend=0.05) for free triiodothyronine, and 0.78 (0.64-0.95; P for trend=0.01) for thyroid-stimulating hormone. Similarly, the odds ratios for detectable CAC (CAC >0) comparing the highest versus the lowest quartiles of thyroid hormones were 0.87 (0.79-0.96; P for linear trend <0.001) for free thyroxin, 0.90 (0.82-0.99; P for linear trend=0.02) for free triiodothyronine, and 0.91 (0.83-1.00; P for linear trend=0.03) for thyroid-stimulating hormone. In a large cohort of apparently healthy young and middle-aged euthyroid men and women, low-normal free thyroxin and thyroid-stimulating hormone were associated with a higher prevalence of subclinical coronary artery disease and with a greater degree of coronary calcification. © 2014 American Heart Association, Inc.

  5. Dual control of pituitary thyroid stimulating hormone secretion by thyroxine and triiodothyronine in athyreotic patients

    PubMed Central

    Hoermann, Rudolf; Midgley, John E. M.; Dietrich, Johannes W.; Larisch, Rolf

    2017-01-01

    Background: Patient responses to levothyroxine (LT4) monotherapy vary considerably. We sought to differentiate contributions of FT4 and FT3 in controlling pituitary thyroid stimulating hormone (TSH) secretion. Methods: We retrospectively assessed the relationships between TSH and thyroid hormones in 319 patients with thyroid carcinoma through 2914 visits on various LT4 doses during follow-up for 5.5 years (median, IQR 4.2, 6.9). We also associated patient complaints with the relationships. Results: Under varying dose requirements (median 1.84 µg/kg, IQR 1.62, 2.11), patients reached TSH targets below 0.4, 0.1 or 0.01 mIU/l at 73%, 54% and 27% of visits. While intercept, slope and fit of linearity of the relationships between lnTSH and FT4/FT3 varied between individuals, gender, age, LT4 dose and deiodinase activity influenced the relationships in the cohort (all p < 0.001). Deiodinase activity impaired by LT4 dose significantly affected the lnTSH–FT4 relationship. Dose increase and reduced conversion efficiency displaced FT3–TSH equilibria. In LT4-treated patients, FT4 and FT3 contributed on average 52% versus 38%, and by interaction 10% towards TSH suppression. Symptomatic presentations (11%) accompanied reduced FT3 concentrations (–0.23 pmol/l, p = 0.001) adjusted for gender, age and BMI, their relationships being shifted towards higher TSH values at comparable FT3/FT4 levels. Conclusions: Variation in deiodinase activity and resulting FT3 levels shape the TSH–FT4 relationship in LT4-treated athyreotic patients, suggesting cascade control of pituitary TSH production by the two hormones. Consequently, measurement of FT3 and calculation of conversion efficiency may identify patients with impaired biochemistry and a resulting lack of symptomatic control. PMID:28794850

  6. Hypopituitarism in the elderly in the presence of elevated thyroid stimulating hormone levels.

    PubMed Central

    Beringer, T.; McClements, B.; Weir, I.; Gilmore, D.; Kennedy, L.

    1988-01-01

    Two cases of primary hypothyroidism with hypopituitarism in elderly patients are reported. The elevated levels of thyroid stimulating hormone led to delay in the recognition of accompanying pituitary failure. Elderly patients should not be commenced on thyroxine replacement therapy until the possibility of hypopituitarism and cortisol deficiency has been excluded. PMID:3256811

  7. Human longevity is characterised by high thyroid stimulating hormone secretion without altered energy metabolism.

    PubMed

    Jansen, S W; Akintola, A A; Roelfsema, F; van der Spoel, E; Cobbaert, C M; Ballieux, B E; Egri, P; Kvarta-Papp, Z; Gereben, B; Fekete, C; Slagboom, P E; van der Grond, J; Demeneix, B A; Pijl, H; Westendorp, R G J; van Heemst, D

    2015-06-19

    Few studies have included subjects with the propensity to reach old age in good health, with the aim to disentangle mechanisms contributing to staying healthier for longer. The hypothalamic-pituitary-thyroid (HPT) axis maintains circulating levels of thyroid stimulating hormone (TSH) and thyroid hormone (TH) in an inverse relationship. Greater longevity has been associated with higher TSH and lower TH levels, but mechanisms underlying TSH/TH differences and longevity remain unknown. The HPT axis plays a pivotal role in growth, development and energy metabolism. We report that offspring of nonagenarians with at least one nonagenarian sibling have increased TSH secretion but similar bioactivity of TSH and similar TH levels compared to controls. Healthy offspring and spousal controls had similar resting metabolic rate and core body temperature. We propose that pleiotropic effects of the HPT axis may favour longevity without altering energy metabolism.

  8. Thyroid Hormones and Thyroid Disease in Relation to Perchlorate Dose and Residence Near a Superfund Site

    PubMed Central

    Gold, Ellen B.; Blount, Benjamin C.; Rasor, Marianne O’Neill; Lee, Jennifer S.; Alwis, Udeni; Srivastav, Anup; Kim, Kyoungmi

    2013-01-01

    Background Perchlorate is a widely occurring contaminant, which can competitively inhibit iodide uptake and thus thyroid hormone production. The health effects of chronic low dose perchlorate exposure are largely unknown. Objectives In a community-based study, we compared thyroid function and disease in women with differing likelihoods of prior and current perchlorate exposure. Methods Residential blocks were randomly selected from areas: 1) with potential perchlorate exposure via drinking water; 2) with potential exposure to environmental contaminants; and 3) neighboring but without such exposures. Eligibility included having lived in the area for ≥6 months and aged 20–50 years during 1988–1996 (during documented drinking water well contamination). We interviewed 814 women and collected blood samples (assayed for thyroid stimulating hormone [TSH] and free thyroxine [fT4]) from 431 interviewed women. Daily urine samples were assayed for perchlorate and iodide for 178 premenopausal women with blood samples. We performed multivariable regression analyses comparing thyroid function and disease by residential area and by urinary perchlorate dose adjusted for urinary iodide levels. Results Residential location and current perchlorate dose were not associated with thyroid function or disease. Conclusions No persistent effect of perchlorate on thyroid function or disease was found several years after contaminated wells were capped. PMID:22968349

  9. Evidence of chemical stimulation of hepatic metabolism by an experimental acetanilide (FOE 5043) indirectly mediating reductions in circulating thyroid hormone levels in the male rat.

    PubMed

    Christenson, W R; Becker, B D; Wahle, B S; Moore, K D; Dass, P D; Lake, S G; Van Goethem, D L; Stuart, B P; Sangha, G K; Thyssen, J H

    1996-02-01

    N-(4-Fluorophenyl)-N-(1-methylethyl)-2-[[5-(trifluoromethyl)-1,3, 4-thiadiazol-2-yl]oxy]acetamide (FOE 5043) is a new acetanilide-type herbicide undergoing regulatory testing. Previous work in this laboratory suggested that FOE 5043-induced reductions in serum thyroxine (T4) levels were mediated via an extrathyroidal site of action. The possibility that the alterations in circulating T4 levels were due to chemical induction of hepatic thyroid hormone metabolism was investigated. Treatment with FOE 5043 at a rate of 1000 ppm as a dietary admixture was found to significantly increase the clearance of [125I]T4 from the serum, suggesting an enhanced excretion of the hormone. In the liver, the activity of hepatic uridine glucuronosyl transferase, a major pathway of thyroid hormone biotransformation in the rat, increased in a statistically significant and dose-dependent manner; conversely, hepatic 5'-monodeiodinase activity trended downward with dose. Bile flow as well as the hepatic uptake and biliary excretion of [125I]T4 were increased following exposure to FOE 5043. Thyroidal function, as measured by the discharge of iodide ion in response to perchlorate, and pituitary function, as measured by the capacity of the pituitary to secrete thyrotropin in response to an exogenous challenge by hypothalamic thyrotropin releasing hormone, were both unchanged from the controlled response. These data suggest that the functional status of the thyroid and pituitary glands has not been altered by treatment with FOE 5043 and that reductions in circulating levels of T4 are being mediated indirectly through an increase in the biotransformation and excretion of thyroid hormone in the liver.

  10. Thyroid and Cortisol hormones in Attention Deficit Hyperactivity Disorder: A case-control study.

    PubMed

    Kuppili, Pooja Patnaik; Pattanayak, Raman Deep; Sagar, Rajesh; Mehta, Manju; Vivekanandhan, S

    2017-08-01

    There is paucity of research in the putative role of hormonal biomarkers in Attention Deficit Hyperactivity Disorder (ADHD). The current study aimed to analyze the clinical profile, socio-demographic status, co-morbidity, hormonal biomarkers namely Thyroid hormones and Cortisol in children with ADHD and compare them with healthy controls and to explore the association of the hormonal biomarkers with severity of ADHD. Thirty children with DSM-IV TR diagnosis of ADHD were assessed using semi structured proforma, Conners' Parent Rating Scale revised short (CPRS - R: S) , Mini international neuropsychiatric interview for children and adolescents and Childrens' Global Assessment Scale as well as serum levels of total Triiodothyronine (T3) ,total Thyroxine (T4) , Thyroid Stimulating Hormone (TSH) and Cortisol using chemiluminescent immunometric assay and compared with 30 age- and gender -matched controls. The typical profile of cases of ADHD was of a male with mean age of 9.47 years (S.D=2.43) belonging to Hyperactive subtype of ADHD. Serum T4 was significantly lower in cases compared to controls. No significant difference was found in serum T3, TSH and Cortisol levels. No significant correlation between the CPRS : R-S scores and the hormonal biomarkers. There is need for exploration of Serum T4 as putative biomarker for ADHD with replication in future studies. It may also be important to report the negative finding of Cortisol as a biomarker of ADHD in the context of effective utilization of resources for research with special relevance to resource deficit developing countries. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Novel neural pathways for metabolic effects of thyroid hormone.

    PubMed

    Fliers, Eric; Klieverik, Lars P; Kalsbeek, Andries

    2010-04-01

    The relation between thyrotoxicosis, the clinical syndrome resulting from exposure to excessive thyroid hormone concentrations, and the sympathetic nervous system remains enigmatic. Nevertheless, beta-adrenergic blockers are widely used to manage severe thyrotoxicosis. Recent experiments show that the effects of thyrotoxicosis on hepatic glucose production and insulin sensitivity can be modulated by selective hepatic sympathetic and parasympathetic denervation. Indeed, thyroid hormone stimulates hepatic glucose production via a sympathetic pathway, a novel central pathway for thyroid hormone action. Rodent studies suggest that similar neural routes exist for thyroid hormone analogues (e.g. thyronamines). Further elucidation of central effects of thyroid hormone on autonomic outflow to metabolic organs, including the thyroid and brown adipose tissue, will add to our understanding of hyperthyroidism. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Plasma Selenium Levels in First Trimester Pregnant Women with Hyperthyroidism and the Relationship with Thyroid Hormone Status.

    PubMed

    Arikan, Tugba Atilan

    2015-10-01

    The thyroid gland has the highest selenium (Se) concentration per unit weight among all tissues. The aims of the present study were to evaluate the Se levels in the plasma of hyperthyroidic pregnant women and to investigate the association between maternal plasma Se concentrations and thyroid hormone levels. The study population consisted of 107 pregnant women, 70 healthy pregnant women (group 1) and 37 pregnant women with hyperthyroidism (group 2). The plasma free triiodothyronine (fT3) and free thyroxine (fT4) levels were significantly higher, and the plasma thyroid-stimulating hormone (TSH) and Se levels were significantly lower in group 2 than in group 1 (p < 0.05). A correlation analysis showed a positive correlation between Se and fT4 in group 1 and with TSH in group 2 (p < 0.05). Decreased maternal serum antioxidant trace element Se in hyperthyroidic pregnant women compared with normal pregnant women supported the hypothesis that hyperthyroidism was associated with decreased antioxidant response.

  13. Radioactive body burden measurements in (131)iodine therapy for differentiated thyroid cancer: effect of recombinant thyroid stimulating hormone in whole body (131)iodine clearance.

    PubMed

    Ravichandran, Ramamoorthy; Al Saadi, Amal; Al Balushi, Naima

    2014-01-01

    Protocols in the management of differentiated thyroid cancer, recommend adequate thyroid stimulating hormone (TSH) stimulation for radioactive (131)I administrations, both for imaging and subsequent ablations. Commonly followed method is to achieve this by endogenous TSH stimulation by withdrawal of thyroxine. Numerous studies worldwide have reported comparable results with recombinant human thyroid stimulating hormone (rhTSH) intervention as conventional thyroxine hormone withdrawal. Radiation safety applications call for the need to understand radioactive (131)I (RA(131)I) clearance pattern to estimate whole body doses when this new methodology is used in our institution. A study of radiation body burden estimation was undertaken in two groups of patients treated with RA(131)I; (a) one group of patients having thyroxine medication suspended for 5 weeks prior to therapy and (b) in the other group retaining thyroxine support with two rhTSH injections prior to therapy with RA(131)I. Sequential exposure rates at 1 m in the air were measured in these patients using a digital auto-ranging beta gamma survey instrument calibrated for measurement of exposure rates. The mean measured exposure rates at 1 m in μSv/h immediately after administration and at 24 h intervals until 3 days are used for calculating of effective ½ time of clearance of administered activity in both groups of patients, 81 patients in conventionally treated group (stop thyroxine) and 22 patients with rhTSH administration. The (131)I activities ranged from 2.6 to 7.9 GBq. The mean administered (131)I activities were 4.24 ± 0.95 GBq (n = 81) in "stop hormone" group and 5.11 ± 1.40 GBq (n = 22) in rhTSH group. The fall of radioactive body burden showed two clearance patterns within observed 72 h. Calculated T½eff values were 16.45 h (stop hormone group) 12.35 h (rhTSH group) for elapsed period of 48 h. Beyond 48 h post administration, clearance of RA(131)I takes place with T½eff> 20 h in both groups

  14. The Mechanism of the Calorigenic Action of Thyroid Hormone

    PubMed Central

    Ismail-Beigi, Faramarz; Edelman, Isidore S.

    1971-01-01

    In an earlier study, we proposed that thyroid hormone stimulation of energy utilization by the Na+ pump mediates the calorigenic response. In this study, the effects of triiodothyronine (T3) on total oxygen consumption (Q OO2), the ouabain-sensitive oxygen consumption [Q OO2(t)], and NaK-ATPase in liver, kidney, and cerebrum were measured. In liver, ∼90% of the increase in Q OO2 produced by T3 in either thyroidectomized or euthyroid rats was attributable to the increase in Q OO2(t). In kidney, the increase in Q OO2(t) accounted for 29% of the increase in Q OO2 in thyroidectomized and 46% of the increase in Q OO2 in euthyroid rats. There was no demonstrable effect of T3 in euthyroid rats on Q OO2 or Q OO2(t) of cerebral slices. The effects of T3 on NaK-ATPase activity in homogenates were as follows: In liver +81% from euthyroid rats and +54% from hypothyroid rats. In kidney, +21% from euthyroid rats and +69% from hypothyroid rats. T3 in euthyroid rats produced no significant changes in NaK-ATPase or Mg-ATPase activity of cerebral homogenates. Liver plasma membrane fractions showed a 69% increase in NaK-ATPase and no significant changes in either Mg-ATPase or 5'-nucleotidase activities after T3 injection. These results indicate that thyroid hormones stimulate NaK-ATPase activity differentially. This effect may account, at least in part, for the calorigenic effects of these hormones. PMID:4252666

  15. T cell lymphoblastic lymphoma/leukemia within an adrenocorticotropic hormone and thyroid stimulating hormone positive pituitary adenoma: A cytohistological correlation emphasizing importance of intra-operative squash smear.

    PubMed

    Gupta, Rakesh K; Saran, Ravindra K; Srivastava, Arvind K; Jagetia, Anita; Garg, Lalit; Sharma, Mehar C

    2017-08-01

    We present a rare case of primary pituitary T cell lymphoma/leukemia (T-LBL) in association with adrenocorticotropic hormone (ACTH) and thyroid stimulating hormone (TSH) expressing pituitary adenoma in a 55-year-old woman highlighting the importance of intra-operative squash smears examination. The patient presented with complaints of headache, diminution of vision and recent onset altered sensorium. MRI revealed a mass lesion in the sellar-suprasellar region with non-visualization of pituitary gland separately, extending to involve adjacent structures diagnosed as invasive pituitary macroadenoma. Intra-operative tissue was sent for squash smear examination. The cytology showed a tumor comprising of sheets of immature lymphoid cells intermixed with clusters of pituitary acinar cells with many mitoses and tingible body macrophages. A diagnosis of presence of immature lymphoid cells within the pituitary was offered and differentials of infiltration by lymphoma cells from systemic disease versus primary central nervous lymphoma-like lymphoma arising in the pituitary adenoma were considered. Later paraffin section examination and immunohistochemistry corroborated with the squash findings and a final diagnosis of primary pituitary T cell lymphoma/leukemia in association with ACTH and TSH expressing pituitary adenoma was made. To date, only six cases of primary pituitary T cell lymphomas, including three T-LBL cases, have been reported. This is the seventh case and first one additionally describing cytohistological correlation and importance of intra-operative cytology. © 2017 Japanese Society of Neuropathology.

  16. The Presence of Thyroid-Stimulation Blocking Antibody Prevents High Bone Turnover in Untreated Premenopausal Patients with Graves' Disease.

    PubMed

    Cho, Sun Wook; Bae, Jae Hyun; Noh, Gyeong Woon; Kim, Ye An; Moon, Min Kyong; Park, Kyoung Un; Song, Junghan; Yi, Ka Hee; Park, Do Joon; Chung, June-Key; Cho, Bo Youn; Park, Young Joo

    2015-01-01

    Osteoporosis-related fractures are one of the complications of Graves' disease. This study hypothesized that the different actions of thyroid-stimulating hormone receptor (TSHR) antibodies, both stimulating and blocking activities in Graves' disease patients might oppositely impact bone turnover. Newly diagnosed premenopausal Graves' disease patients were enrolled (n = 93) and divided into two groups: patients with TSHR antibodies with thyroid-stimulating activity (stimulating activity group, n = 83) and patients with TSHR antibodies with thyroid-stimulating activity combined with blocking activity (blocking activity group, n = 10). From the stimulating activity group, patients who had matched values for free T4 and TSH binding inhibitor immunoglobulin (TBII) to the blocking activity group were further classified as stimulating activity-matched control (n = 11). Bone turnover markers BS-ALP, Osteocalcin, and C-telopeptide were significantly lower in the blocking activity group than in the stimulating activity or stimulating activity-matched control groups. The TBII level showed positive correlations with BS-ALP and osteocalcin levels in the stimulating activity group, while it had a negative correlation with the osteocalcin level in the blocking activity group. In conclusion, the activation of TSHR antibody-activated TSH signaling contributes to high bone turnover, independent of the actions of thyroid hormone, and thyroid-stimulation blocking antibody has protective effects against bone metabolism in Graves' disease.

  17. Thyroid hormones and the central nervous system of mammals (Review).

    PubMed

    Di Liegro, Italia

    2008-01-01

    The thyroid hormones (THs) L-thyroxine (T4) and L-triiodothyronine (T3) have a profound influence on the development and maturation of the mammalian brain, both before and after birth. Any impairment in the supply of THs to the developing nervous system leads to severe and irreversible changes in both the overall architecture and functions of the brain and causes, in humans, neurological and motor deficits known as cretinism. Pronounced neurological symptoms are also commonly observed in adult patients suffering from both hyperthyroidism and hypothyroidism, and it has recently emerged that certain symptoms might result from the reduced brain uptake, rather than the insufficient production, of THs. Most of the effects of THs are mediated by two classes of nuclear receptors (α and β isoforms), which belong to the c-erbA superfamily of transcriptional regulators and are expressed in a tissue-specific and developmentally regulated manner. Interestingly, the nuclear TH receptors (nTRs) act as both ligand-independent gene repressors and ligand-dependent gene activators. On the other hand, negatively-regulated genes, which can be stimulated in the absence of THs and repressed by THs, have also been observed. Due to this complex pattern of regulation, the effects of receptor dysfunction do not exactly overlap the effects of hormone deficiency or excess. Moreover, non-genomic mechanisms of TH action have been described in many tissues, including the brain, some of which seem to be mediated by integrins and to be calcium-dependent. Intracellular receptors, distinct from nTRs, are present in the mitochondria, where a matrix-associated, T3-dependent transcriptional regulator of approximately 43 kDa has been described. Finally, complex patterns of pituitary and/or peripheral resistance to thyroid hormones (RTH), characterized by elevated plasma levels of THs and non-suppressible thyroid-stimulating hormone (TSH), have been identified. This review summarizes the major advances

  18. Relationship between thyroid stimulating hormone and night shift work.

    PubMed

    Moon, So-Hyun; Lee, Bum-Joon; Kim, Seong-Jin; Kim, Hwan-Cheol

    2016-01-01

    Night shift work has well-known adverse effects on health. However, few studies have investigated the relationship between thyroid diseases and night shift work. This study aimed to examine night shift workers and their changes in thyroid stimulating hormones (TSH) levels over time. Medical check-up data (2011-2015) were obtained from 967 female workers at a university hospital in Incheon, Korea. Data regarding TSH levels were extracted from the records, and 2015 was used as a reference point to determine night shift work status. The relationships between TSH levels and night shift work in each year were analyzed using the general linear model (GLM). The generalized estimating equation (GEE) was used to evaluate the repeated measurements over the 5-year period. The GEE analysis revealed that from 2011 to 2015, night shift workers had TSH levels that were 0.303 mIU/L higher than the levels of non-night shift workers (95 % CI: 0.087-0.519 mIU/L, p  = 0.006) after adjusting for age and department. When we used TSH levels of 4.5 ≥ mIU/L to identify subclinical hypothyroidism, night shift workers exhibited a 1.399 fold higher risk of subclinical hypothyroidism (95 % CI: 1.050-1.863, p  = 0.022), compared to their non-night shift counterparts. This result of this study suggests that night shift workers may have an increased risk of thyroid diseases, compared to non-night shift workers.

  19. Gestational urinary bisphenol A and maternal and newborn thyroid hormone concentrations: The HOME Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, Megan E., E-mail: megan_romano@brown.edu; Webster, Glenys M.; Vuong, Ann M.

    Bisphenol A (BPA), an endocrine disruptor used in consumer products, may perturb thyroid function. Prenatal BPA exposure may have sex-specific effects on thyroid hormones (THs). Our objectives were to investigate whether maternal urinary BPA concentrations during pregnancy were associated with THs in maternal or cord serum, and whether these associations differed by newborn sex or maternal iodine status. We measured urinary BPA concentrations at 16 and 26 weeks gestation among pregnant women in the HOME Study (2003–2006, Cincinnati, Ohio). Thyroid stimulating hormone (TSH) and free and total thyroxine (T{sub 4}) and triiodothyronine (T{sub 3}) were measured in maternal serum atmore » 16 weeks (n=181) and cord serum at delivery (n=249). Associations between BPA concentrations and maternal or cord serum TH levels were estimated by multivariable linear regression. Mean maternal urinary BPA was not associated with cord THs in all newborns, but a 10-fold increase in mean BPA was associated with lower cord TSH in girls (percent change=−36.0%; 95% confidence interval (CI): −58.4, −1.7%), but not boys (7.8%; 95% CI: −28.5, 62.7%; p-for-effect modification=0.09). We observed no significant associations between 16-week BPA and THs in maternal or cord serum, but 26-week maternal BPA was inversely associated with TSH in girls (−42.9%; 95% CI: −59.9, −18.5%), but not boys (7.6%; 95% CI: −17.3, 40.2%; p-for-effect modification=0.005) at birth. The inverse BPA–TSH relation among girls was stronger, but less precise, among iodine deficient versus sufficient mothers. Prenatal BPA exposure may reduce TSH among newborn girls, particularly when exposure occurs later in gestation. - Highlights: • Examined associations of BPA with thyroid hormones in pregnant women and newborns. • Assessed effect modification of BPA–thyroid hormone associations by newborn sex. • Greater BPA related to decreased thyroid stimulating hormone in girls' cord serum. • Results

  20. Effects of thyroid hormone manipulation on pre-nuptial molt, luteinizing hormone and testicular growth in male white-crowned sparrows (Zonotrichia leuchophrys gambelii).

    PubMed

    Pérez, Jonathan H; Meddle, Simone L; Wingfield, John C; Ramenofsky, Marilyn

    2018-01-01

    Most seasonal species rely on the annual change in day length as the primary cue to appropriately time major spring events such as pre-nuptial molt and breeding. Thyroid hormones are thought to be involved in the regulation of both of these spring life history stages. Here we investigated the effects of chemical inhibition of thyroid hormone production using methimazole, subsequently coupled with either triiodothyronine (T3) or thyroxine (T4) replacement, on the photostimulation of pre-nuptial molt and breeding in Gambel's white-crowned sparrows (Zonotrichia leuchophrys gambelii). Suppression of thyroid hormones completely prevented pre-nuptial molt, while both T3 and T4 treatment restored normal patterns of molt in thyroid hormone-suppressed birds. Testicular recrudescence was blocked by methimazole, and restored by T4 but not T3, in contrast to previous findings demonstrating central action of T3 in the photostimulation of breeding. Methimazole and replacement treatments elevated plasma luteinizing hormone levels compared to controls. These data are partially consistent with existing theories on the role of thyroid hormones in the photostimulation of breeding, while highlighting the possibility of additional feedback pathways. Thus we suggest that regulation of the hypothalamic pituitary gonad axis that controls breeding may be more complex than previously considered. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Exaggerated thyroid stimulating hormone secretion in children exposed to the Chernobyl nuclear reactor catastrophe.

    PubMed

    Boyarskaya, O Y; Kopilova, O V

    2008-02-01

    We present results of a long-term study of the morpho-functional state of the thyroid gland and of the functional capacities of the hypothalamic-hypophyseal system, as shown by thyrotropin releasing hormone stimulation, in different groups of children who suffered from the Chernobyl accident. It was shown that the thyroid gland of the children who were evacuated from the 30-km zone was damaged most severely due to the influence of radioactive iodine (131I). Living on radionuclide-polluted territories in conditions of iodine deficiency has been an additional contributory factor in the development of thyroid gland diseases. Latent functional deficiency of the hypothalamic-hypophyseal system can be one of the reasons leading to oncopathology of the thyroid gland.

  2. Free and total thyroid hormones in humans at extreme altitude

    NASA Astrophysics Data System (ADS)

    Basu, Minakshi; Pal, K.; Malhotra, A. S.; Prasad, R.; Sawhney, R. C.

    1995-03-01

    Alterations in circulatory levels of total T4 (TT4), total T3 (TT3), free T4 (FT4), free T3 (FT3), thyrotropin (TSH) and T3 uptake (T3U) were studied in male and female sea-level residents (SLR) at sea level, in Armed forces personnel staying at high altitude (3750 m) for prolonged duration (acclimatized lowlanders, ALL) and in high-altitude natives (HAN). Identical studies were also performed on male ALL who trekked to an extreme altitude of 5080 m and stayed at an altitude of more than 6300 m for about 6 months. The total as well as free thyroid hormones were found to be significantly higher in ALL and HAN as compared to SLR values. Both male as well as female HAN had higher levels of thyroid hormones. The rise in hormone levels in different ALL ethnic groups drawn from amongst the southern and northern parts of the country was more or less identical. In both HAN and ALL a decline in FT3 and FT4 occurred when these subjects trekked at subzero temperatures to extreme altitude of 5080 m but the levels were found to be higher in ALL who stayed at 6300 m for a prolonged duration. Plasma TSH did not show any appreciable change at lower altitudes but was found to be decreased at extreme altitude. The increase in thyroid hormones at high altitude was not due to an increase in hormone binding proteins, since T3U was found to be higher at high altitudes. A decline in TSH and hormone binding proteins and an increase in the free moiety of the hormones is indicative of a subtle degree of tissue hyperthyroidism which may be playing an important role in combating the extreme cold and hypoxic environment of high altitudes.

  3. Placental Transfer of Perfluoroalkyl Substances and Associations with Thyroid Hormones: Beijing Prenatal Exposure Study

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Li, Jingguang; Lai, Jianqiang; Luan, Hemi; Cai, Zongwei; Wang, Yibaina; Zhao, Yunfeng; Wu, Yongning

    2016-02-01

    Perfluoroalkyl substances (PFASs) have been detected in wildlife and human samples worldwide. Toxicology research showed that PFASs could interfere with thyroid hormone homeostasis. In this study, eight PFASs, fifteen PFAS precursors and five thyroid hormones were analyzed in 157 paired maternal and cord serum samples collected in Beijing around delivery. Seven PFASs and two precursors were detected in both maternal and cord sera with significant maternal-fetal correlations (r = 0.336 to 0.806, all P < 0.001). The median ratios of major PFASs concentrations in fetal versus maternal serum were from 0.25:1 (perfluorodecanoic acid, PFDA) to 0.65:1 (perfluorooctanoic acid, PFOA). Spearman partial correlation test showed that maternal thyroid stimulating hormone (TSH) was negatively correlated with most maternal PFASs (r = -0.261 to -0.170, all P < 0.05). Maternal triiodothyronin (T3) and free T3 (FT3) showed negative correlations with most fetal PFASs (r = -0.229 to -0.165 for T3; r = -0.293 to -0.169 for FT3, all P < 0.05). Our results suggest prenatal exposure of fetus to PFASs and potential associations between PFASs and thyroid hormone homeostasis in humans.

  4. Short-chain chlorinated paraffins (SCCPs) induced thyroid disruption by enhancement of hepatic thyroid hormone influx and degradation in male Sprague Dawley rats.

    PubMed

    Gong, Yufeng; Zhang, Haijun; Geng, Ningbo; Xing, Liguo; Fan, Jingfeng; Luo, Yun; Song, Xiaoyao; Ren, Xiaoqian; Wang, Feidi; Chen, Jiping

    2018-06-01

    Short-chain chlorinated paraffins (SCCPs) are known to disturb thyroid hormone (TH) homeostasis in rodents. However, the mechanism remains to be fully characterized. In this study, male Sprague Dawley rats received SCCPs (0, 1, 10, or 100mg/kg/day) via gavage once a day for consecutive 28days. Plasma and hepatic TH concentrations, thyrocyte structure, as well as thyroid and hepatic mRNA and protein levels of genes associated with TH homeostasis were examined. Moreover, we performed molecular docking to predict interactions between constitutive androstane receptor (CAR), a key regulator in xenobiotic-induced TH metabolism, with different SCCP molecules. Exposure to SCCPs significantly decreased the circulating free thyroxine (T 4 ) and triiodothyronine (T 3 ) levels, but increased thyroid-stimulating hormone (TSH) levels by a feedback mechanism. Decreased hepatic T 4 and increased hepatic T 3 levels were also seen after 100mg/kg/day SCCPs exposure. SCCPs didn't show any significant effects on the expression of thyroid TH synthesis genes or thyrocyte structure. However, stimulation effects were observed for mRNA and protein levels of hepatic uridine diphosphoglucuronosyl transferase (UGT) 1A1 and organic anion transporter 2, suggesting an accelerated TH metabolism in rat liver. The increased cytochrome P450 2B1 but not 1A1 mRNA and protein levels indicated that the CAR signaling was activated by SCCPs exposure. According to docking analysis, SCCPs form hydrophobic interactions with CAR and the binding affinity shows dependency on chlorine content. Overall, our data showed that CAR implicated enhancement of hepatic TH influx and degradation could be the main cause for SCCPs induced TH deficiency in male rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The −258 A/G (SNP rs12885300) polymorphism of the human type-2 deiodinase gene is associated with a shift in the pattern of secretion of thyroid hormones following a TRH-induced acute rise in TSH

    PubMed Central

    Peltsverger, Maya Y.; Butler, Peter W.; Alberobello, Anna Teresa; Smith, Sheila; Guevara, Yanina; Dubaz, Ornella M.; Luzon, Javier A.; Linderman, Joyce; Celi, Francesco S.

    2012-01-01

    Objective Type-2 deiodinase gene (DIO2) polymorphisms have been associated with changes in pituitary-thyroid axis homeostasis. The −258 A/G (SNP rs12885300) polymorphism has been associated with increased enzymatic activity, but data are conflicting. To characterize the effects of the −258 A/G polymorphism on intra-thyroidal T4 to T3 conversion and thyroid hormone secretion pattern we studied the effects of acute, TRH-mediated, TSH stimulation of the thyroid gland. Design Retrospective analysis. Methods The thyroid hormone secretion in response to 500 mcg iv TRH injection was studied in 45 healthy volunteers. Results Twenty-six subjects (16 females, 10 males, 32.8±10.4 years) were homozygous for the ancestral (−258 A/A) allele, 19 (11 females, 8 males, 31.1±10.9 years) were carrier of the (−258 G/x) variant. While no differences in the peak TSH and T3 levels were observed, carriers of the −258G/x allele showed a blunted rise in free T4 (p<0.01). The −258G/x 92Thr/Thr haplotype, compared to the other groups, had lower TSH values at 60' (p<0.03). No differences were observed between genotypes in baseline thyroid hormone levels. Conclusions The −258G/x DIO2 polymorphism variant is associated with a decreased rate of acute TSH-stimulated free T4 secretion with a normal T3 release from the thyroid consistent with a shift in the reaction equilibrium toward the product. These data indicate that the −258G DIO2 polymorphism cause changes in the pattern of hormonal secretion. These findings are a proof-of-concept that common polymorphisms in the DIO2 can subtly affect the circulating levels of thyroid hormone and might modulate the thyroid hormone homeostasis. PMID:22307573

  6. Microarray analysis of thyroid stimulating hormone, insulin-like growth factor-1, and insulin-induced gene expression in FRTL-5 thyroid cells.

    PubMed

    Lee, You Jin; Park, Do Joon; Shin, Chan Soo; Park, Kyong Soo; Kim, Seong Yeon; Lee, Hong Kyu; Park, Young Joo; Cho, Bo Youn

    2007-10-01

    To determine which genes are regulated by thyroid stimulating hormone (thyrotropin, TSH), insulin and insulin-like growth factor-1 (IGF-1) in the rat thyroid, we used the microarray technology and observed the changes in gene expression. The expressions of genes for bone morphogenetic protein 6, the glucagon receptor, and cyclin D1 were increased by both TSH and IGF-1; for cytochrome P450, 2c37, the expression was decreased by both. Genes for cholecystokinin, glucuronidase, beta, demethyl-Q 7, and cytochrome c oxidase, subunit VIIIa, were up-regulated; the genes for ribosomal protein L37 and ribosomal protein L4 were down-regulated by TSH and insulin. However, there was no gene observed to be regulated by all three: TSH, IGF-1, and insulin molecules studied. These findings suggest that TSH, IGF-1, and insulin stimulate different signal pathways, which can interact with one another to regulate the proliferation of thyrocytes, and thereby provide additional influence on the process of cellular proliferation.

  7. Microarray Analysis of Thyroid Stimulating Hormone, Insulin-Like Growth Factor-1, and Insulin-Induced Gene Expression in FRTL-5 Thyroid Cells

    PubMed Central

    Lee, You Jin; Park, Do Joon; Shin, Chan Soo; Park, Kyong Soo; Kim, Seong Yeon; Lee, Hong Kyu; Cho, Bo Youn

    2007-01-01

    To determine which genes are regulated by thyroid stimulating hormone (thyrotropin, TSH), insulin and insulin-like growth factor-1 (IGF-1) in the rat thyroid, we used the microarray technology and observed the changes in gene expression. The expressions of genes for bone morphogenetic protein 6, the glucagon receptor, and cyclin D1 were increased by both TSH and IGF-1; for cytochrome P450, 2c37, the expression was decreased by both. Genes for cholecystokinin, glucuronidase, beta, demethyl-Q 7, and cytochrome c oxidase, subunit VIIIa, were up-regulated; the genes for ribosomal protein L37 and ribosomal protein L4 were down-regulated by TSH and insulin. However, there was no gene observed to be regulated by all three: TSH, IGF-1, and insulin molecules studied. These findings suggest that TSH, IGF-1, and insulin stimulate different signal pathways, which can interact with one another to regulate the proliferation of thyrocytes, and thereby provide additional influence on the process of cellular proliferation. PMID:17982240

  8. Thyroid hormone deiodination in birds.

    PubMed

    Darras, Veerle M; Verhoelst, Carla H J; Reyns, Geert E; Kühn, Eduard R; Van der Geyten, Serge

    2006-01-01

    Because the avian thyroid gland secretes almost exclusively thyroxine (T4), the availability of receptor-active 3,3',5-triiodothyronine (T3) has to be regulated in the extrathyroidal tissues, essentially by deiodination. Like mammals and most other vertebrates, birds possess three types of iodothyronine deiodinases (D1, D2, and D3) that closely resemble their mammalian counterparts, as shown by biochemical characterization studies in several avian species and by cDNA cloning of the three enzymes in chicken. The tissue distribution of these deiodinases has been studied in detail in chicken at the level of activity and mRNA expression. More recently specific antibodies were used to study cellular localization at the protein level. The abundance and distribution of the different deiodinases shows substantial variation during embryonic development and postnatal life. Deiodination in birds is subject to regulation by hormones from several endocrine axes, including thyroid hormones, growth hormone and glucocorticoids. In addition, deiodination is also influenced by external parameters, such as nutrition, temperature, light and also a number of environmental pollutants. The balance between the outer and inner ring deiodination resulting from the impact of all these factors ultimately controls T3 availability.

  9. The effect of thyroid hormone and a long-acting somatostatin analogue on TtT-97 murine thyrotropic tumors.

    PubMed

    Woodmansee, W W; Gordon, D F; Dowding, J M; Stolz, B; Lloyd, R V; James, R A; Wood, W M; Ridgway, E C

    2000-07-01

    Thyroid hormone inhibits thyrotropin (TSH) production and thyrotrope growth. Somatostatin has been implicated as a synergistic factor in the inhibition of thyrotrope function. We have previously shown that pharmacological doses of thyroid hormone (levothyroxine [LT4]) inhibit growth of murine TtT-97 thyrotropic tumors in association with upregulation of somatostatin receptor type 5 (sst5) mRNA and somatostatin receptor binding. In the current study, we examined the effect of physiological thyroid hormone replacement alone or in combination with the long-acting somatostatin analogue, Sandostatin LAR, on thyrotropic tumor growth, thyrotropin growth factor-beta (TSH-beta), and sst5 mRNA expression, as well as somatostatin receptor binding sites. Physiological LT4 replacement therapy resulted in tumor shrinkage in association with increased sst5 mRNA levels, reduced TSH-beta mRNA levels and enhanced somatostatin receptor binding. Sandostatin LAR alone had no effect on any parameter measured. However, Sandostatin LAR combined with LT4 synergistically inhibited TSH-beta mRNA production and reduced final tumor weights to a greater degree. In this paradigm, Sandostatin LAR required a euthyroid status to alter thyrotrope parameters. These data suggest an important interaction between the somatostatinergic system and thyroid hormone in the regulation of thyrotrope cell structure and function.

  10. Increased cell membrane permeability to Na+ and K+ induced by thyroid hormone in rat skeletal muscle.

    PubMed

    Asano, Y

    1978-01-01

    Thyroid hormone (T3) increased Na+ dependent respiration accompanied by an increase in NaK-ATPase activity. Administration of T3 increased intracellular K+ concentration and Na/K ratio in thyroidectomized rats, and the Na+ efflux rate constant incubated in oxygenized Na+, K+-Ringers in euthyroid rats. However, the magnitude of the changes in intracellular K+ concentration was modest or invisible in comparison to the changes in QO2(t) and NaK-ATPase activity. The Na+ and K+ efflux rate constants in K+-free +ouabain Ringers were increased by T3 in both thyroidectomized and euthyroid rats. Thus, thyroid hormone stimulates not only Na pump but also the permeability of cell membrane to Na+ and K+. The both effects might contribute to the thyroid thermogenesis.

  11. Reactivity of thyroid papillary carcinoma cells to thyroid stimulating hormone-dominated endocrine therapy

    PubMed Central

    Ma, Yuqin; Zhang, Xia; Wang, Yutao

    2017-01-01

    This study investigated the effect of thyroid stimulating hormone (TSH) on the proliferation of papillary thyroid carcinoma (PTC) cells and the therapeutic effect of levothyroxine sodium (TH). PTC cells (TPC-1) were cultured using 0.1, 1.0 and 10 U/l TSH and 10−2, 10−4 and 10−6 mol/l TH. After the appropriate concentration was screened, TPC-1 cells were further divided into control group, TSH group, TH group and TSH+TH group. The cell proliferation was detected via methyl thiazolyl tetrazolium (MTT) method, TPC-1 cell cycle was detected via flow cytometer, and the mRNA and protein expression of cyclin D1 were detected via real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Compared with control group, TSH significantly promoted the proliferation of TPC-1 cells (P<0.05 or P<0.01), obviously promoted the transition of TPC-1 cells from G1 phase to S phase (P<0.01) and remarkably increased the mRNA and protein expression of cyclin D1 (P<0.01); but TH had a significant inhibitory effect on these results of TSH (P<0.05 or P<0.01). TSH can promote the proliferation of PTC cells, and the appropriate complement of TH can inhibit its proliferation. PMID:29250166

  12. Smoking and Early Pregnancy Thyroid Hormone and Anti-Thyroid Antibody Levels in Euthyroid Mothers of the Northern Finland Birth Cohort 1986

    PubMed Central

    Männistö, Tuija; Hartikainen, Anna-Liisa; Vääräsmäki, Marja; Bloigu, Aini; Surcel, Heljä-Marja; Pouta, Anneli; Järvelin, Marjo-Riitta; Ruokonen, Aimo

    2012-01-01

    associated with higher fT3 levels and lower fT4 levels; possibly reflecting smoking-induced changes in peripheral metabolism of thyroid hormones. No differences were found in TSH concentrations between smokers and nonsmokers. Our results differ from those of the general population, which usually have shown smoking-induced thyroidal stimulation. This is possibly due to pregnancy-induced changes in thyroid function. Decreases in fT4 levels among smokers might predispose to hypothyroidism or hypothyroxinemia during pregnancy. Despite these changes in thyroid function, smoking did not increase the woman's risk of subsequent hypothyroidism. PMID:22873201

  13. Thyroid hormone concentrations, disease, physical function, and mortality in elderly men.

    PubMed

    van den Beld, Annewieke W; Visser, Theo J; Feelders, Richard A; Grobbee, Diederick E; Lamberts, Steven W J

    2005-12-01

    Physiological changes in thyroid hormone concentrations might be related to changes in the overall physical function in the elderly. We determined to what extent thyroid hormone concentrations are related to physical function and mortality in elderly men. A longitudinal population study (the Zoetermeer study) was conducted. Mortality was registered in the subsequent 4 yr. Four hundred three independently and ambulatory living men (aged 73-94 yr) participated. The study examined the association between serum thyroid hormones and parameters of physical function as well as the association with mortality. TSH, free T4 (FT4) total T4, T3, rT3, and T4-binding globulin were measured. Physical function was estimated by the number of problems in activities of daily living, a measure of physical performance score (PPS), leg extensor strength and grip strength, bone density, and body composition. Serum rT3 increased significantly with age and the presence of disease. Sixty-three men met the biochemical criteria for the low T3 syndrome (decreased serum T3 and increased serum rT3). This was associated with a lower PPS, independent of disease. Furthermore, higher serum FT4 (within the normal range of healthy adults) and rT3 (above the normal range of healthy adults) were related with a lower grip strength and PPS, independent of age and disease. Isolated low T3 was associated with a better PPS and a higher lean body mass. Low FT4 was related to a decreased risk of 4-yr mortality. In a population of independently living elderly men, higher FT4 and rT3 concentrations are associated with a lower physical function. High serum rT3 may result from a decreased peripheral metabolism of thyroid hormones due to the aging process itself and/or disease and may reflect a catabolic state. Low serum FT4 is associated with a better 4-yr survival; this may reflect an adaptive mechanism to prevent excessive catabolism.

  14. Deiodinases, Organic Anion Transporter Polypeptide Polymorphisms, and Thyroid Hormones in Patients with Myocardial Infarction.

    PubMed

    Brozaitiene, Julija; Skiriute, Daina; Burkauskas, Julius; Podlipskyte, Aurelija; Jankauskiene, Edita; Serretti, Alessandro; Mickuviene, Narseta

    2018-04-01

    To investigate the association among deiodinases (DIO), organic anion-transporting polypeptide 1C1 (OATP1C1) gene polymorphisms, and thyroid hormones (THs) in patients with acute myocardial infarction (AMI). In summary, 290 patients with AMI were evaluated for sociodemographic and clinical characteristics, coronary artery disease (CAD) risk factors, and comorbidities, as well as circulating thyroid-stimulating hormone and TH (triiodothyronine [T3], thyroxine [T4], free T3, free T4, and reverse T3) levels. Ten single nucleotide polymorphisms for thyroid axis related genes: DIO1 (rs11206244-C/T, rs12095080-A/G, rs2235544-A/C), DIO2 (rs225014-T/C, rs225015-G/A), DIO3 (rs945006-T/G), and OATP1C1 (rs10444412-T/C, rs10770704-C/T, rs1515777-A/G, rs974453-G/A) were genotyped. Marginal associations were observed between the DIO1, DIO2, and OATP1C1 gene polymorphisms and almost all analyzed THs (p's < 0.05). After controlling for potential confounders, the OATP1C1 rs1515777-A/G minor allele homozygous genotype (G/G) was associated with a decrease in circulating free T3 and free T3/free T4. In the AMI cohort, associations between: DIO1 rs12095080 and hypertension; DIO2 rs225015 and diabetes mellitus; and the OATP1C1 rs974453 genotype, and AMI type were established. DIO1 and DIO2 gene polymorphisms are mainly associated with T3, free T4, free T3/free T4, and [natural-log transformed (ln)] reverse T3 levels, while the OATP1C1 minor allele homozygous genotype is associated with free T3 and free T3/free T4 in CAD patients after AMI.

  15. Thyroid-Stimulating Hormone Suppression for Protection Against Hypothyroidism Due to Craniospinal Irradiation for Childhood Medulloblastoma/Primitive Neuroectodermal Tumor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massimino, Maura; Gandola, Lorenza; Collini, Paola

    Purpose: Hypothyroidism is one of the earliest endocrine effects of craniospinal irradiation (CSI). The effects of radiation also depend on circulating thyroid-stimulating hormone (TSH), which acts as an indicator of thyrocyte function and is the most sensitive marker of thyroid damage. Hence, our study was launched in 1998 to evaluate the protective effect of TSH suppression during CSI for medulloblastoma/primitive neuroectodermal tumor. Patients and Methods: From Jan 1998 to Feb 2001, a total of 37 euthyroid children scheduled for CSI for medulloblastoma/primitive neuroectodermal tumor underwent thyroid ultrasound and free triiodothyronine (FT3), free thyroxine (FT4), and TSH evaluation at the beginningmore » and end of CSI. From 14 days before and up to the end of CSI, patients were administered L-thyroxine at suppressive doses; every 3 days, TSH suppression was checked to ensure a value <0.3 {mu}M/ml. During follow-up, blood tests and ultrasound were repeated after 1 year; primary hypothyroidism was considered an increased TSH level greater than normal range. CSI was done using a hyperfractionated accelerated technique with total doses ranging from 20.8-39 Gy; models were used to evaluate doses received by the thyroid bed. Results: Of 37 patients, 25 were alive a median 7 years after CSI. They were well matched for all clinical features, except that eight children underwent adequate TSH suppression during CSI, whereas 17 did not. Hypothyroidism-free survival rates were 70% for the 'adequately TSH-suppressed' group and 20% for the 'inadequately TSH-suppressed' group (p = 0.02). Conclusions: Thyroid-stimulating hormone suppression with L-thyroxine had a protective effect on thyroid function at long-term follow-up. This is the first demonstration that transient endocrine suppression of thyroid activity may protect against radiation-induced functional damage.« less

  16. Utilizing mass spectrometry imaging to map the thyroid hormones triiodothyronine and thyroxine in Xenopus tropicalis tadpoles.

    PubMed

    Goto-Inoue, Naoko; Sato, Tomohiko; Morisasa, Mizuki; Kashiwagi, Akihiko; Kashiwagi, Keiko; Sugiura, Yuki; Sugiyama, Eiji; Suematsu, Makoto; Mori, Tsukasa

    2018-02-01

    Thyroid hormones are not only responsible for thermogenesis and energy metabolism in animals, but also have an important role in cell differentiation and development. Amphibian metamorphosis provides an excellent model for studying the remodeling of the body. This metamorphic organ remodeling is induced by thyroid hormones, and a larval body is thus converted into an adult one. The matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS) imaging technology is expected to be a suitable tool for investigating small bioreactive molecules. The present study describes the distribution of the thyroid hormones, i.e., triiodothyronine (T3) and thyroxine (T4) and their inactive form reverse T3 (rT3) in Xenopus tropicalis tadpoles using two different types of imaging techniques, MS/MS and Fourier transform (FT)-MS imaging. As a result of MS/MS imaging, we demonstrated that T3 was mainly distributed in the gills. T4 was faintly localized in the eyes, inner gills, and intestine during metamorphosis. The intensity of T3 in the gills and the intensity of T4 in the body fluids were increased during metamorphosis. Moreover, the localization of the inactive form rT3 was demonstrated to be separate from T3, namely in the intestine and muscles. In addition, FT-MS imaging could utilize simultaneous imaging including thyroid hormone. This is the first report to demonstrate the molecular distribution of thyroid hormones themselves and to discriminate T3, T4, and rT3 in animal tissues.

  17. Does exposure to phthalates influence thyroid function and growth hormone homeostasis? The Taiwan Environmental Survey for Toxicants (TEST) 2013.

    PubMed

    Huang, Han-Bin; Pan, Wen-Harn; Chang, Jung-Wei; Chiang, Hung-Che; Guo, Yue Leon; Jaakkola, Jouni J K; Huang, Po-Chin

    2017-02-01

    Previous epidemiologic and toxicological studies provide some inconsistent evidence that exposure to phthalates may affect thyroid function and growth hormone homeostasis. To assess the relations between exposure to phthalates and indicators of thyroid function and growth hormone homeostasis disturbances both among adults and minors. We conducted a population-based cross-sectional study of 279 Taiwanese adults (≥18 years old) and 79 minors (<18 years old) in 2013. Exposure assessment was based on urinary biomarkers, 11 phthalate metabolites measured by using online liquid chromatography/tandem mass spectrometry. Indicators of thyroid function included serum levels of thyroxine (T 4 ), free T 4 , triiodothyronine, thyroid-stimulating hormone, and thyroxine-binding globulin (TBG). Growth hormone homeostasis was measured as the serum levels of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 (IGFBP3). We applied multivariate linear regression models to examine these associations after adjusting for covariates. Among adults, serum T 4 levels were negatively associated with urinary mono-(2-ethyl-5-hydroxyhexyl) phthalate (β=-0.028, P=0.043) and the sum of urinary di-(2-ethylhexyl) phthalate (DEHP) metabolite (β=-0.045, P=0.017) levels. Free T 4 levels were negatively associated with urinary mono-ethylhexyl phthalate (MEHP) (β=-0.013, P=0.042) and mono-(2-ethyl-5-oxohexyl) phthalate (β=-0.030, P=0.003) levels, but positively associated with urinary monoethyl phthalate (β=0.014, P=0.037) after adjustment for age, BMI, gender, urinary creatinine levels, and TBG levels. Postive associations between urinary MEHP levels and IGF-1 levels (β=0.033, P=0.006) were observed. Among minors, free T 4 was positively associated with urinary mono benzyl phthalate levels (β=0.044, P=0.001), and IGF-1 levels were negatively associated with the sum of urinary DEHP metabolite levels (β=-0.166, P=0.041) after adjustment for significant

  18. Direct calorimetry of free-moving eels with manipulated thyroid status

    NASA Astrophysics Data System (ADS)

    van Ginneken, Vincent; Ballieux, Bart; Antonissen, Erik; van der Linden, Rob; Gluvers, Ab; van den Thillart, Guido

    2007-02-01

    In birds and mammals, the thyroid gland secretes the iodothyronine hormones of which tetraiodothyronine (T4) is less active than triiodothyronine (T3). The action of T3 and T4 is calorigenic and is involved in the control of metabolic rate. Across all vertebrates, thyroid hormones also play a major role in differentiation, development and growth. Although the fish thyroidal system has been researched extensively, its role in thermogenesis is unclear. In this study, we measured overall heat production to an accuracy of 0.1 mW by direct calorimetry in a free-moving European eel ( Anguilla anguilla L.) with different thyroid status. Hyperthyroidism was induced by injection of T3 and T4, and hypothyroidism was induced with phenylthiourea. The results show for the first time at the organismal level, using direct calorimetry, that neither overall heat production nor overall oxygen consumption in eels is affected by hyperthyroidism. Therefore, we conclude that the thermogenic metabolism-stimulating effect of thyroid hormones (TH) is not present with a cold-blooded fish species like the European eel. This supports the concept that TH does not stimulate thermogenesis in poikilothermic species.

  19. Action of specific thyroid hormone receptor α(1) and β(1) antagonists in the central and peripheral regulation of thyroid hormone metabolism in the rat.

    PubMed

    van Beeren, Hermina C; Kwakkel, Joan; Ackermans, Mariëtte T; Wiersinga, Wilmar M; Fliers, Eric; Boelen, Anita

    2012-12-01

    The iodine-containing drug amiodarone (Amio) and its noniodine containing analogue dronedarone (Dron) are potent antiarrhythmic drugs. Previous in vivo and in vitro studies have shown that the major metabolite of Amio, desethylamiodarone, acts as a thyroid hormone receptor (TR) α(1) and β(1) antagonist, whereas the major metabolite of Dron debutyldronedarone acts as a selective TRα(1) antagonist. In the present study, Amio and Dron were used as tools to discriminate between TRα(1) or TRβ(1) regulated genes in central and peripheral thyroid hormone metabolism. Three groups of male rats received either Amio, Dron, or vehicle by daily intragastric administration for 2 weeks. We assessed the effects of treatment on triiodothyronine (T(3)) and thyroxine (T(4)) plasma and tissue concentrations, deiodinase type 1, 2, and 3 mRNA expressions and activities, and thyroid hormone transporters monocarboxylate transporter 8 (MCT8), monocarboxylate transporter 10 (MCT10), and organic anion transporter 1C1 (OATP1C1). Amio treatment decreased serum T(3), while serum T(4) and thyrotropin (TSH) increased compared to Dron-treated and control rats. At the central level of the hypothalamus-pituitary-thyroid axis, Amio treatment decreased hypothalamic thyrotropin releasing hormone (TRH) expression, while increasing pituitary TSHβ and MCT10 mRNA expression. Amio decreased the pituitary D2 activity. By contrast, Dron treatment resulted in decreased hypothalamic TRH mRNA expression only. Upon Amio treatment, liver T(3) concentration decreased substantially compared to Dron and control rats (50%, p<0.01), but liver T(4) concentration was unaffected. In addition, liver D1, mRNA, and activity decreased, while the D3 activity and mRNA increased. Liver MCT8, MCT10, and OATP1C1 mRNA expression were similar between groups. Our results suggest an important role for TRα1 in the regulation of hypothalamic TRH mRNA expression, whereas TRβ plays a dominant role in pituitary and liver thyroid

  20. [Effects of Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly peptides on hormonal activity and thyroid morphology in hypophysectomized mature and old birds].

    PubMed

    Kuznik, B I; Pateiuk, A V; Rusaeva, N S; Baranchugova, L M; Obydenko, V I

    2011-01-01

    The aim of the paper was to investigate effects of Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly peptides which were designed and synthesized on the basis of amino acid study of the hypophyseal anterior and posterior lobe peptides on the thyroid morphology and hormonal activity in mature chicken and old birds. Hypophysectomy was established to produce atrophic changes in the thyroid gland and development of secondary hypothyrosis. Administration of Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly tetrapeptides significantly prevented these impairments by increasing the levels of the thyroid-stimulating hormone (TSH) as well as T3 and T4. Restoration of the thyroid functions and morphology was registered to be greater in one-year-old chicken as compared to five-year-old ones.

  1. Comparison of the in vitro effects of TCDD, PCB 126 and PCB 153 on thyroid-restricted gene expression and thyroid hormone secretion by the chicken thyroid gland.

    PubMed

    Katarzyńska, Dorota; Hrabia, Anna; Kowalik, Kinga; Sechman, Andrzej

    2015-03-01

    The aim of this study was to compare the in vitro effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3',4,4',5-pentachlorobiphenyl (PCB 126; a coplanar PCB congener) and 2,2'4,4',5,5'-hexachlorobiphenyl (PCB153; non-coplanar PCB) on mRNA expression of thyroid-restricted genes, i.e. sodium iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), and thyroid hormone secretion from the thyroid gland of the laying chicken. Relative expression levels of NIS, TG and TPO genes and thyroxine (T4) and triiodothyronine (T3) secretion from the thyroidal explants were quantified by the real-time qPCR and RIA methods, respectively. In comparison with the control group, TCDD and PCB 126 significantly increased mRNA expression of TPO and TG genes. TCDD did not affect NIS mRNA levels, but PCB 126 decreased its expression. No effect of PCB 153 on the expression of these genes was observed. TCDD and PCB 126 significantly decreased T4 and T3 secretion. There was no significant effect of PCB 153 on these hormone secretions. In conclusion, the results obtained show that in comparison with non-coplanar PCB 153, TCDD and coplanar PCB 126 can directly affect thyroid hormone synthesis and secretion, and in consequence, they may disrupt the endocrine function of the thyroid gland of the laying chicken. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Pre-operative ultrasound identification of thyroiditis helps predict the need for thyroid hormone replacement after thyroid lobectomy.

    PubMed

    Morris, Lilah F; Iupe, Isabella M; Edeiken-Monroe, Beth S; Warneke, Carla L; Hansen, Mandy O; Evans, Douglas B; Lee, Jeffrey E; Grubbs, Elizabeth G; Perrier, Nancy D

    2013-01-01

    To evaluate whether pre-operative thyroiditis identified by ultrasound (US) could help predict the need for thyroid hormone replacement (THR) following thyroid lobectomy. Data from patients who underwent thyroid lobectomy in 2006-2011, were not taking THR pre-operatively, and had ≥1 month of follow-up were reviewed retrospectively. THR was prescribed for relatively elevated thyroid-stimulating hormone (TSH) and hypothyroid symptoms. The Kaplan-Meier method was used to estimate the percentage of patients who required THR at 6, 12, 18, and 24 months postoperatively, and Cox proportional hazards regression models were used to evaluate prognostic factors for requiring post-thyroid lobectomy THR. During follow-up, 45 of 98 patients required THR. Median follow-up among patients not requiring THR was 11.6 months (range, 1.2 to 51.3 months). Six months after thyroid lobectomy, 22% of patients were taking THR (95% confidence interval [CI], 15-32%); the proportion increased to 46% at 12 months (95% CI, 36-57%) and 55% at 18 months (95% CI, 43-67%). On univariate analysis, significant prognostic factors for postoperative THR included a pre-operative TSH level >2.5 μ international units [IU]/mL (hazard ratio [HR], 2.8; 95% CI, 1.4-5.5; P = .004) and pathology-identified thyroiditis (HR, 2.4; 95% CI, 1.3-4.3; P = .005). Patients with both pre-operative TSH >2.5 μIU/mL and US-identified thyroiditis had a 5.8-fold increased risk of requiring postoperative THR (95% CI, 2.4-13.9; P<.0001). A pre-operative TSH level >2.5 μIU/mL significantly increases the risk of requiring THR after thyroid lobectomy. Thyroiditis can add to that prediction and guide pre-operative patient counseling and surgical decision making. US-identified thyroiditis should be reported and post-thyroid lobectomy patients followed long-term (≥18 months).

  3. Assessment of thyroid function in dogs with low plasma thyroxine concentration.

    PubMed

    Diaz Espineira, M M; Mol, J A; Peeters, M E; Pollak, Y W E A; Iversen, L; van Dijk, J E; Rijnberk, A; Kooistra, H S

    2007-01-01

    Differentiation between hypothyroidism and nonthyroidal illness in dogs poses specific problems, because plasma total thyroxine (TT4) concentrations are often low in nonthyroidal illness, and plasma thyroid stimulating hormone (TSH) concentrations are frequently not high in primary hypothyroidism. The serum concentrations of the common basal biochemical variables (TT4, freeT4 [fT4], and TSH) overlap between dogs with hypothyroidism and dogs with nonthyroidal illness, but, with stimulation tests and quantitative measurement of thyroidal 99mTcO4(-) uptake, differentiation will be possible. In 30 dogs with low plasma TT4 concentration, the final diagnosis was based upon histopathologic examination of thyroid tissue obtained by biopsy. Fourteen dogs had primary hypothyroidism, and 13 dogs had nonthyroidal illness. Two dogs had secondary hypothyroidism, and 1 dog had metastatic thyroid cancer. The diagnostic value was assessed for (1) plasma concentrations of TT4, fT4, and TSH; (2) TSH-stimulation test; (3) plasma TSH concentration after stimulation with TSH-releasing hormone (TRH); (4) occurrence of thyroglobulin antibodies (TgAbs); and (5) thyroidal 99mTcO4(-) uptake. Plasma concentrations of TT4, fT4, TSH, and the hormone pairs TT4/TSH and fT4/TSH overlapped in the 2 groups, whereas, with TgAbs, there was 1 false-negative result. Results of the TSH- and TRH-stimulation tests did not meet earlier established diagnostic criteria, overlapped, or both. With a quantitative measurement of thyroidal 99mTcO4(-) uptake, there was no overlap between dogs with primary hypothyroidism and dogs with nonthyroidal illness. The results of this study confirm earlier observations that, in dogs, accurate biochemical diagnosis of primary hypothyroidism poses specific problems. Previous studies, in which the TSH-stimulation test was used as the "gold standard" for the diagnosis of hypothyroidism may have suffered from misclassification. Quantitative measurement of thyroidal 99mTcO- uptake

  4. Thyroid hormone concentrations differ between donkeys and horses.

    PubMed

    Mendoza, F J; Perez-Ecija, R A; Toribio, R E; Estepa, J C

    2013-03-01

    Reference intervals for thyroid hormones (TH) concentrations have not been previously established for donkeys, leading to potential misdiagnosis of thyroid disease. To determine the normal values of TH in healthy adult donkeys and compare them to TH values from healthy adult horses. Thirty-eight healthy Andalusian donkeys and 19 healthy Andalusian horses from 2 different farms were used. Donkeys were divided into 3 age groups: <5, 5-10 and >11 years and into 2 gender groups. Serum concentrations of fT3, tT3, rT3, fT4 and tT4 were quantified by radioimmunoassay. All blood samples were collected the same day in the morning. None of the animals had received any treatment for 30 days prior to sampling or had any history of disease. Both farms were in close proximity and under similar management. Differences between groups were determined using a one-way ANOVA analysis followed by Fisher's LSD test. P<0.05 was considered significant. Serum TH concentrations were higher in donkeys than in horses (P<0.01). Donkeys <5 years had higher serum rT3, fT4 and tT4 concentrations than donkeys >5 years (P<0.05). Furthermore, older donkeys (>11 years) had lower serum fT3 and tT3 concentrations than younger donkeys' groups (<5 and 5-10 years, P<0.05). TH concentrations were not different between genders (fT3: P = 0.06; tT3: P = 0.08; rT3: P = 0.15; fT4: P = 0.89; and tT4: P = 0.19). Thyroid hormone concentrations are different between healthy adult donkeys and horses. Establishing species-specific TH reference ranges is important when evaluating clinicopathologic data in equids in order to avoid the misdiagnosis of thyroid gland dysfunction. Further studies to elucidate the physiological mechanisms leading to these differences are warranted. © 2012 EVJ Ltd.

  5. Weight-of-evidence analysis of human exposures to dioxins and dioxin-like compounds and associations with thyroid hormone levels during early development.

    PubMed

    Goodman, Julie E; Kerper, Laura E; Boyce, Catherine Petito; Prueitt, Robyn L; Rhomberg, Lorenz R

    2010-10-01

    Thyroid hormones play a critical role in the proper development of brain function and cell growth. Several epidemiological studies have been conducted to assess potential associations between pre- and post-natal exposure to dioxins or dioxin-like compounds (DLCs) and the levels of circulating thyroid hormones during early development. Dioxins and DLCs include chlorinated dibenzo-p-dioxins, chlorinated dibenzofurans, and mono- and non-ortho polychlorinated biphenyls (PCBs). We identified a total of 23 relevant epidemiological studies (21 cohort studies and 1 case-control study) that measured exposures to various types of dioxins and DLCs as well as markers of thyroid function, such as thyroid stimulating hormone (TSH), total thyroxine (T4), free T4, total triiodothyroxine (T3), free T3, and thyroid-binding globulin concentrations in cord blood or circulation. While some of the studies reported associations between concentrations of dioxins and/or DLCs and some biomarkers of thyroid function, the majority of the observed associations were not statistically significant. Moreover, there were no clear and consistent effects across studies for any of the hormone levels examined, and while a number of studies showed a statistically significant association with exposure for a given marker of thyroid function, other studies showed either no change or changes in the opposite direction for the same thyroid function marker. Similarly, when the results were analyzed considering developmental stage, there generally were no clear and consistent effects at any age from birth through 12 years of age. The absence of a clear correlation between background exposures to dioxins and DLCs and thyroid function biomarkers during development is not consistent with the hypothesis that background exposures to these chemicals cause effects on thyroid function during development. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  6. Thyroid hormone modulates insulin-like growth factor-I(IGF-I) and IGF-binding protein-3, without mediation by growth hormone, in patients with autoimmune thyroid diseases.

    PubMed

    Inukai, T; Takanashi, K; Takebayashi, K; Fujiwara, Y; Tayama, K; Takemura, Y

    1999-10-01

    The expression and synthesis of insulin-like growth factor-1 (IGF-I) and IGF-binding protein-3 (IGFBP-3) are regulated by various hormones and nutritional conditions. We evaluated the effects of thyroid hormones on serum levels of IGF-I and IGFBP-3 levels in patients with autoimmune thyroid diseases including 54 patients with Graves' disease and 17 patients with Hashimoto's thyroiditis, and in 32 healthy age-matched control subjects. Patients were subdivided into hyperthyroid, euthyroid and hypothyroid groups that were untreated, or were treated with methylmercaptoimidazole (MMI) or L-thyroxine (L-T4). Serum levels of growth hormone (GH), IGF-I and IGFBP-3 were determined by radioimmunoassay. Serum GH levels did not differ significantly between the hyperthyroid and the age-matched euthyroid patients with Graves' disease. The serum levels of IGF-I and IGFBP-3 showed a significant positive correlation in the patients (R=0.616, P<0.001). The levels of both IGF-I and IFGBP-3 were significantly higher in the hyperthyroid patients with Graves' disease or in those with Hashimoto's thyroiditis induced by excess L-T4 administration than in control subjects. Patients with hypothyroid Graves' disease induced by the excess administration of MMI showed significantly lower IGFBP-3 levels as compared to those in healthy controls (P<0.05). Levels of IGFBP-3, but not IGF-I levels, showed a significant positive correlation with the levels of free T4 and free T3. In Graves' disease, levels of TPOAb, but not of TRAb, showed a significant positive correlation with IGFBP-3. We conclude that in patients with autoimmune thyroid diseases, thyroid hormone modulates the synthesis and/or the secretion of IGF-I and IGFBP-3, and this function is not mediated by GH.

  7. Evidence of the Presence of Thyroid Hormones in Achatina fulica Snails.

    PubMed

    Lustrino, Danilo; Silva, Alba C M; Araujo, Iracema G; Tunholi, Victor M; Tunholi-Alves, Vinícius M; Castro, Rosane N; Carvalho, Denise P; Pinheiro, Jairo; Marassi, Michelle P

    2017-01-01

    The objective of this study was to identify thyroid hormones and to examine their putative site of synthesis in Achatina fulica snails. For this purpose, radioimmunoassays were performed for T3 and T4 before and after long starvation with or without hemolymph deproteinization. Sodium/iodide symporter activity in vivo was analyzed through 125I administration with and without KClO4 pretreatment. Only T4 was detected, and its concentration decreased due to starvation or deproteinization. However, high-performance liquid chromatography analysis also showed the presence of T2 and T3 apart from T4, but rT3 was not detected in the A. fulica hemolymph. The sodium/iodide symporter activity was greater in cerebral ganglia than digestive gland, but KClO4 treatment did not inhibit iodide uptake in any of the tissues analyzed. Altogether, our data confirm for the first time the presence of thyroid hormones in A. fulica snails and suggest their participation in the metabolism control in this species, although the putative site of hormone biosynthesis remains to be elucidated.

  8. Cost-effectiveness of using recombinant human thyroid-stimulating hormone before radioiodine ablation for thyroid cancer treatment in Spanish hospitals.

    PubMed

    Vallejo, J A; Muros, M A

    In thyroid cancer treatment, the thyroid-stimulating hormone (TSH) must be elevated before radioiodine ablation, either by exogenous (with recombinant human thyrotropin [rhTSH]) or endogenous stimulation by thyroid hormone withdrawal (THW). The use of rhTSH avoids hypothyroidism and favours the subsequent elimination of radioiodine, but involves the cost of the product. For this reason, a cost-effectiveness analysis was performed, taking into account all costs involved and the benefits associated with the use of this therapy. Using a Markov modelling with two analysis arms (rhTSH and THW), stratified into high (100mCi/3700 MBq) and low (30mCi/1110 MBq) radioiodine doses, and using 17 weekly cycles, the incremental cost per quality-adjusted life-year (QALY) related to the use of rhTSH was determined. The clinical inputs included in the model were based on published studies and in a treatment survey conducted in Spain. Radioablation preparation with rhTSH is superior to THW, showing additional benefits (0.048 AVAC), as well as cost savings (-€614.16), with an incremental cost-effectiveness rate (ICER) of -€12,795/QALY. The univariate and multivariate sensitivity analyses showed the result to be robust. The use of rhTSH previous to radioablation in Spain has cost savings, as well as a series of health benefits for the patient, making it highly cost-effective. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  9. Thyroid hormone elevations during acute psychiatric illness: relationship to severity and distinction from hyperthyroidism.

    PubMed

    Roca, R P; Blackman, M R; Ackerley, M B; Harman, S M; Gregerman, R I

    1990-01-01

    Acute psychiatric illness may be accompanied by transient hyperthyroxinemia. The mechanism of this phenomenon was examined by determining the role of thyrotropin (TSH) in the genesis of this state. Serial measurements of TSH, thyroxine (T4), free T4 index (FT4I), triiodothyronine (T3), and free T3 index (FT3I) were performed in 45 acutely hospitalized patients with major psychiatric disorders. Twenty-two (49%) patients exhibited significant elevations (greater than or equal to 2 SD above mean value of controls) of one or more thyroid hormone (or index) levels. Among depressed patients with elevated FT4I, TSH was higher (p less than .05) on the day of the peak FT4I than on the day of the FT4I nadir. There were significant positive correlations between psychiatric symptom severity and levels of FT4I among both depressed (p less than .01) and schizophrenic (p less than .025) patients. These data show that elevations of T4, FT4I, T3, and FT3I are common among psychiatric inpatients, especially early in their hospitalization, and that levels of thyroid hormones are correlated with severity of psychiatric symptomatology. TSH is higher early in the acute phase of illness and is not suppressed in the face of elevated thyroid hormone levels, a finding that distinguishes this phenomenon from ordinary hyperthyroidism. Elevations of peripheral thyroid hormone levels, particularly among depressed patients, may result from a centrally-mediated hypersecretion of TSH.

  10. Effects of perfluorooctane sulfonate on rat thyroid hormone biosynthesis and metabolism.

    PubMed

    Yu, Wen-Guang; Liu, Wei; Jin, Yi-He

    2009-05-01

    The potential toxicity of perfluorooctane sulfonate (PFOS), an environmentally persistent organic pollutant, is of great concern. The present study examines the ability of PFOS to disturb thyroid function and the possible mechanisms involved in PFOS-induced thyroid hormone alteration. Male Sprague-Dawley rats were exposed to 1.7, 5.0, and 15.0 mg/L of PFOS in drinking water for 91 consecutive days. Serum was collected for analysis of total and free thyroxine (T4), total triiodothyronine (T3), and thyrotrophin (TSH). Thyroid and liver were removed for the measurement of endpoints closely related to thyroid hormone biosynthesis and metabolism following PFOS exposure. Determined endpoints were the messenger RNA (mRNA) levels for two isoforms of uridine diphosphoglucuronosyl transferases (UGT1A6 and UGT1A1) and type 1 deiodinase (DIO1) in liver, sodium iodide symporter (NIS), TSH receptor (TSHR), and DIO1 in thyroid as well as the activity of thyroid peroxidase (TPO). Serum total T4 level decreased significantly at all applied dosages, whereas total T3 level increased markedly only at 1.7 mg/L of PFOS. No statistically significant toxic effects of PFOS on serum TSH were observed. Hepatic UGTIA1, but not UGT1A6, mRNA was up-regulated at 5.0 and 15.0 mg/L of PFOS. Treatment with PFOS lowered hepatic DIO1 mRNA at 15.0 mg/L but increased thyroidal DIO1 mRNA dose dependently. The activity of TPO, NIS, and TSHR mRNA in thyroid were unaffected by PFOS treatment. These results indicate that increased hepatic T4 glucuronidation via UGT1A1 and increased thyroidal conversion of T4 to T3 via DIO1 were responsible in part for PFOS-induced hypothyroxinemia in rats.

