Sample records for tabla beat science

  1. Beat-to-Beat Blood Pressure Monitor

    NASA Technical Reports Server (NTRS)

    Lee, Yong Jin

    2012-01-01

    This device provides non-invasive beat-to-beat blood pressure measurements and can be worn over the upper arm for prolonged durations. Phase and waveform analyses are performed on filtered proximal and distal photoplethysmographic (PPG) waveforms obtained from the brachial artery. The phase analysis is used primarily for the computation of the mean arterial pressure, while the waveform analysis is used primarily to obtain the pulse pressure. Real-time compliance estimate is used to refine both the mean arterial and pulse pressures to provide the beat-to-beat blood pressure measurement. This wearable physiological monitor can be used to continuously observe the beat-to-beat blood pressure (B3P). It can be used to monitor the effect of prolonged exposures to reduced gravitational environments and the effectiveness of various countermeasures. A number of researchers have used pulse wave velocity (PWV) of blood in the arteries to infer the beat-to-beat blood pressure. There has been documentation of relative success, but a device that is able to provide the required accuracy and repeatability has not yet been developed. It has been demonstrated that an accurate and repeatable blood pressure measurement can be obtained by measuring the phase change (e.g., phase velocity), amplitude change, and distortion of the PPG waveforms along the brachial artery. The approach is based on comparing the full PPG waveform between two points along the artery rather than measuring the time-of-flight. Minimizing the measurement separation and confining the measurement area to a single, well-defined artery allows the waveform to retain the general shape between the two measurement points. This allows signal processing of waveforms to determine the phase and amplitude changes. Photoplethysmography, which measures changes in arterial blood volume, is commonly used to obtain heart rate and blood oxygen saturation. The digitized PPG signals are used as inputs into the beat-to-beat blood

  2. Beat-to-Beat Blood Pressure Monitor

    NASA Technical Reports Server (NTRS)

    Lee, Yong Jin

    2012-01-01

    This device provides non-invasive beat-to-beat blood pressure measurements and can be worn over the upper arm for prolonged durations. Phase and waveform analyses are performed on filtered proximal and distal photoplethysmographic (PPG) waveforms obtained from the brachial artery. The phase analysis is used primarily for the computation of the mean arterial pressure, while the waveform analysis is used primarily to obtain the pulse pressure. Real-time compliance estimate is used to refine both the mean arterial and pulse pressures to provide the beat-to-beat blood pressure measurement. This wearable physiological monitor can be used to continuously observe the beat-to-beat blood pressure (B3P). It can be used to monitor the effect of prolonged exposures to reduced gravitational environments and the effectiveness of various countermeasures. A number of researchers have used pulse wave velocity (PWV) of blood in the arteries to infer the beat-to-beat blood pressure. There has been documentation of relative success, but a device that is able to provide the required accuracy and repeatability has not yet been developed. It has been demonstrated that an accurate and repeatable blood pressure measurement can be obtained by measuring the phase change (e.g., phase velocity), amplitude change, and distortion of the PPG waveforms along the brachial artery. The approach is based on comparing the full PPG waveform between two points along the artery rather than measuring the time-of-flight. Minimizing the measurement separation and confining the measurement area to a single, well-defined artery allows the waveform to retain the general shape between the two measurement points. This allows signal processing of waveforms to determine the phase and amplitude changes.

  3. A comparison of auditory evoked potentials to acoustic beats and to binaural beats.

    PubMed

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2010-04-01

    The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to beats-evoked oscillations were determined and compared across beat types, beat frequencies and base (carrier) frequencies. All stimuli evoked tone-onset components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude in response to acoustic than to binaural beats, to 250 than to 1000 Hz base frequency and to 3 Hz than to 6 Hz beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left temporal lobe areas. Differences between estimated sources of potentials to acoustic and binaural beats were not significant. The perceptions of binaural beats involve cortical activity that is not different than acoustic beats in distribution and in the effects of beat- and base frequency, indicating similar cortical processing. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Binaural beat salience

    PubMed Central

    Grose, John H.; Buss, Emily; Hall, Joseph W.

    2012-01-01

    Previous studies of binaural beats have noted individual variability and response lability, but little attention has been paid to the salience of the binaural beat percept. The purpose of this study was to gauge the strength of the binaural beat percept by matching its salience to that of sinusoidal amplitude modulation (SAM), and to then compare rate discrimination for the two types of fluctuation. Rate discrimination was measured for standard rates of 4, 8, 16, and 32 Hz – all in the 500-Hz carrier region. Twelve normal-hearing adults participated in this study. The results indicated that discrimination acuity for binaural beats is similar to that for SAM tones whose depths of modulation have been adjusted to provide equivalent modulation salience. The matched-salience SAM tones had relatively shallow depths of modulation, suggesting that the perceptual strength of binaural beats is relatively weak, although all listeners perceived them. The Weber fraction for detection of an increase in binaural beat rate is roughly constant across beat rates, at least for rates above 4 Hz, as is rate discrimination for SAM tones. PMID:22326292

  5. Increased beat-to-beat T-wave variability in myocardial infarction patients.

    PubMed

    Hasan, Muhammad A; Abbott, Derek; Baumert, Mathias; Krishnan, Sridhar

    2018-03-28

    The purpose of this study was to investigate the beat-to-beat variability of T-waves (TWV) and to assess the diagnostic capabilities of T-wave-based features for myocardial infarction (MI). A total of 148 recordings of standard 12-lead electrocardiograms (ECGs) from 79 MI patients (22 females, mean age 63±12 years; 57 males, mean age 57±10 years) and 69 recordings from healthy subjects (HS) (17 females, 42±18 years; 52 males, 40±13 years) were studied. For the quantification of beat-to-beat QT intervals in ECG signal, a template-matching algorithm was applied. To study the T-waves beat-to-beat, we measured the angle between T-wave max and T-wave end with respect to Q-wave (∠α) and T-wave amplitudes. We computed the standard deviation (SD) of beat-to-beat T-wave features and QT intervals as markers of variability in T-waves and QT intervals, respectively, for both patients and HS. Moreover, we investigated the differences in the studied features based on gender and age for both groups. Significantly increased TWV and QT interval variability (QTV) were found in MI patients compared to HS (p<0.05). No significant differences were observed based on gender or age. TWV may have some diagnostic attributes that may facilitate identifying patients with MI. In addition, the proposed beat-to-beat angle variability was found to be independent of heart rate variations. Moreover, the proposed feature seems to have higher sensitivity than previously reported feature (QT interval and T-wave amplitude) variability for identifying patients with MI.

  6. Binaural beat salience.

    PubMed

    Grose, John H; Buss, Emily; Hall, Joseph W

    2012-03-01

    Previous studies of binaural beats have noted individual variability and response lability, but little attention has been paid to the salience of the binaural beat percept. The purpose of this study was to gauge the strength of the binaural beat percept by matching its salience to that of sinusoidal amplitude modulation (SAM), and to then compare rate discrimination for the two types of fluctuation. Rate discrimination was measured for standard rates of 4, 8, 16, and 32 Hz - all in the 500-Hz carrier region. Twelve normal-hearing adults participated in this study. The results indicated that discrimination acuity for binaural beats is similar to that for SAM tones whose depths of modulation have been adjusted to provide equivalent modulation salience. The matched-salience SAM tones had relatively shallow depths of modulation, suggesting that the perceptual strength of binaural beats is relatively weak, although all listeners perceived them. The Weber fraction for detection of an increase in binaural beat rate is roughly constant across beat rates, at least for rates above 4 Hz, as is rate discrimination for SAM tones. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Detection and evaluation of ventricular repolarization alternans: an approach to combined ECG, thoracic impedance, and beat-to-beat heart rate variability analysis.

    PubMed

    Kriščiukaitis, Algimantas; Šimoliūnienė, Renata; Macas, Andrius; Petrolis, Robertas; Drėgūnas, Kęstutis; Bakšytė, Giedrė; Pieteris, Linas; Bertašienė, Zita; Žaliūnas, Remigijus

    2014-01-01

    Beat-to-beat alteration in ventricles repolarization reflected by alternans of amplitude and/or shape of ECG S-T,T segment (TWA) is known as phenomena related with risk of severe arrhythmias leading to sudden cardiac death. Technical difficulties have caused limited its usage in clinical diagnostics. Possibilities to register and analyze multimodal signals reflecting heart activity inspired search for new technical solutions. First objective of this study was to test whether thoracic impedance signal and beat-to-beat heart rate reflect repolarization alternans detected as TWA. The second objective was revelation of multimodal signal features more comprehensively representing the phenomena and increasing its prognostic usefulness. ECG, and thoracic impedance signal recordings made during 24h follow-up of the patients hospitalized in acute phase of myocardial infarction were used for investigation. Signal morphology variations reflecting estimates were obtained by the principal component analysis-based method. Clinical outcomes of patients (survival and/or rehospitalization in 6 and 12 months) were compared to repolarization alternans and heart rate variability estimates. Repolarization alternans detected as TWA was also reflected in estimates of thoracic impedance signal shape and variation in beat-to-beat heart rate. All these parameters showed correlation with clinical outcomes of patients. The strongest significant correlation showed magnitude of alternans in estimates of thoracic impedance signal shape. The features of ECG, thoracic impedance signal and beat-to-beat variability of heart rate, give comprehensive estimates of repolarization alternans, which correlate, with clinical outcomes of the patients and we recommend using them to improve diagnostic reliability. Copyright © 2014 Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Musical rhythm and reading development: does beat processing matter?

    PubMed

    Ozernov-Palchik, Ola; Patel, Aniruddh D

    2018-05-20

    There is mounting evidence for links between musical rhythm processing and reading-related cognitive skills, such as phonological awareness. This may be because music and speech are rhythmic: both involve processing complex sound sequences with systematic patterns of timing, accent, and grouping. Yet, there is a salient difference between musical and speech rhythm: musical rhythm is often beat-based (based on an underlying grid of equal time intervals), while speech rhythm is not. Thus, the role of beat-based processing in the reading-rhythm relationship is not clear. Is there is a distinct relation between beat-based processing mechanisms and reading-related language skills, or is the rhythm-reading link entirely due to shared mechanisms for processing nonbeat-based aspects of temporal structure? We discuss recent evidence for a distinct link between beat-based processing and early reading abilities in young children, and suggest experimental designs that would allow one to further methodically investigate this relationship. We propose that beat-based processing taps into a listener's ability to use rich contextual regularities to form predictions, a skill important for reading development. © 2018 New York Academy of Sciences.

  9. Beat to beat variability in cardiovascular variables: noise or music?

    NASA Technical Reports Server (NTRS)

    Appel, M. L.; Berger, R. D.; Saul, J. P.; Smith, J. M.; Cohen, R. J.

    1989-01-01

    Cardiovascular variables such as heart rate, arterial blood pressure, stroke volume and the shape of electrocardiographic complexes all fluctuate on a beat to beat basis. These fluctuations have traditionally been ignored or, at best, treated as noise to be averaged out. The variability in cardiovascular signals reflects the homeodynamic interplay between perturbations to cardiovascular function and the dynamic response of the cardiovascular regulatory systems. Modern signal processing techniques provide a means of analyzing beat to beat fluctuations in cardiovascular signals, so as to permit a quantitative, noninvasive or minimally invasive method of assessing closed loop hemodynamic regulation and cardiac electrical stability. This method promises to provide a new approach to the clinical diagnosis and management of alterations in cardiovascular regulation and stability.

  10. Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception.

    PubMed

    Grahn, Jessica A; Rowe, James B

    2009-06-10

    Little is known about the underlying neurobiology of rhythm and beat perception, despite its universal cultural importance. Here we used functional magnetic resonance imaging to study rhythm perception in musicians and nonmusicians. Three conditions varied in the degree to which external reinforcement versus internal generation of the beat was required. The "volume" condition strongly externally marked the beat with volume changes, the "duration" condition marked the beat with weaker accents arising from duration changes, and the "unaccented" condition required the beat to be entirely internally generated. In all conditions, beat rhythms compared with nonbeat control rhythms revealed putamen activity. The presence of a beat was also associated with greater connectivity between the putamen and the supplementary motor area (SMA), the premotor cortex (PMC), and auditory cortex. In contrast, the type of accent within the beat conditions modulated the coupling between premotor and auditory cortex, with greater modulation for musicians than nonmusicians. Importantly, the response of the putamen to beat conditions was not attributable to differences in temporal complexity between the three rhythm conditions. We propose that a cortico-subcortical network including the putamen, SMA, and PMC is engaged for the analysis of temporal sequences and prediction or generation of putative beats, especially under conditions that may require internal generation of the beat. The importance of this system for auditory-motor interaction and development of precisely timed movement is suggested here by its facilitation in musicians.

  11. Using Science and Much More to Beat the Flood

    ERIC Educational Resources Information Center

    Seeley, Claire

    2014-01-01

    The Beat the Flood challenge involves designing and building a model flood-proof home, which is then tested in "flood" conditions. It is set on the fictitious Watu Island. The children form teams, with each team member being assigned a responsibility for the duration of the task--team leader, chief recorder, and resource manager. This…

  12. Feeling the beat: premotor and striatal interactions in musicians and non-musicians during beat perception

    PubMed Central

    Grahn, Jessica A.; Rowe, James B.

    2009-01-01

    Little is known about the underlying neurobiology of rhythm and beat perception, despite its universal cultural importance. Here we used functional magnetic resonance imaging to study rhythm perception in musicians and non-musicians. Three conditions varied in the degree to which external reinforcement versus internal generation of the beat was required. The ‘Volume’ condition strongly externally marked the beat with volume changes, the ‘Duration’ condition marked the beat with weaker accents arising from duration changes, and the ‘Unaccented’ condition required the beat to be entirely internally generated. In all conditions, beat rhythms compared to nonbeat control rhythms revealed putamen activity. The presence of a beat was also associated with greater connectivity between the putamen and the supplementary motor area (SMA), the premotor cortex (PMC) and auditory cortex. In contrast, the type of accent within the beat conditions modulated the coupling between premotor and auditory cortex, with greater modulation for musicians than non-musicians. Importantly, the putamen's response to beat conditions was not due to differences in temporal complexity between the three rhythm conditions. We propose that a cortico-subcortical network including the putamen, SMA, and PMC is engaged for the analysis of temporal sequences and prediction or generation of putative beats, especially under conditions that may require internal generation of the beat. The importance of this system for auditory-motor interaction and development of precisely timed movement is suggested here by its facilitation in musicians. PMID:19515922

  13. Model for the heart beat-to-beat time series during meditation

    NASA Astrophysics Data System (ADS)

    Capurro, A.; Diambra, L.; Malta, C. P.

    2003-09-01

    We present a model for the respiratory modulation of the heart beat-to-beat interval series. The model consists of a pacemaker, that simulates the membrane potential of the sinoatrial node, modulated by a periodic input signal plus correlated noise that simulates the respiratory input. The model was used to assess the waveshape of the respiratory signals needed to reproduce in the phase space the trajectory of experimental heart beat-to-beat interval data. The data sets were recorded during meditation practices of the Chi and Kundalini Yoga techniques. Our study indicates that in the first case the respiratory signal has the shape of a smoothed square wave, and in the second case it has the shape of a smoothed triangular wave.

  14. Beat to beat 3-dimensional intracardiac echocardiography: theoretical approach and practical experiences.

    PubMed

    Stapf, Daniel; Franke, Andreas; Schreckenberg, Marcus; Schummers, Georg; Mischke, Karl; Marx, Nikolaus; Schauerte, Patrick; Knackstedt, Christian

    2013-04-01

    Three-dimensional (3D)-imaging provides important information on cardiac anatomy during electrophysiological procedures. Real-time updates of modalities with high soft-tissue contrast are particularly advantageous during cardiac procedures. Therefore, a beat to beat 3D visualization of cardiac anatomy by intracardiac echocardiography (ICE) was developed and tested in phantoms and animals. An electronic phased-array 5-10 MHz ICE-catheter (Acuson, AcuNav/Siemens Medical Solutions USA/64 elements) providing a 90° sector image was used for ICE-imaging. A custom-made mechanical prototype controlled by a servo motor allowed automatic rotation of the ICE-catheter around its longitudinal axis. During a single heartbeat, the ICE-catheter was rotated and 2D-images were acquired. Reconstruction into a 3D volume and rendering by a prototype software was performed beat to beat. After experimental validation using a rigid phantom, the system was tested in an animal study and afterwards, for quantitative validation, in a dynamic phantom. Acquisition of beat to beat 3D-reconstruction was technically feasible. However, twisting of the ICE-catheter shaft due to friction and torsion was found and rotation was hampered. Also, depiction of catheters was not always ensured in case of parallel alignment. Using a curved sheath for depiction of cardiac anatomy there was no congruent depiction of shape and dimension of static and moving objects. Beat to beat 3D-ICE-imaging is feasible. However, shape and dimension of static and moving objects cannot always be displayed with necessary steadiness as needed in the clinical setting. As catheter depiction is also limited, clinical use seems impossible.

  15. High beat-to-beat blood pressure variability in atrial fibrillation compared to sinus rhythm.

    PubMed

    Olbers, Joakim; Gille, Adam; Ljungman, Petter; Rosenqvist, Mårten; Östergren, Jan; Witt, Nils

    2018-02-07

    Atrial fibrillation (AF) is associated with an increased risk for cardiovascular morbidity and mortality, not entirely explained by thromboembolism. The underlying mechanisms for this association are largely unknown. Similarly, high blood pressure (BP) increases the risk for cardiovascular events. Despite this the interplay between AF and BP is insufficiently studied. The purpose of this study was to examine and quantify the beat-to-beat blood pressure variability in patients with AF in comparison to a control group of patients with sinus rhythm. We studied 33 patients - 21 in atrial fibrillation and 12 in sinus rhythm - undergoing routine coronary angiography. Invasive blood pressure was recorded at three locations: radial artery, brachial artery and ascending aorta. Blood pressure variability, defined as average beat-to-beat blood pressure difference, was calculated for systolic and diastolic blood pressure at each site. We observed a significant difference (p < .001) in systolic and diastolic blood pressure variability between the atrial fibrillation and sinus rhythm groups at all locations. Systolic blood pressure variability roughly doubled in the atrial fibrillation group compared to the sinus rhythm group (4.9 and 2.4 mmHg respectively). Diastolic beat-to-beat blood pressure variability was approximately 6 times as high in the atrial fibrillation group compared to the sinus rhythm group (7.5 and 1.2 mmHg respectively). No significant difference in blood pressure variability was seen between measurement locations. Beat-to-beat blood pressure variability in patients with atrial fibrillation was substantially higher than in patients with sinus rhythm. Hemodynamic effects of this beat-to-beat variation in blood pressure may negatively affect vascular structure and function, which may contribute to the increased cardiovascular morbidity and mortality seen in patients with atrial fibrillation.

  16. Detrended fluctuation analysis of non-stationary cardiac beat-to-beat interval of sick infants

    NASA Astrophysics Data System (ADS)

    Govindan, Rathinaswamy B.; Massaro, An N.; Al-Shargabi, Tareq; Niforatos Andescavage, Nickie; Chang, Taeun; Glass, Penny; du Plessis, Adre J.

    2014-11-01

    We performed detrended fluctuation analysis (DFA) of cardiac beat-to-beat intervals (RRis) collected from sick newborn infants over 1-4 day periods. We calculated four different metrics from the DFA fluctuation function: the DFA exponents αL (>40 beats up to one-fourth of the record length), αs (15-30 beats), root-mean-square (RMS) fluctuation on a short-time scale (20-50 beats), and RMS fluctuation on a long-time scale (110-150 beats). Except αL , all metrics clearly distinguished two groups of newborn infants (favourable vs. adverse) with well-characterized outcomes. However, the RMS fluctuations distinguished the two groups more consistently over time compared to αS . Furthermore, RMS distinguished the RRi of the two groups earlier compared to the DFA exponent. In all the three measures, the favourable outcome group displayed higher values, indicating a higher magnitude of (auto-)correlation and variability, thus normal physiology, compared to the adverse outcome group.

  17. Variation of Ciliary Beat Pattern in Three Different Beating Planes in Healthy Subjects.

    PubMed

    Kempeneers, Celine; Seaton, Claire; Chilvers, Mark A

    2017-05-01

    Digital high-speed video microscopy (DHSV) allows analysis of ciliary beat frequency (CBF) and ciliary beat pattern (CBP) of respiratory cilia in three planes. Normal reference data use a sideways edge to evaluate ciliary dyskinesia and calculate CBF using the time needed for a cilium to complete 10 beat cycles. Variability in CBF within the respiratory epithelium has been described, but data concerning variation of CBP is limited in healthy epithelium. This study aimed to document variability of CBP in normal samples, to compare ciliary function in three profiles, and to compare CBF calculated over five or 10 beat cycles. Nasal brushing samples from 13 healthy subjects were recorded using DHSV in three profiles. CBP and CBF over a 10-beat cycle were evaluated in all profiles, and CBF was reevaluated over five-beat cycles in the sideways edges. A uniform CBP was seen in 82.1% of edges. In the sideways profile, uniformity within the edge was lower (uniform normal CBP, 69.1% [sideways profile]; 97.1% [toward the observer], 92.0% [from above]), and dyskinesia was higher. Interobserver agreement for dyskinesia was poor. CBF was not different between profiles (P = .8097) or between 10 and five beat cycles (P = .1126). Our study demonstrates a lack of uniformity and consistency in manual CBP analysis of samples from healthy subjects, emphasizing the risk of automated CBP analysis in limited regions of interest and of single and limited manual CBP analysis. The toward the observer and from above profiles may be used to calculate CBF but may be less sensitive for evaluation of ciliary dyskinesia and CBP. CBF can be measured reliably by evaluation of only five-beat cycles. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  18. Adaptive control with self-tuning for non-invasive beat-by-beat blood pressure measurement.

    PubMed

    Nogawa, Masamichi; Ogawa, Mitsuhiro; Yamakoshi, Takehiro; Tanaka, Shinobu; Yamakoshi, Ken-ichi

    2011-01-01

    Up to now, we have successfully carried out the non-invasive beat-by-beat measurement of blood pressure (BP) in the root of finger, superficial temporal and radial artery based on the volume-compensation technique with reasonable accuracy. The present study concerns with improvement of control method for this beat-by-beat BP measurement. The measurement system mainly consists of a partial pressurization cuff with a pair of LED and photo-diode for the detection of arterial blood volume, and a digital self-tuning control method. Using healthy subjects, the performance and accuracy of this system were evaluated through comparison experiments with the system using a conventional empirically tuned PID controller. The significant differences of BP measured in finger artery were not showed in systolic (SBP), p=0.52, and diastolic BP (DBP), p=0.35. With the advantage of the adaptive control with self-tuning method, which can tune the control parameters without disturbing the control system, the application area of the non-invasive beat-by-beat measurement method will be broadened.

  19. Prognostic Significance of Blood Pressure Variability on Beat-to-Beat Monitoring After Transient Ischemic Attack and Stroke.

    PubMed

    Webb, Alastair J S; Mazzucco, Sara; Li, Linxin; Rothwell, Peter M

    2018-01-01

    Visit-to-visit and day-to-day blood pressure (BP) variability (BPV) predict an increased risk of cardiovascular events but only reflect 1 form of BPV. Beat-to-beat BPV can be rapidly assessed and might also be predictive. In consecutive patients within 6 weeks of transient ischemic attack or nondisabling stroke (Oxford Vascular Study), BPV (coefficient of variation) was measured beat-to-beat for 5 minutes (Finometer), day-to-day for 1 week on home monitoring (3 readings, 3× daily), and on awake ambulatory BP monitoring. BPV after 1-month standard treatment was related (Cox proportional hazards) to recurrent stroke and cardiovascular events for 2 to 5 years, adjusted for mean systolic BP. Among 520 patients, 26 had inadequate beat-to-beat recordings, and 22 patients were in atrial fibrillation. Four hundred five patients had all forms of monitoring. Beat-to-beat BPV predicted recurrent stroke and cardiovascular events independently of mean systolic BP (hazard ratio per group SD, stroke: 1.47 [1.12-1.91]; P =0.005; cardiovascular events: 1.41 [1.08-1.83]; P =0.01), including after adjustment for age and sex (stroke: 1.47 [1.12-1.92]; P =0.005) and all risk factors (1.40 [1.00-1.94]; P =0.047). Day-to-day BPV was less strongly associated with stroke (adjusted hazard ratio, 1.29 [0.97-1.71]; P =0.08) but similarly with cardiovascular events (1.41 [1.09-1.83]; P =0.009). BPV on awake ambulatory BP monitoring was nonpredictive (stroke: 0.89 [0.59-1.35]; P =0.59; cardiovascular events: 1.08 [0.77-1.52]; P =0.65). Despite a weak correlation ( r =0.119; P =0.02), beat-to-beat BPV was associated with risk of recurrent stroke independently of day-to-day BPV (1.41 [1.05-1.90]; P =0.02). Beat-to-beat BPV predicted recurrent stroke and cardiovascular events, independently of mean systolic BP and risk factors but short-term BPV on ambulatory BP monitoring did not. Beat-to-beat BPV may be a useful additional marker of cardiovascular risk. © 2017 The Authors.

  20. Appropriate threshold levels of cardiac beat-to-beat variation in semi-automatic analysis of equine ECG recordings.

    PubMed

    Flethøj, Mette; Kanters, Jørgen K; Pedersen, Philip J; Haugaard, Maria M; Carstensen, Helena; Olsen, Lisbeth H; Buhl, Rikke

    2016-11-28

    Although premature beats are a matter of concern in horses, the interpretation of equine ECG recordings is complicated by a lack of standardized analysis criteria and a limited knowledge of the normal beat-to-beat variation of equine cardiac rhythm. The purpose of this study was to determine the appropriate threshold levels of maximum acceptable deviation of RR intervals in equine ECG analysis, and to evaluate a novel two-step timing algorithm by quantifying the frequency of arrhythmias in a cohort of healthy adult endurance horses. Beat-to-beat variation differed considerably with heart rate (HR), and an adaptable model consisting of three different HR ranges with separate threshold levels of maximum acceptable RR deviation was consequently defined. For resting HRs <60 beats/min (bpm) the threshold level of RR deviation was set at 20%, for HRs in the intermediate range between 60 and 100 bpm the threshold was 10%, and for exercising HRs >100 bpm, the threshold level was 4%. Supraventricular premature beats represented the most prevalent arrhythmia category with varying frequencies in seven horses at rest (median 7, range 2-86) and six horses during exercise (median 2, range 1-24). Beat-to-beat variation of equine cardiac rhythm varies according to HR, and threshold levels in equine ECG analysis should be adjusted accordingly. Standardization of the analysis criteria will enable comparisons of studies and follow-up examinations of patients. A small number of supraventricular premature beats appears to be a normal finding in endurance horses. Further studies are required to validate the findings and determine the clinical significance of premature beats in horses.

  1. The Harvard Beat Assessment Test (H-BAT): a battery for assessing beat perception and production and their dissociation.

    PubMed

    Fujii, Shinya; Schlaug, Gottfried

    2013-01-01

    Humans have the abilities to perceive, produce, and synchronize with a musical beat, yet there are widespread individual differences. To investigate these abilities and to determine if a dissociation between beat perception and production exists, we developed the Harvard Beat Assessment Test (H-BAT), a new battery that assesses beat perception and production abilities. H-BAT consists of four subtests: (1) music tapping test (MTT), (2) beat saliency test (BST), (3) beat interval test (BIT), and (4) beat finding and interval test (BFIT). MTT measures the degree of tapping synchronization with the beat of music, whereas BST, BIT, and BFIT measure perception and production thresholds via psychophysical adaptive stair-case methods. We administered the H-BAT on thirty individuals and investigated the performance distribution across these individuals in each subtest. There was a wide distribution in individual abilities to tap in synchrony with the beat of music during the MTT. The degree of synchronization consistency was negatively correlated with thresholds in the BST, BIT, and BFIT: a lower degree of synchronization was associated with higher perception and production thresholds. H-BAT can be a useful tool in determining an individual's ability to perceive and produce a beat within a single session.

  2. The Harvard Beat Assessment Test (H-BAT): a battery for assessing beat perception and production and their dissociation

    PubMed Central

    Fujii, Shinya; Schlaug, Gottfried

    2013-01-01

    Humans have the abilities to perceive, produce, and synchronize with a musical beat, yet there are widespread individual differences. To investigate these abilities and to determine if a dissociation between beat perception and production exists, we developed the Harvard Beat Assessment Test (H-BAT), a new battery that assesses beat perception and production abilities. H-BAT consists of four subtests: (1) music tapping test (MTT), (2) beat saliency test (BST), (3) beat interval test (BIT), and (4) beat finding and interval test (BFIT). MTT measures the degree of tapping synchronization with the beat of music, whereas BST, BIT, and BFIT measure perception and production thresholds via psychophysical adaptive stair-case methods. We administered the H-BAT on thirty individuals and investigated the performance distribution across these individuals in each subtest. There was a wide distribution in individual abilities to tap in synchrony with the beat of music during the MTT. The degree of synchronization consistency was negatively correlated with thresholds in the BST, BIT, and BFIT: a lower degree of synchronization was associated with higher perception and production thresholds. H-BAT can be a useful tool in determining an individual's ability to perceive and produce a beat within a single session. PMID:24324421

  3. Motor responses to a steady beat.

    PubMed

    Schaefer, Rebecca S; Overy, Katie

    2015-03-01

    It is increasingly well established that music containing an isochronous pulse elicits motor responses at the levels of both brain and behavior. Such motor responses are often used in pedagogical and clinical practice to induce movement, particularly where motor functions are impaired. However, the complex nature of such apparently universal human responses has, arguably, not received adequate research attention to date. In particular, it should be noted that many adults, including those with disabilities, find it somewhat difficult to synchronize their movements with a beat with perfect accuracy; indeed, perfecting the skill of being musically "in time" can take years of training during childhood. Further research is needed on the nature of both the specificity and range of motor responses that can arise from the perception of a steady auditory pulse, with different populations, musical stimuli, conditions, and required levels of accuracy in order to better understand and capture the potential value of the musical beat as a pedagogical and therapeutic tool. © 2015 New York Academy of Sciences.

  4. Losing the beat: deficits in temporal coordination.

    PubMed

    Palmer, Caroline; Lidji, Pascale; Peretz, Isabelle

    2014-12-19

    Tapping or clapping to an auditory beat, an easy task for most individuals, reveals precise temporal synchronization with auditory patterns such as music, even in the presence of temporal fluctuations. Most models of beat-tracking rely on the theoretical concept of pulse: a perceived regular beat generated by an internal oscillation that forms the foundation of entrainment abilities. Although tapping to the beat is a natural sensorimotor activity for most individuals, not everyone can track an auditory beat. Recently, the case of Mathieu was documented (Phillips-Silver et al. 2011 Neuropsychologia 49, 961-969. (doi:10.1016/j.neuropsychologia.2011.02.002)). Mathieu presented himself as having difficulty following a beat and exhibited synchronization failures. We examined beat-tracking in normal control participants, Mathieu, and a second beat-deaf individual, who tapped with an auditory metronome in which unpredictable perturbations were introduced to disrupt entrainment. Both beat-deaf cases exhibited failures in error correction in response to the perturbation task while exhibiting normal spontaneous motor tempi (in the absence of an auditory stimulus), supporting a deficit specific to perception-action coupling. A damped harmonic oscillator model was applied to the temporal adaptation responses; the model's parameters of relaxation time and endogenous frequency accounted for differences between the beat-deaf cases as well as the control group individuals.

  5. Losing the beat: deficits in temporal coordination

    PubMed Central

    Palmer, Caroline; Lidji, Pascale; Peretz, Isabelle

    2014-01-01

    Tapping or clapping to an auditory beat, an easy task for most individuals, reveals precise temporal synchronization with auditory patterns such as music, even in the presence of temporal fluctuations. Most models of beat-tracking rely on the theoretical concept of pulse: a perceived regular beat generated by an internal oscillation that forms the foundation of entrainment abilities. Although tapping to the beat is a natural sensorimotor activity for most individuals, not everyone can track an auditory beat. Recently, the case of Mathieu was documented (Phillips-Silver et al. 2011 Neuropsychologia 49, 961–969. (doi:10.1016/j.neuropsychologia.2011.02.002)). Mathieu presented himself as having difficulty following a beat and exhibited synchronization failures. We examined beat-tracking in normal control participants, Mathieu, and a second beat-deaf individual, who tapped with an auditory metronome in which unpredictable perturbations were introduced to disrupt entrainment. Both beat-deaf cases exhibited failures in error correction in response to the perturbation task while exhibiting normal spontaneous motor tempi (in the absence of an auditory stimulus), supporting a deficit specific to perception–action coupling. A damped harmonic oscillator model was applied to the temporal adaptation responses; the model's parameters of relaxation time and endogenous frequency accounted for differences between the beat-deaf cases as well as the control group individuals. PMID:25385783

  6. External Counterpulsation Increases Beat-to-Beat Heart Rate Variability in Patients with Ischemic Stroke.

    PubMed

    Xiong, Li; Tian, Ge; Wang, Li; Lin, Wenhua; Chen, Xiangyan; Leung, Thomas Wai Hong; Soo, Yannie Oi Yan; Wong, Lawrence Ka Sing

    2017-07-01

    External counterpulsation (ECP) is a noninvasive method used to augment cerebral perfusion in ischemic stroke. However, the response of beat-to-beat heart rate variability (HRV) in patients with ischemic stroke during ECP remains unknown. Forty-eight patients with unilateral ischemic stroke at the subacute stage and 14 healthy controls were recruited. Beat-to-beat heart rate before, during, and after ECP was monitored. The frequency components of HRV were calculated using power spectral analysis. Very low frequency (VLF; <.04 Hz), low frequency (LF; .04-.15 Hz), high frequency (HF; .15-.40 Hz), total power spectral density (TP; <.40 Hz), and LF/HF ratio were calculated. In stroke patients, although there were no statistical differences in all of the HRV components, the HRV at VLF showed a trend of increase during ECP compared with baseline in the left-sided stroke patients (P = .083). After ECP, the HRV at LF and TP remained higher than baseline in the right-sided stroke patients (LF, 209.4 versus 117.9, P = .050; TP, 1275.6 versus 390.2, P = .017, respectively). Besides, the HRV at TP also increased after ECP compared with baseline in the left-sided stroke patients (563.0 versus 298.3, P = .029). Irrespective of the side of the ischemia, patients showed an increased beat-to-beat HRV after ECP. Additionally, sympathetic and parasympathetic cardiac modulations were increased after ECP in patients after right-sided subacute stroke. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  7. Model for the respiratory modulation of the heart beat-to-beat time interval series

    NASA Astrophysics Data System (ADS)

    Capurro, Alberto; Diambra, Luis; Malta, C. P.

    2005-09-01

    In this study we present a model for the respiratory modulation of the heart beat-to-beat interval series. The model consists of a set of differential equations used to simulate the membrane potential of a single rabbit sinoatrial node cell, excited with a periodic input signal with added correlated noise. This signal, which simulates the input from the autonomous nervous system to the sinoatrial node, was included in the pacemaker equations as a modulation of the iNaK current pump and the potassium current iK. We focus at modeling the heart beat-to-beat time interval series from normal subjects during meditation of the Kundalini Yoga and Chi techniques. The analysis of the experimental data indicates that while the embedding of pre-meditation and control cases have a roughly circular shape, it acquires a polygonal shape during meditation, triangular for the Kundalini Yoga data and quadrangular in the case of Chi data. The model was used to assess the waveshape of the respiratory signals needed to reproduce the trajectory of the experimental data in the phase space. The embedding of the Chi data could be reproduced using a periodic signal obtained by smoothing a square wave. In the case of Kundalini Yoga data, the embedding was reproduced with a periodic signal obtained by smoothing a triangular wave having a rising branch of longer duration than the decreasing branch. Our study provides an estimation of the respiratory signal using only the heart beat-to-beat time interval series.

  8. Noninvasive beat-by-beat registration of ventricular late potentials using high resolution electrocardiography.

    PubMed

    Hombach, V; Kebbel, U; Höpp, H W; Winter, U; Hirche, H

    1984-08-01

    We have developed a new high resolution ECG equipment for recording cardiac microvolt potentials from the body surface. Noise reduction has been achieved by specially designed suction electrodes, by spatial averaging of the electrocardiograms from four electrode pairs, using extremely low noise amplifiers, by performing registrations within a Faraday cage, and by teaching the patient to relax during end expiratory breath holding. Fourteen young males (controls) and 30 patients with various cardiac diseases (27 with CHD) were studied. In normals ventricular late potentials were not seen, but in 12/30 patients clearcut diastolic potentials were found. In 7/12 patients with positive findings, late potentials appeared beat-by-beat, in 5/12 patients those signals occurred intermittently, in 11/30 patients questionably, and in the remaining 5/30 patients no late potentials were recorded. One patient with the Romano-Ward syndrome revealed phases with stable beat-by-beat and intermittently occurring ventricular late potentials. These results demonstrate the feasibility of continuous non-invasive recording of ventricular late potentials, whose clinical and prognostic significance remains to be established.

  9. Tagging the neuronal entrainment to beat and meter.

    PubMed

    Nozaradan, Sylvie; Peretz, Isabelle; Missal, Marcus; Mouraux, André

    2011-07-13

    Feeling the beat and meter is fundamental to the experience of music. However, how these periodicities are represented in the brain remains largely unknown. Here, we test whether this function emerges from the entrainment of neurons resonating to the beat and meter. We recorded the electroencephalogram while participants listened to a musical beat and imagined a binary or a ternary meter on this beat (i.e., a march or a waltz). We found that the beat elicits a sustained periodic EEG response tuned to the beat frequency. Most importantly, we found that meter imagery elicits an additional frequency tuned to the corresponding metric interpretation of this beat. These results provide compelling evidence that neural entrainment to beat and meter can be captured directly in the electroencephalogram. More generally, our results suggest that music constitutes a unique context to explore entrainment phenomena in dynamic cognitive processing at the level of neural networks.

  10. Wife beating refusal among women of reproductive age in urban and rural Ethiopia.

    PubMed

    Gurmu, Eshetu; Endale, Senait

    2017-03-16

    Wife beating is the most common and widespread form of intimate partner violence in Ethiopia. It results in countless severe health, socio-economic and psychological problems and has contributed to the violation of human rights including the liberty of women to enjoy conjugal life. The main purpose of this study is to assess the levels and patterns of wife beating refusal and its associated socio-cultural and demographic factors in rural and urban Ethiopia. The 2011 Ethiopian Demographic and Health Survey (EDHS) data based on 11,097 and 5287 women in the reproductive age group (i.e. 15-49 years) living in rural and urban areas, respectively,were used in this study. Cronbach's alpha was used to assess the internal consistency of the measure of women's attitudes towards wife beating. The Statistical Package for Social Sciences was applied to analyze the data. A binary logistic regression model was fitted to identify variables that significantly predict respondents' refusal of wife beating. Separate analysis by a place of residence was undertaken as attitude towards wife beating vary between rural and urban areas. The likelihood of refusing wife beating in Ethiopia was significantly higher among urban women (54.2%) than rural women (24.5%). Although there was a significant variations in attitude towards refusing wife beating among different regions in Ethiopia, increasing educational level, high access to media, age of respondents were associated with high level of refusal of wife beating. In contrast, rural residence, being in marital union, high number of living children, being followers of some religions (Muslim followers in urban and Protestants in rural) were associated with low level of refusal of wife beating. The findings of this study reveal that wife beating in Ethiopia is a function of demographic and socio-cultural factors among which age and educational attainment of respondents, number of living children, religious affiliation, marital commitment and

  11. HEART: an automated beat-to-beat cardiovascular analysis package using Matlab.

    PubMed

    Schroeder, M J Mark J; Perreault, Bill; Ewert, D L Daniel L; Koenig, S C Steven C

    2004-07-01

    A computer program is described for beat-to-beat analysis of cardiovascular parameters from high-fidelity pressure and flow waveforms. The Hemodynamic Estimation and Analysis Research Tool (HEART) is a post-processing analysis software package developed in Matlab that enables scientists and clinicians to document, load, view, calibrate, and analyze experimental data that have been digitally saved in ascii or binary format. Analysis routines include traditional hemodynamic parameter estimates as well as more sophisticated analyses such as lumped arterial model parameter estimation and vascular impedance frequency spectra. Cardiovascular parameter values of all analyzed beats can be viewed and statistically analyzed. An attractive feature of the HEART program is the ability to analyze data with visual quality assurance throughout the process, thus establishing a framework toward which Good Laboratory Practice (GLP) compliance can be obtained. Additionally, the development of HEART on the Matlab platform provides users with the flexibility to adapt or create study specific analysis files according to their specific needs. Copyright 2003 Elsevier Ltd.

  12. Prevention of adenosine A2A receptor activation diminishes beat-to-beat alternation in human atrial myocytes.

    PubMed

    Molina, Cristina E; Llach, Anna; Herraiz-Martínez, Adela; Tarifa, Carmen; Barriga, Montserrat; Wiegerinck, Rob F; Fernandes, Jacqueline; Cabello, Nuria; Vallmitjana, Alex; Benitéz, Raúl; Montiel, José; Cinca, Juan; Hove-Madsen, Leif

    2016-01-01

    Atrial fibrillation (AF) has been associated with increased spontaneous calcium release from the sarcoplasmic reticulum and linked to increased adenosine A2A receptor (A2AR) expression and activation. Here we tested whether this may favor atrial arrhythmogenesis by promoting beat-to-beat alternation and irregularity. Patch-clamp and confocal calcium imaging was used to measure the beat-to-beat response of the calcium current and transient in human atrial myocytes. Responses were classified as uniform, alternating or irregular and stimulation of Gs-protein coupled receptors decreased the frequency where a uniform response could be maintained from 1.0 ± 0.1 to 0.6 ± 0.1 Hz; p < 0.01 for beta-adrenergic receptors and from 1.4 ± 0.1 to 0.5 ± 0.1 Hz; p < 0.05 for A2ARs. The latter was linked to increased spontaneous calcium release and after-depolarizations. Moreover, A2AR activation increased the fraction of non-uniformly responding cells in HL-1 myocyte cultures from 19 ± 3 to 51 ± 9 %; p < 0.02, and electrical mapping in perfused porcine atria revealed that adenosine induced electrical alternans at longer cycle lengths, doubled the fraction of electrodes showing alternation, and increased the amplitude of alternations. Importantly, protein kinase A inhibition increased the highest frequency where uniform responses could be maintained from 0.84 ± 0.12 to 1.86 ± 0.11 Hz; p < 0.001 and prevention of A2AR-activation with exogenous adenosine deaminase selectively increased the threshold from 0.8 ± 0.1 to 1.2 ± 0.1 Hz; p = 0.001 in myocytes from patients with AF. In conclusion, A2AR-activation promotes beat-to-beat irregularities in the calcium transient in human atrial myocytes, and prevention of A2AR activation may be a novel means to maintain uniform beat-to-beat responses at higher beating frequencies in patients with atrial fibrillation.

  13. Analyzing the acoustic beat with mobile devices

    NASA Astrophysics Data System (ADS)

    Kuhn, Jochen; Vogt, Patrik; Hirth, Michael

    2014-04-01

    In this column, we have previously presented various examples of how physical relationships can be examined by analyzing acoustic signals using smartphones or tablet PCs. In this example, we will be exploring the acoustic phenomenon of small beats, which is produced by the overlapping of two tones with a low difference in frequency Δf. The resulting auditory sensation is a tone with a volume that varies periodically. Acoustic beats can be perceived repeatedly in day-to-day life and have some interesting applications. For example, string instruments are still tuned with the help of an acoustic beat, even with modern technology. If a reference tone (e.g., 440 Hz) and, for example, a slightly out-of-tune violin string produce a tone simultaneously, a beat can be perceived. The more similar the frequencies, the longer the duration of the beat. In the extreme case, when the frequencies are identical, a beat no longer arises. The string is therefore correctly tuned. Using the Oscilloscope app,4 it is possible to capture and save acoustic signals of this kind and determine the beat frequency fS of the signal, which represents the difference in frequency Δf of the two overlapping tones (for Android smartphones, the app OsciPrime Oscilloscope can be used).

  14. Binaural auditory beats affect vigilance performance and mood.

    PubMed

    Lane, J D; Kasian, S J; Owens, J E; Marsh, G R

    1998-01-01

    When two tones of slightly different frequency are presented separately to the left and right ears the listener perceives a single tone that varies in amplitude at a frequency equal to the frequency difference between the two tones, a perceptual phenomenon known as the binaural auditory beat. Anecdotal reports suggest that binaural auditory beats within the electroencephalograph frequency range can entrain EEG activity and may affect states of consciousness, although few scientific studies have been published. This study compared the effects of binaural auditory beats in the EEG beta and EEG theta/delta frequency ranges on mood and on performance of a vigilance task to investigate their effects on subjective and objective measures of arousal. Participants (n = 29) performed a 30-min visual vigilance task on three different days while listening to pink noise containing simple tones or binaural beats either in the beta range (16 and 24 Hz) or the theta/delta range (1.5 and 4 Hz). However, participants were kept blind to the presence of binaural beats to control expectation effects. Presentation of beta-frequency binaural beats yielded more correct target detections and fewer false alarms than presentation of theta/delta frequency binaural beats. In addition, the beta-frequency beats were associated with less negative mood. Results suggest that the presentation of binaural auditory beats can affect psychomotor performance and mood. This technology may have applications for the control of attention and arousal and the enhancement of human performance.

  15. Cortical evoked potentials to an auditory illusion: binaural beats.

    PubMed

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2009-08-01

    To define brain activity corresponding to an auditory illusion of 3 and 6Hz binaural beats in 250Hz or 1000Hz base frequencies, and compare it to the sound onset response. Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000Hz to one ear and 3 or 6Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3Hz and 6Hz, in base frequencies of 250Hz and 1000Hz. Tones were 2000ms in duration and presented with approximately 1s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. All stimuli evoked tone-onset P(50), N(100) and P(200) components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P(50) had significantly different sources than the beats-evoked oscillations; and N(100) and P(200) sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp.

  16. Cortical Evoked Potentials to an Auditory Illusion: Binaural Beats

    PubMed Central

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J.; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2009-01-01

    Objective: To define brain activity corresponding to an auditory illusion of 3 and 6 Hz binaural beats in 250 Hz or 1,000 Hz base frequencies, and compare it to the sound onset response. Methods: Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000 Hz to one ear and 3 or 6 Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3 Hz and 6 Hz, in base frequencies of 250 Hz and 1000 Hz. Tones were 2,000 ms in duration and presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. Results: All stimuli evoked tone-onset P50, N100 and P200 components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P50 had significantly different sources than the beats-evoked oscillations; and N100 and P200 sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Conclusions: Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Significance: Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the

  17. Beliefs of Sri Lankan Medical Students about Wife Beating

    ERIC Educational Resources Information Center

    Haj-Yahia, Muhammad M.; de Zoysa, Piyanjali

    2007-01-01

    The article presents the results of a study on beliefs about wife beating conducted among 476 Sri Lankan medical students. Participants fill out a self-administered questionnaire, which examines six beliefs about wife beating. Most students tend to justify wife beating, to believe women benefit from wife beating, and to believe the wife bears more…

  18. Significance of beating observed in earthquake responses of buildings

    USGS Publications Warehouse

    Çelebi, Mehmet; Ghahari, S. F.; Taciroglu, E.

    2016-01-01

    The beating phenomenon observed in the recorded responses of a tall building in Japan and another in the U.S. are examined in this paper. Beating is a periodic vibrational behavior caused by distinctive coupling between translational and torsional modes that typically have close frequencies. Beating is prominent in the prolonged resonant responses of lightly damped structures. Resonances caused by site effects also contribute to accentuating the beating effect. Spectral analyses and system identification techniques are used herein to quantify the periods and amplitudes of the beating effects from the strong motion recordings of the two buildings. Quantification of beating effects is a first step towards determining remedial actions to improve resilient building performance to strong earthquake induced shaking.

  19. Characteristics in the beat-to-beat laser-Doppler waveform indices in subjects with diabetes.

    PubMed

    Hsiu, Hsin; Hu, Hsiao-Feng; Wu, Guan-Shian; Hsiao, Fone-Ching

    2014-01-01

    The present study performed laser-Doppler flowmetry (LDF) measurements on the skin surface around the ankle with the aim of verifying if beat-to-beat analysis of the LDF waveform can help to discriminate the microcirculatory-blood-flow (MBF) characteristics between diabetic, prediabetic, and healthy subjects. 84 subjects were assigned to three groups (diabetic, prediabetic, and normal) according to the results of oral glucose tolerance tests. Beat-to-beat analysis was performed on the pulsatile LDF waveform to obtain foot delay time (FDT), flow rise time (FRT), and the corresponding MBF-variability parameters (FDTCV and FRTCV). Relative to the control group, FDT and FRT were significantly shorter in prediabetic subjects, FDT was significantly shorter in diabetic subjects, and FRTCV and FDTCV were significantly larger in prediabetic and diabetic subjects. There were no significant associations for FRT after adjustment for age and gender. The present results indicate that FRT may help to discriminate differences in the elastic properties of local vascular beds during diabetes or even during prediabetic stages. The proposed blood-filling-volume model can help to explain the underlying mechanism. The present findings may aid the noninvasive early detection of diabetes-associated vascular damage, and could be used in the development of home-care and telemedicine applications.

  20. The Impact of Monaural Beat Stimulation on Anxiety and Cognition.

    PubMed

    Chaieb, Leila; Wilpert, Elke C; Hoppe, Christian; Axmacher, Nikolai; Fell, Juergen

    2017-01-01

    Application of auditory beat stimulation has been speculated to provide a promising new tool with which to alleviate symptoms of anxiety and to enhance cognition. In spite of reportedly similar EEG effects of binaural and monaural beats, data on behavioral effects of monaural beats are still lacking. Therefore, we examined the impact of monaural beat stimulation on anxiety, mood and memory performance. We aimed to target states related to anxiety levels and general well-being, in addition to long-term and working memory processes, using monaural beats within the range of main cortical rhythms. Theta (6 Hz), alpha (10 Hz) and gamma (40 Hz) beat frequencies, as well as a control stimulus were applied to healthy participants for 5 min. After each stimulation period, participants were asked to evaluate their current mood state and to perform cognitive tasks examining long-term and working memory processes, in addition to a vigilance task. Monaural beat stimulation was found to reduce state anxiety. When evaluating responses for the individual beat frequencies, positive effects on state anxiety were observed for all monaural beat conditions compared to control stimulation. Our results indicate a role for monaural beat stimulation in modulating state anxiety and are in line with previous studies reporting anxiety-reducing effects of auditory beat stimulation.

  1. The Impact of Monaural Beat Stimulation on Anxiety and Cognition

    PubMed Central

    Chaieb, Leila; Wilpert, Elke C.; Hoppe, Christian; Axmacher, Nikolai; Fell, Juergen

    2017-01-01

    Application of auditory beat stimulation has been speculated to provide a promising new tool with which to alleviate symptoms of anxiety and to enhance cognition. In spite of reportedly similar EEG effects of binaural and monaural beats, data on behavioral effects of monaural beats are still lacking. Therefore, we examined the impact of monaural beat stimulation on anxiety, mood and memory performance. We aimed to target states related to anxiety levels and general well-being, in addition to long-term and working memory processes, using monaural beats within the range of main cortical rhythms. Theta (6 Hz), alpha (10 Hz) and gamma (40 Hz) beat frequencies, as well as a control stimulus were applied to healthy participants for 5 min. After each stimulation period, participants were asked to evaluate their current mood state and to perform cognitive tasks examining long-term and working memory processes, in addition to a vigilance task. Monaural beat stimulation was found to reduce state anxiety. When evaluating responses for the individual beat frequencies, positive effects on state anxiety were observed for all monaural beat conditions compared to control stimulation. Our results indicate a role for monaural beat stimulation in modulating state anxiety and are in line with previous studies reporting anxiety-reducing effects of auditory beat stimulation. PMID:28555100

  2. How molecular motors shape the flagellar beat

    PubMed Central

    Riedel-Kruse, Ingmar H.; Hilfinger, Andreas; Howard, Jonathon; Jülicher, Frank

    2007-01-01

    Cilia and eukaryotic flagella are slender cellular appendages whose regular beating propels cells and microorganisms through aqueous media. The beat is an oscillating pattern of propagating bends generated by dynein motor proteins. A key open question is how the activity of the motors is coordinated in space and time. To elucidate the nature of this coordination we inferred the mechanical properties of the motors by analyzing the shape of beating sperm: Steadily beating bull sperm were imaged and their shapes were measured with high precision using a Fourier averaging technique. Comparing our experimental data with wave forms calculated for different scenarios of motor coordination we found that only the scenario of interdoublet sliding regulating motor activity gives rise to satisfactory fits. We propose that the microscopic origin of such “sliding control” is the load dependent detachment rate of motors. Agreement between observed and calculated wave forms was obtained only if significant sliding between microtubules occurred at the base. This suggests a novel mechanism by which changes in basal compliance could reverse the direction of beat propagation. We conclude that the flagellar beat patterns are determined by an interplay of the basal properties of the axoneme and the mechanical feedback of dynein motors. PMID:19404446

  3. Beat-to-beat heart rate estimation fusing multimodal video and sensor data

    PubMed Central

    Antink, Christoph Hoog; Gao, Hanno; Brüser, Christoph; Leonhardt, Steffen

    2015-01-01

    Coverage and accuracy of unobtrusively measured biosignals are generally relatively low compared to clinical modalities. This can be improved by exploiting redundancies in multiple channels with methods of sensor fusion. In this paper, we demonstrate that two modalities, skin color variation and head motion, can be extracted from the video stream recorded with a webcam. Using a Bayesian approach, these signals are fused with a ballistocardiographic signal obtained from the seat of a chair with a mean absolute beat-to-beat estimation error below 25 milliseconds and an average coverage above 90% compared to an ECG reference. PMID:26309754

  4. Beat-to-beat heart rate estimation fusing multimodal video and sensor data.

    PubMed

    Antink, Christoph Hoog; Gao, Hanno; Brüser, Christoph; Leonhardt, Steffen

    2015-08-01

    Coverage and accuracy of unobtrusively measured biosignals are generally relatively low compared to clinical modalities. This can be improved by exploiting redundancies in multiple channels with methods of sensor fusion. In this paper, we demonstrate that two modalities, skin color variation and head motion, can be extracted from the video stream recorded with a webcam. Using a Bayesian approach, these signals are fused with a ballistocardiographic signal obtained from the seat of a chair with a mean absolute beat-to-beat estimation error below 25 milliseconds and an average coverage above 90% compared to an ECG reference.

  5. Beat Gestures Modulate Auditory Integration in Speech Perception

    ERIC Educational Resources Information Center

    Biau, Emmanuel; Soto-Faraco, Salvador

    2013-01-01

    Spontaneous beat gestures are an integral part of the paralinguistic context during face-to-face conversations. Here we investigated the time course of beat-speech integration in speech perception by measuring ERPs evoked by words pronounced with or without an accompanying beat gesture, while participants watched a spoken discourse. Words…

  6. The impact of binaural beats on creativity

    PubMed Central

    Reedijk, Susan A.; Bolders, Anne; Hommel, Bernhard

    2013-01-01

    Human creativity relies on a multitude of cognitive processes, some of which are influenced by the neurotransmitter dopamine. This suggests that creativity could be enhanced by interventions that either modulate the production or transmission of dopamine directly, or affect dopamine-driven processes. In the current study we hypothesized that creativity can be influenced by means of binaural beats, an auditory illusion that is considered a form of cognitive entrainment that operates through stimulating neuronal phase locking. We aimed to investigate whether binaural beats affect creative performance at all, whether they affect divergent thinking, convergent thinking, or both, and whether possible effects may be mediated by the individual striatal dopamine level. Binaural beats were presented at alpha and gamma frequency. Participants completed a divergent and a convergent thinking task to assess two important functions of creativity, and filled out the Positive And Negative Affect Scale—mood State questionnaire (PANAS-S) and an affect grid to measure current mood. Dopamine levels in the striatum were estimated using spontaneous eye blink rates (EBRs). Results showed that binaural beats, regardless of the presented frequency, can affect divergent but not convergent thinking. Individuals with low EBRs mostly benefitted from alpha binaural beat stimulation, while individuals with high EBRs were unaffected or even impaired by both alpha and gamma binaural beats. This suggests that binaural beats, and possibly other forms of cognitive entrainment, are not suited for a one-size-fits-all approach, and that individual cognitive-control systems need to be taken into account when studying cognitive enhancement methods. PMID:24294202

  7. The impact of binaural beats on creativity.

    PubMed

    Reedijk, Susan A; Bolders, Anne; Hommel, Bernhard

    2013-01-01

    Human creativity relies on a multitude of cognitive processes, some of which are influenced by the neurotransmitter dopamine. This suggests that creativity could be enhanced by interventions that either modulate the production or transmission of dopamine directly, or affect dopamine-driven processes. In the current study we hypothesized that creativity can be influenced by means of binaural beats, an auditory illusion that is considered a form of cognitive entrainment that operates through stimulating neuronal phase locking. We aimed to investigate whether binaural beats affect creative performance at all, whether they affect divergent thinking, convergent thinking, or both, and whether possible effects may be mediated by the individual striatal dopamine level. Binaural beats were presented at alpha and gamma frequency. Participants completed a divergent and a convergent thinking task to assess two important functions of creativity, and filled out the Positive And Negative Affect Scale-mood State questionnaire (PANAS-S) and an affect grid to measure current mood. Dopamine levels in the striatum were estimated using spontaneous eye blink rates (EBRs). Results showed that binaural beats, regardless of the presented frequency, can affect divergent but not convergent thinking. Individuals with low EBRs mostly benefitted from alpha binaural beat stimulation, while individuals with high EBRs were unaffected or even impaired by both alpha and gamma binaural beats. This suggests that binaural beats, and possibly other forms of cognitive entrainment, are not suited for a one-size-fits-all approach, and that individual cognitive-control systems need to be taken into account when studying cognitive enhancement methods.

  8. Wearable seismocardiography: towards a beat-by-beat assessment of cardiac mechanics in ambulant subjects.

    PubMed

    Di Rienzo, M; Vaini, E; Castiglioni, P; Merati, G; Meriggi, P; Parati, G; Faini, A; Rizzo, F

    2013-11-01

    Seismocardiogram (SCG) is the measure of the micro-vibrations produced by the heart contraction and blood ejection into the vascular tree. Over time, a large body of evidence has been collected on the ability of SCG to reflect cardiac mechanical events such as opening and closure of mitral and aortic valves, atrial filling and point of maximal aortic blood ejection. We recently developed a smart garment, named MagIC-SCG, that allows the monitoring of SCG, electrocardiogram (ECG) and respiration out of the laboratory setting in ambulant subjects. The present pilot study illustrates the results of two different experiments performed to obtain a first evaluation on whether a dynamical assessment of indexes of cardiac mechanics can be obtained from SCG recordings obtained by MagIC-SCG. In the first experiment, we evaluated the consistency of the estimates of two indexes of cardiac contractility, the pre-ejection period, PEP, and the left ventricular ejection time, LVET. This was done in the lab, by reproducing an experimental protocol well known in literature, so that our measures derived from SCG could have been compared with PEP and LVET reference values obtained by traditional techniques. Six healthy subjects worn MagIC-SCG while assuming two different postures (supine and standing); PEP was estimated as the time interval between the Q wave in ECG and the SCG wave corresponding to the opening of aortic valve; LVET was the time interval between the SCG waves corresponding to the opening and closure of the aortic valve. The shift from supine to standing posture produced a significant increase in PEP and PEP/LVET ratio, a reduction in LVET and a concomitant rise in the LF/HF ratio in the RR interval (RRI) power spectrum. These results are in line with data available in literature thus providing a first support to the validity of our estimates. In the second experiment, we evaluated in one subject the feasibility of the beat-by-beat assessment of LVET during spontaneous

  9. Beat-to-beat agreement of noninvasive tonometric and intra-radial arterial blood pressure during microgravity and hypergravity generated by parabolic flights.

    PubMed

    Normand, Hervé; Lemarchand, Erick; Arbeille, Philippe; Quarck, Gaëlle; Vaïda, Pierre; Duretete, Arnaud; Denise, Pierre

    2007-12-01

    Accurate measurement of beat-to-beat arterial blood pressure is essential for understanding the cardiovascular adaptation to weightlessness; however, the intra-arterial standard of beat-to-beat blood pressure measurement has never been used during space flight because of its invasive nature. The aim of the present study was to compare noninvasive radial artery tonometry blood pressure measurement with intra-radial pressure measurement during microgravity and hypergravity generated by parabolic flights. Two study participants, equipped with an intra-radial pressure line on the left arm and a Colin CBM-7000 (Colin Corp., Komaki City, Japan) beat-to-beat pressure measurement apparatus on the right arm, were studied in a supine position, during parabolic flights on board of the Airbus A300 OG of the Centre National d'Etudes Spatiales. The mean and standard deviations of the beat-to-beat difference between tonometric and intra-radial blood pressure were calculated for systolic and diastolic arterial pressure in the three gravity conditions (1g, 0 g and 1.8 g) experienced during parabolic flight. The Colin CBM-7000 met the specifications required by the Association for the Advancement of Medical Instrumentation in the 0 g environment. Gravity, however, significantly affected the difference between tonometric and intra-arterial blood pressure, possibly owing to the effect of gravity on the apparent weight of the device and the corresponding calibration factor. We conclude that the Colin CBM-7000 can be used with confidence during space flight.

  10. Beat-to-beat estimation of LVET and QS2 indices of cardiac mechanics from wearable seismocardiography in ambulant subjects.

    PubMed

    Di Rienzo, Marco; Vaini, Emanuele; Castiglioni, Paolo; Meriggi, Paolo; Rizzo, Francesco

    2013-01-01

    Seismocardiogram (SCG) is the measure of the minute vibrations produced by the beating heart. We previously demonstrated that SCG, ECG and respiration could be recorded over the 24 h during spontaneous behavior by a smart garment, the MagIC-SCG system. In the present case study we explored the feasibility of a beat-to-beat estimation of two indices of heart contractility, the Left Ventricular Ejection Time (LVET) and the electromechanical systole (QS2) from SCG and ECG recordings obtained by the MagIC-SCG device in one subject. We considered data collected during outdoor spontaneous behavior (while sitting in the metro and in the office) and in a laboratory setting (in supine and sitting posture, and during recovery after 100 W and 140 W cycling). LVET was estimated from SCG as the time interval between the opening and closure of the aortic valve, QS2 as the time interval between the Q wave of the ECG and the closure of the aortic valve. In every condition, LVET and QS2 could be estimated on a beat-to-beat basis from the SCG collected by the smart garment. LVET and QS2 are characterized by important beat-to-beat fluctuations, with standard deviations in the same order of magnitude of RR Interval. In all settings, spectral profiles are different for LVET, QS2 and RR Interval. This suggests that the biological mechanisms impinging on the heart exert a differentiated influence on the variability of each of these three indices.

  11. Intercepting beats in predesignated target zones.

    PubMed

    Craig, Cathy; Pepping, Gert-Jan; Grealy, Madeleine

    2005-09-01

    Moving to a rhythm necessitates precise timing between the movement of the chosen limb and the timing imposed by the beats. However, the temporal information specifying the moment when a beat will sound (the moment onto which one must synchronise one's movement) is not continuously provided by the acoustic array. Because of this informational void, the actors need some form of prospective information that will allow them to act sufficiently ahead of time in order to get their hand in the right place at the right time. In this acoustic interception study, where participants were asked to move between two targets in such a way that they arrived and stopped in the target zone at the same time as a beat sounded, we tested a model derived from tau-coupling theory (Lee DN (1998) Ecol Psychol 10:221-250). This model attempts to explain the form of a potential timing guide that specifies the duration of the inter-beat intervals and also describes how this informational guide can be used in the timing and guidance of movements. The results of our first experiment show that, for inter-beat intervals of less than 3 s, a large proportion of the movement (over 70%) can be explained by the proposed model. However, a second experiment, which augments the time between beats so that it surpasses 3 s, shows a marked decline in the percentage of information/movement coupling. A close analysis of the movement kinematics indicates a lack of control and anticipation in the participants' movements. The implications of these findings, in light of other research studies, are discussed.

  12. Beating time: How ensemble musicians' cueing gestures communicate beat position and tempo.

    PubMed

    Bishop, Laura; Goebl, Werner

    2018-01-01

    Ensemble musicians typically exchange visual cues to coordinate piece entrances. "Cueing-in" gestures indicate when to begin playing and at what tempo. This study investigated how timing information is encoded in musicians' cueing-in gestures. Gesture acceleration patterns were expected to indicate beat position, while gesture periodicity, duration, and peak gesture velocity were expected to indicate tempo. Same-instrument ensembles (e.g., piano-piano) were expected to synchronize more successfully than mixed-instrument ensembles (e.g., piano-violin). Duos performed short passages as their head and (for violinists) bowing hand movements were tracked with accelerometers and Kinect sensors. Performers alternated between leader/follower roles; leaders heard a tempo via headphones and cued their partner in nonverbally. Violin duos synchronized more successfully than either piano duos or piano-violin duos, possibly because violinists were more experienced in ensemble playing than pianists. Peak acceleration indicated beat position in leaders' head-nodding gestures. Gesture duration and periodicity in leaders' head and bowing hand gestures indicated tempo. The results show that the spatio-temporal characteristics of cueing-in gestures guide beat perception, enabling synchronization with visual gestures that follow a range of spatial trajectories.

  13. Binaural Beat: A Failure to Enhance EEG Power and Emotional Arousal

    PubMed Central

    López-Caballero, Fran; Escera, Carles

    2017-01-01

    When two pure tones of slightly different frequencies are delivered simultaneously to the two ears, is generated a beat whose frequency corresponds to the frequency difference between them. That beat is known as acoustic beat. If these two tones are presented one to each ear, they still produce the sensation of the same beat, although no physical combination of the tones occurs outside the auditory system. This phenomenon is called binaural beat. In the present study, we explored the potential contribution of binaural beats to the enhancement of specific electroencephalographic (EEG) bands, as previous studies suggest the potential usefulness of binaural beats as a brainwave entrainment tool. Additionally, we analyzed the effects of binaural-beat stimulation on two psychophysiological measures related to emotional arousal: heart rate and skin conductance. Beats of five different frequencies (4.53 Hz -theta-, 8.97 Hz -alpha-, 17.93 Hz -beta-, 34.49 Hz -gamma- or 57.3 Hz -upper-gamma) were presented binaurally and acoustically for epochs of 3 min (Beat epochs), preceded and followed by pink noise epochs of 90 s (Baseline and Post epochs, respectively). In each of these epochs, we analyzed the EEG spectral power, as well as calculated the heart rate and skin conductance response (SCR). For all the beat frequencies used for stimulation, no significant changes between Baseline and Beat epochs were observed within the corresponding EEG bands, neither with binaural or with acoustic beats. Additional analysis of spectral EEG topographies yielded negative results for the effect of binaural beats in the scalp distribution of EEG spectral power. In the psychophysiological measures, no changes in heart rate and skin conductance were observed for any of the beat frequencies presented. Our results do not support binaural-beat stimulation as a potential tool for the enhancement of EEG oscillatory activity, nor to induce changes in emotional arousal. PMID:29187819

  14. Binaural Beat: A Failure to Enhance EEG Power and Emotional Arousal.

    PubMed

    López-Caballero, Fran; Escera, Carles

    2017-01-01

    When two pure tones of slightly different frequencies are delivered simultaneously to the two ears, is generated a beat whose frequency corresponds to the frequency difference between them. That beat is known as acoustic beat. If these two tones are presented one to each ear, they still produce the sensation of the same beat, although no physical combination of the tones occurs outside the auditory system. This phenomenon is called binaural beat. In the present study, we explored the potential contribution of binaural beats to the enhancement of specific electroencephalographic (EEG) bands, as previous studies suggest the potential usefulness of binaural beats as a brainwave entrainment tool. Additionally, we analyzed the effects of binaural-beat stimulation on two psychophysiological measures related to emotional arousal: heart rate and skin conductance. Beats of five different frequencies (4.53 Hz -theta-, 8.97 Hz -alpha-, 17.93 Hz -beta-, 34.49 Hz -gamma- or 57.3 Hz -upper-gamma) were presented binaurally and acoustically for epochs of 3 min (Beat epochs), preceded and followed by pink noise epochs of 90 s (Baseline and Post epochs, respectively). In each of these epochs, we analyzed the EEG spectral power, as well as calculated the heart rate and skin conductance response (SCR). For all the beat frequencies used for stimulation, no significant changes between Baseline and Beat epochs were observed within the corresponding EEG bands, neither with binaural or with acoustic beats. Additional analysis of spectral EEG topographies yielded negative results for the effect of binaural beats in the scalp distribution of EEG spectral power. In the psychophysiological measures, no changes in heart rate and skin conductance were observed for any of the beat frequencies presented. Our results do not support binaural-beat stimulation as a potential tool for the enhancement of EEG oscillatory activity, nor to induce changes in emotional arousal.

  15. The Simplest Demonstration on Acoustic Beats

    ERIC Educational Resources Information Center

    Ganci, Alessio; Ganci, Salvatore

    2015-01-01

    The classical demonstration experiment on acoustic beats using two signal generators and a dual trace oscilloscope is an important ingredient in teaching the subject. This short laboratory note aims to point out what may be the simplest demonstrative experiment on acoustic beats to carry out in a classroom without employing any lab apparatus.

  16. Zones, spots, and planetary-scale waves beating in brown dwarf atmospheres.

    PubMed

    Apai, D; Karalidi, T; Marley, M S; Yang, H; Flateau, D; Metchev, S; Cowan, N B; Buenzli, E; Burgasser, A J; Radigan, J; Artigau, E; Lowrance, P

    2017-08-18

    Brown dwarfs are massive analogs of extrasolar giant planets and may host types of atmospheric circulation not seen in the solar system. We analyzed a long-term Spitzer Space Telescope infrared monitoring campaign of brown dwarfs to constrain cloud cover variations over a total of 192 rotations. The infrared brightness evolution is dominated by beat patterns caused by planetary-scale wave pairs and by a small number of bright spots. The beating waves have similar amplitudes but slightly different apparent periods because of differing velocities or directions. The power spectrum of intermediate-temperature brown dwarfs resembles that of Neptune, indicating the presence of zonal temperature and wind speed variations. Our findings explain three previously puzzling behaviors seen in brown dwarf brightness variations. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Oxidative shift in tissue redox potential increases beat-to-beat variability of action potential duration.

    PubMed

    Kistamás, Kornél; Hegyi, Bence; Váczi, Krisztina; Horváth, Balázs; Bányász, Tamás; Magyar, János; Szentandrássy, Norbert; Nánási, Péter P

    2015-07-01

    Profound changes in tissue redox potential occur in the heart under conditions of oxidative stress frequently associated with cardiac arrhythmias. Since beat-to-beat variability (short term variability, SV) of action potential duration (APD) is a good indicator of arrhythmia incidence, the aim of this work was to study the influence of redox changes on SV in isolated canine ventricular cardiomyocytes using a conventional microelectrode technique. The redox potential was shifted toward a reduced state using a reductive cocktail (containing dithiothreitol, glutathione, and ascorbic acid) while oxidative changes were initiated by superfusion with H2O2. Redox effects were evaluated as changes in "relative SV" determined by comparing SV changes with the concomitant APD changes. Exposure of myocytes to the reductive cocktail decreased SV significantly without any detectable effect on APD. Application of H2O2 increased both SV and APD, but the enhancement of SV was the greater, so relative SV increased. Longer exposure to H2O2 resulted in the development of early afterdepolarizations accompanied by tremendously increased SV. Pretreatment with the reductive cocktail prevented both elevation in relative SV and the development of afterdepolarizations. The results suggest that the increased beat-to-beat variability during an oxidative stress contributes to the generation of cardiac arrhythmias.

