DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherrod, D.R.; Griscom, A.; Turner, R.L.
1988-01-01
The Sheepshead Mountains, Wildcat Canyon, and Table Mountain Wilderness Study Areas encompass most of the Sheepshead Mountains in southeast Oregon. The mountains comprise several fault blocks of middle and late Miocene basalt, basaltic andesite, andesite, and dacite lava; pyroclastic and sedimentary rocks are minor. The three wilderness study areas have low resource potential for gold, silver, and oil and gas. A few small areas have low-to-high resource potential for diatomite, as indicated by the occurrence of low-grade diatomite. Some fault zones have a moderate potential for geothermal energy.
Periodic Burning In Table Mountain-Pitch Pine Stands
Russell B. Randles; David H. van Lear; Thomas A. Waldrop; Dean M. Simon
2002-01-01
Abstract - The effects of multiple, low intensity burns on vegetation and wildlife habitat in Table Mountain (Pinus pungens Lamb.)-pitch (Pinus rigida Mill.) pine communities were studied in the Blue Ridge Mountains of North Carolina. Treatments consisted of areas burned from one to four times at 3-4 year...
1980-12-15
restrictions concerning air quality TSP increments that cannot be exceeded (see Table 2.1.1-7). The Capulin Mountain National Monument has been recommended...impacts on existing and proposed Class I areas of White Mountain, Pecos, Wheeler Peak, and Capulin Mountain, New Mexico, were reflected in higher
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weed, E.G.A.
1981-01-01
This map presents an analysis of the oil and gas resources of the Cheat Mountain Further Planning Area in the Monomgahela National Forest, Randolph County, West Virgina. 28 references, 4 figures, 1 table.
Dumoulin, Julie A.; Harris, Anita G.; Blome, Charles D.; Young, Lorne E.
2006-01-01
INTRODUCTION This report presents biostratigraphic data from 289 collections at 189 localities in the De Long Mountains, Misheguk Mountain, and Noatak quadrangles (fig. 1); most of these data have never been previously published. The collections were made during studies of the Red Dog massive sulfide deposit in 1998?2004 and in support of regional mapping projects in 1979, 1981, 1983, and 1997?98. The collections?mostly conodonts and some radiolarians?tightly constrain the age of many stratigraphic units of Devonian through Triassic age exposed within the study area, and provide additional data on the depositional environments and thermal history of these rocks. The data are presented in a series of tables, organized by fossil type, stratigraphic unit, and location. Tables 1?12 contain conodont data, mostly from the De Long Mountains quadrangle. All of these collections were initially examined, or were reevaluated, from 1997 through 2004, and complete faunal lists are given for all samples. Table 13 lists ages and conodont color alteration indices (CAIs) of 27 collections from 24 localities in the Noatak quadrangle; updated faunal lists were not prepared for these samples. Radiolarian data?all from the De Long Mountains quadrangle?are given in table 14; these collections were analyzed between 1998 and 2003. Collection localities are shown in four maps (sheets 1, 2). Map 1 (sheet 1) shows all outcrop samples from the De Long Mountains and western Misheguk Mountain quadrangle (locs. 1-121). Maps 2?4 (sheets 1, 2) show all drill hole sample localities; samples come from the Su-Lik deposit and in and around the Anarraaq deposit (map 2, locs. 122?135), in and adjacent to the Red Dog deposits (Paalaaq, Aqqaluk, Main, and Qanaiyaq) (map 3, locs. 136?158), and from drill holes along the Port Road in the Noatak quadrangle (map 4, locs. 159?160). Map 4 (sheet 2) also shows all outcrop samples from the Noatak quadrangle (locs. 161?189). The text summarizes the lithofacies, age, and biofacies of the Paleozoic and Mesozoic stratigraphic units that produced the fossil collections presented in the tables. Many of the data for the Lisburne Group are taken from Dumoulin and others (2004). Plates 1?4 illustrate important conodonts from the collections listed herein, as well as from coeval collections in the Howard Pass quadrangle; information about the Howard Pass conodonts is given in Table 15.
Guidelines for Integrating Helicopter Assets into Emergency Planning
1991-07-01
maximum. 35 TABLE 2 HELIPORT INFORMATION SOURCES Professional-and/or industry associations Airborne Law Enforcement Association ( ALEA ) 8060 Balboa Boulevard...Department of Transportation/ Federal Aviation Adminisration ATTN: Hugh Lyon (ASW-611C) Fort Worth, TX 76193-0611 81-624-5600 FAA Northwest Mountain ...indication of wind speed and direction. in areas with swirling or varying winds, such as near buildings or in mountainous areas, two or more wind
Nicole Turrill Welch; Thomas A. Waldrop
2001-01-01
Table mountain pine (Pinus pungens Lamb.) communities of the Southern Appalachian Mountains have been maintained historically by lightning- and human-caused fires. Characteristic stands have a table mountain pine overstory, a chestnut oak (Quercus prinus L.), scarlet oak (Q. coccinea Muenchh.), and blackgum (
A comparison of northern and southern table mountain pine stands
Patrick H. Brose; Thomas A. Waldrop; Helen H. Mohr
2010-01-01
Table Mountain pine (Pinus pungens) stands occur throughout the Appalachian Mountains, but ecological research has concentrated on the southern part of this region. In 2006, research was initiated in northern Table Mountain pine stands growing in PA to compare some basic attributes of those stands with previously described ones in TN. Overall, the...
Patterns of Seed Productions in Table Mountain Pine
Ellen A. Gray; John C. Rennie; Thomas A. Waldrop; James L. Hanula
2002-01-01
The lack of regeneration in stands of Table Mountain pine (Pinus pungens Lamb.) in the Southern Appalachian Mountains is of concern, particularly to federal land managers. Efforts to regenerate Table Mountain pine (TMP) stands with prescribed burning have been less successful than expected. Several factors that may play a key role in successful...
Whole stand volume tables for quaking aspen in the Rocky Mountains
Wayne D. Shepperd; H. Todd Mowrer
1984-01-01
Linear regression equations were developed to predict stand volumes for aspen given average stand basal area and average stand height. Tables constructed from these equations allow easy field estimation of gross merchantable cubic and board foot Scribner Rules per acre, and cubic meters per hectare using simple prism cruise data.
Beaver Mediated Water Table Dynamics in Mountain Peatlands
NASA Astrophysics Data System (ADS)
Karran, D. J.; Westbrook, C.; Bedard-Haughn, A.
2016-12-01
Water table dynamics play an important role in the ecological and biogeochemical processes that regulate carbon and water storage in peatlands. Beaver are common in these habitats and the dams they build have been shown to raise water tables in other environments. However, the impact of beaver dams in peatlands, where water tables rest close to the surface, has yet to be determined. We monitored a network of 50 shallow wells in a Canadian Rocky Mountain peatland for 6 years. During this period, a beaver colony was maintaining a number of beaver ponds for four years until a flood event removed the colony from the area and breached some of the dams. Two more years of data were collected after the flood event to assess whether the dams enhanced groundwater storage. Beaver dams raised water tables just as they do in other environments. Furthermore, water tables within 100 meters of beaver dams were more stable than those further away and water table stability overall was greater before the flood event. Our results suggest the presence/absence of beaver in peatlands has implications for groundwater water storage and overall system function.
Summary of Precipitation Data for the Black Hills Area of South Dakota, Water Years 1931-98
2000-01-01
1991 1998 65 432933103511000 Pilger Mountain near Edgemont 43 29 49 103 51 08 4,090 S 1992 1995 Table 1. Site information for selected precipitation...1.45 1.36 16.36 Supplemental Information - Section B 91 Measured (shaded) and estimated precipitation, in inches, for site 65, Pilger Mountain near
Relational Database for the Geology of the Northern Rocky Mountains - Idaho, Montana, and Washington
Causey, J. Douglas; Zientek, Michael L.; Bookstrom, Arthur A.; Frost, Thomas P.; Evans, Karl V.; Wilson, Anna B.; Van Gosen, Bradley S.; Boleneus, David E.; Pitts, Rebecca A.
2008-01-01
A relational database was created to prepare and organize geologic map-unit and lithologic descriptions for input into a spatial database for the geology of the northern Rocky Mountains, a compilation of forty-three geologic maps for parts of Idaho, Montana, and Washington in U.S. Geological Survey Open File Report 2005-1235. Not all of the information was transferred to and incorporated in the spatial database due to physical file limitations. This report releases that part of the relational database that was completed for that earlier product. In addition to descriptive geologic information for the northern Rocky Mountains region, the relational database contains a substantial bibliography of geologic literature for the area. The relational database nrgeo.mdb (linked below) is available in Microsoft Access version 2000, a proprietary database program. The relational database contains data tables and other tables used to define terms, relationships between the data tables, and hierarchical relationships in the data; forms used to enter data; and queries used to extract data.
Karl, Susan M.; Blodgett, R.B.; Labay, Keith A.; Box, S.E.; Bradley, D.C.; Miller, M.L.; Wallace, W.K.; Baichtal, J.F.
2011-01-01
Information about fossils collected by U.S. Geological Survey, State of Alaska, academic, and industry geologists that have been reported in literature or archived in reports from the former U.S. Geological Survey Branch of Paleontology and Stratigraphy are compiled on a plate and table in this report to provide comprehensive paleontologic age data for the Taylor Mountains quadrangle area in southwestern Alaska. The reports used to compile the table in this report were submitted by recognized paleontologic experts. Some of the information is derived from reports that date back almost 100 years. Many of the data are available in more detail in the Alaska Paleontological Database (http://www.alaskafossil.org/). The 287 entries in this table are shown on the accompanying plate, on which symbols representing the entries are color-coded by geologic age. This report represents the most comprehensive and most recently updated compilation of paleontologic data for this area.
The paleohydrology of unsaturated and saturated zones at Yucca Mountain, Nevada, and vicinity
Paces, James B.; Whelan, Joseph F.; Stuckless, John S.
2012-01-01
Surface, unsaturated-zone, and saturated-zone hydrologic conditions at Yucca Mountain responded to past climate variations and are at least partly preserved by sediment, fossil, and mineral records. Characterizing past hydrologic conditions in surface and subsurface environments helps to constrain hydrologic responses expected under future climate conditions and improve predictions of repository performance. Furthermore, these records provide a better understanding of hydrologic processes that operate at time scales not readily measured by other means. Pleistocene climates in southern Nevada were predominantly wetter and colder than the current interglacial period. Cyclic episodes of aggradation and incision in Fortymile Wash, which drains the eastern slope of Yucca Mountain, are closely linked to Pleistocene climate cycles. Formation of pedogenic cement is favored under wetter Pleistocene climates, consistent with increased soil moisture and vegetation, higher chemical solubility, and greater evapotranspiration relative to Holocene soil conditions. The distribution and geochemistry of secondary minerals in subsurface fractures and cavities reflect unsaturated-zone hydrologic conditions and the response of the hydrogeologic system to changes in temperature and percolation flux over the last 12.8 m.y. Physical and fluid-inclusion evidence indicates that secondary calcite and opal formed in air-filled cavities from fluids percolating downward through connected fracture pathways in the unsaturated zone. Oxygen, strontium, and carbon isotope data from calcite are consistent with a descending meteoric water source but also indicate that water compositions and temperatures evolved through time. Geochronological data indicate that secondary mineral growth rates are less than 1–5 mm/m.y., and have remained approximately uniform over the last 10 m.y. or longer. These data are interpreted as evidence for hydrological stability despite large differences in surface moisture caused by climate shifts between the Miocene and Pleistocene and between Pleistocene glacial-interglacial cycles. Secondary mineral distribution and δ18O profiles indicate that evaporation in the shallower welded tuffs reduces infiltration fluxes. Several near-surface and subsurface processes likely are responsible for diverting or dampening infiltration and percolation, resulting in buffering of percolation fluxes to the deeper unsaturated zone. Cooler and wetter Pleistocene climates resulted in increased recharge in upland areas and higher water tables at Yucca Mountain and throughout the region. Discharge deposits in the Amargosa Desert were active during glacial periods, but only in areas where the modern water table is within 7–30 m of the surface. Published groundwater models simulate water-table rises beneath Yucca Mountain of as much as 150 m during glacial climates. However, most evidence from Fortymile Canyon up gradient from Yucca Mountain limits water-table rises to 30 m or less, which is consistent with evidence from discharge sites in the Amargosa Desert. The isotopic compositions of uranium in tuffs spanning the water table in two Yucca Mountain boreholes indicate that Pleistocene water-table rises likely were restricted to 25–50 m above modern positions and are in approximate agreement with water-table rises estimated from zeolitic-to-vitric transitions in the Yucca Mountain tuffs (less than 60 m in the last 11.6 m.y.).
Thomas A. Waldrop; Patrick H. Brose
1999-01-01
Stand-replacement prescribed fire has been recommended to regenerate stands of table mountain pine (Pinus pungens Lamb.) in the Southern Appalachian Mountains because the species has serotinous cones and is shade intolerant. A 350 ha prescribed fire in northeast Georgia provided an opportunity to observe overstory mortality and regeneration of table...
Flood Frequenices and Bridge and Culvert Sizes for Forested Mountains of North Carolina
James E. Douglass
1974-01-01
A method is presented for predicting flood discharge from the forested Blue Ridge Mountains of North Carolina for storms at recurrence intervals of 2.33, 5, 10, 20, 30, 40, and 50 years. These predictions are based on area and maximum elevation of the drainage. Once storm discharge has been estimated, the proper size of culvert can be determined from tables which list...
Using prescribed fire to regenerate Table Mountain pine in the Southern Appalachian Mountains
Patrick H. Brose; Thomas A. Waldrop
2000-01-01
Stand-replacing prescribed fires are recommended to regenerate stands of Table Mountain pine (Pinus pungens) in the southern Appalachian Mountains because the species has serotinous cones and its seedlings require abundant sunlight and a thin forest floor. A 350-hectare prescribed fire in northeastern Georgia provided an opportunity to observe...
NASA Technical Reports Server (NTRS)
Wilson, K. E.; Lesh, J. R.; Araki, K.; Arimoto, Y.
1996-01-01
The Ground/Orbiter Lasercomm Demonstration (GOLD) is an optical communications demonstration between the Japanese Engineering Test Satellite (ETS-V1) and an optical ground transmitting and receiving station at the Table Mountain FAcility in Wrightwood California. Laser transmissions to the satellite are performed approximately four hours every third night when the satellite is at apogee above Table Mountain.
Olson, C.G.; Doolittle, J.A.
1985-01-01
Two techniques were assessed for their capabilities in reconnaissance studies of soil characteristics: depth to the water table and depth to bedrock beneath surficial deposits in mountainous terrain. Ground-penetrating radar had the best near-surface resolution in the upper 2 m of the profile and provided continuous interpretable imagery of soil profiles and bedrock surfaces. Where thick colluvium blankets side slopes, the GPR could not consistently define the bedrock interface. In areas with clayey or shaley sediments, the GPR is also more limited in defining depth and is less reliable. Seismic refraction proved useful in determining the elevation of the water table and depth to bedrock, regardless of thickness of overlying material, but could not distinguish soil-profile characteristics.-from Authors
NASA Astrophysics Data System (ADS)
Jencso, K. G.; McGlynn, B. L.; Gooseff, M. N.; Wondzell, S. M.; Bencala, K. E.; Payn, R. A.
2007-12-01
Understanding how hillslope and riparian water table dynamics influence catchment scale hydrologic response remains a challenge. In steep headwater catchments with shallow soils, topographic convergence and divergence (upslope accumulated area-UAA) is a hypothesized first-order control on the distribution of soil water and groundwater. To test the relationship between UAA and the longevity of hillslope-riparian-stream shallow groundwater connectivity, we quantified water table continuity based on 80+ recording wells distributed across 24 hillslope-riparian-stream cross-sections. Cross-section upstream catchment areas ranged in size from 0.41 to 17.2 km2, within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana, USA. We quantified toe-slope UAA and the topographic index (TI = ln a/tanβ) with a Multiple-D- Infinity (area routing in multiple infinite downslope directions) flow accumulation algorithm analysis of 1, 3, 10, and 30m ALSM derived DEMs. Indices derived from the 10m DEM best characterized subsurface flow accumulation, highlighting the balance between the process of interest, topographic complexity, and optimal grid scale representation. Across the 24 transects, toe-slope UAA ranged from 600-40,000 m2, the TI ranged from 5-16, and riparian widths were between 0-60m. Patterns in shallow groundwater table fluctuations suggest hydrologic dynamics reflective of hillslope-riparian landscape setting. Specifically, correlations were observed between longevity of hillslope-riparian water table continuity and the size of the UAA (r2=0.84) and its topographic index (r2=.86). These observations highlight the temporal component of topographic-hydrologic relationships important for understanding threshold mediated hydrologic variables. We are working to quantify the characteristics and spatial distribution of hillslope-riparian sequences and their water table dynamics to temporally link runoff source areas to whole catchment hydrologic response.
Watts, K.C.
1986-01-01
This report discusses and interprets geochemical results as they are seen at the reconnaissance stage. Analytical results for all samples collected are released in a U.S. Geological Survey Open-File Report (Adrian and others, 1985). A statistical summary of the data from heavy-mineral concentrates and sieved stream sediments is shown in table 1. The analytical results for selected elements in rock samples are shown in table 2.
Are Crown Fires Necessary For Table Mountain Pine?
Thomas A. Waldrop; Patrick H. Brose; Nicole Turrill Welch; Helen H. Mohr; Ellen A. Gray; Frank H. Tainter; Lisa E. Ellis
2003-01-01
Ridgetop pine communities of the southern Appalachian Mountains have historically been maintained by lightning- and human-caused fires. Because of fire supression for several decades, these stands are entering later seral stages. Such stands typically have an overstory of Table Mountain Pine (Pinus pungens) that is being replaced by shade tolerant...
Czarnecki, J.B.
1984-01-01
A study was performed to assess the potential effects of changes in future climatic conditions on the groundwater system in the vicinity of Yucca Mountain, the site of a potential mined geologic repository for high-level nuclear wastes. These changes probably would result in greater rates of precipitation and, consequently, greater rates of recharge. The study was performed by simulating the groundwater system, using a two-dimensional, finite-element, groundwater flow model. The simulated position of the water table rose as much as 130 meters near the U.S. Department of Energy 's preferred repository area at Yucca Mountain for a simulation involving a 100-percent increase in precipitation compared to modern-day conditions. Despite the water table rise, no flooding of the potential repository would occur at its current proposed location. According to the simulation, springs would discharge south and west of Timber Mountain, along Fortymile Canyon, in the Amargosa Desert near Lathrop Wells and Franklin Lake playa, and near Furnace Creek Ranch in Death Valley, where they presently discharge. Simulated directions of groundwater flow paths near the potential repository area generally would be the same for the baseline (modern-day climate) and the increased-recharge simulations, but the magnitude of flow would increase by 2 to 4 times that of the baseline-simulation flow. (USGS)
Groundwater Study of the Rocky Mountain Arsenal and Some Surrounding Area, 1974 - 1975
1975-01-01
Table 3. From the sampling, Lake F was found to contain a l~er concentration of OCPD than that found in the groundwaters. In addition, very high copper...be the influent area to Lake F. (3) Reclamation of the groundwater for DIMP Is reco..ended. (4) Reclmatlon of OCPD frca, tli, groundwater appears
Ecological context for the North Pacific Landscape Conservation Cooperative
Woodward, Andrea; Taylor, Audrey; Weekes, Anne
2012-01-01
The North Pacific Landscape Conservation Cooperative (NPLCC) encompasses the temperate coastal rainforest and extends from the coastal mountains to the near-shore from the Kenai Peninsula, Alaska to Bodega Bay, California. The area spans multiple agency, state, and international boundaries over more than 22 degrees of latitude, including a wide range of type and intensity of human land-use activities. Development of NPLCC goals and administrative structures will be facilitated by a shared ecological context for discussing this expansive, diverse, and complex landscape. In support of activities to organize the NPLCC, we provided conceptual models to describe the ecological structure of the NPLCC. Recognizing that the boundaries of LCCs were primarily based on Level 2 of the hierarchical ecoregional classification of Omernik (Comission for Environmental Cooperation 1997), we used nested Level 3 ecoregions to define subregions within the NPLCC. Rather than develop conceptual models for all nine constituent subregions, we opted to consider five groups: Puget-Georgia Basin Lowland and Willamette Valley, Alaska-British Columbia Coast, Alaska-British Columbia Mountains, Klamath-Olympic-Cascade Mountains, and Washington-Oregon-Northern California Coast. At the conclusion of the project, we felt that the close relationship between mountain and coastal areas support combining them to create three major subregions: Alaska-British Columbia coast and mountains, Washington-Oregon-Northern California coast and mountains, and the lowlands of the Georgia Basin and Willamette Valley. The following figures present the Omernik Level 3 ecoregions comprising the NPLCC; how the ecoregions were grouped to create conceptual models; and conceptual models for each group. The five models each consist of a table listing resources, stressors, potential climate change impacts; a landcover map; and a cartoon to summarize the table and evoke the landscape. A final figure summarizes resources, stressors, and climate change impacts that are common across the NPLCC.
Patrick H. Brose; Thomas A. Waldrop
2006-01-01
The prevalence of stand-replacing fire in the formation of Table Mountain pine - pitch pine (Pinus pungens Lamb. and Pinus rigida Mill., respectively) communities was investigated with dendrochronological techniques. Nine stands in Georgia, South Carolina, and Tennessee were analyzed for age structure, species recruitment trends,...
Patrick H. Brose; Thomas A. Waldrop
2006-01-01
The prevalence of stand-replacing tire in the formation of Table Mountain pine - pitch pine (Pinus pungens Lamb. and Pinus rigida Mill., respectively) communities was investigated with dendrochronological techniques. Nine stands in Georgia, South Carolina, and Tennessee were analyzed for age structure, species recruitment trends,...
Geology of the southwestern Pasco Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-09-01
The objective of this study was to define those aspects of the stratigraphic, structural, and tectonic setting which are important to the integrity of a deep-mined waste-isolation cavern in the Columbia River basalts. Three principal structural features received the focus of the field effort in the 1,485-square-kilometer area. These are the northern end of the Horse Heaven uplift, the linear ridges of the Badger Mountain-Red Mountain trend, and the Rattlesnake uplift. The thickest sequence of basalt exposed in the study area is on the steep, northeastern slope of Rattlesnake Mountain; about 485 meters of stratigraphic section can be examined inmore » the field area. Subsidence and weak deformation of the southwestern Pasco Basin area during Yakima time can be recognized in the disposition of flows and interbeds. In the southwestern Pasco Basin, most of the topographically expressed basalt bedrock mountains, ridges, hills, and knolls have developed since spreading of the Saddle Mountains flows. Deformation since Ice Harbor time (about 8 million years ago) has been by folding, faulting, and in some structures, by a combination of both. The doubly plunging anticlinal folds of Badger Mountain, Red Mountain, and easternmost Rattlesnake Hills have vertical structural amplitudes in the 80 to 200-meter range. The high-angle, possibly reverse Badger Mountain fault has offset up to 60 meters; offset is downward on the northeast. Rattlesnake Mountain is, in part, a tilted fault-block structure. The western end of the Rattlesnake uplift, Rattlesnake Hills, is principally a broad anticline with numerous minor folds and faults. Geomorphic relations suggest that the post-Ice Harbor structural movement in the study area is of one episode. 65 figures, 8 tables.« less
ERIC Educational Resources Information Center
Park, Young-Han
1988-01-01
Briefly surveys the geography of both North and South Korea, examining mountain ranges, rivers, soil, and climate. Also discusses the economic activities of South Korea, including industrialization, transportation, population, and the urban system. Provides a map of the Korean peninsula and a table of land area and population by province. (GEA)
Numerical modeling of perched water under Yucca Mountain, Nevada
Hinds, J.J.; Ge, S.; Fridrich, C.J.
1999-01-01
The presence of perched water near the potential high-level nuclear waste repository area at Yucca Mountain, Nevada, has important implications for waste isolation. Perched water occurs because of sharp contrasts in rock properties, in particular between the strongly fractured repository host rock (the Topopah Spring welded tuff) and the immediately underlying vitrophyric (glassy) subunit, in which fractures are sealed by clays that were formed by alteration of the volcanic glass. The vitrophyre acts as a vertical barrier to unsaturated flow throughout much of the potential repository area. Geochemical analyses (Yang et al. 1996) indicate that perched water is relatively young, perhaps younger than 10,000 years. Given the low permeability of the rock matrix, fractures and perhaps fault zones must play a crucial role in unsaturated flow. The geologic setting of the major perched water bodies under Yucca Mountain suggests that faults commonly form barriers to lateral flow at the level of the repository horizon, but may also form important pathways for vertical infiltration from the repository horizon down to the water table. Using the numerical code UNSAT2, two factors believed to influence the perched water system at Yucca Mountain, climate and fault-zone permeability, are explored. The two-dimensional model predicts that the volume of water held within the perched water system may greatly increase under wetter climatic conditions, and that perched water bodies may drain to the water table along fault zones. Modeling results also show fault flow to be significantly attenuated in the Paintbrush Tuff non-welded hydrogeologic unit.
SPANISH PEAKS PRIMITIVE AREA, MONTANA.
Calkins, James A.; Pattee, Eldon C.
1984-01-01
A mineral survey of the Spanish Peaks Primitive Area, Montana, disclosed a small low-grade deposit of demonstrated chromite and asbestos resources. The chances for discovery of additional chrome resources are uncertain and the area has little promise for the occurrence of other mineral or energy resources. A reevaluation, sampling at depth, and testing for possible extensions of the Table Mountain asbestos and chromium deposit should be undertaken in the light of recent interpretations regarding its geologic setting.
Londquist, C.J.; Livingston, R.K.
1978-01-01
The Wet Mountain Valley is an intermontane trough filled to a depth of at least 6,700 feet with unconsolidated deposits. Ground water occurs under both artesian and water-table conditions within the basin-fill aquifer and ground-water moverment is toward Grape and Texas Creeks. The depth to the water table is less than 10 feet in an area of about 40 square miles along the central part of the valley and is less than 100 feet in most of the remainder of the valley. Ground water stored in the upper 200 feet of saturated basin-fill sediments is estimated to total 1.5 million acre-feet. Yields greater than 50 gallons per minute generally can be expected from wells in the central part of the basin-fill aquifer, and yields less than 50 gallons per minute are generally reported from wells around the edge of the basin-fill aquifer. Yields of wells in the mountainous areas are generally less than 20 gallons per minute. Most streamflow occurs as a result of snowmelt runoff during June and July. The long-term annual runoff at seven stations ranges from an estimated 0.02 cubic foot per second per square mile to an estimated 1.17 cubic feet per second per square mile, generaly increasing with station altitude. Generalized annyal water budgets for two areas in the Wet Mountain Valley indicate that surface-water outflow is only 7 to 11 percent of the total water supply from precipitation and other sources. The remaining water is lost to the atmosphere by evapotranspiration. The quality of both the surface and ground water is generally within the recommended limits for drinking water set by the U.S. Public Health Service. (Woodard-USGS)
Amy L. Morgan; Wayne K. Clatterbuck
2013-01-01
Table Mountain pine (Pinus pungens Lamb.) (TMP) is a threatened species, endemic to the Southern Appalachian Mountains. This study focuses on the release of TMP stems in an overstocked and pure TMP stand on the Cherokee National Forest in eastern Tennessee. The objective of the case study was to produce a cost analysis/comparison of releasing young...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
...) (3 units x 133 MW units) of generating capacity, with up to 100 MW of additional pumping capacity...-foot-wide right of way. Applicant Contact: Matthew Shapiro, Table Mountain Hydro, LLC., 1210 W...
Allen, Craig D.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.
1998-01-01
Rocky Mountain elk are native to northcentral New Mexico, including the Jemez Mountains, whereas a different subspecies, Merriam’s elk, inhabited southern New Mexico, east-central Arizona, and the Mexican border region (Hall 1981). Merriam’s elk went extinct around 1900 in New Mexico, and native Rocky Mountain elk were extirpated by 1909 (Findley et al. 1975). Although elk were known to early inhabitants of the Jemez Mountains (Fig. 1), elk remains are seldom found in archaeological sites there. Indeed, two of three known elk remains from the Jemez Mountains (Table) came from archaeological sites dating to the late 1880’s, while the third is represented by a single bone tool dated at A.D. 1390 to 1520. This scarcity of elk in archaeological remains suggests that only small, local elk populations were present between A.D. 1150 and A.D. 1600. Elk numbers may have been suppressed by the many ancestral Pueblo people who inhabited the area, as suggested for nearby Arroyo Hondo by Lang and Harris (1984) and for the intermountain West by Kay (1994). The gray wolf, the most important natural predator of elk in the Jemez Mountains, was extirpated from the area by the 1940’s (Findley et al. 1975). Hunting has reduced local populations of another elk predator, the mountain lion (Allen 1989).
NASA Astrophysics Data System (ADS)
Rawling, Geoffrey C.; Newton, B. Talon
2016-06-01
The Sacramento Mountains and the adjacent Roswell Artesian Basin, in south-central New Mexico (USA), comprise a regional hydrologic system, wherein recharge in the mountains ultimately supplies water to the confined basin aquifer. Geologic, hydrologic, geochemical, and climatologic data were used to delineate the area of recharge in the southern Sacramento Mountains. The water-table fluctuation and chloride mass-balance methods were used to quantify recharge over a range of spatial and temporal scales. Extrapolation of the quantitative recharge estimates to the entire Sacramento Mountains region allowed comparison with previous recharge estimates for the northern Sacramento Mountains and the Roswell Artesian Basin. Recharge in the Sacramento Mountains is estimated to range from 159.86 × 106 to 209.42 × 106 m3/year. Both the location of recharge and range in estimates is consistent with previous work that suggests that ~75 % of the recharge to the confined aquifer in the Roswell Artesian Basin has moved downgradient through the Yeso Formation from distal recharge areas in the Sacramento Mountains. A smaller recharge component is derived from infiltration of streamflow beneath the major drainages that cross the Pecos Slope, but in the southern Sacramento Mountains much of this water is ultimately derived from spring discharge. Direct recharge across the Pecos Slope between the mountains and the confined basin aquifer is much smaller than either of the other two components.
ERIC Educational Resources Information Center
Ferreira, Sanette
2012-01-01
The environmental integrity of many urban protected areas in developing countries is at risk and the important mission to reach out to people living close to them provides a special opportunity to spread the conservation message. Guided visitation to urban national parks with the necessary and appropriate interpretation can contribute towards…
The Great Basin is an arid landscape dominated by dryland vegetation such as big sage and xeric grasses. Meadow complexes occur in mountain drainages and consist of discrete parcels of land up to several hectares in area that are characterized by high water tables and that primar...
A modeling analysis program for the JPL table mountain Io sodium cloud
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Goldberg, B. A.
1985-01-01
Progress and achievements in the first year are discussed in three main areas: (1) review and assessment of the massive JPL Table Mountain Io sodium cloud data set, (2) formulation and execution of a plan to perform further processing of this data set, and (3) initiation of modeling activities. The complete 1976-79 and 1981 data sets are reviewed. Particular emphasis is placed on the superior 1981 Region B/C images which provide a rich base of information for studying the structure and escape of gases from Io as well as possible east-west and magnetic longitudinal asymmetries in the plasma torus. A data processing plan is developed and is undertaken by the Multimission Image Processing Laboratory of JPL for the purpose of providing a more refined and complete data set for our modeling studies in the second year. Modeling priorities are formulated and initial progress in achieving these goals is reported.
Woodward, D.; Menges, C.M.
1991-01-01
Velocity data from uphole surveys were used to map the water table and the contact at the base dune sand/top alluvium as part of a joint National Drilling Company-United States Geological Survey Ground Water Research Project in the Emirate of Abu Dhabi. During 1981-1983, a reconnaissance seismic survey was conducted for petroleum exploration in the eastern region of Abu Dhabi. Approximately 2800 kilometers of seismic data, consisting of 92 lines, were acquired in the 2500 km2 concession area near Al Ain. Uphole surveys were conducted about 2 km apart along each seismic line, and were used to calculate weathering corrections required to further process in the seismic data. Approximately 1300 uphole surveys were completed in the concession area between March 1981 and June 1983. Reinterpretation of the velocity profiles derived from the uphole surveys provided data for determining the following subsurface layers, listed in descending order: (1) a surficial, unconsolidated weathering layer with a velocity from 300 to 450 m/s; (2) surficial dune sand, from 750 to 900 m/s; (3) unsaturated, unconsolidated alluvium, from 1000 to 1300 m/s; and (4) saturated, unconsolidated alluvium, from 1900 to 2200 m/s. Two interfaces-the water table and the base dune sand/top alluvium - were identified and mapped from boundaries between these velocity layers. Although the regional water table can fluctuate naturally as much as 3 m per year in this area and the water-table determinations from the uphole data span a 27-month period, an extremely consistent and interpretable water-table map was derived from the uphole data throughout the entire concession area. In the northern part of the area, unconfined groundwater moves northward and northwestward toward the Arabian Gulf; and in the central and southern parts of the area, groundwater moves westward away from the Oman Mountains. In the extreme southern area east of Jabal Hafit, groundwater moves southward into Oman. The map of the base dune sand/top alluvium suggests a buried paleodrainage network trending westward to southwestward away from the Oman Mountains. These paleodrainages, now buried by dune sand, probably contain alluvial fill and are logical targets for groundwater exploration. ?? 1991.
Seedbed Requirements For Regenerating Table Mountain Pine With Prescribed Fire
Thomas A. Waldrop; Helen H. Mohr; Patrick H. Brose; Richard B. Baker
1999-01-01
High-intensity, stand-replacement fires have been recommnded to regenerate stands of Table Mountain pine (Pinus pungens Lamb.) because its seeds require mineral soil to germinate and seedlings are intolerant of shade. Early prescribed fire efforts resulted in poor regeneration success where crown fires created seedbeds with abundant insolation....
Optimal Seedbed Requirements For Regenerating Table Mountain Pine
Helen H. Mohr; Thomas A. Waldrop; Victor B. Shelburne
2002-01-01
High-intensity, stand replacement fires have been recommended to regenerate stands of Table Mountain pine (Pinus pungens Lamb.) because its seeds require mineral soil to germinate and seedlings are intolerant of shade. Recent prescribed fires have resulted in poor regeneration, even though crown fires created seedbeds with abundant insolation and...
Publications - Quadrangle Search | Alaska Division of Geological &
Publication Sales. Access bibliography for: Quadrangle name will appear as your mouse scrolls across Alaska Long Mountains Misheguk Mountain Howard Pass Killik River Chandler Lake Philip Smith Mountains Arctic Table Mountain Noatak Baird Mountains Ambler River Survey Pass Wiseman Chandalar Christian Coleen
Magnetotelluric Data, Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackie M. Williams; Jay A. Sampson; Brian D. Rodriguez
2006-11-03
The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site northwest of Las Vegas. Most of these tests were conducted hundreds of feet above the ground-water table; however, more than 200 of the tests were near or within the water table. This underground testing was limited to specific areas ofmore » the Nevada Test Site, including Pahute Mesa, Rainier Mesa/Shoshone Mountain, Frenchman Flat, and Yucca Flat. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology, and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (Bechtel Nevada, 2006). During 2005, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data from twenty-six magnetotelluric (MT) and audio-magnetotelluric (AMT) sites at the Nevada Test Site. The 2005 data stations were located on and near Rainier Mesa and Shoshone Mountain to assist in characterizing the pre-Tertiary geology in those areas. These new stations extend the area of the hydrogeologic study previously conducted in Yucca Flat. This work will help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU – late Devonian to Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) from the Yucca Flat area and west towards Shoshone Mountain, to Buckboard Mesa in the south, and onto Rainier Mesa in the north. Subsequent interpretation will include a three-dimensional (3-D) character analysis and a two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for the twenty-six stations shown in figure 1. No interpretation of the data is included here.« less
Lidar measurements of stratospheric ozone at Table Mountain, California, since 1988
NASA Technical Reports Server (NTRS)
Mcdermid, I. Stuart; Schmoe, Martha; Walsh, T. Daniel
1994-01-01
Regular measurements of stratospheric ozone concentration profiles have been made at Table Mountain, California, since January 1988. During the period to December 1991, 435 independent profiles were measured by the differential absorption lidar technique. These long-term results, and an evaluation of their quality, is presented in this paper.
Sustainable and Net Zero Buildings on the NREL Campus | NREL
NREL Campus Many of the high-performance buildings on NREL's South Table Mountain campus have achieved high-performance, sustainable buildings on the South Table Mountain (STM) campus as of FY17. The campus campus also reported 100% compliance with the Guiding Principles for High Performance Sustainable
N.T. Welch; Thomas A. Waldrop; E.R. Buckner
2000-01-01
Southern Appalachian table mountain pine (Pinus pungens) and pitch pine (P. rigida) forests require disturbance for regeneration. Lightning-ignited fires and cultural burning practices provided the disturbance that prehistorically and historically maintained these forests. Burning essentially ceased on public lands in the early...
Thomas A. Waldrop; Patrick H. Brose; Nicole Turrill Welch; Helen H. Mohr; Ellen A. Gray; Frank H. Tainter; Lisa E. Ellis
2002-01-01
Abstract - After several decades of fire suppression, ridgetop pine communities of the Southern Appalachians are entering later seral stages and beginning to disappear. They typically have an overstory of Table Mountain pine (Pinus pungens), which is being replaced by shade-tolerant chestnut oaks (Quercus prinus...