  11. Hyperfunctioning thyroid nodules in children.

    PubMed

    Abe, K; Konno, M; Sato, T; Matsuura, N

    1980-10-01

    We studied two cases of hyperfunctioning thyroid nodules in children. A 9-year-old girl and an 11-year-old girl had thyroid masses in otherwise nonpalpable thyroid glands. Scintiscan showed hyperfunctioning thyroid nodules. The former patient had elevated values for T4 and T3, and plasma thyrotropin (TSH) level failed to respond to stimulation with thyrotropin releasing hormone (TRH), whereas the latter patient had normal values for T4, and T3 and plasma TSH response to TRH was normal. After the surgical removal of nodules, scintiscan exhibited radioactivity in the contralateral lobe of the thyroid gland in the former and in the ectopic thyroid tissue in the latter. Results of microscopic examinations of thyroid nodules were consistent with adenomatous goiter.

  12. Thyroid hormone levels in the acquired immunodeficiency syndrome (AIDS) or AIDS-related complex.

    PubMed Central

    Tang, W W; Kaptein, E M

    1989-01-01

    Hypothalamic-pituitary dysfunction and thyroid gland cytomegalovirus inclusions have been described in patients with the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex (ARC). We evaluated 80 patients with AIDS or ARC for the frequency of hypothalamic-pituitary or thyroid gland failure and altered serum thyroid hormone levels due to nonthyroidal disorders. One patient had subclinical hypothyroidism. Of these patients, 60% had low free triiodothyronine (T3) index values and 4% had low free thyroxine (T4) indexes; none of the latter had hypothalamic-pituitary or thyroid gland failure, since all serum cortisol values were greater than or equal to 552 nmol per liter (greater than or equal to 20 micrograms per dl) and all thyrotropin levels were less than or equal to 3 mU per liter (less than or equal to 3 microU per ml), respectively. Those who died had lower total T4 and T3, free T3 index, and albumin levels than those discharged from hospital. Serum total T4 and T3 levels correlated with albumin levels and total T3 with serum sodium levels. Serum total T3 levels best predicted the outcome of the hospital stay (accuracy = 82%). Thus, abnormal serum thyroid hormone levels in AIDS or ARC patients are most frequently due to nonthyroidal disorders, but hypothalamic-pituitary or thyroid gland failure may occur. PMID:2618039

  13. Thyroid-stimulating hormone and free thyroxine levels in persons with HFE C282Y homozygosity, a common hemochromatosis genotype: the HEIRS study.

    PubMed

    Barton, James C; Leiendecker-Foster, Catherine; Reboussin, David M; Adams, Paul C; Acton, Ronald T; Eckfeldt, John H

    2008-08-01

    Relationships of thyroid and iron measures in large cohorts are unreported. We evaluated thyroid-stimulating hormone (TSH) and free thyroxine (T4) in white participants of the primary care-based Hemochromatosis and Iron Overload Screening (HEIRS) Study. We measured serum TSH and free T4 in 176 HFE C282Y homozygotes without previous hemochromatosis diagnoses and in 312 controls without HFE C282Y or H63D who had normal serum iron measures and were matched to C282Y homozygotes for Field Center, age group, and initial screening date. We defined hypothyroidism as having TSH >5.00 mIU/L and free T4 <0.70 ng/dL, and hyperthyroidism as having TSH <0.400 mIU/L and free T4 >1.85 ng/dL. Multivariate analyses were performed using age, sex, Field Center, log(10) serum ferritin (SF), HFE genotype, log(10) TSH, and log(10) free T4. Prevalences of hypothyroidism in C282Y homozygotes and controls were 1.7% and 1.3%, respectively, and of hyperthyroidism 0% and 1.0%, respectively. Corresponding prevalences did not differ significantly. Correlations of log(10) SF with log(10) free T4 were positive (p = 0.2368, C282Y homozygotes; p = 0.0492, controls). Independent predictors of log(10) free T4 were log(10) TSH (negative association) and age (positive association); positive predictors of log(10) SF were age, male sex, and C282Y homozygosity. Proportions of C282Y homozygotes and controls who took medications to supplement or suppress thyroid function did not differ significantly. Prevalences of hypothyroidism and hyperthyroidism are similar in C282Y homozygotes without previous hemochromatosis diagnoses and controls. In controls, there is a significant positive association of SF with free T4. We conclude that there is no rationale for routine measurement of TSH or free T4 levels in hemochromatosis or iron overload screening programs.

  14. Associations between brominated flame retardants in human milk and Thyroid-Stimulating Hormone (TSH) in neonates

    PubMed Central

    Eggesbø, Merete; Thomsen, Cathrine; Jørgensen, Jens V.; Becher, Georg; Odland, Jon Øyvind; Longnecker, Matthew P.

    2011-01-01

    Background Brominated flame retardants (BFRs) have been in widespread use in a vast array of consumer products since the 1970s. The metabolites of some BFRs show a structural similarity to thyroid hormones and experimental animal studies have confirmed that they may interfere with thyroid hormone homeostasis. A major concern has been whether intrauterine exposure to BFRs may disturb thyroid homeostasis since the fetal brain is particularly susceptible to alterations in thyroid hormones. However, few reports on newborns have been published to date. Objectives To evaluate the association between BFRs and neonatal thyroid-stimulating hormone (TSH). Methods We studied six polybrominated diphenyl ethers (PBDEs) measured in milk samples from 239 women who were part of the “Norwegian Human Milk Study” (HUMIS), 2003–2006. Hexabromocyclododecane (HBCD) and BDE-209 were measured in a subset of the women (193 and 46 milk samples, respectively). The milk was sampled at a median of 33 days after delivery. TSH was measured in babies three days after delivery as part of the routine national screening program for early detection of congenital hypothyroidism. Additional information was obtained through the Medical Birth Registry and questionnaires to the mothers. Results The PBDE concentrations in human milk in Norway were comparable to concentrations reported from other European countries and Asia, but not the US and Canada where levels are approximately one order of magnitude higher. We observed no statistically significant associations between BDE-47, 99, 153, 154, 209 and HBCD in human milk and TSH in models adjusted for possible confounders and other environmental toxicants including polychlorinated biphenyls (PCBs). Conclusions We did not observe an association between TSH and exposure to HBCD and PBDEs within the exposure levels observed. PMID:21601188

  15. Comparative effect of Citrus sinensis and carbimazole on serum T4, T3 and TSH levels.

    PubMed

    Uduak, Okon Akpan; Ani, Elemi John; Etoh, Emmauel Columba Inyang; Macstephen, Adienbo Ologbagno

    2014-05-01

    There are previous independent reports on the anti-thyroid property of Citrus sinensis. This isoflavones and phenolic acid-rich natural agent is widely consumed as dietary supplement, thus the need to investigate its comparative effect with a standard anti-thyroid drug on T4, T3 and thyroid stimulating hormone (TSH) levels. To compare the effect of Citrus sinensis and carbimazole (CARB) on blood levels of thyroid hormones (T4 and T3) and TSH. Male wistar albino rats weighing 100-150 g were employed in this research. The rats were randomly assigned to four groups of seven rats per group. Group I served as control and were administered distilled water while groups II-IV were administered with 1500 mg/kg of Citrus sinensis (fresh orange juice; FOJ), 0.1 μg/g of levothyroxine (LVT) and 0.01 mg/g of CARB, respectively, per oral once daily for 28 days. The animals were sacrificed under chloroform anaesthesia and blood sample collected by cardiac puncture and processed by standard method to obtain serum. TSH, T4 and T3 were assayed with the serum using ARIA II automated radioimmunoassay instrument. The results showed that TSH level was significantly (P < 0.05) decreased in LVT treated group compared with the FOJ group. T4 was significantly (P < 0.05) decreased in the FOJ and CARB groups compared with the control and LVT groups. LVT significantly increased T4 when compared with FOJ group. T3 was significantly (P < 0.05) decreased in the CARB group compared with the control. These findings suggest that FOJ alters thyroid hormones metabolism to reduce their serum levels with a compensatory elevations of TSH level in a direction similar to CARB.

  16. Comparative effect of Citrus sinensis and carbimazole on serum T4, T3 and TSH levels

    PubMed Central

    Uduak, Okon Akpan; Ani, Elemi John; Etoh, Emmauel Columba Inyang; Macstephen, Adienbo Ologbagno

    2014-01-01

    Background: There are previous independent reports on the anti-thyroid property of Citrus sinensis. This isoflavones and phenolic acid-rich natural agent is widely consumed as dietary supplement, thus the need to investigate its comparative effect with a standard anti-thyroid drug on T4, T3 and thyroid stimulating hormone (TSH) levels. Objective: To compare the effect of Citrus sinensis and carbimazole (CARB) on blood levels of thyroid hormones (T4 and T3) and TSH. Materials and Methods: Male wistar albino rats weighing 100-150 g were employed in this research. The rats were randomly assigned to four groups of seven rats per group. Group I served as control and were administered distilled water while groups II-IV were administered with 1500 mg/kg of Citrus sinensis (fresh orange juice; FOJ), 0.1 μg/g of levothyroxine (LVT) and 0.01 mg/g of CARB, respectively, per oral once daily for 28 days. The animals were sacrificed under chloroform anaesthesia and blood sample collected by cardiac puncture and processed by standard method to obtain serum. TSH, T4 and T3 were assayed with the serum using ARIA II automated radioimmunoassay instrument. Results: The results showed that TSH level was significantly (P < 0.05) decreased in LVT treated group compared with the FOJ group. T4 was significantly (P < 0.05) decreased in the FOJ and CARB groups compared with the control and LVT groups. LVT significantly increased T4 when compared with FOJ group. T3 was significantly (P < 0.05) decreased in the CARB group compared with the control. Conclusion: These findings suggest that FOJ alters thyroid hormones metabolism to reduce their serum levels with a compensatory elevations of TSH level in a direction similar to CARB. PMID:25013255

  17. Associations between urinary phthalate metabolites and bisphenol A levels, and serum thyroid hormones among the Korean adult population - Korean National Environmental Health Survey (KoNEHS) 2012-2014.

    PubMed

    Park, Choonghee; Choi, Wookhee; Hwang, Moonyoung; Lee, Youngmee; Kim, Suejin; Yu, Seungdo; Lee, Inae; Paek, Domyung; Choi, Kyungho

    2017-04-15

    Phthalates and bisphenol A (BPA) have been used extensively in many consumer products, resulting in widespread exposure in the general population. Studies have suggested associations between exposure to phthalates and BPA, and serum thyroid hormone levels, but confirmation on larger human populations is warranted. Data obtained from nationally representative Korean adults (n=6003) recruited for the second round of the Korean National Environmental Health Survey (KoNEHS), 2012-2014, were employed. Three di-(2-ethylhexyl) phthalate (DEHP) metabolites, along with benzyl-butyl phthalate (BBzP) and di-butyl phthalate (DBP) metabolites, and BPA were measured in subjects' urine. Thyroxine (T4), total triiodothyronine (T3), and thyroid-stimulating hormone (TSH) were measured in serum. The associations between urinary phthalates or BPA and thyroid hormone levels were determined. Urinary phthalate metabolites were generally associated with lowered total T4 or T3, or increased TSH levels in serum. Interquartile range (IQR) increases of mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) were associated with a 3.7% increase of TSH, and a 1.7% decrease of total T4 levels, respectively. When grouped by sex, urinary MEHHP levels were inversely associated with T4 only among males. Among females, mono-benzyl phthalate (MBzP) and mono-n-butyl phthalate (MnBP) levels were inversely associated with TSH and T3, respectively. In addition, negative association between BPA and TSH was observed. Several phthalates and BPA exposures were associated with altered circulatory thyroid hormone levels among general Korean adult population. Considering the importance of thyroid hormones, public health implications of such alteration warrant further studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. THYROID HORMONE DISRUPTION: FROM KINETICS TO DYNAMICS.

    EPA Science Inventory

    A wide range of chemicals with diverse structures act as thyroid disrupting chemicals (TDCs). Broadly defined, TDCs are chemicals that alter the structure or function of the thyroid gland, alter regulatory enzymes associated with thyroid hormones (THs), or change circulating or t...

  19. CIRCULATING THYROID-STIMULATING HORMONE RECEPTOR MESSENGER RNA AS A MARKER OF TUMOR AGGRESSIVENESS IN PATIENTS WITH PAPILLARY THYROID MICROCARCINOMA.

    PubMed

    Aliyev, Altay; Gupta, Manjula; Nasr, Christian; Hatipoglu, Betul; Milas, Mira; Siperstein, Allan; Berber, Eren

    2015-07-01

    We have previously shown that thyroid-stimulating hormone receptor messenger RNA (TSHR mRNA) is detectable in the peripheral blood of patients with papillary thyroid microcarcinoma (PTmC). The aim of this study was to analyze the utility of TSHR mRNA status as a marker of tumor aggressiveness in patients with PTmC. Preoperative TSHR mRNA values were obtained in 152 patients who underwent thyroidectomy and were found to have PTmC on final pathology. Clinical parameters were analyzed from an institutional review board-approved database using χ(2) and t tests. Preoperatively, TSHR mRNA was detected in the peripheral blood in 46% of patients, which was less than that for macroscopic papillary thyroid carcinoma (PTC) (80%) but higher than for benign thyroid disease (18%) (P<.001). The focus of cancer was larger in the TSHR mRNA-positive group compared to the negative group (0.41 vs. 0.30 cm, respectively, P = .015). The prevalence of tall-cell variant was higher in the TSHR mRNA positive group. The rates of lymph node (LN) metastasis (16% vs. 10%), multifocality (46% vs. 49%), and extra-thyroidal extension (10% vs. 5%) were similar between the TSHR mRNA-positive and-negative groups, respectively. In patients 45 years or older, rate of LN metastasis was higher in those who were TSHR mRNA positive (10%) versus negative (2%) (P = .039). TSHR mRNA positivity predicted a higher likelihood of radioactive iodine treatment (36% vs. 17%, P = .009) postoperatively. This study shows that TSHR mRNA, which is a marker of circulating thyroid cancer cells, is detectable in about half of patients with PTmC. The positivity of this marker predicts a higher likelihood of LN involvement in patients with PTmC who are 45 years or older.

  20. Increased insulin sensitivity in intrauterine growth retarded newborns--do thyroid hormones play a role?

    PubMed

    Setia, Sajita; Sridhar, M G; Koner, B C; Bobby, Zachariah; Bhat, Vishnu; Chaturvedula, Lata

    2007-02-01

    Thyroid hormones are necessary for normal brain development. We studied thyroid hormone profile and insulin sensitivity in intrauterine growth retarded (IUGR) newborns to find correlation between insulin sensitivity and thyroid status in IUGR newborns. Fifty IUGR and fifty healthy control infants were studied at birth. Cord blood was collected for determination of T(3), T(4), TSH, glucose and insulin levels. IUGR newborns had significantly lower insulin, mean+/-S.D., 5.25+/-2.81 vs. 11.02+/-1.85microU/ml, but significantly higher insulin sensitivity measured as glucose to insulin ratio (G/I), 9.80+/-2.91 vs. 6.93+/-1.08 compared to healthy newborns. TSH was also significantly higher 6.0+/-2.70 vs. 2.99+/-1.05microU/ml with significantly lower T(4), 8.65+/-1.95 vs. 9.77+/-2.18microg/dl, but similar T(3) levels, 100.8+/-24.36 vs. 101.45+/-23.45ng/dl. On stepwise linear regression analysis in IUGR infants, insulin sensitivity was found to have a significant negative association with T(4) and significant positive association with TSH. Thyroid hormones may play a role in increased insulin sensitivity at birth in IUGR.

  1. Increased Procurement of Thoracic Donor Organs After Thyroid Hormone Therapy.

    PubMed

    Novitzky, Dimitri; Mi, Zhibao; Collins, Joseph F; Cooper, David K C

    2015-01-01

    Hormonal therapy to the brain-dead organ donor can include thyroid hormone (triiodothyronine [T3] or levothyroxine [T4]), antidiuretic hormone, corticosteroids, or insulin. There has been a controversy on whether thyroid hormone enables more organs to be procured. Data on 63,593 donors of hearts and lungs (2000-2009) were retrospectively reviewed. Documentation on T3/T4 was available in all donors (study 1), and in 40,124 details of all 4 hormones were recorded (study 2). In this cohort, group A (23,022) received T3/T4 and group B (17,102) no T3/T4. Univariate analyses and multiple regressions were performed. Posttransplant graft and recipient survival at 1 and 12 months were compared. In study 1, 30,962 donors received T3/T4, with 36.59% providing a heart and 20.05% providing 1 or both lungs. Of the 32,631 donors who did not receive T3/T4, only 29.62% provided a heart and 14.61% provided lungs, an increase of 6.97% hearts and 5.44% lungs from T3/T4-treated donors (both P < 0.0001). In study 2, 34.99% of group A provided a heart and 20.99% provided lungs. In group B only 25.76% provided a heart and 15.09% provided lungs, an increase of 9.23% (hearts) and 5.90% (lungs), respectively, in group A (both P < 0.0001). The results of multiple regression analyses indicated a beneficial effect of T3/T4 on heart (P < 0.0001) and lung (P < 0.0001) procurement independent of other factors. T3/T4 therapy to the donor was associated with either improved posttransplant graft and recipient survival or no difference in survival. T3/T4 therapy results in more transplantable hearts and lungs, with no detriment to posttransplant graft or recipient survival. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The Thyroid Hormone Receptors Inhibit Hepatic Interleukin-6 Signaling During Endotoxemia.

    PubMed

    Contreras-Jurado, Constanza; Alonso-Merino, Elvira; Saiz-Ladera, Cristina; Valiño, Arturo José; Regadera, Javier; Alemany, Susana; Aranda, Ana

    2016-08-03

    Decreased thyroidal hormone production is found during lipopolysaccharide (LPS)-induced endotoxic shock in animals as well as in critically ill patients. Here we studied the role of the thyroid hormone receptors (TRs) in activation of STAT3, NF-κB and ERK, which play a key role in the response to inflammatory cytokines during sepsis. TR knockout mice showed down-regulation of hepatic inflammatory mediators, including interleukin 6 (IL-6) in response to LPS. Paradoxically, STAT3 and ERK activity were higher, suggesting that TRs could act as endogenous repressors of these pathways. Furthermore, hyperthyroidism increased cytokine production and mortality in response to LPS, despite decreasing hepatic STAT3 and ERK activity. This suggested that TRs could directly repress the response of the cells to inflammatory mediators. Indeed, we found that the thyroid hormone T3 suppresses IL-6 signalling in macrophages and hepatocarcinoma cells, inhibiting STAT3 activation. Consequently, the hormone strongly antagonizes IL-6-stimulated gene transcription, reducing STAT3 recruitment and histone acetylation at IL-6 target promoters. In conclusion, TRs are potent regulators of inflammatory responses and immune homeostasis during sepsis. Reduced responses to IL-6 should serve as a negative feedback mechanism for preventing deleterious effects of excessive hormone signaling during infections.

  3. The Thyroid Hormone Receptors Inhibit Hepatic Interleukin-6 Signaling During Endotoxemia

    PubMed Central

    Contreras-Jurado, Constanza; Alonso-Merino, Elvira; Saiz-Ladera, Cristina; Valiño, Arturo José; Regadera, Javier; Alemany, Susana; Aranda, Ana

    2016-01-01

    Decreased thyroidal hormone production is found during lipopolysaccharide (LPS)-induced endotoxic shock in animals as well as in critically ill patients. Here we studied the role of the thyroid hormone receptors (TRs) in activation of STAT3, NF-κB and ERK, which play a key role in the response to inflammatory cytokines during sepsis. TR knockout mice showed down-regulation of hepatic inflammatory mediators, including interleukin 6 (IL-6) in response to LPS. Paradoxically, STAT3 and ERK activity were higher, suggesting that TRs could act as endogenous repressors of these pathways. Furthermore, hyperthyroidism increased cytokine production and mortality in response to LPS, despite decreasing hepatic STAT3 and ERK activity. This suggested that TRs could directly repress the response of the cells to inflammatory mediators. Indeed, we found that the thyroid hormone T3 suppresses IL-6 signalling in macrophages and hepatocarcinoma cells, inhibiting STAT3 activation. Consequently, the hormone strongly antagonizes IL-6-stimulated gene transcription, reducing STAT3 recruitment and histone acetylation at IL-6 target promoters. In conclusion, TRs are potent regulators of inflammatory responses and immune homeostasis during sepsis. Reduced responses to IL-6 should serve as a negative feedback mechanism for preventing deleterious effects of excessive hormone signaling during infections. PMID:27484112

  4. Association between organophosphate pesticides exposure and thyroid hormones in floriculture workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacasana, Marina, E-mail: marina.lacasana.easp@juntadeandalucia.e; CIBER de Epidemiologia y Salud Publica; Lopez-Flores, Inmaculada

    The ability of organophosphate pesticides to disturb thyroid gland function has been demonstrated by experimental studies on animal, but evidence of such effects on human remains scarce. The aim of this study was to assess the association between exposure to organophosphate compounds and serum levels of thyroid hormones in floriculture workers. A longitudinal study was conducted on 136 male subjects from the State of Mexico and Morelos, Mexico, occupationally exposed to organophosphate pesticides, during agricultural periods of high (rainy season) and low (dry season) levels of pesticide application. Using a structured questionnaire, a survey was carried out on sociodemographic characteristics,more » anthropometry, clinical history, alcohol and tobacco consumption, residential chemical exposure, and occupational history. Urine and blood samples were taken the day after pesticide application to determine urine dialkylphosphate (DAP) levels, serum levels of TSH, total T{sub 3}, total T{sub 4}, serum PON1 activity, and serum p,p'-DEE levels. The analysis of the association between DAP levels and thyroid hormonal profile was carried out using multivariate generalized estimating equation (GEE) models. Our results showed an increase in both TSH and T{sub 4} hormones in serum associated with a increase in total dimethylphosphate levels (SIGMADMP) in urine (p-trend < 0.001) and a decrease in total T{sub 3} serum levels with an increase of SIGMADMP levels in the urine (p-trend = 0.053). These results suggest that exposure to organophosphate pesticides may be responsible of increasing TSH and T{sub 4} serum hormone levels and decreasing T{sub 3} serum hormone levels, therefore supporting the hypothesis that organophosphate pesticides act as endocrine disruptors in humans.« less

  5. Sex Differences in Brain Thyroid Hormone Levels during Early Post-Hatching Development in Zebra Finch (Taeniopygia guttata).

    PubMed

    Yamaguchi, Shinji; Hayase, Shin; Aoki, Naoya; Takehara, Akihiko; Ishigohoka, Jun; Matsushima, Toshiya; Wada, Kazuhiro; Homma, Koichi J

    2017-01-01

    Thyroid hormones are closely linked to the hatching process in precocial birds. Previously, we showed that thyroid hormones in brain had a strong impact on filial imprinting, an early learning behavior in newly hatched chicks; brain 3,5,3'-triiodothyronine (T3) peaks around hatching and imprinting training induces additional T3 release, thus, extending the sensitive period for imprinting and enabling subsequent other learning. On the other hand, blood thyroid hormone levels have been reported to increase gradually after hatching in altricial species, but it remains unknown how the brain thyroid hormone levels change during post-hatching development of altricial birds. Here, we determined the changes in serum and brain thyroid hormone levels of a passerine songbird species, the zebra finch using radioimmunoassay. In the serum, we found a gradual increase in thyroid hormone levels during post-hatching development, as well as differences between male and female finches. In the brain, there was clear surge in the hormone levels during development in males and females coinciding with the time of fledging, but the onset of the surge of thyroxine (T4) in males preceded that of females, whereas the onset of the surge of T3 in males succeeded that of females. These findings provide a basis for understanding the functions of thyroid hormones during early development and learning in altricial birds.

  6. Follicle stimulating hormone, its novel association with sex hormone binding globulin in men and postmenopausal women.

    PubMed

    Wang, Ningjian; Zhang, Kun; Han, Bing; Li, Qin; Chen, Yi; Zhu, Chunfang; Chen, Yingchao; Xia, Fangzhen; Zhai, Hualing; Jiang, Boren; Shen, Zhoujun; Lu, Yingli

    2017-06-01

    Follicle stimulating hormone plays direct roles in a variety of nongonadal tissues and sex hormone binding globulin is becoming the convergence of the crosstalk among metabolic diseases. However, no studies have explored the association between follicle stimulating hormone and sex hormone binding globulin. We aimed to study this association among men and women. SPECT-China is a population-based study conducted since 2014. This study included 4206 men and 2842 postmenopausal women. Collected serum was assayed for gonadotropins, sex hormone binding globulin, sex hormones etc. Regression analyses were performed to assess the relationship between sex hormone binding globulin and follicle stimulating hormone and other variables including metabolic factors, thyroid function and sex hormones. Treatment with follicle stimulating hormone at different concentrations of 0, 5, 50 and 100 IU/L for 24 h was performed in HepG2 cells. In Spearman correlation, sex hormone binding globulin was significantly correlated with FSH, triglycerides, thyroxins, body mass index and blood pressure in men and postmenopausal women (all P < 0.05). In regression analyses, follicle stimulating hormone was a significant predictor of sex hormone binding globulin in men and postmenopausal women (P < 0.05), independent of above variables. Follicle stimulating hormone induced sex hormone binding globulin expression in a dose-dependent fashion in HepG2 cells. Serum follicle stimulating hormone levels were positively associated with circulating sex hormone binding globulin levels in men and postmenopausal women. This association is independent of age, insulin resistance, hepatic function, lipid profile, thyroid function, adiposity, blood pressure, and endogenous sex hormones.

  7. Analytical Bias Exceeding Desirable Quality Goal in 4 out of 5 Common Immunoassays: Results of a Native Single Serum Sample External Quality Assessment Program for Cobalamin, Folate, Ferritin, Thyroid-Stimulating Hormone, and Free T4 Analyses.

    PubMed

    Kristensen, Gunn B B; Rustad, Pål; Berg, Jens P; Aakre, Kristin M

    2016-09-01

    We undertook this study to evaluate method differences for 5 components analyzed by immunoassays, to explore whether the use of method-dependent reference intervals may compensate for method differences, and to investigate commutability of external quality assessment (EQA) materials. Twenty fresh native single serum samples, a fresh native serum pool, Nordic Federation of Clinical Chemistry Reference Serum X (serum X) (serum pool), and 2 EQA materials were sent to 38 laboratories for measurement of cobalamin, folate, ferritin, free T4, and thyroid-stimulating hormone (TSH) by 5 different measurement procedures [Roche Cobas (n = 15), Roche Modular (n = 4), Abbott Architect (n = 8), Beckman Coulter Unicel (n = 2), and Siemens ADVIA Centaur (n = 9)]. The target value for each component was calculated based on the mean of method means or measured by a reference measurement procedure (free T4). Quality specifications were based on biological variation. Local reference intervals were reported from all laboratories. Method differences that exceeded acceptable bias were found for all components except folate. Free T4 differences from the uncommonly used reference measurement procedure were large. Reference intervals differed between measurement procedures but also within 1 measurement procedure. The serum X material was commutable for all components and measurement procedures, whereas the EQA materials were noncommutable in 13 of 50 occasions (5 components, 5 methods, 2 EQA materials). The bias between the measurement procedures was unacceptably large in 4/5 tested components. Traceability to reference materials as claimed by the manufacturers did not lead to acceptable harmonization. Adjustment of reference intervals in accordance with method differences and use of commutable EQA samples are not implemented commonly. © 2016 American Association for Clinical Chemistry.

  8. Massive pleural and pericardial effusion due to hypothyroidism in a patient with a surgically treated thyroid-stimulating hormone-producing pituitary adenoma.

    PubMed

    Lee, Ji-Hoon; Park, MinA; Park, Myung Jae; Jo, Yong Suk

    2018-05-14

    Hypothyroidism is relatively rare etiology of serositis with effusion, but massive pleural effusion is very unusual. This is a report of massive pleural effusion in patient taking methimazole after surgical resection of thyroid-stimulating hormone (TSH)-producing pituitary adenoma (TSHoma). The patient was clinically and biochemically hypothyroid and responded well to discontinuation of methimazole and thyroid hormone replacement therapy. When assessing patients with pleural effusion, we should not rely on laboratory test results alone, as a detailed medical history and thorough physical examination could be more useful.

  9. Thyroid stimulating hormone increases hepatic gluconeogenesis via CRTC2.

    PubMed

    Li, Yujie; Wang, Laicheng; Zhou, Lingyan; Song, Yongfeng; Ma, Shizhan; Yu, Chunxiao; Zhao, Jiajun; Xu, Chao; Gao, Ling

    2017-05-05

    Epidemiological evidence indicates that thyroid stimulating hormone (TSH) is positively correlated with abnormal glucose levels. We previously reported that TSH has direct effects on gluconeogenesis. However, the underlying molecular mechanism remains unclear. In this study, we observed increased fasting blood glucose and glucose production in a mouse model of subclinical hypothyroidism (only elevated TSH levels). TSH acts via the classical cAMP/PKA pathway and CRTC2 regulates glucose homeostasis. Thus, we explore whether CRTC2 is involved in the process of TSH-induced gluconeogenesis. We show that TSH increases CRTC2 expression via the TSHR/cAMP/PKA pathway, which in turn upregulates hepatic gluconeogenic genes. Furthermore, TSH stimulates CRTC2 dephosphorylation and upregulates p-CREB (Ser133) in HepG2 cells. Silencing CRTC2 and CREB decreases the effect of TSH on PEPCK-luciferase, the rate-limiting enzyme of gluconeogenesis. Finally, the deletion of TSHR reduces the levels of the CRTC2:CREB complex in mouse livers. This study demonstrates that TSH activates CRTC2 via the TSHR/cAMP/PKA pathway, leading to the formation of a CRTC2:CREB complex and increases hepatic gluconeogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Thyroid function testing in elephant seals in health and disease.

    PubMed

    Yochem, Pamela K; Gulland, Frances M D; Stewart, Brent S; Haulena, Martin; Mazet, Jonna A K; Boyce, Walter M

    2008-02-01

    Northern Elephant Seal Skin Disease (NESSD) is a severe, ulcerative, skin condition of unknown cause affecting primarily yearling northern elephant seals (Mirounga angustirostris); it has been associated with decreased levels of circulating thyroxine (T4) and triiodothyronine (T3). Abnormalities of the thyroid gland that result in decreased hormone levels (hypothyroidism) can result in hair loss, scaling and secondary skin infections. However, concurrent illness (including skin ailments) can suppress basal levels of thyroid hormones and mimic hypothyroidism; when this occurs in animals with normal thyroid glands it is called "sick euthyroid syndrome". The two conditions (true hypothyroidism vs. "sick euthyroid") can be distinguished in dogs by testing the response of the thyroid gland to exogenous thyrotropin (Thyroid Stimulating Hormone, TSH). To determine whether hypothyroidism is involved in the etiology of NESSD, we tested thyroid function of stranded yearling elephant seals in the following categories: healthy seals (rehabilitated and ready for release; N=9), seals suffering from NESSD (N=16) and seals with other illnesses (e.g., lungworm pneumonia; N=10). Levels of T4 increased significantly for all three categories of elephant seals following TSH stimulation, suggesting that seals with NESSD are "sick euthyroid" and that the disease is not associated with abnormal thyroid gland function.

  11. Competitive inhibition of thyroidal uptake of dietary iodide by perchlorate does not describe perturbations in rat serum total T4 and TSH.

    PubMed

    McLanahan, Eva D; Andersen, Melvin E; Campbell, Jerry L; Fisher, Jeffrey W

    2009-05-01

    Perchlorate (ClO4(-)) is an environmental contaminant known to disrupt the thyroid axis of many terrestrial and aquatic species. ClO4(-) competitively inhibits iodide uptake into the thyroid at the sodium/iodide symporter and disrupts hypothalamic-pituitary-thyroid (HPT) axis homeostasis in rodents. We evaluated the proposed mode of action for ClO4(-)-induced rat HPT axis perturbations using a biologically based dose-response (BBDR) model of the HPT axis coupled with a physiologically based pharmacokinetic model of ClO4(-). We configured a BBDR-HPT/ClO4(-) model to describe competitive inhibition of thyroidal uptake of dietary iodide by ClO4(-) and used it to simulate published adult rat drinking water studies. We compared model-predicted serum thyroid-stimulating hormone (TSH) and total thyroxine (TT4) concentrations with experimental observations reported in these ClO4(-) drinking water studies. The BBDR-HPT/ClO4(-) model failed to predict the ClO4(-)-induced onset of disturbances in the HPT axis. Using ClO4(-) inhibition of dietary iodide uptake into the thyroid, the model underpredicted both the rapid decrease in serum TT4 concentrations and the rise in serum TSH concentrations. Assuming only competitive inhibition of thyroidal uptake of dietary iodide, BBDR-HPT/ClO4(-) model calculations were inconsistent with the rapid decrease in serum TT4 and the corresponding increase in serum TSH. Availability of bound iodide in the thyroid gland governed the rate of hormone secretion from the thyroid. ClO4(-) is translocated into the thyroid gland, where it may act directly or indirectly on thyroid hormone synthesis/secretion in the rat. The rate of decline in serum TT4 in these studies after 1 day of treatment with ClO4(-) appeared consistent with a reduction in thyroid hormone production/secretion. This research demonstrates the utility of a biologically based model to evaluate a proposed mode of action for ClO4(-) in a complex biological process.

  12. Relationship Among Pulmonary Hypertension, Autoimmunity, Thyroid Hormones and Dyspnea in Patients With Hyperthyroidism.

    PubMed

    Zuhur, Sayid Shafi; Baykiz, Derya; Kara, Sonat Pinar; Sahin, Ertan; Kuzu, Idris; Elbuken, Gulsah

    2017-04-01

    Previous studies have reported conflicting results regarding the mechanisms underlying the pathophysiology of pulmonary hypertension (PHT) in patients with hyperthyroidism. Therefore, in this study, we investigated the association between PHT and thyroid-stimulating hormone (TSH) receptor antibody, thyroid peroxidase antibody, thyroglobulin antibody, TSH, fT3, fT4 and dyspnea during daily activities in a large population of patients with hyperthyroidism. A total of 129 consecutive patients with hyperthyroidism, 37 with hypothyroidism and 38 euthyroid controls were enrolled in this study. The modified medical research council scale was used for the assessment of dyspnea in daily activities. All the patients and euthyroid controls underwent transthoracic echocardiography for the assessment of PHT. Mild PHT was present in 35%, 36%, 13.5% and 5% of the patients with Graves׳ disease, toxic multinodular goiter, hypothyroidism and euthyroid controls, respectively. Pulmonary vascular resistance (PVR) was higher in hyperthyroid patients with PHT than in those without PHT. Moreover, a significant positive correlation was found between modified medical research council scale and pulmonary artery systolic pressure as well as PVR in patients with hyperthyroidism. No association was found between PHT and serum TSH receptor antibody, thyroid peroxidase antibody, thyroglobulin antibody, TSH, fT3 and fT4 levels. Mild PHT is present in a significant proportion of patients with hyperthyroidism, regardless of etiology. PVR appears to be the main cause of PHT in patients with hyperthyroidism, and neither autoimmunity nor thyroid hormones are associated with PHT in these patients. Mild dyspnea during daily activities in patients with hyperthyroidism may be related to PHT; however, severe dyspnea requires further evaluation. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  13. Neonatal thyroid hormone levels in association with autism spectrum disorder.

    PubMed

    Lyall, Kristen; Anderson, Meredith; Kharrazi, Martin; Windham, Gayle C

    2017-04-01

    Thyroid hormones (TH) are critical in early neurodevelopment, but few studies have examined whether neonatal TH levels influence risk of autism spectrum disorder (ASD). This study linked California neonatal screening data with live birth and Department of Developmental Services records to examine newborn TH levels in relation to ASD. Thyroxine (T4) and thyroid-stimulating hormone (TSH) levels were measured in newborn bloodspots as part of routine screening, in 1996 and 2002, respectively. Mean levels of T4 and TSH were compared between ASD cases and non-cases. Four hundred forty-seven thousand, fifty-nine screened, singleton births from 1996 and 446,424 from 2002 were examined, including 4,818 ASD cases. Binomial regression, using categories of T4 and TSH percentiles was used to calculate crude and adjusted risk ratios (RR). Covariates included maternal and child factors, gestational age, and age at blood draw. No significant associations were found with TSH levels and ASD in crude or adjusted analyses. ASD cases had significantly lower mean T4 levels than non-cases, but this association was no longer significant in adjusted analyses (RR in individuals in lowest 5th percentile of T4 levels = 1.13, 95% 0.93-1.37). However, this association appeared stronger in certain subgroup analyses, particularly among neonates with blood draw ≥48 hr from birth (RR = 1.67, 95% CI 1.08, 2.60), when TH levels become more stable. Thus, results from this large, population-based study did not suggest strong associations between neonatal TH and ASD, but certain subgroups of newborns with the lowest T4 levels may have modestly increased ASD risk. Autism Res 2016. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 585-592. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  14. Early Phthalates Exposure in Pregnant Women Is Associated with Alteration of Thyroid Hormones

    PubMed Central

    Tsai, Chih-Hsin; Liang, Wei-Yen; Li, Sih-Syuan; Huang, Han-Bin

    2016-01-01

    Introduction Previous studies revealed that phthalate exposure could alter thyroid hormones during the last trimester of pregnancy. However, thyroid hormones are crucial for fetal development during the first trimester. We aimed to clarify the effect of phthalate exposure on thyroid hormones during early pregnancy. Method We recruited 97 pregnant women who were offered an amniocentesis during the early trimester from an obstetrics clinic in southern Taiwan from 2013 to 2014. After signing an informed consent form, we collected amniotic fluid and urine samples from pregnant women to analyze 11 metabolites, including mono-ethyl phthalate (MEP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(2-ethylhexyl) phthalate (MEHP), mono-butyl phthalate (MnBP), of 9 phthalates using liquid chromatography/ tandem mass spectrometry. We collected blood samples from each subject to analyze serum thyroid hormones including thyroxine (T4), free T4, and thyroid-binding globulin (TBG). Results Three phthalate metabolites were discovered to be >80% in the urine samples of the pregnant women: MEP (88%), MnBP (81%) and MECPP (86%). Median MnBP and MECPP levels in pregnant Taiwanese women were 21.5 and 17.6 μg/g-creatinine, respectively, that decreased after the 2011 Taiwan DEHP scandal. Results of principal component analysis suggested two major sources (DEHP and other phthalates) of phthalates exposure in pregnant women. After adjusting for age, gestational age, TBG, urinary creatinine, and other phthalate metabolites, we found a significantly negative association between urinary MnBP levels and serum T4 (β = –5.41; p-value = 0.012; n = 97) in pregnant women using Bonferroni correction. Conclusion We observed a potential change in the thyroid hormones of pregnant women during early pregnancy after DnBP exposure. Additional study is necessitated to clarify these associations. PMID:27455052

  15. Using Hashimoto thyroiditis as gold standard to determine the upper limit value of thyroid stimulating hormone in a Chinese cohort.

    PubMed

    Li, Yu; Chen, Dong-Ning; Cui, Jing; Xin, Zhong; Yang, Guang-Ran; Niu, Ming-Jia; Yang, Jin-Kui

    2016-11-06

    Subclinical hypothyroidism, commonly caused by Hashimoto thyroiditis (HT), is a risk factor for cardiovascular diseases. This disorder is defined as merely having elevated serum thyroid stimulating hormone (TSH) levels. However, the upper limit of reference range for TSH is debated recently. This study was to determine the cutoff value for the upper normal limit of TSH in a cohort using the prevalence of Hashimoto thyroiditis as "gold" calibration standard. The research population was medical staff of 2856 individuals who took part in health examination annually. Serum free triiodothyronine (FT3), free thyroxine (FT4), TSH, thyroid peroxidase antibody (TPAb), thyroglobulin antibody (TGAb) and other biochemistry parameters were tested. Meanwhile, thyroid ultrasound examination was performed. The diagnosis of HT was based on presence of thyroid antibodies (TPAb and TGAb) and abnormalities of thyroid ultrasound examination. We used two different methods to estimate the cutoff point of TSH based on the prevalence of HT. Joinpoint regression showed the prevalence of HT increased significantly at the ninth decile of TSH value corresponding to 2.9 mU/L. ROC curve showed a TSH cutoff value of 2.6 mU/L with the maximized sensitivity and specificity in identifying HT. Using the newly defined cutoff value of TSH can detect patients with hyperlipidemia more efficiently, which may indicate our approach to define the upper limit of TSH can make more sense from the clinical point of view. A significant increase in the prevalence of HT occurred among individuals with a TSH of 2.6-2.9 mU/L made it possible to determine the cutoff value of normal upper limit of TSH.

  16. Effect of adrenal hormones on thyroid secretion and thyroid hormones on adrenal secretion in the sheep.

    PubMed Central

    Falconer, I R; Jacks, F

    1975-01-01

    1. Previous work has shown that after stressful stimuli, sheep initially secrete increased amounts of thyroid hormone, at a time when adrenal secretion is also elevated. 2. This study was designed to evaluate (a) any short-term activation or inhibition of thyroid secretion by exogenous cortisol or ACTH administered in quantities comparable to those secreted after stress in sheep and (b) any short-term effect that exogenous thyroxine or triiodothyronine may have on the concentration of plasma cortisol in the sheep. 3. Thyroid activity was measured by determination of plasma protein bound 125I (PB125I) and total 125I in thyroid vein and mixed venous (jugular) blood. Plasma cortisol and thyroxine concentrations were measured by a competitive protein-binding assay at intervals for up to 5 hr after commencement of the experiment. 4. No evidence of an activation of thyroid secretion was found during cortisol or ACTH infusion, as monitored by thyroid vein PB125I. Similarly there was no evidence of any inhibition of thyroid function, as measured by continued secretion of thyroid hormones into thyroid vein blood. 5. No effect on plasma cortisol concentration due to thyroid hormone treatment was observed. 6. It was concluded that (a) elevated circulating corticosteroids in physiological concentrations have no short-term effects on thyroid activity in the sheep and (b) the short-term alterations in thyroid and adrenal cortical secretion observed during stress in the sheep could not be attributed to direct interaction of elevated thyroid hormone concentrations with adrenal cortical secretion. PMID:170400

  17. Associations of maternal exposure to triclosan, parabens, and other phenols with prenatal maternal and neonatal thyroid hormone levels.

    PubMed

    Berger, Kimberly; Gunier, Robert B; Chevrier, Jonathan; Calafat, Antonia M; Ye, Xiaoyun; Eskenazi, Brenda; Harley, Kim G

    2018-05-24

    Environmental phenols and parabens are commonly used in personal care products and other consumer products and human exposure to these chemicals is widespread. Although human and animal studies suggest an association between exposure to phenols and parabens and thyroid hormone levels, few studies have investigated the association of in utero exposure to these chemicals and thyroid hormones in pregnant women and their neonates. We measured four environmental phenols (triclosan, benzophenone-3, and 2,4- and 2,5-dichlorophenol), and three parabens (methyl-, propyl-, and butyl paraben) in urine collected from mothers at two time points during pregnancy as part of the CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas) study. We measured free thyroxine (T4), total T4, and thyroid-stimulating hormone (TSH) in serum of the pregnant women (N = 454) and TSH in their neonates (N = 365). We examined potential confounding by a large number of additional chemical exposures and used Bayesian Model Averaging (BMA) to select the most influential chemicals to include in regression models. We observed negative associations of prenatal urinary concentrations of propyl paraben and maternal TSH (β for two-fold increase = -3.26%, 95% CI: -5.55, -0.90) and negative associations of 2,4-dichlorophenol and maternal free T4 (β for two-fold increase = -0.05, 95% CI: -0.08, -0.02), after controlling for other chemical exposures. We observed negative associations of triclosan with maternal total T4 after controlling for demographic variables, but this association became non-significant after controlling for other chemicals (β for two-fold increase = -0.05, 95% CI: -0.11, 0.00). We found evidence that environmental phenols and parabens are associated with lower TSH and free T4 in pregnant women after controlling for related chemical exposures. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Thyroid Hormone Indices in Computer Workers with Emphasis on the Role of Zinc Supplementation.

    PubMed

    Amin, Ahmed Ibrahim; Hegazy, Noha Mohamed; Ibrahim, Khadiga Salah; Mahdy-Abdallah, Heba; Hammouda, Hamdy A A; Shaban, Eman Essam

    2016-06-15

    This study aimed to investigate the effects of computer monitor-emitted radiation on thyroid hormones and the possible protective role of zinc supplementation. The study included three groups. The first group (group B) consisted of 42 computer workers. This group was given Zinc supplementation in the form of one tablet daily for eight weeks. The second group (group A) comprised the same 42 computer workers after zinc supplementation. A group of 63 subjects whose job does not entail computer use was recruited as a control Group (Group C). All participants filled a questionnaire including detailed medical and occupational histories. They were subjected to full clinical examination. Thyroid stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4) and zinc levels were measured in all participants. TSH, FT3, FT4 and zinc concentrations were decreased significantly in group B relative to group C. In group A, all tested parameters were improved when compared with group B. The obtained results revealed that radiation emitted from computers led to changes in TSH and thyroid hormones (FT3 and FT4) in the workers. Improvement after supplementation suggests that zinc can ameliorate hazards of such radiation on thyroid hormone indices.

  19. Genetic confirmation for a central role for TNFα in the direct action of thyroid stimulating hormone on the skeleton

    PubMed Central

    Sun, Li; Zhu, Ling-Ling; Lu, Ping; Yuen, Tony; Li, Jianhua; Ma, Risheng; Baliram, Ramkumarie; Moonga, Surinder S.; Liu, Peng; Zallone, Alberta; New, Maria I.; Davies, Terry F.; Zaidi, Mone

    2013-01-01

    Clinical data showing correlations between low thyroid-stimulating hormone (TSH) levels and high bone turnover markers, low bone mineral density, and an increased risk of osteoporosis-related fractures are buttressed by mouse genetic and pharmacological studies identifying a direct action of TSH on the skeleton. Here we show that the skeletal actions of TSH deficiency are mediated, in part, through TNFα. Compound mouse mutants generated by genetically deleting the Tnfα gene on a Tshr−/− (homozygote) or Tshr+/− (heterozygote) background resulted in full rescue of the osteoporosis, low bone formation, and hyperresorption that accompany TSH deficiency. Studies using ex vivo bone marrow cell cultures showed that TSH inhibits and stimulates TNFα production from macrophages and osteoblasts, respectively. TNFα, in turn, stimulates osteoclastogenesis but also enhances the production in bone marrow of a variant TSHβ. This locally produced TSH suppresses osteoclast formation in a negative feedback loop. We speculate that TNFα elevations due to low TSH signaling in human hyperthyroidism contribute to the bone loss that has traditionally been attributed solely to high thyroid hormone levels. PMID:23716650

  20. CIRCULATING CONCENTRATIONS OF THYROID HORMONE IN BELUGA WHALES (DELPHINAPTERUS LEUCAS): INFLUENCE OF AGE, SEX, AND SEASON.

    PubMed

    Flower, Jennifer E; Allender, Matthew C; Giovanelli, Richard P; Summers, Sandra D; Spoon, Tracey R; St Leger, Judy A; Goertz, Caroline E C; Dunn, J Lawrence; Romano, Tracy A; Hobbs, Roderick C; Tuttle, Allison D

    2015-09-01

    Thyroid hormones play a critical physiologic role in regulating protein synthesis, growth, and metabolism. To date, because no published compilation of baseline values for thyroid hormones in beluga whales (Delphinapterus leucas) exists, assessment of thyroid hormone concentrations in this species has been underused in clinical settings. The purpose of this study was to document the concentrations of total thyroxine (tT4) and total triiodothyronine (tT3) in healthy aquarium-maintained and free-ranging beluga whales and to determine the influence of age, sex, and season on the thyroid hormone concentrations. Archived serum samples were collected from healthy aquarium-maintained (n=43) and free-ranging (n=39) belugas, and serum tT4 and tT3 were measured using chemiluminescence immunoassay. The mean tT4 concentration in aquarium-maintained belugas was 5.67±1.43 μg/dl and the mean tT3 concentration was 70.72±2.37 ng/dl. Sex comparisons showed that aquarium-maintained males had significantly greater tT4 and tT3 (9.70±4.48 μg/dl and 92.65±30.55 ng/dl, respectively) than females (7.18±2.82 μg/dl and 77.95±20.37 ng/dl) (P=0.004 and P=0.013). Age comparisons showed that aquarium-maintained whales aged 1-5 yr had the highest concentrations of tT4 and tT3 (8.17±0.17 μg/dl and 105.46±1.98 ng/dl, respectively) (P=0.002 and P<0.001). tT4 concentrations differed significantly between seasons, with concentrations in winter (4.59±1.09 μg/dl) being significantly decreased compared with spring (P=0.009), summer (P<0.0001), and fall (P<0.0001) concentrations. There was a significant difference in tT4 and tT3 concentrations between aquarium-maintained whales (5.67±1.43 μg/dl and 70.72±15.57 ng/dl, respectively) and free-ranging whales (11.71±3.36 μg/dl and 103.38±26.45 ng/dl) (P<0.0001 and P<0.001). Clinicians should consider biologic and environmental influences (age, sex, and season) for a more accurate interpretation of thyroid hormone concentrations in belugas

  1. Selenium and the control of thyroid hormone metabolism.

    PubMed

    Köhrle, Josef

    2005-08-01

    Thyroid hormone synthesis, metabolism and action require adequate availability of the essential trace elements iodine and selenium, which affect homeostasis of thyroid hormone-dependent metabolic pathways. The three selenocysteine-containing iodothyronine deiodinases constitute a novel gene family. Selenium is retained and deiodinase expression is maintained at almost normal levels in the thyroid gland, the brain and several other endocrine tissues during selenium deficiency, thus guaranteeing adequate local and systemic levels of the active thyroid hormone T(3). Due to their low tissue concentrations and their mRNA SECIS elements deiodinases rank high in the cellular and tissue-specific hierarchy of selenium distribution among various selenoproteins. While systemic selenium status and expression of abundant selenoproteins (glutathione peroxidase or selenoprotein P) is already impaired in patients with cancer, disturbed gastrointestinal resorption, unbalanced nutrition or patients requiring intensive care treatment, selenium-dependent deiodinase function might still be adequate. However, disease-associated alterations in proinflammatory cytokines, growth factors, hormones and pharmaceuticals modulate deiodinase isoenzyme expression independent from altered selenium status and might thus pretend causal relationships between systemic selenium status and altered thyroid hormone metabolism. Limited or inadequate supply of both trace elements, iodine and selenium, leads to complex rearrangements of thyroid hormone metabolism enabling adaptation to unfavorable conditions.

  2. The evolutionary and integrative roles of transthyretin in thyroid hormone homeostasis.

    PubMed

    Schreiber, G

    2002-10-01

    In larger mammals, thyroid hormone-binding plasma proteins are albumin, transthyretin (TTR) and thyroxine (T4)-binding globulin. They differ characteristically in affinities and release rates for T4 and triiodothyronine (T3). Together, they form a 'buffering' system counteracting thyroid hormone permeation from aqueous to lipid phases. Evolution led to important differences in the expression pattern of these three proteins in tissues. In adult liver, TTR is only made in eutherians and herbivorous marsupials. During development, it is also made in tadpole and fish liver. More intense TTR synthesis than in liver is found in the choroid plexus of reptilians, birds and mammals, but none in the choroid plexus of amphibians and fish, i.e. species without a neocortex. All brain-made TTR is secreted into the cerebrospinal fluid, where it becomes the major thyroid hormone-binding protein. During ontogeny, the maximum TTR synthesis in the choroid plexus precedes that of the growth rate of the brain and occurs during the period of maximum neuroblast replication. TTR is only one component in a network of factors determining thyroid hormone distribution. This explains why, under laboratory conditions, TTR-knockout mice show no major abnormalities. The ratio of TTR affinity for T4 over affinity for T3 is higher in eutherians than in reptiles and birds. This favors T4 transport from blood to brain providing more substrate for conversion of the biologically less active T4 into the biologically more active T3 by the tissue-specific brain deiodinases. The change in affinity of TTR during evolution involves a shortening and an increase in the hydrophilicity of the N-terminal regions of the TTR subunits. The molecular mechanism for this change is a stepwise shift of the splice site at the intron 1/exon 2 border of the TTR gene. The shift probably results from a sequence of single base mutations. Thus, TTR evolution provides an example for a molecular mechanism of positive Darwinian

  3. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance

    PubMed Central

    Bassett, J. H. Duncan

    2016-01-01

    The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art. PMID:26862888

  4. Predictive Modeling of a Mixture of Thyroid Hormone Disrupting Chemicals that Affect Production and Clearance of Thyroxine

    EPA Science Inventory

    Thyroid hormone (TH) disrupting compounds interfere with both thyroidal and extrathyroidal mechanisms to decrease circulating thyroxine (T4). This research tested the hypothesis that serum T4 concentrations of rodents exposed to a mixture of both TH synthesis inhibitors (pesticid...

  5. Thyroid, cortisol and growth hormone levels in adult Nigerians with metabolic syndrome.

    PubMed

    Udenze, Ifeoma Christiana; Olowoselu, Olusola Festus; Egbuagha, Ephraim Uchenna; Oshodi, Temitope Adewunmi

    2017-01-01

    The similarities in presentation of cortisol excess, growth hormone deficiency, hypothyroidism and metabolic syndrome suggest that subtle abnormalities of these endocrine hormones may play a causal role in the development of metabolic syndrome. The aim of this study is to determine the levels of cortisol, thyroid and growth hormones in adult Nigerians with metabolic syndrome and determine the relationship between levels of these hormones and components of the syndrome. This was a case control study conducted at the Lagos University Teaching Hospital, Lagos, Nigeria. Participants were fifty adult men and women with the metabolic syndrome, and fifty, age and sex matched males and females without the metabolic syndrome. Metabolic syndrome was defined based on the NCEP-ATPIII criteria. Written Informed consent was obtained from the participants. Socio demographic and clinical data were collected using a structured questionnaire. Venous blood was collected after an over-night fast. The Ethics committee of the Lagos University Teaching Hospital, Lagos, Nigeria, approved the study protocol. Comparison of continuous variables was done using the Student's t test. Correlation analysis was employed to determine the associations between variables. Statistical significance was set at P<0.05. Triiodotyronine (T3) was significantly decreased (p<0.001) and thyroxine (T4 ) significantly increased ( p<0.001) in metabolic syndrome compared to healthy controls. T3 correlated positively and significantly with waist circumference (p=0.004), glucose (p= 0.002), total cholesterol ( p=0.001) and LDL- cholesterol ( p<0.001 ) and negatively with body mass index ( p<0.001 )and triglyceride ( p=0.026). T4 had a negative significant correlation with waist circumference (p=0.004). Cortisol and growth hormone levels were similar in metabolic syndrome and controls. Cortisol however had a positive significant correlation with waist/hip ratio (p<0.001) while growth hormone correlated positively with

  6. Effects of thyroid hormones on the antioxidative status in the uterus of young adult rats

    PubMed Central

    KONG, Lingfa; WEI, Quanwei; FEDAIL, Jaafar Sulieman; SHI, Fangxiong; NAGAOKA, Kentaro; WATANABE, Gen

    2015-01-01

    Thyroid hormones and oxidative stress play significant roles in the normal functioning of the female reproductive system. Nitric oxide (NO), a free radical synthesized by nitric oxide synthases (NOS), participates in the regulation of thyroid function and is also a good biomarker for assessment of the oxidative stress status. Therefore, the purpose of this study was to investigate effects of thyroid hormones on uterine antioxidative status in young adult rats. Thirty immature female Sprague-Dawley rats were randomly divided into three groups: control, hypothyroid (hypo-T) and hyperthyroid (hyper-T). The results showed the body weights decreased significantly in both the hypo-T and hyper-T groups and that uterine weights were decreased significantly in the hypo-T group. The serum concentrations of total triiodothyronine (T3) and thyroxine (T4), as well as estradiol (E2), were significantly decreased in the hypo-T group, but increased in the hyper-T group. The progesterone (P4) concentrations in the hypo- and hyperthyroid rats markedly decreased. Immunohistochemistry results provided evidence that thyroid hormone nuclear receptor α/β (TRα/β) and three NOS isoforms were located in different cell types of rat uteri. The NO content and total NOS and inducible NOS (iNOS) activities were markedly diminished in the hypo-T group but increased in the hyper-T group. Moreover, the activities of both glutathione peroxidase (GSH-Px) and catalase (CAT) exhibited significant decreases and increases in the hypo-T and hyper-T groups, respectively. The malondialdehyde (MDA) contents in both the hypo-T and hyper-T groups showed a significant increase. Total superoxide dismutase (T-SOD) activity in the hypo- and hyper-T rats markedly decreased. In conclusion, these results indicated that thyroid hormones have an important influence on the modulation of uterine antioxidative status. PMID:25797533

  7. Feline focus: Diagnostic testing for feline thyroid disease: hypothyroidism.

    PubMed

    Peterson, Mark E

    2013-08-01

    Although naturally occurring hypothyroidism is very rare in cats, iatrogenic hypothyroidism is a recognized complication of treatment for hyperthyroidism. However, confirming the diagnosis of hypothyroidism in cats is not generally straightforward. The potential for false-negative and false-positive results exists with all thyroid function tests, especially in older cats that may have concurrent nonthyroidal illness. Therefore, all thyroid function test results must be interpreted in light of the cat's history, clinical signs, and other laboratory findings. If a low to low-normal serum thyroxine (T4) value is found in a cat that has been treated for hyperthyroidism, repeating the total T4 analysis, determining free T4 and thyroid stimulating hormone (TSH) concentrations, or performing a TSH stimulation test or thyroid scintigraphy may be needed to confirm the diagnosis.

  8. Ophthalmic Graves's disease: natural history and detailed thyroid function studies.

    PubMed Central

    Teng, C S; Yeo, P P

    1977-01-01

    Of 27 patients with ophthalmic Graves's disease (OGD) who had been clinically euthyroid three years previously, one became clinically hyperthyroid and seven overtly hypothyroid. Improvement in eye signs was associated with a return to normal of thyroidal suppression by triiodothyronine (T3) and of the response of thyroid-stimulating hormone (TSH) to thyrotrophin-releasing hormone (TRH). Of a further 30 patients with OGD who had not been studied previously, three were overtly hypothyroid. Of the combined series, 46 patients were euthyroid, 18 (40%) of whom had an impaired or absent TSH response to TRH, and 3(6-7%) an exaggerated response. Eleven out of 37 patients (29-7%) had abnormal results in the T3 suppression test. There was a significant correlation between thyroidal suppression by T3 and the TSH response to TRH. Total serum concentrations of both T3 and thyroxine (T4) were closely correlated with T3 suppressibility and TRH responsiveness. Free T4 and T3 (fT3) concentrations were normal in all but three patients, in whom raised fT3 was accompanied by abnormal TSH responses and thyroidal suppression. The presence of normal free thyroid hormone concentrations in patients with impaired or absent TSH responses to TRH is interesting and challenges the concept that free thyroid hormones are the major controlling factors in the feedback control of TSH. PMID:576414

  9. Effects of prenatal exposure to organochlorines on thyroid hormone status in newborns from two remote coastal regions in Quebec, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallaire, Renee; Dewailly, Eric; Ayotte, Pierre

    Background: Several prospective studies have revealed that prenatal exposure to polychlorinated biphenyls (PCBs) and other organochlorine compounds (OCs) affect neurodevelopment during infancy. One of the mechanisms by which PCBs might interfere with neurodevelopment is a deficit in thyroid hormone (TH) concentrations. Objectives: We investigated the potential impact of transplacental exposure to PCBs and hexachlorobenzene (HCB) on TH concentrations in neonates from two remote coastal populations exposed to OCs through the consumption of seafood products. Methods: Blood samples were collected at birth from the umbilical cord of neonates from Nunavik (n=410) and the Lower North Shore of the St. Lawrence Rivermore » (n=260) (Quebec, Canada) for thyroid parameters [thyroid-stimulating hormone (TSH), free T{sub 4} (fT{sub 4}), total T{sub 3} (tT{sub 3}), and thyroxine-binding globuline (TBG)] and contaminants analyses. Results: In multivariate models, umbilical cord plasma concentrations of PCB 153, the predominant PCB congener, were not associated with TH and TSH levels in both populations. Prenatal exposure to HCB was positively associated with fT{sub 4} levels at birth in both populations (Nunavik, {beta}=0.12, p=0.04; St. Lawrence, {beta}=0.19, p<0.01), whereas TBG concentrations were negatively associated with PCB 153 concentrations ({beta}=-0.13, p=0.05) in the St. Lawrence cohort. Conclusion: OCs levels were not associated to a reduction in THs in neonates from our two populations. Essential nutrients derived from seafood such as iodine may have prevented the negative effects of OCs on the thyroid economy during fetal development.« less

  10. Combined Growth Hormone and Thyroid-Stimulating Hormone Deficiency in a Japanese Patient with a Novel Frameshift Mutation in IGSF1.

    PubMed

    Asakura, Yumi; Abe, Kiyomi; Muroya, Koji; Hanakawa, Junko; Oto, Yuji; Narumi, Satoshi; Hasegawa, Tomonobu; Adachi, Masanori

    2015-01-01

    Recent reports have indicated that loss-of-function mutations in the immunoglobulin superfamily member 1 gene (IGSF1, OMIM 300888) cause congenital central hypothyroidism with macroorchidism. We conducted a next-generation sequencing-based comprehensive mutation screening for pituitary hormone deficiencies to elucidate molecular mechanisms other than anatomical abnormalities of the pituitary that might be responsible for multiple anterior hormone deficiency in a male patient who originally visited our institute complaining of short stature. He was born large for gestational age (4,370 g, +3.0 SD) after an obstructed labour. Endocrinological evaluation revealed growth hormone and thyroid-stimulating hormone deficiency. Magnetic resonance imaging showed a discontinuity of the pituitary stalk with an ectopic posterior lobe and a hypoplastic anterior lobe, likely explaining multiple anterior pituitary hormone deficiency. We identified a novel hemizygous IGSF1 mutation (c.1137_1138delCA, p.Asn380Glnfs*6) in the patient. In reviewing the literature, we noticed that all reported Japanese male IGSF1 mutation carriers were born larger than mean standards for gestational age (mean birth weight SD score of +2.0, 95% confidence interval 1.0-3.0). This case suggests that more attention should be paid to intrauterine growth and birth history when patients are suspected of having an IGSF1 mutation. © 2015 S. Karger AG, Basel.

  11. Luteal Expression of Thyroid Hormone Receptors During Gestation and Postpartum in the Rat

    PubMed Central

    Navas, Paola B.; Redondo, Analía L.; Cuello-Carrión, F. Darío; Roig, Laura M. Vargas; Valdez, Susana R.; Jahn, Graciela A.

    2014-01-01

    Background: Progesterone (P4) is the main steroid secreted by the corpora lutea (CL) and is required for successful implantation and maintenance of pregnancy. Although adequate circulating levels of thyroid hormone (TH) are needed to support formation and maintenance of CL during pregnancy, TH signaling had not been described in this gland. We determined luteal thyroid hormone receptor isoforms (TR) expression and regulation throughout pregnancy and under the influence of thyroid status, and in vitro effects of triiodothyronine (T3) exposure on luteal P4 synthesis. Methods: Euthyroid female Wistar rats were sacrificed by decapitation on gestational day (G) 5, G10, G15, G19, or G21 of pregnancy or on day 2 postpartum (L2). Hyperthyroidism and hypothyroidism were induced in female Wistar rats by daily administration of thyroxine (T4; 0.25 mg/kg subcutaneously) or 6-propyl-2-thiouracil (PTU; 0.1 g/L in drinking water), respectively. Luteal TR expression of mRNA was determined using real-time reverse-transcription quantitative polymerase chain reaction, and of protein using Western blot and immunohistochemistry. Primary cultures of luteal cells and of luteinized granulosa cells were used to study in vitro effects of T3 on P4 synthesis. In addition, the effect of T3 on P4 synthesis under basal conditions and under stimulation with luteinizing hormone (LH), prolactin (PRL), and prostaglandin E2 (PGE2) was evaluated. Results: TRα1, TRα2, and TRβ1 mRNA were present in CL, increasing during the first half and decreasing during the second half of pregnancy. At the protein level, TRβ1 was abundantly expressed during gestation reaching a peak at G19 and decreasing afterwards. TRα1 was barely expressed during early gestation, peaked at G19, and diminished thereafter. Expression of TRβ1 and TRα1 at the protein and mRNA level were not influenced by thyroid status. T3 neither modified P4 secretion from CL of pregnancy nor its synthesis in luteinized granulosa cells in

  12. Regulation of microglial development: a novel role for thyroid hormone.

    PubMed

    Lima, F R; Gervais, A; Colin, C; Izembart, M; Neto, V M; Mallat, M

    2001-03-15

    The postnatal development of rat microglia is marked by an important increase in the number of microglial cells and the growth of their ramified processes. We studied the role of thyroid hormone in microglial development. The distribution and morphology of microglial cells stained with isolectin B4 or monoclonal antibody ED1 were analyzed in cortical and subcortical forebrain regions of developing rats rendered hypothyroid by prenatal and postnatal treatment with methyl-thiouracil. Microglial processes were markedly less abundant in hypothyroid pups than in age-matched normal animals, from postnatal day 4 up to the end of the third postnatal week of life. A delay in process extension and a decrease in the density of microglial cell bodies, as shown by cell counts in the developing cingulate cortex of normal and hypothyroid animals, were responsible for these differences. Conversely, neonatal rat hyperthyroidism, induced by daily injections of 3,5,3'-triiodothyronine (T3), accelerated the extension of microglial processes and increased the density of cortical microglial cell bodies above physiological levels during the first postnatal week of life. Reverse transcription-PCR and immunological analyses indicated that cultured cortical ameboid microglial cells expressed the alpha1 and beta1 isoforms of nuclear thyroid hormone receptors. Consistent with the trophic and morphogenetic effects of thyroid hormone observed in situ, T3 favored the survival of cultured purified microglial cells and the growth of their processes. These results demonstrate that thyroid hormone promotes the growth and morphological differentiation of microglia during development.

  13. Thyroiditis: an integrated approach.

    PubMed

    Sweeney, Lori B; Stewart, Christopher; Gaitonde, David Y

    2014-09-15

    Thyroiditis is a general term that encompasses several clinical disorders characterized by inflammation of the thyroid gland. The most common is Hashimoto thyroiditis; patients typically present with a nontender goiter, hypothyroidism, and an elevated thyroid peroxidase antibody level. Treatment with levothyroxine ameliorates the hypothyroidism and may reduce goiter size. Postpartum thyroiditis is transient or persistent thyroid dysfunction that occurs within one year of childbirth, miscarriage, or medical abortion. Release of preformed thyroid hormone into the bloodstream may result in hyperthyroidism. This may be followed by transient or permanent hypothyroidism as a result of depletion of thyroid hormone stores and destruction of thyroid hormone-producing cells. Patients should be monitored for changes in thyroid function. Beta blockers can treat symptoms in the initial hyperthyroid phase; in the subsequent hypothyroid phase, levothyroxine should be considered in women with a serum thyroid-stimulating hormone level greater than 10 mIU per L, or in women with a thyroid-stimulating hormone level of 4 to 10 mIU per L who are symptomatic or desire fertility. Subacute thyroiditis is a transient thyrotoxic state characterized by anterior neck pain, suppressed thyroid-stimulating hormone, and low radioactive iodine uptake on thyroid scanning. Many cases of subacute thyroiditis follow an upper respiratory viral illness, which is thought to trigger an inflammatory destruction of thyroid follicles. In most cases, the thyroid gland spontaneously resumes normal thyroid hormone production after several months. Treatment with high-dose acetylsalicylic acid or nonsteroidal anti-inflammatory drugs is directed toward relief of thyroid pain.

  14. Use of recombinant human thyroid-stimulating hormone for thyrotropin stimulation test in healthy, hypothyroid and euthyroid sick dogs.

    PubMed

    Daminet, Sylvie; Fifle, Lyanne; Paradis, Manon; Duchateau, Luc; Moreau, Maxim

    2007-12-01

    Recombinant human thyroid-stimulating hormone (rhTSH) was evaluated for the diagnosis of canine hypothyroidism, using TSH response tests. Phase I stimulation tests were performed in 6 healthy dogs weighing over 20 kg, using 50 and then 100 microg of freshly reconstituted rhTSH administered intravenously. In phase II, the same dogs were stimulated by using 100 microg of rhTSH frozen for 3 months at -20 degrees C. Phase III stimulation tests were performed by using 50 or 100 microg of freshly reconstituted or frozen rhTSH in healthy (n = 14), euthyroid sick (n = 11) and hypothyroid dogs (n = 9). A dose of 100 microg of rhTSH was judged more appropriate for dogs weighing more than 20 kg. Biological activity of rhTSH after freezing at -20 degrees C for up to 12 weeks was maintained. When stimulated, significant (P < 0.05) increases in total thyroxine concentration were observed only in healthy and euthyroid sick dogs. Results of this study show that the rhTSH stimulation test is able to differentiate euthyroidism from hypothyroidism in dogs.

  15. Thyroid hormone-induced oxidative stress.

    PubMed

    Venditti, P; Di Meo, S

    2006-02-01

    Hypermetabolic state in hyperthyroidism is associated with tissue oxidative injury. Available data indicate that hyperthyroid tissues exhibit an increased ROS and RNS production. The increased mitochondrial ROS generation is a side effect of the enhanced level of electron carriers, by which hyperthyroid tissues increase their metabolic capacity. Investigations of antioxidant defence system have returned controversial results. Moreover, other thyroid hormone-linked biochemical changes increase tissue susceptibility to oxidative challenge, which exacerbates the injury and dysfunction they suffer under stressful conditions. Mitochondria, as a primary target for oxidative stress, might account for hyperthyroidism linked tissue dysfunction. This is consistent with the inverse relationship found between functional recovery of ischemic hyperthyroid hearts and mitochondrial oxidative damage and respiration impairment. However, thyroid hormone-activated mitochondrial mechanisms provide protection against excessive tissue dysfunction, including increased expression of uncoupling proteins, proteolytic enzymes and transcriptional coactivator PGC-1, and stimulate opening of permeability transition pores.

  16. Genomics and CSF analyses implicate thyroid hormone in hippocampal sclerosis of aging

    PubMed Central

    Nelson, Peter T.; Katsumata, Yuriko; Nho, Kwangsik; Artiushin, Sergey C.; Jicha, Gregory A.; Wang, Wang-Xia; Abner, Erin L.; Saykin, Andrew J.; Kukull, Walter A.; Fardo, David W.

    2016-01-01

    We report evidence of a novel pathogenetic mechanism in which thyroid hormone dysregulation contributes to dementia in elderly persons. Two single nucleotide polymorphisms (SNPs) on chromosome 12p12 were the initial foci of our study: rs704180 and rs73069071. These SNPs were identified by separate research groups as risk alleles for non-Alzheimer’s neurodegeneration. We found that the rs73069071 risk genotype was associated with hippocampal sclerosis (HS) pathology among people with the rs704180 risk genotype (National Alzheimer’s Coordinating Center/Alzheimer’s Disease Genetic Consortium data; n=2,113, including 241 autopsy-confirmed HS cases). Further, both rs704180 and rs73069071 risk genotypes were associated with widespread brain atrophy visualized by MRI (Alzheimer’s Disease Neuroimaging Initiative data; n=1,239). In human brain samples from the Braineac database, both rs704180 and rs73069071 risk genotypes were associated with variation in expression of ABCC9, a gene which encodes a metabolic sensor protein in astrocytes. The rs73069071 risk genotype was also associated with altered expression of a nearby astrocyte-expressed gene, SLCO1C1. Analyses of human brain gene expression databases indicated that the chromosome 12p12 locus may regulate particular astrocyte-expressed genes induced by the active form of thyroid hormone, triiodothyronine (T3). This is informative biologically because the SLCO1C1 protein transports thyroid hormone into astrocytes from blood. Guided by the genomic data, we tested the hypothesis that altered thyroid hormone levels could be detected in cerebrospinal fluid (CSF) obtained from persons with HS pathology. Total T3 levels in CSF were elevated in HS cases (p<0.04 in two separately analyzed groups), but not in Alzheimer’s disease cases, relative to controls. No change was detected in the serum levels of thyroid hormone (T3 or T4) in a subsample of HS cases prior to death. We conclude that brain thyroid hormone

  17. The nuclear receptor corepressor (NCoR) controls thyroid hormone sensitivity and the set point of the hypothalamic-pituitary-thyroid axis.

    PubMed

    Astapova, Inna; Vella, Kristen R; Ramadoss, Preeti; Holtz, Kaila A; Rodwin, Benjamin A; Liao, Xiao-Hui; Weiss, Roy E; Rosenberg, Michael A; Rosenzweig, Anthony; Hollenberg, Anthony N

    2011-02-01

    The role of nuclear receptor corepressor (NCoR) in thyroid hormone (TH) action has been difficult to discern because global deletion of NCoR is embryonic lethal. To circumvent this, we developed mice that globally express a modified NCoR protein (NCoRΔID) that cannot be recruited to the thyroid hormone receptor (TR). These mice present with low serum T(4) and T(3) concentrations accompanied by normal TSH levels, suggesting central hypothyroidism. However, they grow normally and have increased energy expenditure and normal or elevated TR-target gene expression across multiple tissues, which is not consistent with hypothyroidism. Although these findings imply an increased peripheral sensitivity to TH, the hypothalamic-pituitary-thyroid axis is not more sensitive to acute changes in TH concentrations but appears to be reset to recognize the reduced TH levels as normal. Furthermore, the thyroid gland itself, although normal in size, has reduced levels of nonthyroglobulin-bound T(4) and T(3) and demonstrates decreased responsiveness to TSH. Thus, the TR-NCoR interaction controls systemic TH sensitivity as well as the set point at all levels of the hypothalamic-pituitary-thyroid axis. These findings suggest that NCoR levels could alter cell-specific TH action that would not be reflected by the serum TSH.