  18. Acoustical sensing of cardiomyocyte cluster beating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tymchenko, Nina; Kunze, Angelika; Dahlenborg, Kerstin

    2013-06-14

    Highlights: •An example of the application of QCM-D to live cell studies. •Detection of human pluripotent stem cell-derived cardiomyocyte cluster beating. •Clusters were studied in a thin liquid film and in a large liquid volume. •The QCM-D beating profile provides an individual fingerprint of the hPS-CMCs. -- Abstract: Spontaneously beating human pluripotent stem cell-derived cardiomyocytes clusters (CMCs) represent an excellent in vitro tool for studies of human cardiomyocyte function and for pharmacological cardiac safety assessment. Such testing typically requires highly trained operators, precision plating, or large cell quantities, and there is a demand for real-time, label-free monitoring of small cellmore » quantities, especially rare cells and tissue-like structures. Array formats based on sensing of electrical or optical properties of cells are being developed and in use by the pharmaceutical industry. A potential alternative to these techniques is represented by the quartz crystal microbalance with dissipation monitoring (QCM-D) technique, which is an acoustic surface sensitive technique that measures changes in mass and viscoelastic properties close to the sensor surface (from nm to μm). There is an increasing number of studies where QCM-D has successfully been applied to monitor properties of cells and cellular processes. In the present study, we show that spontaneous beating of CMCs on QCM-D sensors can be clearly detected, both in the frequency and the dissipation signals. Beating rates in the range of 66–168 bpm for CMCs were detected and confirmed by simultaneous light microscopy. The QCM-D beating profile was found to provide individual fingerprints of the hPS-CMCs. The presented results point towards acoustical assays for evaluation cardiotoxicity.« less

  19. T-wave alternans and beat-to-beat variability of repolarization: pathophysiological backgrounds and clinical relevance.

    PubMed

    Floré, Vincent; Willems, Rik

    2012-12-01

    In this review, we focus on temporal variability of cardiac repolarization. This phenomenon has been related to a higher risk for ventricular arrhythmia and is therefore interesting as a marker of sudden cardiac death risk. We review two non-invasive clinical techniques quantifying repolarization variability: T-wave alternans (TWA) and beat-to-beat variability of repolarization (BVR). We discuss their pathophysiological link with ventricular arrhythmia and the current clinical relevance of these techniques.

  20. Binaural auditory beats affect long-term memory.

    PubMed

    Garcia-Argibay, Miguel; Santed, Miguel A; Reales, José M

    2017-12-08

    The presentation of two pure tones to each ear separately with a slight difference in their frequency results in the perception of a single tone that fluctuates in amplitude at a frequency that equals the difference of interaural frequencies. This perceptual phenomenon is known as binaural auditory beats, and it is thought to entrain electrocortical activity and enhance cognition functions such as attention and memory. The aim of this study was to determine the effect of binaural auditory beats on long-term memory. Participants (n = 32) were kept blind to the goal of the study and performed both the free recall and recognition tasks after being exposed to binaural auditory beats, either in the beta (20 Hz) or theta (5 Hz) frequency bands and white noise as a control condition. Exposure to beta-frequency binaural beats yielded a greater proportion of correctly recalled words and a higher sensitivity index d' in recognition tasks, while theta-frequency binaural-beat presentation lessened the number of correctly remembered words and the sensitivity index. On the other hand, we could not find differences in the conditional probability for recall given recognition between beta and theta frequencies and white noise, suggesting that the observed changes in recognition were due to the recollection component. These findings indicate that the presentation of binaural auditory beats can affect long-term memory both positively and negatively, depending on the frequency used.

  1. Standing beat-to-beat blood pressure variability is reduced among fallers in the Malaysian Elders Longitudinal Study.

    PubMed

    Goh, Choon-Hian; Ng, Siew-Cheok; Kamaruzzaman, Shahrul Bahyah; Chin, Ai-Vyrn; Tan, Maw Pin

    2017-10-01

    The aim of this study was to determine the relationship between falls and beat-to-beat blood pressure (BP) variability.Continuous noninvasive BP measurement is as accurate as invasive techniques. We evaluated beat-to-beat supine and standing BP variability (BPV) using time and frequency domain analysis from noninvasive continuous BP recordings.A total of 1218 older adults were selected. Continuous BP recordings obtained were analyzed to determine standard deviation (SD) and root mean square of real variability (RMSRV) for time domain BPV and fast-Fourier transform low frequency (LF), high frequency (HF), total power spectral density (PSD), and LF:HF ratio for frequency domain BPV.Comparisons were performed between 256 (21%) individuals with at least 1 fall in the past 12 months and nonfallers. Fallers were significantly older (P = .007), more likely to be female (P = .006), and required a longer time to complete the Timed-Up and Go test (TUG) and frailty walk test (P ≤ .001). Standing systolic BPV (SBPV) was significantly lower in fallers compared to nonfallers (SBPV-SD, P = .016; SBPV-RMSRV, P = .033; SBPV-LF, P = .003; SBPV-total PSD, P = .012). Nonfallers had significantly higher supine to standing ratio (SSR) for SBPV-SD, SBPV-RMSRV, and SBPV-total PSD (P = .017, P = .013, and P = .009). In multivariate analyses, standing BPV remained significantly lower in fallers compared to nonfallers after adjustment for age, sex, diabetes, frailty walk, and supine systolic BP. The reduction in frequency-domain SSR among fallers was attenuated by supine systolic BP, TUG, and frailty walk.In conclusion, reduced beat-to-beat BPV while standing is independently associated with increased risk of falls. Changes between supine and standing BPV are confounded by supine BP and walking speed.

  2. Understanding women's attitudes towards wife beating in Zimbabwe.

    PubMed Central

    Hindin, Michelle J.

    2003-01-01

    OBJECTIVE: To investigate the factors associated with attitudes towards wife beating among women in partnerships in Zimbabwe in order to assist public health practitioners in preventing intimate partner violence (IPV). METHODS: A nationally representative survey of 5907 women of reproductive age (15-49 years) was conducted in Zimbabwe. Women were asked about their attitudes towards wife beating in five situations. The survey included sociodemographic characteristics, partnership characteristics, and household decision-making. FINDINGS: Over half of all women in Zimbabwe (53%) believed that wife beating was justified in at least one of the five situations. Respondents were most likely to find wife beating justified if a wife argued with her spouse (36%), neglected her children (33%), or went out without telling her spouse (30%). Among women in partnerships (n=3077), younger age, living in rural areas, lower household wealth, schooling at a lower level than secondary, and lower occupational status were associated with women reporting that wife beating is justified. Women who reported that they make household decisions jointly with their partners were less likely to say that wife beating is justified. CONCLUSIONS: Zimbabwe has a long way to go in preventing IPV, particularly because the younger generation of women is significantly more likely to believe that wife beating is justified compared with older women. Given the current social and political climate in Zimbabwe, finding means to negotiate rather than settle conflict through violence is essential from the household level to the national level. PMID:12973642

  3. Beat-by-beat analysis of cardiac output and blood pressure responses to short-term barostimulation in different body positions

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Wulf; Schütze, Harald; Stegemann, J.

    Rapid quantification of the human baro-reflex control of heart rate has been achieved on a beat-by-beat basis using a neck-chamber with quick ECG-triggered pressure changes. Referring to recent findings on heart rate and stroke volume, the present study uses this technique to compare cardiac output as well as blood pressure changes in supine and upright position to investigate feedback effects and to confirm postural reflex modifications not revealed by RR-interval changes. A suction profile starting at +40 mmHg and running 7 steps of pressure decrease down to -65 mmHg was examined in 0° and 90° tilting position while beat-by-beat recordings were done of heart rate, stroke volume (impedance-cardiography) and blood pressure (Finapres tm) (n=16). The percentual heart rate decrease failed to be significantly different between positions. A suction-induced stroke volume increase led to a cardiac output almost maintained when supine and significantly increased when upright. A decrease in all blood pressure values was found during suction, except for systolic values in upright position which increased. Conclusively, (a) it is confirmed that different inotropy accounts for the seen gravitational effect on the cardiac output not represented by heart rate; (b) identical suction levels in different positions lead to different stimuli at the carotid receptor. This interference has to be considered in microgravity studies by beat-by-beat measurement of cardiac output and blood pressure.

  4. On binaural beats.

    PubMed

    Fritze, W

    1985-01-01

    Binaural beats have been investigated in normal volunteers using high-stable synthesizers. There are considerable differences between the subjective rhythm heard and the difference of the two frequencies, indicating that this dissimilarity must be caused centrally.

  5. Optimal ciliary beating patterns

    NASA Astrophysics Data System (ADS)

    Vilfan, Andrej; Osterman, Natan

    2011-11-01

    We introduce a measure for energetic efficiency of single or collective biological cilia. We define the efficiency of a single cilium as Q2 / P , where Q is the volume flow rate of the pumped fluid and P is the dissipated power. For ciliary arrays, we define it as (ρQ) 2 / (ρP) , with ρ denoting the surface density of cilia. We then numerically determine the optimal beating patterns according to this criterion. For a single cilium optimization leads to curly, somewhat counterintuitive patterns. But when looking at a densely ciliated surface, the optimal patterns become remarkably similar to what is observed in microorganisms like Paramecium. The optimal beating pattern then consists of a fast effective stroke and a slow sweeping recovery stroke. Metachronal waves lead to a significantly higher efficiency than synchronous beating. Efficiency also increases with an increasing density of cilia up to the point where crowding becomes a problem. We finally relate the pumping efficiency of cilia to the swimming efficiency of a spherical microorganism and show that the experimentally estimated efficiency of Paramecium is surprisingly close to the theoretically possible optimum.

  6. Beat Perception and Sociability: Evidence from Williams Syndrome

    PubMed Central

    Lense, Miriam D.; Dykens, Elisabeth M.

    2016-01-01

    Beat perception in music has been proposed to be a human universal that may have its origins in adaptive processes involving temporal entrainment such as social communication and interaction. We examined beat perception skills in individuals with Williams syndrome (WS), a genetic, neurodevelopmental disorder. Musical interest and hypersociability are two prominent aspects of the WS phenotype although actual musical and social skills are variable. On a group level, beat and meter perception skills were poorer in WS than in age-matched peers though there was significant individual variability. Cognitive ability, sound processing style, and musical training predicted beat and meter perception performance in WS. Moreover, we found significant relationships between beat and meter perception and adaptive communication and socialization skills in WS. Results have implications for understanding the role of predictive timing in both music and social interactions in the general population, and suggest music as a promising avenue for addressing social communication difficulties in WS. PMID:27378982

  7. Left ventricular diastolic filling with an implantable ventricular assist device: beat to beat variability with overall improvement

    NASA Technical Reports Server (NTRS)

    Nakatani, S.; Thomas, J. D.; Vandervoort, P. M.; Zhou, J.; Greenberg, N. L.; Savage, R. M.; McCarthy, P. M.

    1997-01-01

    OBJECTIVES: We studied the effects of left ventricular (LV) unloading by an implantable ventricular assist device on LV diastolic filling. BACKGROUND: Although many investigators have reported reliable systemic and peripheral circulatory support with implantable LV assist devices, little is known about their effect on cardiac performance. METHODS: Peak velocities of early diastolic filling, late diastolic filling, late to early filling ratio, deceleration time of early filling, diastolic filling period and atrial filling fraction were measured by intraoperative transesophageal Doppler echocardiography before and after insertion of an LV assist device in eight patients. A numerical model was developed to simulate this situation. RESULTS: Before device insertion, all patients showed either a restrictive or a monophasic transmitral flow pattern. After device insertion, transmitral flow showed rapid beat to beat variation in each patient, from abnormal relaxation to restrictive patterns. However, when the average values obtained from 10 consecutive beats were considered, overall filling was significantly normalized from baseline, with early filling velocity falling from 87 +/- 31 to 64 +/- 26 cm/s (p < 0.01) and late filling velocity rising from 8 +/- 11 to 32 +/- 23 cm/s (p < 0.05), resulting in an increase in the late to early filling ratio from 0.13 +/- 0.18 to 0.59 +/- 0.38 (p < 0.01) and a rise in the atrial filling fraction from 8 +/- 10% to 26 +/- 17% (p < 0.01). The deceleration time (from 112 +/- 40 to 160 +/- 44 ms, p < 0.05) and the filling period corrected by the RR interval (from 39 +/- 8% to 54 +/- 10%, p < 0.005) were also significantly prolonged. In the computer model, asynchronous LV assistance produced significant beat to beat variation in filling indexes, but overall a normalization of deceleration time as well as other variables. CONCLUSIONS: With LV assistance, transmitral flow showed rapidly varying patterns beat by beat in each patient, but

  8. Nonlinear Interaction of the Beat-Photon Beams with the Brain Neurocenters: Laser Neurophysics

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2010-03-01

    I propose a novel mechanism for laser-brain interaction: Nonlinear interaction of ultrashort pulses of beat-photon, (φ1-- φ2), or double-photon, (φ1+φ2), footnotetextMaria Goeppert-Mayer, "Uber Elementarakte mit zwei Quantenspr"ungen, Ann Phys 9, 273, 95. (1931). beams with the corrupted brain neurocenters, causing a particular neurological disease. The open-scull cerebral tissue can be irradiated with the beat-photon pulses in the range of several 100s fs, with the laser irradiances in the range of a few mW/cm^2, repetition rate of a few 100s Hz, and in the frequency range of 700-1300nm generated in the beat-wave driven free electron laser.footnotetextV. Alexander Stefan, The Interaction of Photon Beams with the DNA Molecules: Genomic Medical Physics. American Physical Society, 2009 APS March Meeting, March 16-20, 2009, abstract #K1.276; V. Stefan, B. I. Cohen, and C. Joshi, Nonlinear Mixing of Electromagnetic Waves in Plasmas Science 27 January 1989:Vol. 243. no. 4890, pp. 494 -- 500 (January 1989). This method may prove to be an effective mechanism in the treatment of neurological diseases: Parkinson's, Lou Gehrig's, and others.

  9. An algorithm for the beat-to-beat assessment of cardiac mechanics during sleep on Earth and in microgravity from the seismocardiogram.

    PubMed

    Di Rienzo, Marco; Vaini, Emanuele; Lombardi, Prospero

    2017-11-15

    Seismocardiogram, SCG, is the measure of precordial vibrations produced by the beating heart, from which cardiac mechanics may be explored on a beat-to-beat basis. We recently collected a large amount of SCG data (>69 recording hours) from an astronaut to investigate cardiac mechanics during sleep aboard the International Space Station and on Earth. SCG sleep recordings are characterized by a prolonged duration and wide heart rate swings, thus a specific algorithm was developed for their analysis. In this article we describe the new algorithm and its performance. The algorithm is composed of three parts: 1) artifacts removal, 2) identification in each SCG waveform of four fiducial points associated with the opening and closure of the aortic and mitral valves, 3) beat-to-beat computation of indexes of cardiac mechanics from the SCG fiducial points. The algorithm was tested on two sleep recordings and yielded the identification of the fiducial points in more than 36,000 beats with a precision, quantified by the Positive Predictive Value, ≥99.2%. These positive findings provide the first evidence that cardiac mechanics may be explored by the automatic analysis of SCG long-lasting recordings, taken out of the laboratory setting, and in presence of significant heart rate modulations.

  10. Realtime Multichannel System for Beat to Beat QT Interval Variability

    NASA Technical Reports Server (NTRS)

    Starc, Vito; Schlegel, Todd T.

    2006-01-01

    The measurement of beat-to-beat QT interval variability (QTV) shows clinical promise for identifying several types of cardiac pathology. However, until now, there has been no device capable of displaying, in real time on a beattobeat basis, changes in QTV in all 12 conventional leads in a continuously monitored patient. While several software programs have been designed to analyze QTV, heretofore, such programs have all involved only a few channels (at most) and/or have required laborious user interaction or offline calculations and postprocessing, limiting their clinical utility. This paper describes a PC-based ECG software program that in real time, acquires, analyzes and displays QTV and also PQ interval variability (PQV) in each of the eight independent channels that constitute the 12lead conventional ECG. The system also processes certain related signals that are derived from singular value decomposition and that help to reduce the overall effects of noise on the realtime QTV and PQV results.

  11. Beat gestures help preschoolers recall and comprehend discourse information.

    PubMed

    Llanes-Coromina, Judith; Vilà-Giménez, Ingrid; Kushch, Olga; Borràs-Comes, Joan; Prieto, Pilar

    2018-08-01

    Although the positive effects of iconic gestures on word recall and comprehension by children have been clearly established, less is known about the benefits of beat gestures (rhythmic hand/arm movements produced together with prominent prosody). This study investigated (a) whether beat gestures combined with prosodic information help children recall contrastively focused words as well as information related to those words in a child-directed discourse (Experiment 1) and (b) whether the presence of beat gestures helps children comprehend a narrative discourse (Experiment 2). In Experiment 1, 51 4-year-olds were exposed to a total of three short stories with contrastive words presented in three conditions, namely with prominence in both speech and gesture, prominence in speech only, and nonprominent speech. Results of a recall task showed that (a) children remembered more words when exposed to prominence in both speech and gesture than in either of the other two conditions and that (b) children were more likely to remember information related to those words when the words were associated with beat gestures. In Experiment 2, 55 5- and 6-year-olds were presented with six narratives with target items either produced with prosodic prominence but no beat gestures or produced with both prosodic prominence and beat gestures. Results of a comprehension task demonstrated that stories told with beat gestures were comprehended better by children. Together, these results constitute evidence that beat gestures help preschoolers not only to recall discourse information but also to comprehend it. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Energy Consumption of Actively Beating Flagella

    NASA Astrophysics Data System (ADS)

    Chen, Daniel; Nicastro, Daniela; Dogic, Zvonimir

    2012-02-01

    Motile cilia and flagella are important for propelling cells or driving fluid over tissues. The microtubule-based core in these organelles, the axoneme, has a nearly universal ``9+2'' arrangement of 9 outer doublet microtubules assembled around two singlet microtubules in the center. Thousands of molecular motor proteins are attached to the doublets and walk on neighboring outer doublets. The motors convert the chemical energy of ATP hydrolysis into sliding motion between adjacent doublet microtubules, resulting in precisely regulated oscillatory beating. Using demembranated sea urchin sperm flagella as an experimental platform, we simultaneously monitor the axoneme's consumption of ATP and its beating dynamics while key parameters, such as solution viscosity and ATP concentration, are varied. Insights into motor cooperativity during beating and energetic consequences of hydrodynamic interactions will be presented.

  13. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating

    PubMed Central

    Engler, Adam J.; Carag-Krieger, Christine; Johnson, Colin P.; Raab, Matthew; Tang, Hsin-Yao; Speicher, David W.; Sanger, Joseph W.; Sanger, Jean M.; Discher, Dennis E.

    2009-01-01

    Summary Fibrotic rigidification following a myocardial infarct is known to impair cardiac output, and it is also known that cardiomyocytes on rigid culture substrates show a progressive loss of rhythmic beating. Here, isolated embryonic cardiomyocytes cultured on a series of flexible substrates show that matrices that mimic the elasticity of the developing myocardial microenvironment are optimal for transmitting contractile work to the matrix and for promoting actomyosin striation and 1-Hz beating. On hard matrices that mechanically mimic a post-infarct fibrotic scar, cells overstrain themselves, lack striated myofibrils and stop beating; on very soft matrices, cells preserve contractile beating for days in culture but do very little work. Optimal matrix leads to a strain match between cell and matrix, and suggests dynamic differences in intracellular protein structures. A ‘cysteine shotgun’ method of labeling the in situ proteome reveals differences in assembly or conformation of several abundant cytoskeletal proteins, including vimentin, filamin and myosin. Combined with recent results, which show that stem cell differentiation is also highly sensitive to matrix elasticity, the methods and analyses might be useful in the culture and assessment of cardiogenesis of both embryonic stem cells and induced pluripotent stem cells. The results described here also highlight the need for greater attention to fibrosis and mechanical microenvironments in cell therapy and development. PMID:18957515

  14. A beat-to-beat calculator for the diastolic pressure time index and the tension time index.

    PubMed

    Nose, Y; Tajimi, T; Watanabe, Y; Yokota, M; Akazawa, K; Nakamura, M

    1987-01-01

    We have developed a beat-to-beat calculator which can calculate in real-time the ratio of the diastolic pressure time index (DPTI), and the tension time index (TTI) as an index of the myocardial oxygen supply/demand balance. Physicians set up presumed value for the left ventricular endodiastolic pressure, a search area for the dicrotic notch, a threshold for the onset of the up-slope and the corresponding value of the calibration signal on the digital switches of the calculator. Next, the arterial pressure analog signal is input into the calculator. The calculator searches automatically for both the onset of the up-slope and the dicrotic notch. The arterial pressure curve is displayed beat-to-beat with the recognized onset and the dicrotic notch on the CRT to be confirmed by physicians. When physicians do not agree with the automatic recognition they can fit the automatic recognition to the observation. If the recognition of the onset is inadequate, the threshold can be re-adjusted to trigger the onset. If recognition of the dicrotic notch is inadequate, the physician can adjust the search-area. Therefore, physicians who operate the calculator can rely on the calculated DPTI/TTI. This calculator can continuously monitor the myocardial oxygen supply/demand balance in patients with acute myocardial infarction or just after open-heart surgery.

  15. Ventricular beat classifier using fractal number clustering.

    PubMed

    Bakardjian, H

    1992-09-01

    A two-stage ventricular beat 'associative' classification procedure is described. The first stage separates typical beats from extrasystoles on the basis of area and polarity rules. At the second stage, the extrasystoles are classified in self-organised cluster formations of adjacent shape parameter values. This approach avoids the use of threshold values for discrimination between ectopic beats of different shapes, which could be critical in borderline cases. A pattern shape feature conventionally called a 'fractal number', in combination with a polarity attribute, was found to be a good criterion for waveform evaluation. An additional advantage of this pattern classification method is its good computational efficiency, which affords the opportunity to implement it in real-time systems.

  16. Binaural beats at high frequencies.

    PubMed

    McFadden, D; Pasanen, E G

    1975-10-24

    Binaural beats have long been believed to be audible only at low frequencies, but an interaction reminiscent of a binaural beat can sometimes be heard when different two-tone complexes of high frequency are presented to the two ears. The primary requirement is that the frequency separation in the complex at one ear be slightly different from that in the other--that is, that there be a small interaural difference in the envelope periodicities. This finding is in accord with other recent demonstrations that the auditory system is not deaf to interaural time differences at high frequencies.

  17. Ectopic beats in approximate entropy and sample entropy-based HRV assessment

    NASA Astrophysics Data System (ADS)

    Singh, Butta; Singh, Dilbag; Jaryal, A. K.; Deepak, K. K.

    2012-05-01

    Approximate entropy (ApEn) and sample entropy (SampEn) are the promising techniques for extracting complex characteristics of cardiovascular variability. Ectopic beats, originating from other than the normal site, are the artefacts contributing a serious limitation to heart rate variability (HRV) analysis. The approaches like deletion and interpolation are currently in use to eliminate the bias produced by ectopic beats. In this study, normal R-R interval time series of 10 healthy and 10 acute myocardial infarction (AMI) patients were analysed by inserting artificial ectopic beats. Then the effects of ectopic beats editing by deletion, degree-zero and degree-one interpolation on ApEn and SampEn have been assessed. Ectopic beats addition (even 2%) led to reduced complexity, resulting in decreased ApEn and SampEn of both healthy and AMI patient data. This reduction has been found to be dependent on level of ectopic beats. Editing of ectopic beats by interpolation degree-one method is found to be superior to other methods.

  18. The effect of beat frequency on eye movements during free viewing.

    PubMed

    Maróti, Emese; Knakker, Balázs; Vidnyánszky, Zoltán; Weiss, Béla

    2017-02-01

    External periodic stimuli entrain brain oscillations and affect perception and attention. It has been shown that background music can change oculomotor behavior and facilitate detection of visual objects occurring on the musical beat. However, whether musical beats in different tempi modulate information sampling differently during natural viewing remains to be explored. Here we addressed this question by investigating how listening to naturalistic drum grooves in two different tempi affects eye movements of participants viewing natural scenes on a computer screen. We found that the beat frequency of the drum grooves modulated the rate of eye movements: fixation durations were increased at the lower beat frequency (1.7Hz) as compared to the higher beat frequency (2.4Hz) and no music conditions. Correspondingly, estimated visual sampling frequency decreased as fixation durations increased with lower beat frequency. These results imply that slow musical beats can retard sampling of visual information during natural viewing by increasing fixation durations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Direct Visualization of Mechanical Beats by Means of an Oscillating Smartphone

    NASA Astrophysics Data System (ADS)

    Giménez, Marcos H.; Salinas, Isabel; Monsoriu, Juan A.; Castro-Palacio, Juan C.

    2017-10-01

    The resonance phenomenon is widely known in physics courses. Qualitatively speaking, resonance takes place in a driven oscillating system whenever the frequency approaches the natural frequency, resulting in maximal oscillatory amplitude. Very closely related to resonance is the phenomenon of mechanical beating, which occurs when the driving and natural frequencies of the system are slightly different. The frequency of the beat is just the difference of the natural and driving frequencies. Beats are very familiar in acoustic systems. There are several works in this journal on visualizing the beats in acoustic systems. For instance, the microphone and the speaker of two mobile devices were used in previous work to analyze the acoustic beats produced by two signals of close frequencies. The formation of beats can also be visualized in mechanical systems, such as a mass-spring system or a double-driven string. Here, the mechanical beats in a smartphone-spring system are directly visualized in a simple way. The frequency of the beats is measured by means of the acceleration sensor of a smartphone, which hangs from a spring attached to a mechanical driver. This laboratory experiment is suitable for both high school and first-year university physics courses.

  20. Noninvasive measurement of beat-to-beat arterial blood pressure by the Korotkoff sound delay time.

    PubMed

    Xiang, Haiyan; Liu, Yanyong; Li, Yinhua; Qin, Yufei; Yu, Mengsun

    2012-02-01

    To propose a novel noninvasive beat-to-beat arterial blood pressure measurement method based on the Korotkoff sound delay time (KDT) and evaluate its accuracy in preliminary experiments. KDT decreases as the cuff pressure P deflates, which can be described by a function KDT=f (P). Actually, KDT is a function of arterial transmural pressure. Therefore, the variation in blood pressure can be obtained by the transmural pressure, which is estimated by the KDT. Holding the cuff pressure at an approximate constant pressure between systolic pressure and diastolic pressure, the variation in blood pressure ΔEBP between successive heartbeats can be estimated according to KDT and f'(p), which represents the variation of KDT corresponding to unit pressure. Then the blood pressure for each heartbeat can be obtained by accumulating the ΔEBP. Invasive and noninvasive blood pressure values of six participants were measured simultaneously to evaluate the method. The average of the correlation coefficients between the invasive mean arterial pressure (MAP) and the KDT for six participants was -0.91. The average of the correlation coefficients between the invasive MAP and the estimated mean blood pressure (EBP) was 0.92. The mean difference between EBP and MAP was 0.51 mmHg, and the SD was 2.65 mmHg. The mean blood pressure estimated by the KDT is consistent with the invasive MAP. The beat-to-beat blood pressure estimated by KDT provides an accurate estimate of MAP in the preliminary experiments and represents a potential acceptable alternative to invasive blood pressure monitoring during laboratory studies.

  1. Midbrain adaptation may set the stage for the perception of musical beat

    PubMed Central

    2017-01-01

    The ability to spontaneously feel a beat in music is a phenomenon widely believed to be unique to humans. Though beat perception involves the coordinated engagement of sensory, motor and cognitive processes in humans, the contribution of low-level auditory processing to the activation of these networks in a beat-specific manner is poorly understood. Here, we present evidence from a rodent model that midbrain preprocessing of sounds may already be shaping where the beat is ultimately felt. For the tested set of musical rhythms, on-beat sounds on average evoked higher firing rates than off-beat sounds, and this difference was a defining feature of the set of beat interpretations most commonly perceived by human listeners over others. Basic firing rate adaptation provided a sufficient explanation for these results. Our findings suggest that midbrain adaptation, by encoding the temporal context of sounds, creates points of neural emphasis that may influence the perceptual emergence of a beat. PMID:29118141

  2. Midbrain adaptation may set the stage for the perception of musical beat.

    PubMed

    Rajendran, Vani G; Harper, Nicol S; Garcia-Lazaro, Jose A; Lesica, Nicholas A; Schnupp, Jan W H

    2017-11-15

    The ability to spontaneously feel a beat in music is a phenomenon widely believed to be unique to humans. Though beat perception involves the coordinated engagement of sensory, motor and cognitive processes in humans, the contribution of low-level auditory processing to the activation of these networks in a beat-specific manner is poorly understood. Here, we present evidence from a rodent model that midbrain preprocessing of sounds may already be shaping where the beat is ultimately felt. For the tested set of musical rhythms, on-beat sounds on average evoked higher firing rates than off-beat sounds, and this difference was a defining feature of the set of beat interpretations most commonly perceived by human listeners over others. Basic firing rate adaptation provided a sufficient explanation for these results. Our findings suggest that midbrain adaptation, by encoding the temporal context of sounds, creates points of neural emphasis that may influence the perceptual emergence of a beat. © 2017 The Authors.

  3. The Effect of Binaural Beats on Visuospatial Working Memory and Cortical Connectivity.

    PubMed

    Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A; Leonessa, Alexander

    2016-01-01

    Binaural beats utilize a phenomenon that occurs within the cortex when two different frequencies are presented separately to each ear. This procedure produces a third phantom binaural beat, whose frequency is equal to the difference of the two presented tones and which can be manipulated for non-invasive brain stimulation. The effects of binaural beats on working memory, the system in control of temporary retention and online organization of thoughts for successful goal directed behavior, have not been well studied. Furthermore, no studies have evaluated the effects of binaural beats on brain connectivity during working memory tasks. In this study, we determined the effects of different acoustic stimulation conditions on participant response accuracy and cortical network topology, as measured by EEG recordings, during a visuospatial working memory task. Three acoustic stimulation control conditions and three binaural beat stimulation conditions were used: None, Pure Tone, Classical Music, 5Hz binaural beats, 10Hz binaural beats, and 15Hz binaural beats. We found that listening to 15Hz binaural beats during a visuospatial working memory task not only increased the response accuracy, but also modified the strengths of the cortical networks during the task. The three auditory control conditions and the 5Hz and 10Hz binaural beats all decreased accuracy. Based on graphical network analyses, the cortical activity during 15Hz binaural beats produced networks characteristic of high information transfer with consistent connection strengths throughout the visuospatial working memory task.

  4. The Effect of Binaural Beats on Visuospatial Working Memory and Cortical Connectivity

    PubMed Central

    Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A.; Leonessa, Alexander

    2016-01-01

    Binaural beats utilize a phenomenon that occurs within the cortex when two different frequencies are presented separately to each ear. This procedure produces a third phantom binaural beat, whose frequency is equal to the difference of the two presented tones and which can be manipulated for non-invasive brain stimulation. The effects of binaural beats on working memory, the system in control of temporary retention and online organization of thoughts for successful goal directed behavior, have not been well studied. Furthermore, no studies have evaluated the effects of binaural beats on brain connectivity during working memory tasks. In this study, we determined the effects of different acoustic stimulation conditions on participant response accuracy and cortical network topology, as measured by EEG recordings, during a visuospatial working memory task. Three acoustic stimulation control conditions and three binaural beat stimulation conditions were used: None, Pure Tone, Classical Music, 5Hz binaural beats, 10Hz binaural beats, and 15Hz binaural beats. We found that listening to 15Hz binaural beats during a visuospatial working memory task not only increased the response accuracy, but also modified the strengths of the cortical networks during the task. The three auditory control conditions and the 5Hz and 10Hz binaural beats all decreased accuracy. Based on graphical network analyses, the cortical activity during 15Hz binaural beats produced networks characteristic of high information transfer with consistent connection strengths throughout the visuospatial working memory task. PMID:27893766

  5. Efficient mucociliary transport relies on efficient regulation of ciliary beating.

    PubMed

    Braiman, Alex; Priel, Zvi

    2008-11-30

    The respiratory mucociliary epithelium is a synchronized and highly effective waste-disposal system. It uses mucus as a vehicle, driven by beating cilia, to transport unwanted particles, trapped in the mucus, away from the respiratory system. The ciliary machinery can function in at least two different modes: a low rate of beating that requires only ATP, and a high rate of beating regulated by second messengers. The mucus propelling velocity is linearly dependent on ciliary beat frequency (CBF). The linear dependence implies that a substantial increase in transport efficiency requires an equally substantial rise in CBF. The ability to enhance beating in response to various physiological cues is a hallmark of mucociliary cells. An intricate signaling network controls ciliary activity, which relies on interplay between calcium and cyclic nucleotide pathways.

  6. On readout of vibrational qubits using quantum beats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shyshlov, Dmytro; Babikov, Dmitri, E-mail: Dmitri.Babikov@mu.edu; Berrios, Eduardo

    2014-12-14

    Readout of the final states of qubits is a crucial step towards implementing quantum computation in experiment. Although not scalable to large numbers of qubits per molecule, computational studies show that molecular vibrations could provide a significant (factor 2–5 in the literature) increase in the number of qubits compared to two-level systems. In this theoretical work, we explore the process of readout from vibrational qubits in thiophosgene molecule, SCCl{sub 2}, using quantum beat oscillations. The quantum beats are measured by first exciting the superposition of the qubit-encoding vibrational states to the electronically excited readout state with variable time-delay pulses. Themore » resulting oscillation of population of the readout state is then detected as a function of time delay. In principle, fitting the quantum beat signal by an analytical expression should allow extracting the values of probability amplitudes and the relative phases of the vibrational qubit states. However, we found that if this procedure is implemented using the standard analytic expression for quantum beats, a non-negligible phase error is obtained. We discuss the origin and properties of this phase error, and propose a new analytical expression to correct the phase error. The corrected expression fits the quantum beat signal very accurately, which may permit reading out the final state of vibrational qubits in experiments by combining the analytic fitting expression with numerical modelling of the readout process. The new expression is also useful as a simple model for fitting any quantum beat experiments where more accurate phase information is desired.« less

  7. Psychoacoustic Factors in Musical Intonation: Beats, Interval Tuning, and Inharmonicity.

    NASA Astrophysics Data System (ADS)

    Keislar, Douglas Fleming

    Three psychoacoustic experiments were conducted using musically experienced subjects. In the first two experiments, the interval tested was the perfect fifth F4-C5; in the final one it was the major third F4-A4. The beat rate was controlled by two different methods: (1) simply retuning the interval, and (2) frequency-shifting one partial of each pair of beating partials without changing the overall interval tuning. The second method introduces inharmonicity. In addition, two levels of beat amplitude were introduced by using either a complete spectrum of 16 equal-amplitude partials per note, or by deleting one partial from each pair of beating partials. The results of all three experiments indicate that, for these stimuli, beating does not contribute significantly to the percept of "out-of-tuneness," because it made no difference statistically whether the beat amplitude was maximal or minimal. By contrast, mistuning the interval was highly significant. For the fifths, frequency-shifting the appropriate partials had about as much effect on the perceived intonation as mistuning the interval. For thirds, this effect was weaker, presumably since there were fewer inharmonic partials and they were higher in the harmonic series. Subjects were less consistent in their judgments of thirds than of fifths, perhaps because the equal-tempered and just thirds differ noticeably, unlike fifths. Since it is unlikely that beats would be more audible in real musical situations than under these laboratory conditions, these results suggest that the perception of intonation in music is dependent on the actual interval tuning rather than the concomitant beat rate. If beating partials are unimportant vis-a-vis interval tuning, this strengthens the argument for a cultural basis for musical intonation and scales, as opposed to the acoustical basis set forth by Helmholtz and others.

  8. Non-model-based correction of respiratory motion using beat-to-beat 3D spiral fat-selective imaging.

    PubMed

    Keegan, Jennifer; Gatehouse, Peter D; Yang, Guang-Zhong; Firmin, David N

    2007-09-01

    To demonstrate the feasibility of retrospective beat-to-beat correction of respiratory motion, without the need for a respiratory motion model. A high-resolution three-dimensional (3D) spiral black-blood scan of the right coronary artery (RCA) of six healthy volunteers was acquired over 160 cardiac cycles without respiratory gating. One spiral interleaf was acquired per cardiac cycle, prior to each of which a complete low-resolution fat-selective 3D spiral dataset was acquired. The respiratory motion (3D translation) on each cardiac cycle was determined by cross-correlating a region of interest (ROI) in the fat around the artery in the low-resolution datasets with that on a reference end-expiratory dataset. The measured translations were used to correct the raw data of the high-resolution spiral interleaves. Beat-to-beat correction provided consistently good results, with the image quality being better than that obtained with a fixed superior-inferior tracking factor of 0.6 and better than (N = 5) or equal to (N = 1) that achieved using a subject-specific retrospective 3D translation motion model. Non-model-based correction of respiratory motion using 3D spiral fat-selective imaging is feasible, and in this small group of volunteers produced better-quality images than a subject-specific retrospective 3D translation motion model. (c) 2007 Wiley-Liss, Inc.

  9. Intertrial auditory neural stability supports beat synchronization in preschoolers

    PubMed Central

    Carr, Kali Woodruff; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina

    2016-01-01

    The ability to synchronize motor movements along with an auditory beat places stringent demands on the temporal processing and sensorimotor integration capabilities of the nervous system. Links between millisecond-level precision of auditory processing and the consistency of sensorimotor beat synchronization implicate fine auditory neural timing as a mechanism for forming stable internal representations of, and behavioral reactions to, sound. Here, for the first time, we demonstrate a systematic relationship between consistency of beat synchronization and trial-by-trial stability of subcortical speech processing in preschoolers (ages 3 and 4 years old). We conclude that beat synchronization might provide a useful window into millisecond-level neural precision for encoding sound in early childhood, when speech processing is especially important for language acquisition and development. PMID:26760457

  10. Human auditory steady state responses to binaural and monaural beats.

    PubMed

    Schwarz, D W F; Taylor, P

    2005-03-01

    Binaural beat sensations depend upon a central combination of two different temporally encoded tones, separately presented to the two ears. We tested the feasibility to record an auditory steady state evoked response (ASSR) at the binaural beat frequency in order to find a measure for temporal coding of sound in the human EEG. We stimulated each ear with a distinct tone, both differing in frequency by 40Hz, to record a binaural beat ASSR. As control, we evoked a beat ASSR in response to both tones in the same ear. We band-pass filtered the EEG at 40Hz, averaged with respect to stimulus onset and compared ASSR amplitudes and phases, extracted from a sinusoidal non-linear regression fit to a 40Hz period average. A 40Hz binaural beat ASSR was evoked at a low mean stimulus frequency (400Hz) but became undetectable beyond 3kHz. Its amplitude was smaller than that of the acoustic beat ASSR, which was evoked at low and high frequencies. Both ASSR types had maxima at fronto-central leads and displayed a fronto-occipital phase delay of several ms. The dependence of the 40Hz binaural beat ASSR on stimuli at low, temporally coded tone frequencies suggests that it may objectively assess temporal sound coding ability. The phase shift across the electrode array is evidence for more than one origin of the 40Hz oscillations. The binaural beat ASSR is an evoked response, with novel diagnostic potential, to a signal that is not present in the stimulus, but generated within the brain.

  11. Attitudes toward wife beating: a cross-country study in Asia.

    PubMed

    Rani, Manju; Bonu, Sekhar

    2009-08-01

    Using demographic and health surveys conducted between 1998 and 2001 from seven countries (Armenia, Bangladesh, Cambodia, India, Kazakhstan, Nepal, and Turkey), the study found that acceptance of wife beating ranged from 29% in Nepal, to 57% in India (women only), and from 26% in Kazakhstan, to 56% in Turkey (men only). Increasing wealth predicted less acceptance of wife beating, except in Cambodia and Nepal. Higher education level was negatively associated with acceptance in Turkey and Bangladesh. Younger respondents justified wife beating more often, with some exceptions, showing persistent intergenerational transmission of gender norms. Working women were equally or more likely to justify wife beating compared to nonworking women. Men were significantly more likely to justify wife beating in Armenia, Nepal, and Turkey. Targeted proactive efforts are needed to change these norms, such as improving female literacy rates and other enabling factors.

  12. Load Response of the Flagellar Beat

    NASA Astrophysics Data System (ADS)

    Klindt, Gary S.; Ruloff, Christian; Wagner, Christian; Friedrich, Benjamin M.

    2016-12-01

    Cilia and flagella exhibit regular bending waves that perform mechanical work on the surrounding fluid, to propel cellular swimmers and pump fluids inside organisms. Here, we quantify a force-velocity relationship of the beating flagellum, by exposing flagellated Chlamydomonas cells to controlled microfluidic flows. A simple theory of flagellar limit-cycle oscillations, calibrated by measurements in the absence of flow, reproduces this relationship quantitatively. We derive a link between the energy efficiency of the flagellar beat and its ability to synchronize to oscillatory flows.

  13. Measuring and characterizing beat phenomena with a smartphone

    NASA Astrophysics Data System (ADS)

    Osorio, M.; Pereyra, C. J.; Gau, D. L.; Laguarda, A.

    2018-03-01

    Nowadays, smartphones are in everyone’s life. Apart from being excellent tools for work and communication, they can also be used to perform several measurements of simple physical magnitudes, serving as a mobile and inexpensive laboratory, ideal for use physics lectures in high schools or universities. In this article, we use a smartphone to analyse the acoustic beat phenomena by using a simple experimental setup, which can complement lessons in the classroom. The beats were created by the superposition of the waves generated by two tuning forks, with their natural frequencies previously characterized using different applications. After the characterization, we recorded the beats and analysed the oscillations in time and frequency.

  14. A quantitative electroencephalographic study of meditation and binaural beat entrainment.

    PubMed

    Lavallee, Christina F; Koren, Stanley A; Persinger, Michael A

    2011-04-01

    The study objective was to determine the quantitative electroencephalographic correlates of meditation, as well as the effects of hindering (15 Hz) and facilitative (7 Hz) binaural beats on the meditative process. The study was a mixed design, with experience of the subject as the primary between-subject measure and power of the six classic frequency bands (δ, θ, low α, high α, β, γ), neocortical lobe (frontal, temporal, parietal, occipital), hemisphere (left, right), and condition (meditation only, meditation with 7-Hz beats, meditation with 15-Hz beats) as the within-subject measures. The study was conducted at Laurentian University in Sudbury, Ontario, Canada. The subjects comprised novice (mean of 8 months experience) and experienced (mean of 18 years experience) meditators recruited from local meditation groups. Experimental manipulation included application of hindering and facilitative binaural beats to the meditative process. Experienced meditators displayed increased left temporal lobe δ power when the facilitative binaural beats were applied, whereas the effect was not observed for the novice subjects in this condition. When the hindering binaural beats were introduced, the novice subjects consistently displayed more γ power than the experienced subjects over the course of their meditation, relative to baseline. Based on the results of this study, novice meditators were not able to maintain certain levels of θ power in the occipital regions when hindering binaural beats were presented, whereas when the facilitative binaural beats were presented, the experienced meditators displayed increased θ power in the left temporal lobe. These results suggest that the experienced meditators have developed techniques over the course of their meditation practice to counter hindering environmental stimuli, whereas the novice meditators have not yet developed those techniques.

  15. Effects of single cycle binaural beat duration on auditory evoked potentials.

    PubMed

    Mihajloski, Todor; Bohorquez, Jorge; Özdamar, Özcan

    2014-01-01

    Binaural beat (BB) illusions are experienced as continuous central pulsations when two sounds with slightly different frequencies are delivered to each ear. It has been shown that steady-state auditory evoked potentials (AEPs) to BBs can be captured and investigated. The authors recently developed a new method of evoking transient AEPs to binaural beats using frequency modulated stimuli. This methodology was able to create single BBs in predetermined intervals with varying carrier frequencies. This study examines the effects of the BB duration and the frequency modulating component of the stimulus on the binaural beats and their evoked potentials. Normal hearing subjects were tested with a set of four durations (25, 50, 100, and 200 ms) with two stimulation configurations, binaural dichotic (binaural beats) and diotic (frequency modulation). The results obtained from the study showed that out of the given durations, the 100 ms beat, was capable of evoking the largest amplitude responses. The frequency modulation effect showed a decrease in peak amplitudes with increasing beat duration until their complete disappearance at 200 ms. Even though, at 200 ms, the frequency modulation effects were not present, the binaural beats were still perceived and captured as evoked potentials.

  16. The brain responses to different frequencies of binaural beat sounds on QEEG at cortical level.

    PubMed

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2015-01-01

    Beat phenomenon is occurred when two slightly different frequency waves interfere each other. The beat can also occur in the brain by providing two slightly different frequency waves separately each ear. This is called binaural beat. The brain responses to binaural beat are in discussion process whether the brain side and the brain area. Therefore, this study aims to figure out the brain responses to binaural beat by providing different binaural beat frequencies on 250 carrier tone continuously for 30 minutes to participants and using quantitative electroencephalography (QEEG) to interpret the data. The result shows that different responses appear in different beat frequency. Left hemisphere dominance occur in 3 Hz beat within 15 minutes and 15 Hz beat within 5 minutes. Right hemisphere dominance occurs in 10 Hz beat within 25 minute. 6 Hz beat enhances all area of the brain within 10 minutes. 8 Hz and 25 Hz beats have no clearly responses while 40 Hz beat enhances the responses in frontal lobe. These brain responses can be used for brain modulation application to induce the brain activity in further studies.

  17. The effect of binaural beats on verbal working memory and cortical connectivity.

    PubMed

    Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A; Leonessa, Alexander

    2017-04-01

    Synchronization in activated regions of cortical networks affect the brain's frequency response, which has been associated with a wide range of states and abilities, including memory. A non-invasive method for manipulating cortical synchronization is binaural beats. Binaural beats take advantage of the brain's response to two pure tones, delivered independently to each ear, when those tones have a small frequency mismatch. The mismatch between the tones is interpreted as a beat frequency, which may act to synchronize cortical oscillations. Neural synchrony is particularly important for working memory processes, the system controlling online organization and retention of information for successful goal-directed behavior. Therefore, manipulation of synchrony via binaural beats provides a unique window into working memory and associated connectivity of cortical networks. In this study, we examined the effects of different acoustic stimulation conditions during an N-back working memory task, and we measured participant response accuracy and cortical network topology via EEG recordings. Six acoustic stimulation conditions were used: None, Pure Tone, Classical Music, 5 Hz binaural beats, 10 Hz binaural beats, and 15 Hz binaural beats. We determined that listening to 15 Hz binaural beats during an N-Back working memory task increased the individual participant's accuracy, modulated the cortical frequency response, and changed the cortical network connection strengths during the task. Only the 15 Hz binaural beats produced significant change in relative accuracy compared to the None condition. Listening to 15 Hz binaural beats during the N-back task activated salient frequency bands and produced networks characterized by higher information transfer as compared to other auditory stimulation conditions.

  18. Keeping the Beat: A Large Sample Study of Bouncing and Clapping to Music

    PubMed Central

    Tranchant, Pauline; Vuvan, Dominique T.; Peretz, Isabelle

    2016-01-01

    The vast majority of humans move in time with a musical beat. This behaviour has been mostly studied through finger-tapping synchronization. Here, we evaluate naturalistic synchronization responses to music–bouncing and clapping–in 100 university students. Their ability to match the period of their bounces and claps to those of a metronome and musical clips varying in beat saliency was assessed. In general, clapping was better synchronized with the beat than bouncing, suggesting that the choice of a specific movement type is an important factor to consider in the study of sensorimotor synchronization processes. Performance improved as a function of beat saliency, indicating that beat abstraction plays a significant role in synchronization. Fourteen percent of the population exhibited marked difficulties with matching the beat. Yet, at a group level, poor synchronizers showed similar sensitivity to movement type and beat saliency as normal synchronizers. These results suggest the presence of quantitative rather than qualitative variations when losing the beat. PMID:27471854

  19. What makes a rhythm complex? The influence of musical training and accent type on beat perception

    PubMed Central

    Burgoyne, J. Ashley; Odijk, Daan; Honing, Henkjan; Grahn, Jessica A.

    2018-01-01

    Perception of a regular beat in music is inferred from different types of accents. For example, increases in loudness cause intensity accents, and the grouping of time intervals in a rhythm creates temporal accents. Accents are expected to occur on the beat: when accents are “missing” on the beat, the beat is more difficult to find. However, it is unclear whether accents occurring off the beat alter beat perception similarly to missing accents on the beat. Moreover, no one has examined whether intensity accents influence beat perception more or less strongly than temporal accents, nor how musical expertise affects sensitivity to each type of accent. In two experiments, we obtained ratings of difficulty in finding the beat in rhythms with either temporal or intensity accents, and which varied in the number of accents on the beat as well as the number of accents off the beat. In both experiments, the occurrence of accents on the beat facilitated beat detection more in musical experts than in musical novices. In addition, the number of accents on the beat affected beat finding more in rhythms with temporal accents than in rhythms with intensity accents. The effect of accents off the beat was much weaker than the effect of accents on the beat and appeared to depend on musical expertise, as well as on the number of accents on the beat: when many accents on the beat are missing, beat perception is quite difficult, and adding accents off the beat may not reduce beat perception further. Overall, the different types of accents were processed qualitatively differently, depending on musical expertise. Therefore, these findings indicate the importance of designing ecologically valid stimuli when testing beat perception in musical novices, who may need different types of accent information than musical experts to be able to find a beat. Furthermore, our findings stress the importance of carefully designing rhythms for social and clinical applications of beat perception, as

  20. What makes a rhythm complex? The influence of musical training and accent type on beat perception.

    PubMed

    Bouwer, Fleur L; Burgoyne, J Ashley; Odijk, Daan; Honing, Henkjan; Grahn, Jessica A

    2018-01-01

    Perception of a regular beat in music is inferred from different types of accents. For example, increases in loudness cause intensity accents, and the grouping of time intervals in a rhythm creates temporal accents. Accents are expected to occur on the beat: when accents are "missing" on the beat, the beat is more difficult to find. However, it is unclear whether accents occurring off the beat alter beat perception similarly to missing accents on the beat. Moreover, no one has examined whether intensity accents influence beat perception more or less strongly than temporal accents, nor how musical expertise affects sensitivity to each type of accent. In two experiments, we obtained ratings of difficulty in finding the beat in rhythms with either temporal or intensity accents, and which varied in the number of accents on the beat as well as the number of accents off the beat. In both experiments, the occurrence of accents on the beat facilitated beat detection more in musical experts than in musical novices. In addition, the number of accents on the beat affected beat finding more in rhythms with temporal accents than in rhythms with intensity accents. The effect of accents off the beat was much weaker than the effect of accents on the beat and appeared to depend on musical expertise, as well as on the number of accents on the beat: when many accents on the beat are missing, beat perception is quite difficult, and adding accents off the beat may not reduce beat perception further. Overall, the different types of accents were processed qualitatively differently, depending on musical expertise. Therefore, these findings indicate the importance of designing ecologically valid stimuli when testing beat perception in musical novices, who may need different types of accent information than musical experts to be able to find a beat. Furthermore, our findings stress the importance of carefully designing rhythms for social and clinical applications of beat perception, as not

  1. Beat-to-beat, reading-to-reading, and day-to-day blood pressure variability in relation to organ damage in untreated Chinese.

    PubMed

    Wei, Fang-Fei; Li, Yan; Zhang, Lu; Xu, Ting-Yan; Ding, Feng-Hua; Wang, Ji-Guang; Staessen, Jan A

    2014-04-01

    Whether target organ damage is associated with blood pressure (BP) variability independent of level remains debated. We assessed these associations from 10-minute beat-to-beat, 24-hour ambulatory, and 7-day home BP recordings in 256 untreated subjects referred to a hypertension clinic. BP variability indices were variability independent of the mean, maximum-minimum difference, and average real variability. Effect sizes (standardized β) were computed using multivariable regression models. In beat-to-beat recordings, left ventricular mass index (n=128) was not (P≥0.18) associated with systolic BP but increased with all 3 systolic variability indices (+2.97-3.53 g/m(2); P<0.04); the urinary albumin-to-creatinine ratio increased (P≤0.03) with systolic BP (+1.14-1.17 mg/mmol) and maximum-minimum difference (+1.18 mg/mmol); and pulse wave velocity increased with systolic BP (+0.69 m/s; P<0.001). In 24-hour recordings, all 3 indices of organ damage increased (P<0.03) with systolic BP, whereas the associations with BP variability were nonsignificant (P≥0.15) except for increases in pulse wave velocity (P<0.05) with variability independent of the mean (+0.16 m/s) and maximum-minimum difference (+0.17 m/s). In home recordings, the urinary albumin-to-creatinine ratio (+1.27-1.30 mg/mmol) and pulse wave velocity (+0.36-0.40 m/s) increased (P<0.05) with systolic BP, whereas all associations of target organ damage with the variability indices were nonsignificant (P≥0.07). In conclusion, while accounting for BP level, associations of target organ damage with BP variability were readily detectable in beat-to-beat recordings, least noticeable in home recordings, with 24-hour ambulatory monitoring being informative only for pulse wave velocity.

  2. Deep learning based beat event detection in action movie franchises

    NASA Astrophysics Data System (ADS)

    Ejaz, N.; Khan, U. A.; Martínez-del-Amor, M. A.; Sparenberg, H.

    2018-04-01

    Automatic understanding and interpretation of movies can be used in a variety of ways to semantically manage the massive volumes of movies data. "Action Movie Franchises" dataset is a collection of twenty Hollywood action movies from five famous franchises with ground truth annotations at shot and beat level of each movie. In this dataset, the annotations are provided for eleven semantic beat categories. In this work, we propose a deep learning based method to classify shots and beat-events on this dataset. The training dataset for each of the eleven beat categories is developed and then a Convolution Neural Network is trained. After finding the shot boundaries, key frames are extracted for each shot and then three classification labels are assigned to each key frame. The classification labels for each of the key frames in a particular shot are then used to assign a unique label to each shot. A simple sliding window based method is then used to group adjacent shots having the same label in order to find a particular beat event. The results of beat event classification are presented based on criteria of precision, recall, and F-measure. The results are compared with the existing technique and significant improvements are recorded.

  3. The effect of binaural beats on verbal working memory and cortical connectivity

    NASA Astrophysics Data System (ADS)

    Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A.; Leonessa, Alexander

    2017-04-01

    Objective. Synchronization in activated regions of cortical networks affect the brain’s frequency response, which has been associated with a wide range of states and abilities, including memory. A non-invasive method for manipulating cortical synchronization is binaural beats. Binaural beats take advantage of the brain’s response to two pure tones, delivered independently to each ear, when those tones have a small frequency mismatch. The mismatch between the tones is interpreted as a beat frequency, which may act to synchronize cortical oscillations. Neural synchrony is particularly important for working memory processes, the system controlling online organization and retention of information for successful goal-directed behavior. Therefore, manipulation of synchrony via binaural beats provides a unique window into working memory and associated connectivity of cortical networks. Approach. In this study, we examined the effects of different acoustic stimulation conditions during an N-back working memory task, and we measured participant response accuracy and cortical network topology via EEG recordings. Six acoustic stimulation conditions were used: None, Pure Tone, Classical Music, 5 Hz binaural beats, 10 Hz binaural beats, and 15 Hz binaural beats. Main results. We determined that listening to 15 Hz binaural beats during an N-Back working memory task increased the individual participant’s accuracy, modulated the cortical frequency response, and changed the cortical network connection strengths during the task. Only the 15 Hz binaural beats produced significant change in relative accuracy compared to the None condition. Significance. Listening to 15 Hz binaural beats during the N-back task activated salient frequency bands and produced networks characterized by higher information transfer as compared to other auditory stimulation conditions.

  4. Enhanced timing abilities in percussionists generalize to rhythms without a musical beat.

    PubMed

    Cameron, Daniel J; Grahn, Jessica A

    2014-01-01

    The ability to entrain movements to music is arguably universal, but it is unclear how specialized training may influence this. Previous research suggests that percussionists have superior temporal precision in perception and production tasks. Such superiority may be limited to temporal sequences that resemble real music or, alternatively, may generalize to musically implausible sequences. To test this, percussionists and nonpercussionists completed two tasks that used rhythmic sequences varying in musical plausibility. In the beat tapping task, participants tapped with the beat of a rhythmic sequence over 3 stages: finding the beat (as an initial sequence played), continuation of the beat (as a second sequence was introduced and played simultaneously), and switching to a second beat (the initial sequence finished, leaving only the second). The meters of the two sequences were either congruent or incongruent, as were their tempi (minimum inter-onset intervals). In the rhythm reproduction task, participants reproduced rhythms of four types, ranging from high to low musical plausibility: Metric simple rhythms induced a strong sense of the beat, metric complex rhythms induced a weaker sense of the beat, nonmetric rhythms had no beat, and jittered nonmetric rhythms also had no beat as well as low temporal predictability. For both tasks, percussionists performed more accurately than nonpercussionists. In addition, both groups were better with musically plausible than implausible conditions. Overall, the percussionists' superior abilities to entrain to, and reproduce, rhythms generalized to musically implausible sequences.

  5. Study on the Relationship among Parents' Cognition on China Anti-Domestic Violence, Attitude of Beating Children and Frequency of Beating Children

    ERIC Educational Resources Information Center

    Song, Shi

    2018-01-01

    This research aims at analyzing the correlation between parents' awareness of anti-domestic violence in China, attitude and frequency of beating children. According to the literature analysis, this paper sets children's parents' anti-domestic violence cognition and attitude of beating children as independent variable, and the frequency of beating…

  6. Auditory Beat Stimulation and its Effects on Cognition and Mood States

    PubMed Central

    Chaieb, Leila; Wilpert, Elke Caroline; Reber, Thomas P.; Fell, Juergen

    2015-01-01

    Auditory beat stimulation may be a promising new tool for the manipulation of cognitive processes and the modulation of mood states. Here, we aim to review the literature examining the most current applications of auditory beat stimulation and its targets. We give a brief overview of research on auditory steady-state responses and its relationship to auditory beat stimulation (ABS). We have summarized relevant studies investigating the neurophysiological changes related to ABS and how they impact upon the design of appropriate stimulation protocols. Focusing on binaural-beat stimulation, we then discuss the role of monaural- and binaural-beat frequencies in cognition and mood states, in addition to their efficacy in targeting disease symptoms. We aim to highlight important points concerning stimulation parameters and try to address why there are often contradictory findings with regard to the outcomes of ABS. PMID:26029120

  7. Auditory beat stimulation and its effects on cognition and mood States.

    PubMed

    Chaieb, Leila; Wilpert, Elke Caroline; Reber, Thomas P; Fell, Juergen

    2015-01-01

    Auditory beat stimulation may be a promising new tool for the manipulation of cognitive processes and the modulation of mood states. Here, we aim to review the literature examining the most current applications of auditory beat stimulation and its targets. We give a brief overview of research on auditory steady-state responses and its relationship to auditory beat stimulation (ABS). We have summarized relevant studies investigating the neurophysiological changes related to ABS and how they impact upon the design of appropriate stimulation protocols. Focusing on binaural-beat stimulation, we then discuss the role of monaural- and binaural-beat frequencies in cognition and mood states, in addition to their efficacy in targeting disease symptoms. We aim to highlight important points concerning stimulation parameters and try to address why there are often contradictory findings with regard to the outcomes of ABS.

  8. Intracranial electroencephalography power and phase synchronization changes during monaural and binaural beat stimulation.

    PubMed

    Becher, Ann-Katrin; Höhne, Marlene; Axmacher, Nikolai; Chaieb, Leila; Elger, Christian E; Fell, Juergen

    2015-01-01

    Auditory stimulation with monaural or binaural auditory beats (i.e. sine waves with nearby frequencies presented either to both ears or to each ear separately) represents a non-invasive approach to influence electrical brain activity. It is still unclear exactly which brain sites are affected by beat stimulation. In particular, an impact of beat stimulation on mediotemporal brain areas could possibly provide new options for memory enhancement or seizure control. Therefore, we examined how electroencephalography (EEG) power and phase synchronization are modulated by auditory stimulation with beat frequencies corresponding to dominant EEG rhythms based on intracranial recordings in presurgical epilepsy patients. Monaural and binaural beat stimuli with beat frequencies of 5, 10, 40 and 80 Hz and non-superposed control signals were administered with low amplitudes (60 dB SPL) and for short durations (5 s). EEG power was intracranially recorded from mediotemporal, temporo-basal and temporo-lateral and surface sites. Evoked and total EEG power and phase synchronization during beat vs. control stimulation were compared by the use of Bonferroni-corrected non-parametric label-permutation tests. We found that power and phase synchronization were significantly modulated by beat stimulation not only at temporo-basal, temporo-lateral and surface sites, but also at mediotemporal sites. Generally, more significant decreases than increases were observed. The most prominent power increases were seen after stimulation with monaural 40-Hz beats. The most pronounced power and synchronization decreases resulted from stimulation with monaural 5-Hz and binaural 80-Hz beats. Our results suggest that beat stimulation offers a non-invasive approach for the modulation of intracranial EEG characteristics. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. [Regeneration of the ciliary beat of human ciliated cells].

    PubMed

    Wolf, G; Koidl, B; Pelzmann, B

    1991-10-01

    The influence of an isotonic, alkaline saline solution (diluted "Emser Sole" or brine from the spa of Bad Ems) on the ciliary beat of isolated cultured human ciliated cells of the upper respiratory tract was investigated. The ciliary beat was observed via an inverted phase contrast microscope (Zeiss Axiomat IDPC) and measured microphotometrically under physiological conditions and after the damaging influence of 1% propanal solution. Under physiological conditions the saline solution had a positive, although statistically not significant influence on the frequency of the ciliary beat. After damage of the cultivated cells by 1% propanal solution, the saline solution had a significant better influence on the regeneration of the cultured cells than a physiological sodium chloride solution. It is concluded that diluted brine from Bad Ems has a positive effect on the ciliary beat of the respiratory epithelium and accelerates its regeneration after damage by viral and bacterial infections, surgery or inhaled noxae.

  10. Asynchronous beating of cilia enhances particle capture rate

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Kanso, Eva

    2014-11-01

    Many aquatic micro-organisms use beating cilia to generate feeding currents and capture particles in surrounding fluids. One of the capture strategies is to ``catch up'' with particles when a cilium is beating towards the overall flow direction (effective stroke) and intercept particles on the downstream side of the cilium. Here, we developed a 3D computational model of a cilia band with prescribed motion in a viscous fluid and calculated the trajectories of the particles with different sizes in the fluid. We found an optimal particle diameter that maximizes the capture rate. The flow field and particle motion indicate that the low capture rate of smaller particles is due to the laminar flow in the neighbor of the cilia, whereas larger particles have to move above the cilia tips to get advected downstream which decreases their capture rate. We then analyzed the effect of beating coordination between neighboring cilia on the capture rate. Interestingly, we found that asynchrony of the beating of the cilia can enhance the relative motion between a cilium and the particles near it and hence increase the capture rate.

  11. Optically gated beating-heart imaging

    PubMed Central

    Taylor, Jonathan M.

    2014-01-01

    The constant motion of the beating heart presents an obstacle to clear optical imaging, especially 3D imaging, in small animals where direct optical imaging would otherwise be possible. Gating techniques exploit the periodic motion of the heart to computationally “freeze” this movement and overcome motion artifacts. Optically gated imaging represents a recent development of this, where image analysis is used to synchronize acquisition with the heartbeat in a completely non-invasive manner. This article will explain the concept of optical gating, discuss a range of different implementation strategies and their strengths and weaknesses. Finally we will illustrate the usefulness of the technique by discussing applications where optical gating has facilitated novel biological findings by allowing 3D in vivo imaging of cardiac myocytes in their natural environment of the beating heart. PMID:25566083

  12. A High-Density EEG Investigation into Steady State Binaural Beat Stimulation

    PubMed Central

    Goodin, Peter; Ciorciari, Joseph; Baker, Kate; Carrey, Anne-Marie; Harper, Michelle; Kaufman, Jordy

    2012-01-01

    Binaural beats are an auditory phenomenon that has been suggested to alter physiological and cognitive processes including vigilance and brainwave entrainment. Some personality traits measured by the NEO Five Factor Model have been found to alter entrainment using pulsing light stimuli, but as yet no studies have examined if this occurs using steady state presentation of binaural beats for a relatively short presentation of two minutes. This study aimed to examine if binaural beat stimulation altered vigilance or cortical frequencies and if personality traits were involved. Thirty-one participants were played binaural beat stimuli designed to elicit a response at either the Theta (7 Hz) or Beta (16 Hz) frequency bands while undertaking a zero-back vigilance task. EEG was recorded from a high-density electrode cap. No significant differences were found in vigilance or cortical frequency power during binaural beat stimulation compared to a white noise control period. Furthermore, no significant relationships were detected between the above and the Big Five personality traits. This suggests a short presentation of steady state binaural beats are not sufficient to alter vigilance or entrain cortical frequencies at the two bands examined and that certain personality traits were not more susceptible than others. PMID:22496862

  13. A high-density EEG investigation into steady state binaural beat stimulation.

    PubMed

    Goodin, Peter; Ciorciari, Joseph; Baker, Kate; Carey, Anne-Marie; Carrey, Anne-Marie; Harper, Michelle; Kaufman, Jordy

    2012-01-01

    Binaural beats are an auditory phenomenon that has been suggested to alter physiological and cognitive processes including vigilance and brainwave entrainment. Some personality traits measured by the NEO Five Factor Model have been found to alter entrainment using pulsing light stimuli, but as yet no studies have examined if this occurs using steady state presentation of binaural beats for a relatively short presentation of two minutes. This study aimed to examine if binaural beat stimulation altered vigilance or cortical frequencies and if personality traits were involved. Thirty-one participants were played binaural beat stimuli designed to elicit a response at either the Theta (7 Hz) or Beta (16 Hz) frequency bands while undertaking a zero-back vigilance task. EEG was recorded from a high-density electrode cap. No significant differences were found in vigilance or cortical frequency power during binaural beat stimulation compared to a white noise control period. Furthermore, no significant relationships were detected between the above and the Big Five personality traits. This suggests a short presentation of steady state binaural beats are not sufficient to alter vigilance or entrain cortical frequencies at the two bands examined and that certain personality traits were not more susceptible than others.

  14. Individual Differences in Beat Perception Affect Gait Responses to Low- and High-Groove Music

    PubMed Central

    Leow, Li-Ann; Parrott, Taylor; Grahn, Jessica A.

    2014-01-01

    Slowed gait in patients with Parkinson’s disease (PD) can be improved when patients synchronize footsteps to isochronous metronome cues, but limited retention of such improvements suggest that permanent cueing regimes are needed for long-term improvements. If so, music might make permanent cueing regimes more pleasant, improving adherence; however, music cueing requires patients to synchronize movements to the “beat,” which might be difficult for patients with PD who tend to show weak beat perception. One solution may be to use high-groove music, which has high beat salience that may facilitate synchronization, and affective properties, which may improve motivation to move. As a first step to understanding how beat perception affects gait in complex neurological disorders, we examined how beat perception ability affected gait in neurotypical adults. Synchronization performance and gait parameters were assessed as healthy young adults with strong or weak beat perception synchronized to low-groove music, high-groove music, and metronome cues. High-groove music was predicted to elicit better synchronization than low-groove music, due to its higher beat salience. Two musical tempi, or rates, were used: (1) preferred tempo: beat rate matched to preferred step rate and (2) faster tempo: beat rate adjusted to 22.5% faster than preferred step rate. For both strong and weak beat-perceivers, synchronization performance was best with metronome cues, followed by high-groove music, and worst with low-groove music. In addition, high-groove music elicited longer and faster steps than low-groove music, both at preferred tempo and at faster tempo. Low-groove music was particularly detrimental to gait in weak beat-perceivers, who showed slower and shorter steps compared to uncued walking. The findings show that individual differences in beat perception affect gait when synchronizing footsteps to music, and have implications for using music in gait rehabilitation. PMID:25374521

  15. Passive fetal heart rate monitoring apparatus and method with enhanced fetal heart beat discrimination

    NASA Technical Reports Server (NTRS)

    Zahorian, Stephen A. (Inventor); Livingston, David L. (Inventor); Pretlow, III, Robert A. (Inventor)

    1996-01-01

    An apparatus for acquiring signals emitted by a fetus, identifying fetal heart beats and determining a fetal heart rate. Multiple sensor signals are outputted by a passive fetal heart rate monitoring sensor. Multiple parallel nonlinear filters filter these multiple sensor signals to identify fetal heart beats in the signal data. A processor determines a fetal heart rate based on these identified fetal heart beats. The processor includes the use of a figure of merit weighting of heart rate estimates based on the identified heart beats from each filter for each signal. The fetal heart rate thus determined is outputted to a display, storage, or communications channel. A method for enhanced fetal heart beat discrimination includes acquiring signals from a fetus, identifying fetal heart beats from the signals by multiple parallel nonlinear filtering, and determining a fetal heart rate based on the identified fetal heart beats. A figure of merit operation in this method provides for weighting a plurality of fetal heart rate estimates based on the identified fetal heart beats and selecting the highest ranking fetal heart rate estimate.

  16. Passive fetal heart rate monitoring apparatus and method with enhanced fetal heart beat discrimination

    NASA Technical Reports Server (NTRS)

    Zahorian, Stephen A. (Inventor); Livingston, David L. (Inventor); Pretlow, Robert A., III (Inventor)

    1994-01-01

    An apparatus for acquiring signals emitted by a fetus, identifying fetal heart beats and determining a fetal heart rate is presented. Multiple sensor signals are outputted by a passive fetal heart rate monitoring sensor. Multiple parallel nonlinear filters filter these multiple sensor signals to identify fetal heart beats in the signal data. A processor determines a fetal heart rate based on these identified fetal heart beats. The processor includes the use of a figure of merit weighting of heart rate estimates based on the identified heart beats from each filter for each signal. The fetal heart rate thus determined is outputted to a display, storage, or communications channel. A method for enhanced fetal heart beat discrimination includes acquiring signals from a fetus, identifying fetal heart beats from the signals by multiple parallel nonlinear filtering, and determining a fetal heart rate based on the identified fetal heart beats. A figure of merit operation in this method provides for weighting a plurality of fetal heart rate estimates based on the identified fetal heart beats and selecting the highest ranking fetal heart rate estimate.

  17. Laser-Neuron Interaction with Femtosecond Beat-Modulated 800-1200 nm Photon Beams, as the Treatment of Brain Cancer Tissue. Laser Neurophysics

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2011-03-01

    I propose a novel mechanism for the brain cancer tissue treatment: nonlinear interaction of ultrashort pulses of beat-photon, (ω1 -- ω2) , or double-photon, (ω1 +ω2) , beams with the cancer tissue. The multiphoton scattering is described via photon diffusion equation. The open-scull cerebral tissue can be irradiated with the beat-modulated photon pulses with the laser irradiances in the range of a few mW/cm2 , and repetition rate of a few 100s Hz generated in the beat-wave driven free electron laser. V. Stefan, B. I. Cohen, and C. Joshi, Nonlinear Mixing of Electromagnetic Waves in PlasmasScience 27 January 1989: V. Alexander Stefan, Genomic Medical Physics: A New Physics in the Making, (S-U-Press, 2008).} This highly accurate cancer tissue ablation removal may prove to be an efficient method for the treatment of brain cancer. Work supported in part by Nikola Tesla Laboratories (Stefan University), La Jolla, CA.

  18. Binaural beats and frequency-coding.

    PubMed

    Fritze, W; Köhler, W

    1986-01-01

    Binaural beats were studied before and during a situation of temporary threshold shift, and no frequency shift could be found. In contrast, subjective binaural frequency comparison revealed a distinct shift. These findings demonstrate the two known modes of perception.

  19. Beats: Video Monitors and Cameras.

    ERIC Educational Resources Information Center

    Worth, Frazier

    1996-01-01

    Presents a method to teach the concept of beats as a generalized phenomenon rather than teaching it only in the context of sound. Involves using a video camera to film a computer terminal, 16-mm projector, or TV monitor. (JRH)

  20. Hearing, feeling or seeing a beat recruits a supramodal network in the auditory dorsal stream.

    PubMed

    Araneda, Rodrigo; Renier, Laurent; Ebner-Karestinos, Daniela; Dricot, Laurence; De Volder, Anne G

    2017-06-01

    Hearing a beat recruits a wide neural network that involves the auditory cortex and motor planning regions. Perceiving a beat can potentially be achieved via vision or even touch, but it is currently not clear whether a common neural network underlies beat processing. Here, we used functional magnetic resonance imaging (fMRI) to test to what extent the neural network involved in beat processing is supramodal, that is, is the same in the different sensory modalities. Brain activity changes in 27 healthy volunteers were monitored while they were attending to the same rhythmic sequences (with and without a beat) in audition, vision and the vibrotactile modality. We found a common neural network for beat detection in the three modalities that involved parts of the auditory dorsal pathway. Within this network, only the putamen and the supplementary motor area (SMA) showed specificity to the beat, while the brain activity in the putamen covariated with the beat detection speed. These results highlighted the implication of the auditory dorsal stream in beat detection, confirmed the important role played by the putamen in beat detection and indicated that the neural network for beat detection is mostly supramodal. This constitutes a new example of convergence of the same functional attributes into one centralized representation in the brain. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. More attentional focusing through binaural beats: evidence from the global-local task.