Bacteria and Turbidity Survey for Blue Mountain Lake, Arkansas, Spring and Summer, 1994
Lasker, A. Dwight
1995-01-01
Introduction Blue Mountain Lake darn is located at river mile 74.4 on the Petit Jean River in Logan and Yell Counties in west-central Arkansas (fig. 1). Drainage area above the darn is 488 square miles. Blue Mountain Lake is located between two national forests-the Ozark National Forest and the Ouachita National Forest. The primary purpose for Blue Mountain Lake is flood control, but the lake is used for a variety of recreational purposes. The U.S. Geological Survey (USGS) in cooperation with the U.s. Army Corps of Engineers, Little Rock District, conducted a bacterial and turbidity study of the Blue Mountain Lake Basin during the spring and suri1mer 1994. Samples were collected weekly at 11 locations within the lake basin from May through September 1994. Eight sampling sites were located on tributaries to the lake and three sampling sites were located on the lake with one of the sites located at a swim beach (fig. 2; table 1).
A ranking system for prescribed burn prioritization in Table Mountain National Park, South Africa.
Cowell, Carly Ruth; Cheney, Chad
2017-04-01
To aid prescribed burn decision making in Table Mountain National Park, in South Africa a priority ranking system was tested. Historically a wildfire suppression strategy was adopted due to wildfires threatening urban areas close to the park, with few prescribed burns conducted. A large percentage of vegetation across the park exceeded the ecological threshold of 15 years. We held a multidisciplinary workshop, to prioritize areas for prescribed burning. Fire Management Blocks were mapped and assessed using the following seven categories: (1) ecological, (2) management, (3) tourism, (4) infrastructure, (5) invasive alien vegetation, (6) wildland-urban interface and (7) heritage. A priority ranking system was used to score each block. The oldest or most threatened vegetation types were not necessarily the top priority blocks. Selected blocks were burnt and burning fewer large blocks proved more effective economically, ecologically and practically due to the limited burning days permitted. The prioritization process was efficient as it could be updated annually following prescribed burns and wildfire incidents. Integration of prescribed burn planning and wildfire suppression strategies resulted in a reduction in operational costs. We recommend protected areas make use of a priority ranking system developed with expert knowledge and stakeholder engagement to determine objective prescribed burn plans. Copyright © 2017 Elsevier Ltd. All rights reserved.
Opportunities for Tropical Cyclone Motion Research in the Northwest Pacific Region.
1987-08-01
Taiwan (from Wang, 1980). LAL I LIST OF TABLES Table 1. Frequency of typhoons occurring In the Northwest Pacific region by month from 1959 to 1985. Table...e.g., the Philippines, Taiwan , Japan and also the Korean peninsula) are very mountainous with coastal mountains of 6000 to 10,000 ft and peaks as...strength of typhoons In Taiwan and Its vicinity. Research Report 18, National Science Council (NSC-67M-0202-0501), Taipei, Taiwan , 100 pp. 3 APPENDIX A DATA
Ectomycorrihizae of Table Mountain Pine and the Influence of Prescribed Burning on their Survival
Lisa E. Ellis; Thomas A. Waldrop; Frank H. Tainter
2002-01-01
High-intensity prescribed fires have been recommended to regenerate Table Mountain pine (Pinus pungens). However, tests of these burns produced few seedlings, possibly due to soil sterilization. This study examined abundance of mycorrhizal root tips in the field after a high-intensity fire and in the laboratory after exposing rooting media to...
Pierce, Herbert A.
2001-01-01
As of 1999, surface water collected and stored in reservoirs is the sole source of municipal water for the city of Williams. During 1996 and 1999, reservoirs reached historically low levels. Understanding the ground-water flow system is critical to managing the ground-water resources in this part of the Coconino Plateau. The nearly 1,000-meter-deep regional aquifer in the Redwall and Muav Limestones, however, makes studying or utilizing the resource difficult. Near-vertical faults and complex geologic structures control the ground-water flow system on the southwest side of the Kaibab Uplift near Williams, Arizona. To address the hydrogeologic complexities in the study area, a suite of techniques, which included aeromagnetic, gravity, square-array resistivity, and audiomagnetotelluric surveys, were applied as part of a regional study near Bill Williams Mountain. Existing well data and interpreted geophysical data were compiled and used to estimate depths to the water table and to prepare a potentiometric map. Geologic characteristics, such as secondary porosity, coefficient of anisotropy, and fracture-strike direction, were calculated at several sites to examine how these characteristics change with depth. The 14-kilometer-wide, seismically active northwestward-trending Cataract Creek and the northeastward-trending Mesa Butte Fault systems intersect near Bill Williams Mountain. Several north-south-trending faults may provide additional block faulting north and west of Bill Williams Mountain. Because of the extensive block faulting and regional folding, the volcanic and sedimentary rocks are tilted toward one or more of these faults. These faults provide near-vertical flow paths to the regional water table. The nearly radial fractures allow water that reaches the regional aquifer to move away from the Bill Williams Mountain area. Depth to the regional aquifer is highly variable and depends on location and local structures. On the basis of interpreted audiomagnetotelluric and square-array resistivity sounding curves and limited well data, depths to water may range from 450 to 1,300 meters.
Liu, Xinchun; Zhang, Yuandong; Ren, Guangyao; Pan, Xiaoling; He, Qing
2004-07-01
The spatial pattern of ecological landscape during land utilization in Fukang is heavily influenced by natural difference and the scale of water and land resource development. Analyses on the spatial pattern based on different zones and indexes showed that from 1987 to 1998, the change of the spatial pattern of ecological landscape during land utilization in Fukang was mainly the increase of plantation area in pluvial fan and the decrease in alluvial plain. The case was on the contrary about badlands. The acreage of woodland decreased in lower mountains, uplands and alluvial plain, but no variety in alluvial plain. The acreage of grassland increased in lower mountains and uplands, while decreased in other fields. The acreage of town increased in each sample field, while that of water area remained uncharged. The landscape diversity and evenness was descending, the dominance was ascending in lower mountains and in pluvial fan, while it was reverse in alluvial plain. Accessorial fragmentation showed the increasing influence of human beings. The change of the spatial pattern of ecological landscape in Fukang focused on the acreage alteration of plantation and badlands in pluvial fan and alluvial plain. The key factor was the dynamic variation of water-salt in water and soil resource utilization. Terrain and land utilization were the key factors affecting water table, and the continuous changes of the water table worked on the spatial distribution of soil water-salt.
1998-04-01
includes Wilderness Areas. Wilderness Areas and Wilderness Study Areas within and adjacent to Carlsbad Caverns or Guadalupe Mountains National Parks are...on a straight line, and does not take into consideration effects such as air attenuation and ground absorption. These latter factors affect noise...in Tables 4.2-1, 4.2-2, and 4.2-3 take these factors into consideration and provide significantly more refined depiction of the changes in noise levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, G.E.; Parent, D.R.
1974-01-01
Concentrations of sodium, calcium, magnesium, potassium, phosphorus and nitrate were measured in throughfall under isolated douglas fir (Pseudotsuga menziesii var. glauca) and Rocky Mountain juniper (Juniperus scopulorum) trees in northern Utah for 39 storms in 1970 and 1971. Concentrations were 3-16 times greater under the trees than in the open. Throughfall under douglas fir invariably had higher concentrations than that under juniper. Since most of the chemical input occurs as dry fallout between storms, surface area and form of the canopy are believed to be the prime factors influencing throughfall chemistry in this region. 15 references, 2 figures, 5 tables.
Canopy accession patterns of table mountain and pitch pines during the 19th and 20th centuries
Patrick H. Brose; Thomas A. Waldrop
2012-01-01
A dendrochronology study was conducted in three upland yellow pine stands in Georgia to determine whether the individual Table Mountain (Pinus pungens) and pitch (P. rigida) pines originated in sunny gaps or shaded understories, whether they grew uninterrupted into the canopy or were assisted by one or more releases, and whether...
Preliminary Results, Analysis and Overview of Part -1 of the GOLD Experiment
NASA Technical Reports Server (NTRS)
Wilson, K. E.; Jeganathan, M.
1996-01-01
The Ground/Orbiter Lasercomm Demonstration (GOLD) is an optical communications demonstration between Japanese Engineering Test Satellite (ETS-V1) and an optical ground transmitting and receiving station at the Table Mountain Facility in Wrightwood California. Laser transmissions to the satellite were performed approximately four hours every third night when the satellite was at above Table Mountain.
1985-07-01
ptical properties 5pley. I(-,8). Table 5. Chart 4-Percentage of one-degree squares. 13 f plankton aleae . 0 Table 6. Global coverage-Percentage of one...optical properties result from (e.g., Colorado River), typical in mountainous (tectonic) regions, 9. Hunghlo (Red)110 Mekong and/or organic sediments...typical in mountainous (tectonic) regions, 9. Hungho (Red) 160 Inadequate 10. Mekong 160 Sufficient larger-sized particles in suspension. The
Thomas A. Waldrop; Helen H. Mohr; Patrick H. Brose
2006-01-01
Interest in using stand-replacement prescribed fires to regenerate stands of Table Mountain pine (Pinus pungens Lamb.) has increased in the past decade, but the type and intensity of fire needed to achieve success have been undefined. In an earlier paper, we concluded from first-year results that flames must reach into the crowns to kill most...
Recreation Carrying Capacity Facts and Considerations. Report 11. Surry Mountain Lake Project Area.
1980-07-01
contributions of practical experience and knowledge , along with their assistance in arranging schedules, have made this carrying capacity research effort...This survey obtained six responses from boaters and water- skiers . 29 A~ .~ ~ ~ ~ ~ ~ ~ ~~~~~~~PEEI PAG ... ._DIAN.K+.+.+ 3+ ,.+ -,++ + _-NO FILM...User characteristics Table 17 indicates the characteristics of the boaters and water- skiers surveyed at Surry. The small sample size at
Applicability of Hydrologic Modeling to Tactical Military Decision Making
1991-03-01
the continental United States. 111 DRAFT Table 4-4. Coefficient Ranges Location Range of Average Range of Average Ct Ct Cp Ct Appalachian 1.8-2.2 2.0... Mountainous --- 1.2 Watersheds Foothills --- 0.7 Areas Valley --- 0.4 Areas Eastern 0.4-1.0 0.8 0.5-1.0 0.8 Nebraska Corps of 0.4-8.0 0.3-0.9 --- Engineers...enemy to cover covert gorilla operations. b. Friendly Forces. Forces should be prepared to operate in a wet environment. c. Attachments and Detachments
Climate regulates the erosional carbon export from the terrestrial biosphere
NASA Astrophysics Data System (ADS)
Hilton, Robert G.
2017-01-01
Erosion drives the export of particulate organic carbon from the terrestrial biosphere (POCbiosphere) and its delivery to rivers. The carbon transfer is globally significant and can result in drawdown of atmospheric carbon dioxide (CO2) if the eroded POCbiosphere escapes degradation during river transfer and sedimentary deposition. Despite this recognition, we lack a global perspective on how the tectonic and climatic factors which govern physical erosion regulate POCbiosphere discharge, obscuring linkages between mountain building, climate, and CO2 drawdown. To fill this deficit, geochemical (δ13C, 14C and C/N), hydrometric (water discharge, suspended sediment concentration) and geomorphic (slope) measurements are combined from 33 globally-distributed forested mountain catchments. Radiocarbon activity is used to account for rock-derived organic carbon and reveals that POCbiosphere eroded from mountain forests is mostly < 1300 14C years old. Annual POCbiosphere yields are positively correlated with suspended sediment yields, confirming results from Taiwan and a recent global analysis, and are high in catchments with the steepest slopes. Based on these relationships and the global distribution of slope angles (3-arc-second), it is suggested that topography steeper than 10° (16% of the continental area) may contribute 40% of global POCbiosphere erosional flux. Climate is shown to regulate POCbiosphere discharge by mountain rivers, by controlling hydrologically-driven erosion processes. In catchments where discharge measurements are available (8 of the 33) a significant relationship exists between daily runoff (mm day- 1) and POCbiosphere concentration (mg L- 1) (r = 0.53, P < 0.0001). The relationship can be described by a single power law and suggests a high connectivity between forested hillslopes and mountain river channels. As a result, annual POCbiosphere yields are significantly correlated with mean annual runoff (r = 0.64, P < 0.0001). A shear-stress POCbiosphere erosion model is proposed which can explain the patterns in the data. The model allows the climate sensitivity of this carbon flux to be assessed for the first time. For a 1% increase in annual runoff, POCbiosphere discharge is predicted to increase by 4%. In steeper catchments, POCbiosphere discharge increases more rapidly with an increase in annual runoff. For comparison, a 1% increase in annual runoff is predicted to increase carbon transfers by silicate weathering solute fluxes in mountains by 0.4-0.7%. Depending on the fate of the eroded POCbiosphere, river export of POCbiosphere from mountains may act as an important negative feedback on rising atmospheric CO2 and increased global temperature. Erosion of carbon from the terrestrial biosphere links mountain building and climate to the geological evolution of atmospheric CO2, while the carbon fluxes are sensitive to predicted changes in runoff over the coming century. Supplementary Table 2 - Global forested mountain river catchments with estimates of suspended sediment and POCbiosphere, and POCpetro yields, and annual runoff. Supplementary Table 3 - Geomorphic characteristics of mountain river catchments. Supplementary Table 4 - Outputs of binary mixing model.
Denson, N.M.; Bachman, G.O.; Zeller, H.D.
1954-01-01
the original White River and Arikaree sediments. Individual maps showing the extent, thickness, and variations in mineral content of the important deposits in the Table Mountain, Cave Hills, Slim Buttes, Lodgepole, and Medicine Pole areas are included. Conditions controlling the concentration of uranium are described and their application as guides to finding additional reserves by the presently held concepts are explained and illustrated.
Olcott, Perry G.
1995-01-01
The State of New York and the six New England States of Maine, Vermont, New Hampshire, Massachusetts, Connecticut, and Rhode Island compose Segment 12 of this Atlas (fig. 1). The seven States have a total land area of about 116,000 square miles (table 1); all but a small area in southwestern New York has been glaciated. Population in the States of Segment 12 totals about 30,408,000 (table 1) and is concentrated in southern and eastern Massachusetts, Connecticut, Rhode Island, and especially New York (fig. 1). The northern part of the segment and the mountainous areas of New York and much of New Hampshire, Vermont, and Maine are sparsely populated. The percentage of population supplied from ground-water sources during 1980 was 54 to 60 percent in Maine, New Hampshire, and Vermont (table 1). Nearly all rural, domestic, and small-community water systems obtain water from wells that are, in comparison with other sources, the safest and the least expensive to install and maintain. Where water demand is great-in the urban areas of New York, Connecticut, Massachusetts, and Rhode Island-sophisticated reservoir, pipeline, and purification systems are economically feasible and are needed to meet demands. Surface water is the principal source of supply in these four States, and ground water was used to supply only 24 to 35 percent of their population during 1980 (table 1).
Preliminary hydrologic evaluation of the North Horn Mountain coal-resource area, Utah
Graham, M.J.; Tooley, John E.; Price, Don
1981-01-01
North Horn Mountain is part of a deeply dissected plateau in central Utah which is characterized by deep, narrow, steep-walled canyons with local relief of more than 1,000 feet. Geologic units exposed in the North Horn Mountain area range in age from Late Cretaceous to Holocene and contain two mineable seams of Cretaceous coal. The area is in the drainage basin of the San Rafael River, in the Colorado River Basin. Runoff from the mountain is ephemeral. This runoff to the San Rafael River is by way of Cottonwood and Perron Creeks and represents less than 10 percent of their average annual runoff. Probable peak discharges (100-year flood) for the ephemeral streams draining North Horn Mountain are estimated to range from 200 to 380 cubic feet per second.The chemical quality of surface water in the area is good. The water is generally of a calcium magnesium bicarbonate type with average dissolved solids less than 500 milligrams per liter. Annual sediment yield in most of the area ranges from 0.1 to 0.2 acre-foot per square mile but locally is as high as 1.0 acre-foot per square mile. Most of the sediment is eroded during cloudbursts.Most of the ground water above the coal on North Horn Mountain probably is in perched aquifers. These aquifers support the flow of small seeps and springs. In some areas, the regional water table appears to extend upward into the coal. The principal source of recharge is precipitation that probably moves to aquifers along faults, joints, or fractures. This movement is apparently quite rapid. The dissolved-solids concentrations of ground water in the North Horn Mountain area range from less than 500 to about 1,000 milligrams per liter.Coal mining on North Horn Mountain should have minor "effects on the quantity and quality of surface water. The maximum predicted decrease in the annual flow of Ferron and Cottonwood Creeks is less than U percent. The sediment loads of affected streams could be significantly increased if construction were to take place during the summer cloudburst season. Subsidence, which usually follows underground coal mining, could create rock fractures through which a perched aquifer might be drained, thus depleting the flow of seeps or springs fed by that aquifer. It is considered unlikely that the mining will adversely affect the chemical quality of the ground water.
Manning, Andrew H.; Verplanck, Philip L.; Caine, Jonathan S.; Todd, Andrew S.
2013-01-01
Recent studies suggest that climate change is causing rising solute concentrations in mountain lakes and streams. These changes may be more pronounced in mineralized watersheds due to the sensitivity of sulfide weathering to changes in subsurface oxygen transport. Specific causal mechanisms linking climate change and accelerated weathering rates have been proposed, but in general remain entirely hypothetical. For mineralized watersheds, a favored hypothesis is that falling water tables caused by declining recharge rates allow an increasing volume of sulfide-bearing rock to become exposed to air, thus oxygen. Here, we test the hypothesis that falling water tables are the primary cause of an increase in metals and SO4 (100-400%) observed since 1980 in the Upper Snake River (USR), Colorado. The USR drains an alpine watershed geologically and climatologically representative of many others in mineralized areas of the western U.S. Hydrologic and chemical data collected from 2005 to 2011 in a deep monitoring well (WP1) at the top of the USR watershed are utilized. During this period, both water table depths and groundwater SO4 concentrations have generally increased in the well. A numerical model was constructed using TOUGHREACT that simulates pyrite oxidation near WP1, including groundwater flow and oxygen transport in both saturated and unsaturated zones. The modeling suggests that a falling water table could produce an increase in metals and SO4 of a magnitude similar to that observed in the USR (up to 300%). Future water table declines may produce limited increases in sulfide weathering high in the watershed because of the water table dropping below the depth of oxygen penetration, but may continue to enhance sulfide weathering lower in the watershed where water tables are shallower. Advective air (oxygen) transport in the unsaturated zone caused by seasonally variable recharge and associated water table fluctuations was found to have little influence on pyrite oxidation rates near WP1. However, this mechanism could be important in the case of a shallow dynamic water table and more abundant/reactive sulfides in the shallow subsurface. Data from WP1 and numerical modeling results are thus consistent with the falling water table hypothesis, and illustrate fundamental processes linking climate and sulfide weathering in mineralized watersheds.
40Ar/39Ar geochronology and petrogenesis of the Table Mountain Shoshonite, Golden, Colorado, U.S.A.
Millikin, Alexie E. G.; Morgan, Leah; Noblett, Jeffery
2018-01-01
The Upper Cretaceous and Lower Paleogene Table Mountain Shoshonite lava flows and their proposed source, the Ralston Buttes intrusions, provide insight into the volcanic history of the Colorado Front Range. This study affirms the long-held hypothesis linking the extrusive Table Mountain lava flows and their intrusive equivalents at Ralston Buttes through major- and trace- element geochemistry. Systematic 40Ar/39Ar geochronology from all flows and intrusive units refines the eruptive history, improves precision on previously reported ages, and provides tighter constraints on the position of the K-Pg boundary in this location. Four flows are recognized on North and South Table mountains outside of Golden, Colorado. Flow 1 (66.5 ± 0.3 Ma, all ages reported with 2σ uncertainty) is the oldest, most compositionally distinct flow and is separated from younger flows by approximately 35 m of sedimentary deposits of the Denver Formation. Stratigraphically adjacent flows 2 (65.8 ± 0.2 Ma), 3 (65.5 ± 0.3 Ma), and 4 (65.9 ± 0.3 Ma) are compositionally indistinguishable. Lavas (referred to here as unit 5) that form three cone-shaped structures (shown by this study to be volcanic vents of a new unit 5) on top of North Table Mountain are compositionally similar to other units, but yield an age almost 20 m.y. younger (46.94 ± 0.15 Ma). Geochemistry and geochronology suggest that the rim phase of the Ralston plug (65.4 ± 0.2 Ma) is a reasonable source for flows 2, 3, and 4. All units are shoshonites—potassic basalts containing plagioclase, augite, olivine, and magnetite phenocrysts—and plot in the continental-arc field in tectonic discrimination diagrams. A continental-arc setting coupled with Late Cretaceous to early Paleogene ages suggest the high-K magmatism is associated with Laramide tectonism.
Medical Surveillance Monthly Report (MSMR). Volume 11, Number 2, April 2005
2005-04-01
other year since 2000 (Tables 1,2,3). Finally, in 2004, there were nine reports of Rocky Mountain spotted fever , four of Reportable Medical Events...1 1 5 . 1 Rift Valley fever . . . . . Diphtheria . . . . . Rocky Mountain spotted fever 12... Rocky Mountain spotted fever . . . . 3 Escherichia coli O157:H7
An integrated remote sensing approach for identifying ecological range sites. [parker mountain
NASA Technical Reports Server (NTRS)
Jaynes, R. A.
1983-01-01
A model approach for identifying ecological range sites was applied to high elevation sagebrush-dominated rangelands on Parker Mountain, in south-central Utah. The approach utilizes map information derived from both high altitude color infrared photography and LANDSAT digital data, integrated with soils, geological, and precipitation maps. Identification of the ecological range site for a given area requires an evaluation of all relevant environmental factors which combine to give that site the potential to produce characteristic types and amounts of vegetation. A table is presented which allows the user to determine ecological range site based upon an integrated use of the maps which were prepared. The advantages of identifying ecological range sites through an integrated photo interpretation/LANDSAT analysis are discussed.
Reconnaissance for radioactive materials in northeastern United States during 1952
McKeown, Francis A.; Klemic, Harry
1953-01-01
Reconnaissance for radioactive materials was made in parts of Maine, New York, New Jersey, and Pennsylvania. The primary objective was to examine the iron ore deposits and associated rocks in the Adirondack Mountains of New York and the Highlands of New Jersey. In addition, several deposits known or reported to contain radioactive minerals were examined to delimit their extent. Most of the deposits examined are not significant as possible sources of radioactive elements and the data pertaining to them are summarized in table form. Deposits that do warrant more description than can be given in table form are: Benson Mines, St. Lawrence County, N. Y.; Rutgers mine, Clinton County, N. Y.; Mineville Mines, Essex County, N. Y.l Canfield phosphate mine, Morris County, N. J.; Mullgan quarry, Hunterdon County, N. J.; and the Chestnut Hill-Marble Mountain area, Pennsylvania and New Jersey. The Old Bed in the Mineville district is the only deposit that may be economically significant. Apatite from Old Bed ore contains as much as 4.9 percent total rare earth. 0.04 percent thorium, and 0.018 percent uranium. Magnetite ore at the Rutgers mine contains radioactive zircon and apatite. Radioactivity measurements of outcrops and dump material show that the ore contains from 0.005 to 0.010 percent equivalent uranium. One sample of lean magnetite ore contains 0.006 percent equivalent uranium. Garnet-rich zones in the Benson Mines magnetite deposit contain as much as 0.017 equivalent uranium. Most of the rock and ore, however, contains about 0.005 percent equivalent uranium. Available data indicate that the garnet-rich zones are enriched in radioactive allanite. A shear zone in the Kittatinny limestone of Cambrian age at the Mulligan quarry contains uraniferous material. Radioactivity anomalies elsewhere in the quarry and in adjacent fields indicate that there may be other uraniferous shear zones. Assays of samples and measurements of outcrop radioactivity indicate that the uranium content of these zones is low; samples contain from 0.008 to 0.068 percent equivalent uranium. The anomalies, however, may indicate greater concentrations of uranium below surficial leached zones. The Chestnut Hill-Marble Mountain area contains radioactivity anomalies for about 2 miles along the strike of the contact of pre-Cambrian Pickering gneiss and Franklin limestone formations. In places this contact is injected with pegmatite, which probably was the source of the radioelements. The most favorable area for further study is at Marble Mountain, where a nearly continuous anomaly extends for about 1500 feet. Samples from part of this area contain as much as 0.044 percent equivalent uranium and 0.005 percent uranium. Radioactive hematite and florencite, in which thorium may have substituted for cerium, are the only radioactive minerals observed in the Marble Mountain area.
The geohydrologic setting of Yucca Mountain, Nevada
Stuckless, J.S.; Dudley, W.W.
2002-01-01
This paper provides a geologic and hydrologic framework of the Yucca Mountain region for the geochemical papers in this volume. The regional geologic units, which range in age from late Precambrian through Holocene, are briefly described. Yucca Mountain is composed of dominantly pyroclastic units that range in age from 11.4 to 15.2 Ma. The principal focus of study has been on the Paintbrush Group, which includes two major zoned and welded ash-flow tuffs separated by an important hydrogeologic unit referred to as the Paintbrush non-welded (PTn). The regional structural setting is currently one of extension, and the major local tectonic domains are presented together with a tectonic model that is consistent with the known structures at Yucca Mountain. Streamflow in this arid to semi-arid region occurs principally in intermittent or ephemeral channels. Near Yucca Mountain, the channels of Fortymile Wash and Amargosa River collect infrequent runoff from tributary basins, ultimately draining to Death Valley. Beneath the surface, large-scale interbasin flow of groundwater from one valley to another occurs commonly in the region. Regional groundwater flow beneath Yucca Mountain originates in the high mesas to the north and returns to the surface either in southern Amargosa Desert or in Death Valley, where it is consumed by evapotranspiration. The water table is very deep beneath the upland areas such as Yucca Mountain, where it is 500-750 m below the land surface, providing a large thickness of unsaturated rocks that are potentially suitable to host a nuclear-waste repository. The nature of unsaturated flow processes, which are important for assessing radionuclide migration, are inferred mainly from hydrochemical or isotopic evidence, from pneumatic tests of the fracture systems, and from the results of in situ experiments. Water seeping down through the unsaturated zone flows rapidly through fractures and more slowly through the pores of the rock matrix. Although capillary forces are expected to divert much of the flow around repository openings, some may drip onto waste packages, ultimately causing release of radionuclides, followed by transport down to the water table. ?? 2002 Elsevier Science Ltd. All rights reserved.
Abbott, P.O.; Geldon, Arthur L.; Cain, Doug; Hall, Alan P.; Edelmann, Patrick
1983-01-01
Area 61 is located on the Colorado-New Mexico boundary in Huerfano and Las Animas Counties, Colorado, and Colfax County, New Mexico, and includes the Raton Mesa coal region. The 5 ,900-square-mile area is an asymmetrical structural trough bounded by the Rocky Mountains on the west and the Great Plains on the east. The area is drained by the Huerfano, Apishapa, Purgatoire, and Canadian Rivers (and their tributaries), all tributary to the Arkansas River. The principal coal-bearing formations are the Vermejo Formation of Late Cretaceous age and the Raton Formation of Late Cretaceous and Paleocene age. Much of the coal in the area is of coking quality, important to the metallurgical industry. Topographic relief in the area is greater than 8,700 feet, and this influences the climate which in turn affects the runoff pattern of area streams. Summer thunderstorms often result in flash floods. Virtually all geologic units in the region yield water. Depth to ground water ranges from land surface to 400 feet. Surface and ground water in the area contain mostly bicarbonate and sulfate ions; locally in the ground water, chloride ions predominate. Potential hydrologic problems associated with surface coal mining in the area are water-quality degradation, water-table decline, and increased erosion and sedimentation.
Lower Gila South Resource Management Plan, La Paz, Maricopa, Pima, Pinal and Yuma Counties, Arizona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-08-01
Implementation of a resource management plan is proposed for 2.0 million surface acres and 1.9 million acres of subsurface minerals in the Lower Gila South resource area, located in La Paz, Maricopa, Pima, Pinal, and Yuma counties, Arizona. The preferred alternative would involve range land improvements consisting of construction of 47 miles of fence, 10 reservoirs and 7 wells. Portions of the New Water Mountains, Eagletail Mountains, Woosley Peak, and Table Top Mountains wilderness study areas (WSAs), totaling 190,391 acres, would be designated as wilderness. The remaining portions of these WSAs and eight other WSAs, totaling 431,540 acres, would notmore » be recommended for wilderness designation and would revert to multiple-use management. Approximately 72,123 acres of isolated land parcels would be made available for sale or exchange, approximately 36,845 acres of nonpublic lands would be acquired, 112,160 acres of state and private mineral estate would be acquired, and 23,645 acres of federal minerals would be disposed of to facilitate management. Ten utility corridors would be designated. Mineral access and off-road vehicle use would be restricted on the lands proposed for wilderness designation.« less
Water-Table Levels and Gradients, Nevada, 1947-2004
Lopes, Thomas J.; Buto, Susan G.; Smith, J. LaRue; Welborn, Toby L.
2006-01-01
In 1999, the U.S. Environmental Protection Agency began a program to protect the quality of ground water in areas other than ground-water protection areas. These other sensitive ground water areas (OSGWA) are areas that are not currently, but could eventually be, used as a source of drinking water. The OSGWA program specifically addresses existing wells that are used for underground injection of motor-vehicle waste. To help determine whether a well is in an OSGWA, the Nevada Division of Environmental Protection needs statewide information on depth to water and the water table, which partly control the susceptibility of ground water to contamination and contaminant transport. This report describes a study that used available maps and data to create statewide maps of water-table and depth-to-water contours and surfaces, assessed temporal changes in water-table levels, and characterized water-table gradients in selected areas of Nevada. A literature search of published water-table and depth-to-water contours produced maps of varying detail and scope in 104 reports published from 1948 to 2004. Where multiple maps covered the same area, criteria were used to select the most recent, detailed maps that covered the largest area and had plotted control points. These selection criteria resulted in water-table and depth-to-water contours that are based on data collected from 1947 to 2004 being selected from 39 reports. If not already available digitally, contours and control points were digitized from selected maps, entered into a geographic information system, and combined to make a statewide map of water-table contours. Water-table surfaces were made by using inverse distance weighting to estimate the water table between contours and then gridding the estimates. Depth-to-water surfaces were made by subtracting the water-table altitude from the land-surface altitude. Water-table and depth-to-water surfaces were made for only 21 percent of Nevada because of a lack of information for 49 of 232 basins and for most consolidated-rock hydrogeologic units. Depth to water is commonly less than 50 feet beneath valley floors, 50 to 500 feet beneath alluvial fans, and more than 500 feet in some areas such as north-central and southern Nevada. In areas without water-table information, greasewood and mapped ground-water discharge areas are good indicators of depth to water less than 100 feet. The average difference between measured depth to water and depth to water estimated from surfaces was 90 feet. More recent and detailed information may be needed than that presented in this report to evaluate a specific site. Temporal changes in water-table levels were evaluated for 1,981 wells with 10 or more years between the first depth-to-water measurement and last measurement made since 1990. The greatest increases in depth to water occurred where the first measurement was less than 200 feet, where the time between first and last measurements was 40 years or less, and for wells between 100 and 600 feet deep. These characteristics describe production wells where ground water is fairly shallow in recently developing areas such as the Las Vegas and Reno metropolitan areas. In basins with little pumping, 90 percent of the changes during the past 100 years are within ?20 feet, which is about the natural variation in the water table due to changes in the climate and recharge. Gradients in unconsolidated sediments of the Great Basin are generally steep near mountain fronts, shallow beneath valley floors, and depend on variables such as the horizontal hydraulic conductivity of adjacent consolidated rocks and recharge. Gradients beneath alluvial fans and valley floors at 58 sites were correlated with selected variables to identify those variables that are statistically related. Water-table measurements at three sites were used to characterize the water table between the valley floor and consolidated rock. Water-table gradients beneath alluvial fan
NASA Astrophysics Data System (ADS)
Augustine, John A.; Cornwall, Christopher R.; Hodges, Gary B.; Long, Charles N.; Medina, Carlos I.; Deluisi, John J.
2003-02-01
Over the past decade, networks of Multifilter Rotating Shadowband Radiometers (MFRSR) and automated sun photometers have been established in the United States to monitor aerosol properties. The MFRSR alternately measures diffuse and global irradiance in six narrow spectral bands and a broadband channel of the solar spectrum, from which the direct normal component for each may be inferred. Its 500-nm channel mimics sun photometer measurements and thus is a source of aerosol optical depth information. Automatic data reduction methods are needed because of the high volume of data produced by the MFRSR. In addition, these instruments are often not calibrated for absolute irradiance and must be periodically calibrated for optical depth analysis using the Langley method. This process involves extrapolation to the signal the MFRSR would measure at the top of the atmosphere (I0). Here, an automated clear-sky identification algorithm is used to screen MFRSR 500-nm measurements for suitable calibration data. The clear-sky MFRSR measurements are subsequently used to construct a set of calibration Langley plots from which a mean I0 is computed. This calibration I0 may be subsequently applied to any MFRSR 500-nm measurement within the calibration period to retrieve aerosol optical depth. This method is tested on a 2-month MFRSR dataset from the Table Mountain NOAA Surface Radiation Budget Network (SURFRAD) station near Boulder, Colorado. The resultant I0 is applied to two Asian dust-related high air pollution episodes that occurred within the calibration period on 13 and 17 April 2001. Computed aerosol optical depths for 17 April range from approximately 0.30 to 0.40, and those for 13 April vary from background levels to >0.30. Errors in these retrievals were estimated to range from ±0.01 to ±0.05, depending on the solar zenith angle. The calculations are compared with independent MFRSR-based aerosol optical depth retrievals at the Pawnee National Grasslands, 85 km to the northeast of Table Mountain, and to sun-photometer-derived aerosol optical depths at the National Renewable Energy Laboratory in Golden, Colorado, 50 km to the south. Both the Table Mountain and Golden stations are situated within a few kilometers of the Front Range of the Rocky Mountains, whereas the Pawnee station is on the eastern plains of Colorado. Time series of aerosol optical depth from Pawnee and Table Mountain stations compare well for 13 April when, according to the Naval Aerosol Analysis and Prediction System, an upper-level Asian dust plume enveloped most of Colorado. Aerosol optical depths at the Golden station for that event are generally greater than those at Table Mountain and Pawnee, possibly because of the proximity of Golden to Denver's urban aerosol plume. The dust over Colorado was primarily surface based on 17 April. On that day, aerosol optical depths at Table Mountain and Golden are similar but are 2 times the magnitude of those at Pawnee. This difference is attributed to meteorological conditions that favored air stagnation in the planetary boundary layer along the Front Range, and a west-to-east gradient in aerosol concentration. The magnitude and timing of the aerosol optical depth measurements at Table Mountain for these events are found to be consistent with independent measurements made at NASA Aerosol Robotic Network (AERONET) stations at Missoula, Montana, and at Bondville, Illinois.
Groundwater Recharge and Flow Processes in Taihang Mountains, a Semi-humid Region, North China
NASA Astrophysics Data System (ADS)
Sakakibara, Koichi; Tsujimura, Maki; Song, Xianfang; Zhang, Jie
2015-04-01
Groundwater flow/recharge variations in time and space are crucial for effective water management especially in semi-arid and semi-humid regions. In order to reveal comprehensive groundwater flow/recharge processes in a catchment with a large topographical relief and seasonal hydrological variations, intensive field surveys were undertaken at 4 times in different seasons (June 2011, August 2012, November 2012, February 2014) in the Wangkuai watershed, Taihang mountains, which is a main groundwater recharge area of the North China Plain. The groundwater, spring, stream water and reservoir water were taken, and inorganic solute constituents and stable isotopes of oxygen-18 and deuterium were determined on all water samples. Also, the stream flow rate and the depth of groundwater table were observed. The stable isotopic compositions and inorganic solute constituents in the groundwater are depleted and shown similar values as those of the surface water at the mountain-plain transitional area. Additionally, the groundwater in the vicinity of the Wangkuai Reservoir presents clearly higher stable isotopic compositions and lower d-excess than those of the stream water, indicating the groundwater around the reservoir is affected by evaporation same as the Wangkuai Reservoir itself. Hence, the surface water in the mountain-plain transitional area and Wangkuai Reservoir are principal groundwater recharge sources. An inversion analysis and simple mixing model were applied in the Wangkuai watershed using stable isotopes of oxygen-18 and deuterium to construct a groundwater flow model. The model shows that multi-originated groundwater flows from upstream to downstream along topography with certain mixing. In addition, the groundwater recharge occurs dominantly at the altitude from 421 m to 953 m, and the groundwater recharge rate by the Wangkuai Reservoir is estimated to be 2.4 % of the total groundwater recharge in the Wangkuai watershed. Therefore, the stream water and reservoir water in the mountain-plain transitional area plays an important role of groundwater recharge in semi-arid and semi-humid regions.