  18. Thyroid dysfunction: an autoimmune aspect.

    PubMed

    Khan, Farah Aziz; Al-Jameil, Noura; Khan, Mohammad Fareed; Al-Rashid, May; Tabassum, Hajera

    2015-01-01

    Auto immune thyroid disease (AITD) is the common organ specific autoimmune disorder, Hashimoto thyroiditis (HT) and Grave's disease (GD) are its well-known sequelae. It occurs due to loss of tolerance to autoantigens thyroid peroxidase (TPO), thyroglobulin (Tg), thyroid stimulating hormone receptor (TSH-R) which leads to the infiltration of the gland. T cells in chronic autoimmune thyroiditis (cAIT) induce apoptosis in thyroid follicular cells and cause destruction of the gland. Presences of TPO antibodies are common in HT and GD, while Tg has been reported as an independent predictor of thyroid malignancy. Cytokines are small proteins play an important role in autoimmunity, by stimulating B and T cells. Various cytokines IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, IL-14, TNF-α and IFN-γ are found in thyroid follicular cells which enhance inflammatory response with nitric oxide (NO) and prostaglandins.

  19. Cross-Sectional Associations of Serum Perfluoroalkyl Acids and Thyroid Hormones in U.S. Adults: Variation According to TPOAb and Iodine Status (NHANES 2007–2008)

    PubMed Central

    Webster, Glenys M.; Rauch, Stephen A.; Marie, Nathalie Ste; Mattman, Andre; Lanphear, Bruce P.; Venners, Scott A.

    2015-01-01

    Background: Perfluoroalkyl acids (PFASs) are suspected thyroid toxicants, but results from epidemiological studies are inconsistent. Objectives: We examined associations between serum PFASs and thyroid hormones (THs) in a representative, cross-sectional sample of U.S. adults. We hypothesized that people with high thyroid peroxidase antibodies and low iodine would be more susceptible to PFAS-induced thyroid disruption. Methods: Our sample included 1,525 adults (≥ 18 years) from the 2007–2008 NHANES study with available serum PFASs and THs. We examined associations between four serum PFASs [perfluorohexane sulfonate (PFHxS), perfluorononanoate (PFNA), perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS)], and serum THs [free triiodothyronine (fT3), free thyroxine (fT4), fT3/fT4, thyroid-stimulating hormone (TSH), total T3 (TT3), and total T4 (TT4)] using multivariable linear regression. We stratified subjects into four groups by two indicators of thyroid “stress”: thyroid peroxidase antibody (TPOAb ≥ 9 IU/mL) and iodine status (< 100 μg/L urine). Results: Of 1,525 participants, 400 (26%) had low iodine only (T0I1), 87 (6%) had high TPOAb only (T1I0), and 26 (2%) had both high TPOAb and low iodine (T1I1). In general, associations were similar among participants in the groups with neither (T0I0) or only one thyroid stressor (T0I1 or T1I0), suggesting that PFAS–TH associations were not modified by high TPOAb or low iodine alone. However, PFHxS and PFOS were negatively associated (p < 0.05) with fT4, and all four PFASs were positively associated (p < 0.05) with fT3, fT3/fT4, TSH, and TT3 in the group with joint exposure to high TPOAb and low iodine (T1I1). Conclusions: We found evidence of PFAS-associated thyroid disruption in a subset of U.S. adults with high TPOAb (a marker of autoimmune hypothyroidism) and low iodine status, who may represent a vulnerable subgroup. However, the small sample size, cross-sectional design, and possibility of

  20. A meta-analysis of the associations between common variation in the PDE8B gene and thyroid hormone parameters, including assessment of longitudinal stability of associations over time and effect of thyroid hormone replacement

    PubMed Central

    Taylor, Peter N; Panicker, Vijay; Sayers, Adrian; Shields, Beverley; Iqbal, Ahmed; Bremner, Alexandra P; Beilby, John P; Leedman, Peter J; Hattersley, Andrew T; Vaidya, Bijay; Frayling, Timothy; Evans, Jonathan; Tobias, Jonathan H; Timpson, Nicholas J; Walsh, John P; Dayan, Colin M

    2011-01-01

    Objective Common variants in PDE8B are associated with TSH but apparently without any effect on thyroid hormone levels that is difficult to explain. Furthermore, the stability of the association has not been examined in longitudinal studies or in patients on levothyroxine (l-T4). Design Totally, four cohorts were used (n=2557): the Busselton Health Study (thyroid function measured on two occasions), DEPTH, EFSOCH (selective cohorts), and WATTS (individuals on l-T4). Methods Meta-analysis to clarify associations between the rs4704397 single nucleotide polymorphism in PDE8B on TSH, tri-iodothyronine (T3), and T4 levels. Results Meta-analysis confirmed that genetic variation in PDE8B was associated with TSH (P=1.64×10−10 0.20 s.d./allele, 95% confidence interval (CI) 0.142, 0.267) and identified a possible new association with free T4 (P=0.023, −0.07 s.d./allele, 95% CI −0.137, −0.01), no association was seen with free T3 (P=0.218). The association between PDE8B and TSH was similar in 1981 (0.14 s.d./allele, 95% CI 0.04, 0.238) and 1994 (0.20 s.d./allele, 95% CI 0.102, 0.300) and even more consistent between PDE8B and free T4 in 1981 (−0.068 s.d./allele, 95% CI −0.167, 0.031) and 1994 (−0.07 s.d./allele, 95% CI −0.170, 0.030). No associations were seen between PDE8B and thyroid hormone parameters in individuals on l-T4. Conclusion Common genetic variation in PDE8B is associated with reciprocal changes in TSH and free T4 levels that are consistent over time and lost in individuals on l-T4. These findings identify a possible genetic marker reflecting variation in thyroid hormone output that will be of value in epidemiological studies and provides additional evidence that PDE8B is involved in TSH signaling in the thyroid. PMID:21317282

  1. Changes in the role of the thyroid axis during metamorphosis of the Japanese eel, Anguilla japonica.

    PubMed

    Sudo, Ryusuke; Okamura, Akihiro; Kuroki, Mari; Tsukamoto, Katsumi

    2014-08-01

    To clarify the role of thyroid function during metamorphosis from leptocephalus to glass eel in the Japanese eel, we examined the histology of the thyroid gland and measured whole-body concentrations of thyroid hormones, thyroxine (T4) and triiodothyronine (T3), and thyroid stimulating hormone β-subunit TSH (TSHβ) mRNA expression levels in five stages of artificially hatched eels (leptocephalus, early-metamorphosis, late-metamorphosis, glass eel, and elver). During metamorphosis, the inner colloid of thyroid follicles showed positive immunoreactivity for T4, and both T4 and T3 levels were significantly increased, whereas a small peak of TSHβ mRNA level was observed at the early-metamorphosis stage. Similarly, TSHβ mRNA levels were highest in the glass eel stage, and then decreased markedly in the elver stage. In contrast to TSHβ mRNA expression, thyroid hormones (both T4 and T3) increased further from the glass eel to elver stages. These results indicated that thyroid function in the Japanese eel was active both during and after metamorphosis. Therefore, the thyrotropic axis may play important roles not only in metamorphosis but also in subsequent inshore or upstream migrations. © 2014 Wiley Periodicals, Inc.

  2. Clinical experience with recombinant human thyroid-stimulating hormone (rhTSH): whole-body scanning with iodine-131.

    PubMed

    Reiners, C; Luster, M; Lassmann, M

    1999-01-01

    Whole-body scanning (WBS) with iodine-131 (I-131) is currently used together with serum thyroglobulin (Tg) measurement in the diagnostic follow-up of well-differentiated thyroid carcinoma. One of the main disadvantages of I-131 WBS is its requirement of repeated weeks-long withdrawal of thyroid hormone suppression therapy (THST) to raise endogenous thyroid-stimulating hormone (TSH) production. This results in hypothyroidism and associated abnormalities, discomfort and morbidity. Recently, however, a series of multicentre clinical studies established the efficacy, safety, non-antigenicity, and quality of life benefits of recombinant human TSH (rhTSH, Thyrogen, thyrotropin alfa, Genzyme Corporation, Cambridge, MA, USA) in promoting radioiodine uptake and permitting sensitive I-131 WBS in patients on THST after initial therapy of well-differentiated thyroid cancer. Thus in everyday practice, rhTSH administration may in many cases supersede THST withdrawal as a preparative method for I-131 imaging. With the use of rhTSH, as whenever I-131 WBS is performed, useful and accurate imaging requires meticulous attention to good scanning practices. These include use of appropriate equipment, proper timing, sufficient scanning time, vigilance against artifacts and iodine contamination, and consideration of additional imaging in the case of ambiguous 48-hour scans. Whole-body retention of I-131 is approximately 50% greater during hypothyroidism after THST withdrawal than during euthyroidism on THST and rhTSH. Therefore, it is important to use an adequate diagnostic activity of > or =4 mCi (148 MBq) to compensate for the faster radioiodine clearance in the euthyroid state permitted by rhTSH administration. Ongoing dosimetric research eventually may provide more specific guidance regarding radioiodine activities for diagnostic, and, particularly, therapeutic purposes, with the use of rhTSH.

  3. Capacity for cooperative binding of thyroid hormone (T3) receptor dimers defines wild type T3 response elements.

    PubMed

    Brent, G A; Williams, G R; Harney, J W; Forman, B M; Samuels, H H; Moore, D D; Larsen, P R

    1992-04-01

    Thyroid hormone response elements (T3REs) have been identified in a variety of promoters including those directing expression of rat GH (rGH), alpha-myosin heavy chain (rMHC), and malic enzyme (rME). A detailed biochemical and genetic analysis of the rGH element has shown that it consists of three hexamers related to the consensus [(A/G)GGT(C/A)A]. We have extended this analysis to the rMHC and rME elements. Binding of highly purified thyroid hormone receptor (T3R) to T3REs was determined using the gel shift assay, and thyroid hormone (T3) induction was measured in transient tranfections. We show that the wild type version of each of the three elements binds T3R dimers cooperatively. Mutational analysis of the rMHC and rME elements identified domains important for binding T3R dimers and allowed a direct determination of the relationship between T3R binding and function. In each element two hexamers are required for dimer binding, and mutations that interfere with dimer formation significantly reduce T3 induction. Similar to the rGH element, the rMHC T3RE contains three hexameric domains arranged as a direct repeat followed by an inverted copy, although the third domain is weaker than in rGH. All three are required for full function and T3R binding. The rME T3RE is a two-hexamer direct repeat T3RE, which also binds T3R monomer and dimer. Across a series of mutant elements, there was a strong correlation between dimer binding in vitro and function in vivo for rMHC (r = 0.99, P less than 0.01) and rME (r = 0.67, P less than 0.05) T3REs. Our results demonstrate a similar pattern of T3R dimer binding to a diverse array of hexameric sequences and arrangements in three wild type T3REs. Addition of nuclear protein enhanced T3R binding but did not alter the specificity of binding to wild type or mutant elements. Binding of purified T3R to T3REs was highly correlated with function, both with and without the addition of nuclear protein. T3R dimer formation is the common

  4. [Thyroid hormones and cardiovascular system].

    PubMed

    Límanová, Zdeňka; Jiskra, Jan

    Cardiovascular system is essentially affected by thyroid hormones by way of their genomic and non-genomic effects. Untreated overt thyroid dysfunction is associated with higher cardiovascular risk. Although it has been studied more than 3 decades, in subclinical thyroid dysfunction the negative effect on cardiovascular system is much more controversial. Large meta-analyses within last 10 years have shown that subclinical hyperthyroidism is associated with higher cardiovascular risk than subclinical hypothyroidism. Conversely, in patients of age > 85 years subclinical hypothyroidism was linked with lower mortality. Therefore, subclinical hyperthyroidism should be rather treated in the elderly while subclinical hypothyroidism in the younger patients and the older may be just followed. An important problem on the border of endocrinology and cardiology is amiodarone thyroid dysfunction. Effective and safe treatment is preconditioned by distinguishing of type 1 and type 2 amiodarone induced hyperthyroidism. The type 1 should be treated with methimazol, therapeutic response is prolonged, according to recent knowledge immediate discontinuation of amiodarone is not routinely recommended and patient should be usually prepared to total thyroidectomy, or rather rarely 131I radioiodine ablation may be used if there is appropriate accumulation. In the type 2 there is a promt therapeutic response on glucocorticoids (within 1-2 weeks) with permanent remission or development of hypothyroidism. If it is not used for life-threatening arrhytmias, amiodarone may be discontinuated earlier (after several weeks). Amiodarone induced hypothyroidism is treated with levothyroxine without amiodarone interruption.Key words: amiodarone induced thyroid dysfunction - atrial fibrillation - cardiovascular risk - heart failure - hyperthyroidism - hypothyroidism - thyroid stimulating hormone.

  5. The reference intervals of thyroid stimulating hormone in healthy individuals with normal levels of serum free thyroxine and without sonographic pathologies.

    PubMed

    Kutluturk, Faruk; Yildirim, Beytullah; Ozturk, Banu; Ozyurt, Huseyin; Bekar, Ulku; Sahin, Semsettin; Akturk, Yeliz; Akbas, Ali; Cetin, Ilhan; Etikan, Ilker

    2014-01-01

    The aim of the present study was to investigate the reference intervals for thyroid stimulating hormone (TSH) in healthy individuals with normal levels of serum free thyroxine (fT4) and without sonographic pathologies, and determine the effects of age, gender, and residence on the TSH reference intervals. This research was a population-based study conducted in 70 regions. The random sampling method was used to select the 1095 subjects of the study among inhabitants aged 18 and above. Patients who had a previous history of thyroid disease and had been taking medication were excluded from the study as this may have affected their fT4 or TSH levels. In addition, subjects who had serum fT4 without a reference range and abnormal ultrasonography findings were also excluded. A total of 408 subjects were used for establishing the reference intervals for TSH. The data for TSH in the study group were not normally distributed according to the Kolmogorov-Smirnov index. The geometric mean was 1.62 mIU/L, the median was 1.40 mIU/L, and the 95% reference intervals were 0.38-4.22 mIU/L. The median TSH level was higher in females compared to males (p < 0.05). In the female subjects 2.5th percentile of TSH was lower and 97.5th percentile was higher than those of males. The reference intervals of TSH were of lower values in subjects over 50 years old (p < 0.001). Studies suggest that determination of the TSH reference intervals may differ due to environmental influences or due to age, gender, and race. It is suggested that the lower limit of normal TSH for the adult Turkish population would be 0.38 mIU/L and the upper limit similar to the traditional value of 4.2 mIU/L. If each clinician uses their population-specific reference interval for TSH, thyroid function abnormalities can be accurately estimated.

  6. Thyroid hormone balance in beluga whales, Delphinapterus leucas: dynamics after capture and influence of thyrotropin.

    PubMed Central

    St Aubin, D J; Geraci, J R

    1992-01-01

    Ten beluga whales, Delphinapterus leucas, were captured in the Churchill River, Manitoba, held for up to five days, and then released. Blood samples were obtained immediately after capture and at 6-7 h intervals thereafter to monitor changes in circulating levels of thyroid hormones (TH). In six of the whales, total and free thyroxine (T4) and triiodothyronine (T3) declined steadily, whereas reverse-T3 (rT3) showed a transient increase during the first 24-36 h, followed by a decrease to below initial values. The changes in TH may have been due to glucocorticoid-mediated reduction in endogenous thyroid stimulating hormone (TSH), and inhibition of 5'-monodeiodinase in peripheral tissue. Two whales were given 10 IU of bovine TSH immediately after capture, and again one and two days later, resulting in successive increases in all TH, which remained elevated for at least 24 h after the last injection. Thereafter, circulating levels declined as in the untreated whales. Two whales receiving a single TSH injection on the fourth day responded with an increase in plasma TH comparable to that observed following the first TSH injection in the other two animals. Average (+/- SD) circulating level of rT3 at capture was 6.3 +/- 3.1 nmol/L, which is higher than reported for any other mammal and was significantly correlated with the naturally elevated levels of T4 that occur in belugas occupying estuaries during the summer. PMID:1586888

  7. The thyroid hormone triiodothyronine controls macrophage maturation and functions: protective role during inflammation.

    PubMed

    Perrotta, Cristiana; Buldorini, Marcella; Assi, Emma; Cazzato, Denise; De Palma, Clara; Clementi, Emilio; Cervia, Davide

    2014-01-01

    The endocrine system participates in regulating macrophage maturation, although little is known about the modulating role of the thyroid hormones. In vitro results demonstrate a negative role of one such hormone, triiodothyronine (T3), in triggering the differentiation of bone marrow-derived monocytes into unpolarized macrophages. T3-induced macrophages displayed a classically activated (M1) signature. A T3-induced M1-priming effect was also observed on polarized macrophages because T3 reverses alternatively activated (M2) activation, whereas it enhances that of M1 cells. In vivo, circulating T3 increased the content of the resident macrophages in the peritoneal cavity, whereas it reduced the content of the recruited monocyte-derived cells. Of interest, T3 significantly protected mice against endotoxemia induced by lipopolysaccharide i.p. injection; in these damaged animals, decreased T3 levels increased the recruited (potentially damaging) cells, whereas restoring T3 levels decreased recruited and increased resident (potentially beneficial) cells. These data suggest that the anti-inflammatory effect of T3 is coupled to the modulation of peritoneal macrophage content, in a context not fully explained by the M1/M2 framework. Thyroid hormone receptor expression analysis and the use of different thyroid hormone receptor antagonists suggest thyroid hormone receptor β1 as the major player mediating T3 effects on macrophages. The novel homeostatic link between thyroid hormones and the pathophysiological role of macrophages opens new perspectives on the interactions between the endocrine and immune systems. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. The role of thyroid hormones in stress response of fish.

    PubMed

    Peter, M C Subhash

    2011-06-01

    Thyroxine (T(4)) and triiodothyronine (T(3)), the principal thyroid hormones (THs) secreted from the hypothalamic-pituitary-thyroid (HPT) axis, produce a plethora of physiologic actions in fish. The diverse actions of THs in fishes are primarily due to the sensitivity of thyroid axis to many physical, chemical and biological factors of both intrinsic and extrinsic origins. The regulation of THs homeostasis becomes more complex due to extrathyroidal deiodination pathways by which the delivery of biologically active T(3) to target cells has been controlled. As primary stress hormones and the end products of hypothalamic-pituitary-interrenal (HPI) and brain-sympathetic-chromaffin (BSC) axes, cortisol and adrenaline exert its actions on its target tissues where it promote and integrate osmotic and metabolic competence. Despite possessing specific osmoregulatory and metabolic actions at cellular and whole-body levels, THs may fine-tune these processes in accordance with the actions of hormones like cortisol and adrenaline. Evidences are presented that THs can modify the pattern and magnitude of stress response in fishes as it modifies either its own actions or the actions of stress hormones. In addition, multiple lines of evidence indicate that hypothalamic and pituitary hormones of thyroid and interrenal axes can interact with each other which in turn may regulate THs/cortisol-mediated actions. Even though it is hard to define these interactions, the magnitude of stress response in fish has been shown to be modified by the changes in the status of THs, pointing to its functional relationship with endocrine stress axes particularly with the interrenal axis. The fine-tuned mechanism that operates in fish during stressor-challenge drives the THs to play both fundamental and modulator roles in stress response by controlling osmoregulation and metabolic regulation. A major role of THs in stress response is thus evident in fish. Copyright © 2011 Elsevier Inc. All rights

  9. Propylthiouracil, Perchlorate, and Thyroid-Stimulating Hormone Modulate High Concentrations of Iodide Instigated Mitochondrial Superoxide Production in the Thyroids of Metallothionein I/II Knockout Mice

    PubMed Central

    Duan, Qi; Wang, Tingting; Zhang, Na; Perera, Vern; Liang, Xue; Abeysekera, Iruni Roshanie

    2016-01-01

    Background Increased oxidative stress has been suggested as one of the underlying mechanisms in iodide excess-induced thyroid disease. Metallothioneins (MTs) are regarded as scavengers of reactive oxygen species (ROS) in oxidative stress. Our aim is to investigate the effects of propylthiouracil (PTU), a thyroid peroxidase inhibitor, perchlorate (KClO4), a competitive inhibitor of iodide transport, and thyroid stimulating hormone (TSH) on mitochondrial superoxide production instigated by high concentrations of iodide in the thyroids of MT-I/II knockout (MT-I/II KO) mice. Methods Eight-week-old 129S7/SvEvBrd-Mt1tm1Bri Mt2tm1Bri/J (MT-I/II KO) mice and background-matched wild type (WT) mice were used. Results By using a mitochondrial superoxide indicator (MitoSOX Red), lactate dehydrogenase (LDH) release, and methyl thiazolyl tetrazolium (MTT) assay, we demonstrated that the decreased relative viability and increased LDH release and mitochondrial superoxide production induced by potassium iodide (100 µM) can be relieved by 300 µM PTU, 30 µM KClO4, or 10 U/L TSH in the thyroid cell suspensions of both MT-I/II KO and WT mice (P<0.05). Compared to the WT mice, a significant decrease in the relative viability along with a significant increase in LDH release and mitochondrial superoxide production were detected in MT-I/II KO mice(P<0.05). Conclusion We concluded that PTU, KClO4, or TSH relieved the mitochondrial oxidative stress induced by high concentrations of iodide in the thyroids of both MT-I/II KO and WT mice. MT-I/II showed antioxidant effects against high concentrations of iodide-induced mitochondrial superoxide production in the thyroid. PMID:26754589

  10. Graves' disease: an analysis of thyroid hormone levels and hyperthyroid signs and symptoms.

    PubMed

    Trzepacz, P T; Klein, I; Roberts, M; Greenhouse, J; Levey, G S

    1989-11-01

    Assessment of disease severity for patients with hyperthyroidism involves clinical evaluation and laboratory testing. To determine if there is a correlation between symptoms and thyroid function test results, we prospectively studied hyperthyroid patients using a standardized symptom rating scale and serum thyroid function parameters. We examined 25 patients with untreated, newly diagnosed Graves' disease using the Hyperthyroid Symptom Scale (HSS) and serum levels of thyroxine (T4), triiodothyronine (T3) relative insulin area (RIA), and estimates of free thyroxine index (FTI). In addition, we compared thyroid hormone levels with standard measures of depression and anxiety in these patients. When regression analyses controlling for age were performed, none of these symptom ratings were associated with FTI or T3 RIA. The HSS was correlated with goiter size and anxiety ratings and was inversely correlated with age. The present study suggests that there is no relationship between the clinical assessment of disease severity and serum levels of thyroid hormone in untreated Graves' disease.

  11. Effects of repeated potassium iodide administration on genes involved in synthesis and secretion of thyroid hormone in adult male rat.

    PubMed

    Lebsir, Dalila; Manens, Line; Grison, Stephane; Lestaevel, Philippe; Ebrahimian, Teni; Suhard, David; Phan, Guillaume; Dublineau, Isabelle; Tack, Karine; Benderitter, Marc; Pech, Annick; Jourdain, Jean-Rene; Souidi, Maâmar

    2018-02-26

    A single dose of potassium iodide (KI) is recommended to reduce the risk of thyroid cancer during nuclear accidents. However in case of prolonged radioiodine exposure, more than one dose of KI may be necessary. This work aims to evaluate the potential toxic effect of repeated administration of KI. Adult Wistar rats received an optimal dose of KI 1 mg/kg over a period of 1, 4 or 8 days. hormonal status (TSH, FT4) of treated rats was unaffected. Contrariwise, a sequential Wolff-Chaikoff effect was observed, resulting in a prompt decrease of NIS and MCT8 mRNA expression (-58% and -26% respectively), followed by a delayed decrease of TPO mRNA expression (-33%) in conjunction with a stimulation of PDS mRNA expression (+62%). we show for the first time that repeated administration of KI at 1 mg/kg/24h doesn't cause modification of thyroid hormones level, but leads to a reversible modification of the expression of genes involved in the synthesis and secretion of thyroid hormones. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. COUP-TF1 Modulates Thyroid Hormone Action in an Embryonic Stem-Cell Model of Cortical Pyramidal Neuronal Differentiation.

    PubMed

    Teng, Xiaochun; Liu, Yan-Yun; Teng, Weiping; Brent, Gregory A

    2018-05-01

    Thyroid hormone is critical for normal brain development and acts in a spatial and temporal specific pattern. Thyroid hormone excess, or deficiency, can lead to irreversible impairment of brain and sensory development. Chicken ovalbumin upstream-transcription factor 1 (COUP-TF1), expressed early in neuronal development, is essential to achieve normal brain structure. Thyroid hormone stimulation of gene expression is inversely correlated with the level of COUP-TF1 expression. An in vitro method of differentiating mouse embryonic stem (mES) cells into cortical neurons was utilized to study the influence of COUP-TF1 on thyroid hormone signaling in brain development. mES cells were cultured and differentiated in specific conditioned media, and a high percentage of nestin-positive progenitor neurons in the first stage, and cortical neurons in the second stage, was obtained with characteristic neuronal firing. The number of nestin-positive progenitors, as determined by fluorescence-activated cell sorting analysis, was significantly greater with triiodothyronine (T3) treatment compared to control (p < 0.05). T3 enhanced the expression of cortical neuron marker (Tbr1 and Rc3) mRNAs. After COUP-TF1 knockdown, the number of nestin-positive progenitors was reduced compared to control (p < 0.05), but the number increased with T3 treatment. The mRNA of cortical neuronal gene markers was measured after COUP-TF1 knockdown. In the presence of T3, the peak expression of neuron markers Emx1, Tbr1, Camkiv, and Rc3 mRNA was earlier, at day 18 of differentiation, compared to control cells, at day 22. Furthermore, after COUP-TF1 knockdown, T3 induction of Rc3 and Tbr1 mRNA was significantly enhanced compared to cells expressing COUP-TF1. These results indicate that COUP-TF1 plays an important role in modulating the timing and magnitude of T3-stimulated gene expression required for normal corticogenesis.

  13. In vitro pituitary and thyroid cell proliferation assays and their relevance as alternatives to animal testing.

    PubMed

    Jomaa, Barae; Aarts, Jac M M J G; de Haan, Laura H J; Peijnenburg, Ad A C M; Bovee, Toine F H; Murk, Albertinka J; Rietjens, Ivonne M C M

    2013-01-01

    This study investigates the in vitro effect of eleven thyroid-active compounds known to affect pituitary and/or thyroid weights in vivo, using the proliferation of GH3 rat pituitary cells in the so-called "T-screen," and of FRTL-5 rat thyroid cells in a newly developed test denoted "TSH-screen" to gain insight into the relative value of these in vitro proliferation tests for an integrated testing strategy (ITS) for thyroid activity. Pituitary cell proliferation in the T-screen was stimulated by three out of eleven tested compounds, namely thyrotropin releasing hormone (TRH), triiodothyronine (T3) and thyroxine (T4). Of these three compounds, only T4 causes an increase in relative pituitary weight, and thus T4 was the only compound for which the effect in the in vitro assay correlated with a reported in vivo effect. As to the newly developed TSH-screen, two compounds had an effect, namely, thyroid-stimulating hormone (TSH) induced and T4 antagonized FRTL-5 cell proliferation. These effects correlated with in vivo changes induced by these compounds on thyroid weight. Altogether, the results indicate that most of the selected compounds affect pituitary and thyroid weights by modes of action different from a direct thyroid hormone receptor (THR) or TSH receptor (TSHR)-mediated effect, and point to the need for additional in vitro tests for an ITS. Additional analysis of the T-screen revealed a positive correlation between the THR-mediated effects of the tested compounds in vitro and their effects on relative heart weight in vivo, suggesting that the T-screen may directly predict this THR-mediated in vivo adverse effect.

  14. Association between organochlorine pesticide exposure and thyroid hormones in floriculture workers.

    PubMed

    Blanco-Muñoz, Julia; Lacasaña, Marina; López-Flores, Inmaculada; Rodríguez-Barranco, Miguel; González-Alzaga, Beatriz; Bassol, Susana; Cebrian, Mariano E; López-Carrillo, Lizbeth; Aguilar-Garduño, Clemente

    2016-10-01

    Several studies have suggested that exposure to DDT may be related to changes in thyroid hormone levels in animals and humans, even though results across studies are inconsistent. The aim of this study was to assess the association between exposure to p,p'-DDE (a stable metabolite of DDT) and serum levels of thyroid hormones in floriculture workers. A longitudinal study was conducted on 136 male subjects from the States of Mexico and Morelos, Mexico, who were occupationally exposed to pesticides, during agricultural periods of high (rainy season) and low (dry season) levels of pesticide application. Using a structured questionnaire, a survey was carried out on socio-demographic characteristics, anthropometry, clinical history, alcohol and tobacco consumption, residential chemical exposure, and occupational history. Blood and urine samples were collected to determine serum levels of TSH, total T3, total T4, and p,p'-DDE, and metabolites of organophosphate pesticides (OP), respectively. The analysis of the associations between p,p'-DDE levels and thyroid hormone profile adjusting by potential confounding variables including urinary OP metabolites was carried out using multivariate generalized estimating equation (GEE) models. Our results showed that the geometric means of p,p'-DDE levels were 6.17 ng/ml and 4.71 ng/ml in the rainy and dry seasons, respectively. We observed positive associations between the serum levels of p,p'-DDE and those of total T3 (β=0.01, 95% CI: -0.009, 0.03), and total T4 (β=0.08, 95% CI:0.03, 0.14) and negative but no significant changes in TSH in male floricultural workers, supporting the hypothesis that acts as thyroid disruptor in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Optimized FPGA Implementation of the Thyroid Hormone Secretion Mechanism Using CAD Tools.

    PubMed

    Alghazo, Jaafar M

    2017-02-01

    The goal of this paper is to implement the secretion mechanism of the Thyroid Hormone (TH) based on bio-mathematical differential eqs. (DE) on an FPGA chip. Hardware Descriptive Language (HDL) is used to develop a behavioral model of the mechanism derived from the DE. The Thyroid Hormone secretion mechanism is simulated with the interaction of the related stimulating and inhibiting hormones. Synthesis of the simulation is done with the aid of CAD tools and downloaded on a Field Programmable Gate Arrays (FPGAs) Chip. The chip output shows identical behavior to that of the designed algorithm through simulation. It is concluded that the chip mimics the Thyroid Hormone secretion mechanism. The chip, operating in real-time, is computer-independent stand-alone system.

  16. Use of recombinant human thyroid-stimulating hormone for thyrotropin stimulation test in healthy, hypothyroid and euthyroid sick dogs

    PubMed Central

    Daminet, Sylvie; Fifle, Lyanne; Paradis, Manon; Duchateau, Luc; Moreau, Maxim

    2007-01-01

    Recombinant human thyroid-stimulating hormone (rhTSH) was evaluated for the diagnosis of canine hypothyroidism, using TSH response tests. Phase I stimulation tests were performed in 6 healthy dogs weighing over 20 kg, using 50 and then 100 μg of freshly reconstituted rhTSH administered intravenously. In phase II, the same dogs were stimulated by using 100 μg of rhTSH frozen for 3 months at −20°C. Phase III stimulation tests were performed by using 50 or 100 μg of freshly reconstituted or frozen rhTSH in healthy (n = 14), euthyroid sick (n = 11) and hypothyroid dogs (n = 9). A dose of 100 μg of rhTSH was judged more appropriate for dogs weighing more than 20 kg. Biological activity of rhTSH after freezing at −20°C for up to 12 weeks was maintained. When stimulated, significant (P < 0.05) increases in total thyroxine concentration were observed only in healthy and euthyroid sick dogs. Results of this study show that the rhTSH stimulation test is able to differentiate euthyroidism from hypothyroidism in dogs. PMID:18189051

  17. The chemical chaperones tauroursodeoxycholic and 4-phenylbutyric acid accelerate thyroid hormone activation and energy expenditure

    PubMed Central

    da-Silva, Wagner S.; Ribich, Scott; e Drigo, Rafael Arrojo; Castillo, Melany; Patty, Mary-Elizabeth; Bianco, Antonio C.

    2011-01-01

    Exposure of cell lines endogenously expressing the thyroid hormone activating enzyme type 2 deiodinase (D2) to the chemical chaperones tauroursodeoxycholic acid (TUDCA) or 4-phenylbutiric acid (4-PBA) increases D2 expression, activity and T3 production. In brown adipocytes, TUDCA or 4-PBA induced T3-dependent genes and oxygen consumption (~2-fold), an effect partially lost in D2 knockout cells. In wild type, but not in D2 knockout mice, administration of TUDCA lowered the respiratory quotient, doubled brown adipose tissue D2 activity and normalized the glucose intolerance associated with high fat feeding. Thus, D2 plays a critical role in the metabolic effects of chemical chaperones. PMID:21237159

  18. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy

    PubMed Central

    Sinha, Rohit Anthony; You, Seo-Hee; Zhou, Jin; Siddique, Mobin M.; Bay, Boon-Huat; Zhu, Xuguang; Privalsky, Martin L.; Cheng, Sheue-Yann; Stevens, Robert D.; Summers, Scott A.; Newgard, Christopher B.; Lazar, Mitchell A.; Yen, Paul M.

    2012-01-01

    For more than a century, thyroid hormones (THs) have been known to exert powerful catabolic effects, leading to weight loss. Although much has been learned about the molecular mechanisms used by TH receptors (TRs) to regulate gene expression, little is known about the mechanisms by which THs increase oxidative metabolism. Here, we report that TH stimulation of fatty acid β-oxidation is coupled with induction of hepatic autophagy to deliver fatty acids to mitochondria in cell culture and in vivo. Furthermore, blockade of autophagy by autophagy-related 5 (ATG5) siRNA markedly decreased TH-mediated fatty acid β-oxidation in cell culture and in vivo. Consistent with this model, autophagy was altered in livers of mice expressing a mutant TR that causes resistance to the actions of TH as well as in mice with mutant nuclear receptor corepressor (NCoR). These results demonstrate that THs can regulate lipid homeostasis via autophagy and help to explain how THs increase oxidative metabolism. PMID:22684107

  19. Thyroid function, Alzheimer's disease and postoperative cognitive dysfunction: a tale of dangerous liaisons?

    PubMed

    Mafrica, Federica; Fodale, Vincenzo

    2008-05-01

    Hypothyroidism and hyperthyroidism are commonly present conditions in adults, leading to neurological symptoms, affecting the central and peripheral nervous system, and to neurocognitive impairment. Several studies investigated a possible association between Alzheimer's disease (AD) and thyroid dysfunctions. Increasing evidence supports an extensive interrelationship between thyroid hormones and the cholinergic system, which is selectively and early affected in AD. Moreover, thyroid hormones negatively regulate expression of the amyloid-beta protein precursor (AbetaPP), which plays a key role in the development of AD. A condition, the so called euthyroid sick syndrome (ESS), characterized by reduced serum T_{3} and T_{4} concentrations without increased serum thyroid stimulation hormone secretion, occurs within hours after major surgery. After surgery, elderly patients often exhibit a transient, reversible state of cognitive alterations. Delirium occurs in 10-26% of general medical patients over 65, and it is associated with a significant increase in morbidity and mortality. Modifications in thyroid hormone functioning may take place as a consequence of psycho-physical stress caused by surgery, and probably as a consequence of reduced conversion of T4 into T3 by the liver engaged in metabolizing anesthetic drugs. Therefore, modifications of thyroid hormones post-surgery, might play a role in the pathogenesis of postoperative cognitive dysfunction.

  20. Prevalence of serum thyroid hormone autoantibodies in dogs with clinical signs of hypothyroidism.

    PubMed

    Nachreiner, Raymond F; Refsal, Kent R; Graham, Peter A; Bowman, Mark M

    2002-02-15

    To determine prevalence of thyroid hormone autoantibodies (THAA) in serum of dogs with clinical signs of hypothyroidism. Cohort study. 287,948 serum samples from dogs with clinical signs consistent with hypothyroidism. Serum THAA were detected by use of a radiometric assay. Correlation and chi2 analyses were used to determine whether prevalence varied with breed, age, sex, or body weight. Only breeds for which > or = 50 samples had been submitted were used for analysis of breed prevalence. Thyroid hormone autoantibodies were detected in 18,135 (6.3%) samples. The 10 breeds with the highest prevalence of THAA were the Pointer, English Setter, English Pointer, Skye Terrier, German Wirehaired Pointer, Old English Sheepdog, Boxer, Maltese, Kuvasz, and Petit Basset Griffon Vendeen. Prevalence was significantly correlated with body weight and was highest in dogs between 2 and 4 years old. Females were significantly more likely to have THAA than were males. Thyroid hormone autoantibodies may falsely increase measured triiodothyronine (T3) and thyroxine (T4) concentrations in dogs; results suggest that T3 concentration may be falsely increased in approximately 57 of 1,000 dogs with hypothyroidism and that T4 concentration may be falsely increased in approximately 17 of 1,000 dogs with hypothyroidism. Results also suggested that dogs of certain breeds were significantly more or less likely to have THAA than were dogs in general.

  1. Thyroid hormone treatment among pregnant women with subclinical hypothyroidism: US national assessment.

    PubMed

    Maraka, Spyridoula; Mwangi, Raphael; McCoy, Rozalina G; Yao, Xiaoxi; Sangaralingham, Lindsey R; Singh Ospina, Naykky M; O'Keeffe, Derek T; De Ycaza, Ana E Espinosa; Rodriguez-Gutierrez, Rene; Coddington, Charles C; Stan, Marius N; Brito, Juan P; Montori, Victor M

    2017-01-25

     To estimate the effectiveness and safety of thyroid hormone treatment among pregnant women with subclinical hypothyroidism.  Retrospective cohort study.  Large US administrative database between 1 January 2010 and 31 December 2014.  5405 pregnant women with subclinical hypothyroidism, defined as untreated thyroid stimulating hormone (TSH) concentration 2.5-10 mIU/L.  Thyroid hormone therapy.  Pregnancy loss and other pre-specified maternal and fetal pregnancy related adverse outcomes.  Among 5405 pregnant women with subclinical hypothyroidism, 843 with a mean pre-treatment TSH concentration of 4.8 (SD 1.7) mIU/L were treated with thyroid hormone and 4562 with a mean baseline TSH concentration of 3.3 (SD 0.9) mIU/L were not treated (P<0.01). Pregnancy loss was significantly less common among treated women (n=89; 10.6%) than among untreated women (n=614; 13.5%) (P<0.01). Compared with the untreated group, treated women had lower adjusted odds of pregnancy loss (odds ratio 0.62, 95% confidence interval 0.48 to 0.82) but higher odds of preterm delivery (1.60, 1.14 to 2.24), gestational diabetes (1.37, 1.05 to 1.79), and pre-eclampsia (1.61, 1.10 to 2.37); other pregnancy related adverse outcomes were similar between the two groups. The adjusted odds of pregnancy loss were lower in treated women than in untreated women if their pre-treatment TSH concentration was 4.1-10 mIU/L (odds ratio 0.45, 0.30 to 0.65) but not if it was 2.5-4.0 mIU/L (0.91, 0.65 to 1.23) (P<0.01).  Thyroid hormone treatment was associated with decreased risk of pregnancy loss among women with subclinical hypothyroidism, especially those with pre-treatment TSH concentrations of 4.1-10 mIU/L. However, the increased risk of other pregnancy related adverse outcomes calls for additional studies evaluating the safety of thyroid hormone treatment in this patient population. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go

  2. Hypothalamic-Pituitary-Thyroid Axis Perturbations in Male Mice by CNS-Penetrating Thyromimetics.

    PubMed

    Ferrara, Skylar J; Bourdette, Dennis; Scanlan, Thomas S

    2018-07-01

    Thyromimetics represent a class of experimental drugs that can stimulate tissue-selective thyroid hormone action. As such, thyromimetics should have effects on the hypothalamic-pituitary-thyroid (HPT) axis, but details of this action and the subsequent effects on systemic thyroid hormone levels have not been reported to date. Here, we compare the HPT-axis effects of sobetirome, a well-studied thyromimetic, with Sob-AM2, a newly developed prodrug of sobetirome that targets sobetirome distribution to the central nervous system (CNS). Similar to endogenous thyroid hormone, administration of sobetirome and Sob-AM2 suppress HPT-axis gene transcript levels in a manner that correlates to their specific tissue distribution properties (periphery vs CNS, respectively). Dosing male C57BL/6 mice with sobetirome and Sob-AM2 at concentrations ≥10 μg/kg/d for 29 days induces a state similar to central hypothyroidism characterized by depleted circulating T4 and T3 and normal TSH levels. However, despite the systemic T4 and T3 depletion, the sobetirome- and Sob-AM2-treated mice do not show signs of hypothyroidism, which may result from the presence of the thyromimetic in the thyroid hormone-depleted background.

  3. Analysis of iodine-131-induced early thyroid hormone variations in Graves' disease.

    PubMed

    Xu, Feng; Gu, Aichun; Pan, Yifan; Yang, Liwen; Ma, Yubo

    2016-11-01

    This prospective study aimed to assess iodine-131 (I)-induced early thyroid hormone variations in Graves' disease (GD) and determine the associated factors. One hundred and seventy-one GD patients treated with I were evaluated (47 men, 124 women). I was administered at 9.0±4.9 mCi on average. Serum free triiodothyronine and free thyroxin were measured within 24 h before treatment and 8 (3-14) days after treatment. Patients were divided into increase, no change, and decrease groups, respectively, on the basis of hormone variations after treatment. χ-Test, analysis of variance, and the Kruskal-Wallis test were used to compare groups in terms of sex, age, course of disease, thyroid stimulating hormone receptor antibodies, antithyroid drug (ATD) pretreatment time, time of ATD discontinuation before I treatment, 24 h thyroid I uptake, thyroid weight, I activity, and I activity/thyroid weight (μCi/g). The Spearman method was used for correlation analyses. Twenty-seven, 20, and 124 cases were assigned to increase, no change, and decrease groups, respectively. Significant differences were found among groups in the time of ATD discontinuation before I treatment [the median duration for methimazole was 11 (5-26), 16 (10-30), and 21 (1-30) days, P=0.000, the median duration for propylthiouracil was 12.5 (5-24), 22 (11-26), and 26 (21-30) days, P=0.000], thyroid weight (93.5±33.6, 90.3±48.8, and 74.1±26.0 g, P=0.003), and μCi/g (84.8±11.8, 100.4±24.9, and 121.1±44.0 μCi/g, P=0.000). Interestingly, μCi/g was negatively and positively correlated to the possibility of hormone increase and decrease, respectively. No significant differences were found in the other parameters assessed. At the early stage of I treatment for GD, few patients showed increased thyroid hormone levels. Key factors may include time of ATD discontinuation before I treatment and μCi/g. High μCi/g might decrease thyroid hormone levels in early treatment, making it safe.

  4. Generalized Resistance to Thyroid Hormone Associated with a Mutation in the Ligand-Binding Domain of the Human Thyroid Hormone Receptor β

    NASA Astrophysics Data System (ADS)

    Sakurai, Akihiro; Takeda, Kyoko; Ain, Kenneth; Ceccarelli, Paola; Nakai, Akira; Seino, Susumu; Bell, Graeme I.; Refetoff, Samuel; Degroot, Leslie J.

    1989-11-01

    The syndrome of generalized resistance to thyroid hormone is characterized by elevated circulating levels of thyroid hormone in the presence of an overall eumetabolic state and failure to respond normally to triiodothyronine. We have evaluated a family with inherited generalized resistance to thyroid hormone for abnormalities in the thyroid hormone nuclear receptors. A single guanine --> cytosine replacement in the codon for amino acid 340 resulted in a glycine --> arginine substitution in the hormone-binding domain of one of two alleles of the patient's thyroid hormone nuclear receptor β gene. In vitro translation products of this mutant human thyroid hormone nuclear receptor β gene did not bind triiodothyronine. Thus, generalized resistance to thyroid hormone can result from expression of an abnormal thyroid hormone nuclear receptor molecule.

  5. Exposure to polychlorinated biphenyls and the thyroid gland - examining and discussing possible longitudinal health effects in humans.

    PubMed

    Gaum, Petra M; Lang, Jessica; Esser, André; Schettgen, Thomas; Neulen, Joseph; Kraus, Thomas; Gube, Monika

    2016-07-01

    Many previous studies have dealt with the effect of polychlorinated biphenyls (PCBs) on the thyroid gland, but their findings are inconsistent. One problem of these studies has been their use of cross-sectional designs. The aim of the current study is to investigate longitudinal effects of PCBs on the thyroid gland, focusing on: morphological changes in thyroid tissue (i.e. thyroid volume), changes in thyroid hormones and in thyroid antibodies. A total of 122 individuals (Mage=44.7) were examined over a period of four years (t(1) until t(4)). Medical history was collected via interviews, an ultrasound examination was performed and blood samples were taken to determine plasma PCB levels, thyroid stimulating hormone (TSH), free triiodthyronine (fT3), free thyroxine (fT4), thyroid peroxidase antibodies (TPOab), thyreoglobulin antibodies (TGab) and thyroid-stimulating hormone receptor antibodies (TSHRab). Rank correlation coefficients and mixed effect models were performed controlling for age and total lipids. There were negative correlations between higher chlorinated biphenyls and fT3, cross-sectionally as well as longitudinally. We also found an interaction effect of higher-chlorinated PCBs over time for fT4 as well as TSHRab. In case of high exposure, a decrease in fT4 and an increase in TSHRab level were found over time. In regards to the other variables, our findings yielded no clear results in the examined time period. This is the first study to shows a PCB-related effect on fT3, fT4 and TSHRab over a four year period. The data also suggest that morphological and antibody findings remain inconsistent and do not allow for unambiguous interpretation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Evidence that thyroid hormone induces olfactory cellular proliferation in salmon during a sensitive period for imprinting.

    PubMed

    Lema, Sean C; Nevitt, Gabrielle A

    2004-09-01

    Salmon have long been known to imprint and home to natal stream odors, yet the mechanisms driving olfactory imprinting remain obscure. The timing of imprinting is associated with elevations in plasma thyroid hormone levels, with possible effects on growth and proliferation of the peripheral olfactory system. Here, we begin to test this idea by determining whether experimentally elevated plasma levels of 3,5,3'-triiodothyronine (T(3)) influence cell proliferation as detected by the 5-bromo-2'-deoxyuridine (BrdU) cell birth-dating technique in the olfactory epithelium of juvenile coho salmon (Oncorhynchus kisutch). We also explore how natural fluctuations in thyroxine (T(4)) relate to proliferation in the epithelium during the parr-smolt transformation. In both studies, we found that BrdU labeled both single and clusters of mitotic cells. The total number of BrdU-labeled cells in the olfactory epithelium was significantly greater in fish with artificially elevated T(3) compared with placebo controls. This difference in proliferation was restricted to the basal region of the olfactory epithelium, where multipotent progenitor cells differentiate into olfactory receptor neurons. The distributions of mitotic cluster sizes differed significantly from a Poisson distribution for both T(3) and placebo treatments, suggesting that proliferation tends to be non-random. Over the course of the parr-smolt transformation, changes in the density of BrdU cells showed a positive relationship with natural fluctuations in plasma T(4). This relationship suggests that even small changes in thyroid activity can stimulate the proliferation of neural progenitor cells in the salmon epithelium. Taken together, our results establish a link between the thyroid hormone axis and measurable anatomical changes in the peripheral olfactory system.

  7. Change of body height is regulated by thyroid hormone during metamorphosis in flatfishes and zebrafish.

    PubMed

    Xu, Juan; Ke, Zhonghe; Xia, Jianhong; He, Fang; Bao, Baolong

    2016-09-15

    Flatfishes with more body height after metamorphosis should be better adapted to a benthic lifestyle. In this study, we quantified the changes in body height during metamorphosis in two flatfish species, Paralichthys olivaceus and Platichthys stellatus. The specific pattern of cell proliferation along the dorsal and ventral edge of the body to allow fast growth along the dorsal/ventral axis might be related to the change of body height. Thyroid hormone (T4 and T3) and its receptors showed distribution or gene expression patterns similar to those seen for the cell proliferation. 2-Mercapto-1-methylimidazole, an inhibitor of endogenous thyroid hormone synthesis, inhibited cell proliferation and decreased body height, suggesting that the change in body shape was dependent on the local concentration of thyroid hormone to induce cell proliferation. In addition, after treatment with 2-mercapto-1-methylimidazole, zebrafish larvae were also shown to develop a slimmer body shape. These findings enrich our knowledge of the role of thyroid hormone during flatfish metamorphosis, and the role of thyroid hormone during the change of body height during post-hatching development should help us to understand better the biology of metamorphosis in fishes. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Comparison of cortisol and thyroid hormones between tuberculosis-suspect and healthy elephants of Nepal.

    PubMed

    Paudel, Sarad; Brown, Janine L; Thapaliya, Sharada; Dhakal, Ishwari P; Mikota, Susan K; Gairhe, Kamal P; Shimozuru, Michito; Tsubota, Toshio

    2016-12-01

    We compared cortisol and thyroid hormone (T3 and T4) concentrations between tuberculosis (TB)-suspected (n=10) and healthy (n=10) elephants of Nepal. Whole blood was collected from captive elephants throughout Nepal, and TB testing was performed using the ElephantTB STAT-PAK ® and DPP VetTB ® serological assays that detect antibodies against Mycobacterium tuberculosis and M. bovis in elephant serum. Cortisol, T3 and T4 were quantified by competitive enzyme immunoassays, and the results showed no significant differences in hormone concentrations between TB-suspect and healthy elephants. These preliminary data suggest neither adrenal nor thyroid function is altered by TB disease status. However, more elephants, including those positively diagnosed for TB by trunk wash cultures, need to be evaluated over time to confirm results.

  9. Thyroid hormones and mortality risk in euthyroid individuals: the Kangbuk Samsung health study.

    PubMed

    Zhang, Yiyi; Chang, Yoosoo; Ryu, Seungho; Cho, Juhee; Lee, Won-Young; Rhee, Eun-Jung; Kwon, Min-Jung; Pastor-Barriuso, Roberto; Rampal, Sanjay; Han, Won Kon; Shin, Hocheol; Guallar, Eliseo

    2014-07-01

    Hyperthyroidism and hypothyroidism, both overt and subclinical, are associated with all-cause and cardiovascular mortality. The association between thyroid hormones and mortality in euthyroid individuals, however, is unclear. To examine the prospective association between thyroid hormones levels within normal ranges and mortality endpoints. A prospective cohort study of 212 456 middle-aged South Korean men and women who had normal thyroid hormone levels and no history of thyroid disease at baseline from January 1, 2002 to December 31, 2009. Free T4 (FT4), free T3 (FT3), and TSH levels were measured by RIA. Vital status and cause of death ascertainment were based on linkage to the National Death Index death certificate records. After a median follow-up of 4.3 years, 730 participants died (335 deaths from cancer and 112 cardiovascular-related deaths). FT4 was inversely associated with all-cause mortality (HR = 0.77, 95% confidence interval 0.63-0.95, comparing the highest vs lowest quartile of FT4; P for linear trend = .01), and FT3 was inversely associated cancer mortality (HR = 0.62, 95% confidence interval 0.45-0.85; P for linear trend = .001). TSH was not associated with mortality endpoints. In a large cohort of euthyroid men and women, FT4 and FT3 levels within the normal range were inversely associated with the risk of all-cause mortality and cancer mortality, particularly liver cancer mortality.

  10. EFFECTS OF BDE-47 ON NUCLEAR RECEPTOR REGULATED GENES AND IMPLICATIONS FOR THYROID HORMONE DISRUPTION.

    EPA Science Inventory

    Previous studies have shown that exposure to polybrominated diphenyl ethers (PBDEs) can decrease thyroid hormone levels via the induction of hepatic uridinediphosphate-glucoronosyltransferase, (UGTs) which catalyze glucuronidation of T4 resulting in T4-glucuronide excretion. Bas...

  11. Serum thyroid-stimulating hormone and cognition in older people.

    PubMed

    Ojala, Anna K; Schalin-Jäntti, Camilla; Pitkälä, Kaisu H; Tilvis, Reijo S; Strandberg, Timo E

    2016-01-01

    high TSH concentrations and cognitive decline are both very common among older people and could be linked. to assess cognition in our cohort of 335 home-dwelling older people (75 years and older) and to cross-sectionally relate the results to thyroid-stimulating hormone (TSH) concentrations. Our special focus was on the upper normal TSH range and subclinical hypothyroidism. cognitive performance was evaluated using the Consortium to Establish a Registry for Alzheimer's disease neuropsychological battery (CERAD-nb). The Clinical Dementia Rating (CDR) scale was used to evaluate severity of cognitive disorder. The APOEε4 genotype was also defined. Subjects were divided into quartiles based on the TSH concentrations, and results were compared between these groups. expected relations were observed between CERAD domains and both educational level and APOEε4 genotype. Female sex significantly associated with better performance in Boston naming (OR = 0.48; 95% CI = 0.27-0.85). In the whole cohort, higher TSH concentrations tended to associate with better scores in most parts of the CERAD-nb tests, but differences were not statistically significant. However, subjects with the highest TSH concentration (90th TSH percentile, range 4.14-14.4 mU/l) had better CDR scores compared with subjects with the lowest TSH concentration (10th percentile, range 0.001-0.63 mIU/l; OR 0.10; 95% CI 0.014-0.76). our results do not support the notion that higher TSH concentrations, not even in the range of subclinical hypothyroidism, would adversely affect cognition among older people. © The Author 2015. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Transducin β-like 1, X-linked and nuclear receptor co-‍repressor cooperatively augment the ligand-independent stimulation of TRH and TSHβ gene promoters by thyroid hormone receptors.

    PubMed

    Takamizawa, Tetsuya; Satoh, Tetsurou; Miyamoto, Tomoko; Nakajima, Yasuyo; Ishizuka, Takahiro; Tomaru, Takuya; Yoshino, Satoshi; Katano-Toki, Akiko; Nishikido, Ayaka; Sapkota, Santosh; Watanabe, Takuya; Okamura, Takashi; Ishida, Emi; Horiguchi, Kazuhiko; Matsumoto, Syunichi; Ishii, Sumiyasu; Ozawa, Atsushi; Shibusawa, Nobuyuki; Okada, Shuichi; Yamada, Masanobu

    2018-05-23

    Mutations in TBL1X, a component of the nuclear receptor co-repressor (N-CoR) and silencing mediator of retinoic acid and thyroid hormone receptor co-repressor complexes, have recently been implicated in isolated central hypothyroidism (CeH). However, the mechanisms by which TBL1X mutations affect negative feedback regulation in the hypothalamus-pituitary-thyroid axis remain unclear. N-CoR was previously reported to paradoxically enhance the ligand-independent stimulation of TRH and TSHβ gene promoters by thyroid hormone receptors (TR) in cell culture systems. We herein investigated whether TBL1X affects the unliganded TR-mediated stimulation of the promoter activities of genes negatively regulated by T3 in cooperation with N-CoR. In a hypothalamic neuronal cell line, the unliganded TR-mediated stimulation of the TRH gene promoter was significantly enhanced by co-transfected TBL1X, and the co-transfection of TBL1X with N-CoR further enhanced promoter activity. In contrast, the knockdown of endogenous Tbl1x using short interfering RNA significantly attenuated the N-CoR-mediated enhancement of promoter activity in the presence of unliganded TR. The co-transfection of N365Y or Y458C, TBL1X mutants identified in CeH patients, showed impaired co-activation with N-CoR for the ligand-independent stimulation of the TRH promoter by TR. In the absence of T3, similar or impaired enhancement of the TSHβ gene promoter by the wild type or TBL1X mutants, respectively, was observed in the presence of co-transfected TR and N-CoR in CV-1 cells. These results suggest that TBL1X is needed for the full activation of TRH and TSHβ gene promoters by unliganded TR. Mutations in TBL1X may cause CeH due to the impaired up-regulation of TRH and/or TSHβ gene transcription despite low T3 levels.

  13. Toxicological effects of clofibric acid and diclofenac on plasma thyroid hormones of an Indian major carp, Cirrhinus mrigala during short and long-term exposures.

    PubMed

    Saravanan, Manoharan; Hur, Jang-Hyun; Arul, Narayanasamy; Ramesh, Mathan

    2014-11-01

    In the present investigation, the toxicity of most commonly detected pharmaceuticals in the aquatic environment namely clofibric acid (CA) and diclofenac (DCF) was investigated in an Indian major carp Cirrhinus mrigala. Fingerlings of C. mrigala were exposed to different concentrations (1, 10 and 100μgL(-1)) of CA and DCF for a period of 96h (short term) and 35 days (long term). The toxic effects of CA and DCF on thyroid hormones (THs) such as thyroid stimulating hormone (TSH), thyroxine (T4) and triiodothyronine (T3) levels were evaluated. During the short and long-term exposure period TSH level was found to be decreased at all concentrations of CA (except at the end of 14(th) day in 1 and 10μgL(-l) and 21(st) day in 1μgL(-l)) whereas in DCF exposed fish TSH level was found to be increased when compared to control groups. T4 level was found to be decreased at 1 and 100μgL(-l) of CA exposure at the end of 96h. However, T4 level was decreased at all concentrations of CA and DCF during long-term (35 days) exposure period. Fish exposed to all concentrations of CA and DCF had lower level of T3 in both the treatments. These results suggest that both CA and DCF drugs induced significant changes (P<0.01 and P<0.05) on thyroid hormonal levels of C. mrigala. The alterations of these hormonal levels can be used as potential biomarkers in monitoring of pharmaceutical drugs in aquatic organisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Subclinical hypothyroidism diagnosed by thyrotropin-releasing hormone stimulation test in infertile women with basal thyroid-stimulating hormone levels of 2.5 to 5.0 mIU/L.

    PubMed

    Lee, You-Jeong; Kim, Chung-Hoon; Kwack, Jae-Young; Ahn, Jun-Woo; Kim, Sung-Hoon; Chae, Hee-Dong; Kang, Byung-Moon

    2014-11-01

    To investigate the prevalence of subclinical hypothyroidism (SH) diagnosed by thyrotropin-releasing hormone (TRH) stimulating test in infertile women with basal thyroid-stimulating hormone (TSH) levels of 2.5 to 5.0 mIU/L. This study was performed in 39 infertile women with ovulatory disorders (group 1) and 27 infertile women with male infertility only (group 2, controls) who had basal serum TSH levels of 2.5 to 5.0 mIU/L and a TRH stimulating test. Serum TSH levels were measured before TRH injection (TSH0) and also measured at 20 minutes (TSH1) and 40 minutes (TSH2) following intravenous injection of 400 µg TRH. Exaggerated TSH response above 30 mIU/L following TRH injection was diagnosed as SH. Group 1 was composed of poor responders (subgroup A), patients with polycystic ovary syndrome (subgroup B) and patients with WHO group II anovulation except poor responder or polycystic ovary syndrome (subgroup C). The prevalence of SH was significantly higher in group 1 of 46.2% (18/39) compared with 7.4% (2/27) in group 2 (P=0.001). TSH0, TSH1, and TSH2 levels were significantly higher in group 1 than the corresponding values in group 2 (P<0.001, P<0.001, P<0.001). In group 1, TSH1 and TSH2 levels were significantly lower in subgroup C compared with those in subgroup A and B (P=0.008, P=0.006, respectively). TRH stimulation test had better be performed in infertile women with ovulatory disorders who have TSH levels between 2.5 and 5.0 mIU/L for early detection and appropriate treatment of SH.

  15. Soy isoflavones interfere with thyroid hormone homeostasis in orchidectomized middle-aged rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šošić-Jurjević, Branka, E-mail: brankasj@ibiss.bg.ac.rs; Filipović, Branko; Wirth, Eva Katrin

    We previously reported that genistein (G) and daidzein (D) administered subcutaneously (10 mg/kg) induce changes in the angio-follicular units of the thyroid gland, reduce concentration of total thyroid hormones (TH) and increase thyrotropin (TSH) in serum of orchidectomized middle-aged (16-month-old) rats. To further investigate these effects, we now examined expression levels of the thyroglobulin (Tg), thyroperoxidase (Tpo), vascular endothelial growth factor A (Vegfa) and deiodinase type 1 (Dio 1) genes in the thyroid; in the pituitary, genes involved in TH feedback control (Tsh β, Dio 1, Dio 2, Trh receptor); and in the liver and kidney, expression of T{sub 3}-activatedmore » genes Dio 1 and Spot 14, as well as transthyretin (Ttr), by quantitative real-time PCR. We also analyzed TPO-immunopositivity and immunofluorescence of T{sub 4} bound to Tg, determined thyroid T{sub 4} levels and measured deiodinase enzyme activities in examined organs. Decreased expression of Tg and Tpo genes (p < 0.05) correlated with immunohistochemical staining results, and together with decreased serum total T{sub 4} levels, indicates decreased Tg and TH synthesis following treatments with both isoflavones. However, expression of Spot 14 (p < 0.05) gene in liver and kidney was up-regulated, and liver Dio 1 expression and activity (p < 0.05) increased. At the level of pituitary, no significant change in gene expression levels, or Dio 1 and 2 enzyme activities was observed. In conclusion, both G and D impaired Tg and TH synthesis, but at the same time increased tissue availability of TH in peripheral tissues of Orx middle-aged rats. - Highlights: • We tested how genistein and daidzein interfere with thyroid hormone homeostasis. • Thyroid: decreased expression of Tg and TPO genes correlated with IHC results. • Serum: total T{sub 4} reduced and TSH increased. • Liver and kidney: expression of Spot 14 and liver Dio 1 activity increased. • Pituitary: expression of T{sub 3

  16. Prognostic Value of Thyroid Hormone Levels in Patients Evaluated for Liver Transplantation

    PubMed Central

    Van Thiel, David H.; Udani, Mahendra; Schade, Robert R.; Sanghvi, Agit; Starzl, Thomas E.

    2010-01-01

    The thyroid hormones T4, T3, rT3 and TSH were assayed in 134 adult patients evaluated and accepted as potential liver transplant candidates at the University of Pittsburgh from March, 1981 to December, 1983. The subsequent course of these patients was evaluated with respect to the levels of these hormones obtained at the time of acceptance for transplantation. T4 levels were increased significantly while their T3 levels were reduced (both p < 0.01) in those who survived and were discharged home as compared to either those who died waiting to be transplanted or died following the procedure. As a result, the ratio of T3/T4 was reduced markedly (p < 0.01) in those who were transplanted and survived as compared to those not transplanted or dying following transplantation. Importantly, the rT3 levels clearly separated (p < 0.01) those who would die prior to transplantation from those who would survive to be transplanted. Finally, the ratio rT3/T3 even more clearly separates those who will die prior to transplantation (p < 0.01) from the other two groups. These data suggest that thyroid hormone levels, particularly rT3 levels, might be useful in setting priorities for which patients referred for a transplantation evaluation should be accepted into the program and in determining who among accepted patients should be operated upon in preference to others also accepted and waiting to be transplanted. PMID:2993148

  17. Thyroid hormones and skeletal muscle — new insights and potential implications

    PubMed Central

    Salvatore, Domenico; Simonides, Warner S.; Dentice, Monica; Zavacki, Ann Marie; Larsen, P. Reed

    2014-01-01

    Thyroid hormone signalling regulates crucial biological functions, including energy expenditure, thermogenesis, development and growth. The skeletal muscle is a major target of thyroid hormone signalling. The type two (DIO2) and three (DIO3) iodothyronine deiodinases have been identified in skeletal muscle. DIO2 expression is tightly regulated and catalyzes outer ring monodeiodination of the secreted prohormone tetraiodothyronine (T4) to generate the active hormone triiodothyronine (T3). T3 may remain in the myocyte to signal through nuclear receptors or exit the cell to mix with the extracellular pool. By contrast, DIO3 inactivates T3 through removal of an inner ring iodine. Regulation of the expression and activity of deiodinases constitutes a cell-autonomous, pre-receptor mechanism for controlling the intracellular concentration of T3. This local control of T3 activity is crucial during the various phases of myogenesis. Here, we review the roles of T3 in skeletal muscle development and homeostasis, with a focus on the emerging local deiodinase-mediated control of T3 signalling. Moreover, we discuss these novel findings in the context of both muscle homeostasis and pathology, and examine how they can be therapeutically harnessed to improve satellite cell-mediated muscle repair in patients with skeletal muscle disorders, muscle atrophy or injury. PMID:24322650

  18. Synthetic gene network restoring endogenous pituitary–thyroid feedback control in experimental Graves’ disease

    PubMed Central

    Saxena, Pratik; Charpin-El Hamri, Ghislaine; Folcher, Marc; Zulewski, Henryk; Fussenegger, Martin

    2016-01-01

    Graves’ disease is an autoimmune disorder that causes hyperthyroidism because of autoantibodies that bind to the thyroid-stimulating hormone receptor (TSHR) on the thyroid gland, triggering thyroid hormone release. The physiological control of thyroid hormone homeostasis by the feedback loops involving the hypothalamus–pituitary–thyroid axis is disrupted by these stimulating autoantibodies. To reset the endogenous thyrotrophic feedback control, we designed a synthetic mammalian gene circuit that maintains thyroid hormone homeostasis by monitoring thyroid hormone levels and coordinating the expression of a thyroid-stimulating hormone receptor antagonist (TSHAntag), which competitively inhibits the binding of thyroid-stimulating hormone or the human autoantibody to TSHR. This synthetic control device consists of a synthetic thyroid-sensing receptor (TSR), a yeast Gal4 protein/human thyroid receptor-α fusion, which reversibly triggers expression of the TSHAntag gene from TSR-dependent promoters. In hyperthyroid mice, this synthetic circuit sensed pathological thyroid hormone levels and restored the thyrotrophic feedback control of the hypothalamus–pituitary–thyroid axis to euthyroid hormone levels. Therapeutic plug and play gene circuits that restore physiological feedback control in metabolic disorders foster advanced gene- and cell-based therapies. PMID:26787873

  19. Maternal phthalate exposure during the first trimester and serum thyroid hormones in pregnant women and their newborns.

    PubMed

    Yao, Hui-Yuan; Han, Yan; Gao, Hui; Huang, Kun; Ge, Xing; Xu, Yuan-Yuan; Xu, Ye-Qing; Jin, Zhong-Xiu; Sheng, Jie; Yan, Shuang-Qin; Zhu, Peng; Hao, Jia-Hu; Tao, Fang-Biao

    2016-08-01

    Animal and human studies have suggested that phthalate alters thyroid hormone concentrations. This study investigated the associations between phthalate exposure during the first trimester and thyroid hormones in pregnant women and their newborns. Pregnant women were enrolled from the prospective Ma'anshan Birth Cohort study in China. A standard questionnaire was completed by the women at the first antenatal visit. Seven phthalate metabolites were measured in one-spot urine at enrolment (10.0 ± 2.1 gestational weeks), as were thyroid hormone levels in maternal and cord sera. Multivariable linear regression showed that 1-standard deviation (SD) increase in natural log (ln)-transformed mono(2-ethylhexyl) phthalate (MEHP) and mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) was associated with 0.163 μg/dL (p = 0.001) and 0.173 μg/dL (p = 0.001) decreases in maternal total thyroxine (TT4). Both MEHP and MEHHP were negatively associated with maternal free thyroxine (FT4; β: -0.013, p < 0.001 and β: -0.011, p = 0.001, respectively) and positively associated with maternal thyroid-stimulating hormone (β: 0.101, p < 0.001; β: 0.132, p < 0.001, respectively). An inverse association was observed between monobenzyl phthalate and maternal TT4 and FT4. A 1-SD increase in ln-transformed monoethyl phthalate was inversely associated with maternal TT4 (β: -0.151, p = 0.002). By contrast, the concentrations of phthalate metabolites in urine were not associated with those of thyroid hormone in cord serum. Our analysis suggested that phthalate exposure during the first trimester disrupts maternal thyroid hormone levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Relationship between levels of thyroid stimulating hormone, age, and gender, with symptoms of depression among patients with thyroid disorders as measured by the Depression Anxiety Stress Scale 21 (DASS-21).

    PubMed

    Saidi, Sanisah; Iliani Jaafar, Siti Nur; Daud, Azlina; Musa, Ramli; Nik Ahmad, Nik Noor Fatnoon

    2018-02-01

    The aim of this study was to investigate the correlation between levels of depression symptoms and age, thyroid-stimulating hormone levels, and stressful life events of the participants. Patients above 18 years old, with any thyroid disorders, and without psychiatric disorders were included in this study. All participants completed the Depression Anxiety Stress Scale 21 (DASS-21). The depression symptom score was calculated and interpreted as follows: less than 9: no depression; between 10 and 13: mild depression; between 14 and 20: moderate depression; between 21 and 27: severe depression, and more than 28: extremely severe depression. The total number of participants in this study was 199. There was no correlation between age, thyroid stimulating hormone, and the DASS score. There was also no significant difference in the DASS-21 score between genders. However, there was a positive correlation between depression symptoms and stressful life events (r=0.201, n=199, p < 0.05). These findings would suggest that increased depression symptom scores correlate with increased stressful life events. A larger study should be undertaken to confirm these findings. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  1. Successful every-other-day liothyronine therapy for severe resistance to thyroid hormone beta with a novel THRB mutation; case report.

    PubMed

    Maruo, Yoshihiro; Mori, Asami; Morioka, Yoriko; Sawai, Chihiro; Mimura, Yu; Matui, Katsuyuki; Takeuchi, Yoshihiro

    2016-01-12

    Resistance to thyroid hormone beta (RTHβ) is a rare and usually dominantly inherited syndrome caused by mutations of the thyroid hormone receptor β gene (THRB). In severe cases, it is rarely challenging to control manifestations using daily therapeutic replacement of thyroid hormone. The present case study concerns an 8-year-old Japanese girl with a severe phenotype of RTH (TSH, fT3, and fT4 were 34.0 mU/L, >25.0 pg/mL and, >8.0 ng/dL, respectively), caused by a novel heterozygous frameshift mutation in exon 10 of the thyroid hormone receptor beta gene (THRB), c.1347-1357 del actcttccccc : p.E449DfsX11. RTH was detected at the neonatal screening program. At 4 years of age, the patient continued to suffer from mental retardation, hyperactivity, insomnia, and reduced resting energy expenditure (REE), despite daily thyroxine (L-T4) therapy. Every-other-day high-dose liothyronine (L-T3) therapy improved her symptoms and increased her REE, without thyrotoxicosis. In a case of severe RTH, every-other-day L-T3 administration enhanced REE and psychomotor development, without promoting symptoms of thyrotoxicosis. Every-other-day L-T3 administration may be an effective strategy for the treatment of severe RTH.

  2. Increased Oxidative Metabolism and Neurotransmitter Cycling in the Brain of Mice Lacking the Thyroid Hormone Transporter Slc16a2 (Mct8)

    PubMed Central

    Rodrigues, Tiago B.; Ceballos, Ainhoa; Grijota-Martínez, Carmen; Nuñez, Barbara; Refetoff, Samuel; Cerdán, Sebastian; Morte, Beatriz; Bernal, Juan

    2013-01-01

    Mutations of the monocarboxylate transporter 8 (MCT8) cause a severe X-linked intellectual deficit and neurological impairment. MCT8 is a specific thyroid hormone (T4 and T3) transporter and the patients also present unusual abnormalities in the serum profile of thyroid hormone concentrations due to altered secretion and metabolism of T4 and T3. Given the role of thyroid hormones in brain development, it is thought that the neurological impairment is due to restricted transport of thyroid hormones to the target neurons. In this work we have investigated cerebral metabolism in mice with Mct8 deficiency. Adult male mice were infused for 30 minutes with (1-13C) glucose and brain extracts prepared and analyzed by 13C nuclear magnetic resonance spectroscopy. Genetic inactivation of Mct8 resulted in increased oxidative metabolism as reflected by increased glutamate C4 enrichment, and of glutamatergic and GABAergic neurotransmissions as observed by the increases in glutamine C4 and GABA C2 enrichments, respectively. These changes were distinct to those produced by hypothyroidism or hyperthyroidism. Similar increments in glutamate C4 enrichment and GABAergic neurotransmission were observed in the combined inactivation of Mct8 and D2, indicating that the increased neurotransmission and metabolic activity were not due to increased production of cerebral T3 by the D2-encoded type 2 deiodinase. In conclusion, Mct8 deficiency has important metabolic consequences in the brain that could not be correlated with deficiency or excess of thyroid hormone supply to the brain during adulthood. PMID:24098341

  3. Increased oxidative metabolism and neurotransmitter cycling in the brain of mice lacking the thyroid hormone transporter SLC16A2 (MCT8).

    PubMed

    Rodrigues, Tiago B; Ceballos, Ainhoa; Grijota-Martínez, Carmen; Nuñez, Barbara; Refetoff, Samuel; Cerdán, Sebastian; Morte, Beatriz; Bernal, Juan

    2013-01-01

    Mutations of the monocarboxylate transporter 8 (MCT8) cause a severe X-linked intellectual deficit and neurological impairment. MCT8 is a specific thyroid hormone (T4 and T3) transporter and the patients also present unusual abnormalities in the serum profile of thyroid hormone concentrations due to altered secretion and metabolism of T4 and T3. Given the role of thyroid hormones in brain development, it is thought that the neurological impairment is due to restricted transport of thyroid hormones to the target neurons. In this work we have investigated cerebral metabolism in mice with Mct8 deficiency. Adult male mice were infused for 30 minutes with (1-(13)C) glucose and brain extracts prepared and analyzed by (13)C nuclear magnetic resonance spectroscopy. Genetic inactivation of Mct8 resulted in increased oxidative metabolism as reflected by increased glutamate C4 enrichment, and of glutamatergic and GABAergic neurotransmissions as observed by the increases in glutamine C4 and GABA C2 enrichments, respectively. These changes were distinct to those produced by hypothyroidism or hyperthyroidism. Similar increments in glutamate C4 enrichment and GABAergic neurotransmission were observed in the combined inactivation of Mct8 and D2, indicating that the increased neurotransmission and metabolic activity were not due to increased production of cerebral T3 by the D2-encoded type 2 deiodinase. In conclusion, Mct8 deficiency has important metabolic consequences in the brain that could not be correlated with deficiency or excess of thyroid hormone supply to the brain during adulthood.