    PubMed

    Colzato, Lorenza S; Barone, Hayley; Sellaro, Roberta; Hommel, Bernhard

    2017-01-01

    A recent study showed that binaural beats have an impact on the efficiency of allocating attention over time. We were interested to see whether this impact affects attentional focusing or, even further, the top-down control over irrelevant information. Healthy adults listened to gamma-frequency (40 Hz) binaural beats, which are assumed to increase attentional concentration, or a constant tone of 340 Hz (control condition) for 3 min before and during a global-local task. While the size of the congruency effect (indicating the failure to suppress task-irrelevant information) was unaffected by the binaural beats, the global-precedence effect (reflecting attentional focusing) was considerably smaller after gamma-frequency binaural beats than after the control condition. Our findings suggest that high-frequency binaural beats bias the individual attentional processing style towards a reduced spotlight of attention.

  2. Selective neuronal entrainment to the beat and meter embedded in a musical rhythm.

    PubMed

    Nozaradan, Sylvie; Peretz, Isabelle; Mouraux, André

    2012-12-05

    Fundamental to the experience of music, beat and meter perception refers to the perception of periodicities while listening to music occurring within the frequency range of musical tempo. Here, we explored the spontaneous building of beat and meter hypothesized to emerge from the selective entrainment of neuronal populations at beat and meter frequencies. The electroencephalogram (EEG) was recorded while human participants listened to rhythms consisting of short sounds alternating with silences to induce a spontaneous perception of beat and meter. We found that the rhythmic stimuli elicited multiple steady state-evoked potentials (SS-EPs) observed in the EEG spectrum at frequencies corresponding to the rhythmic pattern envelope. Most importantly, the amplitude of the SS-EPs obtained at beat and meter frequencies were selectively enhanced even though the acoustic energy was not necessarily predominant at these frequencies. Furthermore, accelerating the tempo of the rhythmic stimuli so as to move away from the range of frequencies at which beats are usually perceived impaired the selective enhancement of SS-EPs at these frequencies. The observation that beat- and meter-related SS-EPs are selectively enhanced at frequencies compatible with beat and meter perception indicates that these responses do not merely reflect the physical structure of the sound envelope but, instead, reflect the spontaneous emergence of an internal representation of beat, possibly through a mechanism of selective neuronal entrainment within a resonance frequency range. Taken together, these results suggest that musical rhythms constitute a unique context to gain insight on general mechanisms of entrainment, from the neuronal level to individual level.

  3. Beat-to-beat variability of cardiac action potential duration: underlying mechanism and clinical implications.

    PubMed

    Nánási, Péter P; Magyar, János; Varró, András; Ördög, Balázs

    2017-10-01

    Beat-to-beat variability of cardiac action potential duration (short-term variability, SV) is a common feature of various cardiac preparations, including the human heart. Although it is believed to be one of the best arrhythmia predictors, the underlying mechanisms are not fully understood at present. The magnitude of SV is basically determined by the intensity of cell-to-cell coupling in multicellular preparations and by the duration of the action potential (APD). To compensate for the APD-dependent nature of SV, the concept of relative SV (RSV) has been introduced by normalizing the changes of SV to the concomitant changes in APD. RSV is reduced by I Ca , I Kr , and I Ks while increased by I Na , suggesting that ion currents involved in the negative feedback regulation of APD tend to keep RSV at a low level. RSV is also influenced by intracellular calcium concentration and tissue redox potential. The clinical implications of APD variability is discussed in detail.

  4. Beliefs about wife beating: an exploratory study with Lebanese students.

    PubMed

    Obeid, Nadine; Chang, Doris F; Ginges, Jeremy

    2010-06-01

    In recent years, there has been a growing interest in understanding the sociocultural contexts and risk factors for domestic violence in the Arab world. This study provides an analysis of the religious, legal, and familial contexts of domestic violence in Lebanon and assesses contemporary attitudes toward women and wife beating in a sample of 206 Lebanese university students. Gender, patriarchal attitudes, religion, childhood experiences with family violence, and mother's employment status were investigated as predictors of attitudes toward wife beating. Consistent with feminist theories of wife abuse, gender and attitudes toward women's roles emerged as the strongest predictors of beliefs about wife beating.

  5. A binaural beat constructed from a noise

    PubMed Central

    Akeroyd, Michael A

    2012-01-01

    The binaural beat has been used for over one hundred years as a stimulus for generating the percept of motion. Classically the beat consists of a pure tone at one ear (e.g. 500 Hz) and the same pure tone at the other ear but shifted upwards or downwards in frequency (e.g., 501 Hz). An experiment and binaural computational analysis are reported which demonstrate that a more powerful motion percept can be obtained by applying the concept of the frequency shift to a noise, via an upwards or downwards shift in the frequency of the Fourier components of its spectrum. PMID:21218863

  6. A new method to calculate the beat-to-beat instability of QT duration in drug-induced long QT in anesthetized dogs.

    PubMed

    van der Linde, H; Van de Water, A; Loots, W; Van Deuren, B; Lu, H R; Van Ammel, K; Peeters, M; Gallacher, D J

    2005-01-01

    Instability of QT duration is a marker to predict Torsade de Pointes (TdP) associated with both congenital and drug-induced long QT syndrome. We describe a new method for the quantification of instability of repolarization. Female, adult beagle dogs anesthetized with a potent morphinomimetic were treated with either solvent (n=7) or dofetilide (n=7). Poincaré plots with QT(n) versus QT(n+1) were constructed to visualize the beat-to-beat variation in QT intervals from the lead II ECG. Short-term instability (STI), long-term instability (LTI) and total instability (TI) were quantified by calculating the distances of 30 consecutive data-points from the x and y-coordinate to the "centre of gravity" of the data cluster. Dofetilide at 0.0025 to 0.04 mg/kg i.v. (plasma concentrations of 4+/-0.6 to 41+/-2.7 ng/ml), dose-dependently prolonged QT and QTcV (at 0.04 mg/kg i.v.: QT: 280+/-ms versus 236+/-5 ms with solvent; p<0.05 and QTcV: 290+/-9 ms versus 252+/-4 ms with solvent; p<0.05). Concomitantly, the compound induced an increase in the instability parameters in a similar dose-dependent manner (at 0.04 mg/kg i.v.: TI: 6.8+/-0.9 ms versus 1.7+/-0.3 ms; p<0.05, LTI: 3.6+/-0.5 ms versus 1.0+/-0.2 ms; p<0.05 and STI: 4.2+/-0.6 ms versus 1.0+/-0.2 ms; p<0.05). The increases induced by dofetilide were associated with a high incidence of early afterdepolarizations (EADs) in the endocardial monophasic action potential (in 6 out of the 7 compound-treated animals versus 0 out of the 7 solvent animals; p<0.05). Quantification of beat-to-beat QT instability by our method clearly detects changes in short-term, long-term and total instability induced by dofetilide, already at pre-arrhythmic doses. Dofetilide administration to anesthetized dogs prolongs ventricular repolarization, concomitantly increases beat-to-beat QT instability and induces early after depolarizations (EADs). As such, the use of these parameters in this in vivo model shows clear potential for risk identification

  7. Beat gestures improve word recall in 3- to 5-year-old children.

    PubMed

    Igualada, Alfonso; Esteve-Gibert, Núria; Prieto, Pilar

    2017-04-01

    Although research has shown that adults can benefit from the presence of beat gestures in word recall tasks, studies have failed to conclusively generalize these findings to preschool children. This study investigated whether the presence of beat gestures helps children to recall information when these gestures have the function of singling out a linguistic element in its discourse context. A total of 106 3- to 5-year-old children were asked to recall a list of words within a pragmatically child-relevant context (i.e., a storytelling activity) in which the target word was or was not accompanied by a beat gesture. Results showed that children recalled the target word significantly better when it was accompanied by a beat gesture than when it was not, indicating a local recall effect. Moreover, the recall of adjacent non-target words did not differ depending on the condition, revealing that beat gestures seem to have a strictly local highlighting function (i.e., no global recall effect). These results demonstrate that preschoolers benefit from the pragmatic contribution offered by beat gestures when they function as multimodal markers of prominence. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Asymmetrically localized proteins stabilize basal bodies against ciliary beating forces

    PubMed Central

    Galati, Domenico F.

    2016-01-01

    Basal bodies are radially symmetric, microtubule-rich structures that nucleate and anchor motile cilia. Ciliary beating produces asymmetric mechanical forces that are resisted by basal bodies. To resist these forces, distinct regions within the basal body ultrastructure and the microtubules themselves must be stable. However, the molecular components that stabilize basal bodies remain poorly defined. Here, we determine that Fop1 functionally interacts with the established basal body stability components Bld10 and Poc1. We find that Fop1 and microtubule glutamylation incorporate into basal bodies at distinct stages of assembly, culminating in their asymmetric enrichment at specific triplet microtubule regions that are predicted to experience the greatest mechanical force from ciliary beating. Both Fop1 and microtubule glutamylation are required to stabilize basal bodies against ciliary beating forces. Our studies reveal that microtubule glutamylation and Bld10, Poc1, and Fop1 stabilize basal bodies against the forces produced by ciliary beating via distinct yet interdependent mechanisms. PMID:27807131

  9. Beat frequency ultrasonic microsphere contrast agent detection system

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III (Inventor); Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    1995-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  10. Beat frequency ultrasonic microsphere contrast agent detection system

    NASA Technical Reports Server (NTRS)

    Pretlow, III, Robert A. (Inventor); Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    1997-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  11. Enhancing Heart-Beat-Based Security for mHealth Applications.

    PubMed

    Seepers, Robert M; Strydis, Christos; Sourdis, Ioannis; De Zeeuw, Chris I

    2017-01-01

    In heart-beat-based security, a security key is derived from the time difference between consecutive heart beats (the inter-pulse interval, IPI), which may, subsequently, be used to enable secure communication. While heart-beat-based security holds promise in mobile health (mHealth) applications, there currently exists no work that provides a detailed characterization of the delivered security in a real system. In this paper, we evaluate the strength of IPI-based security keys in the context of entity authentication. We investigate several aspects that should be considered in practice, including subjects with reduced heart-rate variability (HRV), different sensor-sampling frequencies, intersensor variability (i.e., how accurate each entity may measure heart beats) as well as average and worst-case-authentication time. Contrary to the current state of the art, our evaluation demonstrates that authentication using multiple, less-entropic keys may actually increase the key strength by reducing the effects of intersensor variability. Moreover, we find that the maximal key strength of a 60-bit key varies between 29.2 bits and only 5.7 bits, depending on the subject's HRV. To improve security, we introduce the inter-multi-pulse interval (ImPI), a novel method of extracting entropy from the heart by considering the time difference between nonconsecutive heart beats. Given the same authentication time, using the ImPI for key generation increases key strength by up to 3.4 × (+19.2 bits) for subjects with limited HRV, at the cost of an extended key-generation time of 4.8 × (+45 s).

  12. Global versus local linear beat-to-beat analysis of the relationship between arterial pressure and pulse transit time during dynamic exercise.

    PubMed

    Porta, A; Gasperi, C; Nollo, G; Lucini, D; Pizzinelli, P; Antolini, R; Pagani, M

    2006-04-01

    Global linear analysis has been traditionally performed to verify the relationship between pulse transit time (PTT) and systolic arterial pressure (SAP) at the level of their spontaneous beat-to-beat variabilities: PTT and SAP have been plotted in the plane (PTT,SAP) and a significant linear correlation has been found. However, this relationship is weak and in specific individuals cannot be found. This result prevents the utilization of the SAP-PTT relationship to derive arterial pressure changes from PTT measures on an individual basis. We propose a local linear approach to study the SAP-PTT relationship. This approach is based on the definition of short SAP-PTT sequences characterized by SAP increase (decrease) and PTT decrease (increase) and on their search in the SAP and PTT beat-to-beat series. This local approach was applied to PTT and SAP series derived from 13 healthy humans during incremental supine dynamic exercise (at 10, 20 and 30% of the nominal individual maximum effort) and compared to the global approach. While global approach failed in some subjects, local analysis allowed the extraction of the gain of the SAP-PTT relationship in all subjects both at rest and during exercise. When both local and global analyses were successful, the local SAP-PTT gain is more negative than the global one as a likely result of noise reduction.

  13. Colombian forensic genetics as a form of public science: The role of race, nation and common sense in the stabilization of DNA populations.

    PubMed

    Schwartz-Marín, Ernesto; Wade, Peter; Cruz-Santiago, Arely; Cárdenas, Roosbelinda

    2015-12-01

    Abstract This article examines the role that vernacular notions of racialized-regional difference play in the constitution and stabilization of DNA populations in Colombian forensic science, in what we frame as a process of public science. In public science, the imaginations of the scientific world and common-sense public knowledge are integral to the production and circulation of science itself. We explore the origins and circulation of a scientific object--'La Tabla', published in Paredes et al. and used in genetic forensic identification procedures--among genetic research institutes, forensic genetics laboratories and courtrooms in Bogotá. We unveil the double life of this central object of forensic genetics. On the one hand, La Tabla enjoys an indisputable public place in the processing of forensic genetic evidence in Colombia (paternity cases, identification of bodies, etc.). On the other hand, the relations it establishes between 'race', geography and genetics are questioned among population geneticists in Colombia. Although forensic technicians are aware of the disputes among population geneticists, they use and endorse the relations established between genetics, 'race' and geography because these fit with common-sense notions of visible bodily difference and the regionalization of race in the Colombian nation.

  14. A Structural Basis for How Motile Cilia Beat

    PubMed Central

    Satir, Peter; Heuser, Thomas; Sale, Winfield S.

    2014-01-01

    The motile cilium is a mechanical wonder, a cellular nanomachine that produces a high-speed beat based on a cycle of bends that move along an axoneme made of 9+2 microtubules. The molecular motors, dyneins, power the ciliary beat. The dyneins are compacted into inner and outer dynein arms, whose activity is highly regulated to produce microtubule sliding and axonemal bending. The switch point hypothesis was developed long ago to account for how sliding in the presence of axonemal radial spoke–central pair interactions causes the ciliary beat. Since then, a new genetic, biochemical, and structural complexity has been discovered, in part, with Chlamydomonas mutants, with high-speed, high-resolution analysis of movement and with cryoelectron tomography. We stand poised on the brink of new discoveries relating to the molecular control of motility that extend and refine our understanding of the basic events underlying the switching of arm activity and of bend formation and propagation. PMID:26955066

  15. Capturing with EEG the neural entrainment and coupling underlying sensorimotor synchronization to the beat.

    PubMed

    Nozaradan, Sylvie; Zerouali, Younes; Peretz, Isabelle; Mouraux, André

    2015-03-01

    Synchronizing movements with rhythmic inputs requires tight coupling of sensory and motor neural processes. Here, using a novel approach based on the recording of steady-state-evoked potentials (SS-EPs), we examine how distant brain areas supporting these processes coordinate their dynamics. The electroencephalogram was recorded while subjects listened to a 2.4-Hz auditory beat and tapped their hand on every second beat. When subjects tapped to the beat, the EEG was characterized by a 2.4-Hz SS-EP compatible with beat-related entrainment and a 1.2-Hz SS-EP compatible with movement-related entrainment, based on the results of source analysis. Most importantly, when compared with passive listening of the beat, we found evidence suggesting an interaction between sensory- and motor-related activities when subjects tapped to the beat, in the form of (1) additional SS-EP appearing at 3.6 Hz, compatible with a nonlinear product of sensorimotor integration; (2) phase coupling of beat- and movement-related activities; and (3) selective enhancement of beat-related activities over the hemisphere contralateral to the tapping, suggesting a top-down effect of movement-related activities on auditory beat processing. Taken together, our results are compatible with the view that rhythmic sensorimotor synchronization is supported by a dynamic coupling of sensory and motor related activities. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Finding the beat: a neural perspective across humans and non-human primates.

    PubMed

    Merchant, Hugo; Grahn, Jessica; Trainor, Laurel; Rohrmeier, Martin; Fitch, W Tecumseh

    2015-03-19

    Humans possess an ability to perceive and synchronize movements to the beat in music ('beat perception and synchronization'), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia-thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization-continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Finding the beat: a neural perspective across humans and non-human primates

    PubMed Central

    Merchant, Hugo; Grahn, Jessica; Trainor, Laurel; Rohrmeier, Martin; Fitch, W. Tecumseh

    2015-01-01

    Humans possess an ability to perceive and synchronize movements to the beat in music (‘beat perception and synchronization’), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia–thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization–continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization. PMID:25646516

  18. Cross-cultural influences on rhythm processing: reproduction, discrimination, and beat tapping

    PubMed Central

    Cameron, Daniel J.; Bentley, Jocelyn; Grahn, Jessica A.

    2015-01-01

    The structures of musical rhythm differ between cultures, despite the fact that the ability to entrain movement to musical rhythm occurs in virtually all individuals across cultures. To measure the influence of culture on rhythm processing, we tested East African and North American adults on perception, production, and beat tapping for rhythms derived from East African and Western music. To assess rhythm perception, participants identified whether pairs of rhythms were the same or different. To assess rhythm production, participants reproduced rhythms after hearing them. To assess beat tapping, participants tapped the beat along with repeated rhythms. We expected that performance in all three tasks would be influenced by the culture of the participant and the culture of the rhythm. Specifically, we predicted that a participant’s ability to discriminate, reproduce, and accurately tap the beat would be better for rhythms from their own culture than for rhythms from another culture. In the rhythm discrimination task, there were no differences in discriminating culturally familiar and unfamiliar rhythms. In the rhythm reproduction task, both groups reproduced East African rhythms more accurately than Western rhythms, but East African participants also showed an effect of cultural familiarity, leading to a significant interaction. In the beat tapping task, participants in both groups tapped the beat more accurately for culturally familiar than for unfamiliar rhythms. Moreover, there were differences between the two participant groups, and between the two types of rhythms, in the metrical level selected for beat tapping. The results demonstrate that culture does influence the processing of musical rhythm. In terms of the function of musical rhythm, our results are consistent with theories that musical rhythm enables synchronization. Musical rhythm may foster musical cultural identity by enabling within-group synchronization to music, perhaps supporting social cohesion

  19. Cross-cultural influences on rhythm processing: reproduction, discrimination, and beat tapping.

    PubMed

    Cameron, Daniel J; Bentley, Jocelyn; Grahn, Jessica A

    2015-01-01

    The structures of musical rhythm differ between cultures, despite the fact that the ability to entrain movement to musical rhythm occurs in virtually all individuals across cultures. To measure the influence of culture on rhythm processing, we tested East African and North American adults on perception, production, and beat tapping for rhythms derived from East African and Western music. To assess rhythm perception, participants identified whether pairs of rhythms were the same or different. To assess rhythm production, participants reproduced rhythms after hearing them. To assess beat tapping, participants tapped the beat along with repeated rhythms. We expected that performance in all three tasks would be influenced by the culture of the participant and the culture of the rhythm. Specifically, we predicted that a participant's ability to discriminate, reproduce, and accurately tap the beat would be better for rhythms from their own culture than for rhythms from another culture. In the rhythm discrimination task, there were no differences in discriminating culturally familiar and unfamiliar rhythms. In the rhythm reproduction task, both groups reproduced East African rhythms more accurately than Western rhythms, but East African participants also showed an effect of cultural familiarity, leading to a significant interaction. In the beat tapping task, participants in both groups tapped the beat more accurately for culturally familiar than for unfamiliar rhythms. Moreover, there were differences between the two participant groups, and between the two types of rhythms, in the metrical level selected for beat tapping. The results demonstrate that culture does influence the processing of musical rhythm. In terms of the function of musical rhythm, our results are consistent with theories that musical rhythm enables synchronization. Musical rhythm may foster musical cultural identity by enabling within-group synchronization to music, perhaps supporting social cohesion.

  20. Free-electron laser from wave-mechanical beats of 2 electron beams

    NASA Technical Reports Server (NTRS)

    Lichtenstein, R. M.

    1982-01-01

    It is possible, though technically difficult, to produce beams of free electrons that exhibit beats of a quantum mechanical nature. (1) the generation of electromagnetic radiation, e.g., light, based on the fact that the beats give rise to alternating charge and current densities; and a frequency shifter, based on the fact that a beam with beats constitutes a moving grating. When such a grating is exposed to external radiation of suitable frequency and direction, the reflected rediation will be shifted in frequency, since the grating is moving. A twofold increase of the frequency is readily attainable. It is shown that it is impossible to generate radiation, because the alternating electromagnetic fields that accompany the beats cannot reform themselves into freely propagating waves. The frequency shifter is useless as a practical device, because its reflectance is extremely low for realizable beams.

  1. What can we learn about beat perception by comparing brain signals and stimulus envelopes?

    PubMed

    Henry, Molly J; Herrmann, Björn; Grahn, Jessica A

    2017-01-01

    Entrainment of neural oscillations on multiple time scales is important for the perception of speech. Musical rhythms, and in particular the perception of a regular beat in musical rhythms, is also likely to rely on entrainment of neural oscillations. One recently proposed approach to studying beat perception in the context of neural entrainment and resonance (the "frequency-tagging" approach) has received an enthusiastic response from the scientific community. A specific version of the approach involves comparing frequency-domain representations of acoustic rhythm stimuli to the frequency-domain representations of neural responses to those rhythms (measured by electroencephalography, EEG). The relative amplitudes at specific EEG frequencies are compared to the relative amplitudes at the same stimulus frequencies, and enhancements at beat-related frequencies in the EEG signal are interpreted as reflecting an internal representation of the beat. Here, we show that frequency-domain representations of rhythms are sensitive to the acoustic features of the tones making up the rhythms (tone duration, onset/offset ramp duration); in fact, relative amplitudes at beat-related frequencies can be completely reversed by manipulating tone acoustics. Crucially, we show that changes to these acoustic tone features, and in turn changes to the frequency-domain representations of rhythms, do not affect beat perception. Instead, beat perception depends on the pattern of onsets (i.e., whether a rhythm has a simple or complex metrical structure). Moreover, we show that beat perception can differ for rhythms that have numerically identical frequency-domain representations. Thus, frequency-domain representations of rhythms are dissociable from beat perception. For this reason, we suggest caution in interpreting direct comparisons of rhythms and brain signals in the frequency domain. Instead, we suggest that combining EEG measurements of neural signals with creative behavioral paradigms

  2. Molecular perturbations restrict potential for liver repopulation of hepatocytes isolated from non-heart-beating donor rats.

    PubMed

    Enami, Yuta; Joseph, Brigid; Bandi, Sriram; Lin, Juan; Gupta, Sanjeev

    2012-04-01

    Organs from non-heart-beating donors are attractive for use in cell therapy. Understanding the nature of molecular perturbations following reperfusion/reoxygenation will be highly significant for non-heart-beating donor cells. We studied non-heart-beating donor rats for global gene expression with Affymetrix microarrays, hepatic tissue integrity, viability of isolated hepatocytes, and engraftment and proliferation of transplanted cells in dipeptidyl peptidase IV-deficient rats. In non-heart-beating donors, liver tissue was morphologically intact for >24 hours with differential expression of 1, 95, or 372 genes, 4, 16, or 34 hours after death, respectively, compared with heart-beating donors. These differentially expressed genes constituted prominent groupings in ontological pathways of oxidative phosphorylation, adherence junctions, glycolysis/gluconeogenesis, and other discrete pathways. We successfully isolated viable hepatocytes from non-heart-beating donors, especially up to 4 hours after death, although the hepatocyte yield and viability were inferior to those of hepatocytes from heart-beating donors (P < 0.05). Similarly, although hepatocytes from non-heart-beating donors engrafted and proliferated after transplantation in recipient animals, this was inferior to hepatocytes from heart-beating donors (P < 0.05). Gene expression profiling in hepatocytes isolated from non-heart-beating donors showed far greater perturbations compared with corresponding liver tissue, including representation of pathways in focal adhesion, actin cytoskeleton, extracellular matrix-receptor interactions, multiple ligand-receptor interactions, and signaling in insulin, calcium, wnt, Jak-Stat, or other cascades. Liver tissue remained intact over prolonged periods after death in non-heart-beating donors, but extensive molecular perturbations following reperfusion/reoxygenation impaired the viability of isolated hepatocytes from these donors. Insights into molecular changes in

  3. Observation of ground-state quantum beats in atomic spontaneous emission.

    PubMed

    Norris, D G; Orozco, L A; Barberis-Blostein, P; Carmichael, H J

    2010-09-17

    We report ground-state quantum beats in spontaneous emission from a continuously driven atomic ensemble. Beats are visible only in an intensity autocorrelation and evidence spontaneously generated coherence in radiative decay. Our measurement realizes a quantum eraser where a first photon detection prepares a superposition and a second erases the "which path" information in the intermediate state.

  4. The role of beat gesture and pitch accent in semantic processing: an ERP study.

    PubMed

    Wang, Lin; Chu, Mingyuan

    2013-11-01

    The present study investigated whether and how beat gesture (small baton-like hand movements used to emphasize information in speech) influences semantic processing as well as its interaction with pitch accent during speech comprehension. Event-related potentials were recorded as participants watched videos of a person gesturing and speaking simultaneously. The critical words in the spoken sentences were accompanied by a beat gesture, a control hand movement, or no hand movement, and were expressed either with or without pitch accent. We found that both beat gesture and control hand movement induced smaller negativities in the N400 time window than when no hand movement was presented. The reduced N400s indicate that both beat gesture and control movement facilitated the semantic integration of the critical word into the sentence context. In addition, the words accompanied by beat gesture elicited smaller negativities in the N400 time window than those accompanied by control hand movement over right posterior electrodes, suggesting that beat gesture has a unique role for enhancing semantic processing during speech comprehension. Finally, no interaction was observed between beat gesture and pitch accent, indicating that they affect semantic processing independently. © 2013 Elsevier Ltd. All rights reserved.

  5. Influences of rolling method on deformation force in cold roll-beating forming process

    NASA Astrophysics Data System (ADS)

    Su, Yongxiang; Cui, Fengkui; Liang, Xiaoming; Li, Yan

    2018-03-01

    In process, the research object, the gear rack was selected to study the influence law of rolling method on the deformation force. By the mean of the cold roll forming finite element simulation, the variation regularity of radial and tangential deformation was analysed under different rolling methods. The variation of deformation force of the complete forming racks and the single roll during the steady state under different rolling modes was analyzed. The results show: when upbeating and down beating, radial single point average force is similar, the tangential single point average force gap is bigger, the gap of tangential single point average force is relatively large. Add itionally, the tangential force at the time of direct beating is large, and the dire ction is opposite with down beating. With directly beating, deformation force loading fast and uninstall slow. Correspondingly, with down beating, deformat ion force loading slow and uninstall fast.

  6. Beta-Band Oscillations Represent Auditory Beat and Its Metrical Hierarchy in Perception and Imagery.

    PubMed

    Fujioka, Takako; Ross, Bernhard; Trainor, Laurel J

    2015-11-11

    Dancing to music involves synchronized movements, which can be at the basic beat level or higher hierarchical metrical levels, as in a march (groups of two basic beats, one-two-one-two …) or waltz (groups of three basic beats, one-two-three-one-two-three …). Our previous human magnetoencephalography studies revealed that the subjective sense of meter influences auditory evoked responses phase locked to the stimulus. Moreover, the timing of metronome clicks was represented in periodic modulation of induced (non-phase locked) β-band (13-30 Hz) oscillation in bilateral auditory and sensorimotor cortices. Here, we further examine whether acoustically accented and subjectively imagined metric processing in march and waltz contexts during listening to isochronous beats were reflected in neuromagnetic β-band activity recorded from young adult musicians. First, we replicated previous findings of beat-related β-power decrease at 200 ms after the beat followed by a predictive increase toward the onset of the next beat. Second, we showed that the β decrease was significantly influenced by the metrical structure, as reflected by differences across beat type for both perception and imagery conditions. Specifically, the β-power decrease associated with imagined downbeats (the count "one") was larger than that for both the upbeat (preceding the count "one") in the march, and for the middle beat in the waltz. Moreover, beamformer source analysis for the whole brain volume revealed that the metric contrasts involved auditory and sensorimotor cortices; frontal, parietal, and inferior temporal lobes; and cerebellum. We suggest that the observed β-band activities reflect a translation of timing information to auditory-motor coordination. With magnetoencephalography, we examined β-band oscillatory activities around 20 Hz while participants listened to metronome beats and imagined musical meters such as a march and waltz. We demonstrated that β-band event

  7. Fiscal 1983 Science Budget

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Support for science generally is strong in President Ronald Reagan's fiscal 1983 budget proposal, released last week; agency budgets for the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), however, did not beat inflation.Total federal funding for research and development and related facilities rose 9.6% to $44.3 billion, beating the 7.3% inflation rate estimated for 1982 by the Office of Management and Budget. Obligations for basic research by various departments and agencies also topped inflation. The President proposes federal funding of $5.82 billion in fiscal 1983, compared with $5.35 billion in 1982.

  8. Tracking EEG changes in response to alpha and beta binaural beats.

    PubMed

    Vernon, D; Peryer, G; Louch, J; Shaw, M

    2014-07-01

    A binaural beat can be produced by presenting two tones of a differing frequency, one to each ear. Such auditory stimulation has been suggested to influence behaviour and cognition via the process of cortical entrainment. However, research so far has only shown the frequency following responses in the traditional EEG frequency ranges of delta, theta and gamma. Hence a primary aim of this research was to ascertain whether it would be possible to produce clear changes in the EEG in either the alpha or beta frequency ranges. Such changes, if possible, would have a number of important implications as well as potential applications. A secondary goal was to track any observable changes in the EEG throughout the entrainment epoch to gain some insight into the nature of the entrainment effects on any changes in an effort to identify more effective entrainment regimes. Twenty two healthy participants were recruited and randomly allocated to one of two groups, each of which was exposed to a distinct binaural beat frequency for ten 1-minute epochs. The first group listened to an alpha binaural beat of 10 Hz and the second to a beta binaural beat of 20 Hz. EEG was recorded from the left and right temporal regions during pre-exposure baselines, stimulus exposure epochs and post-exposure baselines. Analysis of changes in broad-band and narrow-band amplitudes, and frequency showed no effect of binaural beat frequency eliciting a frequency following effect in the EEG. Possible mediating factors are discussed and a number of recommendations are made regarding future studies, exploring entrainment effects from a binaural beat presentation. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Beating motion of a circular cylinder in vortex-induced vibrations

    NASA Astrophysics Data System (ADS)

    Shen, Linwei; Chan, Eng-Soon; Wei, Yan

    2018-04-01

    In this paper, beating phenomenon of a circular cylinder in vortex-induced vibration is studied by numerical simulations in a systematic manner. The cylinder mass coefficients of 2 and 10 are considered, and the Reynolds number is 150. Two distinctive frequencies, namely cylinder oscillation and vortex shedding frequencies, are obtained from the harmonic analysis of the cylinder displacement. The result is consistent with that observed in laboratory experiments. It is found that the cylinder oscillation frequency changes with the natural frequency of the cylinder while the reduced velocity is varied. The added-mass coefficient of the cylinder in beating motion is therefore estimated. Meanwhile, the vortex shedding frequency does not change dramatically in the beating situations. In fact, it is very close to 0.2. Accordingly, the lift force coefficient has two main components associated with these two frequencies. Besides, higher harmonics of the cylinder oscillation frequency appear in the spectrum of the lift coefficient. Moreover, the vortex shedding timing is studied in the beating motion by examining the instantaneous flow fields in the wake, and two scenarios of the vortex formation are observed.

  10. Visual three-dimensional representation of beat-to-beat electrocardiogram traces during hemodiafiltration.

    PubMed

    Rodriguez-Fernandez, Rodrigo; Infante, Oscar; Perez-Grovas, Héctor; Hernandez, Erika; Ruiz-Palacios, Patricia; Franco, Martha; Lerma, Claudia

    2012-06-01

    This study evaluated the usefulness of the three-dimensional representation of electrocardiogram traces (3DECG) to reveal acute and gradual changes during a full session of hemodiafiltration (HDF) in end-stage renal disease (ESRD) patients. Fifteen ESRD patients were included (six men, nine women, age 46 ± 19 years old). Serum electrolytes, blood pressure, heart rate, and blood urea nitrogen (BUN) were measured before and after HDF. Continuous electrocardiograms (ECGs) obtained by Holter monitoring during HDF were used to produce the 3DECG. Several major disturbances were identified by 3DECG images: increase in QRS amplitude (47%), decrease in T-wave amplitude (33%), increase in heart rate (33%), and occurrence of arrhythmia (53%). Different arrhythmia types were often concurrent and included isolated supraventricular premature beats (N = 5), atrial fibrillation or atrial bigeminy (N = 2), and isolated premature ventricular beats (N = 6). Patients with decrease in T-wave amplitude had higher potassium and BUN (both before HDF and total removal) than those without decrease in T-wave amplitude (P < 0.05). Concurrent acute and gradual ECG changes during HDF are identified by the 3DECG, which could be useful as a preventive and prognostic method. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  11. Healthcare performance and the effects of the binaural beats on human blood pressure and heart rate.

    PubMed

    Carter, Calvin

    2008-01-01

    Binaural beats are the differences in two different frequencies (in the range of 30-1000 Hz). Binaural beats are played through headphones and are perceived by the superior olivary nucleus of each hemisphere of the brain. The brain perceives the binaural beat and resonates to its frequency (frequency following response). Once the brain is in tune with the binaural beat it produces brainwaves of that frequency altering the listener's state of mind. In this experiment, the effects of the beta and theta binaural beat on human blood pressure and pulse were studied. Using headphones, three sounds were played for 7 minutes each to 12 participants: the control,- the sound of a babbling brook (the background sound to the two binaural beats), the beta binaural beat (20 Hz), and the theta binaural beat (7 Hz). Blood pressure and pulse were recorded before and after each sound was played. Each participant was given 2 minutes in-between each sound. The results showed that the control and the two binaural beats did not affect the 12 participant's blood pressure or pulse (p > 0.05). One reason for this may be that the sounds were not played long enough for the brain to either perceive and/or resonate to the frequency. Another reason why the sounds did not affect blood pressure and pulse may be due to the participant's age since older brains may not perceive the binaural beats as well as younger brains.

  12. BeatBox-HPC simulation environment for biophysically and anatomically realistic cardiac electrophysiology.

    PubMed

    Antonioletti, Mario; Biktashev, Vadim N; Jackson, Adrian; Kharche, Sanjay R; Stary, Tomas; Biktasheva, Irina V

    2017-01-01

    The BeatBox simulation environment combines flexible script language user interface with the robust computational tools, in order to setup cardiac electrophysiology in-silico experiments without re-coding at low-level, so that cell excitation, tissue/anatomy models, stimulation protocols may be included into a BeatBox script, and simulation run either sequentially or in parallel (MPI) without re-compilation. BeatBox is a free software written in C language to be run on a Unix-based platform. It provides the whole spectrum of multi scale tissue modelling from 0-dimensional individual cell simulation, 1-dimensional fibre, 2-dimensional sheet and 3-dimensional slab of tissue, up to anatomically realistic whole heart simulations, with run time measurements including cardiac re-entry tip/filament tracing, ECG, local/global samples of any variables, etc. BeatBox solvers, cell, and tissue/anatomy models repositories are extended via robust and flexible interfaces, thus providing an open framework for new developments in the field. In this paper we give an overview of the BeatBox current state, together with a description of the main computational methods and MPI parallelisation approaches.

  13. Binaural beat technology in humans: a pilot study to assess neuropsychologic, physiologic, and electroencephalographic effects.

    PubMed

    Wahbeh, Helané; Calabrese, Carlo; Zwickey, Heather; Zajdel, Dan

    2007-03-01

    When two auditory stimuli of different frequency are presented to each ear, binaural beats are perceived by the listener. The binaural beat frequency is equal to the difference between the frequencies applied to each ear. Our primary objective was to assess whether steady-state entrainment of electroencephalographic activity to the binaural beat occurs when exposed to a specific binaural beat frequency as has been hypothesized. Our secondary objective was to gather preliminary data on neuropsychologic and physiologic effects of binaural beat technology. A randomized, blinded, placebo-controlled crossover experiment in 4 healthy adult subjects. Subjects were randomized to experimental auditory stimulus of 30 minutes of binaural beat at 7 Hz (carrier frequencies: 133 Hz L; 140 Hz R) with an overlay of pink noise resembling the sound of rain on one session and control stimuli of the same overlay without the binaural beat carrier frequencies on the other session. Data were collected during two separate sessions 1 week apart. Neuropsychologic and blood pressure data were collected before and after the intervention; electroencephalographic data were collected before, during, and after listening to either binaural beats or control. Neuropsychologic measures included State Trait Anxiety Inventory, Profile of Mood States, Rey Auditory Verbal List Test, Stroop Test, and Controlled Oral Word Association Test. Spectral and coherence analysis was performed on the electroencephalogram (EEG), and all measures were analyzed for changes between sessions with and without binaural beat stimuli. There were no significant differences between the experimental and control conditions in any of the EEG measures. There was an increase of the Profile of Mood States depression subscale in the experimental condition relative to the control condition (p = 0.02). There was also a significant decrease in immediate verbal memory recall (p = 0.03) in the experimental condition compared to control

  14. Modeling of Nonlinear Beat Signals of TAE's

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin

    2012-03-01

    Experiments on Alcator C-Mod reveal Toroidal Alfven Eigenmodes (TAE) together with signals at various beat frequencies, including those at twice the mode frequency. The beat frequencies are sidebands driven by quadratic nonlinear terms in the MHD equations. These nonlinear sidebands have not yet been quantified by any existing codes. We extend the AEGIS code to capture nonlinear effects by treating the nonlinear terms as a driving source in the linear MHD solver. Our goal is to compute the spatial structure of the sidebands for realistic geometry and q-profile, which can be directly compared with experiment in order to interpret the phase contrast imaging diagnostic measurements and to enable the quantitative determination of the Alfven wave amplitude in the plasma core

  15. The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis

    PubMed Central

    Patel, Aniruddh D.; Iversen, John R.

    2013-01-01

    Every human culture has some form of music with a beat: a perceived periodic pulse that structures the perception of musical rhythm and which serves as a framework for synchronized movement to music. What are the neural mechanisms of musical beat perception, and how did they evolve? One view, which dates back to Darwin and implicitly informs some current models of beat perception, is that the relevant neural mechanisms are relatively general and are widespread among animal species. On the basis of recent neural and cross-species data on musical beat processing, this paper argues for a different view. Here we argue that beat perception is a complex brain function involving temporally-precise communication between auditory regions and motor planning regions of the cortex (even in the absence of overt movement). More specifically, we propose that simulation of periodic movement in motor planning regions provides a neural signal that helps the auditory system predict the timing of upcoming beats. This “action simulation for auditory prediction” (ASAP) hypothesis leads to testable predictions. We further suggest that ASAP relies on dorsal auditory pathway connections between auditory regions and motor planning regions via the parietal cortex, and suggest that these connections may be stronger in humans than in non-human primates due to the evolution of vocal learning in our lineage. This suggestion motivates cross-species research to determine which species are capable of human-like beat perception, i.e., beat perception that involves accurate temporal prediction of beat times across a fairly broad range of tempi. PMID:24860439

  16. [Organ procurement and transplantation from non-heart-beating donors].

    PubMed

    Antoine, Corinne; Brun, Frédéric; Tenaillon, Alain; Loty, Bernard

    2008-02-01

    Despite a significant increase in procurement and transplantation activities observed in France in the last eight years, the shortage in grafts is on the rise and demand keeps being much higher than supply. Since 1968 and until now, procurement was limited to heart beating brain donors. The results of kidneys transplanted from non-heart-beating donors have significantly improved and are nowadays comparable to those of kidney transplantations from brain death donors, thanks to a more accurate selection of donors and recipients, to better respect of preventing cold and warm ischemia times and to several major therapeutic innovations. Procurement on non-heart-beating donors are therefore being reconsidered under considerations of feasibility, results and ethical and legal consequences, under a specific medical protocol issued by the agency of biomedicine with the pilot hospital center agreement to comply with the protocol. Referring to foreign experiences, this program is likely to decrease the organ shortage, which is jeopardizing the treatment of a large number of patients awaiting transplantation.

  17. Beating of grafted chains induced by active Brownian particles

    NASA Astrophysics Data System (ADS)

    Yang, Qiu-song; Fan, Qing-wei; Shen, Zhuang-lin; Xia, Yi-qi; Tian, Wen-de; Chen, Kang

    2018-06-01

    We study the interplay between active Brownian particles (ABPs) and a "hairy" surface in two-dimensional geometry. We find that the increase of propelling force leads to and enhances inhomogeneous accumulation of ABPs inside the brush region. Oscillation of chain bundles (beating like cilia) is found in company with the formation and disassembly of a dynamic cluster of ABPs at large propelling forces. Meanwhile chains are stretched and pushed down due to the effective shear force by ABPs. The decrease of the average brush thickness with propelling force reflects the growth of the beating amplitude of chain bundles. Furthermore, the beating phenomenon is investigated in a simple single-chain system. We find that the chain swings regularly with a major oscillatory period, which increases with chain length and decreases with the increase of propelling force. We build a theory to describe the phenomenon and the predictions on the relationship between the period and amplitude for various chain lengths, and propelling forces agree very well with simulation data.

  18. The effect of gamma-enhancing binaural beats on the control of feature bindings.

    PubMed

    Colzato, Lorenza S; Steenbergen, Laura; Sellaro, Roberta

    2017-07-01

    Binaural beats represent the auditory experience of an oscillating sound that occurs when two sounds with neighboring frequencies are presented to one's left and right ear separately. Binaural beats have been shown to impact information processing via their putative role in increasing neural synchronization. Recent studies of feature-repetition effects demonstrated interactions between perceptual features and action-related features: repeating only some, but not all features of a perception-action episode hinders performance. These partial-repetition (or binding) costs point to the existence of temporary episodic bindings (event files) that are automatically retrieved by repeating at least one of their features. Given that neural synchronization in the gamma band has been associated with visual feature bindings, we investigated whether the impact of binaural beats extends to the top-down control of feature bindings. Healthy adults listened to gamma-frequency (40 Hz) binaural beats or to a constant tone of 340 Hz (control condition) for ten minutes before and during a feature-repetition task. While the size of visuomotor binding costs (indicating the binding of visual and action features) was unaffected by the binaural beats, the size of visual feature binding costs (which refer to the binding between the two visual features) was considerably smaller during gamma-frequency binaural beats exposure than during the control condition. Our results suggest that binaural beats enhance selectivity in updating episodic memory traces and further strengthen the hypothesis that neural activity in the gamma band is critically associated with the control of feature binding.

  19. Activating and relaxing music entrains the speed of beat synchronized walking.

    PubMed

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is 'activating' in the sense that it increases the speed, and some music is 'relaxing' in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation.

  20. Focusing on the Basics in Beat-the-Odds Schools. Policy Brief

    ERIC Educational Resources Information Center

    Lefkowits, Laura; Woempner, Carolyn

    2006-01-01

    Researchers at Mid-Continent Research for Education and Learning (McREL) recently completed a study of "beat-the-odds" schools--high-needs schools that demonstrated atypically high student achievement. This policy brief draws from the report of the study's findings, "High-Needs Schools--What Does It Take to Beat the Odds?"…

  1. Laser Beat-Wave Magnetization of a Dense Plasma

    NASA Astrophysics Data System (ADS)

    Yates, Kevin; Hsu, Scott; Montgomery, David; Dunn, John; Langendorf, Samuel; Pollock, Bradley; Johnson, Timothy; Welch, Dale; Thoma, Carsten

    2017-10-01

    We present results from the first of a series of experiments to demonstrate and characterize laser beat-wave magnetization of a dense plasma, motivated by the desire to create high-beta targets with standoff for magneto-inertial fusion. The experiments are being conducted at the Jupiter Laser Facility (JLF) at LLNL. The experiment uses the JLF Janus 1 ω (1053 nm) beam and a standalone Nd:YAG (1064 nm) to drive the beat wave, and the Janus 2 ω (526.5 nm) beam to ionize/heat a gas-jet target as well as to provide Thomson-scattering (TS) measurements of the target density/temperature and scattered light from the beat wave. Streaked TS data captured electron-plasma-wave and ion-acoustic-wave features utilizing either nitrogen or helium gas jets. Effects of initial gas density as well as laser intensity on target have been measured, with electron densities ranging from 1E18 to 1E19 cm-3 with temperatures of tens to hundreds of eV, near the desired range for optimal field generation. LSP simulations were run to aid experimental design and data interpretation. LANL LDRD Program.

  2. The role of α-adrenergic receptors in mediating beat-by-beat sympathetic vascular transduction in the forearm of resting man

    PubMed Central

    Fairfax, Seth T; Holwerda, Seth W; Credeur, Daniel P; Zuidema, Mozow Y; Medley, John H; Dyke II, Peter C; Wray, D Walter; Davis, Michael J; Fadel, Paul J

    2013-01-01

    Sympathetic vascular transduction is commonly understood to act as a basic relay mechanism, but under basal conditions, competing dilatory signals may interact with and alter the ability of sympathetic activity to decrease vascular conductance. Thus, we determined the extent to which spontaneous bursts of muscle sympathetic nerve activity (MSNA) mediate decreases in forearm vascular conductance (FVC) and the contribution of local α-adrenergic receptor-mediated pathways to the observed FVC responses. In 19 young men, MSNA (microneurography), arterial blood pressure and brachial artery blood flow (duplex Doppler ultrasound) were continuously measured during supine rest. These measures were also recorded in seven men during intra-arterial infusions of normal saline, phentolamine (PHEN) and PHEN with angiotensin II (PHEN+ANG). The latter was used to control for increases in resting blood flow with α-adrenergic blockade. Spike-triggered averaging was used to characterize beat-by-beat changes in FVC for 15 cardiac cycles following each MSNA burst and a peak response was calculated. Following MSNA bursts, FVC initially increased by +3.3 ± 0.3% (P= 0.016) and then robustly decreased to a nadir of −5.8 ± 1.6% (P < 0.001). The magnitude of vasoconstriction appeared graded with the number of consecutive MSNA bursts; while individual burst size only had a mild influence. Neither PHEN nor PHEN+ANG infusions affected the initial rise in FVC, but both infusions significantly attenuated the subsequent decrease in FVC (–2.1 ± 0.7% and –0.7 ± 0.8%, respectively; P < 0.001 vs. normal saline). These findings indicate that spontaneous MSNA bursts evoke robust beat-by-beat decreases in FVC that are exclusively mediated via α-adrenergic receptors. PMID:23652594

  3. The automated counting of beating rates in individual cultured heart cells.

    PubMed

    Collins, G A; Dower, R; Walker, M J

    1981-12-01

    The effect of drugs on the beating rate of cultured heart cells can be monitored in a number of ways. The simultaneous automated measurement of beating rates of a number of cells allows drug effects to be rapidly quantified. A photoresistive detector placed on a television image of a cell, when coupled to operational amplifiers, gives binary signals that can be processed by a microprocessor. On this basis, we have devised a system that is capable of simultaneously monitoring the individual beating of six single cultured heart cells. A microprocessor automatically processes data obtained under different experimental conditions and records it in suitable descriptive formats such as dose-response curves and double reciprocal plots.

  4. Asynchronous polar V1500 Cyg: orbital, spin and beat periods

    NASA Astrophysics Data System (ADS)

    Pavlenko, E. P.; Mason, P. A.; Sosnovskij, A. A.; Shugarov, S. Yu; Babina, Ju V.; Antonyuk, K. A.; Andreev, M. V.; Pit, N. V.; Antonyuk, O. I.; Baklanov, A. V.

    2018-06-01

    The bright Nova Cygni 1975 is a rare nova on a magnetic white dwarf (WD). Later it was found to be an asynchronous polar, now called V1500 Cyg. Our multisite photometric campaign occurring 40 years post eruption covered 26-nights (2015-2017). The reflection effect from the heated donor has decreased, but still dominates the optical radiation with an amplitude ˜1m.5. The 0m.3 residual reveals cyclotron emission and ellipsoidal variations. Mean brightness modulation from night-to-night is used to measure the 9.6-d spin-orbit beat period that is due to changing accretion geometry including magnetic pole-switching of the flow. By subtracting the orbital and beat frequencies, spin-phase dependent light curves are obtained. The amplitude and profile of the WD spin light curves track the cyclotron emitting accretion regions on the WD and they vary systematically with beat phase. A weak intermittent signal at 0.137613-d is likely the spin period, which is 1.73(1) min shorter than the orbital period. The O-C diagram of light curve maxima displays phase jumps every one-half beat period, a characteristic of asynchronous polars. The first jump we interpret as pole switching between regions separated by 180°. Then the spot drifts during ˜ 0.1 beat phase before undergoing a second phase jump between spots separated by less than 180°. We trace the cooling of the still hot WD as revealed by the irradiated companion. The post nova evolution and spin-orbit asynchronism of V1500 Cyg continues to be a powerful laboratory for accretion flows onto magnetic white dwarfs.

  5. Beating HF waves to generate VLF waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John

    2012-03-01

    Beat-wave generation of very low frequency (VLF) waves by two HF heaters in the ionosphere is formulated theoretically and demonstrated experimentally. The heater-induced differential thermal pressure force and ponderomotive force, which dominate separately in the D and F regions of the ionosphere, drive an electron current for the VLF emission. A comparison, applying appropriate ionospheric parameters shows that the ponderomotive force dominates in beat-wave generation of VLF waves. Three experiments, one in the nighttime in the absence of D and E layers and two in the daytime in the presence of D and E layers, were performed. X mode HF heaters of slightly different frequencies were transmitted at CW full power. VLF waves at 10 frequencies ranging from 3.5 to 21.5 kHz were generated. The frequency dependencies of the daytime and nighttime radiation intensities are quite similar, but the nighttime radiation is much stronger than the daytime one at the same radiation frequency. The intensity ratio is as large as 9 dB at 11.5 kHz. An experiment directly comparing VLF waves generated by the beat-wave approach and by the amplitude modulation (AM) approach was also conducted. The results rule out the likely contribution of the AM mechanism acting on the electrojet and indicate that beat-wave in the VLF range prefers to be generated in the F region of the ionosphere through the ponderomotive nonlinearity, consistent with the theory. In the nighttime experiment, the ionosphere was underdense to the HF heaters, suggesting a likely setting for effective beat-wave generation of VLF waves by the HF heaters.

  6. A new Bayesian Earthquake Analysis Tool (BEAT)

    NASA Astrophysics Data System (ADS)

    Vasyura-Bathke, Hannes; Dutta, Rishabh; Jónsson, Sigurjón; Mai, Martin

    2017-04-01

    Modern earthquake source estimation studies increasingly use non-linear optimization strategies to estimate kinematic rupture parameters, often considering geodetic and seismic data jointly. However, the optimization process is complex and consists of several steps that need to be followed in the earthquake parameter estimation procedure. These include pre-describing or modeling the fault geometry, calculating the Green's Functions (often assuming a layered elastic half-space), and estimating the distributed final slip and possibly other kinematic source parameters. Recently, Bayesian inference has become popular for estimating posterior distributions of earthquake source model parameters given measured/estimated/assumed data and model uncertainties. For instance, some research groups consider uncertainties of the layered medium and propagate these to the source parameter uncertainties. Other groups make use of informative priors to reduce the model parameter space. In addition, innovative sampling algorithms have been developed that efficiently explore the often high-dimensional parameter spaces. Compared to earlier studies, these improvements have resulted in overall more robust source model parameter estimates that include uncertainties. However, the computational demands of these methods are high and estimation codes are rarely distributed along with the published results. Even if codes are made available, it is often difficult to assemble them into a single optimization framework as they are typically coded in different programing languages. Therefore, further progress and future applications of these methods/codes are hampered, while reproducibility and validation of results has become essentially impossible. In the spirit of providing open-access and modular codes to facilitate progress and reproducible research in earthquake source estimations, we undertook the effort of producing BEAT, a python package that comprises all the above-mentioned features in one

  7. Single-photon superradiant beating from a Doppler-broadened ladder-type atomic ensemble

    NASA Astrophysics Data System (ADS)

    Lee, Yoon-Seok; Lee, Sang Min; Kim, Heonoh; Moon, Han Seb

    2017-12-01

    We report on heralded-single-photon superradiant beating in the spontaneous four-wave mixing process of Doppler-broadened ladder-type 87Rb atoms. When Doppler-broadened atoms contribute to two-photon coherence, the detection probability amplitudes of the heralded single photons are coherently superposed despite inhomogeneous broadened atomic media. Single-photon superradiant beating is observed, which constitutes evidence for the coherent superposition of two-photon amplitudes from different velocity classes in the Doppler-broadened atomic ensemble. We present a theoretical model in which the single-photon superradiant beating originates from the interference between wavelength-separated two-photon amplitudes via the reabsorption filtering effect.

  8. Human sperm steer with second harmonics of the flagellar beat.

    PubMed

    Saggiorato, Guglielmo; Alvarez, Luis; Jikeli, Jan F; Kaupp, U Benjamin; Gompper, Gerhard; Elgeti, Jens

    2017-11-10

    Sperm are propelled by bending waves traveling along their flagellum. For steering in gradients of sensory cues, sperm adjust the flagellar waveform. Symmetric and asymmetric waveforms result in straight and curved swimming paths, respectively. Two mechanisms causing spatially asymmetric waveforms have been proposed: an average flagellar curvature and buckling. We image flagella of human sperm tethered with the head to a surface. The waveform is characterized by a fundamental beat frequency and its second harmonic. The superposition of harmonics breaks the beat symmetry temporally rather than spatially. As a result, sperm rotate around the tethering point. The rotation velocity is determined by the second-harmonic amplitude and phase. Stimulation with the female sex hormone progesterone enhances the second-harmonic contribution and, thereby, modulates sperm rotation. Higher beat frequency components exist in other flagellated cells; therefore, this steering mechanism might be widespread and could inspire the design of synthetic microswimmers.

  9. Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation

    NASA Astrophysics Data System (ADS)

    CUI, Fengkui; LING, Yuanfei; XUE, Jinxue; LIU, Jia; LIU, Yuhui; LI, Yan

    2017-03-01

    The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tissue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel.

  10. Neural responses to sounds presented on and off the beat of ecologically valid music

    PubMed Central

    Tierney, Adam; Kraus, Nina

    2013-01-01

    The tracking of rhythmic structure is a vital component of speech and music perception. It is known that sequences of identical sounds can give rise to the percept of alternating strong and weak sounds, and that this percept is linked to enhanced cortical and oscillatory responses. The neural correlates of the perception of rhythm elicited by ecologically valid, complex stimuli, however, remain unexplored. Here we report the effects of a stimulus' alignment with the beat on the brain's processing of sound. Human subjects listened to short popular music pieces while simultaneously hearing a target sound. Cortical and brainstem electrophysiological onset responses to the sound were enhanced when it was presented on the beat of the music, as opposed to shifted away from it. Moreover, the size of the effect of alignment with the beat on the cortical response correlated strongly with the ability to tap to a beat, suggesting that the ability to synchronize to the beat of simple isochronous stimuli and the ability to track the beat of complex, ecologically valid stimuli may rely on overlapping neural resources. These results suggest that the perception of musical rhythm may have robust effects on processing throughout the auditory system. PMID:23717268

  11. Electrophysiological measurement of binaural beats: effects of primary tone frequency and observer age.

    PubMed

    Grose, John H; Mamo, Sara K

    2012-01-01

    The purpose of this study was to determine the reliability of the electrophysiological binaural beat steady state response as a gauge of temporal fine structure coding, particularly as it relates to the aging auditory system. The hypothesis was that the response would be more robust in a lower, than in a higher, frequency region and in younger, than in older, adults. Two experiments were undertaken. The first measured the 40 Hz binaural beat steady state response elicited by tone pairs in two frequency regions: lower (390 and 430 Hz tone pair) and higher (810 and 850 Hz tone pair). Frequency following responses (FFRs) evoked by the tones were also recorded. Ten young adults with normal hearing participated. The second experiment measured the binaural beat and FFRs in older adults but only in the lower frequency region. Fourteen older adults with relatively normal hearing participated. Response metrics in both experiments included response component signal-to-noise ratio (F statistic) and magnitude-squared coherence. Experiment 1 showed that FFRs were elicited in both frequency regions but were more robust in the lower frequency region. Binaural beat responses elicited by the lower frequency pair of tones showed greater amplitude fluctuation within a participant than the respective FFRs. Experiment 2 showed that older adults exhibited similar FFRs to younger adults, but proportionally fewer older participants showed binaural beat responses. Age differences in onset responses were also observed. The lower prevalence of the binaural beat response in older adults, despite the presence of FFRs, provides tentative support for the sensitivity of this measure to age-related deficits in temporal processing. However, the lability of the binaural beat response advocates caution in its use as an objective measure of fine structure coding.

  12. Emergence of flagellar beating from the collective behavior of individual ATP-powered dyneins

    NASA Astrophysics Data System (ADS)

    Namdeo, S.; Onck, P. R.

    2016-10-01

    Flagella are hair-like projections from the surface of eukaryotic cells, and they play an important role in many cellular functions, such as cell-motility. The beating of flagella is enabled by their internal architecture, the axoneme, and is powered by a dense distribution of motor proteins, dyneins. The dyneins deliver the required mechanical work through the hydrolysis of ATP. Although the dynein-ATP cycle, the axoneme microstructure, and the flagellar-beating kinematics are well studied, their integration into a coherent picture of ATP-powered flagellar beating is still lacking. Here we show that a time-delayed negative-work-based switching mechanism is able to convert the individual sliding action of hundreds of dyneins into a regular overall beating pattern leading to propulsion. We developed a computational model based on a minimal representation of the axoneme consisting of two representative doublet microtubules connected by nexin links. The relative sliding of the microtubules is incorporated by modeling two groups of ATP-powered dyneins, each responsible for sliding in opposite directions. A time-delayed switching mechanism is postulated, which is key in converting the local individual sliding action of multiple dyneins into global beating. Our results demonstrate that an overall nonreciprocal beating pattern can emerge with time due to the spatial and temporal coordination of the individual dyneins. These findings provide insights in the fundamental working mechanism of axonemal dyneins and could possibly open new research directions in the field of flagellar motility.

  13. Emergence of flagellar beating from the collective behavior of individual ATP-powered dyneins.

    PubMed

    Namdeo, S; Onck, P R

    2016-10-01

    Flagella are hair-like projections from the surface of eukaryotic cells, and they play an important role in many cellular functions, such as cell-motility. The beating of flagella is enabled by their internal architecture, the axoneme, and is powered by a dense distribution of motor proteins, dyneins. The dyneins deliver the required mechanical work through the hydrolysis of ATP. Although the dynein-ATP cycle, the axoneme microstructure, and the flagellar-beating kinematics are well studied, their integration into a coherent picture of ATP-powered flagellar beating is still lacking. Here we show that a time-delayed negative-work-based switching mechanism is able to convert the individual sliding action of hundreds of dyneins into a regular overall beating pattern leading to propulsion. We developed a computational model based on a minimal representation of the axoneme consisting of two representative doublet microtubules connected by nexin links. The relative sliding of the microtubules is incorporated by modeling two groups of ATP-powered dyneins, each responsible for sliding in opposite directions. A time-delayed switching mechanism is postulated, which is key in converting the local individual sliding action of multiple dyneins into global beating. Our results demonstrate that an overall nonreciprocal beating pattern can emerge with time due to the spatial and temporal coordination of the individual dyneins. These findings provide insights in the fundamental working mechanism of axonemal dyneins and could possibly open new research directions in the field of flagellar motility.

  14. An empirical investigation of attitudes towards wife-beating among men and women in seven sub-Saharan African countries.

    PubMed

    Rani, Manju; Bonu, Sekhar; Diop-Sidibe, Nafissatou

    2004-12-01

    This study used data from the demographic and health surveys (DHS) conducted between 1999 and 2001 in Benin, Ethiopia, Malawi, Mali, Rwanda, Uganda and Zimbabwe, to examine the magnitude and correlates of conditional acceptance of wife-beating among both men and women. Multivariate logistic regression models were fitted to investigate the independent association between different socio-demographic characteristics and acceptance of wife-beating. The acceptance of wife-beating for transgressing certain gender roles was widespread in all the countries. Men were consistently less likely to justify wife-beating than women. Household wealth and education emerged as strongest and most consistent negative predictors of acceptance of wife-beating among both men and women. Older men and women were less likely to justify wife-beating. Men and women in the polygamous union were more likely to accept wife-beating, though the association was not always significant. With the exception of Uganda, women working for pay were more likely to justify wife-beating than non-working women were. The results indicate that dominant social and cultural norms create images of "ideal" women among both men and women that include definition and widespread acceptance of gender roles as well as sanction use of force to enforce these gender roles. The State and its different institutions may fail to mitigate wife-beating, as sensitivity to objectively address wife-beating may be tellingly lacking. Though education, economic growth, etc, can reduce acceptance of wife-beating, the process may be too slow and too late to make a substantial difference in the near future. Proactive measures may be required to change attitudes towards wife-beating among both men and women.

  15. Beat-to-beat blood pressure analysis after premature ventricular contraction indicates sensitive baroreceptor dysfunction in Parkinson's disease.

    PubMed

    Haensch, Carl-Albrecht; Jörg, Johannes

    2006-04-01

    Extrasystoles occur in normal subjects but are significant more frequently (16.25% vs. 55%; chi(2) = 19.3; P < 0.001) seen in Parkinson's disease (PD) patients. The extrasystolic decreases in stroke volume and systolic pressure activate sympathetic vasomotor innervation and lead to a blood pressure increase for a few heartbeats. The purpose of this study was to prove whether the short time analysis of this blood pressure regulation allows the assessment of sympathetic neurocirculatory function. Records of noninvasive blood pressure monitoring were reviewed from 40 PD patients and 80 controls. A battery of cardiovascular autonomic tests, including Valsalva maneuver, tilt-table testing, echocardiography, and cardiac scintigraphy with [(123)I]meta-iodobenzylguanidine were performed. Fifty-five percent of the PD patients had at least one premature ventricular contraction (PVC) in 10 minutes lying supine at rest. After every PVC (13 PVCs) recorded from normal subjects, we found an increase in systolic blood pressure above base line with a maximum at the seventh heart beat. In all of the 22 PD patients, the systolic blood pressure was significantly decreased less than baseline in every PVC from the second to the ninth postextrasystolic beat (P < 0.001). In both groups, the extrasystolic fall in blood pressure was on average approximately 22%. The postextrasystolic potentiation did not differ (5.3% vs. 4.4%, not significant). If a PVC occurs, the analysis of short-time blood pressure regulation is a sensitive tool for baroreceptor reflex function. The advantage of this method results from the independence of patients cooperation and the high sensitivity to prove a sympathetic neurocirculatory failure within 10 heart beats. Copyright 2005 Movement Disorder Society.

  16. Noninvasive beat-to-beat finger arterial pressure monitoring during orthostasis: a comprehensive review of normal and abnormal responses at different ages.

    PubMed

    van Wijnen, V K; Finucane, C; Harms, M P M; Nolan, H; Freeman, R L; Westerhof, B E; Kenny, R A; Ter Maaten, J C; Wieling, W

    2017-12-01

    Over the past 30 years, noninvasive beat-to-beat blood pressure (BP) monitoring has provided great insight into cardiovascular autonomic regulation during standing. Although traditional sphygmomanometric measurement of BP may be sufficient for detection of sustained orthostatic hypotension, it fails to capture the complexity of the underlying dynamic BP and heart rate responses. With the emerging use of noninvasive beat-to-beat BP monitoring for the assessment of orthostatic BP control in clinical and population studies, various definitions for abnormal orthostatic BP patterns have been used. Here, age-related changes in cardiovascular control in healthy subjects will be reviewed to define the spectrum of the most important abnormal orthostatic BP patterns within the first 180 s of standing. Abnormal orthostatic BP responses can be defined as initial orthostatic hypotension (a transient systolic BP fall of >40 mmHg within 15 s of standing), delayed BP recovery (an inability of systolic BP to recover to a value of >20 mmHg below baseline at 30 s after standing) and sustained orthostatic hypotension (a sustained decline in systolic BP of ≥20 mmHg occurring 60-180 s after standing). In the evaluation of patients with light-headedness, pre(syncope), (unexplained) falls or suspected autonomic dysfunction, it is essential to distinguish between normal cardiovascular autonomic regulation and these abnormal orthostatic BP responses. The prevalence, clinical relevance and underlying pathophysiological mechanisms of these patterns differ significantly across the lifespan. Initial orthostatic hypotension is important for identifying causes of syncope in younger adults, whereas delayed BP recovery and sustained orthostatic hypotension are essential for evaluating the risk of falls in older adults. © 2017 The Authors Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.

  17. Intracellular Ca2+ threshold reversibly switches flagellar beat off and on.

    PubMed

    Sánchez-Cárdenas, C; Montoya, F; Navarrete, F A; Hernández-Cruz, A; Corkidi, G; Visconti, P E; Darszon, A

    2018-06-08

    Sperm motility is essential for fertilization. The asymmetry of flagellar beat in spermatozoa is finely regulated by intracellular calcium concentration ([Ca2+]i). Recently, we demonstrated that the application of high concentrations (10-20 μM) of the Ca2+ ionophore A23187 promotes sperm immobilization after 10 minutes, and its removal thereafter allows motility recovery, hyperactivation and fertilization. In addition, the same ionophore treatment overcomes infertility observed in sperm from Catsper1-/-, Slo3-/- and Adcy10-/-, but not PMCA4-/-, which strongly suggest that regulation of [Ca2+]i is mandatory for sperm motility and hyperactivation. In this study we found that prior to inducing sperm immobilization, high A23187 concentrations (10 μM) increase flagellar beat. While 5-10 μM A23187 substantially elevates [Ca2+]i and rapidly immobilizes sperm in a few minutes, smaller concentrations (0.5 and 1 μM) provoke smaller [Ca2+]i increases and sperm hyperactivation, confirming that [Ca2+]i increases act as a motility switch. Until now the [Ca2+]i thresholds that switch motility on and off were not fully understood. To study the relationship between [Ca2+]i and flagellar beating, we developed an automatic tool that allows the simultaneous measurement of these two parameters. Individual spermatozoa were treated with A23187 which is then washed to evaluate [Ca2+]i and flagellar beat recovery using the implemented method. We observe that [Ca2+]i must decrease below a threshold concentration range to facilitate subsequent flagellar beat recovery and sperm motility.

  18. Effective viscosity of a suspension of flagellar-beating microswimmers: Three-dimensional modeling

    NASA Astrophysics Data System (ADS)

    Jibuti, Levan; Zimmermann, Walter; Rafaï, Salima; Peyla, Philippe

    2017-11-01

    Micro-organisms usually can swim in their liquid environment by flagellar or ciliary beating. In this numerical work, we analyze the influence of flagellar beating on the orbits of a swimming cell in a shear flow. We also calculate the effect of the flagellar beating on the rheology of a dilute suspension of microswimmers. A three-dimensional model is proposed for Chlamydomonas Reinhardtii swimming with a breaststroke-like beating of two anterior flagella modeled by two counter-rotating fore beads. The active swimmer model reveals unusual angular orbits in a linear shear flow. Namely, the swimmer sustains orientations transiently across the flow. Such behavior is a result of the interplay between shear flow and the swimmer's periodic beating motion of flagella, which exert internal torques on the cell body. This peculiar behavior has some significant consequences on the rheological properties of the suspension. We calculate Einstein's viscosity of the suspension composed of such isolated modeled microswimmers (dilute case) in a shear flow. We use numerical simulations based on a Rotne-Prager-like approximation for hydrodynamic interaction between simplified flagella and the cell body. The results show an increased intrinsic viscosity for active swimmer suspensions in comparison to nonactive ones as well as a shear thinning behavior in accordance with previous experimental measurements [Phys. Rev. Lett. 104, 098102 (2010), 10.1103/PhysRevLett.104.098102].

  19. Activating and Relaxing Music Entrains the Speed of Beat Synchronized Walking

    PubMed Central

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is ‘activating’ in the sense that it increases the speed, and some music is ‘relaxing’ in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation. PMID:23874469

  20. Beat the Street: An Urban Literacy Program.

    ERIC Educational Resources Information Center

    Pearpoint, Jack; Forest, Marsha

    1990-01-01

    A program of Frontier College (Toronto), Beat the Street uses student-centered, individualized learning to give "street people" self-esteem and literacy skills. The program uses the street as a curriculum and volunteer tutors who are themselves street people. (SK)

  1. Effect of acute ethanol administration on zebrafish tail-beat motion.

    PubMed

    Bartolini, Tiziana; Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio

    2015-11-01

    Zebrafish is becoming a species of choice in neurobiological and behavioral studies of alcohol-related disorders. In these efforts, the activity of adult zebrafish is typically quantified using indirect activity measures that are either scored manually or identified automatically from the fish trajectory. The analysis of such activity measures has produced important insight into the effect of acute ethanol exposure on individual and social behavior of this vertebrate species. Here, we leverage a recently developed tracking algorithm that reconstructs fish body shape to investigate the effect of acute ethanol administration on zebrafish tail-beat motion in terms of amplitude and frequency. Our results demonstrate a significant effect of ethanol on the tail-beat amplitude as well as the tail-beat frequency, both of which were found to robustly decrease for high ethanol concentrations. Such a direct measurement of zebrafish motor functions is in agreement with evidence based on indirect activity measures, offering a complementary perspective in behavioral screening. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Preferred Tempo and Low-Audio-Frequency Bias Emerge From Simulated Sub-cortical Processing of Sounds With a Musical Beat

    PubMed Central

    Zuk, Nathaniel J.; Carney, Laurel H.; Lalor, Edmund C.

    2018-01-01

    Prior research has shown that musical beats are salient at the level of the cortex in humans. Yet below the cortex there is considerable sub-cortical processing that could influence beat perception. Some biases, such as a tempo preference and an audio frequency bias for beat timing, could result from sub-cortical processing. Here, we used models of the auditory-nerve and midbrain-level amplitude modulation filtering to simulate sub-cortical neural activity to various beat-inducing stimuli, and we used the simulated activity to determine the tempo or beat frequency of the music. First, irrespective of the stimulus being presented, the preferred tempo was around 100 beats per minute, which is within the range of tempi where tempo discrimination and tapping accuracy are optimal. Second, sub-cortical processing predicted a stronger influence of lower audio frequencies on beat perception. However, the tempo identification algorithm that was optimized for simple stimuli often failed for recordings of music. For music, the most highly synchronized model activity occurred at a multiple of the beat frequency. Using bottom-up processes alone is insufficient to produce beat-locked activity. Instead, a learned and possibly top-down mechanism that scales the synchronization frequency to derive the beat frequency greatly improves the performance of tempo identification. PMID:29896080

  3. Domestic violence against women in Egypt--wife beating and health outcomes.

    PubMed

    Diop-Sidibé, Nafissatou; Campbell, Jacquelyn C; Becker, Stan

    2006-03-01

    Research has consistently demonstrated that a woman is more likely to be abused by an intimate partner than by any other person. Many negative health consequences to the victims have been associated with domestic violence against women. Data from the 1995 Egyptian Demographic and Health Survey, a nationally representative household survey, were analyzed for 6566 currently married women age 15-49 who responded to both the main questionnaire and a special module on women's status. Multivariate logistic regressions were used to examine the association of ever-beating, beating in past year or frequency of beatings in past year with contraceptive use, pregnancy management, and report of health problems. Thirty-four percent of women in the sample were ever beaten by their current husband while 16% were beaten in the past year. Ever-beaten women were more likely to report health problems necessitating medical attention as were women beaten in the past year compared to never-beaten women. Regarding reproductive health, higher frequency of beating was associated with non-use of a female contraceptive method, while ante-natal care (ANC) by a health professional for the most recent baby born in the past year was less likely among ever-beaten women (OR = 0.17, p < 0.05). Unexpectedly, among professional ANC patients, those ever-abused were more likely to make four or more visits (OR = 36.54, p < 0.05). In Egypt as elsewhere around the world, wife beating is related to various negative health outcomes. Women's programmes must take domestic violence into account if they want to better address the needs of a non-negligible proportion of their target population.