Slope Stability Analysis of Mountain Pine Beetle Impacted Areas
NASA Astrophysics Data System (ADS)
Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.
2015-12-01
The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.
Borchert, William B.
1987-01-01
This map describes the southeastern part of the Sweetwater River basin; the major aquifer consists of the upper part of the White River formations, all of Tertiary age, and to a small extent, the alluvium of the Quaternary age along the Sweetwater River. The saturated thickness of the aquifer in most of the area, but not including the alluvium ranges from 500 to 3000 ft. The maximum saturated thickness of the alluvium penetrated by test holes was 63 ft. The water-table contours and depths to water are based primarily on groundwater-level measurements made during 1982 in 104 wells, most of which are located south of the Sweetwater River. Land-surface altitudes of springs and water-surface altitudes along the Sweetwater River and perennial reaches of creeks flowing northward from the Green and Ferris Mountains also were used as control for mapping the water table. The perennial reaches shown on the map are assumed hydraulically connected with the water table. They were identified from streamflow gain-and-loss measurements made during April and May 1982. (Author 's abstract)
Human impacts to mountain streams
NASA Astrophysics Data System (ADS)
Wohl, Ellen
2006-09-01
Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope/channel connections, process domains, physical and ecological roles of disturbance, and stream resilience.
Estimated Depth to Ground Water and Configuration of the Water Table in the Portland, Oregon Area
Snyder, Daniel T.
2008-01-01
Reliable information on the configuration of the water table in the Portland metropolitan area is needed to address concerns about various water-resource issues, especially with regard to potential effects from stormwater injection systems such as UIC (underground injection control) systems that are either existing or planned. To help address these concerns, this report presents the estimated depth-to-water and water-table elevation maps for the Portland area, along with estimates of the relative uncertainty of the maps and seasonal water-table fluctuations. The method of analysis used to determine the water-table configuration in the Portland area relied on water-level data from shallow wells and surface-water features that are representative of the water table. However, the largest source of available well data is water-level measurements in reports filed by well constructors at the time of new well installation, but these data frequently were not representative of static water-level conditions. Depth-to-water measurements reported in well-construction records generally were shallower than measurements by the U.S. Geological Survey (USGS) in the same or nearby wells, although many depth-to-water measurements were substantially deeper than USGS measurements. Magnitudes of differences in depth-to-water measurements reported in well records and those measured by the USGS in the same or nearby wells ranged from -119 to 156 feet with a mean of the absolute value of the differences of 36 feet. One possible cause for the differences is that water levels in many wells reported in well records were not at equilibrium at the time of measurement. As a result, the analysis of the water-table configuration relied on water levels measured during the current study or used in previous USGS investigations in the Portland area. Because of the scarcity of well data in some areas, the locations of select surface-water features including major rivers, streams, lakes, wetlands, and springs representative of where the water table is at land surface were used to augment the analysis. Ground-water and surface-water data were combined for use in interpolation of the water-table configuration. Interpolation of the two representations typically used to define water-table position - depth to the water table below land surface and elevation of the water table above a datum - can produce substantially different results and may represent the end members of a spectrum of possible interpolations largely determined by the quantity of recharge and the hydraulic properties of the aquifer. Datasets of depth-to-water and water-table elevation for the current study were interpolated independently based on kriging as the method of interpolation with parameters determined through the use of semivariograms developed individually for each dataset. Resulting interpolations were then combined to create a single, averaged representation of the water-table configuration. Kriging analysis also was used to develop a map of relative uncertainty associated with the values of the water-table position. Accuracy of the depth-to-water and water-table elevation maps is dependent on various factors and assumptions pertaining to the data, the method of interpolation, and the hydrogeologic conditions of the surficial aquifers in the study area. Although the water-table configuration maps generally are representative of the conditions in the study area, the actual position of the water-table may differ from the estimated position at site-specific locations, and short-term, seasonal, and long-term variations in the differences also can be expected. The relative uncertainty map addresses some but not all possible errors associated with the analysis of the water-table configuration and does not depict all sources of uncertainty. Depth to water greater than 300 feet in the Portland area is limited to parts of the Tualatin Mountains, the foothills of the Cascade Range, and muc
Mountain Weather and Climate, Third Edition
NASA Astrophysics Data System (ADS)
Hastenrath, Stefan
2009-05-01
For colleagues with diverse interests in the atmosphere, glaciers, radiation, landforms, water resources, vegetation, human implications, and more, Mountain Weather and Climate can be a valuable source of guidance and literature references. The book is organized into seven chapters: 1, Mountains and their climatological study; 2,Geographical controls of mountain meteorological elements; 3, Circulation systems related to orography; 4, Climatic characteristics of mountains; 5, Regional case studies; 6, Mountain bioclimatology; and 7, Changes in mountain climates. These chapters are supported by l78 diagrams and photographs, 47 tables, and some 2000 literature references. The volume has an appendix of units and energy conversion factors and a subject index, but it lacks an author index.
Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.
2008-01-01
Maps showing the probability of surface manifestations of liquefaction in the northern Santa Clara Valley were prepared with liquefaction probability curves. The area includes the communities of San Jose, Campbell, Cupertino, Los Altos, Los Gatos Milpitas, Mountain View, Palo Alto, Santa Clara, Saratoga, and Sunnyvale. The probability curves were based on complementary cumulative frequency distributions of the liquefaction potential index (LPI) for surficial geologic units in the study area. LPI values were computed with extensive cone penetration test soundings. Maps were developed for three earthquake scenarios, an M7.8 on the San Andreas Fault comparable to the 1906 event, an M6.7 on the Hayward Fault comparable to the 1868 event, and an M6.9 on the Calaveras Fault. Ground motions were estimated with the Boore and Atkinson (2008) attenuation relation. Liquefaction is predicted for all three events in young Holocene levee deposits along the major creeks. Liquefaction probabilities are highest for the M7.8 earthquake, ranging from 0.33 to 0.37 if a 1.5-m deep water table is assumed, and 0.10 to 0.14 if a 5-m deep water table is assumed. Liquefaction probabilities of the other surficial geologic units are less than 0.05. Probabilities for the scenario earthquakes are generally consistent with observations during historical earthquakes.
Wildlife Resources of the Rocky Mountain Arsenal, Adams County, Colorado
1989-08-01
18 3.4 PRAIRIE DOGS .................................. 18 3.5 SMALL MAMMALS ........................... 21 3.6 OTHER MAMMALS...50 4.4 PRAIRIE DOGS ................................... 53 4.5 SMALL MAMMALS .................................. 58 -1- I I I I TABLE OF...INFORMATION Accen’tzn For ’i t5 -ii L_, * LIST OF TABLES Table Page 1 4-1 Percent of young prairie dogs ....................... 54 4-2 Relative abundance of
Rankin, D.R.
2000-01-01
Bernalillo County officials recognize the importance of monitoring water quality and ground-water levels in rapidly developing areas. For this reason, water-quality and ground-water- level data were collected from 87 wells, 3 springs, and the Ojo Grande Acequia in the east mountain area of Bernalillo County between January 1990 and June 1999. The water samples were analyzed for selected nutrient species; total organic carbon; major dissolved constituents; methylene blue active substances; and dissolved arsenic. Analytical results were used to compute hardness, sodium adsorption ratio, and dissolved solids. Specific conductance, pH, air and water temperature, alkalinity, and dissolved oxygen were measured in the field at the time of sample collection. Ground-water levels were measured at the time of sample collection. From January 1990 through June 1993, water-quality and ground- water-level data were collected monthly from an initial set of 20 wells; these data were published in a 1995 report. During 1995, water samples and ground-water-level data were collected and analyzed from the initial set of 20 wells and from an additional 31 wells, 2 springs, and the Ojo Grande Acequia; these data were published in a 1996 report. Additional water-quality and ground-water-level data have been collected from sites in the east mountain area: 34 wells and the acequia during 1997, 14 wells and 1 spring during 1998, and 6 wells during 1999. Water-quality and ground- water-level data collected in the east mountain area during 1995 through 1999 are presented in tables. In addition, temporal trends for ground-water levels, concentrations of total and dissolved nitrite plus nitrate, concentrations of dissolved chloride, and specific conductance are presented for 20 selected wells in water-quality and water- level hydrographs.
Current research on restoring ridgetop pine communities with stand replacement fire
Thomas A. Waldrop; Nicole Turrill Welch; Patrick H. Brose; [and others
2000-01-01
Ridgetop pine communities of the Southern Appalachian Mountains historically have been maintained by lightning- and human-caused fires. With fire suppression for several decades, characteristic stands are entering later seral stages. They typically have an overstory of Table Mountain (Pinus pungens)and/or pitch pine (P. rigida), a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowe, B.M.
1978-02-01
A complex sequence of Oligocene-age volcanic and volcaniclastic rocks form a major volcanic center in the Picacho area of the southeasternmost Chocolate Mountains, Imperial County, California. Basal-volcanic rocks consist of lava flows and flow breccia of trachybasalt, pyroxene rhyodacite, and pyroxene dacite (32 My old). These volcanic rocks locally overlie fanglomerate and rest unconformably on pre-Cenozoic basement rocks. South and southeast of a prominent arcuate fault zone in the central part of the area, the rhyolite ignimbrite (26 My old) forms a major ash-flow sheet. In the southwestern part of the Picacho area the rhyolite ignimbrite interfingers with and ismore » overlain by dacite flows and laharic breccia. The rhyolite ignimbrite and the dacite of Picacho Peak are overlapped by lava flows and breccia of pyroxene andesite (25 My old) that locally rest on pre-Cenozoic basement rocks. The volcanic rocks of the Picacho area form a slightly bimodal volcanic suite consisting chiefly of silicic volcanic rocks with subordinate andesite. Late Miocene augite-olivine basalt is most similar in major-element abundances to transitional alkali-olivine basalt of the Basin and Range province. Normal separation faults in the Picacho area trend northwest and north parallel to major linear mountain ranges in the region. The areal distribution of the 26-My-old rhyolite ignimbrite and the local presence of megabreccia and fanglomerate flanking probable paleohighs suggest that the ignimbrite was erupted over irregular topography controlled by northwest- and north-trending probable basin-range faults. These relations date the inception of faulting in southeasternmost California at pre-26 and probably pre-32 My ago. A transition of basaltic volcanism in the area is dated at 13 My ago. 9 figures, 2 tables.« less
Miao, X.; Lindsey, D.A.; Lai, Z.; Liu, Xiuying
2010-01-01
Contingency table analysis of pebble lithology and roundness is an effective way to identify the source terrane of a drainage basin and to distinguish changes in basin size, piracy, tectonism, and other events. First, the analysis to terrace gravel deposited by the Huangshui River, northeastern Tibet Plateau, China, shows statistically contrasting pebble populations for the oldest terrace (T7, Dadongling, 1.2. Ma) and the youngest terraces (T0-T3, ?. 0.15. Ma). Two fluvial processes are considered to explain the contrast in correlation between lithology and roundness in T7 gravel versus T0-T3 gravel: 1) reworking of T7 gravel into T0-T3 gravel and 2) growth in the size of the river basin between T7 and T0-T3 times. We favor growth in basin size as the dominant process, from comparison of pebble counts and contingency tables. Second, comparison of results from Huangshui River of China to three piedmont streams of the Rocky Mountains, USA highlights major differences in source terrane and history. Like Rocky Mountain piedmont gravel from Colorado examples, the Huangshui gravels show a preference (observed versus expected frequency) for rounded granite. But unlike Rocky Mountain gravel, Huangshui gravel shows a preference for angular quartzite and for rounded sandstone. In conclusion, contrasting behavior of lithologies during transport, not always apparent in raw pebble counts, is readily analyzed using contingency tables to identify the provenance of individual lithologies, including recycled clasts. Results of the analysis may help unravel river history, including changes in basin size and lithology. ?? 2009.
Jencso, Kelsey G.; McGlynn, Brian L.; Gooseff, Michael N.; Wondzell, Steven M.; Bencala, Kenneth E.; Marshall, Lucy A.
2009-01-01
The relationship between catchment structure and runoff characteristics is poorly understood. In steep headwater catchments with shallow soils the accumulation of hillslope area (upslope accumulated area (UAA)) is a hypothesized first‐order control on the distribution of soil water and groundwater. Hillslope‐riparian water table connectivity represents the linkage between the dominant catchment landscape elements (hillslopes and riparian zones) and the channel network. Hydrologic connectivity between hillslope‐riparian‐stream (HRS) landscape elements is heterogeneous in space and often temporally transient. We sought to test the relationship between UAA and the existence and longevity of HRS shallow groundwater connectivity. We quantified water table connectivity based on 84 recording wells distributed across 24 HRS transects within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana. Correlations were observed between the longevity of HRS water table connectivity and the size of each transect's UAA (r2 = 0.91). We applied this relationship to the entire stream network to quantify landscape‐scale connectivity through time and ascertain its relationship to catchment‐scale runoff dynamics. We found that the shape of the estimated annual landscape connectivity duration curve was highly related to the catchment flow duration curve (r2 = 0.95). This research suggests internal catchment landscape structure (topography and topology) as a first‐order control on runoff source area and whole catchment response characteristics.
NASA Astrophysics Data System (ADS)
Miller, J. A.; Dunford, A. J.; Swana, K. A.; Palcsu, L.; Butler, M.; Clarke, C. E.
2017-08-01
Large scale groundwater abstraction is increasingly being used to support large urban centres especially in areas of low rainfall but presents particular challenges in the management and sustainability of the groundwater system. The Table Mountain Group (TMG) Aquifer is one of the largest and most important aquifer systems in South Africa and is currently being considered as an alternative source of potable water for the City of Cape Town, a metropolis of over four million people. The TMG aquifer is a fractured rock aquifer hosted primarily in super mature sandstones, quartzites and quartz arenites. The groundwater naturally emanates from numerous springs throughout the cape region. One set of springs were examined to assess the source and residence time of the spring water. Oxygen and hydrogen isotopes indicate that the spring water has not been subject to evaporation and in combination with Na/Cl ratios implies that recharge to the spring systems is via coastal precipitation. Although rainfall in the Cape is usually modelled on orographic rainfall, δ18O and δ2H values of some rainfall samples are strongly positive indicating a stratiform component as well. Comparing the spring water δ18O and δ2H values with that of local rainfall, indicates that the springs are likely derived from continuous bulk recharge over the immediate hinterland to the springs and not through large and/or heavy downpours. Noble gas concentrations, combined with tritium and radiocarbon activities indicate that the residence time of the TMG groundwater in this area is decadal in age with a probable maximum upper limit of ∼40 years. This residence time is probably a reflection of the slow flow rate through the fractured rock aquifer and hence indicates that the interconnectedness of the fractures is the most important factor controlling groundwater flow. The short residence time of the groundwater suggest that recharge to the springs and the Table Mountain Group Aquifer as a whole is vulnerable to climate change and reductions in regional precipitation. Any plans for large scale abstraction to supplement the City of Cape Town water supply would need to factor this into models of maximum sustainable yield.
Occurrence of Volcanic CO2 by Groundwater Flow Systems in the Eifel Mountains, Germany
NASA Astrophysics Data System (ADS)
Weyer, K.; May, F.; Ellis, J. C.
2011-12-01
Weyer (2010) showed why and how discharge areas of regional groundwater flow systems are also discharge points of natural and stored CO2. As groundwater flow systems reach to great depth by penetrating aquitards and caprocks any successful design of on-shore geological carbon storage must regard the migration effects groundwater flow systems exert on stored CO2. Eventually all of the CO2 will be dissolved by groundwater and migrate to the discharge areas of these flow systems. By implication there will rarely be the anticipated permanent storage of CO2 in the subsurface. Instead the deep ground water flow will transport the dissolved CO2 into surface waters. A telling example of such a system is the Green River in Utah with its natural discharge points of volcanic CO2 and the artificial discharge point Crystal Geyser, a flowing abandoned well located at the bank of the Green River. The advantage of this situation is that there have been hydrogeological tools developed which allow the determination of the flow path of the groundwater flow systems and their approximate time scale to reach their groundwater discharge areas. These time spans may be as large as 50,000 to 100,000 years. In any case residence times of a thousand years and more would suffice in mitigating the atmospheric effect of CO2 discharge. The above concepts have so far not created much resonance in the scientific and practical world of geologic CO2 storage. Therefore the investigation of groundwater dynamics at areas with natural discharge of volcanic CO2 provides a test for the effect groundwater flow systems will exert on the geologic storage of CO2. The Eifel Mountains in Germany present such a natural laboratory as it contains over a hundred known Tertiary and Quaternary volcanoes. Its discharge points of water carrying CO2 are well-known as they have been used for generations for the production of carbonated mineral waters. For the western part of the Eifel-Mountains, May (2002) listed all known natural CO2 discharge points with coordinates. The high resolution digital topographical maps of the area outline the elevation of the groundwater table in these mountains as the topography controls the elevation of the groundwater table. The detailed network of rivers, creeks and lakes denotes the location of groundwater discharge areas draining into the surface waters. Büchel and Mertens (1982) provided the locations of volcanic eruption centers in the western part of the Eifel Mountains. After combining the above information in a series of small scale DEMs created with 'SURFER' it became directly obvious that all known natural CO2 discharge points are directly related to discharge areas while the occurrence of volcanic eruption centers is concentrated in the recharge areas for regional groundwater flow. Quod erat demonstrandum. Büchel, G., H. Mertes (1982). Die Eruptionszentren des Westeifeler Vulkanfeldes. Zeitschr. DGG, 131: 409-429. May, Franz (2002). Säuerlinge der Vulkaneifel und der Südeifel. Mainzer geowissen. Mitt., 31: 7-58. Weyer, K. U. (2010). Differing physical processes in off-shore and on-shore CO2 storage. Private publication based on a poster presented at GHGT-10, Amsterdam. 8 pp, July 2010.
1988-05-01
Engineers, Publishing Co., Dallas. Fort Worth District. Durkheim , Emile 1982 Part II: Historical Archaeology. In 1933 On the Division of Labor in...Holveck Dee Ella Ho/Yard 3-4-1905 John Emil 6.11-1895/6-29-1972 232 Architectural Trends Table 18-2 MORTUARY ARCHITECTURE: STONE SHAPES Tablet Pulpit...CEMETERY LISTINGS Map Name Birth/Death Commemoration Stone Type Pleasant Valley 2 John Emil Holveck 6-11-1895/6-29-1972 Texas Pvt. US Army WWI Flat Granite
Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar. Part 2; Ground Based
NASA Technical Reports Server (NTRS)
Whiteman, David N.; Cadirola, Martin; Venable, Demetrius; Connell, Rasheen; Rush, Kurt; Leblanc, Thierry; McDermid, Stuart
2009-01-01
The same RASL hardware as described in part I was installed in a ground-based mobile trailer and used in a water vapor lidar intercomparison campaign, hosted at Table Mountain, CA, under the auspices of the Network for the Detection of Atmospheric Composition Change (NDACC). The converted RASL hardware demonstrated high sensitivity to lower stratospheric water vapor indicating that profiling water vapor at those altitudes with sufficient accuracy to monitor climate change is possible. The measurements from Table Mountain also were used to explain the reason, and correct , for sub-optimal airborne aerosol extinction performance during the flight campaign.
30 CFR 1206.173 - How do I calculate the alternative methodology for dual accounting?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Turtle Mountain Reservation; (N) Ute Mountain Ute Reservation; (O) Uintah and Ouray Reservation; (P) Wind... equation, the increment for dual accounting is the number you take from the applicable Btu range, determined under paragraph (b)(3) of this section, in the following table: BTU range Increment if Lessee has...
30 CFR 1206.173 - How do I calculate the alternative methodology for dual accounting?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Turtle Mountain Reservation; (N) Ute Mountain Ute Reservation; (O) Uintah and Ouray Reservation; (P) Wind... equation, the increment for dual accounting is the number you take from the applicable Btu range, determined under paragraph (b)(3) of this section, in the following table: BTU range Increment if Lessee has...
30 CFR 1206.173 - How do I calculate the alternative methodology for dual accounting?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Ute Reservation; (M) Turtle Mountain Reservation; (N) Ute Mountain Ute Reservation; (O) Uintah and... equation, the increment for dual accounting is the number you take from the applicable Btu range, determined under paragraph (b)(3) of this section, in the following table: BTU range Increment if Lessee has...
30 CFR 1206.173 - How do I calculate the alternative methodology for dual accounting?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Turtle Mountain Reservation; (N) Ute Mountain Ute Reservation; (O) Uintah and Ouray Reservation; (P) Wind... equation, the increment for dual accounting is the number you take from the applicable Btu range, determined under paragraph (b)(3) of this section, in the following table: BTU range Increment if Lessee has...
Characteristics, histories, and future succession of northern Pinus pugens stands
Patrick Brose
2017-01-01
Pinus pungens (Table Mountain pine) stands are rare conifer-dominated communities that occur on xeric ridges and upper slopes throughout the central and southern Appalachian Mountains. At the northern end of this range, this uncommon forest community is essentially unstudied. Therefore, in 2006 I initiated a dendroecology study of three ...
The Distribution and Status of Bats at Fort Irwin National Training Center
2012-12-01
the Avawatz Mountains (Table 9) in the vicinity of Goat Mountain are more human accessible due to their close proximity to roads. Troops are currently...altitudinally, (Grinnell 1918, Krutzsch 1948, Cryan 2003) and are often the species most frequently killed at wind farms . For southern California...As noted in the results section, the current level of bat use was similar at the Desert King Mine and the Avawatz mines near Goat Mountain as was
The Biggest Tuya or Table Mountain in the North Atlantic?
NASA Astrophysics Data System (ADS)
Helgadottir, G.; Reynisson, P.
2012-12-01
Multibeam mapping in cruise A201206 of the Marine Research Institute in June 2012 revealed a huge submarine mountain with a striking look of a tuya. Tuya is by defenition a subrectangular or circular, constructional, flat-topped mountain, made up of hyaloclastites and/or pillow lava, usually with cap lava (Mathews 1947). The mountain lies at 950-1.400 waterdepth some 120 nautical miles west of the Snaefellsnes peninsula and the mapped part of it is around 300 km2. For comparison, the largest tuya in Iceland is Eiriksjokull with a basal area of 77 km2 (Jakobsson and Gudmundsson 2008). Above the mountains edge at 1.100 m waterdepth the hight increases gradually towards the top of the mountain were some craters are exposed. The mountain has a a youthful apperance. Analysing of rock samples are needed to find out if that is the case or if it is connected with an old rifting zone. The goal of the survey was to map fishing areas (f. ex. of the Greenland halibut); to explore the environment of the strong ocean currents coming from north through the Greenland Strait (also called Denmark Strait) but also to gain additional bathymetrical data in the vicinity of what we believe are mud volcanoes, discovered in a fairly recent MRI's mapping cruise. Now, like erlier on, several mud volcanoes appeared, some of them up to 350 m high. If this proves to be right, this is the first finding of these features in Icelandic waters. The research area coincides largely with sediments of the Snorri drift. Seismic lines through this sediment show possible diapir formation (Egloff and Johnson 1978) which strengthens the idea of those features beeing mud volcanoes. The current 9.000 km2 mapping with EM 300 has added significantly to our knowledge of the morphology of the seafloor around Iceland. References: Mathews, W. H. 1947: "Tuyas": Flat-topped volcanoes in northern Brithish Columbia. Amer. J. Sci. 245, 560-570. Jakobsson, S. P. and Gudmundsson, M. T. 2008: Subglacial and intraglacial volcanic formations in Iceland. Jokull no. 58, 179-196. Egloff, J. and Johnson, G. L. 1978: Erosional and Depositional Structures of the Southwest Iceland Insular Margin: Thirteen Geophysical Profiles. AAPG Mem. Vol. 29, 43-63.
Geology of the Chinese nuclear test site near Lop Nor, Xinjiang Uygur Autonomous Region, China
Matzko, J.R.
1994-01-01
The Chinese underground nuclear test site in the Kuruktag and Kyzyltag mountains of the Xinjiang Uygur Autonomous Region of northwest China, is the location of sixteen underground tests that occurred between 1969 and 1992. The largest test to date, conducted on 21 May 1992, had a reported yield of about one megaton. Geophysical properties of the rocks and a large-scale geologic map of part of the test area were published by the Chinese in 1986 and 1987 and are the first site-specific data available for this test site. In areas of low relief, underground nuclear testing has occurred below the water table, in shafts drilled vertically into dense, low porosity Paleozoic granitic and metasedimentary rocks. Additional testing in areas of more rugged terrain has occurred in horizontal tunnels, probably above the water table. At least one of these tunnels was driven into granite. The upper 50 m of the rock in the area of the vertical tests is weathered and fractured; these conditions have been shown to influence the magnitude of the disturbance of the land surface after a nuclear explosion. These descriptions suggest hard rock coupling at depth and a closer resemblance to the former Soviet test site in eastern Kazakhstan than to the U.S. test site in Nevada. ?? 1994.
2008-09-01
23 Table 5. Example of the Prevalence Index using the same data as in Table 4. .................................25 Table 6. Proportion of fibers ...Mountains in Washington, Oregon, and southern Idaho. Much of the subregion is covered by deposits of loess, volcanic ash, and basalt . The climate is semi...usually underlain by an impermeable layer such as a hardpan, claypan, or basalt . Vernal pools often fill and empty several times during the rainy
An overview of the GOLD experiment between the ETS-6 satellite and the table mountain facility
NASA Technical Reports Server (NTRS)
Wilson, K. E.
1996-01-01
The Ground/Orbiter Lasercomm Demonstration (GOLD) is a demonstration of optical communications between the Japanese Engineering Test Satellite (ETS-VI) and an optical ground transmitting and receiving station at the Table Mountain Facility in Wrightwood, California. Laser transmissions to the satellite are performed for approximately 4 hours every third night when the satellite is at apogee above Table Mountain. The experiment requires the coordination of resources at the Communications Research Laboratory (CRL), JPL, the National Aeronautics and Space Development Agency (NASDA) Tsukuba tracking station, and NASA's Deep Space Network at Goldstone, California, to generate and transmit real-time commands and receive telemetry from the ETS-VI. Transmissions to the ETS-VI began in November 1995 and are scheduled to last into the middle of January 1996, when the satellite is expected to be eclipsed by the Earth's shadow for a major part of its orbit. The eclipse is expected to last for about 2 months, and during this period there will be limited electrical power available on board the satellite. NASDA plans to restrict experiments with the ETS-VI during this period, and no laser transmissions are planned. Posteclipse experiments are currently being negotiated. GOLD is a joint NASA-CRL experiment that is being conducted by JPL in coordination with CRL and NASDA.
An Overview of the GOLD Experiment Between the ETS-6 Satellite and the Table Mountain Facility
NASA Technical Reports Server (NTRS)
Wilson, K. E.
1996-01-01
The Ground/Orbiter Lasercomm Demonstration is a demonstration of optical communications between the Japanese Engineering Test Satellite (ETS-VI) and an optical ground transmitting and receiving station at the Table Mountain Facility in Wrightwood, California. Laser transmissions to the satellite are performed for approximately 4 hours every third night when the satellite is at apogee above Table Mountain. The experiment requires the coordination of resources at the Communications Research Laboratory (CRL), JPL, the National Aeronautics and Space Development Agency (NASDA) Tsukuba tracking station, and NASA's Deep Space Network at Goldstone, California, to generate and transmit real-time commands and receive telemetry from the ETS-VI. Transmissions to the ETS-VI began in November 1995 and are scheduled to last into the middle of January 1996, when the satellite is expected to be eclipsed by the Earth's shadow for a major part of its orbit. The eclipse is expected to last for about 2 months, and during this period there will be limited electrical power available on board the satellite. NASDA plans to restrict experiments with the ETS-VI during this period, and no laser transmissions are planned. Posteclipse experiments are currently being negotiated. GOLD is a joint NASA-CRL experiment that is being conducted by JPL in coordination with CRL and NASDA.
Fluid geochemistry of Yucca Mountain and vicinity
Marshall, Brian D.; Moscati, Richard J.; Patterson, Gary L.; Stuckless, John S.
2012-01-01
Yucca Mountain, a site in southwest Nevada, has been proposed for a deep underground radioactive waste repository. An extensive database of geochemical and isotopic characteristics has been established for pore waters and gases from the unsaturated zone, perched water, and saturated zone waters in the Yucca Mountain area. The development of this database has been driven by diverse needs of the Yucca Mountain Project, especially those aspects of the project involving process modeling and performance assessment. Water and gas chemistries influence the sorption behavior of radionuclides and the solubility of the radionuclide compounds that form. The chemistry of waters that may infiltrate the proposed repository will be determined in part by that of water present in the unsaturated zone above the proposed repository horizon, whereas pore-water compositions beneath the repository horizon will influence the sorption behavior of the radionuclides transported toward the water table. However, more relevant to the discussion in this chapter, development and testing of conceptual flow and transport models for the Yucca Mountain hydrologic system are strengthened through the incorporation of natural environmental tracer data into the process. Chemical and isotopic data are used to establish bounds on key hydrologic parameters and to provide corroborative evidence for model assumptions and predictions. Examples of specific issues addressed by these data include spatial and temporal variability in net fluxes, the role of faults in controlling flow paths, fracture-matrix interactions, the age and origin of perched water, and the distribution of water traveltimes.
Computation of times of sunrise, sunset, and twilight in or near mountainous terrain
Bill C. Ryan
1977-01-01
An electronic calculator with trigonometric functions can be used to compute times of sunrise, sunset, or twilight, or time of desired illumination at any location in mountainous terrain. The method is more convenient and versatile, and less cumbersome than using tables. Latitude, longitude, elevation, day of the year (1 to 366), and slope to the horizon at the...
Patrick H. Brose; Thomas A. Waldrop
2006-01-01
A dendrochronology study was conducted in four upland yellow pine communities in Georgia, South Carolina, and Tennessee to determine whether the number and frequency of stand-level disturbances had changed since 1900. Increment cores of Table Mountain pine (Pinus pungens Lamb.), pitch pine (P. rigida Mill.), shortleaf pine (
Frizzell, Virgil A.; Kuizon, Lucia
1984-01-01
The Santa Lucia Wilderness Area and Garcia Mountain, Black Mountain, La Panza, Machesna Mountain, Los Machos Hills, Big Rocks, and Stanley Mountain Roadless Areas together occupy an area of about 218 sq mi in the Los Padres National Forest, California. On the basis of a mineral-resource evaluation a small area in the Black Mountain Roadless Area has a probable mineral-resource potential for uranium, and a small area in the Stanley Mountain Roadless Area has probable potential for low-grade mercury resources. Although petroleum resources occur in rocks similar to those found in the study area, no potential for petroleum resources was identified in the wilderness or any of the roadless areas. No resource potential for other mineral resources was identified in any of the areas. Detailed geologic mapping and geochemical sampling probably would increase knowledge about distribution and modes of occurrence of uranium and cinnabar in those areas, respectively.
Earth observations Cape Town, South Africa taken during the STS-97 mission
2000-12-10
STS097-711-069 (30 Nov. - 11 Dec. 2000) This view featuring Cape Town and the Western Cape Province in the Republic of South Africa was provided by one of the STS-97 astronauts using a 70mm handheld camera aboard the Earth-orbiting Space Shuttle Endeavour. The capital and largest city of Western Cape Province, Cape Town (1995 population in the urban and suburban area shows in excess of 1.9 million), is visible between False Bay (large, U-shaped bay) and a smaller bay along the Atlantic coast of the peninsula. Within the urban built-up area some of the infrastructure of Cape Town, including the city center and the harbor and waterfront facilities, can be identified near the small bay (middle left edge of the image). Table Mountain elevation of 3563 feet (1086 meters above sea level) separates the city center (north of the mountain) from the southern suburbs of Cape Town. The Cape of Good Hope, long famous as the gateway from the Atlantic Ocean to the Indian Ocean, is located at the southern tip of the claw-shaped peninsula. False Bay is a popular recreational region for the local residents of the greater Cape Town region, as well as a tourist attraction for people who live beyond the borders of South Africa. The lighter-colored terrain, mainly north of Cape Town, shows a landscape of large, cultivated field patterns. These coastal plains are separated from the interior by a chain of folded mountain ranges that include the Cedarberg (dark, linear, north/south aligned feature in the upper right corner) and the more complex, folded Herrivierberge Mountains (dark structure, right middle) that are located northeast of Cape Town.
NASA Astrophysics Data System (ADS)
Schubert, R.; Pluhar, C. J.; Carlson, C. W.; Jones, S. A.
2015-12-01
West of Bridgeport Valley near the Central Sierra Nevada crest, the Little Walker Caldera (LWC) erupted Stanislaus Group lavas and tuffs during the Late Miocene. Remnants of these rocks are now distributed from the western Sierra Nevada foothills across the range and into the Walker Lane. This wide distribution is attributed to the lavas flowing down paleochannels, which provide an excellent marker for deformation over the last 10 Ma. Priest (1978) identified a thick section of these lavas along Flatiron Ridge, the southeast margin of the LWC, which our preliminary data suggests may correlate with lavas in the Sweetwater Mountains to the northeast and at Rancheria Mtn near Hetch Hetchy to the southwest. The oldest unit in the Stanislaus group is the Table Mountain Formation, a trachyandesite. At Priest's measured section it is divided into three members. By our measurements, the Lower Member (Tmtl) is 256 meters thick, has a fine-grained groundmass with plagioclase and augite phenocrysts (<0.5 cm), and the presence of augite phenocrysts distinguishes it from the other members. Some Tmtl flows have chalcedony amigdules. Overlying this, the Large Plagioclase member (Tmtp) is 43.5 meters thick. Distinguished by (~1 cm) plagioclase and occasional small olivine phenocrysts. The Upper Member (Tmtu) is 116 meters thick, very fine-grained and often platy. Tmtl has a distinctive northwest-oriented normal polarity and geochemistry, similar to several localities at Rancheria Mtn. Tmtu has a reversed polarity similar to the polarity of Table Mountain Formation in the Sweetwater Mountains and lavas that directly underlie the ~9.5 Ma Tollhouse Flat member of the Eureka Valley Tuff at Rancheria Mtn. Thus, our preliminary data suggest that the lower member at Priest's Measured Section could correlate to the normal polarity samples at Rancheria Mtn. Also, that the upper Member reversed-polarity samples may correlate with lavas both at the Sweetwater Mountains and Rancheria Mtn. This correlation across about 60 km allows us to assess rotation between sites as well as estimate throw across some faults of the Eastern Sierra range front.
Darr, Michael J.; McCoy, Kurt J.; Rattray, Gordon W.; Durall, Roger A.
2014-01-01
The upper Rio Hondo Basin occupies a drainage area of 585 square miles in south-central New Mexico and comprises three general hydrogeologic terranes: the higher elevation “Mountain Block,” the “Central Basin” piedmont area, and the lower elevation “Hondo Slope.” As many as 12 hydrostratigraphic units serve as aquifers locally and form a continuous aquifer on the regional scale. Streams and aquifers in the basin are closely interconnected, with numerous gaining and losing stream reaches across the study area. In general, the aquifers are characterized by low storage capacity and respond to short-term and long-term variations in recharge with marked water-level fluctuations on short (days to months) and long (decadal) time scales. Droughts and local groundwater withdrawals have caused marked water-table declines in some areas, whereas periodically heavy monsoons and snowmelt events have rapidly recharged aquifers in some areas. A regional-scale conceptual water budget was developed for the study area in order to gain a basic understanding of the magnitude of the various components of input, output, and change in storage. The primary input is watershed yield from the Mountain Block terrane, supplying about 38,200 to 42,300 acre-feet per year (acre-ft/yr) to the basin, as estimated by comparing the residual of precipitation and evapotranspiration with local streamgage data. Streamflow from the basin averaged about 21,200 acre-ft/yr, and groundwater output left the basin at an estimated 2,300 to 5,700 acre-ft/yr. The other major output (about 13,500 acre-ft/yr) was by public water supply, private water supply, livestock, commercial and industrial uses, and the Bonito Pipeline. The residual in the water budget, the difference between the totals of the input and output terms or the potential change in storage, ranged from -2,200 acre-ft/yr to +5,300 acre-ft/yr. There is a high degree of variability in precipitation and consequently in the water supply; small variations in annual precipitation can result in major changes in overall watershed yield. Changing water-use patterns, concentrated areas of groundwater withdrawal, and variations in precipitation have created localized areas where water-table declines and diminished surface flow are of concern.
Evaluation of the table Mountain Ronchi telescope for angular tracking
NASA Technical Reports Server (NTRS)
Lanyi, G.; Purcell, G.; Treuhaft, R.; Buffington, A.
1992-01-01
The performance of the University of California at San Diego (UCSD) Table Mountain telescope was evaluated to determine the potential of such an instrument for optical angular tracking. This telescope uses a Ronchi ruling to measure differential positions of stars at the meridian. The Ronchi technique is summarized and the operational features of the Table Mountain instrument are described. Results from an analytic model, simulations, and actual data are presented that characterize the telescope's current performance. For a star pair of visual magnitude 7, the differential uncertainty of a 5-min observation is about 50 nrad (10 marcsec), and tropospheric fluctuations are the dominant error source. At magnitude 11, the current differential uncertainty is approximately 800 nrad (approximately 170 marcsec). This magnitude is equivalent to that of a 2-W laser with a 0.4-m aperture transmitting to Earth from a spacecraft at Saturn. Photoelectron noise is the dominant error source for stars of visual magnitude 8.5 and fainter. If the photoelectron noise is reduced, ultimately tropospheric fluctuations will be the limiting source of error at an average level of 35 nrad (7 marcsec) for stars approximately 0.25 deg apart. Three near-term strategies are proposed for improving the performance of the telescope to the 10-nrad level: improving the efficiency of the optics, masking background starlight, and averaging tropospheric fluctuations over multiple observations.