  4. Relationship Between the Thyroid Axis and Alcohol Craving

    PubMed Central

    Aoun, Elie G.; Lee, Mary R.; Haass-Koffler, Carolina L.; Swift, Robert M.; Addolorato, Giovanni; Kenna, George A.; Leggio, Lorenzo

    2015-01-01

    Aims: A few studies have suggested a relationship between thyroid hormones and alcohol dependence (AD) such as a blunted increase of thyroid stimulating hormone (TSH) in response to thyrotropin-releasing hormone (TRH), lower levels of circulating free triiodothyronine (fT3) and free thyroxine (fT4) levels and down regulation of the TRH receptors. The current study aimed to explore the relationship between the hormones of the thyroid axis and alcohol-seeking behaviors in a sample of alcohol-dependent patients. Methods: Forty-two treatment-seeking alcohol-dependent individuals enrolled in a 12-week treatment study were considered. The Timeline Follow Back (TLFB) was used to assess the number of drinks consumed during the 12-week period. Blood levels of thyroid hormones (TSH, fT3 and fT4) were measured prior to and at the end of treatment. Questionnaires were administered to evaluate craving for alcohol [Penn Alcohol Craving Scale (PACS) and the Obsessive Compulsive Drinking Scale (OCDS) and its two subscales ODS for obsessions and CDS for compulsions] as well as anxiety [State and Trait Inventory (STAI)], depression [the Zung Self-Rating Depression Scale (Zung)] and aggression [the Aggressive Questionnaire (AQ)]. Results: At baseline, we found significant positive correlations between fT3 and OCDS (r = 0.358, P = 0.029) and CDS (r = 0.405, P = 0.013) and negative correlations between TSH levels and STAI (r = −0.342, P = 0.031), and AQ (r = −0.35, P = 0.027). At the end of the 12-week study period, abstinent patients had a greater change in TSH than those who relapsed (−0.4 vs. −0.25, F(1,24) = 5.4, P = 0.029). Conclusion: If confirmed in larger samples, these findings could suggest that the thyroid axis might represent a biomarker of alcohol craving and drinking. PMID:25433251

  5. Are thyroid nodules associated with sex-related hormones? A cross-sectional SPECT-China study.

    PubMed

    Chen, Yi; Chen, Yingchao; Wang, Ningjian; Chen, Chi; Nie, Xiaomin; Li, Qin; Han, Bing; Xia, Fangzhen; Zhai, Hualing; Jiang, Boren; Shen, Zhoujun; Lu, Yingli

    2017-08-03

    Little is known about the association between thyroid nodules (TNs) and endogenous sex hormones. We aimed to investigate the relationship between TNs and sex-related hormones among men in China. The data were obtained from a cross-sectional study Survey on Prevalence in East China for Metabolic Diseases and Risk Factors (SPECT-China study, 2014-2015) based on the population. In total, 4024 men over 18 years of age who were not using hormone replacement therapy and who underwent complete assays of the serum total testosterone (T), oestradiol (E 2 ), follicle-stimulating hormone (FSH), luteinising hormone (LH) and sex hormone-binding globulin (SHBG) levels as well as thyroid ultrasonography (US) enrolled in this study. Of the 4024 participants (54.15±13.08 years old), 1667 participants (41.4%) had TNs. Men with TN(s) (TN(+) group) had significantly lower levels of total T and SHBG and higher E 2 /T levels compared with the men without TN(s) (TN(-) group) (p<0.05). The TN prevalence decreased with the quartiles of the SHBG level (p<0.05). Binary logistic analysis showed that lower quartiles of SHBG had a greater risk of TN(s) (all p for trend <0.05). This association persisted in the fully adjusted model (p for trend=0.017), in which, for the lowest compared with the highest quartile of SHBG, the OR of TN(s) was 1.42 (95% CI 1.07 to 1.89). No statistically significant association was found between sex-related hormones and US characteristics associated with malignancy (nodule >10 mm, microcalcification and a 'taller' than 'wider' shape). TNs are highly prevalent in men in China. A lower SHBG level was significantly associated with TN among men. The potential role of SHBG in the pathogenesis of the TN remains to be elucidated. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Contrasting Phenotypes in Resistance to Thyroid Hormone Alpha Correlate with Divergent Properties of Thyroid Hormone Receptor α1 Mutant Proteins.

    PubMed

    Moran, Carla; Agostini, Maura; McGowan, Anne; Schoenmakers, Erik; Fairall, Louise; Lyons, Greta; Rajanayagam, Odelia; Watson, Laura; Offiah, Amaka; Barton, John; Price, Susan; Schwabe, John; Chatterjee, Krishna

    2017-07-01

    Resistance to thyroid hormone alpha (RTHα), a disorder characterized by tissue-selective hypothyroidism and near-normal thyroid function tests due to thyroid receptor alpha gene mutations, is rare but probably under-recognized. This study sought to correlate the clinical characteristics and response to thyroxine (T4) therapy in two adolescent RTHα patients with the properties of the THRA mutation, affecting both TRα1 and TRα2 proteins, they harbored. Clinical, auxological, biochemical, and physiological parameters were assessed in each patient at baseline and after T4 therapy. Heterozygous THRA mutations occurring de novo were identified in a 17-year-old male (patient P1; c.788C>T, p.A263V mutation) investigated for mild pubertal delay and in a 15-year-old male (patient P2; c.821T>C, p.L274P mutation) with short stature (0.4th centile), skeletal dysplasia, dysmorphic facies, and global developmental delay. Both individuals exhibited macrocephaly, delayed dentition, and constipation, together with a subnormal T4/triiodothyronine (T3) ratio, low reverse T3 levels, and mild anemia. When studied in vitro, A263V mutant TRα1 was transcriptionally impaired and inhibited the function of its wild-type counterpart at low (0.01-10 nM) T3 levels, with higher T3 concentrations (100 nM-1 μM) reversing dysfunction and such dominant negative inhibition. In contrast, L274P mutant TRα1 was transcriptionally inert, exerting significant dominant negative activity, only overcome with 10 μM of T3. Mirroring this, normal expression of KLF9, a TH-responsive target gene, was achieved in A263V mutation-containing peripheral blood mononuclear cells following 1 μM of T3 exposure, but with markedly reduced expression levels in L274P mutation-containing peripheral blood mononuclear cells, even with 10 μM of T3. Following T4 therapy, growth, body composition, dyspraxia, and constipation improved in P1, whereas growth retardation and constipation in P2 were unchanged

  7. Non-invasive measurement of thyroid hormone in feces of a diverse array of avian and mammalian species.

    PubMed

    Wasser, Samuel K; Azkarate, Jurgi Cristòbal; Booth, Rebecca K; Hayward, Lisa; Hunt, Kathleen; Ayres, Katherine; Vynne, Carly; Gobush, Kathleen; Canales-Espinosa, Domingo; Rodríguez-Luna, Ernesto

    2010-08-01

    We developed and validated a non-invasive thyroid hormone measure in feces of a diverse array of birds and mammals. An I(131) radiolabel ingestion study in domestic dogs coupled with High Pressure Liquid Chromatography (HPLC) analysis, showed that peak excretion in feces occurred at 24-48h post-ingestion, with I(131)-labelled thyroid hormone metabolites excreted primarily as triiodothyronine (T3) and relatively little thyroxine (T4), at all excretion times examined. The immunoreactive T3 profile across these same HPLC fractions closely corresponded with the I(131) radioactive profile. By contrast, the T4 immunoreactive profile was disproportionately high, suggesting that T4 excretion included a high percentage of T4 stores. We optimized and validated T3 and T4 extraction and assay methods in feces of wild northern spotted owls, African elephants, howler monkeys, caribou, moose, wolf, maned wolf, killer whales and Steller sea lions. We explained 99% of the variance in high and low T3 concentrations derived from species-specific sample pools, after controlling for species and the various extraction methods tested. Fecal T3 reflected nutritional deficits in two male and three female howler monkeys held in captivity for translocation from a highly degraded habitat. Results suggest that thyroid hormone can be accurately and reliably measured in feces, providing important indices for environmental physiology across a diverse array of birds and mammals. Copyright 2010 Elsevier Inc. All rights reserved.

  8. High T3, Low T4 Serum Levels in Mct8 Deficiency Are Not Caused by Increased Hepatic Conversion through Type I Deiodinase.

    PubMed

    Wirth, Eva K; Rijntjes, Eddy; Meyer, Franziska; Köhrle, Josef; Schweizer, Ulrich

    2015-09-01

    The Allan-Herndon-Dudley syndrome is a severe psychomotor retardation accompanied by specific changes in circulating thyroid hormone levels (high T3, low T4). These are caused by mutations in the thyroid hormone transmembrane transport protein monocarboxylate transporter 8 (MCT8). To test the hypothesis that circulating low T4 and high T3 levels are caused by enhanced conversion of T4 via increased activity of hepatic type I deiodinase (Dio1). We crossed mice deficient in Mct8 with mice lacking Dio1 activity in hepatocytes. Translation of the selenoenzyme Dio1 was abrogated by hepatocyte-specific inactivation of selenoprotein biosynthesis. Inactivation of Dio1 activity in the livers of global Mct8-deficient mice does not restore normal circulating thyroid hormone levels. Our data suggest that although hepatic Dio1 activity is increased in Mct8-deficient mice, it does not cause the observed abnormal circulating thyroid hormone levels. Since global inactivation of Dio1 in Mct8-deficient mice does normalize circulating thyroid hormone levels, the underlying mechanism and relevant tissues involved remain to be elucidated.

  9. Thyroid Stimulating Hormone Reference Range and Prevalence of Thyroid Dysfunction in the Korean Population: Korea National Health and Nutrition Examination Survey 2013 to 2015

    PubMed Central

    2017-01-01

    Background No nationwide epidemiological study evaluating the prevalence of subclinical and overt forms of hypothyroidism and hyperthyroidism has yet been conducted in Korea. This study aimed to evaluate the reference range of serum thyroid stimulating hormone (TSH) and the national prevalence of thyroid dysfunctions in Korea. Methods Nation-wide cross-sectional data were analyzed from a representative sample of the civilian, non-institutionalized Korean population (n=6,564) who underwent blood testing for thyroid function and anti-thyroid peroxidase antibody (TPOAb) as part of the Korea National Health and Nutrition Examination Survey VI (2013 to 2015). Results The reference interval of serum TSH in the Korean reference population was 0.62 to 6.68 mIU/L. Based on this reference interval, the prevalence of overt and subclinical hypothyroidism was 0.73% (males 0.40%, females 1.10%) and 3.10% (males 2.26%, females 4.04%), respectively. The prevalence of hypothyroidism increased with age until the age group between 50 to 59 years. Positive TPOAb were found in 7.30% of subjects (males 4.33%, females 10.62%). The prevalence of overt and subclinical hypothyroidism TPOAb-positive subjects was 5.16% and 10.88%, respectively. The prevalence of overt and subclinical hyperthyroidism was 0.54% (males 0.30%, females 0.81%) and 2.98% (males 2.43%, females, 3.59%), respectively. Conclusion The Serum TSH reference levels in the Korean population were higher than the corresponding levels in Western countries. Differences were found in the prevalence of hypothyroidism and hyperthyroidism according to age, sex, and TPOAb positivity. This study provides important baseline information for understanding patterns of thyroid dysfunction and diseases in Korea. PMID:28116874

  10. Down's syndrome and thyroid disorder.

    PubMed

    Dinani, S; Carpenter, S

    1990-04-01

    The thyroid status of 106 adults with Down's syndrome was assessed. Six were previously diagnosed as hypothyroid and were already receiving thyroxine. A further 37 patients showed abnormal thyroid function. Biochemical evidence of hypothyroidism (T4 less than 50 nmol/l and T.S.H. greater than 4 mu/less than) was found in one person. Six patients were found to have an unequivocally elevated T.S.H. but normal T4 (T4 greater than 50 nmol/l and T.S.H. greater than 20 mu/l) and 29 were found to have a modest elevation of T.S.H. but normal T4 concentration (T4 greater than 50 nmol/l and T.S.H. between 4 and 20 mu/l). There was one patient with mild thyrotoxicosis (T4 = 180 nmol/l and T.S.H. less than 0.1 mu/l). Clinical findings were of little use in making a diagnosis of hypothyroidism in this group of patients. A raised level of thyroid microsomal auto-antibodies was found in about a third of the patients, this occurred more commonly in females and slightly more often in those with a raised thyroid stimulating hormone. The importance of this is discussed. Recommendations for regular biochemical screening are made.

  11. Effects of thyroid hormone on fast- and slow-twitch skeletal muscles in young and old rats.

    PubMed Central

    Larsson, L; Li, X; Teresi, A; Salviati, G

    1994-01-01

    1. The effects of 4 weeks of thyroid hormone treatment on contractile, enzyme-histochemical and morphometric properties and on the myosin isoform composition were compared in the slow-twitch soleus and the fast-twitch extensor digitorum longus (EDL) muscle in young (3-6 months) and old (20-24 months) male rats. 2. In the soleus of untreated controls, contraction and half-relaxation times of the isometric twitch increased by 19-32% with age. The change in contractile properties was paralleled by an age-related increase in the proportions of type I fibres and type I myosin heavy chain (MHC) and slow myosin light chain (MLC) isoforms. 3. In the EDL of controls, contraction and half-relaxation times were significantly prolonged (21-38%) in the post-tetanus twitch in the old animals. No significant age-related changes were observed in enzyme-histochemical fibre-type proportions, although the number of fibres expressing both type IIA and IIB MHCs and of fibres expressing slow MLC isoforms was increased in the old animals. 4. Serum 3,5,3',5'-tetraiodothyronine (T4) levels were lower (34%) in the old animals, but the primary byproduct of T4, 3,5,3'-triiodothyronine (T3), did not differ between young and old animals. 5. The effects of 4 weeks of thyroid hormone treatment were highly muscle specific, and were more pronounced in soleus than in EDL, irrespective of animal age. In the soleus, this treatment shortened the contraction and half-relaxation times by 35-57% and decreased the number of type I fibres by 66-77% in both young and old animals. In EDL, thyroid hormone treatment significantly shortened the contraction time by 24%, but the change was restricted to the old animals. 6. In conclusion, the ability of skeletal muscle to respond to thyroid hormone treatment was not impaired in old age and the age-related changes in speed of contraction and enzyme-histochemical properties and myosin isoform compositions were diminished after thyroid hormone treatment in both the

  12. [Thyroid hormones and the development of the nervous system].

    PubMed

    Mussa, G C; Zaffaroni, M; Mussa, F

    1990-09-01

    The growth and differentiation of the central nervous system are closely related to the presence of iodine and thyroid hormones. During the first trimester of human pregnancy the development of the nervous system depends entirely on the availability of iodine; after 12 week of pregnancy it depends on the initial secretion of iodothyronine by the fetal thyroid gland. During the early stages of the development of the nervous system a thyroid hormone deficit may provoke alterations in the maturation of both noble nervous cells (cortical pyramidal cells, Purkinje cells) and glial cells. Hypothyroidism may lead to cellular hypoplasia and reduced dendritic ramification, gemmules and interneuronal connections. Experimental studies in hypothyroid rats have also shown alterations in the content and organization of neuronal intracytoplasmatic microtubules, the biochemical maturation of synaptosomes and the maturation of nuclear and cytoplasmatic T3 receptors. Excess thyroid hormones during the early stages of development may also cause permanent damage to the central nervous system. Hyperthyroidism may initially induce an acceleration of the maturation processes, including the migration and differentiation of cells, the extension of the dendritic processes and synaptogenesis. An excess of thyroid hormones therefore causes neuronal proliferation to end precociously leading to a reduction of the total number of gemmules. Experimental research and clinical studies have partially clarified the correlation between the maturation of the nervous system and thyroid function during the early stages of development; both a deficit and excess of thyroid hormones may lead to permanent anatomo-functional damage to the central nervous system.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Thyroid Hormones and Growth in Health and Disease

    PubMed Central

    Tarım, Ömer

    2011-01-01

    Thyroid hormones regulate growth by several mechanisms. In addition to their negative feedback effect on the stimulatory hormones thyrotropin-releasing hormone (TRH) and thyrotropin (TSH), thyroid hormones also regulate their receptors in various physiological and pathological conditions. Up-regulation and down-regulation of the thyroid receptors fine-tune the biological effects exerted by the thyroid hormones. Interestingly, the deiodinase enzyme system is another intrinsic regulator of thyroid physiology that adjusts the availability of thyroid hormones to the tissues, which is essential for normal growth and development. Almost all chronic diseases of childhood impair growth and development. Every disease may have a unique mechanism to halt linear growth, but reduced serum concentration or diminished local availability of thyroid hormones seems to be a common pathway. Therefore, the effects of systemic diseases on thyroid physiology must be taken into consideration in the evaluation of growth retardation in affected children. Conflict of interest:None declared. PMID:21750631

  14. Combination treatment with T4 and T3: toward personalized replacement therapy in hypothyroidism?

    PubMed

    Biondi, Bernadette; Wartofsky, Leonard

    2012-07-01

    Levothyroxine therapy is the traditional lifelong replacement therapy for hypothyroid patients. Over the last several years, new evidence has led clinicians to evaluate the option of combined T(3) and T(4) treatment to improve the quality of life, cognition, and peripheral parameters of thyroid hormone action in hypothyroidism. The aim of this review is to assess the physiological basis and the results of current studies on this topic. We searched Medline for reports published with the following search terms: hypothyroidism, levothyroxine, triiodothyronine, thyroid, guidelines, treatment, deiodinases, clinical symptoms, quality of life, cognition, mood, depression, body weight, heart rate, cholesterol, bone markers, SHBG, and patient preference for combined therapy. The search was restricted to reports published in English since 1970, but some reports published before 1970 were also incorporated. We supplemented the search with records from personal files and references of relevant articles and textbooks. Parameters analyzed included the rationale for combination treatment, the type of patients to be selected, the optimal T(4)/T(3) ratio, and the potential benefits of this therapy on symptoms of hypothyroidism, quality of life, mood, cognition, and peripheral parameters of thyroid hormone action. The outcome of our analysis suggests that it may be time to consider a personalized regimen of thyroid hormone replacement therapy in hypothyroid patients. Further prospective randomized controlled studies are needed to clarify this important issue. Innovative formulations of the thyroid hormones will be required to mimic a more perfect thyroid hormone replacement therapy than is currently available.

  15. Subclinical hypothyroidism diagnosed by thyrotropin-releasing hormone stimulation test in infertile women with basal thyroid-stimulating hormone levels of 2.5 to 5.0 mIU/L

    PubMed Central

    Lee, You-Jeong; Kwack, Jae-Young; Ahn, Jun-Woo; Kim, Sung-Hoon; Chae, Hee-Dong; Kang, Byung-Moon

    2014-01-01

    Objective To investigate the prevalence of subclinical hypothyroidism (SH) diagnosed by thyrotropin-releasing hormone (TRH) stimulating test in infertile women with basal thyroid-stimulating hormone (TSH) levels of 2.5 to 5.0 mIU/L. Methods This study was performed in 39 infertile women with ovulatory disorders (group 1) and 27 infertile women with male infertility only (group 2, controls) who had basal serum TSH levels of 2.5 to 5.0 mIU/L and a TRH stimulating test. Serum TSH levels were measured before TRH injection (TSH0) and also measured at 20 minutes (TSH1) and 40 minutes (TSH2) following intravenous injection of 400 µg TRH. Exaggerated TSH response above 30 mIU/L following TRH injection was diagnosed as SH. Group 1 was composed of poor responders (subgroup A), patients with polycystic ovary syndrome (subgroup B) and patients with WHO group II anovulation except poor responder or polycystic ovary syndrome (subgroup C). Results The prevalence of SH was significantly higher in group 1 of 46.2% (18/39) compared with 7.4% (2/27) in group 2 (P=0.001). TSH0, TSH1, and TSH2 levels were significantly higher in group 1 than the corresponding values in group 2 (P<0.001, P<0.001, P<0.001). In group 1, TSH1 and TSH2 levels were significantly lower in subgroup C compared with those in subgroup A and B (P=0.008, P=0.006, respectively). Conclusion TRH stimulation test had better be performed in infertile women with ovulatory disorders who have TSH levels between 2.5 and 5.0 mIU/L for early detection and appropriate treatment of SH. PMID:25469340

  16. Molecular mechanisms of corticosteroid synergy with thyroid hormone during tadpole metamorphosis

    PubMed Central

    Bonett, Ronald M.; Hoopfer, Eric D.; Denver, Robert J.

    2010-01-01

    Corticosteroids (CS) act synergistically with thyroid hormone (TH) to accelerate amphibian metamorphosis. Earlier studies showed that CS increase nuclear 3,5,3′-triiodothyronine (T3) binding capacity in tadpole tail, and 5′ deiodinase activity in tadpole tissues, increasing the generation of T3 from thyroxine (T4). In the present study we investigated CS synergy with TH by analyzing expression of key genes involved in TH and CS signaling using tadpole tail explant cultures, prometamorphic tadpoles, and frog tissue culture cells (XTC-2 and XLT-15). Treatment of tail explants with T3 at 100 nM, but not at 10 nM caused tail regression. Corticosterone (CORT) at three doses (100, 500, 3400 nM) had no effect or increased tail size. T3 at 10 nM plus CORT caused tails to regress similar to 100 nM T3. Thyroid hormone receptor beta (TRβ) mRNA was synergistically upregulated by T3 plus CORT in tail explants, tail and brain in vivo, and tissue culture cells. The activating 5′ deiodinase type 2 (D2) mRNA was induced by T3 and CORT in tail explants and tail in vivo. Thyroid hormone increased expression of glucocorticoid (GR) and mineralocorticoid receptor (MR) mRNAs. Our findings support that the synergistic actions of TH and CS in metamorphosis occur at the level of expression of genes for TRβ and D2, enhancing tissue sensitivity to TH. Concurrently, TH enhances tissue sensitivity to CS by upregulating GR and MR. Environmental stressors can modulate the timing of tadpole metamorphosis in part by CS enhancing the response of tadpole tissues to the actions of TH. PMID:20338173

  17. Dietary calcium induced cytological and biochemical changes in thyroid.

    PubMed

    Chandra, Amar K; Goswami, Haimanti; Sengupta, Pallav

    2012-09-01

    Certain epidemiological studies revealed correlation between hard water consumption (with high calcium) and thyroid size of the population, though the possible alterations in thyroid physiology upon calcium exposure are still inconclusive. Adult male Wistar strain rats were subjected to calcium treatment at the doses of 0.5g%, 1.0g% and 1.5g% calcium chloride (CaCl(2)) for 60 days. The parameters studied were - thyroid gland weight, histopathology, histomorphometry; thyroid peroxidase (TPO), 5'-deiodinase I (DI), sodium-potassium adenosine triphosphatase (Na(+)-K(+)-ATPase) activities; serum total and free thyroxine (tT4, fT4), total and free triiodothyronine (tT3, fT3), thyroid stimulating hormone (TSH) levels. Enlargement of thyroid with hypertrophic and hyperplastic changes, retarded TPO and 5'-DI but enhanced Na(+)-K(+)-ATPase activities, augmented serum total and free T4 and TSH but decreased total and free T3 levels and low T3/T4 ratio (T3:T4) were observed in the treated groups. All these findings indicate development of goitrogenesis upon exposure to excessive dietary calcium. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Low serum thyroid-stimulating hormone levels are associated with lipid profile in depressive patients with long symptom duration.

    PubMed

    Peng, Rui; Li, Yan

    2017-08-01

    The current study was designed to investigate the association between serum thyroid hormones and thyroid-stimulating hormone (TSH) levels with lipid profile in depressive disorder. A total of 370 depressive individuals aged 18 years and above were recruited in this cross-section study. All participants underwent a Structured Clinical Interview for DSM-IV (SCID) and recorded the duration of their symptoms. The serum levels of total cholesterol (TCH), triglyceride (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), lipoprotein A (Lp(a)), high-sensitivity C-reactive protein (hsCRP), free thyroxine (FT4), free triiodothyronine (FT3) and TSH levels were determined and the ratios of TCH/HDL-C were assessed. Depressed subjects with a symptom duration ≥3 years had higher TG levels, increased TCH/HDL-C ratios and lower levels of HDL-C, FT4 and TSH compared with depressive patients with a symptom duration <3 years. Correlation analysis displayed that TSH is positively and significantly associated with TCH and LDL-C (p<0.05); the above FT4 and FT3 are negatively, significantly and respectively associated with TCH/HDL-C (p<0.05) and TCH, HDL-C, LDL-C (p<0.05). Multiple linear regression analysis indicated that serum TG and TSH levels are associated with depressive symptom duration. According to our results,These findings indicate that low serum TSH levels are associated with lipid profile, TG and TSH levels have significant association with symptom duration in depressive patients. Copyright © 2017. Published by Elsevier B.V.

  19. Validation of an immunoassay for canine thyroid-stimulating hormone and changes in serum concentration following induction of hypothyroidism in dogs.

    PubMed

    Williams, D A; Scott-Moncrieff, C; Bruner, J; Sustarsic, D; Panosian-Sahakian, N; Unver, E; el Shami, A S

    1996-11-15

    To validate a new immunoradiometric assay for canine thyroid-stimulating hormone (cTSH) and to document changes in serum cTSH concentration during induction of hypothyroidism in dogs. Six healthy adult male Beagles. Sensitivity, specificity, precision, and accuracy of the cTSH assay were evaluated in vitro. Hypothyroidism was induced in dogs by i.v. administration of sodium iodide I 131 solution. Subsequently, L-thyroxine was administered orally to normalize serum thyroxine concentrations. The cTSH assay appeared to be specific and was sufficiently sensitive to detect cTSH in the serum of these dogs prior to induction of hypothyroidism. There was a 35-fold increase in mean serum cTSH concentration following induction of hypothyroidism, and 35 days after initiation of thyroid replacement therapy, mean serum cTSH concentration was not significantly greater than mean baseline value. Assay of serum cTSH is likely to prove helpful in the differential diagnosis of primary, secondary, and tertiary hypothyroidism in dogs, and in monitoring response to thyroid hormone replacement treatment.

  20. Thyroid stimulating antibodies in sarcoidosis.

    PubMed

    Attali, J R; Valensi, P; Valeyre, D; Sandre-Banon, D; Sebaoun, J; Battesti, J P

    1994-06-01

    Thyroid disorders, particularly euthyroid goiters and hyperthyroidism, can be observed in sarcoidosis. The aim of this study was to analyze the presence of thyroid stimulating antibodies (TSAb) in 21 patients with sarcoidosis. 12 patients out of 21 had simultaneous euthyroid goiter. The others were euthyroid and free of goiter. The TSAb testing was carried out using the rat thyroid fragment perifusion technique. Thyroid response to IgG was determined by the mean rate of T4 release (R) during a 30-min perifusion and the secretion peak (Imax). Antibodies inhibiting TSH binding to its receptors were also looked for. Ten patients were TSAb+ and eleven were TSAb-. There was no difference between the TSAb+ and TSAb- groups in the clinical parameters for sarcoidosis, nor in the number of goiters found (n = 6 for both groups). In 5 out of the 6 cases where goiter was present in the TSAb+ group it was homogeneous and diagnosed at the same time as or after the first signs of sarcoidosis, whereas in 5 out of the 6 cases of goiter in TSAb- patients, it was nodular, diagnosed before sarcoidosis in 3 of them, endemic in one of them, and familial in another. The search for antibodies inhibiting TSH binding to its receptors was negative in 10 out of 21 patients tested. Although the presence of thyroid-stimulating antibodies in the serum of patients with sarcoidosis, found here for the first time, remains to be explained, it pleads in favor of the immunologic nature of the association of sarcoidosis with thyroid disorders.

  1. Quantitative thyroid scintigraphy in greyhounds suspected of primary hypothyroidism.

    PubMed

    Pinilla, Manuel; Shiel, Robert E; Brennan, Sheila F; McAllister, Hester; Mooney, Carmel T

    2009-01-01

    The existence of hypothyroidism in greyhounds remains controversial and its investigation is complicated by the low circulating thyroid hormone concentrations typically found in healthy dogs of this breed. Quantitative measurement of thyroidal technetium-99m pertechnetate ((99m)TcO4-) uptake is known to be useful in assessing thyroid function in other breeds. The aim of this study was to evaluate thyroid scintigraphy as a method of assessing thyroid function in greyhounds suspected of primary hypothyroidism. Twenty greyhounds (eight females, 12 males) were studied. Thirteen had bald thigh syndrome and seven poor performance and low total T4. Total T4 concentrations were decreased in 18 (90%), and free T4 in two (10%) dogs. All canine thyroid stimulating hormone concentrations were within the reference interval. Thyroidal (99m)TcO4- uptake values (mean +/- SD, 0.76 +/- 0.26%) were within the reference limits published for euthyroid dogs (0.39-1.86%) making hypothyroidism highly unlikely. There were no significant differences (P < 0.05) when comparing data between dogs with bald thigh syndrome (13 dogs) and the remaining dogs (seven dogs). Seventeen (85%) dogs had higher uptake in the left thyroid gland than in the right that might reflect an anatomic feature of the greyhound breed. Calculation of percent thyroidal uptake of (99m)TcO4- is more accurate than thyroid: salivary gland ratios because of high variability in salivary gland uptake. Percent thyroidal uptake of (99m)TcO4- should be used when assessing thyroid function scintigraphically in the greyhound breed.

  2. The effects of thyroid hormones on brown adipose tissue in humans: a PET-CT study.

    PubMed

    Zhang, Qiongyue; Miao, Qing; Ye, Hongying; Zhang, Zhaoyun; Zuo, Chuantao; Hua, Fengchun; Guan, Yihui; Li, Yiming

    2014-09-01

    Brown adipose tissue (BAT) is important for energy expenditure through thermogenesis, although its regulatory factors are not well known in humans. There is evidence suggesting that thyroid hormones affect BAT functions in some mammals, but the effects of thyroid hormones on BAT activity in humans are still unclear. The aim of this study was to investigate the effects of thyroid hormones on glucose metabolism of BAT and other organs in humans. Nine Graves' disease-caused hyperthyroid patients who were newly diagnosed and untreated were studied. Putative brown adipose tissue activity was determined by the integrated ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron-emission tomography and computed tomography (PET-CT). All hyperthyroid patients were treated with methimazole and had been monitored until their symptoms disappeared and thyroid hormone levels returned to normal. At the end, a second PET-CT scan was performed. The average follow-up period was 77 days. Meanwhile, compared with a group of seventy-five brown adipose tissue-negative controls, thyroid hormones of seventy-five BAT-positive healthy subjects were measured. Active brown adipose tissue was not present in any of the hyperthyroid patients. However, one patient with normalized thyroid function showed active BAT after therapy. The free T3 levels and free T4 levels were significantly lower in the 75 BAT-positive subjects than in the BAT-negative subjects. All hyperthyroid patients showed symmetrically increased uptake of fluorodeoxyglucose in skeletal muscles before treatment, whereas, the standardized uptake value was substantially decreased after treatment. Abnormally high circulating thyroid hormone levels may not increase brown adipose tissue activity, which may be limited by the increased obligatory thermogenesis of muscle in adult humans. Copyright © 2014 John Wiley & Sons, Ltd.

  3. The use of konjac glucomannan to lower serum thyroid hormones in hyperthyroidism.

    PubMed

    Azezli, Adil Dogan; Bayraktaroglu, Taner; Orhan, Yusuf

    2007-12-01

    Patients with hyperthyroidism occasionally need rapid restoration to the euthyroid state. In view of the increased enterohepatic circulation of thyroxine (T4) and triiodothyronine (T3) in thyrotoxicosis, and metabolic effects of konjac glucomannan in gastrointestinal system, we aimed to determine the activity of glucomannan in treatment of hyperthyroidism. A prospective, randomized, placebo-controlled, one-blind study design was used with newly diagnosed 48 hyperthyroid patients (30 patients with Graves' disease and 12 with multinodulary goitre). They were assigned to one of the following treatment groups: I) methimazole 2 x 10 mg, propranolol 2 x 20 mg, and glucomannan (Propol) 2 x 1.3 gr daily for two months; II) methimazole 2 x 10 mg, propranolol 2 x 20 mg, and placebo powder daily for two months. No differences were detected from the point of view of the baseline thyroid hormone levels between groups (p > 0.05). Further analyses revealed that the patients receiving glucomannan at the end of the second, fourth and sixth weeks of the study had significantly lower serum T3, T4, FT3 and FT4 levels than the patients who received placebo (p < 0.05). TSH was not different between the two groups at any specific time (p > 0.05). At week 8, thyroid hormone levels were not shown any differences. The glucomannan-treated group had a more rapid decline in all four serum thyroid hormone levels than the placebo-treated group. We believe our preliminary results indicate that glucomannan may be a safe and easily tolerated adjunctive therapeutic agent in the treatment of thyrotoxicosis. This combination therapy seems most effect during first weeks of treatment of a hyperthyroid patient.

  4. Variations of rat thyroid activity during exposure to high environmental temperature (34 degrees C). Relation between hypothalamic pituitary and thyroid hormone levels.

    PubMed

    Rousset, B; Cure, M

    1975-01-01

    Changes in thyroid activity and variations in the hypthalamo-pituitary-thyroid hormone levels were examined in rats exposed to heat (34 degrees C)for3 weeks. Thyroid activity evaluated histologically (epithelium/colloid ratio, nuclear size) by radioiodine exploration (24 hrs 125 I uptake, ratio of mono- to di-125 iodotyrosines - MIT/DIT, ratio of tri- to tetra-125 iodothyronines-T3/T4, and plasma 125I-T4 and assay of plasma T4, evolves in a triphasic manner. 1.a depression phase between day 0 and day 2.5. 2. a rebound of thyroid activity between day 2.5 and day 9.3 a stabilization of thyroid parameters from day 9 to day 24. These results indicate adaptation of thyroid function to heat after 3 weeks. In phase i, plasma TSH )MeKenzie bioassay) fell to undectable levels concurrent with a 50% decrease in hypothalamic TRH (in vitro assay). Plasma TSH peaked on day 4.5, fell on day 9.5 and returned progressively to initial levels. Hypothalamic TRH returned to initial levels after 6.5 days. The rapid and simultaneous decrease in hypothalamic TRH, plasma TSH, plasma T4 and thyroid activity by the 36th hour of heat exposure (34 degrees C) suggests initiation at the hypothalamic level. In the secound phase, the rebound in thyroid activity is presumably due to the peak in circulating TSH in ralation to the marked decrease in plasma T4. The oscillations of phase 2 and the stabilization of all the thyroid parameters in phase 3 may be the reflection of an apparent discrepancy remains between a low plasma T4 and a normal or subnormal plasma TSH. A modification in the "set point" for the control of TSH secretion is discussed.

  5. Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio).

    PubMed

    Jianjie, Chen; Wenjuan, Xue; Jinling, Cao; Jie, Song; Ruhui, Jia; Meiyan, Li

    2016-02-01

    Excessive fluoride in natural water ecosystem has the potential to detrimentally affect thyroid endocrine system, but little is known of such effects or underlying mechanisms in fish. In the present study, we evaluated the effects of fluoride on growth performance, thyroid histopathology, thyroid hormone levels, and gene expressions in the HPT axis in male zebrafish (Danio rerio) exposed to different determined concentrations of 0.1, 0.9, 2.0 and 4.1 M of fluoride to investigate the effects of fluoride on thyroid endocrine system and the potential toxic mechanisms caused by fluoride. The results indicated that the growth of the male zebrafish used in the experiments was significantly inhibited, the thyroid microtrastructure was changed, and the levels of T3 and T4 were disturbed in fluoride-exposed male fish. In addition, the expressional profiles of genes in HPT axis displayed alteration. The expressions of all studied genes were significantly increased in all fluoride-exposed male fish after exposure for 45 days. The transcriptional levels of corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroglobulin (TG), sodium iodide symporter (NIS), iodothyronine I (DIO1), and thyroid hormone receptor alpha (TRα) were also elevated in all fluoride-exposed male fish after 90 days of exposure, while the inconsistent expressions were found in the mRNA of iodothyronineⅡ (DIO2), UDP glucuronosyltransferase 1 family a, b (UGT1ab), transthyretin (TTR), and thyroid hormone receptor beta (TRβ). These results demonstrated that fluoride could notably inhibit the growth of zebrafish, and significantly affect thyroid endocrine system by changing the microtrastructure of thyroid, altering thyroid hormone levels and endocrine-related gene expressions in male zebrafish. All above indicated that fluoride could pose a great threat to thyroid endocrine system, thus detrimentally affected the normal function of thyroid of male zebrafish. Copyright © 2015

  6. The effect of growth hormone replacement on the thyroid axis in patients with hypopituitarism: in vivo and ex vivo studies.

    PubMed

    Glynn, Nigel; Kenny, Helena; Quisenberry, Leah; Halsall, David J; Cook, Paul; Kyaw Tun, Tommy; McDermott, John H; Smith, Diarmuid; Thompson, Christopher J; O'Gorman, Donal J; Boelen, Anita; Lado-Abeal, Joaquin; Agha, Amar

    2017-05-01

    Alterations in the hypothalamic-pituitary-thyroid axis have been reported following growth hormone (GH) replacement. The aim was to examine the relationship between changes in serum concentration of thyroid hormones and deiodinase activity in subcutaneous adipose tissue, before and after GH replacement. A prospective, observational study of patients receiving GH replacement as part of routine clinical care. Twenty adult hypopituitary men. Serum TSH, thyroid hormones - free and total thyroxine (T4) and triiodothyronine (T3) and reverse T3, thyroglobulin and thyroid-binding globulin (TBG) levels were measured before and after GH substitution. Changes in serum hormone levels were compared to the activity of deiodinase isoenzymes (DIO1, DIO2 and DIO3) in subcutaneous adipose tissue. The mean daily dose of growth hormone (GH) was 0·34 ± 0·11 mg (range 0·15-0·5 mg). Following GH replacement, mean free T4 levels declined (-1·09 ± 1·99 pmol/l, P = 0·02). Reverse T3 levels also fell (-3·44 ± 1·42 ng/dl, P = 0·03) and free T3 levels increased significantly (+0·34 ± 0·15 pmol/l, P = 0·03). In subcutaneous fat, DIO2 enzyme activity declined; DIO1 and DIO3 activities remained unchanged following GH substitution. Serum TSH, thyroglobulin and TBG levels were unaltered by GH therapy. In vitro analysis of subcutaneous adipose tissue from hypopituitary human subjects demonstrates that GH replacement is associated with significant changes in deiodinase isoenzyme activity. However, the observed variation in enzyme activity does not explain the changes in the circulating concentration of thyroid hormones induced by GH replacement. It is possible that deiodinase isoenzymes are differentially regulated by GH in other tissues including liver and muscle. © 2016 John Wiley & Sons Ltd.

  7. Thyroid hormones and female reproduction.

    PubMed

    Silva, Juneo F; Ocarino, Natália M; Serakides, Rogéria

    2018-05-14

    Thyroid hormones are vital for the proper functioning of the female reproductive system, since they modulate the metabolism and development of ovarian, uterine and placental tissues. Therefore, hypo- and hyperthyroidism may result in subfertility or infertility in both women and animals. Other well-documented sequelae of maternal thyroid dysfunctions include menstrual/estral irregularity, anovulation, abortion, preterm delivery, preeclampsia, intrauterine growth restriction, postpartum thyroiditis, and mental retardation in children. Several studies have been carried out involving prospective and retrospective studies of women with thyroid dysfunction, as well as in vivo and in vitro assays of hypo- and hyperthyroidism using experimental animal models and/or ovarian, uterine and placental cell culture. These studies have sought to elucidate the mechanisms by which thyroid hormones influence reproduction to better understand the physiology of the reproductive system and to provide better therapeutic tools for reproductive dysfunctions that originate from thyroid dysfunctions. Therefore, this review aims to summarize and update the available information related to the role of thyroid hormones in the morphophysiology of the ovary, uterus and placenta in women and animals and the effects of hypo- and hyperthyroidism on the female reproductive system.

  8. THYROID HORMONE REPLACEMENT REDUCES THE RISK OF CARDIOVASCULAR DISEASES IN DIABETIC NEPHROPATHY PATIENTS WITH SUBCLINICAL HYPOTHYROIDISM.

    PubMed

    Seo, Changhwan; Kim, Seonghun; Lee, Misol; Cha, Min-Uk; Kim, Hyoungnae; Park, Seohyun; Yun, Hae-Ryong; Jhee, Jong Hyun; Kee, Youn Kyung; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook; Park, Jung Tak

    2018-03-01

    Patients with diabetic nephropathy (DMN) have an increased risk of cardiovascular disease (CVD). However, strategies to reduce this risk are limited. Thyroid hormone replacement therapy (THRT) in patients with hypothyroidism has been shown to reduce several surrogate markers of CVD. Therefore, we performed a study to determine if THRT would reduce CVD risk in patients with subclinical hypothyroidism (SCH) and DMN. This was a retrospective, nonrandomized study of patients with type 2 diabetes, DMN, and SCH. Those with known thyroid dysfunction or taking THRT at baseline were excluded. Patients receiving THRT for at least 180 days were included in the THRT group, while the remaining patients were assigned to the non-THRT group. The primary outcome was CVD events, which included coronary syndrome, cerebrovascular events, and peripheral artery diseases. Among the 257 patients, 83 (32.3%) were in the THRT group. The mean ages were 62.7 ± 12.3 and 66.8 ± 12.4 years in the THRT and non-THRT groups, respectively. The corresponding numbers of male patients were 32 (40.0%) and 94 (53.1%). During a mean follow-up of 38.0 ± 29.2 months, 98 CVD events were observed. Acute coronary syndrome and cerebrovascular event prevalence rates were lower in the THRT group than the non-THRT group, but there was no difference for peripheral artery diseases. Multivariate Cox analysis revealed that THRT was independently associated with a decreased CVD event risk. THRT may decrease the risk of CVD in DMN patients with SCH. Randomized trials are needed to verify this finding. CV = cardiovascular DMN = diabetic nephropathy eGFR = estimated glomerular filtration rate fT4 = free thyroxine HbA1c = glycosylated hemoglobin HR = hazard ratio hs-CRP = high-sensitivity C-reactive protein LDL-C = low-density lipoprotein cholesterol SCH = subclinical hypothyroidism T2DM = type 2 diabetes THRT = thyroid hormone replacement therapy TSH = thyroid-stimulating hormone.

  9. Rapid method for the measurement of circulating thyroid hormones in low volumes of teleost fish plasma by LC-ESI/MS/MS

    PubMed Central

    Noyes, Pamela D.; Lema, Sean C.; Roberts, Simon C.; Cooper, Ellen M.

    2014-01-01

    Thyroid hormones are critical regulators of normal development and physiological functioning in all vertebrates. Radioimmunoassay (RIA) approaches have been the method of choice for measuring circulating levels of thyroid hormones in vertebrates. While sensitive, RIA-based approaches only allow for a single analyte measurement per assay, can lack concordance across platforms and laboratories, and can be prone to analytical interferences especially when used with fish plasma. Ongoing advances in liquid chromatography tandem mass spectrometry (LC/MS/MS) have led to substantial decreases in detection limits for thyroid hormones and other biomolecules in complex matrices, including human plasma. Despite these advances, current analytical approaches do not allow for the measurement of native thyroid hormone in teleost fish plasma by mass spectrometry and continue to rely on immunoassay. In this study, we developed a new method that allows for the rapid extraction and simultaneous measurement of total T4 (TT4) and total T3 (TT3) in low volumes (50 μL) of fish plasma by LC/MS/MS. Methods were optimized initially in plasma from rainbow trout (Oncorhynchus mykiss) and applied to plasma from other teleost fishes, including fathead minnows (Pimephales promelas), mummichogs (Fundulus heteroclitus), sockeye salmon (Oncorhynchus nerka), and coho salmon (Oncorhynchus kisutch). Validation of method performance with T4- and T3-spiked rainbow trout plasma at 2 and 4 ng/mL produced mean recoveries ranging from 82 to 95 % and 97 to 105 %, respectively. Recovery of 13C12-T4 internal standard in plasma extractions was: 99±1.8 % in rainbow trout, 85±11 % in fathead minnow, 73±5.0 % in mummichog, 73±1.7 % in sockeye salmon, and 80±8.4 % in coho salmon. While absolute levels of thyroid hormones measured in identical plasma samples by LC/MS/MS and RIA varied depending on the assay used, T4/T3 ratios were generally consistent across both techniques. Less variability was measured among

  10. High T3, Low T4 Serum Levels in Mct8 Deficiency Are Not Caused by Increased Hepatic Conversion through Type I Deiodinase

    PubMed Central

    Wirth, Eva K.; Rijntjes, Eddy; Meyer, Franziska; Köhrle, Josef; Schweizer, Ulrich

    2015-01-01

    Background The Allan-Herndon-Dudley syndrome is a severe psychomotor retardation accompanied by specific changes in circulating thyroid hormone levels (high T3, low T4). These are caused by mutations in the thyroid hormone transmembrane transport protein monocarboxylate transporter 8 (MCT8). Objective: To test the hypothesis that circulating low T4 and high T3 levels are caused by enhanced conversion of T4 via increased activity of hepatic type I deiodinase (Dio1). Methods We crossed mice deficient in Mct8 with mice lacking Dio1 activity in hepatocytes. Translation of the selenoenzyme Dio1 was abrogated by hepatocyte-specific inactivation of selenoprotein biosynthesis. Results Inactivation of Dio1 activity in the livers of global Mct8-deficient mice does not restore normal circulating thyroid hormone levels. Conclusions Our data suggest that although hepatic Dio1 activity is increased in Mct8-deficient mice, it does not cause the observed abnormal circulating thyroid hormone levels. Since global inactivation of Dio1 in Mct8-deficient mice does normalize circulating thyroid hormone levels, the underlying mechanism and relevant tissues involved remain to be elucidated. PMID:26601078

  11. Subclinical thyroid dysfunction and circulating thyroid hormones are not associated with bone turnover markers or incident hip fracture in older men.

    PubMed

    Siru, Ranita; Alfonso, Helman; Chubb, S A Paul; Golledge, Jonathan; Flicker, Leon; Yeap, Bu B

    2018-04-14

    Overt thyroid dysfunction is a risk factor for osteoporosis and fractures. Subclinical hyperthyroidism has also been associated with fracture. It remains unclear whether variation in thyroid hormones within the euthyroid range modulates bone health, particularly among older men. We assessed whether thyroid stimulating hormone (TSH) and free thyroxine (FT4) are associated with bone turnover markers (BTMs) and predict hip fracture risk in community-dwelling older men without known thyroid disease. Prospective cohort study. 4248 men aged 70-89 years. Baseline blood samples were assayed for TSH, FT4, total osteocalcin (TOC), undercarboxylated osteocalcin (ucOC), N-terminal propeptide of type I collagen (P1NP) and collagen type I C-terminal cross-linked telopeptide (CTX). Incidence of hip fracture events was ascertained to 2012. Associations of TSH and FT4 with BTMs were analysed at baseline using Pearson correlation coefficients, and with incident hip fracture using Cox proportional hazards regression. After excluding men with pre-existing thyroid or bone disease, there were 3, 338 men for analysis. Of these, 3, 117 were euthyroid, 135 had subclinical hypothyroidism and 86 had subclinical hyperthyroidism. Men with subclinical thyroid disease were older and those with subclinical hyperthyroidism had lower creatinine than the other groups. After multivariate analysis, there was no association found between FT4, TSH or subclinical thyroid dysfunction and BTMs at baseline. Neither subclinical thyroid dysfunction, TSH nor FT4 were predictive of incident hip fracture in our study population. In euthyroid older men, TSH and FT4 were not associated with BTMs or incident hip fracture. Our findings differ from those previously described in post-menopausal women. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Thyroid hormones and thyroid disease in relation to perchlorate dose and residence near a superfund site.

    PubMed

    Gold, Ellen B; Blount, Benjamin C; O'Neill Rasor, Marianne; Lee, Jennifer S; Alwis, Udeni; Srivastav, Anup; Kim, Kyoungmi

    2013-07-01

    Perchlorate is a widely occurring contaminant, which can competitively inhibit iodide uptake and thus thyroid hormone production. The health effects of chronic low dose perchlorate exposure are largely unknown. In a community-based study, we compared thyroid function and disease in women with differing likelihoods of prior and current perchlorate exposure. Residential blocks were randomly selected from areas: (1) with potential perchlorate exposure via drinking water; (2) with potential exposure to environmental contaminants; and (3) neighboring but without such exposures. Eligibility included having lived in the area for ≥6 months and aged 20-50 years during 1988-1996 (during documented drinking water well contamination). We interviewed 814 women and collected blood samples (assayed for thyroid stimulating hormone and free thyroxine) from 431 interviewed women. Daily urine samples were assayed for perchlorate and iodide for 178 premenopausal women with blood samples. We performed multivariable regression analyses comparing thyroid function and disease by residential area and by urinary perchlorate dose adjusted for urinary iodide levels. Residential location and current perchlorate dose were not associated with thyroid function or disease. No persistent effect of perchlorate on thyroid function or disease was found several years after contaminated wells were capped.

  13. Prevalence of subclinical hypothyroidism in obese children or adolescents and association between thyroid hormone and the components of metabolic syndrome.

    PubMed

    Jin, Hye Young

    2018-05-16

    Subclinical hypothyroidism is defined as elevated thyroid-stimulating hormone (TSH) levels with the normal concentrations of thyroxine (T4) or free thyroxine (fT4), and its clinical significance is unclear. The purpose of this study is to investigate the prevalence of subclinical hypothyroidism in children and adolescents and determine the relationship between lipid profiles, insulin resistance and thyroid hormones. A retrospective, cross-sectional study was performed using data from a subset of the KNHANES VI. The subjects whose ages were in the range of 10-19 years were enrolled when their thyroid function tests were available (n = 1104), and their laboratory and anthropometric data were analysed. Subclinical hypothyroidism was more commonly identified in the obese group (27 of 111) compared to the other groups (127 of 993) (24.3 vs. 12.8%, P = 0.002). Total cholesterol and triglyceride levels were higher in a group with subclinical hypothyroidism. Body mass index (BMI) was positively correlated with serum concentrations of the TSH and negatively correlated with serum concentrations of fT4 after adjusting for age. The concentrations of total cholesterol and triglyceride were positively correlated with the TSH concentrations following adjustment for age and BMI standard deviation scores. The fT4 concentrations were negatively linked with total cholesterol after adjusting for age and BMI standard deviation scores. No significant correlation was found between insulin resistance index and TSH and fT4. Subclinical hypothyroidism was common in the obese group, and the concentrations of TSH were linked with the lipid profile. Subclinical hypothyroidism in obese children or adolescents should be closely monitored while also evaluating metabolic risk factors. © 2018 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  14. Exposure to polychlorinated biphenyls and the thyroid gland – examining and discussing possible longitudinal health effects in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaum, Petra M., E-mail: pgaum@ukaachen.de; Lang, Jessica; Esser, André

    Background: Many previous studies have dealt with the effect of polychlorinated biphenyls (PCBs) on the thyroid gland, but their findings are inconsistent. One problem of these studies has been their use of cross-sectional designs. Objectives: The aim of the current study is to investigate longitudinal effects of PCBs on the thyroid gland, focusing on: morphological changes in thyroid tissue (i.e. thyroid volume), changes in thyroid hormones and in thyroid antibodies. Methods: A total of 122 individuals (M{sub age}=44.7) were examined over a period of four years (t{sup 1} until t{sup 4}). Medical history was collected via interviews, an ultrasound examinationmore » was performed and blood samples were taken to determine plasma PCB levels, thyroid stimulating hormone (TSH), free triiodthyronine (fT3), free thyroxine (fT4), thyroid peroxidase antibodies (TPOab), thyreoglobulin antibodies (TGab) and thyroid-stimulating hormone receptor antibodies (TSHRab). Rank correlation coefficients and mixed effect models were performed controlling for age and total lipids. Results: There were negative correlations between higher chlorinated biphenyls and fT3, cross-sectionally as well as longitudinally. We also found an interaction effect of higher-chlorinated PCBs over time for fT4 as well as TSHRab. In case of high exposure, a decrease in fT4 and an increase in TSHRab level were found over time. In regards to the other variables, our findings yielded no clear results in the examined time period. Conclusion: This is the first study to shows a PCB-related effect on fT3, fT4 and TSHRab over a four year period. The data also suggest that morphological and antibody findings remain inconsistent and do not allow for unambiguous interpretation. - Highlights: • This is a longitudinal study which includes data from four cross sections. • Higher-chlorinated biphenyls are negatively correlated with fT3. • There are interactions of time and higher-chlorinated biphenyls to TSHRab and

  15. Administration of 3,5-diiodothyronine (3,5-T2) causes central hypothyroidism and stimulates thyroid-sensitive tissues.

    PubMed

    Padron, Alvaro Souto; Neto, Ruy Andrade Louzada; Pantaleão, Thiago Urgal; de Souza dos Santos, Maria Carolina; Araujo, Renata Lopes; de Andrade, Bruno Moulin; da Silva Leandro, Monique; de Castro, João Pedro Saar Werneck; Ferreira, Andrea Claudia Freitas; de Carvalho, Denise Pires

    2014-06-01

    In general, 3,5-diiodothyronine (3,5-T2) increases the resting metabolic rate and oxygen consumption, exerting short-term beneficial metabolic effects on rats subjected to a high-fat diet. Our aim was to evaluate the effects of chronic 3,5-T2 administration on the hypothalamus-pituitary-thyroid axis, body mass gain, adipose tissue mass, and body oxygen consumption in Wistar rats from 3 to 6 months of age. The rats were treated daily with 3,5-T2 (25, 50, or 75 μg/100 g body weight, s.c.) for 90 days between the ages of 3 and 6 months. The administration of 3,5-T2 suppressed thyroid function, reducing not only thyroid iodide uptake but also thyroperoxidase, NADPH oxidase 4 (NOX4), and thyroid type 1 iodothyronine deiodinase (D1 (DIO1)) activities and expression levels, whereas the expression of the TSH receptor and dual oxidase (DUOX) were increased. Serum TSH, 3,3',5-triiodothyronine, and thyroxine were reduced in a 3,5-T2 dose-dependent manner, whereas oxygen consumption increased in these animals, indicating the direct action of 3,5-T2 on this physiological variable. Type 2 deiodinase activity increased in both the hypothalamus and the pituitary, and D1 activities in the liver and kidney were also increased in groups treated with 3,5-T2. Moreover, after 3 months of 3,5-T2 administration, body mass and retroperitoneal fat pad mass were significantly reduced, whereas the heart rate and mass were unchanged. Thus, 3,5-T2 acts as a direct stimulator of energy expenditure and reduces body mass gain; however, TSH suppression may develop secondary to 3,5-T2 administration. © 2014 The authors.

  16. [Levels of unified metabolites and thyroid hormones in blood and oral fluid of children with minimal brain dysfunction].

    PubMed

    Gil'miiarova, F N; Pervova, Iu V; Radomskaia, V M; Gergel', N I; Tarasova, S V

    2004-01-01

    Minimal brain dysfunctions in children with various perinatal complications are accompanied by metabolic imbalance manifested by decreased total protein content, the tendency to reduced triglycerides, increased cholesterol concentrations in the oral fluid, the trend to hypoproteinaemia, hypoglycaemia, hypotriglyceridaemia. The most significant changes in the redox systems alpha-ketoglutarate-glutamate, oxaloacetate-malate, pyruvate-lactate, dioxyacetone phosphate-alpha-glycerophosphate in biological fluids were revealed in cases of antenatal alcoholisation. A certain correlation was found between anemia in pregnant women and hypothyroidal background in children. In addition, a high level of free and total thyroxine, that of total triiodthyronine were found in the oral fluid. Hypophysis--thyroid dysregulation in children with minimal brain dysfunction associated with gestosis in their mothers during pregnancy, was manifested by decreased content of total and free T4 and T3 in blood serum and increased level of the thyroid-stimulating hormone.

  17. Increased sensitivity of thyroid hormone-mediated signaling despite prolonged fasting.

    PubMed

    Martinez, Bridget; Scheibner, Michael; Soñanez-Organis, José G; Jaques, John T; Crocker, Daniel E; Ortiz, Rudy M

    2017-10-01

    Thyroid hormones (TH) can increase cellular metabolism. Food deprivation in mammals is typically associated with reduced thyroid gland responsiveness, in an effort to suppress cellular metabolism and abate starvation. However, in prolonged-fasted, elephant seal pups, cellular TH-mediated proteins are up-regulated and TH levels are maintained with fasting duration. The function and contribution of the thyroid gland to this apparent paradox is unknown and physiologically perplexing. Here we show that the thyroid gland remains responsive during prolonged food deprivation, and that its function and production of TH increase with fasting duration in elephant seals. We discovered that our modeled plasma TH data in response to exogenous thyroid stimulating hormone predicted cellular signaling, which was corroborated independently by the enzyme expression data. The data suggest that the regulation and function of the thyroid gland in the northern elephant seal is atypical for a fasted animal, and can be better described as, "adaptive fasting". Furthermore, the modeling data help substantiate the in vivo responses measured, providing unique insight on hormone clearance, production rates, and thyroid gland responsiveness. Because these unique endocrine responses occur simultaneously with a nearly strict reliance on the oxidation of lipid, these findings provide an intriguing model to better understand the TH-mediated reliance on lipid metabolism that is not otherwise present in morbidly obese humans. When coupled with cellular, tissue-specific responses, these data provide a more integrated assessment of thyroidal status that can be extrapolated for many fasting/food deprived mammals. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Correlation between serum lead and thyroid diseases: papillary thyroid carcinoma, nodular goiter, and thyroid adenoma.

    PubMed

    Li, Hui; Li, Xiang; Liu, Jie; Jin, Langping; Yang, Fan; Wang, Junbo; Wang, Ouchen; Gao, Ying

    2017-10-01

    Studies have showed that lead was associated with human health. However, the effects of lead on thyroid functions are inconsistent, and studies based on Chinese population are fragmentary. To evaluate the correlation between lead and thyroid functions of Chinese with different thyroid diseases, we conducted a hospital-based study. Ninety-six papillary thyroid carcinoma (PTC), 10 nodular goiter (NG), and 7 thyroid adenoma (TA) patients were recruited from the First Affiliated Hospital of Wenzhou Medical University, China. Serum triiodothyronine (T3), free triiodothyronine (FT3), free thyroxin (FT4), and thyroid stimulating hormone (TSH) were evaluated with chemiluminescent microparticle immunoassay. Serum lead was assessed with ICP-MASS. Partial correlation was used to explore the correlations of serum lead and thyroid diseases. Compared to PTC, the level of lead was significantly higher in TA, and lower in NG (p < 0.05). This difference remained significant in females when stratified by sex. Serum lead was negatively correlated with TSH (r s  =  - 0.27, p < 0.05) in PTC group. T3 was positively related to lead at quartile4 (r s  = 0.61, p < 0.05) in PTC group. No significant correlations were observed between lead and FT3 or FT4 in any group. The results suggested that lead might have different etiological roles in these three thyroid diseases.

  19. Thyroid hormone and the central control of homeostasis.

    PubMed

    Warner, Amy; Mittag, Jens

    2012-08-01

    It has long been known that thyroid hormone has profound direct effects on metabolism and cardiovascular function. More recently, it was shown that the hormone also modulates these systems by actions on the central autonomic control. Recent studies that either manipulated thyroid hormone signalling in anatomical areas of the brain or analysed seasonal models with an endogenous fluctuation in hypothalamic thyroid hormone levels revealed that the hormone controls energy turnover. However, most of these studies did not progress beyond the level of anatomical nuclei; thus, the neuronal substrates as well as the molecular mechanisms remain largely enigmatic. This review summarises the evidence for a role of thyroid hormone in the central autonomic control of peripheral homeostasis and advocates novel strategies to address thyroid hormone action in the brain on a cellular level.

  20. EVALUATION OF QUANTITATIVE THYROID SCINTIGRAPHY FOR DIAGNOSIS AND STAGING OF DISEASE SEVERITY IN CATS WITH HYPERTHYROIDISM: COMPARISON OF THE PERCENT THYROIDAL UPTAKE OF PERTECHNETATE TO THYROID-TO-SALIVARY RATIO AND THYROID-TO-BACKGROUND RATIOS.

    PubMed

    Peterson, Mark E; Guterl, Jade N; Rishniw, Mark; Broome, Michael R

    2016-07-01

    Thyroid scintigraphy is commonly used for evaluation of cats with hyperthyroidism, with the thyroid-to-salivary ratio (T/S) being the most common method to quantify the degree of thyroid activity and disease. Calculation of thyroid-to-background ratios (T/B) or percent thyroidal uptake of (99m) TcO(-) 4 (TcTU) has only been reported in a few studies. The purpose of this prospective, cross-sectional study was to evaluate a number of quantitative scintigraphic indices as diagnostic tests for hyperthyroidism, including the T/S, three different T/B, TcTU, and estimated thyroid volume. Of 524 cats referred to our clinic for evaluation of suspected hyperthyroidism, the diagnosis was confirmed (n = 504) or excluded (n = 20) based on results of a serum thyroid panel consisting of thyroxine (T4 ), triiodothyronine (T3 ), free T4 (fT4 ), and thyroid-stimulating hormone (TSH) concentrations. In the hyperthyroid cats, median values for TcTU, T/S, and three T/B ratios were all significantly higher (P < 0.001) than values in euthyroid suspect cats or clinically normal cats. All scintigraphic parameters were relatively sensitive and specific as diagnostic tests for hyperthyroidism, but the T/S ratio had the highest test accuracy. The T/S ratio correlated strongly with the TcTU (r = 0.85). However, the TcTU had a higher and more significant correlation (P < 0.01) with serum T4 (r = 0.76 vs. 0.64), T3 (r = 0.77 vs. 0.64), and estimated thyroid volume (r = 0.62 vs. 0.38). Overall, calculation of TcTU is an accurate diagnostic test, but also appears to be the best parameter to predict the functional volume and metabolic activity of the feline adenomatous thyroid gland. © 2016 American College of Veterinary Radiology.

  1. The immediate and late effects of thyroid hormone (triiodothyronine) on murine coagulation gene transcription.

    PubMed

    Salloum-Asfar, Salam; Boelen, Anita; Reitsma, Pieter H; van Vlijmen, Bart J M

    2015-01-01

    Thyroid dysfunction is associated with changes in coagulation. The aim of our study was to gain more insight into the role of thyroid hormone in coagulation control. C57Black/6J mice received a low-iodine diet and drinking water supplemented with perchlorate to suppress endogenous triiodothyronine (T3) and thyroxine (T4) production. Under these conditions, the impact of exogenous T3 on plasma coagulation, and hepatic and vessel-wall-associated coagulation gene transcription was studied in a short- (4 hours) and long-term (14 days) setting. Comparing euthyroid conditions (normal mice), with hypothyroidism (conditions of a shortage of thyroid hormone) and those with replacement by incremental doses of T3, dosages of 0 and 0.5 μg T3/mouse/day were selected to study the impact of T3 on coagulation gene transcription. Under these conditions, a single injection of T3 injection increased strongly hepatic transcript levels of the well-characterized T3-responsive genes deiodinase type 1 (Dio1) and Spot14 within 4 hours. This coincided with significantly reduced mRNA levels of Fgg, Serpinc1, Proc, Proz, and Serpin10, and the reduction of the latter three persisted upon daily treatment with T3 for 14 days. Prolonged T3 treatment induced a significant down-regulation in factor (F) 2, F9 and F10 transcript levels, while F11 and F12 levels increased. Activity levels in plasma largely paralleled these mRNA changes. Thbd transcript levels in the lung (vessel-wall-associated coagulation) were significantly up-regulated after a single T3 injection, and persisted upon prolonged T3 exposure. Two-week T3 administration also resulted in increased Vwf and Tfpi mRNA levels, whereas Tf levels decreased. These data showed that T3 has specific effects on coagulation, with Fgg, Serpinc1, Proc, Proz, Serpin10 and Thbd responding rapidly, making these likely direct thyroid hormone receptor targets. F2, F9, F10, F11, F12, Vwf, Tf and Tfpi are late responding genes and probably indirectly

  2. Thyroid storm induced by TSH-secreting pituitary adenoma: a case report.

    PubMed

    Fujio, Shingo; Ashari; Habu, Mika; Yamahata, Hitoshi; Moinuddin, F M; Bohara, Manoj; Arimura, Hiroshi; Nishijima, Yui; Arita, Kazunori

    2014-01-01

    Thyroid stimulating hormone-secreting pituitary adenomas (TSHomas) are uncommon tumors of the anterior pituitary gland. Patients with TSHomas may present with hyperthyroidism, but the incidence of thyroid storm due to TSHomas has yet to be determined. We report a rare case of thyroid storm caused by TSHoma in a 54-year-old woman. Preoperatively she had symptoms of excessive sweating and palpitation. Blood tests showed inappropriate secretion of TSH with blood TSH 6.86 μ U/mL, fT3 19.8 pg/mL, and fT4 5.95 ng/dL. Magnetic resonance imaging (MRI) revealed a pituitary tumor with maximum diameter of 13 mm that was extirpated through transsphenoidal route. After operation the patient was stuporous and thyroid storm occurred presenting with hyperthermia, hypertension, and tachycardia. It was well managed with nicardipine, midazolam, steroids, and potassium iodide. Immunohistochemical staining of tumor specimen was positive for TSH and growth hormone (GH). One year after operation, fT3 and fT4 levels were still high. As her tumor was diagnosed to be GH- and TSH-producing adenoma, octreotide injection therapy was started, which normalized thyroid hormone levels. This is the second reported case with thyroid storm due to TSHoma and emphasizes the importance of strategies with interdisciplinary cooperation for prevention of such emergency conditions.

  3. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis)

    USGS Publications Warehouse

    Zak, Megan A.; Regish, Amy M.; McCormick, Stephen; Manzon, Richard G.

    2017-01-01

    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19 °C) or below (8 °C) the thermal optimum (13 °C) and exposure to exogenous thyroid hormone (60 µg T4/g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation.

  4. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis).

    PubMed

    Zak, Megan A; Regish, Amy M; McCormick, Stephen D; Manzon, Richard G

    2017-06-01

    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19°C) or below (8°C) the thermal optimum (13°C) and exposure to exogenous thyroid hormone (60µg T 4 /g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A-FABP mediates adaptive thermogenesis by promoting intracellular activation of thyroid hormones in brown adipocytes

    PubMed Central

    Shu, Lingling; Hoo, Ruby L. C.; Wu, Xiaoping; Pan, Yong; Lee, Ida P. C.; Cheong, Lai Yee; Bornstein, Stefan R; Rong, Xianglu; Guo, Jiao; Xu, Aimin

    2017-01-01

    The adipokine adipocyte fatty acid-binding protein (A-FABP) has been implicated in obesity-related cardio-metabolic complications. Here we show that A-FABP increases thermogenesis by promoting the conversion of T4 to T3 in brown adipocytes. We find that A-FABP levels are increased in both white (WAT) and brown (BAT) adipose tissues and the bloodstream in response to thermogenic stimuli. A-FABP knockout mice have reduced thermogenesis and whole-body energy expenditure after cold stress or after feeding a high-fat diet, which can be reversed by infusion of recombinant A-FABP. Mechanistically, A-FABP induces the expression of type-II iodothyronine deiodinase in BAT via inhibition of the nuclear receptor liver X receptor α, thereby leading to the conversion of thyroid hormone from its inactive form T4 to active T3. The thermogenic responses to T4 are abrogated in A-FABP KO mice, but enhanced by A-FABP. Thus, A-FABP acts as a physiological stimulator of BAT-mediated adaptive thermogenesis. PMID:28128199

  6. Change of maternal thyroid function in twin-twin transfusion syndrome.

    PubMed

    Hanaoka, Masachi; Arata, Naoko; Sago, Haruhiko

    2015-01-01

    Human chorionic gonadotropin (hCG) has weak thyroid-stimulating activity because of its homology with thyroid stimulating hormone (TSH). In twin-twin transfusion syndrome (TTTS), which is a severe complication of monochorionic twin pregnancies, a close association between maternal serum hCG concentration and TTTS has been reported. And, TTTS can be treated by fetoscopic laser coagulation of the communicating vessels. To clarify the relationship between maternal serum hCG and maternal thyroid function in TTTS, the present study investigated the change in thyroid hormone and hCG levels after laser therapy. The protocol included collection of serial maternal blood samples in TTTS before laser therapy, and at two and four weeks after laser therapy. For 131 cases of TTTS, the following parameters were determined at each point: hCG, TSH, free triiodothyronine (fT3), and free thyroxine (fT4). The multiple of the median (MoM) of pre-operative hCG concentration in TTTS was 5.39 MoM (interquartile range, 2.83 - 8.64). There was a moderate positive correlation between hCG and fT3 in TTTS pre-operatively (R = 0.22, P = 0.030). fT4 was also positively correlated with hCG (R = 0.33, P < 0.001). Some cases showed very high concentration in fT3. When laser therapy for TTTS was effective, the hCG concentration significantly decreased, and fT3 and fT4 decreased progressively in concert with the decrease in hCG. The relationship between hCG and thyroid function in TTTS supports the finding of TTTS as a novel etiology of hCG-mediated hyperthyroidism during pregnancy.

  7. Serum thyrotropin and thyroid hormone levels in elderly and middle-aged euthyroid persons.

    PubMed

    Hershman, J M; Pekary, A E; Berg, L; Solomon, D H; Sawin, C T

    1993-08-01

    To determine whether serum thyrotropin (TSH) levels are altered in euthyroid older persons compared with middle-aged adults. Serum TSH and thyroid hormone levels were measured in a large group of older persons (> 70 years old, n = 216) and their middle-aged offspring (40-60 years old, n = 211) after excluding those with clinical or historical evidence of thyroid disease or abnormal thyroid function. Serum TSH, thyroxine (T4), free T4 index, estimated free T4, triiodothyronine (T3), estimated free T3, and ferritin levels were measured on the Abbott IMx instrument. Peroxidase and thyroglobulin antibodies were measured by radioimmunoassay using Kronus kits. Overall, serum TSH showed a log-normal distribution. The geometric mean TSH (mU/L) and 95% confidence limits in the older persons, 1.24 (0.29-5.4), did not differ significantly from that in the middle-aged, 1.45 (0.54-3.9). The mean TSH in the 264 women, 1.37 (0.34-5.5), was similar to that of the 163 men, 1.30 (0.48-3.5). The mean TSH in older women, 1.21 (0.22-6.6), was slightly but significantly lower than that in middle-aged women, 1.52 (0.55-4.2). However, when euthyroid women with positive antibodies were excluded, this difference was not significant. Four of the 123 older women had TSH < 0.1 mU/L, but none of the men or middle-aged women had a suppressed serum TSH. The mean TSH in older men, 1.28 (0.43-3.8), was similar to that in middle-aged men, 1.32 (0.55-3.2). Free T4 was slightly higher in older women than middle-aged women. There were no significant correlations between TSH and any thyroid hormone level. Serum ferritin, measured as a potential marker for the action of thyroid hormone, did not correlate with any measure of thyroid function. At least one antibody level was > 10 U/mL in 14.6% of older women, 15.6% of middle-aged women, 4.3% of older men, and no middle-aged men. When those with milder elevations of antibody levels were included (at least one level > 1 U/mL), the prevalence was 32% of older

  8. Sex-steroid and thyroid hormone concentrations in juvenile alligators (Alligator mississippiensis) from contaminated and reference lakes in Florida, USA

    USGS Publications Warehouse

    Grain, D.A.; Guillette, L.J.; Pickford, D.B.; Percival, H.F.; Woodward, A.R.

    1998-01-01

    Sex-steroid and thyroid hormones are critical regulators of growth and reproduction in all vertebrates, and several recent studies suggest that environmental chemicals can alter circulating concentrations of these hormones. This study examines plasma concentrations of estradiol-171?? (E2), testosterone (T), triiodothyronine (T3), and thyroxine (T4) in juvenile alligators (60-140 cm total length) from two contaminated lakes and one reference lake in Florida. First, the data were analyzed by comparing hormone concentrations among males and females from the different lakes. Whereas there were no differences in plasma E2 concentrations among animals of the three lakes, male alligators from the contaminated lakes (Lake Apopka and Lake Okeechobee) had significantly lower plasma T concentrations compared 10 males from the reference take (Lake Woodruff). Concentrations of thyroid hormones also differed in animals of the three lakes, with T4 concentrations being elevated in Lake Okeechobee males compared to Lake Woodruff males. Second, the relationship between body size and hormone concentration was examined using regression analysis. Most notably for steroid hormones, no clear relationship was detected between E2 and total length in Apopka females (r2 0.09, p = 0.54) or between T and total length in Apopka males (r2 = 0.007, p = 0.75). Females from Apopka (r2 = 0.318, p = 0.09) and Okeechobee (r2 = 0.222, p = 0.09) exhibited weak correlations between T3 and total length. Males from Apopka (r2 = 0.015, p = 0.66) and Okeechobee (r2 = 0.128, p = 0.19) showed no correlation between T4 and total length. These results indicate: some of the previously reported abnormalities in steroid hormones of hatchling alligators persist, at least, through the juvenile years; steroid and thyroid hormones are related to body size in juvenile alligators from the reference lake, whereas alligators living in lakes Apopka and Okeechobee experience alterations in circulating thyroid and steroid

  9. Is excessive weight gain after ablative treatment of hyperthyroidism due to inadequate thyroid hormone therapy?

    PubMed

    Tigas, S; Idiculla, J; Beckett, G; Toft, A

    2000-12-01

    There is controversy about the correct dose and form of thyroid hormone therapy for patients with hypothyroidism. Despite restoration of serum thyrotropin (TSH) concentrations to normal, many patients complain of excessive weight gain. We have compared weight at diagnosis of hyperthyroidism with that when euthyroid, evidenced by a stable, normal serum TSH concentration, with or without thyroxine (T4) replacement therapy, in patients treated with an 18-month course of antithyroid drugs (43 patients), surgery (56 patients), or 13I (34 patients) for Graves' disease. In addition, weights were recorded before and after treatment of 25 patients with differentiated thyroid carcinoma by total thyroidectomy, 131I, and long-term T4 suppressive therapy, resulting in undetectable serum TSH concentrations. Mean weight gain in patients with Graves' disease who required T4 replacement therapy following surgery was significantly greater than in those of the same age, sex, and severity of hyperthyroidism rendered euthyroid by surgery (3.9 kg) (p < 0.001) or at the end of a course of antithyroid drugs (4.1 kg) (p < 0.001). Weight gain was similar in those requiring T4 replacement following surgery or 131T therapy (10.4 versus 10.1 kg). In contrast, ablative therapy combined with suppression of TSH secretion by T4 in patients with differentiated thyroid carcinoma did not result in weight gain. The excessive weight gain in patients becoming hypothyroid after destructive therapy for Graves' disease suggests that restoration of serum TSH to the reference range by T4 alone may constitute inadequate hormone replacement.