  4. Neural Entrainment to the Beat: The "Missing-Pulse" Phenomenon.

    PubMed

    Tal, Idan; Large, Edward W; Rabinovitch, Eshed; Wei, Yi; Schroeder, Charles E; Poeppel, David; Zion Golumbic, Elana

    2017-06-28

    Most humans have a near-automatic inclination to tap, clap, or move to the beat of music. The capacity to extract a periodic beat from a complex musical segment is remarkable, as it requires abstraction from the temporal structure of the stimulus. It has been suggested that nonlinear interactions in neural networks result in cortical oscillations at the beat frequency, and that such entrained oscillations give rise to the percept of a beat or a pulse. Here we tested this neural resonance theory using MEG recordings as female and male individuals listened to 30 s sequences of complex syncopated drumbeats designed so that they contain no net energy at the pulse frequency when measured using linear analysis. We analyzed the spectrum of the neural activity while listening and compared it to the modulation spectrum of the stimuli. We found enhanced neural response in the auditory cortex at the pulse frequency. We also showed phase locking at the times of the missing pulse, even though the pulse was absent from the stimulus itself. Moreover, the strength of this pulse response correlated with individuals' speed in finding the pulse of these stimuli, as tested in a follow-up session. These findings demonstrate that neural activity at the pulse frequency in the auditory cortex is internally generated rather than stimulus-driven. The current results are both consistent with neural resonance theory and with models based on nonlinear response of the brain to rhythmic stimuli. The results thus help narrow the search for valid models of beat perception. SIGNIFICANCE STATEMENT Humans perceive music as having a regular pulse marking equally spaced points in time, within which musical notes are temporally organized. Neural resonance theory (NRT) provides a theoretical model explaining how an internal periodic representation of a pulse may emerge through nonlinear coupling between oscillating neural systems. After testing key falsifiable predictions of NRT using MEG recordings, we

  5. Mismatch negativity to acoustical illusion of beat: how and where the change detection takes place?

    PubMed

    Chakalov, Ivan; Paraskevopoulos, Evangelos; Wollbrink, Andreas; Pantev, Christo

    2014-10-15

    In case of binaural presentation of two tones with slightly different frequencies the structures of brainstem can no longer follow the interaural time differences (ITD) resulting in an illusionary perception of beat corresponding to frequency difference between the two prime tones. Hence, the beat-frequency does not exist in the prime tones presented to either ear. This study used binaural beats to explore the nature of acoustic deviance detection in humans by means of magnetoencephalography (MEG). Recent research suggests that the auditory change detection is a multistage process. To test this, we employed 26 Hz-binaural beats in a classical oddball paradigm. However, the prime tones (250 Hz and 276 Hz) were switched between the ears in the case of the deviant-beat. Consequently, when the deviant is presented, the cochleae and auditory nerves receive a "new afferent", although the standards and the deviants are heard identical (26 Hz-beats). This allowed us to explore the contribution of auditory periphery to change detection process, and furthermore, to evaluate its influence on beats-related auditory steady-state responses (ASSRs). LORETA-source current density estimates of the evoked fields in a typical mismatch negativity time-window (MMN) and the subsequent difference-ASSRs were determined and compared. The results revealed an MMN generated by a complex neural network including the right parietal lobe and the left middle frontal gyrus. Furthermore, difference-ASSR was generated in the paracentral gyrus. Additionally, psychophysical measures showed no perceptual difference between the standard- and deviant-beats when isolated by noise. These results suggest that the auditory periphery has an important contribution to novelty detection already at sub-cortical level. Overall, the present findings support the notion of hierarchically organized acoustic novelty detection system. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Electrocardiogram: his bundle potentials can be recorded noninvasively beat by beat on surface electrocardiogram.

    PubMed

    Wang, Gaopin; Liu, Renguang; Chang, Qinghua; Xu, Zhaolong; Zhang, Yingjie; Pan, Dianzhu

    2017-03-15

    The micro waveform of His bundle potential can't be recorded beat-to-beat on surface electrocardiogram yet. We have found that the micro-wavelets before QRS complex may be related to atrioventricular conduction system potentials. This study is to explore the possibility of His bundle potential can be noninvasively recorded on surface electrocardiogram. We randomized 65 patients undergoing radiofrequency catheter ablation of paroxysmal superventricular tachycardia (exclude overt Wolff-Parkinson-White syndrome) to receive "conventional electrocardiogram" and "new electrocardiogram" before the procedure. His bundle electrogram was collected during the procedure. Comparative analysis of PA s (PA interval recorded on surface electrocardiogram), AH s (AH interval recorded on surface electrocardiogram) and HV s (HV interval recorded on surface electrocardiogram) interval recorded on surface "new electrocardiogram" and PA, AH, HV interval recorded on His bundle electrogram was investigated. There was no difference (P > 0.05) between groups in HV s interval (49.63 ± 6.19 ms) and HV interval (49.35 ± 6.49 ms). Results of correlational analysis found that HV S interval was significantly positively associated with HV interval (r = 0.929; P < 0.01). His bundle potentials can be noninvasively recorded on surface electrocardiogram. Noninvasive His bundle potential tracing might represent a new method for locating the site of atrioventricular block and identifying the origin of a wide QRS complex.

  7. Binaural beat technology in humans: a pilot study to assess psychologic and physiologic effects.

    PubMed

    Wahbeh, Helané; Calabrese, Carlo; Zwickey, Heather

    2007-01-01

    Binaural beat technology (BBT) products are sold internationally as personal development and health improvement tools. Producers suggest benefit from regular listening to binaural beats including reduced stress and anxiety, and increased focus, concentration, motivation, confidence, and depth in meditation. Binaural beats are auditory brainstem responses that originate in the superior olivary nucleus as a result of different frequency auditory stimuli provided to each ear. Listeners to binaural beat "hear" a beat at a frequency equal to the difference between the frequencies of the applied tones. The objectives of this pilot study were to gather preliminary data on psychologic and physiologic effects of 60 days daily use of BBT for hypothesis generation and to assess compliance, feasibility, and safety for future studies. Uncontrolled pilot study. Eight healthy adults participated in the study. Participants listened to a CD with delta (0-4 Hz) binaural beat frequencies daily for 60 days. Psychologic and physiological data were collected before and after a 60-day intervention. PSYCHOLOGIC: Depression (Beck Depression Inventory-2), anxiety (State-Trait Anxiety Inventory), mood (Profile of Mood States), absorption (Tellegen Absorption Scale) and quality of Life (World Health Organization-Quality of Life Inventory). PHYSIOLOGICAL: Cortisol, dehydroepiandrosterone, melatonin, insulin-like growth factor-1, serotonin, dopamine, epinephrine, norepinephrine, weight, blood pressure, high sensitivity C-reactive protein. There was a decrease in trait anxiety (p = 0.004), an increase in quality of life (p = 0.03), and a decrease in insulin-like growth factor-1 (p = 0.01) and dopamine (p = 0.02) observed between pre- and postintervention measurements. Binaural beat technology may exhibit positive effect on self-reported psychologic measures, especially anxiety. Further research is warranted to explore the effects on anxiety using a larger, randomized and controlled trial.

  8. Beat-to-beat ECG restitution: A review and proposal for a new biomarker to assess cardiac stress and ventricular tachyarrhythmia vulnerability.

    PubMed

    Fossa, Anthony A

    2017-09-01

    Cardiac restitution is the ability of the heart to recover from one beat to the next. Ventricular arrhythmia vulnerability can occur when the heart does not properly adjust to sudden changes in rate or in hemodynamics leading to excessive temporal and/or spatial heterogeneity in conduction or repolarization. Restitution has historically been used to study, by invasive means, the dynamics of the relationship between action potential duration (APD) and diastolic interval (DI) in sedated subjects using various pacing protocols. Even though the analogous measures of APD and DI can be obtained using the surface ECG to acquire the respective QT and TQ intervals for ECG restitution, this methodology has not been widely adopted for a number of reasons. Recent development of more advanced software algorithms enables ECG intervals to be measured accurately, on a continuous beat-to-beat basis, in an automated manner, and under highly dynamic conditions (i.e., ambulatory or exercise) providing information beyond that available in the typical resting state. Current breakthroughs in ECG technology will allow ECG restitution measures to become a practical approach for providing quantitative measures of the risks for ventricular arrhythmias as well as cardiac stress in general. In addition to a review of the underlying principles and caveats of ECG restitution, a new approach toward an advancement of more integrated restitution biomarkers is proposed. © 2017 Wiley Periodicals, Inc.

  9. Disentangling beat perception from sequential learning and examining the influence of attention and musical abilities on ERP responses to rhythm.

    PubMed

    Bouwer, Fleur L; Werner, Carola M; Knetemann, Myrthe; Honing, Henkjan

    2016-05-01

    Beat perception is the ability to perceive temporal regularity in musical rhythm. When a beat is perceived, predictions about upcoming events can be generated. These predictions can influence processing of subsequent rhythmic events. However, statistical learning of the order of sounds in a sequence can also affect processing of rhythmic events and must be differentiated from beat perception. In the current study, using EEG, we examined the effects of attention and musical abilities on beat perception. To ensure we measured beat perception and not absolute perception of temporal intervals, we used alternating loud and soft tones to create a rhythm with two hierarchical metrical levels. To control for sequential learning of the order of the different sounds, we used temporally regular (isochronous) and jittered rhythmic sequences. The order of sounds was identical in both conditions, but only the regular condition allowed for the perception of a beat. Unexpected intensity decrements were introduced on the beat and offbeat. In the regular condition, both beat perception and sequential learning were expected to enhance detection of these deviants on the beat. In the jittered condition, only sequential learning was expected to affect processing of the deviants. ERP responses to deviants were larger on the beat than offbeat in both conditions. Importantly, this difference was larger in the regular condition than in the jittered condition, suggesting that beat perception influenced responses to rhythmic events in addition to sequential learning. The influence of beat perception was present both with and without attention directed at the rhythm. Moreover, beat perception as measured with ERPs correlated with musical abilities, but only when attention was directed at the stimuli. Our study shows that beat perception is possible when attention is not directed at a rhythm. In addition, our results suggest that attention may mediate the influence of musical abilities on beat

  10. A Good Suit Beats a Good Idea.

    ERIC Educational Resources Information Center

    Machiavelli, Nick

    1992-01-01

    Inspired by Niccolo Machiavelli, this column offers beleaguered school executives advice on looking good, dressing well, losing weight, beating the proper enemy, and saying nothing. Administrators who follow these simple rules should have an easier life, jealous colleagues, well-tended gardens, and respectful board members. (MLH)

  11. Training with Rhythmic Beat Gestures Benefits L2 Pronunciation in Discourse-Demanding Situations

    ERIC Educational Resources Information Center

    Gluhareva, Daria; Prieto, Pilar

    2017-01-01

    Recent research has shown that beat gestures (hand gestures that co-occur with speech in spontaneous discourse) are temporally integrated with prosodic prominence and that they help word memorization and discourse comprehension. However, little is known about the potential beneficial effects of beat gestures in second language (L2) pronunciation…

  12. Utilization of negative beat-frequencies for maximizing the update-rate of OFDR

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Botsev, Yakov; Hahami, Meir; Eyal, Avishay

    2015-07-01

    In traditional OFDR systems, the backscattered profile of a sensing fiber is inefficiently duplicated to the negative band of spectrum. In this work, we present a new OFDR design and algorithm that remove this redundancy and make use of negative beat frequencies. In contrary to conventional OFDR designs, it facilitates efficient use of the available system bandwidth and enables distributed sensing with the maximum allowable interrogation update-rate for a given fiber length. To enable the reconstruction of negative beat frequencies an I/Q type receiver is used. In this receiver, both the in-phase (I) and quadrature (Q) components of the backscatter field are detected. Following detection, both components are digitally combined to produce a complex backscatter signal. Accordingly, due to its asymmetric nature, the produced spectrum will not be corrupted by the appearance of negative beat-frequencies. Here, via a comprehensive computer simulation, we show that in contrast to conventional OFDR systems, I/Q OFDR can be operated at maximum interrogation update-rate for a given fiber length. In addition, we experimentally demonstrate, for the first time, the ability of I/Q OFDR to utilize negative beat-frequencies for long-range distributed sensing.

  13. Effect of salt intake on beat-to-beat blood pressure nonlinear dynamics and entropy in salt-sensitive versus salt-protected rats.

    PubMed

    Fares, Souha A; Habib, Joseph R; Engoren, Milo C; Badr, Kamal F; Habib, Robert H

    2016-06-01

    Blood pressure exhibits substantial short- and long-term variability (BPV). We assessed the hypothesis that the complexity of beat-to-beat BPV will be differentially altered in salt-sensitive hypertensive Dahl rats (SS) versus rats protected from salt-induced hypertension (SSBN13) maintained on high-salt versus low-salt diet. Beat-to-beat systolic and diastolic BP series from nine SS and six SSBN13 rats (http://www.physionet.org) were analyzed following 9 weeks on low salt and repeated after 2 weeks on high salt. BP complexity was quantified by detrended fluctuation analysis (DFA), short- and long-range scaling exponents (αS and αL), sample entropy (SampEn), and traditional standard deviation (SD) and coefficient of variation (CV(%)). Mean systolic and diastolic BP increased on high-salt diet (P < 0.01) particularly for SS rats. SD and CV(%) were similar across groups irrespective of diet. Salt-sensitive and -protected rats exhibited similar complexity indices on low-salt diet. On high salt, (1) SS rats showed increased scaling exponents or smoother, systolic (P = 0.007 [αL]) and diastolic (P = 0.008 [αL]) BP series; (2) salt-protected rats showed lower SampEn (less complex) systolic and diastolic BP (P = 0.046); and (3) compared to protected SSBN13 rats, SS showed higher αL for systolic (P = 0.01) and diastolic (P = 0.005) BP Hypertensive SS rats are more susceptible to high salt with a greater rise in mean BP and reduced complexity. Comparable mean pressures in sensitive and protective rats when on low-salt diet coupled with similar BPV dynamics suggest a protective role of low-salt intake in hypertensive rats. This effect likely reflects better coupling of biologic oscillators. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  14. Mercury Beating Heart: Modifications to the Classical Demonstration

    ERIC Educational Resources Information Center

    Najdoski, Metodija; Mirceski, Valentin; Petrusevski, Vladimir M.; Demiri, Sani

    2007-01-01

    The mercury beating heart (MBH) is a commonly performed experiment, which is based on varying oxidizing agents and substituting other metals for iron. Various modified versions of the classical demonstration of the experiment are presented.

  15. Reduced ischemia-reperfusion injury with isoproterenol in non-heart-beating donor lungs.

    PubMed

    Jones, D R; Hoffmann, S C; Sellars, M; Egan, T M

    1997-05-01

    Transplantation of lungs retrieved from non-heart-beating donors could expand the donor pool. Recent studies suggest that the ischemia-reperfusion injury (IRI) to the lung can be attenuated by increasing intracellular cAMP concentrations. The purpose of this study was to determine the effect of IRI on capillary permeability, as measured by Kfc, in lungs retrieved from non-heart-beating donors and reperfused with or without isoproterenol (iso). Using an in situ isolated perfused lung model, lungs were retrieved from non-heart-beating donor rats ventilated with O2 or not at varying intervals after death. The lungs were reperfused with or without iso (10 microM). Kfc, lung viability, and pulmonary hemodynamics were measured, and tissue levels of adenine nucleotides and cAMP were measured by HPLC. Iso-reperfusion decreased Kfc significantly (P < 0.05) compared to non-iso-reperfused groups at all postmortem ischemic times, irrespective of preharvest ventilation status. Pulmonary arterial pressures and resistances increased and venous resistances decreased with iso-reperfusion. Total adenine nucleotide (TAN) levels correlated with Kfc in non-iso-reperfused (r = 0.65) and iso-perfused (r = 0.84) lungs. cAMP levels increased significantly with iso-reperfusion. cAMP levels correlated with Kfc (r = 0.87) in iso-reperfused lungs. Iso-reperfusion of lungs retrieved from non-heart-beating donor rats results in decreased capillary permeability and increased lung tissue cAMP levels. Pharmacologic augmentation of tissue TAN and cAMP levels may further ameliorate the increased capillary permeability seen in lungs retrieved from non-heart-beating donors.

  16. Hyperfine Quantum Beat Spectroscopy of the Cs 8p level with Pulsed Pump-Probe Technique

    NASA Astrophysics Data System (ADS)

    Bayram, Burcin; Popov, Oleg; Kelly, Stephen; Boyle, Patrick; Salsman, Andrew

    2013-05-01

    Quantum beats arising from the hyperfine interaction were measured in a three-level excitation (lambda) scheme: pump for the 6s2S1 / 2 --> 8p2P3 / 2 and stimulated emission pump (probe) for the 8p2P3 / 2 --> 5d2D5 / 2 transitions of atomic cesium. In the technique, pump laser instantaneously excites the hot atomic vapor and creates anisotropy in the 8p2P3 / 2 level, and probe laser comes after some time delay. Delaying the probe time allows us to map out the motion of the polarized atoms like a stroboscope. According to the observed evolution of the hyperfine structure dependent parameters, e.g. alignment and atomic polarization, by delaying the arrival time of the stimulated emission pump laser (SEP), precise values of the magnetic dipole and electric quadrupole coefficients are obtained with an improved precision over previous results. The usefulness of the PUMP-SEP excitation scheme for the polarization hyperfine quantum beat measurements without complications from the Doppler effect will also be discussed. The financial support of the Research Corporation under the Grant number CC7133 and MiamiUniversity, College of the Arts and Sciences are acknowledged.

  17. Response of cat inferior colliculus neurons to binaural beat stimuli: possible mechanisms for sound localization.

    PubMed

    Kuwada, S; Yin, T C; Wickesberg, R E

    1979-11-02

    The interaural phase sensitivity of neurons was studied through the use of binaural beat stimuli. The response of most cells was phase-locked to the beat frequency, which provides a possible neural correlate to the human sensation of binaural beats. In addition, this stimulus allowed the direction and rate of interaural phase change to be varied. Some neurons in our sample responded selectively to manipulations of these two variables, which suggests a sensitivity to direction or speed of movement.

  18. Determinants of incubation period: do reptilian embryos hatch after a fixed total number of heart beats?

    PubMed

    Du, Wei-Guo; Radder, Rajkumar S; Sun, Bo; Shine, Richard

    2009-05-01

    The eggs of birds typically hatch after a fixed (but lineage-specific) cumulative number of heart beats since the initiation of incubation. Is the same true for non-avian reptiles, despite wide intraspecific variation in incubation period generated by variable nest temperatures? Non-invasive monitoring of embryo heart beat rates in one turtle species (Pelodiscus sinensis) and two lizards (Bassiana duperreyi and Takydromus septentrionalis) show that the total number of heart beats during embryogenesis is relatively constant over a wide range of warm incubation conditions. However, incubation at low temperatures increases the total number of heart beats required to complete embryogenesis, because the embryo spends much of its time at temperatures that require maintenance functions but that do not allow embryonic growth or differentiation. Thus, cool-incubated embryos allocate additional metabolic effort to maintenance costs. Under warm conditions, total number of heart beats thus predicts incubation period in non-avian reptiles as well as in birds (the total number of heart beats are also similar); however, under the colder nest conditions often experienced by non-avian reptiles, maintenance costs add significantly to total embryonic metabolic expenditure.

  19. Beat the Instructor: An Introductory Forecasting Game

    ERIC Educational Resources Information Center

    Snider, Brent R.; Eliasson, Janice B.

    2013-01-01

    This teaching brief describes a 30-minute game where student groups compete in-class in an introductory time-series forecasting exercise. The students are challenged to "beat the instructor" who competes using forecasting techniques that will be subsequently taught. All forecasts are graphed prior to revealing the randomly generated…

  20. Paramecium swimming and ciliary beating patterns: a study on four RNA interference mutations.

    PubMed

    Funfak, Anette; Fisch, Cathy; Abdel Motaal, Hatem T; Diener, Julien; Combettes, Laurent; Baroud, Charles N; Dupuis-Williams, Pascale

    2015-01-01

    Paramecium cells swim and feed by beating their thousands of cilia in coordinated patterns. The organization of these patterns and its relationship with cell motility has been the subject of a large body of work, particularly as a model for ciliary beating in human organs where similar organization is seen. However the rapid motion of the cells makes quantitative measurements very challenging. Here we provide detailed measurements of the swimming of Paramecium cells from high-speed video at high magnification, as they move in microfluidic channels. An image analysis protocol allows us to decouple the cell movement from the motion of the cilia, thus allowing us to measure the ciliary beat frequency (CBF) and the spatio-temporal organization into metachronal waves along the cell periphery. Two distinct values of the CBF appear at different regions of the cell: most of the cilia beat in the range of 15 to 45 Hz, while the cilia in the peristomal region beat at almost double the frequency. The body and peristomal CBF display a nearly linear relation with the swimming velocity. Moreover the measurements do not display a measurable correlation between the swimming velocity and the metachronal wave velocity on the cell periphery. These measurements are repeated for four RNAi silenced mutants, where proteins specific to the cilia or to their connection to the cell base are depleted. We find that the mutants whose ciliary structure is affected display similar swimming to the control cells albeit with a reduced efficiency, while the mutations that affect the cilia's anchoring to the cell lead to strongly reduced ability to swim. This reduction in motility can be related to a loss of coordination between the ciliary beating in different parts of the cell.

  1. Justification of Wife Beating in Adolescents: Associated Beliefs and Behaviors.

    PubMed

    Devenish, Bethany; Hooley, Merrilyn; Mellor, David

    2018-04-01

    Socioeconomically disadvantaged adolescents who are exposed to social norms related to violence against women are more likely to experience or be perpetrators of intimate partner violence. This study evaluated factors hypothesized to be associated with acceptance of wife beating among 240 male and female adolescents aged 10-16 years participating in a World Vision program in Armenia. Acceptance of wife beating was associated with relational victimization, perceived social support, and parent and community boundaries and expectations, but was not associated with overt victimization or aggression. These findings highlight several areas that may be important for violence prevention research.

  2. Beating and insulting children as a risk for adult cancer, cardiac disease and asthma.

    PubMed

    Hyland, Michael E; Alkhalaf, Ahmed M; Whalley, Ben

    2013-12-01

    The use of physical punishment for children is associated with poor psychological and behavioral outcomes, but the causal pathway is controversial, and the effects on later physical health unknown. We conducted a cross-sectional survey of asthma, cancer, and cardiac patients (150 in each category, 75 male) recruited from outpatient clinics and 250 healthy controls (125 male). All participants were 40-60 years old and citizens of Saudi Arabia, where the use of beating and insults is an acceptable parenting style. Demographic data and recalled frequency of beatings and insults as a child were assessed on an 8-point scale. Beating and insults were highly correlated (ρ = 0.846). Propensity score matching was used to control for demographic differences between the disease and healthy groups. After controlling for differences, more frequent beating (once or more per month) and insults were associated with a significantly increased risk for cancer (RR = 1.7), cardiac disease (RR = 1.3) and asthma (RR = 1.6), with evidence of increased risk for cancer and asthma with beating frequency of once every 6 months or more. Our results show that a threatening parenting style of beating and insults is associated with increased risk for somatic disease, possibly because this form of parenting induces stress. Our findings are consistent with previous research showing that child abuse and other early life stressors adversely affect adult somatic health, but provide evidence that the pathogenic effects occur also with chronic minor stress. A stress-inducing parenting style, even when normative, has long term adverse health consequences.

  3. Eliminating the Attentional Blink through Binaural Beats: A Case for Tailored Cognitive Enhancement.

    PubMed

    Reedijk, Susan A; Bolders, Anne; Colzato, Lorenza S; Hommel, Bernhard

    2015-01-01

    Enhancing human cognitive performance is a topic that continues to spark scientific interest. Studies into cognitive-enhancement techniques often fail to take inter-individual differences into account, however, which leads to underestimation of the effectiveness of these techniques. The current study investigated the effect of binaural beats, a cognitive-enhancement technique, on attentional control in an attentional blink (AB) task. As predicted from a neurocognitive approach to cognitive control, high-frequency binaural beats eliminated the AB, but only in individuals with low spontaneous eye-blink rates (indicating low striatal dopamine levels). This suggests that the way in which cognitive-enhancement techniques, such as binaural beats, affect cognitive performance depends on inter-individual differences.

  4. Eliminating the Attentional Blink through Binaural Beats: A Case for Tailored Cognitive Enhancement

    PubMed Central

    Reedijk, Susan A.; Bolders, Anne; Colzato, Lorenza S.; Hommel, Bernhard

    2015-01-01

    Enhancing human cognitive performance is a topic that continues to spark scientific interest. Studies into cognitive-enhancement techniques often fail to take inter-individual differences into account, however, which leads to underestimation of the effectiveness of these techniques. The current study investigated the effect of binaural beats, a cognitive-enhancement technique, on attentional control in an attentional blink (AB) task. As predicted from a neurocognitive approach to cognitive control, high-frequency binaural beats eliminated the AB, but only in individuals with low spontaneous eye-blink rates (indicating low striatal dopamine levels). This suggests that the way in which cognitive-enhancement techniques, such as binaural beats, affect cognitive performance depends on inter-individual differences. PMID:26089802

  5. Estimating 'lost heart beats' rather than reductions in heart rate during the intubation of critically-ill children.

    PubMed

    Jones, Peter; Ovenden, Nick; Dauger, Stéphane; Peters, Mark J

    2014-01-01

    Reductions in heart rate occur frequently in children during critical care intubation and are currently considered the gold standard for haemodynamic instability. Our objective was to estimate loss of heart beats during intubation and compare this to reduction in heart rate alone whilst testing the impact of atropine pre-medication. Data were extracted from a prospective 2-year cohort study of intubation ECGs from critically ill children in PICU/Paediatric Transport. A three step algorithm was established to exclude variation in pre-intubation heart rate (using a 95%CI limit derived from pre-intubation heart rate variation of the children included), measure the heart rate over time and finally the estimate the numbers of lost beats. 333 intubations in children were eligible for inclusion of which 245 were available for analysis (74%). Intubations where the fall in heart rate was less than 50 bpm were accompanied almost exclusively by less than 25 lost beats (n = 175, median 0 [0-1]). When there was a reduction of >50 bpm there was a poor correlation with numbers of lost beats (n = 70, median 42 [15-83]). During intubation the median number of lost beats was 8 [1]-[32] when atropine was not used compared to 0 [0-0] when atropine was used (p<0.001). A reduction in heart rate during intubation of <50 bpm reliably predicted a minimal loss of beats. When the reduction in heart rate was >50 bpm the heart rate was poorly predictive of lost beats. A study looking at the relationship between lost beats and cardiac output needs to be performed. Atropine reduces both fall in heart rate and loss of beats. Similar area-under-the-curve methodology may be useful for estimating risk when biological parameters deviate outside normal range.

  6. A pilot study exploring the impact of cardiac medications on ciliary beat frequency: possible implications for clinical management.

    PubMed

    Loomba, Rohit S; Bhushan, Abhinav; Afolayan, Adeleye J

    2018-05-03

    Cilia are involved in several physiologic processes, and at least a single primary cilium can be found on nearly every cell in the human body. Various factors, such as pH, temperature, exposure to medications and toxins can impact ciliary function as is manifested by changes in the ciliary beat frequency. Those with ciliary dyskinesia may also have congenital cardiac malformations and may require care in a cardiac intensive care unit. This study investigates the effect on the ciliary beat frequency of medications frequently used in a cardiac intensive care unit. The ciliated epithelial cells were obtained via nasal swab from a relatively healthy individual. These cells were cultured for 24 h. Video microscopy was then employed to determine the ciliary beat frequency at baseline and then at 15, 30, 60 and 90 min after exposure to either normal saline (control) or one of several medications. The ciliary beat frequency at each time point was then compared to the ciliary beat frequency at the same time point in the control sample as well as the baseline value for that particular sample. Epinephrine increased the ciliary beat frequency compared to the baseline and the controls up to 30 min and then subsequently led to a significant decrease in ciliary beat frequency at 90 min. On the one hand, norepinephrine, dexmedetomidine, procainamide, propranolol and enalapril all decreased ciliary beat frequency significantly throughout the 90-min observation period. On the other hand, Milrinone significantly increased the ciliary beat frequency throughout the observation period, while heparin had no impact on ciliary beat frequency. The medications frequently used in cardiac intensive care unit impact ciliary function, with most being ciliodepressant. Further investigation is needed to determine the clinical impacts and whether these effects are exaggerated in those with ciliary dyskinesia.

  7. Robust detection of heart beats in multimodal records using slope- and peak-sensitive band-pass filters.

    PubMed

    Pangerc, Urška; Jager, Franc

    2015-08-01

    In this work, we present the development, architecture and evaluation of a new and robust heart beat detector in multimodal records. The detector uses electrocardiogram (ECG) signals, and/or pulsatile (P) signals, such as: blood pressure, artery blood pressure and pulmonary artery pressure, if present. The base approach behind the architecture of the detector is collecting signal energy (differentiating and low-pass filtering, squaring, integrating). To calculate the detection and noise functions, simple and fast slope- and peak-sensitive band-pass digital filters were designed. By using morphological smoothing, the detection functions were further improved and noise intervals were estimated. The detector looks for possible pacemaker heart rate patterns and repairs the ECG signals and detection functions. Heart beats are detected in each of the ECG and P signals in two steps: a repetitive learning phase and a follow-up detecting phase. The detected heart beat positions from the ECG signals are merged into a single stream of detected ECG heart beat positions. The merged ECG heart beat positions and detected heart beat positions from the P signals are verified for their regularity regarding the expected heart rate. The detected heart beat positions of a P signal with the best match to the merged ECG heart beat positions are selected for mapping into the noise and no-signal intervals of the record. The overall evaluation scores in terms of average sensitivity and positive predictive values obtained on databases that are freely available on the Physionet website were as follows: the MIT-BIH Arrhythmia database (99.91%), the MGH/MF Waveform database (95.14%), the augmented training set of the follow-up phase of the PhysioNet/Computing in Cardiology Challenge 2014 (97.67%), and the Challenge test set (93.64%).

  8. Elastohydrodynamic synchronization of adjacent beating flagella

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.; Lauga, Eric; Pesci, Adriana I.; Proctor, Michael R. E.

    2016-11-01

    It is now well established that nearby beating pairs of eukaryotic flagella or cilia typically synchronize in phase. A substantial body of evidence supports the hypothesis that hydrodynamic coupling between the active filaments, combined with waveform compliance, provides a robust mechanism for synchrony. This elastohydrodynamic mechanism has been incorporated into bead-spring models in which the beating flagella are represented by microspheres tethered by radial springs as they are driven about orbits by internal forces. While these low-dimensional models reproduce the phenomenon of synchrony, their parameters are not readily relatable to those of the filaments they represent. More realistic models, which reflect the underlying elasticity of the axonemes and the active force generation, take the form of fourth-order nonlinear partial differential equations (PDEs). While computational studies have shown the occurrence of synchrony, the effects of hydrodynamic coupling between nearby filaments governed by such continuum models have been examined theoretically only in the regime of interflagellar distances d large compared to flagellar length L . Yet in many biological situations d /L ≪1 . Here we present an asymptotic analysis of the hydrodynamic coupling between two extended filaments in the regime d /L ≪1 and find that the form of the coupling is independent of the microscopic details of the internal forces that govern the motion of the individual filaments. The analysis is analogous to that yielding the localized induction approximation for vortex filament motion, extended to the case of mutual induction. In order to understand how the elastohydrodynamic coupling mechanism leads to synchrony of extended objects, we introduce a heuristic model of flagellar beating. The model takes the form of a single fourth-order nonlinear PDE whose form is derived from symmetry considerations, the physics of elasticity, and the overdamped nature of the dynamics. Analytical

  9. The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills

    PubMed Central

    Tierney, Adam T.; Kraus, Nina

    2013-01-01

    Reading-impaired children have difficulty tapping to a beat. Here we tested whether this relationship between reading ability and synchronized tapping holds in typically-developing adolescents. We also hypothesized that tapping relates to two other abilities. First, since auditory-motor synchronization requires monitoring of the relationship between motor output and auditory input, we predicted that subjects better able to tap to the beat would perform better on attention tests. Second, since auditory-motor synchronization requires fine temporal precision within the auditory system for the extraction of a sound’s onset time, we predicted that subjects better able to tap to the beat would be less affected by backward masking, a measure of temporal precision within the auditory system. As predicted, tapping performance related to reading, attention, and backward masking. These results motivate future research investigating whether beat synchronization training can improve not only reading ability, but potentially executive function and basic auditory processing as well. PMID:23400117

  10. High-Frequency Binaural Beats Increase Cognitive Flexibility: Evidence from Dual-Task Crosstalk.

    PubMed

    Hommel, Bernhard; Sellaro, Roberta; Fischer, Rico; Borg, Saskia; Colzato, Lorenza S

    2016-01-01

    Increasing evidence suggests that cognitive-control processes can be configured to optimize either persistence of information processing (by amplifying competition between decision-making alternatives and top-down biasing of this competition) or flexibility (by dampening competition and biasing). We investigated whether high-frequency binaural beats, an auditory illusion suspected to act as a cognitive enhancer, have an impact on cognitive-control configuration. We hypothesized that binaural beats in the gamma range bias the cognitive-control style toward flexibility, which in turn should increase the crosstalk between tasks in a dual-task paradigm. We replicated earlier findings that the reaction time in the first-performed task is sensitive to the compatibility between the responses in the first and the second task-an indication of crosstalk. As predicted, exposing participants to binaural beats in the gamma range increased this effect as compared to a control condition in which participants were exposed to a continuous tone of 340 Hz. These findings provide converging evidence that the cognitive-control style can be systematically biased by inducing particular internal states; that high-frequency binaural beats bias the control style toward more flexibility; and that different styles are implemented by changing the strength of local competition and top-down bias.

  11. High-Frequency Binaural Beats Increase Cognitive Flexibility: Evidence from Dual-Task Crosstalk

    PubMed Central

    Hommel, Bernhard; Sellaro, Roberta; Fischer, Rico; Borg, Saskia; Colzato, Lorenza S.

    2016-01-01

    Increasing evidence suggests that cognitive-control processes can be configured to optimize either persistence of information processing (by amplifying competition between decision-making alternatives and top-down biasing of this competition) or flexibility (by dampening competition and biasing). We investigated whether high-frequency binaural beats, an auditory illusion suspected to act as a cognitive enhancer, have an impact on cognitive-control configuration. We hypothesized that binaural beats in the gamma range bias the cognitive-control style toward flexibility, which in turn should increase the crosstalk between tasks in a dual-task paradigm. We replicated earlier findings that the reaction time in the first-performed task is sensitive to the compatibility between the responses in the first and the second task—an indication of crosstalk. As predicted, exposing participants to binaural beats in the gamma range increased this effect as compared to a control condition in which participants were exposed to a continuous tone of 340 Hz. These findings provide converging evidence that the cognitive-control style can be systematically biased by inducing particular internal states; that high-frequency binaural beats bias the control style toward more flexibility; and that different styles are implemented by changing the strength of local competition and top-down bias. PMID:27605922

  12. Study on mechanism of amplitude fluctuation of dual-frequency beat in microchip Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Tan, Yidong; Zhang, Shulian; Sun, Liqun

    2017-01-01

    In the laser heterodyne interferometry based on the microchip Nd:YAG dual-frequency laser, the amplitude of the beat note periodically fluctuates in time domain, which leads to the instability of the measurement. On the frequency spectrums of the two mono-frequency components of the laser and their beat note, several weak sideband signals are observed on both sides of the beat note. It is proved that the sideband frequencies are associated with the relaxation oscillation frequencies of the laser. The mechanism for the relaxation oscillations inducing the occurrence of the sideband signals is theoretically analyzed, and the quantitative relationship between the intensity ratio of the beat note to the sideband signal and the level of the amplitude fluctuation is simulated with the derived mathematical model. The results demonstrate that the periodical amplitude fluctuation of the beat note is actually induced by the relaxation oscillation. And the level of the amplitude fluctuation is lower than 10% when the intensity ratio is greater than 32 dB. These conclusions are beneficial to reduce the amplitude fluctuation of the microchip Nd:YAG dual-frequency laser and improve the stability of the heterodyne interferometry.

  13. Binaural beats increase interhemispheric alpha-band coherence between auditory cortices.

    PubMed

    Solcà, Marco; Mottaz, Anaïs; Guggisberg, Adrian G

    2016-02-01

    Binaural beats (BBs) are an auditory illusion occurring when two tones of slightly different frequency are presented separately to each ear. BBs have been suggested to alter physiological and cognitive processes through synchronization of the brain hemispheres. To test this, we recorded electroencephalograms (EEG) at rest and while participants listened to BBs or a monaural control condition during which both tones were presented to both ears. We calculated for each condition the interhemispheric coherence, which expressed the synchrony between neural oscillations of both hemispheres. Compared to monaural beats and resting state, BBs enhanced interhemispheric coherence between the auditory cortices. Beat frequencies in the alpha (10 Hz) and theta (4 Hz) frequency range both increased interhemispheric coherence selectively at alpha frequencies. In a second experiment, we evaluated whether this coherence increase has a behavioral aftereffect on binaural listening. No effects were observed in a dichotic digit task performed immediately after BBs presentation. Our results suggest that BBs enhance alpha-band oscillation synchrony between the auditory cortices during auditory stimulation. This effect seems to reflect binaural integration rather than entrainment. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Moving to the Beat and Singing are Linked in Humans

    PubMed Central

    Dalla Bella, Simone; Berkowska, Magdalena; Sowiński, Jakub

    2015-01-01

    The abilities to sing and to move to the beat of a rhythmic auditory stimulus emerge early during development, and both engage perceptual, motor, and sensorimotor processes. These similarities between singing and synchronization to a beat may be rooted in biology. Patel (2008) has suggested that motor synchronization to auditory rhythms may have emerged during evolution as a byproduct of selection for vocal learning (“vocal learning and synchronization hypothesis”). This view predicts a strong link between vocal performance and synchronization skills in humans. Here, we tested this prediction by asking occasional singers to tap along with auditory pulse trains and to imitate familiar melodies. Both vocal imitation and synchronization skills were measured in terms of accuracy and precision or consistency. Accurate and precise singers tapped more in the vicinity of the pacing stimuli (i.e., they were more accurate) than less accurate and less precise singers. Moreover, accurate singers were more consistent when tapping to the beat. These differences cannot be ascribed to basic motor skills or to motivational factors. Individual differences in terms of singing proficiency and synchronization skills may reflect the variability of a shared sensorimotor translation mechanism. PMID:26733370

  15. Analyzing the Acoustic Beat with Mobile Devices

    ERIC Educational Resources Information Center

    Kuhn, Jochen; Vogt, Patrik; Hirth, Michael

    2014-01-01

    In this column, we have previously presented various examples of how physical relationships can be examined by analyzing acoustic signals using smartphones or tablet PCs. In this example, we will be exploring the acoustic phenomenon of small beats, which is produced by the overlapping of two tones with a low difference in frequency ?f. The…

  16. The Short Supply of Saints: Limits on Replication of Models that "Beat the Odds"

    ERIC Educational Resources Information Center

    Wilder, Tamara; Jacobsen, Rebecca

    2010-01-01

    Researchers have identified effective practices that allow schools to "beat the odds" and close the reading achievement gap. Although identifying these practices is important, researchers have paid little attention to the work it takes to implement them. Through interviews with teachers who work at schools identified as beating the odds, this…

  17. Female Participation in Household Decision Making and the Justification of Wife Beating in Bangladesh.

    PubMed

    Alam, Md Shahin; Tareque, Md Ismail; Peet, Evan D; Rahman, Md Mosfequr; Mahmud, Tanvir

    2018-04-01

    We examined female participation in household decision making and its association with the justification of wife beating in Bangladesh. We used nationally representative data from the 2014 Bangladesh Demographic and Health Survey. Our sample consisted of currently married women of age 15 to 49 years ( n = 16,463). Chi-square tests and multilevel logistic regression models were performed. Approximately 84% of women in the survey were participants in at least one household decision, and 72% reported that wife beating is not justified in any circumstance. Women who reported their participation in at least one type of household decision less frequently reported that wife beating could be justified than those who did not participate in any household decisions (adjusted odds ratio = 1.49; 95% confidence interval = [1.25, 1.78]). In addition to participation in household decision making, other factors including age at first marriage, females' and their husbands' education, religion, parity, contraceptive use, and socioeconomic status were associated with the justification of wife beating. The results indicate that female participation in household decision making is significantly associated with the justification of wife beating in Bangladesh. Further study is needed, but the results suggest that policy makers should consider interventions proven to empower women and lead to increased participation in decision making as methods that may reduce domestic violence against women.

  18. [Rhythmic beating cardiomyocytes derived from human embryonic germ (EG) cells in vitro].

    PubMed

    Hua, Jinlian; Xu, Xiaoming; Dou, Zhongying

    2006-10-01

    Embryonic germ (EG) cells are pluripotent cells derived from primordial germ cells (PGCs) of gonads, gonadal ridges and mesenteries, analogies of fetuses,with the ability to undergo both highly self-renewal and multiple differentiation. These cells in vitro can differentiate into derivatives of all three embryonic germ layers when transferred to an in vitro environment and have the ability to form any fully differentiated cells of the body. The aim of this study is to investigate the potentiality of human EG cells differentiation into cardiomyocytes. Inducing human EG cells with the method of murine ES cells differentiation into cardiomyocytes, supplemented with 0.75%-1% DMSO, 20% NBS, 10(-7) mM RA and 20% cardiomyocytes conditioned medium. 20 heart-like (rhythmic beating cell masses were observed in vitro culture and delayed human EG cells, which beat spontaneously from 20-120 times per minute and maintained beating for 2-15 days, periodic acid's staining (PAS), Myoglobin and a-actin immunological histology positive were all positive and reacted with K+, Ca2+ and adrenalin. Relatively unorganized myofibrillar bundles or more organized sarcomeres, z-bands or a gap junction, the presence of desmosomes in a few cells of the cell masses was observed with transmision electron microscope, which initially demonstrated that these cells were cardiomyocytes. We could not get rhythmly beating cardiomyocytes with 0.75%-1% DMSO, 10-7 mM RA and 20% cardiomyocytes conditioned medium,but in which the percentage of cardiac alpha-actin immunostaining positive cells were increased. The results first demonstrated that human EG cells can differentiate into rhythmic beating cardiomyocytes in vitro and suggests that human EG cells may represent a new potent resource for cardiomyocytes transplantation therapy for myocardium infarction.

  19. Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps.

    PubMed

    Afra, Elyas; Yousefi, Hossein; Hadilam, Mohamad Mahdi; Nishino, Takashi

    2013-09-12

    Cellulose fibers were fibrillated using mechanical beating (shearing refiner) and ultra-fine friction grinder, respectively. The fibrillated fibers were then used to make paper. Mechanical beating process created a partial skin fibrillation, while grinding turned fiber from micro to nanoscale through nanofibrillation mechanism. The partially fibrillated and nano fibrillated fibers had significant effects on paper density, tear strength, tensile strength and water drainage time. The effect of nanofibrillation on paper properties was quantitatively higher than that of mechanical beating. Paper sheets from nanofibrillated cellulose have a higher density, higher tensile strength and lower tear strength compared to those subjected to mechanical beating. Mechanical beating and nanofibrillation were both found to be promising fiber structural modifications. Long water drainage time was an important drawback of both fibrillation methods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Nonlinear amplitude dynamics in flagellar beating

    NASA Astrophysics Data System (ADS)

    Oriola, David; Gadêlha, Hermes; Casademunt, Jaume

    2017-03-01

    The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating.

  1. Nonlinear amplitude dynamics in flagellar beating.

    PubMed

    Oriola, David; Gadêlha, Hermes; Casademunt, Jaume

    2017-03-01

    The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating.

  2. Nonlinear amplitude dynamics in flagellar beating

    PubMed Central

    Casademunt, Jaume

    2017-01-01

    The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating. PMID:28405357

  3. 3D force control for robotic-assisted beating heart surgery based on viscoelastic tissue model.

    PubMed

    Liu, Chao; Moreira, Pedro; Zemiti, Nabil; Poignet, Philippe

    2011-01-01

    Current cardiac surgery faces the challenging problem of heart beating motion even with the help of mechanical stabilizer which makes delicate operation on the heart surface difficult. Motion compensation methods for robotic-assisted beating heart surgery have been proposed recently in literature, but research on force control for such kind of surgery has hardly been reported. Moreover, the viscoelasticity property of the interaction between organ tissue and robotic instrument further complicates the force control design which is much easier in other applications by assuming the interaction model to be elastic (industry, stiff object manipulation, etc.). In this work, we present a three-dimensional force control method for robotic-assisted beating heart surgery taking into consideration of the viscoelastic interaction property. Performance studies based on our D2M2 robot and 3D heart beating motion information obtained through Da Vinci™ system are provided.

  4. Human cortical responses to slow and fast binaural beats reveal multiple mechanisms of binaural hearing.

    PubMed

    Ross, Bernhard; Miyazaki, Takahiro; Thompson, Jessica; Jamali, Shahab; Fujioka, Takako

    2014-10-15

    When two tones with slightly different frequencies are presented to both ears, they interact in the central auditory system and induce the sensation of a beating sound. At low difference frequencies, we perceive a single sound, which is moving across the head between the left and right ears. The percept changes to loudness fluctuation, roughness, and pitch with increasing beat rate. To examine the neural representations underlying these different perceptions, we recorded neuromagnetic cortical responses while participants listened to binaural beats at a continuously varying rate between 3 Hz and 60 Hz. Binaural beat responses were analyzed as neuromagnetic oscillations following the trajectory of the stimulus rate. Responses were largest in the 40-Hz gamma range and at low frequencies. Binaural beat responses at 3 Hz showed opposite polarity in the left and right auditory cortices. We suggest that this difference in polarity reflects the opponent neural population code for representing sound location. Binaural beats at any rate induced gamma oscillations. However, the responses were largest at 40-Hz stimulation. We propose that the neuromagnetic gamma oscillations reflect postsynaptic modulation that allows for precise timing of cortical neural firing. Systematic phase differences between bilateral responses suggest that separate sound representations of a sound object exist in the left and right auditory cortices. We conclude that binaural processing at the cortical level occurs with the same temporal acuity as monaural processing whereas the identification of sound location requires further interpretation and is limited by the rate of object representations. Copyright © 2014 the American Physiological Society.

  5. VLF wave generation by beating of two HF waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John

    2011-05-01

    Theory of a beat-wave mechanism for very low frequency (VLF) wave generation in the ionosphere is presented. The VLF current is produced by beating two high power HF waves of slightly different frequencies through the nonlinearity and inhomogeneity of the ionospheric plasma. Theory also shows that the density irregularities can enhance the beat-wave generation. An experiment was conducted by transmitting two high power HF waves of 3.2 MHz and 3.2 MHz + f, where f = 5, 8, 13, and 2.02 kHz, from the HAARP transmitter. In the experiment, the ionosphere was underdense to the O-mode heater, i.e., the heater frequency f0 > foF2, and overdense or slightly underdense to the X-mode heater, i.e., f0 < fxF2 or f0 ≥ fxF2. The radiation intensity increased with the VLF wave frequency, was much stronger with the X-mode heaters, and was not sensitive to the electrojet. The strongest VLF radiation of 13 kHz was generated when the reflection layer of the X-mode heater was just slightly below the foF2 layer and the spread of the O-mode sounding echoes had the largest enhancement, suggesting an optimal setting for beat-wave generation of VLF waves by the HF heaters.

  6. Beat frequency interference pattern characteristics study

    NASA Technical Reports Server (NTRS)

    Ott, J. H.; Rice, J. S.

    1981-01-01

    The frequency spectra and corresponding beat frequencies created by the relative motions between multiple Solar Power Satellites due to solar wind, lunar gravity, etc. were analyzed. The results were derived mathematically and verified through computer simulation. Frequency spectra plots were computer generated. Detailed computations were made for the seven following locations in the continental US: Houston, Tx.; Seattle, Wa.; Miami, Fl.; Chicago, Il.; New York, NY; Los Angeles, Ca.; and Barberton, Oh.

  7. Walking to the beat of different drums: practical implications for the use of acoustic rhythms in gait rehabilitation.

    PubMed

    Roerdink, Melvyn; Bank, Paulina J M; Peper, C Lieke E; Beek, Peter J

    2011-04-01

    Acoustic rhythms are frequently used in gait rehabilitation, with positive instantaneous and prolonged transfer effects on various gait characteristics. The gait modifying ability of acoustic rhythms depends on how well gait is tied to the beat, which can be assessed with measures of relative timing of auditory-motor coordination. We examined auditory-motor coordination in 20 healthy elderly individuals walking to metronome beats with pacing frequencies slower than, equal to, and faster than their preferred cadence. We found that more steps were required to adjust gait to the beat, the more the metronome rate deviated from the preferred cadence. Furthermore, participants anticipated the beat with their footfalls to various degrees, depending on the metronome rate; the faster the tempo, the smaller the phase advance or phase lead. Finally, the variability in the relative timing between footfalls and the beat was smaller for metronome rates closer to the preferred cadence, reflecting superior auditory-motor coordination. These observations have three practical implications. First, instantaneous effects of acoustic stimuli on gait characteristics may typically be underestimated given the considerable number of steps required to attune gait to the beat in combination with the usual short walkways. Second, a systematic phase lead of footfalls to the beat does not necessarily reflect a reduced ability to couple gait to the metronome. Third, the efficacy of acoustic rhythms to modify gait depends on metronome rate. Gait is coupled best to the beat for metronome rates near the preferred cadence. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Human induced pluripotent stem cell-derived beating cardiac tissues on paper.

    PubMed

    Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua

    2015-11-21

    There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.

  9. The Roles of Traditional Gender Myths and Beliefs About Beating on Self-Reported Partner Violence.

    PubMed

    Husnu, Shenel; Mertan, Biran E

    2015-08-24

    The aim of the current study was to investigate the roles of beliefs about beating, traditional gender myth endorsement, ambivalent sexism, and perceived partner violence in determining an individual's own reported violence toward his or her partner. The sample consisted of 205 (117 women; 88 men) Turkish and Turkish Cypriot undergraduate students, aged between 16 and 29 years. Participants completed measures of beliefs about beating, traditional gender myth endorsement, and ambivalent sexism and rated the extent to which they experienced abusive behaviors from their partner as well as the extent to which they were themselves abusive to their partners. Results showed that positive beliefs about beating, endorsing traditional gender myths, and experiencing partner abuse were all predictive of self-reported abuse to one's partner. Furthermore, the relationship between myth endorsement and self-abusive behavior was mediated by beliefs toward beating-only in men. Results are discussed in light of the traditional gender system evident in Turkish societal makeup. © The Author(s) 2015.

  10. Quantum beats in conductance oscillations in graphene-based asymmetric double velocity wells and electrostatic wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lei; Department of Medical Physics, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017; Li, Yu-Xian

    2014-01-14

    The transport properties in graphene-based asymmetric double velocity well (Fermi velocity inside the well less than that outside the well) and electrostatic well structures are investigated using the transfer matrix method. The results show that quantum beats occur in the oscillations of the conductance for asymmetric double velocity wells. The beating effect can also be found in asymmetric double electrostatic wells, but only if the widths of the two wells are different. The beat frequency for the asymmetric double well is exactly equal to the frequency difference between the oscillation rates in two isolated single wells with the same structuresmore » as the individual wells in the double well structure. A qualitative interpretation is proposed based on the fact that the resonant levels depend upon the sizes of the quantum wells. The beating behavior can provide a new way to identify the symmetry of double well structures.« less

  11. Beliefs About Wife Beating Among Social Work Students in Taiwan.

    PubMed

    Haj-Yahia, Muhammad M; Shen, April Chiung-Tao

    2017-07-01

    Based on an integrative framework, this study addresses the beliefs that a group of social work students from Taiwan had about wife beating. A self-administered questionnaire was filled out by 790 students (76.5% female, 23.5% male) spanning all 4 years of undergraduate studies. The results show that male students exhibited a greater tendency than their female counterparts to justify wife beating and to hold battered women responsible for violence against them. This tendency was also found among students who held traditional attitudes toward women, students who held patriarchal expectations of marriage, and students who had witnessed interparental violence in childhood. In addition, male students and students with traditional attitudes toward women exhibited the strongest tendency to believe that wives benefit from beating. Conversely, female students expressed more willingness than their male counterparts to help battered women, as did students who held liberal attitudes toward women and students who held egalitarian expectations of marriage. Furthermore, female students and those with liberal attitudes toward women tended to hold violent husbands responsible for their behavior, and to express support for punishing violent husbands. This article concludes with a discussion of the study's limitations and the results' implications for future research on the topic.

  12. The polarization anisotropy of vibrational quantum beats in resonant pump-probe experiments: Diagrammatic calculations for square symmetric molecules.

    PubMed

    Farrow, Darcie A; Smith, Eric R; Qian, Wei; Jonas, David M

    2008-11-07

    By analogy to the Raman depolarization ratio, vibrational quantum beats in pump-probe experiments depend on the relative pump and probe laser beam polarizations in a way that reflects vibrational symmetry. The polarization signatures differ from those in spontaneous Raman scattering because the order of field-matter interactions is different. Since pump-probe experiments are sensitive to vibrations on excited electronic states, the polarization anisotropy of vibrational quantum beats can also reflect electronic relaxation processes. Diagrammatic treatments, which expand use of the symmetry of the two-photon tensor to treat signal pathways with vibrational and vibronic coherences, are applied to find the polarization anisotropy of vibrational and vibronic quantum beats in pump-probe experiments for different stages of electronic relaxation in square symmetric molecules. Asymmetric vibrational quantum beats can be distinguished from asymmetric vibronic quantum beats by a pi phase jump near the center of the electronic spectrum and their disappearance in the impulsive limit. Beyond identification of vibrational symmetry, the vibrational quantum beat anisotropy can be used to determine if components of a doubly degenerate electronic state are unrelaxed, dephased, population exchanged, or completely equilibrated.

  13. Dichotic beats of mistuned consonances.

    PubMed

    Feeney, M P

    1997-10-01

    The beats of mistuned consonances (BMCs) result from the presentation of two sinusoids at frequencies slightly mistuned from a ratio of small integers. Several studies have suggested that the source of dichotic BMCs is an interaction within a binaural critical band. In one case the mechanism has been explained as an aural harmonic of the low-frequency tone (f1) creating binaural beats with the high-frequency tone (f2). The other explanation involves a binaural cross correlation between the excitation pattern of f1 and the contralateral f2--occurring within the binaural critical band centered at f2. This study examined the detection of dichotic BMCs for the octave and fifth. In one experiment with the octave, narrow-band noise centered at f2 was presented to one ear along with f1. The other ear was presented with f2. The noise was used to prevent interactions in the binaural critical band centered at f2. Dichotic BMCs were still detected under these conditions, suggesting that binaural interaction within a critical band does not explain the effect. Localization effects were also observed under this masking condition for phase reversals of tuned dichotic octave stimuli. These findings suggest a new theory of dichotic BMCs as a between-channel phase effect. The modified weighted-image model of localization [Stern and Trahiotis, in Auditory Physiology and Perception, edited by Y. Cazals, L. Demany, and K. Horner (Pergamon, Oxford, 1992), pp. 547-554] was used to provide an explanation of the between-channel mechanism.

  14. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal

    PubMed Central

    McConnell, Patrick A.; Froeliger, Brett; Garland, Eric L.; Ives, Jeffrey C.; Sforzo, Gary A.

    2014-01-01

    Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics [heart rate variability (HRV)] during post-exercise relaxation. Subjects (n = 21; 18–29 years old) participated in a double-blind, placebo-controlled study during which binaural beats and placebo were administered over two randomized and counterbalanced sessions (within-subjects repeated-measures design). At the onset of each visit, subjects exercised for 20-min; post-exercise, subjects listened to either binaural beats (‘wide-band’ theta-frequency binaural beats) or placebo (carrier tones) for 20-min while relaxing alone in a quiet, low-light environment. Dependent variables consisted of high-frequency (HF, reflecting parasympathetic activity), low-frequency (LF, reflecting sympathetic and parasympathetic activity), and LF/HF normalized powers, as well as self-reported relaxation. As compared to the placebo visit, the binaural-beat visit resulted in greater self-reported relaxation, increased parasympathetic activation and increased sympathetic withdrawal. By the end of the 20-min relaxation period there were no observable differences in HRV between binaural-beat and placebo visits, although binaural-beat associated HRV significantly predicted subsequent reported relaxation. Findings suggest that listening to binaural beats may exert an acute influence on both LF and HF components of HRV and may increase subjective feelings of relaxation. PMID:25452734

  15. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal.

    PubMed

    McConnell, Patrick A; Froeliger, Brett; Garland, Eric L; Ives, Jeffrey C; Sforzo, Gary A

    2014-01-01

    Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics [heart rate variability (HRV)] during post-exercise relaxation. Subjects (n = 21; 18-29 years old) participated in a double-blind, placebo-controlled study during which binaural beats and placebo were administered over two randomized and counterbalanced sessions (within-subjects repeated-measures design). At the onset of each visit, subjects exercised for 20-min; post-exercise, subjects listened to either binaural beats ('wide-band' theta-frequency binaural beats) or placebo (carrier tones) for 20-min while relaxing alone in a quiet, low-light environment. Dependent variables consisted of high-frequency (HF, reflecting parasympathetic activity), low-frequency (LF, reflecting sympathetic and parasympathetic activity), and LF/HF normalized powers, as well as self-reported relaxation. As compared to the placebo visit, the binaural-beat visit resulted in greater self-reported relaxation, increased parasympathetic activation and increased sympathetic withdrawal. By the end of the 20-min relaxation period there were no observable differences in HRV between binaural-beat and placebo visits, although binaural-beat associated HRV significantly predicted subsequent reported relaxation. Findings suggest that listening to binaural beats may exert an acute influence on both LF and HF components of HRV and may increase subjective feelings of relaxation.

  16. Improved cutback method measuring beat-length for high-birefringence optical fiber by fitting data of photoelectric signal

    NASA Astrophysics Data System (ADS)

    Shi, Zhi-Dong; Lin, Jian-Qiang; Bao, Huan-Huan; Liu, Shu; Xiang, Xue-Nong

    2008-03-01

    A photoelectric measurement system for measuring the beat length of birefringence fiber is set up including a set of rotating-wave-plate polarimeter using single photodiode. And two improved cutback methods suitable for measuring beat-length within millimeter range of high birefringence fiber are proposed through data processing technique. The cut length needs not to be restricted shorter than one centimeter so that the auto-cleaving machine is freely used, and no need to carefully operate the manually cleaving blade with low efficiency and poor success. The first method adopts the parameter-fitting to a saw-tooth function of tried beat length by the criterion of minimum square deviations, without special limitation on the cut length. The second method adopts linear-fitting in the divided length ranges, only restrict condition is the increment between different cut lengths less than one beat-length. For a section of holey high-birefringence fiber, we do experiments respectively by the two methods. The detecting error of beat-length is discussed and the advantage is compared.

  17. Measurement of optical-beat frequency in a photoconductive terahertz-wave generator using microwave higher harmonics.

    PubMed

    Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko

    2011-05-01

    A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.

  18. Brain Responses to a 6-Hz Binaural Beat: Effects on General Theta Rhythm and Frontal Midline Theta Activity

    PubMed Central

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2017-01-01

    A binaural beat is a beat phenomenon that is generated by the dichotic presentation of two almost equivalent pure tones but with slightly different frequencies. The brain responses to binaural beats remain controversial; therefore, the aim of this study was to investigate theta activity responses to a binaural beat by controlling factors affecting localization, including beat frequency, carrier tone frequency, exposure duration, and recording procedure. Exposure to a 6-Hz binaural beat on a 250 Hz carrier tone for 30 min was utilized in this study. Quantitative electroencephalography (QEEG) was utilized as the recording modality. Twenty-eight participants were divided into experimental and control groups. Emotional states were evaluated by Brunel Mood Scale (BRMUS) before and after exposing to the stimulus. The results showed that theta activity was induced in the entire cortex within 10 min of exposure to the stimulus in the experimental group. Compared to the control group, theta activity was also induced at the frontal and parietal-central regions, which included the Fz position, and left hemisphere dominance was presented for other exposure durations. The pattern recorded for 10 min of exposure appeared to be brain functions of a meditative state. Moreover, tension factor of BRUMS was decreased in experimental group compared to control group which resembled the meditation effect. Thus, a 6-Hz binaural beat on a 250 Hz carrier tone was suggested as a stimulus for inducing a meditative state. PMID:28701912

  19. Brain Responses to a 6-Hz Binaural Beat: Effects on General Theta Rhythm and Frontal Midline Theta Activity.

    PubMed

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2017-01-01

    A binaural beat is a beat phenomenon that is generated by the dichotic presentation of two almost equivalent pure tones but with slightly different frequencies. The brain responses to binaural beats remain controversial; therefore, the aim of this study was to investigate theta activity responses to a binaural beat by controlling factors affecting localization, including beat frequency, carrier tone frequency, exposure duration, and recording procedure. Exposure to a 6-Hz binaural beat on a 250 Hz carrier tone for 30 min was utilized in this study. Quantitative electroencephalography (QEEG) was utilized as the recording modality. Twenty-eight participants were divided into experimental and control groups. Emotional states were evaluated by Brunel Mood Scale (BRMUS) before and after exposing to the stimulus. The results showed that theta activity was induced in the entire cortex within 10 min of exposure to the stimulus in the experimental group. Compared to the control group, theta activity was also induced at the frontal and parietal-central regions, which included the Fz position, and left hemisphere dominance was presented for other exposure durations. The pattern recorded for 10 min of exposure appeared to be brain functions of a meditative state. Moreover, tension factor of BRUMS was decreased in experimental group compared to control group which resembled the meditation effect. Thus, a 6-Hz binaural beat on a 250 Hz carrier tone was suggested as a stimulus for inducing a meditative state.

  20. Beat-to-Beat Variation in Periodicity of Local Calcium Releases Contributes to Intrinsic Variations of Spontaneous Cycle Length in Isolated Single Sinoatrial Node Cells

    PubMed Central

    Monfredi, Oliver; Maltseva, Larissa A.; Spurgeon, Harold A.; Boyett, Mark R.; Lakatta, Edward G.; Maltsev, Victor A.

    2013-01-01

    Spontaneous, submembrane local Ca2+ releases (LCRs) generated by the sarcoplasmic reticulum in sinoatrial nodal cells, the cells of the primary cardiac pacemaker, activate inward Na+/Ca2+-exchange current to accelerate the diastolic depolarization rate, and therefore to impact on cycle length. Since LCRs are generated by Ca2+ release channel (i.e. ryanodine receptor) openings, they exhibit a degree of stochastic behavior, manifested as notable cycle-to-cycle variations in the time of their occurrence. Aim The present study tested whether variation in LCR periodicity contributes to intrinsic (beat-to-beat) cycle length variability in single sinoatrial nodal cells. Methods We imaged single rabbit sinoatrial nodal cells using a 2D-camera to capture LCRs over the entire cell, and, in selected cells, simultaneously measured action potentials by perforated patch clamp. Results LCRs begin to occur on the descending part of the action potential-induced whole-cell Ca2+ transient, at about the time of the maximum diastolic potential. Shortly after the maximum diastolic potential (mean 54±7.7 ms, n = 14), the ensemble of waxing LCR activity converts the decay of the global Ca2+ transient into a rise, resulting in a late, whole-cell diastolic Ca2+ elevation, accompanied by a notable acceleration in diastolic depolarization rate. On average, cells (n = 9) generate 13.2±3.7 LCRs per cycle (mean±SEM), varying in size (7.1±4.2 µm) and duration (44.2±27.1 ms), with both size and duration being greater for later-occurring LCRs. While the timing of each LCR occurrence also varies, the LCR period (i.e. the time from the preceding Ca2+ transient peak to an LCR’s subsequent occurrence) averaged for all LCRs in a given cycle closely predicts the time of occurrence of the next action potential, i.e. the cycle length. Conclusion Intrinsic cycle length variability in single sinoatrial nodal cells is linked to beat-to-beat variations in the average period of individual LCRs

  1. Nonlinear beat excitation of low frequency wave in degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Mir, Zahid; Shahid, M.; Jamil, M.; Rasheed, A.; Shahbaz, A.

    2018-03-01

    The beat phenomenon due to the coupling of two signals at slightly different frequencies that generates the low frequency signal is studied. The linear dispersive properties of the pump and sideband are analyzed. The modified nonlinear dispersion relation through the field coupling of linear modes against the beat frequency is derived in the homogeneous quantum dusty magnetoplasmas. The dispersion relation is used to derive the modified growth rate of three wave parametric instability. Moreover, significant quantum effects of electrons through the exchange-correlation potential, the Bohm potential, and the Fermi pressure evolved in macroscopic three wave interaction are presented. The analytical results are interpreted graphically describing the significance of the work. The applications of this study are pointed out at the end of introduction.

  2. Uncovering beat deafness: detecting rhythm disorders with synchronized finger tapping and perceptual timing tasks.

    PubMed

    Dalla Bella, Simone; Sowiński, Jakub

    2015-03-16

    A set of behavioral tasks for assessing perceptual and sensorimotor timing abilities in the general population (i.e., non-musicians) is presented here with the goal of uncovering rhythm disorders, such as beat deafness. Beat deafness is characterized by poor performance in perceiving durations in auditory rhythmic patterns or poor synchronization of movement with auditory rhythms (e.g., with musical beats). These tasks include the synchronization of finger tapping to the beat of simple and complex auditory stimuli and the detection of rhythmic irregularities (anisochrony detection task) embedded in the same stimuli. These tests, which are easy to administer, include an assessment of both perceptual and sensorimotor timing abilities under different conditions (e.g., beat rates and types of auditory material) and are based on the same auditory stimuli, ranging from a simple metronome to a complex musical excerpt. The analysis of synchronized tapping data is performed with circular statistics, which provide reliable measures of synchronization accuracy (e.g., the difference between the timing of the taps and the timing of the pacing stimuli) and consistency. Circular statistics on tapping data are particularly well-suited for detecting individual differences in the general population. Synchronized tapping and anisochrony detection are sensitive measures for identifying profiles of rhythm disorders and have been used with success to uncover cases of poor synchronization with spared perceptual timing. This systematic assessment of perceptual and sensorimotor timing can be extended to populations of patients with brain damage, neurodegenerative diseases (e.g., Parkinson's disease), and developmental disorders (e.g., Attention Deficit Hyperactivity Disorder).

  3. Measuring Neural Entrainment to Beat and Meter in Infants: Effects of Music Background.

    PubMed

    Cirelli, Laura K; Spinelli, Christina; Nozaradan, Sylvie; Trainor, Laurel J

    2016-01-01

    Caregivers often engage in musical interactions with their infants. For example, parents across cultures sing lullabies and playsongs to their infants from birth. Behavioral studies indicate that infants not only extract beat information, but also group these beats into metrical hierarchies by as early as 6 months of age. However, it is not known how this is accomplished in the infant brain. An EEG frequency-tagging approach has been used successfully with adults to measure neural entrainment to auditory rhythms. The current study is the first to use this technique with infants in order to investigate how infants' brains encode rhythms. Furthermore, we examine how infant and parent music background is associated with individual differences in rhythm encoding. In Experiment 1, EEG was recorded while 7-month-old infants listened to an ambiguous rhythmic pattern that could be perceived to be in two different meters. In Experiment 2, EEG was recorded while 15-month-old infants listened to a rhythmic pattern with an unambiguous meter. In both age groups, information about music background (parent music training, infant music classes, hours of music listening) was collected. Both age groups showed clear EEG responses frequency-locked to the rhythms, at frequencies corresponding to both beat and meter. For the younger infants (Experiment 1), the amplitudes at duple meter frequencies were selectively enhanced for infants enrolled in music classes compared to those who had not engaged in such classes. For the older infants (Experiment 2), amplitudes at beat and meter frequencies were larger for infants with musically-trained compared to musically-untrained parents. These results suggest that the frequency-tagging method is sensitive to individual differences in beat and meter processing in infancy and could be used to track developmental changes.

  4. Measuring Neural Entrainment to Beat and Meter in Infants: Effects of Music Background

    PubMed Central

    Cirelli, Laura K.; Spinelli, Christina; Nozaradan, Sylvie; Trainor, Laurel J.

    2016-01-01

    Caregivers often engage in musical interactions with their infants. For example, parents across cultures sing lullabies and playsongs to their infants from birth. Behavioral studies indicate that infants not only extract beat information, but also group these beats into metrical hierarchies by as early as 6 months of age. However, it is not known how this is accomplished in the infant brain. An EEG frequency-tagging approach has been used successfully with adults to measure neural entrainment to auditory rhythms. The current study is the first to use this technique with infants in order to investigate how infants' brains encode rhythms. Furthermore, we examine how infant and parent music background is associated with individual differences in rhythm encoding. In Experiment 1, EEG was recorded while 7-month-old infants listened to an ambiguous rhythmic pattern that could be perceived to be in two different meters. In Experiment 2, EEG was recorded while 15-month-old infants listened to a rhythmic pattern with an unambiguous meter. In both age groups, information about music background (parent music training, infant music classes, hours of music listening) was collected. Both age groups showed clear EEG responses frequency-locked to the rhythms, at frequencies corresponding to both beat and meter. For the younger infants (Experiment 1), the amplitudes at duple meter frequencies were selectively enhanced for infants enrolled in music classes compared to those who had not engaged in such classes. For the older infants (Experiment 2), amplitudes at beat and meter frequencies were larger for infants with musically-trained compared to musically-untrained parents. These results suggest that the frequency-tagging method is sensitive to individual differences in beat and meter processing in infancy and could be used to track developmental changes. PMID:27252619

  5. Phase Shifting and the Beating of Complex Waves

    ERIC Educational Resources Information Center

    Keeports, David

    2011-01-01

    At the introductory level, the demonstration and analysis of sound beating is usually limited to the superposition of two purely sinusoidal waves with equal amplitudes and very similar frequencies. Under such conditions, an observer hears the periodic variation of the loudness of a sound with an unchanging timbre. On the other hand, when complex…

  6. Effectiveness of binaural beats in reducing preoperative dental anxiety.

    PubMed

    Isik, B K; Esen, A; Büyükerkmen, B; Kilinç, A; Menziletoglu, D

    2017-07-01

    Binaural beats are an auditory illusion perceived when two different pure-tone sine waves are presented one to each ear at a steady intensity and frequency. We evaluated their effectiveness in reducing preoperative anxiety in dentistry. Sixty patients (30 in each group) who were to have impacted third molars removed were studied (experimental group: 20 women and 10 men, mean (range) age 24 (18-35) years, and control group: 22 women and 8 men, mean (range) age 28 (15-47) years). All patients were fully informed about the operation preoperatively, and their anxiety recorded on a visual analogue scale (VAS). The local anaesthetic was given and the patients waited for 10minutes, during which those in the experimental group were asked to listen to binaural beats through stereo earphones (200Hz for the left ear and 209.3Hz for the right ear). No special treatment was given to the control group. In both groups anxiety was then recorded again, and the tooth removed in the usual way. The paired t test and t test were used to assess the significance of differences between groups. The degree of anxiety in the control group was unchanged after the second measurement (p=0.625), while that in the experimental group showed a significant reduction in anxiety (p=0.001). We conclude that binaural beats may be useful in reducing preoperative anxiety in dentistry. Copyright © 2017 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Non-heart-beating donors: a case study in procurement.

    PubMed

    Lewis, D D; Valerius, W; Sommerville, M A

    1998-12-01

    To help meet the increasing need for transplantable organs, especially kidneys, organ procurement organizations are recovering organs from non-heart-beating patients. This article outlines the successful recovery and transplantation of kidneys from such a donor. Consent issues and historical background are also discussed.

  8. moBeat: Using interactive music to guide and motivate users during aerobic exercising.

    PubMed

    van der Vlist, Bram; Bartneck, Christoph; Mäueler, Sebastian

    2011-06-01

    An increasing number of people are having trouble staying fit and maintaining a healthy bodyweight because of lack of physical activity. Getting people to exercise is crucial. However, many struggle with developing healthy exercising habits, due to hurdles like having to leave the house and the boring character of endurance exercising. In this paper, we report on a design project that explores the use of audio to motivate and provide feedback and guidance during exercising in a home environment. We developed moBeat, a system that provides intensity-based coaching while exercising, giving real-time feedback on training pace and intensity by means of interactive music. We conducted a within-subject comparison between our moBeat system and a commercially available heart rate watch. With moBeat, we achieved a comparable success rate: our system has a significant, positive influence on intrinsic motivation and attentional focus, but we did not see significant differences with regard to either perceived exertion or effectiveness. Although promising, future research is needed.