NASA Astrophysics Data System (ADS)
Mast, J. C.; Mlynczak, M. G.; Cageao, R.; Kratz, D. P.; Johnson, D. G.; Mlawer, E. J.; Turner, D. D.
2014-12-01
The Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument is a Fourier transform spectrometer developed to measure the important far-infrared spectrum between 100 and 650 cm-1. Presented here are measurements made by FIRST during two successful deployments in a ground-based configuration to measure downwelling longwave radiation at Earth's surface. The initial deployment was to Cerro Toco, Chile, where FIRST operated from August to October, 2009 as part of the Radiative Heating in Underexplored Bands Campaign (RHUBC-II) campaign. After recalibration, FIRST was deployed to the Table Mountain Facility from September through October, 2012. Spectra observed at each location are substantially different, due in large part to the order of magnitude difference in integrated precipitable water vapor (0.3 cm at Table Mountain, 0.03 cm at Cerro Toco). Dry days for both campaigns are chosen for analysis - 09/24/2009 and 10/19/2012. Also available during both deployments are coincident radiosonde temperature and water vapor vertical profiles which are used as inputs a line-by-line radiative transfer program. Comparisons between measured and modeled spectra are presented over the 200 to 800 cm-1 range. An extensive error analysis of both the measured and modeled spectra is presented. In general, the differences between the measured and modeled spectra are within their combined uncertainties.
Table Mountain Shoshonite Porphyry Lava Flows and Their Vents, Golden, Colorado
Drewes, Harald
2008-01-01
During early Paleocene time shoshonite porphyry lava was extruded from several plugs about 5 km north of Golden, Colo., to form lava flows intercalated in the upper part of the Denver Formation. These flows now form the caps of North and South Table Mountains. Detailed field and petrographic studies provide insights into magma development, linkage between vents and flows, and the history of the lava flows. The magma was derived from a deep (mantle) source, was somewhat turbulent on its way up, paused on its way up in a shallow granite-hosted chamber, and near the surface followed the steep Golden fault and the thick, weak, steeply dipping Upper Cretaceous Pierre Shale. At the surface the lava flowed out of several plug and dike vents in a nonexplosive manner, four times during a span of about 1 m.y. Potassium-rich material acquired in the shallow chamber produced distinctive textures and mineral associations in the igneous rocks. Lava flows 1 (the lowest) and 2 are channel deposits derived from the southeastern group of intrusions, and flow 1 (a composite, multiple-tongued flow) lies about 50 m below the capping flows. Provisionally, the unit termed flow 1 is considered to include older, felty-textured flows that are distinguished from a blocky-textured unit, flow 1a. Flow 2, newly recognized in this study, lies immediately beneath the capping flows. Lava flows 3 and 4, more voluminous than the earlier ones, were derived from a plug vent 1?2 km farther north-northwest and flowed south-southeast across a broad alluvial plain. This plug is a composite body; the rim phase fed flow 3, and the core phase was the source of flow 4. During the time between the effusion of the four flows, the composition of the shoshonite porphyry magma changed subtly; the later flows contain more alkali, as shown by higher proportions of sanidine. On North Table Mountain, lava flows 3 and 4 form an elongate tumulus above a stream channel that carried water at the time of their eruption. On South Table Mountain, lava flow 3 forms a low, broad dome that forced flow 4 into channels now restricted to the west and northeast flanks of that mesa. Mesa-capping lava flows 3 and 4 are broken by many small normal faults and are warped into open synclines, probably in response to local stresses associated with the settling of piedmont deposits into the Denver Basin. Mid-Tertiary deposits are inferred to have covered the upper part of the Denver Formation and its lavas; these deposits could thus have been instrumental in changing the stream flow direction to the east before the onset of Neogene uplift and consequent canyon cutting across the flows. Other younger deposits may also have covered the area, to be linked to this consequent canyon cutting.
Grauch, V.J.; Kucks, Robert P.
1997-01-01
This report presents principal facts for gravity stations collected along profiles near the Osgood Mountains and Slumbering Hills, north- central Nevada. These include (1) data collected near the Osgood Mountains by U. S. Geological Survey (USGS) personnel in the years 1989, 1990, and 1993; and (2) data released to the USGS by Battle Mountain Gold (now Battle Mountain Exploration) that were collected in 1989 near the Osgood Mountains and the Slumbering Hills. The digital data, text of this report (figures in separate files) can be downloaded via 'anonymous ftp' from a USGS system named greenwood.cr.usgs.gov (136.177.21.122). The files are located in a directory named /pub/open-file-reports/ofr-97-0085 and are described in an ASCII file named readme.txt. This information is also contained below in Table 1.
Liu, Xiang; Zhao, Ji-Feng; Wang, Chang-Hua; Zhang, Zhi-Wei; Qin, Song-Yun; Zhong, Guo-Yue
2014-07-01
Based on the 2 x 2 contingency table, by using multi-species relevance (variance ratio, VR), chi2-test, Ochiai index, Dice index, Jaccard index, t-test of v/x and F-test of Morisita, s index, the interspecific relationships and the spatial distribution pattern between 20 dominants in Kangding Zheduo Mountain of Sichuan province were studied. The results indicated that the interspecific association between dominants of Sinopodophyllum hexandrum community in this area did not show significant association, which suggested that the S. hexandrum community was in mature stage, and showed stronger independency, among total 190 pairs in 20 dominant species, 2 species pairs exhibited extremely significantly positive association, 12 species pairs showed significantly positive association, 6 species pairs exhibited significantly negative association and there were no pairs showed extremely significantly negative association. S. hexandrum in community did not show significant association, which indicates they are independent in community, the spatial distribution pattern of S. hexandrum is characterized by random distribution.
A modeling analysis program for the JPL Table Mountain Io sodium cloud data
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Goldberg, B. A.
1986-01-01
Progress and achievements in the second year are discussed in three main areas: (1) data quality review of the 1981 Region B/C images; (2) data processing activities; and (3) modeling activities. The data quality review revealed that almost all 1981 Region B/C images are of sufficient quality to be valuable in the analyses of the JPL data set. In the second area, the major milestone reached was the successful development and application of complex image-processing software required to render the original image data suitable for modeling analysis studies. In the third area, the lifetime description of sodium atoms in the planet magnetosphere was improved in the model to include the offset dipole nature of the magnetic field as well as an east-west electric field. These improvements are important in properly representing the basic morphology as well as the east-west asymmetries of the sodium cloud.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykhuizen, R.C.; Eaton, R.R.; Hopkins, P.L.
1991-12-01
Numerical results are presented for the Performance Assessment Calculational Exercise (PACE-90). One- and two-dimensional water and solute transport are presented for steady infiltration into Yucca Mountain. Evenly distributed infiltration rates of 0.01, 0.1, and 0.5 mm/yr were considered. The calculations of solute transport show that significant amounts of radionuclides can reach the water table over 100,000 yr at the 0.5 mm/yr rate. For time periods less than 10,000 yr or infiltrations less than 0.1 mm/yr very little solute reaches the water table. The numerical simulations clearly demonstrate that multi-dimensional effects can result in significant decreases in the travel time ofmore » solute through the modeled domain. Dual continuum effects are shown to be negligible for the low steady state fluxes considered. However, material heterogeneities may cause local amplification of the flux level in multi-dimensional flows. These higher flux levels may then require modeling of a dual continuum porous medium.« less
Progress in Design and Construction of the Optical Communications Laser Laboratory
NASA Technical Reports Server (NTRS)
Wilson, K. E.; Britcliffe, M.; Golshan, N.
1999-01-01
The deployment of advanced hyperspectral imaging and other Earth sensing instruments on board Earth observing satellites is driving the demand for high-data-rate communications. Optical communications meet the required data rates with small, low mass, and low-power communications packages. JPL, as NASA's lead center in optical communications, plans to construct a 1-m Optical Communications Telescope Laboratory (OCTL) at its Table Mountain Facility (TMF) complex in the San Gabriel Mountains of Southern California. The design of the building has been completed, and the construction contractor has been selected. Ground breaking is expected to start at the beginning of the 1999 TMF construction season. A request for proposal (RFP) has been issued for the procurement of the telescope system. Prior to letting the RFP we conducted a request for information with industry for the telescope system. Several vendors responded favorably and provided information on key elements of the proposed design. These inputs were considered in developing the final requirements in the RFP. Keywords: Free space optical communications, lasercom, telescopes, ground stations, adaptive optics, astrometry, Table Mountain Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigal, L.L.; Nash, T.H. III
1983-01-01
In comparison with collections from the early 1900's when oxidant air pollution was essentially absent, 50% fewer lichen species were found on conifers during 3 yr (1976-1979) of collecting and sampling in the mountains of Southern California. Among the five mountain ranges studied, the San Bernardino Mountains, the region with the highest oxidant levels, had lower lichen frequency and cover values. Within the San Bernardino study sites, lichen cover was inversely related to estimated oxidant doses. Furthermore, at sites with high oxidant levels, marked morphological deterioration of the common species Hypogymnia enteromorpha was documented. Transplants of this species from themore » relatively unpolluted Cuyamaca Rancho State Park into the San Bernardino Mountains exhibited similar deterioration after a year's exposure. 4 figures, 9 tables.« less
Deep Resistivity Structure of Mid Valley, Nevada Test Site, Nevada
Wallin, Erin L.; Rodriguez, Brian D.; Williams, Jackie M.
2009-01-01
The U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site northwest of Las Vegas (DOE UGTA, 2003). Most of these tests were conducted hundreds of feet above the ground-water table; however, more than 200 of the tests were near, or within, the water table. This underground testing was limited to specific areas of the Nevada Test Site including Pahute Mesa, Rainier Mesa/Shoshone Mountain (RM-SM), Frenchman Flat, and Yucca Flat. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain (RM-SM) Corrective Action Unit (CAU) (National Security Technologies, 2007). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-Tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations for that research (Williams and others, 2005a, 2005b, 2005c, 2005d, 2005e, and 2005f). In early 2005 we extended that research with 26 additional MT data stations (Williams and others, 2006) located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat, further refining what is known about the pre-Tertiary confining units. In particular, a major goal was to define the extent of the upper clastic confining unit (UCCU). The UCCU is composed of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale (National Security Technologies, 2007). The UCCU underlies the Yucca Flat area and extends southwestward toward Shoshone Mountain, westward toward Buckboard Mesa, and northwestward toward Rainier Mesa. Late in 2005 we collected data at an additional 14 MT stations in Mid Valley, CP Hills, and northern Yucca Flat. That work was done to better determine the extent and thickness of the UCCU near the boundary between the southeastern RM-SM CAU and the southwestern YF CAU, and also in the northern YF CAU. The MT data have been released in a separate U.S. Geological Survey report (Williams and others, 2007). The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2-D) resistivity modeling for each profile and inferences on the three-dimensional (3-D) character of the geology within the region.
Golden-Local Information | NREL
trip or for more information. Visit the Denver International Airport site to find: Car rental agencies Lakewood Hampton Inn Denver West/Golden Comfort Suites Table Mountain Inn Denver/Lakewood Fairfield Inn
Linard, Joshua I.; Matherne, Anne Marie; Leib, Kenneth J.; Carr, Natasha B.; Diffendorfer, James E.; Hawkins, Sarah J.; Latysh, Natalie; Ignizio, Drew A.; Babel, Nils C.
2014-01-01
The U.S. Geological Survey project—Energy and Environment in the Rocky Mountain Area (EERMA)—has developed a set of virtual tools in the form of an online interactive energy atlas for Colorado and New Mexico to facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development. The interactive energy atlas currently (2014) consists of three components: (1) a series of interactive maps; (2) downloadable geospatial datasets; and (3) decison-support tools, including two maps related to hydrologic resources discussed in this report. The hydrologic-resource maps can be used to examine the potential effects of energy development on hydrologic resources with respect to (1) groundwater vulnerability, by using the depth to water, recharge, aquifer media, soil media, topography, impact of the vadose zone, and hydraulic conductivity of the aquifer (DRASTIC) model, and (2) landscape erosion potential, by using the revised universal soil loss equation (RUSLE). The DRASTIC aquifer vulnerability index value for the two-State area ranges from 48 to 199. Higher values, indicating greater relative aquifer vulnerability, are centered in south-central Colorado, areas in southeastern New Mexico, and along riparian corridors in both States—all areas where the water table is relatively close to the land surface and the aquifer is more susceptible to surface influences. As calculated by the RUSLE model, potential mean annual erosion, as soil loss in units of tons per acre per year, ranges from 0 to 12,576 over the two-State area. The RUSLE model calculated low erosion potential over most of Colorado and New Mexico, with predictions of highest erosion potential largely confined to areas of mountains or escarpments. An example is presented of how a fully interactive RUSLE model could be further used as a decision-support tool to evaluate the potential hydrologic effects of energy development on a site-specific basis and to explore the effectiveness of various mitigation practices.
Work with Us | Concentrating Solar Power | NREL
technology partnerships, and license our technology. On the NREL campus, South Table Mountain (upper right activity. Licensing Our Technology You can license any available patented CSP technology. For more
STROZ Lidar Results at the MOHAVE III Campaign, October, 2009, Table Mountain, CA
NASA Technical Reports Server (NTRS)
McGee, T. J.; Twigg, L.; Sumnicht, G.; Whiteman, D.; Leblanc, T.; Voemel, H.; Gutman, S.
2010-01-01
During October, 2009 the GSFC STROZ Lidar participated in a campaign at the JPL Table Mountain Facility (Wrightwood, CA, 2285 m Elevation) to measure vertical profiles of water vapor from near the ground to the lower stratosphere. On eleven nights, water vapor, aerosol, temperature and ozone profiles were measured by the STROZ lidar, two other similar lidars, frost-point hygrometer sondes, and ground-based microwave instruments made measurements. Results from these measurements and an evaluation of the performance of the STROZ lidar during the campaign will be presented in this paper. The STROZ lidar was able to measure water vapor up to 13-14 km ASL during the campaign. We will present results from all the STROZ data products and comparisons with other instruments made. Implications for instrumental changes will be discussed.
NASA Astrophysics Data System (ADS)
Asami, R.; Putirka, K. D.; Pluhar, C. J.; Farner, M. J.; Torrez, G.; Shrum, B. L.; Jones, S.
2012-12-01
The Sonora Pass- Dardanelles region in the Carson- Iceberg Wilderness area is located in the central Sierra Nevada and home to the type section for latites (Slemmons, 1953), a volcanic rock that contains high potassium, clinopyroxene, and plagioclase phenocysts. Latite lavas and tuffs exposed in the Sonora Pass region originated from the sources in the eastern Sierra Nevada (Noble et al., 1974) where lavas flowed toward California's Great Valley, and were emplaced in stream valleys along the way, which are now inverted to form "table mountains", ergo the name "Table Mountain Latite" (TML) (Slemmons, 1966). Similarly high-K volcanic rocks of the same age are exposed at Grouse Meadows, which is just north of the Walker Lane Caldera east of Sonora Pass, and at the type section, between Red Peak and Bald Peak west of Sonora Pass. Latites lavas and tuffs in all three regions were analyzed for major oxides and trace elements with X-ray fluorescence spectrometry at California State University, Fresno. Analysis of three locations of (TML) at the type section show that they (Ransome, 1898), may have a different magmatic evolutionary history compared to other latites, exposed at Sonora Pass and Grouse Meadows, as the latter two show similar major oxide and trace element compositions. Most compelling is the contrast in the behavior of Al2O3 and CaO at the type section. Variation diagrams show that at the type section Al2O3 and CaO enrichment decreases with increasing amounts of MgO as fractional crystallization occurs. Conversely, at Sonora Peak and Grouse Meadows, CaO and Al2O3 concentrations mostly increase as MgO decreases with fractional crystallization. This contrasts shows that plagioclase was a major fractioning phase at the type section, but not at the other two localities. This suggests that the lava flows at the type section were erupted from a distinct set of magma chambers and vents that underwent a very distinct magmatic evolutionary history, perhaps involving fractionation at shallower depths compared to the Sonora Pass and Grouse Meadows flows, which appear to evolve by clinopyroxene fractionation. These contrasts in the pressures of crystal fractionation may be the result of contrasts in crustal structure or tectonic setting, an issue currently being investigated.
Mason, James L.; Atwood, John W.; Buettner, Priscilla S.
1985-01-01
This report contains well data collected from 1979 to 1983 in a part of the Great Basin in western Utah (fig. 1). The area is characterized by a series of generally north-trending mountain ranges separated by alluviumfilled basins that are partially filled with sedimentary deposits eroded from the adjacent mountains and lacustrine sediments deposited by Lake Bonneville. Most of the intermountain basins are elongated in the northward direction, but some are almost equidimensional.This report was prepared as part of the Great Basin Regional AquiferSystem Analysis (RASA) program. The report is intended to make well data from the MX-missile siting study readily available to water-resource managers and the general public. It includes well data obtained in areas for which little or no such data have been published previously. Well-drilling and well-completion data were compiled by Ertec, Inc. (formerly Fugro National, Inc.) under contract with the U. S. Air Force. Those data along with aquifer test data, geophysical logs, and drillers1 or geologists1 logs were obtained from Ertec, Inc. under an agreement with the U.S. Air Force. The authors thank the officials of both Ertec, Inc. and the U.S. Air Force for their helpful cooperation. The U.S. Geological Survey obtained accurate locations of the test wells (pi. 1) and accurate water-level measurements in those wells (table 1). Chemical analyses of water samples collected from several of the test wells drilled in the Sevier Desert have been published in a report by Enright and Holmes (1982, table 5).Test drilling for the MX-missile siting study consisted of two parts, the verification phase and the water-resources phase. The verification jhase was designed to obtain information necessary for the design and construction of the MX-basing system. Numerous small diameter wells were bored with depths ranging from 92 to 205 feet. Two-inch diameter JVC casing with the bottom 20 feet perforated was installed in each borehole. The water-resources phase was designed to determine ground-water availibility and to estimate the effects of ground-water withdrawals required for the construction of the MX-basing system. Six large-diameter production test wells were drilled along with associated small-diameter observation wells. Depths ranged from 310 to 1,399 feet. Lithologic logs for selected production test wells or associated observation wells are listed in table 2. Geophysical logs and aquifer test data are available in the files of the U. S. Geological Survey, as indicated in table 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umari, A.M.J.; Geldon, A.; Patterson, G.
1994-12-31
Yucca Mountain, Nevada, currently is being investigated by the U.S. Geological Survey as a potential site for a high-level nuclear waste repository. Planned hydraulic-stress and tracer tests in fractured, tuffaceous rocks below the water table at Yucca Mountain will require work at depths in excess of 1,300 feet. To facilitate prototype testing of equipment and methods to be used in aquifer tests at Yucca Mountain, an analog site was selected in the foothills of the Sierra Nevada near Raymond, California. Two of nine 250- to 300-feet deep wells drilled into fractured, granitic rocks at the Raymond site have been instrumentedmore » with packers, pressure transducers, and other equipment that will be used at Yucca Mountain. Aquifer tests conducted at the Raymond site to date have demonstrated a need to modify some of the equipment and methods conceived for use at Yucca Mountain.« less
Snowmelt-runoff Model Utilizing Remotely-sensed Data
NASA Technical Reports Server (NTRS)
Rango, A.
1985-01-01
Remotely sensed snow cover information is the critical data input for the Snowmelt-Runoff Model (SRM), which was developed to simulatke discharge from mountain basins where snowmelt is an important component of runoff. Of simple structure, the model requires only input of temperature, precipitation, and snow covered area. SRM was run successfully on two widely separated basins. The simulations on the Kings River basin are significant because of the large basin area (4000 sq km) and the adequate performance in the most extreme drought year of record (1976). The performance of SRM on the Okutadami River basin was important because it was accomplished with minimum snow cover data available. Tables show: optimum and minimum conditions for model application; basin sizes and elevations where SRM was applied; and SRM strengths and weaknesses. Graphs show results of discharge simulation.
Stonestrom, David A.; Harrill, James R.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.
2007-01-01
Ground-water recharge in the arid and semiarid southwestern United States results from the complex interplay of climate, geology, and vegetation across widely ranging spatial and temporal scales. Present-day recharge tends to be narrowly focused in time and space. Widespread water-table declines accompanied agricultural development during the twentieth century, demonstrating that sustainable ground-water supplies are not guaranteed when part of the extracted resource represents paleorecharge. Climatic controls on ground-water recharge range from seasonal cycles of summer monsoonal and winter frontal storms to multimillennial cycles of glacial and interglacial periods. Precipitation patterns reflect global-scale interactions among the oceans, atmosphere, and continents. Large-scale climatic influences associated with El Niño and Pacific Decadal Oscillations strongly but irregularly control weather in the study area, so that year-to-year variations in precipitation and ground-water recharge are large and difficult to predict. Proxy data indicate geologically recent periods of multidecadal droughts unlike any in the modern instrumental record. Anthropogenically induced climate change likely will reduce ground-water recharge through diminished snowpack at higher elevations, and perhaps through increased drought. Future changes in El Niño and monsoonal patterns, both crucial to precipitation in the study area, are highly uncertain in current models. Land-use modifications influence ground-water recharge directly through vegetation, irrigation, and impermeable area, and indirectly through climate change. High ranges bounding the study area—the San Bernadino Mountains and Sierra Nevada to the west, and the Wasatch and southern Colorado Rocky Mountains to the east—provide external geologic controls on ground-water recharge. Internal geologic controls stem from tectonic processes that led to numerous, variably connected alluvial-filled basins, exposure of extensive Paleozoic aquifers in mountainous recharge areas, and distinct modes of recharge in the Colorado Plateau and Basin and Range subregions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slate, J.L.; Berry, M.E.; Rowley, P.D.
2000-03-08
This digital geologic map of the Nevada Test Site (NTS) and vicinity, as well as its accompanying digital geophysical maps, are compiled at 1:100,000 scale. The map area covers two 30 {times} 60-minute quadrangles-the Pahute Mesa quadrangle to the north and the Beatty quadrangle to the south-plus a strip of 7 1/2-minute quadrangles on the east side. In addition to the NTS, the map area includes the rest of the southwest Nevada volcanic field, part of the Walker Lane, most of the Amargosa Desert, part of the Funeral and Grapevine Mountains, some of Death Valley, and the northern Spring Mountains.more » This geologic map improves on previous geologic mapping of the same area by providing new and updated Quaternary and bedrock geology, new geophysical interpretations of faults beneath the basins, and improved GIS coverages. This publication also includes a new isostatic gravity map and a new aeromagnetic map. The primary purpose of the three maps is to provide an updated geologic framework to aid interpretation of ground-water flow through and off the NTS. The NTS is centrally located within the area of the Death Valley regional ground-water flow system of southwestern Nevada and adjacent California. During the last 40 years, DOE and its predecessor agencies have conducted about 900 nuclear tests on the NTS, of which 100 were atmospheric tests and the rest were underground tests. More than 200 of the tests were detonated at or beneath the water table, which commonly is about 500 to 600 m below the surface. Because contaminants introduced by these test may move into water supplies off the NTS, rates and directions of ground-water flow must be determined. Knowledge about the ground water also is needed to properly appraise potential future effects of the possible nuclear waste repository at Yucca Mountain, adjacent to the NTS.« less
Performance Predictions for the Adaptive Optics System at LCRD's Ground Station 1
NASA Technical Reports Server (NTRS)
Roberts, Lewis C., Jr.; Burruss, Rick; Roberts, Jennifer E.; Piazzolla, Sabino; Dew, Sharon; Truong, Tuan; Fregoso, Santos; Page, Norm
2015-01-01
NASA's LCRD mission will lay the foundation for future laser communication systems. We show the design of the Table Mountain ground station's AO system and time series of predicted coupling efficiency.
14 CFR 95.19 - Hawaii Mountainous Area.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Hawaii Mountainous Area. 95.19 Section 95...) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES Designated Mountainous Areas § 95.19 Hawaii Mountainous Area. The following islands of the State of Hawaii: Kauai, Oahu, Molokai, Lanai, Kehoolawe, Maui...
Geology and hydrology of the Fort Belknap Indian Reservation, Montana
Alverson, Douglas C.
1965-01-01
The Fort Belknap Indian Reservation includes an area of 970 square miles in north-central Montana. At its north edge is the Milk River valley, which is underlain by Recent alluvium of the Milk River, glacial deposits, and alluvial deposits of the preglacial Missouri River, which carved and occupied this valley before the Pleistocene Epoch. Rising gently to the south is an undulating glaciated plain broken only by three small syenite porphyry intrusions. Underlying the glacial till of the plain are Upper Cretaceous shale and sandstone of the Bearpaw and Judith River Formations. At the south end of the reservation, 40 miles from the Milk River, an intrusion of syenite porphyry in Tertiary time uplifted, tilted, and exposed the succession of sedimentary rocks overlying the Precambrian metamorphic basement. The sedimentary rocks include 1,000 feet of sandstone and shale of Cambrian age; 2,000 feet of limestone and dolomite of Ordovician, Devonian, and Mississippian age; 400 feet of shale and limestone of Jurassic age; and 3,500 feet of sandstone, siltstone, and shale of Cretaceous age. Extensive gravel terraces of Tertiary and Quaternary age bevel the upturned bedrock formations exposed around the Little Rocky Mountains. Ground water under water-table conditions is obtained at present from alluvium, glaciofluvial deposits, and the Judith River Formation. The water table ranges in depth from a few feet beneath the surface in the Milk River valley alluvium to more than 100 feet deep in the Judith River Formation. Yields to wells are generally low but adequate for domestic and stock-watering use. Quality of the water ranges from highly mineralized and unusable to excellent; many wells in the Milk River valley have been abandoned because of the alkalinity of their water. Potential sources of additional ground-water supplies are the alluvial gravel of creeks issuing from the Little Rocky Mountains and some extensive areas of terrace gravel. The uplift and tilting of the sedimentary sequence around the Little Rocky Mountains and the minor intrusions in the central plain have created artesian conditions within aquifers. Wells obtain artesian water from sandstone aquifers in the Judith River, Eagle, and Kootenai Formations. Other potential aquifers, near their outcrop areas, are the Ellis Group and the Mission Canyon Limestone. Most wells that flow at the surface have small yields, but discharges of as much as 150 gallons per minute have been noted. Quality of artesian water ranges from poor to good. Well depths range from less than 50 to more than 300 feet.
Couch, Richard W.; Gemperle, Michael
1982-01-01
Spectral analysis of aeromagnetic data collected over 6orth-central California during the summer of 1980 aided in determining magnetic-source bottom depths beneath the survey area. Five regions of shallow magnetic source bottom depths were detected: 1) Secret Spring Mountain and National Lava Beds Monument area, 2) the Mount Shasta area, 3) the Eddys Mountain area, 4) the Big Valley Mountains area, and 5) an area northeast of Lassen Peak. Except for the Eddys Mountain area, all regions exhibiting shallow depths are suggested to be due to elevated Curie-point isotherms. The elevated Curie-point depth beneath Secret Spring Mountain and the National Lava Beds Monument area was found to be 4-7 km BSL (Below Sea Level) and is an extension of a zone mapped beneath an area immediately to the north in Oregon. A similar depth was detected for the Mount Shasta area and the area northeast of Lassen Peak. A depth of 4-6 km BSL was detected beneath the Big Valley Mountains area. The shallow Curie-point depths beneath Secret Spring Mountain, Mount Shasta, Big Valley Mountains, and the area northeast of Lassen Peak appear to form a segmented Zone of elevated Curie-point isotherm depths which underlies the High Cascade Mountains and Modoc Plateau in north-central California. A small area of shallow depths to magnetic-source bottoms, 4-5 km BSL, beneath the Eddys Mountain area is attributed to a lithologic boundary rather than an elevated Curie-point isotherm. Deeper magnetic source bottom depths were mapped throughout the remainder of the study area, with depths greater than 9 km BSL indicated beneath Lassen Peak and greater than ii km BSL indicated beneath the Western Cascades, Eastern Klamath Mountains, and Great Valley.
NASA Technical Reports Server (NTRS)
Cageao, R.; Sander, S.; Blavier, J.; Jiang, Y.; Nemtchinov, V.
2000-01-01
A compact, high resolution Fourier-transform spectrometer for atmospheric near ultraviolet spectroscopy has been installed at the Jet Propulsion Laboratory's Table Mountain Facility (34.4N, 117.7 W, elevation 2290m).
Marsh, Sherman P.; Raines, Gary L.; Diggles, Michael F.; Howard, Keith A.; Simpson, Robert W.; Hoover, Donald B.; Ridenour, James; Moyle, Phillip R.; Willett, Spencee L.
1988-01-01
At the request of the U.S. Bureau of Land Management, approximately 85,100 acres of the Whipple Mountains Wilderness Study Area (CDCA-312) and 1,380 acres of the Whipple Mountains Addition Wilderness Study Area (AZ-050-010) were evaluated for identified mineral resources (known) and mineral resource potential (undiscovered). In this report, the Whipple Mountains and Whipple Mountains Addition Wilderness Study Areas are referred to as simply "the study area." Most of the mines and prospects with identified resources in the Whipple Mountains Wilderness Study Area are within areas designated as having mineral resource potential. The area in and around the Turk Silver mine and the Lucky Green group and the area near the northwest boundary of the study area have high mineral resource potential for copper, lead, zinc, gold, and silver. An area along the west boundary of the study area has moderate resource potential for copper lead, zinc, gold, and silver. An area in the east adjacent to the Whipple Mountains Addition Wilderness Study Area has moderate resource potential for copper, gold, and silver resources. One area on the north boundary and one on the southeast boundary of the study area have low mineral resource potential for copper, lead, zinc, gold, and silver. Two areas, one on the north boundary and one inside the east boundary of the study area, have moderate resource potential for manganese. A small area inside the south boundary of the study area has high resource potential for decorative building stone, and the entire study area has low resource potential for sand and gravel and other rock products suitable for construction. Two areas in the eastern part of the study area have low resource potential for uranium. There is no resource potential for oil and gas or geothermal resources in the Whipple Mountains Wilderness Study Area. Sites within the Whipple Mountains Wilderness Study Area with identified resources of copper, gold, silver, manganese and (or) decorative building stone are located at the Stewart mine, New American Eagle mine, Turk Silver mine, Twin Lode mine, decorative stone property, Lucky Green group, Blue Cloud mine, Nickel Plate mine, Crescent mine, Quadrangle Copper group, and the Copper Basin mine. The Whipple Mountains Addition Wilderness Study Area has moderate resource potential for copper, gold, and silver resources and low resource potential for sand and gravel and other rock products. There is no resource potential for oil and gas or for geothermal energy in the Whipple Mountains Addition Wilderness Study Area. Although there are no identified resources in the Whipple Mountains Addition Wilderness Study Area, sites within and immediately adjacent warrant further study because of gold assays from widespread, numerous samples.
Blancher, Marc; Albasini, François; Elsensohn, Fidel; Zafren, Ken; Hölzl, Natalie; McLaughlin, Kyle; Wheeler, Albert R; Roy, Steven; Brugger, Hermann; Greene, Mike; Paal, Peter
2018-06-01
Blancher, Marc, François Albasini, Fidel Elsensohn, Ken Zafren, Natalie Hölzl, Kyle McLaughlin, Albert R. Wheeler III, Steven Roy, Hermann Brugger, Mike Greene, and Peter Paal. Management of multi-casualty incidents in mountain rescue: Evidence-based guidelines of the International Commission for Mountain Emergency Medicine (ICAR MEDCOM). High Alt Med Biol. 19:131-140, 2018. Multi-Casualty Incidents (MCI) occur in mountain areas. Little is known about the incidence and character of such events, and the kind of rescue response. Therefore, the International Commission for Mountain Emergency Medicine (ICAR MEDCOM) set out to provide recommendations for the management of MCI in mountain areas. Details of MCI occurring in mountain areas related to mountaineering activities and involving organized mountain rescue were collected. A literature search using (1) PubMed, (2) national mountain rescue registries, and (3) lay press articles on the internet was performed. The results were analyzed with respect to specific aspects of mountain rescue. We identified 198 MCIs that have occurred in mountain areas since 1956: 137 avalanches, 38 ski lift accidents, and 23 other events, including lightning injuries, landslides, volcanic eruptions, lost groups of people, and water-related accidents. General knowledge on MCI management is required. Due to specific aspects of triage and management, the approach to MCIs may differ between those in mountain areas and those in urban settings. Mountain rescue teams should be prepared to manage MCIs. Knowledge should be reviewed and training performed regularly. Cooperation between terrestrial rescue services, avalanche safety authorities, and helicopter crews is critical to successful management of MCIs in mountain areas.
Geohydrology of the shallow aquifers in the Denver metropolitan area, Colorado
Robson, Stanley G.
1996-01-01
The Denver metropolitan area is underlain by shallow layers of water-bearing sediments (aquifers) consisting of unconsolidated gravel, sand, silt, and clay. The depth to water in these aquifers is less than 20 feet in much of the area, and the aquifers provide a ready source of water to numerous shallow, small-capacity wells. The shallow depth to water also makes the aquifers susceptible to contamination from the land surface. Water percolating downward from residential, commercial, and industrial property, spills of hazardous materials, and leaks from underground storage tanks and pipelines can cause contaminants to enter the shallow aquifers. Wet basements, unstable foundation materials, and waterlogged soils also are common in areas of very shallow ground water.Knowledge of the extent, thickness, and water-table altitude of the shallow aquifers is incomplete. This, coupled with the complexity of development in this large metropolitan area, makes effective use, management, and protection of these aquifers extremely difficult. Mapping of the geologic and hydrologic characteristics of these aquifers would provide the general public and technical users with information needed to better use, manage, and protect this water resource. A study to map the geohydrology of shallow aquifers in the Denver metropolitan area was begun in 1994. The work was undertaken by the U.S. Geological Survey in cooperation with the U.S. Army-Rocky Mountain Arsenal, U.S. Department of Energy-Rocky Flats Field Office, Colorado Department of Public Health and Environment, Colorado Department of Natural Resources-State Engineers Office, Denver Water Department, Littleton-Englewood Wastewater Treatment Plant, East Cherry Creek Valley Water and Sanitation District, Metro Wastewater Reclamation District, Willows Water District, and the cities of Aurora, Lakewood, and Thornton.This report presents the results of a systematic mapping of the extent, thickness, and water-table altitude of the shallow aquifers in a 700-square-mile part of the greater Denver metropolitan area (fig. 1). The five sheets in this report (figs. 2-7) show (1) the thickness and extent of the unconsolidated sediments that overlie bedrock formations in the area, (2) the altitude and configuration of the buried bedrock surface, (3) the altitude of the water table and direction of ground-water movement, (4) the saturated thickness of the shallow aquifers, and (5) the depth to the water table in the shallow aquifers. The maps primarily are intended to indicate the general trends in altitude and thickness of the aquifers and are not intended to define conditions at specific sites.
NASA Astrophysics Data System (ADS)
Petitta, Marco; Mastrorillo, Lucia; Preziosi, Elisabetta; Banzato, Francesca; Barberio, Marino Domenico; Billi, Andrea; Cambi, Costanza; De Luca, Gaetano; Di Carlo, Giuseppe; Di Curzio, Diego; Di Salvo, Cristina; Nanni, Torquato; Palpacelli, Stefano; Rusi, Sergio; Saroli, Michele; Tallini, Marco; Tazioli, Alberto; Valigi, Daniela; Vivalda, Paola; Doglioni, Carlo
2018-01-01
A seismic sequence in central Italy from August 2016 to January 2017 affected groundwater dynamics in fractured carbonate aquifers. Changes in spring discharge, water-table position, and streamflow were recorded for several months following nine Mw 5.0-6.5 seismic events. Data from 22 measurement sites, located within 100 km of the epicentral zones, were analyzed. The intensity of the induced changes were correlated with seismic magnitude and distance to epicenters. The additional post-seismic discharge from rivers and springs was found to be higher than 9 m3/s, totaling more than 0.1 km3 of groundwater release over 6 months. This huge and unexpected contribution increased streamflow in narrow mountainous valleys to previously unmeasured peak values. Analogously to the L'Aquila 2009 post-earthquake phenomenon, these hydrogeological changes might reflect an increase of bulk hydraulic conductivity at the aquifer scale, which would increase hydraulic heads in the discharge zones and lower them in some recharge areas. The observed changes may also be partly due to other mechanisms, such as shaking and/or squeezing effects related to intense subsidence in the core of the affected area, where effects had maximum extent, or breaching of hydraulic barriers.