  10. Analysis of current thyroid function test ordering practices.

    PubMed

    Kluesner, Joseph K; Beckman, Darrick J; Tate, Joshua M; Beauvais, Alexis A; Kravchenko, Maria I; Wardian, Jana L; Graybill, Sky D; Colburn, Jeffrey A; Folaron, Irene; True, Mark W

    2018-04-01

    Current guidelines recommend thyroid stimulating hormone (TSH) alone as the best test to detect and monitor thyroid dysfunction, yet free thyroxine (FT4) and free triiodothyronine (FT3) are commonly ordered when not clinically indicated. Excessive testing can lead to added economic burden in an era of rising healthcare costs, while rarely contributing to the evaluation or management of thyroid disease. To evaluate our institution's practice in ordering thyroid function tests (TFTs) and to identify strategies to reduce inappropriate FT4 and FT3 testing. A record of all TFTs obtained in the San Antonio Military Health System during a 3-month period was extracted from the electronic medical record. The TFTs of interest were TSH, FT4, thyroid panel (TSH + FT4), FT3, total thyroxine (T4), and total triiodothyronine (T3). These were categorized based on the presence or absence of hypothyroidism. Between August 1 and October 31, 2016, there were 38 214 individual TFTs ordered via 28 597 total laboratory requests; 11 486 of these requests were in patients with a history of hypothyroidism. The number (percent) of laboratory requests fell into these patterns: TSH alone 14 919 (52.14%), TSH + FT4 7641 (26.72%), FT3 alone 3039 (10.63%), FT4 alone 1219 (4.26%), TSH + FT4 + FT3 783 (2.74%), and others 996 (3.48%); 36.0% of TFTs ordered were free thyroid hormones. Projected out to a year, using Department of Defense laboratory costs, $317 429 worth of TFTs would be ordered, with free thyroid hormone testing accounting for $107 720. Inappropriate ordering of free thyroid hormone tests is common. In an era of rising healthcare costs, inappropriate thyroid function testing is an ideal target for efforts to reduce laboratory overutilization, which in our system, could save up to $120 000 per year. Further evaluation is needed to determine strategies that can reduce excessive thyroid hormone testing. Published 2017. This article is a U.S. Government work and is in the

  11. Thyroid-stimulating hormone, 5-HTTLPR genotype, and antidepressant response in depressed women.

    PubMed

    Gressier, Florence; Trabado, Séverine; Verstuyft, Céline; Bouaziz, Elodie; Hardy, Patrick; Fève, Bruno; Becquemont, Laurent; Corruble, Emmanuelle

    2011-10-01

    Basal serum thyroid-stimulating hormone (TSH) levels may predict antidepressant efficacy in patients with major depressive episodes (MDE), but data are inconsistent. As the SS genotype of the 5-HTTLPR polymorphism has been associated with a lower antidepressant efficacy in women with MDE, we aimed at assessing the relationship between normal basal TSH, 5-HTTLPR, and antidepressant efficacy in women. A total of 71 women and 28 men, with normal baseline TSH serum levels, hospitalized for a MDE, were assessed for 5-HTTLPR genotypes and prospectively followed for short-term antidepressant efficacy. Women with SS genotype had higher TSH levels (P=0.002) and a worse antidepressant response (P=0.046) than the women with LL/LS genotype, whereas no significant difference was shown in men. In multivariate analyses, antidepressant response in women was explained by TSH and 5-HTTLPR, but not by other variables. Further research is needed to understand the underlying mechanism explaining interactions between sex, TSH, and serotonergic function.

  12. Physiologically-Based Pharmacokinetic (PBPK) Model for the Thyroid Hormones in the Pregnant Rat and Fetus.

    EPA Science Inventory

    A developmental PBPK model is constructed to quantitatively describe the tissue economy of the thyroid hormones (THs), thyroxine (T4) and triiodothyronine (T3), in the rat. The model is also used to link maternal (THs) to rat fetal tissues via placental transfer. THs are importan...

  13. Effects of hyperthyroidism and hypothyroidism on rat growth hormone release induced by thyrotropin-releasing hormone.

    PubMed

    Chihara, K; Kato, Y; Ohgo, S; Iwasaki, Y; Maeda, K

    1976-06-01

    The effect of synthetic thyrotropin-releasing hormone (TRH) on the release of growth hormone (GH) and thyroid-stimulating hormone (TSH) was investigated in euthyroid, hypothyroid, and hyperthyroid rats under urethane anesthesia. In euthyroid control rats, intravenous injection of TRH (200 ng/100 g BW) resulted in a significant increase in both plasma GH and TSH. In rats made hypothyroid by treatment with propylthiouracil or by thyroidectomy, basal GH and TSH levels were significantly elevated with exaggerated responses to TRH. In contrast, plasma GH and TSH responses to TRH were both significantly inhibited in rats made hyperthyroid by L-thyroxine (T4) treatment. These results suggest that altered thyroid status influences GH release as well as TSH secretion induced by TRH in rats.

  14. Effects of Inula racemosa root and Gymnema sylvestre leaf extracts in the regulation of corticosteroid induced diabetes mellitus: involvement of thyroid hormones.

    PubMed

    Gholap, S; Kar, A

    2003-06-01

    The efficacy of Inula racemosa (root) and Gymnema sylvestre (leaf) extracts either alone or in combination was evaluated in the amelioration of corticosteroid-induced hyperglycaemia in mice. Simultaneously thyroid hormone levels were estimated by radio-immunoassay (RIA) in order to ascertain whether the effects are mediated through thyroid hormones or not. While the corticosteroid (dexamethasone) administration increased the serum glucose concentration, it decreased serum concentrations of the thyroid hormones, thyroxine (T4) and triiodothyronine (T3). Administration of the two plant extracts either alone or in combination decreased the serum glucose concentration in dexamethasone induced hyperglycaemic animals. However, the administration of Inula racemosa and Gymnema sylvestre extracts in combination proved to be more effective than the individual extracts. These effects were comparable to a standard corticosteroid-inhibiting drug, ketoconazole. As no marked changes in thyroid hormone concentrations were observed by the administration of any of the plant extracts in dexamethasone treated animals, it is further suggested that these plant extracts may not prove to be effective in thyroid hormone mediated type II diabetes, but for steroid induced diabetes.

  15. Fall in thyroid stimulating hormone (TSH) may be an early marker of ipilimumab-induced hypophysitis.

    PubMed

    De Sousa, Sunita M C; Sheriff, Nisa; Tran, Chau H; Menzies, Alexander M; Tsang, Venessa H M; Long, Georgina V; Tonks, Katherine T T

    2018-06-01

    Hypophysitis develops in up to 19% of melanoma patients treated with ipilimumab, a cytotoxic T-lymphocyte antigen-4 antibody. Early detection may avert life-threatening hypopituitarism. We aimed to assess the incidence of ipilimumab-induced hypophysitis (IH) at a quaternary melanoma referral centre, and to determine whether cortisol or thyroid stimulating hormone (TSH) monitoring could predict IH onset. We performed a retrospective cohort study of ipilimumab-treated patients at a quaternary melanoma referral centre in Australia. The inclusion criteria were patients with metastatic or unresectable melanoma treated with ipilimumab monotherapy, and cortisol and TSH measurements prior to ≥ 2 infusions. The main outcomes were IH incidence and TSH and cortisol patterns in patients who did and did not develop IH. Of 78 ipilimumab-treated patients, 46 met the study criteria and 9/46 (20%) developed IH at a median duration of 13.0 weeks (range 7.7-18.1) following ipilimumab initiation. All patients whose TSH fell ≥ 80% compared to baseline developed IH, and, in 5/9 patients with IH, TSH fell prior to cortisol fall and IH diagnosis. Pre-cycle-4 TSH was significantly lower in those who developed IH (0.31 vs. 1.73 mIU/L, P = 0.006). TSH fall was detected at a median time of 9.2 (range 7.7-16.4) weeks after commencing ipilimumab, and a median of 3.6 (range of - 1.4 to 9.7) weeks before IH diagnosis. There was no difference in TSH between the groups before cycles 1-3 or in cortisol before cycles 1-4. TSH fall ≥ 80% may be an early marker of IH. Serial TSH measurement during ipilimumab therapy may be an inexpensive tool to expedite IH diagnosis.

  16. Iodothyronine deiodinase gene analysis of the Pacific oyster Crassostrea gigas reveals possible conservation of thyroid hormone feedback regulation mechanism in mollusks

    NASA Astrophysics Data System (ADS)

    Huang, Wen; Xu, Fei; Qu, Tao; Li, Li; Que, Huayong; Zhang, Guofan

    2015-07-01

    Iodothyronine deiodinase catalyzes the initiation and termination of thyroid hormones (THs) effects, and plays a central role in the regulation of thyroid hormone level in vertebrates. In non-chordate invertebrates, only one deiodinase has been identified in the scallop Chlamys farreri. Here, two deiodinases were cloned in the Pacific oyster Crassostrea gigas ( CgDx and CgDy). The characteristic in-frame TGA codons and selenocysteine insertion sequence elements in the oyster deiodinase cDNAs supported the activity of them. Furthermore, seven orthologs of deiodinases were found by a tblastn search in the mollusk Lottia gigantea and the annelid Capitella teleta. A phylogenetic analysis revealed that the deiodinase gene originated from an common ancestor and a clade-specific gene duplication occurred independently during the differentiation of the mollusk, annelid, and vertebrate lineages. The distinct spatiotemporal expression patterns implied functional divergence of the two deiodinases. The expression of CgDx and CgDy was influenced by L-thyroxine T4, and putative thyroid hormone responsive elements were found in their promoters, which suggested that the oyster deiodinases were feedback regulated by TH. Epinephrine stimulated the expression level of CgDx and CgDy, suggesting an interaction effect between different hormones. This study provides the first evidence for the existence of a conserved TH feedback regulation mechanism in mollusks, providing insights into TH evolution.

  17. Reference Values for TSH and Free Thyroid Hormones in Healthy Pregnant Women in Poland: A Prospective, Multicenter Study.

    PubMed

    Kostecka-Matyja, Marta; Fedorowicz, Anna; Bar-Andziak, Ewa; Bednarczuk, Tomasz; Buziak-Bereza, Monika; Dumnicka, Paulina; Górska, Maria; Krasnodębska, Małgorzata; Niedźwiedzka, Beata; Pach, Dorota; Ruchała, Marek; Siewko, Katarzyna; Solnica, Bogdan; Sowiński, Jerzy; Szelachowska, Małgorzata; Trofimiuk-Müldner, Małgorzata; Wachowiak-Ochmańska, Katarzyna; Hubalewska-Dydejczyk, Alicja

    2017-04-01

    The diagnosis and treatment of thyroid diseases in pregnant women remains a challenge. Various medical associations recommend establishing the reference intervals for thyroid hormones by a local laboratory. Considering differences within geophysical, socioeconomic conditions, and iodine prophylaxis in various populations, it is advisable to assess reference intervals for thyroid hormones specific to a region of residence. The objective was to assess trimester-specific reference intervals for TSH, fT 3 , and fT 4 for pregnant women in the Polish population. We conducted a prospective study in 4 centers representing different regions of Poland (Krakow, Warsaw, Poznan, and Bialystok). Our study included consecutive, healthy pregnant women (172 patients), with an age range of 27-47 years. All women had a negative history for thyroid diseases, normal thyroid peroxidase antibody levels, and proper iodine prophylaxis. All newborns had TSH levels in the appropriate reference range. Serum TSH, fT 3 , fT 4 , and thyroid-peroxidase antibodies were measured in each trimester. The reference intervals were calculated using the percentile method, as recommended by the International Federation of Clinical Chemistry. The reference values calculated were 0.009-3.177, 0.05-3.442, and 0.11-3.53 mIU/L for TSH; 3.63-6.55, 3.29-5.45, and 3.1-5.37 pmol/L for fT 3 ; and 11.99-21.89, 10.46-16.67, and 8.96-17.23 pmol/L for fT 4 in consecutive trimesters of pregnancy. Reference intervals for pregnant women when compared to the general population showed a lower concentration of TSH in every trimester of pregnancy and lower fT 4 in the 2nd and 3rd trimesters. Using appropriate trimester-specific reference intervals may improve care of pregnant women by preventing misdiagnosis and inadequate treatment.

  18. Thyroid axis dysfunction in patients with Prader-Willi syndrome during the first 2 years of life.

    PubMed

    Vaiani, Elisa; Herzovich, Viviana; Chaler, Eduardo; Chertkoff, Lilien; Rivarola, Marco A; Torrado, Maria; Belgorosky, Alicia

    2010-10-01

    Prader-Willi syndrome (PWS) is a genetic disorder caused by the loss of expression of paternally transcribed genes in a highly imprinted region of chromosome 15q11-13. The clinical phenotype has been well characterized, mostly related to hypothalamic dysfunction. Even though central hypothyroidism has been documented in 20-30% of patients with PWS, thyroid function during the first 2 years of life has not been clearly defined. To evaluate hypothalamic-pituitary-thyroid function in infant PWS patients. Eighteen patients with PWS, aged 0.16-2 years, were included in a prospective study. PWS diagnosis was based on clinical features and molecular analysis. Serum total (T) T4, free (F) T4, T3 and thyroid-stimulating hormone (TSH) were evaluated in the patients with PWS included in the study. Serum hormone values were compared to those of a large reference population of the same age. In 13 of 18 patients with PWS (72.2%), serum TT4 and/or FT4 levels were below the 2.5th percentile of the reference population, while in only one PWS patient serum T3 was below this cut-off. The results of this study suggest that transient or definitive thyrotropin-releasing hormone (TRH)-TSH thyroid axis dysfunction may frequently be present in infant PWS patients. Paediatricians should be aware of this dysfunction in this critical period of thyroid hormone action on neurological development. © 2010 Blackwell Publishing Ltd.

  19. Alteration of thyroid hormone concentrations in juvenile Chinook salmon (Oncorhynchus tshawytscha) exposed to polybrominated diphenyl ethers, BDE-47 and BDE-99.

    PubMed

    Arkoosh, Mary R; Van Gaest, Ahna L; Strickland, Stacy A; Hutchinson, Greg P; Krupkin, Alex B; Dietrich, Joseph P

    2017-03-01

    Polybrominated diphenyl ethers (PBDEs) have been used as flame-retardants in consumer products and are currently detected in salmon globally. The two most predominant PBDE congeners found in salmon are BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) and BDE-99 (2,2',4,4',5-pentabromodiphenyl ether). In the present study, groups of juvenile Pacific Chinook salmon were fed five environmentally relevant concentrations of either BDE-47 (0.3-552 ng total PBDEs/g food), BDE-99 (0.3-580 ng total PBDEs/g food), or nearly equal mixtures of both congeners (0.7-690 ng total PBDEs/g food) for 39-40 days. The concentrations of circulating total thyroid hormones, thyroxine (T 4 ) and 3,5,3'-triiodothyronine (T 3 ), were measured using a hormone-specific time-resolved fluoroimmunoassay to determine if PBDE exposure disrupts the hypothalamic-pituitary-thyroid endocrine axis. The concentrations of both circulating T 4 and T 3 were altered in juvenile salmon by dietary uptake of BDE-99. Exposure to BDE-47 did not alter either T 3 or T 4 circulating hormone concentrations. However, exposure to a mixture of BDE-47 and BDE-99 reduced T 3 in fish with lower concentrations of total whole body PBDEs than with either congener alone at equivalent PBDE whole body concentrations. Accordingly, the disruption of PBDEs on circulating thyroid hormone concentrations has the potential to impact a number of critical functions in juvenile salmon including growth, parr-smolt transformation, and immunological processes. Published by Elsevier Ltd.

  20. Effects of long-term temperature acclimation on thyroid hormone deiodinase function, plasma thyroid hormone levels, growth, and reproductive status of male Atlantic cod, Gadus morhua.

    PubMed

    Cyr, D G; Idler, D R; Audet, C; McLeese, J M; Eales, J G

    1998-01-01

    -ring deiodinase activities, predominating respectively in liver and brain, and with properties resembling those of other teleosts, (ii) T4ORD activity of liver is unusually high and may account for the high plasma T3 levels in this species, (iii) T4ORD activity tends to increase during periods of increased somatic growth, and (iv) chronic acclimation of male cod to 2-4 degrees C, as opposed to 6-10 degrees C, decreases somatic growth but does alter circulating levels of thyroid hormones and androgens and it does not change the time of sexual maturation.

  1. Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans[S

    PubMed Central

    Bonde, Ylva; Breuer, Olof; Lütjohann, Dieter; Sjöberg, Stefan; Angelin, Bo; Rudling, Mats

    2014-01-01

    Reduced plasma LDL-cholesterol is a hallmark of hyperthyroidism and is caused by transcriptional stimulation of LDL receptors in the liver. Here, we investigated whether thyroid hormone (TH) actions involve other mechanisms that may also account for the reduction in LDL-cholesterol, including effects on proprotein convertase subtilisin/kexin type 9 (PCSK9) and bile acid synthesis. Twenty hyperthyroid patients were studied before and after clinical normalization, and the responses to hyperthyroidism were compared with those in 14 healthy individuals after 14 days of treatment with the liver-selective TH analog eprotirome. Both hyperthyroidism and eprotirome treatment reduced circulating PCSK9, lipoprotein cholesterol, apoB and AI, and lipoprotein(a), while cholesterol synthesis was stable. Hyperthyroidism, but not eprotirome treatment, markedly increased bile acid synthesis and reduced fibroblast growth factor (FGF) 19 and dietary cholesterol absorption. Eprotirome treatment, but not hyperthyroidism, reduced plasma triglycerides. Neither hyperthyroidism nor eprotirome treatment altered insulin, glucose, or FGF21 levels. TH reduces circulating PSCK9, thereby likely contributing to lower plasma LDL-cholesterol in hyperthyroidism. TH also stimulates bile acid synthesis, although this response is not critical for its LDL-lowering effect. PMID:25172631

  2. Thyroid hormones regulate skeletal muscle regeneration after acute injury.

    PubMed

    Leal, Anna Lúcia R C; Albuquerque, João Paulo C; Matos, Marina S; Fortunato, Rodrigo S; Carvalho, Denise P; Rosenthal, Doris; da Costa, Vânia Maria Corrêa

    2015-02-01

    We evaluated the effects of hypo- and hyperthyroid statuses during the initial phase of skeletal muscle regeneration in rats. To induce hypo- or hyperthyroidism, adult male Wistar rats were treated with methimazole (0.03%) or T4 (10 μg/100 g), respectively, for 10 days. Three days before sacrifice, a crush injury was produced in the solear muscles of one half of the animals, while the other half remained intact. T3, T4, TSH, and leptin serum levels were not affected by the injury. Serum T3 and T4 levels were significantly increased in hyperthyroid and hyper-injury animals. Hypothyroidism was confirmed by the significant increase in serum TSH levels in hypothyroid and hypo-injury animals. Injury increased cell infiltration and macrophage accumulation especially in hyperthyroid animals. Both type 2 and type 3 deiodinases were induced by lesion, and the opposite occurred with the type 1 isoform, at least in the control and hyperthyroid groups. Injury increased both MyoD and myogenin expression in all the studied groups, but only MyoD expression was increased by thyroidal status only at the protein level. We conclude that thyroid hormones modulate skeletal muscle regeneration possibly by regulating the inflammatory process, as well as MyoD and myogenin expression in the injured tissue.

  3. Molecular basis for the autoreactivity against thyroid stimulating hormone receptor.

    PubMed

    Kohn, L D; Kosugi, S; Ban, T; Saji, M; Ikuyama, S; Giuliani, C; Hidaka, A; Shimura, H; Akamizu, T; Tahara, K

    1992-01-01

    The present report identifies an important immunogenic region of the TSH receptor and determinants on the TSH receptor for the two types of autoantibodies seen in hyperthyroid Graves' disease and hypothyroid idiopathic myxedema, TSAbs and TSBAbs, respectively. The immunogenic domain with no important functional determinants, is contained within residues 303-382 and involves residues 352-366 in particular. There are determinants flanking the immunogenic domain on the C-terminal portion of the receptor which are the TSBAb and high affinity TSH binding sites: residues 295-306, 387-395, and tyrosine 385. Determinants on the N-terminal portion of the external domain, centered on residues 38-45, are TSAb interactions linked to low affinity TSH binding important for signal generation: threonine 40 and residues 30-33, 34-37, 42-45, 52-56, and 58-61. These determinants are conserved in human and rat receptors, are not present in gonadotropin receptors, and are each related to separate actions of TSH: binding vs. signal generation. They can, therefore, account for organ specific autoimmunity and the different disease expression effected by TSBAbs vs TSAbs, i.e. hypo- vs. hyperthyroidism, respectively. It is proposed that, in the thyroid, hormonal (TSH, insulin, hydrocortisone, IGF-I) suppression of class I genes might be one means of preserving self-tolerance in the face of the hormone action to increase the expression of tissue specific genes such as thyroglobulin and thyroid peroxidase. Inappropriately high class I expression in the thyroid, i.e. if induced by interferon, viruses, or some as yet unknown agent, would contribute to the generation of autoimmune disease. Thus, it would result in increased antigen presentation to the immune system, particularly those autoantigens increased by TSH and its cAMP signal such as thyroglobulin or thyroid peroxidase, or whose turnover is increased by TSH and its cAMP signal, such as the TSH receptor. In the case of the latter, peptide

  4. Thyroid hormone accelerates the differentiation of adult hippocampal progenitors.

    PubMed

    Kapoor, R; Desouza, L A; Nanavaty, I N; Kernie, S G; Vaidya, V A

    2012-09-01

    Disrupted thyroid hormone function evokes severe physiological consequences in the immature brain. In adulthood, although clinical reports document an effect of thyroid hormone status on mood and cognition, the molecular and cellular changes underlying these behavioural effects are poorly understood. More recently, the subtle effects of thyroid hormone on structural plasticity in the mature brain, in particular on adult hippocampal neurogenesis, have come to be appreciated. However, the specific stages of adult hippocampal progenitor development that are sensitive to thyroid hormone are not defined. Using nestin-green fluorescent protein reporter mice, we demonstrate that thyroid hormone mediates its effects on hippocampal neurogenesis by influencing Type 2b and Type 3 progenitors, although it does not alter proliferation of either the Type 1 quiescent progenitor or the Type 2a amplifying neural progenitor. Thyroid hormone increases the number of doublecortin (DCX)-positive Type 3 progenitors, and accelerates neuronal differentiation into both DCX-positive immature neurones and neuronal nuclei-positive granule cell neurones. Furthermore, we show that this increase in neuronal differentiation is accompanied by a significant induction of specific transcription factors involved in hippocampal progenitor differentiation. In vitro studies using the neurosphere assay support a direct effect of thyroid hormone on progenitor development because neurospheres treated with thyroid hormone are shifted to a more differentiated state. Taken together, our results indicate that thyroid hormone mediates its neurogenic effects via targeting Type 2b and Type 3 hippocampal progenitors, and suggests a role for proneural transcription factors in contributing to the effects of thyroid hormone on neuronal differentiation of adult hippocampal progenitors. © 2012 The Authors. Journal of Neuroendocrinology © 2012 British Society for Neuroendocrinology.

  5. Autoimmune thyroid disease in pregnancy: a review.

    PubMed

    Galofre, Juan C; Davies, Terry F

    2009-11-01

    The maternal physiological changes that occur in normal pregnancy induce complex endocrine and immune responses. During a normal pregnancy, thyroid gland volume may enlarge, and thyroid hormone production increases. Hence, the interpretation of thyroid function during gestation needs to be adjusted according to pregnancy-specific ranges. The elevated prevalence of gestation-related thyroid disorders (10%-15%) and the important repercussions for both mother and fetus reported in multiple studies throughout the world denote, in our opinion, the necessity for routine thyroid function screening both before and during pregnancy. Once thyroid dysfunction is suspected or confirmed, management of the thyroid disorder necessitates regular monitoring in order to ensure a successful outcome. The aim of treating hyperthyroidism in pregnancy with antithyroid drugs is to maintain serum thyroxine (T(4)) in the upper normal range of the assay used with the lowest possible dose of drug, whereas in hypothyroidism, the goal is to return serum thyroid-stimulating hormone (TSH) to the range between 0.5 and 2.5 mU/L.

  6. Autoimmune Thyroid Disease in Pregnancy: A Review

    PubMed Central

    Galofre, Juan C.

    2009-01-01

    Abstract The maternal physiological changes that occur in normal pregnancy induce complex endocrine and immune responses. During a normal pregnancy, thyroid gland volume may enlarge, and thyroid hormone production increases. Hence, the interpretation of thyroid function during gestation needs to be adjusted according to pregnancy-specific ranges. The elevated prevalence of gestation-related thyroid disorders (10%–15%) and the important repercussions for both mother and fetus reported in multiple studies throughout the world denote, in our opinion, the necessity for routine thyroid function screening both before and during pregnancy. Once thyroid dysfunction is suspected or confirmed, management of the thyroid disorder necessitates regular monitoring in order to ensure a successful outcome. The aim of treating hyperthyroidism in pregnancy with antithyroid drugs is to maintain serum thyroxine (T4) in the upper normal range of the assay used with the lowest possible dose of drug, whereas in hypothyroidism, the goal is to return serum thyroid-stimulating hormone (TSH) to the range between 0.5 and 2.5 mU/L. PMID:19951221

  7. Purification and characterization of rat liver nuclear thyroid hormone receptors.

    PubMed Central

    Ichikawa, K; DeGroot, L J

    1987-01-01

    Nuclear thyroid hormone receptor was purified to 904 pmol of L-3,5,3'-triiodothyronine (T3) binding capacity per mg of protein with 2.5-5.2% recovery by sequentially using hydroxylapatite column chromatography, ammonium sulfate precipitation, Sephadex G-150 gel filtration, DNA-cellulose column chromatography, DEAE-Sephadex column chromatography, and heparin-Sepharose column chromatography. Assuming that one T3 molecule binds to the 49,000-Da unit of the receptor, we reproducibly obtained 6.4-14.7 micrograms of receptor protein with 4.2-4.9% purity from 4-5 kg of rat liver. Elution of receptor from the heparin-Sepharose column was performed using 10 mM pyridoxal 5'-phosphate, which was observed to diminish binding of receptor to heparin-Sepharose or DNA-cellulose. This effect was specific for pyridoxal 5'-phosphate, since related compounds were not effective. Purified receptor bound T3 with high affinity (6.0 X 10(9) liter/mol), and the order of affinity of iodothyronine analogues to purified receptor was identical to that observed with crude receptor preparations [3,5,3'-triiodothyroacetic acid greater than L-T3 greater than D-3,5,3'-triiodothyronine (D-T3) greater than L-thyroxine greater than D-thyroxine]. Purified receptor had a sedimentation coefficient of 3.4 S, Stokes radius of 34 A, and calculated molecular mass of 49,000. Among several bands identified by silver staining after electrophoresis in NaDodSO4/polyacrylamide gels, one 49,000-Da protein showed photoaffinity labeling with [125I]thyroxine that was displaceable with excess unlabeled T3. The tryptic fragment and endogenous proteinase-digested fragment of the affinity-labeled receptor showed saturable binding in 27,000-Da and 36,000-Da peptides, respectively. These molecular masses are in agreement with estimates from gel filtration and gradient sedimentation, indicating that affinity labeling occurred at the hormone binding domain of nuclear thyroid hormone receptor. This procedure reproducibly

  8. Impact of Drinking Water Fluoride on Human Thyroid Hormones: A Case- Control Study.

    PubMed

    Kheradpisheh, Zohreh; Mirzaei, Masoud; Mahvi, Amir Hossein; Mokhtari, Mehdi; Azizi, Reyhane; Fallahzadeh, Hossein; Ehrampoush, Mohammad Hassan

    2018-02-08

    The elevated fluoride from drinking water impacts on T 3 , T 4 and TSH hormones. The aim was study impacts of drinking water fluoride on T 3 , T 4 and TSH hormones inYGA (Yazd Greater Area). In this case- control study 198 cases and 213 controls were selected. Fluoride was determined by the SPADNS Colorimetric Method. T 3 , T 4 and TSH hormones tested in the Yazd central laboratory by RIA (Radio Immuno Assay) method. The average amount of TSH and T 3 hormones based on the levels of fluoride in two concentration levels 0-0.29 and 0.3-0.5 (mg/L) was statistically significant (P = 0.001 for controls and P = 0.001 for cases). In multivariate regression logistic analysis, independent variable associated with Hypothyroidism were: gender (odds ratio: 2.5, CI 95%: 1.6-3.9), family history of thyroid disease (odds ratio: 2.7, CI 95%: 1.6-4.6), exercise (odds ratio: 5.34, CI 95%: 3.2-9), Diabetes (odds ratio: 3.7, CI 95%: 1.7-8), Hypertension (odds ratio: 3.2, CI 95%: 1.3-8.2), water consumption (odds ratio: 4, CI 95%: 1.2-14). It was found that fluoride has impacts on TSH, T 3 hormones even in the standard concentration of less than 0.5 mg/L. Application of standard household water purification devices was recommended for hypothyroidism.

  9. Thyroid hormones and commonly cited symptoms of overtraining in collegiate female endurance runners.

    PubMed

    Nicoll, Justin X; Hatfield, Disa L; Melanson, Kathleen J; Nasin, Christopher S

    2018-01-01

    Overtraining syndrome (OTS) is reported in endurance sports. Thyroid hormones (TH) regulate metabolism, mood, and energy production, and may play a role in OTS of endurance athletes. The purpose of this study was to investigate relationships in TH and symptoms of OTS in track and field endurance runners (ER). Sixteen female track and field middle distance (MD; n = 9; age: 20.2 ± 1.5 years; ht: 167.86 ± 5.04 cm; body-mass: 57.97 ± 5.05 kg; VO 2MAX : 53.62 ± 6.04 ml/kg/min) and long distance (LD; n = 7; age: 20.5 ± 1.5 years; ht: 162.48 ± 6.11 cm; body-mass: 56.15 ± 5.99 kg; VO 2MAX : 61.94 ± 3.29 ml/kg/min) ER participated in this descriptive study (15-weeks). Thyroid-stimulating hormone (TSH), triiodothyronine (T 3 ), and thyroxine (T 4 ), were collected at pre-(PRE) and post-season (POST). A fatigue scale was administered weekly, and percent change (PΔ) in race time (season best vs. championship performance) was calculated. Wilcoxon-sign ranked tests and Spearman's rho correlations were used to determine changes and relationships between TH and performance. TSH, T 3 and T 4 did not change from PRE to POST. The percent change (PΔ) in T 3 from PRE to POST was correlated with running performance at the end of the season (ρ = - 0.70, p = 0.036). Fatigue at week 12 correlated with running performance at the end of the season (ρ = - 0.74, p = 0.004). TH may be valuable in assessing the overall training state of ER. TH concentrations change too slowly to be a frequent marker of monitoring OTS, but are related to markers of decreased performance. Monitoring dietary intake, and fatigue may be predictive markers to assess OTS and training status of female ER.

  10. Thyroid hormone independent associations between serum TSH levels and indicators of bone turnover in cured patients with differentiated thyroid carcinoma.

    PubMed

    Heemstra, Karen A; van der Deure, Wendy M; Peeters, Robin P; Hamdy, Neveen A; Stokkel, Marcel P; Corssmit, Eleonora P; Romijn, Johannes A; Visser, Theo J; Smit, Johannes W

    2008-07-01

    It has been proposed that TSH has thyroid hormone-independent effects on bone mineral density (BMD) and bone metabolism. This concept is still controversial and has not been studied in human subjects in detail. We addressed this question by studying relationships between serum TSH concentration and indicators of bone turnover, after controlling for triiodothyronine (T(3)), free thyroxine (FT(4)), and non-thyroid factors relevant to BMD and bone metabolism. We also studied the contribution of the TSH receptor (TSHR)-Asp727Glu polymorphism to these relationships. We performed a cross-sectional study with 148 patients, who had been thyroidectomized for differentiated thyroid carcinoma. We measured BMD of the femoral neck and lumbar spine. FT(4), T(3), TSH, bone-specific alkaline phosphatase, procollagen type 1 aminoterminal propeptide levels, C-cross-linking terminal telopeptide of type I collagen, and urinary N-telopeptide of collagen cross-links were measured. Genotypes of the TSHR-Asp727Glu polymorphism were determined by Taqman assay. We found a significant, inverse correlation between serum TSH levels and indicators of bone turnover, which was independent of serum FT(4) and T(3) levels as well as other parameters influencing bone metabolism. We found that carriers of the TSHR-Asp727Glu polymorphism had an 8.1% higher femoral neck BMD, which was, however, no longer significant after adjusting for body mass index. We conclude that in this group of patients, serum TSH was related to indicators of bone remodeling independently of thyroid hormone levels. This may point to a functional role of the TSHR in bone in humans. Further research into this mechanism needs to be performed.

  11. Effects of Sample Handling and Analytical Procedures on Thyroid Hormone Concentrations in Pregnant Women's Plasma.

    PubMed

    Villanger, Gro Dehli; Learner, Emily; Longnecker, Matthew P; Ask, Helga; Aase, Heidi; Zoeller, R Thomas; Knudsen, Gun P; Reichborn-Kjennerud, Ted; Zeiner, Pål; Engel, Stephanie M

    2017-05-01

    Maternal thyroid function is a critical mediator of fetal brain development. Pregnancy-related physiologic changes and handling conditions of blood samples may influence thyroid hormone biomarkers. We investigated the reliability of thyroid hormone biomarkers in plasma of pregnant women under various handling conditions. We enrolled 17 pregnant women; collected serum and plasma were immediately frozen. Additional plasma aliquots were subjected to different handling conditions before the analysis of thyroid biomarkers: storage at room temperature for 24 or 48 hours before freezing and an extra freeze-thaw cycle. We estimated free thyroid hormone indices in plasma based on T3 uptake. High correlations between plasma and serum (>0.94) and intraclass correlation coefficients for plasma handling conditions (0.96 to 1.00) indicated excellent reliability for all thyroid hormone biomarkers. Delayed freezing and freeze-thaw cycles did not affect reliability of biomarkers of thyroid function in plasma during pregnancy. See video abstract at, http://links.lww.com/EDE/B180.

  12. Thyroid profiles in a patient with resistance to thyroid hormone and episodes of thyrotoxicosis, including repeated painless thyroiditis.

    PubMed

    Taniyama, Matsuo; Otsuka, Fumiko; Tozaki, Teruaki; Ban, Yoshiyuki

    2013-07-01

    Thyrotoxic disease can be difficult to recognize in patients with resistance to thyroid hormone (RTH) because the clinical symptoms of thyrotoxicosis cannot be observed, and thyrotropin (TSH) may not be suppressed because of hormone resistance. Painless thyroiditis is a relatively common cause of thyrotoxicosis, but its occurrence in RTH has not been reported. We assessed the thyroid profile in a patient with RTH and episodes of thyrotoxicosis who experienced repeated painless thyroiditis. A 44-year-old Japanese woman with RTH, which was confirmed by the presence of a P453A mutation in the thyroid hormone receptor β (TRβ) gene, showed a slight elevation of the basal levels of thyroid hormones, which indicated that her pituitary RTH was mild. She experienced a slight exacerbation of hyperthyroxinemia concomitant with TSH suppression. A diagnosis of painless thyroiditis was made because of the absence of TSH receptor antibodies, low Tc-99m pertechnetate uptake by the thyroid gland, and transient suppression followed by a slight elevation of TSH following the elevation of thyroid hormones. The patient's complaints of general malaise and occasional palpitations did not change throughout the course of painless thyroiditis. Three years later, painless thyroiditis occurred again without any deterioration of the clinical manifestations. Mild pituitary RTH can be overcome by slight exacerbation of hyperthyroxinemia during mild thyrotoxicosis. When pituitary resistance is severe and TSH is not suppressed, thyrotoxicosis may be overlooked.

  13. Phenols and Parabens in relation to Reproductive and Thyroid Hormones in Pregnant Women

    PubMed Central

    Aker, Amira M; Watkins, Deborah J; Johns, Lauren E; Ferguson, Kelly K; Soldin, Offie P; Del Toro, Liza V Anzalota; Alshawabkeh, Akram N; Cordero, José F; Meeker, John D

    2016-01-01

    Introduction Phenols and parabens are ubiquitous environmental contaminants. Evidence from animal studies and limited human data suggest they may be endocrine disruptors. In the current study, we examined associations of phenols and parabens with reproductive and thyroid hormones in 106 pregnant women recruited for the prospective cohort, “Puerto Rico Testsite for Exploring Contamination Threats (PROTECT)”. Methods Urinary exposure biomarkers (bisphenol A, triclosan, benzophenone-3, 2,4-dichlorophenol, 2,5-dichlorophenol, butyl, methyl and propyl paraben) and serum hormone levels (estradiol, progesterone, sex hormone-binding globulin (SHBG), free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone) were measured at up to two time points during pregnancy (16–20 weeks and 24–28 weeks). We used linear mixed models to assess relationships between exposure biomarkers and hormone levels across pregnancy, controlling for urinary specific gravity, maternal age, BMI and education. In sensitivity analyses, we evaluated cross-sectional relationships between exposure and hormone levels stratified by study visit using linear regression. Results An IQR increase in methyl paraben was associated with a 7.70% increase (95% CI 1.50, 13.90) in SHBG. Furthermore, an IQR increase in butyl paraben as associated with an 8.46% decrease (95% CI 16.92, 0.00) in estradiol, as well as a 9.34% decrease (95% CI −18.31, −0.38) in estradiol/progesterone. Conversely, an IQR increase in butyl paraben was associated with a 5.64% increase (95% CI 1.26, 10.02) in FT4. Progesterone was consistently negatively associated with phenols, but none reached statistical significance. After stratification, methyl and propyl paraben were suggestively negatively associated with estradiol at the first time point (16–20 weeks), and suggestively positively associated with estradiol at the second time point (24–28 weeks). Conclusions Within this ongoing birth cohort, certain

  14. Phenols and parabens in relation to reproductive and thyroid hormones in pregnant women.

    PubMed

    Aker, Amira M; Watkins, Deborah J; Johns, Lauren E; Ferguson, Kelly K; Soldin, Offie P; Anzalota Del Toro, Liza V; Alshawabkeh, Akram N; Cordero, José F; Meeker, John D

    2016-11-01

    Phenols and parabens are ubiquitous environmental contaminants. Evidence from animal studies and limited human data suggest they may be endocrine disruptors. In the current study, we examined associations of phenols and parabens with reproductive and thyroid hormones in 106 pregnant women recruited for the prospective cohort, "Puerto Rico Testsite for Exploring Contamination Threats (PROTECT)". Urinary exposure biomarkers (bisphenol A, triclosan, benzophenone-3, 2,4-dichlorophenol, 2,5-dichlorophenol, butyl, methyl and propyl paraben) and serum hormone levels (estradiol, progesterone, sex hormone-binding globulin (SHBG), free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone) were measured at up to two time points during pregnancy (16-20 weeks and 24-28 weeks). We used linear mixed models to assess relationships between exposure biomarkers and hormone levels across pregnancy, controlling for urinary specific gravity, maternal age, BMI and education. In sensitivity analyses, we evaluated cross-sectional relationships between exposure and hormone levels stratified by study visit using linear regression. An IQR increase in methyl paraben was associated with a 7.70% increase (95% CI 1.50, 13.90) in SHBG. Furthermore, an IQR increase in butyl paraben as associated with an 8.46% decrease (95% CI 16.92, 0.00) in estradiol, as well as a 9.34% decrease (95% CI -18.31,-0.38) in estradiol/progesterone. Conversely, an IQR increase in butyl paraben was associated with a 5.64% increase (95% CI 1.26, 10.02) in FT4. Progesterone was consistently negatively associated with phenols, but none reached statistical significance. After stratification, methyl and propyl paraben were suggestively negatively associated with estradiol at the first time point (16-20 weeks), and suggestively positively associated with estradiol at the second time point (24-28 weeks). Within this ongoing birth cohort, certain phenols and parabens were associated with altered

  15. Thyroid hormone and COUP-TF1 regulate kallikrein-binding protein (KBP) gene expression.

    PubMed

    Liu, Yan-Yun; Nakatani, Teruyo; Kogai, Takahiko; Mody, Kaizeen; Brent, Gregory A

    2011-03-01

    Kallikrein-binding protein (KBP) is a component of the kallikrein-kinin system that mediates vasodilation and inhibits tumor growth by antagonizing vascular endothelial growth factor-mediated angiogenesis. We demonstrate that KBP gene expression is repressed by T(3) and modulated by the orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1). In hypothyroid mice, KBP mRNA expression in the testis was increased 2.1-fold compared with euthyroid mice. We have identified two negative thyroid hormone response elements (nTREs) in the mouse KBP gene, nTRE1 located in the 5' flanking region (-53 to -29) and nTRE2, located in the first intron (104-132). We used functional assays, cofactor knockdown, and chromatin immunoprecipitation assays to characterize nTRE1 and nTRE2 in hepatic (HepG2) and testes (GC-1spg) cell lines. Reporter expression directed by both elements was enhanced with addition of thyroid hormone receptor and repressed with the addition of T(3). COUP-TF1 enhanced basal expression of both elements but blunted unliganded thyroid hormone receptor enhancement and T(3) repression of nTRE1 but not nTRE2. Both nTREs bound nuclear corepressor and binding increased in response to T(3). Nuclear corepressor knockdown resulted in loss of T(3) repression of both nTRE1 and nTRE2. COUP-TF1, which usually represses T(3) induction of positive thyroid hormone response elements, reverses T(3) repression mediated by nTRE1 in the mouse KBP gene. Endogenous KBP expression is repressed by T(3) and two functional nTREs, both of which are required, have been characterized in the KBP gene. COUP-TF1 may be an important factor to modulate expression of genes that are repressed by T(3).

  16. Thyroid Hormone and COUP-TF1 Regulate Kallikrein-Binding Protein (KBP) Gene Expression

    PubMed Central

    Liu, Yan-Yun; Nakatani, Teruyo; Kogai, Takahiko; Mody, Kaizeen

    2011-01-01

    Kallikrein-binding protein (KBP) is a component of the kallikrein-kinin system that mediates vasodilation and inhibits tumor growth by antagonizing vascular endothelial growth factor-mediated angiogenesis. We demonstrate that KBP gene expression is repressed by T3 and modulated by the orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1). In hypothyroid mice, KBP mRNA expression in the testis was increased 2.1-fold compared with euthyroid mice. We have identified two negative thyroid hormone response elements (nTREs) in the mouse KBP gene, nTRE1 located in the 5′ flanking region (−53 to −29) and nTRE2, located in the first intron (104–132). We used functional assays, cofactor knockdown, and chromatin immunoprecipitation assays to characterize nTRE1 and nTRE2 in hepatic (HepG2) and testes (GC-1spg) cell lines. Reporter expression directed by both elements was enhanced with addition of thyroid hormone receptor and repressed with the addition of T3. COUP-TF1 enhanced basal expression of both elements but blunted unliganded thyroid hormone receptor enhancement and T3 repression of nTRE1 but not nTRE2. Both nTREs bound nuclear corepressor and binding increased in response to T3. Nuclear corepressor knockdown resulted in loss of T3 repression of both nTRE1 and nTRE2. COUP-TF1, which usually represses T3 induction of positive thyroid hormone response elements, reverses T3 repression mediated by nTRE1 in the mouse KBP gene. Endogenous KBP expression is repressed by T3 and two functional nTREs, both of which are required, have been characterized in the KBP gene. COUP-TF1 may be an important factor to modulate expression of genes that are repressed by T3. PMID:21266512

  17. Thyroid hormone is essential for pituitary somatotropes and lactotropes.

    PubMed

    Stahl, J H; Kendall, S K; Brinkmeier, M L; Greco, T L; Watkins-Chow, D E; Campos-Barros, A; Lloyd, R V; Camper, S A

    1999-04-01

    Mice homozygous for a disruption in the alpha-subunit essential for TSH, LH, and FSH activity (alphaGsu-/-) exhibit hypothyroidism and hypogonadism similar to that observed in TSH receptor-deficient hypothyroid mice (hyt) and GnRH-deficient hypogonadal mutants (hpg). Although the five major hormone-producing cells of the anterior pituitary are present in alphaGsu-/- mice, the relative proportions of each cell type are altered dramatically. Thyrotropes exhibit hypertrophy and hyperplasia, and somatotropes and lactotropes are underrepresented. The size and number of gonadotropes in alphaGsu mutants are not remarkable in contrast to the hypertrophy characteristic of gonadectomized animals. The reduction in lactotropes is more severe in alphaGsu mutants (13-fold relative to wild-type) than in hyt or hpg mutants (4.5- and 1.5-fold, respectively). In addition, T4 replacement therapy of alphaGsu mutants restores lactotropes to near-normal levels, illustrating the importance of T4, but not alpha-subunit, for lactotrope proliferation and function. T4 replacement is permissive for gonadotrope hypertrophy in alphaGsu mutants, consistent with the role for T4 in the function of gonadotropes. This study reveals the importance of thyroid hormone in developing the appropriate proportions of anterior pituitary cell types.

  18. High levels of thyroid-stimulating hormone are associated with aortic wall thickness in the general population.

    PubMed

    Ittermann, Till; Lorbeer, Roberto; Dörr, Marcus; Schneider, Tobias; Quadrat, Alexander; Heßelbarth, Lydia; Wenzel, Michael; Lehmphul, Ina; Köhrle, Josef; Mensel, Birger; Völzke, Henry

    2016-12-01

    Our aim was to investigate the association of thyroid function defined by serum concentrations of thyroid-stimulating hormone (TSH) with thoracic aortic wall thickness (AWT) as a marker of atherosclerotic processes. We pooled data of 2,679 individuals from two independent population-based surveys of the Study of Health in Pomerania. Aortic diameter and AWT measurements were performed on a 1.5-T MRI scanner at the concentration of the right pulmonary artery displaying the ascending and the descending aorta. TSH, treated as continuous variable, was significantly associated with descending AWT (β = 0.11; 95 % confidence interval (CI) 0.02-0.21), while the association with ascending AWT was not statistically significant (β = 0.20; 95 % CI -0.01-0.21). High TSH (>3.29 mIU/L) was significantly associated with ascending (β = 0.12; 95 % CI 0.02-0.23) but not with descending AWT (β = 0.06; 95 % CI -0.04-0.16). There was no consistent association between TSH and aortic diameters. Our study demonstrated that AWT values increase with increasing serum TSH concentrations. Thus, a hypothyroid state may be indicative for aortic atherosclerosis. These results fit very well to the findings of previous studies pointing towards increased atherosclerotic risk in the hypothyroid state. • Serum TSH concentrations are positively associated with aortic wall thickness. • Serum TSH concentrations are not associated with the aortic diameters. • Serum 3,5-diiodothyronine concentrations may be positively associated with aortic wall thickness.

  19. [Thyroid function in patients with anorexia nervosa and depression].

    PubMed

    Natori, Y; Yamaguchi, N; Koike, S; Aoyama, A; Tsuchibuchi, S; Kojyo, K; Demura, R

    1994-12-01

    Thyroid hormone levels were measured in 21 patients with anorexia nervosa, 15 patients with depression and 16 patients with severe depression and were compared with those in 53 normal subjects. In anorexia nervosa and severe depressed patients, serum T3, T4, fT3, fT4 and T3/T4 ratio showed significantly lower values than those in normal subjects. However there was no difference between depressed patients and normal subjects. The serum TSH levels were within normal range in all of the studied subjects. Thus, thyroid hormone levels in severe depressed patients were similar to those in anorexia nervosa and the changes were inversely related to disease conditions. The supplementation of thyroid hormones to antidepressant relieved clinical symptoms in some of the severe depressed patients. These results suggested that the changes in thyroid hormone levels in anorexia nervosa and severe depression were mainly due to impaired conversion of T4 to T3 by increased cortisol secretion through emotional stress.

  20. Direct regulation of androgen receptor-associated protein 70 by thyroid hormone and its receptors.

    PubMed

    Tai, Pei-Ju; Huang, Ya-Hui; Shih, Chung-Hsuan; Chen, Ruey-Nan; Chen, Chi-De; Chen, Wei-Jan; Wang, Chia-Siu; Lin, Kwang-Huei

    2007-07-01

    Thyroid hormone (T3) regulates multiple physiological processes during development, growth, differentiation, and metabolism. Most T3 actions are mediated via thyroid hormone receptors (TRs) that are members of the nuclear hormone receptor superfamily of ligand-dependent transcription factors. The effects of T3 treatment on target gene regulation was previously examined in TRalpha1-overexpressing hepatoma cell lines (HepG2-TRalpha1). Androgen receptor (AR)-associated protein 70 (ARA70) was one gene found to be up-regulated by T3. The ARA70 is a ligand-dependent coactivator for the AR and was significantly increased by 4- to 5-fold after T3 treatment by Northern blot analyses in the HepG2-TRalpha1 stable cell line. T3 induced a 1- to 2-fold increase in the HepG2-TRbeta1 stable cell line. Both stable cell lines attained the highest fold expression after 24 h treatment with 10 nM T3. The ARA70 protein was increased up to 1.9-fold after T3 treatment in HepG2-TRalpha1 cells. Similar findings were obtained in thyroidectomized rats after T3 application. Cycloheximide treatment did not suppress induction of ARA70 transcription by T3, suggesting that this regulation is direct. A series of deletion mutants of ARA70 promoter fragments in pGL2 plasmid were generated to localize the thyroid hormone response element (TRE). The DNA fragments (-234/-190 or +56/+119) gave 1.55- or 2-fold enhanced promoter activity by T3. Thus, two TRE sites exist in the upstream-regulatory region of ARA70. The TR-TRE interaction was further confirmed with EMSAs. Additionally, ARA70 could interfere with TR/TRE complex formation. Therefore, the data indicated that ARA70 suppresses T3 signaling in a TRE-dependent manner. These experimental results suggest that T3 directly up-regulates ARA70 gene expression. Subsequently, ARA70 negatively regulates T3 signaling.

  1. Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a nongenomic mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Zhi-Guo; Tang, Yuan; Liu, Yu-Xiang

    Bisphenol (BPA) is one of the highest-volume chemicals produced worldwide, and human exposure to BPA is thought to be ubiquitous. Various rodent and in vitro studies have shown that thyroid hormone (TH) function can be impaired by BPA. However, it is still unknown if low concentrations of BPA can suppress the thyroid hormone receptor (TR) transcription. The present study aims to investigate the possible suppressing effects of low concentrations of BPA on TR transcription and the involved mechanism(s) in CV-1 cells derived from cercopithecus aethiops monkey kidneys. Using gene reporter assays, BPA at concentrations as low as 10{sup −9} Mmore » suppresses TR or steroid receptor coactivator-1(SRC-1)-enhanced TR transcription, but not reducing TR/SRC-1 interaction in mammalian two-hybrid and glutathione S-transferase pull-down studies. It has been further shown that both nuclear receptor co-repressor (N-CoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) are recruited to the TR-β1 by BPA in the presence of physiologic concentrations of T3 or T4. However, the overexpression of β3 integrin or c-Src significantly reduces BPA-induced recruitment of N-CoR/SMRT to TR or suppression of TR transcription. Furthermore, BPA inhibits the T3/T4-mediated interassociation of the β3 integrin/c-Src/MAPK/TR-β1 pathways by the co-immunoprecipitation. These results indicate that low concentrations of BPA suppress the TR transcription by disrupting physiologic concentrations of T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways, followed by recruiting N-CoR/SMRT to TR-β1, providing a novel insight regarding the TH disruption effects of low concentration BPA. -- Highlights: ► Environmentally relevant concentrations of BPA suppress TR transcription. ► BPA recruits the N-CoR/SMRT to TR under the physiologic concentrations of T3/T4. ► BPA disrupts T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways.« less

  2. Thyroid Hormones Are Transport Substrates and Transcriptional Regulators of Organic Anion Transporting Polypeptide 2B1.

    PubMed

    Meyer Zu Schwabedissen, Henriette E; Ferreira, Celio; Schaefer, Anima M; Oufir, Mouhssin; Seibert, Isabell; Hamburger, Matthias; Tirona, Rommel G

    2018-07-01

    Levothyroxine replacement therapy forms the cornerstone of hypothyroidism management. Variability in levothyroxine oral absorption may contribute to the well-recognized large interpatient differences in required dose. Moreover, levothyroxine-drug pharmacokinetic interactions are thought to be caused by altered oral bioavailability. Interestingly, little is known regarding the mechanisms contributing to levothyroxine absorption in the gastrointestinal tract. Here, we aimed to determine whether the intestinal drug uptake transporter organic anion transporting polypeptide 2B1 (OATP2B1) may be involved in facilitating intestinal absorption of thyroid hormones. We also explored whether thyroid hormones regulate OATP2B1 gene expression. In cultured Madin-Darby Canine Kidney II/OATP2B1 cells and in OATP2B1-transfected Caco-2 cells, thyroid hormones were found to inhibit OATP2B1-mediated uptake of estrone-3-sulfate. Competitive counter-flow experiments evaluating the influence on the cellular accumulation of estrone-3-sulfate in the steady state indicated that thyroid hormones were substrates of OATP2B1. Additional evidence that thyroid hormones were OATP2B1 substrates was provided by OATP2B1-dependent stimulation of thyroid hormone receptor activation in cell-based reporter assays. Bidirectional transport studies in intestinal Caco-2 cells showed net absorptive flux of thyroid hormones, which was attenuated by the presence of the OATP2B1 inhibitor, atorvastatin. In intestinal Caco-2 and LS180 cells, but not in liver Huh-7 or HepG2 cells, OATP2B1 expression was induced by treatment with thyroid hormones. Reporter gene assays revealed thyroid hormone receptor α -mediated transactivation of the SLCO2B1 1b and the SLCO2B1 1e promoters. We conclude that thyroid hormones are substrates and transcriptional regulators of OATP2B1. These insights provide a potential mechanistic basis for oral levothyroxine dose variability and drug interactions. Copyright © 2018 by The American

  3. Direct effects of thyroid hormones on hepatic lipid metabolism.

    PubMed

    Sinha, Rohit A; Singh, Brijesh K; Yen, Paul M

    2018-05-01

    It has been known for a long time that thyroid hormones have prominent effects on hepatic fatty acid and cholesterol synthesis and metabolism. Indeed, hypothyroidism has been associated with increased serum levels of triglycerides and cholesterol as well as non-alcoholic fatty liver disease (NAFLD). Advances in areas such as cell imaging, autophagy and metabolomics have generated a more detailed and comprehensive picture of thyroid-hormone-mediated regulation of hepatic lipid metabolism at the molecular level. In this Review, we describe and summarize the key features of direct thyroid hormone regulation of lipogenesis, fatty acid β-oxidation, cholesterol synthesis and the reverse cholesterol transport pathway in normal and altered thyroid hormone states. Thyroid hormone mediates these effects at the transcriptional and post-translational levels and via autophagy. Given these potentially beneficial effects on lipid metabolism, it is possible that thyroid hormone analogues and/or mimetics might be useful for the treatment of metabolic diseases involving the liver, such as hypercholesterolaemia and NAFLD.

  4. Thyroid hormone concentrations in foals affected by perinatal asphyxia syndrome.

    PubMed

    Pirrone, Alessandro; Panzani, Sara; Govoni, Nadia; Castagnetti, Carolina; Veronesi, Maria Cristina

    2013-10-01

    The hypothalamus-pituitary-thyroid axis has specific functions, mostly related to metabolic activities, cell differentiation, and development. To the authors' knowledge, there are no studies about thyroid hormone (TH) concentrations in foals affected by perinatal asphyxia syndrome (PAS). Hence, the aims of the study are (1) to evaluate plasma TH concentrations (T3 and T4) in healthy foals during the first 7 days of life; (2) to evaluate plasma TH concentration (T3 and T4) in critically ill foals affected by PAS during the first 7 days of hospitalization; and (3) to compare TH concentrations between surviving and nonsurviving critically ill foals. Forty-five Standardbred foals were enrolled in this prospective observational study: 21 healthy foals (group 1) and 24 foals affected by PAS (group 2). Jugular blood samples were collected within 10 minutes from birth/admission and every 24 hours for 7 days (t0-t7). TH concentrations were analyzed by RIA. In both groups, T3 concentration was significantly lower at t4, t5, t6, and t7 compared with t1 (P < 0.05), and T4 concentration was significantly higher at birth than at all other time points (P < 0.01). No differences were found in TH concentrations at admission between surviving (n = 20) and nonsurviving (n = 4) foals. Statistical comparison between healthy and PAS foals divided into age groups showed significantly lower TH concentrations at t0 in PAS foals <12 hours old at admission (P < 0.01). In conclusion, PAS may cause lower T3 and T4 concentrations in affected foals than in age-matched healthy foals, as reported for other systemic illnesses, such as sepsis and prematurity. TH concentrations showed no prognostic value, which maybe due to the small number of nonsurviving foals in this study. Further studies are needed to find out if thyroid replacement therapy could be useful in the treatment of critically ill foals affected by PAS. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Thyroid Hormone Regulates the Expression of the Sonic Hedgehog Signaling Pathway in the Embryonic and Adult Mammalian Brain

    PubMed Central

    Desouza, Lynette A.; Sathanoori, Malini; Kapoor, Richa; Rajadhyaksha, Neha; Gonzalez, Luis E.; Kottmann, Andreas H.; Tole, Shubha

    2011-01-01

    Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and hyperthyroidism bidirectionally influenced Shh mRNA in embryonic forebrain signaling centers at stages before fetal thyroid hormone synthesis. Further, Smo and Ptc expression were significantly decreased in the forebrain of embryos derived from hypothyroid dams. Adult-onset thyroid hormone perturbations also regulated expression of the Shh pathway bidirectionally, with a significant induction of Shh, Ptc, and Smo after hyperthyroidism and a decline in Smo expression in the hypothyroid brain. Short-term T3 administration resulted in a significant induction of cortical Shh mRNA expression and also enhanced reporter gene expression in Shh+/LacZ mice. Further, acute T3 treatment of cortical neuronal cultures resulted in a rapid and significant increase in Shh mRNA, suggesting direct effects. Chromatin immunoprecipitation assays performed on adult neocortex indicated enhanced histone acetylation at the Shh promoter after acute T3 administration, providing further support that Shh is a thyroid hormone-responsive gene. Our results indicate that maternal and adult-onset perturbations of euthyroid status cause robust and region-specific changes in the Shh pathway in the embryonic and adult forebrain, implicating Shh as a possible mechanistic link for specific neurodevelopmental effects of thyroid hormone. PMID:21363934

  6. EFFECTS OF 2,2′4,4′-TETRABROMODIPHENYL ETHER ON NUCLEAR RECEPTOR REGULATED GENES: IMPLICATIONS FOR THYROID HORMONE DISRUPTION

    EPA Science Inventory

    2,2′,4,4′-Tetrabromodiphenyl ether (BDE 47) is usually the most common polybrominated diphenyl ether (PBDE) congener found in human tissues and wildlife. Several studies demonstrate that PBDEs may act as endocrine disruptors through interference with thyroid hormone h...

  7. Analysis and functional characterization of sequence variations in ligand binding domain of thyroid hormone receptors in autism spectrum disorder (ASD) patients.

    PubMed

    Kalikiri, Mahesh Kumar; Mamidala, Madhu Poornima; Rao, Ananth N; Rajesh, Vidya

    2017-12-01

    Autism spectrum disorder (ASD) is a neuro developmental disorder, reported to be on a rise in the past two decades. Thyroid hormone-T3 plays an important role in early embryonic and central nervous system development. T3 mediates its function by binding to thyroid hormone receptors, TRα and TRβ. Alterations in T3 levels and thyroid receptor mutations have been earlier implicated in neuropsychiatric disorders and have been linked to environmental toxins. Limited reports from earlier studies have shown the effectiveness of T3 treatment with promising results in children with ASD and that the thyroid hormone levels in these children was also normal. This necessitates the need to explore the genetic variations in the components of the thyroid hormone pathway in ASD children. To achieve this objective, we performed genetic analysis of ligand binding domain of THRA and THRB receptor genes in 30 ASD subjects and in age matched controls from India. Our study for the first time reports novel single nucleotide polymorphisms in the THRA and THRB receptor genes of ASD individuals. Autism Res 2017, 10: 1919-1928. ©2017 International Society for Autism Research, Wiley Periodicals, Inc. Thyroid hormone (T3) and thyroid receptors (TRα and TRβ) are the major components of the thyroid hormone pathway. The link between thyroid pathway and neuronal development is proven in clinical medicine. Since the thyroid hormone levels in Autistic children are normal, variations in their receptors needs to be explored. To achieve this objective, changes in THRA and THRB receptor genes was studied in 30 ASD and normal children from India. The impact of some of these mutations on receptor function was also studied. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  8. Anticonvulsants and thyroid function.

    PubMed Central

    Yeo, P P; Bates, D; Howe, J G; Ratcliffe, W A; Schardt, C W; Heath, A; Evered, D C

    1978-01-01

    Serum total and free thyroid hormone concentrations were estimated in 42 patients with epilepsy taking anticonvulsants (phenytoin, phenobarbitone, and carbamazepine either singly or in combination). There was a significant reduction in total thyroxine (TT4), free thyroxine (FT4), and free triiodothyronine (FT3) in the treated group compared with controls. Free hormone concentrations were lower than total hormone concentrations, suggesting that increased clearance of thyroid hormones occurs in patients receiving anticonvulsants. Detailed analysis indicated that phenytoin had a significant depressant effect on TT4, FT4, FT3, and reverse T3 (rT3). Phenobarbitone and carbamazepine had no significant main effects, but there were significant interactions between phenytoin and carbamazepine for TT4 and FT4. phenobarbitone and carbamazepine for FT3, and phenytoin and phenobarbitone for rT3. PMID:656820

  9. Modulating the function of the immune system by thyroid hormones and thyrotropin.

    PubMed

    Jara, Evelyn L; Muñoz-Durango, Natalia; Llanos, Carolina; Fardella, Carlos; González, Pablo A; Bueno, Susan M; Kalergis, Alexis M; Riedel, Claudia A

    2017-04-01

    Accumulating evidence suggests a close bidirectional communication and regulation between the neuroendocrine and immune systems. Thyroid hormones (THs) can exert responses in various immune cells, e.g., monocytes, macrophages, natural killer cells, and lymphocytes, affecting several inflammation-related processes (such as, chemotaxis, phagocytosis, reactive oxygen species generation, and cytokines production). The interactions between the endocrine and immune systems have been shown to contribute to pathophysiological conditions, including sepsis, inflammation, autoimmune diseases and viral infections. Under these conditions, TH therapy could contribute to restoring normal physiological functions. Here we discuss the effects of THs and thyroid stimulating hormone (TSH) on the immune system and the contribution to inflammation and pathogen clearance, as well as the consequences of thyroid pathologies over the function of the immune system. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  10. Thyroid functions and trace elements in pediatric patients with exogenous obesity.

    PubMed

    Cayir, Atilla; Doneray, Hakan; Kurt, Nezahat; Orbak, Zerrin; Kaya, Avni; Turan, Mehmet Ibrahim; Yildirim, Abdulkadir

    2014-02-01

    Obesity is a multifactorial disease developing following impairment of the energy balance. The endocrine system is known to be affected by the condition. Serum thyroid hormones and trace element levels have been shown to be affected in obese children. Changes in serum thyroid hormones may result from alterations occurring in serum trace element levels. The aim of this study was to evaluate whether or not changes in serum thyroid hormone levels in children with exogenous obesity are associated with changes in trace element levels. Eighty-five children diagnosed with exogenous obesity constituted the study group, and 24 age- and sex-matched healthy children made up the control group. Serum thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), thyroglobulin (TG), selenium (Se), zinc (Zn), copper (Cu), and manganese (Mn) levels in the study group were measured before and at the third and sixth months of treatment, and once only in the control group. Pretreatment fT4 levels in the study group rose significantly by the sixth month (p = 0.006). Zn levels in the patient group were significantly low compared to the control group (p = 0.009). Mn and Se levels in the obese children before and at the third and sixth months of treatment were significantly higher than those of the control group (p = 0.001, p = 0.001). In conclusion, fT4, Zn, Cu, Mn, and Se levels are significantly affected in children diagnosed with exogenous obesity. The change in serum fT4 levels is not associated with changes in trace element concentrations.

  11. [Subclinical and manifested hypothyroidism as a consequence of thyroid autoimmune disease].

    PubMed

    Milosević, Dragoslav P; Djurica, Snezana; Davidović, Mladen; Stević, Radmila; Rajić, Miodrag; Marković, Natasa

    2005-10-01

    Chronic thyroiditis (Hashimoto's disease) is a slowly developing persistent inflamation of the thyroid gland, which frequently leads to hypothyroidism. Some of the up-to-date knowledge about hypothyroidism, both subclinical and manifested, caused by autoimmune disease, was presented. Autoimmune thyroid gland disease can occur at any age, but predominantly affects women after periods of high emotional and physical stress or accidents, as well as during periods of hormonal changes. It can also develop in families, and having an autoimmune disease slightly increases the risk of developing another. This paper showed an increasing incidence of subclinical hypothyroidism (4.17%) in elderly, and, at the same time, the incidence of primary hypothyroidism accounting for 1%. It is very usefull to estimate the stimulated thyrotropin (TSH) response, as well as the value of fast, short time thyroid gland reserves, analyzed by T3 and T4 serum level at 60th minute after TRH stimulation. Treatment of choice for HT (hypothyroidism of any cause) is thyroid hormone replacement. Drug of choice is orally administered levothyroxine sodium, usually for life-time. The standard dose is 1.6-1.8 mcg/kg body weight per day, but is in most cases patient dependent. Elderly patients usually require smaller replacement dose of levothyroxine, sometimes less than 1 mcg/kg body weight per day with coronary dilatator at the same time.

  12. The urgency for optimization and harmonization of thyroid hormone analyses and their interpretation in developmental and reproductive toxicology studies.

    PubMed

    Beekhuijzen, Manon; Schneider, Steffen; Barraclough, Narinder; Hallmark, Nina; Hoberman, Alan; Lordi, Sheri; Moxon, Mary; Perks, Deborah; Piersma, Aldert H; Makris, Susan L

    2018-05-02

    In recent years several OECD test guidelines have been updated and some will be updated shortly with the requirement to measure thyroid hormone levels in the blood of mammalian laboratory species. There is, however, an imperative need for clarification and guidance regarding the collection, assessment, and interpretation of thyroid hormone data for regulatory toxicology and risk assessment. Clarification and guidance is needed for 1) timing and methods of blood collection, 2) standardization and validation of the analytical methods, 3) triggers for additional measurements, 4) the need for T4 measurements in postnatal day (PND) 4 pups, and 5) the interpretation of changes in thyroid hormone levels regarding adversity. Discussions on these topics have already been initiated, and involve expert scientists from a number of international multisector organizations. This paper provides an overview of existing issues, current activities and recommendations for moving forward. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. A TSHR-LH/CGR chimera that measures functional thyroid-stimulating autoantibodies (TSAb) can predict remission or recurrence in Graves' patients undergoing antithyroid drug (ATD) treatment.

    PubMed

    Giuliani, Cesidio; Cerrone, Dominique; Harii, Norikazu; Thornton, Mark; Kohn, Leonard D; Dagia, Nilesh M; Bucci, Ines; Carpentieri, Maria; Di Nenno, Barbara; Di Blasio, Andrea; Vitti, Paolo; Monaco, Fabrizio; Napolitano, Giorgio

    2012-07-01

    A functional thyroid-stimulating autoantibodies (TSAb) assay using a thyroid-stimulating hormone receptor chimera (Mc4) appears to be clinically more useful than the commonly used assay, a binding assay that measures all the antibodies binding to the thyroid-stimulating hormone receptor without functional discrimination, in diagnosing patient with Graves' disease (GD). The objective of the study was to investigate whether an Mc4 assay can predict relapse/remission of hyperthyroidism after antithyroid drug (ATD) treatment in patients with GD. An Mc4 assay was used to prospectively track TSAb activity in GD patients treated with ATD over a 5-yr period. GD patients from the Chieti University participated in this study. Interventions included the assessment of patients' sera using the Mc4 assay, the Mc4-derivative assay (Thyretain), and a human monoclonal thyroid-stimulating hormone receptor antibody, M22 assay. The Mc4 assay, a sensitive index of remission and recurrence, was used in this study. The TSAb levels significantly decreased only in the remitting group as evidenced by Mc4 assay values at the end of ATD (0.96 ± 1.47, 10.9 ± 26.6. and 24.7 ± 37.5 arbitrary units for the remitting, relapsing, and unsuspended therapy groups, respectively). Additional prognostic help was obtained by thyroid volume measurements at the end of treatment. Although not statistically significant, the Mc4 assay has a trend toward improved positive predictive value (95.4 vs. 84.2 or 87.5%), specificity (96.4 vs. 86.4 and 90.9%), and accuracy (87.3 vs. 83.3 and 80.9%) comparing the Mc4, Thyretain, and M22 assays, respectively. Thyretain has a trend toward improved negative predictive value (82.6 vs. 81.8 and 76.9%) and sensitivity (80 vs. 77.8 and 70%) comparing Thyretain, Mc4, and M22 assays, respectively. The Mc4 assay is a clinically useful index of remission and relapse in patients with GD. Larger studies are required to confirm these findings.

  14. A Thyroid Hormone Challenge in Hypothyroid Rats Identifies T3 Regulated Genes in the Hypothalamus and in Models with Altered Energy Balance and Glucose Homeostasis

    PubMed Central

    Herwig, Annika; Campbell, Gill; Mayer, Claus-Dieter; Boelen, Anita; Anderson, Richard A.; Ross, Alexander W.; Mercer, Julian G.

    2014-01-01

    Background: The thyroid hormone triiodothyronine (T3) is known to affect energy balance. Recent evidence points to an action of T3 in the hypothalamus, a key area of the brain involved in energy homeostasis, but the components and mechanisms are far from understood. The aim of this study was to identify components in the hypothalamus that may be involved in the action of T3 on energy balance regulatory mechanisms. Methods: Sprague Dawley rats were made hypothyroid by giving 0.025% methimazole (MMI) in their drinking water for 22 days. On day 21, half the MMI-treated rats received a saline injection, whereas the others were injected with T3. Food intake and body weight measurements were taken daily. Body composition was determined by magnetic resonance imaging, gene expression was analyzed by in situ hybridization, and T3-induced gene expression was determined by microarray analysis of MMI-treated compared to MMI-T3-injected hypothalamic RNA. Results: Post mortem serum thyroid hormone levels showed that MMI treatment decreased circulating thyroid hormones and increased thyrotropin (TSH). MMI treatment decreased food intake and body weight. Body composition analysis revealed reduced lean and fat mass in thyroidectomized rats from day 14 of the experiment. MMI treatment caused a decrease in circulating triglyceride concentrations, an increase in nonesterified fatty acids, and decreased insulin levels. A glucose tolerance test showed impaired glucose clearance in the thyroidectomized animals. In the brain, in situ hybridization revealed marked changes in gene expression, including genes such as Mct8, a thyroid hormone transporter, and Agrp, a key component in energy balance regulation. Microarray analysis revealed 110 genes to be up- or downregulated with T3 treatment (±1.3-fold change, p<0.05). Three genes chosen from the differentially expressed genes were verified by in situ hybridization to be activated by T3 in cells located at or close to the hypothalamic

  15. Thyroid Hormone Economy in the Perinatal Mouse Brain: Implications for Cerebral Cortex Development.

    PubMed

    Bárez-López, Soledad; Obregon, Maria Jesus; Bernal, Juan; Guadaño-Ferraz, Ana

    2018-05-01

    Thyroid hormones (THs, T4 and the transcriptionally active hormone T3) play an essential role in neurodevelopment; however, the mechanisms underlying T3 brain delivery during mice fetal development are not well known. This work has explored the sources of brain T3 during mice fetal development using biochemical, anatomical, and molecular approaches. The findings revealed that during late gestation, a large amount of fetal brain T4 is of maternal origin. Also, in the developing mouse brain, fetal T3 content is regulated through the conversion of T4 into T3 by type-2 deiodinase (D2) activity, which is present from earlier prenatal stages. Additionally, D2 activity was found to be essential to mediate expression of T3-dependent genes in the cerebral cortex, and also necessary to generate the transient cerebral cortex hyperthyroidism present in mice lacking the TH transporter Monocarboxylate transporter 8. Notably, the gene encoding for D2 (Dio2) was mainly expressed at the blood-cerebrospinal fluid barrier (BCSFB). Overall, these data signify that T4 deiodinated by D2 may be the only source of T3 during neocortical development. We therefore propose that D2 activity at the BCSFB converts the T4 transported across the choroid plexus into T3, thus supplying the brain with active hormone to maintain TH homeostasis.