  9. Beating dark-dark solitons and Zitterbewegung in spin-orbit-coupled Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Achilleos, V.; Frantzeskakis, D. J.; Kevrekidis, P. G.

    2014-03-01

    We present families of beating dark-dark solitons in spin-orbit (SO) -coupled Bose-Einstein condensates. These families consist of solitons residing simultaneously in the two bands of the energy spectrum. The soliton components are characterized by two different spatial and temporal scales, which are identified by a multiscale expansion method. The solitons are "beating" ones, as they perform density oscillations. The characteristic frequency of the latter is relevant to Zitterbewegung (ZB) oscillations, which were recently observed in experiments with SO-coupled condensates [C. Qu et al., Phys. Rev. A 88, 021604(R) (2013), 10.1103/PhysRevA.88.021604; L. J. LeBlanc et al., New J. Phys. 15, 073011 (2013), 10.1088/1367-2630/15/7/073011]. We find that spin oscillations may occur, depending on the parity of each soliton branch, which consequently lead to ZB oscillations of the beating dark solitons. Analytical results are corroborated by numerical simulations, illustrating the robustness of the solitons.

  10. A sensorimotor theory of temporal tracking and beat induction.

    PubMed

    Todd, N P McAngus; Lee, C S; O'Boyle, D J

    2002-02-01

    In this paper, we develop a theory of the neurobiological basis of temporal tracking and beat induction as a form of sensory-guided action. We propose three principal components for the neurological architecture of temporal tracking: (1) the central auditory system, which represents the temporal information in the input signal in the form of a modulation power spectrum; (2) the musculoskeletal system, which carries out the action and (3) a controller, in the form of a parieto-cerebellar-frontal loop, which carries out the synchronisation between input and output by means of an internal model of the musculoskeletal dynamics. The theory is implemented in the form of a computational algorithm which takes sound samples as input and synchronises a simple linear mass-spring-damper system to simulate audio-motor synchronisation. The model may be applied to both the tracking of isochronous click sequences and beat induction in rhythmic music or speech, and also accounts for the approximate Weberian property of timing.

  11. Childhood exposure to domestic violence and attitude towards wife beating in adult life: a study of men in India.

    PubMed

    Zhu, Ying; Dalal, Koustuv

    2010-03-01

    This study examined men's justification of wife beating in relation to their perceived rights and autonomy using a nationally representative sample of 18,047 men in India with childhood exposure to parental violence. Five reasons for wife beating justification, four items of men's perceived rights, and five items of household autonomy were analysed using chi2 test and logistic regression. Among 18,047 participants, 67% justified wife beating. Low education, economic stress and being unmarried were generally more associated with justifying wife beating for all five reasons. Wife's refusal of sex and husband's final say on household autonomy are risk factors. Joint autonomy on household decision making and wife's autonomy on managing her own earnings are protective factors. Perceived relationship rights and autonomy are highly predictive of wife-beating justification for the men who have been exposed to parental violence during childhood. The study has significant implications for public health planners and education strategies.

  12. Analysis of ciliary beat frequency and ovum transport ability in the mouse oviduct.

    PubMed

    Shi, Dongbo; Komatsu, Kouji; Uemura, Tadashi; Fujimori, Toshihiko

    2011-03-01

    The oviduct is important in reproduction where fertilization occurs, and the fertilized eggs are conveyed to the uterus. Multi-ciliated cells of the oviductal epithelium and muscle contractions are believed to generate this unidirectional flow. Although there are many studies in human oviducts, there are few reports on mouse oviductal ciliary movements where we can dissect underlying genetic programs. To study ciliary movements in the mouse oviduct, we exposed the ovary-side of the oviduct (infundibulum) longitudinally and recorded the ciliary beatings in a hanging drop preparation. We calculated the ciliary beat frequency (CBF) by automated image analysis and found that the average CBF was 10.9 ± 3.3 and 8.5 ± 2.5 Hz (±standard deviation) during the diestrus and estrus stages, respectively. Mapping of the CBF to multiple locations in the epithelium showed that the cilia beat regularly at a local level, but have a range of frequencies within the entire plane. We also observed ova with cumulus cells were transported to the uterus side by the opened oviduct at the diestrus and estrus stages. These results suggest that the ciliated cells of the infundibulum can generate unidirectional flows and are able to deliver ova by their ciliary activities despite their discordance in beating periodicity. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  13. Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence.

    PubMed

    Sung, C L; Cheng, H P; Lee, C Y; Cho, C Y; Liang, H C; Chen, Y F

    2016-04-15

    The simultaneous self-mode-locking of two orthogonally polarized states in a Nd:YAG laser is demonstrated by using a short linear cavity. A total output power of 3.8 W can be obtained at an incident pump power of 8.2 W. The beat frequency Δfc between two orthogonally polarized mode-locked components is observed and measured precisely. It is found that the beat frequency increases linearly with an increase in the absorbed pump power. The origin of the beat frequency can be utterly manifested by considering the thermally induced birefringence in the Nd:YAG crystal. The present result offers a promising approach to generate orthogonally polarized mode-locked lasers with tunable beat frequency.

  14. Hunting for the beat in the body: on period and phase locking in music-induced movement.

    PubMed

    Burger, Birgitta; Thompson, Marc R; Luck, Geoff; Saarikallio, Suvi H; Toiviainen, Petri

    2014-01-01

    Music has the capacity to induce movement in humans. Such responses during music listening are usually spontaneous and range from tapping to full-body dancing. However, it is still unclear how humans embody musical structures to facilitate entrainment. This paper describes two experiments, one dealing with period locking to different metrical levels in full-body movement and its relationships to beat- and rhythm-related musical characteristics, and the other dealing with phase locking in the more constrained condition of sideways swaying motions. Expected in Experiment 1 was that music with clear and strong beat structures would facilitate more period-locked movement. Experiment 2 was assumed to yield a common phase relationship between participants' swaying movements and the musical beat. In both experiments optical motion capture was used to record participants' movements. In Experiment 1 a window-based period-locking probability index related to four metrical levels was established, based on acceleration data in three dimensions. Subsequent correlations between this index and musical characteristics of the stimuli revealed pulse clarity to be related to periodic movement at the tactus level, and low frequency flux to mediolateral and anteroposterior movement at both tactus and bar levels. At faster tempi higher metrical levels became more apparent in participants' movement. Experiment 2 showed that about half of the participants showed a stable phase relationship between movement and beat, with superior-inferior movement most often being synchronized to the tactus level, whereas mediolateral movement was rather synchronized to the bar level. However, the relationship between movement phase and beat locations was not consistent between participants, as the beat locations occurred at different phase angles of their movements. The results imply that entrainment to music is a complex phenomenon, involving the whole body and occurring at different metrical levels.

  15. [The characteristics of RR-Lorenz plot in persistent atrial fibrillation patients complicating with escape beats and rhythm].

    PubMed

    Pan, Yunping; Zhang, Fangfang; Liu, Ru; Jing, Yan; Shen, Jihong; Li, Zhongjian; Zhu, Huaijie

    2014-06-01

    To explore the characteristics of RR-Lorenz plot in persistent atrial fibrillation (AF) patients complicating with escape beats and rhythm though ambulatory electrocardiogram. The 24-hour ambulatory electrocardiogram of 291 persistent AF patients in second affiliated hospital of Zhengzhou university from July 2005 to April 2013 were retrospectively analyzed and the RR interval and the QRS wave were measured. Patients were divided into two groups according to the distribution of the RR-Lorenz point [AF without escape beats and rhythm group (Group A, n = 259) and AF with escape beats and rhythm group (Group B, n = 32)]. The characteristics of RR-Lorenz plot between the two groups were compared. (1) Fan-shaped RR-Lorenz plots were evidenced in Group A. (2)In Group B, 30 cases showed fan-shaped with L-shaped and a short dense rods along 45° line. The proportion of escape beats and rhythm was 0.28% (275/98 369) -14.06% (11 263/80 112) . The other 2 cases in group B showed no typical RR-Lorenz plots features. RR-Lorenz plot could help to quickly diagnose persistent AF complicating with escape beats and rhythm according to the typical RR-Lorenz plot characteristics in 24-hour ambulatory electrocardiogram.

  16. Getting the beat: entrainment of brain activity by musical rhythm and pleasantness.

    PubMed

    Trost, Wiebke; Frühholz, Sascha; Schön, Daniele; Labbé, Carolina; Pichon, Swann; Grandjean, Didier; Vuilleumier, Patrik

    2014-12-01

    Rhythmic entrainment is an important component of emotion induction by music, but brain circuits recruited during spontaneous entrainment of attention by music and the influence of the subjective emotional feelings evoked by music remain still largely unresolved. In this study we used fMRI to test whether the metric structure of music entrains brain activity and how music pleasantness influences such entrainment. Participants listened to piano music while performing a speeded visuomotor detection task in which targets appeared time-locked to either strong or weak beats. Each musical piece was presented in both a consonant/pleasant and dissonant/unpleasant version. Consonant music facilitated target detection and targets presented synchronously with strong beats were detected faster. FMRI showed increased activation of bilateral caudate nucleus when responding on strong beats, whereas consonance enhanced activity in attentional networks. Meter and consonance selectively interacted in the caudate nucleus, with greater meter effects during dissonant than consonant music. These results reveal that the basal ganglia, involved both in emotion and rhythm processing, critically contribute to rhythmic entrainment of subcortical brain circuits by music. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Auditory evoked responses to binaural beat illusion: stimulus generation and the derivation of the Binaural Interaction Component (BIC).

    PubMed

    Ozdamar, Ozcan; Bohorquez, Jorge; Mihajloski, Todor; Yavuz, Erdem; Lachowska, Magdalena

    2011-01-01

    Electrophysiological indices of auditory binaural beats illusions are studied using late latency evoked responses. Binaural beats are generated by continuous monaural FM tones with slightly different ascending and descending frequencies lasting about 25 ms presented at 1 sec intervals. Frequency changes are carefully adjusted to avoid any creation of abrupt waveform changes. Binaural Interaction Component (BIC) analysis is used to separate the neural responses due to binaural involvement. The results show that the transient auditory evoked responses can be obtained from the auditory illusion of binaural beats.

  18. Three types of ependymal cells with intracellular calcium oscillation are characterized by distinct cilia beating properties.

    PubMed

    Liu, Tongyu; Jin, Xingjian; Prasad, Rahul M; Sari, Youssef; Nauli, Surya M

    2014-09-01

    Ependymal cells are multiciliated epithelial cells that line the ventricles in the adult brain. Abnormal function or structure of ependymal cilia has been associated with various neurological deficits. For the first time, we report three distinct ependymal cell types, I, II, and III, based on their unique ciliary beating frequency and beating angle. These ependymal cells have specific localizations within the third ventricle of the mouse brain. Furthermore, neither ependymal cell types nor their localizations are altered by aging. Our high-speed fluorescence imaging analysis reveals that these ependymal cells have an intracellular pacing calcium oscillation property. Our study further shows that alcohol can significantly repress the amplitude of calcium oscillation and the frequency of ciliary beating, resulting in an overall decrease in volume replacement by the cilia. Furthermore, the pharmacological agent cilostazol could differentially increase cilia beating frequency in type II, but not in type I or type III, ependymal cells. In summary, we provide the first evidence of three distinct types of ependymal cells with calcium oscillation properties. © 2014 Wiley Periodicals, Inc.

  19. Substrate stiffness-modulated registry phase correlations in cardiomyocytes map structural order to coherent beating

    NASA Astrophysics Data System (ADS)

    Dasbiswas, K.; Majkut, S.; Discher, D. E.; Safran, Samuel A.

    2015-01-01

    Recent experiments show that both striation, an indication of the structural registry in muscle fibres, as well as the contractile strains produced by beating cardiac muscle cells can be optimized by substrate stiffness. Here we show theoretically how the substrate rigidity dependence of the registry data can be mapped onto that of the strain measurements. We express the elasticity-mediated structural registry as a phase-order parameter using a statistical physics approach that takes the noise and disorder inherent in biological systems into account. By assuming that structurally registered myofibrils also tend to beat in phase, we explain the observed dependence of both striation and strain measurements of cardiomyocytes on substrate stiffness in a unified manner. The agreement of our ideas with experiment suggests that the correlated beating of heart cells may be limited by the structural order of the myofibrils, which in turn is regulated by their elastic environment.

  20. Attitudes toward Wife Beating among Palestinian Women of Reproductive Age from Three Cities in West Bank

    ERIC Educational Resources Information Center

    Dhaher, Enas A.; Mikolajczyk, Rafael T.; Maxwell, Annette E.; Kramer, Alexander

    2010-01-01

    A total of 450 women were interviewed in Mother and Child Health Care Centers in three cities in West Bank, Palestine, to assess attitudes toward wife beating. Overall, women perceived wife beating to be justified if a wife insults her husband (59%), if she disobeys her husband (49%), if she neglects her children (37%), if she goes out without…

  1. Use of binaural beat tapes for treatment of anxiety: a pilot study of tape preference and outcomes.

    PubMed

    Le Scouarnec, R P; Poirier, R M; Owens, J E; Gauthier, J; Taylor, A G; Foresman, P A

    2001-01-01

    Recent studies and anecdotal reports suggest that binaural auditory beats can affect mood, performance on vigilance tasks, and anxiety. To determine whether mildly anxious people would report decreased anxiety after listening daily for 1 month to tapes imbedded with tones that create binaural beats, and whether they would show a definite tape preference among 3 tapes. A 1-group pre-posttest pilot study. Patients' homes. A volunteer sample of 15 mildly anxious patients seen in the Clinique Psyché, Montreal, Quebec. Participants were asked to listen at least 5 times weekly for 4 weeks to 1 or more of 3 music tapes containing tones that produce binaural beats in the electroencephalogram delta/theta frequency range. Participants also were asked to record tape usage, tape preference, and anxiety ratings in a journal before and after listening to the tape or tapes. Anxiety ratings before and after tape listening, pre- and post-study State-Trait Anxiety Inventory scores, and tape preferences documented in daily journals. Listening to the binaural beat tapes resulted in a significant reduction in the anxiety score reported daily in patients' diaries. The number of times participants listened to the tapes in 4 weeks ranged from 10 to 17 (an average of 1.4 to 2.4 times per week) for approximately 30 minutes per session. End-of-study tape preferences indicated that slightly more participants preferred tape B, with its pronounced and extended patterns of binaural beats, over tapes A and C. Changes in pre- and posttest listening State-Trait Anxiety Inventory scores trended toward a reduction of anxiety, but these differences were not statistically significant. Listening to binaural beat tapes in the delta/theta electroencephalogram range may be beneficial in reducing mild anxiety. Future studies should account for music preference among participants and include age as a factor in outcomes, incentives to foster tape listening, and a physiologic measure of anxiety reduction. A

  2. Swimming Speed of Larval Snail Does Not Correlate with Size and Ciliary Beat Frequency

    PubMed Central

    Chan, Kit Yu Karen; Jiang, Houshuo; Padilla, Dianna K.

    2013-01-01

    Many marine invertebrates have planktonic larvae with cilia used for both propulsion and capturing of food particles. Hence, changes in ciliary activity have implications for larval nutrition and ability to navigate the water column, which in turn affect survival and dispersal. Using high-speed high-resolution microvideography, we examined the relationship between swimming speed, velar arrangements, and ciliary beat frequency of freely swimming veliger larvae of the gastropod Crepidula fornicata over the course of larval development. Average swimming speed was greatest 6 days post hatching, suggesting a reduction in swimming speed towards settlement. At a given age, veliger larvae have highly variable speeds (0.8–4 body lengths s−1) that are independent of shell size. Contrary to the hypothesis that an increase in ciliary beat frequency increases work done, and therefore speed, there was no significant correlation between swimming speed and ciliary beat frequency. Instead, there are significant correlations between swimming speed and visible area of the velar lobe, and distance between centroids of velum and larval shell. These observations suggest an alternative hypothesis that, instead of modifying ciliary beat frequency, larval C. fornicata modify swimming through adjustment of velum extension or orientation. The ability to adjust velum position could influence particle capture efficiency and fluid disturbance and help promote survival in the plankton. PMID:24367554

  3. FMRI investigation of cross-modal interactions in beat perception: Audition primes vision, but not vice versa

    PubMed Central

    Grahn, Jessica A.; Henry, Molly J.; McAuley, J. Devin

    2011-01-01

    How we measure time and integrate temporal cues from different sensory modalities are fundamental questions in neuroscience. Sensitivity to a “beat” (such as that routinely perceived in music) differs substantially between auditory and visual modalities. Here we examined beat sensitivity in each modality, and examined cross-modal influences, using functional magnetic resonance imaging (fMRI) to characterize brain activity during perception of auditory and visual rhythms. In separate fMRI sessions, participants listened to auditory sequences or watched visual sequences. The order of auditory and visual sequence presentation was counterbalanced so that cross-modal order effects could be investigated. Participants judged whether sequences were speeding up or slowing down, and the pattern of tempo judgments was used to derive a measure of sensitivity to an implied beat. As expected, participants were less sensitive to an implied beat in visual sequences than in auditory sequences. However, visual sequences produced a stronger sense of beat when preceded by auditory sequences with identical temporal structure. Moreover, increases in brain activity were observed in the bilateral putamen for visual sequences preceded by auditory sequences when compared to visual sequences without prior auditory exposure. No such order-dependent differences (behavioral or neural) were found for the auditory sequences. The results provide further evidence for the role of the basal ganglia in internal generation of the beat and suggest that an internal auditory rhythm representation may be activated during visual rhythm perception. PMID:20858544

  4. Use of a Novel Cell Adhesion Method and Digital Measurement to Show Stimulus-dependent Variation in Somatic and Oral Ciliary Beat Frequency in Paramecium

    PubMed Central

    Bell, Wade E.; Hallworth, Richard; Wyatt, Todd A.; Sisson, Joseph H.

    2015-01-01

    When Paramecium encounters positive stimuli, the membrane hyperpolarizes and ciliary beat frequency increases. We adapted an established immobilization protocol using a biological adhesive and a novel digital analysis system to quantify beat frequency in immobilized Paramecium. Cells showed low mortality and demonstrated beat frequencies consistent with previous studies. Chemoattractant molecules, reduction in external potassium, and posterior stimulation all increased somatic beat frequency. In all cases, the oral groove cilia maintained a higher beat frequency than mid-body cilia, but only oral cilia from cells stimulated with chemoattactants showed an increase from basal levels. PMID:25066640

  5. Crystal orientation induced spin Rabi beat oscillations of point defects at the c-Si(111)/ SiO 2 interface

    NASA Astrophysics Data System (ADS)

    Paik, Seoyoung; Lee, Sang-Yun; Boehme, Christoph

    2011-03-01

    Spin-dependent electronic transitions such as certain charge carrier recombination and transport processes in semiconductors are usually governed by the Pauli blockade within pairs of two paramagnetic centers. One implication of this is that the manipulation of spin states, e.g. by magnetic resonant excitation, can produce changes to electric currents of the given semiconductor material. If both spins are changed at the same time, quantum beat effects such as beat oscillation between resonantly induced spin Rabi nutation becomes detectable through current measurements. Here, we report on electrically detected spin Rabi beat oscillation caused by pairs of 31 P donor states and Pb interface defects at the phosphorous doped Si(111)/ Si O2 interface. Due to the g-factor anisotropy of the Pb center we can tune the intra pair Larmor frequency difference (so called Larmor separation) through orientation of the sample with regard to the external magnetic field. As the Larmor separation governs the spin Rabi beat oscillation, we show experimentally how the crystal orientation can influence the beat effect.

  6. A new beating-heart off-pump coronary artery bypass grafting training model.

    PubMed

    Bouma, Wobbe; Kuijpers, Michiel; Bijleveld, Aanke; De Maat, Gijs E; Koene, Bart M; Erasmus, Michiel E; Natour, Ehsan; Mariani, Massimo A

    2015-01-01

    Training models are essential in mastering the skills required for off-pump coronary artery bypass grafting (OPCAB). We describe a new, high-fidelity, effective and reproducible beating-heart OPCAB training model in human cadavers. Human cadavers were embalmed according to the 'Thiel method' which allows their long-term and repeated use. The training model was constructed by bilateral ligation of the pulmonary veins, cross-clamping of the aorta, positioning of an intra-aortic balloon pump (IABP) in the left ventricle (LV) through the apex (tightened with pledget-reinforced purse strings) and finally placing of a fluid line in the LV through the left atrial appendage (tightened with a pledget-reinforced purse string). The LV was filled with saline to the desired pressure through the fluid line and the IABP was switched on and set to a desired frequency [usually 60-80 beats per minute (bpm)]. A high-fidelity simulation has known limitations, but a more complex, realistic training environment with an actual beating (human) heart strengthens the entire training exercise and is of incremental value. All types of coronary artery anastomosis can be trained with this model. Training should be performed under the supervision of an experienced OPCAB surgeon and training progress is best evaluated with serial Objective Structured Assessment of Technical Skills (OSATS). A score of at least 48 points on the final OSATS ('good' on all components) is recommended before trainees can start their training on patients. The entire set-up provides a versatile training model to help develop and improve the skills required to safely perform beating heart OPCAB anastomoses. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  7. Role of spatial heterogeneity in the collective dynamics of cilia beating in a minimal one-dimensional model

    NASA Astrophysics Data System (ADS)

    Dey, Supravat; Massiera, Gladys; Pitard, Estelle

    2018-01-01

    Cilia are elastic hairlike protuberances of the cell membrane found in various unicellular organisms and in several tissues of most living organisms. In some tissues such as the airway tissues of the lung, the coordinated beating of cilia induces a fluid flow of crucial importance as it allows the continuous cleaning of our bronchia, known as mucociliary clearance. While most of the models addressing the question of collective dynamics and metachronal wave consider homogeneous carpets of cilia, experimental observations rather show that cilia clusters are heterogeneously distributed over the tissue surface. The purpose of this paper is to investigate the role of spatial heterogeneity on the coherent beating of cilia using a very simple one-dimensional model for cilia known as the rower model. We systematically study systems consisting of a few rowers to hundreds of rowers and we investigate the conditions for the emergence of collective beating. When considering a small number of rowers, a phase drift occurs, hence, a bifurcation in beating frequency is observed as the distance between rower clusters is changed. In the case of many rowers, a distribution of frequencies is observed. We found in particular the pattern of the patchy structure that shows the best robustness in collective beating behavior, as the density of cilia is varied over a wide range.

  8. Influence of mode-beating pulse on laser-induced plasma

    NASA Astrophysics Data System (ADS)

    Nishihara, M.; Freund, J. B.; Glumac, N. G.; Elliott, G. S.

    2018-04-01

    This paper addresses the influence of mode-beating pulse on laser-induced plasma. The second harmonic of a Nd:YAG laser, operated either with the single mode or multimode, was used for non-resonant optical breakdown, and subsequent plasma development was visualized using a streak imaging system. The single mode lasing leads to a stable breakdown location and smooth envelopment of the plasma boundary, while the multimode lasing, with the dominant mode-beating frequency of 500-800 MHz, leads to fluctuations in the breakdown location, a globally modulated plasma surface, and growth of local microstructures at the plasma boundary. The distribution of the local inhomogeneity was measured from the elastic scattering signals on the streak image. The distance between the local structures agreed with the expected wavelength of hydrodynamic instability development due to the interference between the surface excited wave and transmitted wave. A numerical simulation, however, indicates that the local microstructure could also be directly generated at the peaks of the higher harmonic components if the multimode pulse contains up to the eighth harmonic of the fundamental cavity mode.

  9. Human embryonic and induced pluripotent stem cell-derived cardiomyocytes exhibit beat rate variability and power-law behavior.

    PubMed

    Mandel, Yael; Weissman, Amir; Schick, Revital; Barad, Lili; Novak, Atara; Meiry, Gideon; Goldberg, Stanislav; Lorber, Avraham; Rosen, Michael R; Itskovitz-Eldor, Joseph; Binah, Ofer

    2012-02-21

    The sinoatrial node is the main impulse-generating tissue in the heart. Atrioventricular conduction block and arrhythmias caused by sinoatrial node dysfunction are clinically important and generally treated with electronic pacemakers. Although an excellent solution, electronic pacemakers incorporate limitations that have stimulated research on biological pacing. To assess the suitability of potential biological pacemakers, we tested the hypothesis that the spontaneous electric activity of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) exhibit beat rate variability and power-law behavior comparable to those of human sinoatrial node. We recorded extracellular electrograms from hESC-CMs and iPSC-CMs under stable conditions for up to 15 days. The beat rate time series of the spontaneous activity were examined in terms of their power spectral density and additional methods derived from nonlinear dynamics. The major findings were that the mean beat rate of hESC-CMs and iPSC-CMs was stable throughout the 15-day follow-up period and was similar in both cell types, that hESC-CMs and iPSC-CMs exhibited intrinsic beat rate variability and fractal behavior, and that isoproterenol increased and carbamylcholine decreased the beating rate in both hESC-CMs and iPSC-CMs. This is the first study demonstrating that hESC-CMs and iPSC-CMs exhibit beat rate variability and power-law behavior as in humans, thus supporting the potential capability of these cell sources to serve as biological pacemakers. Our ability to generate sinoatrial-compatible spontaneous cardiomyocytes from the patient's own hair (via keratinocyte-derived iPSCs), thus eliminating the critical need for immunosuppression, renders these myocytes an attractive cell source as biological pacemakers.

  10. Speckle variance optical coherence tomography of blood flow in the beating mouse embryonic heart.

    PubMed

    Grishina, Olga A; Wang, Shang; Larina, Irina V

    2017-05-01

    Efficient separation of blood and cardiac wall in the beating embryonic heart is essential and critical for experiment-based computational modelling and analysis of early-stage cardiac biomechanics. Although speckle variance optical coherence tomography (SV-OCT) relying on calculation of intensity variance over consecutively acquired frames is a powerful approach for segmentation of fluid flow from static tissue, application of this method in the beating embryonic heart remains challenging because moving structures generate SV signal indistinguishable from the blood. Here, we demonstrate a modified four-dimensional SV-OCT approach that effectively separates the blood flow from the dynamic heart wall in the beating mouse embryonic heart. The method takes advantage of the periodic motion of the cardiac wall and is based on calculation of the SV signal over the frames corresponding to the same phase of the heartbeat cycle. Through comparison with Doppler OCT imaging, we validate this speckle-based approach and show advantages in its insensitiveness to the flow direction and velocity as well as reduced influence from the heart wall movement. This approach has a potential in variety of applications relying on visualization and segmentation of blood flow in periodically moving structures, such as mechanical simulation studies and finite element modelling. Picture: Four-dimensional speckle variance OCT imaging shows the blood flow inside the beating heart of an E8.5 mouse embryo. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of Missing Inter-Beat Interval Data on Heart Rate Variability Analysis Using Wrist-Worn Wearables.

    PubMed

    Baek, Hyun Jae; Shin, JaeWook

    2017-08-15

    Most of the wrist-worn devices on the market provide a continuous heart rate measurement function using photoplethysmography, but have not yet provided a function to measure the continuous heart rate variability (HRV) using beat-to-beat pulse interval. The reason for such is the difficulty of measuring a continuous pulse interval during movement using a wearable device because of the nature of photoplethysmography, which is susceptible to motion noise. This study investigated the effect of missing heart beat interval data on the HRV analysis in cases where pulse interval cannot be measured because of movement noise. First, we performed simulations by randomly removing data from the RR interval of the electrocardiogram measured from 39 subjects and observed the changes of the relative and normalized errors for the HRV parameters according to the total length of the missing heart beat interval data. Second, we measured the pulse interval from 20 subjects using a wrist-worn device for 24 h and observed the error value for the missing pulse interval data caused by the movement during actual daily life. The experimental results showed that mean NN and RMSSD were the most robust for the missing heart beat interval data among all the parameters in the time and frequency domains. Most of the pulse interval data could not be obtained during daily life. In other words, the sample number was too small for spectral analysis because of the long missing duration. Therefore, the frequency domain parameters often could not be calculated, except for the sleep state with little motion. The errors of the HRV parameters were proportional to the missing data duration in the presence of missing heart beat interval data. Based on the results of this study, the maximum missing duration for acceptable errors for each parameter is recommended for use when the HRV analysis is performed on a wrist-worn device.

  12. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes

    PubMed Central

    Eng, George; Lee, Benjamin W.; Protas, Lev; Gagliardi, Mark; Brown, Kristy; Kass, Robert S.; Keller, Gordon; Robinson, Richard B.; Vunjak-Novakovic, Gordana

    2016-01-01

    The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration. PMID:26785135

  13. Mechanisms of Wing Beat Sound in Flapping Wings of Beetles

    NASA Astrophysics Data System (ADS)

    Allen, John

    2017-11-01

    While the aerodynamic aspects of insect flight have received recent attention, the mechanisms of sound production by flapping wings is not well understood. Though the harmonic structure of wing beat frequency modulation has been reported with respect to biological implications, few studies have rigorously quantified it with respect directionality, phase coupling and vortex tip scattering. Moreover, the acoustic detection and classification of invasive species is both of practical as well scientific interest. In this study, the acoustics of the tethered flight of the Coconut Rhinoceros Beetle (Oryctes rhinoceros) is investigated with four element microphone array in conjunction with complementary optical sensors and high speed video. The different experimental methods for wing beat determination are compared in both the time and frequency domain. Flow visualization is used to examine the vortex and sound generation due to the torsional mode of the wing rotation. Results are compared with related experimental studies of the Oriental Flower Beetle. USDA, State of Hawaii.

  14. Use of a novel cell adhesion method and digital measurement to show stimulus-dependent variation in somatic and oral ciliary beat frequency in Paramecium.

    PubMed

    Bell, Wade E; Hallworth, Richard; Wyatt, Todd A; Sisson, Joseph H

    2015-01-01

    When Paramecium encounters positive stimuli, the membrane hyperpolarizes and ciliary beat frequency increases. We adapted an established immobilization protocol using a biological adhesive and a novel digital analysis system to quantify beat frequency in immobilized Paramecium. Cells showed low mortality and demonstrated beat frequencies consistent with previous studies. Chemoattractant molecules, reduction in external potassium, and posterior stimulation all increased somatic beat frequency. In all cases, the oral groove cilia maintained a higher beat frequency than mid-body cilia, but only oral cilia from cells stimulated with chemoattactants showed an increase from basal levels. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  15. Perception of patterns of musical beat distribution in phonological developmental dyslexia: significant longitudinal relations with word reading and reading comprehension.

    PubMed

    Goswami, Usha; Huss, Martina; Mead, Natasha; Fosker, Tim; Verney, John P

    2013-05-01

    In a recent study, we reported that the accurate perception of beat structure in music ('perception of musical meter') accounted for over 40% of the variance in single word reading in children with and without dyslexia (Huss et al., 2011). Performance in the musical task was most strongly associated with the auditory processing of rise time, even though beat structure was varied by manipulating the duration of the musical notes. Here we administered the same musical task a year later to 88 children with and without dyslexia, and used new auditory processing measures to provide a more comprehensive picture of the auditory correlates of the beat structure task. We also measured reading comprehension and nonword reading in addition to single word reading. One year later, the children with dyslexia performed more poorly in the musical task than younger children reading at the same level, indicating a severe perceptual deficit for musical beat patterns. They now also had significantly poorer perception of sound rise time than younger children. Longitudinal analyses showed that the musical beat structure task was a significant longitudinal predictor of development in reading, accounting for over half of the variance in reading comprehension along with a linguistic measure of phonological awareness. The non-linguistic musical beat structure task is an important independent longitudinal and concurrent predictor of variance in reading attainment by children. The different longitudinal versus concurrent associations between musical beat perception and auditory processing suggest that individual differences in the perception of rhythmic timing are an important shared neural basis for individual differences in children in linguistic and musical processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Coding for stable transmission of W-band radio-over-fiber system using direct-beating of two independent lasers.

    PubMed

    Yang, L G; Sung, J Y; Chow, C W; Yeh, C H; Cheng, K T; Shi, J W; Pan, C L

    2014-10-20

    We demonstrate experimentally Manchester (MC) coding based W-band (75 - 110 GHz) radio-over-fiber (ROF) system to reduce the low-frequency-components (LFCs) signal distortion generated by two independent low-cost lasers using spectral shaping. Hence, a low-cost and higher performance W-band ROF system is achieved. In this system, direct-beating of two independent low-cost CW lasers without frequency tracking circuit (FTC) is used to generate the millimeter-wave. Approaches, such as delayed self-heterodyne interferometer and heterodyne beating are performed to characterize the optical-beating-interference sub-terahertz signal (OBIS). Furthermore, W-band ROF systems using MC coding and NRZ-OOK are compared and discussed.

  17. Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion.

    PubMed

    Rolland, A; Brunel, M; Loas, G; Frein, L; Vallet, M; Alouini, M

    2011-02-28

    Down-conversion of a high-frequency beat note to an intermediate frequency is realized by a Mach-Zehnder intensity modulator. Optically-carried microwave signals in the 10-60 GHz range are synthesized by using a two-frequency solid-state microchip laser as a voltage-controlled oscillator inside a digital phase-locked loop. We report an in-loop relative frequency stability better than 2.5×10⁻¹¹. The principle is applicable to beat notes in the millimeter-wave range.

  18. Observation of matter wave beat phenomena in the macrodomain for electrons moving along a magnetic field

    NASA Astrophysics Data System (ADS)

    Varma, Ram K.; Punithavelu, A. M.; Banerjee, S. B.

    2002-02-01

    We report here the observations that exhibit the existence of matter wave phenomena with wavelength in the macrodomain of a few centimeters, for electrons moving along a magnetic field from an electron gun to a collector plate situated behind a grounded grid. These are in accordance with the predictions of a quantumlike theory for charged particles in the classical macrodomain, given by one of the authors [R. K. Varma, Phys. Rev. A 31, 3951 (1985)] with a recent generalization [R. K. Varma, Phys. Rev. E 64, 036608 (2001)]. The beats correspond to two closely spaced ``frequencies'' in the system, with the beat frequency given, in accordance with the characteristics of a wave phenomena, by the difference between the two frequencies. The beats ride as a modulation over a discrete energy band structure obtained with only one frequency present. The frequency here corresponds to the distance between the electron gun and the detector plate as it characterizes the variation in the energy band structure as the electron energy is swept. The second ``frequency'' corresponds to the gun-grid distance. These observations of the beats of matter waves in this experiment, with characteristics in accordance with the wave algorithm, then establish unambiguously the existence of macroscopic matter waves for electrons propagating along a magnetic field.

  19. Simultaneous distance measurement at multiple wavelengths using the intermode beats from a femtosecond laser coherent supercontinuum

    NASA Astrophysics Data System (ADS)

    Salido-Monzú, David; Wieser, Andreas

    2018-04-01

    The intermode beats generated by direct detection of a mode-locked femtosecond laser represent inherent high-quality and high-frequency modulations suitable for electro-optical distance measurement (EDM). This approach has already been demonstrated as a robust alternative to standard long-distance EDM techniques. However, we extend this idea to intermode beating of a wideband source obtained by spectral broadening of a femtosecond laser. We aim at establishing a technological basis for accurate and flexible multiwavelength distance measurement. Results are presented from experiments using beat notes at 1 GHz generated by two bandpass-filtered regions from both extremes of a coherent supercontinuum ranging from 550 to 1050 nm. The displacement measurements performed simultaneously on both colors on a short-distance setup show that noise and coherence of the wideband laser are adequate for achieving accuracies of about 0.01 mm on each channel with a potential improvement by accessing higher beat notes. Pointing and power instabilities have been identified as dominant sources of systematic deviations. Nevertheless, the results demonstrate the basic feasibility of the proposed technique. We consider this a promising starting point for the further development of multiwavelength EDM enabling increased accuracy over long distances through dispersion-based integral refractivity compensation and for remote surface material probing along with distance measurement in laser scanning.

  20. ZumBeat: Evaluation of a Zumba Dance Intervention in Postmenopausal Overweight Women

    PubMed Central

    Rossmeissl, Anja; Lenk, Soraya; Hanssen, Henner; Donath, Lars; Schmidt-Trucksäss, Arno; Schäfer, Juliane

    2016-01-01

    Physical inactivity is a major public health concern since it increases individuals’ risk of morbidity and mortality. A subgroup at particular risk is postmenopausal overweight women. The aim of this study was to assess the feasibility and effect of a 12-week ZumBeat dance intervention on cardiorespiratory fitness and psychosocial health. Postmenopausal women with a body mass index (BMI) >30 kg/m2 or a waist circumference >94 cm who were not regularly physically active were asked to complete a 12-week ZumBeat dance intervention with instructed and home-based self-training sessions. Before and after the intervention, peak oxygen consumption (VO2peak) was assessed on a treadmill; and body composition and several psychometric parameters (including quality of life, sports-related barriers and menopausal symptoms) were investigated. Of 17 women (median age: 54 years; median BMI: 30 kg/m2) enrolled in the study, 14 completed the study. There was no apparent change in VO2peak after the 12-week intervention period (average change score: −0.5 mL/kg/min; 95% confidence interval: −1.0, 0.1); but, quality of life had increased, and sports-related barriers and menopausal symptoms had decreased. A 12-week ZumBeat dance intervention may not suffice to increase cardiorespiratory fitness in postmenopausal overweight women, but it increases women’s quality of life. PMID:29910253

  1. Observation of Quantum Beating in rb at 2.1 THz and 18.2 THz: Long-Range Rb^{*}-Rb Interactions.

    NASA Astrophysics Data System (ADS)

    Goldshlag, William; Ricconi, Brian J.; Eden, J. Gary

    2017-06-01

    The interaction of Rb 7s ^{2}S_{1/2}, 5d ^{2}D_{3/2,5/2} and 5p ^{2}P_{3/2} atoms with the background species at long range (100-1000Å) has been observed by pump-probe ultrafast laser spectroscopy. Parametric four-wave mixing in Rb vapor with pairs of 50-70 fs pulses produces coherent Rb 6P-5S emission at 420 nm that is modulated by Rb quantum beating. The two dominant beating frequencies are 18.2 THz and 2.07 THz, corresponding to quantum beating between 7S and 5D states and to the (5D-5P_{3/2})-(5P_{3/2}-5S) defect, respectively. Analysis of Rabi oscillations in these pump-probe experiments allows for the mean interaction energy at long range to be determined. The figure shows Fourier transform spectra of representative Rabi oscillation waveforms. The waveform and spectrum at left illustrate quantum beating in Rb at 2.1 THz. The spectrum at right is dominated by the 18.2 THz frequency component generated by 7S-5D beating in Rb. Insets show respective temporal behaviors of the 6P-5S line near the coherent transient (zero interpulse delay).

  2. Beating the numbers through strategic intervention materials (SIMs): Innovative science teaching for large classes

    NASA Astrophysics Data System (ADS)

    Alboruto, Venus M.

    2017-05-01

    The study aimed to find out the effectiveness of using Strategic Intervention Materials (SIMs) as an innovative teaching practice in managing large Grade Eight Science classes to raise the performance of the students in terms of science process skills development and mastery of science concepts. Utilizing experimental research design with two groups of participants, which were purposefully chosen, it was obtained that there existed a significant difference in the performance of the experimental and control groups based on actual class observation and written tests on science process skills with a p-value of 0.0360 in favor of the experimental class. Further, results of written pre-test and post-test on science concepts showed that the experimental group with the mean of 24.325 (SD =3.82) performed better than the control group with the mean of 20.58 (SD =4.94), with a registered p-value of 0.00039. Therefore, the use of SIMs significantly contributed to the mastery of science concepts and the development of science process skills. Based on the findings, the following recommendations are offered: 1. that grade eight science teachers should use or adopt the SIMs used in this study to improve their students' performance; 2. training-workshop on developing SIMs must be conducted to help teachers develop SIMs to be used in their classes; 3. school administrators must allocate funds for the development and reproduction of SIMs to be used by the students in their school; and 4. every division should have a repository of SIMs for easy access of the teachers in the entire division.

  3. When Synchronizing to Rhythms Is Not a Good Thing: Modulations of Preparatory and Post-Target Neural Activity When Shifting Attention Away from On-Beat Times of a Distracting Rhythm.

    PubMed

    Breska, Assaf; Deouell, Leon Y

    2016-07-06

    Environmental rhythms potently drive predictive resource allocation in time, typically leading to perceptual and motor benefits for on-beat, relative to off-beat, times, even if the rhythmic stream is not intentionally used. In two human EEG experiments, we investigated the behavioral and electrophysiological expressions of using rhythms to direct resources away from on-beat times. This allowed us to distinguish goal-directed attention from the automatic capture of attention by rhythms. The following three conditions were compared: (1) a rhythmic stream with targets appearing frequently at a fixed off-beat position; (2) a rhythmic stream with targets appearing frequently at on-beat times; and (3) a nonrhythmic stream with matched target intervals. Shifting resources away from on-beat times was expressed in the slowing of responses to on-beat targets, but not in the facilitation of off-beat targets. The shifting of resources was accompanied by anticipatory adjustment of the contingent negative variation (CNV) buildup toward the expected off-beat time. In the second experiment, off-beat times were jittered, resulting in a similar CNV adjustment and also in preparatory amplitude reduction of beta-band activity. Thus, the CNV and beta activity track the relevance of time points and not the rhythm, given sufficient incentive. Furthermore, the effects of task relevance (appearing in a task-relevant vs irrelevant time) and rhythm (appearing on beat vs off beat) had additive behavioral effects and also dissociable neural manifestations in target-evoked activity: rhythm affected the target response as early as the P1 component, while relevance affected only the later N2 and P3. Thus, these two factors operate by distinct mechanisms. Rhythmic streams are widespread in our environment, and are typically conceptualized as automatic, bottom-up resource attractors to on-beat times-preparatory neural activity peaks at rhythm-on-beat times and behavioral benefits are seen to on-beat

  4. Rhesus monkeys (Macaca mulatta) detect rhythmic groups in music, but not the beat.

    PubMed

    Honing, Henkjan; Merchant, Hugo; Háden, Gábor P; Prado, Luis; Bartolo, Ramón

    2012-01-01

    It was recently shown that rhythmic entrainment, long considered a human-specific mechanism, can be demonstrated in a selected group of bird species, and, somewhat surprisingly, not in more closely related species such as nonhuman primates. This observation supports the vocal learning hypothesis that suggests rhythmic entrainment to be a by-product of the vocal learning mechanisms that are shared by several bird and mammal species, including humans, but that are only weakly developed, or missing entirely, in nonhuman primates. To test this hypothesis we measured auditory event-related potentials (ERPs) in two rhesus monkeys (Macaca mulatta), probing a well-documented component in humans, the mismatch negativity (MMN) to study rhythmic expectation. We demonstrate for the first time in rhesus monkeys that, in response to infrequent deviants in pitch that were presented in a continuous sound stream using an oddball paradigm, a comparable ERP component can be detected with negative deflections in early latencies (Experiment 1). Subsequently we tested whether rhesus monkeys can detect gaps (omissions at random positions in the sound stream; Experiment 2) and, using more complex stimuli, also the beat (omissions at the first position of a musical unit, i.e. the 'downbeat'; Experiment 3). In contrast to what has been shown in human adults and newborns (using identical stimuli and experimental paradigm), the results suggest that rhesus monkeys are not able to detect the beat in music. These findings are in support of the hypothesis that beat induction (the cognitive mechanism that supports the perception of a regular pulse from a varying rhythm) is species-specific and absent in nonhuman primates. In addition, the findings support the auditory timing dissociation hypothesis, with rhesus monkeys being sensitive to rhythmic grouping (detecting the start of a rhythmic group), but not to the induced beat (detecting a regularity from a varying rhythm).

  5. Terahertz generation by beating two Langmuir waves in a warm and collisional plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong

    2015-09-15

    Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasmamore » temperature and the Langmuir wave-length.« less

  6. Predictive Value of Beat-to-Beat QT Variability Index across the Continuum of Left Ventricular Dysfunction: Competing Risks of Non-cardiac or Cardiovascular Death, and Sudden or Non-Sudden Cardiac Death

    PubMed Central

    Tereshchenko, Larisa G.; Cygankiewicz, Iwona; McNitt, Scott; Vazquez, Rafael; Bayes-Genis, Antoni; Han, Lichy; Sur, Sanjoli; Couderc, Jean-Philippe; Berger, Ronald D.; de Luna, Antoni Bayes; Zareba, Wojciech

    2012-01-01

    Background The goal of this study was to determine the predictive value of beat-to-beat QT variability in heart failure (HF) patients across the continuum of left ventricular dysfunction. Methods and Results Beat-to-beat QT variability index (QTVI), heart rate variance (LogHRV), normalized QT variance (QTVN), and coherence between heart rate variability and QT variability have been measured at rest during sinus rhythm in 533 participants of the Muerte Subita en Insuficiencia Cardiaca (MUSIC) HF study (mean age 63.1±11.7; males 70.6%; LVEF >35% in 254 [48%]) and in 181 healthy participants from the Intercity Digital Electrocardiogram Alliance (IDEAL) database. During a median of 3.7 years of follow-up, 116 patients died, 52 from sudden cardiac death (SCD). In multivariate competing risk analyses, the highest QTVI quartile was associated with cardiovascular death [hazard ratio (HR) 1.67(95%CI 1.14-2.47), P=0.009] and in particular with non-sudden cardiac death [HR 2.91(1.69-5.01), P<0.001]. Elevated QTVI separated 97.5% of healthy individuals from subjects at risk for cardiovascular [HR 1.57(1.04-2.35), P=0.031], and non-sudden cardiac death in multivariate competing risk model [HR 2.58(1.13-3.78), P=0.001]. No interaction between QTVI and LVEF was found. QTVI predicted neither non-cardiac death (P=0.546) nor SCD (P=0.945). Decreased heart rate variability (HRV) rather than increased QT variability was the reason for increased QTVI in this study. Conclusions Increased QTVI due to depressed HRV predicts cardiovascular mortality and non-sudden cardiac death, but neither SCD nor excracardiac mortality in HF across the continuum of left ventricular dysfunction. Abnormally augmented QTVI separates 97.5% of healthy individuals from HF patients at risk. PMID:22730411

  7. Cochlear implant users move in time to the beat of drum music.

    PubMed

    Phillips-Silver, Jessica; Toiviainen, Petri; Gosselin, Nathalie; Turgeon, Christine; Lepore, Franco; Peretz, Isabelle

    2015-03-01

    Cochlear implant users show a profile of residual, yet poorly understood, musical abilities. An ability that has received little to no attention in this population is entrainment to a musical beat. We show for the first time that a heterogeneous group of cochlear implant users is able to find the beat and move their bodies in time to Latin Merengue music, especially when the music is presented in unpitched drum tones. These findings not only reveal a hidden capacity for feeling musical rhythm through the body in the deaf and hearing impaired population, but illuminate promising avenues for designing early childhood musical training that can engage implanted children in social musical activities with benefits potentially extending to non-musical domains. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Totally endoscopic sequential arterial coronary artery bypass grafting on the beating heart

    PubMed Central

    Ak, Koray; Wimmer-Greinecker, Gerhard; Dzemali, Omer; Moritz, Anton; Dogan, Selami

    2007-01-01

    A 50-year-old man was referred to the Department of Thoracic and Cardiovascular Surgery at the Johann Wolfgang-Goethe University (Frankfurt, Germany) with angina on exertion. An evaluation revealed critical stenosis involving the proximal portion of the left anterior descending artery and the first diagonal branch. The patient underwent successful sequential grafting of the left internal mammary artery to the left anterior descending artery and the diagonal branch using a totally endoscopic coronary artery bypass grafting technique on the beating heart with a new version of the da Vinci Surgical System (Intuitive Surgical, USA). To the authors’ knowledge, this is the first report in literature to describe sequential arterial off-pump grafting of two anterior wall target vessels using a totally endoscopic technique on the beating heart. PMID:17440646

  9. ciliaFA: a research tool for automated, high-throughput measurement of ciliary beat frequency using freely available software

    PubMed Central

    2012-01-01

    Background Analysis of ciliary function for assessment of patients suspected of primary ciliary dyskinesia (PCD) and for research studies of respiratory and ependymal cilia requires assessment of both ciliary beat pattern and beat frequency. While direct measurement of beat frequency from high-speed video recordings is the most accurate and reproducible technique it is extremely time consuming. The aim of this study was to develop a freely available automated method of ciliary beat frequency analysis from digital video (AVI) files that runs on open-source software (ImageJ) coupled to Microsoft Excel, and to validate this by comparison to the direct measuring high-speed video recordings of respiratory and ependymal cilia. These models allowed comparison to cilia beating between 3 and 52 Hz. Methods Digital video files of motile ciliated ependymal (frequency range 34 to 52 Hz) and respiratory epithelial cells (frequency 3 to 18 Hz) were captured using a high-speed digital video recorder. To cover the range above between 18 and 37 Hz the frequency of ependymal cilia were slowed by the addition of the pneumococcal toxin pneumolysin. Measurements made directly by timing a given number of individual ciliary beat cycles were compared with those obtained using the automated ciliaFA system. Results The overall mean difference (± SD) between the ciliaFA and direct measurement high-speed digital imaging methods was −0.05 ± 1.25 Hz, the correlation coefficient was shown to be 0.991 and the Bland-Altman limits of agreement were from −1.99 to 1.49 Hz for respiratory and from −2.55 to 3.25 Hz for ependymal cilia. Conclusions A plugin for ImageJ was developed that extracts pixel intensities and performs fast Fourier transformation (FFT) using Microsoft Excel. The ciliaFA software allowed automated, high throughput measurement of respiratory and ependymal ciliary beat frequency (range 3 to 52 Hz) and avoids operator error due to selection bias. We have

  10. Attitudes toward Wife Beating: A Cross-Country Study in Asia

    ERIC Educational Resources Information Center

    Rani, Manju; Bonu, Sekhar

    2009-01-01

    Using demographic and health surveys conducted between 1998 and 2001 from seven countries (Armenia, Bangladesh, Cambodia, India, Kazakhstan, Nepal, and Turkey), the study found that acceptance of wife beating ranged from 29% in Nepal, to 57% in India (women only), and from 26% in Kazakhstan, to 56% in Turkey (men only). Increasing wealth predicted…

  11. Spin-polarized exciton quantum beating in hybrid organic-inorganic perovskites

    NASA Astrophysics Data System (ADS)

    Odenthal, Patrick; Talmadge, William; Gundlach, Nathan; Wang, Ruizhi; Zhang, Chuang; Sun, Dali; Yu, Zhi-Gang; Valy Vardeny, Z.; Li, Yan S.

    2017-09-01

    Hybrid organic-inorganic perovskites have emerged as a new class of semiconductors that exhibit excellent performance as active layers in photovoltaic solar cells. These compounds are also highly promising materials for the field of spintronics due to their large and tunable spin-orbit coupling, spin-dependent optical selection rules, and their predicted electrically tunable Rashba spin splitting. Here we demonstrate the optical orientation of excitons and optical detection of spin-polarized exciton quantum beating in polycrystalline films of the hybrid perovskite CH3NH3PbClxI3-x. Time-resolved Faraday rotation measurement in zero magnetic field reveals unexpectedly long spin lifetimes exceeding 1 ns at 4 K, despite the large spin-orbit couplings of the heavy lead and iodine atoms. The quantum beating of exciton states in transverse magnetic fields shows two distinct frequencies, corresponding to two g-factors of 2.63 and -0.33, which we assign to electrons and holes, respectively. These results provide a basic picture of the exciton states in hybrid perovskites, and suggest they hold potential for spintronic applications.

  12. Laser beat wave excitation of terahertz radiation in a plasma slab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Santosh; Parashar, Jetendra, E-mail: j.p.parashar@gmail.com

    2014-10-15

    Terahertz (THz) radiation generation by nonlinear mixing of lasers, obliquely incident on a plasma slab is investigated. Two cases are considered: (i) electron density profile is parabolic but density peak is below the critical density corresponding to the beat frequency, (ii) plasma boundaries are sharp and density is uniform. In both cases, nonlinearity arises through the ponderomotive force that gives rise to electron drift at the beat frequency. In the case of inhomogeneous plasma, non zero curl of the nonlinear current density gives rise to electromagnetic THz generation. In case of uniform plasma, the sharp density variation at the plasmamore » boundaries leads to radiation generation. In a slab width of less than a terahertz wavelength, plasma density one fourth of terahertz critical density, laser intensities ∼10{sup 17 }W/cm{sup 2} at 1 μm, one obtains the THz intensity ∼1 GW/cm{sup 2} at 3 THz radiation frequency.« less

  13. The hospital microbiome project: meeting report for the UK science and innovation network UK-USA workshop ‘beating the superbugs: hospital microbiome studies for tackling antimicrobial resistance’, October 14th 2013

    PubMed Central

    2014-01-01

    The UK Science and Innovation Network UK-USA workshop ‘Beating the Superbugs: Hospital Microbiome Studies for tackling Antimicrobial Resistance’ was held on October 14th 2013 at the UK Department of Health, London. The workshop was designed to promote US-UK collaboration on hospital microbiome studies to add a new facet to our collective understanding of antimicrobial resistance. The assembled researchers debated the importance of the hospital microbial community in transmission of disease and as a reservoir for antimicrobial resistance genes, and discussed methodologies, hypotheses, and priorities. A number of complementary approaches were explored, although the importance of the built environment microbiome in disease transmission was not universally accepted. Current whole genome epidemiological methods are being pioneered in the UK and the benefits of moving to community analysis are not necessarily obvious to the pioneers; however, rapid progress in other areas of microbiology suggest to some researchers that hospital microbiome studies will be exceptionally fruitful even in the short term. Collaborative studies will recombine different strengths to tackle the international problems of antimicrobial resistance and hospital and healthcare associated infections.

  14. Environmental and geochemical record of human-induced changes in C storage during the last millennium in a temperate wetland (Las Tablas de Daimiel National Park, central Spain)

    USGS Publications Warehouse

    Dominguez-Castro, F.; Santisteban, J.I.; Mediavilla, R.; Dean, W.E.; Lopez-Pamo, E.; Gil-Garcia, M. J.; Ruiz-Zapata, M. B.

    2006-01-01

    Las Tablas de Daimiel National Park has experienced many hydrological and ecological modifications through out its history, both of natural as well as anthropogenic origin, which have affected its carbon storage capacity and carbon fluxes. The study of those variations has been carried out by the analysis of its sedimentary record (geochemistry and pollen) and historical data. The natural changes have a wider variation range than the anthropogenic ones, show repetitive patterns and the system reacts readjusting the equilibrium among its components. Anthropogenic effects depend on the direct or indirect impact on the wetlands of change and its intensity. In addition, the anthropogenic impacts have the capacity of breaking the natural balance of the ecosystem and the internal interactions. ?? 2006 The Authors Journal compilation ?? 2006 Blackwell Munksgaard.

  15. Attosecond transient absorption probing of electronic superpositions of bound states in neon. Detection of quantum beats

    DOE PAGES

    Beck, Annelise R; Bernhardt, Birgitta; Warrick, Erika R.; ...

    2014-11-07

    Electronic wavepackets composed of multiple bound excited states of atomic neon lying between 19.6 and 21.5 eV are launched using an isolated attosecond pulse. Individual quantum beats of the wavepacket are detected by perturbing the induced polarization of the medium with a time-delayed few-femtosecond near-infrared (NIR) pulse via coupling the individual states to multiple neighboring levels. All of the initially excited states are monitored simultaneously in the attosecond transient absorption spectrum, revealing Lorentzian to Fano lineshape spectral changes as well as quantum beats. The most prominent beating of the several that were observed was in the spin–orbit split 3d absorptionmore » features, which has a 40 femtosecond period that corresponds to the spin–orbit splitting of 0.1 eV. The few-level models and multilevel calculations confirm that the observed magnitude of oscillation depends strongly on the spectral bandwidth and tuning of the NIR pulse and on the location of possible coupling states.« less

  16. Miniature Surface Plasmon Polariton Amplitude Modulator by Beat Frequency and Polarization Control

    PubMed Central

    Chang, Cheng-Wei; Lin, Chu-En; Yu, Chih-Jen; Yeh, Ting-Tso; Yen, Ta-Jen

    2016-01-01

    The miniaturization of modulators keeps pace for the compact devices in optical applications. Here, we present a miniature surface plasmon polariton amplitude modulator (SPPAM) by directing and interfering surface plasmon polaritons on a nanofabricated chip. Our results show that this SPPAM enables two kinds of modulations. The first kind of modulation is controlled by encoding angular-frequency difference from a Zeeman laser, with a beat frequency of 1.66 MHz; the second of modulation is validated by periodically varying the polarization states from a polarization generator, with rotation frequencies of 0.5–10 k Hz. In addition, the normalized extinction ratio of our plasmonic structure reaches 100. Such miniaturized beat-frequency and polarization-controlled amplitude modulators open an avenue for the exploration of ultrasensitive nanosensors, nanocircuits, and other integrated nanophotonic devices. PMID:27558516

  17. Application of a "relative" procedure to a problem in binaural beat perception.

    DOT National Transportation Integrated Search

    1963-08-01

    The existence of binaural beats has long been considered an indication of binaural interaction for timing and for periodicity of information. In the past, bilaterally matched sound pressure or sensation levels have been used in the investigation of t...

  18. Direct Visualization of Mechanical Beats by Means of an Oscillating Smartphone

    ERIC Educational Resources Information Center

    Giménez, Marcos H.; Salinas, Isabel; Monsoriu, Juan A.; Castro-Palacio, Juan C.

    2017-01-01

    The resonance phenomenon is widely known in physics courses. Qualitatively speaking, resonance takes place in a driven oscillating system whenever the frequency approaches the natural frequency, resulting in maximal oscillatory amplitude. Very closely related to resonance is the phenomenon of mechanical beating, which occurs when the driving and…

  19. Electrically detected crystal orientation dependent spin-Rabi beat oscillation of c-Si(111)/SiO2 interface states

    NASA Astrophysics Data System (ADS)

    Paik, Seoyoung; Lee, Sang-Yun; McCamey, Dane R.; Boehme, Christoph

    2011-12-01

    Electrically detected spin-Rabi beat oscillation of pairs of paramagnetic near interface states at the phosphorous doped (1016 cm-3) Si(111)/SiO2 interface is reported. Due to the g-factor anisotropy of the Pb center (a silicon surface dangling bond), one can tune intrapair Larmor frequency differences (Larmor separations) by orientation of the crystal with regard to an external magnetic field. Since Larmor separation governs the number of beating spin pairs, crystal orientation can control the beat current. This is used to identify spin states that are paired by mutual electronic transitions. The experiments confirm the presence of the previously reported 31P-Pb transition and provide direct experimental evidence of the previously hypothesized Pb-E' center (a near interface SiO2 bulk state) transition.

  20. Beat Keeping in a Sea Lion As Coupled Oscillation: Implications for Comparative Understanding of Human Rhythm.

    PubMed

    Rouse, Andrew A; Cook, Peter F; Large, Edward W; Reichmuth, Colleen

    2016-01-01

    Human capacity for entraining movement to external rhythms-i.e., beat keeping-is ubiquitous, but its evolutionary history and neural underpinnings remain a mystery. Recent findings of entrainment to simple and complex rhythms in non-human animals pave the way for a novel comparative approach to assess the origins and mechanisms of rhythmic behavior. The most reliable non-human beat keeper to date is a California sea lion, Ronan, who was trained to match head movements to isochronous repeating stimuli and showed spontaneous generalization of this ability to novel tempos and to the complex rhythms of music. Does Ronan's performance rely on the same neural mechanisms as human rhythmic behavior? In the current study, we presented Ronan with simple rhythmic stimuli at novel tempos. On some trials, we introduced "perturbations," altering either tempo or phase in the middle of a presentation. Ronan quickly adjusted her behavior following all perturbations, recovering her consistent phase and tempo relationships to the stimulus within a few beats. Ronan's performance was consistent with predictions of mathematical models describing coupled oscillation: a model relying solely on phase coupling strongly matched her behavior, and the model was further improved with the addition of period coupling. These findings are the clearest evidence yet for parity in human and non-human beat keeping and support the view that the human ability to perceive and move in time to rhythm may be rooted in broadly conserved neural mechanisms.

  1. Efficient heart beat detection using embedded system electronics

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Oh, Sechang; Varadan, Vijay K.

    2014-04-01

    The present day bio-technical field concentrates on developing various types of innovative ambulatory and wearable devices to monitor several bio-physical, physio-pathological, bio-electrical and bio-potential factors to assess a human body's health condition without intruding quotidian activities. One of the most important aspects of this evolving technology is monitoring heart beat rate and electrocardiogram (ECG) from which many other subsidiary results can be derived. Conventionally, the devices and systems consumes a lot of power since the acquired signals are always processed on the receiver end. Because of this back end processing, the unprocessed raw data is transmitted resulting in usage of more power, memory and processing time. This paper proposes an innovative technique where the acquired signals are processed by a microcontroller in the front end of the module and just the processed signal is then transmitted wirelessly to the display unit. Therefore, power consumption is considerably reduced and clearer data analysis is performed within the module. This also avoids the need for the user to be educated about usage of the device and signal/system analysis, since only the number of heart beats will displayed at the user end. Additionally, the proposed concept also eradicates the other disadvantages like obtrusiveness, high power consumption and size. To demonstrate the above said factors, a commercial controller board was used to extend the monitoring method by using the saved ECG data from a computer.

  2. Unraveling the nature of coherent beatings in chlorosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dostál, Jakub; Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague; Mančal, Tomáš

    2014-03-21

    Coherent two-dimensional (2D) spectroscopy at 80 K was used to study chlorosomes isolated from green sulfur bacterium Chlorobaculum tepidum. Two distinct processes in the evolution of the 2D spectrum are observed. The first being exciton diffusion, seen in the change of the spectral shape occurring on a 100-fs timescale, and the second being vibrational coherences, realized through coherent beatings with frequencies of 91 and 145 cm{sup −1} that are dephased during the first 1.2 ps. The distribution of the oscillation amplitude in the 2D spectra is independent of the evolution of the 2D spectral shape. This implies that the diffusionmore » energy transfer process does not transfer coherences within the chlorosome. Remarkably, the oscillatory pattern observed in the negative regions of the 2D spectrum (dominated by the excited state absorption) is a mirror image of the oscillations found in the positive part (originating from the stimulated emission and ground state bleach). This observation is surprising since it is expected that coherences in the electronic ground and excited states are generated with the same probability and the latter dephase faster in the presence of fast diffusion. Moreover, the relative amplitude of coherent beatings is rather high compared to non-oscillatory signal despite the reported low values of the Huang-Rhys factors. The origin of these effects is discussed in terms of the vibronic and Herzberg-Teller couplings.« less

  3. A new software for deformation source optimization, the Bayesian Earthquake Analysis Tool (BEAT)

    NASA Astrophysics Data System (ADS)

    Vasyura-Bathke, H.; Dutta, R.; Jonsson, S.; Mai, P. M.

    2017-12-01

    Modern studies of crustal deformation and the related source estimation, including magmatic and tectonic sources, increasingly use non-linear optimization strategies to estimate geometric and/or kinematic source parameters and often consider both jointly, geodetic and seismic data. Bayesian inference is increasingly being used for estimating posterior distributions of deformation source model parameters, given measured/estimated/assumed data and model uncertainties. For instance, some studies consider uncertainties of a layered medium and propagate these into source parameter uncertainties, while others use informative priors to reduce the model parameter space. In addition, innovative sampling algorithms have been developed to efficiently explore the high-dimensional parameter spaces. Compared to earlier studies, these improvements have resulted in overall more robust source model parameter estimates that include uncertainties. However, the computational burden of these methods is high and estimation codes are rarely made available along with the published results. Even if the codes are accessible, it is usually challenging to assemble them into a single optimization framework as they are typically coded in different programing languages. Therefore, further progress and future applications of these methods/codes are hampered, while reproducibility and validation of results has become essentially impossible. In the spirit of providing open-access and modular codes to facilitate progress and reproducible research in deformation source estimations, we undertook the effort of developing BEAT, a python package that comprises all the above-mentioned features in one single programing environment. The package builds on the pyrocko seismological toolbox (www.pyrocko.org), and uses the pymc3 module for Bayesian statistical model fitting. BEAT is an open-source package (https://github.com/hvasbath/beat), and we encourage and solicit contributions to the project. Here, we

  4. Mnemonic Effect of Iconic Gesture and Beat Gesture in Adults and Children: Is Meaning in Gesture Important for Memory Recall?

    ERIC Educational Resources Information Center

    So, Wing Chee; Chen-Hui, Colin Sim; Wei-Shan, Julie Low

    2012-01-01

    Abundant research has shown that encoding meaningful gesture, such as an iconic gesture, enhances memory. This paper asked whether gesture needs to carry meaning to improve memory recall by comparing the mnemonic effect of meaningful (i.e., iconic gestures) and nonmeaningful gestures (i.e., beat gestures). Beat gestures involve simple motoric…

  5. Rolling rhythms in front crawl swimming with six-beat kick.

    PubMed

    Sanders, Ross H; Psycharakis, Stelios G

    2009-02-09

    The purpose of this study was to establish the rhythm characteristics of skilled front crawl swimmers using a six-beat kick. These included the amplitudes of the first three Fourier harmonics (H1, H2, H3) and their percent contributions to power contained in the angular displacement signals of the shoulders, hips, knees, and ankles with respect to the longitudinal axis in line with the swimming direction. Three-dimensional video data of seven national/international level swimmers were collected during simulated 200m front crawl races in which swimmers maintained six-beat kicking patterns. Swimmers differed in all variables but had small variability across the four 50m laps. Modest changes occurred during the 200m, with the exception of shoulder roll, which remained constant and was represented almost entirely by a single sinusoid (H1). Changes across laps reached significance for swimming speed, stroke rate, hip roll, and H3 wave velocity between the knee and ankle. A H3 body wave of moderate and increasing velocity travelled caudally from hip to ankle. In the light of existing knowledge of aquatic locomotion this was compatible with the goal of generating propulsion in an efficient manner.

  6. Source analysis of electrophysiological correlates of beat induction as sensory-guided action

    PubMed Central

    Todd, Neil P. M.; Lee, Christopher S.

    2015-01-01

    In this paper we present a reanalysis of electrophysiological data originally collected to test a sensory-motor theory of beat induction (Todd et al., 2002; Todd and Seiss, 2004; Todd and Lee, 2015). The reanalysis is conducted in the light of more recent findings and in particular the demonstration that auditory evoked potentials contain a vestibular dependency. At the core of the analysis is a model which predicts brain dipole source current activity over time in temporal and frontal lobe areas during passive listening to a rhythm, or active synchronization, where it dissociates the frontal activity into distinct sources which can be identified as respectively pre-motor and motor in origin. The model successfully captures the main features of the rhythm in showing that the metrical structure is manifest in an increase in source current activity during strong compared to weak beats. In addition the outcomes of modeling suggest that: (1) activity in both temporal and frontal areas contribute to the metrical percept and that this activity is distributed over time; (2) transient, time-locked activity associated with anticipated beats is increased when a temporal expectation is confirmed following a previous violation, such as a syncopation; (3) two distinct processes are involved in auditory cortex, corresponding to tangential and radial (possibly vestibular dependent) current sources. We discuss the implications of these outcomes for the insights they give into the origin of metrical structure and the power of syncopation to induce movement and create a sense of groove. PMID:26321991

  7. Delaware Middle Schools Beating the Odds. Technical Report Number T2010.4

    ERIC Educational Resources Information Center

    Grusenmeyer, Linda; Fifield, Steve; Murphy, Aideen; Nian, Qinghua; Qian, Xiaoyu

    2010-01-01

    The investigation identified Delaware public and charter middle schools across the state which outperformed other Delaware middle schools with similar student demographic profiles. Teachers and administrators at six of these "Beating the Odds" schools and at six comparison middle schools were surveyed regarding their schools…

  8. Prion protein- and cardiac troponin T-marked interstitial cells from the adult myocardium spontaneously develop into beating cardiomyocytes

    PubMed Central

    Omatsu-Kanbe, Mariko; Nishino, Yuka; Nozuchi, Nozomi; Sugihara, Hiroyuki; Matsuura, Hiroshi

    2014-01-01

    Atypically-shaped cardiomyocytes (ACMs) constitute a novel subpopulation of beating heart cells found in the cultures of cardiac myocyte-removed crude fraction cells obtained from adult mouse cardiac ventricles. Although ~500 beating ACMs are observed under microscope in the cell cultures obtained from the hearts of either male or female mice, the origin of these cells in cardiac tissue has yet to be elucidated due to the lack of exclusive markers. In the present study, we demonstrate the efficacy of cellular prion protein (PrP) as a surface marker of ACMs. Cells expressing PrP at the plasma membrane in the culture of the crude fraction cells were found to develop into beating ACMs by themselves or fuse with each other to become larger multinuclear beating ACMs. Combining PrP with a cardiac-specific contractile protein cardiac troponin T (cTnT) allowed us to identify native ACMs in the mouse cardiac ventricles as either clustered or solitary cells. PrP- and cTnT-marked cells were also found in the adult, even aged, human cardiac ventricles. These findings suggest that interstitial cells marked by PrP and cTnT, native ACMs, exhibit life-long survival in the cardiac ventricles of both mice and humans. PMID:25466571

  9. Make the call, don't miss a beat: Heart Attack Information for Women

    MedlinePlus

    ... Other resources Learn more about heart disease and heart attacks. Make the Call, Don't Miss a Beat ... symptoms Learn the 7 most common signs of heart attack in men and women. Chest pain or discomfort " ...

  10. Neurocognitive functions after beating heart mitral valve replacement without cross-clamping the aorta.

    PubMed

    Cicekcioglu, Ferit; Ozen, Anil; Tuluce, Hicran; Tutun, Ufuk; Parlar, Ali Ihsan; Kervan, Umit; Karakas, Sirel; Katircioglu, Salih Fehmi

    2008-01-01

    Although neurologic outcome after cardiac surgery is well-established, neurocognitive functions after beating heart mitral valve replacement still needs to be elucidated. The aim of this study was to compare preoperative and postoperative neurocognitive functions in patients who underwent beating heart mitral valve replacement on cardiopulmonary bypass without cross-clamping the aorta. The prospective study included 25 consecutive patients who underwent mitral valve replacement. The operations were carried out on a beating heart method using normothermic cardiopulmonary bypass without cross-clamping the aorta. All patients were evaluated preoperatively (E1) and postoperatively (at sixth day [E2] and second month [E3]) for neurocognitive functions. Neurologic deficit was not observed in the postoperative period. Comparison of the neurocognitive test results, between the preoperative and postoperative assessment for both hemispheric cognitive functions, demonstrated that no deterioration occurred. In the three subsets of left hemispheric cognitive function test evaluation, total verbal learning, delayed recall, and recognition, significant improvements were detected at the postoperative second month (E3) compared to the preoperative results (p = 0.005, 0.01, and 0.047, respectively). Immediate recall and retention were significantly improved within the first postoperative week (E2) when compared to the preoperative results (p = 0.05 and 0.05, respectively). The technique of mitral valve replacement with normothermic cardiopulmonary bypass without cross-clamping of the aorta may be safely used for majority of patients requiring mitral valve replacement without causing deterioration in neurocognitive functions.

  11. Rhythm and Books: Feel the Beat! 1996 Florida Library Youth Program.

    ERIC Educational Resources Information Center

    Rupert, Libby, Comp.; And Others

    The Florida Library Youth Program is an extension of the Florida Summer Library Program and has emerged in response to a need to provide programs for school-age children at times other than the traditional summer vacation. The theme, "Rhythm and Books--Feel the Beat!," focuses on music and rhythms that abound around children in the…

  12. Carrier-envelope phase-dependent atomic coherence and quantum beats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Ying; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071; Yang Xiaoxue

    2007-07-15

    It is shown that the carrier-envelope phase (CEP) of few-cycle laser pulses has profound effects on the bound-state atomic coherence even in the weak-field regime where both tunneling and multiphoton ionization hardly take place. The atomic coherence thus produced is shown to be able to be mapped onto the CEP-dependent signal of quantum beats (and other quantum-interference phenomena) and hence might be used to extract information about and ultimately to measure the carrier-envelope phase.

  13. Esmolol is noninferior to metoprolol in achieving a target heart rate of 65 beats/min in patients referred to coronary CT angiography: a randomized controlled clinical trial.