NASA Astrophysics Data System (ADS)
Petitta, Marco; Mastrorillo, Lucia; Preziosi, Elisabetta; Banzato, Francesca; Barberio, Marino Domenico; Billi, Andrea; Cambi, Costanza; De Luca, Gaetano; Di Carlo, Giuseppe; Di Curzio, Diego; Di Salvo, Cristina; Nanni, Torquato; Palpacelli, Stefano; Rusi, Sergio; Saroli, Michele; Tallini, Marco; Tazioli, Alberto; Valigi, Daniela; Vivalda, Paola; Doglioni, Carlo
2018-06-01
A seismic sequence in central Italy from August 2016 to January 2017 affected groundwater dynamics in fractured carbonate aquifers. Changes in spring discharge, water-table position, and streamflow were recorded for several months following nine Mw 5.0-6.5 seismic events. Data from 22 measurement sites, located within 100 km of the epicentral zones, were analyzed. The intensity of the induced changes were correlated with seismic magnitude and distance to epicenters. The additional post-seismic discharge from rivers and springs was found to be higher than 9 m3/s, totaling more than 0.1 km3 of groundwater release over 6 months. This huge and unexpected contribution increased streamflow in narrow mountainous valleys to previously unmeasured peak values. Analogously to the L'Aquila 2009 post-earthquake phenomenon, these hydrogeological changes might reflect an increase of bulk hydraulic conductivity at the aquifer scale, which would increase hydraulic heads in the discharge zones and lower them in some recharge areas. The observed changes may also be partly due to other mechanisms, such as shaking and/or squeezing effects related to intense subsidence in the core of the affected area, where effects had maximum extent, or breaching of hydraulic barriers.
Groundwater controls on vegetation composition and patterning in mountain meadows
NASA Astrophysics Data System (ADS)
Lowry, Christopher S.; Loheide, Steven P., II; Moore, Courtney E.; Lundquist, Jessica D.
2011-10-01
Mountain meadows are groundwater-dependent ecosystems that are hot spots of biodiversity and productivity. In the Sierra Nevada mountains of California, these ecosystems rely on shallow groundwater to support their vegetation communities during the dry summer growing season in the region's Mediterranean montane climate. Vegetation composition in this environment is influenced by both (1) oxygen stress that occurs when portions of the root zone are saturated and anaerobic conditions limit root respiration and (2) water stress that occurs when the water table drops and the root zone becomes water limited. A spatially distributed watershed model that explicitly accounts for snowmelt processes was linked to a fine-resolution groundwater flow model of Tuolumne Meadows in Yosemite National Park, California, to simulate water table dynamics. This linked hydrologic model was calibrated to observations from a well observation network for 2006-2009. A vegetation survey was also conducted at the site in which the three dominant species were identified at more than 200 plots distributed across the meadow. Nonparametric multiplicative regression was performed to create and select the best models for predicting vegetation dominance on the basis of the simulated hydrologic regime. The hydrologic niches of three vegetation types representing wet, moist, and dry meadow vegetation communities were found to be best described using both (1) a sum exceedance value calculated as the integral of water table position above a depth threshold of oxygen stress and (2) a sum exceedance value calculated as the integral of water table position below a depth threshold of water stress. This linked hydrologic and vegetative modeling framework advances our ability to predict the propagation of human-induced climatic and land use or land cover changes through the hydrologic system to the ecosystem. The hydroecologic functioning of meadows provides an example of the extent to which cascading hydrologic processes at watershed, hillslope, and riparian zones and within channels are reflected in the composition and distribution of riparian vegetation.
Verification of Wind Measurement with Mobile Laser Doppler System
DOT National Transportation Integrated Search
1977-09-01
The Lockheed Mobile Atmospheric Unit is a laser Doppler velocimeter system designed for the remote measurement of the three components of atmospheric wind. The unit was tested at the National Oceanic and Atmospheric Administration Table Mountain Test...
NASA Astrophysics Data System (ADS)
Gu, Chengyan; Clevers, Jan G. P. W.; Liu, Xiao; Tian, Xin; Li, Zhouyuan; Li, Zengyuan
2018-03-01
Sloping terrain of forests is an overlooked factor in many models simulating the canopy bidirectional reflectance distribution function, which limits the estimation accuracy of forest vertical structure parameters (e.g., forest height). The primary objective of this study was to predict forest height on sloping terrain over large areas with the Geometric-Optical Model for Sloping Terrains (GOST) using airborne Light Detection and Ranging (LiDAR) data and Landsat 7 imagery in the western Greater Khingan Mountains of China. The Sequential Maximum Angle Convex Cone (SMACC) algorithm was used to generate image endmembers and corresponding abundances in Landsat imagery. Then, LiDAR-derived forest metrics, topographical factors and SMACC abundances were used to calibrate and validate the GOST, which aimed to accurately decompose the SMACC mixed forest pixels into sunlit crown, sunlit background and shade components. Finally, the forest height of the study area was retrieved based on a back-propagation neural network and a look-up table. Results showed good performance for coniferous forests on all slopes and at all aspects, with significant coefficients of determination above 0.70 and root mean square errors (RMSEs) between 0.50 m and 1.00 m based on ground observed validation data. Higher RMSEs were found in areas with forest heights below 5 m and above 17 m. For 90% of the forested area, the average RMSE was 3.58 m. Our study demonstrates the tremendous potential of the GOST for quantitative mapping of forest height on sloping terrains with multispectral and LiDAR inputs.
NASA Astrophysics Data System (ADS)
Jin, Ke; Rao, Wenbo; Tan, Hongbing; Song, Yinxian; Yong, Bin; Zheng, Fangwen; Chen, Tangqing; Han, Liangfeng
2018-04-01
The recharge mechanism of groundwater in the Badain Jaran Desert, North China has been a focus of research and still disputable in the past two decades. In this study, the chemical and hydrogen (H) and oxygen (O) isotopic characteristics of shallow groundwater, lake water and local precipitation in the Badain Jaran Desert and neighboring areas were investigated to reveal the relationships between various water bodies and the recharge source of shallow groundwater. Isotopic and hydrogeochemical results show that (1) shallow groundwater was associated with local precipitation in the Ayouqi and Yabulai regions, (2) lake water was mainly recharged by groundwater in the desert hinterland, (3) shallow groundwater of the desert hinterland, Yabulai Mountain and Gurinai Grassland had a common recharge source. Shallow groundwater of the desert hinterland had a mean recharge elevation of 1869 m a.s.l. on the basis of the isotope-altitude relationship and thus originated chiefly from lateral infiltration of precipitation in the Yabulai Mountain. It is further concluded that shallow groundwater flowed towards the Gurinai Grassland according to the groundwater table contour map. Along the flow pathway, the H-O isotopic variations were primarily caused by the evaporation effect but chemical variations of shallow groundwater were affected by multiple factors, e.g., evaporation effect, dilution effect of occasional heavy-precipitation and dissolution of aquifer evaporites. Our findings provide new insight into the groundwater cycle and benefit the management of the limited water resources in the arid desert area.
Alaskan seismic gap only partially filled by 28 February 1979 earthquake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahr, J.C.; Stephens, C.D.; Hasegawa, H.S.
1980-03-21
The Saint Elias, Alaska, earthquake (magnitude 7.7) of 28 February 1979 is the first major earthquake since 1900 to occur along the complex Pacific-North American plate boundary between Yakutat Bay and Prince William Sound. This event involved complex rupture on a shallow, low-angle, north-dipping fault beneath the Chugach and Saint Elias Mountains. The plate boundary between Yakutat Bay and Prince William Sound had been identified as a seismic gap, an area devoid of major earthquakes during the last few decades, and was thought to be a likely site for a future major earthquake. Since the Saint Elias earthquake fills onlymore » the eastern quarter of the gap, the remainder of the gap to the west is a prime area for the study of precursory and coseismic phenomena associated with large earthquakes. 1 figure, 1 table.« less
Broadband Photometry of the Potentially Hazardous Asteroid 2013 RH74
NASA Astrophysics Data System (ADS)
Hicks, M.; Ebelhar, S.
2013-11-01
The Near-Earth Asteroid (NEA) 2013 RH74 was discovered by the Catalina Sky Survey on September 15 2013 (MPEC 2013-S15) and has been designated as a Potentially Hazardous Asteroid (PHA) by the Minor Planet Center. We obtained six partial nights of broadband Bessel BVRI photometry at the JPL Table Mountain 0.6-m telescope (TMO), as summarized in Table 1. This object was detected by planetary radar soon after discovery (http://echo.jpl.nasa.gov/asteroids/index.html).
NASA Astrophysics Data System (ADS)
Hicks, M.; Dombroski, D.
2012-12-01
The near-Earth asteroid (333358) 2001 WN1 was discovered on 2001 November 17 by the LINEAR NEO survey (MPEC 2001-W30). We obtained one night of Bessel BVRI on 2012 November 25 at the JPL Table Mountain Observatory (TMO) 0.6-m telescope. The observational circumstances are summarized in Table 1, with heliocentric, geocentric, solar phase angle, lunar elongation, and expected V magnitude as computed by the JPL HORIZONS ephemeris service.
Sheldon, Andrew L
2018-01-01
Abstract Background The Talladega Mountain region of eastern Alabama is the southernmost outlier of the ancient Appalachian Mountains, including the highest peaks and ranges in the state. Collections of stoneflies (Plecoptera) previously here have been sporadic yet has led to several new species descriptions in modern times (James 1974, James 1976, Stark and Szczytko 1976, Kondratieff and Kirchner 1996, Szczytko and Kondratieff 2015) and expanded our understanding of southeastern US stoneflies. During the period 2003–2012 we conducted an intensive inventory of the stonefly fauna of the Talladega Mountain region. We collected across all months from 192 unique localities, covering a broad range of stream sizes and elevation gradients present in the region. New information A total of 57 confirmed species across eight of the nine Nearctic families were collected as adults (Table 4), including four species described as new during the study period (Table 2). Leuctra crossi James, 1974 was easily the most common species collected. Median elevations per species ranged from 174 m (Clioperla clio (Newman, 1839)) to 410 m (Leuctra triloba Claassen, 1923 (Fig. 3). Dot distribution maps were included for all 57 species plus one for undetermined nymphs of Pteronarcys Newman, 1838 (Figs. 4–19). As many as seven species may be endemic to the region but sampling efforts northeastward into Georgia, plus additional focused sampling in Alabama and a comprehensive examination of all available material held in museums and personal collections, are needed for confirmation. PMID:29434489
Grubbs, Scott A; Sheldon, Andrew L
2018-01-01
Background The Talladega Mountain region of eastern Alabama is the southernmost outlier of the ancient Appalachian Mountains, including the highest peaks and ranges in the state. Collections of stoneflies (Plecoptera) previously here have been sporadic yet has led to several new species descriptions in modern times (James 1974, James 1976, Stark and Szczytko 1976, Kondratieff and Kirchner 1996, Szczytko and Kondratieff 2015) and expanded our understanding of southeastern US stoneflies. During the period 2003-2012 we conducted an intensive inventory of the stonefly fauna of the Talladega Mountain region. We collected across all months from 192 unique localities, covering a broad range of stream sizes and elevation gradients present in the region. New information A total of 57 confirmed species across eight of the nine Nearctic families were collected as adults (Table 4), including four species described as new during the study period (Table 2). Leuctra crossi James, 1974 was easily the most common species collected. Median elevations per species ranged from 174 m ( Clioperla clio (Newman, 1839)) to 410 m ( Leuctra triloba Claassen, 1923 (Fig. 3). Dot distribution maps were included for all 57 species plus one for undetermined nymphs of Pteronarcys Newman, 1838 (Figs. 4-19). As many as seven species may be endemic to the region but sampling efforts northeastward into Georgia, plus additional focused sampling in Alabama and a comprehensive examination of all available material held in museums and personal collections, are needed for confirmation.
14 CFR 95.15 - Western United States Mountainous Area.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Western United States Mountainous Area. 95... Western United States Mountainous Area. All of the following area excluding that portion specified in the exceptions: (a) Area. From the Pacific coastline of the United States, eastward along the Canadian and...
14 CFR 95.15 - Western United States Mountainous Area.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Western United States Mountainous Area. 95... Western United States Mountainous Area. All of the following area excluding that portion specified in the exceptions: (a) Area. From the Pacific coastline of the United States, eastward along the Canadian and...
Geothermal Gradients in Oregon, 1985-1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackwell, D.D.
1995-01-01
This data set is comprised of three groups of temperature-depth data. All the sites are located in southeastern Oregon. The first is a set of 7 wells logged during 1993 in south central Oregon in the Basin and Range province. All these wells, with the exception of the Blue Mountain Oil well, are water wells. These wells were part of a geothermal reconnaissance of this area. The Blue Mountain oil well of this set has been described by Sass et al. (1971) as well. Gannet in the vicinity of the Vale, Oregon (Bowen and Blackwell, 1972; Blackwell et al., 1978)more » geothermal system in Malheur County. These wells were logged in 1986 during a study of the area described by Gannett (1988). There are 17 wells (plus one relog) in this data set. All these wells are in a small area just east of the town of Vale in Malheur County. The second set of data consists of a group of wells that were logged by Marshall The third set of data represents the results of an exploration project in the general area of the Lake Owyhee thermal area in Malheur County. This data set is comprised of 16 wells. This data set was collected by Hunt Energy Corporation and made available though the efforts of Roger Bowers. A small scale map of the locations of the wells is shown in Figure 1. The well location and some pertinent information about the wells is shown in Table 1. The detailed lists of temperature-depth data and plots for each well, either individually or with a group, follow the list of references cited.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartsch-Winkler, S.; Dickerson, R.P.; Barton, H.W.
1990-09-01
This paper reports on the San Rafael Swell Wilderness Study areas, which includes the Muddy Creek, Crack Canyon, San Rafael Reef, Mexican Mountain, and Sids Mountain Wilderness Study Areas, in Emery County, south-central Utah. Within and near the Crack Canyon Wilderness Study Area are identified subeconomic uranium and vanadium resources. Within the Carmel Formation are inferred subeconomic resources of gypsum in the Muddy Creek, San Rafael Reef, and Sids Mountain Wilderness Study Areas. Other commodities evaluated include geothermal energy, gypsum, limestone, oil and gas, sand and gravel, sandstone, semiprecious gemstones, sulfur petrified wood, and tar sand.
Ackerman, Daniel J.; Rattray, Gordon W.; Rousseau, Joseph P.; Davis, Linda C.; Orr, Brennon R.
2006-01-01
Ground-water flow in the west-central part of the eastern Snake River Plain aquifer is described in a conceptual model that will be used in numerical simulations to evaluate contaminant transport at the Idaho National Laboratory (INL) and vicinity. The model encompasses an area of 1,940 square miles (mi2) and includes most of the 890 mi2 of the INL. A 50-year history of waste disposal associated with research activities at the INL has resulted in measurable concentrations of waste contaminants in the aquifer. A thorough understanding of the fate and movement of these contaminants in the subsurface is needed by the U.S. Department of Energy to minimize the effect that contaminated ground water may have on the region and to plan effectively for remediation. Three hydrogeologic units were used to represent the complex stratigraphy of the aquifer in the model area. Collectively, these hydrogeologic units include at least 65 basalt-flow groups, 5 andesite-flow groups, and 61 sedimentary interbeds. Three rhyolite domes in the model area extend deep enough to penetrate the aquifer. The rhyolite domes are represented in the conceptual model as low permeability, vertical pluglike masses, and are not included as part of the three primary hydrogeologic units. Broad differences in lithology and large variations in hydraulic properties allowed the heterogeneous, anisotropic basalt-flow groups, andesite-flow groups, and sedimentary interbeds to be grouped into three hydrogeologic units that are conceptually homogeneous and anisotropic. Younger rocks, primarily thin, densely fractured basalt, compose hydrogeologic unit 1; younger rocks, primarily of massive, less densely fractured basalt, compose hydrogeologic unit 2; and intermediate-age rocks, primarily of slightly-to-moderately altered, fractured basalt, compose hydrogeologic unit 3. Differences in hydraulic properties among adjacent hydrogeologic units result in much of the large-scale heterogeneity and anisotropy of the aquifer in the model area, and differences in horizontal and vertical hydraulic conductivity in individual hydrogeologic units result in much of the small-scale heterogeneity and anisotropy of the aquifer in the model area. The inferred three-dimensional geometry of the aquifer in the model area is very irregular. Its thickness generally increases from north to south and from west to east and is greatest south of the INL. The interpreted distribution of older rocks that underlie the aquifer indicates large changes in saturated thickness across the model area. The boundaries of the model include physical and artificial boundaries, and ground-water flows across the boundaries may be temporally constant or variable and spatially uniform or nonuniform. Physical boundaries include the water-table boundary, base of the aquifer, and northwest mountain-front boundary. Artificial boundaries include the northeast boundary, southeast-flowline boundary, and southwest boundary. Water flows into the model area as (1) underflow (1,225 cubic feet per second (ft3/s)) from the regional aquifer (northeast boundary-constant and nonuniform), (2) underflow (695 ft3/s) from the tributary valleys and mountain fronts (northwest boundary-constant and nonuniform), (3) precipitation recharge (70 ft3/s) (constant and uniform), streamflow-infiltration recharge (95 ft3/s) (variable and nonuniform), wastewater return flows (6 ft3/s) (variable and nonuniform), and irrigation-infiltration recharge (24 ft3/s) (variable and nonuniform) across the water table (water-table boundary-variable and nonuniform), and (4) upward flow across the base of the aquifer (44 ft3/s) (uniform and constant). The southeast-flowline boundary is represented as a no-flow boundary. Water flows out of the model area as underflow (2,037 ft3/s) to the regional aquifer (southwest boundary-variable and nonuniform) and as ground-water withdrawals (45 ft3/s) (water table boundary-variable and nonuniform). Ground-water flow i
Hollett, Kenneth J.
1985-01-01
The Papago Farms-Great Plain and upper Rio Sonoyta study area includes about 490 square miles in south-central Arizona and north-central Sonora, Mexico. The area is characterized by a broad, deep, sediment-filled basin bounded by low, jagged fault-block mountains. The climate is arid to semiarid. The climate and abundant ground water provide favorable conditions for irrigated agriculture. Annual precipitation averages 5 to 8 inches per year on the desert floor. Runoff, which occurs as intermittent streamflow and sheetflow, is too short lived and too laden with suspended sediment to be a reliable source for irrigation or public supply. Nearly all the water used to irrigate more than 5,000 cultivated acres in the study area is withdrawn from the unconsolidated to partly consolidated basin fill. The ground water occurs in the deposits under unconfined (water-table) conditions with a saturated thickness that ranges from zero along the mountain fronts to more than 8,000 feet in the center of the basin. The amount of recoverable ground water in storage to a depth of 400 feet below the 1978-80 water table is estimated to be about 10 million acre-feet. Depths to water range from about 500 feet near the southern boundary of the study area to about 150 feet in the center of the study area. Ground water enters the area principally as underflow beneath the San Simon and Chukut Kuk Washes and as recharge along the mountain fronts. On the basis of model results, annual inflow to the ground-water system is estimated to be about 4,390 acre-feet. Ground water moves through the study area along paths that encircle a virtually impermeable unit in the basin center, termed 'the lakebed-clay deposits,' and moves westward to an outflow point beneath the Rio Sonoyta south of Cerro La Nariz. Rates of water movement range from less than I foot per year in clays to about 160 feet per year in well-sorted, coarse stream-channel deposits. Transmissivities along the basin margins range from 10,000 to 40,000 feet squared per day, whereas transmissivities in the basin-center lakebed-clay deposits are estimated to be less than 100 feet squared per day. Most Wells that are located along the basin margin and tap more than 300 feet of saturated basin fill in the upper1,000 feet of the aquifer should yield from 500 to 3,000 gallons per minute to properly constructed and developed wells. Specific capacities should range from 10 to 50 gallons per minute per foot of drawdown. The water in the aquifer is moderate to poor in chemical quality for irrigation and public-supply use. The ground water is mainly a sodium bicarbonate type with dissolved-solids concentrations that range from about 250 to 5,000 milligrams per liter and average about 530 milligrams per liter. The poorest quality water is associated with the basin-center lakebed-clay deposits. In most of the basin, the water contains fluoride concentrations that exceed the maximum contaminant levels acceptable for drinking water. Waters from the basin-center lakebed-clay deposits are also anomalously high in dissolved arsenic and unacceptable for public supply. High concentrations of sodium and bicarbonate in the ground water of the study area present potential hazards to most crops, and the use of this type of water requires careful farm-management practices. In 1981 outflow resulting from withdrawals of water from the aquifer was about 23,2'00 acre-feet. Storage is being depleted at a rate of about 19,000 acre-feet per year. On the basis of a mathematical simulation of the groundwater system and withdrawal rates in 1981, storage depletion and drawdown of the water table were projected to 1991. Water-level declines in 199t were estimated to be as much as 20 feet at Papago Farms and more than 40 feet in the area south of the basin-center lakebed-clay deposits. The estimated amount of depletion in 1991 of ground water stored in the upper 400 feet of the aquifer is less than 3.0 percent of the total amou
75 FR 29686 - Proposed Establishment of the Pine Mountain-Mayacmas Viticultural Area
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
... states that local growers report that Pine Mountain vineyards are naturally free of mildew, a vineyard... often stall over Pine Mountain and the Mayacmas range, dropping more rain than in other areas. Pine..., these mountain soils include large amounts of sand and gravel. Pine Mountain soils are generally less...
Atmospheric Science Data Center
2013-04-22
... to the northeast of this region, less than a week away by car. Answer: TRUE. Table Mountain is not far from Victoria Falls, a ... For those who want a more relaxing experience, a cable car can take visitors to the top where they will find a restaurant complex. ...
Possible Hydrovolcanic Landforms Observed in MOC NA Imagery: A Preliminary Survey
NASA Technical Reports Server (NTRS)
Farrand, W. H.; Gaddis, L. R.; Blundell, S.
2001-01-01
In a preliminary survey of MOC NA imagery, a number of features resembling table mountains, tuff rings, and near craters have been identified. Their locations and geologic significance will be discussed. Additional information is contained in the original extended abstract.
14 CFR 95.13 - Eastern United States Mountainous Area.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Eastern United States Mountainous Area. 95.13 Section 95.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Eastern United States Mountainous Area. All of the following area excluding those portions specified in...
14 CFR 95.13 - Eastern United States Mountainous Area.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Eastern United States Mountainous Area. 95.13 Section 95.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Eastern United States Mountainous Area. All of the following area excluding those portions specified in...
NASA Astrophysics Data System (ADS)
Granados-Muñoz, M. J.; Leblanc, T.
2015-12-01
Ozone in the lower troposphere acts as an air pollutant affecting human health and vegetation. Tropospheric ozone sources and variability are not yet fully identified or understood and recent studies reveal the importance of increasing the number of tropospheric ozone profiling stations and long term measurements. As part of the international monitoring network NDACC, and the U.S.-based network TOLNet, a differential absorption lidar has been performing tropospheric ozone measurements (3-20 km) at the JPL Table Mountain Facility (TMF, California) since 1999, and surface measurements have been performed since 2013 with a UV photometric analyzer. Because of the site's geolocation and high elevation, background tropospheric ozone, unaffected by the boundary layer dynamics and local anthropogenic emissions of ozone precursors, is usually expected. However, transboundary ozone contributions such as stratospheric intrusions and Asian pollution episodes are frequently detected. In this study, a statistical analysis of the 14-year lidar profiles and the 2.5-year surface data is presented. Seasonal, interannual and diurnal variability and its possible causes (e.g. El Nino/La Nina events, North American Monsoon) are investigated. Together with the high elevation surface data gathered at TMF, surface data from ARB stations nearby are analyzed to understand the lowermost tropospheric ozone variability component. The frequency of stratospheric intrusions and Asian pollution episodes reaching the Western U.S. is also examined in an attempt to understand the relative contribution of each process to the observed variability throughout the troposphere. The Table Mountain surface and lidar measurements are expected to contribute significantly to the emerging system of global air quality observations, and to the improvement of global and regional data assimilation and modeling.
Wang, Cuili; Kane, Robert L; Xu, Dongjuan; Li, Lingui; Guan, Weihua; Li, Hui; Meng, Qingyue
2013-01-01
Prior evidence suggests geographic disparities in the effect of maternal education on child nutritional status between countries, between regions and between urban and rural areas. We postulated its effect would also vary by micro-geographic locations (indicated by mountain areas, plain areas and the edge areas) in a Chinese minority area. A cross-sectional study was conducted with a multistage random sample of 1474 school children aged 5-12 years in Guyuan, China. Child nutritional status was measured by height-for-age z scores (HAZ). Linear mixed models were used to examine its association with place of residence and maternal education. Micro-geographic disparities in child nutritional status and the level of socioeconomic composition were found. Children living in mountain areas had poorer nutritional status, even after adjusting for demographic (plain versus mountain, β = 0.16, P = 0.033; edge versus mountain, β = 0.29, P = 0.002) and socioeconomic factors (plain versus mountain, β = 0.12, P = 0.137; edge versus mountain, β = 0.25, P = 0.009). The disparities significantly widened with increasing years of mothers' schooling (maternal education*plain versus mountain: β = 0.06, P = 0.007; maternal education*edge versus mountain: β = 0.07, P = 0.005). Moreover, the association between maternal education and child nutrition was negative (β = -0.03, P = 0.056) in mountain areas but positive in plain areas (β = 0.02, P = 0.094) or in the edge areas (β = 0.04, P = 0.055). Micro-geographic disparities in child nutritional status increase with increasing level of maternal education and the effect of maternal education varies by micro-geographic locations, which exacerbates child health inequity. Educating rural girls alone is not sufficient; improving unfavorable conditions in mountain areas might make such investments more effective in promoting child health. Nutrition programs targeting to the least educated groups in plain and in edge areas would be critical to their cost-effectiveness.
Preliminary Study of Pesticide Drift into the Maya Mountain Protected Areas of Belize
2010-01-01
In Belize, Central America, many farms surrounding the Protected Areas of the Maya Mountains rely heavily on the application of agrochemicals. The purpose of this study was to test whether orographic drift of glyphosate and organophosphates into the nearby Maya Mountain Protected Areas occurred by collecting phytotelmic water from seven sites over 3 years. Regardless of location within the Maya Mountain Protected Areas, glyphosate was present; organophosphates were more common at ridge sites. Although glyphosate concentrations were low, due to the number of threatened species and the human use of stream water outside the Maya Mountain Protected Areas, better understanding of these effects is warranted. PMID:21153805
NASA Astrophysics Data System (ADS)
Zhou, Lijun; Liu, Jisheng
2017-03-01
Tourism safety is gradually gaining more attention due to the rapid development of the tourism industry in China. Changbai Mountain is one of the most famous mountainous scenic areas in Northeast Asia. Assessment on Changbai Mountain scenic area’s tourism safety risk could do a favor in detecting influence factor of tourism safety risk and classifying tourism safety risk rank, thereby reducing and preventing associated tourism safety risks. This paper uses the Changbai Mountain scenic area as the study subject. By the means of experts scoring and analytic hierarchy process on quantified relevant evaluation indicator, the grid GIS method is used to vectorize the relevant data within a 1000m grid. It respectively analyzes main indicators associated tourism safety risk in Changbai Mountain scenic area, including hazard, exposure, vulnerability and ability to prevent and mitigate disasters. The integrated tourism safety risk model is used to comprehensively evaluate tourism safety risk in Changbai Mountain scenic area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-09-01
Results of a hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subsetted by onemore » of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report.« less
NASA Astrophysics Data System (ADS)
Granados-Muñoz, Maria Jose; Johnson, Matthew S.; Leblanc, Thierry
2017-06-01
The impact of the North American (NA) monsoon on tropospheric ozone variability in Southern California is investigated using lidar measurements at Jet Propulsion Laboratory-Table Mountain Facility, California, and the chemical-transport model GEOS-Chem. Routine lidar observations obtained in July-August 2013-2014 reveal a consistent ozone enhancement of 23 ppbv in the free troposphere (6-9 km), when ozone-rich air is transported along the western edge of the upper level anticyclone associated with the NA monsoon from regions where maximum lightning-induced NOx production occurs. When the high-pressure system shifts to the southeast, a zonal westerly flow of the air parcels reaching the Table Mountain Facility (TMF) occurs, prohibiting the lightning-induced ozone enhanced air to reach TMF. This modulation of tropospheric ozone by the position of the NA monsoon anticyclone could have implications on long-term ozone trends associated with our changing climate, due to the expected widening of the tropical belt affecting the strength and position of the anticyclone.
The geologic structure of part of the southern Franklin Mountains, El Paso County, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, W.R.; Julian, F.E.
1993-02-01
The Franklin Mountains are a west tilted fault block mountain range which extends northwards from the city of El Paso, Texas. Geologic mapping in the southern portion of the Franklin Mountains has revealed many previously unrecognized structural complexities. Three large high-angle faults define the boundaries of map. Twenty lithologic units are present in the field area, including the southernmost Precambrian meta-sedimentary rocks in the Franklin Mountains (Lanoria Quartzite and Thunderbird group conglomerates). The area is dominated by Precambrian igneous rocks and lower Paleozoic carbonates, but Cenozoic ( ) intrusions are also recognized. Thin sections and rock slabs were used tomore » describe and identify many of the lithologic units. The Franklin Mountains are often referred to as a simple fault block mountain range related to the Rio Grande Rift. Three critical regions within the study area show that these mountains contain structural complexities. In critical area one, Precambrian granites and rhyolites are structurally juxtaposed, and several faults bisecting the area affect the Precambrian/Paleozoic fault contact. Critical area two contains multiple NNW-trending faults, three sills and a possible landslide. This area also shows depositional features related to an island of Precambrian rock exposed during deposition of the lower Paleozoic rocks. Critical area three contains numerous small faults which generally trend NNE. They appear to be splays off of one of the major faults bounding the area. Cenozoic kaolinite sills and mafic intrusion have filled many of the fault zones.« less
Forest ecology and biogeography of the Uinta Mountains, USA
John D. Shaw; James N. Long
2007-01-01
The Uinta Mountains form a crossroads of forests and woodlands in the central Rocky Mountains. Although no tree species is endemic to the area, all species characteristic of the central Rocky Mountains are found there, and the ranges of several other species terminate in the Uinta Mountains and the surrounding area. The peninsula-like shape, east-west orientation, and...
Peculiarities of high-altitude landscapes formation in the Small Caucasus mountains
NASA Astrophysics Data System (ADS)
Trifonova, Tatiana
2014-05-01
Various mountain systems differ in character of landscapes and soil. Basic problem of present research: conditions and parameters determining the development of various landscapes and soils in mountain areas. Our research object is the area of Armenia where Small Caucasus, a part of Armenian upland is located. The specific character of the area is defined by the whole variety of all mountain structures like fold, block folding mountain ridges, volcanic upland, individual volcanoes, and intermountain depressions. As for the climate, the area belongs to dry subtropics. We have studied the peculiarities of high-altitude landscapes formation and mountain river basins development. We have used remote sensing data and statistic database of climatic parameters in this research. Field observations and landscape pictures analysis of space images allow distinguishing three types of mountain geosystems clearly: volcanic massifs, fold mountainous structures and closed high mountain basins - area of the lakes. The distribution of precipitation according to altitude shows some peculiarities. It has been found that due to this factor the investigated mountain area may be divided into three regions: storage (fold) mountainous area; Ararat volcanic area (southern macro exposure); closed high mountainous basin-area of the lake Sevan. The mountainous nature-climatic vertical landscapes appear to be horizontally oriented and they are more or less equilibrium (stable) geosystems, where the stable functional relationship between the landscape components is formed. Within their limits, definite bioclimatic structure of soil is developed. Along the slopes of fold mountains specific landscape shapes like litho-drainage basins are formed. They are intensively developing like relatively independent vertical geosystems. Mechanism of basin formation is versatile resulting in formation of the polychronous soil mantle structure. Landscapes and soils within the basin are of a different age, since the permanent exogenic processes favor regular rejuvenation of the slope soils. The basin structure determines the soilscape, and morphological elements of the basin are also different. The factors playing the significant part in the formation of soil-mantle composition in the basin can be identified. It is shown that landscapes formation and soil structure in mountains are controlled by two superimposed natural processes, i.e. the formation of vertical zonality and the development of river lithodrainage basins. References Trifonova T.A., 2008. River drainage basin as self-regulated natural geosistem. Izv. Russian of Academy of Sciences, Series on geography, 1: 28-36. Trifonova T.A., 2005. Development of basin approach in pedological and ecological studies. Eurasian Soil Science, 9: 931-937
Young, H.W.; Parliman, D.J.; Jones, Michael L.
1992-01-01
The study area is located in southern Elmore County, southwestern Idaho, and includes the Mountain Home Air Force Base located approximately 10 mi southwest of the city of Mountain Home. Chemical analyzes have been made periodically since the late 1940's on water samples from supply wells on the Air Force Base. These analyses indicate increases in specific conductance and in concentrations of nitrogen compounds, chloride, and sulfate. The purposes of this report, which was prepared in cooperation with the Department of the Air Force, are to describe the seasonal changes in water quality and water levels and to depict the directions of ground-water movement in the regional aquifer system and perched-water zones. Although data presented in this report are from both the regional ground-water system and perched-water zones, the focus is on the regional system. A previous study by the U.S. Geological Survey (Parliman and Young, 1990) describes the areal changes in water quality and water levels during the fall of 1989. During March, July, and October 1990, 141 wells were inventoried and depth to water was measured. Continuous water-level recorders were installed on 5 of the wells and monthly measurements of depth to water were made in 17 of the wells during March 1990 through February 1991. Water samples from 33 wells and 1 spring were collected during the spring and fall of 1990 for chemical analyses. Samples also were collected monthly from 11 of those wells during April to September 1990 (table 1). Selected well-construction and water-use data and measurements of depth to water for 141 wells are given in table 2 (separated sheets in envelope). Directions of ground-water movement and selected hydrographs showing seasonal fluctuations of water levels in the regional ground-water system and perched-water zones are shown on sheet 2. Changes in water levels in the regional ground-water system during March to October 1990 are shown on sheet 2.
Preliminary Results, Analysis, and Overview of Part-1 of the GOLD Experiment
NASA Technical Reports Server (NTRS)
Wilson, K. E.; Jeganathan, M.
1996-01-01
The Ground/Orbiter Lasercomm Demonstration (GOLD) is an optical communications demonstraton between the Japanese Engineering Test Satellite (ETS-VI) and an optical ground transmitting and receiving station at the Table Mountain Facility. GOLD was an experiment that demonstrated real-time international collaboration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, R.R.; Klavetter, E.A.; Hall, I.J.
1984-12-01
The geological formations in the unsaturated zone at Yucca Mountain, on and adjacent to the Nevada Test Site (NTS), are currently being studied for consideration as the host for a radioactive-waste repository; the US Department of Energy is carrying out these studies through the Nevada Nuclear Waste Storage Investigations project. The formations are composed of tuffaceous (tuff) materials that must be evaluated to estimate the rate at which radionuclides would migrate to the accessible environment. According to the available evidence, the flux of water in the unsaturated zone beneath the Yucca Mountain site is low; quantifying such low flow ratesmore » through direct measurements is difficult. To help provide data that can be used to assess unsaturated flow, Pacific Northwest Laboratory (PNL), under contract to Sandia National Laboratories (SNL), performed hydrologic tests on tuffaceous samples from 48 different locations in Yucca Mountain. This report contains the entire set of psychrometer measurements of desaturation curves for tuffs from Yucca Mountain as well as a substantial number of saturated conductivity measurements. 19 references, 132 figures, 23 tables.« less
14 CFR 95.21 - Puerto Rico Mountainous Area.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Puerto Rico Mountainous Area. 95.21 Section 95.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES Designated Mountainous Areas § 95.21 Puerto Rico...
14 CFR 95.21 - Puerto Rico Mountainous Area.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Puerto Rico Mountainous Area. 95.21 Section 95.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES Designated Mountainous Areas § 95.21 Puerto Rico...
14 CFR 95.21 - Puerto Rico Mountainous Area.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Puerto Rico Mountainous Area. 95.21 Section 95.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES Designated Mountainous Areas § 95.21 Puerto Rico...
14 CFR 95.21 - Puerto Rico Mountainous Area.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Puerto Rico Mountainous Area. 95.21 Section 95.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES Designated Mountainous Areas § 95.21 Puerto Rico...
14 CFR 95.21 - Puerto Rico Mountainous Area.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Puerto Rico Mountainous Area. 95.21 Section 95.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES Designated Mountainous Areas § 95.21 Puerto Rico...
NASA Technical Reports Server (NTRS)
Hoffer, R. M. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Good ecological, classification accuracy (90-95%) can be achieved in areas of rugged relief on a regional basis for Level 1 cover types (coniferous forest, deciduous forest, grassland, cropland, bare rock and soil, and water) using computer-aided analysis techniques on ERTS/MSS data. Cost comparisons showed that a Level 1 cover type map and a table of areal estimates could be obtained for the 443,000 hectare San Juan Mt. test site for less than 0.1 cent per acre, whereas photointerpretation techniques would cost more than 0.4 cent per acre. Results of snow cover mapping have conclusively proven that the areal extent of snow in mountainous terrain can be rapidly and economically mapped by using ERTS/MSS data and computer-aided analysis techniques. A distinct relationship between elevation and time of freeze or thaw was observed, during mountain lake mapping. Basic lithologic units such as igneous, sedimentary, and unconsolidated rock materials were successfully identified. Geomorphic form, which is exhibited through spatial and textual data, can only be inferred from ERTS data. Data collection platform systems can be utilized to produce satisfactory data from extremely inaccessible locations that encounter very adverse weather conditions, as indicated by results obtained from a DCP located at 3,536 meters elevation that encountered minimum temperatures of -25.5 C and wind speeds of up to 40.9m/sec (91 mph), but which still performed very reliably.