  16. Relational Stability in the Expression of Normality, Variation, and Control of Thyroid Function

    PubMed Central

    Hoermann, Rudolf; Midgley, John E. M.; Larisch, Rolf; Dietrich, Johannes W.

    2016-01-01

    Thyroid hormone concentrations only become sufficient to maintain a euthyroid state through appropriate stimulation by pituitary thyroid-stimulating hormone (TSH). In such a dynamic system under constant high pressure, guarding against overstimulation becomes vital. Therefore, several defensive mechanisms protect against accidental overstimulation, such as plasma protein binding, conversion of T4 into the more active T3, active transmembrane transport, counter-regulatory activities of reverse T3 and thyronamines, and negative hypothalamic–pituitary–thyroid feedback control of TSH. TSH has gained a dominant but misguided role in interpreting thyroid function testing in assuming that its exceptional sensitivity thereby translates into superior diagnostic performance. However, TSH-dependent thyroid disease classification is heavily influenced by statistical analytic techniques such as uni- or multivariate-defined normality. This demands a separation of its conjoint roles as a sensitive screening test and accurate diagnostic tool. Homeostatic equilibria (set points) in healthy subjects are less variable and do not follow a pattern of random variation, rather indicating signs of early and progressive homeostatic control across the euthyroid range. In the event of imminent thyroid failure with a reduced FT4 output per unit TSH, conversion efficiency increases in order to maintain FT3 stability. In such situations, T3 stability takes priority over set point maintenance. This suggests a concept of relational stability. These findings have important implications for both TSH reference limits and treatment targets for patients on levothyroxine. The use of archival markers is proposed to facilitate the homeostatic interpretation of all parameters. PMID:27872610

  17. Molecular characterization of thyroid hormone-inhibited atrial L-type calcium channel expression: implication for atrial fibrillation in hyperthyroidism.

    PubMed

    Chen, Wei-Jan; Yeh, Yung-Hsin; Lin, Kwang-Huei; Chang, Gwo-Jyh; Kuo, Chi-Tai

    2011-03-01

    Atrial fibrillation (AF) is a common complication in hyperthyroidism. Earlier studies demonstrate that thyroid hormone decreases L-type calcium channel (LCC) current expression with resultant shortening of action potential duration (APD), providing a substrate for AF. The aim of this study was to investigate the potential mechanism underlying the regulatory effect of thyroid hormone on LCC. In a hyperthyroid rat model, thyroid hormone (triiodothyronine [T3]) administration down-regulated atrial LCC expression. In vitro, treatment of murine atrial myocytes (HL-1) with T3 decreased the expression of LCC and its current, resulting in abbreviation of APD. Furthermore, T3 inhibited the activation of cyclic AMP response element (CRE)-binding protein (CREB), including phosphorylation at Ser133 and its nuclear translocation. Transient transfection studies in HL-1 cells indicated that T3 reduced LCC promoter activity. Deletion and mutation analysis of the LCC promoter region along with chromatin immunoprecipitation using anti-CREB antibody showed that CRE was essential for T3-mediated LCC gene expression. Transfection of dominant-negative CREB (mutated Ser133) and mutant thyroid hormone receptor (TR, mutated Cys51) abolished the T3-dependent effects, suggesting an association between both transcriptional factors. Co-immunoprecipitation documented an increased binding of TR with CREB after T3 treatment. The transcriptional cross-talk 3 between TR and CREB bound to CRE mediates T3-inhibited CREB activity and LCC expression. Thyroid hormone-induced TR binding of CREB inhibits CREB activity and LCC current expression, which may contribute to AF. These findings provide an important mechanistic insight into hyperthyroidism-induced AF.

  18. Effects of simultaneous combined exposure to CDMA and WCDMA electromagnetic fields on serum hormone levels in rats

    PubMed Central

    Jin, Yeung Bae; Choi, Hyung-Do; Kim, Byung Chan; Pack, Jeong-Ki; Kim, Nam; Lee, Yun-Sil

    2013-01-01

    Despite more than a decade of research on the endocrine system, there have been no published studies about the effects of concurrent exposure of radiofrequency electromagnetic fields (RF-EMF) on this system. The present study investigated the several parameters of the endocrine system including melatonin, thyroid stimulating hormone, stress hormone and sex hormone after code division multiple access (CDMA, 849 MHz) and wideband code division multiple access (WCDMA, 1.95 GHz) signals for simultaneous exposure in rats. Sprague-Dawley rats were exposed to RF-EMF signals for 45 min/day, 5 days/week for up to 8 weeks. The whole-body average specific absorption rate (SAR) of CDMA or WCDMA was 2.0 W/kg (total 4.0 W/kg). At 4 and 8 weeks after the experiment began, each experimental group's 40 rats (male 20, female 20) were autopsied. Exposure for 8 weeks to simultaneous CDMA and WCDMA RF did not affect serum levels in rats of melatonin, thyroid stimulating hormone (TSH), triiodothyronine (T3) and thyroxin (T4), adrenocorticotropic hormone (ACTH) and sex hormones (testosterone and estrogen) as assessed by the ELISA method. PMID:23239176

  19. Congenital combined pituitary hormone deficiency attributable to a novel PROP1 mutation (467insT).

    PubMed

    Nose, Osamu; Tatsumi, Keita; Nakano, Yukiko; Amino, Nobuyuki

    2006-04-01

    Combined pituitary hormone deficiency (CPHD) is an anterior pituitary disorder, commonly resulting in growth retardation. PROP1 gene mutations appear to be frequently responsible for CPHD, particularly in Middle and Eastern Europe and the Americas, but few cases have been reported in Japan. Two sisters (aged 8.4 and 4.3 years at presentation) exhibited proportional short stature from about 2 years of age. Genetic analysis determined the nature and location of mutations. Pituitary size by magnetic resonance imaging (MRI) indicated only slight hypoplasia, while hormone analysis revealed deficiencies in secretion of growth hormone (GH), thyroid stimulating hormone, prolactin and gonadotropins; adrenocortinotropin secretion appeared adequate. Genetic analysis revealed a novel familial inherited PROP1 mutation. A unique insertion mutation was found in codon 156 (467insT) located in the transcription-activating region of the PROP1 gene. The resulting PROP1 protein (191 amino acids) would lack the transcription activation domain and consequently be non-functional. Gene analysis suggested that the siblings had inherited a unique autosomal recessive PROP1 gene mutation resulting in severe GH deficiency and subsequent growth retardation.

  20. Effects of Thyroid Dysfunction on Reproductive Hormones in Female Rats.

    PubMed

    Liu, Juan; Guo, Meng; Hu, Xusong; Weng, Xuechun; Tian, Ye; Xu, Kaili; Heng, Dai; Liu, Wenbo; Ding, Yu; Yang, Yanzhou; Zhang, Cheng

    2018-05-10

    Thyroid hormones (THs) play a critical role in the development of ovarian cells. Although the effects of THs on female reproduction are of great interest, the mechanism remains unclear. We investigated the effects of TH dysregulation on reproductive hormones in rats. Propylthiouracil (PTU) and L-thyroxine were administered to rats to induce hypo- and hyper-thyroidism, respectively, and the reproductive hormone profiles were analyzed by radioimmunoassay. Ovarian histology was evaluated with H&E staining, and gene protein level or mRNA content was analyzed by western blotting or RT-PCR. The serum levels of gonadotropin releasing hormone (GnRH) and follicle stimulating hormone (FSH) in both rat models were significantly decreased on day 21, although there were no significant changes at earlier time points. There were no significant differences in luteinizing hormone (LH) or progesterone levels between the treatment and the control groups. Both PTU and L-thyroxine treatments downregulated estradiol concentrations; however, the serum testosterone level was increased only in hypothyroid rats at day 21. In addition, the expression levels of FSH receptor, cholesterol side-chain cleavage enzyme (P450scc), and steroidogenic acute regulatory protein were decreased in both rat models. Moreover, the onset of puberty was significantly delayed in the hypothyroid group. These results provide evidence that TH dysregulation alters reproductive hormone profiles, and that the initiation of the estrous cycle is postponed in hypothyroidism.

  1. 131I therapy of thyroid cancer patients.

    PubMed

    Reiners, C; Farahati, J

    1999-12-01

    Thyroid cancer is a rare malignancy with wide interethnic and geographic variations. In Germany thyroid carcinoma is the 13th most frequent malignancy (2.7 new cases yearly per 100,000 inhabitants). The overall temporal incidence is increasing slightly in recent years. The most common types of cancer are papillary (60-80%) and follicular cancers (10-20%). The relevant prognostic indicators are tumor stage and distant metastases. The mean survival rates in papillary thyroid cancer usually exceed 90%, whereas in follicular thyroid cancer they amount to approximately 80%. The standard treatment procedure in differentiated papillary and follicular thyroid cancer consists of total thyroidectomy followed by adjuvant ablative therapy with radioiodine. Only in papillary thyroid cancer stage pT1N0M0 lobectomy alone is considered to be appropriate. In patients with locally invasive differentiated thyroid cancers stage pT4 adjuvant percutaneous radiation therapy is a treatment option. Radioiodine therapy has to be performed under the stimulative influence of TSH. Usually TSH suppressive medication with Levothyroxine has to be withdrawn approximately 4 weeks prior to radioiodine therapy. In the future, exogenous stimulation by recombinant TSH may be used instead of thyroid hormone withdrawal. It has been proven by different studies that ablative radioiodine therapy reduces the frequency of recurrences and tumor spread in patients with thyroid cancer significantly. In patients with distant metastases, up to 50% of complete responses may be achieved with radioiodine treatment.

  2. Insulin resistance is associated with larger thyroid volume in adults with type 1 diabetes independently from presence of thyroid autoimmunity.

    PubMed

    Rogowicz-Frontczak, Anita; Pilacinski, Stanislaw; Chwialkowska, Anna Teresa; Naskret, Dariusz; Zozulinska-Ziolkiewicz, Dorota

    2018-04-19

    To investigate the effect of insulin resistance (IR) on thyroid function, thyroid autoimmunity (AIT) and thyroid volume in type 1 diabetes (T1DM). 100 consecutive patients with T1DM aged 29 (±6) years with diabetes duration 13 (±6) years were included. Exclusion criteria were: history of thyroid disease, current treatment with L-thyroxin or anti-thyroid drugs. Evaluation of thyroid stimulating hormone (TSH), free thyroid hormones and anti-thyroid antibodies was performed. Thyroid volume was measured by ultrasonography. IR was assessed using the estimated glucose disposal rate (eGDR) formula. In the study group 22% of subjects had insulin resistance defined as eGDR lower or equal to 7.5 mg/kg/min. The prevalence of thyroid autoimmunity (positivity for ATPO or ATg or TRAb) in the study group was 37%. There were no significant differences in the concentration of TSH, FT3, FT4, the prevalence of AIT and hypothyroidism between IR and insulin sensitive (IS) group. Mean (±SD) thyroid volume was 15.6 (±6.2) mL in patients with IR and 11.7 (±4.7) mL in IS subjects (p = .002). Thyroid volume correlated inversely with eGDR (r = -0.35, p < .001). In a multivariate linear regression model the association between thyroid volume and eGDR was independent of sex, age, duration of diabetes, daily insulin dose, BMI, cigarette smoking, TSH value and presence of thyroid autoimmunity (beta: -0.29, p = .012). Insulin resisance is associated with larger thyroid volume in patients with type 1 diabetes independently of sex, body mass index, TSH value and presence of autoimmune thyroid disease.

  3. New approaches to thyroid hormones and purinergic signaling.

    PubMed

    Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar

    2013-01-01

    It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling.

  4. New Approaches to Thyroid Hormones and Purinergic Signaling

    PubMed Central

    Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar

    2013-01-01

    It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling. PMID:23956925

  5. Maternal urinary phthalate metabolites during pregnancy and thyroid hormone concentrations in maternal and cord sera: The HOME Study.

    PubMed

    Romano, Megan E; Eliot, Melissa N; Zoeller, R Thomas; Hoofnagle, Andrew N; Calafat, Antonia M; Karagas, Margaret R; Yolton, Kimberly; Chen, Aimin; Lanphear, Bruce P; Braun, Joseph M

    2018-05-01

    Phthalates, endocrine-disrupting chemicals that are commonly found in consumer products, may adversely affect thyroid hormones, but findings from prior epidemiologic studies are inconsistent. In a prospective cohort study, we investigated whether maternal urinary phthalate metabolite concentrations and phthalate mixtures measured during pregnancy were associated with thyroid hormones among pregnant women and newborns. We measured nine phthalate metabolites [monoethyl phthalate (MEP), mono-n-butyl phthalate, mono-isobutyl phthalate, monobenzyl phthalate (MBzP), and four monoesthers of di(2-ethylhexyl) phthalate] in urine collected at approximately 16 and 26 weeks' gestation among women in the Health Outcomes and Measures of the Environment Study (2003-2006, Cincinnati, Ohio). Thyroid stimulating hormone (TSH) and free and total thyroxine and triiodothyronine were measured in maternal serum at 16 weeks' gestation (n = 202) and cord serum at delivery (n = 276). We used multivariable linear regression to assess associations between individual urinary phthalate metabolites and concentrations of maternal or cord serum thyroid hormones. We used weighted quantile sum regression (WQS) to create a phthalate index describing combined concentrations of phthalate metabolites and to investigate associations of the phthalate index with individual thyroid hormones. With each 10-fold increase in 16-week maternal urinary MEP, maternal serum total thyroxine (TT 4 ) decreased by 0.52 μg/dL (95% CI: -1.01, -0.03). For each 10-fold increase in average (16- and 26-week) maternal urinary MBzP, cord serum TSH decreased by 19% (95% CI: -33.1, -1.9). Among mothers, the phthalate index was inversely associated with maternal serum TT 4 (WQS beta = -0.60; 95% CI: -1.01, -0.18). Among newborns, the phthalate index was inversely associated with both cord serum TSH (WQS beta = -0.11; 95% CI: -0.20, -0.03) and TT 4 (WQS beta = -0.53; 95% CI: -0.90, -0.16). Our results suggest

  6. HASHIMOTO THYROIDITIS AND VESTIBULAR DYSFUNCTION.

    PubMed

    Chiarella, Giuseppe; Russo, Diego; Monzani, Fabio; Petrolo, Claudio; Fattori, Bruno; Pasqualetti, Giuseppe; Cassandro, Ettore; Costante, Giuseppe

    2017-07-01

    The aim of this review was to analyze the existing literature concerning the relationship between Hashimoto thyroiditis (HT) and vestibular dysfunction. We used electronic databases (PubMed, EMBASE, Cochrane Library) to search and collect all published articles about the association between HT and vestibular disorders. Several observational and retrospective studies have postulated a relationship between thyroid autoimmunity and vestibular disorders. In most cases, an appropriate control group was lacking, and the impact of thyroid functional status could not precisely be established. In recent years, two well-designed prospective studies have provided convincing evidence that the association is not random. One article reported that patients with Ménière disease (MD) had a significantly higher prevalence of positive anti-thyroid autoantibody as compared to healthy controls. Moreover, more than half of MD patients had either positive anti-thyroid or non-organ-specific autoantibody titers, compared to less than 30% of both patients with unilateral vestibular paresis without cochlear involvement and healthy controls. Another study found that patients with benign paroxysmal positional vertigo (BPPV) had significantly higher serum thyroid-stimulating hormone and antithyroid autoantibody levels than healthy controls. Additionally, almost one-fifth of euthyroid patients with HT had signs of BPPV. The published results indicate that patients with MD or BPPV are potential candidates to also develop HT. Thus, in HT patients, the presence of even slight symptoms or signs potentially related to vestibular lesions should be carefully investigated. AITD = autoimmune thyroid disease; BPPV = benign paroxysmal positional vertigo; EH = endolymphatic hydrops; HT = Hashimoto thyroiditis; L-T 4 = L-thyroxine; MD = Ménière disease; PS = Pendred syndrome; Tg = thyroglobulin; TPO = thyroid peroxidase; TSH = thyroid-stimulating hormone.

  7. Associations between Polybrominated Diphenyl Ether (PBDE) Flame Retardants, Phenolic Metabolites, and Thyroid Hormones during Pregnancy

    PubMed Central

    Eagle, Sarah; Anthopolos, Rebecca; Wolkin, Amy; Miranda, Marie Lynn

    2011-01-01

    Background: Polybrominated diphenyl ethers (PBDEs) are chemical additives used as flame retardants in commercial products. PBDEs are bioaccumulative and persistent and have been linked to several adverse health outcomes. Objectives: This study leverages an ongoing pregnancy cohort to measure PBDEs and PBDE metabolites in serum collected from an understudied population of pregnant women late in their third trimester. A secondary objective was to determine whether the PBDEs or their metabolites were associated with maternal thyroid hormones. Methods: One hundred forty pregnant women > 34 weeks into their pregnancy were recruited into this study between 2008 and 2010. Blood samples were collected during a routine prenatal clinic visit. Serum was analyzed for a suite of PBDEs, three phenolic metabolites (i.e., containing an –OH moiety), and five thyroid hormones. Results: PBDEs were detected in all samples and ranged from 3.6 to 694 ng/g lipid. Two hydroxylated BDE congeners (4´-OH-BDE 49 and 6-OH-BDE 47) were detected in > 67% of the samples. BDEs 47, 99, and 100 were significantly and positively associated with free and total thyroxine (T4) levels and with total triiodothyronine levels above the normal range. Associations between T4 and PBDEs remained after controlling for smoking status, maternal age, race, gestational age, and parity. Conclusions: PBDEs and OH-BDEs are prevalent in this cohort, and levels are similar to those in the general population. Given their long half-lives, PBDEs may be affecting thyroid regulation throughout pregnancy. Further research is warranted to determine mechanisms through which PBDEs affect thyroid hormone levels in developing fetuses and newborn babies. PMID:21715241

  8. Thyroid nodules, thyroid function and dietary iodine in the Marshall islands.

    PubMed

    Takahashi, T; Fujimori, K; Simon, S L; Bechtner, G; Edwards, R; Trott, K R

    1999-08-01

    Thyroid nodules have been found to be common in the population of the Marshall Islands. This has been attributed to potential exposure of radioiodines from the nuclear weapons tests on Bikini and Eniwetok between 1946 and 1958. In order to get a full picture of thyroid pathology in the Marshallese population potentially exposed to radioactive fallout we performed a large thyroid screening programme using palpation, high resolution ultrasound and fine needle biopsies of palpable nodules. In addition, various parameters of thyroid function (free T3, free T4, thyroid stimulating hormone [TSH]) and anti-thyroid antibodies were examined in large proportions of the total population at risk. Since dietary iodine deficiency is an established risk factor for thyroid nodules, iodine concentration in urine samples of 362 adults and 119 children was measured as well as the iodine content of selected staple food products. The expected high prevalence of thyroid nodules was confirmed. There was no indication of an increased rate of impaired thyroid function in the Marshallese population. A moderate degree of iodine deficiency was found which may be responsible for some of the increased prevalence of thyroid nodules in the Marshallese population. Studies on the relationship between exposure to radioiodines and thyroid nodules need to take dietary iodine deficiency into account in the interpretation of findings.

  9. [Will the thyroglobulin assay with lower functional sensitivity whilst the patients are on L-T4 treatment replace the TSH-stimulated thyroglobulin assay in the follow-up of patients with differentiated thyroid cancer?].

    PubMed

    Maciel, Rui M B

    2007-07-01

    The author reviews the literature on the new assays for serum thyroglobulin (sTg) presenting lower functional sensitivity and demonstrates that its use, whilst the patients are taking L-T4, presents better results than sTg following TSH stimulation in the follow-up of patients with differentiated thyroid carcinoma. Therefore, he suggests a revision on the guidelines for the follow-up of these patients (developed when the available assays present a sensitivity of 1 ng/mL), proposing the use of sTg assays with functional sensitivity of 0.1-0.2 ng/mL with the patients on L-T4 treatment instead of sTg stimulated by TSH.

  10. Polybrominated diphenyl ethers--plasma levels and thyroid status of workers at an electronic recycling facility.

    PubMed

    Julander, A; Karlsson, M; Hagström, K; Ohlson, C G; Engwall, M; Bryngelsson, I-L; Westberg, H; van Bavel, B

    2005-08-01

    Personnel working with electronic dismantling are exposed to polybrominated diphenyl ethers (PBDEs), which in animal studies have been shown to alter thyroid homeostasis. The aim of this longitudinal study was to measure plasma level of PBDEs in workers at an electronic recycling facility and to relate these to the workers' thyroid status. PBDEs and three thyroid hormones: triiodothyronine (T(3)), thyroxin (T(4)) and thyroid stimulating hormone (TSH) were repeatedly analysed in plasma from 11 workers during a period of 1.5 years. Plasma levels of PBDEs at start of employment were <0.5-9.1 pmol/g lipid weight (l.w.). The most common congener was PBDE #47 (median 2.8 pmol/g l.w.), followed by PBDE #153 (median 1.7 pmol/g l.w.), and PBDE #183 had a median value of <0.19 pmol/g l.w. After dismantling the corresponding median concentrations were: 3.7, 1.7 and 1.2 pmol/g l.w., respectively. These differences in PBDE levels were not statistically significant. PBDE #28 showed a statistically significantly higher concentration after dismantling than at start of employment (P=0.016), although at low concentrations (start 0.11 pmol/g l.w. and dismantling 0.26 pmol/g l.w.). All measured levels of thyroid hormones (T(3), T(4) and TSH) were within the normal physiological range. Statistically significant positive correlations were found between T(3) and #183 in a worker, between T(4) and both #28 and #100 in another worker and also between TSH and #99 and #154 in two workers. The workers' plasma levels of PBDEs fluctuated during the study period. Due to small changes in thyroid hormone levels it was concluded that no relevant changes were present in relation to PBDE exposure within the workers participating in this study.

  11. Differential Regulation of Thyroid Hormone Metabolism Target Genes during Non-thyroidal Illness Syndrome Triggered by Fasting or Sepsis in Adult Mice

    PubMed Central

    Fontes, Klaus N.; Cabanelas, Adriana; Bloise, Flavia F.; de Andrade, Cherley Borba Vieira; Souza, Luana L.; Wilieman, Marianna; Trevenzoli, Isis H.; Agra, Lais C.; Silva, Johnatas D.; Bandeira-Melo, Christianne; Silva, Pedro L.; Rocco, Patricia R. M.; Ortiga-Carvalho, Tania M.

    2017-01-01

    Fasting and sepsis induce profound changes in thyroid hormone (TH) central and peripheral metabolism. These changes affect TH action and are called the non-thyroidal illness syndrome (NTIS). To date, it is still debated whether NTIS represents an adaptive response or a real hypothyroid state at the tissue level. Moreover, even though it has been considered the same syndrome, we hypothesized that fasting and sepsis induce a distinct set of changes in thyroid hormone metabolism. Herein, we aimed to evaluate the central and peripheral expression of genes involved in the transport (MCT8/Slc16a2 and MCT10/Slc16a10), metabolism (Dio1, Dio2, and Dio3) and action (Thra and Thrb) of TH during NTIS induced by fasting or sepsis. Male mice were subjected to a 48 h period of fasting or cecal ligation and puncture (CLP)-induced sepsis. At the peripheral level, fasting led to: (1) reduced serum thyroxine (T4) and triiodothyronine (T3), expression of Dio1, Thra, Slc16a2, and MCT8 protein in liver; (2) increased hepatic Slc16a10 and Dio3 expression; and (3) decreased Slc16a2 and Slc16a10 expressions in the thyroid gland. Fasting resulted in reduction of Tshb expression in the pituitary and increased expression of Dio2 in total hypothalamus, arcuate (ARC) and paraventricular (PVN) nucleus. CLP induced sepsis resulted in reduced: (1) T4 serum levels; (2) Dio1, Slc16a2, Slc16a10, Thra, and Thrb expression in liver as well as Slc16a2 expression in the thyroid gland (3) Thrb and Tshb mRNA expression in the pituitary; (4) total leukocyte counts in the bone marrow while increased its number in peritoneal and pleural fluids. In summary, fasting- or sepsis-driven NTIS promotes changes in the set point of hypothalamus-pituitary-thyroid axis through different mechanisms. Reduced hepatic THRs expression in conjunction with reduced TH transporters expression in the thyroid gland may indicate, respectively, reduction in the peripheral action and in the secretion of TH, which may contribute to

  12. Thyroid hormone regulates vitellogenin by inducing estrogen receptor alpha in the goldfish liver.

    PubMed

    Nelson, Erik R; Habibi, Hamid R

    2016-11-15

    Vitellogenin (Vtg) is an egg-yolk precursor protein that is synthesized in the liver of oviparous species and taken up from the circulation by the ovary. It is well known that Vtg is induced by circulating estrogens. However, other endocrine factors that regulate the expression of Vtg are less well characterized; factors that might play significant roles, especially in seasonal spawners such as the goldfish which require increased quantities of Vtg for the development of hundreds of follicles. In this regard, thyroid hormones have been shown to cycle with the reproductive season. Therefore, we hypothesized that the thyroid hormones might influence the synthesis of Vtg. Treatment of female goldfish with triiodothyronine (T3) resulted in increased Vtg, an observation that was absent in males. Furthermore, T3 failed to induce Vtg in cultured hepatocytes of either sex. Interestingly however, T3 consistently up-regulated the expression of the estrogen receptor alpha (ERα). The T3 mediated upregulation of ERα requires the presence of both thyroid receptor (TR) α-1 and TRβ. When goldfish or cultured hepatocytes were treated with T3 followed by estradiol, there was a synergistic increase in Vtg, a response which is dependent on the presence of ERα. Therefore, by upregulating ERα, T3 serves to prime the liver to subsequent stimuli from estradiol. This cross-talk likely reveals an important physiologic mechanism by which thyroid hormones, whose circulating levels are high during early gonadal recrudescence, facilitate the production of large amounts of Vtg required for egg development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Maternal Urinary Triclosan Concentration in Relation to Maternal and Neonatal Thyroid Hormone Levels: A Prospective Study.

    PubMed

    Wang, Xu; Ouyang, Fengxiu; Feng, Liping; Wang, Xia; Liu, Zhiwei; Zhang, Jun

    2017-06-27

    Triclosan (TCS) is a synthetic antibacterial chemical widely used in personal care products. TCS exposure has been associated with decreased thyroid hormone levels in animals, but human studies are scarce and controversial. We evaluated the association between maternal TCS exposure and thyroid hormone levels of mothers and newborns. TCS was measured by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in urine samples collected during gestational weeks 38.8±1.1 from 398 pregnant women in a prospective birth cohort enrolled in 2012-2013 in Shanghai, China. Maternal serum levels of free thyroxine (FT 4 ), thyroid-stimulating hormone (TSH), and thyroid peroxidase antibody (TPOAb) were obtained from medical records. Cord blood levels of free triiodothyronine (FT 3 ), FT 4 , TSH, and TPOAb were measured. Multiple linear and logistic regression models were used to examine the relationship between maternal urinary TCS and thyroid hormone levels. TCS was detectable (≥0.1 ng/mL) in 98.24% of maternal urine samples with tertile of urinary TCS levels: low (>0.1-2.75 μg/g.Cr), medium (2.75–9.78 μg/g.Cr), and high (9.78–427.38 μg/g.Cr). With adjustment for potential confounders, cord blood log(FT 3 )pmol/L concentration was 0.11 lower in newborns of mothers with medium and high urinary TCS levels compared with those with low levels. At third trimester, the high TCS concentration was associated with 0.03 [95% confidence interval (CI) −0.08, −0.02] lower maternal serum log(FT 4 )pmol/L, whereas the medium TCS concentration was associated with 0.15 (95% CI: −0.28, −0.03) lower serum log(TSH)mIU/L with adjustment for covariates. Our results suggest significant inverse associations between maternal urinary TCS and cord blood FT 3 as well as maternal blood FT 4 concentrations at third trimester. https://doi.org/10.1289/EHP500.

  14. Do unliganded thyroid hormone receptors have physiological functions?

    PubMed

    Chassande, O

    2003-08-01

    Thyroid hormone (TH) is required for the development of vertebrates and exerts numerous homeostatic functions in adults. TH acts through nuclear receptors which control the transcription of target genes. Unliganded and liganded thyroid hormone receptors (TRs) have been shown to exert opposite effects on the transcription of target genes in vitro. However, the occurance of an aporeceptor activity in vivo and its potential physiological significance has not been clearly addressed. Several data generated using experimental hypothyroidism and thyrotoxicosis in wild type and TR knockout mice support the notion that apoTRs have an intrinsic activity in several tIssues. ApoTRs, and in particular TRalpha1, are predominant during the early stages of vertebrate development and must be turned into holoTRs for post-natal development to proceed normally. However, the absence of striking alterations of embryonic and fetal development in mice devoid of TRs indicates that apoTRs do not play a fundamental role. During development, as well as in adults, apoTRs rather appears as a system which increases the range of transcriptional responses to moderate variations of T3.

  15. Relationship Between Circulating Thyroid-Stimulating Hormone, Free Thyroxine, and Free Triiodothyronine Concentrations and 9-Year Mortality in Euthyroid Elderly Adults.

    PubMed

    Ceresini, Graziano; Marina, Michela; Lauretani, Fulvio; Maggio, Marcello; Bandinelli, Stefania; Ceda, Gian P; Ferrucci, Luigi

    2016-03-01

    To determine the association between plasma thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), and free thyroxine (FT4) levels and all-cause mortality in older adults who had levels of all three hormones in the normal range. Longitudinal. Community-based. Euthyroid Invecchiare in Chianti study participants aged 65 and older (N = 815). Plasma TSH, FT3, and FT4 levels were predictors, and 9-year all-cause mortality was the outcome. Cox proportional hazards models adjusted for confounders were used to examine the relationship between TSH, FT3, and FT4 quartiles and all-cause mortality over 9 years of follow-up. During follow-up (mean person-years 8,643.7, range 35.4-16,985.0), 181 deaths occurred (22.2%). Participants with TSH in the lowest quartile had higher mortality than the rest of the population. After adjusting for multiple confounders, participants with TSH in the lowest quartile (hazard ratio = 2.22, 95% confidence interval = 1.19-4.22) had significantly higher all-cause mortality than those with TSH in the highest quartile. Neither FT3 nor FT4 was associated with mortality. In elderly euthyroid subjects, normal-low TSH is an independent risk factor for all-cause mortality. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  16. Hyperkalemia develops in some thyroidectomized patients undergoing thyroid hormone withdrawal in preparation for radioactive iodine ablation for thyroid carcinoma.

    PubMed

    Horie, Ichiro; Ando, Takao; Imaizumi, Misa; Usa, Toshiro; Kawakami, Atsushi

    2015-05-01

    Hyponatremia is observed in hypothyroidism, but it is not known if hypo- or hyperkalemia is associated with hypothyroidism. To study these questions, we determined serum potassium (K(+)) levels in thyroidectomized patients undergoing levothyroxine withdrawal before radioactive iodine (RAI) therapy for thyroid carcinoma. We retrospectively studied the records of 108 patients who had undergone total thyroidectomy for thyroid carcinoma followed by levothyroxine withdrawal and then ablation with RAI at Nagasaki University Hospital from 2009-2013. Blood samples were analyzed for serum K(+) concentrations when patients were euthyroid just before levothyroxine withdrawal and hypothyroid 21 days after levothyroxine withdrawal. We determined the proportion of patients who developed hyperkalemia (K(+) ≥5 mEq/L) and hypokalemia (K(+) ≤3.5 mEq/L). Five (4.6%) patients developed hyperkalemia and 2 (1.9%) patients developed hypokalemia after levothyroxine withdrawal. The mean serum K(+) level after levothyroxine withdrawal was significantly higher than before levothyroxine withdrawal (4.23 ± 0.50 mEq/L vs. 4.09 ± 0.34 mEq/L; P<.001). After levothyroxine withdrawal, serum K(+) values were significantly correlated with age, serum sodium and creatinine levels, and the estimated glomerular filtration rate but not with serum free thyroxine or thyroid-stimulating hormone concentrations. The finding of an elevated serum K(+) of >0.5 mEq/L after levothyroxine withdrawal was more prevalent with age >60 years (odds ratio [OR], 4.66; P = .026) and with the use of angiotensin-II receptor blockers or angiotensin-converting enzyme inhibitors (OR, 3.53; P = .033) in a multivariate analysis. Hyperkalemia develops in a small percentage of hypothyroid patients after thyroid hormone withdrawal, especially in patients over 60 years of age who are using antihypertensive agents that inhibit the reninangiotensin-aldosterone system.

  17. A pilot study: subclinical hypothyroidism and free thyroid hormone measurement by immunoassay and mass spectrometry.

    PubMed

    Gounden, Verena; Jonklaas, Jacqueline; Soldin, Steven J

    2014-03-20

    The diagnosis of subclinical hypothyroidism is defined as the presence of an elevated thyroid stimulating hormone (TSH) with a normal free thyroxine (FT4) level. The commonly used direct analogue immunoassays for the measurement of FT4 have been shown to have poor performance at the upper and lower limits of the FT4 reference interval. The purpose of this pilot study was to investigate the percentage of individuals classified as having subclinical hypothyroidism with a standard immunoassay, that actually have low free thyroid hormone levels by mass spectrometry measurements. Outpatient samples with elevated TSH values and normal FT4 concentrations as per standard immunoassay methods were collected. FT4 and free triiodothyronine (FT3) analyses were performed on these samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sixty five percent (n=26) of patients (n=40) had (LC-MS/MS) FT4 or FT3 or both FT4 and FT3 values below mass spectrometry reference limits. Our findings indicate that the direct analogue immunoassay method for FT4 measurement results in a significant proportion of patients being misclassified as having subclinical hypothyroidism. Published by Elsevier B.V.

  18. Thyroid function and insulin sensitivity before and after bilio-pancreatic diversion.

    PubMed

    Gniuli, Donatella; Leccesi, Laura; Guidone, Caterina; Iaconelli, Amerigo; Chiellini, Chiara; Manto, Andrea; Castagneto, Marco; Ghirlanda, Giovanni; Mingrone, Geltrude

    2010-01-01

    Bilio-pancreatic diversion (BPD) induces permanent weight loss in previously severe obese patients through a malabsorptive mechanism. The aim of the study was to evaluate the modifications of circulating thyroid hormones after BPD, a surgical procedure which interferes with the entero-hepatic circulation of biliary metabolites. Forty-five patients were studied before and 2 years after BPD. Thyroid-stimulating hormone (TSH), free triiodothyronine (fT3), free thyroxine (fT4), anti-thyroid antibodies, iodine urinary excretion, lipid profile, insulin and glucose plasma levels were assessed. The insulin-resistance HOMA IR index was calculated, and colour Doppler ultrasonography of the neck was performed. The subjects (23%) had subclinical hypothyroidism prior to BPD (TSH levels above the normal range with normal fT3 and fT4 levels). After 2 years 40.42% of the population showed subclinical hypothyroidism, while 6.3% became frankly hypothyroid, all of them with no evidence of auto-immune thyroiditis. Most of the patients, who became sub-clinically hypothyroid only following BPD, had already thyroid alterations at the sonogram (multi-nodular euthyroid goiter and thyroidal cysts) prior to surgery. BPD increases the prevalence of subclinical or even frank hypothyroidism, without causing a defect in thyroid function itself, through several integrated mechanisms. (1) It induces iodine malabsorption, which is partially compensated by iodine excretion contraction. (2) The entero-hepatic open circulation determines fT3 loss, which induces subclinical or frank hypothyroidism in patients with pre-existing thyroid alterations, interfering also with the weight loss progress. Iodine supplementation should be recommended in those patients reporting thyroid alterations at the sonogram prior to BPD, LT4 therapy should be strictly monitored in patients suffering of subclinical hypopthiroidism and T3 therapy should eventually be considered for patients diagnosed with frank hypothyroidism

  19. The effect of adrenaline and noradrenaline on hormone secretion and blood flow from the thyroid vein in sheep with exteriorized thyroids.

    PubMed

    Falconer, I R

    1967-02-01

    1. Emotional stimulus to the sheep has previously been shown to cause increased thyroid hormone secretion; the influence of adrenaline and noradrenaline in this process has been investigated.2. Sheep bearing exteriorized thyroid glands on carotid artery-jugular vein loops were used. Thyroid vein blood was collected through a cannula in the jugular vein within the loop, and blood flow was measured by a plethysmographic technique.3. (131)I (50 muc) was injected intramuscularly (I.M.) into the sheep, and 4-7 days later the concentration of total and protein bound (131)I in thyroid vein blood was measured in samples taken every 10 min for 4 hr. Intracarotid injections of 1 mug, I.V. injections of 5 mug, or I.V. infusions at 10 mug/min for 10 min, of adrenaline or noradrenaline were administered 1.5 hr after commencement of sampling. Blood flow from the thyroid was measured in similar experiments.4. No significant changes in thyroid hormone secretion could be attributed to adrenaline or noradrenaline, and it was concluded that circulating catecholamines do not influence the release of thyroid hormone observed after brief emotional stimulus in the sheep.

  20. Small-molecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice

    PubMed Central

    Neumann, Susanne; Huang, Wenwei; Titus, Steve; Krause, Gerd; Kleinau, Gunnar; Alberobello, Anna Teresa; Zheng, Wei; Southall, Noel T.; Inglese, James; Austin, Christopher P.; Celi, Francesco S.; Gavrilova, Oksana; Thomas, Craig J.; Raaka, Bruce M.; Gershengorn, Marvin C.

    2009-01-01

    Seven-transmembrane-spanning receptors (7TMRs) are prominent drug targets. However, small-molecule ligands for 7-transmembrane-spanning receptors for which the natural ligands are large, heterodimeric glycoprotein hormones, like thyroid-stimulating hormone (TSH; thyrotropin), have only recently been reported, and none are approved for human use. We have used quantitative high-throughput screening to identify a small-molecule TSH receptor (TSHR) agonist that was modified to produce a second agonist with increased potency. We show that these agonists are highly selective for human TSHR versus other glycoprotein hormone receptors and interact with the receptor's serpentine domain. A binding pocket within the transmembrane domain was defined by docking into a TSHR homology model and was supported by site-directed mutagenesis. In primary cultures of human thyrocytes, both TSH and the agonists increase mRNA levels for thyroglobulin, thyroperoxidase, sodium iodide symporter, and deiodinase type 2, and deiodinase type 2 enzyme activity. Moreover, oral administration of the agonist stimulated thyroid function in mice, resulting in increased serum thyroxine and thyroidal radioiodide uptake. Thus, we discovered a small molecule that activates human TSHR in vitro, is orally active in mice, and could be a lead for development of drugs to use in place of recombinant human TSH in patients with thyroid cancer. PMID:19592511

  1. Ethylene thiourea: thyroid function in two groups of exposed workers.

    PubMed Central

    Smith, D M

    1984-01-01

    Ethylene thiourea is manufactured at one factory in the United Kingdom and is mixed into masterbatch rubber at another. Clinical examinations and thyroid function tests were carried out over a period of three years on eight process workers and five mixers and on matched controls. The results show that the exposed mixers, but not exposed process workers, have significantly lower levels of total thyroxine (T4) than the controls. One mixer had an appreciably raised level of thyroid stimulation hormone (TSH). PMID:6743584

  2. Ethylene thiourea: thyroid function in two groups of exposed workers.

    PubMed

    Smith, D M

    1984-08-01

    Ethylene thiourea is manufactured at one factory in the United Kingdom and is mixed into masterbatch rubber at another. Clinical examinations and thyroid function tests were carried out over a period of three years on eight process workers and five mixers and on matched controls. The results show that the exposed mixers, but not exposed process workers, have significantly lower levels of total thyroxine (T4) than the controls. One mixer had an appreciably raised level of thyroid stimulation hormone (TSH).

  3. [Pediatric reference intervals : retrospective study on thyroid hormone levels].

    PubMed

    Ladang, A; Vranken, L; Luyckx, F; Lebrethon, M-C; Cavalier, E

    2017-01-01

    Defining reference range is an essential tool for diagnostic. Age and sexe influences on thyroid hormone levels have been already discussed. In this study, we are defining a new pediatric reference range for TSH, FT3 and FT4 for Cobas C6000 analyzer. To do so, we have taken in account 0 to 18 year old outclinic patients. During the first year of life, thyroid hormone levels change dramatically before getting stabilized around 3 years old. We also compared our results to those obtained in a Canadian large-scale prospective study (the CALIPER initiative).

  4. Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor β-1 in a fasting-adapted mammal

    PubMed Central

    Martinez, Bridget; Soñanez-Organis, José G.; Vázquez-Medina, José Pablo; Viscarra, Jose A.; MacKenzie, Duncan S.; Crocker, Daniel E.; Ortiz, Rudy M.

    2013-01-01

    SUMMARY Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrβ-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5–7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic–pituitary–thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrβ-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism. PMID:24307712

  5. Effect of estrogen therapy for 1 year on thyroid volume and thyroid nodules in postmenopausal women.

    PubMed

    Ceresini, Graziano; Milli, Bruna; Morganti, Simonetta; Maggio, Marcello; Bacchi-Modena, Alberto; Sgarabotto, Maria Paola; Chirico, Carla; Di Donato, Pietro; Campanati, Paolo; Valcavi, Roberto; Ceda, Gian Paolo; Braverman, Lewis E; Valenti, Giorgio

    2008-01-01

    Estrogen receptors are present in thyroid follicular cells in normal and neoplastic tissue. We evaluated changes in total thyroid volume and volume of thyroid nodules in postmenopausal women given either hormone therapy (HT) or no treatment in a 1-year observational follow-up. We studied 33 women receiving HT and 76 women receiving no treatment, comparing total thyroid volume, thyroid nodule volume, and serum concentrations of thyroid-stimulating hormone and estradiol at baseline and 1 year of follow-up. Serum thyroid-stimulating hormone concentrations were not different between groups either at baseline or at 1 year. Estradiol rose significantly in the HT group. The final percent changes in total thyroid volume were comparable between groups (HT, 1.59 +/- 2.56%; no treatment, 1.20 +/- 2.28%). At baseline, nodules were detected in 17 (51.5%) and 33 (43.4%) of women in the HT and no treatment groups, respectively, with no statistically significant difference between groups. The final number of nodules was unchanged or reduced in 88.2% and 81.1% and increased in 11.8% and 18.9% of women in the HT and no treatment groups, respectively, with no differences between groups. Baseline volumes of thyroid nodules were 0.8 +/- 0.4 and 1.4 +/- 0.4 mL in women in the HT and no treatment groups, respectively (P = 0.4). After 1 year the volume of thyroid nodules was unchanged or reduced in 47.1% and 52.8% and increased in 52.9% and 47.2% of women in the HT and no treatment groups, respectively, with no differences between groups. Estrogen administration for 1 year did not affect thyroid volume or the number and volume of thyroid nodules in postmenopausal women.

  6. Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue.

    PubMed

    Miao, Yifei; Wu, Wanfu; Dai, Yubing; Maneix, Laure; Huang, Bo; Warner, Margaret; Gustafsson, Jan-Åke

    2015-11-10

    The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity.

  7. A thyrotropin-secreting macroadenoma with positive growth hormone and prolactin immunostaining: A case report and literature review.

    PubMed

    Kuzu, F; Bayraktaroğlu, T; Zor, F; G N, B D; Salihoğlu, Y S; Kalaycı, M

    2015-01-01

    Thyrotropin (thyroid stimulating hormone [TSH]) secreting pituitary adenomas (TSHoma) are rare adenomas presenting with hyperthyroidism due to impaired negative feedback of thyroid hormone on the pituitary and inappropriate TSH secretion. This article presents a case of TSH-secreting macroadenoma without any clinical hyperthyroidism symptoms accompanying immunoreaction with growth hormone (GH) and prolactin. A 36-year-old female patient was admitted with complaints of irregular menses and blurred vision. On physical exam, she had bitemporal hemianopsia defect. Magnetic resonance imaging (MRI) evaluation showed suprasellar macroadenoma measuring 33 mm × 26 mm × 28 mm was detected on pituitary MRI. She had no hyperthyroidism symptoms clinically. Although free T4 and free T3 levels were elevated, TSH level was inappropriately within the upper limit of normal. Response to T3 suppression and thyrotropin releasing hormone-stimulation test was inadequate. Other pituitary hormones were normal. Transsphenoidal adenomectomy was performed due to parasellar compression findings. Immunohistochemically widespread reaction was observed with TSH, GH and prolactin in the adenoma. The patient underwent a second surgical procedure 2 months later due to macroscopic residual tumor, bitemporal hemianopsia and a suprasellar homogenous uptake with regular borders on indium-111 octreotide scintigraphy. After second surgery; due to ongoing symptoms and residual tumor, she was managed with octreotide and cabergoline treatment. On her follow-up with medical treatment, TSH and free T4 values were within normal limits. Although silent TSHomas are rare, they may arise with compression symptoms as in our case. The differential diagnosis of secondary hyperthyroidism should include TSHomas and thyroid hormone receptor resistance syndrome.

  8. The association between soya consumption and serum thyroid-stimulating hormone concentrations in the Adventist Health Study-2.

    PubMed

    Tonstad, Serena; Jaceldo-Siegl, Karen; Messina, Mark; Haddad, Ella; Fraser, Gary E

    2016-06-01

    Consumers may choose soya foods as healthful alternatives to animal products, but concern has arisen that eating large amounts of soya may adversely affect thyroid function. The present study aimed to examine the association between soya food consumption and serum thyroid-stimulating hormone (TSH) concentrations in North American churchgoers belonging to the Seventh-day Adventist denomination that encourages vegetarianism. Participants completed six repeated 24 h dietary recalls within a 6-month period. Soya protein and soya isoflavone intakes were estimated, and their relationships to TSH concentrations measured at the end of 6 months were calculated using logistic regression analyses. Calibration sub-study of the Adventist Health Study-2. Women (n 548) and men (n 295) who were not taking thyroid medications. In men, age and urinary iodine concentrations were associated with high serum TSH concentrations (>5 mIU/l), while among women White ethnicity was associated with high TSH. In multivariate models adjusted for age, ethnicity and urinary iodine, soya isoflavone and protein intakes were not associated with high TSH in men. In women higher soya isoflavone consumption was associated with higher TSH, with an adjusted odds ratio (highest v. lowest quintile) of 4·17 (95 % CI 1·73, 10·06). Likewise, women with high consumption of soya protein (midpoint of highest quintile, 11 g/d) v. low consumption (midpoint of lowest quintile, 0 g/d) carried increased odds of high TSH (OR=2·69; 95 % CI 1·34, 5·30). In women high consumption of soya was associated with elevated TSH concentrations. No associations between soya intake and TSH were found in men.

  9. 2,2",4,4"-TETRABROMODIPHENYL (PBDE 47) ALTERS THYROID FUNCTION IN THE RAT.

    EPA Science Inventory

    Two commercial PBDE mixtures, DE-71 and DE-79, cause dose-dependent depletion of serum T4 via induction of UGTs and increased CYP1A1 activity. This work characterized the effect of a major congener, PBDE-47, in DE-71 for effects on hepatic enzymes and thyroid hormones. Female 27...

  10. Trimester-Specific Changes in Maternal Thyroid Hormone, Thyrotropin, and Thyroglobulin Concentrations During Gestation: Trends and Associations Across Trimesters in Iodine Sufficiency

    PubMed Central

    Soldin, O.P.; Tractenberg, R.E.; Hollowell, J.G.; Jonklaas, J.; Janicic, N.; Soldin, S.J.

    2013-01-01

    Objectives To describe the interrelationships of thyroid functions based on trimester-specific concentrations in healthy, iodine-sufficient pregnant women across trimesters, and postpartum. Methods Circulating total 3,5,3′-triidothyronine (T3) and thyroxine (T4) concentrations were determined simultaneously using liquid chromatography tandem mass-spectrometry (LC/MS/MS). Free thyroxine (FT4), thyroid-stimulating hormone (TSH), and thyroglobulin (Tg) were measured using immunoassay techniques. Linear mixed effects models and correlations were calculated to determine trends and associations, respectively, in concentrations. Results and conclusions Trimester-specific T3, FT4, TSH, and Tg concentrations were significantly different between the first and third trimesters (all p < 0.05); second and third trimester values were not significantly different for FT4, TSH, and Tg (all p > 0.25) although T3 was significantly higher in the third, relative to the second trimester. T4 was not significantly different at any trimester (all p > 0.80). With two exceptions, analyte concentrations tended not to be correlated at each trimester and at 1-year postpartum. One exception was that T3 and T4 tended to be associated (all p < 0.05) at all time points except the third trimester (ρ = 0.239, p > 0.05). T4 and FT4 concentrations tended to correlate positively during pregnancy (ρ 0.361–0.382, all p < 0.05) but not postpartum (ρ = 0.179, p > 0.05). Trends suggest that trimester-specific measurements of T3, FT4, Tg, and possibly TSH are warranted. PMID:15650363

  11. Thyroid hormones states and brain development interactions.

    PubMed

    Ahmed, Osama M; El-Gareib, A W; El-Bakry, A M; Abd El-Tawab, S M; Ahmed, R G

    2008-04-01

    The action of thyroid hormones (THs) in the brain is strictly regulated, since these hormones play a crucial role in the development and physiological functioning of the central nervous system (CNS). Disorders of the thyroid gland are among the most common endocrine maladies. Therefore, the objective of this study was to identify in broad terms the interactions between thyroid hormone states or actions and brain development. THs regulate the neuronal cytoarchitecture, neuronal growth and synaptogenesis, and their receptors are widely distributed in the CNS. Any deficiency or increase of them (hypo- or hyperthyroidism) during these periods may result in an irreversible impairment, morphological and cytoarchitecture abnormalities, disorganization, maldevelopment and physical retardation. This includes abnormal neuronal proliferation, migration, decreased dendritic densities and dendritic arborizations. This drastic effect may be responsible for the loss of neurons vital functions and may lead, in turn, to the biochemical dysfunctions. This could explain the physiological and behavioral changes observed in the animals or human during thyroid dysfunction. It can be hypothesized that the sensitive to the thyroid hormones is not only remarked in the neonatal period but also prior to birth, and THs change during the development may lead to the brain damage if not corrected shortly after the birth. Thus, the hypothesis that neurodevelopmental abnormalities might be related to the thyroid hormones is plausible. Taken together, the alterations of neurotransmitters and disturbance in the GABA, adenosine and pro/antioxidant systems in CNS due to the thyroid dysfunction may retard the neurogenesis and CNS growth and the reverse is true. In general, THs disorder during early life may lead to distortions rather than synchronized shifts in the relative development of several central transmitter systems that leads to a multitude of irreversible morphological and biochemical

  12. GLIS3 is indispensable for TSH/TSHR-dependent thyroid hormone biosynthesis and follicular cell proliferation

    PubMed Central

    Kang, Hong Soon; Kumar, Dhirendra; Liao, Grace; Lichti-Kaiser, Kristin; Gerrish, Kevin; Liao, Xiao-Hui; Refetoff, Samuel; Jothi, Raja; Jetten, Anton M.

    2017-01-01

    Deficiency in Krüppel-like zinc finger transcription factor GLI-similar 3 (GLIS3) in humans is associated with the development of congenital hypothyroidism. However, the functions of GLIS3 in the thyroid gland and the mechanism by which GLIS3 dysfunction causes hypothyroidism are unknown. In the current study, we demonstrate that GLIS3 acts downstream of thyroid-stimulating hormone (TSH) and TSH receptor (TSHR) and is indispensable for TSH/TSHR-mediated proliferation of thyroid follicular cells and biosynthesis of thyroid hormone. Using ChIP-Seq and promoter analysis, we demonstrate that GLIS3 is critical for the transcriptional activation of several genes required for thyroid hormone biosynthesis, including the iodide transporters Nis and Pds, both of which showed enhanced GLIS3 binding at their promoters. The repression of cell proliferation of GLIS3-deficient thyroid follicular cells was due to the inhibition of TSH-mediated activation of the mTOR complex 1/ribosomal protein S6 (mTORC1/RPS6) pathway as well as the reduced expression of several cell division–related genes regulated directly by GLIS3. Consequently, GLIS3 deficiency in a murine model prevented the development of goiter as well as the induction of inflammatory and fibrotic genes during chronic elevation of circulating TSH. Our study identifies GLIS3 as a key regulator of TSH/TSHR-mediated thyroid hormone biosynthesis and proliferation of thyroid follicular cells and uncovers a mechanism by which GLIS3 deficiency causes neonatal hypothyroidism and prevents goiter development. PMID:29083325

  13. Thyroid function in lung cancer

    PubMed Central

    Ratcliffe, J G; Stack, B H R; Burt, R W; Ratcliffe, W A; Spilg, W G S; Cuthbert, J; Kennedy, R S

    1978-01-01

    Thyroid function was assessed at the time of initial diagnosis in 204 patients with lung cancer and compared with that of age and sex-matched patients with non-malignant lung disease. Abnormalities in thyroid function were found in 67 patients (33%). The most prevalent abnormality was a low T3 concentration; this was not associated with other clinical or biochemical evidence of hypothyroidism, but the short-term prognosis of these patients was worse than that of matched patients with lung cancer having normal T3 concentrations. Primary hypothyroidism occurred in three patients, low T4 concentrations and free thyroxine index (FTI) with normal thyrotrophin (TSH) concentrations in four patients, and moderately raised TSH with normal thyroid hormone concentrations in six patients; nine patients had a raised FTI with or without raised T4 concentration as the sole abnormality. Overall, the pattern of thyroid hormone metabolism in lung cancer was a tendency towards reduced T3 concentrations with significantly increased T4/T3 ratios and modestly increased 3,3′,5′-triiodothyronine (rT3) concentrations. The altered T4/T3 ratio was particularly noticeable in patients with anaplastic tumours of small (“oat cell”) and large cell types, but was not apparently related to detectable extrathoracic metastases. These data suggest that thyroid hormone metabolism is altered in patients with lung cancer by decreased 5′-monodeiodination of T4. The resulting low T3 concentrations and altered T4/T3 ratio may be partly responsible for the reduced ratio of androsterone to aetiocholanolone observed in lung cancer, which is known to be a poor prognostic sign. PMID:620266

  14. Clinical Association of Thyroid Stimulating Hormone Receptor Antibody Levels with Disease Severity in the Chronic Inactive Stage of Graves' Orbitopathy.

    PubMed

    Woo, Young Jae; Jang, Sun Young; Lim, Tyler Hyung Taek; Yoon, Jin Sook

    2015-08-01

    To investigate associations between serum thyroid stimulating hormone (TSH) receptor antibody (TRAb) levels and Graves' orbitopathy (GO) activity/severity in chronic-stage GO and compare the performance of two newly-developed TRAb assays (third-generation TSH-binding inhibition immunoglobulin [TBII] assay versus Mc4 thyroid-stimulating immunoglobulin [TSI] bioassay). This study is a retrospective review of medical charts and blood tests from Korean GO patients who first visited the departments of ophthalmology and endocrinology, Yonsei University College of Medicine from January 2008 to December 2011, were diagnosed with GO and Graves' hyperthyroidism, and were followed up for ≥18 months. Third-generation M22-TBII and Mc4-TSI assays were performed in the chronic-inactive GO patients in whom euthyroidism status was restored. Patients' GO activity/severity clinical activity scores (CAS), and modified NOSPECS scores were examined for a correlation with TRAb assays. Fifty patients (mean age, 41.3 years; 41 females) were analyzed. The mean duration of Graves' hyperthyroidism symptom was 63 months (range, 18 to 401 months) and that of GO was 46 months (range, 18 to 240 months). All patients had been treated previously with anti-thyroid drugs for a median period of 52.3 months, and two patients underwent either radioiodine therapy or total thyroidectomy. Mean CAS and NOSPECS scores were 0.5 ± 0.9 (standard deviation) and 4.8 ± 3.1, respectively. Mean M22-TBII and Mc4-TSI values were 7.5 ± 10.2 IL/L and 325.9 ± 210.1 specimen-to-reference control ratio. TSI was significantly correlated with NOSPECS score (R = 0.479, p < 0.001); however, TBII was not associated with NOSPECS score (p = 0.097). Neither TSI nor TBII correlated with CAS (p > 0.05), because GO inflammatory activity subsided in the chronic stages of GO. In chronic-inactive GO after euthyroid restoration, GO activity score did not associate with serum levels of TRAb or TBII. However, levels of the functional

  15. Energy sources and levels influenced on performance parameters, thyroid hormones, and HSP70 gene expression of broiler chickens under heat stress.

    PubMed

    Raghebian, Majid; Sadeghi, Ali Asghar; Aminafshar, Mehdi

    2016-12-01

    The present study was conducted to evaluate the effects of energy sources and levels on body and organs weights, thyroid hormones, and heat shock protein (HSP70) gene expression in broilers under heat stress. In a completely randomized design, 600 1-day-old Cobb chickens were assigned to five dietary treatments and four replicates. The chickens were fed diet based on corn as main energy source and energy level based on Cobb standard considered as control (C), corn-based diet with 3 % lesser energy than the control (T1), corn-based diet with 6 % lesser energy than the control (T2), corn and soybean oil-based diet according to Cobb standard (T3), and corn and soybean oil-based diet with 3 % upper energy than the control (T4). Temperature was increased to 34 °C for 8 h daily from days 12 to 41 of age to induce heat stress. The chickens in T1 and T2 had lower thyroid hormones and corticosterone levels than those in C, T3, and T4. The highest liver weight was for C and the lowest one was for T4. The highest gene expression was found in chickens fed T4 diet, and the lowest gene expression was for those in T2 group. The highest feed intake and worse feed conversion ratio was related to chickens in T2. The chickens in T3 and T4 had higher feed intake and weight gain than those in C. The results showed that the higher energy level supplied from soybean oil could enhance gene expression of HSP70 and decline the level of corticosterone and thyroid hormones and consequently improved performance.

  16. Fetal and Neonatal Iron Deficiency Exacerbates Mild Thyroid Hormone Insufficiency Effects on Male Thyroid Hormone Levels and Brain Thyroid Hormone-Responsive Gene Expression

    PubMed Central

    Bastian, Thomas W.; Prohaska, Joseph R.; Georgieff, Michael K.

    2014-01-01

    Fetal/neonatal iron (Fe) and iodine/TH deficiencies lead to similar brain developmental abnormalities and often coexist in developing countries. We recently demonstrated that fetal/neonatal Fe deficiency results in a mild neonatal thyroidal impairment, suggesting that TH insufficiency contributes to the neurodevelopmental abnormalities associated with Fe deficiency. We hypothesized that combining Fe deficiency with an additional mild thyroidal perturbation (6-propyl-2-thiouracil [PTU]) during development would more severely impair neonatal thyroidal status and brain TH-responsive gene expression than either deficiency alone. Early gestation pregnant rats were assigned to 7 different treatment groups: control, Fe deficient (FeD), mild TH deficient (1 ppm PTU), moderate TH deficient (3 ppm PTU), severe TH deficient (10 ppm PTU), FeD/1 ppm PTU, or FeD/3 ppm PTU. FeD or 1 ppm PTU treatment alone reduced postnatal day 15 serum total T4 concentrations by 64% and 74%, respectively, without significantly altering serum total T3 concentrations. Neither treatment alone significantly altered postnatal day 16 cortical or hippocampal T3 concentrations. FeD combined with 1 ppm PTU treatment produced a more severe effect, reducing serum total T4 by 95%, and lowering hippocampal and cortical T3 concentrations by 24% and 31%, respectively. Combined FeD/PTU had a more severe effect on brain TH-responsive gene expression than either treatment alone, significantly altering Pvalb, Dio2, Mbp, and Hairless hippocampal and/or cortical mRNA levels. FeD/PTU treatment more severely impacted cortical and hippocampal parvalbumin protein expression compared with either individual treatment. These data suggest that combining 2 mild thyroidal insults during development significantly disrupts thyroid function and impairs TH-regulated brain gene expression. PMID:24424046

  17. Plasmapheresis rapidly eliminates thyroid hormones from the circulation, but does not affect the speed of TSH recovery following prolonged suppression.

    PubMed

    Liel, Yair; Weksler, Natan

    2003-01-01

    To report an attempt to shorten the preparation interval before radioactive iodine administration using plasmapheresis in a 77-year-old woman with a history of papillary thyroid carcinoma with local recurrence and lung metastases, in whom the administration of a high dose of radioactive iodine was intended as a desperate rescue procedure. The patient was initially started on cholestyramine. Two days later, plasmapheresis was performed. Plasmapheresis rapidly decreased free tri-iodothyronine (FT(3)) and free thyroxine (FT(4)). Serum FT(4) subsequently remained low, while FT(3) recovered the next day. Thyroid-stimulating hormone (TSH) reached 25 mIU/l in 14 days, which is within the time frame required to reach the target TSH level by withdrawing levothyroxine alone. Plasmapheresis is very effective in eliminating thyroid hormones from the circulation. However, it does not seem to accelerate thyrotroph recovery to a considerable extent after prolonged suppression. Copyright 2003 S. Karger AG, Basel

  18. Over-the-Counter "Adrenal Support" Supplements Contain Thyroid and Steroid-Based Adrenal Hormones.

    PubMed

    Akturk, Halis Kaan; Chindris, Ana Maria; Hines, Jolaine M; Singh, Ravinder J; Bernet, Victor J

    2018-03-01

    To assess whether dietary supplements that are herbal and/or animal-derived products, marketed for enhancing metabolism or promoting energy, "adrenal fatigue," or "adrenal support," contain thyroid or steroid hormones. Twelve dietary adrenal support supplements were purchased. Pregnenolone, androstenedione, 17-hydroxyprogesterone, cortisol, cortisone, dehydroepiandrosterone sulfate, synthetic glucocorticoids (betamethasone, dexamethasone, fludrocortisone, megestrol acetate, methylprednisolone, prednisolone, prednisone, budesonide, and triamcinolone acetonide) levels were measured twice in samples in a blinded fashion. This study was conducted between February 1, 2016, and November 1, 2016. Among steroids, pregnenolone was the most common hormone in the samples. Budesonide, 17-hydroxyprogesterone, androstenedione, cortisol, and cortisone were the others in order of prevalence. All the supplements revealed a detectable amount of triiodothyronine (T3) (63-394.9 ng/tablet), 42% contained pregnenolone (66.12-205.2 ng/tablet), 25% contained budesonide (119.5-610 ng/tablet), 17% contained androstenedione (1.27-7.25 ng/tablet), 8% contained 17-OH progesterone (30.09 ng/tablet), 8% contained cortisone (79.66 ng/tablet), and 8% contained cortisol (138.5 ng/tablet). Per label recommended doses daily exposure was up to 1322 ng for T3, 1231.2 ng for pregnenolone, 1276.4 ng for budesonide, 29 ng for androstenedione, 60.18 ng for 17-OH progesterone, 277 ng for cortisol, and 159.32 ng for cortisone. All the supplements studied contained a small amount of thyroid hormone and most contained at least 1 steroid hormone. This is the first study that measured thyroid and steroid hormones in over-the-counter dietary "adrenal support" supplements in the United States. These results may highlight potential risks of hidden ingredients in unregulated supplements. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  19. Thyroid stimulation with recombinant human thyrotropin in healthy cats, cats with non-thyroidal illness and in cats with low serum thyroxin and azotaemia after treatment of hyperthyroidism.

    PubMed

    van Hoek, Ingrid M; Vandermeulen, Eva; Peremans, Kathelijne; Daminet, Sylvie

    2010-02-01

    This study investigated the recombinant human thyrotropin (rhTSH) stimulation test in healthy cats (group 1), cats with non-thyroidal illness (group 2) and cats with low serum total T(4) (TT(4)) and azotaemia after (131)I treatment (group 3). Serum TT(4) responses and thyroidal pertechnetate uptake after administration of 25 microg rhTSH IV were assessed. Baseline serum TT(4) was significantly lower in group 3 compared with group 1, but not between other group pairs. Serum TT(4) increased significantly in groups 1 and 2 but not in group 3 after rhTSH administration. Post-rhTSH serum TT(4) concentrations differed significantly between groups 1 and 3 and groups 2 and 3, but not between groups 1 and 2. Thyroid/salivary gland uptake ratio (T/S uptake ratio) differed only significantly between groups 1 and 3. Stimulation with rhTSH is valuable to differentiate euthyroidism from iatrogenic hypothyroidism in cats. Copyright 2009 ESFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  20. Clinical challenges in thyroid disease: Time for a new approach?

    PubMed

    Juby, A G; Hanly, M G; Lukaczer, D

    2016-05-01

    Thyroid disease is common, and the prevalence is rising. Traditional diagnosis and monitoring relies on thyroid stimulating hormone (TSH) levels. This does not always result in symptomatic improvement in hypothyroid symptoms, to the disappointment of both patients and physicians. A non-traditional therapeutic approach would include evaluation of GI function as well as a dietary history and micronutrient evaluation. This approach also includes assessment of thyroid peroxidase (TPO) antibodies, T3, T4, and reverse T3 levels, and in some cases may require specific T3 supplementation in addition to standard T4 therapy. Both high and low TSH levels on treatment are associated with particular medical risks. In the case of high TSH this is primarily cardiac, whereas for low TSH it is predominantly bone health. This article discusses these important clinical issues in more detail, with some practical tips especially for an approach to the "non-responders" to the current traditional therapeutic approach. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. IODIDE DEFICIENCY, THYROID HORMONES, AND NEURODEVELOPMENT

    EPA Science Inventory

    ABSTRACT BODY: Iodide is an essential nutrient for thyroid hormone synthesis. Severe iodide insufficiency during early development is associated with cognitive deficits. Environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under conditio...

  2. Role of maternal thyroid hormones in the developing neocortex and during human evolution

    PubMed Central

    Stenzel, Denise; Huttner, Wieland B.

    2013-01-01

    The importance of thyroid hormones during brain development has been appreciated for many decades. In humans, low levels of circulating maternal thyroid hormones, e.g., caused by maternal hypothyroidism or lack of iodine in diet, results in a wide spectrum of severe neurological defects, including neurological cretinism characterized by profound neurologic impairment and mental retardation, underlining the importance of the maternal thyroid hormone contribution. In fact, iodine intake, which is essential for thyroid hormone production in the thyroid gland, has been related to the expansion of the brain, associated with the increased cognitive capacities during human evolution. Because thyroid hormones regulate transcriptional activity of target genes via their nuclear thyroid hormone receptors (THRs), even mild and transient changes in maternal thyroid hormone levels can directly affect and alter the gene expression profile, and thus disturb fetal brain development. Here we summarize how thyroid hormones may have influenced human brain evolution through the adaptation to new habitats, concomitant with changes in diet and, therefore, iodine intake. Further, we review the current picture we gained from experimental studies in rodents on the function of maternal thyroid hormones during developmental neurogenesis. We aim to evaluate the effects of maternal thyroid hormone deficiency as well as lack of THRs and transporters on brain development and function, shedding light on the cellular behavior conducted by thyroid hormones. PMID:23882187

  3. Effects on development, growth responses and thyroid-hormone systems in eyed-eggs and yolk-sac larvae of Atlantic salmon (Salmo salar) continuously exposed to 3,3',4,4'-tetrachlorobiphenyl (PCB-77).

    PubMed

    Arukwe, Augustine; Olufsen, Marianne; Cicero, Nicola; Hansen, Marianne D

    2014-01-01

    Thyroid hormones (triiodothyronine, T3; and thyroxine, T4) play significant roles in development, metamorphosis, metabolism, homeostasis, cellular proliferation, and differentiation, for which the effects are mediated through thyroid hormone receptors (TRα and TRβ). Similarly, the insulin-like growth factor (IGF) is involved in growth and development through regulation of somatic growth. This study was designed to examine the effects of the dioxin-like 3,3',4,4'-tetrachlorobiphenyl (PCB-77) on responses related to growth and thyroid hormone system in eyed eggs and yolk-sac larvae of Atlantic salmon. Salmon eggs were continuously exposed to two waterborne concentrations of PCB-77 (1 or 10 ng/L) over a period of 50 d covering hatching and through yolk-sac absorption stages. Sampling was performed regularly throughout the exposure period and at different time intervals. Gene expression patterns were performed on whole-body homogenate at age 500, 548, 632, 674, and 716 dd (dd: day degrees) using quantitative polymerase chain reaction (PCR). Total T3 (TT3) and total T4 (TT4) were measured using radioimmunoassay (RIA). Data showed that 10 ng PCB-77 increased dioiodinase 2 (Dio2) at 500 dd and both PCB-77 concentrations decreased dio2 expression at 548 dd. PCB-77 elevated cellular TT3 at 500 dd and was lowered at 548 dd only at 10 ng. Otherwise, time-related reduction was not affected by PCB-77 exposure as observed for the rest of the exposure period. For TT4, 1 ng PCB-77 produced a rise at 500 dd, and an apparent concentration decrease at 548 dd, before a total inhibition at 632 dd. The IGF-1 and IGF-1R were variably affected by PCB-77. For IGF-2, PCB-77 produced a concentration-dependent increase at 548 dd, and thereafter an elevation (1 ng) and fall (10 ng) at 632 dd. TRβ mRNA demonstrated PCB-77 related increases during the exposure period, and this effect returned to control levels at 716 dd. For TRα, a rise was noted only after exposure to 10 ng PCB-77 at 500 dd

  4. The interrelationships of thyroid and growth hormones: effect of growth hormone releasing hormone in hypo- and hyperthyroid male rats.

    PubMed

    Root, A W; Shulman, D; Root, J; Diamond, F

    1986-01-01

    Growth hormone (GH) and the thyroid hormones interact in the hypothalamus, pituitary and peripheral tissues. Thyroid hormone exerts a permissive effect upon the anabolic and metabolic effects of GH, and increases pituitary synthesis of this protein hormone. GH depresses the secretion of thyrotropin and the thyroid hormones and increases the peripheral conversion of thyroxine to triiodothyronine. In the adult male rat experimental hypothyroidism produced by ingestion of propylthiouracil depresses the GH secretory response to GH-releasing hormone in vivo and in vitro, reflecting the lowered pituitary stores of GH in the hypothyroid state. Short term administration of large amounts of thyroxine with induction of the hyperthyroid state does not affect the in vivo GH secretory response to GH-releasing hormone in this animal.

  5. Maternal urinary bisphenol a during pregnancy and maternal and neonatal thyroid function in the CHAMACOS study.

    PubMed

    Chevrier, Jonathan; Gunier, Robert B; Bradman, Asa; Holland, Nina T; Calafat, Antonia M; Eskenazi, Brenda; Harley, Kim G

    2013-01-01

    Bisphenol A (BPA) is widely used in the manufacture of polycarbonate plastic bottles, food and beverage can linings, thermal receipts, and dental sealants. Animal and human studies suggest that BPA may disrupt thyroid function. Although thyroid hormones play a determinant role in human growth and brain development, no studies have investigated relations between BPA exposure and thyroid function in pregnant women or neonates. Our goal was to evaluate whether exposure to BPA during pregnancy is related to thyroid hormone levels in pregnant women and neonates. We measured BPA concentration in urine samples collected during the first and second half of pregnancy in 476 women participating in the CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas) study. We also measured free thyroxine (T4), total T4, and thyroid-stimulating hormone (TSH) in women during pregnancy, and TSH in neonates. Associations between the average of the two BPA measurements and maternal thyroid hormone levels were not statistically significant. Of the two BPA measurements, only the one taken closest in time to the TH measurement was significantly associated with a reduction in total T4 (β = -0.13 µg/dL per log2 unit; 95% CI: -0.25, 0.00). The average of the maternal BPA concentrations was associated with reduced TSH in boys (-9.9% per log2 unit; 95% CI: -15.9%, -3.5%) but not in girls. Among boys, the relation was stronger when BPA was measured in the third trimester of pregnancy and decreased with time between BPA and TH measurements. Results suggest that exposure to BPA during pregnancy is related to reduced total T4 in pregnant women and decreased TSH in male neonates. Findings may have implications for fetal and neonatal development.

  6. A Selective TSH Receptor Antagonist Inhibits Stimulation of Thyroid Function in Female Mice

    PubMed Central

    Neumann, Susanne; Nir, Eshel A.; Eliseeva, Elena; Huang, Wenwei; Marugan, Juan; Xiao, Jingbo; Dulcey, Andrés E.