    PubMed

    Maurovich-Horvat, Pál; Károlyi, Mihály; Horváth, Tamás; Szilveszter, Bálint; Bartykowszki, Andrea; Jermendy, Ádám L; Panajotu, Alexisz; Celeng, Csilla; Suhai, Ferenc I; Major, Gyöngyi P; Csobay-Novák, Csaba; Hüttl, Kálmán; Merkely, Béla

    2015-01-01

    Coronary CT angiography (CTA) is an established tool to rule out coronary artery disease. Performance of coronary CTA is highly dependent on patients' heart rates (HRs). Despite widespread use of β-blockers for coronary CTA, few studies have compared various agents used to achieve adequate HR control. We sought to assess if the ultrashort-acting β-blocker intravenous esmolol is at least as efficacious as the standard of care intravenous metoprolol for HR control during coronary CTA. Patients referred to coronary CTA with a HR >65 beats/min despite oral metoprolol premedication were enrolled in the study. We studied 412 patients (211 male; mean age, 57 ± 12 years). Two hundred four patients received intravenous esmolol, and 208 received intravenous metoprolol with a stepwise bolus administration protocol. HR and blood pressure were recorded at arrival, before, during, immediately after, and 30 minutes after the coronary CTA scan. Mean HRs of the esmolol and metoprolol groups were similar at arrival (78 ± 13 beats/min vs 77 ± 12 beats/min; P = .65) and before scan (68 ± 7 beats/min vs 69 ± 7 beats/min; P = .60). However, HR during scan was lower in the esmolol group vs the metoprolol group (58 ± 6 beats/min vs 61 ± 7 beats/min; P < .0001), whereas HRs immediately and 30 minutes after the scan were higher in the esmolol group vs the metoprolol group (68 ± 7 beats/min vs 66 ± 7 beats/min; P = .01 and 65 ± 8 beats/min vs 63 ± 8 beats/min; P < .0001; respectively). HR ≤ 65 beats/min was reached in 182 of 204 patients (89%) who received intravenous esmolol vs 162 of 208 of the patients (78%) who received intravenous metoprolol (P < .05). Of note, hypotension (systolic BP <100 mm Hg) was observed right after the scan in 19 patients (9.3%) in the esmolol group and in 8 patients (3.8%) in the metoprolol group (P < .05), whereas only 5 patients (2.5%) had hypotension 30 minutes after the scan in the esmolol group compared to 8 patients (3.8%) in the metoprolol

  14. From Cat's Cradle to Beat the Reaper: Getting Evidence-Based Treatments into Practice In Spite of Ourselves

    PubMed Central

    Sorensen, James L.

    2011-01-01

    Kurt Vonnegut was one of the most influential novelists of the late 20th Century. His wry views of people and organizations are applicable to the today's efforts to use science to improve the effectiveness of substance use treatment programs. His 1963 book, Cat's Cradle pointed to the potentially disastrous consequences of the development of science for science's sake. Moving to more current viewpoints, in 2009 the young writer and medical doctor Josh Bazell published Beat the Reaper, a novel that discusses modern medical care and pharmaceutical treatments with sarcasm and wit. Currently we are witnessing many developments to incorporate evidence-based practices into addiction treatment, ranging from Institute of Medicine overviews to the organization the Substance Abuse and Mental Health Services Administration, fielding the National Registry of National Registry of Evidence-based Programs and Practices for preventing and treating substance abuse and mental health disorders, legislative initiatives, efforts to upgrade the treatment workforce and, most recently, health care reform. There are signs that these and other efforts are upgrading the effectiveness of treatments for addiction. Yet the checks and balances of every effort to create change make for a field that shows halting and peripatetic development. “Top-down” reforms are watered down by “bottom-up” approaches, and vice-versa. Several concrete steps can be taken to improve the magnitude and speed of change in the field. We cannot change human nature, but we can improve addiction treatment. PMID:21330063

  15. An evaluation of the application of treated sewage effluents in Las Tablas de Daimiel National Park, Central Spain

    NASA Astrophysics Data System (ADS)

    Navarro, Vicente; García, Beatriz; Sánchez, David; Asensio, Laura

    2011-04-01

    SummaryAt the present time there is not enough information available to develop a quantitative model on how inundation takes place in the 1490 ha area of Tablas de Daimiel National Park (Central Spain) located upstream of Morenillo Dam. Given that it is the most important area in the Park from an ecological standpoint, this is a major concern, as it has not been possible to assess the potential effectiveness of the interventions geared towards improving its current state. As a result, it is not feasible to simulate the hydrologic response to the application of treated sewage effluents, an initiative recently implemented by the Public Administration responsible for water management in the Guadiana River Basin, where the Park is located. To help solve this problem, a simplified model of the hydrologic behaviour of the system has been developed focusing on the characterisation of the main trends of the inundation process. Field data from 12 drying processes were used to identify the model parameters. Later, the evolution of the system was examined after the application of treated sewage effluents, assuming the hypothesis of a dry climate. The results show that the 10 Mm 3 of available effluents is sufficient to improve from 2 ha to 60 ha the inundation condition of the areas considered to be high-priority. This therefore demonstrates that, from a hydrologic point of view, it is highly advisable to use treated sewage effluents.

  16. Microvolt T-wave alternans and beat-to-beat variability of repolarization during early postischemic remodeling in a pig heart.

    PubMed

    Floré, Vincent; Claus, Piet; Antoons, Gudrun; Oosterhoff, Peter; Holemans, Patricia; Vos, Marc A; Sipido, Karin R; Willems, Rik

    2011-07-01

    Repolarization variability is considered to predict sudden cardiac death. T-wave alternans (TWA) has been the subject of exhaustive research, whereas beat-to-beat variability of repolarization (BVR) is a new parameter that possibly predicts proarrhythmia. How these parameters interact has not been tested. The purpose of this study was to compare TWA and BVR as predictors of proarrhythmic substrate early after myocardial infarction (MI). In nine pigs, MI was induced by 1-hour occlusion of the left anterior descending coronary artery. Cardiac magnetic resonance imaging was performed at day 21. Six sham pigs served as control. Spectral TWA was tested during right atrial pacing before induction of MI and after 21 days. BVR was calculated from 60 consecutive QT intervals. Magnetic resonance imaging showed transmural MI. TWA was negative in all pigs at clinical threshold rate and equally present in MI versus sham pigs at higher rates (170 bpm: 55% vs 50% positive TWA). In MI pigs, BVR of QT intervals increased significantly during acute ischemia (2.44 ± 0.43 ms vs 3.55 ± 0.41 ms, P <.01) and even more on day 21 (5.80 ± 1.12 ms), but it differed significantly from sham (2.14 ± 0.54 ms, P <.01). A clinical ventricular tachycardia induction protocol was positive in 2 of 8 MI pigs and in none of 6 shams. In early remodeling after MI, BVR at intrinsic heart rate was a consistent phenomenon, whereas TWA during atrial pacing or baseline QT-interval changes were not. TWA and BVR could reflect different post-MI remodeling processes. BVR may be a new technique for predicting a potentially proarrhythmic substrate in the early postinfarction period. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  17. On the mechanism of transverse-mode beatings in a Fabry - Perot laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, N; Ledenev, V I

    2010-06-23

    The mechanism of emergence of fundamental-mode and first-mode beatings in the case of a step-wise increase in the pump rate is studied under the stationary single-mode lasing conditions. Investigation is based on the numerical solution of nonstationary wave equations in a resonator in the quasi-optic approximation and on the equation for a relaxation-type medium as well as on the use of the first two Hermite - Gaussian polynomials {psi}{sub 0,1}(x) to obtain the distribution projections I{sub 0,1}(t), g{sub 0,1}(t) of the radiation intensity and gain, respectively. It is shown that the transverse-mode beatings emerge at early stages of two-mode lasing,more » the appearance of radiation intensity oscillations in the active medium preceding the development of the gain oscillations. The time of the passage of two-mode lasing to the stationary regime is determined. The phase shift {pi}/2 between the oscillations I{sub 1}(t) and g{sub 1}(t) is found for the established beating regime and the modulation depth {Delta}I averaged over the output aperture of the radiation intensity in the established two-mode regime is shown to be proportional to the pump rate excess k over the single-mode lasing threshold. A scheme for controlling the mode composition of laser radiation is proposed, which is based on the rules for determining I{sub 0,1}(t) by the sensor signals. The efficiency of the scheme is studied. The scheme employs two field intensity sensors mounted inside the resonator behind the output aperture. (resonators. modes)« less

  18. Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirenko, Oksana, E-mail: oksana.sirenko@moldev.com; Cromwell, Evan F., E-mail: evan.cromwell@moldev.com; Crittenden, Carole

    2013-12-15

    Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes show promise for screening during early drug development. Here, we tested a hypothesis that in vitro assessment of multiple cardiomyocyte physiological parameters enables predictive and mechanistically-interpretable evaluation of cardiotoxicity in a high-throughput format. Human iPSC-derived cardiomyocytes were exposed for 30 min or 24 h to 131 drugs, positive (107) and negative (24) for in vivo cardiotoxicity, in up to 6 concentrations (3 nM to 30 uM) in 384-well plates. Fast kinetic imaging was used to monitor changes in cardiomyocyte function using intracellular Ca{sup 2+} flux readouts synchronous with beating, and cell viability. Amore » number of physiological parameters of cardiomyocyte beating, such as beat rate, peak shape (amplitude, width, raise, decay, etc.) and regularity were collected using automated data analysis. Concentration–response profiles were evaluated using logistic modeling to derive a benchmark concentration (BMC) point-of-departure value, based on one standard deviation departure from the estimated baseline in vehicle (0.3% dimethyl sulfoxide)-treated cells. BMC values were used for cardiotoxicity classification and ranking of compounds. Beat rate and several peak shape parameters were found to be good predictors, while cell viability had poor classification accuracy. In addition, we applied the Toxicological Prioritization Index (ToxPi) approach to integrate and display data across many collected parameters, to derive “cardiosafety” ranking of tested compounds. Multi-parameter screening of beating profiles allows for cardiotoxicity risk assessment and identification of specific patterns defining mechanism-specific effects. These data and analysis methods may be used widely for compound screening and early safety evaluation in drug development. - Highlights: • Induced pluripotent stem cell-derived cardiomyocytes are promising in vitro models. • We tested if

  19. Beat the Street: A Pilot Evaluation of a Community-Wide Gamification-Based Physical Activity Intervention.

    PubMed

    Harris, Marc Ashley

    2018-04-19

    There is a plethora of published research reporting the wealth and breadth of biopsychosocial benefits of physical activity; however, a recent Cochrane systematic review concluded insufficient evidence for current population level physical activity interventions, citing scalability as a major contributory factor, with many of the interventions failing to reach a substantial proportion of the community. The current study aimed to conduct a pilot evaluation of a technology-enabled, gamification-based intervention called Beat the Street and sought to examine the impact of the Beat the Street intervention on self-reported physical activity. In total, n = 329 people completed the International Physical Activity Questionnaire Short Form (I-PAQ-SF) in full at baseline (before the intervention) and follow-up (immediately following the 7-week intervention). Overall, participants increased their weekly walking by +180 minutes per week (P < 0.001) and their weekly physical activity by +335 minutes per week (P < 0001). Vigorous activity increased by +48 minutes per week (P = 0.004) and moderate activity increased by +60 minutes per week (P < 0.001). The findings provide preliminary evidence that the Beat the Street intervention may be a promising approach to increasing physical activity at a community-wide level and warrants further investigation.

  20. Rhythmic motor entrainment in children with speech and language impairments: tapping to the beat.

    PubMed

    Corriveau, Kathleen H; Goswami, Usha

    2009-01-01

    In prior work (Corriveau et al., 2007), we showed that children with speech and language impairments (SLI) were significantly less sensitive than controls to two auditory cues to rhythmic timing, amplitude envelope rise time and duration. Here we explore whether rhythmic problems extend to rhythmic motor entrainment. Tapping in synchrony with a beat has been described as the simplest rhythmic act that humans perform. We explored whether tapping to a beat would be impaired in children for whom auditory rhythmic timing is impaired. Children with SLI were indeed found to be impaired in a range of measures of paced rhythmic tapping, but were not equally impaired in tapping in an unpaced control condition requiring an internally-generated rhythm. The severity of impairment in paced tapping was linked to language and literacy outcomes.

  1. A new beating-heart mitral and aortic valve assessment model with implications for valve intervention training.

    PubMed

    Bouma, Wobbe; Jainandunsing, Jayant S; Khamooshian, Arash; van der Harst, Pim; Mariani, Massimo A; Natour, Ehsan

    2017-02-01

    A thorough understanding of mitral and aortic valve motion dynamics is essential in mastering the skills necessary for performing successful valve intervention (open or transcatheter repair or replacement). We describe a reproducible and versatile beating-heart mitral and aortic valve assessment and valve intervention training model in human cadavers. The model is constructed by bilateral ligation of the pulmonary veins, ligation of the supra-aortic arteries, creating a shunt between the descending thoracic aorta and the left atrial appendage with a vascular prosthesis, anastomizing a vascular prosthesis to the apex and positioning an intra-aortic balloon pump (IABP) in the vascular prosthesis, cross-clamping the descending thoracic aorta, and finally placing a fluid line in the shunt prosthesis. The left ventricle is filled with saline to the desired pressure through the fluid line, and the IABP is switched on and set to a desired frequency (usually 60-80 bpm). Prerepair valve dynamic motion can be studied under direct endoscopic visualization. After assessment, the IABP is switched off, and valve intervention training can be performed using standard techniques. This high-fidelity simulation model has known limitations, but provides a realistic environment with an actual beating (human) heart, which is of incremental value. The model provides a unique opportunity to fill a beating heart with saline and to study prerepair mitral and aortic valve dynamic motion under direct endoscopic visualization. The entire set-up provides a versatile beating-heart mitral and aortic valve assessment model, which may have important implications for future valve intervention training. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  2. Binaural Beat Technology: A Complementary Path to Post Deployment Wellness

    DTIC Science & Technology

    2017-03-16

    for at least three consecutive nights per week, for four weeks. A 20-minute pre and post -intervention heartrate variability (HRV) stress test and...four weeks. A 20-minute pre and post -intervention heartrate variability (HRV) stress test and daily perceived stress assessed intervention efficacy...DATES COVERED (Jul 7 2012 – Dec 31 2016) Binaural Beat Technology: A Complementary Path to Post Deployment Wellness 5a. CONTRACT NUMBER N/A 5b

  3. Risk of iron overload is decreased in beating heart coronary artery surgery compared to conventional bypass.

    PubMed

    Mumby, S; Koh, T W; Pepper, J R; Gutteridge, J M

    2001-11-29

    Conventional cardiopulmonary bypass surgery (CCPB) increases the iron loading of plasma transferrin often to a state of plasma iron overload, with the presence of low molecular mass iron. Such iron is a potential risk factor for oxidative stress and microbial virulence. Here we assess 'off-pump' coronary artery surgery on the beating heart for changes in plasma iron chemistry. Seventeen patients undergoing cardiac surgery using the 'Octopus' myocardial wall stabilisation device were monitored at five time points for changes in plasma iron chemistry. This group was further divided into those (n=9) who had one- or two- (n=8) vessel grafts, and compared with eight patients undergoing conventional coronary artery surgery. Patients undergoing beating heart surgery had significantly lower levels of total plasma non-haem iron, and a decreased percentage saturation of their transferrin at all time points compared to conventional bypass patients. Plasma iron overload occurred in only one patient undergoing CCPB. Beating heart surgery appears to decrease red blood cell haemolysis, and tissue damage during the operative procedures and thereby significantly decreases the risk of plasma iron overload associated with conventional bypass.

  4. Associations between wife-beating and fetal and infant death: impressions from a survey in rural India.

    PubMed

    Jejeebhoy, S J

    1998-09-01

    This report examines the linkages between wife-beating and one health-related consequence for women, their experience of fetal and infant mortality. Community-based data are used drawn from women surveyed in two culturally distinct sites of rural India: Uttar Pradesh in the north, in which gender relations are highly stratified, and Tamil Nadu in the south, in which they are more egalitarian. Results suggest that wife-beating is deeply entrenched, that attitudes uniformly justify wife-beating, and that few women can escape an abusive marriage. They also suggest that the health consequences of domestic violence--in terms of pregnancy loss and infant mortality--are considerable and that Indian women's experience of infant and fetal mortality is powerfully conditioned by the strength of the patriarchal social system. Results are tentative because of data limitations, but they are consistent and strong enough to warrant concern. They argue for the integration of services to identify, refer, and prevent domestic violence in the primary or reproductive health programs of the country and for the safe motherhood programs to be particularly vigilant, sensitive, and responsive to the conditions of battered women during pregnancy and the postpartum period.

  5. Reports of police beating and associated harms among people who inject drugs in Bangkok, Thailand: a serial cross-sectional study

    PubMed Central

    2013-01-01

    Background Thailand has for years attempted to address illicit drug use through aggressive drug law enforcement. Despite accounts of widespread violence by police against people who inject drugs (IDU), the impact of police violence has not been well investigated. In the wake of an intensified police crackdown in 2011, we sought to identify the prevalence and correlates of experiencing police beating among IDU in Bangkok. Methods Community-recruited samples of IDU in Bangkok were surveyed between June 2009 and October 2011. Multivariate log-binomial regression was used to identify factors associated with reporting police beating. Results In total, 639 unique IDU participated in this serial cross-sectional study, with 240 (37.6%) participants reporting that they had been beaten by police. In multivariate analyses, reports of police beating were associated with male gender (Adjusted Prevalence Ratio [APR] = 4.43), younger age (APR = 1.69), reporting barriers to accessing healthcare (APR = 1.23), and a history of incarceration (APR = 2.51), compulsory drug detention (APR = 1.22) and syringe sharing (APR = 1.44), and study enrolment in 2011 (APR = 1.27) (all p < 0.05). Participants most commonly reported police beating during the interrogation process. Conclusions A high proportion of IDU in Bangkok reported having been beaten by the police. Experiencing police beating was independently associated with various indicators of drug-related harm. These findings suggest that the over-reliance on enforcement-based approaches is contributing to police-perpetrated abuses and the perpetuation of the HIV risk behaviour among Thai IDU. PMID:23924324

  6. Reports of police beating and associated harms among people who inject drugs in Bangkok, Thailand: a serial cross-sectional study.

    PubMed

    Hayashi, Kanna; Ti, Lianping; Csete, Joanne; Kaplan, Karyn; Suwannawong, Paisan; Wood, Evan; Kerr, Thomas

    2013-08-07

    Thailand has for years attempted to address illicit drug use through aggressive drug law enforcement. Despite accounts of widespread violence by police against people who inject drugs (IDU), the impact of police violence has not been well investigated. In the wake of an intensified police crackdown in 2011, we sought to identify the prevalence and correlates of experiencing police beating among IDU in Bangkok. Community-recruited samples of IDU in Bangkok were surveyed between June 2009 and October 2011. Multivariate log-binomial regression was used to identify factors associated with reporting police beating. In total, 639 unique IDU participated in this serial cross-sectional study, with 240 (37.6%) participants reporting that they had been beaten by police. In multivariate analyses, reports of police beating were associated with male gender (Adjusted Prevalence Ratio [APR] = 4.43), younger age (APR = 1.69), reporting barriers to accessing healthcare (APR = 1.23), and a history of incarceration (APR = 2.51), compulsory drug detention (APR = 1.22) and syringe sharing (APR = 1.44), and study enrolment in 2011 (APR = 1.27) (all p < 0.05). Participants most commonly reported police beating during the interrogation process. A high proportion of IDU in Bangkok reported having been beaten by the police. Experiencing police beating was independently associated with various indicators of drug-related harm. These findings suggest that the over-reliance on enforcement-based approaches is contributing to police-perpetrated abuses and the perpetuation of the HIV risk behaviour among Thai IDU.

  7. A novel one-shot circular stapler closure for atrial septal defect in a beating-heart porcine model.

    PubMed

    Tarui, Tatsuya; Tomita, Shigeyuki; Ishikawa, Norihiko; Ohtake, Hiroshi; Watanabe, Go

    2015-02-01

    In surgical atrial septal defect (ASD) closure, there are no techniques or devices that can close the ASD accurately in a short time under a beating heart. We have developed a simple and automatic ASD closure technique using a circular stapler. This study assessed the feasibility and efficacy of a new circular stapler closure for ASD. Under a continuous beating heart, hand-sewn patch plasty ASD closure was performed in 6 pigs (group A) and circular stapler ASD closure was performed in 6 pigs (group B). The time to close the ASD and the effectiveness of the closure were compared. Closure was significantly faster in group B (10.5 ± 1.0 seconds) than in group A (664 ± 10 seconds; p < 0.05). There was no leakage at the closure site, and sufficient tolerance was confirmed. A circular stapler can be used to treat ASD faster than hand-sewn patch plasty, with sufficient pressure tolerance in a beating heart porcine model. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Brain responses to 40-Hz binaural beat and effects on emotion and memory.

    PubMed

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2017-10-01

    Gamma oscillation plays a role in binding process or sensory integration, a process by which several brain areas beside primary cortex are activated for higher perception of the received stimulus. Beta oscillation is also involved in interpreting received stimulus and occurs following gamma oscillation, and this process is known as gamma-to-beta transition, a process for neglecting unnecessary stimuli in surrounding environment. Gamma oscillation also associates with cognitive functions, memory and emotion. Therefore, modulation of the brain activity can lead to manipulation of cognitive functions. The stimulus used in this study was 40-Hz binaural beat because binaural beat induces frequency following response. This study aimed to investigate the neural oscillation responding to the 40-Hz binaural beat and to evaluate working memory function and emotional states after listening to that stimulus. Two experiments were developed based on the study aims. In the first experiment, electroencephalograms were recorded while participants listened to the stimulus for 30min. The results suggested that frontal, temporal, and central regions were activated within 15min. In the second experiment, word list recall task was conducted before and after listening to the stimulus for 20min. The results showed that, after listening, the recalled words were increase in the working memory portion of the list. Brunel Mood Scale, a questionnaire to evaluate emotional states, revealed changes in emotional states after listening to the stimulus. The emotional results suggested that these changes were consistent with the induced neural oscillations. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effect of Cilia Beat Frequency on Muco-ciliary Clearance

    PubMed Central

    Sedaghat, M.H.; Shahmardan, M.M.; Norouzi, M.; Heydari, M.

    2016-01-01

    Background: The airway surface liquid (ASL), which is a fluid layer coating the interior epithelial surface of the bronchi and bronchiolesis, plays an important defensive role against foreign particles and chemicals entering lungs. Objective: Numerical investigation has been employed to solve two-layer model consisting of mucus layer as a viscoelastic fluid and periciliary liquid layer as a Newtonian fluid to study the effects of cilia beat frequency (CBF) at various amounts of mucus properties on muco-ciliary transport problem. Methods: Hybrid finite difference-lattice Boltzmann-method (FB-LBM) has been used to solve the momentum equations and to simulate cilia forces, and also the PCL-mucus interface more accurately, immersed boundary method (IBM) has been employed. The main contribution of the current study is to use an Oldroyd-B model as the constitutive equation of mucus. Results: Our results show that increasing CBF and decreasing mucus viscosity ratio have great effects on mucus flow, but the effect of viscosity ratio is more significant. The results also illustrate that the relation between cilia beat frequency and mean mucus velocity is almost linear and it has similar behavior at different values of viscosity ratio. Conclusion: Numerical investigation based on hybrid IB-FD-LBM has been used to study the effect of CBF at various mounts of mucus viscosity ratio on the muco-ciliary clearance. The results showed that the effect of viscosity ratio on the muco-ciliary transport process is more significant compared with CBF. PMID:28144596

  10. Cardioscopic tricuspid valve repair in a beating ovine heart.

    PubMed

    Umakanthan, Ramanan; Ghanta, Ravi K; Rangaraj, Aravind T; Lee, Lawrence S; Laurence, Rita G; Fox, John A; Mihaljevic, Tomislav; Bolman, Ralph M; Cohn, Lawrence H; Chen, Frederick Y

    2009-04-01

    Open heart surgery is commonly associated with cardiopulmonary bypass and cardioplegic arrest. The attendant risks of cardiopulmonary bypass may be prohibitive in high-risk patients. We present a novel endoscopic technique of performing tricuspid valve repair without cardiopulmonary bypass in a beating ovine heart. Six sheep underwent sternotomy and creation of a right heart shunt to eliminate right atrial and right ventricular blood for clear visualization. The superior vena cava, inferior vena cava, pulmonary artery, and coronary sinus were cannulated, and the blood flow from these vessels was shunted into the pulmonary artery via a roller pump. The posterior leaflet of the tricuspid valve was partially excised to create tricuspid regurgitation, which was confirmed by Doppler echocardiography. A 7.0-mm fiberoptic videoscope was inserted into the right atrium to visualize the tricuspid valve. Under cardioscopic vision, an endoscopic needle driver was inserted into the right atrium, and a concentric stitch was placed along the posterior annulus to bicuspidize the tricuspid valve. Doppler echocardiography confirmed reduction of tricuspid regurgitation. All animals successfully underwent and tolerated the surgical procedure. The right heart shunt generated a bloodless field, facilitating cardioscopic tricuspid valve visualization. The endoscopic stitch resulted in annular plication and functional tricuspid valve bicuspidization, significantly reducing the degree of tricuspid regurgitation. Cardioscopy enables less invasive, beating-heart tricuspid valve surgery in an ovine model. This technique may be useful in performing right heart surgery without cardiopulmonary bypass in high-risk patients.

  11. Particulate matter in cigarette smoke increases ciliary axoneme beating through mechanical stimulation.

    PubMed

    Navarrette, Chelsea R; Sisson, Joseph H; Nance, Elizabeth; Allen-Gipson, Diane; Hanes, Justin; Wyatt, Todd A

    2012-06-01

    The lung's ability to trap and clear foreign particles via the mucociliary elevator is an important mechanism for protecting the lung against respirable irritants and microorganisms. Although cigarette smoke (CS) exposure and particulate inhalation are known to alter mucociliary clearance, little is known about how CS and nanoparticles (NPs) modify cilia beating at the cytoskeletal infrastructure, or axonemal, level. We used a cell-free model to introduce cigarette smoke extract (CSE) and NPs with variant size and surface chemistry to isolated axonemes and measured changes in ciliary motility. We hypothesized that CSE would alter cilia beating and that alterations in ciliary beat frequency (CBF) due to particulate matter would be size- and surface chemistry-dependent. Demembranated axonemes were isolated from ciliated bovine tracheas and exposed to adenosine triphosphate (ATP) to initiate motility. CBF was measured in response to 5% CSE, CSE filtrate, and carboxyl-modified (COOH), sulphate (SO(4))-modified (sulfonated), or PEG-coated polystyrene (PS) latex NPs ranging in size from 40 nm to 500 nm. CSE concentrations as low as 5% resulted in rapid, significant stimulation of CBF (p<0.05 vs. baseline control). Filtering CSE through a 0.2-μm filter attenuated this effect. Introduction of sulphate-modified PS beads ~300 nm in diameter resulted in a similar increase in CBF above baseline ATP levels. Uncharged, PEG-coated beads had no effect on CBF regardless of size. Similarly, COOH-coated particles less than 200 nm in diameter did not alter ciliary motility. However, COOH-coated PS particles larger than 300 nm increased CBF significantly and increased the number of motile points. These data show that NPs, including those found in CSE, mechanically stimulate axonemes in a size- and surface chemistry-dependent manner. Alterations in ciliary motility due to physicochemical properties of NPs may be important for inhalational lung injury and efficient drug delivery of

  12. Noninvasive Fetal Electrocardiography Part II: Segmented-Beat Modulation Method for Signal Denoising

    PubMed Central

    Agostinelli, Angela; Sbrollini, Agnese; Burattini, Luca; Fioretti, Sandro; Di Nardo, Francesco; Burattini, Laura

    2017-01-01

    Background: Fetal well-being evaluation may be accomplished by monitoring cardiac activity through fetal electrocardiography. Direct fetal electrocardiography (acquired through scalp electrodes) is the gold standard but its invasiveness limits its clinical applicability. Instead, clinical use of indirect fetal electrocardiography (acquired through abdominal electrodes) is limited by its poor signal quality. Objective: Aim of this study was to evaluate the suitability of the Segmented-Beat Modulation Method to denoise indirect fetal electrocardiograms in order to achieve a signal-quality at least comparable to the direct ones. Method: Direct and indirect recordings, simultaneously acquired from 5 pregnant women during labor, were filtered with the Segmented-Beat Modulation Method and correlated in order to assess their morphological correspondence. Signal-to-noise ratio was used to quantify their quality. Results: Amplitude was higher in direct than indirect fetal electrocardiograms (median:104 µV vs. 22 µV; P=7.66·10-4), whereas noise was comparable (median:70 µV vs. 49 µV, P=0.45). Moreover, fetal electrocardiogram amplitude was significantly higher than affecting noise in direct recording (P=3.17·10-2) and significantly in indirect recording (P=1.90·10-3). Consequently, signal-to-noise ratio was initially higher for direct than indirect recordings (median:3.3 dB vs. -2.3 dB; P=3.90·10-3), but became lower after denoising of indirect ones (median:9.6 dB; P=9.84·10-4). Eventually, direct and indirect recordings were highly correlated (median: ρ=0.78; P<10-208), indicating that the two electrocardiograms were morphologically equivalent. Conclusion: Segmented-Beat Modulation Method is particularly useful for denoising of indirect fetal electrocardiogram and may contribute to the spread of this noninvasive technique in the clinical practice. PMID:28567129

  13. Noninvasive detection of coronary artery wall thickening with age in healthy subjects using high resolution MRI with beat-to-beat respiratory motion correction.

    PubMed

    Scott, Andrew D; Keegan, Jennifer; Mohiaddin, Raad H; Firmin, David N

    2011-10-01

    To demonstrate coronary artery wall thickening with age in a small healthy cohort using a highly efficient, reliable, and reproducible high-resolution MR technique. A 3D cross-sectional MR vessel wall images (0.7 × 0.7 × 3 mm resolution) with retrospective beat-to-beat respiratory motion correction (B2B-RMC) were obtained in the proximal right coronary artery of 21 healthy subjects (age, 22-62 years) with no known cardiovascular disease. Lumen and outer wall (lumen + vessel wall) areas were measured in one central slice from each subject and average wall thickness and wall area/outer wall area ratio (W/OW) calculated. Imaging was successful in 18 (86%) subjects with average respiratory efficiency 99.3 ± 1.7%. Coronary vessel wall thickness and W/OW significantly correlate with subject age, increasing by 0.088 mm and 0.031 per decade respectively (R = 0.53, P = 0.024 and R = 0.48, P = 0.046). No relationship was found between lumen area and vessel wall thickness (P = NS), but outer wall area increased significantly with vessel wall thickness at 19 mm(2) per mm (P = 0.046). This is consistent with outward vessel wall remodeling. Despite the small size of our healthy cohort, using high-resolution MR imaging and B2B-RMC, we have demonstrated increasing coronary vessel wall thickness and W/OW with age. The results obtained are consistent with outward vessel wall remodeling. Copyright © 2011 Wiley-Liss, Inc.

  14. Spontaneous beating and synchronization of extensile active filament

    NASA Astrophysics Data System (ADS)

    Sarkar, Debarati; Thakur, Snigdha

    2017-04-01

    We simulate a semi-flexible active filament that exhibits spontaneous oscillations on clamping and show self-propulsion when left free. The activity on the filament relies on the nano-dimers distributed at regular intervals along the chain. With an emphasis on the spontaneous beating of a clamped filament, we demonstrate that the two competing forces necessary for oscillation are the elastic forces due to polymer rigidity and the active forces due to chemical activity. In addition, we also study the synchronization of two extensile filaments and the role played by non-local hydrodynamic interactions. We observe a phase lock scenario between the filaments during their synchronous motion.

  15. BEAT: A Web-Based Boolean Expression Fault-Based Test Case Generation Tool

    ERIC Educational Resources Information Center

    Chen, T. Y.; Grant, D. D.; Lau, M. F.; Ng, S. P.; Vasa, V. R.

    2006-01-01

    BEAT is a Web-based system that generates fault-based test cases from Boolean expressions. It is based on the integration of our several fault-based test case selection strategies. The generated test cases are considered to be fault-based, because they are aiming at the detection of particular faults. For example, when the Boolean expression is in…

  16. Beating heart mitral valve replacement with a bovine pericardial bioprosthesis for treatment of mitral valve dysplasia in a Bull Terrier.

    PubMed

    Behr, Luc; Chetboul, Valérie; Sampedrano, Carolina Carlos; Vassiliki, Gouni; Pouchelon, Jean-Louis; Laborde, François; Borenstein, Nicolas

    2007-04-01

    To describe an open, beating heart surgical technique and use of a bovine pericardial prosthetic valve for mitral valve replacement (MVR) in the dog. Clinical case report. Male Bull Terrier (17-month-old, 26 kg) with mitral valve dysplasia and severe regurgitation. A bovine pericardial bioprosthesis was used to replace the mitral valve using an open beating heart surgical technique and cardiopulmonary bypass. Successful MVR was achieved using a beating heart technique. Mitral regurgitation resolved and cardiac performances improved (left ventricular end-diastolic diameter decreased from 57.6 to 48.7 mm, and left atrium/aorta ratio returned to almost normal, from 1.62 to 1.19). Cardiopulmonary by-pass time and total surgical duration were decreased compared with standard cardioplegic techniques. Surgical recovery was uneventful and on echocardiography 6 months later valve function was excellent. Considering the technique advantages (no cardiac arrest, ischemic reperfusion injury, and hypothermia, or the need for aortic dissection and cannulation for administration of cardioplegic solution), short-term mortality and morbidity may be reduced compared with standard cardioplegic techniques. Based on experience in this dog, beating heart mitral valvular replacement is a seemingly safe and viable option for the dog and bovine pericardial prosthesis may provide better long-term survival than mechanical prostheses.

  17. [Clinical Experience of Beating Heart Atrial Septostomy Using a Device for Coronary Artery Anastomosis Site Creator].

    PubMed

    Takahashi, Goro; Sai, Sadahiro; Konishi, Akinobu

    2015-09-01

    Intra-atrial communication was mandatory for several congenital cardiac diseases, such as pulmonary atresia with intact ventricular septum (PA/IVS), and either sided aortoventricular valve atresia. We assessed whether the new methods of atrial septal defect(ASD)creation was effective. We experienced 4 cases of the surgical atrial septostomy performed under on-pump beating. We used a new device, a circular punch out defect creator. All cases were alive. The mean ASD diameter was enlarged from 4.37 mm to 5.55 mm and the mean ASD shunt flow was significantly decreased from 1.47 m/s to 1.11 m/s. We performed the surgical atrial septostomy using an aortic puncher under beating heart effectively and safely.

  18. Behind Beats and Rhymes: Working Class from a Hampton Roads Hip Hop Homeplace

    ERIC Educational Resources Information Center

    Durham, Aisha S.

    2009-01-01

    The film documentary titled "Hip Hop: beyond beats and rhymes" captures ongoing conversations among scholars, cultural critics, and hip hop insiders about the state of African Americans by interrogating distinct expressive forms associated with hip hop culture. Durham draws from two scenes to describe her memories as the researched…

  19. Simulation of Ectopic Pacemakers in the Heart: Multiple Ectopic Beats Generated by Reentry inside Fibrotic Regions

    PubMed Central

    Gouvêa de Barros, Bruno; Weber dos Santos, Rodrigo; Alonso, Sergio

    2015-01-01

    The inclusion of nonconducting media, mimicking cardiac fibrosis, in two models of cardiac tissue produces the formation of ectopic beats. The fraction of nonconducting media in comparison with the fraction of healthy myocytes and the topological distribution of cells determines the probability of ectopic beat generation. First, a detailed subcellular microscopic model that accounts for the microstructure of the cardiac tissue is constructed and employed for the numerical simulation of action potential propagation. Next, an equivalent discrete model is implemented, which permits a faster integration of the equations. This discrete model is a simplified version of the microscopic model that maintains the distribution of connections between cells. Both models produce similar results when describing action potential propagation in homogeneous tissue; however, they slightly differ in the generation of ectopic beats in heterogeneous tissue. Nevertheless, both models present the generation of reentry inside fibrotic tissues. This kind of reentry restricted to microfibrosis regions can result in the formation of ectopic pacemakers, that is, regions that will generate a series of ectopic stimulus at a fast pacing rate. In turn, such activity has been related to trigger fibrillation in the atria and in the ventricles in clinical and animal studies. PMID:26583127

  20. Beat-to-beat respiratory motion correction with near 100% efficiency: a quantitative assessment using high-resolution coronary artery imaging.

    PubMed

    Scott, Andrew D; Keegan, Jennifer; Firmin, David N

    2011-05-01

    This study quantitatively assesses the effectiveness of retrospective beat-to-beat respiratory motion correction (B2B-RMC) at near 100% efficiency using high-resolution coronary artery imaging. Three-dimensional (3D) spiral images were obtained in a coronary respiratory motion phantom with B2B-RMC and navigator gating. In vivo, targeted 3D coronary imaging was performed in 10 healthy subjects using B2B-RMC spiral and navigator gated balanced steady-state free-precession (nav-bSSFP) techniques. Vessel diameter and sharpness in proximal and mid arteries were used as a measure of respiratory motion compensation effectiveness and compared between techniques. Phantom acquisitions with B2B-RMC were sharper than those acquired with navigator gating (B2B-RMC vs. navigator gating: 1.01±0.02 mm(-1) vs. 0.86±0.08 mm(-1), P<.05). In vivo B2B-RMC respiratory efficiency was significantly and substantially higher (99.7%±0.5%) than nav-bSSFP (44.0%±8.9%, P<.0001). Proximal and mid vessel sharpnesses were similar (B2B-RMC vs. nav-bSSFP, proximal: 1.00±0.14 mm(-1) vs. 1.08±0.11 mm(-1), mid: 1.01±0.11 mm(-1) vs. 1.05±0.12 mm(-1); both P=not significant [ns]). Mid vessel diameters were not significantly different (2.85±0.39 mm vs. 2.80±0.35 mm, P=ns), but proximal B2B-RMC diameters were slightly higher (2.85±0.38 mm vs. 2.70±0.34 mm, P<.05), possibly due to contrast differences. The respiratory efficiency of B2B-RMC is less variable and significantly higher than navigator gating. Phantom and in vivo vessel sharpness and diameter values suggest that respiratory motion compensation is equally effective. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Beat-to-beat respiratory motion correction with near 100% efficiency: a quantitative assessment using high-resolution coronary artery imaging☆

    PubMed Central

    Scott, Andrew D.; Keegan, Jennifer; Firmin, David N.

    2011-01-01

    This study quantitatively assesses the effectiveness of retrospective beat-to-beat respiratory motion correction (B2B-RMC) at near 100% efficiency using high-resolution coronary artery imaging. Three-dimensional (3D) spiral images were obtained in a coronary respiratory motion phantom with B2B-RMC and navigator gating. In vivo, targeted 3D coronary imaging was performed in 10 healthy subjects using B2B-RMC spiral and navigator gated balanced steady-state free-precession (nav-bSSFP) techniques. Vessel diameter and sharpness in proximal and mid arteries were used as a measure of respiratory motion compensation effectiveness and compared between techniques. Phantom acquisitions with B2B-RMC were sharper than those acquired with navigator gating (B2B-RMC vs. navigator gating: 1.01±0.02 mm−1 vs. 0.86±0.08 mm−1, P<.05). In vivo B2B-RMC respiratory efficiency was significantly and substantially higher (99.7%±0.5%) than nav-bSSFP (44.0%±8.9%, P<.0001). Proximal and mid vessel sharpnesses were similar (B2B-RMC vs. nav-bSSFP, proximal: 1.00±0.14 mm−1 vs. 1.08±0.11 mm−1, mid: 1.01±0.11 mm−1 vs. 1.05±0.12 mm−1; both P=not significant [ns]). Mid vessel diameters were not significantly different (2.85±0.39 mm vs. 2.80±0.35 mm, P=ns), but proximal B2B-RMC diameters were slightly higher (2.85±0.38 mm vs. 2.70±0.34 mm, P<.05), possibly due to contrast differences. The respiratory efficiency of B2B-RMC is less variable and significantly higher than navigator gating. Phantom and in vivo vessel sharpness and diameter values suggest that respiratory motion compensation is equally effective. PMID:21292418

  2. BEAT: Bioinformatics Exon Array Tool to store, analyze and visualize Affymetrix GeneChip Human Exon Array data from disease experiments

    PubMed Central

    2012-01-01

    Background It is known from recent studies that more than 90% of human multi-exon genes are subject to Alternative Splicing (AS), a key molecular mechanism in which multiple transcripts may be generated from a single gene. It is widely recognized that a breakdown in AS mechanisms plays an important role in cellular differentiation and pathologies. Polymerase Chain Reactions, microarrays and sequencing technologies have been applied to the study of transcript diversity arising from alternative expression. Last generation Affymetrix GeneChip Human Exon 1.0 ST Arrays offer a more detailed view of the gene expression profile providing information on the AS patterns. The exon array technology, with more than five million data points, can detect approximately one million exons, and it allows performing analyses at both gene and exon level. In this paper we describe BEAT, an integrated user-friendly bioinformatics framework to store, analyze and visualize exon arrays datasets. It combines a data warehouse approach with some rigorous statistical methods for assessing the AS of genes involved in diseases. Meta statistics are proposed as a novel approach to explore the analysis results. BEAT is available at http://beat.ba.itb.cnr.it. Results BEAT is a web tool which allows uploading and analyzing exon array datasets using standard statistical methods and an easy-to-use graphical web front-end. BEAT has been tested on a dataset with 173 samples and tuned using new datasets of exon array experiments from 28 colorectal cancer and 26 renal cell cancer samples produced at the Medical Genetics Unit of IRCCS Casa Sollievo della Sofferenza. To highlight all possible AS events, alternative names, accession Ids, Gene Ontology terms and biochemical pathways annotations are integrated with exon and gene level expression plots. The user can customize the results choosing custom thresholds for the statistical parameters and exploiting the available clinical data of the samples for a

  3. Cardiac function and perfusion dynamics measured on a beat-by-beat basis in the live mouse using ultra-fast 4D optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Ford, Steven J.; Deán-Ben, Xosé L.; Razansky, Daniel

    2015-03-01

    The fast heart rate (~7 Hz) of the mouse makes cardiac imaging and functional analysis difficult when studying mouse models of cardiovascular disease, and cannot be done truly in real-time and 3D using established imaging modalities. Optoacoustic imaging, on the other hand, provides ultra-fast imaging at up to 50 volumetric frames per second, allowing for acquisition of several frames per mouse cardiac cycle. In this study, we combined a recently-developed 3D optoacoustic imaging array with novel analytical techniques to assess cardiac function and perfusion dynamics of the mouse heart at high, 4D spatiotemporal resolution. In brief, the heart of an anesthetized mouse was imaged over a series of multiple volumetric frames. In another experiment, an intravenous bolus of indocyanine green (ICG) was injected and its distribution was subsequently imaged in the heart. Unique temporal features of the cardiac cycle and ICG distribution profiles were used to segment the heart from background and to assess cardiac function. The 3D nature of the experimental data allowed for determination of cardiac volumes at ~7-8 frames per mouse cardiac cycle, providing important cardiac function parameters (e.g., stroke volume, ejection fraction) on a beat-by-beat basis, which has been previously unachieved by any other cardiac imaging modality. Furthermore, ICG distribution dynamics allowed for the determination of pulmonary transit time and thus additional quantitative measures of cardiovascular function. This work demonstrates the potential for optoacoustic cardiac imaging and is expected to have a major contribution toward future preclinical studies of animal models of cardiovascular health and disease.

  4. "Keep the Beat" Healthy Blood Pressure Helps Prevent Heart Disease | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Keep the Beat": Healthy Blood Pressure Helps Prevent Heart Disease Past Issues / Winter 2010 Table of Contents Your ... a condition that also increases the chance of heart disease and stroke. High blood pressure is especially common ...

  5. Why Some Schools with Latino Children Beat the Odds...and Others Don't

    ERIC Educational Resources Information Center

    Waits, Mary Jo; Campbell, Heather E.; Gau, Rebecca; Jacobs, Ellen; Rex, Tom; Hess, Robert K.

    2006-01-01

    Throughout Arizona and the Southwest, the odds are against high achievement in schools with a mostly Latino, mostly poor student enrollment. Some schools, however, "beat the odds" and achieve consistently high results or show steady gains. Why do these schools succeed where others fail? Using the methodology of business guru Jim Collins…

  6. Effects of Movement, Tempo, and Gender on Steady Beat Performance of Kindergarten Children

    ERIC Educational Resources Information Center

    Rose, Paige

    2016-01-01

    The purposes of this research were to discover the effects of manual (hand) and pedal (foot) movements, tempo, and gender on steady beat accuracy. Participants (N = 119) consisted of male (n = 63) and female (n = 56) kindergarten students randomly divided into two groups, counterbalanced with regard to school, homeroom, and gender. Participants…

  7. The Patterns of Music: Young Children Learning Mathematics through Beat, Rhythm, and Melody

    ERIC Educational Resources Information Center

    Geist, Kamile; Geist, Eugene A.; Kuznik, Kathleen

    2012-01-01

    Research on music and music therapy suggests that math and music are related in the brain from very early in life. Musical elements such as steady beat, rhythm, melody, and tempo possess inherent mathematical principles such as spatial properties, sequencing, counting, patterning, and one-to-one correspondence. With new understanding about the…

  8. EXPOSURE OF CULTURED MYOCYTES TO ZINC RESULTS IN ALTERED BEAT RATE AND INTERCELLULAR COMMUNICATION.

    EPA Science Inventory

    Exposure of cultured myocytes to zinc results in altered beat rate and intercellular communication

    Graff, Donald W, Devlin, Robert B, Brackhan, Joseph A, Muller-Borer, Barbara J, Bowman, Jill S, Cascio, Wayne E.

    Exposure to ambient air pollution particulate matter (...

  9. Remote beating of parallel or orthogonally polarized dual-wavelength optical carriers for 5G millimeter-wave radio-over-fiber link.

    PubMed

    Wang, Huai-Yung; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-08-08

    A novel millimeter-wave radio over fiber (MMW-RoF) link at carrier frequency of 35-GHz is proposed with the use of remotely beating MMW generation from reference master and injected slave colorless laser diode (LD) carriers at orthogonally polarized dual-wavelength injection-locking. The slave colorless LD supports lasing one of the dual-wavelength master modes with orthogonal polarizations, which facilitates the single-mode direct modulation of the quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data. Such an injected single-carrier encoding and coupled dual-carrier transmission with orthogonal polarization effectively suppresses the cross-heterodyne mode-beating intensity noise, the nonlinear modulation (NLM) and four-wave mixing (FWM) sidemodes during injection locking and fiber transmission. In 25-km single-mode fiber (SMF) based wireline system, the dual-carrier under single-mode encoding provides baseband 24-Gbit/s 64-QAM OFDM transmission with an error vector magnitude (EVM) of 8.8%, a bit error rate (BER) of 3.7 × 10-3, a power penalty of <1.5 dB. After remotely self-beating for wireless transmission, the beat MMW carrier at 35 GHz can deliver the passband 16-QAM OFDM at 4 Gbit/s to show corresponding EVM and BER of 15.5% and 1.4 × 10-3, respectively, after 25-km SMF and 1.6-m free-space transmission.

  10. Development of a wing-beat-modulation scanning lidar system for insect studies

    NASA Astrophysics Data System (ADS)

    Tauc, Martin Jan; Fristrup, Kurt M.; Shaw, Joseph A.

    2017-08-01

    The spatial distributions of flying insects are not well understood since most sampling methods - Malaise traps, sticky traps, vacuum traps, light traps - are not suited to documenting movements or changing distributions of various insects on short time scales. These methods also capture and kill the insects. To noninvasively monitor the spatial distributions of flying insects, we developed and implemented a scanning lidar system that measured wing-beat-modulated scattered laser light. The oscillating signal from wing-beat returns allowed for reliable separation of lidar returns for insects and stationary objects. Transmitting and receiving optics were mounted to a telescope that was attached to a scanning mount. As it scanned, the lidar collected and analyzed the light scattered from insect wings of various species. Mount position and pulse time-of-flight determined spatial location and spectral analysis of the backscattered light provided clues to insect identity. During one day of a four-day field campaign at Grand Teton National Park in June of 2016, 76 very likely insects and 662 somewhat likely insects were detected, with a maximum range to the insect of 87.6 m for very likely insects

  11. Smith predictor-based robot control for ultrasound-guided teleoperated beating-heart surgery.

    PubMed

    Bowthorpe, Meaghan; Tavakoli, Mahdi; Becher, Harald; Howe, Robert

    2014-01-01

    Performing surgery on fast-moving heart structures while the heart is freely beating is next to impossible. Nevertheless, the ability to do this would greatly benefit patients. By controlling a teleoperated robot to continuously follow the heart's motion, the heart can be made to appear stationary. The surgeon will then be able to operate on a seemingly stationary heart when in reality it is freely beating. The heart's motion is measured from ultrasound images and thus involves a non-negligible delay due to image acquisition and processing, estimated to be 150 ms that, if not compensated for, can cause the teleoperated robot's end-effector (i.e., the surgical tool) to collide with and puncture the heart. This research proposes the use of a Smith predictor to compensate for this time delay in calculating the reference position for the teleoperated robot. The results suggest that heart motion tracking is improved as the introduction of the Smith predictor significantly decreases the mean absolute error, which is the error in making the distance between the robot's end-effector and the heart follow the surgeon's motion, and the mean integrated square error.

  12. Keynote Presentation: Genome Beat (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Zimmer, Carl [New York Times, New York, NY (United States)

    2018-05-23

    Carl Zimmer, a reporter for the New York Times, speaks on "The Genome Beat," the opening keynote presentation at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  13. Keynote Presentation: Genome Beat (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmer, Carl

    Carl Zimmer, a reporter for the New York Times, speaks on "The Genome Beat," the opening keynote presentation at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  14. Beat-to-Beat Variability of Ventricular Action Potential Duration Oscillates at Low Frequency During Sympathetic Provocation in Humans

    PubMed Central

    Porter, Bradley; van Duijvenboden, Stefan; Bishop, Martin J.; Orini, Michele; Claridge, Simon; Gould, Justin; Sieniewicz, Benjamin J.; Sidhu, Baldeep; Razavi, Reza; Rinaldi, Christopher A.; Gill, Jaswinder S.; Taggart, Peter

    2018-01-01

    Background: The temporal pattern of ventricular repolarization is of critical importance in arrhythmogenesis. Enhanced beat-to-beat variability (BBV) of ventricular action potential duration (APD) is pro-arrhythmic and is increased during sympathetic provocation. Since sympathetic nerve activity characteristically exhibits burst patterning in the low frequency range, we hypothesized that physiologically enhanced sympathetic activity may not only increase BBV of left ventricular APD but also impose a low frequency oscillation which further increases repolarization instability in humans. Methods and Results: Heart failure patients with cardiac resynchronization therapy defibrillator devices (n = 11) had activation recovery intervals (ARI, surrogate for APD) recorded from left ventricular epicardial electrodes alongside simultaneous non-invasive blood pressure and respiratory recordings. Fixed cycle length was achieved by right ventricular pacing. Recordings took place during resting conditions and following an autonomic stimulus (Valsalva). The variability of ARI and the normalized variability of ARI showed significant increases post Valsalva when compared to control (p = 0.019 and p = 0.032, respectively). The oscillatory behavior was quantified by spectral analysis. Significant increases in low frequency (LF) power (p = 0.002) and normalized LF power (p = 0.019) of ARI were seen following Valsalva. The Valsalva did not induce changes in conduction variability nor the LF oscillatory behavior of conduction. However, increases in the LF power of ARI were accompanied by increases in the LF power of systolic blood pressure (SBP) and the rate of systolic pressure increase (dP/dtmax). Positive correlations were found between LF-SBP and LF-dP/dtmax (rs = 0.933, p < 0.001), LF-ARI and LF-SBP (rs = 0.681, p = 0.001) and between LF-ARI and LF-dP/dtmax (rs = 0.623, p = 0.004). There was a strong positive correlation between the variability of ARI and LF power of ARI (rs = 0

  15. Movement in Steady Beat: Learning on the Move, Ages 3-7. Second Edition.

    ERIC Educational Resources Information Center

    Weikart, Phyllis S.

    The ability to feel and maintain steady, rhythmic beat is important for children to develop in early childhood and will assist them in mastering concepts in language and literacy, mathematics, and other content areas as well as increase body coordination and related physical abilities. Designed as an activity supplement to High Scope movement and…

  16. [Flowmetric assessment of coronary bypass grafts in the conditions of artificial circulation and on the beating heart].

    PubMed

    Bazylev, V V; Nemchenko, E V; Karnakhin, V A; Pavlov, A A; Mikulyak, A I

    2016-01-01

    Advantages and shortcomings of aortocoronary bypass grafting on the beating heart and in the conditions of artificial circulation (AC) have long been discussed. The data on patency of bypass grafts in the remote period are indicative of comparable results of operations with and without AC or advantages of using AC. In order to determine benefits of each method it is necessary to reveal intraoperative predictors of bypass grafts occlusion in the remote period. We analyzed the results of ultrasound flowmetry of the blood flow through the left internal thoracic artery during bypass grafting of the anterior descending artery with the use of AC and on the beating heart. A retrospective study included a total of 352 patients subdivided into 2 groups: Group One was composed of 120 patients undergoing surgery in the conditions of AC and Group Two comprised 232 patients subjected to similar operations on the beating heart. Blood flow was measured with the help of flowmeter VeryQ MediStim® after termination of AC and inactivation of heparin by protamine, with systolic pressure of 100-110 mm Hg. There were no statistically significant differences between the groups by the diameter and degree of stenosis of the anterior descending artery, diameter of the left internal thoracic artery. The mean volumetric blood flow velocity (Qmean) along the shunts in Group One was higher (p=0.01). No statistically significant differences by the pulsatility index (PI) between the groups were revealed (p=0.2). A conclusion was drawn that coronary bypass grafting of the anterior descending artery by the left internal thoracic artery in the conditions of artificial circulation made it possible to achieve higher volumetric velocity of blood flow through the conduit as compared with operations on the beating heart, with similar resistance index. The immediate results of the operations with the use of the both techniques did not differ.

  17. 77 FR 19015 - Announcement of Requirements and Registration for Beat Down Blood Pressure Challenge

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... Down Blood Pressure Challenge AGENCY: Office of the National Coordinator for Health Information... Register (77 FR 17060) announcing requirements and registration for a Beat Down Blood Pressure Video... you to visit http://BloodPressure.Challenge.gov for a complete set of rules and requirements for this...

  18. The Ability to Tap to a Beat Relates to Cognitive, Linguistic, and Perceptual Skills

    ERIC Educational Resources Information Center

    Tierney, Adam T.; Kraus, Nina

    2013-01-01

    Reading-impaired children have difficulty tapping to a beat. Here we tested whether this relationship between reading ability and synchronized tapping holds in typically-developing adolescents. We also hypothesized that tapping relates to two other abilities. First, since auditory-motor synchronization requires monitoring of the relationship…

  19. Beating fantasies in a latency girl: their role in female sexual development.

    PubMed

    Friedman, L H

    1985-10-01

    Detailed clinical material is presented from the analysis of a latency girl whose inner life revolved around a series of beating fantasies. The clinical data support Freud's 1925 formulation that the perception of sexual differences initiates the oedipus complex in the girl. Whether a girl experiences vaginal sensations before puberty has been a controversial issue; in this girl vaginal sensations and contractions appeared prior to puberty.

  20. Dynamic generation and coherent control of beating stationary light pulses by a microwave coupling field in five-level cold atoms

    NASA Astrophysics Data System (ADS)

    Bao, Qian-Qian; Zhang, Yan; Cui, Cui-Li; Meng, Shao-Ying; Fang, You-Wei; Tian, Xue-Dong

    2018-04-01

    We propose an efficient scheme for generating and controlling beating stationary light pulses in a five-level atomic sample driven into electromagnetically induced transparency condition. This scheme relies on an asymmetrical procedure of light storage and retrieval tuned by two counter-propagating control fields where an additional coupling field, such as the microwave field, is introduced in the retrieval stage. A quantum probe field, incident upon such an atomic sample, is first transformed into spin coherence excitation of the atoms and then retrieved as beating stationary light pulses exhibiting a series of maxima and minima in intensity due to the alternative constructive and destructive interference. It is convenient to control the beating stationary light pulses just by manipulating the intensity and detuning of the additional microwave field. This interesting phenomenon involves in fact the coherent manipulation of dark-state polaritons and could be explored to achieve the efficient temporal splitting of stationary light pulses and accurate measurement of the microwave intensity.

  1. Figures of merit for self-beating filtered microwave photonic systems.

    PubMed

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Fandiño, Javier S; Muñoz, Pascual; Alavi, Hossein

    2016-05-02

    We present a model to compute the figures of merit of self-beating Microwave Photonic systems, a novel class of systems that work on a self-homodyne fashion by sharing the same laser source for information bearing and local oscillator tasks. General and simplified expressions are given and, as an example, we have considered their application to the design of a tunable RF MWP BS/UE front end for band selection, based on a Chebyshev Type-II optical filter. The applicability and usefulness of the model are also discussed.

  2. Gamification of active travel to school: A pilot evaluation of the Beat the Street physical activity intervention.

    PubMed

    Coombes, Emma; Jones, Andy

    2016-05-01

    Beat the Street aims to get children more active by encouraging them to walk and cycle in their neighbourhood using tracking technology with a reward scheme. This pilot study evaluates the impact of Beat the Street on active travel to school in Norwich, UK. Eighty children 8-10 yrs were recruited via an intervention and control school. They wore an accelerometer for 7 days at baseline, mid-intervention and post-intervention (+20 weeks), and completed a travel diary. Physical activity overall was not higher at follow-up amongst intervention children compared to controls. However, there was a positive association between moderate-to-vigorous physical activity (MVPA) during school commute times and the number of days on which children touched a Beat the Street sensor. This equated to 3.46min extra daily MVPA during commute times for children who touched a sensor on 14.5 days (the mean number of days), compared to those who did not engage. We also found weekly active travel increased at the intervention school (+10.0% per child) while it decreased at the control (-7.0%), p=0.056. Further work is needed to understand how improved engagement with the intervention might impact outcomes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. USSR Report, Life Sciences Biomedical and Behavioral Sciences

    DTIC Science & Technology

    1984-06-04

    in Regulation of Ideomotor Movements U. G. Goryacheva and S. A. Kapustin- PSIKHOLOGICHESKIY ZHURNAL, No 1, Jan-Feb 84) 77 Perception of Binaural ...with considerable individual variability. The heart rate decreased from 116.6-124.1 beats /min, on days 2-4, to 89.9 beats /min, on day 5, for the...292-8586] PERCEPTION OF BINAURAL TEMPORAL SHIFTS Moscow PSIKHOLOGICHESKIY ZHURNAL in Russian Vol 5, No 1, Jan-Feb 84 (manuscript received 15

  4. Additions to Philippine Slender Skinks of the Brachymeles bonitae Complex (Reptilia: Squamata: Scincidae) III: a new species from Tablas Island.

    PubMed

    Davis, Drew R; Geheber, Aaron D; Watters, Jessa L; Penrod, Michelle L; Feller, Kathryn D; Ashford, Alissa; Kouri, Josh; Nguyen, Daniel; Shauberger, Kathryn; Sheatsley, Kyra; Winfrey, Claire; Wong, Rachel; Sanguila, Marites B; Brown, Rafe M; Siler, Cameron D

    2016-06-28

    Studies of the diversity of Philippine amphibians and reptiles have resulted in the continued description of cryptic species. Species formerly thought to range across multiple recognized faunal regions are now considered to be assemblages of multiple unique species, each restricted to a single faunal region. This pattern continues to hold true when considering Philippine skinks of the genus Brachymeles. Recent studies have resulted in the description of numerous unique species with many exhibiting various degrees of digit loss or limb reduction, as well as suggesting that unique lineages are still present in the B. bonitae Complex. In this paper, we describe a new species of fossorial skink within this species complex from Tablas Island based on collections made nearly 50 years ago. Although no genetic data are available for the new species, examinations of morphological data (qualitative traits, meristic counts, and mensural measurements) support its distinction from all other members of the genus. Brachymeles dalawangdaliri sp. nov. is differentiated from other members of the genus based on a suite of unique phenotypic characteristics, including a small body size (SVL 66.0-80.9 mm), bidactyl fore-limbs, digitless, unidactyl, or bidactyl hind limbs, a high number of presacral vertebrae (49), the absence of auricular openings, and distinct dorsal head scale patterns. The description of the new species increases the diversity of endemic vertebrates recognized to occur in the Romblon Island Group in the central Philippines.

  5. Non-whole beat correlation method for the identification of an unbalance response of a dual-rotor system with a slight rotating speed difference

    NASA Astrophysics Data System (ADS)

    Zhang, Z. X.; Wang, L. Z.; Jin, Z. J.; Zhang, Q.; Li, X. L.

    2013-08-01

    The efficient identification of the unbalanced responses in the inner and outer rotors from the beat vibration is the key step in the dynamic balancing of a dual-rotor system with a slight rotating speed difference. This paper proposes a non-whole beat correlation method to identify the unbalance responses whose integral time is shorter than the whole beat correlation method. The principle, algorithm and parameter selection of the proposed method is emphatically demonstrated in this paper. From the numerical simulation and balancing experiment conducted on horizontal decanter centrifuge, conclusions can be drawn that the proposed approach is feasible and practicable. This method makes important sense in developing the field balancing equipment based on portable Single Chip Microcomputer (SCMC) with low expense.

  6. Cavity length dependence of mode beating in passively Q-switched Nd-solid state lasers

    NASA Astrophysics Data System (ADS)

    Zameroski, Nathan D.; Wanke, Michael; Bossert, David

    2013-03-01

    The temporal intensity profile of pulse(s) from passively Q-switched and passively Q-switched mode locked (QSML) solid-state lasers is known to be dependent on cavity length. In this work, the pulse width, modulation depth, and beat frequencies of a Nd:Cr:GSGG laser using a Cr+4:YAG passive Q-switch are investigated as function cavity length. Measured temporal widths are linearly correlated with cavity length but generally 3-5 ns larger than theoretical predictions. Some cavity lengths exhibit pulse profiles with no modulation while other lengths exhibit complete amplitude modulation. The observed beat frequencies at certain cavity lengths cannot be accounted for with passively QSML models in which the pulse train repetition rate is τRT-1, τRT= round-trip time. They can be explained, however, by including coupled cavity mode-locking effects. A theoretical model developed for a two section coupled cavity semiconductor laser is adapted to a solid-state laser to interpret measured beat frequencies. We also numerically evaluate the temporal criterion required to achieve temporally smooth Q-switched pulses, versus cavity length and pump rate. We show that in flash lamp pumped systems, the difference in buildup time between longitudinal modes is largely dependent on the pump rate. In applications where short pulse delay is important, the pumping rate may limit the ability to achieve temporally smooth pulses in passively Q-switched lasers. Simulations support trends in experimental data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Ginseng-Aconite Decoction elicits a positive inotropic effect via the reverse mode Na+/Ca2+ exchanger in beating rabbit atria.

    PubMed

    Cui, Hao Zhen; Kim, Hye Yoom; Kang, Dae Gill; Lee, Ho Sub

    2013-07-09

    Ginseng-Aconite Decoction (GAD), a traditional oriental medicine composed of Panax ginseng C.A. Mey. (Araliaceae) and Aconitum carmichaeli Debx. (Ranunculaceae) has been used as treatment for cardiovascular diseases from Song Dynasty of China. The purpose of the present study was to elucidate the possible mechanisms of GAD-induced positive inotropic effect. GAD-induced changes in atrial dynamics and cAMP efflux were determined in isolated perfused beating rabbit atria. GAD significantly increased atrial dynamics such as stroke volume, pulse pressure and augmented cAMP efflux in beating rabbit atria. The inotropic effect was significantly attenuated by pre-treatment with KB-R7943, a reverse mode Na(+)/Ca(2+) exchanger blocker. The GAD-induced increase in atrial dynamics was also markedly inhibited by staurosporine, a non-selective protein kinase inhibitor, and partly blocked by KT5720, a selective PKA inhibitor. The effect of GAD on atrial dynamics was not altered by pre-treatment with propranolol, a β-adrenergic receptor inhibitor, or diltiazem, an L-type Ca(2+)channel blocker. The phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX) failed to modulate the GAD-induced increase in atrial dynamics, but markedly attenuated cAMP efflux in the beating atria. These results suggest that the GAD-induced positive inotropic effect in beating rabbit atria may be attributable to stimulation of the reverse mode Na(+)/Ca(2+) exchanger, while PKA activity would, at least in part, be participated in the course. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. The effect of music with and without binaural beat audio on operative anxiety in patients undergoing cataract surgery: a randomized controlled trial

    PubMed Central

    Wiwatwongwana, D; Vichitvejpaisal, P; Thaikruea, L; Klaphajone, J; Tantong, A; Wiwatwongwana, A

    2016-01-01

    Purpose To investigate the anxiolytic effects of binaural beat embedded audio in patients undergoing cataract surgery under local anesthesia. Methods This prospective RCT included 141 patients undergoing cataract surgery under local anesthesia. The patients were randomized into three groups; the Binaural beat music group (BB), the plain music intervention group (MI), and a control group (ear phones with no music). Blood pressure (BP) and heart rate were measured on admission, at the beginning of and 20 min after the start of the operation. Peri-operative anxiety level was assessed using the State-Trait Anxiety Inventory questionnaire (STAI). Results The BB and MI groups comprised 44 patients each and the control group 47. Patients in the MI group and BB group showed significant reduction of STAI state scores after music intervention compared with the control group (P<0.001) but the difference was not significant between the MI and BB group (STAI-S score MI group −7.0, BB group −9.0, P=0.085). Systolic BP was significantly lower in both MI (P=0.043) and BB (0.040) groups although there was no difference between the two groups (P=1.000). A significant reduction in heart rate was seen only in the BB group (BB vs control P=0.004, BB vs MI P=0.050, MI vs control P=0.303). Conclusion Music, both with and without binaural beat, was proven to decrease anxiety level and lower systolic BP. Patients who received binaural beat audio showed additional decrease in heart rate. Binaural beat embedded musical intervention may have benefit over musical intervention alone in decreasing operative anxiety. PMID:27740618

  9. The effect of music with and without binaural beat audio on operative anxiety in patients undergoing cataract surgery: a randomized controlled trial.

    PubMed

    Wiwatwongwana, D; Vichitvejpaisal, P; Thaikruea, L; Klaphajone, J; Tantong, A; Wiwatwongwana, A

    2016-11-01

    PurposeTo investigate the anxiolytic effects of binaural beat embedded audio in patients undergoing cataract surgery under local anesthesia.MethodsThis prospective RCT included 141 patients undergoing cataract surgery under local anesthesia. The patients were randomized into three groups; the Binaural beat music group (BB), the plain music intervention group (MI), and a control group (ear phones with no music). Blood pressure (BP) and heart rate were measured on admission, at the beginning of and 20 min after the start of the operation. Peri-operative anxiety level was assessed using the State-Trait Anxiety Inventory questionnaire (STAI).ResultsThe BB and MI groups comprised 44 patients each and the control group 47. Patients in the MI group and BB group showed significant reduction of STAI state scores after music intervention compared with the control group (P<0.001) but the difference was not significant between the MI and BB group (STAI-S score MI group -7.0, BB group -9.0, P=0.085). Systolic BP was significantly lower in both MI (P=0.043) and BB (0.040) groups although there was no difference between the two groups (P=1.000). A significant reduction in heart rate was seen only in the BB group (BB vs control P=0.004, BB vs MI P=0.050, MI vs control P=0.303).ConclusionMusic, both with and without binaural beat, was proven to decrease anxiety level and lower systolic BP. Patients who received binaural beat audio showed additional decrease in heart rate. Binaural beat embedded musical intervention may have benefit over musical intervention alone in decreasing operative anxiety.

  10. "A Symphony of Possibilities": The Joy of Art and Writing through "The Beat Within"

    ERIC Educational Resources Information Center

    Arthur, Deborah Smith

    2017-01-01

    "The Beat Within" is a writing and art program and publication based in San Francisco that gives a voice to incarcerated youth in various locations across the country. This article recounts the experience of the partnership between a community-based learning course at Portland State University and juvenile detention in Multnomah County,…

  11. Can we still beat "buy-and-hold" for individual stocks?

    NASA Astrophysics Data System (ADS)

    Hui, Eddie C. M.; Kevin Chan, Ka Kwan

    2014-09-01

    Many investors seek for a trading strategy to beat the "buy-and-hold" strategy. In light of this, Hui and Yam (2014) and Hui et al. (2014) derived a trading strategy from the Shiryaev-Zhou index, and found that the resulting strategy outperformed the "buy-and-hold" strategy for western and Asian securitized real estate indices respectively. However, whether the trading strategy works on individual stocks or not is still unknown. This is the first study to test whether the trading strategy can beat the "buy-and-hold" strategy on individual stocks. We construct two trading strategies and compare the resulting profits with the profits arising from the "buy-and-hold" strategy on Hang Seng Index (HSI), Hang Seng Property (HSP) Index and 12 constituent stocks of HSI during the period December 29, 1995-December 31, 2013. The second strategy (Strategy 2) is a new strategy which incorporates short-selling, and has the effect of multiplying the profit. The results show that our trading strategies are less effective on individual stocks than on stock indices, and are more effective on property stocks than on non-property stocks. Moreover, our strategies outperform "buy-and-hold" by a larger extent on stocks of which the Shiryaev-Zhou indices fluctuate less frequently. Furthermore, by tracking the resulting profits of the three strategies at different times along the whole period of observation, our strategies work better during "bad times" than during "good times". This reflects that our trading strategies are especially useful in protecting investors from substantial loss during market downturns.

  12. Modulational instability of beat waves in a transversely magnetized plasma: Ion effects

    NASA Astrophysics Data System (ADS)

    Ferdous, T.; Amin, M. R.; Salimullah, M.

    1996-05-01

    The effect of ion dynamics on the modulational instability of the electrostatic beat wave at the difference frequency of two incident laser beams in a hot, collisionless, and transversely magnetized plasma has been studied theoretically. The full Vlasov equation in terms of gyrokinetic variables is employed to obtain the nonlinear response of ions and electrons. It is found that the growth rate of modulational instability is about two orders higher when ion motions are included.

  13. Synchronous optical pumping of quantum revival beats for atomic magnetometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seltzer, S. J.; Meares, P. J.; Romalis, M. V.

    2007-05-15

    We observe quantum beats with periodic revivals due to nonlinear spacing of Zeeman levels in the ground state of potassium atoms, and demonstrate their synchronous optical pumping by double modulation of the pumping light at the Larmor frequency and the revival frequency. We show that synchronous pumping increases the degree of spin polarization by a factor of 4. As a practical example, we explore the application of this double-modulation technique to atomic magnetometers operating in the geomagnetic field range, and find that it can increase the sensitivity and reduce magnetic-field-orientation-dependent measurement errors endemic to alkali-metal magnetometers.

  14. Digital approach to stabilizing optical frequency combs and beat notes of CW lasers

    NASA Astrophysics Data System (ADS)

    Čížek, Martin; Číp, Ondřej; Å míd, Radek; Hrabina, Jan; Mikel, Břetislav; Lazar, Josef

    2013-10-01

    In cases when it is necessary to lock optical frequencies generated by an optical frequency comb to a precise radio frequency (RF) standard (GPS-disciplined oscillator, H-maser, etc.) the usual practice is to implement phase and frequency-locked loops. Such system takes the signal generated by the RF standard (usually 10 MHz or 100 MHz) as a reference and stabilizes the repetition and offset frequencies of the comb contained in the RF output of the f-2f interferometer. These control loops are usually built around analog electronic circuits processing the output signals from photo detectors. This results in transferring the stability of the standard from RF to optical frequency domain. The presented work describes a different approach based on digital signal processing and software-defined radio algorithms used for processing the f-2f and beat-note signals. Several applications of digital phase and frequency locks to a RF standard are demonstrated: the repetition (frep) and offset frequency (fceo) of the comb, and the frequency of the beat note between a CW laser source and a single component of the optical frequency comb spectrum.