Wang, Cuili; Kane, Robert L.; Xu, Dongjuan; Li, Lingui; Guan, Weihua; Li, Hui; Meng, Qingyue
2013-01-01
Objectives Prior evidence suggests geographic disparities in the effect of maternal education on child nutritional status between countries, between regions and between urban and rural areas. We postulated its effect would also vary by micro-geographic locations (indicated by mountain areas, plain areas and the edge areas) in a Chinese minority area. Methods A cross-sectional study was conducted with a multistage random sample of 1474 school children aged 5-12 years in Guyuan, China. Child nutritional status was measured by height-for-age z scores (HAZ). Linear mixed models were used to examine its association with place of residence and maternal education. Results Micro-geographic disparities in child nutritional status and the level of socioeconomic composition were found. Children living in mountain areas had poorer nutritional status, even after adjusting for demographic (plain versus mountain, β = 0.16, P = 0.033; edge versus mountain, β = 0.29, P = 0.002) and socioeconomic factors (plain versus mountain, β = 0.12, P = 0.137; edge versus mountain, β = 0.25, P = 0.009). The disparities significantly widened with increasing years of mothers’ schooling (maternal education*plain versus mountain: β = 0.06, P = 0.007; maternal education*edge versus mountain: β = 0.07, P = 0.005). Moreover, the association between maternal education and child nutrition was negative (β = -0.03, P = 0.056) in mountain areas but positive in plain areas (β = 0.02, P = 0.094) or in the edge areas (β = 0.04, P = 0.055). Conclusions Micro-geographic disparities in child nutritional status increase with increasing level of maternal education and the effect of maternal education varies by micro-geographic locations, which exacerbates child health inequity. Educating rural girls alone is not sufficient; improving unfavorable conditions in mountain areas might make such investments more effective in promoting child health. Nutrition programs targeting to the least educated groups in plain and in edge areas would be critical to their cost-effectiveness. PMID:24340034
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
..., Pinto Valley, Black Canyon, Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and Bridge Canyon..., Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and Bridge Canyon Wilderness Areas, Lake Mead... wilderness character; providing for reasonable use of Spirit Mountain and adjacent areas in a manner meeting...
Stanley G. Kitchen; Stephen B. Monsen
2008-01-01
Two woodybased non-rhizomatous sub-shrub species of kochias are found in the western United States. The widely distributed native, gray molly, and its introduced and closely related counterpart (Blackwell and others 1978), forage kochia, are found in salt-desert, sagebrush, pinyon-juniper, and dry mountain brush communities (table 1). Erect to steeply ascending annual...
2. VIEW OF LOWER MILL FLOOR FOUNDATION, SHOWING, LEFT TO ...
2. VIEW OF LOWER MILL FLOOR FOUNDATION, SHOWING, LEFT TO RIGHT, EDGE OF MILLING FLOOR, TABLE FLOOR, VANNING FLOOR, LOADING LEVEL, TAILINGS POND IN RIGHT BACKGROUND. VIEW IS LOOKING FROM THE NORTHWEST - Mountain King Gold Mine & Mill, 4.3 Air miles Northwest of Copperopolis, Copperopolis, Calaveras County, CA
Diameter Distributions in Natural Yellow-Poplar Stands
Charles E. McGee; Lino Della-Bianca
1967-01-01
Diameter distributions obtained from 141 pure, natural unthinned yellow-poplar stands in the Appalachian Mountains of Virginia, North Carolina, and Georgia are presented in tables. The distributions are described in relation to stand age, site index, and total number of trees per acre, and are useful for stand management planning.
Using Former Military Installations as Correctional Facilities
1990-03-01
Idaho County, in the Clearwater Mountains approximately 60 miles southeast of Lewiston in the Idaho panhandle. Judicial District: 2nd Judicial...57 Naselle Youth Camp - Naselle, Washington .................... 59 North Idaho Correctional Facility...Cottonwood, Idaho ...... 61 County Facility Lancaster Correctional Facility - Lincoln, Nebraska ........ 65 TABLE OF CONTENTS (CONTINUED) PAGE PHOTOS 1
Rye, Robert O.; Bethke, Philip M.; Lanphere, Marvin A.; Steven, Thomas A.
2000-01-01
K/Ar age determinations or supergene alunite and jarosite, formed during Neogene weathering of the epithermal silver and base-metal ores of the Creede mining district, have been combined with geologic evidence to estimate the timing of regional uplift of the southern Rocky Mountains and related canyon cutting. In addition, oxygen and hydrogen isotopic studies suggest climate changes in the central San Juan Mountains during the past 5 m.y. Alunite [ideally (K,Na)Al3(SO4)2(OH)6] and jarosite [ideally KFe3(SO4)2(OH)6] can be dated by K/Ar or 40Ar/39Ar techniques and both contain OH and SO4 sites that enable four stable isotope analyses (δD, δ18OOH, and δ34S) to be made. This supergene alunite and jarosite formed by weathering of sulfide-rich ore bodies may record the evolution of the chemical and hydrologic processes affecting ancient oxidized acid ground water, as well as details of climate history and geomorphic evolution. Fine-grained (1-10 μm) supergene alunite and jarosite occur in minor fractures in the upper, oxidized parts of the 25 Ma sulfide-bearing veins of the Creede mining district, and jarosite also occurs in adjacent oxidized Ag-bearing clastic sediments. K/Ar ages for alunite range from 4.8 to 3.1 Ma, and for jarosite range from 2.6 to 0.9 Ma. The δD values for alunite and jarosite show opposite correlations with elevation, and values for jarosite correlate with age. Calculated δDH2O values of alunite fluids approach but are larger than those of present-day meteoric water. Calculated δDH2O values for jarosite fluids are more variable; the values of the youngest jarosites are lowest and are similar to those of present-day meteoric water in the district. The narrow δD-δ18OSO4 values of alunites reflects oxidation of sulfide below the water table. The greater range in these values for jarosites reflects oxidation of sulfide under vadose conditions. The ages of alunite mark the position of the paleo-water table at the end of a period of moderate erosion from ca. 25 to 5 Ma that exposed the tops of the ore bodies to oxidation. The younger jarosite formed in the vadose zone during or following subsequent canyon cutting related to regional uplift of the southern Rocky Mountains, The δD values suggest that climates in the area were similar to those of the present day prior to regional uplift but went through a warm period before returning to present conditions during or after regional uplift. The results of this study indicate that the combined stable and radiogenic isotope analysis of supergene alunite and jarosite has broad application in understanding climate and geomorphic evolution of selected areas.
The Dependence of Peat Soil Hydraulic Conductivity on Dominant Vegetation Type in Mountain Fens
NASA Astrophysics Data System (ADS)
Crockett, A. C.; Ronayne, M. J.; Cooper, D. J.
2014-12-01
The peat soil within fen wetlands provides water storage that can substantially influence the hydrology of mountain watersheds. In this study, we investigated the relationship between hydraulic conductivity and vegetation type for fens occurring in Rocky Mountain National Park (RMNP), Colorado, USA. Vegetation in RMNP fens can be dominated by woody plants and shrubs, such as willows; by mosses; or by herbaceous plants such as sedges. Fens dominated by each vegetation type were selected for study. Six fens were investigated, all of which are in the Colorado River watershed on the west side of RMNP. For each site, soil hydraulic conductivity was measured at multiple locations using a single-ring infiltrometer. As a result of the shallow water table in these fens (the water table was always within 10 cm of the surface), horizontal hydraulic gradients were produced during the field tests. The measured infiltration rates were analyzed using the numerical model HYDRUS. In order to determine the hydraulic conductivity, a parameter estimation problem was solved using HYDRUS as the forward simulator. Horizontal flow was explicitly accounted for in the model. This approach produced more accurate estimates of hydraulic conductivity than would be obtained using an analytical solution that assumes strictly vertical flow. Significant differences in hydraulic properties between fens appear to result at least in part from the effects of different dominant vegetation types on peat soil formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L.
A regional hydrogeologic model is used to investigate the potential for water recharging in the Tushar Mountains to move at depth beneath the Mineral Mountains to discharge in Milford Valley. Simulations carried out over a range of water table positions and assumed depths to a lower impermeable boundary suggest it is unlikely that the topographic configuration alone could drive such a flow system. Specific geologic conditions are necessary if interbasin flow is to occur. However, simulations based on a simplified hydrologic model of the regional geology suggest this is not the case. A regional hydraulic anisotropy greater than 10:1 (Kx/Kz)more » leads to interflow if the granitic Mineral Mountain pluton and the volcanics in the Tushar Mountains have similar hydraulic conductivities. If either of these units is more nearly isotropic or if the granitic rocks have a greater vertical than horizontal hydraulic conductivity, no interbasin flow is observed. On the basis of available geologic evidence, this latter case seems to be the most likely.« less
Behum, Paul T.; Hammack, Richard W.
1981-01-01
Physiographically, the Cheat Mountain Roadless Area is in the Allegheny Mountain section of the Appalachian Plateaus province and is situated at the eastern edge of the Appalachian coal region. Cheat Mountain, a northeast-trending ridge, is bordered on the west by the right fork of Files Creek and on the east by Shavers Fork and its tributaries. Most of the area occupies an elevated plateau capped by resistant sandstone and conglomerate. Altitudes range form 2,320 ft on Lime Kiln Run to more than 3,900 ft on Cheat Mountain. The topography ranges from relatively flat in the uplands to very steep in the canyons along tributaries of Shavers Fork. The area is heavily forested with vegetation varying from mixed hardwoods on the western slope of Cheat Mountain to thickets of conifers in the uplands. Hemlocks are sparsely interspersed and red spruce, the dominant tree at higher elevations prior to logging in the mid 1920's, is again reforesting upland areas. Rhododendron and laurel flourish in moist protected areas along drainage courses and in coves.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-23
... INFORMATION: The Round Mountain Gold Corporation, which is a joint venture of Kinross Gold Corporation and Barrick Gold Corporation, proposes to expand its Round Mountain Mine, an existing open-pit gold mining and... about 66.2 acres between the Round Mountain area and the Gold Hill area. The primary method of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-16
... normal business hours. SUPPLEMENTARY INFORMATION: Bald Mountain Mine (BMM), owned by Barrick Gold US Inc... Statement for the Proposed Bald Mountain Mine North and South Operations Area Projects, White Pine County.... ADDRESSES: You may submit comments related to the Bald Mountain Mine North and South Operations Area...
Geology and ground-water resources of the Deer Lodge Valley, Montana
Konizeski, Richard L.; McMurtrey, R.G.; Brietkrietz, Alex
1968-01-01
The Deer Lodge Valley is a basin trending north-south within Powell, Deer Lodge, and Silver Bow Counties in west-central Montana, near the center of the Northern Rocky Mountains physiographic province. It trends northward between a group of relatively low, rounded mountains to the east and the higher, more rugged Flint Creek Range to the west. The Clark Fork and its tributaries drain the valley in a northerly direction. The climate is semiarid and is characterized by long cold winters and short cool summers. Agriculture and ore refining are the principal industries. Both are dependent on large amounts of water. The principal topographic features are a broad lowland, the Clark Fork flood plain, bordered by low fringing terraces that are in turn bordered by broad, high terraces, which slope gently upward to the mountains. The high terraces have been mostly obscured in the south end of the valley by erosion and by recent deposition of great coalescent fans radiating outward frown the mouths of various tributary canyons. The mountains east of the Deer Lodge Valley are formed mostly of Cretaceous sedimentary and volcanic rocks and a great core of Upper Cretaceous to lower Tertiary granitic rocks; those west of the valley are formed of Precambrian to Cretaceous sedimentary rocks and a core of lower Tertiary granitic rocks. Field relationships, gravimetric data, and seismic data indicate that the valley is a deep graben, which formed in early Tertiary time after emplacement of the Boulder and Philipsburg batholiths. During the Tertiary Period the valley was partly filled to a maximum depth of more than 5,500 feet with erosional detritus that came from the surrounding mountains and was interbedded with minor amounts of volcanic ejecta. This material accumulated in a great variety of local environments. Consequently the resultant deposits are of extremely variable lithology in lateral and vertical sequence. The deposits grade from unconsolidated to well-cemented and from clay to boulder-sized aggregates. Throughout most of the area the strata dip gently towards the valley axis, but along the western margins of the valley they dip steeply into the mountains. In late Pliocene or early Pleistocene the Tertiary strata were eroded to a nearly regular valley divide surface. In the western part of the valley the erosion surface was thinly mantled by glacial debris from the Flint Creek Range. Still later, probably during several interglacial intervals, the Clark Fork and its tributaries entrenched themselves in the Tertiary strata to an average depth of about 150 feet. The resultant erosional features were further modified by Wisconsin to Recent glaciofluvial deposition. Three east-west cross .sections and a corrected gravity map were drawn for the valley. They indicate a maximum depth of fill of more than 5,500 feet in the southern part. Depths decrease to the north to approximately 2,300 feet near the town of Deer Lodge. The principal source of ground water in the Deer Lodge Valley is the upper few hundred feet of unconsolidated valley fill. Most of the wells tapping these deposits range in depth from a few feet to 250 feet. Water levels range from somewhat above land surface (in flowing wells) to about 150 feet below. Yields of the wells range from a few gallons per minute to 1,000 gallons per minute. Generally, wells having the highest yields are on the flood plain of the Clark Fork or the coalescent fans of Warm Springs and Mill Creeks. Discharge of ground water by seepage into streams, by evapotranspiration, and by pumping from wells causes a gradual lowering of the water table. Each spring and early summer, seepage of water from irrigation and streams and infiltration of water from snowmelt and precipitation replenish the ground-water reservoir. Seasonal fluctuation of the water table generally is less than 10 feet. The small yearly water table fluctuation indicates that recharge about balances discharge from th
Saltwater Intrusion and its Long-Term Consequences in a Coastal Alluvial Aquifer of Northern Oman
NASA Astrophysics Data System (ADS)
Weyhenmeyer, C. E.; Waber, H. N.
2002-12-01
The alluvial aquifer of the Eastern Batinah coastal plain supplies water for the most densely populated, cultivated and industrialized areas in the Sultanate of Oman. In recent years, overexploitation of these groundwater resources has resulted in a drastic lowering of the groundwater table and consequent seawater intrusion into the coastal aquifer sections. During recent drilling operations near the coast (~3 km) groundwater samples were taken at depths intervals of 2-5 m. The front of the saline intrusion wedge was encountered at a depth of 70-80 mbs as suggested by sudden changes in groundwater chemistry and isotope values. Groundwater near the saline intrusion front is characterized by lower Na/Cl and higher Ca/Mg ratios compared to ion ratios expected from groundwater mixing calculations between fresh- and saltwater. The observed changes in ion ratios suggest that Na is removed from the groundwater and replaced by Ca from cation exchange surfaces in the aquifer (e.g., clay particles), which is an indication that the saline front is still migrating inland. To date, a deterioration of overall groundwater quality can be recognized as far inland as 15 km and Cl and Na concentrations in these areas are well above the general quality standards for drinking water. Estimates of infiltration rates based on isotope ratios (Sr, O, H) suggest that less than 10% of the total groundwater recharge occurs on the coastal plain itself, with the remaining 90% originating in the adjacent Oman Mountains. Groundwater residence times on the coastal plain are in the order of a few hundred to several thousand years as suggested by a number of radioactive isotopes (3H, 85Kr, 39Ar, 14C). Therefore, these groundwater resources essentially have to be considered non-renewable and there is a pressing requirement for the development of sustainable groundwater management strategies. Attempts to artificially increase infiltration on the coastal plain by the construction of large recharge dams has not yet proven successful because infiltration on the alluvial plain is severely inhibited by extensive layers of highly cemented gravel and clay accumulations and by a groundwater table as low as 80 mbs. At present, water conservation and possibly groundwater exploitation in the mountainous areas appear to be the only viable strategies to slow down the rapid decline of available groundwater resources in the Eastern Batinah region
A revision of the South African riffle beetle genus Leielmis Delève, 1964 (Coleoptera: Elmidae).
Bilton, David T
2017-04-12
The riffle beetle genus Leielmis Delève, 1964 is redescribed and shown to contain three species, all of which are apparently endemic to the South African Cape, where they live in permanent mountain streams with cold running water. A lectotype is designated for Helmis georyssoides Grouvelle, 1890, and two additional species (L. gibbosus sp. nov. and L. hirsutus sp. nov.) are described for the first time. Following study of the type series, L. georyssoides is shown to be endemic to Table Mountain; most specimens previously assigned to this taxon representing an additional species (L. gibbosus sp. nov.), widespread in the interior Cape Fold Mountains. The record of Leielmis from Angola is considered highly doubtful. Comparative notes and a key are provided to allow the identification of known species of the genus.
Mountain big sagebrush communities on the Bishop Conglomerate in the eastern Uinta Mountains
Sherel Goodrich; Allen Huber
2001-01-01
The Bishop Conglomerate forms broad, gently sloping pediments that include a mantle or veneer of coarse gravel and some cobble over underlying formations. These pediments cover large areas at the margins of the Uinta Mountains. Mountain big sagebrush (Artemisia tridentata var. pauciflora) communities cover rather large areas at the outer edge or lower end of these...
Machette, Michael N.; Coates, Mary-Margaret; Johnson, Margo L.
2007-01-01
Prologue Welcome to the 2007 Rocky Mountain Cell Friends of the Pleistocene Field Trip, which will concentrate on the Quaternary geology of the San Luis Basin of Colorado and New Mexico. To our best knowledge, Friends of the Pleistocene (FOP) has never run a trip through the San Luis Basin, although former trips in the region reviewed the 'Northern Rio Grande rift' in 1987 and the 'Landscape History and Processes on the Pajarito Plateau' in 1996. After nearly a decade, the FOP has returned to the Rio Grande rift, but to an area that has rarely hosted a trip with a Quaternary focus. The objective of FOP trips is to review - in the field - new and exciting research on Quaternary geoscience, typically research being conducted by graduate students. In our case, the research is more topically oriented around three areas of the San Luis Basin, and it is being conducted by a wide range of Federal, State, academic, and consulting geologists. This year's trip is ambitious?we will spend our first day mainly on the Holocene record around Great Sand Dunes National Park and Preserve, the second day on the Quaternary stratigraphy around the San Luis Hills, including evidence for Lake Alamosa and the 1.0 Ma Mesita volcano, and wrap up the trip's third day in the Costilla Plain and Sunshine Valley reviewing alluvial stratigraphy, the history of the Rio Grande, and evidence for young movement on the Sangre de Cristo fault zone. In the tradition of FOP trips, we will be camping along the field trip route for this meeting. On the night before our trip, we will be at the Great Sand Dunes National Park and Preserve's Pinyon Flats Campground, a group facility located about 2 miles north of the Visitors Center. After the first day's trip, we will dine and camp in the Bachus pit, about 3 miles southwest of Alamosa. For the final night (after day 2), we will bed down at La Junta Campground at the Bureau of Land Management (BLM) Wild and Scenic Rivers State Recreation Area, west of Questa, New Mexico, overlooking a majestic canyons of the Rio Grande and Red River. This is the 48th meeting of the Rocky Mountain Section of FOP, which was initiated by Gerry Richmond (USGS-Denver, deceased) in 1952 (see the following table, which lists all the Rocky Mountain Section field trips). The Rocky Mountain Section has been inactive for three years owing to a series of problems, including an unfortunate cancellation of Dennis Dahms' trip to the southern Wind River Range in 2005. Hopefully, this year's trip will provide the logistical initiative and scientific momentum for future Friends of the Pleistocene trips in the Rocky Mountain region.
Mountain cartography: revival of a classic domain
NASA Astrophysics Data System (ADS)
Häberling, Christian; Hurni, Lorenz
The abstract representation of landscape objects such as mountain peaks, valleys, river networks, lakes, cultivated land and nonproductive areas (forests, pastures, boulder fields, glaciers), settlement areas, infrastructure and traffic networks has been the main concept behind all kind of maps for a long time. For over 300 years, mountain regions became an appropriate subject to be extensively explored and mapped. Together with the growing importance of mountainous areas, the demand for adequate cartographic representations with respect to its contents, graphic design and the presentation media has given new life to a classic domain of cartography: Mountain cartography. This paper gives an overview of the development and the current state of mountain cartography. After a brief description of the beginnings and the historic achievements, basic concepts of cartography such as map purpose, data management, cartographic design and map production and their application in modern mountain cartography are summarised. The paper then provides an overview of different kinds of cartographic representations in mountain cartography like topographic maps, maps derived from Geographical Information Systems (GIS) data, image maps, animations, perspective views and personalised maps. Finally, selected examples of modern mountain map applications are presented.
Mower, R.W.; Bartholoma, Scott D.
1981-01-01
The computer model presented in this report was used to simulate the principal ground-water reservoir in the Beryl-Enterprise area, Escalante Desert, Beaver, Iron, and Washington Counties, Utah (Mower, 1981). The details of the formulation of the model, testing of its validity, and the results of predictions are discussed in the cited report. This report was prepared as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights, to investigate the water resources of the State. It is an addendum to the principal interpretive report, and it is presented in order to make the model available to anyone desiring to use it for additional predictions. The main program used was the finite-difference model for aquifer simulation in two dimensions documented by Trescott, Pinder, and Larson, (1976). Minor modifications were made to adapt the program to the principal ground-water reservoir in the Beryl-Enterprise area. All the modifications are listed at the top of table 1, and were related to parameter input and output, thus none of the computational subroutines were affected. The parameter arrays (table 1) and map of the area with a grid overlay (pi. 1) are given on following pages. The model simulates an aquifer- under water-table conditions, mostly composed of unconsoliuated basin-fill deposits. The boundaries of the modeled area (pi. 1) generally coincide with the boundaries of the saturated basin fill. However, in the southwest-central part of the model, permeable consolidated rock is included; and that part of the northern boundary between the Black and Wah Wah Mountains is an arbitrary boundary in basin fill between the Beryl-Enterprise area and the Milford area that lies to the northeast. The ignimbrite at Table Butte also was included in the active part of the model. The model includes simulation of discharge by evapotranspiration from phreatophytes. The areal recharge array was used to simulate recharge entering the modeled area at its boundaries and from stream infiltration in the southern corner near Enterprise. In addition, this array included discharge by wells operated during the period simulated as being under steady-state conditions (virtually 1937), and discharging wells simulating flow of water northeast to the Milford area. These wells also were included in the transient-state simulation (1937-77), although any changes in this discharge were modeled using the pumpage array (Group IV, table 1). The wells simulating outflow to the Milford area are shown on plate 1, but the wells pumping in 1937 are not shown unless they also were pumped during 1937-77. The pumpage array was used to simulate: (1) Discharge from wells, (2) discharge after 1977 from a mine in the southwest-central part of the model and recharge resulting form the mine discharge (pi. 1), and (3) changes in discharge in wells operated during the steady-state period. Recharge from irrigation was simulated by reducing pumpage from nodes where irrigation occurs. Discharge from all wells was reduced by 5 percent by multiplying all pumpage by 0.95 in the computer program. North of Newcastle, in T. 35 S., R. 15 W., pumpage was reduced by 35 percent because surface materials are very permeable.
50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...
50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...
50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...
50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...
Vertessy, R A; Benyon, R G; O'Sullivan, S K; Gribben, P R
1995-09-01
We examined relationships between stem diameter, sapwood area, leaf area and transpiration in a 15-year-old mountain ash (Eucalyptus regnans F. Muell.) forest containing silver wattle (Acacia dealbata Link.) as a suppressed overstory species and mountain hickory (Acacia frigescens J.H. Willis) as an understory species. Stem diameter explained 93% of the variation in leaf area, 96% of the variation in sapwood area and 88% of the variation in mean daily spring transpiration in 19 mountain ash trees. In seven silver wattle trees, stem diameter explained 87% of the variation in sapwood area but was a poor predictor of the other variables. When transpiration measurements from individual trees were scaled up to a plot basis, using stem diameter values for 164 mountain ash trees and 124 silver wattle trees, mean daily spring transpiration rates of the two species were 2.3 and 0.6 mm day(-1), respectively. The leaf area index of the plot was estimated directly by destructive sampling, and indirectly with an LAI-2000 plant canopy analyzer and by hemispherical canopy photography. All three methods gave similar results.
Atmospheric Turbulence Statistics from GOLD Experiments
NASA Technical Reports Server (NTRS)
Jeganathan, Muthu; Wilson, Keith; Lesh, Jim
1996-01-01
Ground-Orbiter Lasercomm Demonstration (GOLD) includes the following: (1) Optical communication experiments between Table Mountain Observatory (TMF) and Japanese Engineering Test Satellite (ETS-VI); (2) International cooperative effort between NASA, NASDA, CRL and JPL; and (3) Phase 1 transmissions from October 1995 to January 1996 and Phase 2 transmissions from March 1996 to May 1996.
the cost of solar cells, modules, and systems; and improving the reliability of PV components and Science-funded Center for Next Generation of Materials by Design. Reliability. Real-Time PV and Solar Research Solar panels line the rooftop of the parking garage at the south table mountain campus of
Energy and Water Efficiency on Campus | NREL
Energy and Water Efficiency on Campus Energy and Water Efficiency on Campus NREL ensures the resiliency of our future energy and water systems through energy efficiency strategies and technologies , renewable energy, and water efficiency on the NREL campus. FY17 Energy Intensity. The South Table Mountain
NREL and Partners Highlight Collaboration and Explore Future During Partner
districts, exascale computing, more efficient photovoltaics, and next-generation wind turbine blades, to blades on site? What does this do to our grid?" At sessions across NREL's South Table Mountain as the Solar Energy Research Institute (SERI), the lab and its research partners have helped shape
Mountain Wave Analysis Using Fourier Methods
2007-10-01
model for altitudes up to 18 km for the same location using the Hilo , Hawaii 1200 UTC rawinsonde for the background velocity and temperature profile... Hawaii terrain and atmosphere 46 for 12 Dec 2002 vii Tables 1...20 3. Three-Layer Model Specifications for Hawaii 12 December 2002 06 UTC 22 4. Three-Layer Model
Supplement III to Changes in Farm Production and Efficiency.
ERIC Educational Resources Information Center
Economic Research Service (USDA), Washington, DC.
This publication contains data on man-hours of labor used for farmwork in the farm production regions of the Northeast, Lake States, Corn Belt, Northern Plains, Appalachia, Southeast, Delta States, Southern Plains, Mountain, and Pacific. Regional data from 1950-1958 are provided in table form for the livestock enterprises of meat animals, milk…
NASA Astrophysics Data System (ADS)
Sun, Xiaobin; Xu, Yongxin; Lin, Lixiang
2015-05-01
Parameter estimates of artesian aquifers where piezometric head is above ground level are largely made through free-flowing and recovery tests. The straight-line method proposed by Jacob-Lohman is often used for interpretation of flow rate measured at flowing artesian boreholes. However, the approach fails to interpret the free-flowing test data from two artesian boreholes in the fractured-rock aquifer in Table Mountain Group (TMG) of South Africa. The diagnostic plot method using the reciprocal rate derivative is adapted to evaluate the artesian aquifer properties. The variation of the derivative helps not only identify flow regimes and discern the boundary conditions, but also facilitates conceptualization of the aquifer system and selection of an appropriate model for data interpretation later on. Test data from two free-flowing tests conducted in different sites in TMG are analysed using the diagnostic plot method. Based on the results, conceptual models and appropriate approaches are developed to evaluate the aquifer properties. The advantages and limitations of using the diagnostic plot method on free-flowing test data are discussed.
NASA Astrophysics Data System (ADS)
Xie, Z.; Zeng, Y.; Liu, S.; Gao, J.; Jia, B.; Qin, P.
2017-12-01
Both anthropogenic water regulation and groundwater lateral flow essentially affect groundwater table patterns. Their relationship is close because lateral flow recharges the groundwater depletion cone, which is induced by over-exploitation. And the movement of frost and thaw fronts (FTFs) affects soil water and thermal characteristics, as well as energy and water exchanges between land surface and the atmosphere. In this study, schemes describing groundwater lateral flow, human water regulation and the changes in soil freeze-thaw fronts were developed and incorporated into the Community Land Model 4.5. Then the model was applied in Heihe River Basin(HRB), an arid and semiarid region, northwest China. High resolution ( 1 km) numerical simulations showed that groundwater lateral flow driven by changes in water heads can essentially change the groundwater table pattern with the deeper water table appearing in the hillslope regions and shallower water table appearing in valley bottom regions and plains. Over the last decade, anthropogenic groundwater exploitation deepened the water table by approximately 2 m in the middle reaches of the HRB and rapidly reduced the terrestrial water storage, while irrigation increased soil moisture by approximately 0.1 m3 m-3. The water stored in the mainstream of the Heihe River was also reduced by human surface water withdrawal. The latent heat flux was increased by 30 W m-2 over the irrigated region, with an identical decrease in sensible heat flux. The simulated groundwater lateral flow was shown to effectively recharge the groundwater depletion cone caused by over-exploitation. The offset rate is higher in plains than mountainous regions. In addition, the simulated FTFs depth compared well with the observed data both in D66 station (permafrost) and Hulugou station (seasonally frozen ground). Over the HRB, the upstream area is permafrost region with maximum thawed depth at 2.5 m and lower region is seasonal frozen ground region with maximum frozen depth at 3 m.
Gazdik, G. C.; Harris, Gazdik; Welsh, R. A.; Girol, V. P.
1988-01-01
The areas investigated are located in the White Mountain National Forest in Coos, Grafton, and Carroll Counties, New Hampshire. Personnel from the U.S. Bureau of Mines conducted field reconnaissance of the westernmost areas, Kinsman Mountain, Mt. Wolf-Gordon Pond, Jobildunk, and Carr Mountain, in the fall of 1980. Field reconnaissance of the eastern areas, Great Gulf, Presidential Range-Dry River, Dartmouth Range, Pemigewasset and Wild River was conducted in the spring of 1981. A total of 237 rock and 103 panned-concentrate samples were collected during the investigations. Reconnaissance radiometric ground surveys were conducted at selected locations.
Multiple episodes of zeolite deposition in fractured silicic tuff
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlos, B.A.; Chipera, S.J.; Snow, M.G.
Fractures in silicic tuffs above the water table at Yucca Mountain, Nevada, USA contain two morphologies of heulandite with different compositions. Tabular heulandite is zoned, with Sr-rich cores and Mg-rich rims. Later prismatic heulandite is nearly the same composition as the more magnesian rims. Heulandite and stellerite may occur between layers of calcite, and calcite occurs locally between generations of heulandite. Thermodynamic modeling, using estimated thermodynamic data and observed chemical compositions for heulandite and stellerite, shows that stellerite is the favored zeolite unless Ca concentrations are reduced or Mg and/or Sr concentrations are significantly elevated above current Yucca Mountain waters.
Floods in mountain areas—an overview based on examples from Switzerland
NASA Astrophysics Data System (ADS)
Weingartner, R.; Barben, M.; Spreafico, M.
2003-11-01
Mountains cover roughly one quarter of the planet's surface. Known as the Earth's water towers they produce a surplus of water that is transported to neighbouring lowlands via the vast river systems. Water as a vital benefit for life also holds dangers as a destructive element in the form of floods. The present paper, aims to discuss the basic aspects of floods in mountain areas and to illustrate them with examples of case studies, mainly from Switzerland. The hydrological characteristics of mountainous areas are described; the particular processes of flood generation in mountain areas, which should be taken into account. The last section is devoted to methods for estimating floods in ungauged catchments.
Groundwater Controls on Vegetation Composition and Patterning in Mountain Meadows
NASA Astrophysics Data System (ADS)
Loheide, S. P.; Lowry, C.; Moore, C. E.; Lundquist, J. D.
2010-12-01
Mountain meadows are groundwater dependent ecosystems that are hotspots of biodiversity and productivity in the Sierra Nevada of California. Meadow vegetation relies on shallow groundwater during the region’s dry summer growing season. Vegetation composition in this environment is influenced both by 1) oxygen stress that occurs when portions of the root zone are saturated and anaerobic conditions are created that limit root respiration and 2) water stress that occurs when the water table drops and water-limited conditions are created in the root zone. A watershed model that explicitly accounts for snowmelt processes was linked to a fine resolution groundwater flow model of Tuolumne Meadows in Yosemite National Park, CA to simulated spatially distributed water table dynamics. This linked hydrologic model was calibrated to observations from a well observation network for 2006-2008, and validated using data from 2009. A vegetation survey was also conducted at the site in which the three dominant species were identified at more than 200 plots distributed across the meadow. Nonparametric multiplicative regression was performed to create and select the best models for predicting vegetation dominance based on simulated hydrologic regime. The hydrologic niche of three vegetation types representing wet, moist, and dry meadow vegetation communities was best described using both 1) a sum exceedance value calculated as the integral of water table position above a threshold of oxygen stress and 2) a sum deceedance value calculated as the integral of water table position below a threshold of water stress. This linked hydrologic and vegetative modeling framework advances our ability to predict the propagation of human-induced climatic and land-use/-cover changes through the hydrologic system to the ecosystem.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Applicability of General Provisions to Plating and Polishing Area Sources 1 Table 1 to Subpart WWWWWW of Part 63. Applicability of General Provisions to Plating and Polishing Area Sources Protection of Environment... Pollutants: Area Source Standards for Plating and Polishing Operations Pt. 63, Subpt. WWWWWW, Table 1 Table 1...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Applicability of General Provisions to Plating and Polishing Area Sources 1 Table 1 to Subpart WWWWWW of Part 63. Applicability of General Provisions to Plating and Polishing Area Sources Protection of Environment... Pollutants: Area Source Standards for Plating and Polishing Operations Pt. 63, Subpt. WWWWWW, Table 1 Table 1...
Stone, Paul; Miller, David M.; Stevens, Calvin H.; Rosario, Jose J.; Vazquez, Jorge A.; Wan, Elmira; Priest, Susan S.; Valin, Zenon C.
2017-03-22
IntroductionThe Providence Mountains are in the eastern Mojave Desert about 60 km southeast of Baker, San Bernardino County, California. This range, which is noted for its prominent cliffs of Paleozoic limestone, is part of a northeast-trending belt of mountainous terrain more than 100 km long that also includes the Granite Mountains, Mid Hills, and New York Mountains. Providence Mountains State Recreation Area encompasses part of the range, the remainder of which is within Mojave National Preserve, a large parcel of land administered by the National Park Service. Access to the Providence Mountains is by secondary roads leading south and north from Interstate Highways 15 and 40, respectively, which bound the main part of Mojave National Preserve.The geologic map presented here includes most of Providence Mountains State Recreation Area and land that surrounds it on the north, west, and south. This area covers most of the Fountain Peak 7.5′ quadrangle and small adjacent parts of the Hayden quadrangle to the north, the Columbia Mountain quadrangle to the northeast, and the Colton Well quadrangle to the east. The map area includes representative outcrops of most of the major geologic elements of the Providence Mountains, including gneissic Paleoproterozoic basement rocks, a thick overlying sequence of Neoproterozoic to Triassic sedimentary rocks, Jurassic rhyolite that intrudes and overlies the sedimentary rocks, Jurassic plutons and associated dikes, Miocene volcanic rocks, and a variety of Quaternary surficial deposits derived from local bedrock units. The purpose of the project was to map the area in detail, with primary emphasis on the pre-Quaternary units, to provide an improved stratigraphic, structural, and geochronologic framework for use in land management applications and scientific research.
Conrad, James E.; Hill, Randall H.; Jachens, Robert C.; Neubert, John T.
1990-01-01
At the request of the U.S. Bureau of Land Management, approximately 19,300 acres of the Black Mountains North Wilderness Study Area (AZ-020-009) and 23,310 acres of the Burns Spring Wilderness Study Area (AZ-02D-010) were evaluated for mineral resources and mineral resource potential. In this report, the area studied is referred to, collectively or individually, as the 'wilderness study area' or simply 'the study area'; any reference to the Black Mountains North or Burns Spring Wilderness Study Areas refers only to that part of the wilderness study area for which a mineral survey was requested by the U.S. Bureau of Land Management. The study area is located in western Arizona, about 30 mi northwest of Kingman. There are no identified resources in the study area. An area surrounding the Portland mine and including the southern part of the Black Mountains North Wilderness Study Area and the extreme northwestern part of the Burns Spring Wilderness Study Area has high resource potential for gold and moderate resource potential for silver, lead, and mercury. The area surrounding this and including much of the northern part of the Burns Spring Wilderness Study Area has moderate potential for gold, silver, and lead. The northeastern corner of the Black Mountains North Wilderness Study Area has moderate potential for gold and low potential for silver, copper, and molybdenum resources. The central part, including the narrow strip of land just west of the central part, of the Black Mountains North Wilderness Study Area and the southern and extreme eastern parts of the Burns Spring Wilderness Study Area have low resource potential for gold. The central and southern parts of the Black Mountains North Wilderness Study Area and all but the southwestern part of the Burns Spring Wilderness Study Area have moderate resource potential for perlite. Moderate resource potential for zeolites is assigned to a large area around the Portland mine that includes parts of both study areas, to a narrow strip of land just west of the central part of the Black Mountains North Wilderness Study Area, and to all but the southwest corner of the Burns Spring Wilderness Study Area. There is no potential for oil and gas in either study area. Sand and gravel are present in both study areas, but abundant quantities of these resources are available closer to existing markets.