    2014-01-01

    Because the TSH receptor (TSHR) plays an important role in the pathogenesis of thyroid disease, a TSHR antagonist could be a novel treatment. We attempted to develop a small molecule, drug-like antagonist of TSHR signaling that is selective and active in vivo. We synthesized NCGC00242364 (ANTAG3) by chemical modification of a previously reported TSHR antagonist. We tested its potency, efficacy, and selectivity in a model cell system in vitro by measuring its activity to inhibit stimulation of cAMP production stimulated by TSH, LH, or FSH. We tested the in vivo activity of ANTAG3 by measuring its effects to lower serum free T4 and thyroid gene expression in female BALB/c mice continuously treated with ANTAG3 for 3 days and given low doses of TRH continuously or stimulated by a single administration of a monoclonal thyroid-stimulating antibody M22. ANTAG3 was selective for TSHR inhibition; half-maximal inhibitory doses were 2.1 μM for TSHR and greater than 30 μM for LH and FSH receptors. In mice treated with TRH, ANTAG3 lowered serum free T4 by 44% and lowered mRNAs for sodium-iodide cotransporter and thyroperoxidase by 75% and 83%, respectively. In mice given M22, ANTAG3 lowered serum free T4 by 38% and lowered mRNAs for sodium-iodide cotransporter and thyroperoxidase by 73% and 40%, respectively. In conclusion, we developed a selective TSHR antagonist that is effective in vivo in mice. This is the first report of a small-molecule TSHR antagonist active in vivo and may lead to a drug to treat Graves' disease. PMID:24169564

  7. A selective TSH receptor antagonist inhibits stimulation of thyroid function in female mice.

    PubMed

    Neumann, Susanne; Nir, Eshel A; Eliseeva, Elena; Huang, Wenwei; Marugan, Juan; Xiao, Jingbo; Dulcey, Andrés E; Gershengorn, Marvin C

    2014-01-01

    Because the TSH receptor (TSHR) plays an important role in the pathogenesis of thyroid disease, a TSHR antagonist could be a novel treatment. We attempted to develop a small molecule, drug-like antagonist of TSHR signaling that is selective and active in vivo. We synthesized NCGC00242364 (ANTAG3) by chemical modification of a previously reported TSHR antagonist. We tested its potency, efficacy, and selectivity in a model cell system in vitro by measuring its activity to inhibit stimulation of cAMP production stimulated by TSH, LH, or FSH. We tested the in vivo activity of ANTAG3 by measuring its effects to lower serum free T4 and thyroid gene expression in female BALB/c mice continuously treated with ANTAG3 for 3 days and given low doses of TRH continuously or stimulated by a single administration of a monoclonal thyroid-stimulating antibody M22. ANTAG3 was selective for TSHR inhibition; half-maximal inhibitory doses were 2.1 μM for TSHR and greater than 30 μM for LH and FSH receptors. In mice treated with TRH, ANTAG3 lowered serum free T4 by 44% and lowered mRNAs for sodium-iodide cotransporter and thyroperoxidase by 75% and 83%, respectively. In mice given M22, ANTAG3 lowered serum free T4 by 38% and lowered mRNAs for sodium-iodide cotransporter and thyroperoxidase by 73% and 40%, respectively. In conclusion, we developed a selective TSHR antagonist that is effective in vivo in mice. This is the first report of a small-molecule TSHR antagonist active in vivo and may lead to a drug to treat Graves' disease.

  8. The effects of subchronic acrylamide exposure on gene expression, neurochemistry, hormones, and histopathology in the hypothalamus-pituitary-thyroid axis of male Fischer 344 rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowyer, J.F.; Latendresse, J.R.; Delongchamp, R.R.

    Acrylamide (AA) is an important industrial chemical that is neurotoxic in rodents and humans and carcinogenic in rodents. The observation of cancer in endocrine-responsive tissues in Fischer 344 rats has prompted hypotheses of hormonal dysregulation, as opposed to DNA damage, as the mechanism for tumor induction by AA. The current investigation examines possible evidence for disruption of the hypothalamic-pituitary-thyroid axis from 14 days of repeated exposure of male Fischer 344 rats to doses of AA that range from one that is carcinogenic after lifetime exposure (2.5 mg/kg/d), an intermediate dose (10 mg/kg/d), and a high dose (50 mg/kg/d) that ismore » neurotoxic for this exposure time. The endpoints selected include: serum levels of thyroid and pituitary hormones; target tissue expression of genes involved in hormone synthesis, release, and receptors; neurotransmitters in the CNS that affect hormone homeostasis; and histopathological evaluation of target tissues. These studies showed virtually no evidence for systematic alteration of the hypothalamic-pituitary-thyroid axis and do not support hormone dysregulation as a plausible mechanism for AA-induced thyroid cancer in the Fischer 344 rat. Specifically, there were no significant changes in: 1) mRNA levels in hypothalamus or pituitary for TRH, TSH, thyroid hormone receptor {alpha} and {beta}, as well 10 other hormones or releasing factors; 2) mRNA levels in thyroid for thyroglobulin, thyroid peroxidase, sodium iodide symporter, or type I deiodinases; 3) serum TSH or T3 levels (T4 was decreased at high dose only); 4) dopaminergic tone in the hypothalamus and pituitary or importantly 5) increased cell proliferation (Mki67 mRNA and Ki-67 protein levels were not increased) in thyroid or pituitary. These negative findings are consistent with a genotoxic mechanism of AA carcinogenicity based on metabolism to glycidamide and DNA adduct formation. Clarification of this mechanistic dichotomy may be useful in human

  9. The role of thyroid hormone in trophoblast function, early pregnancy maintenance, and fetal neurodevelopment.

    PubMed

    Ohara, Noriyuki; Tsujino, Taro; Maruo, Takeshi

    2004-11-01

    To review the literature on the roles of thyroid hormone in trophoblast function, early pregnancy maintenance, and fetal neurodevelopment. MEDLINE was searched for English-language papers published from 1971 to 2003, using the key words "brain," "hypothyroidism," "placenta," "pregnancy," "threatened abortion," "thyroid hormone," "thyroid hormone receptor," "thyroid hormone replacement therapy," "thyroid hormone-responsive gene," and "trophoblast." Transplacental transfer of thyroid hormone occurs before the onset of fetal thyroid hormone secretion. Thyroid hormone receptors and iodothyronine deiodinases are present in the placenta and the fetal central nervous system early in pregnancy, and thyroid hormone plays a crucial role both in trophoblast function and fetal neurodevelopment. Maternal hypothyroxinemia is associated with a high rate of spontaneous abortion and long-term neuropsychological deficits in children born of hypothyroid mothers. Maternal iodine deficiency also causes a wide spectrum of neuropsychological disorders in children, ranging from subclinical deficits in cognitive motor and auditory functions to hypothyroid-induced cognitive impairment in infants. However, these conditions are preventable when iodine supplementation is initiated before the second trimester. Although thyroid hormone replacement therapy is effective for reducing the adverse effects complicated by maternal hypothyroidism, the appropriate dose of thyroid hormone is mandatory in protecting the early stage of pregnancy. Close monitoring of maternal thyroid hormone status and ensuring adequate maternal thyroid hormone levels in early pregnancy are of great importance to prevent miscarriage and neuropsychological deficits in infants.

  10. Thyroid hormone therapy in the management of 63,593 brain-dead organ donors: a retrospective analysis.

    PubMed

    Novitzky, Dimitri; Mi, Zhibao; Sun, Qing; Collins, Joseph F; Cooper, David K C

    2014-11-27

    Hormonal therapy to the brain-dead potential organ donor can include thyroid hormone (triiodothyronine [T3] or levothyroxine [T4]), corticosteroids, antidiuretic hormone, and insulin. Data on 66,629 donors (2000-2009) were retrospectively reviewed. Documentation on T3/T4 was available in 63,593 (study 1), but 23,469 had incomplete documentation of other hormones. In 40,124, details of all four hormones were recorded (study 2). In this cohort, group A (received T3/T4) consisted of 23,022, and group B (no T3/T4) consisted of 17,102 donors. A multivariate analysis was performed to determine whether age, sex, ethnicity, cause of death, body mass index, Organ Procurement Organization region, or other hormonal therapy influenced procurement. Posttransplantation organ graft survival at 1 and 12 months was compared. In study 1, 30,962 (48.69%) received T3/T4, providing a mean of 3.35 organs per donor, and 32,631 (51.31%) did not receive T3/T4, providing a mean of 2.97 organs per donor, an increase of 12.8% of organs from T3/T4-treated donors (P<0.0001). In study 2, group A provided a mean of 3.31 organs per donor and group B provided a mean of 2.87 organs per donor, an increase of 15.3% in group A (P<0.0001). T3/T4 therapy was associated with procurement of significantly greater numbers of hearts, lungs, kidneys, pancreases, and intestines, but not livers. Multivariate analysis indicated a beneficial effect of T3/T4 independent of other factors (P<0.0001). T3/T4 therapy of the donor was associated with improved posttransplantation graft survival or no difference in survival, except for pancreas recipient (but not graft) survival at 12 months in study 2. T3/T4 therapy results in more transplantable organs, with no detriment to posttransplantation graft survival.

  11. The Thr92Ala 5′ Type 2 Deiodinase Gene Polymorphism Is Associated with a Delayed Triiodothyronine Secretion in Response to the Thyrotropin-Releasing Hormone–Stimulation Test: A Pharmacogenomic Study

    PubMed Central

    Butler, Peter W.; Smith, Sheila M.; Linderman, Joyce D.; Brychta, Robert J.; Alberobello, Anna Teresa; Dubaz, Ornella M.; Luzon, Javier A.; Skarulis, Monica C.; Cochran, Craig S.; Wesley, Robert A.; Pucino, Frank

    2010-01-01

    Background The common Thr92Ala D2 polymorphism has been associated with changes in pituitary–thyroid axis homeostasis, but published results are conflicting. To investigate the effects of the Thr92Ala polymorphism on intrathyroidal thyroxine (T4) to triiodothyronine (T3) conversion, we designed prospective pharmacogenomic intervention aimed to detect differences in T3 levels after thyrotropin (TSH)-releasing hormone (TRH)–mediated TSH stimulation of the thyroid gland. Methods Eighty-three healthy volunteers were screened and genotyped for the Thr92Ala polymorphism. Fifteen volunteers of each genotype (Thr/Thr, Thr/Ala, and Ala/Ala) underwent a 500 mcg intravenous TRH stimulation test with serial measurements of serum total T3 (TT3), free T4, and TSH over 180 minutes. Results No differences in baseline thyroid hormone levels were seen among the study groups. Compared to the Thr/Thr group, the Ala/Ala group showed a significantly lower TRH-stimulated increase in serum TT3 at 60 minutes (12.07 ± 2.67 vs. 21.07 ± 2.86 ng/dL, p = 0.029). Thr/Ala subjects showed an intermediate response. Compared to Thr/Thr subjects, the Ala/Ala group showed a blunted rate of rise in serum TT3 as measured by mean time to 50% maximum delta serum TT3 (88.42 ± 6.84 vs. 69.56 ± 6.06 minutes, p = 0.028). Subjects attained similar maximal (180 minutes) TRH-stimulated TT3 levels. TRH-stimulated TSH and free T4 levels were not significantly different among the three genotype groups. Conclusions The commonly occurring Thr92Ala D2 variant is associated with a decreased rate of acute TSH-stimulated T3 release from the thyroid consistent with a decrease in intrathyroidal deiodination. These data provide a proof of concept that the Thr92Ala polymorphism is associated with subtle changes in thyroid hormone homeostasis. PMID:21054208

  12. Disguised Thyroid Disorders

    PubMed Central

    Tsao, John M.; Catz, Boris

    1965-01-01

    In six cases of hyperthyroidism and two of chronic thyroiditis herein described, the initial features of the diseases were misinterpreted as attributable to other kinds of illness such as myocardial infarction, gastrointestinal malignant disease, malabsorption syndrome, psychosis, simple exophthalmos and endemic goiter. The characteristic signs and symptoms of hyperthyroidism (in six patients) and chronic thyroiditis (in two patients) were present at the outset but were not identified. Intensive questioning and alertness were required to elicit these characteristics. The symptoms improved or disappeared after the true disease was controlled. In the studies of these cases, the usefulness of a number of laboratory tests was illustrated—thyroid suppression studies, 4 to 6-hour and 24-hour radioactive iodine uptake, T3 uptake by the red cells and determinations of 24-hour urine creatine, antithyroglobulin antibody titer and long-acting thyroid stimulating hormone. The manifestations of thyroid diseases are many and varied. The term “masked hyperthyroidism” may in part be a reflection of the “masked physician” unless he uses his clinical detective abilities. PMID:14347981

  13. [The influence of hypothyroidism on the conversion and binding of thyroid hormones in patients with end-stage renal disease].

    PubMed

    Dubczak, Iwanna; Niemczyk, Longin; Bartoszewicz, Zbigniew; Szamotulska, Katarzyna; Saracyn, Marek; Niemczyk, Stanisław

    2017-03-21

    Hypothyroidism in patients with renal failure (RF) causes many metabolic and clinical problems, and both these diseases can mutually exacerbate their disturbances. The aim of this study was to evaluate the effect of hypothyroidism, and end-stage renal disease (ESRD) on conversion of thyroid hormones (TH) in patients with ESRD treated with chronic hemodialysis (HD). The study was performed in 74 patients, including 41 women (K) and 33 men (M) aged 28-83 y.o. in 4 groups: G1 - 12 people with ESRD treated with HD and with newly diagnosed hypothyroidism without substitution (6 K and M 6) aged 66,83±12,90 y.o., G2 - 26 patients with ESRD treated with HD without hypothyroidism (10 F, 16 M) aged 58,85±15,52 y.o., G3 - 11 hypothyroid patients without RF (9 K, 2 M) aged 54,73±21,26 y.o., G4 - 25-persons from control group of healthy subjects (16 M, 9 M) aged 51,24±12,58 y.o. In all subjects the concentration of TSH and TH (T4, T3, fT4, TSH, FT3, rT3) were measured and values of conversion factors (T3/T4, FT3/ fT4, rT3/fT4 and rT3/fT3) and binding TH to protein factors (fT4/T4 and fT3/T3) were calculated. Lower concentration of T3 (p=0.012), fT3 (p<0.001) i fT4 (p=0.014) was found in patients without hypothyroidism than in healthy subjects. Renal failure with concomitant hypothyroidism intensify the disturbances of T4 to T3 conversion (p=0.034) and hypothyroidism with concomitant renal failure disrupts binding of T3 to proteins (p=0.001). FT3 to fT4 ratio in renal failure with concomitant hypothyroidism group was significantly lower than in each other group. rT3 concentrations were the highest in healthy subjects. Concomitance of hypothyroidism and end-stage renal disease reduces the conversion of thyroxine to triiodothyronine, but does not increase the production of rT3. Hypothyroidism significantly increases the disorders of thyroid hormones in end-stage renal disease. There is decreased tendency to bind of thyroid hormone to protein in hypothyroidism in patients with

  14. Study protocol; Thyroid hormone Replacement for Untreated older adults with Subclinical hypothyroidism - a randomised placebo controlled Trial (TRUST).

    PubMed

    Stott, David J; Gussekloo, Jacobijn; Kearney, Patricia M; Rodondi, Nicolas; Westendorp, Rudi G J; Mooijaart, Simon; Kean, Sharon; Quinn, Terence J; Sattar, Naveed; Hendry, Kirsty; Du Puy, Robert; Den Elzen, Wendy P J; Poortvliet, Rosalinde K E; Smit, Jan W A; Jukema, J Wouter; Dekkers, Olaf M; Blum, Manuel; Collet, Tinh-Hai; McCarthy, Vera; Hurley, Caroline; Byrne, Stephen; Browne, John; Watt, Torquil; Bauer, Douglas; Ford, Ian

    2017-02-03

    Subclinical hypothyroidism (SCH) is a common condition in elderly people, defined as elevated serum thyroid-stimulating hormone (TSH) with normal circulating free thyroxine (fT4). Evidence is lacking about the effect of thyroid hormone treatment. We describe the protocol of a large randomised controlled trial (RCT) of Levothyroxine treatment for SCH. Participants are community-dwelling subjects aged ≥65 years with SCH, diagnosed by elevated TSH levels (≥4.6 and ≤19.9 mU/L) on a minimum of two measures ≥ three months apart, with fT4 levels within laboratory reference range. The study is a randomised double-blind placebo-controlled parallel group trial, starting with levothyroxine 50 micrograms daily (25 micrograms in subjects <50Kg body weight or known coronary heart disease) with titration of dose in the active treatment group according to TSH level, and a mock titration in the placebo group. The primary outcomes are changes in two domains (hypothyroid symptoms and fatigue / vitality) on the thyroid-related quality of life questionnaire (ThyPRO) at one year. The study has 80% power (at p = 0.025, 2-tailed) to detect a change with levothyroxine treatment of 3.0% on the hypothyroid scale and 4.1% on the fatigue / vitality scale with a total target sample size of 750 patients. Secondary outcomes include general health-related quality of life (EuroQol), fatal and non-fatal cardiovascular events, handgrip strength, executive cognitive function (Letter Digit Coding Test), basic and instrumental activities of daily living, haemoglobin, blood pressure, weight, body mass index and waist circumference. Patients are monitored for specific adverse events of interest including incident atrial fibrillation, heart failure and bone fracture. This large multicentre RCT of levothyroxine treatment of subclinical hypothyroidism is powered to detect clinically relevant change in symptoms / quality of life and is likely to be highly influential in guiding treatment of

  15. Physiologic implications of inter-hormonal interference in fish: lessons from the interaction of adrenaline with cortisol and thyroid hormones in climbing perch (Anabas testudineus Bloch).

    PubMed

    George, Nimta; Peter, Valsa S; Peter, M C Subhash

    2013-01-15

    Adrenaline and cortisol, the major stress hormones, are known for its direct control on stress response in fish. Likewise, as an important stress modifier hormone, thyroid hormone has also been implicated in stress response of fish. We tested whether the hypothesis on the phenomenon of inter-hormonal interference, a process that explains the hormonal interactions, operates in fish particularly between adrenaline, cortisol and thyroid hormones. To achieve this goal, indices of acid-base, osmotic and metabolic regulations were quantified after adrenaline challenge in propranolol pre-treated air-breathing fish (Anabas testudineus). Short-term adrenaline (10 ng g(-1)) injection for 30 min produced a rise in plasma cortisol without affecting plasma T(3) and T(4). On the contrary, blocking of adrenaline action with a non-selective blocker, propranolol (25 ng g(-1)) for 90 min reduced plasma cortisol along with plasma T(4) and that indicate a possible interference of these hormones in the absence of adrenaline challenge. Similarly, a reduction in plasma T(3) was found after adrenaline challenge in propranolol pre-treated fish and that suggests a functional synergistic interference of adrenaline with T(3). Adrenaline challenge in these fish, however, failed to abolish this propranolol effect. The remarkable systemic hypercapnia and acidosis by propranolol pre-treatment were reversed by adrenaline challenge, pointing to a direct action of adrenaline on acid-base indices probably by a mechanism which may not require β-adrenergic receptor systems. Interestingly, the prominent adrenaline-induced hyperglycemia, hyperlactemia and hyperuremea were not altered by propranolol treatment. Similarly, adrenaline challenge promoted and propranolol reduced the osmotic competencies of the gills, kidneys and liver of this fish as evident in the sodium and proton pump activities. The modified physiologic actions of adrenaline and its modified interaction with THs and cortisol in blocked

  16. Mathematical Modeling of the Pituitary–Thyroid Feedback Loop: Role of a TSH-T3-Shunt and Sensitivity Analysis

    PubMed Central

    Berberich, Julian; Dietrich, Johannes W.; Hoermann, Rudolf; Müller, Matthias A.

    2018-01-01

    Despite significant progress in assay technology, diagnosis of functional thyroid disorders may still be a challenge, as illustrated by the vague upper limit of the reference range for serum thyrotropin (TSH). Diagnostical problems also apply to subjects affected by syndrome T, i.e., those 10% of hypothyroid patients who continue to suffer from poor quality of life despite normal TSH concentrations under substitution therapy with levothyroxine (L-T4). In this paper, we extend a mathematical model of the pituitary–thyroid feedback loop in order to improve the understanding of thyroid hormone homeostasis. In particular, we incorporate a TSH-T3-shunt inside the thyroid, whose existence has recently been demonstrated in several clinical studies. The resulting extended model shows good accordance with various clinical observations, such as a circadian rhythm in free peripheral triiodothyronine (FT3). Furthermore, we perform a sensitivity analysis of the derived model, revealing the dependence of TSH and hormone concentrations on different system parameters. The results have implications for clinical interpretation of thyroid tests, e.g., in the differential diagnosis of subclinical hypothyroidism. PMID:29619006

  17. Mathematical Modeling of the Pituitary-Thyroid Feedback Loop: Role of a TSH-T3-Shunt and Sensitivity Analysis.

    PubMed

    Berberich, Julian; Dietrich, Johannes W; Hoermann, Rudolf; Müller, Matthias A

    2018-01-01

    Despite significant progress in assay technology, diagnosis of functional thyroid disorders may still be a challenge, as illustrated by the vague upper limit of the reference range for serum thyrotropin ( TSH ). Diagnostical problems also apply to subjects affected by syndrome T, i.e., those 10% of hypothyroid patients who continue to suffer from poor quality of life despite normal TSH concentrations under substitution therapy with levothyroxine ( L - T 4 ). In this paper, we extend a mathematical model of the pituitary-thyroid feedback loop in order to improve the understanding of thyroid hormone homeostasis. In particular, we incorporate a TSH - T 3 -shunt inside the thyroid, whose existence has recently been demonstrated in several clinical studies. The resulting extended model shows good accordance with various clinical observations, such as a circadian rhythm in free peripheral triiodothyronine ( FT 3 ). Furthermore, we perform a sensitivity analysis of the derived model, revealing the dependence of TSH and hormone concentrations on different system parameters. The results have implications for clinical interpretation of thyroid tests, e.g., in the differential diagnosis of subclinical hypothyroidism.

  18. THYROID HORMONE RECEPTOR BETA GENE MUTATION (P453A) IN A TURKISH FAMILY PRODUCING RESISTANCE TO THYROID HORMONE

    PubMed Central

    Bayraktaroglu, Taner; Noel, Janet; Mukaddes, Nahit Motavalli; Refetoff, Samuel

    2018-01-01

    Two members of a Turkish family, a mother and son, had thyroid function tests suggestive of resistance to thyroid hormone (RTH). The clinical presentation was, however, different. The mother (proposita) had palpitation, weakness, tiredness, nervousness, dry mouth and was misdiagnosed as having multinodular toxic goiter which was treated with antithyroid drugs and partial thyroidectomy. Her younger son had attention deficit hyperactivity disorder and primary encopresis, but normal intellectual quotient. Both had elevated serum iodothyronine levels with nonsuppressed thyrotropin. A mutation in one allele of the thyroid hormone receptor beta gene (P453A) was identified, providing a genetic confirmation for the diagnosis of RTH. PMID:18561095

  19. PCBs Alter Dopamine Mediated Function in Aging Workers

    DTIC Science & Technology

    2007-01-01

    Thyroid Hormone Function Analysis of serum samples collected for thyroid hormone function (T3, T4, free T3, free T4, and TSH levels) has been conducted by...Thyroid Hormone Measure Mean sem Mean sem TSH 2.06 0.13 2.55 0.36 T4 7.94 0.18 8.72 0.22 Free T4 1.23 0.02 1.22 0.03 T3 133 3.05 122 2.74...FreeT3 5.31 0.08 4.56 0.08 TSH = Thyroid Stimulating Hormone T4 = Thyroxine T3 = 3,5,3-Triidothyronine Investigators Meetings and

  20. Circulating thyroid hormones and associated metabolites in white whales (Delphinapterus leucas) determined using isotope-dilution mass spectrometry.

    PubMed

    Hansen, Martin; Villanger, Gro D; Bechshoft, Thea; Levin, Milton; Routti, Heli; Kovacs, Kit M; Lydersen, Christian

    2017-07-01

    Blood was sampled from nine free-ranging white whales (beluga whale, Delphinapterus leucas) from Svalbard, Norway during the summers of 2013 and 2014. Total concentrations of eleven thyroid hormones and metabolites were measured in serum using a novel liquid chromatography tandem mass spectrometry analytical method. Measurements of these compounds in plasma gave the same results as in serum. The three hormones found in highest concentrations were 3,3',5-triiodothyronine (T 3 ), 3,3',5'-triiodothyronine (rT 3 ) and thyroxine (T 4 ). Traces of associated metabolites were also found. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Maternal exposure to UV filters: associations with maternal thyroid hormones, IGF-I/IGFBP3 and birth outcomes.

    PubMed

    Krause, M; Frederiksen, H; Sundberg, K; Jørgensen, F S; Jensen, L N; Nørgaard, P; Jørgensen, C; Ertberg, P; Petersen, J H; Feldt-Rasmussen, U; Juul, A; Drzewiecki, K T; Skakkebaek, N E; Andersson, A M

    2018-02-01

    Several chemical UV filters/absorbers ('UV filters' hereafter) have endocrine-disrupting properties in vitro and in vivo . Exposure to these chemicals, especially during prenatal development, is of concern. To examine maternal exposure to UV filters, associations with maternal thyroid hormone, with growth factor concentrations as well as to birth outcomes. Prospective study of 183 pregnant women with 2nd trimester serum and urine samples available. Maternal concentrations of the chemical UV filters benzophenone-1 (BP-1) and benzophenone-3 (BP-3) in urine and 4-hydroxy-benzophenone (4-HBP) in serum were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The relationships between 2nd trimester maternal concentrations of the three chemical UV filters and maternal serum concentrations of thyroid hormones and growth factors, as well as birth outcomes (weight, height, and head and abdominal circumferences) were examined. Positive associations between maternal serum concentrations of 4-HBP and triiodothyronine (T 3 ), thyroxine (T 4 ), insulin-like growth factor I (IGF-I) and its binding protein IGFBP3 were observed in mothers carrying male fetuses. Male infants of mothers in the middle 4-HBP exposure group had statistically significantly lower weight and shorter head and abdominal circumferences at birth compared to the low exposure group. Widespread exposure of pregnant women to chemical UV filters and the possible impact on maternal thyroid hormones and growth factors, and on fetal growth, calls for further studies on possible long-term consequences of the exposure to UV filters on fetal development and children's health. © 2018 The authors.

  2. Thyroid endocrine system disruption by pentachlorophenol: an in vitro and in vivo assay.

    PubMed

    Guo, Yongyong; Zhou, Bingsheng

    2013-10-15

    The present study aimed to evaluate the disruption caused to the thyroid endocrine system by pentachlorophenol (PCP) using in vitro and in vivo assays. In the in vitro assay, rat pituitary GH3 cells were exposed to 0, 0.1, 0.3, and 1.0 μM PCP. PCP exposure significantly downregulated basal and triiodothyronine (T3)-induced Dio 1 transcription, indicating the antagonistic activity of PCP in vitro. In the in vivo assay, zebrafish embryos were exposed to 0, 1, 3, and 10 μg/L of PCP until 14 days post-fertilization. PCP exposure resulted in decreased thyroxine (T4) levels, but elevated contents of whole-body T3. PCP exposure significantly upregulated the mRNA expression of genes along hypothalamic-pituitary-thyroid (HPT) axis, including those encoding thyroid-stimulating hormone, sodium/iodide symporter, thyroglobulin, Dio 1 and Dio 2, alpha and beta thyroid hormone receptor, and uridinediphosphate-glucuronosyl-transferase. PCP exposure did not influence the transcription of the transthyretin (TTR) gene. The results indicate that PCP potentially disrupts the thyroid endocrine system both in vitro and in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. American Thyroid Association Guide to Investigating Thyroid Hormone Economy and Action in Rodent and Cell Models

    PubMed Central

    Anderson, Grant; Forrest, Douglas; Galton, Valerie Anne; Gereben, Balázs; Kim, Brian W.; Kopp, Peter A.; Liao, Xiao Hui; Obregon, Maria Jesus; Peeters, Robin P.; Refetoff, Samuel; Sharlin, David S.; Simonides, Warner S.; Weiss, Roy E.; Williams, Graham R.

    2014-01-01

    Background: An in-depth understanding of the fundamental principles that regulate thyroid hormone homeostasis is critical for the development of new diagnostic and treatment approaches for patients with thyroid disease. Summary: Important clinical practices in use today for the treatment of patients with hypothyroidism, hyperthyroidism, or thyroid cancer are the result of laboratory discoveries made by scientists investigating the most basic aspects of thyroid structure and molecular biology. In this document, a panel of experts commissioned by the American Thyroid Association makes a series of recommendations related to the study of thyroid hormone economy and action. These recommendations are intended to promote standardization of study design, which should in turn increase the comparability and reproducibility of experimental findings. Conclusions: It is expected that adherence to these recommendations by investigators in the field will facilitate progress towards a better understanding of the thyroid gland and thyroid hormone dependent processes. PMID:24001133

  4. Differentiated thyroid cancer. Impact of adjuvant external radiotherapy in patients with perithyroidal tumor infiltration (stage pT4).

    PubMed

    Farahati, J; Reiners, C; Stuschke, M; Müller, S P; Stüben, G; Sauerwein, W; Sack, H

    1996-01-01

    The role of adjuvant external radiotherapy in the survival of patients with differentiated thyroid cancer (DTC) is controversial. To our knowledge, no attempt has been undertaken thus far to assess the impact of this therapy with respect to the papillary and follicular types of thyroid cancer as separate entities. Between 1979 and 1992, 238 patients with differentiated papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC) with Stage pT4 have been treated and followed in our clinic. One hundred sixty-nine patients free of metastases at the final staging, which was performed after the second radioiodine therapy, were included in this study. The standard treatment comprised total thyroidectomy, ablative radioiodine therapy, and thyroid-stimulating hormone-suppressive therapy with levothyroxin. Ninety-nine patients free of disease after the final staging received additional external radiotherapy to the neck (with a dose of 50-60 Gy), whereas the remaining 70 patients were treated with the standard treatment protocol only. Distributions of age, sex, and follow-up time were comparable in both irradiated and nonirradiated groups. Multivariate analysis of the influence of age, sex, histologic subtype, and lymph node status as well as of external radiotherapy on the time to first locoregional and distant failure (LDF), and the time to locoregional recurrence (LR), was accomplished using Cox's proportional hazard model. In patients with DTC, external radiotherapy was a predictive factor for improvement of both LR (P = 0.004) and locoregional and distant failure (P = 0.0003). When the time to first locoregional and distant failure was calculated separately for patients with PTC and FTC, there was a significant difference in the PTC group in favor of irradiated patients (P = 0.0001), whereas there was no effect of external radiotherapy in the FTC group (P = 0.38). Further analyses disclosed that this effect was significantly present only in patients with PTC and

  5. Hyperfunctioning thyroid nodules in children and adolescents.

    PubMed

    de Luca, F; Chaussain, J L; Job, J C

    1986-01-01

    Eight children and adolescents, seven female and one male, aged 7.1 to 15.0 years, referred over a 12-year period for a solitary mass in an otherwise normal thyroid gland, exhibited a hyperfunctioning nodule on thyroid scintiscan. Tracer uptake in the surrounding thyroid tissue was reduced or completely suppressed, but could be restored after TSH stimulation. Only one patient had mild clinical hyperthyroidism with normal T4 but increased T3 serum levels and blunted TSH responsiveness to TRH. A similar hormonal pattern suggestive of subclinical hyperthyroidism was found in three other subjects who were clinically euthyroid. One patient initially euthyroid progressed to subclinical hyperthyroidism two years later. In the whole group a significant negative relationship was found between serum T3 level and TRH-stimulated TSH peak (r = -0.829, p less than 0.02). All the patients underwent selective surgery after a 3-month to 2-year period of follow-up. Microscopic examination was consistent with adenoma in seven patients, while in one case a well-encapsulated papillary adenocarcinoma was found. Though hyperfunctioning nodules are seldom malignant, their surgical removal must be recommended when they become thyrotoxic, exceed 3 cm or show progressive enlargement.

  6. Effect of thyroid status on the expression of metabolic enzymes during chronic stimulation.

    PubMed

    Hood, D A; Simoneau, J A; Kelly, A M; Pette, D

    1992-10-01

    The effect of thyroid status on the expression of cytochrome c oxidase (CYTOX) and the activities of citrate synthase (CS) and phosphofructokinase (PFK) were examined in chronically stimulated (10 Hz; 35 days) and contralateral, nonstimulated rat tibialis anterior muscle of hypothyroid, hyperthyroid, and euthyroid animals. Stimulation increased CYTOX activity by 2.7-, 3.2-, and 4.9-fold in hyperthyroid, euthyroid, and hypothyroid animals, respectively, to similar absolute values. CS displayed similar increases. Stimulation reduced PFK activity in hypothyroid and euthyroid animals to 45% and 60% of control values. This effect was abolished with hyperthyroidism. Thus stimulation and thyroid hormone act antagonistically on PFK activity. Stimulation increased CYTOX subunit III (mitochondrially encoded) mRNA by 2.5- and 2.9-fold in hyperthyroid and euthyroid animals. Similar increases were observed in the nuclear-encoded mRNAs of CYTOX subunit VIc in euthyroid muscle. In hyperthyroid and euthyroid conditions, the mRNA changes paralleled the increases in enzyme activity. In hypothyroid muscle, the increase in mRNA was less for subunit VIc than III, suggesting that hypothyroidism upsets the coordinate expression of nuclear and mitochondrial genes. Further, the increases in CYTOX activity exceeded that of both subunit mRNAs in hypothyroid muscle.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Selenium glutathione peroxidase activities and thyroid functions in human individuals

    NASA Astrophysics Data System (ADS)

    Bellisola, G.; Calza Contin, M.; Ceccato, D.; Cinque, G.; Francia, G.; Galassini, S.; Liu, N. Q.; Lo Cascio, C.; Moschini, G.; Sussi, P. L.

    1996-04-01

    At least two enzymes are involved in metabolism of thyroid hormones. GSHPx protects thyrocyte from high H 2O 2 levels that are required for iodination of prohormones to form T4 in thyroid cell. Type I iodothyronine 5'-deiodinase (5'-D) catalyzes the deiodination of L-thyroxin (T4) to the biologically active thyroid hormone 3,3'-5-triiodothyronine (T 3) in liver, in kidney and in thyroid tissues. Circulating thyroid hormones, plasma Se levels, GSHPx activities in platelets and in plasma were investigated in 29 human individuals with increased thyroid mass. PIXE was applied to measure Se in 1 ml of plasma because we supposed patients were in a marginal carential status for Se. Plasma Se concentrations were compared with those of normal individuals. Correlation studies between plasma Se level and both GSHPx activities were carried out as well as between platelets and plasma GSHPx activities to verify the hypothesis of a marginal Se deficiency in patients. Significance of circulating thyroid hormones levels will be discussed.

  8. Thyroid Autoantibodies Are Rare in Nonhuman Great Apes and Hypothyroidism Cannot Be Attributed to Thyroid Autoimmunity

    PubMed Central

    Aliesky, Holly; Courtney, Cynthia L.; Rapoport, Basil

    2013-01-01

    The great apes include, in addition to Homo, the genera Pongo (orangutans), Gorilla (gorillas), and Pan, the latter comprising two species, P. troglodytes (chimpanzees) and P. paniscus (bonobos). Adult-onset hypothyroidism was previously reported in 4 individual nonhuman great apes. However, there is scarce information on normal serum thyroid hormone levels and virtually no data for thyroid autoantibodies in these animals. Therefore, we examined thyroid hormone levels and TSH in all nonhuman great ape genera including adults, adolescents, and infants. Because hypothyroidism in humans is commonly the end result of thyroid autoimmunity, we also tested healthy and hypothyroid nonhuman great apes for antibodies to thyroglobulin (Tg), thyroid peroxidase (TPO), and the TSH receptor (TSHR). We established a thyroid hormone and TSH database in orangutans, gorillas, chimpanzees, and bonobos (447 individuals). The most striking differences are the greatly reduced free-T4 and free-T3 levels in orangutans and gorillas vs chimpanzees and bonobos, and conversely, elevated TSH levels in gorillas vs Pan species. Antibodies to Tg and TPO were detected in only 2.6% of adult animals vs approximately 10% in humans. No animals with Tg, TPO, or TSHR antibodies exhibited thyroid dysfunction. Conversely, hypothyroid nonhuman great apes lacked thyroid autoantibodies. Moreover, thyroid histology in necropsy tissues was similar in euthyroid and hypothyroid individuals, and lymphocytic infiltration was absent in 2 hypothyroid animals. In conclusion, free T4 and free T3 are lower in orangutans and gorillas vs chimpanzees and bonobos, the closest living human relatives. Moreover, thyroid autoantibodies are rare and hypothyroidism is unrelated to thyroid autoimmunity in nonhuman great apes. PMID:24092641

  9. The association of polymorphisms in the type 1 and 2 deiodinase genes with circulating thyroid hormone parameters and atrophy of the medial temporal lobe.

    PubMed

    de Jong, Frank Jan; Peeters, Robin P; den Heijer, Tom; van der Deure, Wendy M; Hofman, Albert; Uitterlinden, André G; Visser, Theo J; Breteler, Monique M B

    2007-02-01

    Thyroid function has been related to Alzheimer disease (AD) and neuroimaging markers thereof. Whether thyroid dysfunction contributes to or results from developing AD remains unclear. Variations in the deiodinase type 1 (DIO1) and type 2 (DIO2) genes that potentially alter thyroid hormone bioactivity may help in elucidating the role of thyroid function in AD. We investigated the association of recently identified polymorphisms in the DIO1 (D1a-C/T, D1b-A/G) and DIO2 (D2-ORFa-Gly3Asp, D2-Thr92Ala) genes with circulating thyroid parameters and early neuroimaging markers of AD. The Rotterdam Scan Study is a population-based cohort study among 1,077 elderly individuals aged 60-90 yr. DIO1 and DIO2 polymorphisms and serum TSH, free T4, T3, and reverse T3 (rT3) levels were determined in 995 nondemented elderly, including 473 persons with assessments of hippocampal and amygdalar volume on brain magnetic resonance imaging. Carriers of the D1a-T allele had higher serum free T4 and rT3, lower T3, and lower T3/rT3. The D1b-G allele was associated with higher serum T3 and T3/rT3. The DIO2 variants were not associated with serum thyroid parameters. No associations were found with hippocampal or amygdalar volume. This is the first study to report an association of D1a-C/T and D1b-A/G polymorphisms with iodothyronine levels in the elderly. Polymorphisms in the DIO1 and DIO2 genes are not associated with early magnetic resonance imaging markers of AD. This suggests that the previously reported association between iodothyronine levels and brain atrophy reflects comorbidity or nonthyroidal illness rather than thyroid hormones being involved in developing AD.

  10. Stimulating effect of thyroid hormones in peripheral nerve regeneration: research history and future direction toward clinical therapy

    PubMed Central

    Barakat-Walter, I.; Kraftsik, R.

    2018-01-01

    Injury to peripheral nerves is often observed in the clinic and severe injuries may cause loss of motor and sensory functions. Despite extensive investigation, testing various surgical repair techniques and neurotrophic molecules, at present, a satisfactory method to ensuring successful recovery does not exist. For successful molecular therapy in nerve regeneration, it is essential to improve the intrinsic ability of neurons to survive and to increase the speed of axonal outgrowth. Also to induce Schwann cell phenotypical changes to prepare the local environment favorable for axonal regeneration and myelination. Therefore, any molecule that regulates gene expression of both neurons and Schwann cells could play a crucial role in peripheral nerve regeneration. Clinical and experimental studies have reported that thyroid hormones are essential for the normal development and function of the nervous system, so they could be candidates for nervous system regeneration. This review provides an overview of studies devoted to testing the effect of thyroid hormones on peripheral nerve regeneration. Also it emphasizes the importance of combining biodegradable tubes with local administration of triiodothyronine for future clinical therapy of human severe injured nerves. We highlight that the local and single administration of triiodothyronine within biodegradable nerve guide improves significantly the regeneration of severed peripheral nerves, and accelerates functional recovering. This technique provides a serious step towards future clinical application of triiodothyronine in human severe injured nerves. The possible regulatory mechanism by which triiodothyronine stimulates peripheral nerve regeneration is a rapid action on both axotomized neurons and Schwann cells. PMID:29722302

  11. Analysis of thyroid hormone receptor {beta}A mRNA expression in Xenopus laevis tadpoles as a means to detect agonism and antagonism of thyroid hormone action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opitz, Robert; Lutz, Ilka; Nguyen, Ngoc-Ha

    2006-04-01

    Amphibian metamorphosis represents a unique biological model to study thyroid hormone (TH) action in vivo. In this study, we examined the utility of thyroid hormone receptors {alpha} (TR{alpha}) and {beta}A (TR{beta}A) mRNA expression patterns in Xenopus laevis tadpoles as molecular markers indicating modulation of TH action. During spontaneous metamorphosis, only moderate changes were evident for TR{alpha} gene expression whereas a marked up-regulation of TR{beta}A mRNA occurred in hind limbs (prometamorphosis), head (late prometamorphosis), and tail tissue (metamorphic climax). Treatment of premetamorphic tadpoles with 1 nM 3,5,3'-triiodothyronine (T3) caused a rapid induction of TR{beta}A mRNA in head and tail tissue withinmore » 6 to 12 h which was maintained for at least 72 h after initiation of T3 treatment. Developmental stage had a strong influence on the responsiveness of tadpole tissues to induce TR{beta}A mRNA during 24 h treatment with thyroxine (0, 1, 5, 10 nM T4) or T3 (0, 1, 5, 10 nM). Premetamorphic tadpoles were highly sensitive in their response to T4 and T3 treatments, whereas sensitivity to TH was decreased in early prometamorphic tadpoles and strongly diminished in late prometamorphic tadpoles. To examine the utility of TR{beta}A gene expression analysis for detection of agonistic and antagonistic effects on T3 action, mRNA expression was assessed in premetamorphic tadpoles after 48 h of treatment with the synthetic agonist GC-1 (0, 10, 50, 250 nM), the synthetic antagonist NH-3 (0, 40, 200, 1000 nM), and binary combinations of NH-3 (0, 40, 200, 1000 nM) and T3 (1 nM). All tested concentrations of GC-1 as well as the highest concentration of NH-3 caused an up-regulation of TR{beta}A expression. Co-treatment with NH-3 and T3 revealed strong antagonistic effects by NH-3 on T3-induced TR{beta}A mRNA up-regulation. Results of this study suggest that TR{beta}A mRNA expression analysis could serve as a sensitive molecular testing approach to study

  12. Establishment of an Effective Radioiodide Thyroid Ablation Protocol in Mice.

    PubMed

    Schmohl, Kathrin A; Müller, Andrea M; Schwenk, Nathalie; Knoop, Kerstin; Rijntjes, Eddy; Köhrle, Josef; Heuer, Heike; Bartenstein, Peter; Göke, Burkhard; Nelson, Peter J; Spitzweg, Christine

    2015-09-01

    Due to the high variance in available protocols on iodide-131 ((131)I) ablation in rodents, we set out to establish an effective method to generate a thyroid-ablated mouse model that allows the application of the sodium iodide symporter (NIS) as a reporter gene without interference with thyroidal NIS. We tested a range of (131)I doses with and without prestimulation of thyroidal radioiodide uptake by a low-iodine diet and thyroid-stimulating hormone (TSH) application. Efficacy of induction of hypothyroidism was tested by measurement of serum T4 concentrations, pituitary TSHβ and liver deiodinase type 1 (DIO1) mRNA expression, body weight analysis, and (99m)Tc-pertechnetate scintigraphy. While 200 µCi (7.4 MBq) (131)I alone was not sufficient to abolish thyroidal T4 production, 500 µCi (18.5 MBq) (131)I combined with 1 week of a low-iodine diet decreased serum concentrations below the detection limit. However, the high (131)I dose resulted in severe side effects. A combination of 1 week of a low-iodine diet followed by injection of bovine TSH before the application of 150 µCi (5.5 MBq) (131)I decreased serum T4 concentrations below the detection limit and significantly increased pituitary TSHβ concentrations. The systemic effects of induced hypothyroidism were shown by growth arrest and a decrease in liver DIO1 expression below the detection limit. (99m)Tc-pertechnetate scintigraphy revealed absence of thyroidal (99m)Tc-pertechnetate uptake in ablated mice. In summary, we report a revised protocol for radioiodide ablation of the thyroid gland in the mouse to generate an in vivo model that allows the study of thyroid hormone action using NIS as a reporter gene.

  13. Establishment of an Effective Radioiodide Thyroid Ablation Protocol in Mice

    PubMed Central

    Schmohl, Kathrin A.; Müller, Andrea M.; Schwenk, Nathalie; Knoop, Kerstin; Rijntjes, Eddy; Köhrle, Josef; Heuer, Heike; Bartenstein, Peter; Göke, Burkhard; Nelson, Peter J.; Spitzweg, Christine

    2015-01-01

    Due to the high variance in available protocols on iodide-131 (131I) ablation in rodents, we set out to establish an effective method to generate a thyroid-ablated mouse model that allows the application of the sodium iodide symporter (NIS) as a reporter gene without interference with thyroidal NIS. We tested a range of 131I doses with and without prestimulation of thyroidal radioiodide uptake by a low-iodine diet and thyroid-stimulating hormone (TSH) application. Efficacy of induction of hypothyroidism was tested by measurement of serum T4 concentrations, pituitary TSHβ and liver deiodinase type 1 (DIO1) mRNA expression, body weight analysis, and 99mTc-pertechnetate scintigraphy. While 200 µCi (7.4 MBq) 131I alone was not sufficient to abolish thyroidal T4 production, 500 µCi (18.5 MBq) 131I combined with 1 week of a low-iodine diet decreased serum concentrations below the detection limit. However, the high 131I dose resulted in severe side effects. A combination of 1 week of a low-iodine diet followed by injection of bovine TSH before the application of 150 µCi (5.5 MBq) 131I decreased serum T4 concentrations below the detection limit and significantly increased pituitary TSHβ concentrations. The systemic effects of induced hypothyroidism were shown by growth arrest and a decrease in liver DIO1 expression below the detection limit. 99mTc-pertechnetate scintigraphy revealed absence of thyroidal 99mTc-pertechnetate uptake in ablated mice. In summary, we report a revised protocol for radioiodide ablation of the thyroid gland in the mouse to generate an in vivo model that allows the study of thyroid hormone action using NIS as a reporter gene. PMID:26601076

  14. Novel Insights on Thyroid-Stimulating Hormone Receptor Signal Transduction

    PubMed Central

    Neumann, Susanne; Grüters, Annette; Krude, Heiko

    2013-01-01

    The TSH receptor (TSHR) is a member of the glycoprotein hormone receptors, a subfamily of family A G protein-coupled receptors. The TSHR is of great importance for the growth and function of the thyroid gland. The TSHR and its endogenous ligand TSH are pivotal proteins with respect to a variety of physiological functions and malfunctions. The molecular events of TSHR regulation can be summarized as a process of signal transduction, including signal reception, conversion, and amplification. The steps during signal transduction from the extra- to the intracellular sites of the cell are not yet comprehensively understood. However, essential new insights have been achieved in recent years on the interrelated mechanisms at the extracellular region, the transmembrane domain, and intracellular components. This review contains a critical summary of available knowledge of the molecular mechanisms of signal transduction at the TSHR, for example, the key amino acids involved in hormone binding or in the structural conformational changes that lead to G protein activation or signaling regulation. Aspects of TSHR oligomerization, signaling promiscuity, signaling selectivity, phenotypes of genetic variations, and potential extrathyroidal receptor activity are also considered, because these are relevant to an understanding of the overall function of the TSHR, including physiological, pathophysiological, and pharmacological perspectives. Directions for future research are discussed. PMID:23645907

  15. Overexpression of Interleukin-4 in the Thyroid of Transgenic Mice Upregulates the Expression of Duox1 and the Anion Transporter Pendrin

    PubMed Central

    Achouri, Younes; Hahn, Stephan; Many, Marie-Christine; Craps, Julie; Refetoff, Samuel; Liao, Xiao-Hui; Dumont, Jacques E.; Van Sande, Jacqueline; Corvilain, Bernard; Miot, Françoise; De Deken, Xavier

    2016-01-01

    Background: The dual oxidases (Duox) are involved in hydrogen peroxide generation, which is essential for thyroid hormone synthesis, and therefore they are markers of thyroid function. During inflammation, cytokines upregulate DUOX gene expression in the airway and the intestine, suggesting a role for these proteins in innate immunity. It was previously demonstrated that interleukin-4 (IL-4) upregulates DUOX gene expression in thyrocytes. Although the role of IL-4 in autoimmune thyroid diseases has been studied extensively, the effects of IL-4 on thyroid physiology remain largely unknown. Therefore, a new animal model was generated to study the impact of IL-4 on thyroid function. Methods: Transgenic (Thyr-IL-4) mice with thyroid-targeted expression of murine IL-4 were generated. Transgene expression was verified at the mRNA and protein level in thyroid tissues and primary cultures. The phenotype of the Thyr-IL-4 animals was characterized by measuring serum thyroxine (T4) and thyrotropin levels and performing thyroid morphometric analysis, immunohistochemistry, whole transcriptome sequencing, quantitative reverse transcription polymerase chain reaction, and ex vivo thyroid function assays. Results: Thyrocytes from two Thyr-IL-4 mouse lines (#30 and #52) expressed IL-4, which was secreted into the extracellular space. Although 10-month-old transgenic animals had T4 and thyrotropin serum levels in the normal range, they had altered thyroid follicular structure with enlarged follicles composed of elongated thyrocytes containing numerous endocytic vesicles. These follicles were positive for T4 staining the colloid, indicating their capacity to produce thyroid hormones. RNA profiling of Thyr-IL-4 thyroid samples revealed modulation of multiple genes involved in inflammation, while no major leukocyte infiltration could be detected. Upregulated expression of Duox1, Duoxa1, and the pendrin anion exchanger gene (Slc26a4) was detected. In contrast, the iodide symporter gene

  16. Possible implications of leptin, adiponectin and ghrelin in the regulation of energy homeostasis by thyroid hormone.

    PubMed

    Kokkinos, Alexander; Mourouzis, Iordanis; Kyriaki, Despoina; Pantos, Constantinos; Katsilambros, Nicholas; Cokkinos, Dennis V

    2007-08-01

    Thyroid hormone plays a critical role in energy homeostasis through mechanisms, which are not fully understood. In the present study, we investigated possible alterations of important energy regulators such as leptin, adiponectin, and ghrelin in relation to changes in thyroid hormones. Thyroid hormone (250 microg/kg) was administered in male Wistar rats for 2 weeks (THYR), while hypothyroidism (HYPO) was induced by propylthiouracil administration (0.05% in drinking water) for 3 weeks. Untreated animals served as controls (NORM). Leptin and adiponectin were measured in plasma by ELISA, while total ghrelin was measured with RIA. Body weight was significantly reduced both in THYR and HYPO rats, while food intake was significantly increased in THYR and decreased in HYPO. This response was associated with various changes in leptin, adiponectin, and ghrelin in plasma. In fact, in THYR rats, leptin levels (mean +/- SEM) were 240 +/- 55 pg/ml as compared to 819 +/- 70 pg/ml in untreated rats (P < 0.05), while no changes were observed in ghrelin and adiponectin. In HYPO rats, leptin levels were 1400 +/- 200 pg/ml vs. 819 +/- 70 pg/ml in untreated rats (P < 0.05), while ghrelin and adiponectin were significantly increased in HYPO rats as compared to untreated rats (P < 0.05). Furthermore, T(3) and T(4) levels were inversely correlated to leptin (P = 0.014), while ghrelin and adiponectin were inversely correlated to weight changes (P = 0.05 and P = 0.03, respectively). In conclusion, leptin seems mainly to be involved in the thyroid hormone effects on energy homeostasis. Ghrelin and adiponectin may serve a compensatory physiological role in hypothyroidism.

  17. Effects of pre- and postnatal polychlorinated biphenyl exposure on metabolic rate and thyroid hormones of white-footed mice

    USGS Publications Warehouse

    French, J.B.; Voltura, M.B.; Tomasi, T.E.

    2001-01-01

    Energy budgets have proven to be a valuable tool for predicting life history from physiological data in terrestrial vertebrates, yet these concepts have not been applied to the physiological effects of contaminants. Contaminants might affect energy budgets by imposing an additional metabolic cost or by reducing the overall amount of energy taken in; either process will reduce the energy available for production (i.e., growth or reproduction). This study examined whole animal energetic effects of polychlorinated biphenyl (PCB) exposure in white-footed mice (Peromyscus leucopus). Exposure to PCBs is known to reduce concentrations of plasma thyroid hormones, and thyroid hormones exert strong control over the rate of energy metabolism in mammals. Peromyscus leucopus that were proven breeders were fed PCBs in their food at 0, 10, and 25 ppm. Through lactation, offspring were exposed to PCB from conception and were maintained on the maternal diet to adulthood. No effects were seen on energy metabolism (O-2 consumption, measured in adulthood) or on growth, but there were large dose-dependent decreases in thyroid hormone concentrations, particularly T-4. The apparent disparity in our data between unchanged metabolic rates and 50% reductions in T-4 concentrations can be rationalized by noting that free T-3 (the fraction not bound to plasma protein) in treated mice was not significantly different from controls and that metabolism is most strongly influenced by free T-3. Overall, this study did not demonstrate any energetic consequences of PCB exposure in P. leucopus at dietary concentrations up to 25 ppm.

  18. Thyroid function and neuropsychological status in older adults.

    PubMed

    Shrestha, Srishti; Bloom, Michael S; Yucel, Recai; Seegal, Richard F; Rej, Robert; McCaffrey, Robert J; Fitzgerald, Edward F

    2016-10-01

    Overt thyroid dysfunction is recognized as a risk factor for neuropsychological deficits in aging populations, yet evidence for how changes in levels of circulatory thyroid hormones impact specific neuropsychological domains is limited. Here we report cross-sectional associations between serum thyroid hormone concentrations and several neuropsychological function domains among men and women aged 55-74years. We administered neuropsychological tests to assess memory, learning, executive function, measures of attention, visuospatial function, affective state, and motor function. Multivariable linear regression analyses were performed adjusting for age, sex, education, and cigarette smoking. Effects were reported as differences in test scores per one interquartile range (IQR) increase in hormone concentration. Higher total thyroxine (T4) and free thyroxine (fT4) were associated with improved visuospatial function, as measured by Block Design Subtest total scores; associated increments per IQR differences in T4 and fT4 were 15% and 19%, respectively (false discovery rate q-values <0.05). We also detected statistical interactions between age and fT4 for effects in tasks of memory and learning. Concurrent increases in age and fT4 were associated with deficits in memory and learning as measured by California Verbal Learning Test subtests (10% and 16% deficits in t-score and short delay free recall score, respectively). Our findings suggest that changes in thyroid hormones may have important implications for neuropsychological function in aging populations. Further large-scale studies with comprehensive thyroid function and neuropsychological outcome assessments are warranted to confirm these results. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism.

    PubMed

    Varela, Luis; Martínez-Sánchez, Noelia; Gallego, Rosalía; Vázquez, María J; Roa, Juan; Gándara, Marina; Schoenmakers, Erik; Nogueiras, Rubén; Chatterjee, Krishna; Tena-Sempere, Manuel; Diéguez, Carlos; López, Miguel

    2012-06-01

    Hyperthyroidism is characterized in rats by increased energy expenditure and marked hyperphagia. Alterations of thermogenesis linked to hyperthyroidism are associated with dysregulation of hypothalamic AMPK and fatty acid metabolism; however, the central mechanisms mediating hyperthyroidism-induced hyperphagia remain largely unclear. Here, we demonstrate that hyperthyroid rats exhibit marked up-regulation of the hypothalamic mammalian target of rapamycin (mTOR) signalling pathway associated with increased mRNA levels of agouti-related protein (AgRP) and neuropeptide Y (NPY), and decreased mRNA levels of pro-opiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus (ARC), an area where mTOR co-localizes with thyroid hormone receptor-α (TRα). Central administration of thyroid hormone (T3) or genetic activation of thyroid hormone signalling in the ARC recapitulated hyperthyroidism effects on feeding and the mTOR pathway. In turn, central inhibition of mTOR signalling with rapamycin in hyperthyroid rats reversed hyperphagia and normalized the expression of ARC-derived neuropeptides, resulting in substantial body weight loss. The data indicate that in the hyperthyroid state, increased feeding is associated with thyroid hormone-induced up-regulation of mTOR signalling. Furthermore, our findings that different neuronal modulations influence food intake and energy expenditure in hyperthyroidism pave the way for a more rational design of specific and selective therapeutic compounds aimed at reversing the metabolic consequences of this disease. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. Variation in the biochemical response to l-thyroxine therapy and relationship with peripheral thyroid hormone conversion efficiency

    PubMed Central

    Midgley, John E M; Larisch, Rolf; Dietrich, Johannes W; Hoermann, Rudolf

    2015-01-01

    Several influences modulate biochemical responses to a weight-adjusted levothyroxine (l-T4) replacement dose. We conducted a secondary analysis of the relationship of l-T4 dose to TSH and free T3 (FT3), using a prospective observational study examining the interacting equilibria between thyroid parameters. We studied 353 patients on steady-state l-T4 replacement for autoimmune thyroiditis or after surgery for malignant or benign thyroid disease. Peripheral deiodinase activity was calculated as a measure of T4T3 conversion efficiency. In euthyroid subjects, the median l-T4 dose was 1.3 μg/kg per day (interquartile range (IQR) 0.94,1.60). The dose was independently associated with gender, age, aetiology and deiodinase activity (all P<0.001). Comparable FT3 levels required higher l-T4 doses in the carcinoma group (n=143), even after adjusting for different TSH levels. Euthyroid athyreotic thyroid carcinoma patients (n=50) received 1.57 μg/kg per day l-T4 (IQR 1.40, 1.69), compared to 1.19 μg/kg per day (0.85,1.47) in autoimmune thyroiditis (P<0.01, n=76) and 1.08 μg/kg per day (0.82, 1.44) in patients operated on for benign disease (P< 0.01, n=80). Stratifying patients by deiodinase activity categories of <23, 23–29 and >29 nmol/s revealed an increasing FT3–FT4 dissociation; the poorest converters showed the lowest FT3 levels in spite of the highest dose and circulating FT4 (P<0.001). An l-T4-related FT3–TSH disjoint was also apparent; some patients with fully suppressed TSH failed to raise FT3 above the median level. These findings imply that thyroid hormone conversion efficiency is an important modulator of the biochemical response to l-T4; FT3 measurement may be an additional treatment target; and l-T4 dose escalation may have limited success to raise FT3 appropriately in some cases. PMID:26335522

  1. Influence of thyroid hormones and transforming growth factor-β1 on cystatin C concentrations.

    PubMed

    Kotajima, N; Yanagawa, Y; Aoki, T; Tsunekawa, K; Morimura, T; Ogiwara, T; Nara, M; Murakami, M

    2010-01-01

    Serum cystatin C concentrations are reported to increase in the hyperthyroid state. Serum concentrations of cystatin C and transforming growth factor-β1 (TGF-β1) were measured in patients with thyroid dysfunction, and the effects of 3,5,3'-tri-iodothyronine (T(3)) and TGF-β1 on cystatin C production in human hepatoblastoma (Hep G2) cells were studied. Serum concentrations of cystatin C and TGF-β1 were significantly higher in patients with Graves' disease compared with control subjects. Significantly positive correlations were observed between thyroid hormones and cystatin C, thyroid hormones and TGF-β1, and TGF-β1 and cystatin C in patients with thyroid dysfunction. Serum concentrations of cystatin C and TGF-β1 decreased after treatment for hyperthyroidism. Cystatin C mRNA levels and cystatin C secretion were increased by T(3) and TGF-β1 in cultured Hep G2 cells. These results suggest that serum cystatin C concentrations increase in patients with hyperthyroidism. The mechanisms for this may involve elevation of serum TGF-β1 levels and the stimulatory effects of T(3) and TGF-β1 on cystatin C production.

  2. Thyroid Hormone Receptor α Mutation Causes a Severe and Thyroxine-Resistant Skeletal Dysplasia in Female Mice

    PubMed Central

    Bassett, J. H. Duncan; Boyde, Alan; Zikmund, Tomas; Evans, Holly; Croucher, Peter I.; Zhu, Xuguang; Park, Jeong Won

    2014-01-01

    A new genetic disorder has been identified that results from mutation of THRA, encoding thyroid hormone receptor α1 (TRα1). Affected children have a high serum T3:T4 ratio and variable degrees of intellectual deficit and constipation but exhibit a consistently severe skeletal dysplasia. In an attempt to improve developmental delay and alleviate symptoms of hypothyroidism, patients are receiving varying doses and durations of T4 treatment, but responses have been inconsistent so far. Thra1PV/+ mice express a similar potent dominant-negative mutant TRα1 to affected individuals, and thus represent an excellent disease model. We hypothesized that Thra1PV/+ mice could be used to predict the skeletal outcome of human THRA mutations and determine whether prolonged treatment with a supraphysiological dose of T4 ameliorates the skeletal abnormalities. Adult female Thra1PV/+ mice had short stature, grossly abnormal bone morphology but normal bone strength despite high bone mass. Although T4 treatment suppressed TSH secretion, it had no effect on skeletal maturation, linear growth, or bone mineralization, thus demonstrating profound tissue resistance to thyroid hormone. Despite this, prolonged T4 treatment abnormally increased bone stiffness and strength, suggesting the potential for detrimental consequences in the long term. Our studies establish that TRα1 has an essential role in the developing and adult skeleton and predict that patients with different THRA mutations will display variable responses to T4 treatment, which depend on the severity of the causative mutation. PMID:24914936

  3. Interactions between the thyroid hormones and the hormones of the growth hormone axis.

    PubMed

    Laron, Zvi

    2003-12-01

    The normal secretion and action of the thyroid hormones and the hormones of the GH/IGF-I (growth hormone/ insulin-like growth factor I) axis are interdependent. Their interactions often differ in man from animal studies in rodents and sheep. Thus neonates with congenital hypothyroidism are of normal length in humans but IUGR (intrauterine growth retardation) in sheep. Postnatally normal GH/IGF-I secretion and action depends on an euthyroid state. Present knowledge on the interactions between the two axes is reviewed in states of hypo- and hyperthyroidism, states of GH/IGF-I deprivation and hypersecretion, as well as the relationship between IGF-I and thyroid cancer. Emphasis is given to data in children and aspects of linear growth and skeletal maturation.

  4. Thyroid Hormone Receptor Antagonists: From Environmental Pollution to Novel Small Molecules.

    PubMed

    Mackenzie, Louise S

    2018-01-01

    Thyroid hormone receptors (TRs) are nuclear receptors which control transcription, and thereby have effects in all cells within the body. TRs are an important regulator in many basic physiological processes including development, growth, metabolism, and cardiac function. The hyperthyroid condition results from an over production of thyroid hormones resulting in a continual stimulation of thyroid receptors which is detrimental for the patient. Therapies for hyperthyroidism are available, but there is a need for new small molecules that act as TR antagonists to treat hyperthyroidism. Many compounds exhibit TR antagonism and are considered detrimental to health. Some drugs in the clinic (most importantly, amiodarone) and environmental pollution exhibit TR antagonist properties and thus have the potential to induce hypothyroidism in some people. This chapter provides an overview of novel small molecules that have been specifically designed or screened for their TR antagonist activity as novel treatments for hyperthyroidism. While novel compounds have been identified, to date none have been developed sufficiently to enter clinical trials. Furthermore, a discussion on other sources of TR antagonists is discussed in terms of side effects of current drugs in the clinic as well as environmental pollution. © 2018 Elsevier Inc. All rights reserved.

  5. Thyroid hormone levels and incident chronic kidney disease in euthyroid individuals: the Kangbuk Samsung Health Study.

    PubMed

    Zhang, Yiyi; Chang, Yoosoo; Ryu, Seungho; Cho, Juhee; Lee, Won-Young; Rhee, Eun-Jung; Kwon, Min-Jung; Pastor-Barriuso, Roberto; Rampal, Sanjay; Han, Won Kon; Shin, Hocheol; Guallar, Eliseo

    2014-10-01

    Overt and subclinical hypothyroidism are associated with higher levels of serum creatinine and with increased risk of chronic kidney disease (CKD). The prospective association between thyroid hormones and kidney function in euthyroid individuals,however, is largely unexplored. We conducted a prospective cohort study in 104 633 South Korean men and women who were free of CKD and proteinuria at baseline and had normal thyroid hormone levels and no history of thyroid disease or cancer. At each annual or biennial follow-up visit, thyroid-stimulating hormone (TSH), free triiodothyronine (FT3) and free thyroxin (FT4) levels were measured by radioimmunoassay. The study outcome was incident CKD, defined as an estimated glomerular filtration rate (eGFR)<60 ml/min/1.73 m2 based on the Chronic Kidney Disease Epidemiology Collaboration creatinine equation. After a median follow-up of 3.5 years, 1032 participants developed incident CKD.There was a positive association between high-normal levels of TSH and increased risk of incident CKD. In fully-adjusted models including baseline eGFR, the hazard ratio comparing the highest vs the lowest quintiles of TSH was 1.26 [95% confidence interval (CI) 1.02 to 1.55; P for linear trend=0.03]. In spline models, FT3 levels below 3 pg/ml were also associated with increased risk of incident CKD. There was no association between FT4 levels and CKD. In a large cohort of euthyroid men and women, high levels of TSH and low levels of FT3, even within the normal range, were modestly associated with an increased risk of incident CKD.

  6. Site-specific PEGylation of human thyroid stimulating hormone to prolong duration of action.

    PubMed

    Qiu, Huawei; Boudanova, Ekaterina; Park, Anna; Bird, Julie J; Honey, Denise M; Zarazinski, Christine; Greene, Ben; Kingsbury, Jonathan S; Boucher, Susan; Pollock, Julie; McPherson, John M; Pan, Clark Q

    2013-03-20

    Recombinant human thyroid stimulating hormone (rhTSH or Thyrogen) has been approved for thyroid cancer diagnostics and treatment under a multidose regimen due to its short circulating half-life. To reduce dosing frequency, PEGylation strategies were explored to increase the duration of action of rhTSH. Lysine and N-terminal PEGylation resulted in heterogeneous product profiles with 40% or lower reaction yields of monoPEGylated products. Eleven cysteine mutants were designed based on a structure model of the TSH-TSH receptor (TSHR) complex to create unique conjugation sites on both α and β subunits for site-specific conjugation. Sequential screening of mutant expression level, oligomerization tendency, and conjugation efficiency resulted in the identification of the αG22C rhTSH mutant for stable expression and scale-up PEGylation. The introduced cysteine in the αG22C rhTSH mutant was partially blocked when isolated from conditioned media and could only be effectively PEGylated after mild reduction with cysteine. This produced a higher reaction yield, ~85%, for the monoPEGylated product. Although the mutation had no effect on receptor binding, PEGylation of αG22C rhTSH led to a PEG size-dependent decrease in receptor binding. Nevertheless, the 40 kDa PEG αG22C rhTSH showed a prolonged duration of action compared to rhTSH in a rat pharmacodynamics model. Reverse-phase HPLC and N-terminal sequencing experiments confirmed site-specific modification at the engineered Cys 22 position on the α-subunit. This work is another demonstration of successful PEGylation of a cysteine-knot protein by an engineered cysteine mutation.

  7. Stereoselective degradation and thyroid endocrine disruption of lambda-cyhalothrin in lizards (Eremias argus) following oral exposure.

    PubMed

    Chang, Jing; Hao, Weiyu; Xu, Yuanyuan; Xu, Peng; Li, Wei; Li, Jianzhong; Wang, Huili

    2018-01-01

    The disturbance of the thyroid system and elimination of chiral pyrethroid pesticides with respect to enantioselectivity in reptiles have so far received limited attention by research. In this study, bioaccumulation, thyroid gland lesions, thyroid hormone levels, and hypothalamus-pituitary-thyroid axis-related gene expression in male Eremias argus were investigated after three weeks oral administration of lambda-cyhalothrin (LCT) enantiomers. In the lizard liver, the concentration of LCT was negatively correlated with the metabolite-3-phenoxybenzoic acid (PBA) level during 21 days of exposure. (+)-LCT exposure induced a higher thyroid follicular epithelium height than (-)-LCT exposure. The thyroxine levels were increased in both treated groups while only (+)-LCT exposure induced a significant change in the triiodothyronine (T3) level. In addition, the expressions of hypothalamus-pituitary-thyroid axis-related genes including thyroid hormone receptors (trs), deiodinases (dios), uridinediphosphate glucuronosyltransferase (udp), and sulfotransferase (sult) were up-regulated after exposure to the two enantiomers. (+)-LCT treatment resulted in higher expression of trs and (-)-LCT exposure led to greater stimulation of dios in the liver, which indicated PBA-induced antagonism on thyroid hormone receptors and LCT-induced disruption of thyroxine (T4) deiodination. The results suggest the (-)-LCT exposure causes higher residual level in lizard liver while induces less disruption on lizard thyroid activity than (+)-LCT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Exogenous T3 toxicosis following consumption of a contaminated weight loss supplement.

    PubMed

    D'Arcy, R; McDonnell, M; Spence, K; Courtney, C H

    2017-01-01

    A 42-year-old male presented with a one-week history of palpitations and sweating episodes. The only significant history was of longstanding idiopathic dilated cardiomyopathy. Initial ECG demonstrated a sinus tachycardia. Thyroid function testing, undertaken as part of the diagnostic workup, revealed an un-measureable thyroid-stimulating hormone (TSH) and free thyroxine (T 4 ). Upon questioning the patient reported classical thyrotoxic symptoms over the preceding weeks. Given the persistence of symptoms free tri-iodothyronine (T 3 ) was measured and found to be markedly elevated at 48.9 pmol/L (normal range: 3.1-6.8 pmol/L). No goitre or nodular disease was palpable in the neck. Historically there had never been any amiodarone usage. Radionucleotide thyroid uptake imaging ( 123 I) demonstrated significantly reduced tracer uptake in the thyroid. Upon further questioning the patient reported purchasing a weight loss product online from India which supposedly contained sibutramine. He provided one of the tablets and laboratory analysis confirmed the presence of T 3 in the tablet. Full symptomatic resolution and normalised thyroid function ensued upon discontinuation of the supplement. Free tri-iodothyronine (T 3 ) measurement may be useful in the presence of symptoms suggestive of thyrotoxicosis with discordant thyroid function tests.Thyroid uptake scanning can be a useful aid to differentiating exogenous hormone exposure from endogenous hyperthyroidism.Ingestion of thyroid hormone may be inadvertent in cases of exogenous thyrotoxicosis.Medicines and supplements sourced online for weight loss may contain thyroxine (T 4 ) or T 3 and should be considered as a cause of unexplained exogenous hyperthyroidism.

  9. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.

    PubMed

    Gredilla, R; Barja, G; López-Torres, M

    2001-10-01

    Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.

  10. [Hashimoto's thyroiditis(chronic thyroiditis), IgG4-related thyroiditis].

    PubMed

    Itoh, Mitsuyasu

    2012-11-01

    Hashimoto's thyroiditis emerges in patients who have genetic preponderance such as SNPs of CTLA-4 and risk factors such as excess intake of iodine, pregnancy or postpartum period, and smoking. Such risk factors also affect the entire clinical course. One of the major outcomes in Hashimoto's thyroiditis appears to be increased in cardio-vascular risks through subclinical hypothyroidism and concomitant metabolic syndrome, but in most cases, treatment with L-T4 has little effects on cardio-vascular benefit or quality of life. The pregnant women also have risks for obstetric complications and postpartum thyroid dysfunction. The women who have anti-TPO antibodies, type 1 diabetes, or previous history of post-partum thyroid dysfunction are recommended to be measured their TSH. It is noteworthy that Hashimoto's thyroiditis is sometimes complicated with encephalopathy, papillary carcinoma, or IgG4-related thyroiditis. IgG4-related thyroiditis is partly similar but partly discerned from a variant of Hashimoto's thyroiditis. The pathogenetic roles of this variant on autoimmune-based thyroiditis remain unclear.

  11. Regulation of fish growth hormone transcription.

    PubMed

    Farchi-Pisanty, O; Hackett, P B; Moav, B

    1995-09-01

    Regulation of endogenous fish growth hormone transcription was studied using carp pituitaries in vitro. It was demonstrated that thyroid hormone (T3) and 9-cis retinoic acid have increased the steady state levels of growth hormone messenger RNA in pituitary cells, as compared with beta-actin messenger RNA levels. In contrast, estrogen failed to increase growth hormone mRNA levels. The possible involvement of thyroid hormone receptor in pituitary gene expression was demonstrated by in situ localization of both growth hormone mRNA and thyroid hormone receptor mRNA in the pituitaries as early as 4 days after fertilization.

  12. Dual ectopic thyroid associated with thyroid hemiagenesis.

    PubMed

    Nakamura, Shigenori; Masuda, Teruyuki; Ishimori, Masatoshi

    2018-01-01

    We report a case of a 15-year-old girl with a midline neck mass that was first noted 2 or 3 years previously. She had been treated with levothyroxine (L-T4) for congenital hypothyroidism until 11 years of age. Ultrasonography revealed an atrophic right thyroid (1.0 × 1.6 × 2.6 cm in size) and a mass (2.3 × 1.0 × 3.5 cm in size) in the upper part of the neck. No left lobe of the thyroid was detected. On further evaluation, Tc-99m pertechnetate thyroid scintigraphy and CT showed ectopic thyroid tissue in the lingual region and infrahyoid region. Thus, she was diagnosed as having dual ectopic thyroid and thyroid hemiagenesis. The atrophic right thyroid was thought be non-functional. Treatment with L-T4 was started to reduce the size of the dual ectopic thyroid tissue. This may be the first reported case of dual ectopic thyroid associated with hemiagenesis detected only by ultrasonography. Ultrasonography can confirm the presence or absence of orthotopic thyroid tissue in patients with ectopic thyroid.The cause of congenital hypothyroidism should be examined.Clinical manifestation of ectopic thyroid may appear when the treatment with L-T4 is discontinued.Annual follow-up is needed in all children when their thyroid hormone replacement is stopped.