  15. Algorithm for identifying and separating beats from arterial pulse records

    PubMed Central

    Treo, Ernesto F; Herrera, Myriam C; Valentinuzzi, Max E

    2005-01-01

    Background This project was designed as an epidemiological aid-selecting tool for a small country health center with the general objective of screening out possible coronary patients. Peripheral artery function can be non-invasively evaluated by impedance plethysmography. Changes in these vessels appear as good predictors of future coronary behavior. Impedance plethysmography detects volume variations after simple occlusive maneuvers that may show indicative modifications in arterial/venous responses. Averaging of a series of pulses is needed and this, in turn, requires proper determination of the beginning and end of each beat. Thus, the objective here is to describe an algorithm to identify and separate out beats from a plethysmographic record. A secondary objective was to compare the output given by human operators against the algorithm. Methods The identification algorithm detected the beat's onset and end on the basis of the maximum rising phase, the choice of possible ventricular systolic starting points considering cardiac frequency, and the adjustment of some tolerance values to optimize the behavior. Out of 800 patients in the study, 40 occlusive records (supradiastolic- subsystolic) were randomly selected without any preliminary diagnosis. Radial impedance plethysmographic pulse and standard ECG were recorded digitizing and storing the data. Cardiac frequency was estimated with the Power Density Function and, thereafter, the signal was derived twice, followed by binarization of the first derivative and rectification of the second derivative. The product of the two latter results led to a weighing signal from which the cycles' onsets and ends were established. Weighed and frequency filters are needed along with the pre-establishment of their respective tolerances. Out of the 40 records, 30 seconds strands were randomly chosen to be analyzed by the algorithm and by two operators. Sensitivity and accuracy were calculated by means of the true/false and

  16. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring

    PubMed Central

    Wu, Hongpeng; Dong, Lei; Zheng, Huadan; Yu, Yajun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang; Tittel, Frank K.

    2017-01-01

    Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a sensitive gas detection technique which requires frequent calibration and has a long response time. Here we report beat frequency (BF) QEPAS that can be used for ultra-sensitive calibration-free trace-gas detection and fast spectral scan applications. The resonance frequency and Q-factor of the quartz tuning fork (QTF) as well as the trace-gas concentration can be obtained simultaneously by detecting the beat frequency signal generated when the transient response signal of the QTF is demodulated at its non-resonance frequency. Hence, BF-QEPAS avoids a calibration process and permits continuous monitoring of a targeted trace gas. Three semiconductor lasers were selected as the excitation source to verify the performance of the BF-QEPAS technique. The BF-QEPAS method is capable of measuring lower trace-gas concentration levels with shorter averaging times as compared to conventional PAS and QEPAS techniques and determines the electrical QTF parameters precisely. PMID:28561065

  17. Analysis of QRS loop changes in the beat-to-beat Vectocardiogram of ischemic patients undergoing PTCA.

    PubMed

    Correa, Raul; Laciar, Eric; Arini, Pedro; Jane, Raimon

    2009-01-01

    In the present work, we have studied dynamic changes of QRS loop in the Vectocardiogram (VCG) of 80 patients that underwent Percutaneous Transluminal Coronary Angioplasty (PTCA). The VCG was obtained for each patient using the XYZ orthogonal leads of their electrocardiographic (ECG) records acquired before, during and after PTCA procedure. In order to analyze the variations of VCG, it has been proposed in this study the following parameters a) Maximum module of the cardiac depolarization vector, b) Volume, c) and Area of vectocardiographic loop corresponding to the QRS complex of each beat, d) Maximum distance between Centroid and the Loop, e) Angle between the XY plane and the Optimum Plane, f) Relation between the Area and Perimeter. The results obtained indicate that the parameters proposed show significant statistics differences (p-value<0.05) before, during (with some exceptions at the first minute of balloon inflation) and after PTCA. We conclude that the variations observed in the proposed parameters correctly represent not only the morphological changes in the depolarization VCG but also they reflect the modifications in the levels of cardiac ischemia induced by PTCA.

  18. Beating-heart registration for organ-mounted robots.

    PubMed

    Wood, Nathan A; Schwartzman, David; Passineau, Michael J; Moraca, Robert J; Zenati, Marco A; Riviere, Cameron N

    2018-03-06

    Organ-mounted robots address the problem of beating-heart surgery by adhering to the heart, passively providing a platform that approaches zero relative motion. Because of the quasi-periodic deformation of the heart due to heartbeat and respiration, registration must address not only spatial registration but also temporal registration. Motion data were collected in the porcine model in vivo (N = 6). Fourier series models of heart motion were developed. By comparing registrations generated using an iterative closest-point approach at different phases of respiration, the phase corresponding to minimum registration distance is identified. The spatiotemporal registration technique presented here reduces registration error by an average of 4.2 mm over the 6 trials, in comparison with a more simplistic static registration that merely averages out the physiological motion. An empirical metric for spatiotemporal registration of organ-mounted robots is defined and demonstrated using data from animal models in vivo. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Ethical issues in non-heart-beating donation.

    PubMed

    Papalois, Vassilios; Vlachos, Konstantinos; Barlas, Alexander; Zarka, Zaki Anas; El-Tayar, Adil; Hakim, Nadey S

    2004-10-01

    A shortage of organ donors and the large number of patients desperately waiting for kidney transplant have led to the search for new sources of transplantable organs. The waiting list has grown at an alarming rate resulting in increased waiting times and deaths. The introduction of non heart beating (NHB) donation programmes generates a lot of ethical issues. How should death of a patient be defined in the case of NHB donation? Is there a strict separation of responsibilities of the medical teams in the different phases of the procedure (patient treatment and actual donation)? How should consent be obtained? Is sufficient respect and care given to the patient and his family? How is the viability of the organs assessed and how should the organs be allocated? We believe that it is very important to debate these issues and to try to outline an ethical framework for NHB donation that can enjoy the widest possible community support.

  20. Classification of ECG beats using deep belief network and active learning.

    PubMed

    G, Sayantan; T, Kien P; V, Kadambari K

    2018-04-12

    A new semi-supervised approach based on deep learning and active learning for classification of electrocardiogram signals (ECG) is proposed. The objective of the proposed work is to model a scientific method for classification of cardiac irregularities using electrocardiogram beats. The model follows the Association for the Advancement of medical instrumentation (AAMI) standards and consists of three phases. In phase I, feature representation of ECG is learnt using Gaussian-Bernoulli deep belief network followed by a linear support vector machine (SVM) training in the consecutive phase. It yields three deep models which are based on AAMI-defined classes, namely N, V, S, and F. In the last phase, a query generator is introduced to interact with the expert to label few beats to improve accuracy and sensitivity. The proposed approach depicts significant improvement in accuracy with minimal queries posed to the expert and fast online training as tested on the MIT-BIH Arrhythmia Database and the MIT-BIH Supra-ventricular Arrhythmia Database (SVDB). With 100 queries labeled by the expert in phase III, the method achieves an accuracy of 99.5% in "S" versus all classifications (SVEB) and 99.4% accuracy in "V " versus all classifications (VEB) on MIT-BIH Arrhythmia Database. In a similar manner, it is attributed that an accuracy of 97.5% for SVEB and 98.6% for VEB on SVDB database is achieved respectively. Graphical Abstract Reply- Deep belief network augmented by active learning for efficient prediction of arrhythmia.

  1. Kinematics of ram filter feeding and beat-glide swimming in the northern anchovy Engraulis mordax.

    PubMed

    Carey, Nicholas; Goldbogen, Jeremy A

    2017-08-01

    In the dense aquatic environment, the most adept swimmers are streamlined to reduce drag and increase the efficiency of locomotion. However, because they open their mouth to wide gape angles to deploy their filtering apparatus, ram filter feeders apparently switch between diametrically opposite swimming modes: highly efficient, streamlined 'beat-glide' swimming, and ram filter feeding, which has been hypothesized to be a high-cost feeding mode because of presumed increased drag. Ram filter-feeding forage fish are thought to play an important role in the flux of nutrients and energy in upwelling ecosystems; however, the biomechanics and energetics of this feeding mechanism remain poorly understood. We quantified the kinematics of an iconic forage fish, the northern anchovy, Engraulis mordax , during ram filter feeding and non-feeding, mouth-closed beat-glide swimming. Although many kinematic parameters between the two swimming modes were similar, we found that swimming speeds and tailbeat frequencies were significantly lower during ram feeding. Rather than maintain speed with the school, a speed which closely matches theoretical optimum filter-feeding speeds was consistently observed. Beat-glide swimming was characterized by high variability in all kinematic parameters, but variance in kinematic parameters was much lower during ram filter feeding. Under this mode, body kinematics are substantially modified, and E. mordax swims more slowly and with decreased lateral movement along the entire body, but most noticeably in the anterior. Our results suggest that hydrodynamic effects that come with deployment of the filtering anatomy may limit behavioral options during foraging and result in slower swimming speeds during ram filtration. © 2017. Published by The Company of Biologists Ltd.

  2. Safety assessment of thiolated polymers: effect on ciliary beat frequency in human nasal epithelial cells.

    PubMed

    Palmberger, Thomas F; Augustijns, Patrick; Vetter, Anja; Bernkop-Schnürch, Andreas

    2011-12-01

    The aim of this study was to investigate the nasal safety of gel formulations of thiolated polymers (thiomers) by assessing their effect on ciliary beat frequency (CBF) in human nasal epithelial cells. Poly(acrylic acid) 450 kDa-cysteine (PAA-cys) and alginate-cysteine (alg-cys) were synthesized by covalent attachment of L-cysteine to the polymeric backbone. The cationic polymer chitosan-thiobutylamidine (chito-TBA) was synthesized by attaching iminothiolane to chitosan. CBF using was measured by a photometric system. CBF was measured before incubating the cells with test gels, during incubation and after washing out the polymeric test gels to evaluate reversibility of cilio-inhibition. The influence of viscosity on CBF was determined by using hydroxyethylcellulose (HEC)-gels of various concentrations. Ciliary beating was observed to be affected by viscosity, but cilia were still beating in the presence of a HEC-gel displaying an apparent viscosity of 25 Pa.s. In case of thiolated polymers and their unmodified control, a concentration-dependent decrease in CBF could be observed. PAA-cys, alg-cys, chito-TBA and their corresponding unmodified controls exhibited a moderate cilio-inhibitory effect, followed by a partial recovery of CBF when used at a concentration of 1%. Alg-cys 2% and chito-TBA 2% (m/v) gels exhibited severe cilio-inhibition, which was partially reversible. L-cysteine and reduced glutathione led to mild cilio-inhibition at concentrations of 3% (m/v). Taking into account that dilution after application and cilio-modifying effects is usually more pronounced under in vitro conditions, thiomers can be considered as suitable excipients for nasal drug delivery systems.

  3. The Institute of Medicine's report on non-heart-beating organ transplantation.

    PubMed

    Herdman, Roger; Beauchamp, Tom L; Potts, John T

    1998-03-01

    In December 1997, the Institute of Medicine (IOM) released a report on medical and ethical issues in the procurement of non-heart-beating organ donors. This report had been requested in May 1997 by the Department of Health and Human Services (DHHS). We will here describe the genesis of the IOM report, the medical and moral concerns that led the DHHS to sponsor it, the process of producing it, and its conclusions. The analyses, findings, and recommendations of the report are also reviewed, in particular the central issues that led to suggestions for policy changes.

  4. Beating the Odds: Finding Schools Exceeding Achievement Expectations with High-Risk Students. REL 2014-032

    ERIC Educational Resources Information Center

    Koon, Sharon; Petscher, Yaacov; Foorman, Barbara R.

    2014-01-01

    State education leaders are often interested in identifying schools that have demonstrated success with improving the literacy of students who are at the highest level of risk for reading difficulties. The identification of these schools that are "beating the odds" is typically accomplished by comparing a school's observed performance on…

  5. Keeping the heart empty and beating: an alternative technique to preserve hypertrophied hearts during valvular surgery.

    PubMed

    Liu, Shangdian; Liu, Zonghong; Li, Lulu; Liu, Pengfei; Liu, Hongyu

    2015-05-13

    To determine whether keeping the heart empty and beating is an effective technique to preserve hypertrophied pig hearts, and to investigate the underlying mechanism. Ten Bama Miniature pigs with hypertrophied hearts were divided into 2 groups (n = 5 in each group). One group underwent normothermic normokalemic simultaneous perfusion (NNSP). The other group was subjected to normothermic hypermokalemic simultaneous perfusion (NHSP) and used as controls. Cardiac contractive function, myocardial energy metabolism and myocardial perfusion were assessed using magnetic resonance imaging. Western blot analysis was carried out to determine the expression of Troponin I (cTnI), Troponin T (cTnT), SM-MHC, Casapase-3 and PARP4. TUNEL assay was used to detect apoptotic cardiomyocytes. Keeping the heart empty and beating with NNSP improved the preservation of contractile function in comparison with cardioplegic arrest using NHSP. No significant differences existed in the effects of NNSP and NHSP in maintaining myocardial energy metabolism. 13 % perfusion defects areas were found in one heart in the NHSP group, whereas none was found in all other hearts in both groups. The expressions of cTnI, cTnT, Casapase-3 and PARP4 in NHSP group were abundantly increased compared to NNSP group as measured by Western blotting. Conversely, the expression of SM-MHC in NHSP group was reduced compared with NNSP group. The number of TUNEL positive nuclei per mm(2) area was significantly increased in NHSP group compared with NNSP group. Keeping the heart beating with NNSP is an alternative technique to preserve hypertrophied hearts during valvular surgery.

  6. Clinical lung transplantation from uncontrolled non-heart-beating donors revisited.

    PubMed

    Gomez-de-Antonio, David; Campo-Cañaveral, Jose Luis; Crowley, Silvana; Valdivia, Daniel; Cordoba, Mar; Moradiellos, Javier; Naranjo, Jose Manual; Ussetti, Piedad; Varela, Andrés

    2012-04-01

    The aim of our study is to review and update the long-term results from our previously published series of lung transplantation in uncontrolled non-heart-beating donors (NHBDs). A prospective collection of data was undertaken from all lung transplants performed among uncontrolled NHBDs between 2002 and December 2009. The statistical analysis was performed using SPSS software and survival was estimated using the Kaplan-Meier method. Twenty-nine lung transplants were performed. Mean total ischemic times for the first and second lung were 575 minutes (SD 115.6) and 701 minutes (SD 111.3), respectively. Primary graft dysfunction (PGD) G1, G2 and G3 occurred in 5 cases (17%), 5 cases (17%) and 11 cases (38%), respectively. Overall hospital mortality rate was 17% (5 patients). Statistical analysis revealed a statistically significant association of mortality with ischemic times and with PGD. In terms of overall survival, 3-month, 1-year, 2-year and 5-year survival rates were 78%, 68%, 57% and 51%, respectively, and the conditional survival rates in those who survived the first 3 months were 86%, 72% and 65%, respectively. The cumulative incidence of bronchiolitis obliterans syndrome (BOS) was 11%, 35% and 45% at 1, 3 and 5 years, respectively. Lung transplantation from uncontrolled non-heart-beating donors shows acceptable results for both mid- and long-term survival and BOS; however, the higher rates of PGD and its impact on early mortality must make us more demanding with respect to the acceptance criteria and methods of evaluation used with these donors. Copyright © 2012 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  7. Are there intracellular Ca2+ oscillations correlated with flagellar beating in human sperm? A three vs. two-dimensional analysis.

    PubMed

    Corkidi, G; Montoya, F; Hernández-Herrera, P; Ríos-Herrera, W A; Müller, M F; Treviño, C L; Darszon, A

    2017-09-01

    Are there intracellular Ca2+ ([Ca2+]i) oscillations correlated with flagellar beating in human sperm? The results reveal statistically significant [Ca2+]i oscillations that are correlated with the human sperm flagellar beating frequency, when measured in three-dimensions (3D). Fast [Ca2+]i oscillations that are correlated to the beating flagellar frequency of cells swimming in a restricted volume have been detected in hamster sperm. To date, such findings have not been confirmed in any other mammalian sperm species. An important question that has remained regarding these observations is whether the fast [Ca2+]i oscillations are real or might they be due to remaining defocusing effects of the Z component arising from the 3D beating of the flagella. Healthy donors whose semen samples fulfill the WHO criteria between the age of 18-28 were selected. Cells from at least six different donors were utilized for analysis. Approximately the same number of experimental and control cells were analyzed. Motile cells were obtained by the swim-up technique and were loaded with Fluo-4 (Ca2+ sensitive dye) or with Calcein (Ca2+ insensitive dye). Ni2+ was used as a non-specific plasma membrane Ca2+ channel blocker. Fluorescence data and flagella position were acquired in 3D. Each cell was recorded for up to 5.6 s within a depth of 16 microns with a high speed camera (coupled to an image intensifier) acquiring at a rate of 3000 frames per second, while an oscillating objective vibrated at 90 Hz via a piezoelectric device. From these samples, eight experimental and nine control sperm cells were analyzed in both 2D and 3D. We have implemented a new system that allows [Ca2+]i measurements of the human sperm flagellum beating in 3D. These measurements reveal statistically significant [Ca2+]i oscillations that correlate with the flagellar beating frequency. These oscillations may arise from intracellular sources and/or Ca2+ transporters, as they were insensitive to external Ni2+, a non

  8. DFB fiber laser static strain sensor based on beat frequency interrogation with a reference fiber laser locked to a FBG resonator.

    PubMed

    Huang, Wenzhu; Feng, Shengwen; Zhang, Wentao; Li, Fang

    2016-05-30

    We report on a high-resolution static strain sensor developed with distributed feedback (DFB) fiber laser. A reference FBG resonator is used for temperature compensation. Locking another independent fiber laser to the resonator using the Pound-Drever-Hall technique results in a strain power spectral density better than Sε(f) = (4.6 × 10-21) ε2/Hz in the frequency range from 1 Hz to 1 kHz, corresponding to a minimum dynamic strain resolution of 67.8 pε/√Hz. This frequency stabilized fiber laser is proposed to interrogate the sensing DFB fiber laser by the beat frequency principle. As a reasonable DFB fiber laser setup is realized, a narrow beat frequency line-width of 3.23 kHz and a high beat frequency stability of 0.036 MHz in 15 minutes are obtained in the laboratory test, corresponding to a minimum static strain resolution of 270 pε. This is the first time that a sub-0.5 nε level for static strain measurement using DFB fiber laser is demonstrated.

  9. Quantum beats from the coherent interaction of hole states with surface state in near-surface quantum well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Salahuddin; Jayabalan, J., E-mail: jjaya@rrcat.gov.in; Chari, Rama

    2014-08-18

    We report tunneling assisted beating of carriers in a near-surface single GaAsP/AlGaAs quantum well using transient reflectivity measurement. The observed damped oscillating signal has a period of 120 ± 6 fs which corresponds to the energy difference between lh1 and hh2 hole states in the quantum well. Comparing the transient reflectivity signal at different photon energies and with a buried quantum well sample, we show that the beating is caused by the coherent coupling between surface state and the hole states (lh1 and hh2) in the near-surface quantum well. The dependence of decay of coherence of these tunneling carriers on the excitationmore » fluence is also reported. This observation on the coherent tunneling of carrier is important for future quantum device applications.« less

  10. Where Is the Beat? The Neural Correlates of Lexical Stress and Rhythmical Well-formedness in Auditory Story Comprehension.

    PubMed

    Kandylaki, Katerina D; Henrich, Karen; Nagels, Arne; Kircher, Tilo; Domahs, Ulrike; Schlesewsky, Matthias; Bornkessel-Schlesewsky, Ina; Wiese, Richard

    2017-07-01

    While listening to continuous speech, humans process beat information to correctly identify word boundaries. The beats of language are stress patterns that are created by combining lexical (word-specific) stress patterns and the rhythm of a specific language. Sometimes, the lexical stress pattern needs to be altered to obey the rhythm of the language. This study investigated the interplay of lexical stress patterns and rhythmical well-formedness in natural speech with fMRI. Previous electrophysiological studies on cases in which a regular lexical stress pattern may be altered to obtain rhythmical well-formedness showed that even subtle rhythmic deviations are detected by the brain if attention is directed toward prosody. Here, we present a new approach to this phenomenon by having participants listen to contextually rich stories in the absence of a task targeting the manipulation. For the interaction of lexical stress and rhythmical well-formedness, we found one suprathreshold cluster localized between the cerebellum and the brain stem. For the main effect of lexical stress, we found higher BOLD responses to the retained lexical stress pattern in the bilateral SMA, bilateral postcentral gyrus, bilateral middle fontal gyrus, bilateral inferior and right superior parietal lobule, and right precuneus. These results support the view that lexical stress is processed as part of a sensorimotor network of speech comprehension. Moreover, our results connect beat processing in language to domain-independent timing perception.

  11. A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part I, experimental analysis.

    PubMed

    Bottier, Mathieu; Blanchon, Sylvain; Pelle, Gabriel; Bequignon, Emilie; Isabey, Daniel; Coste, André; Escudier, Estelle; Grotberg, James B; Papon, Jean-François; Filoche, Marcel; Louis, Bruno

    2017-07-01

    Mucociliary clearance is one of the major lines of defense of the respiratory system. The mucus layer coating the pulmonary airways is moved along and out of the lung by the activity of motile cilia, thus expelling the particles trapped in it. Here we compare ex vivo measurements of a Newtonian flow induced by cilia beating (using micro-beads as tracers) and a mathematical model of this fluid flow, presented in greater detail in a second companion article. Samples of nasal epithelial cells placed in water are recorded by high-speed video-microscopy and ciliary beat pattern is inferred. Automatic tracking of micro-beads, used as markers of the flow generated by cilia motion, enables us also to assess the velocity profile as a function of the distance above the cilia. This profile is shown to be essentially parabolic. The obtained experimental data are used to feed a 2D mathematical and numerical model of the coupling between cilia, fluid, and micro-bead motion. From the model and the experimental measurements, the shear stress exerted by the cilia is deduced. Finally, this shear stress, which can easily be measured in the clinical setting, is proposed as a new index for characterizing the efficiency of ciliary beating.

  12. A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part I, experimental analysis

    PubMed Central

    Bottier, Mathieu; Blanchon, Sylvain; Pelle, Gabriel; Bequignon, Emilie; Coste, André; Escudier, Estelle; Grotberg, James B.; Papon, Jean-François

    2017-01-01

    Mucociliary clearance is one of the major lines of defense of the respiratory system. The mucus layer coating the pulmonary airways is moved along and out of the lung by the activity of motile cilia, thus expelling the particles trapped in it. Here we compare ex vivo measurements of a Newtonian flow induced by cilia beating (using micro-beads as tracers) and a mathematical model of this fluid flow, presented in greater detail in a second companion article. Samples of nasal epithelial cells placed in water are recorded by high-speed video-microscopy and ciliary beat pattern is inferred. Automatic tracking of micro-beads, used as markers of the flow generated by cilia motion, enables us also to assess the velocity profile as a function of the distance above the cilia. This profile is shown to be essentially parabolic. The obtained experimental data are used to feed a 2D mathematical and numerical model of the coupling between cilia, fluid, and micro-bead motion. From the model and the experimental measurements, the shear stress exerted by the cilia is deduced. Finally, this shear stress, which can easily be measured in the clinical setting, is proposed as a new index for characterizing the efficiency of ciliary beating. PMID:28708889

  13. Non-canonical Wnt signaling enhances differentiation of Sca1+/c-kit+ adipose-derived murine stromal vascular cells into spontaneously beating cardiac myocytes.

    PubMed

    Palpant, Nathan J; Yasuda, So-ichiro; MacDougald, Ormond; Metzger, Joseph M

    2007-09-01

    Recent reports have described a stem cell population termed stromal vascular cells (SVCs) derived from the stromal vascular fraction of adipose tissue, which are capable of intrinsic differentiation into spontaneously beating cardiomyocytes in vitro. The objective of this study was to further define the cardiac lineage differentiation potential of SVCs in vitro and to establish methods for enriching SVC-derived beating cardiac myocytes. SVCs were isolated from the stromal vascular fraction of murine adipose tissue. Cells were cultured in methylcellulose-based murine stem cell media. Analysis of SVC-derived beating myocytes included Western blot and calcium imaging. Enrichment of acutely isolated SVCs was carried out using antibody-tagged magnetic nanoparticles, and pharmacologic manipulation of Wnt and cytokine signaling. Under initial media conditions, spontaneously beating SVCs expressed both cardiac developmental and adult protein isoforms. Functionally, this specialized population can spontaneously contract and pace under field stimulation and shows the presence of coordinated calcium transients. Importantly, this study provides evidence for two independent mechanisms of enriching the cardiac differentiation of SVCs. First, this study shows that differentiation of SVCs into cardiac myocytes is augmented by non-canonical Wnt agonists, canonical Wnt antagonists, and cytokines. Second, SVCs capable of cardiac lineage differentiation can be enriched by selection for stem cell-specific membrane markers Sca1 and c-kit. Adipose-derived SVCs are a unique population of stem cells that show evidence of cardiac lineage development making them a potential source for stem cell-based cardiac regeneration studies.

  14. Non-canonical Wnt Signaling Enhances differentiation of Sca1+/c-kit+ Adipose-derived Murine Stromal Vascular Cells into Spontaneously Beating Cardiac Myocytes

    PubMed Central

    Palpant, Nathan J.; Yasuda, So-ichiro; MacDougald, Ormond; Metzger, Joseph M.

    2007-01-01

    Recent reports have described a stem cell population termed stromal vascular cells (SVCs) derived from the stromal vascular fraction of adipose tissue, which are capable of intrinsic differentiation into spontaneously beating cardiomyocytes in vitro. The objective of this study was to further define the cardiac lineage differentiation potential of SVCs in vitro and to derive methods for enriching SVC-derived beating cardiac myocytes. SVCs were isolated from the stromal vascular fraction of murine adipose tissue. Cells were cultured in methylcellulose-based murine stem cell media. Analysis of SVC-derived beating myocytes included Western blot, and calcium imaging. Enrichment of acutely isolated SVCs was carried out using antibody tagged magnetic nanoparticles, and pharmacologic manipulation of Wnt and cytokine signaling. Under initial media conditions, spontaneously beating SVCs expressed both cardiac developmental and adult protein isoforms. Functionally, this specialized population can spontaneously contract and pace under field stimulation, and shows the presence of coordinated calcium transients. Importantly, this study provides evidence for two independent mechanisms of enriching the cardiac differentiation of SVCs. First, this study shows that differentiation of SVCs into cardiac myocytes is augmented by non-canonical Wnt agonists, canonical Wnt antagonists, and cytokines. Second, SVCs capable of cardiac lineage differentiation can be enriched by selection for stem cell-specific membrane markers Sca1 and c-kit. Adipose-derived SVCs are a unique population of stem cells that show evidence of cardiac lineage development making them a potential source for stem cell-based cardiac regeneration studies. PMID:17706246

  15. Investigation of ELF/VLF waves created by a "beat-wave" HF ionospheric heating at high latitudes

    NASA Astrophysics Data System (ADS)

    Shumilov, Oleg; Tereshchenko, Evgeniy; Kasatkina, Elena; Gomonov, Alexandr

    2015-04-01

    The generation of extremely low frequency (ELF, 3-3000 Hz) and very low frequency (VLF, 3-30 kHz) electromagnetic waves by modulated ionospheric high frequency (HF, 2-30 MHz) heating is one of the main directions of ionospheric modification experiments. In this work, we present observations of ELF waves generated during a "beat-wave" heating experiments at the EISCAT heating facility. ELF waves were registered with the ELF receiver located at Lovozero (68 N, 35 E), 660 km east from the EISCAT Tromso heating facility (69.6 N, 19.2 E). Frequency shifts between the generated beat-wave and received ELF waves were detected in all sessions. It is shown that the amplitudes of ELF waves depend on the auroral electrojet current strength. Our results showing a strong dependence of ELF signal intensities on the substorm development seem to support the conclusion that electrojet currents may affect the BW generation of ELF/VLF waves.

  16. The dynamic cardiac biosimulator: A method for training physicians in beating-heart mitral valve repair procedures.

    PubMed

    Leopaldi, Alberto M; Wrobel, Krzysztof; Speziali, Giovanni; van Tuijl, Sjoerd; Drasutiene, Agne; Chitwood, W Randolph

    2018-01-01

    Previously, cardiac surgeons and cardiologists learned to operate new clinical devices for the first time in the operating room or catheterization laboratory. We describe a biosimulator that recapitulates normal heart valve physiology with associated real-time hemodynamic performance. To highlight the advantages of this simulation platform, transventricular extruded polytetrafluoroethylene artificial chordae were attached to repair flail or prolapsing mitral valve leaflets. Guidance for key repair steps was by 2-dimensional/3-dimensional echocardiography and simultaneous intracardiac videoscopy. Multiple surgeons have assessed the use of this biosimulator during artificial chordae implantations. This simulation platform recapitulates normal and pathologic mitral valve function with associated hemodynamic changes. Clinical situations were replicated in the simulator and echocardiography was used for navigation, followed by videoscopic confirmation. This beating heart biosimulator reproduces prolapsing mitral leaflet pathology. It may be the ideal platform for surgeon and cardiologist training on many transcatheter and beating heart procedures. Copyright © 2017 The American Association for Thoracic Surgery. All rights reserved.

  17. [Predicative significance of HRV and HRT to premature beat on patients with coal worker's pneumoconiosis].

    PubMed

    Bao, Ying; Wang, Dejun; Du, Zhenlan; Liu, Shuhen

    2014-07-01

    To determine the predicative significance of HRV and HRT to premature beat on patients with coal-worker's pneumoconiosis. 100 coal-worker's pneumoconiosis patients with premature beat (including 44 cases of occasional ventricular premature contraction and 56 cases of frequent ventricular premature contraction) were chosen as CWP group, and 50 healthy coal workers were chosen as control group. 24 h DCG was used to monitor and analyze the change of premature beat and to calculate HRV. Index: SDNN, SDANN, HFLF, HRT: TO, TS, compare HRV of CWP group and control group and the changes of HRT of both occasional and frequent ventricular premature contraction. The incidence of CWP at night (66.1%, 37 cases) is higher than that during daytime (33.9%, 19 cases), and the difference is statistically significant with P < 0.05. HRV (SDNN SDANN HF HL) indexes of CWP group are lower than control group, and the difference is statistically significant with P < 0.05. HRV indexes of control group at night are higher than that during daytime, and the difference is statistically significant with P < 0.05. Comparison of CWP group HRV indexes between day and night is statistically insignificant with P > 0.05. Compared with control group, TO of CWP group is higher while TS is lower, and the difference is statistically significant with P < 0.05. Compared with occasional ventricular premature contraction patients in CWP group, TO of frequent ventricular premature contraction patients is higher while TS is lower, and the difference is statistically significant with P < 0.05. Frequent ventricular premature contraction group in CWP group suffer from severe impaired autonomic nervous function injury, and abnormal HRV and HRT can be prognostic indicator of frequent ventricular premature contraction among coal-worker's pneumoconiosis patients.

  18. The Effects of Visual Beats on Prosodic Prominence: Acoustic Analyses, Auditory Perception and Visual Perception

    ERIC Educational Resources Information Center

    Krahmer, Emiel; Swerts, Marc

    2007-01-01

    Speakers employ acoustic cues (pitch accents) to indicate that a word is important, but may also use visual cues (beat gestures, head nods, eyebrow movements) for this purpose. Even though these acoustic and visual cues are related, the exact nature of this relationship is far from well understood. We investigate whether producing a visual beat…

  19. Optical beat interference noise reduction in OFDMA optical access link using self-homodyne balanced detection

    NASA Astrophysics Data System (ADS)

    Jung, Sang-Min; Won, Yong-Yuk; Han, Sang-Kook

    2013-12-01

    A Novel technique for reducing the OBI noise in optical OFDMA-PON uplink is presented. OFDMA is a multipleaccess/ multiplexing scheme that can provide multiplexing operation of user data streams onto the downlink sub-channels and uplink multiple access by means of dividing OFDM subcarriers as sub-channels. The main issue of high-speed, single-wavelength upstream OFDMA-PON arises from optical beating interference noise. Because the sub-channels are allocated dynamically to multiple access users over same nominal wavelength, it generates the optical beating interference among upstream signals. In this paper, we proposed a novel scheme using self-homodyne balanced detection in the optical line terminal (OLT) to reduce OBI noise which is generated in the uplink transmission of OFDMA-PON system. When multiple OFDMA sub-channels over the same nominal wavelength are received at the same time in the proposed architecture, OBI noises can be removed using balanced detection. Using discrete multitone modulation (DMT) to generate real valued OFDM signals, the proposed technique is verified through experimental demonstration.

  20. Environmental assessment of potential toxic trace element contents in the inundated floodplain area of Tablas de Daimiel wetland (Spain).

    PubMed

    Jiménez-Ballesta, R; García-Navarro, F J; Bravo, S; Amorós, J A; Pérez-de-Los-Reyes, C; Mejías, M

    2017-10-01

    Contamination of aquatic systems with potentially toxic trace elements (PTEs) is a major problem throughout the world. The National Park Tablas de Daimiel (NPTD) is considered to make up one of the two most important wetlands in the Biosphere Reserve called "Wet Spot." Since PTEs are good indicator of the prevailing environmental conditions and possible contamination, soil samples collected from 43 sites were analyzed in order to investigate the levels and its distribution of these elements, in the inundated floodplain area of the NPTD wetland. In addition, some physicochemical parameters such as pH, electrical conductivity and organic matter were measured. The total concentrations of 32 trace elements were determined by X-ray fluorescence. The results show that there was accumulation of lead (Pb), tin (Sn), selenium (Se), antimony (Sb), copper (Cu), vanadium (V), nickel (Ni), zinc (Zn), arsenic (As), strontium (Sr) and zirconium (Zr)-in some cases at high concentrations. The interpolated maps showed that the distributions of some of these elements and in some cases the trend in spatial variability are pronounced and decrease from the inlet to the outlet. The values for some elements are higher than the reference values, which is consistent with contamination (some values are higher by a factor of more than 10 compared to the reference). In the case of iodine (I), the levels at some sample points are significantly more than ten times the reference; Se appears in the range from 1.0 to 9.8 mg/kg, with an average value of 3.1 mg/kg, and these can be considered as seleniferous soils. The concentrations found are consistent with the introduction in the wetland of pollution by human activities, such as agricultural non-point sources, uncontrolled fertilization over many years, treatment with urban wastewater and other possible sources.

  1. Bidirectional ultradense WDM for metro networks adopting the beat-frequency-locking method

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Yuep; Lee, Jae-Hoon; Lee, Jae-Seung

    2003-10-01

    We present a technique to increase the spectral efficiencies of metro networks by using channel-interleaved bidirectional ultradense wavelength-division multiplexing (WDM) within each customer's optical band. As a demonstration, we transmit 12.5-GHz-spaced 8×10 Gbit/s channels achieving spectral efficiency as high as 0.8 bit/s/Hz with a 25-GHz WDM demultiplexer. The beat-frequency-locking method is used to stabilize the channel frequencies within +/-200 MHz, which is far more accurate than with conventional wavelength lockers.

  2. Listeners feel the beat: entrainment to English and French speech rhythms.

    PubMed

    Lidji, Pascale; Palmer, Caroline; Peretz, Isabelle; Morningstar, Michele

    2011-12-01

    Can listeners entrain to speech rhythms? Monolingual speakers of English and French and balanced English-French bilinguals tapped along with the beat they perceived in sentences spoken in a stress-timed language, English, and a syllable-timed language, French. All groups of participants tapped more regularly to English than to French utterances. Tapping performance was also influenced by the participants' native language: English-speaking participants and bilinguals tapped more regularly and at higher metrical levels than did French-speaking participants, suggesting that long-term linguistic experience with a stress-timed language can differentiate speakers' entrainment to speech rhythm.

  3. Talking to the Beat: Six-Year-Olds' Use of Stroke-Defined Non-Referential Gestures

    ERIC Educational Resources Information Center

    Mathew, Mili; Yuen, Ivan; Demuth, Katherine

    2018-01-01

    Children are known to use different types of referential gestures (e.g., deictic, iconic) from a very young age. In contrast, their use of non-referential gestures is not well established. This study investigated the use of "stroke-defined non-referential" 'beat' gestures in a story-retelling and an exposition task by twelve 6-year-olds,…

  4. Outcry against Violence: Beating Death of Student in Chicago Spurs Attention to a Nationwide Problem

    ERIC Educational Resources Information Center

    Aarons, Dakarai I.

    2009-01-01

    In the wake of the videotaped beating death of a Chicago high school student, law-enforcement officials and educators called this week for renewed efforts to stem youth violence. But they also acknowledged that money and programs alone will not solve the problem. Cabinet members traveled to Chicago to offer money and to call for adults to play a…

  5. Outcry against Violence: Beating Death of Student in Chicago Spurs Attention to a Nationwide Problem

    ERIC Educational Resources Information Center

    Aarons, Dakarai I.

    2010-01-01

    In the wake of the beating death of a Chicago high school student in September, law-enforcement officials and educators have called for renewed efforts to stem youth violence. But they also acknowledged that money and programs alone won't solve the problem. U.S. Attorney General Eric H. Holder and Secretary of Education Arne Duncan traveled to…

  6. Multi-channel System for Beat to Beat QT Interval Variability and its Use in Screening for Coronary Artery Disease and Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Starc, V.; Schlegel, T. T.; Arenare, B.; Greco, E. C.; DePalma, J. L.; Nunez, T.; Medina, R.; Jugo, D.; Rahman, M. A.; Delgado, R.

    2007-01-01

    We investigated the ability of beat-to-beat QT interval variability (QTV) and related parameters to differentiate healthy individuals from patients with obstructive coronary artery disease (CAD) and cardiomyopathy (CM). For this purpose we developed a PC-based ECG software program that in real time, acquires, analyzes and displays QTV in each of the eight independent channels that constitute the 12-lead conventional ECG. The system also analyzes and displays the QTV from QT interval signals that are derived from multiple channels and from singular value decomposition (SVD) to substantially reduce the effect of noise and other artifacts on the QTV results. It also provides other useful SVD-related parameters such as the normalized 3-dimensional volume of the T wave (nTV) = 100*(rho(sub 2)*rho(sub 3)rho(sub 1^2). Advanced high-fidelity 12-lead ECG tests (approx. 5-min supine) were first performed on a "training set" of 99 individuals: 33 with ischemic or dilated CM and low ejection fraction (EF less than 40%); 33 with catheterization-proven obstructive CAD but normal EF; and 33 age-/gender-matched healthy controls. All QTV parameters that were studied for their accuracy in detecting CM and CAD significantly differentiated both CM and CAD from controls (p less than 0.0001). Retrospective areas under the ROC curve (AUC) of SDNN-QTV, rmsSD-QTV, and QTV Index (QTVI) for CM vs. controls in the lead V5 were 0.85, 0.90, and 0.99, respectively, and those for CAD vs. controls in the lead II were 0.82, 0.82, and 0.89. Other advanced ECG parameters, such as HFQRS RAZ score, LF Lomb of RRV or QRS-T angle, differentiated both CM and CAD from controls less significantly, with the respective AUC values of 0.89, 0.88 and 0.98 for CM vs. controls, and 0.73, 0.71 and 0.80 for CAD vs. controls. QTV parameters (especially QTVI, which is QTV as indexed to RRV) were, diagnostically speaking, amongst the best performing of the advanced ECG techniques studied thus far.

  7. Determination of power system component parameters using nonlinear dead beat estimation method

    NASA Astrophysics Data System (ADS)

    Kolluru, Lakshmi

    Power systems are considered the most complex man-made wonders in existence today. In order to effectively supply the ever increasing demands of the consumers, power systems are required to remain stable at all times. Stability and monitoring of these complex systems are achieved by strategically placed computerized control centers. State and parameter estimation is an integral part of these facilities, as they deal with identifying the unknown states and/or parameters of the systems. Advancements in measurement technologies and the introduction of phasor measurement units (PMU) provide detailed and dynamic information of all measurements. Accurate availability of dynamic measurements provides engineers the opportunity to expand and explore various possibilities in power system dynamic analysis/control. This thesis discusses the development of a parameter determination algorithm for nonlinear power systems, using dynamic data obtained from local measurements. The proposed algorithm was developed by observing the dead beat estimator used in state space estimation of linear systems. The dead beat estimator is considered to be very effective as it is capable of obtaining the required results in a fixed number of steps. The number of steps required is related to the order of the system and the number of parameters to be estimated. The proposed algorithm uses the idea of dead beat estimator and nonlinear finite difference methods to create an algorithm which is user friendly and can determine the parameters fairly accurately and effectively. The proposed algorithm is based on a deterministic approach, which uses dynamic data and mathematical models of power system components to determine the unknown parameters. The effectiveness of the algorithm is tested by implementing it to identify the unknown parameters of a synchronous machine. MATLAB environment is used to create three test cases for dynamic analysis of the system with assumed known parameters. Faults are

  8. Beating heart mitral valve repair with integrated ultrasound imaging

    NASA Astrophysics Data System (ADS)

    McLeod, A. Jonathan; Moore, John T.; Peters, Terry M.

    2015-03-01

    Beating heart valve therapies rely extensively on image guidance to treat patients who would be considered inoperable with conventional surgery. Mitral valve repair techniques including the MitrClip, NeoChord, and emerging transcatheter mitral valve replacement techniques rely on transesophageal echocardiography for guidance. These images are often difficult to interpret as the tool will cause shadowing artifacts that occlude tissue near the target site. Here, we integrate ultrasound imaging directly into the NeoChord device. This provides an unobstructed imaging plane that can visualize the valve lea ets as they are engaged by the device and can aid in achieving both a proper bite and spacing between the neochordae implants. A proof of concept user study in a phantom environment is performed to provide a proof of concept for this device.

  9. Scaling dependence and synchronization of forced mercury beating heart systems

    NASA Astrophysics Data System (ADS)

    Biswas, Animesh; Das, Dibyendu; Parmananda, P.

    2017-04-01

    We perform experiments on a nonautonomous Mercury beating heart system, which is forced to pulsate using an external square wave potential. At suitable frequencies and volumes, the drop exhibits pulsation with polygonal shapes having n corners. We find the scaling dependence of the forcing frequency νn on the volume V of the drop and establish the relationship νn∝n/√{V } . It is shown that the geometrical shape of substrate is important for obtaining closer match to these scaling relationships. Furthermore, we study synchronization of two nonidentical drops driven by the same frequency and establish that synchrony happens when the relationship n2/n1=√{V2/V1 } is satisfied.

  10. Science of rugby league football: a review.

    PubMed

    Gabbett, Tim J

    2005-09-01

    The purpose of this paper is to provide a comprehensive review of the science of rugby league football at all levels of competition (i.e. junior, amateur, semi-professional, professional), with special reference to all discipline-specific scientific research performed in rugby league (i.e. physiological, psychological, injury epidemiology, strength and conditioning, performance analysis). Rugby league football is played at junior and senior levels in several countries worldwide. A rugby league team consists of 13 players (6 forwards and 7 backs). The game is played over two 30 - 40 min halves (depending on the standard of competition) separated by a 10 min rest interval. Several studies have documented the physiological capacities and injury rates of rugby league players. More recently, studies have investigated the physiological demands of competition. Interestingly, the physiological capacities of players, the incidence of injury and the physiological demands of competition all increase as the playing standard is increased. Mean blood lactate concentrations of 5.2, 7.2 and 9.1 mmol . l(-1) have been reported during competition for amateur, semi-professional and professional rugby league players respectively. Mean heart rates of 152 beats . min(-1) (78% of maximal heart rate), 166 beats . min(-1) (84% of maximal heart rate) and 172 beats . min(-1) (93% of maximal heart rate) have been recorded for amateur, semi-professional and junior elite rugby league players respectively. Skill-based conditioning games have been used to develop the skill and fitness of rugby league players, with mean heart rate and blood lactate responses during these activities almost identical to those obtained during competition. In addition, recent studies have shown that most training injuries are sustained in traditional conditioning activities that involve no skill component (i.e. running without the ball), whereas the incidence of injuries while participating in skill-based conditioning

  11. Beating the Odds: Finding Schools Exceeding Achievement Expectations with High-Risk Students. Summary. REL 2014-032

    ERIC Educational Resources Information Center

    Koon, Sharon; Petscher, Yaacov; Foorman, Barbara R.

    2014-01-01

    State education leaders are often interested in identifying schools that have demonstrated success with improving the literacy of students who are at the highest level of risk for reading difficulties. The identification of these schools that are "beating the odds" is typically accomplished by comparing a school's observed performance on…

  12. Quantitative analysis of ventricular ectopic beats in short-term RR interval recordings to predict imminent ventricular tachyarrhythmia.

    PubMed

    Martínez-Alanis, Marisol; Ruiz-Velasco, Silvia; Lerma, Claudia

    2016-12-15

    Most approaches to predict ventricular tachyarrhythmias which are based on RR intervals consider only sinus beats, excluding premature ventricular complexes (PVCs). The method known as heartprint, which analyses PVCs and their characteristics, has prognostic value for fatal arrhythmias on long recordings of RR intervals (>70,000 beats). To evaluate characteristics of PVCs from short term recordings (around 1000 beats) and their prognostic value for imminent sustained tachyarrhythmia. We analyzed 132 pairs of short term RR interval recordings (one before tachyarrhythmia and one control) obtained from 78 patients. Patients were classified into two groups based on the history of accelerated heart rate (HR) (HR>90bpm) before a tachyarrhythmia episode. Heartprint indexes, such as mean coupling interval (meanCI) and the number of occurrences of the most prevalent form of PVCs (SNIB) were calculated. The predictive value of all the indexes and of the combination of different indexes was calculated. MeanCI shorter than 482ms and the occurrence of more repetitive arrhythmias (sNIB≥2.5), had a significant prognostic value for patients with accelerated heart rate: adjusted odds ratio of 2.63 (1.33-5.17) for meanCI and 2.28 (1.20-4.33) for sNIB. Combining these indexes increases the adjusted odds ratio: 10.94 (3.89-30.80). High prevalence of repeating forms of PVCs and shorter CI are potentially useful risk markers of imminent ventricular tachyarrhythmia. Knowing if a patient has history of VT/VF preceded by accelerated HR, improves the prognostic value of these risk markers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Measurement of ciliary beat frequency using ultra-high resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Jason J.; Jing, Joseph C.; Su, Erica; Badger, Christopher; Coughlan, Carolyn A.; Chen, Zhongping; Wong, Brian J. F.

    2016-02-01

    Ciliated epithelial cells populate up to 80% of the surface area of the human airway and are responsible for mucociliary transport, which is the key protective mechanism that provides the first line of defense in the respiratory tract. Cilia beat in a rhythmic pattern and may be easily affected by allergens, pollutants, and pathogens, altering ciliary beat frequency (CBF) subsequently. Diseases including cystic fibrosis, chronic obstructive pulmonary disease, and primary ciliary dyskinesia may also decrease CBF. CBF is therefore a critical component of respiratory health. The current clinical method of measuring CBF is phase-contrast microscopy, which involves a tissue biopsy obtained via brushing of the nasal cavity. While this method is minimally invasive, the tissue sample must be oriented to display its profile view, making the visualization of a single layer of cilia challenging. In addition, the conventional method requires subjective analysis of CBF, e.g., manually counting by visual inspection. On the contrary, optical coherence tomography (OCT) has been used to study the retina in ophthalmology as well as vasculature in cardiology, and offers higher resolution than conventional computed tomography and magnetic resonance imaging. Based on this technology, our lab specifically developed an ultra-high resolution OCT system to image the microstructure of the ciliated epithelial cells. Doppler analysis was also performed to determine CBF. Lastly, we also developed a program that utilizes fast Fourier transform to determine CBF under phase-contrast microscopy, providing a more objective method compared to the current method.

  14. Pilot feasibility study of binaural auditory beats for reducing symptoms of inattention in children and adolescents with attention-deficit/hyperactivity disorder.

    PubMed

    Kennel, Susan; Taylor, Ann Gill; Lyon, Debra; Bourguignon, Cheryl

    2010-02-01

    The purpose of this pilot study was to explore the potential for the use of binaural auditory beat stimulation to reduce the symptom of inattention in children and adolescents with attention-deficit/hyperactivity disorder. This pilot study had a randomized, double-blind, placebo-controlled design. Twenty participants were randomly assigned to listen to either an audio program on compact disk that contained binaural auditory beats or a sham audio program that did not have binaural beats for 20 minutes, three times a week for 3 weeks. The Children's Color Trails Test, the Color Trails Test, the Test of Variables of Attention (TOVA), and the Homework Problem Checklist were used to measure changes in inattention pre- and postintervention. Repeated measures analysis of variance was used to analyze pre- and postintervention scores on the Color Trails Tests, Homework Problem Checklist, and the TOVA. The effect of time was significant on the Color Trails Test. However, there were no significant group differences on the Color Trails Test or the TOVA scores postintervention. Parents reported that the study participants had fewer homework problems postintervention. The results from this study indicate that binaural auditory beat stimulation did not significantly reduce the symptom of inattention in the experimental group. However, parents and adolescents stated that homework problems due to inattention improved during the 3-week study. Parents and participants stated that the modality was easy to use and helpful. Therefore, this modality should be studied over a longer time frame in a larger sample to further its effectiveness to reduce the symptom of inattention in those diagnosed with attention-deficit/hyperactivity disorder. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Social Cognitive Constructs Did Not Mediate the BEAT Cancer Intervention Effects on Objective Physical Activity Behavior Based on Multivariable Path Analysis.

    PubMed

    Rogers, Laura Q; Courneya, Kerry S; Anton, Phillip M; Hopkins-Price, Patricia; Verhulst, Steven; Robbs, Randall S; Vicari, Sandra K; McAuley, Edward

    2017-04-01

    Most breast cancer survivors do not meet physical activity recommendations. Understanding mediators of physical activity behavior change can improve interventions designed to increase physical activity in this at-risk population. Study aims were to determine the 3-month Better Exercise Adherence after Treatment for Cancer (BEAT Cancer) behavior change intervention effects on social cognitive theory constructs and the mediating role of any changes on the increase in accelerometer-measured physical activity previously reported. Post-treatment breast cancer survivors (N = 222) were randomized to BEAT Cancer or usual care. Assessments occurred at baseline, 3 months (M3), and 6 months (M6). Adjusted linear mixed model analysis of variance determined intervention effects on walking self-efficacy, outcome expectations, goal setting, and perceived barrier interference at M3. Path analysis determined mediation of intervention effects on physical activity at M6 by changes in social cognitive constructs during the intervention (i.e., baseline to M3). BEAT Cancer significantly improved self-efficacy, goals, negative outcome expectations, and barriers. Total path analysis model explained 24 % of the variance in M6 physical activity. There were significant paths from randomized intervention group to self-efficacy (β = 0.15, p < .05) and barriers (β = -0.22, p < .01). Barriers demonstrated a borderline significant association with M6 physical activity (β = -0.24, p = .05). No statistically significant indirect effects were found. Although BEAT Cancer significantly improved social cognitive constructs, no significant indirect effects on physical activity improvements 3 months post-intervention were observed (NCT00929617).

  16. Changing the Tooth-to-Tail Ratio Using Robotics and Automation to Beat Sequestration

    DTIC Science & Technology

    2015-10-01

    September–October 2015 | 75 Views Changing the Tooth-to-Tail Ratio Using Robotics and Automation to Beat Sequestration Capt Rachael L. Nussbaum...falls remains a matter of great debate. The US Air Force is the world’s leader in war-fighting automation and robotics . In fact, in accordance with the...progress in using robots to en- hance the effectiveness of the larger part of Air Force business. The amount of maintenance required by modern aerial war

  17. Digital frequency offset-locked He–Ne laser system with high beat frequency stability, narrow optical linewidth and optical fibre output

    NASA Astrophysics Data System (ADS)

    Sternkopf, Christian; Manske, Eberhard

    2018-06-01

    We report on the enhancement of a previously-presented heterodyne laser source on the basis of two phase-locked loop (PLL) frequency coupled internal-mirror He–Ne lasers. Our new system consists of two digitally controlled He–Ne lasers with slightly different wavelengths, and offers high-frequency stability and very narrow optical linewidth. The digitally controlled system has been realized by using a FPGA controller and transconductance amplifiers. The light of both lasers was coupled into separate fibres for heterodyne interferometer applications. To enhance the laser performance we observed the sensitivity of both laser tubes to electromagnetic noise from various laser power supplies and frequency control systems. Furthermore, we describe how the linewidth of a frequency-controlled He–Ne laser can be reduced during precise frequency stabilisation. The digitally controlled laser source reaches a standard beat frequency deviation of less than 20 Hz (with 1 s gate time) and a spectral full width at half maximum (FWHM) of the beat signal less than 3 kHz. The laser source has enough optical output power to serve a fibre-coupled multi axis heterodyne interferometer. The system can be adjusted to output beat frequencies in the range of 0.1 MHz–20 MHz.

  18. Exploiting Concurrent Wake-Up Transmissions Using Beat Frequencies

    PubMed Central

    2017-01-01

    Wake-up receivers are the natural choice for wireless sensor networks because of their ultra-low power consumption and their ability to provide communications on demand. A downside of ultra-low power wake-up receivers is their low sensitivity caused by the passive demodulation of the carrier signal. In this article, we present a novel communication scheme by exploiting purposefully-interfering out-of-tune signals of two or more wireless sensor nodes, which produce the wake-up signal as the beat frequency of superposed carriers. Additionally, we introduce a communication algorithm and a flooding protocol based on this approach. Our experiments show that our approach increases the received signal strength up to 3 dB, improving communication robustness and reliability. Furthermore, we demonstrate the feasibility of our newly-developed protocols by means of an outdoor experiment and an indoor setup consisting of several nodes. The flooding algorithm achieves almost a 100% wake-up rate in less than 20 ms. PMID:28933749

  19. Exploiting Concurrent Wake-Up Transmissions Using Beat Frequencies.

    PubMed

    Kumberg, Timo; Schindelhauer, Christian; Reindl, Leonhard

    2017-07-26

    Wake-up receivers are the natural choice for wireless sensor networks because of their ultra-low power consumption and their ability to provide communications on demand. A downside of ultra-low power wake-up receivers is their low sensitivity caused by the passive demodulation of the carrier signal. In this article, we present a novel communication scheme by exploiting purposefully-interfering out-of-tune signals of two or more wireless sensor nodes, which produce the wake-up signal as the beat frequency of superposed carriers. Additionally, we introduce a communication algorithm and a flooding protocol based on this approach. Our experiments show that our approach increases the received signal strength up to 3 dB, improving communication robustness and reliability. Furthermore, we demonstrate the feasibility of our newly-developed protocols by means of an outdoor experiment and an indoor setup consisting of several nodes. The flooding algorithm achieves almost a 100% wake-up rate in less than 20 ms.

  20. Third-order linearization for self-beating filtered microwave photonic systems using a dual parallel Mach-Zehnder modulator.

    PubMed

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Fandiño, Javier S; Muñoz, Pascual; Alavi, Hossein

    2016-09-05

    We develop, analyze and apply a linearization technique based on dual parallel Mach-Zehnder modulator to self-beating microwave photonics systems. The approach enables broadband low-distortion transmission and reception at expense of a moderate electrical power penalty yielding a small optical power penalty (<1 dB).

  1. Colombian forensic genetics as a form of public science: The role of race, nation and common sense in the stabilization of DNA populations

    PubMed Central

    Schwartz-Marín, Ernesto; Wade, Peter; Cruz-Santiago, Arely; Cárdenas, Roosbelinda

    2015-01-01

    This article examines the role that vernacular notions of racialized-regional difference play in the constitution and stabilization of DNA populations in Colombian forensic science, in what we frame as a process of public science. In public science, the imaginations of the scientific world and common-sense public knowledge are integral to the production and circulation of science itself. We explore the origins and circulation of a scientific object – ‘La Tabla’, published in Paredes et al. and used in genetic forensic identification procedures – among genetic research institutes, forensic genetics laboratories and courtrooms in Bogotá. We unveil the double life of this central object of forensic genetics. On the one hand, La Tabla enjoys an indisputable public place in the processing of forensic genetic evidence in Colombia (paternity cases, identification of bodies, etc.). On the other hand, the relations it establishes between ‘race’, geography and genetics are questioned among population geneticists in Colombia. Although forensic technicians are aware of the disputes among population geneticists, they use and endorse the relations established between genetics, ‘race’ and geography because these fit with common-sense notions of visible bodily difference and the regionalization of race in the Colombian nation. PMID:27480000

  2. Terahertz radiation generation by beating of two laser beams in a collisional plasma with oblique magnetic field

    NASA Astrophysics Data System (ADS)

    Hematizadeh, Ayoob; Jazayeri, Seyed Masud; Ghafary, Bijan

    2018-02-01

    A scheme for excitation of terahertz (THz) radiation is presented by photo mixing of two super-Gaussian laser beams in a rippled density collisional magnetized plasma. Lasers having different frequencies and wave numbers but the same electric fields create a ponderomotive force on the electrons of plasma in the beating frequency. Super-Gaussian laser beam has the exclusive features such as steep gradient in laser intensity distribution, wider cross-section in comparison with Gaussian profiles, which make stronger ponderomotive force and higher THz radiation. The magnetic field is considered oblique to laser beams propagation direction; in this case, depending on the phase matching conditions different mode waves can propagate in plasma. It is found that amplitude and efficiency of the emitted THz radiation not only are sensitive to the beating frequency, collision frequency, and magnetic field strength but to the angle between laser beams and static magnetic field. The efficiency of THz radiation can be optimized in a certain angle.

  3. Sub-second thermoplastic forming of bulk metallic glasses by ultrasonic beating

    PubMed Central

    Ma, Jiang; Liang, Xiong; Wu, Xiaoyu; Liu, Zhiyuan; Gong, Feng

    2015-01-01

    The work proposed a novel thermoplastic forming approach–the ultrasonic beating forming (UBF) method for bulk metallic glasses (BMGs) in present work. The rapid forming approach can finish the thermoplastic forming of BMGs in less than one second, avoiding the time-dependent crystallization and oxidation to the most extent. Besides, the UBF is also proved to be competent in the fabrication of structures with the length scale ranging from macro scale to nano scale. Our results propose a novel route for the thermoplastic forming of BMGs and have promising applications in the rapid fabrication of macro to nano scale products and devices. PMID:26644149

  4. How Methodology Decisions Affect the Variability of Schools Identified as Beating the Odds. REL 2015-071.rev

    ERIC Educational Resources Information Center

    Abe, Yasuyo; Weinstock, Phyllis; Chan, Vincent; Meyers, Coby; Gerdeman, R. Dean; Brandt, W. Christopher

    2015-01-01

    A number of states and school districts have identified schools that perform better than expected, given the populations they serve, in order to recognize school performance or to learn from local school practices and policies. These schools have been labeled "beating the odds," "high-performing/high-poverty,"…

  5. Beating the Odds: Analysis of Student Performance on State Assessments. Results from 2012-2013 School Year

    ERIC Educational Resources Information Center

    Uzzell, Renata; Fernandez, Jeannette; Palacios, Moses; Hart, Ray; Casserly, Michael

    2014-01-01

    The Council of the Great City Schools prepared this thirteenth edition of "Beating the Odds" to give the nation an in-depth look at how big-city schools are performing on the academic goals and standards set by the states. This analysis examines student achievement in mathematics and reading from spring 2010 through spring 2013; measures…

  6. A prospective, randomised, controlled study examining binaural beat audio and pre-operative anxiety in patients undergoing general anaesthesia for day case surgery.

    PubMed

    Padmanabhan, R; Hildreth, A J; Laws, D

    2005-09-01

    Pre-operative anxiety is common and often significant. Ambulatory surgery challenges our pre-operative goal of an anxiety-free patient by requiring people to be 'street ready' within a brief period of time after surgery. Recently, it has been demonstrated that music can be used successfully to relieve patient anxiety before operations, and that audio embedded with tones that create binaural beats within the brain of the listener decreases subjective levels of anxiety in patients with chronic anxiety states. We measured anxiety with the State-Trait Anxiety Inventory questionnaire and compared binaural beat audio (Binaural Group) with an identical soundtrack but without these added tones (Audio Group) and with a third group who received no specific intervention (No Intervention Group). Mean [95% confidence intervals] decreases in anxiety scores were 26.3%[19-33%] in the Binaural Group (p = 0.001 vs. Audio Group, p < 0.0001 vs. No Intervention Group), 11.1%[6-16%] in the Audio Group (p = 0.15 vs. No Intervention Group) and 3.8%[0-7%] in the No Intervention Group. Binaural beat audio has the potential to decrease acute pre-operative anxiety significantly.

  7. A Fast Multimodal Ectopic Beat Detection Method Applied for Blood Pressure Estimation Based on Pulse Wave Velocity Measurements in Wearable Sensors.

    PubMed

    Pflugradt, Maik; Geissdoerfer, Kai; Goernig, Matthias; Orglmeister, Reinhold

    2017-01-14

    Automatic detection of ectopic beats has become a thoroughly researched topic, with literature providing manifold proposals typically incorporating morphological analysis of the electrocardiogram (ECG). Although being well understood, its utilization is often neglected, especially in practical monitoring situations like online evaluation of signals acquired in wearable sensors. Continuous blood pressure estimation based on pulse wave velocity considerations is a prominent example, which depends on careful fiducial point extraction and is therefore seriously affected during periods of increased occurring extrasystoles. In the scope of this work, a novel ectopic beat discriminator with low computational complexity has been developed, which takes advantage of multimodal features derived from ECG and pulse wave relating measurements, thereby providing additional information on the underlying cardiac activity. Moreover, the blood pressure estimations' vulnerability towards ectopic beats is closely examined on records drawn from the Physionet database as well as signals recorded in a small field study conducted in a geriatric facility for the elderly. It turns out that a reliable extrasystole identification is essential to unsupervised blood pressure estimation, having a significant impact on the overall accuracy. The proposed method further convinces by its applicability to battery driven hardware systems with limited processing power and is a favorable choice when access to multimodal signal features is given anyway.

  8. Polarization mode beating techniques for high-sensitivity intracavity sensing

    NASA Astrophysics Data System (ADS)

    Rosales-Garcia, Andrea

    Several industries, including semiconductor, space, defense, medical, chemical and homeland security, demand precise and accurate measurements in the nanometer and sub-nanometer scale. Optical interferometers have been widely investigated due to its dynamic-range, non-contact and high-precision features. Although commercially available interferometers can have sub-nanometer resolution, the practical accuracy exceeds the nanometer range. The fast development of nanotechnology requires more sensitive, reliable, compact and lower cost alternatives than those in existence. This work demonstrates a compact, versatile, accurate and cost-effective fiber laser sensor based on intracavity polarization mode beating (PMB) techniques for monitoring intracavity phase changes with very high sensitivity. Fiber resonators support two orthogonal polarization modes that can behave as two independent lasing channels within the cavity. The fiber laser incorporates an intracavity polarizing beamsplitter that allows for adjusting independently the polarization modes. The heterodyne detection of the laser output produces a beating (PMB) signal, whose frequency is a function of the phase difference between the polarization modes. The optical phase difference is transferred from the optical frequency to a much lower frequency and thus electronic methods can be used to obtain very precise measurements. Upon changing the pathlength of one mode, changes iu the PMB frequency can be effectively measured. Furthermore, since the polarization nodes share the same cavity, the PMB technique provides a simple means to achieve suppression of common mode noise and laser source instabilities. Frequency changes of the PMB signal are evaluated as a function of displacement, intracavity pressure and air density. Refractive index changes of 10 -9 and sub-nanometer displacement measurements are readily attained. Increased refractive index sensitivity and sub-picometer displacement can be reached owing to the

  9. To the Beat of Your Own Drum: Cortical Regularization of Non-Integer Ratio Rhythms toward Metrical Patterns

    ERIC Educational Resources Information Center

    Motz, Benjamin A.; Erickson, Molly A.; Hetrick, William P.

    2013-01-01

    Humans perceive a wide range of temporal patterns, including those rhythms that occur in music, speech, and movement; however, there are constraints on the rhythmic patterns that we can represent. Past research has shown that sequences in which sounds occur regularly at non-metrical locations in a repeating beat period (non-integer ratio…

  10. Transport and Mixing Induced by Beating Cilia in Human Airways

    PubMed Central

    Chateau, Sylvain; D'Ortona, Umberto; Poncet, Sébastien; Favier, Julien

    2018-01-01

    The fluid transport and mixing induced by beating cilia, present in the bronchial airways, are studied using a coupled lattice Boltzmann—Immersed Boundary solver. This solver allows the simulation of both single and multi-component fluid flows around moving solid boundaries. The cilia are modeled by a set of Lagrangian points, and Immersed Boundary forces are computed onto these points in order to ensure the no-slip velocity conditions between the cilia and the fluids. The cilia are immersed in a two-layer environment: the periciliary layer (PCL) and the mucus above it. The motion of the cilia is prescribed, as well as the phase lag between two cilia in order to obtain a typical collective motion of cilia, known as metachronal waves. The results obtained from a parametric study show that antiplectic metachronal waves are the most efficient regarding the fluid transport. A specific value of phase lag, which generates the larger mucus transport, is identified. The mixing is studied using several populations of tracers initially seeded into the pericilary liquid, in the mucus just above the PCL-mucus interface, and in the mucus far away from the interface. We observe that each zone exhibits different chaotic mixing properties. The larger mixing is obtained in the PCL layer where only a few beating cycles of the cilia are required to obtain a full mixing, while above the interface, the mixing is weaker and takes more time. Almost no mixing is observed within the mucus, and almost all the tracers do not penetrate the PCL layer. Lyapunov exponents are also computed for specific locations to assess how the mixing is performed locally. Two time scales are introduced to allow a comparison between mixing induced by fluid advection and by molecular diffusion. These results are relevant in the context of respiratory flows to investigate the transport of drugs for patients suffering from chronic respiratory diseases. PMID:29559920

  11. Transport and Mixing Induced by Beating Cilia in Human Airways.

    PubMed

    Chateau, Sylvain; D'Ortona, Umberto; Poncet, Sébastien; Favier, Julien

    2018-01-01

    The fluid transport and mixing induced by beating cilia, present in the bronchial airways, are studied using a coupled lattice Boltzmann-Immersed Boundary solver. This solver allows the simulation of both single and multi-component fluid flows around moving solid boundaries. The cilia are modeled by a set of Lagrangian points, and Immersed Boundary forces are computed onto these points in order to ensure the no-slip velocity conditions between the cilia and the fluids. The cilia are immersed in a two-layer environment: the periciliary layer (PCL) and the mucus above it. The motion of the cilia is prescribed, as well as the phase lag between two cilia in order to obtain a typical collective motion of cilia, known as metachronal waves. The results obtained from a parametric study show that antiplectic metachronal waves are the most efficient regarding the fluid transport. A specific value of phase lag, which generates the larger mucus transport, is identified. The mixing is studied using several populations of tracers initially seeded into the pericilary liquid, in the mucus just above the PCL-mucus interface, and in the mucus far away from the interface. We observe that each zone exhibits different chaotic mixing properties. The larger mixing is obtained in the PCL layer where only a few beating cycles of the cilia are required to obtain a full mixing, while above the interface, the mixing is weaker and takes more time. Almost no mixing is observed within the mucus, and almost all the tracers do not penetrate the PCL layer. Lyapunov exponents are also computed for specific locations to assess how the mixing is performed locally. Two time scales are introduced to allow a comparison between mixing induced by fluid advection and by molecular diffusion. These results are relevant in the context of respiratory flows to investigate the transport of drugs for patients suffering from chronic respiratory diseases.

  12. Kinematic and EMG data during underwater dolphin kick change while synchronizing with or without synchronization of kick frequency with the beat of a metronome.

    PubMed

    Yamakawa, Keisuke Kobayashi; Shimojo, Hirofumi; Takagi, Hideki; Tsubakimoto, Shozo; Sengoku, Yasuo

    2017-10-01

    We investigated the effects of synchronizing kick frequency with the beat of a metronome on kinematic and electromyographic (EMG) parameters during the underwater dolphin kick as a pilot study related to the research that entitled " Effect of increased kick frequency on propelling efficiency and muscular co-activation during underwater dolphin kick" (Yamakawa et al., 2017) [1]. Seven collegiate female swimmers participated in this experiment. The participants conducted two underwater dolphin kick trials: swimming freely at maximum effort, and swimming while synchronizing the kick frequency of maximum effort with the beat of a metronome. The kinematic parameters during the underwater dolphin kick were calculated by 2-D motion analysis, and surface electromyographic measurements were taken from six muscles (rectus abdominis, erector spinae, rectus femoris, biceps femoris, tibialis anterior, and gastrocnemius). The results revealed no significant differences in the kinematic and EMG parameters between trials of the two swimming techniques. Therefore, the action of synchronizing the kick frequency with the beat of a metronome did not affect movement or muscle activity during the underwater dolphin kick in this experiment.

  13. Laser beat wave resonant terahertz generation in a magnetized plasma channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhasin, Lalita; Tripathi, V. K.; Kumar, Pawan, E-mail: kumarpawan-30@yahoo.co.in

    Resonant excitation of terahertz (THz) radiation by nonlinear mixing of two lasers in a ripple-free self created plasma channel is investigated. The channel has a transverse static magnetic field and supports a THz X-mode with phase velocity close to the speed of light in vacuum when the frequency of the mode is close to plasma frequency on the channel axis and its value decreases with the intensity of lasers. The THz is resonantly driven by the laser beat wave ponderomotive force. The THz amplitude scales almost three half power of the intensity of lasers as the width of the THzmore » eigen mode shrinks with laser intensity.« less

  14. Locations of ectopic beats coincide with spatial gradients of NADH in a regional model of low-flow reperfusion.

    PubMed

    Kay, Matthew; Swift, Luther; Martell, Brian; Arutunyan, Ara; Sarvazyan, Narine

    2008-05-01

    We studied the origins of ectopic beats during low-flow reperfusion after acute regional ischemia in excised rat hearts. The left anterior descending coronary artery was cannulated. Perfusate was delivered to the cannula using an high-performance liquid chromatography pump. This provided not only precise control of flow rate but also avoided mechanical artifacts associated with vessel occlusion and deocclusion. Optical mapping of epicardial transmembrane potential served to identify activation wavefronts. Imaging of NADH fluorescence was used to quantify local ischemia. Our experiments suggest that low-flow reperfusion of ischemic myocardium leads to a highly heterogeneous ischemic substrate and that the degree of ischemia between adjacent patches of tissue changes in time. In contrast to transient ectopic activity observed during full-flow reperfusion, persistent ectopic arrhythmias were observed during low-flow reperfusion. The origins of ectopic beats were traceable to areas of high spatial gradients of changes in NADH fluorescence caused by low-flow reperfusion.

  15. The Temporal Prediction of Stress in Speech and Its Relation to Musical Beat Perception.

    PubMed

    Beier, Eleonora J; Ferreira, Fernanda

    2018-01-01

    While rhythmic expectancies are thought to be at the base of beat perception in music, the extent to which stress patterns in speech are similarly represented and predicted during on-line language comprehension is debated. The temporal prediction of stress may be advantageous to speech processing, as stress patterns aid segmentation and mark new information in utterances. However, while linguistic stress patterns may be organized into hierarchical metrical structures similarly to musical meter, they do not typically present the same degree of periodicity. We review the theoretical background for the idea that stress patterns are predicted and address the following questions: First, what is the evidence that listeners can predict the temporal location of stress based on preceding rhythm? If they can, is it thanks to neural entrainment mechanisms similar to those utilized for musical beat perception? And lastly, what linguistic factors other than rhythm may account for the prediction of stress in natural speech? We conclude that while expectancies based on the periodic presentation of stresses are at play in some of the current literature, other processes are likely to affect the prediction of stress in more naturalistic, less isochronous speech. Specifically, aspects of prosody other than amplitude changes (e.g., intonation) as well as lexical, syntactic and information structural constraints on the realization of stress may all contribute to the probabilistic expectation of stress in speech.