NASA Astrophysics Data System (ADS)
Torrez, G.; Carlson, C. W.; Putirka, K. D.; Pluhar, C. J.; Sharma, R. K.
2011-12-01
Late Cenozoic evolution of the western Cordillera is a matter of ongoing debate in geologic studies. Volcanic deposits within, and adjacent to the Sierra Nevada have played a significant role in many of these debates. With local faulting coincident with eruption of members of the Stanislaus Group at ca. 38°N, the composition and correlation of these volcanics can greatly aid our understanding of Sierra Nevada tectonics. At the crest of the central Sierra Nevada, 23 trachyandesite lava flows of the Table Mountain Formation, dated at ~10 Ma, cap Sonora Peak. These 23 flows compose the thickest and most complete known stratigraphic section of the Table Mountain Formation in the region. Located ~12 km east of Sonora Peak are 16 flows of trachyandesite at Grouse Meadow. We have collected a detailed set of geochemical and paleomagnetic data for flows of these two sections at Sonora Peak and Grouse Meadows in an attempt to correlate volcanic, paleomagnetic and structural events related to uplift and extension in the Sierra Nevada and the Walker Lane. Correlation of individual flows is possible based on: stratigraphic order, temporal gaps in deposition as determined by paleomagnetic remanence direction and nonconformities, and flow geochemistry. These correlations allow us to infer source localities, flow directions, and temporal changes in flow routes. The large number of flows present at Grouse Meadow provides an additional data set from which to correlate various localities in the region to those units not represented at Sonora Peak. Several flows which occur in the upper portions of the Sonora Peak and Grouse Meadow stratigraphic sections do not correlate between these localities. The causes of stratigraphic discontinuity potentially represent: tectonic isolation across the Sierran Crest, topographic isolation by the emplacement of younger flows, or the combination of the two. Additional to the correlation of individual flows at these localities, this study shows a significant shift in geochemistry across a stratigraphic boundary at both localities.
NASA Astrophysics Data System (ADS)
Jaberi, Maryam; Ghassemi, Mohammad R.; Shayan, Siavosh; Yamani, Mojtaba; Zamanzadeh, Seyed Mohammad
2018-01-01
The Alborz mountain chain is a region of active deformation within the Arabia-Eurasia continental collision zone. The southern part of central Alborz Mountains, in the north of Iran, represents complex tectonics because it is located at the border of two developing continental sedimentary basins between southern central Alborz and Central Iran. An arid and semi-arid climate, a large extent of Quaternary sediments, rugged topography, salt domes and faults with historical seismicity influence the Habble-Rud River catchment. In the present research, a number of tectonic geomorphologic indices were extracted from satellite imagery and 10 m DEM (digital elevation model) data in order to identify relative tectonic activity within the basin. The indices include: stream length-gradient index (Sl), drainage basin asymmetry (Af), index of mountain front sinuosity (Smf), hypsometric integral (Hi), index of drainage basin shape (Bs), ratio of valley-floor width to valley height (Vf), and fault density (Fd). Due to the presence of heterogeneous indices for all sections of the catchment causing large extension of Habble-Rud (3260 km2), all of the variables such as extremely erodible formations, faults and folds and salt tectonics on the Southern part; were put into a matrix table. As a new approach, the variables were put into the SAW (simple additive model) model as one of MADM (multi-attribute decision-making models) techniques. The study area was divided into four regions according to the values of SAW. These classes include very high (%11), high (48.3%), moderate (34.7%), and low activity (3.4%). The result of the model suggests that the study area is located on a changing tectonic trend in central Alborz from NW-SE to NE-SW. The regions with high relative tectonic activity in HR catchment correspond to the active Garmsar and Sorkhe-Kalout faults and diapirs.
Hillslope-Riparian-Streamflow Interactions in a Discontinuous Permafrost Alpine Environment
NASA Astrophysics Data System (ADS)
Carey, S. K.
2004-12-01
Hillslope-riparian-streamflow interactions are poorly characterized in mountainous discontinuous permafrost environments. Permafrost underlain soils have a distinct soil profile, characterized by thick near-surface organic horizons atop ice-rich mineral substrates, whereas slopes without permafrost have thinner or absent organic soils overlying well drained mineral horizons. Riparian areas occur at the base of both seasonally frozen and permafrost slopes, yet a stronger hydrologic and soil transition occurs at slope bases with only seasonal frost. In a subarctic alpine catchment within the Wolf Creek Research Basin, Yukon, Canada, experiments were conducted between 2001 and 2003 to evaluate linkages along the slope-riparian-stream continuum during melt and post-melt periods. Water table, hydraulic head, stable isotope (d2H, d18O) and simple geochemical (pH, SpC, DOC) data were collected along transects during melt and summer periods. In soils with only seasonal frost, there was a downward piezometric gradient in slopes and upward gradient in riparian areas during melt. In contrast, permafrost soils did not show a recharge/discharge gradient between the slope and riparian zone. DOC declined and SpC increased with depth at all sites during melt. DOC was lower in riparian zones and areas without organic soils. SpC declined in soils as dilute meltwater entered the soil, yet it was difficult to establish spatial relations due to differences in melt timing. The similarity in stable isotope composition among sites indicated that the slopes were well flushed with snowmelt water to depth. DOC in streamflow was greatest on the ascending freshet hydrograph, and declined rapidly following melt. Streamflow SpC declined dramatically in response to dilute meltwater inputs and a decline in stream pH indicates flowpaths through organic horizons. Following melt, DOC concentrations declined rapidly in both slopes and riparian areas. In summer, water tables lowered in seasonally frozen slopes, yet an upward hydraulic gradient and near-surface water table was maintained in the riparian area. In permafrost slopes, water tables fell into mineral soils, increasing SpC and reducing DOC. Riparian water tables remained high and DOC was greater than the seasonally frozen soils, yet riparian zone hydraulic gradient reversed suggesting a small recharge gradient. In permafrost soil, riparian zone DOC was an order of magnitude higher than seasonally frozen riparian zones, which had DOC concentrations similar to streamflow. The similarity in stable isotope ratios among sites throughout the summer indicated that soil waters were dominated by water supplied during melt period. Rainfall waters had little long-term effect on slope and riparian isotopic ratios. Mixing analysis of geochemical and isotopic parameters indicates that during melt, most water was supplied via near surface organic layers, whereas later in the year, subsurface pathways predominated. Permafrost slope-riparian zones have a different hydraulic and geochemical interaction than seasonally frozen ones, yet their respective contribution to streamflow during different times of the year remains unclear at this time.
Global mountain topography and the fate of montane species under climate change
NASA Astrophysics Data System (ADS)
Elsen, Paul R.; Tingley, Morgan W.
2015-08-01
Increasing evidence indicates that species throughout the world are responding to climate change by shifting their geographic distributions. Although shifts can be directionally heterogeneous, they often follow warming temperatures polewards and upslope. Montane species are of particular concern in this regard, as they are expected to face reduced available area of occupancy and increased risk of extinction with upslope movements. However, this expectation hinges on the assumption that surface area decreases monotonically as species move up mountainsides. We analysed the elevational availability of surface area for a global data set containing 182 of the world's mountain ranges. Sixty-eight per cent of these mountain ranges had topographies in which area did not decrease monotonically with elevation. Rather, mountain range topographies exhibited four distinct area-elevation patterns: decreasing (32% of ranges), increasing (6%), a mid-elevation peak in area (39%), and a mid-elevation trough in area (23%). These findings suggest that many species, particularly those of foothills and lower montane zones, may encounter increases in available area as a result of shifting upslope. A deeper understanding of underlying mountain topography can inform conservation priorities by revealing where shifting species stand to undergo area increases, decreases and bottlenecks as they respond to climate change.
Influences of herbivory and water on willow in elk winter range
Zeigenfuss, L.C.; Singer, F.J.; Williams, S.A.; Johnson, T.L.
2002-01-01
Elimination of large predators and reduced hunter harvest have led to concerns that an increasing elk (Cervus elaphus) population may be adversely affecting vegetation on the low-elevation elk winter range of Rocky Mountain National Park, Colorado, USA. Beaver (Castor canadensis) and their impoundments also have declined dramatically (94%) in the same area over the past 50 years coincident with a 20% decline in willow (Salix spp.) cover. From 1994 to 1998, we studied vegetation production responses of willow communities to elk herbivory and water availability. We estimated willow production by measuring current annual growth of shrubs in 9.3-m2 circular plots, and we measured herbaceous production by clipping vegetation within 0.25-m2 circular plots. Elk herbivory suppressed willow heights, leader lengths, annual production, and herbaceous productivity of willow communities. Water impoundment had a positive effect on herbaceous plant production, but little effect on shrubs, possibly because water tables were naturally high on the study sites even without beaver dams. Nevertheless, the winter range environment previously included more riparian willow habitat because of more stream area (47-69%) due to larger beaver populations. Elk herbivory appears to be the dominant force determining vegetation productivity in willow sites, but the effects may be exacerbated by lowered water tables. Fewer elk or protection from browsing, and water enhancement for <10 years along with management to encourage elk movement away from willow communities, could possibly work as strategies to reestablish sustainable willow communities.
ERIC Educational Resources Information Center
Turnage, Martha; Moore, Roderick
Mountain Empire Community College has a commitment to preserve, learn, and teach the heritage of mountain folk. Community participation by those who can teach the heritage of the area is a part of the implementation of this commitment. Some of the older people in the MECC service area either take the course work in folklife or come to the classes…
Miller, David M.; Bedford, David R.
2000-01-01
This geologic map database for the El Mirage Lake area describes geologic materials for the dry lake, parts of the adjacent Shadow Mountains and Adobe Mountain, and much of the piedmont extending south from the lake upward toward the San Gabriel Mountains. This area lies within the western Mojave Desert of San Bernardino and Los Angeles Counties, southeastern California. The area is traversed by a few paved highways that service the community of El Mirage, and by numerous dirt roads that lead to outlying properties. An off-highway vehicle area established by the Bureau of Land Management encompasses the dry lake and much of the land north and east of the lake. The physiography of the area consists of the dry lake, flanking mud and sand flats and alluvial piedmonts, and a few sharp craggy mountains. This digital geologic map database, intended for use at 1:24,000-scale, describes and portrays the rock units and surficial deposits of the El Mirage Lake area. The map database was prepared to aid in a water-resource assessment of the area by providing surface geologic information with which deepergroundwater-bearing units may be understood. The area mapped covers the Shadow Mountains SE and parts of the Shadow Mountains, Adobe Mountain, and El Mirage 7.5-minute quadrangles. The map includes detailed geology of surface and bedrock deposits, which represent a significant update from previous bedrock geologic maps by Dibblee (1960) and Troxel and Gunderson (1970), and the surficial geologic map of Ponti and Burke (1980); it incorporates a fringe of the detailed bedrock mapping in the Shadow Mountains by Martin (1992). The map data were assembled as a digital database using ARC/INFO to enable wider applications than traditional paper-product geologic maps and to provide for efficient meshing with other digital data bases prepared by the U.S. Geological Survey's Southern California Areal Mapping Project.
A Spine Loading Model of Women in the Military
1999-10-01
Table 1.8. Left erector spinae anatomical cross-sectional areas ..................................... 42 Table 1.9. Right rectus abdominis anatomical...cross-sectional areas ................................ 43 Table 1.10. Left rectus abdominis anatomical cross-sectional areas...Right rectus abdominis coronal plane moment-arms ....................................... 59 Table 1.26. Left rectus abdominis coronal plane moment-arms
Multidisciplinary hydrologic investigations at Yucca Mountain, Nevada
Dudley, William W.
1990-01-01
Future climatic conditions and tectonic processes have the potential to cause significant changes of the hydrologic system in the southern Great Basin, where a nuclear-waste repository is proposed for construction above the water table at Yucca Mountain, Nevada. Geothermal anomalies in the vicinity of Yucca Mountain probably result from the local and regional transport of heat by ground-water flow. Regionally and locally irregular patterns of hydraulic potential, local marsh and pond deposits, and calcite veins in faults and fractures probably are related principally to climatically imposed hydrologic conditions within the geologic and topographic framework. However, tectonic effects on the hydrologic system have also been proposed as the causes of these features, and existing data limitations preclude a full evaluation of these competing hypotheses. A broad program that integrates many disciplines of earth science is required in order to understand the relation of hydrology to past, present and future climates and tectonism.
Mountains as early warning indicators of climate change
NASA Astrophysics Data System (ADS)
Williams, M. W.
2015-12-01
The panoramic splendor and complexity of mountain environments have inspired and challenged humans for centuries. These areas have been variously perceived as physical structures to be conquered, as sites of spiritual inspiration, and as some of the last untamed natural places on Earth. In our time, the perception that "mountains are forever" may provide solace to those seeking stability in a rapidly changing world. However, changes in the hydrology and in the abundance and species composition of the native flora and fauna of mountain ecosystems are potential bellwethers of global change, because these systems have a propensity to amplify environmental changes within specific portions of this landscape. Mountain areas are thus sentinels of climate change. We are seeing effects today in case histories I present from the Himalaya's, Andes, Alps, and Rocky Mountains. Furthermore, these ecosystem changes are occurring in mountain areas before they occur in downstream ecosystems. Thus, mountains are early warning indicators of perturbations such as climate change. The sensitivity of mountain ecosystems begs for enhanced protection and worldwide protection. Our understanding of the processes that control mountain ecosystems—climate interactions, snowmelt runoff, biotic diversity, nutrient cycling—is much less developed compared to downstream ecosystems where human habitation and development has resulted in large investments in scientific knowledge to sustain health and agriculture. To address these deficiencies, I propose the formation of an international mountain research consortium.
15. BALD MOUNTAIN MILL, INTERIOR SHOWING PRECIPITATION AREA FROM NORTH, ...
15. BALD MOUNTAIN MILL, INTERIOR SHOWING PRECIPITATION AREA FROM NORTH, c. 1934. SHOWS PRECIPITATION TANK No. 1 (NOTE LOCKS), ZINC FEEDER WITH MIXING CONE, VACUUM RECEIVER AND PIPING. CREDIT WR. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
Deep installations of monitoring instrumentation in unsaturated welded tuff
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler, S.
1985-12-31
The major goal of this research is to develop low cost techniques to measure matric potential, moisture content, and to sample liquid and vapor for chemical analysis in the deep unsaturated zones of the arid areas of Nevada. This work has been prompted by the high level waste repository proposed in the unsaturated zone of Yucca Mountain. The work presented focuses on two deep (250 meter) boreholes planned for completion at the southern end of Yucca Mountain in fractured tuff. One borehole will be drilled without water and cased to slightly below the zone of saturation in order to measuremore » the depth to saturation and to collect water samples for analysis. This hole will also be used for routine quarterly neutron logging. Between loggings, vapor liquid water samplers will be suspended in the borehole and packed off at selective screened intervals to collect water vapor for isotopic analysis. The second borehole will be drilled to slightly above the water table and serve as a multiple interval psychrometer installation. Thermocouple psychrometers will be placed in isolated screened intervals within the casing. These boreholes will be used for instrument testing, interference and permeability testing, and to monitor short term fluctuations of soil and rock moisture due to precipitation and recharge.« less
Robert R. Alexander; Floyd W. Pond; Jane E. Rodgers
2008-01-01
There are about 30 species of yucca native to North America and the West Indies. Although most of these long-lived, evergreen plants grow in the arid southwestern United States and on Mexican tablelands, yuccas are found up to 2,400 m in elevation in the mountains of Colorado (Arnott 1962; Webber 1953). Four western species are considered here (table 1). Great Plains...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
... adult males, one indeterminate adult, and one child. Subsequently in 1963, a skull from an adult male... skull, were found and collected by Grant Willson of Cheyenne, WY, while hiking in the vicinity of the Huntley-Table Mountain burial site. Willson gave the skull to Dr. George Gill, [[Page 14060
Regeneration History of Three Table Mountain Pine/Pitch Pine Stands in Northern Georgia
Patrick H. Brose; Frank Tainter; Thomas A. Waldrop
2002-01-01
A dendrochronology study was conducted on three ridgetop pine communities in northern Georgia to document the current composition and structure, ascertain when the different species became established, and compare their establishment dates with the occurrence of disturbance or drought. Most oaks and pines in these stands date to the early 1900's and became...
Sustainable Food Security in the Mountains of Pakistan: Towards a Policy Framework.
Rasul, Golam; Hussain, Abid
2015-01-01
The nature and causes of food and livelihood security in mountain areas are quite different to those in the plains. Rapid socioeconomic and environmental changes added to the topographical constraints have exacerbated the problem of food insecurity in the Hindu Kush-Himalayan (HKH) region. In Pakistan, food insecurity is significantly higher in the mountain areas than in the plains as a result of a range of biophysical and socioeconomic factors. The potential of mountain niche products such as fruit, nuts, and livestock has remained underutilized. Moreover, the opportunities offered by globalization, market integration, remittances, and non-farm income have not been fully tapped. This paper analyzes the opportunities and challenges of food security in Pakistan's mountain areas, and outlines a framework for addressing the specific issues in terms of four different types of area differentiated by agro-ecological potential and access to markets, information, and institutional services.
Three Mountain Areas in Southwestern Wyoming.
purpose of this report the areas are called the Wyoming-Salt River Range Area, the Wind River Range Area, and the Uinta Range Area. These mountain...ranges enclose the Upper Green River and Bridger Basins , high plateau basins with a general elevation of 6,500 to 7,500 feet.
Better utilization of ground water in the Piedmont and mountain region of the southeast
Heath, Ralph C.
1979-01-01
The development of water supplies for domestic consumption, and for those commercial and industrial uses requiring relatively pure water, has followed a pattern in the Piedmont and mountain areas of the southeast similar to that in most other humid areas. The first settlers utilized seepage springs on hillsides. Such springs occur along steep slopes where the water table intersects the land surface. As the population of the region grew, it became increasingly necessary to resort to shallow dug wells for domestic water supplies. Such wells also served as sources of water for the villages that developed, in time, around crossroad taverns. Seepage springs and dug wells are a satisfactory source of water in a virgin environment but are quickly polluted by careless waste-disposal practices. Thus disposal of domestic wastes in shallow pits resulted in epidemics of water-borne diseases as the villages grew into towns. This resulted in the third phase of water-supply development, which consisted of installing water lines and supplying water to homes from town-owned wells. In time, some of these wells became polluted and others failed to supply adequate water for the increasing needs of the larger urban areas. In the fourth phase these areas met their needs by drawing water from nearby streams. By the early years of this century it was possible to make this water palatable and relatively safe as a result of improvement in filtration methods. Streams, of course, have highly variable rates of flow and, as towns grew into small cities, the minimum flow of many streams was not adequate to meet the water-supply needs. This problem was solved in the fifth phase by building dams on the streams. We are still in this phase as we build larger and larger reservoirs to meet our growing water needs. Thus, through five phases of growth in the Piedmont and mountains we have advanced from the point where ground water was the sole source of supply to the point where it is the forgotten resource. For reasons to be explained below, a sixth phase can be foreseen in which ground water and surface water are recognized as parts of the hydrologic system with advantages in their conjunctive development and use.
Geoengineering characterization of welded tuffs from laboratory and field investigations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, R.M.; Nimick, F.B.; Board, M.P.
1984-12-31
Welded tuff beneath Yucca Mountain adjacent to the Nevada Test Site (NTS) is being considered for development as a high-level radioactive waste repository by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Because access into Yucca Mountain has been limited to borehole explorations, early geoengineering materials characterizations have been derived from laboratory tests on cores from Yucca Mountain and from laboratory and field tests on welded tuffs located in G-Tunnel on the NTS. G-Tunnel contains welded tuffs that have similar properties and stress states to those at Yucca Mountain and has been the location for in situ rock mechanics testing.more » The purpose of this paper is to summarize the geoengineering material property data obtained to date and to compare appropriate laboratory and field data from G-Tunnel to findings from Yucca Mountain. Geomechanical and thermal data are provided and are augmented by limited geological and hydrological data. A comparison of results of laboratory measurements on tuffs from Yucca Mountain and G-Tunnel indicates good agreement between the bulk densities, saturations, moduli of elasticity, Poisson`s ratios, and P-wave velocities. The G-Tunnel tuff has slightly lower thermal conductivity, tensile strength, compressive strength and slightly higher matrix permeability than does the welded tuff near the proposed repository horizon at Yucca Mountain. From a laboratory-to-field scaling perspective, the modulus of deformation shows the most sensitivity to field conditions because of the presence of the joints found in the field. 14 references, 1 table.« less
50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude Latitude...
50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude Latitude...
50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude Latitude...
50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude Latitude...
50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude Latitude...
Changes in vegetation cover and composition in the Swedish mountain region.
Hedenås, Henrik; Christensen, Pernilla; Svensson, Johan
2016-08-01
Climate change, higher levels of natural resource demands, and changing land use will likely lead to changes in vegetation configuration in the mountain regions. The aim of this study was to determine if the vegetation cover and composition have changed in the Swedish region of the Scandinavian Mountain Range, based on data from the long-term landscape biodiversity monitoring program NILS (National Inventory of Landscapes in Sweden). Habitat type and vegetation cover were assessed in 1740 systematically distributed permanent field plots grouped into 145 sample units across the mountain range. Horvitz-Thompson estimations were used to estimate the present areal extension of the alpine and the mountain birch forest areas of the mountain range, the cover of trees, shrubs, and plants, and the composition of the bottom layer vegetation. We employed the data from two subsequent 5-year monitoring periods, 2003-2007 and 2008-2012, to determine if there have been any changes in these characteristics. We found that the extension of the alpine and the mountain birch forest areas has not changed between the inventory phases. However, the total tree canopy cover increased in the alpine area, the cover of graminoids and dwarf shrubs and the total cover of field vegetation increased in both the alpine area and the mountain birch forest, the bryophytes decreased in the alpine area, and the foliose lichens decreased in the mountain birch forest. The observed changes in vegetation cover and composition, as assessed by systematic data in a national and regional monitoring scheme, can validate the results of local studies, experimental studies, and models. Through benchmark assessments, monitoring data also contributes to governmental policies and land-management strategies as well as to directed cause and effect analyses.
Correa Ayram, Camilo A; Mendoza, Manuel E; Etter, Andrés; Pérez Salicrup, Diego R
2017-07-01
Landscape connectivity is essential in biodiversity conservation because of its ability to reduce the effect of habitat fragmentation; furthermore is a key property in adapting to climate change. Potential distribution models and landscape connectivity studies have increased with regard to their utility to prioritizing areas for conservation. The objective of this study was to model the potential distribution of Mountain cloud forests in the Transversal Volcanic System, Michoacán and to analyze the role of these areas in maintaining landscape connectivity. Potential distribution was modeled for the Mountain cloud forests based on the maximum entropy approach using 95 occurrence points and 17 ecological variables at 30 m spatial resolution. Potential connectivity was then evaluated by using a probability of connectivity index based on graph theory. The percentage of variation (dPCk) was used to identify the individual contribution of each potential area of Mountain cloud forests in overall connectivity. The different ways in which the potential areas of Mountain cloud forests can contribute to connectivity were evaluated by using the three fractions derived from dPCk (dPCintrak, dPCfluxk, and dPCconnectork). We determined that 37,567 ha of the TVSMich are optimal for the presence of Mountain cloud forests. The contribution of said area in the maintenance of connectivity was low. The conservation of Mountain cloud forests is indispensable, however, in providing or receiving dispersal flows through TVSMich because of its role as a connector element between another habitat types. The knowledge of the potential capacity of Mountain cloud forests to promote structural and functional landscape connectivity is key in the prioritization of conservation areas.
Air-Surface-Ground Water Cycling in an Agricultural Desert Valley of Southern Colorado
NASA Astrophysics Data System (ADS)
Lanzoni, M.
2017-12-01
In dryland areas around the world, vegetation plays an important role in stabilizing soil and encouraging recharge. In the Colorado high desert of the San Luis Valley, windstorms strip away topsoil and deposit dust on the surrounding mountain snowpack. Dust-on-snow lowers albedo and hastens melting, which in turn lowers infiltration and aquifer recharge. Since the 1990s, the San Luis Valley has experienced a sharp decline in aquifer levels due to over-development of its water resources. Where agricultural abstraction is significant, the unconfined aquifer has experienced a 9 m (30 ft) drop. Over the course of three years, this dryland hydrology study analyzed rain, snow, surface and ground water across a 20,000 km2 high desert area to establish a baseline of water inputs. δ18O and δ2H were analyzed to develop a LMWL specific to this region of the southern Rockies and isotopic differences were examined in relation to chemistry to understand environmental influences on meteoric waters. This work identifies a repeating pattern of acid rainfall with trace element contaminants, including actinides.To better understand how the area's dominant vegetation responds to a lowered water table, 76 stem water samples were collected from the facultative phreatophyte shrubs E. nauseosa and S. vermiculatus over the summer, fall, spring, and summer of 2015 and 2016 from study plots chosen for increasing depths to groundwater. This research shows distinct patterns of water capture strategy and seasonal shifts among the E. nauseosa and S. vermiculatus shrubs. These differences are most apparent where groundwater is most accessible. However, where the water table has dropped 6 m (20 feet) over the last decade, both E. nauseosa and S. vermiculatus survive only on near-surface snowmelt and rain.
27 CFR 9.143 - Spring Mountain District.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Spring Mountain District. 9.143 Section 9.143 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.143 Spring Mountain District. (a) Name. The...
27 CFR 9.143 - Spring Mountain District.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Spring Mountain District. 9.143 Section 9.143 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.143 Spring Mountain District. (a) Name. The...
27 CFR 9.102 - Sonoma Mountain.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Sonoma Mountain. 9.102 Section 9.102 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.102 Sonoma Mountain. (a) Name. The name of the...
27 CFR 9.102 - Sonoma Mountain.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Sonoma Mountain. 9.102 Section 9.102 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.102 Sonoma Mountain. (a) Name. The name of the...
27 CFR 9.143 - Spring Mountain District.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Spring Mountain District. 9.143 Section 9.143 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.143 Spring Mountain District. (a) Name. The...
27 CFR 9.102 - Sonoma Mountain.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Sonoma Mountain. 9.102 Section 9.102 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.102 Sonoma Mountain. (a) Name. The name of the...
27 CFR 9.143 - Spring Mountain District.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Spring Mountain District. 9.143 Section 9.143 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.143 Spring Mountain District. (a) Name. The...
27 CFR 9.143 - Spring Mountain District.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Spring Mountain District. 9.143 Section 9.143 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.143 Spring Mountain District. (a) Name. The...
27 CFR 9.102 - Sonoma Mountain.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Sonoma Mountain. 9.102 Section 9.102 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.102 Sonoma Mountain. (a) Name. The name of the...
27 CFR 9.102 - Sonoma Mountain.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Sonoma Mountain. 9.102 Section 9.102 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.102 Sonoma Mountain. (a) Name. The name of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
... within the following areas: Lost Valley--40 acres (Cow Mountain Management Area, Mendocino County..., Sonoma County). d. The following rules apply to Cache Creek, Cow Mountain, Knoxville, Geysers, Indian... hour after sunset except for long-term parking for overnight backcountry visitors. Cow Mountain...
TILTING TABLE AREA, PDP ROOM, LEVEL +27, LOOKING SOUTHWEST, SHOWING ...
TILTING TABLE AREA, PDP ROOM, LEVEL +27, LOOKING SOUTHWEST, SHOWING TILTING TABLE, MARKED BY WHITE ELECTRICAL CORD - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
78 FR 59806 - Establishment of Class E Airspace; White Mountain, AK
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
...-1185; Airspace Docket No. 12-AAL-8] Establishment of Class E Airspace; White Mountain, AK AGENCY... airspace at White Mountain Airport, White Mountain, AK, to accommodate aircraft using new Area Navigation..., Airport, White Mountain, AK (77 FR 75598). Interested parties were invited to participate in this...
Geochemical survey of the Blood Mountain Roadless Area, Union and Lumpkin counties, Georgia
Koeppen, Robert P.; Nelson, Arthur E.
1989-01-01
The U.S. Geological Survey (USGS) made a reconnaissance geochemical survey of the Blood Mountain Roadless Area to search for unexposed mineral deposits which might be recognized by a geochemical signature in the abundance of distribution patterns of trace elements. Forty five fine-grained stream-sediment samples and 45 panned-concentrate samples were collected in the Blood Mountain study area (fig. 1). A.E. Nelson, in conjunction with detailed geologic mapping, collected 13 rock-chip samples for geochemical analysis, in addition to a large number of hand specimins for thin-section study. Nelson's geologic study (1983), combined with this geochemical survey, provide the basis for our mineral-resource assessment of the Blood Mountain Roadless Area (Koeppen and others, 1983).
Study on the path selection of sustainable development in the mountainous area of Beijing
NASA Astrophysics Data System (ADS)
Chen, Malin; Zhou, Zhujun; Zhang, Huizhi; Chen, Ci; Chen, Junhong; Zhou, Zhongren
2018-02-01
The mountainous area of Beijing is the broad region with weak economic features, ecologically fragile and special ecological functions. The ecological conditions, sustainability and regional economic development are intercorrelated in the region. It is arduous to enhance the regional competitive advantage and improve the economic development level through the environmental protection and ecological conservation. This study elaborates the relationship between ecology and economic development from the perspectives of ecology, productivity and life style in mountainous areas of Beijing. Then this paper discusses how to increase sustainable development of mountain areas from several aspects, including key regional developments, industrial development, and ecological compensation mechanism, considering the strategic goals of accelerating economic transformation, coordinating urban and rural development, and promoting new-type urbanization.
Powell, Robert E.
2001-01-01
This data set maps and describes the geology of the Porcupine Wash 7.5 minute quadrangle, Riverside County, southern California. The quadrangle, situated in Joshua Tree National Park in the eastern Transverse Ranges physiographic and structural province, encompasses parts of the Hexie Mountains, Cottonwood Mountains, northern Eagle Mountains, and south flank of Pinto Basin. It is underlain by a basement terrane comprising Proterozoic metamorphic rocks, Mesozoic plutonic rocks, and Mesozoic and Mesozoic or Cenozoic hypabyssal dikes. The basement terrane is capped by a widespread Tertiary erosion surface preserved in remnants in the Eagle and Cottonwood Mountains and buried beneath Cenozoic deposits in Pinto Basin. Locally, Miocene basalt overlies the erosion surface. A sequence of at least three Quaternary pediments is planed into the north piedmont of the Eagle and Hexie Mountains, each in turn overlain by successively younger residual and alluvial deposits. The Tertiary erosion surface is deformed and broken by north-northwest-trending, high-angle, dip-slip faults and an east-west trending system of high-angle dip- and left-slip faults. East-west trending faults are younger than and perhaps in part coeval with faults of the northwest-trending set. The Porcupine Wash database was created using ARCVIEW and ARC/INFO, which are geographical information system (GIS) software products of Envronmental Systems Research Institute (ESRI). The database consists of the following items: (1) a map coverage showing faults and geologic contacts and units, (2) a separate coverage showing dikes, (3) a coverage showing structural data, (4) a scanned topographic base at a scale of 1:24,000, and (5) attribute tables for geologic units (polygons and regions), contacts (arcs), and site-specific data (points). The database, accompanied by a pamphlet file and this metadata file, also includes the following graphic and text products: (1) A portable document file (.pdf) containing a navigable graphic of the geologic map on a 1:24,000 topographic base. The map is accompanied by a marginal explanation consisting of a Description of Map and Database Units (DMU), a Correlation of Map and Database Units (CMU), and a key to point-and line-symbols. (2) Separate .pdf files of the DMU and CMU, individually. (3) A PostScript graphic-file containing the geologic map on a 1:24,000 topographic base accompanied by the marginal explanation. (4) A pamphlet that describes the database and how to access it. Within the database, geologic contacts , faults, and dikes are represented as lines (arcs), geologic units as polygons and regions, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum and link it to other tables (.rel) that provide more detailed geologic information.
50 CFR Table 43 to Part 679 - Northern Bering Sea Research Area
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Northern Bering Sea Research Area 43 Table 43 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 43 Table 43 to Part 679—Northern Bering Sea Research Area Longitude Latitude 1687...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Primary Zinc Production Area Sources 1 Table 1 to Subpart GGGGGG of Part 63 Protection of Environment... Pollutants for Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Pt. 63, Subpt. GGGGGG, Table 1 Table 1 to Subpart GGGGGG of Part 63—Applicability of General Provisions to Primary Zinc...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Primary Zinc Production Area Sources 1 Table 1 to Subpart GGGGGG of Part 63 Protection of Environment... Pollutants for Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Pt. 63, Subpt. GGGGGG, Table 1 Table 1 to Subpart GGGGGG of Part 63—Applicability of General Provisions to Primary Zinc...
Prudic, David E.; Niswonger, Richard G.; Harrill, James R.; Wood, James L.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.
2007-01-01
Ground water is abundant in many alluvial basins of the Basin and Range Physiographic Province of the western United States. Water enters these basins by infiltration along intermittent and ephemeral channels, which originate in the mountainous regions before crossing alluvial fans and piedmont alluvial plains. Water also enters the basins as subsurface ground-water flow directly from the mountains, where infiltrated precipitation recharges water-bearing rocks and sediments at these higher elevations. Trout Creek, a typical intermittent stream in the Middle Humboldt River Basin in north-central Nevada, was chosen to develop methods of estimating and characterizing streambed infiltration and ground-water recharge in mountainous terrains. Trout Creek has a drainage area of about 4.8 × 107 square meters. Stream gradients range from more than 1 × 10–1 meter per meter in the mountains to 5 × 10–3 meter per meter at the foot of the piedmont alluvial plain. Trout Creek is perennial in short reaches upstream of a northeast-southwest trending normal fault, where perennial springs discharge to the channel. Downstream from the fault, the water table drops below the base of the channel and the stream becomes intermittent.Snowmelt generates streamflow during March and April, when streamflow extends onto the piedmont alluvial plain for several weeks in most years. Rates of streambed infiltration become highest in the lowest reaches, at the foot of the piedmont alluvial plain. The marked increases in infiltration are attributed to increases in streambed permeability together with decreases in channel-bed armoring, the latter which increases the effective area of the channel. Large quartzite cobbles cover the streambed in the upper reaches of the stream and are absent in the lowest reach. Such changes in channel deposits are common where alluvial fans join piedmont alluvial plains. Poorly sorted coarse and fine sediments are deposited near the head of the fan, while finer-grained but better sorted gravels and sands are deposited near the foot.All flow in Trout Creek is lost to infiltration in the upper and middle reaches of the channel during years of normal to below-normal precipitation. During years of above-normal precipitation, streamflow extends beyond the piedmont alluvial plain to the lower reaches of the channel, where high rates of infiltration result in rapid stream loss. The frequency and duration of streambed infiltration is sufficient to maintain high water contents and low chloride concentrations, compared with interchannel areas, to depths of at least 6 m beneath the channel. Streamflow, streambed infiltration, and unsaturated-zone thickness are all highly variable along intermittent streams, resulting in recharge that is highly variable as well.Average annual ground-water recharge in the mountainous part of the Trout Creek drainage upstream of Marigold Mine was estimated on the basis of chloride balance to be 5.2 × 105 cubic meters. Combined with an average annual surface runoff exiting the mountains of 3.4 × 105cubic meters, the total annual volume of inflow to alluvial-basin sediments from the mountainous part of the Trout Creek is 8.6 × 105 cubic meters, assuming that all runoff infiltrates the stream channel. This equates to about 7 percent of average annual precipitation, which is about the same percentage estimated for ground-water recharge using the original Maxey-Eakin method.
Patient Navigation by Community Health Workers Increases Access to Surgical Care in Rural Haiti.
Matousek, Alexi C; Addington, Stephen R; Kahan, Joseph; Sannon, Herriot; Luckner, Thelius; Exe, Chauvet; Jean Louis, Rodolphe R Eisenhower; Lipsitz, Stuart; Meara, John G; Riviello, Robert
2017-12-01
In the Hôpital Albert Schweitzer district in rural Haiti, patients from mountain areas receive fewer operations per capita than patients from the plains. Possible additional barriers for mountain patients include lower socioeconomic status, lack of awareness of financial support, illiteracy and unfamiliarity with the hospital system. We sought to increase the rate of elective surgery for a mountain population using a patient navigation program. Patient navigators were trained to guide subjects from a mountain population through the entire hospital process for elective surgery. We compared the rate of elective operations before and after the patient navigation intervention between three groups: a control group from a mountainous area, a control group from the plains and an intervention group from a mountainous area. The baseline elective operation rate differed significantly between the plains control group, the mountain control group and the mountain intervention group (361 vs. 57 vs. 68 operations per 100,000 population per year). The rate of elective surgery between the two mountain groups was not statistically different prior to the intervention. After the intervention, the elective operation rate in the mountain group that received patient navigation increased from 68 to 131 operations per 100,000 population per year (p = 0.017). Patient navigation doubled the elective operation rate for a mountain population in rural Haiti. While additional barriers to access remain for this vulnerable population, patient navigation is an essential augmentation to financial assistance programs to ensure that the poor gain access to surgical care.