  13. Central hypothyroidism - a neglected thyroid disorder.

    PubMed

    Beck-Peccoz, Paolo; Rodari, Giulia; Giavoli, Claudia; Lania, Andrea

    2017-10-01

    Central hypothyroidism is a rare and heterogeneous disorder that is characterized by a defect in thyroid hormone secretion in an otherwise normal thyroid gland due to insufficient stimulation by TSH. The disease results from the abnormal function of the pituitary gland, the hypothalamus, or both. Moreover, central hypothyroidism can be isolated or combined with other pituitary hormone deficiencies, which are mostly acquired and are rarely congenital. The clinical manifestations of central hypothyroidism are usually milder than those observed in primary hypothyroidism. Obtaining a positive diagnosis for central hypothyroidism can be difficult from both a clinical and a biochemical perspective. The diagnosis of central hypothyroidism is based on low circulating levels of free T 4 in the presence of low to normal TSH concentrations. The correct diagnosis of both acquired (also termed sporadic) and congenital (also termed genetic) central hypothyroidism can be hindered by methodological interference in free T 4 or TSH measurements; routine utilization of total T 4 or T 3 measurements; concurrent systemic illness that is characterized by low levels of free T 4 and normal TSH concentrations; the use of the sole TSH-reflex strategy, which is the measurement of the sole level of TSH, without free T 4 , if levels of TSH are in the normal range; and the diagnosis of congenital hypothyroidism based on TSH analysis without the concomitant measurement of serum levels of T 4 . In this Review, we discuss current knowledge of the causes of central hypothyroidism, emphasizing possible pitfalls in the diagnosis and treatment of this disorder.

  14. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Wei, E-mail: hongwei@tijmu.edu.cn; College of Basic Medicine, Tianjin Medical University, 300070 Tianjin; Li, Jinru

    Highlights: Black-Right-Pointing-Pointer Corepressor Alien interacts with histone methyltransferase ESET in vivo. Black-Right-Pointing-Pointer Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TR{beta}1. Black-Right-Pointing-Pointer ESET-mediated H3K9 methylation is required for liganded TR{beta}1-repressed transcription. Black-Right-Pointing-Pointer ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by whichmore » Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TR{beta}1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TR{beta}1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TR{beta}1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TR{beta}1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.« less

  15. The heterochronic gene Lin28 regulates amphibian metamorphosis through disturbance of thyroid hormone function.

    PubMed

    Faunes, Fernando; Gundermann, Daniel G; Muñoz, Rosana; Bruno, Renzo; Larraín, Juan

    2017-05-15

    Metamorphosis is a classic example of developmental transition, which involves important morphological and physiological changes that prepare the organism for the adult life. It has been very well established that amphibian metamorphosis is mainly controlled by Thyroid Hormone (TH). Here, we show that the heterochronic gene Lin28 is downregulated during Xenopus laevis metamorphosis. Lin28 overexpression before activation of TH signaling delays metamorphosis and inhibits the expression of TH target genes. The delay in metamorphosis is rescued by incubation with exogenous TH, indicating that Lin28 works upstream or parallel to TH. High-throughput analyses performed before any delay on metamorphosis or change in TH signaling showed that overexpression of Lin28 reduces transcript levels of several hormones secreted by the pituitary, including the Thyroid-Stimulating Hormone (TSH), and regulates the expression of proteins involved in TH transport, metabolism and signaling, showing that Lin28 disrupts TH function at different levels. Our data demonstrates that the role of Lin28 in controlling developmental transitions is evolutionary conserved and establishes a functional interaction between Lin28 and thyroid hormone function introducing a new regulatory step in perinatal development with implications for our understanding of endocrine disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roman, Corina; Fuior, Elena V.; Trusca, Violeta G.

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediatedmore » by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341–488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5′- and 3′-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain. - Highlights: • T3 induce a dose-dependent increase of apoE expression in astrocytes. • Thyroid hormones activate apoE promoter in a cell specific manner. • Ligand activated TRβ/RXRα bind on the distal regulatory element ME.2 to modulate apoE. • The binding site of TRβ/RXRα heterodimer is located at 409 bp on ME.2.« less

  17. Effects of thyroid hormones on the heart.

    PubMed

    Vargas-Uricoechea, Hernando; Bonelo-Perdomo, Anilsa; Sierra-Torres, Carlos Hernán

    2014-01-01

    Thyroid hormones have a significant impact on heart function, mediated by genomic and non-genomic effects. Consequently, thyroid hormone deficiencies, as well as excesses, are expected to result in profound changes in cardiac function regulation and cardiovascular hemodynamics. Thyroid hormones upregulate the expression of the sarcoplasmic reticulum calcium-activated ATPase and downregulate the expression of phospholamban. Overall, hyperthyroidism is characterized by an increase in resting heart rate, blood volume, stroke volume, myocardial contractility, and ejection fraction. The development of "high-output heart failure" in hyperthyroidism may be due to "tachycardia-mediated cardiomyopathy". On the other hand, in a hypothyroid state, thyroid hormone deficiency results in lower heart rate and weakening of myocardial contraction and relaxation, with prolonged systolic and early diastolic times. Cardiac preload is decreased due to impaired diastolic function. Cardiac afterload is increased, and chronotropic and inotropic functions are reduced. Subclinical thyroid dysfunction is relatively common in patients over 65 years of age. In general, subclinical hypothyroidism increases the risk of coronary heart disease (CHD) mortality and CHD events, but not of total mortality. The risk of CHD mortality and atrial fibrillation (but not other outcomes) in subclinical hyperthyroidism is higher among patients with very low levels of thyrotropin. Finally, medications such as amiodarone may induce hypothyroidism (mediated by the Wolff-Chaikoff), as well as hyperthyroidism (mediated by the Jod-Basedow effect). In both instances, the underlying cause is the high concentration of iodine in this medication. Copyright © 2014 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  18. The role of polyhalogenated aromatic hydrocarbons on thyroid hormone disruption and cognitive function: a review.

    PubMed

    Builee, T L; Hatherill, J R

    2004-11-01

    Thyroid hormones (TH) are essential to normal brain development, influencing behavior and cognitive function in both adult and children. It is suggested that conditions found in TH abnormalities such as hypothyroidism, hyperthyroidism and generalized resistance to thyroid hormone (GRTH) share symptomatic behavioral impulses found in cases of attention deficit hyperactivity disorder (ADHD) and other cognitive disorders. Disrupters of TH are various and prevalent in the environment. This paper reviews the mechanisms of TH disruption caused by the general class of polyhalogenated aromatic hydrocarbons (PHAH)'s acting as thyroid disrupters (TD). PHAHs influence the hypothalamus-pituitary-thyroid (HPT) axis, as mimicry agents affecting synthesis and secretion of TH. Exposure to PHAH induces liver microsomal enzymes UDP-glucuronosyltransferase (UGT) resulting in accelerated clearance of TH. PHAHs can compromise function of transport and receptor binding proteins such as transthyretin and aryl hydrocarbon receptors (Ahr). Glucose metabolism and catecholamine synthesis are disrupted in the brain by the presence of PHAH. Further, PHAH can alter brain growth and development by perturbing cytoskeletal formation, thereby affecting neuronal migration, elongation and branching. The complex relationships between PHAH and cognitive function are examined in regard to the disruption of T4 regulation in the hypothalamus-pituitary-thyroid axis, blood, brain, neurons, liver and pre and postnatal development.

  19. The Role of Thyroid Hormones as Inductors of Oxidative Stress and Neurodegeneration

    PubMed Central

    Villanueva, I.; Alva-Sánchez, C.; Pacheco-Rosado, J.

    2013-01-01

    Reactive oxygen species (ROS) are oxidizing agents amply implicated in tissue damage. ROS production is inevitably linked to ATP synthesis in most cells, and the rate of production is related to the rate of cell respiration. Multiple antioxidant mechanisms limit ROS dispersion and interaction with cell components, but, when the balance between ROS production and scavenging is lost, oxidative damage develops. Many traits of aging are related to oxidative damage by ROS, including neurodegenerative diseases. Thyroid hormones (THs) are a major factor controlling metabolic and respiratory rates in virtually all cell types in mammals. The general metabolic effect of THs is a relative acceleration of the basal metabolism that includes an increase of the rate of both catabolic and anabolic reactions. THs are related to oxidative stress not only by their stimulation of metabolism but also by their effects on antioxidant mechanisms. Thyroid dysfunction increases with age, so changes in THs levels in the elderly could be a factor affecting the development of neurodegenerative diseases. However, the relationship is not always clear. In this review, we analyze the participation of thyroid hormones on ROS production and oxidative stress, and the way the changes in thyroid status in aging are involved in neurodegenerative diseases. PMID:24386502

  20. Thyroid hormones induce browning of white fat

    PubMed Central

    Martínez-Sánchez, Noelia; Moreno-Navarrete, José M; Contreras, Cristina; Rial-Pensado, Eva; Fernø, Johan; Nogueiras, Rubén; Diéguez, Carlos

    2016-01-01

    The canonical view about the effect of thyroid hormones (THs) on thermogenesis assumes that the hypothalamus acts merely as a modulator of the sympathetic outflow on brown adipose tissue (BAT). Recent data have challenged that vision by demonstrating that THs act on the ventromedial nucleus of the hypothalamus (VMH) to inhibit AMP-activated protein kinase (AMPK), which regulates the thermogenic program in BAT, leading to increased thermogenesis and weight loss. Current data have shown that in addition to activation of brown fat, the browning of white adipose tissue (WAT) might also be an important thermogenic mechanism. However, the possible central effects of THs on the browning of white fat remain unclear. Here, we show that 3,3′,5,5′ tetraiodothyroxyne (T4)-induced hyperthyroidism promotes a marked browning of WAT. Of note, central or VMH-specific administration of 3,3′,5-triiodothyronine (T3) recapitulates that effect. The specific genetic activation of hypothalamic AMPK in the VMH reversed the central effect of T3 on browning. Finally, we also showed that the expression of browning genes in human WAT correlates with serum T4. Overall, these data indicate that THs induce browning of WAT and that this mechanism is mediated via the central effects of THs on energy balance. PMID:27913573

  1. Thyroid hormones induce browning of white fat.

    PubMed

    Martínez-Sánchez, Noelia; Moreno-Navarrete, José M; Contreras, Cristina; Rial-Pensado, Eva; Fernø, Johan; Nogueiras, Rubén; Diéguez, Carlos; Fernández-Real, José-Manuel; López, Miguel

    2017-02-01

    The canonical view about the effect of thyroid hormones (THs) on thermogenesis assumes that the hypothalamus acts merely as a modulator of the sympathetic outflow on brown adipose tissue (BAT). Recent data have challenged that vision by demonstrating that THs act on the ventromedial nucleus of the hypothalamus (VMH) to inhibit AMP-activated protein kinase (AMPK), which regulates the thermogenic program in BAT, leading to increased thermogenesis and weight loss. Current data have shown that in addition to activation of brown fat, the browning of white adipose tissue (WAT) might also be an important thermogenic mechanism. However, the possible central effects of THs on the browning of white fat remain unclear. Here, we show that 3,3',5,5' tetraiodothyroxyne (T 4 )-induced hyperthyroidism promotes a marked browning of WAT. Of note, central or VMH-specific administration of 3,3',5-triiodothyronine (T 3 ) recapitulates that effect. The specific genetic activation of hypothalamic AMPK in the VMH reversed the central effect of T 3 on browning. Finally, we also showed that the expression of browning genes in human WAT correlates with serum T 4 Overall, these data indicate that THs induce browning of WAT and that this mechanism is mediated via the central effects of THs on energy balance. © 2017 The authors.

  2. Plasma thyroid hormone concentration is associated with hepatic triglyceride content in patients with type 2 diabetes.

    PubMed

    Bril, Fernando; Kadiyala, Sushma; Portillo Sanchez, Paola; Sunny, Nishanth E; Biernacki, Diane; Maximos, Maryann; Kalavalapalli, Srilaxmi; Lomonaco, Romina; Suman, Amitabh; Cusi, Kenneth

    2016-01-01

    The underlying mechanisms responsible for the development and progression of non-alcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus (T2DM) are unclear. Since the thyroid hormone regulates mitochondrial function in the liver, we designed this study in order to establish the association between plasma free T4 levels and hepatic triglyceride accumulation and histological severity of liver disease in patients with T2DM and NAFLD. This is a cross-sectional study including a total of 232 patients with T2DM. All patients underwent a liver MR spectroscopy ((1)H-MRS) to quantify hepatic triglyceride content, and an oral glucose tolerance test to estimate insulin resistance. A liver biopsy was performed in patients with a diagnosis of NAFLD. Patients were divided into 5 groups according to plasma free T4 quintiles. We observed that decreasing free T4 levels were associated with an increasing prevalence of NAFLD (from 55% if free T4≥1.18 ng/dL to 80% if free T4<0.80 ng/dL, p=0.016), and higher hepatic triglyceride accumulation by (1)H-MRS (p<0.001). However, lower plasma free T4 levels were not significantly associated with more insulin resistance or more severe liver histology (ie, inflammation, ballooning, or fibrosis). Decreasing levels of plasma free T4 are associated with a higher prevalence of NAFLD and increasing levels of hepatic triglyceride content in patients with T2DM. These results suggest that thyroid hormone may play a role in the regulation of hepatic steatosis and support the notion that hypothyroidism may be associated with NAFLD. No NCT number required. Copyright © 2016 American Federation for Medical Research.

  3. Genetic evidence that thyroid hormone is indispensable for prepubertal insulin-like growth factor-I expression and bone acquisition in mice.

    PubMed

    Xing, Weirong; Govoni, Kristen E; Donahue, Leah Rae; Kesavan, Chandrasekhar; Wergedal, Jon; Long, Carlin; Bassett, J H Duncan; Gogakos, Apostolos; Wojcicka, Anna; Williams, Graham R; Mohan, Subburaman

    2012-05-01

    Understanding how bone growth is regulated by hormonal and mechanical factors during early growth periods is important for optimizing the attainment of peak bone mass to prevent or postpone the occurrence of fragility fractures later in life. Using genetic mouse models that are deficient in thyroid hormone (TH) (Tshr(-/-) and Duox2(-/-)), growth hormone (GH) (Ghrhr(lit/lit)), or both (Tshr(-/-); Ghrhr(lit/lit)), we demonstrate that there is an important period prior to puberty when the effects of GH are surprisingly small and TH plays a critical role in the regulation of skeletal growth. Daily administration of T3/T4 during days 5 to 14, the time when serum levels of T3 increase rapidly in mice, rescued the skeletal deficit in TH-deficient mice but not in mice lacking both TH and GH. However, treatment of double-mutant mice with both GH and T3/T4 rescued the bone density deficit. Increased body fat in the TH-deficient as well as TH/GH double-mutant mice was rescued by T3/T4 treatment during days 5 to 14. In vitro studies in osteoblasts revealed that T3 in the presence of TH receptor (TR) α1 bound to a TH response element in intron 1 of the IGF-I gene to stimulate transcription. In vivo studies using TRα and TRβ knockout mice revealed evidence for differential regulation of insulin-like growth factor (IGF)-I expression by the two receptors. Furthermore, blockade of IGF-I action partially inhibited the biological effects of TH, thus suggesting that both IGF-I-dependent and IGF-I-independent mechanisms contribute to TH effects on prepubertal bone acquisition. Copyright © 2012 American Society for Bone and Mineral Research.

  4. Direct Regulation of Mitochondrial RNA Synthesis by Thyroid Hormone

    PubMed Central

    Enríquez, José A.; Fernández-Silva, Patricio; Garrido-Pérez, Nuria; López-Pérez, Manuel J.; Pérez-Martos, Acisclo; Montoya, Julio

    1999-01-01

    We have analyzed the influence of in vivo treatment and in vitro addition of thyroid hormone on in organello mitochondrial DNA (mtDNA) transcription and, in parallel, on the in organello footprinting patterns at the mtDNA regions involved in the regulation of transcription. We found that thyroid hormone modulates mitochondrial RNA levels and the mRNA/rRNA ratio by influencing the transcriptional rate. In addition, we found conspicuous differences between the mtDNA dimethyl sulfate footprinting patterns of mitochondria derived from euthyroid and hypothyroid rats at the transcription initiation sites but not at the mitochondrial transcription termination factor (mTERF) binding region. Furthermore, direct addition of thyroid hormone to the incubation medium of mitochondria isolated from hypothyroid rats restored the mRNA/rRNA ratio found in euthyroid rats as well as the mtDNA footprinting patterns at the transcription initiation area. Therefore, we conclude that the regulatory effect of thyroid hormone on mitochondrial transcription is partially exerted by a direct influence of the hormone on the mitochondrial transcription machinery. Particularly, the influence on the mRNA/rRNA ratio is achieved by selective modulation of the alternative H-strand transcription initiation sites and does not require the previous activation of nuclear genes. These results provide the first functional demonstration that regulatory signals, such as thyroid hormone, that modify the expression of nuclear genes can also act as primary signals for the transcriptional apparatus of mitochondria. PMID:9858589

  5. Sodium acetate decreases phosphorylation of hormone sensitive lipase in isoproterenol-stimulated 3T3-L1 mature adipocytes

    PubMed Central

    Aberdein, Nicola; Schweizer, Michael; Ball, Derek

    2014-01-01

    Lipolysis, the process of hydrolysis of stored triacylglycerol into glycerol and non-esterified fatty acids (NEFA), is reported to be reduced by short chain fatty acids (SCFA) but the mechanism of this inhibition is poorly understood. The aim of this study was to measure the phosphorylation at serine residue 563 of hormone sensitive lipase with and without exposure to sodium acetate. Using the 3T3-L1 cell line, we identified that stimulating the cells with isoproterenol increased phosphorylated hormone sensitive lipase (pHSL) expression by 60% compared with the basal state. In the presence of the SCFA acetate in stimulated cells, pHSL decreased by 15% compared with stimulated cells alone. These results were mirrored by the NEFA release from stimulated cells that had significantly decreased in the presence of sodium acetate after 60 min (from 0.53 µmol mg−1 protein to 0.41 µmol mg−1 protein, respectively, P = 0.004); and 180 min (1.73 µmol mg−1 protein to 1.13 µmol mg−1 protein, P = 0.020); however, treatment had no effect on glycerol release (P = 0.109). In conclusion, exposure to 4 mM acetate reduced the level of phosphorylation of HSL(SER563) in mature 3T3-L1 adipocytes and led to a significant reduction in NEFA release, although glycerol release was not affected. PMID:24719785

  6. [Studies of the morphology of the thyroid gland and thyroid hormone levels in the blood of rats in experiments on "Kosmos-1667" and "Kosmos-1887"].

    PubMed

    Plakhuta-Plakutina, G I; Kabitskiĭ, E N; Dmitrieva, N P; Amirkhanian, E A

    1990-01-01

    Using histological, electron microscopic, and biochemical (measurement of total thyroxine, free thyroxine and triiodothyronine in plasma) method, thyroid glands of 17 male rats of the Wistar SPF strain flown for 7 days on Cosmos-1667 and for 13 days on Cosmos-1887 were investigated. It was found that a longer exposure to space flight effects (for 13 days) led to a thyroid activity decline (significant reduction of thyrocyte size and nuclear area, accumulation of colloid drops in the cytoplasm, decrease of iodinated thyroglobulins in the colloid, etc.) together with a substantial decrease of T4 and T3 in plasma. The above structural and functional changes in the thyroid gland and hormonal status are characteristic of a moderate stress-reaction and reflect variations of the early and intermediate stages of adaptation to microgravity during 7- and 13-day space flights.

  7. Non-Thyroidal Illness Syndrome in Patients Exposed to Indoor Air Dampness Microbiota Treated Successfully with Triiodothyronine.

    PubMed

    Somppi, Taija Liisa

    2017-01-01

    Long-term exposure to dampness microbiota induces multi-organ morbidity. One of the symptoms related to this disorder is non-thyroidal illness syndrome (NTIS). A retrospective study was carried out in nine patients with a history of mold exposure, experiencing chronic fatigue, cognitive disorder, and different kinds of hypothyroid symptoms despite provision of levothyroxine (3,5,3',5'-tetraiodothyronine, LT4) monotherapy. Exposure to volatile organic compounds present in water-damaged buildings including metabolic products of toxigenic fungi and mold-derived inflammatory agents can lead to a deficiency or imbalance of many hormones, such as active T3 hormone. Since the 1970s, the synthetic prohormone, levothyroxine (LT4), has been the most commonly prescribed thyroid hormone in replacement monotherapy. It has been presumed that the peripheral conversion of T4 (3,5,3',5'-tetraiodothyronine) into T3 (3,5,3'-triiodothyronine) is sufficient to satisfy the overall tissue requirements. However, evidence is presented that this not the case for all patients, especially those exposed to indoor air molds. This retrospective study describes the successful treatment of nine patients in whom NTIS was treated with T3-based thyroid hormone. The treatment was based on careful interview, clinical monitoring, and laboratory analysis of serum free T3 (FT3), reverse T3 (rT3) and thyroid-stimulating hormone, free T4, cortisol, and dehydroepiandrosterone (DHEA) values. The ratio of FT3/rT3 was calculated. In addition, some patients received adrenal support with hydrocortisone and DHEA. All patients received nutritional supplementation and dietary instructions. During the therapy, all nine patients reported improvements in all of the symptom groups. Those who had residual symptoms during T3-based therapy remained exposed to indoor air molds in their work places. Four patients were unable to work and had been on disability leave for a long time during LT4 monotherapy. However, during the

  8. Synergism between exposure to mercury and use of iodine supplements on thyroid hormones in pregnant women

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llop, Sabrina, E-mail: llop_sab@gva.es; Spanish Consortium for Research on Epidemiology and Public Health; Lopez-Espinosa, Maria-Jose

    Objective: To evaluate the association between mercury exposure and thyroid-stimulating hormone (TSH), total triiodothyronine (TT3) and free thyroxine (FT4) levels during pregnancy as well as to explore if there is any synergic action between mercury and intake of iodine from different sources. Methods: The study population was 1407 pregnant women participating in the Spanish INMA birth cohort study. Total mercury concentrations were analyzed in cord blood. Thyroid hormones (THs) were measured in serum samples collected at 13.2±1.5 weeks of gestation. The association between mercury and TH levels was evaluated with multivariate linear regression models. Effect modification caused by iodine intakemore » from supplements and diet was also evaluated. Results: The geometric means of TSH, TT3, FT4 and mercury were 1.1 μU/L, 2.4 nmol/L, 10.5 pmol/L and 7.7 μg/L, respectively. Mercury levels were marginally significantly associated with TT3 (β: −0.05; 95%CI: −0.10, 0.01), but were neither associated with TSH nor FT4. The inverse association between mercury and TT3 levels was stronger among the iodine supplement consumers (−0.08; 95%CI: −0.15, −0.02, interaction p-value=0.07). The association with FT4 followed the same pattern, albeit not significant. Conclusion: Prenatal mercury exposure was inversely associated with TT3 levels among women who took iodine supplements during pregnancy. These results could be of public health concern, although further research is needed. - Highlights: • We studied the relationship between mercury and thyroid hormones among pregnant. • Mercury was marginally significantly associated with TT3, but not with TSH or FT4. • This association was stronger among the iodine supplement. • These results could be of public health concern, but further research is needed.« less

  9. Effects of phenobarbital on thyroid hormone contabolism in rat hepatocytes

    EPA Science Inventory

    Hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations in rodents. PB induction of hepatic xenobiotic metabolizing enzymes increases thyroid hormones catabolism and biliary elimination. This study examines the catabolism and cl...

  10. Use of thyroid-stimulating hormone tests for identifying primary hypothyroidism in family medicine patients.

    PubMed

    Birk-Urovitz, Elizabeth; Elisabeth Del Giudice, M; Meaney, Christopher; Grewal, Karan

    2017-09-01

    To assess the use of thyroid-stimulating hormone (TSH) tests for identifying primary hypothyroidism in 2 academic family medicine settings. Descriptive study involving a retrospective electronic chart review of family medicine patients who underwent TSH testing. Two academic family practice sites: one site is within a tertiary hospital in Toronto, Ont, and the other is within a community hospital in Newmarket, Ont. A random sample of 205 adult family medicine patients who had 1 or more TSH tests for identifying potential primary hypothyroidism between July 1, 2009, and September 15, 2013. Exclusion criteria included a previous diagnosis of any thyroid condition or abnormality, as well as pregnancy or recent pregnancy within the year preceding the study period. The proportion of normal TSH test results and the proportion of TSH tests that did not conform to test-ordering guidelines. Of the 205 TSH test results, 200 (97.6%, 95% CI 94.4% to 99.2%) showed TSH levels within the normal range. All 5 patients with abnormal TSH test results had TSH levels above the upper reference limits. Nearly one-quarter (22.4%, 95% CI 16.9% to 28.8%) of tests did not conform to test-ordering guidelines. All TSH tests classified as not conforming to test-ordering guidelines showed TSH levels within normal limits. There was a significant difference ( P < .001) between the proportions of nonconforming TSH tests at the tertiary site (14.3%, 95% CI 8.2% to 22.5%) and the community site (31.0%, 95% CI 22.1% to 41.0%). Preliminary analyses examining which variables might be associated with abnormal TSH levels showed that only muscle cramps or myalgia ( P = .0286) and a history of an autoimmune disorder ( P = .0623) met or approached statistical significance. In this study, the proportion of normal TSH test results in the context of primary hypothyroidism case finding and screening was high, and the overall proportion of TSH tests that did not conform to test-ordering guidelines was relatively

  11. Homozygous Resistance to Thyroid Hormone β: Can Combined Antithyroid Drug and Triiodothyroacetic Acid Treatment Prevent Cardiac Failure?

    PubMed

    Moran, Carla; Habeb, Abdelhadi M; Kahaly, George J; Kampmann, Christoph; Hughes, Marina; Marek, Jan; Rajanayagam, Odelia; Kuczynski, Adam; Vargha-Khadem, Faraneh; Morsy, Mofeed; Offiah, Amaka C; Poole, Ken; Ward, Kate; Lyons, Greta; Halsall, David; Berman, Lol; Watson, Laura; Baguley, David; Mollon, John; Moore, Anthony T; Holder, Graham E; Dattani, Mehul; Chatterjee, Krishna

    2017-09-01

    Resistance to thyroid hormone β (RTH β ) due to homozygous THRB defects is exceptionally rare, with only five kindreds reported worldwide. Cardiac dysfunction, which can be life-threatening, is recognized in the disorder. Here we describe the clinical, metabolic, ophthalmic, and cardiac findings in a 9-year-old boy harboring a biallelic THRB mutation (R243Q), along with biochemical, physiologic, and cardiac responses to carbimazole and triiodothyroacetic acid (TRIAC) therapy. The patient exhibits recognized features (goiter, nonsuppressed thyroid-stimulating hormone levels, upper respiratory tract infections, hyperactivity, low body mass index) of heterozygous RTH β , with additional characteristics (dysmorphic facies, winging of scapulae) and more markedly elevated thyroid hormone levels, associated with the homozygous form of the disorder. Notably, an older sibling with similar clinical features and probable homozygous RTH β had died of cardiac failure at age 13 years. Features of early dilated cardiomyopathy in our patient prompted combination treatment with carbimazole and TRIAC. Careful titration of therapy limited elevation in TSH levels and associated increase in thyroid volume. Subsequently, sustained reduction in thyroid hormones with normal TSH levels was reflected in lower basal metabolic rate, gain of lean body mass, and improved growth and cardiac function. A combination of antithyroid drug and TRIAC therapy may prevent thyrotoxic cardiomyopathy and its decompensation in homozygous or even heterozygous RTH β in which life-threatening hyperthyroid features predominate.

  12. The Role of Thyroid Hormone Signaling in the Prevention of Digestive System Cancers

    PubMed Central

    Brown, Adam R.; Simmen, Rosalia C. M.; Simmen, Frank A.

    2013-01-01

    Thyroid hormones play a critical role in the growth and development of the alimentary tract in vertebrates. Their effects are mediated by nuclear receptors as well as the cell surface receptor integrin αVβ3. Systemic thyroid hormone levels are controlled via activation and deactivation by iodothyronine deiodinases in the liver and other tissues. Given that thyroid hormone signaling has been characterized as a major effector of digestive system growth and homeostasis, numerous investigations have examined its role in the occurrence and progression of cancers in various tissues of this organ system. The present review summarizes current findings regarding the effects of thyroid hormone signaling on cancers of the esophagus, stomach, liver, pancreas, and colon. Particular attention is given to the roles of different thyroid hormone receptor isoforms, the novel integrin αVβ3 receptor, and thyroid hormone-related nutrients as possible protective agents and therapeutic targets. Future investigations geared towards a better understanding of thyroid hormone signaling in digestive system cancers may provide preventive or therapeutic strategies to diminish risk, improve outcome and avert recurrence in afflicted individuals. PMID:23924944

  13. The role of thyroid hormone signaling in the prevention of digestive system cancers.

    PubMed

    Brown, Adam R; Simmen, Rosalia C M; Simmen, Frank A

    2013-08-06

    Thyroid hormones play a critical role in the growth and development of the alimentary tract in vertebrates. Their effects are mediated by nuclear receptors as well as the cell surface receptor integrin αVβ3. Systemic thyroid hormone levels are controlled via activation and deactivation by iodothyronine deiodinases in the liver and other tissues. Given that thyroid hormone signaling has been characterized as a major effector of digestive system growth and homeostasis, numerous investigations have examined its role in the occurrence and progression of cancers in various tissues of this organ system. The present review summarizes current findings regarding the effects of thyroid hormone signaling on cancers of the esophagus, stomach, liver, pancreas, and colon. Particular attention is given to the roles of different thyroid hormone receptor isoforms, the novel integrin αVβ3 receptor, and thyroid hormone-related nutrients as possible protective agents and therapeutic targets. Future investigations geared towards a better understanding of thyroid hormone signaling in digestive system cancers may provide preventive or therapeutic strategies to diminish risk, improve outcome and avert recurrence in afflicted individuals.

  14. Localization of the aromatase enzyme expression in the human pituitary gland and its effect on growth hormone, prolactin, and thyroid stimulating hormone axis.

    PubMed

    Caglar, Asli Sezgin; Kapucu, Aysegul; Dar, Kadriye Akgun; Ozkaya, Hande Mefkure; Caglar, Erkan; Ince, Haluk; Kadioglu, Pinar

    2015-08-01

    The aim of this study is to evaluate aromatase expression in prolactin (PRL), thyroid stimulating hormone (TSH), and growth hormone (GH) secreting cells. Nontumoral human pituitary specimens were obtained from autopsy samples. Aromatase co-expression was determined by double immunohistochemical staining and assessed using H scores. H scores for GH-aromatase co-expression (GH-aromatase), TSH-aromatase co-expression (TSH-aromatase), and PRL-aromatase co-expression (PRL-aromatase) were 83.1 ± 13.1, 95.6 ± 16.1, and 83.7 ± 14.5, respectively. TSH producing cells exhibited the highest H score for co-expression of aromatase (p < 0.001). There was no gender difference in terms of H scores for aromatase expression and double immunohistochemical staining results (p > 0.05 for all). There was a negative correlation between the H scores for aromatase and PRL-aromatase, GH-aromatase and TSH-aromatase, respectively (r = -0.592, p < 0.001; r = -0.593, p < 0.001; r = -0.650, p < 0.001, respectively). Also, H scores for aromatase co-expression of each hormone were negatively correlated with the H scores for the corresponding hormone (r = -0.503, p < 0.001 for PRL-aromatase and PRL; r = -0.470, p < 0.001 for GH-aromatase, and GH; r = -0.641, p < 0.001 for TSH-aromatase and TSH). H scores for mean aromatase, GH-aromatase, TSH-aromatase were invariant of age (p > 0.05 for all). Age was negatively correlated with PRL-aromatase H score (r = -0.373, p = 0.008). Our study demonstrated significant aromatase co-expression in PRL, GH, and TSH secreting cells of the human anterior pituitary gland. The mutual paracrinal regulation between aromatase and three adenohypophyseal hormones indicates that aromatase may have a regulatory role on the synthesis and secretion of these hormones.

  15. Thyroid-Stimulating Hormone (TSH) Concentration at Birth in Belgian Neonates and Cognitive Development at Preschool Age

    PubMed Central

    Trumpff, Caroline; De Schepper, Jean; Vanderfaeillie, Johan; Vercruysse, Nathalie; Van Oyen, Herman; Moreno-Reyes, Rodrigo; Tafforeau, Jean; Vanderpas, Jean; Vandevijvere, Stefanie

    2015-01-01

    The main objective of the study was to investigate the effect of MID during late pregnancy, assessed by the thyroid-stimulating hormone (TSH) concentration at neonatal screening, on cognitive development of preschool children. A retrospective cohort study including 311 Belgian preschool children of 4–6 years old was conducted. Children were selected at random from the total list of neonates screened in 2008, 2009, and 2010 by the Brussels new-born screening center. Infants with congenital hypothyroidism, low birth weight, and/or prematurity were excluded from the selection. The selected children were stratified by gender and TSH-range (0.45–15 mIU/L). Cognitive abilities were assessed using Wechsler Preschool and Primary Scale of Intelligence—third edition. In addition, several socioeconomic, parental, and child confounding factors were assessed. Neonatal TSH concentration—a surrogate marker for MID—was not associated with Full Scale and Performance IQ scores in children. Lower Verbal IQ scores were found in children with neonatal TSH values comprised between 10–15 mIU/L compared to lower TSH levels in univariate analysis but these results did not hold when adjusting for confounding factors. Current levels of iodine deficiency among pregnant Belgian women may not be severe enough to affect the neurodevelopment of preschool children. PMID:26540070

  16. Thyroid-Stimulating Hormone (TSH) Concentration at Birth in Belgian Neonates and Cognitive Development at Preschool Age.

    PubMed

    Trumpff, Caroline; De Schepper, Jean; Vanderfaeillie, Johan; Vercruysse, Nathalie; Van Oyen, Herman; Moreno-Reyes, Rodrigo; Tafforeau, Jean; Vanderpas, Jean; Vandevijvere, Stefanie

    2015-11-02

    The main objective of the study was to investigate the effect of MID during late pregnancy, assessed by the thyroid-stimulating hormone (TSH) concentration at neonatal screening, on cognitive development of preschool children. A retrospective cohort study including 311 Belgian preschool children of 4-6 years old was conducted. Children were selected at random from the total list of neonates screened in 2008, 2009, and 2010 by the Brussels new-born screening center. Infants with congenital hypothyroidism, low birth weight, and/or prematurity were excluded from the selection. The selected children were stratified by gender and TSH-range (0.45-15 mIU/L). Cognitive abilities were assessed using Wechsler Preschool and Primary Scale of Intelligence-third edition. In addition, several socioeconomic, parental, and child confounding factors were assessed. Neonatal TSH concentration-a surrogate marker for MID-was not associated with Full Scale and Performance IQ scores in children. Lower Verbal IQ scores were found in children with neonatal TSH values comprised between 10-15 mIU/L compared to lower TSH levels in univariate analysis but these results did not hold when adjusting for confounding factors. Current levels of iodine deficiency among pregnant Belgian women may not be severe enough to affect the neurodevelopment of preschool children.

  17. Thyroid dysfunctions of prematurity and their impacts on neurodevelopmental outcome.

    PubMed

    Chung, Mi Lim; Yoo, Han Wok; Kim, Ki-Soo; Lee, Byong Sop; Pi, Soo-Young; Lim, Gina; Kim, Ellen Ai-Rhan

    2013-01-01

    Thyroid dysfunction is very common and is associated with neurodevelopmental impairments in preterm infants. This study was conducted to determine the incidence and natural course of various thyroid dysfunctions and their impacts on neurodevelopmental outcomes among premature infants. A total of 177 infants were enrolled who were born at <34 weeks or whose birth weight was <1500 g and who underwent repeat thyroid function tests. We analyzed how various thyroid dysfunctions affected neurodevelopmental outcomes at 18 months of corrected age. Thyroid dysfunction was noted in 88 infants. Hypothyroxinemia was observed in 23 infants, and their thyroid function was influenced by variable clinical factors. Free T4 levels were all normalized without thyroxine medication, and neurodevelopmental outcomes were not affected. In contrast, hyperthyrotropinemia was not associated with other clinical factors. Among 58 subjects who had hyperthyrotropinemia, only 31 infants showed normal thyroid-stimulating hormone (TSH) levels at follow-up tests. The remaining 27 infants had persistently high TSH levels, which significantly and poorly influenced the neurodevelopmental outcomes. Thyroid dysfunction is common among preterm infants. With the exception of persistent hyperthyrotropinemia, it generally does not affect neurodevelopmental outcomes. However, the beneficial effects of thyroid hormone therapy in patients with persistent hyperthyrotropinemia merits further study.

  18. Genetic Variants Associated with Serum Thyroid Stimulating Hormone (TSH) Levels in European Americans and African Americans from the eMERGE Network

    PubMed Central

    Malinowski, Jennifer R.; Denny, Joshua C.; Bielinski, Suzette J.; Basford, Melissa A.; Bradford, Yuki; Peissig, Peggy L.; Carrell, David; Crosslin, David R.; Pathak, Jyotishman; Rasmussen, Luke; Pacheco, Jennifer; Kho, Abel; Newton, Katherine M.; Li, Rongling; Kullo, Iftikhar J.; Chute, Christopher G.; Chisholm, Rex L.; Jarvik, Gail P.; Larson, Eric B.; McCarty, Catherine A.; Masys, Daniel R.; Roden, Dan M.; de Andrade, Mariza; Ritchie, Marylyn D.; Crawford, Dana C.

    2014-01-01

    Thyroid stimulating hormone (TSH) hormone levels are normally tightly regulated within an individual; thus, relatively small variations may indicate thyroid disease. Genome-wide association studies (GWAS) have identified variants in PDE8B and FOXE1 that are associated with TSH levels. However, prior studies lacked racial/ethnic diversity, limiting the generalization of these findings to individuals of non-European ethnicities. The Electronic Medical Records and Genomics (eMERGE) Network is a collaboration across institutions with biobanks linked to electronic medical records (EMRs). The eMERGE Network uses EMR-derived phenotypes to perform GWAS in diverse populations for a variety of phenotypes. In this report, we identified serum TSH levels from 4,501 European American and 351 African American euthyroid individuals in the eMERGE Network with existing GWAS data. Tests of association were performed using linear regression and adjusted for age, sex, body mass index (BMI), and principal components, assuming an additive genetic model. Our results replicate the known association of PDE8B with serum TSH levels in European Americans (rs2046045 p = 1.85×10−17, β = 0.09). FOXE1 variants, associated with hypothyroidism, were not genome-wide significant (rs10759944: p = 1.08×10−6, β = −0.05). No SNPs reached genome-wide significance in African Americans. However, multiple known associations with TSH levels in European ancestry were nominally significant in African Americans, including PDE8B (rs2046045 p = 0.03, β = −0.09), VEGFA (rs11755845 p = 0.01, β = −0.13), and NFIA (rs334699 p = 1.50×10−3, β = −0.17). We found little evidence that SNPs previously associated with other thyroid-related disorders were associated with serum TSH levels in this study. These results support the previously reported association between PDE8B and serum TSH levels in European Americans and emphasize the need for additional genetic

  19. Genetic variants associated with serum thyroid stimulating hormone (TSH) levels in European Americans and African Americans from the eMERGE Network.

    PubMed

    Malinowski, Jennifer R; Denny, Joshua C; Bielinski, Suzette J; Basford, Melissa A; Bradford, Yuki; Peissig, Peggy L; Carrell, David; Crosslin, David R; Pathak, Jyotishman; Rasmussen, Luke; Pacheco, Jennifer; Kho, Abel; Newton, Katherine M; Li, Rongling; Kullo, Iftikhar J; Chute, Christopher G; Chisholm, Rex L; Jarvik, Gail P; Larson, Eric B; McCarty, Catherine A; Masys, Daniel R; Roden, Dan M; de Andrade, Mariza; Ritchie, Marylyn D; Crawford, Dana C

    2014-01-01

    Thyroid stimulating hormone (TSH) hormone levels are normally tightly regulated within an individual; thus, relatively small variations may indicate thyroid disease. Genome-wide association studies (GWAS) have identified variants in PDE8B and FOXE1 that are associated with TSH levels. However, prior studies lacked racial/ethnic diversity, limiting the generalization of these findings to individuals of non-European ethnicities. The Electronic Medical Records and Genomics (eMERGE) Network is a collaboration across institutions with biobanks linked to electronic medical records (EMRs). The eMERGE Network uses EMR-derived phenotypes to perform GWAS in diverse populations for a variety of phenotypes. In this report, we identified serum TSH levels from 4,501 European American and 351 African American euthyroid individuals in the eMERGE Network with existing GWAS data. Tests of association were performed using linear regression and adjusted for age, sex, body mass index (BMI), and principal components, assuming an additive genetic model. Our results replicate the known association of PDE8B with serum TSH levels in European Americans (rs2046045 p = 1.85×10-17, β = 0.09). FOXE1 variants, associated with hypothyroidism, were not genome-wide significant (rs10759944: p = 1.08×10-6, β = -0.05). No SNPs reached genome-wide significance in African Americans. However, multiple known associations with TSH levels in European ancestry were nominally significant in African Americans, including PDE8B (rs2046045 p = 0.03, β = -0.09), VEGFA (rs11755845 p = 0.01, β = -0.13), and NFIA (rs334699 p = 1.50×10-3, β = -0.17). We found little evidence that SNPs previously associated with other thyroid-related disorders were associated with serum TSH levels in this study. These results support the previously reported association between PDE8B and serum TSH levels in European Americans and emphasize the need for additional genetic studies in more

  20. Maternal thyroid function in women undergoing controlled ovarian hyperstimulation during in-vitro fertilization and its relation to reproductive outcome.

    PubMed

    Abdul Karim, Abdul K; Azrai Abu, Muhammad; Chelliah, Buvanes; Mohd Razi, Zainul R; Omar, Mohd H; Othman, Hanita; Man, Zuraidah C

    2017-10-01

    We conducted a study to evaluate the changes in thyroid function during controlled ovarian hyperstimulation (COH) and its association with the outcome of assisted reproductive technique (ART). This is a prospective cohort study done in University Hospital Fertility Clinic for one year duration. A total of 88 euthyroid women who underwent COH as part of planned in-vitro fertilization (IVF) were invited to participate in this study. Serum thyroid function of each women will be monitored before stimulation (T1), day 10-13 of cycle (T2), during oocyte retrieval (T3), one week following embryo transfer (T4), and at four weeks after embryo transfer (T5). Reproductive outcome of IVF will be observed and documented. Nine women had ongoing singleton pregnancy, seven suffered from miscarriage, while the rest had implantation failure. Serum thyroid-stimulating hormone (TSH) and free thyroxine (fT4) increased throughout stimulation, peaking at 32-36 hours after hCG administration compared to baseline (1.250 vs. 1.740 mIU/L and 13.94 vs. 15.25 pmol/L). It remains elevated until one week following embryo transfer. The increment of serum TSH exceeded the upper limit, acceptable for first trimester (<1.60 mIU/L). However, the evolution of serum TSH and fT4 did not significantly differ with pregnancy outcome. In euthyroid women, thyroid function changed significantly during COH, but these changes were not different between the three reproductive outcomes. Thus, we do not suggest continuous thyroid function monitoring during COH.

  1. Serum Anti-TPO and TPO Gene Polymorphism as a Predictive Factor for Hidden Autoimmune Thyroiditis in Patient with Bronchial Asthma and Allergic Rhinitis.

    PubMed

    El Shabrawy, Reham M; Atta, Amal H; Rashad, Nearmeen M

    2016-01-01

    Thyroid peroxidase (TPO) is the key enzyme in the biosynthesis of thyroid hormones T3 and T4. Autoimmune thyroiditis is a common disorder affecting 10% of population worldwide. A key feature of autoimmune thyroiditis is the presence of anti TPO antibodies, and some mutation of the TPO gene. Association between autoimmune thyroiditis and other autoimmune disorders has been reported but little is known about association with allergic diseases. In this study, we aimed to evaluate frequency of hidden autoimmune thyroiditis among allergic patient and examine possible relationship between anti-TPO levels and polymorphism at the TPO gene A2173/C exon 12 and different types of allergens. The study included 50 adult Egyptian patients with allergic rhinitis and /or bronchial asthma and 50 controls. For each subject, thyroid stimulating hormone (TSH), thyroxin 4 (T4) and Triiodothyronine (T3) hormones were measured. Anti-thyroid peroxidase (anti-TPO) level was detected by ELISA; and TPO gene polymorphism 2173A>C exon 12 was analyzed using restriction fragment length polymorphism (RFLP). Skin prick test was done to assess allergic response in patients. Serum levels of T3, T4 and TSH did not show any statistical significant difference between patients and groups. However, mean serum anti-TPO level was statistically higher in patients than controls, and correlated positively with body mass index, age, diastolic blood pressure, suggesting higher prevalence of hidden autoimmune thyroiditis in allergic patients than in control group. 2173A>C Genotyping revealed that the frequency of C allele is increased in the patient group. C allele represents a risk factor with odds ratio of 2.37 (1.035-5.44) and a significant P value <0.05. It is concluded that TPO 2173A>C polymorphism may be considered as a risk factor for developing autoimmune thyroiditis in patients with allergic rhinitis and asthma and that these patients should regularly be checked for hidden thyroiditis. Copyright© by

  2. The role of magnesium and thyroid function in early pregnancy after in-vitro fertilization (IVF): New aspects in endocrine physiology.

    PubMed

    Stuefer, Sibilla; Moncayo, Helga; Moncayo, Roy

    2015-06-01

    The initiation of a pregnancy is a process that requires adequate energetic support. Recent observations at our Institution suggest a central role of magnesium in this situation. The aim of this study was to evaluate magnesium, zinc, selenium and thyroid function as well as anti-Müllerian hormone in early pregnancy following in-vitro fertilization as compared to spontaneous successful pregnancies. A successful outcome of pregnancy after IVF treatment was associated with 2 parameters: higher levels of anti-Müllerian hormone as well as higher levels of magnesium in the pre-stimulation blood sample. These two parameters, however, showed no correlation. Spontaneous pregnancies as well as pregnancies after IVF show a fall of magnesium levels at 2-3 weeks of gestation. This drop of magnesium concentration is larger following IVF as compared to spontaneous pregnancies. Parallel to these changes TSH levels showed an increase in early IVF-pregnancy. At this time point we also observed a positive correlation between fT4 and TSH. This was not observed in spontaneous pregnancies. Thyroid antibodies showed no correlation to outcomes. In connection with the initiation of pregnancy following ovarian stimulation dynamic changes of magnesium and TSH levels can be observed. A positive correlation was found between fT4 and TSH in IVF pregnancies. In spontaneous pregnancies smaller increases of TSH levels are related to higher magnesium levels. We propose that magnesium plays a role in early pregnancy as well as in pregnancy success independently from anti-Müllerian hormone. Neither thyroid hormones nor thyroid antibodies were related to outcome.

  3. Hormonal disturbances in visceral leishmaniasis (kala-azar).

    PubMed

    Verde, Frederico Araujo Lima; Verde, Francisco Agenor Araujo Lima; Neto, Augusto Saboia; Almeida, Paulo César; Verde, Emir Mendonça Lima

    2011-05-01

    This study presents a cross-sectional analysis of the hormonal alterations of patients with visceral leishmaniasis. The diagnosis was established by the bone marrow aspiration and polymerase chain reaction test. Primary adrenal insufficiency was observed in 45.8% of patients; low aldosterone/renin plasma ratio in 69.4%; low daily urinary aldosterone excretion in 61.1%; and low transtubular potassium gradient in 68.0%. All patients had normal plasma antidiuretic hormone (ADH) concentrations, hyponatremia, and high urinary osmolality. Plasma parathyroid hormone was low in 63%; hypomagnesemia was present in 46.4%, and increased Mg(++)(EF) in 100%. Primary thyroid insufficiency was observed in 24.6%, and secondary thyroid insufficiency in 14.1%. Normal follicle-stimulating hormone plasma levels were present in 81.4%; high luteinizing hormone and low testosterone plasma levels in 58.2% of men. There are evidences of hypothalamus-pituitary-adrenal axis abnormalities, inappropriate aldosterone and ADH secretions, and presence of hypoparathyroidism, magnesium depletion, thyroid and testicular insufficiencies.

  4. Induction of metamorphosis in the sand dollar Peronella japonica by thyroid hormones.

    PubMed

    Saito, M; Seki, M; Amemiya, S; Yamasu, K; Suyemitsu, T; Ishihara, K

    1998-06-01

    The larva of the sand dollar Peronella japonica lacks a mouth and gut, and undergoes metamorphosis into a juvenile sand dollar without feeding. In the present study, it was found that thyroid hormones accelerate the metamorphosis of P. japonica larvae. The contents of thyroid hormones in larvae increased gradually during development. Thiourea and potassium perchlorate, inhibitors of thyroid hormone synthesis, delayed larval metamorphosis and simultaneously repressed an increase in the content of thyroxine in the larval body. These results suggest that the P. japonica larva has a system for synthesis of thyroid hormones that act as factors for inducing metamorphosis.

  5. Isolation of a thyroid hormone-responsive gene by immunoprecipitation of thyroid hormone receptor-DNA complexes.

    PubMed Central

    Bigler, J; Eisenman, R N

    1994-01-01

    Thyroid hormone (T3) receptor (TR) is a ligand-dependent transcription factor that acts through specific binding sites in the promoter region of target genes. In order to identify new genes that are regulated by T3, we used anti-TR antiserum to immunoprecipitate TR-DNA complexes from GH4 cell nuclei that had previously been treated with a restriction enzyme. Screening of the immunopurified, cloned DNA for TR binding sites by electrophoretic mobility shift assay yielded 53 positive clones. A subset of these clones was specifically immunoprecipitated with anti-TR antiserum and may therefore represent biologically significant binding sites. One of these clones, clone 122, was characterized in detail. It includes sequences highly related to the NICER long terminal repeat-like element and contains three TR binding sites as determined by DNase I footprinting. Two of the clone 122 TR binding sites are located upstream of the TATA box, and one is located downstream. The TR binding site downstream from the promoter was necessary and sufficient to confer T3-dependent regulation in transient transfection experiments. Expression of a reporter construct under the control of the clone 122 promoter region was activated by TR in the absence of ligand and returned to basal levels after T3 addition. Clone 122 sequences hybridize to at least two different mRNAs of approximately 6 and 10 kb from GH4 cells. The levels of both of these mRNAs increased upon removal of T3. Our studies suggest that specific immunoprecipitation of chromatin allows identification of binding sites and target genes for transcription factors. Images PMID:7935476

  6. Neurodevelopmental Consequences of Low-Level Thyroid Hormone Disruption Induced by Environmental Contaminants

    EPA Science Inventory

    Inadequate levels of thyroid hormone during critical developmental periods lead to stunted growth, mental retardation, and neurological 'cretinism'. Animal models of developmental thyroid hormone deficiency mirror well the impact of severe insults to the thyroid system. However, ...

  7. Thyroid function and cold acclimation in the hamster, Mesocricetus auratus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasi, T.E.; Horwitz, B.A.

    1987-02-01

    Basal metabolic rate (BMR), thyroxine utilization rate (T4U), and triiodothyronine utilization rate (T3U) were measured in cold-acclimated (CA) and room temperature-acclimated (RA) male golden hamsters, Mesocricetus auratus. Hormone utilization rates were calculated via the plasma disappearance technique using SVI-labeled hormones and measuring serum hormone levels via radioimmunoassay. BMR showed a significant 28% increase with cold acclimation. The same cold exposure also produced a 32% increase in T4U, and a 204% increase in T3U. The much greater increase in T3U implies that previous assessments of the relationship between cold acclimation and thyroid function may have been underestimated and that cold exposuremore » induces both quantitative and qualitative changes in thyroid function. It is concluded that in the cold-acclimated state, T3U more accurately reflects thyroid function than does T4U. A mechanism for the cold-induced change in BMR is proposed.« less

  8. In uncontrolled diabetes, thyroid hormone and sympathetic activators induce thermogenesis without increasing glucose uptake in brown adipose tissue.

    PubMed

    Matsen, Miles E; Thaler, Joshua P; Wisse, Brent E; Guyenet, Stephan J; Meek, Thomas H; Ogimoto, Kayoko; Cubelo, Alex; Fischer, Jonathan D; Kaiyala, Karl J; Schwartz, Michael W; Morton, Gregory J

    2013-04-01

    Recent advances in human brown adipose tissue (BAT) imaging technology have renewed interest in the identification of BAT activators for the treatment of obesity and diabetes. In uncontrolled diabetes (uDM), activation of BAT is implicated in glucose lowering mediated by intracerebroventricular (icv) administration of leptin, which normalizes blood glucose levels in streptozotocin (STZ)-induced diabetic rats. The potent effect of icv leptin to increase BAT glucose uptake in STZ-diabetes is accompanied by the return of reduced plasma thyroxine (T4) levels and BAT uncoupling protein-1 (Ucp1) mRNA levels to nondiabetic controls. We therefore sought to determine whether activation of thyroid hormone receptors is sufficient in and of itself to lower blood glucose levels in STZ-diabetes and whether this effect involves activation of BAT. We found that, although systemic administration of the thyroid hormone (TR)β-selective agonist GC-1 increases energy expenditure and induces further weight loss in STZ-diabetic rats, it neither increased BAT glucose uptake nor attenuated diabetic hyperglycemia. Even when GC-1 was administered in combination with a β(3)-adrenergic receptor agonist to mimic sympathetic nervous system activation, glucose uptake was not increased in STZ-diabetic rats, nor was blood glucose lowered, yet this intervention potently activated BAT. Similar results were observed in animals treated with active thyroid hormone (T3) instead of GC-1. Taken together, our data suggest that neither returning normal plasma thyroid hormone levels nor BAT activation has any impact on diabetic hyperglycemia, and that in BAT, increases of Ucp1 gene expression and glucose uptake are readily dissociated from one another in this setting.

  9. Serum Thyroid-Stimulating Hormone Levels and Body Mass Index Percentiles in Children with Primary Hypothyroidism on Levothyroxine Replacement

    PubMed Central

    Shaoba, Asma; Basu, Sanjib; Mantis, Stelios; Minutti, Carla

    2017-01-01

    Objective: To determine the association, if any, between thyroid-stimulating hormone (TSH) levels and body mass index (BMI) percentiles in children with primary hypothyroidism who are chemically euthyroid and on treatment with levothyroxine. Methods: This retrospective cross-sectional study consisted of a review of medical records from RUSH Medical Center and Stroger Hospital, Chicago, USA of children with primary hypothyroidism who were seen in the clinic from 2008 to 2014 and who were chemically euthyroid and on treatment with levothyroxine for at least 6 months. The patients were divided into two groups based on their TSH levels (0.34-<2.5 mIU/L and ≥2.5-5.6 mIU/L). The data were analyzed by Spearman rank correlation, linear regression, cross tabulation and chi-square, Mann-Whitney U test, and Kruskal-Wallis test. Results: One hundred and forty-six children were included, of which 26% were obese (BMI ≥95%), 21.9% overweight (BMI ≥85-<95%), and 52.1% of a healthy weight (BMI ≥5-<85%). There was a significant positive correlation between TSH and BMI percentiles (r=0.274, p=0.001) and a significant negative correlation between TSH and serum free T4 (r=-0.259, p=0.002). In the lower TSH group, 68.4% of the children had a healthy weight, while the percentage of obese children was 60.5% in the upper TSH group (p=0.012). Conclusion: In children diagnosed with primary hypothyroidism who are chemically euthyroid on treatment with levothyroxine, there is a positive association between higher TSH levels and higher BMI percentiles. However, it is difficult to establish if the higher TSH levels are a direct cause or a consequence of the obesity. Further studies are needed to establish causation beyond significant association. PMID:28766504

  10. Serum Thyroid-Stimulating Hormone Levels and Body Mass Index Percentiles in Children with Primary Hypothyroidism on Levothyroxine Replacement.

    PubMed

    Shaoba, Asma; Basu, Sanjib; Mantis, Stelios; Minutti, Carla

    2017-12-15

    To determine the association, if any, between thyroid-stimulating hormone (TSH) levels and body mass index (BMI) percentiles in children with primary hypothyroidism who are chemically euthyroid and on treatment with levothyroxine. This retrospective cross-sectional study consisted of a review of medical records from RUSH Medical Center and Stroger Hospital, Chicago, USA of children with primary hypothyroidism who were seen in the clinic from 2008 to 2014 and who were chemically euthyroid and on treatment with levothyroxine for at least 6 months. The patients were divided into two groups based on their TSH levels (0.34-<2.5 mIU/L and ≥2.5-5.6 mIU/L). The data were analyzed by Spearman rank correlation, linear regression, cross tabulation and chi-square, Mann-Whitney U test, and Kruskal-Wallis test. One hundred and forty-six children were included, of which 26% were obese (BMI ≥95%), 21.9% overweight (BMI ≥85-<95%), and 52.1% of a healthy weight (BMI ≥5-<85%). There was a significant positive correlation between TSH and BMI percentiles (r=0.274, p=0.001) and a significant negative correlation between TSH and serum free T4 (r=-0.259, p=0.002). In the lower TSH group, 68.4% of the children had a healthy weight, while the percentage of obese children was 60.5% in the upper TSH group (p=0.012). In children diagnosed with primary hypothyroidism who are chemically euthyroid on treatment with levothyroxine, there is a positive association between higher TSH levels and higher BMI percentiles. However, it is difficult to establish if the higher TSH levels are a direct cause or a consequence of the obesity. Further studies are needed to establish causation beyond significant association.

  11. Establishment of reference intervals for serum thyroid-stimulating hormone, free and total thyroxine, and free and total triiodothyronine for the Beckman Coulter DxI-800 analyzers by indirect method using data obtained from Chinese population in Zhejiang Province, China.

    PubMed

    Wang, Yan; Zhang, Yu-Xia; Zhou, Yong-Lie; Xia, Jun

    2017-07-01

    In order to establish suitable reference intervals of thyroid-stimulating hormone (TSH), free (unbound) T4 (FT4), free triiodothyronine (FT3), total thyroxine (T4), and total triiodothyronine (T3) for the patients collected in Zhejiang, China, an indirect method was developed using the data from the people presented for routine health check-up. Fifteen thousand nine hundred and fifty-six person's results were reviewed. Box-Cox or Case Rank was used to transform the data to normal distribution. Tukey and Box-Plot methods were used to exclude the outliers. Nonparametric method was used to establish the reference intervals following the EP28-A3c guideline. Pearson correlation was used to evaluate the correlation between hormone levels and age, while Mann-Whitney U test was employed for quantification of concentration differences on the people who are younger and older than 50 years old. Reference intervals were 0.66-4.95 mIU/L (TSH), 8.97-14.71 pmol/L (FT4), 3.75-5.81 pmol/L (FT3), 73.45-138.93 nmol/L (total T4), and 1.24-2.18 nmol/L (total T3) in male; conversely, reference intervals for female were 0.72-5.84 mIU/L (TSH), 8.62-14.35 pmol/L (FT4), 3.59-5.56 pmol/L (FT3), 73.45-138.93 nmol/L (total T4), and 1.20-2.10 nmol/L (total T3). FT4, FT3, and total T3 levels in male and FT4 level in female had an inverse correlation with age. Total T4 and TSH levels in female were directly correlated. Significant differences in these hormones were also found between younger and older than 50 years old except FT3 in female. Indirect method can be applied for establishment of reference intervals for TSH, FT4, FT3, total T4, and total T3. The reference intervals are narrower than those previously established. Age factor should also be considered. © 2016 Wiley Periodicals, Inc.

  12. Central irisin administration suppresses thyroid hormone production but increases energy consumption in rats.

    PubMed

    Tekin, Suat; Erden, Yavuz; Ozyalin, Fatma; Onalan, Ebru Etem; Cigremis, Yilmaz; Colak, Cemil; Tekedereli, Ibrahim; Sandal, Suleyman

    2018-05-01

    Irisin, which is secreted from the skeletal muscle in response to physical exercise and defined as a thermogenic peptide, may play an important role in energy metabolism. Thyroid hormones, which are one of the other influential factors on the metabolic status, increase heat production and are the main regulators of energy metabolism. This study was conducted to determine the possible effects of irisin administration on thyroid hormones. Forty adult male Wistar albino rats were used in the study. The rats were equally divided into 4 groups (n = 10). The brain infusion kit was implanted in the groups, and irisin (or solvent as control) was centrally administered to the rats via osmotic mini pumps for 7 days. During the experiment, food consumption, body weights, and body temperatures of the animals were recorded. Food intake was significantly increased in the groups treated with irisin (p < 0.05), but their body weights were not changed. Hypothalamic TRH gene expression, serum TSH, fT3, and fT4 levels were significantly lower in the groups treated with irisin as compared to the naive and control groups (p < 0.05). In addition, irisin increased UCP1 mRNA expression in white and brown adipose tissue and UCP3 mRNA expression in muscle tissue in rats and also raised their body temperature (p < 0.05). Consequently, although central irisin administration has inhibitory effects on the hypothalamic-pituitary-thyroid axis, it seems to be an important agent in the regulation of food intake and energy metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Thyroid Disorders Associated with Alopecia Areata in Egyptian Patients

    PubMed Central

    Bakry, Ola A; Basha, Mohamed A; El Shafiee, Maather K; Shehata, Wafaa A

    2014-01-01

    Context: Alopecia areata (AA) is a common form of localized, non-scarring hair loss. The etiopathogenesis of the disease is still unclear, but the role of autoimmunity is strongly suggested. AA is commonly associated with various autoimmune disorders; the most frequent among them is autoimmune thyroid disorders. Aim: To determine whether AA is associated with thyroid autoimmunity or thyroid function abnormalities in Egyptian patients. Materials and Methods: Fifty subjects with AA (37 males and 13 females) without clinical evidence of thyroid disorders were selected from Dermatology Outpatient Clinic, Menoufiya University Hospital, Menoufiya Governorate, Egypt, during the period from June 2009 to February 2010. They were divided into 3 groups according to severity of AA. Fifty age and sex-matched healthy volunteers (35 males and 15 females) were selected as a control group. Every case and control were subjected to history taking, complete general and dermatological examination. Venous blood samples were taken from cases and controls after taking their consents for measurement of thyroid stimulating hormone (TSH), free T3, freeT4 and detection of Anti-thyroglobulin Antibody (Tg-Ab) and Anti-thyroid Peroxidase Antibody (TPO-Ab). Results: Subclinical hypothyroidism was detected in 16% of cases. There were statistically significant differences between cases and controls regarding levels of TSH, free T3 and free T4. There were significant differences between cases and controls regarding the presence of Tg-Ab and TPO-Ab. Conclusions: Every patient with AA should be screened for thyroid functions and presence of thyroid autoantibodies even in absence of clinical manifestations suggestive of thyroid affection. PMID:24470660

  14. Waterborne exposure to BPS causes thyroid endocrine disruption in zebrafish larvae

    PubMed Central

    Zhang, Dan-hua; Zhou, En-xiang; Yang, Zhu-lin

    2017-01-01

    Bisphenol S (BPS) is widely used as a raw material in industry, resulting in its ubiquitous distribution in natural environment, including the aqueous environment. However, the effect of BPS on the thyroid endocrine system is largely unknown. In this study, zebrafish (Danio rerio) embryos were exposed to BPS at 1, 3, 10, and 30 μg/L, from 2 h post-fertilization (hpf) to 168hpf. Bioconcentration of BPS and whole-body thyroid hormones (THs), thyroid-stimulating hormone (TSH) concentrations as well as transcriptional profiling of key genes related to the hypothalamic-pituitary-thyroid (HPT) axis were examined. Chemical analysis indicated that BPS was accumulated in zebrafish larvae. Thyroxine (T4) and triiodothyronine (T3) levels were significantly decreased at ≥ 10 and 30 μg/L of BPS, respectively. However, TSH concentration was significantly induced in the 10 and 30 μg/L BPS-treated groups. After exposure to BPS, the mRNA expression of corticotrophin releasing hormone (crh) and thyroglobulin (tg) genes were up-regulated at ≥10 μg/L of BPS, in a dose-response manner. The transcription of genes involved in thyroid development (pax8) and synthesis (sodium/iodide symporter, slc5a5) were also significantly increased in the 30 μg/L of BPS treatment group. Moreover, exposure to 10 μg/L or higher concentration of BPS significantly up-regulated genes related to thyroid hormone metabolism (deiodinases, dio1, dio2 and uridinediphosphate glucoronosyltransferases, ugt1ab), which might be responsible for the altered THs levels. However, the transcript of transthyretin (ttr) was significantly down-regulated at ≥ 3 μg/L of BPS, while the mRNA levels of thyroid hormone receptors (trα and trβ) and dio3 remained unchanged. All the results indicated that exposure to BPS altered the whole-body THs and TSH concentrations and changed the expression profiling of key genes related to HPT axis, thus triggering thyroid endocrine disruption. PMID:28467477

  15. Impairment of regulatory capacity of CD4+CD25+ regulatory T cells mediated by dendritic cell polarization and hyperthyroidism in Graves' disease.

    PubMed

    Mao, Chaoming; Wang, Shu; Xiao, Yichuan; Xu, Jingwei; Jiang, Qian; Jin, Min; Jiang, Xiaohua; Guo, Hua; Ning, Guang; Zhang, Yanyun

    2011-04-15

    Graves' disease (GD) is one of the most common autoimmune diseases. The immune dysfunction in GD involves the generation of thyroid-stimulating hormone receptor (TSHR) autoantibodies that presumably arise consequent to interactions among dendritic cells (DCs), T cells, and regulatory T (Treg) cells. However, the immunological mechanisms of interactions between them that lead to the induction and regulation of this autoimmune disease are poorly defined. In this study, we investigated whether DCs are the main cause of the defective activity of Treg cells in GD patients. We found a significant decrease in the percentage of circulating CD4(+)CD25(+)FOXP3(+) Treg cells in untreated GD patients (uGD), which was negatively correlated with the concentration of TSHR autoantibodies. uGD-derived DCs were polarized to increase the number of plasmacytoid DCs (pDCs) and conferred the ability to abrogate the suppressive function of Treg cells through inducing apoptosis of CD4(+)CD25(+) Treg cells in an IFN-α-dependent manner, and elevated thyroid hormones further exacerbated the effect. The nucleotide UDP, which inhibits IFN-α secretion of pDCs through P2Y6 receptor signaling, restored the suppressive function of CD4(+)CD25(+) Treg cells. Collectively, uGD-derived DCs through pDC polarization and elevated thyroid hormones act in concert to impair the regulatory capacity of Treg cells, facilitating the production of TSHR autoantibodies in the pathogenesis of GD.

  16. Thyroid hormone status affects expression of daily torpor and gene transcription in Djungarian hamsters (Phodopus sungorus).

    PubMed

    Bank, Jonathan H H; Kemmling, Julia; Rijntjes, Eddy; Wirth, Eva K; Herwig, Annika

    2015-09-01

    Thyroid hormones (TH) play a key role in regulation of seasonal as well as acute changes in metabolism. Djungarian hamsters (Phodopus sungorus) adapt to winter by multiple changes in behaviour and physiology including spontaneous daily torpor, a state of hypometabolism and hypothermia. We investigated effects of systemic TH administration and ablation on the torpor behaviour in Djungarian hamsters adapted to short photoperiod. Hyperthyroidism was induced by giving T4 or T3 and hypothyroidism by giving methimazole (MMI) and sodium perchlorate via drinking water. T3 treatment increased water, food intake and body mass, whereas MMI had the opposite effect. Continuous recording of body temperature revealed that low T3 serum concentrations increased torpor incidence, lowered Tb and duration, whereas high T3 serum concentrations inhibited torpor expression. Gene expression of deiodinases (dio) and uncoupling proteins (ucp) were analysed by qPCR in hypothalamus, brown adipose tissue (BAT) and skeletal muscle. Expression of dio2, the enzyme generating T3 by deiodination of T4, and ucps, involved in thermoregulation, indicated a tissue specific response to treatment. Torpor per se decreased dio2 expression irrespective of treatment or tissue, suggesting low intracellular T3 concentrations during torpor. Down regulation of ucp1 and ucp3 during torpor might be a factor for the inhibition of BAT thermogenesis. Hypothalamic gene expression of neuropeptide Y, propopiomelanocortin and somatostatin, involved in feeding behaviour and energy balance, were not affected by treatment. Taken together our data indicate a strong effect of thyroid hormones on torpor, suggesting that lowered intracellular T3 concentrations in peripheral tissues promote torpor.

  17. Pituitary resistance to thyroid hormone associated with a base mutation in the hormone-binding domain of the human 3,5,3'-triiodothyronine receptor-beta.

    PubMed

    Sasaki, S; Nakamura, H; Tagami, T; Miyoshi, Y; Nogimori, T; Mitsuma, T; Imura, H

    1993-05-01

    Point mutations in the human T3 receptor-beta (TR beta) gene causing single amino acid substitutions have been identified in several different kindreds with generalized resistance to thyroid hormone. Until now, no study has been reported on the TR gene in cases of pituitary resistance (PRTH). In the present study, we analyzed the TR beta gene in a 30-yr-old Japanese female with PRTH. She exhibited clinical features of hyperthyroidism, elevated serum thyroid hormone levels accompanied by inappropriately increased secretion of TSH, mildly elevated basal metabolic rate, and increased urinary excretion of hydroxyproline. No pituitary tumor was detected. DNA fragments of exons 3-8 of the genomic TR beta gene were generated by the polymerase chain reaction and analyzed by a single stranded conformation polymorphism method. Exon 7 of the patient's TR beta gene showed an abnormal band, suggesting the existence of mutation(s). By subcloning and sequencing the DNA, a point mutation was identified in one allele at nucleotide 1297 (C to T), which altered the 333rd amino acid, arginine, to tryptophan. Neither of her apparently normal parents had any mutations of the TR beta gene. In vitro translation products of the mutant TR beta gene showed remarkably decreased T3-binding activity (Ka, 2.1 x 10(8) M-1; normal TR beta Ka, 1.1 x 10(10) M-1). Since the molecular defect detected in a patient with PRTH is similar to that seen in subjects with generalized resistance to thyroid hormone, both types of the syndrome may represent a continuous spectrum of the same etiological defect with variable tissue resistance to thyroid hormone.

  18. Intrinsic Regulation of Thyroid Function by Thyroglobulin

    PubMed Central

    Sellitti, Donald F.

    2014-01-01

    Background: The established paradigm for thyroglobulin (Tg) function is that of a high molecular weight precursor of the much smaller thyroid hormones, triiodothyronine (T3) and thyroxine (T4). However, speculation regarding the cause of the functional and morphologic heterogeneity of the follicles that make up the thyroid gland has given rise to the proposition that Tg is not only a precursor of thyroid hormones, but that it also functions as an important signal molecule in regulating thyroid hormone biosynthesis. Summary: Evidence supporting this alternative paradigm of Tg function, including the up- or downregulation by colloidal Tg of the transcription of Tg, iodide transporters, and enzymes employed in Tg iodination, and also the effects of Tg on the proliferation of thyroid and nonthyroid cells, is examined in the present review. Also discussed in detail are potential mechanisms of Tg signaling in follicular cells. Conclusions: Finally, we propose a mechanism, based on experimental observations of Tg effects on thyroid cell behavior, that could account for the phenomenon of follicular heterogeneity as a highly regulated cycle of increasing and decreasing colloidal Tg concentration that functions to optimize thyroid hormone production through the transcriptional activation or suppression of specific genes. PMID:24251883

  19. Clinical features of a new disease concept, IgG4-related thyroiditis.

    PubMed

    Watanabe, T; Maruyama, M; Ito, T; Fujinaga, Y; Ozaki, Y; Maruyama, M; Kodama, R; Muraki, T; Hamano, H; Arakura, N; Kadoya, M; Suzuki, S; Komatsu, M; Shimojo, H; Notohara, K; Uchida, M; Kawa, S

    2013-01-01

    Immunoglobulin (Ig)G4-related disease is a recently proposed systemic disorder that includes autoimmune pancreatitis (AIP), Mikulicz's disease, and various other organ lesions. In the present retrospective study, we examined whether thyroid lesions should also be included in IgG4-related disease (Ig4-RD) under the new term IgG4-related thyroiditis. We enrolled 114 patients with Ig4-RD, including 92 patients with AIP, 15 patients with Mikulicz's disease, and seven patients with IgG4-related cholangitis, and analysed clinical findings, function, serum values of activity markers, computed tomography (CT) images, and histology of the thyroid gland. Among the 22 patients (19%) in our cohort who were found to have hypothyroidism [thyroid stimulating hormone (TSH) > 4 mIU/L], 11 patients had clinical hypothyroidism [free thyroxine (FT4) < 1 ng/dL] and 11 patients had subclinical hypothyroidism (FT4 ≥ 1 ng/dL). Serum concentrations of IgG, IgG4, circulating immune complex (CIC), and β2-microglobulin (β2-MG) were significantly higher in the hypothyroidism group compared with the remaining 92 euthyroid patients, and serum C3 concentration was significantly lower. After prednisolone treatment, TSH values had decreased significantly (p = 0.005) in this group and FT4 values had increased significantly (p = 0.047). CT images showed that the thyroid glands of patients with clinical hypothyroidism had a significantly greater volume than those of the euthyroid and other groups. Pathological analysis of one resected thyroid gland disclosed a focused lesion with infiltration of lymphocytes and IgG4-bearing plasma cells and loss of thyroid follicles. Thyroid lesions associated with hypothyroidism can be considered as a new disease termed IgG4-related thyroiditis. Awareness of this condition should lead to appropriate corticosteroid treatment that may prevent progression to a fibrous state.

  20. Thyroid disease and the cardiovascular system.

    PubMed

    Danzi, Sara; Klein, Irwin

    2014-06-01

    Thyroid hormones, specifically triiodothyronine (T3), have significant effects on the heart and cardiovascular system. Hypothyroidism, hyperthyroidism, subclinical thyroid disease, and low T3 syndrome each cause cardiac and cardiovascular abnormalities through both genomic and nongenomic effects on cardiac myocytes and vascular smooth muscle cells. In compromised health, such as occurs in heart disease, alterations in thyroid hormone metabolism may further impair cardiac and cardiovascular function. Diagnosis and treatment of cardiac disease may benefit from including analysis of thyroid hormone status, including serum total T3 levels. Copyright © 2014 Elsevier Inc. All rights reserved.