  16. L-arginine reduces liver and biliary tract damage after liver transplantation from non-heart-beating donor pigs.

    PubMed

    Valero, R; García-Valdecasas, J C; Net, M; Beltran, J; Ordi, J; González, F X; López-Boado, M A; Almenara, R; Taurá, P; Elena, M; Capdevila, L; Manyalich, M; Visa, J

    2000-09-15

    To evaluate whether L-arginine reduces liver and biliary tract damage after transplantation from non heart-beating donor pigs. Twenty-five animals received an allograft from non-heart-beating donors. After 40 min of cardiac arrest, normothermic recirculation was run for 30 min. The animals were randomly treated with L-arginine (400 mg x kg(-1) during normothermic recirculation) or saline (control group). Then, the animals were cooled and their livers were transplanted after 6 hr of cold ischemia. The animals were killed on the 5th day, liver damage was assessed on wedged liver biopsies by a semiquantitative analysis and by morphometric analysis of the necrotic areas, and biliary tract damage by histological examination of the explanted liver. Seventeen animals survived the study period. The histological parameters assessed (sinusoidal congestion and dilatation, sinusoidal infiltration by polymorphonuclear cells and lymphocytes, endothelitis, dissociation of liver cell plates, and centrilobular necrosis) were significantly worse in the control group. The necrotic area affected 15.9 +/- 14.5% of the liver biopsies in the control group and 3.7 +/- 3.1% in the L-arginine group (P<0.05). Six of eight animal in the control group and only one of eight survivors in the L-arginine group developed ischemic cholangitis (P<0.01). L-Arginine administration was associated with higher portal blood flow (676.9 +/- 149.46 vs. 475.2 +/- 205.6 ml x min x m(-2); P<0.05), higher hepatic hialuronic acid extraction at normothermic recirculation (38.8 +/- 53.7% vs. -4.2 +/- 18.2%; P<0.05) and after reperfusion (28.6 +/- 55.5% vs. -10.9 +/- 15.5%; P<0.05) and lower levels of alpha-glutation-S-transferase at reperfusion (1325 +/- 1098% respect to baseline vs. 6488 +/- 5612%; P<0.02). L-Arginine administration during liver procurement from non heart beating donors prevents liver and biliary tract damage.

  17. Extremes of fractional noises: A model for the timings of arrhythmic heart beats in post-infarction patients

    NASA Astrophysics Data System (ADS)

    Witt, Annette; Ehlers, Frithjof; Luther, Stefan

    2017-09-01

    We have analyzed symbol sequences of heart beat annotations obtained from 24-h electrocardiogram recordings of 184 post-infarction patients (from the Cardiac Arrhythmia Suppression Trial database, CAST). In the symbol sequences, each heart beat was coded as an arrhythmic or as a normal beat. The symbol sequences were analyzed with a model-based approach which relies on two-parametric peaks over the threshold (POT) model, interpreting each premature ventricular contraction (PVC) as an extreme event. For the POT model, we explored (i) the Shannon entropy which was estimated in terms of the Lempel-Ziv complexity, (ii) the shape parameter of the Weibull distribution that best fits the PVC return times, and (iii) the strength of long-range correlations quantified by detrended fluctuation analysis (DFA) for the two-dimensional parameter space. We have found that in the frame of our model the Lempel-Ziv complexity is functionally related to the shape parameter of the Weibull distribution. Thus, two complementary measures (entropy and strength of long-range correlations) are sufficient to characterize realizations of the two-parametric model. For the CAST data, we have found evidence for an intermediate strength of long-range correlations in the PVC timings, which are correlated to the age of the patient: younger post-infarction patients have higher strength of long-range correlations than older patients. The normalized Shannon entropy has values in the range 0.5

  18. Identification of a killer by a definitive sneaker pattern and his beating instruments by their distinctive patterns.

    PubMed

    Zugibe, F T; Costello, J; Breithaupt, M

    1996-03-01

    A 39-year-old male service station attendant was found murdered on the floor of a gasoline service area by a passing motorist who had stopped for gas. The victim had been brutally beaten all over his entire body. After carefully examining the body and scene and taking selective photographs, special procedures were implemented in an attempt to preserve and transport the body without disturbing any items of evidence. In addition, specific evidentiary items were noted and collected for processing. The victim was meticulously examined externally at autopsy using a special protocol to locate clues that might assist in identifying a suspect or instrument of injury or death. Patterned impressions and subsequent DNA analysis proved successful in identifying the perpetrator of the crime and the instruments used in inflicting the beating. It is the purpose of this paper to show how a meticulous examination of the body for the presence of patterned injuries and critical studies of these patterns and impressions led to the identification of a killer and the instruments he used in a brutal beating.

  19. Digitally synthesized beat frequency-multiplexed fluorescence lifetime spectroscopy

    PubMed Central

    Chan, Jacky C. K.; Diebold, Eric D.; Buckley, Brandon W.; Mao, Sien; Akbari, Najva; Jalali, Bahram

    2014-01-01

    Frequency domain fluorescence lifetime imaging is a powerful technique that enables the observation of subtle changes in the molecular environment of a fluorescent probe. This technique works by measuring the phase delay between the optical emission and excitation of fluorophores as a function of modulation frequency. However, high-resolution measurements are time consuming, as the excitation modulation frequency must be swept, and faster low-resolution measurements at a single frequency are prone to large errors. Here, we present a low cost optical system for applications in real-time confocal lifetime imaging, which measures the phase vs. frequency spectrum without sweeping. Deemed Lifetime Imaging using Frequency-multiplexed Excitation (LIFE), this technique uses a digitally-synthesized radio frequency comb to drive an acousto-optic deflector, operated in a cat’s-eye configuration, to produce a single laser excitation beam modulated at multiple beat frequencies. We demonstrate simultaneous fluorescence lifetime measurements at 10 frequencies over a bandwidth of 48 MHz, enabling high speed frequency domain lifetime analysis of single- and multi-component sample mixtures. PMID:25574449

  20. Beating Heart Motion Accurate Prediction Method Based on Interactive Multiple Model: An Information Fusion Approach

    PubMed Central

    Xie, Weihong; Yu, Yang

    2017-01-01

    Robot-assisted motion compensated beating heart surgery has the advantage over the conventional Coronary Artery Bypass Graft (CABG) in terms of reduced trauma to the surrounding structures that leads to shortened recovery time. The severe nonlinear and diverse nature of irregular heart rhythm causes enormous difficulty for the robot to realize the clinic requirements, especially under arrhythmias. In this paper, we propose a fusion prediction framework based on Interactive Multiple Model (IMM) estimator, allowing each model to cover a distinguishing feature of the heart motion in underlying dynamics. We find that, at normal state, the nonlinearity of the heart motion with slow time-variant changing dominates the beating process. When an arrhythmia occurs, the irregularity mode, the fast uncertainties with random patterns become the leading factor of the heart motion. We deal with prediction problem in the case of arrhythmias by estimating the state with two behavior modes which can adaptively “switch” from one to the other. Also, we employed the signal quality index to adaptively determine the switch transition probability in the framework of IMM. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The test results indicate that the new proposed approach reduces prediction errors significantly. PMID:29124062

  1. Beating Heart Motion Accurate Prediction Method Based on Interactive Multiple Model: An Information Fusion Approach.

    PubMed

    Liang, Fan; Xie, Weihong; Yu, Yang

    2017-01-01

    Robot-assisted motion compensated beating heart surgery has the advantage over the conventional Coronary Artery Bypass Graft (CABG) in terms of reduced trauma to the surrounding structures that leads to shortened recovery time. The severe nonlinear and diverse nature of irregular heart rhythm causes enormous difficulty for the robot to realize the clinic requirements, especially under arrhythmias. In this paper, we propose a fusion prediction framework based on Interactive Multiple Model (IMM) estimator, allowing each model to cover a distinguishing feature of the heart motion in underlying dynamics. We find that, at normal state, the nonlinearity of the heart motion with slow time-variant changing dominates the beating process. When an arrhythmia occurs, the irregularity mode, the fast uncertainties with random patterns become the leading factor of the heart motion. We deal with prediction problem in the case of arrhythmias by estimating the state with two behavior modes which can adaptively "switch" from one to the other. Also, we employed the signal quality index to adaptively determine the switch transition probability in the framework of IMM. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The test results indicate that the new proposed approach reduces prediction errors significantly.

  2. Control, synchronization, and enhanced reliability of aperiodic oscillations in the Mercury Beating Heart system

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Parmananda, P.

    2018-04-01

    Experiments involving the Mercury Beating Heart (MBH) oscillator, exhibiting irregular (aperiodic) dynamics, are performed. In the first set of experiments, control over irregular dynamics of the MBH oscillator was obtained via a superimposed periodic voltage signal. These irregular (aperiodic) dynamics were recovered once the control was switched off. Subsequently, two MBH oscillators were coupled to attain synchronization of their aperiodic oscillations. Finally, two uncoupled MBH oscillators were subjected, repeatedly, to a common stochastic forcing, resulting in an enhancement of their mutual phase correlation.

  3. Ag+ alters cell growth, neurite extension, cardiomyocyte beating, and fertilized egg constriction.

    PubMed

    Conrad, A H; Tramp, C R; Long, C J; Wells, D C; Paulsen, A Q; Conrad, G W

    1999-11-01

    The Russian Space Agency uses electrochemically generated silver ions (Ag+) to purify drinking water for their space station, Mir, and their portion of the International Space Station. U.S. EPA guidelines allow 10.6 micromol x L(-1) Ag+ in human drinking water for up to 10 d. Studies correlate Ag+ exposure with tissue dysfunction in humans, rats, and mice, and with altered ion transport, skeletal muscle contraction, and embryonic cell constriction in other animal cells. Ag+ effects on cell shape change-related functions have not been assessed. Immortalized embryonic human intestinal epithelial cells, freshly explanted embryonic avian nerve cells and cardiomyocytes, and marine fertilized eggs were grown in vitro in medium containing AgNO3. Intestinal cells detach from the substratum and viable cell number decreases by 5-6 d at 5 micromol x L(-1) AgNO3, and faster at higher concentrations. Microtubules appear unaltered in adherent cells. Detached cells are nonviable. Neurite outgrowth and glial cell migration from dorsal root ganglia are inhibited by 3 d at 15 micromol x L(-1) AgNO3 or greater. Contractions stop temporarily in most cardiomyocytes by 5 min at 5 micromol x L(-1) AgNO3 or more, but some cardiomyocytes beat 3 times faster than normal at 7.5-20 micromol x L(-1) AgNO3. Picomolar Ag+ increases marine egg polar lobe constriction within an hour, even in the absence of microtubules. Ag+ alters animal cell growth and shape changes by a MT-independent mechanism. This is the first report of Ag+ effects on vertebrate neurite outgrowth, glial cell migration, or cardiomyocyte beat rate.

  4. A low noise and ultra-narrow bandwidth frequency-locked loop based on the beat method.

    PubMed

    Gao, Wei; Sui, Jianping; Chen, Zhiyong; Yu, Fang; Sheng, Rongwu

    2011-06-01

    A novel frequency-locked loop (FLL) based on the beat method is proposed in this paper. Compared with other frequency feedback loops, this FLL is a digital loop with simple structure and very low noise. As shown in the experimental results, this FLL can be used to reduce close-in phase noise on atomic frequency standards, through which a composite frequency standard with ultra-low phase noise and low cost can be easily realized.

  5. A polarization-division multiplexing SSB-OFDM system with beat interference cancellation receivers

    NASA Astrophysics Data System (ADS)

    Yang, Peiling; Ma, Jianxin; Zhang, Junyi

    2018-06-01

    In this paper, we have proposed a polarization-division multiplexing (PDM) single-sideband optical orthogonal frequency division multiplexing (SSB-OOFDM) scheme with signal-signal beat interference cancellation receivers with balanced detection (ICRBD). This system can double channel capacity and improve spectrum efficiency (SE) with the reduced guard band (GB) due to the PDM. Multiple input multiple output (MIMO) technique is used to solve polarization mode dispersion (PMD) associated with channel estimation and equalization. By simulation, we demonstrate the efficacy of the proposed technique for a 2 ×40 Gbit/s 16-QAM SSB-PDM-OOFDM system according to the error vector magnitude (EVM) and the constellation diagrams.

  6. The structure of a cholesterol-trapping protein

    Science.gov Websites

    Date February 28, 2003 Date Berkeley Lab Science Beat Berkeley Lab Science Beat The structure of a Institute researchers determined the three-dimensional structure of a protein that controls cholesterol level in the bloodstream. Knowing the structure of the protein, a cellular receptor that ensnares

  7. Quantum Beating Patterns Observed in the Energetics of Pb Film Nanostructures

    NASA Astrophysics Data System (ADS)

    Czoschke, P.; Hong, Hawoong; Basile, L.; Chiang, T.-C.

    2004-07-01

    We have studied the nanoscale structural evolution of Pb films grown at 110K on a Si(111) substrate as they are annealed to increasingly higher temperatures. Surface x-ray diffraction from a synchrotron source is used to observe the morphology evolve from an initial smooth film through various metastable states before reaching a state of local equilibrium, at which point the coverage of different height Pb structures is analyzed and related to the thickness-dependent surface energy. Rich patterns are seen in the resulting energy landscape similar to the beating patterns heard from the interference of two musical notes of similar pitch. The explanation is, however, very simple, as demonstrated by a model calculation based on the confinement of free electrons to a quantum well.

  8. Quantum beating patterns observed in the energetics of Pb film nanostructures.

    PubMed

    Czoschke, P; Hong, Hawoong; Basile, L; Chiang, T-C

    2004-07-16

    We have studied the nanoscale structural evolution of Pb films grown at 110 K on a Si(111) substrate as they are annealed to increasingly higher temperatures. Surface x-ray diffraction from a synchrotron source is used to observe the morphology evolve from an initial smooth film through various metastable states before reaching a state of local equilibrium, at which point the coverage of different height Pb structures is analyzed and related to the thickness-dependent surface energy. Rich patterns are seen in the resulting energy landscape similar to the beating patterns heard from the interference of two musical notes of similar pitch. The explanation is, however, very simple, as demonstrated by a model calculation based on the confinement of free electrons to a quantum well.

  9. Nonlinear pattern analysis of ventricular premature beats by mutual information

    NASA Technical Reports Server (NTRS)

    Osaka, M.; Saitoh, H.; Yokoshima, T.; Kishida, H.; Hayakawa, H.; Cohen, R. J.

    1997-01-01

    The frequency of ventricular premature beats (VPBs) has been related to the risk of mortality. However, little is known about the temporal pattern of occurrence of VPBs and its relationship to autonomic activity. Hence, we applied a general correlation measure, mutual information, to quantify how VPBs are generated over time. We also used mutual information to determine the correlation between VPB production and heart rate in order to evaluate effects of autonomic activity on VPB production. We examined twenty subjects with more than 3000 VPBs/day and simulated random time series of VPB occurrence. We found that mutual information values could be used to characterize quantitatively the temporal patterns of VPB generation. Our data suggest that VPB production is not random and VPBs generated with a higher value of mutual information may be more greatly affected by autonomic activity.

  10. A Comparison of Two Methods of Identifying Beating-the-Odds High Schools in Puerto Rico. REL 2017-167

    ERIC Educational Resources Information Center

    Meyers, Coby V.; Wan, Yinmei

    2016-01-01

    The Regional Educational Laboratory Northeast and Islands conducted this study using data on public high schools in Puerto Rico from national and territory databases to compare methods for identifying beating-the-odds schools. Schools were identified by two methods, a status method that ranked high-poverty schools based on their current observed…

  11. Effects of the essential oil constituent thymol and other neuroactive chemicals on flight motor activity and wing beat frequency in the blowfly Phaenicia sericata.

    PubMed

    Waliwitiya, Ranil; Belton, Peter; Nicholson, Russell A; Lowenberger, Carl A

    2010-03-01

    The effects were evaluated of the plant terpenoid thymol and eight other neuroactive compounds on flight muscle impulses (FMIs) and wing beat frequency (WBF) of tethered blowflies (Phaenicia sericata Meig.). The electrical activity of the dorsolongitudinal flight muscles was closely linked to the WBF of control insects. Topically applied thymol inhibited WBF within 15-30 min and reduced FMI frequency. Octopamine and chlordimeform caused a similar, early-onset bursting pattern that decreased in amplitude with time. Desmethylchlordimeform blocked wing beating within 60 min and generated a profile of continuous but lower-frequency FMIs. Fipronil suppressed wing beating and induced a pattern of continuous, variable-frequency spiking that diminished gradually over 6 h. Cypermethrin- and rotenone-treated flies had initial strong FMIs that declined with time. In flies injected with GABA, the FMIs were generally unidirectional and frequency was reduced, as was seen with thymol. Thymol readily penetrates the cuticle and interferes with flight muscle and central nervous function in the blowfly. The similarity of the action of thymol and GABA suggests that this terpenoid acts centrally in blowflies by mimicking or facilitating GABA action.

  12. Preservation of Gaussian state entanglement in a quantum beat laser by reservoir engineering

    NASA Astrophysics Data System (ADS)

    Qurban, Misbah; Islam, Rameez ul; Ge, Guo-Qin; Ikram, Manzoor

    2018-04-01

    Quantum beat lasers have been considered as sources of entangled radiation in continuous variables such as Gaussian states. In order to preserve entanglement and to minimize entanglement degradation due to the system’s interaction with the surrounding environment, we propose to engineer environment modes through insertion of another system in between the laser resonator and the environment. This makes the environment surrounding the two-mode laser a structured reservoir. It not only enhances the entanglement among two modes of the laser but also preserves the entanglement for sufficiently longer times, a stringent requirement for quantum information processing tasks.

  13. Memory beyond memory in heart beating, a sign of a healthy physiological condition.

    PubMed

    Allegrini, P; Grigolini, P; Hamilton, P; Palatella, L; Raffaelli, G

    2002-04-01

    We describe two types of memory and illustrate each using artificial and actual heartbeat data sets. The first type of memory, yielding anomalous diffusion, implies the inverse power-law nature of the waiting time distribution and the second the correlation among distinct times, and consequently also the occurrence of many pseudoevents, namely, not genuinely random events. Using the method of diffusion entropy analysis, we establish the scaling that would be determined by the real events alone. We prove that the heart beating of healthy patients reveals the existence of many more pseudoevents than in the patients with congestive heart failure.

  14. Beating the Odds (BTO) Program: A Comprehensive Support System for Teachers and Families of At-Risk Students.

    ERIC Educational Resources Information Center

    Opuni, Kwame A.; And Others

    This paper evaluates the effectiveness of the Beating the Odds (BTO) program of the Houston (Texas) schools in the 1990-91 school year, the third and final year of Phase I of the program. The BTO program provided training workshops for teachers of at-risk students and direct counseling and social service support for at-risk students in a selected…

  15. Detection of the Sleep Stages Throughout Non-Obtrusive Measures of Inter-Beat Fluctuations and Motion: Night and Day Sleep of Female Shift Workers

    NASA Astrophysics Data System (ADS)

    Mendez, Martin O.; Palacios-Hernandez, Elvia R.; Alba, Alfonso; Kortelainen, Juha M.; Tenhunen, Mirja L.; Bianchi, Anna M.

    Automatic sleep staging based on inter-beat fluctuations and motion signals recorded through a pressure bed sensor during sleep is presented. The analysis of the sleep was based on the three major divisions of the sleep time: Wake, non-rapid eye movement (nREM) and rapid eye movement (REM) sleep stages. Twelve sleep recordings, from six females working alternate shift, with their respective annotations were used in the study. Six recordings were acquired during the night and six during the day after a night shift. A Time-Variant Autoregressive Model was used to extract features from inter-beat fluctuations which later were fed to a Support Vector Machine classifier. Accuracy, Kappa index, and percentage in wake, REM and nREM were used as performance measures. Comparison between the automatic sleep staging detection and the standard clinical annotations, shows mean values of 87% for accuracy 0.58 for kappa index, and mean errors of 5% for sleep stages. The performance measures were similar for night and day sleep recordings. In this sample of recordings, the results suggest that inter-beat fluctuations and motions acquired in non-obtrusive way carried valuable information related to the sleep macrostructure and could be used to support to the experts in extensive evaluation and monitoring of sleep.

  16. Toward an Integrative Theoretical Framework for Explaining Beliefs about Wife Beating: A Study among Students of Nursing from Turkey

    ERIC Educational Resources Information Center

    Haj-Yahia, Muhammad M.; Uysal, Aynur

    2011-01-01

    An integrative theoretical framework was tested as the basis for explaining beliefs about wife beating among Turkish nursing students. Based on a survey design, 406 nursing students (404 females) in all 4 years of undergraduate studies completed a self-administered questionnaire. Questionnaires were distributed and collected from the participants…

  17. Plant terpenoids: acute toxicities and effects on flight motor activity and wing beat frequency in the blow fly Phaenicia sericata.

    PubMed

    Waliwitiya, Ranil; Belton, Peter; Nicholson, Russell A; Lowenberger, Carl A

    2012-02-01

    We evaluated the acute toxicities and the physiological effects of plant monoterpenoids (eugenol, pulegone, citronellal and alpha-terpineol) and neuroactive insecticides (malathion, dieldrin and RH3421) on flight muscle impulses (FMI) and wing beat signals (WBS) of the blow fly (Phaenicia sericata). Topically-applied eugenol, pulegone, citronellal, and alpha-terpineol produced neurotoxic symptoms, but were less toxic than malathion, dieldrin, or RH3421. Topical application of eugenol, pulegone, and citronellal reduced spike amplitude in one of the two banks of blow fly dorsolongitudinal flight muscles within 6-8 min, but with citronellal, the amplitude of FMIs reverted to a normal pattern within 1 hr. In contrast to pulegone and citronellal, where impulse frequency remained relatively constant, eugenol caused a gradual increase, then a decline in the frequency of spikes in each muscle bank. Wing beating was blocked permanently within 6-7 min of administering pulegone or citronellal and within 16 mins with eugenol. alpha-Terpineol-treated blow flies could not beat their wings despite normal FMI patterns. The actions of these monoterpenoids on blow fly flight motor patterns are discussed and compared with those of dieldrin, malathion, RH3421, and a variety of other neuroactive substances we have previously investigated in this system. Eugenol, pulegone and citronellal readily penetrate blow fly cuticle and interfere with flight muscle and/or central nervous function. Although there were differences in the effects of these compounds, they mainly depressed flight-associated responses, and acted similarly to compounds that block sodium channels and facilitate GABA action.

  18. The steady-state response of the cerebral cortex to the beat of music reflects both the comprehension of music and attention

    PubMed Central

    Meltzer, Benjamin; Reichenbach, Chagit S.; Braiman, Chananel; Schiff, Nicholas D.; Hudspeth, A. J.; Reichenbach, Tobias

    2015-01-01

    The brain’s analyses of speech and music share a range of neural resources and mechanisms. Music displays a temporal structure of complexity similar to that of speech, unfolds over comparable timescales, and elicits cognitive demands in tasks involving comprehension and attention. During speech processing, synchronized neural activity of the cerebral cortex in the delta and theta frequency bands tracks the envelope of a speech signal, and this neural activity is modulated by high-level cortical functions such as speech comprehension and attention. It remains unclear, however, whether the cortex also responds to the natural rhythmic structure of music and how the response, if present, is influenced by higher cognitive processes. Here we employ electroencephalography to show that the cortex responds to the beat of music and that this steady-state response reflects musical comprehension and attention. We show that the cortical response to the beat is weaker when subjects listen to a familiar tune than when they listen to an unfamiliar, non-sensical musical piece. Furthermore, we show that in a task of intermodal attention there is a larger neural response at the beat frequency when subjects attend to a musical stimulus than when they ignore the auditory signal and instead focus on a visual one. Our findings may be applied in clinical assessments of auditory processing and music cognition as well as in the construction of auditory brain-machine interfaces. PMID:26300760

  19. Levonorgestrel decreases cilia beat frequency of human fallopian tubes and rat oviducts without changing morphological structure.

    PubMed

    Zhao, Weihong; Zhu, Qian; Yan, Mingxing; Li, Cheng; Yuan, Jiangjing; Qin, Guojuan; Zhang, Jian

    2015-02-01

    Levonorgestrel, a derivative of progesterone, effectively protects women against unwanted pregnancy as an emergency contraceptive. Previous studies have not been successful in determining the mechanism by which levonorgestrel acts. In the present study we analysed cilia beat action and cilia morphology following levonorgestrel exposure in vitro and in vivo using both light and electron microscopy. There was a significant decrease in the ciliary beat frequency (CBF) of human fallopian tubes between mucosal explants bathed in 5 μmol/L levonorgestrel and those bathed in medium alone (P < 0.05). There was a tendency for CBF to decrease more in the ampulla than in isthmus, but there were no differences between the proliferative and secretory phases. In rat oviducts, levonorgestrel produced a similar reduction in CBF (~ 10%) compared with the saline control group (P < 0.05). Histological and ultrastructural analysis demonstrated no changes in the percentage of ciliated cells or in the classic '9 + 2' structure of cilia following levonorgestrel treatment in either system. Thus, levonorgestrel reduces CBF without damaging cilia morphology. Decreases in CBF may indicate a pathological role for levonorgestrel in the transportation of the ovum and zygote in the fallopian tube. © 2014 Wiley Publishing Asia Pty Ltd.

  20. Application of binaural beat phenomenon with aphasic patients.

    PubMed

    Barr, D F; Mullin, T A; Herbert, P S

    1977-04-01

    We investigated whether six aphasics and six normal subjects could binaurally fuse two slightly differing frequencies of constant amplitude. The aphasics were subdivided into two groups: (1) two men who had had mild cerebrovascular accidents (CVAs) during the past 15 months; (2) four men who had had severe CVAs during the last 15 months. Two tones of different frequency levels but equal in intensity were presented dichotically to the subjects at 40 dB sensation level. All subjects had normal hearing at 500 Hz (0 to 25 dB). All six normal subjects and the two aphasics who had had mild CVAs could hear the binaural beats. The four aphasics who had had severe CVAs could not hear them. A 2 X 2 design resulting from this study was compared using chi2 test with Yates correction and was found to be significantly different (P less than .05). Two theories are presented to explain these findings: the "depression theory" and the "temporal time-sequencing theory." Therapeutic implications are also discussed relative to cerebral and/or brain stem involvement in the fusion of binaural stimuli.

  1. Beating the Language Barrier in Science Education: In-Service Educators' Coping with Slow Learners in Mauritius

    ERIC Educational Resources Information Center

    Cyparsade, Mohun; Auckloo, Pritee; Belath, Ismut; Dookhee, Helina; Hurreeram, Navin

    2013-01-01

    This study describes how in-service teachers in the pre-vocational sector in Mauritius adopted specific strategies to overcome the language barrier in the learning of science (Van Driel, Verloop & de Vos, 1998). Students of form III were taught few basic ideas related to "Earth & Space" through the use of role play and ICT. The…

  2. Observation of beat oscillation generation by coupled waves associated with parametric decay during radio frequency wave heating of a spherical tokamak plasma.

    PubMed

    Nagashima, Yoshihiko; Oosako, Takuya; Takase, Yuichi; Ejiri, Akira; Watanabe, Osamu; Kobayashi, Hiroaki; Adachi, Yuuki; Tojo, Hiroshi; Yamaguchi, Takashi; Kurashina, Hiroki; Yamada, Kotaro; An, Byung Il; Kasahara, Hiroshi; Shimpo, Fujio; Kumazawa, Ryuhei; Hayashi, Hiroyuki; Matsuzawa, Haduki; Hiratsuka, Junichi; Hanashima, Kentaro; Kakuda, Hidetoshi; Sakamoto, Takuya; Wakatsuki, Takuma

    2010-06-18

    We present an observation of beat oscillation generation by coupled modes associated with parametric decay instability (PDI) during radio frequency (rf) wave heating experiments on the Tokyo Spherical Tokamak-2. Nearly identical PDI spectra, which are characterized by the coexistence of the rf pump wave, the lower-sideband wave, and the low-frequency oscillation in the ion-cyclotron range of frequency, are observed at various locations in the edge plasma. A bispectral power analysis was used to experimentally discriminate beat oscillation from the resonant mode for the first time. The pump and lower-sideband waves have resonant mode components, while the low-frequency oscillation is exclusively excited by nonlinear coupling of the pump and lower-sideband waves. Newly discovered nonlocal transport channels in spectral space and in real space via PDI are described.

  3. Prototype Automated Equipment to Perform Poising and Beat Rate Operations on the M577 MTSQ Fuze.

    DTIC Science & Technology

    1978-09-30

    Regulation Machine which sets the M577 Fuze Timer beat rate and the Automatic Poising Machine which J dynamically balances the Timer balance wheel...in trouble shooting., The Automatic Poising Machine Figure 3 which inspects and corrects the dynamic I balance of the Balance Wheel Assembly was...machine is intimately related to the fastening method of the wire to the Timer at one end and the Balance Wheel at the other, a review of the history

  4. Oscillating two-stream instability of beat waves in a hot magnetized plasma

    NASA Astrophysics Data System (ADS)

    Ferdous, T.; Amin, M. R.; Salimullah, M.

    1997-02-01

    It is shown that an electrostatic electron plasma beat wave is efficiently unstable for a low-frequency and short-wave-length purely growing perturbation (ω, k), i.e. an oscillating two-stream instability in a transversely magnetized hot plasma. The nonlinear response of electrons and ions with strong finite Larmor radius effects has been obtained by solving the Vlasov equation expressed in the guiding-center coordinates. The effect of ion dynamics has been found to play a vital role around ω ∼ ωci, where ωci is the ion-cyclotron frequency. For typical plasma parameters, it is found that the maximum growth rate of the instability is about two orders higher when ion motion is taken into account in addition to the electron dynamics.

  5. Feasibility of single-beat full-volume capture real-time three-dimensional echocardiography and auto-contouring algorithm for quantification of left ventricular volume: validation with cardiac magnetic resonance imaging.

    PubMed

    Chang, Sung-A; Lee, Sang-Chol; Kim, Eun-Young; Hahm, Seung-Hee; Jang, Shin Yi; Park, Sung-Ji; Choi, Jin-Oh; Park, Seung Woo; Choe, Yeon Hyeon; Oh, Jae K

    2011-08-01

    With recent developments in echocardiographic technology, a new system using real-time three-dimensional echocardiography (RT3DE) that allows single-beat acquisition of the entire volume of the left ventricle and incorporates algorithms for automated border detection has been introduced. Provided that these techniques are acceptably reliable, three-dimensional echocardiography may be much more useful for clinical practice. The aim of this study was to evaluate the feasibility and accuracy of left ventricular (LV) volume measurements by RT3DE using the single-beat full-volume capture technique. One hundred nine consecutive patients scheduled for cardiac magnetic resonance imaging and RT3DE using the single-beat full-volume capture technique on the same day were recruited. LV end-systolic volume, end-diastolic volume, and ejection fraction were measured using an auto-contouring algorithm from data acquired on RT3DE. The data were compared with the same measurements obtained using cardiac magnetic resonance imaging. Volume measurements on RT3DE with single-beat full-volume capture were feasible in 84% of patients. Both interobserver and intraobserver variability of three-dimensional measurements of end-systolic and end-diastolic volumes showed excellent agreement. Pearson's correlation analysis showed a close correlation of end-systolic and end-diastolic volumes between RT3DE and cardiac magnetic resonance imaging (r = 0.94 and r = 0.91, respectively, P < .0001 for both). Bland-Altman analysis showed reasonable limits of agreement. After application of the auto-contouring algorithm, the rate of successful auto-contouring (cases requiring minimal manual corrections) was <50%. RT3DE using single-beat full-volume capture is an easy and reliable technique to assess LV volume and systolic function in clinical practice. However, the image quality and low frame rate still limit its application for dilated left ventricles, and the automated volume analysis program needs

  6. Fish and Robots Swimming Together in a Water Tunnel: Robot Color and Tail-Beat Frequency Influence Fish Behavior

    PubMed Central

    Polverino, Giovanni; Phamduy, Paul; Porfiri, Maurizio

    2013-01-01

    The possibility of integrating bioinspired robots in groups of live social animals may constitute a valuable tool to study the basis of social behavior and uncover the fundamental determinants of animal functions and dysfunctions. In this study, we investigate the interactions between individual golden shiners (Notemigonus crysoleucas) and robotic fish swimming together in a water tunnel at constant flow velocity. The robotic fish is designed to mimic its live counterpart in the aspect ratio, body shape, dimension, and locomotory pattern. Fish positional preference with respect to the robot is experimentally analyzed as the robot's color pattern and tail-beat frequency are varied. Behavioral observations are corroborated by particle image velocimetry studies aimed at investigating the flow structure behind the robotic fish. Experimental results show that the time spent by golden shiners in the vicinity of the bioinspired robotic fish is the highest when the robot mimics their natural color pattern and beats its tail at the same frequency. In these conditions, fish tend to swim at the same depth of the robotic fish, where the wake from the robotic fish is stronger and hydrodynamic return is most likely to be effective. PMID:24204882

  7. Fish and robots swimming together in a water tunnel: robot color and tail-beat frequency influence fish behavior.

    PubMed

    Polverino, Giovanni; Phamduy, Paul; Porfiri, Maurizio

    2013-01-01

    The possibility of integrating bioinspired robots in groups of live social animals may constitute a valuable tool to study the basis of social behavior and uncover the fundamental determinants of animal functions and dysfunctions. In this study, we investigate the interactions between individual golden shiners (Notemigonus crysoleucas) and robotic fish swimming together in a water tunnel at constant flow velocity. The robotic fish is designed to mimic its live counterpart in the aspect ratio, body shape, dimension, and locomotory pattern. Fish positional preference with respect to the robot is experimentally analyzed as the robot's color pattern and tail-beat frequency are varied. Behavioral observations are corroborated by particle image velocimetry studies aimed at investigating the flow structure behind the robotic fish. Experimental results show that the time spent by golden shiners in the vicinity of the bioinspired robotic fish is the highest when the robot mimics their natural color pattern and beats its tail at the same frequency. In these conditions, fish tend to swim at the same depth of the robotic fish, where the wake from the robotic fish is stronger and hydrodynamic return is most likely to be effective.

  8. Beating the Odds: How Thirteen NYC Schools Bring Low-Performing 9th-Graders to Timely Graduation and College Enrollment

    ERIC Educational Resources Information Center

    Ascher, Carol; Maguire, Cindy

    2011-01-01

    This report describes a follow-up qualitative study, conducted in 2006 by the Annenberg Institute for School Reform, of a small group of New York City high schools that were "beating the odds" in preparing low-performing 9th-grade students for timely high school graduation and college going. The 13 schools included two long-established…

  9. Tennessee TCAP Science Scale Scores: Implications for Continuous Improvement and Educational Reform or Is It Possible To Beat the Odds?

    ERIC Educational Resources Information Center

    Miller-Whitehead, Marie

    Evidence provided by analysis of science scale scores on the McGraw-Hill CTB/4 science test for grades 2 through 8 in Tennessee, part of the Tennessee Comprehensive Assessment Program (TCAP), shows that it is possible for high achieving school systems to show continuous improvement from year to year. These results would tend to offset fears that…

  10. Postmortem and ex vivo carbon monoxide ventilation reduces injury in rat lungs transplanted from non-heart-beating donors.

    PubMed

    Dong, Boming; Stewart, Paul W; Egan, Thomas M

    2013-08-01

    We sought to determine whether ventilation of lungs after death in non-heart-beating donors with carbon monoxide during warm ischemia and ex vivo lung perfusion and after transplant would reduce ischemia-reperfusion injury and improve lung function. One hour after death, Sprague-Dawley rats were ventilated for another hour with 60% oxygen (control group) or 500 ppm carbon monoxide in 60% oxygen (CO-vent group; n=6/group). Then, lungs were flushed with 20 mL cold Perfadex, stored cold for 1 hour, then warmed to 37 °C in an ex vivo lung perfusion circuit perfused with Steen solution. At 37 °C, lungs were ventilated for 15 minutes with alveolar gas with or without 500 ppm carbon monoxide, then perfusion-cooled to 20 °C, flushed with cold Perfadex and stored cold for 2 hours. The left lung was transplanted using a modified cuff technique. Recipients were ventilated with 60% oxygen with or without carbon monoxide. One hour after transplant, we measured blood gases from the left pulmonary vein and aorta, and wet-to-dry ratio of both lungs. The RNA and protein extracted from graft lungs underwent real-time polymerase chain reaction and Western blotting, and measurement of cyclic guanosine monophosphate by enzyme-linked immunosorbent assay. Carbon monoxide ventilation begun 1 hour after death reduced wet/dry ratio after ex vivo lung perfusion. After transplantation, the carbon monoxide-ventilation group had better oxygenation; higher levels of tissue cyclic guanosine monophosphate, heme oxidase-1 expression, and p38 phosphorylation; reduced c-Jun N-terminal kinase phosphorylation; and reduced expression of interleukin-6 and interleukin-1β messenger RNA. Administration of carbon monoxide to the deceased donor and non-heart-beating donor lungs reduces ischemia-reperfusion injury in rat lungs transplanted from non-heart-beating donors. Therapy to the deceased donor via the airway may improve post-transplant lung function. Copyright © 2013 The American Association for

  11. Speed of light demonstration using Doppler beat

    NASA Astrophysics Data System (ADS)

    Bernal, Luis; Bilbao, Luis

    2018-05-01

    From an apparatus previously designed for measuring the Doppler shift using a rotating mirror, an improved, versatile version was developed for speed of light demonstrations in a classroom or a teaching laboratory. By adding a second detector and adequate beam-splitter and mirrors, three different configurations are easily assembled. One configuration is used for time-of-flight measurements between a near and a far detector, allowing one to measure the speed of light provided that the path length between detectors is known. Another variation is the interferometric method obtained by superposing the far and near signals in such a way that a minimum of the combined signal is obtained when the time delay makes the signals arrive out of phase by π radians. Finally, the standard Doppler configuration allows the measurement of the frequency beat as a function of the rotation frequency. The main advantages of the apparatus are (a) the experimental setup is simple and completely accessible to undergraduate students, (b) the light is visible, students can see the rays, which, with the use of appropriate screens, can be blocked at any point along their paths, (c) the experiment can take place entirely within the teaching laboratory or demonstration room (using the interferometric method, the shortest distance to the far mirror was as small as 0.5 m), and (d) different configurations can be built, including some economical setups within the budget of teaching laboratories.

  12. Dark soliton beats in the time-varying background of Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Lei; Li Lu; Zhang Jiefang

    2009-07-15

    We investigate the dynamics of dark solitons in one-dimensional Bose-Einstein condensates. In the large particle limit, by introducing the lens-type transformation, we find that the macroscopic wave function evolves self-similarly when its initial profile strays from that of the equilibrium state, which provides a time-varying background for the propagation of dark solitons. The interaction of dark solitons with this kind of background is studied both analytically and numerically. We find that the center-of-mass motion of the dark soliton is deeply affected by the time-varying background, and the beating phenomena of dark soliton emerge when the intrinsic frequency of the darkmore » soliton approaches that of the background. Lastly, we investigate the propagation of dark solitons in the freely expanding background.« less

  13. Beating the Odds: How Thirteen NYC Schools Bring Low-Performing Ninth-Graders to Timely Graduation and College Enrollment. Executive Summary

    ERIC Educational Resources Information Center

    Annenberg Institute for School Reform at Brown University (NJ1), 2011

    2011-01-01

    This report describes a follow-up qualitative study, conducted in 2006 by the Annenberg Institute for School Reform, of a small group of New York City high schools that, according to 2001 data, were "beating the odds" in preparing low-performing ninth-grade students for timely high school graduation and college going. The thirteen…

  14. Improved diagnosis of Trichuris trichiura by using a bead-beating procedure on ethanol preserved stool samples prior to DNA isolation and the performance of multiplex real-time PCR for intestinal parasites.

    PubMed

    Kaisar, Maria M M; Brienen, Eric A T; Djuardi, Yenny; Sartono, Erliyani; Yazdanbakhsh, Maria; Verweij, Jaco J; Supali, Taniawati; VAN Lieshout, Lisette

    2017-06-01

    For the majority of intestinal parasites, real-time PCR-based diagnosis outperforms microscopy. However, the data for Trichuris trichiura have been less convincing and most comparative studies have been performed in populations with low prevalence. This study aims to improve detection of T. trichuria DNA in human stool by evaluating four sample preparation methods. Faecal samples (n = 60) were collected at Flores island, Indonesia and examined by microscopy. Aliquots were taken and a bead-beating procedure was used both on directly frozen stool and on material preserved with 96% ethanol. PCR on frozen samples showed 40% to be positive for T. trichiura, compared with 45% positive by microscopy. The percentage positive increased when using ethanol preservation (45·0%), bead-beating (51·7%) and a combination (55·0%) and all three methods showed significantly higher DNA loads. The various procedures had a less pronounced effect on the PCR results of nine other parasite targets tested. Most prevalent were Ascaris lumbricoides (≈60%), Necator americanus (≈60%), Dientamoeba fragilis (≈50%) and Giardia lamblia (≈12%). To validate the practicality of the procedure, bead-beating was applied in a population-based survey testing 910 stool samples. Findings confirmed bead-beating before DNA extraction to be a highly efficient procedure for the detection of T. trichiura DNA in stool.

  15. Child marriage and women's attitude towards wife beating in a nationally representative sample of currently married adolescent and young women in Pakistan.

    PubMed

    Nasrullah, Muazzam; Muazzam, Sana; Khosa, Faisal; Khan, Muhammad Mobarak Hussain

    2017-01-01

    Child marriage (before 18 years) is widely prevalent in Pakistan, and disproportionately affects young girls in rural, low income and poorly-educated households. Our study aims to determine the association of child marriage and attitude towards wife beating among currently married Pakistani women aged 15-24 after controlling for social equity indicators (education, wealth index, rural residence). We limited the data from Pakistan Demographic and Health Survey, 2012-2013 to currently married women aged 15-24 years (n=2648). Five specified dichotomous variables indicating women's attitude towards wife beating (goes out without telling husband, neglects the children, argues with husband, refuses to have sex with husband, burns the food) were considered as outcome variables. The likelihood (OR and 95% CI) of each outcome variable for the child marriage group was estimated using logistic regression models. The prevalence of child marriage was significantly higher among women having no education and Balochi ethnicity, living in Khyber Pakhtunkhwa region and rural area, and belonging to the poorest quintile of wealth index. Women married as children compared with women married as adults were more likely to justify wife beating for all five specified reasons. However, these associations were lost when social equity indicators and national region of residence were adjusted in the regression models. Highly prevalent child marriage practice among women can be minimized by promoting education and providing economic opportunities in Pakistan. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Imaging the beating heart in the mouse using intravital microscopy techniques

    PubMed Central

    Vinegoni, Claudio; Aguirre, Aaron D; Lee, Sungon; Weissleder, Ralph

    2017-01-01

    Real-time microscopic imaging of moving organs at single-cell resolution represents a major challenge in studying complex biology in living systems. Motion of the tissue from the cardiac and respiratory cycles severely limits intravital microscopy by compromising ultimate spatial and temporal imaging resolution. However, significant recent advances have enabled single-cell resolution imaging to be achieved in vivo. In this protocol, we describe experimental procedures for intravital microscopy based on a combination of thoracic surgery, tissue stabilizers and acquisition gating methods, which enable imaging at the single-cell level in the beating heart in the mouse. Setup of the model is typically completed in 1 h, which allows 2 h or more of continuous cardiac imaging. This protocol can be readily adapted for the imaging of other moving organs, and it will therefore broadly facilitate in vivo high-resolution microscopy studies. PMID:26492138

  17. Impact and benefit of A(2B)-adenosine receptor agonists for the respiratory tract: mucociliary clearance, ciliary beat frequency, trachea muscle tonus and cytokine release.

    PubMed

    Walaschewski, Robin; Begrow, Frank; Verspohl, Eugen J

    2013-01-01

    Adenosine is known to induce a bronchospasm in asthma- and COPD patients. The role of A(2B) receptors was investigated with respect to several parameters of the respiratory tract: tonus of smooth muscle, ciliary beat frequency as measured by high-speed video camera connected to a microscope (both in rats) and mucociliary clearance (MCC; transport of a fluorescent dye using a microdialysis procedure) in mice.  NECA (5'-N-ethylcarboxamidoadenosine) (a non-selective adenosine receptor agonist) was able to acutely induce a contraction, which was reversed to a relaxation after repeated dosing. This relaxation was completely abolished by PSB-1115, an A(2B) receptor antagonist. IL-13 (cytokine) was not involved mediating acute contractility effects. MCC was increased by BAY 60-6583 (A(2B) receptor agonist) and NECA (counteracted by the A(2B) receptor antagonist PSB-1115). Activation of A(2B) adenosine receptors by BAY 60-6583 induced an increase of the ciliary beat frequency, which could be reduced by administration of PSB-1115. Several cytokines were increased by NECA although only some are relevant because they are not blocked by A(2B) receptor antagonism. The A(2B) receptors are involved in airway relaxation, MCC improvement and ciliary beat frequency. A(2B) receptor agonists may be of therapeutic value and should be developed. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  18. Analysis of beat fluctuations and oxygen consumption in cardiomyocytes by scanning electrochemical microscopy.

    PubMed

    Hirano, Yu; Kodama, Mikie; Shibuya, Masahiro; Maki, Yoshiyuki; Komatsu, Yasuo

    2014-02-15

    The contractile behavior of cardiomyocytes can be monitored by measuring their action potentials, and the analysis is essential for screening the safety of potential drugs. However, immobilizing cardiac cells on a specific electrode is considerably complicated. In this study, we demonstrate that scanning electrochemical microscopy (SECM) can be used to analyze rapid topographic changes in beating cardiomyocytes in a standard culture dish. Various cardiomyocyte contraction parameters and oxygen consumption based on cell respiration could be determined from SECM data. We also confirmed that cellular changes induced by adding the cardiotonic agent digoxin were conveniently monitored by this SECM system. These results show that SECM can be a potentially powerful tool for use in drug development for cardiovascular diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Beats produced between a rhythmic applied force and the resting tremor of Parkinsonism.

    PubMed Central

    Walsh, E G

    1979-01-01

    Rhythmic forces have been applied to the wrist of patients with Parkinsonism tremor by means of a printed motor. The tremor rate was not altered to that of the applied force. On the contrary, beats were established, the rate of which depended on the difference in rate between the tremor and the applied rhythm. Most of the observations have been for horizontal motion of the hand but similar phenomena have been seen for vertical movements, and for other parts of the body--for example, foot, elbow, finger joint, and head. The observations are regarded as supporting the view that the tremorgenic mechanism is central. There was no electromyographic evidence of servo driving or servo assistance in the genesis of the tremor. PMID:762588

  20. Coordinated Beating of Algal Flagella is Mediated by Basal Coupling

    NASA Astrophysics Data System (ADS)

    Wan, Kirsty; Goldstein, Raymond

    Cilia or flagella often exhibit synchronized behavior. This includes phase-locking, as seen in Chlamydomonas, and metachronal wave formation in the respiratory cilia of higher organisms. Since the observations by Gray and Rothschild of phase synchrony of nearby swimming spermatozoa, it has been a working hypothesis that synchrony arises from hydrodynamic interactions between beating filaments. Recent work on the dynamics of physically separated pairs of flagella isolated from the multicellular alga Volvox has shown that hydrodynamic coupling alone is sufficient for synchrony. However, the situation is more complex when considering multiple flagella on a single cell. We suggest that a mechanism, internal to the cell, provides an additional flagellar coupling. For instance, flagella of Chlamydomonas mutants deficient in filamentary connections between basal bodies are found to display markedly different synchronization from the wildtype. Diverse flagellar coordination strategies found in quadri-, octo- and hexadecaflagellates reveal further evidence that intracellular couplings between flagellar basal bodies compete with hydrodynamic interactions to determine the precise form of flagellar synchronization in unicellular algae.

  1. Spatial Quantum Beats in Vibrational Resonant Inelastic Soft X-Ray Scattering at Dissociating States in Oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietzsch, A.; Kennedy, B.; Sun, Y.-P.

    2011-04-15

    Resonant inelastic soft x-ray scattering (RIXS) spectra excited at the 1{sigma}{sub g}{yields}3{sigma}{sub u} resonance in gas-phase O{sub 2} show excitations due to the nuclear degrees of freedom with up to 35 well-resolved discrete vibronic states and a continuum due to the kinetic energy distribution of the separated atoms. The RIXS profile demonstrates spatial quantum beats caused by two interfering wave packets with different momenta as the atoms separate. Thomson scattering strongly affects both the spectral profile and the scattering anisotropy.

  2. Fucoidan promotes early step of cardiac differentiation from human embryonic stem cells and long-term maintenance of beating areas.

    PubMed

    Hamidi, Sofiane; Letourneur, Didier; Aid-Launais, Rachida; Di Stefano, Antonio; Vainchenker, William; Norol, Françoise; Le Visage, Catherine

    2014-04-01

    Somatic stem cells require specific niches and three-dimensional scaffolds provide ways to mimic this microenvironment. Here, we studied a scaffold based on Fucoidan, a sulfated polysaccharide known to influence morphogen gradients during embryonic development, to support human embryonic stem cells (hESCs) differentiation toward the cardiac lineage. A macroporous (pore 200 μm) Fucoidan scaffold was selected to support hESCs attachment and proliferation. Using a protocol based on the cardiogenic morphogen bone morphogenic protein 2 (BMP2) and transforming growth factor (TGFβ) followed by tumor necrosis factor (TNFα), an effector of cardiopoietic priming, we examined the cardiac differentiation in the scaffold compared to culture dishes and embryoid bodies (EBs). At day 8, Fucoidan scaffolds supported a significantly higher expression of the 3 genes encoding for transcription factors marking the early step of embryonic cardiac differentiation NKX2.5 (p<0.05), MEF2C (p<0.01), and GATA4 (p<0.01), confirmed by flow cytometry analysis for MEF2C and NKX2.5. The ability of Fucoidan scaffolds to locally concentrate and slowly release TGFβ and TNFα was confirmed by Luminex technology. We also found that Fucoidan scaffolds supported the late stage of embryonic cardiac differentiation marked by a significantly higher atrial natriuretic factor (ANF) expression (p<0.001), although only rare beating areas were observed. We postulated that absence of mechanical stress in the soft hydrogel impaired sarcomere formation, as confirmed by molecular analysis of the cardiac muscle myosin MYH6 and immunohistological staining of sarcomeric α-actinin. Nevertheless, Fucoidan scaffolds contributed to the development of thin filaments connecting beating areas through promotion of smooth muscle cells, thus enabling maintenance of beating areas for up to 6 months. In conclusion, Fucoidan scaffolds appear as a very promising biomaterial to control cardiac differentiation from hESCs that

  3. Percutaneous intracardiac beating-heart surgery using metal MEMS tissue approximation tools

    PubMed Central

    Gosline, Andrew H; Vasilyev, Nikolay V; Butler, Evan J; Folk, Chris; Cohen, Adam; Chen, Rich; Lang, Nora; del Nido, Pedro J; Dupont, Pierre E

    2013-01-01

    Achieving superior outcomes through the use of robots in medical applications requires an integrated approach to the design of the robot, tooling and the procedure itself. In this paper, this approach is applied to develop a robotic technique for closing abnormal communication between the atria of the heart. The goal is to achieve the efficacy of surgical closure as performed on a stopped, open heart with the reduced risk and trauma of a beating-heart catheter-based procedure. In the proposed approach, a concentric tube robot is used to percutaneously access the right atrium and deploy a tissue approximation device. The device is constructed using a metal microelectromechanical system (MEMS) fabrication process and is designed to both fit the manipulation capabilities of the robot as well as to reproduce the beneficial features of surgical closure by suture. The effectiveness of the approach is demonstrated through ex vivo and in vivo experiments. PMID:23750066

  4. Analysis of Donor Factors for Non-Heart-Beating Donors With Regard to Cadaveric Kidney Transplantation in the Western Region of Japan.

    PubMed

    Nakamura, N; Tanaka, M; Tsukamoto, M; Shimano, Y; Yasuhira, M; Ashikari, J

    Kidneys from non-heart-beating donors are thought to be marginal, and careful evaluation is required. Mass analyzed data are limited, and each transplant surgeon must evaluate these organs on the basis of their own experience. We analyzed the data of 589 kidneys used for kidney transplantation from 304 non-heart-beating donors from January 2002 through December 2013 at the Japan Organ Transplant Network West Japan Division. The age of the donors, cause of death, and total ischemic time of more than 24 hours were factors that influenced the graft survival of the organs. On the other hand, the final serum creatinine level before donation (maximum, 12.4 mg/dL), the presence and duration of anuria (maximum, 92 hours), and the presence of cannulation did not influence the graft survival rate. In multivariate analysis of Cox proportional hazards regression analysis, graft survival was significantly related to the age of the donor (over 70 years of age), cause of death (atherosclerotic disease), and total ischemic time of more than 24 hours. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Nonlinear mechanism for the generation of electromagnetic fields in a magnetized plasma by the beatings of waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aburjania, G. D.; Machabeli, G. Z.; Kharshiladze, O. A.

    2006-07-15

    The modulational instability in a plasma in a strong constant external magnetic field is considered. The plasmon condensate is modulated not by conventional low-frequency ion sound but by the beatings of two high-frequency transverse electromagnetic waves propagating along the magnetic field. The instability reduces the spatial scales of Langmuir turbulence along the external magnetic field and generates electromagnetic fields. It is shown that, for a pump wave with a sufficiently large amplitude, the effect described in the present paper can be a dominant nonlinear process.

  6. Automatic analysis of ciliary beat frequency using optical flow

    NASA Astrophysics Data System (ADS)

    Figl, Michael; Lechner, Manuel; Werther, Tobias; Horak, Fritz; Hummel, Johann; Birkfellner, Wolfgang

    2012-02-01

    Ciliary beat frequency (CBF) can be a useful parameter for diagnosis of several diseases, as e.g. primary ciliary dyskinesia. (PCD). CBF computation is usually done using manual evaluation of high speed video sequences, a tedious, observer dependent, and not very accurate procedure. We used the OpenCV's pyramidal implementation of the Lukas-Kanade algorithm for optical flow computation and applied this to certain objects to follow the movements. The objects were chosen by their contrast applying the corner detection by Shi and Tomasi. Discrimination between background/noise and cilia by a frequency histogram allowed to compute the CBF. Frequency analysis was done using the Fourier transform in matlab. The correct number of Fourier summands was found by the slope in an approximation curve. The method showed to be usable to distinguish between healthy and diseased samples. However there remain difficulties in automatically identifying the cilia, and also in finding enough high contrast cilia in the image. Furthermore the some of the higher contrast cilia are lost (and sometimes found) by the method, an easy way to distinguish the correct sub-path of a point's path have yet to be found in the case where the slope methods doesn't work.

  7. Ion acoustic wave assisted laser beat wave terahertz generation in a plasma channel

    NASA Astrophysics Data System (ADS)

    Tyagi, Yachna; Tripathi, Deepak; Walia, Keshav; Garg, Deepak

    2018-04-01

    Resonant excitation of terahertz (THz) radiation by non-linear mixing of two lasers in the presence of an electrostatic wave is investigated. The electrostatic wave assists in k matching and contributes to non-linear coupling. In this plasma channel, the electron plasma frequency becomes minimum on the axis. The beat frequency ponderomotive force imparts an oscillating velocity to the electrons. In the presence of an ion-acoustic wave, density perturbation due to the ion-acoustic wave couples with the oscillating velocity of the electrons and give rise to non-linear current that gives rise to an ion-acoustic wave frequency assisted THz radiation field. The normalized field amplitude of ion acoustic wave assisted THz varies inversely for ω/ωp . The field amplitude of ion acoustic wave assisted THz decreases as ω/ωp increases.

  8. Beating the Clauser-Horne-Shimony-Holt and the Svetlichny games with optimal states

    NASA Astrophysics Data System (ADS)

    Su, Hong-Yi; Ren, Changliang; Chen, Jing-Ling; Zhang, Fu-Lin; Wu, Chunfeng; Xu, Zhen-Peng; Gu, Mile; Vinjanampathy, Sai; Kwek, L. C.

    2016-02-01

    We study the relation between the maximal violation of Svetlichny's inequality and the mixedness of quantum states and obtain the optimal state (i.e., maximally nonlocal mixed states, or MNMS, for each value of linear entropy) to beat the Clauser-Horne-Shimony-Holt and the Svetlichny games. For the two-qubit and three-qubit MNMS, we showed that these states are also the most tolerant state against white noise, and thus serve as valuable quantum resources for such games. In particular, the quantum prediction of the MNMS decreases as the linear entropy increases, and then ceases to be nonlocal when the linear entropy reaches the critical points 2 /3 and 9 /14 for the two- and three-qubit cases, respectively. The MNMS are related to classical errors in experimental preparation of maximally entangled states.

  9. Ex vivo rehabilitation of non-heart-beating donor lungs in preclinical porcine model: delayed perfusion results in superior lung function.

    PubMed

    Mulloy, Daniel P; Stone, Matthew L; Crosby, Ivan K; Lapar, Damien J; Sharma, Ashish K; Webb, David V; Lau, Christine L; Laubach, Victor E; Kron, Irving L

    2012-11-01

    Ex vivo lung perfusion (EVLP) is a promising modality for the evaluation and treatment of marginal donor lungs. The optimal timing of EVLP initiation and the potential for rehabilitation of donor lungs with extended warm ischemic times is unknown. The present study compared the efficacy of different treatment strategies for uncontrolled non-heart-beating donor lungs. Mature swine underwent hypoxic arrest, followed by 60 minutes of no-touch warm ischemia. The lungs were harvested and flushed with 4°C Perfadex. Three groups (n = 5/group) were stratified according to the preservation method: cold static preservation (CSP; 4 hours of 4°C storage), immediate EVLP (I-EVLP: 4 hours EVLP at 37°C), and delayed EVLP (D-EVLP; 4 hours of CSP followed by 4 hours of EVLP). The EVLP groups were perfused with Steen solution supplemented with heparin, methylprednisolone, cefazolin, and an adenosine 2A receptor agonist. The lungs then underwent allotransplantation and 4 hours of recipient reperfusion before allograft assessment for resultant ischemia-reperfusion injury. The donor blood oxygenation (partial pressure of oxygen/fraction of inspired oxygen ratio) before death was not different between the groups. The oxygenation after transplantation was significantly greater in the D-EVLP group than in the I-EVLP or CSP groups. The mean airway pressure, pulmonary artery pressure, and expression of interleukin-8, interleukin-1β, and tumor necrosis factor-α were all significantly reduced in the D-EVLP group. Post-transplant oxygenation exceeded the acceptable clinical levels only in the D-EVLP group. Uncontrolled non-heart-beating donor lungs with extended warm ischemia can be reconditioned for successful transplantation. The combination of CSP and EVLP in the D-EVLP group was necessary to obtain optimal post-transplant function. This finding, if confirmed clinically, will allow expanded use of nonheart-beating donor lungs. Copyright © 2012 The American Association for Thoracic

  10. Got Rhythm? Better Inhibitory Control Is Linked with More Consistent Drumming and Enhanced Neural Tracking of the Musical Beat in Adult Percussionists and Nonpercussionists.

    PubMed

    Slater, Jessica; Ashley, Richard; Tierney, Adam; Kraus, Nina

    2018-01-01

    Musical rhythm engages motor and reward circuitry that is important for cognitive control, and there is evidence for enhanced inhibitory control in musicians. We recently revealed an inhibitory control advantage in percussionists compared with vocalists, highlighting the potential importance of rhythmic expertise in mediating this advantage. Previous research has shown that better inhibitory control is associated with less variable performance in simple sensorimotor synchronization tasks; however, this relationship has not been examined through the lens of rhythmic expertise. We hypothesize that the development of rhythm skills strengthens inhibitory control in two ways: by fine-tuning motor networks through the precise coordination of movements "in time" and by activating reward-based mechanisms, such as predictive processing and conflict monitoring, which are involved in tracking temporal structure in music. Here, we assess adult percussionists and nonpercussionists on inhibitory control, selective attention, basic drumming skills (self-paced, paced, and continuation drumming), and cortical evoked responses to an auditory stimulus presented on versus off the beat of music. Consistent with our hypotheses, we find that better inhibitory control is correlated with more consistent drumming and enhanced neural tracking of the musical beat. Drumming variability and the neural index of beat alignment each contribute unique predictive power to a regression model, explaining 57% of variance in inhibitory control. These outcomes present the first evidence that enhanced inhibitory control in musicians may be mediated by rhythmic expertise and provide a foundation for future research investigating the potential for rhythm-based training to strengthen cognitive function.

  11. Suppression of stimulated Brillouin instability of a beat-wave of two lasers in multiple-ion-species plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Pinki; Gupta, D. N., E-mail: dngupta@physics.du.ac.in; Avinash, K.

    2016-01-15

    Stimulated Brillouin instability of a beat-wave of two lasers in plasmas with multiple-ion-species (negative-ions) was studied. The inclusion of negative-ions affects the growth of ion-acoustic wave in Brillouin scattering. Thus, the growth rate of instability is suppressed significantly by the density of negative-ions. To obey the phase-matching condition, the growth rate of the instability attains a maxima for an appropriate scattering angle (angle between the pump and scattered sideband waves). This study would be technologically important to have diagnostics in low-temperature plasmas.

  12. Study of the spectral width of intermode beats and optical spectrum of an actively mode-locked three-mirror semiconductor laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharyash, Valerii F; Kashirsky, Aleksandr V; Klementyev, Vasilii M

    2005-09-30

    Various oscillation regimes of an actively mode-locked semiconductor laser are studied experimentally. Two types of regimes are found in which the minimal spectral width ({approx}3.5 kHz) of intermode beats is achieved. The width of the optical spectrum of modes is studied as a function of their locking and the feedback coefficients. The maximum width of the spectrum is {approx}3.7 THz. (control of laser radiation parameters)

  13. Comparison of NASA-TLX scale, Modified Cooper-Harper scale and mean inter-beat interval as measures of pilot mental workload during simulated flight tasks.

    PubMed

    Mansikka, Heikki; Virtanen, Kai; Harris, Don

    2018-04-30

    The sensitivity of NASA-TLX scale, modified Cooper-Harper (MCH) scale and the mean inter-beat interval (IBI) of successive heart beats, as measures of pilot mental workload (MWL), were evaluated in a flight training device (FTD). Operational F/A-18C pilots flew instrument approaches with varying task loads. Pilots' performance, subjective MWL ratings and IBI were measured. Based on the pilots' performance, three performance categories were formed; high-, medium- and low-performance. Values of the subjective rating scales and IBI were compared between categories. It was found that all measures were able to differentiate most task conditions and there was a strong, positive correlation between NASA-TLX and MCH scale. An explicit link between IBI, NASA-TLX, MCH and performance was demonstrated. While NASA-TLX, MCH and IBI have all been previously used to measure MWL, this study is the first one to investigate their association in a modern FTD, using a realistic flying mission and operational pilots.

  14. NASA's Hubble Captures the Beating Heart of the Crab Nebula

    NASA Image and Video Library

    2017-12-08

    Peering deep into the core of the Crab Nebula, this close-up image reveals the beating heart of one of the most historic and intensively studied remnants of a supernova, an exploding star. The inner region sends out clock-like pulses of radiation and tsunamis of charged particles embedded in magnetic fields. The neutron star at the very center of the Crab Nebula has about the same mass as the sun but compressed into an incredibly dense sphere that is only a few miles across. Spinning 30 times a second, the neutron star shoots out detectable beams of energy that make it look like it's pulsating. The NASA Hubble Space Telescope snapshot is centered on the region around the neutron star (the rightmost of the two bright stars near the center of this image) and the expanding, tattered, filamentary debris surrounding it. Hubble's sharp view captures the intricate details of glowing gas, shown in red, that forms a swirling medley of cavities and filaments. Inside this shell is a ghostly blue glow that is radiation given off by electrons spiraling at nearly the speed of light in the powerful magnetic field around the crushed stellar core. The neutron star is a showcase for extreme physical processes and unimaginable cosmic violence. Bright wisps are moving outward from the neutron star at half the speed of light to form an expanding ring. It is thought that these wisps originate from a shock wave that turns the high-speed wind from the neutron star into extremely energetic particles. When this "heartbeat" radiation signature was first discovered in 1968, astronomers realized they had discovered a new type of astronomical object. Now astronomers know it's the archetype of a class of supernova remnants called pulsars - or rapidly spinning neutron stars. These interstellar "lighthouse beacons" are invaluable for doing observational experiments on a variety of astronomical phenomena, including measuring gravity waves. Observations of the Crab supernova were recorded by Chinese

  15. A beating heart cell model to predict cardiotoxicity: effects of the dietary supplement ingredients higenamine, phenylethylamine, ephedrine and caffeine.

    PubMed

    Calvert, Richard; Vohra, Sanah; Ferguson, Martine; Wiesenfeld, Paddy

    2015-04-01

    Some dietary supplements may contain cardiac stimulants and potential cardiotoxins. In vitro studies may identify ingredients of concern. A beating human cardiomyocyte cell line was used to evaluate cellular effects following phenylethylamine (PEA), higenamine, ephedrine or caffeine treatment. PEA and higenamine exposure levels simulated published blood levels in humans or animals after intravenous administration. Ephedrine and caffeine levels approximated published blood levels following human oral intake. At low or midrange levels, each chemical was examined plus or minus 50 µM caffeine, simulating human blood levels reported after consumption of caffeine-enriched dietary supplements. To measure beats per minute (BPM), peak width, etc., rhythmic rise and fall in intracellular calcium levels following 30 min of treatment was examined. Higenamine 31.3 ng/ml or 313 ng/ml significantly increased BPM in an escalating manner. PEA increased BPM at 0.8 and 8 µg/ml, while 80 µg/ml PEA reduced BPM and widened peaks. Ephedrine produced a significant BPM dose response from 0.5 to 5.0 µM. Caffeine increased BPM only at a toxic level of 250 µM. Adding caffeine to PEA or higenamine but not ephedrine further increased BPM. These in vitro results suggest that additional testing may be warranted in vivo to further evaluate these effects. Published by Elsevier Ltd.

  16. Efficacy of Theta Binaural Beats for the Treatment of Chronic Pain.

    PubMed

    Zampi, Donna D

    2016-01-01

    According to the National Institutes of Health, in 2011, chronic pain affected from approximately 10% to >50% of the adult population in the United States, with a cost of $61 billion to US businesses annually. The pilot study assessed the effects that an external, audio, neural stimulus of theta binaural beats (TBB) had on returning the brain neurosignature for chronic pain to homeostasis. The quantitative, experimental, repeated-measures crossover study compared the results of 2 interventions in 2 time-order sequences. An a priori analysis indicated a sample size of 28 participants was needed for a 2-way repeated-measures analysis of variance (ANOVA). The study was conducted in Richmond, VA, USA, with participants recruited from the financial sector. Thirty-six US adults with various types of chronic pain, and with a median age of 47 y, ranging in ages from 26-69 y, participated in the study. The study experienced 4 dropouts. Participants listened to 2 recordings-one using TBB at 6 Hz (TBB intervention) and one using a placebo of a nonbinaural beat tone of 300 Hz (sham intervention) for 20 min daily. Both interventions lasted 14 successive days each, with some participants hearing the TBB intervention first and the sham intervention second and some hearing them in the reverse order. Participants listened to the interventions via a Web site on the Internet or via a compact disc. Interviews were conducted either in person or telephonically with e-mail support. Using the West Haven-Yale Multidimensional Pain Inventory (MPI), potential changes in perceived severity of chronic pain were measured (1) at baseline; (2) after the first test at 14 d, either TBB or sham intervention; and (3) after the second test at 28 d-either TBB or sham intervention. The analysis compared the average mean for pretest and first and second posttest scores. The analysis indicated a large main effect for the TBB intervention in reducing perceived pain severity, P<.001 (F2,60=84.98, r=0

  17. Design a Wearable Device for Blood Oxygen Concentration and Temporal Heart Beat Rate

    NASA Astrophysics Data System (ADS)

    Myint, Cho Zin; Barsoum, Nader; Ing, Wong Kiing

    2010-06-01

    The wireless network technology is increasingly important in healthcare as a result of the aging population and the tendency to acquire chronic disease such as heart attack, high blood pressure amongst the elderly. A wireless sensor network system that has the capability to monitor physiological sign such as SpO2 (Saturation of Arterial Oxygen) and heart beat rate in real-time from the human's body is highlighted in this study. This research is to design a prototype sensor network hardware, which consists of microcontroller PIC18F series and transceiver unit. The sensor is corporate into a wearable body sensor network which is small in size and easy to use. The sensor allows a non invasive, real time method to provide information regarding the health of the body. This enables a more efficient and economical means for managing the health care of the population.

  18. Moving with the beat: heart rate and visceral temperature of free-swimming and feeding bluefin tuna.

    PubMed

    Clark, T D; Taylor, B D; Seymour, R S; Ellis, D; Buchanan, J; Fitzgibbon, Q P; Frappell, P B

    2008-12-22

    Owing to the inherent difficulties of studying bluefin tuna, nothing is known of the cardiovascular function of free-swimming fish. Here, we surgically implanted newly designed data loggers into the visceral cavity of juvenile southern bluefin tuna (Thunnus maccoyii) to measure changes in the heart rate (fH) and visceral temperature (TV) during a two-week feeding regime in sea pens at Port Lincoln, Australia. Fish ranged in body mass from 10 to 21 kg, and water temperature remained at 18-19 degrees C. Pre-feeding fH typically ranged from 20 to 50 beats min(-1). Each feeding bout (meal sizes 2-7% of tuna body mass) was characterized by increased levels of activity and fH (up to 130 beats min(-1)), and a decrease in TV from approximately 20 to 18 degrees C as cold sardines were consumed. The feeding bout was promptly followed by a rapid increase in TV, which signified the beginning of the heat increment of feeding (HIF). The time interval between meal consumption and the completion of HIF ranged from 10 to 24 hours and was strongly correlated with ration size. Although fH generally decreased after its peak during the feeding bout, it remained elevated during the digestive period and returned to routine levels on a similar, but slightly earlier, temporal scale to TV. These data imply a large contribution of fH to the increase in circulatory oxygen transport that is required for digestion. Furthermore, these data oppose the contention that maximum fH is exceptional in bluefin tuna compared with other fishes, and so it is likely that enhanced cardiac stroke volume and blood oxygen carrying capacity are the principal factors allowing superior rates of circulatory oxygen transport in tuna.

  19. Moving with the beat: heart rate and visceral temperature of free-swimming and feeding bluefin tuna

    PubMed Central

    Clark, T.D; Taylor, B.D; Seymour, R.S; Ellis, D; Buchanan, J; Fitzgibbon, Q.P; Frappell, P.B

    2008-01-01

    Owing to the inherent difficulties of studying bluefin tuna, nothing is known of the cardiovascular function of free-swimming fish. Here, we surgically implanted newly designed data loggers into the visceral cavity of juvenile southern bluefin tuna (Thunnus maccoyii) to measure changes in the heart rate (fH) and visceral temperature (TV) during a two-week feeding regime in sea pens at Port Lincoln, Australia. Fish ranged in body mass from 10 to 21 kg, and water temperature remained at 18–19°C. Pre-feeding fH typically ranged from 20 to 50 beats min−1. Each feeding bout (meal sizes 2–7% of tuna body mass) was characterized by increased levels of activity and fH (up to 130 beats min−1), and a decrease in TV from approximately 20 to 18°C as cold sardines were consumed. The feeding bout was promptly followed by a rapid increase in TV, which signified the beginning of the heat increment of feeding (HIF). The time interval between meal consumption and the completion of HIF ranged from 10 to 24 hours and was strongly correlated with ration size. Although fH generally decreased after its peak during the feeding bout, it remained elevated during the digestive period and returned to routine levels on a similar, but slightly earlier, temporal scale to TV. These data imply a large contribution of fH to the increase in circulatory oxygen transport that is required for digestion. Furthermore, these data oppose the contention that maximum fH is exceptional in bluefin tuna compared with other fishes, and so it is likely that enhanced cardiac stroke volume and blood oxygen carrying capacity are the principal factors allowing superior rates of circulatory oxygen transport in tuna. PMID:18755679

  20. HeartBeat Connections: A Rural Community of Solution for Cardiovascular Health.

    PubMed

    Benson, Gretchen A; Sidebottom, Abbey; VanWormer, Jeffrey J; Boucher, Jackie L; Stephens, Charles; Krikava, Joan

    2013-01-01

    Cardiovascular disease (CVD) continues to be the leading cause of death among Americans. National guidelines emphasize early identification and control of CVD risk factors, but challenges remain in the primary care setting in terms of engaging patients and improving medical therapy adherence. The rapid growth of electronic health records (EHRs) provides a new way to proactively identify populations of high-risk patients and target them with prevention strategies. The HeartBeat Connections (HBC) program was developed as part of a population-based demonstration project aimed at reducing myocardial infarctions. HBC uses EHR data to identify residents at high CVD risk in a rural community. Participants receive coaching from a registered dietitian or a registered nurse focused on lifestyle behavior changes and preventive medication initiation/titration. HBC provides patients with access to nonprescribing professionals on a more frequent basis than typical office visits, and it is focused specifically on helping patients improve lifestyle behaviors and medication adherence as they relate to the primary prevention of CVD. Innovative population health approaches that use EHR data to address common barriers to CVD prevention and engage communities in addressing population health needs are needed to help more patients prevent coronary events.