Recent population trends of mountain goats in the Olympic Mountains, Washington
Jenkins, Kurt J.; Happe, Patricia J.; Beirne, Katherine F.; Hoffman, Roger A.; Griffin, Paul C.; Baccus, William T.; Fieberg, John
2012-01-01
Mountain goats (Oreamnos americanus) were introduced in Washington's Olympic Mountains during the 1920s. The population subsequently increased in numbers and expanded in range, leading to concerns by the 1970s over the potential effects of non-native mountain goats on high-elevation plant communities in Olympic National Park. The National Park Service (NPS) transplanted mountain goats from the Olympic Mountains to other ranges between 1981 and 1989 as a means to manage overabundant populations, and began monitoring population trends of mountain goats in 1983. We estimated population abundance of mountain goats during 18–25 July 2011, the sixth survey of the time series, to assess current population status and responses of the population to past management. We surveyed 39 sample units, comprising 39% of the 59,615-ha survey area. We estimated a population of 344 ± 72 (90% confidence interval [CI]) mountain goats in the survey area. Retrospective analysis of the 2004 survey, accounting for differences in survey area boundaries and methods of estimating aerial detection biases, indicated that the population increased at an average annual rate of 4.9% since the last survey. That is the first population growth observed since the cessation of population control measures in 1990. We postulate that differences in population trends observed in western, eastern, and southern sections of the survey zone reflected, in part, a variable influence of climate change across the precipitation gradient in the Olympic Mountains.
TILTING TABLE AREA, PDP ROOM, LEVEL +27, LOOKING NORTHWEST. TILTING ...
TILTING TABLE AREA, PDP ROOM, LEVEL +27, LOOKING NORTHWEST. TILTING TABLE MARKED BY WHITE ELECTRICAL CORD IN LOWER LEFT CENTER - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Suits, V.J.; Wenrich, K.J.
1982-01-01
Fifty-two stream-sediment samples, collected from an area south of Helena, Jefferson County, Montana, were sieved into two size fractions (50 ppm for the fine fraction) were encountered in samples from the Warm Springs Creek drainage area, along Prickly Pear Creek near Welmer and Golconda Creeks and along Muskrat Creek. All groups showed a significant correlation at the 99 percent confidence level (r between 0.73 and 0.77) between U and Th. Uranium was found to correlate significantly only with Th (as mentioned above) and with -Ni in the fine fraction of the volcanics group. U correlates significantly with -Al2O3, Ba, organic C, -K2O, -Sr and Y in both size fractions for the Boulder batholith. Correlations between U and each of several elements differ for the fine and coarse fractions of the Boulder batholith group, suggesting that the U distribution in these stream sediments is in large part controlled by grain size. Correlations were found between U and CaO, Cr, Fe203, -Na2O, Sc, -SiO2, TiO2, Yb and Zr in the coarse fraction but not in the fine fraction. U correlates weakly (to the 90% confidence level, crc<.37) with -Co and -Cu in the fine but not the coarse fraction. These results are compared to a previous study in the northern Absaroka mountains. Correlation coefficients between all other elements determined from these samples are also shown in Tables 12 to 15.
Arkansas, 2009 forest inventory and analysis factsheet
James F. Rosson
2011-01-01
The summary includes estimates of forest land area (table 1), ownership (table 2), forest-type groups (table 3), volume (tables 4 and 5), biomass (tables 6 and 7), and pine plantation area (table 8) along with maps of Arkansasâ survey units (fig. 1), percent forest by county (fig. 2), and distribution of pine plantations (fig. 3). The estimates are presented by survey...
Beard, Sue; Haxel, Gordon B.; Dorsey, Rebecca J.; McDougall, Kristin A.; Jacobsen, Carl E.
2016-01-01
Deformation related to late Neogene dextral shear can explain a shift from an estuarine to lacustrine depositional environment in the southern Bouse Formation north of Yuma, Arizona. We infer that late Neogene deformation in the Chocolate Mountain Anticlinorium (CMA) created a barrier that blocked an estuary inlet, and that pre-existing and possibly active structures subsequently controlled the local course of the lower Colorado River. Structural patterns summarized below suggest that the CMA absorbed transpressional strain caused by left-stepping segments of dextral faults of the San Andreas fault system and/or the eastern California shear zone and Gulf of California shear zone. For this hypothesis to be correct, about 200-250 m of post-6 Ma, pre- ~5.3 Ma uplift along the CMA crest would be required to cut off a marine inlet. The 220-km-long CMA, cored by the early Paleogene Orocopia Schist subduction complex, extends from the Orocopia Mountains (Calif.) southeastward through the Chocolate Mountains (parallel to the southern San Andreas fault). Where Highway 78 crosses the Chocolate Mountains (Fig. 1), the CMA turns eastward through the Black Mountain-Picacho area (Calif.) and Trigo Mountains (Ariz.) into southwest Arizona. It separates southernmost Bouse Formation outcrops of the Blythe basin from subsurface Bouse outcrops to the south in the Yuma area. South of Blythe basin the CMA is transected by the lower Colorado River along a circuitous path. Here we focus on the geology of an area between the central Chocolate Mountains and the Yuma Proving Grounds in Arizona. Specific landmarks include the southeast Chocolate Mountains, Midway Mountains, Peter Kane Mountain, Black Mountain, Picacho Peak, and Gavilan Hills. For simplicity, we refer to this as the eastern Chocolate Mountains.
NASA Astrophysics Data System (ADS)
Peddle, D. R.; Hall, F.
2009-12-01
The BIOPHYS algorithm provides innovative and flexible methods for the inversion of canopy reflectance models (CRM) to derive essential biophysical structural information (BSI) for quantifying vegetation state and disturbance, and for input to ecosystem, climate and carbon models. Based on spectral, angular, temporal and scene geometry inputs that can be provided or automatically derived, the BIOPHYS Multiple-Forward Mode (MFM) approach generates look-up tables (LUTs) that comprise reflectance data, structural inputs over specified or computed ranges, and the associated CRM output from forward mode runs. Image pixel and model LUT spectral values are then matched. The corresponding BSI retrieved from the LUT matches is output as the BSI results. BIOPHYS-MFM has been extensively used with agencies in Canada and the USA over the past decade (Peddle et al 2000-09; Soenen et al 2005-09; Gamon et al 2004; Cihlar et al 2003), such as CCRS, CFS, AICWR, NASA LEDAPS, BOREAS and MODIS Science Teams, and for the North American Carbon Program. The algorithm generates BSI products such as land cover, biomass, stand volume, stem density, height, crown closure, leaf area index (LAI) and branch area, crown dimension, productivity, topographic correction, structural change from harvest, forest fires and mountain pine beetle damage, and water / hydrology applications. BIOPHYS-MFM has been applied in different locations in Canada (six provinces from Newfoundland to British Columbia) and USA (NASA COVER, MODIS and LEDAPS sites) using 7 different CRM models and a variety of imagery (e.g. MODIS, Landsat, SPOT, IKONOS, airborne MSV, MMR, casi, Probe-1, AISA). In this paper we summarise the BIOPHYS-MFM algorithm and results from Terra-MODIS imagery from MODIS validation sites at Kananaskis Alberta in the Canadian Rocky Mountains, and from the Boreal Ecosystem Atmosphere Study (BOREAS) in Saskatchewan Canada. At the montane Rocky Mountain site, BIOPHYS-MFM density estimates were within ±380 stems/hectare (ha), with horizontal crown radius (HCR) ±0.4m, vertical crown radius (VCR) ±0.6m, and height (HGT) ±0.8m. At the BOREAS site, analysis of single-date MODIS imagery yielded density estimates within ±210 stems/ha, HCR ±0.3m, VCR ±0.5m, and HGT ±0.9m. Higher accuracies at BOREAS compared to the Rocky Mountain site were attributed primarily to the more complex terrain in the mountains, for which good results were obtained given the steep environmental, ecosystem, terrain and biophysical gradients. Further analysis of multiple BOREAS MODIS scenes with different view zenith angles provided convergence of BSI results, with improvements found for density (±42 stems/ha) and HCR (±0.2m). We concluded that good results from MODIS were obtained for both boreal and montane ecosystems. From this and other studies, BIOPHYS-MFM is well suited for large-area, multi-temporal applications involving multiple image sets and mosaics for assessing vegetation disturbance and quantifying vegetation dynamics for carbon and other models. It is also suitable for integration with forest inventory, monitoring and update needs, and other programs.
Checklist of the vascular plants of Steamboat Mountain Research Natural Area.
S. Reid Schuller; Robert E. Frenkel
1981-01-01
Lists 237 vascular plant taxa found in the 570-hectare Steamboat Mountain Research Natural Area. Notes on habitats, community types, and abundance are included for most taxa. This research note provides scientists, educators, and land managers with baseline information on the presence, location, and abundance of vascular plants within the Steamboat Mountain Research...
27 CFR 9.231 - Moon Mountain District Sonoma County.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Moon Mountain District Sonoma County. 9.231 Section 9.231 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.231 Moon Mountain District Sonom...
Interior view to the south of computer work stations in ...
Interior view to the south of computer work stations in front of elevated work area 1570 on left and elevated glassed in work area 1870 on right - Over-the-Horizon Backscatter Radar Network, Mountain Home Air Force Operations Building, On Desert Street at 9th Avenue Mountain Home Air Force Base, Mountain Home, Elmore County, ID
50 CFR Table 43 to Part 679 - Northern Bering Sea Research Area
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Northern Bering Sea Research Area 43... ALASKA Pt. 679, Table 43 Table 43 to Part 679—Northern Bering Sea Research Area Longitude Latitude 168 7... and Bering Seas, Area 400 and Area 514, respectively. [75 FR 61652, Oct. 6, 2010] ...
50 CFR Table 43 to Part 679 - Northern Bering Sea Research Area
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Northern Bering Sea Research Area 43... ALASKA Pt. 679, Table 43 Table 43 to Part 679—Northern Bering Sea Research Area Longitude Latitude 168 7... and Bering Seas, Area 400 and Area 514, respectively. [75 FR 61652, Oct. 6, 2010] ...
50 CFR Table 43 to Part 679 - Northern Bering Sea Research Area
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Northern Bering Sea Research Area 43... ALASKA Pt. 679, Table 43 Table 43 to Part 679—Northern Bering Sea Research Area Longitude Latitude 168 7... and Bering Seas, Area 400 and Area 514, respectively. [75 FR 61652, Oct. 6, 2010] ...
50 CFR Table 43 to Part 679 - Northern Bering Sea Research Area
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Northern Bering Sea Research Area 43... ALASKA Pt. 679, Table 43 Table 43 to Part 679—Northern Bering Sea Research Area Longitude Latitude 168 7... and Bering Seas, Area 400 and Area 514, respectively. [75 FR 61652, Oct. 6, 2010] ...
Scott W. Bailey; Patricia A. Brousseau; Kevin J. McGuire; Donald S. Ross
2014-01-01
Upland headwater catchments, such as those in the AppalachianMountain region, are typified by coarse textured soils, flashy hydrologic response, and low baseflow of streams, suggesting well drained soils and minimal groundwater storage. Model formulations of soil genesis, nutrient cycling, critical loads and rainfall/runoff response are typically based on vertical...
Final Environmental Planning Technical Report. Land Use
1984-01-01
COLLEGE RECREATIONAL FACILITIES Recreational Facilities Number Indoor Facilities Gym (Basketball, Volleyball) 1 Weight Room 1 Handball /Racquetball...Clubs/Gymnasiums 4 YMCA Gloria Stevens Figure Salon Nautilus Fitness Center Rocky Mountain Health Club 10 handball /racquetball courts, swimming pool, gym...Range I Roller Rink 1 Indoor Handball /Racquetball Courts 5 Indoor Softball Diamonds 3 Lighted Picnic Tables 14 Youth Baseball Diamonds 5 Tennis Courts
Data base for early postfire succession in Northern Rocky Mountain forests
Peter F. Stickney; Robert B. Campbell
2000-01-01
Web site and CD-ROM include 21 pages of text plus electronic data for 55 succession sites including color plates, tables, and figures. Provides data on quantitative postfire changes of plant species and forest vegetation components for up to the first 25 years of secondary plant succession for 55 forest sites in northern Idaho and northwestern Montana. Cover (aerial...
K. L. Pope; D. S. Montoya; J. N. Brownlee; J. Dierks; T. E. Lisle
2015-01-01
Mountain meadow habitats are valued for their ecological importance. They attenuate floods, improve water quality, and support high biodiversity. Many meadow habitats in the western US are degraded, and efforts are increasing to restore these montane meadow ecosystems. Rewatering projects such as pond-and-plug quickly raise the water table by blocking the existing...
A new network on mountain geomorphosites
NASA Astrophysics Data System (ADS)
Giusti, Christian
2013-04-01
Since about two decades, the value of geoheritage in mountain areas has been re-discovered in various parts of the Alps (Reynard et al., 2010) and other mountain ranges, and various initiatives (protection of sites worthy of protection, inventories of geomorphosites, geotourist promotion, creation of geoparks, etc.) to conserve or promote mountain geoheritage have been developed. As mountains are recognized as natural areas with a very high geodiversity, and at the same time as areas with a great potential for the development of soft tourism, a new Network on Mountain Geomorphosites was created in October 2012 in conclusion to a workshop organized by the University of Lausanne (Switzerland). The Network is open to all researchers active in geoheritage, geoconservation and geotourism studies in mountain areas. For the first years research will focus on three main issues: - Geoheritage and natural processes: Mountains are very sensitive areas where climate change impacts are very acute and where active geomorphological processes rapidly modify landscapes. It is hypothesized that geoheritage will be highly impacted by global change in the future. Nevertheless, at the moment, very little research is carried out on the evolution of landforms recognized as geoheritage and no specific management measures have been developed. Also, the tourist activities related to geoheritage, especially the trails developed to visit geomorphosites, are sensitive to geomorphological processes in mountain areas in a context of global change, and need, therefore, to be better addressed by geomorphologists. - Geotourism: During the last two decades numerous initiatives have developed geotourism in mountain areas. Nevertheless, studies addressing issues such as the needs of the potential public(s) of geotourism, the evaluation of the quality of the geotourist products developed by scientists and/or local authorities, and the assessment of the economic benefits of geotourism for the regional economy are quite scarce. There is, therefore, a real need to fill the gap of empirical data on the social-economical impacts of geotourism, and on the relationship between the geotourist products developed by the scientific community and the expectations of the public and the tourist sector. The collaboration with social scientists (economists, sociologists) will help to fulfill this objective. - Environmental education: During the last years, a lot of work has been done on the assessment of geoheritage and the selection of sites worthy of promotion and/or protection but few attempts have addressed the question of using geoheritage to communicate on more general issues such as the dynamics and sensitivity of mountain environments or the impacts of climate change on mountain areas. It is, therefore, necessary to develop communication and learning methods - in particular by using new communication technologies - to improve environmental education based on geoheritage site promotion for several kinds of publics, in particular tourists (to improve their awareness of the sensitivity of mountain environments) and scholars. These three research objectives will be fulfilled by the development of common research, in particular cross-border case studies, and by the elaboration of specific courses for Ph.D. and master students. Collaboration with existing mountain networks (scientific, nature parks, etc.) is expected.
Aspey, R A; McDermid, I S; Leblanc, T; Howe, J W; Walsh, T D
2008-09-01
The Jet Propulsion Laboratory operates lidar systems at Table Mountain Facility (TMF), California (34.4 degrees N, 117.7 degrees W) and Mauna Loa Observatory, Hawaii (19.5 degrees N, 155.6 degrees W) under the framework of the Network for the Detection of Atmospheric Composition Change. To complement these systems a new Raman lidar has been developed at TMF with particular attention given to optimizing water vapor profile measurements up to the tropopause and lower stratosphere. The lidar has been designed for accuracies of 5% up to 12 km in the free troposphere and a detection capability of <5 ppmv. One important feature of the lidar is a precision alignment system using range resolved data from eight Licel transient recorders, allowing fully configurable alignment via a LABVIEW/C++ graphical user interface (GUI). This allows the lidar to be aligned on any channel while simultaneously displaying signals from other channels at configurable altitude/bin combinations. The general lidar instrumental setup and the details of the alignment control system, data acquisition, and GUI alignment software are described. Preliminary validation results using radiosonde and lidar intercomparisons are briefly presented.
NASA Astrophysics Data System (ADS)
Riwayatiningsih; Purnaweni, Hartuti
2018-02-01
Kendal is one of 35 regencies in Central Java which has diverse topographies, from low land, hilly, to mountainous areas. Mountainous area of Kendal with numerous unique and distinct natural environments, supported by various unique and distinct culture of its community can be used for tourism activities. Kendal has natural and sociocultural resources for developing tourism that must be considered by the local government. Therefore, nature based tourism resources assessment is important in order to determine the appropriate area in the planning of sustainable tourism destination. The objectives of this study are to assess and prioritize the potential area of mountainous tourism object in Kendal using geospatial approach based on criteria attractiveness, accessibility and amenity of the tourism object. Those criteria are modification of ADO-ODTWA guidelines and condition of the study location. There are 16 locations of tourism object that will be assessed. The result will be processed using ArcMap 10.3. The result will show the most potential tourism object that could become priority for mountainous tourism development in Kendal.
Levings, Gary W.
1982-01-01
The potentiometric surface of the Judith River Formation is mapped at a scale of 1:1,000,000. The map is one of a series produced as part of a regional study of aquifers of Cenozoic and Mesozoic age in the northern Great Plains of Montana. The contour interval is 200 feet. Water in the Judith River Formation occurs under water-table and artesian conditions. The direction of regional ground-water movement is from west to east. Water is discharged from the Judith River Formation to the Milk River from near Havre, Montana, to Malta and to the Missouri River south of the Bearpaw and Little Rocky Mountains. The average discharge from 236 wells is about 10 gallons per minute, and the specific capacity of 186 wells averages 0.66 gallon per minute per foot of drawdown. (USGS)
Johnson, Matthew; Kern, Jeffrey; Haig, Susan M.
2010-01-01
This report provides an analysis of California Condor (Gymnogyps californianus) space use of six management units in southern California (Hopper Mountain and Bitter Creek National Wildlife Refuges, Wildlands Conservancy-Wind Wolves Preserve, Tejon Mountain Village Specific Plan, California Condor Study Area, and the Tejon Ranch excluding Tejon Mountain Village Specific Plan and California Condor Study Area). Space use was analyzed to address urgent management needs using location data from Global Positioning System transmitters. The U.S. Fish and Wildlife Service provided the U.S. Geological Survey with location data (2004-09) for California Condors from Global Positioning System transmitters and Geographic Information System data for the six management units in southern California. We calculated relative concentration of use estimates for each management unit for each California Condor (n = 21) on an annual basis (n = 39 annual home ranges) and evaluated resource selection for the population each year using the individual as our sampling unit. The most striking result from our analysis was the recolonization of the Tejon Mountain Village Specific Plan, California Condor Study Area, and Tejon Ranch management units during 2008. During 2004-07, the home range estimate for two (25 percent) California Condors overlapped the Tejon Mountain Village Specific Plan, California Condor Study Area, and Tejon Ranch management units (n = 8), and use within the annual home range generally was bimodal and was concentrated on the Bitter Creek and Hopper Mountain National Wildlife Refuges. However, 10 (77 percent) California Condor home ranges overlapped the Tejon Mountain Village Specific Plan, California Condor Study Area, and Tejon Ranch management units during 2008 (n = 13), and by 2009, the home range of every condor carrying a Global Positioning System transmitter (n = 14) overlapped these management units. Space use was multimodal within the home range during 2008-09 and was concentrated on Hopper Mountain Refuge in the south, Bittercreek Refuge and the Wind Wolves Preserve in the northwest, and the Tejon Mountain Village Specific Plan, California Condor Study Area, and Tejon Ranch management units in the northeast. Recolonization of the Tejon Mountain Village Specific Plan, California Condor Study Area, and Tejon Ranch management units reestablished traditional condor movement and foraging patterns in southern California and provides the travel corridor (approximately 20 kilometers wide) for recolonization of the northeastern part of the species historical range.
NASA Astrophysics Data System (ADS)
Youssef, Ahmed M.; Pradhan, Biswajeet; Al-Kathery, Mohamed; Bathrellos, George D.; Skilodimou, Hariklia D.
2015-01-01
Rockfall is one of the major concerns along different urban areas and highways all over the world. Al-Noor Mountain is one of the areas that threaten rockfalls to the Al-Noor escarpment track road and the surrounding urban areas. Thousands of visitors and tourisms use the escarpment track road to visit Hira cave which is located at the top of Al-Noor Mountain. In addition, the surrounding urban areas of Al-Noor Mountain are continuously spreading over the recent years. The escarpment track road and the surrounding urban areas are highly vulnerable and suffers from recurrent rockfall mostly in the rainy season. The steep and highly jointed slope along the different faces of the mountain makes these zones prone to failure due to different actions such as weathering, erosion and anthropogenic effect. Therefore, an attempt has been made in this study to determine the Al-Noor cliff stability, by identifying the unstable areas, and to apply the rockfall simulations. A combination of remote sensing, field study and 2D computer simulation rockfall program were performed to assess surface characteristics of the cliff faces. Bounce height, total and translational kinetic energy, translational velocity, and number of blocks have been estimated. Different unstable zones along the Al-Noor Mountain and escarpment track road were determined using filed investigation and remote sensing based image analysis. In addition the rockfall simulation analysis indicated that rockfall in zone 1 and zone 2 of the Al-Noor Mountain may reach the urban areas, whereas rockfall in zone 3 will not reach the urban areas, and rockfalls along the Al-Noor escarpment track road will have highly impact on the tourists. Proper preventive measures are also suggested to arrest the movement of falling rocks before reaching the urban areas and the Al-Noor escarpment track road. If proper care is taken, then further uncertain rockfall hazards can be prevented.
Estimating life expectancies for US small areas: a regression framework
NASA Astrophysics Data System (ADS)
Congdon, Peter
2014-01-01
Analysis of area mortality variations and estimation of area life tables raise methodological questions relevant to assessing spatial clustering, and socioeconomic inequalities in mortality. Existing small area analyses of US life expectancy variation generally adopt ad hoc amalgamations of counties to alleviate potential instability of mortality rates involved in deriving life tables, and use conventional life table analysis which takes no account of correlated mortality for adjacent areas or ages. The alternative strategy here uses structured random effects methods that recognize correlations between adjacent ages and areas, and allows retention of the original county boundaries. This strategy generalizes to include effects of area category (e.g. poverty status, ethnic mix), allowing estimation of life tables according to area category, and providing additional stabilization of estimated life table functions. This approach is used here to estimate stabilized mortality rates, derive life expectancies in US counties, and assess trends in clustering and in inequality according to county poverty category.
Mountain goat abundance and population trends in the Olympic Mountains, Washington, 2011
Jenkins, Kurt; Happe, Patricia; Griffin, Paul C.; Beirne, Katherine; Hoffman, Roger; Baccus, William
2011-01-01
We conducted an aerial helicopter survey between July 18 and July 25, 2011, to estimate abundance and trends of introduced mountain goats (Oreamnos americanus) in the Olympic Mountains. The survey was the first since we developed a sightability correction model in 2008, which provided the means to estimate the number of mountain goats present in the surveyed areas and not seen during the aerial surveys, and to adjust for undercounting biases. Additionally, the count was the first since recent telemetry studies revealed that the previously defined survey zone, which was delineated at lower elevations by the 1,520-meter elevation contour, did not encompass all lands used by mountain goats during summer. We redefined the lower elevation boundary of survey units before conducting the 2011 surveys in an effort to more accurately estimate the entire mountain goat population. We surveyed 39 survey units, comprising 39 percent of the 59,615-hectare survey area. We estimated a mountain goat population of 344±44 (standard error, SE) in the expanded survey area. Based on this level of estimation uncertainty, the 95-percent confidence interval ranged from 258 to 430 mountain goats at the time of the survey. To permit comparisons of mountain goat populations between the 2004 and 2011 surveys, we recomputed population estimates derived from the 2004 survey using the newly developed bias correction methods, and we computed the 2004 and 2011 surveys based on comparable survey zone definitions (for example, using the boundaries of the 2004 survey). The recomputed estimates of mountain goat populations were 217±19 (SE) in 2004 and 303±41(SE) in 2011. The difference between the current 2011 population estimate (344±44[SE]) and the recomputed 2011 estimate (303±41[SE]) reflects the number of mountain goats counted in the expanded lower elevation portions of the survey zone added in 2011. We conclude that the population of mountain goats has increased in the Olympic Mountains at an average rate of 4.9±2.2(SE) percent annually since 2004. We caution that the estimated rate of population growth may be conservative if severe spring weather deterred some mountain goats from reaching the high-elevation survey areas during the 2011 surveys. If the estimated average rate of population growth were to remain constant in the future, then the population would double in approximately 14-15 years.
Stem Cubic-Foot Volume Tables for Tree Species in the Appalachian Area
Alexander Clark; Ray A. Souter
1996-01-01
Stemwood cubic-foot volume inside bark tables are presented for 20 species and 8 species groups based on equations used to estimate timber sale volumes on national forests in the Appalachian Area. Tables are based on form class measurement data for 2,870 trees sampled in the Appalachian Area and taper data collected across the South. A series of tables is presented...
Alaska research natural areas: 1. Mount Prindle.
G.P. Juday
1988-01-01
The 2412-hectare Mount Prindle Research Natural Area is located in central Alaska on the border of the Steese National Conservation Area and White Mountains National Recreation Area. It is managed by the U.S. Department of the Interior, Bureau of Land Management, Steese-White Mountains District. Mount Prindle was selected as a Research Natural Area (RNA) because it...
Botanical reconnaissance of Mountain Pond Research Natural Area
Garrett E. Crow; Nur P. Ritter; Kathleen M. McCauley; Donald J. Padgett
1994-01-01
A botanical survey of Mountain Pond Research Natural Area in the White Mountain National Forest, New Hampshire, was conducted in 1991-92. A flora of vascular plants for 78 species representing 35 families was recorded. None of the species are protected under the "Endangered Species Act" and only one species is listed by the State of New Hampshire as having...
Forest resources of the Ouachita Mountain region of Arkansas
I.F. Eldredge
1938-01-01
The Ouachita Mountain region of Arkansas is a rugged, timbered area extending fanwise from Little Rock westward to the Oklahoma state line. The Arkansas River form the northern boundary, and the southernmost ridges of the Ouachita Mountains approximate the southern limits of the area (map, fig. 3). It includes all 9 counties and part of 3 others, totaling 4,917,700...
Reintroducing fire into the Blacks Mountain Research Natural Area: effects on fire hazard
Carl N. Skinner
2005-01-01
Frequent, low-intensity, surface fires were an integral ecological process in the Blacks Mountain Experimental Forest (BMEF) prior to the 20th Century. With rare exception, fires have been successfully excluded from BMEF since the early 1900s. The Blacks Mountain Research Natural Area (BMRNA) covers approximately 521 acres of BMEF in 5 compartments of approximately 100...
Biogeographical and evolutionary importance of the European high mountain systems
Schmitt, Thomas
2009-01-01
Europe is characterised by several high mountain systems dominating major parts of its area, and these structures have strongly influenced the evolution of taxa. For species now restricted to these high mountain systems, characteristic biogeographical patterns of differentiation exist. (i) Many local endemics are found in most of the European high mountain systems especially in the Alps and the more geographically peripheral regions of Europe. Populations isolated in these peripheral mountain ranges often have strongly differentiated endemic genetic lineages, which survived and evolved in the vicinity of these mountain areas over long time periods. (ii) Populations of taxa with wide distributions in the Alps often have two or more genetic lineages, which in some cases even have the status of cryptic species. In many cases, these lineages are the results of several centres of glacial survival in the perialpine areas. Similar patterns also apply to the other geographically extended European high mountain systems, especially the Pyrenees and Carpathians. (iii) Populations from adjoining high mountain systems often show similar genetic lineages, a phenomenon best explained by postglacial retreat to these mountains from one single differentiation centre between them. (iv) The populations of a number of species show gradients of genetic diversity from a genetically richer East to a poorer West. This might indicate better glacial survival conditions for this biogeographical group of species in the more eastern parts of Europe. PMID:19480666
Jachens, R.C.; Elder, W.P.
1983-01-01
The western Paleozoic and Triassic belt that nearly surrounds the Condrey Mountain Schist is a melange of sedimentary, volcanic, and ultramafic rocks metamorphosed to amphibolite facies (Coleman and others, 1983). Only two samples of the metamorphic melange were collected near the Condrcy Mountain Road less Area, but extensive sampling of this unit southwest of the roadless area yielded an average sample density of 2.86±0.15 g/cm3 (112 samples) (Jachens and others, 1983).
SHEEP MOUNTAIN WILDERNESS STUDY AREA, WYOMING.
Houston, Robert S.; Patten, Lowell L.
1984-01-01
On the basis of a mineral survey the Sheep Mountain Wilderness study area in Wyoming was determined to offer little promise for metallic mineral resources. There is a probable potential for oil and gas resources in a small part of the study area along its northeast margin. Geophysical studies, such as reflection seismic profiling would help define the oil and gas potential in fault-controlled structures, such as those beneath the thrust fault that crops out along the east flank of Sheep Mountain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isachsen, Y.W.
1978-09-27
Two areas in New York State were studied in terms of possible long range potential for geothermal energy: the Adirondack Mountains which are undergoing contemporary doming, and an anomalous circular feature centered on Panther Mountain in the Catskill Mountains. The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The domical configuration of the area undergoing uplift, combined with subsidence at the northeastern perimeter of the dome, argues for a geothermal rather than glacioisostatic origin. A contemporary hot spot near the crust-mantle boundary is proposed as the mechanism of doming, based on analogy with uplifts of similarmore » dimensions elsewhere in the world, some of which have associated Tertiary volcanics. The lack of thermal springs in the area, or high heat flow in drill holes up to 370 m deep, indicates that the front of the inferred thermal pulse must be at some depth greater than 1 km. From isopach maps by Rickard (1969, 1973), it is clear that the present Adirondack dome did not come into existence until sometime after Late Devonian time. Strata younger than this are not present to provide further time stratigraphic refinement of this lower limit. However, the consequent radial drainage pattern in the Adirondacks suggests that the dome is a relatively young tectonic feature. Using arguments based on fixed hot spots in central Africa, and the movement of North American plate, Kevin Burke (Appendix I) suggests that the uplift may be less than 4 m.y. old.The other area of interest, the Panther Mountain circular feature in the Catskill Mountains, was studied using photogeology, gravity and magnetic profiling, gravity modeling, conventional field methods, and local shallow seismic refraction profiling.« less
Geologic map of the Mohave Mountains area, Mohave County, western Arizona
Howard, K.A.; Nielson, J.E.; Wilshire, W.G.; Nakata, J.K.; Goodge, J.W.; Reneau, Steven L.; John, Barbara E.; Hansen, V.L.
1999-01-01
Introduction The Mohave Mountains area surrounds Lake Havasu City, Arizona, in the Basin and Range physiographic province. The Mohave Mountains and the Aubrey Hills form two northwest-trending ranges adjacent to Lake Havasu (elevation 132 m; 448 ft) on the Colorado River. The low Buck Mountains lie northeast of the Mohave Mountains in the alluviated valley of Dutch Flat. Lowlands at Standard Wash separate the Mohave Mountains from the Bill Williams Mountains to the southeast. The highest point in the area is Crossman Peak in the Mohave Mountains, at an elevation of 1519 m (5148 ft). Arizona Highway 95 is now rerouted in the northwestern part of the map area from its position portrayed on the base map; it now also passes through the southern edge of the map area. Geologic mapping was begun in 1980 as part of a program to assess the mineral resource potential of Federal lands under the jurisdiction of the U.S. Bureau of Land Management (Light and others, 1983). Mapping responsibilities were as follows: Proterozoic and Mesozoic rocks, K.A. Howard; dikes, J.K. Nakata; Miocene section, J.E. Nielson; and surficial deposits, H.G. Wilshire. Earlier geologic mapping includes reconnaissance mapping by Wilson and Moore (1959). The present series of investigations has resulted in reports on the crystalline rocks and structure (Howard and others, 1982a), dikes (Nakata, 1982), Tertiary stratigraphy (Pike and Hansen, 1982; Nielson, 1986; Nielson and Beratan, 1990), surficial deposits (Wilshire and Reneau, 1992), tectonics (Howard and John, 1987; Beratan and others, 1990), geophysics (Simpson and others, 1986), mineralization (Light and McDonnell, 1983; Light and others, 1983), field guides (Nielson, 1986; Howard and others, 1987), and geochronology (Nakata and others, 1990; Foster and others, 1990).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broxton, D.E.; Warren, R.G.; Hagan, R.C.
1986-10-01
The chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada is described. These tuffs contain substantial amounts of zeolites that are highly sorptive of certain radionuclides. Because of their widespread distribution, the zeolitic tuffs could provide important barriers to radionuclide migration. Physical properties of these tuffs and of their constituent zeolites are influenced by their chemical compositions. This study defines the amount of chemical variability within diagenetically altered tuffs and within diagenetic minerals at Yucca Mountain. Zeolitic tuffs at Yucca Mountain formed by diagenetic alteration of rhyolitic vitric tuffs. Despite their similar starting compositions, thesemore » tuffs developed compositions that vary both vertically and laterally. Widespread chemical variations were the result of open-system chemical diagenesis in which chemical components of the tuffs were mobilized and redistributed by groundwaters. Alkalies, alkaline earths, and silica were the most mobile elements during diagenesis. The zeolitic tuffs can be divided into three compositional groups: (1) calcium- and magnesium-rich tuffs associated with relatively thin zones of alteration in the unsaturated zone; (2) tuffs in thick zones of alteration at and below the water table that grade laterally from sodic compositions on the western side of Yucca Mountain to calcic compositions on the eastern side; and (3) potassic tuffs at the north end of Yucca Mountain. Physical properties of tuffs and their consistuent zeolites at Yucca Mountain may be affected by variations in compositions. Properties important for assessment of repository performance include behavior and ion exchange.« less
NASA Astrophysics Data System (ADS)
Steenhuis, T. S.; Azzaino, Z.; Hoang, L.; Pacenka, S.; Worqlul, A. W.; Mukundan, R.; Stoof, C.; Owens, E. M.; Richards, B. K.
2017-12-01
The New York City source watersheds in the Catskill Mountains' humid, temperate climate has long-term hydrological and water quality monitoring data It is one of the few catchments where implementation of source and landscape management practices has led to decreased phosphorus concentration in the receiving surface waters. One of the reasons is that landscape measures correctly targeted the saturated variable source runoff areas (VSA) in the valley bottoms as the location where most of the runoff and other nonpoint pollutants originated. Measures targeting these areas were instrumental in lowering phosphorus concentration. Further improvements in water quality can be made based on a better understanding of the flow processes and water table fluctuations in the VSA. For that reason, we instrumented a self-contained upland variable source watershed with a landscape characteristic of a soil underlain by glacial till at shallow depth similar to the Catskill watersheds. In this presentation, we will discuss our experimental findings and present a mathematical model. Variable source areas have a small slope making gravity the driving force for the flow, greatly simplifying the simulation of the flow processes. The experimental data and the model simulations agreed for both outflow and water table fluctuations. We found that while the flows to the outlet were similar throughout the year, the discharge of the VSA varies greatly. This was due to transpiration by the plants which became active when soil temperatures were above 10oC. We found that shortly after the temperature increased above 10oC the baseflow stopped and only surface runoff occurred when rainstorms exceeded the storage capacity of the soil in at least a portion of the variable source area. Since plant growth in the variable source area was a major variable determining the base flow behavior, changes in temperature in the future - affecting the duration of the growing season - will affect baseflow and related transport of nutrient and other chemicals many times more than small temperature related increases in potential evaporation rate. This in turn will directly change the water availability and pollutant transport in the many surface source watersheds with variable source area hydrology.
Floods in mountain environments: A synthesis
NASA Astrophysics Data System (ADS)
Stoffel, Markus; Wyżga, Bartłomiej; Marston, Richard A.
2016-11-01
Floods are a crucial agent of geomorphic change in the channels and valley floors of mountains watercourses. At the same time, they can be highly damaging to property, infrastructure, and life. Because of their high energy, mountain watercourses are highly vulnerable to environmental changes affecting their catchments and channels. Many factors have modified and frequently still tend to modify the environmental conditions in mountain areas, with impacts on geomorphic processes and the frequency, magnitude, and timing of floods in mountain watercourses. The ongoing climate changes vary between regions but may affect floods in mountain areas in many ways. In many mountain regions of Europe, widespread afforestation took place over the twentieth century, considerably increasing the amounts of large wood delivered to the channels and the likelihood of jamming bridges. At the same time, deforestation continues in other mountain areas, accelerating runoff and amplifying the magnitude and frequency of floods in foreland areas. In many countries, in-channel gravel mining has been a common practice during recent decades; the resultant deficit of bed material in the affected channels may suddenly manifest during flood events, resulting in the failure of scoured bridges or catastrophic channel widening. During the past century many rivers in mountain and foreland areas incised deeply; the resultant loss of floodplain water storage has decreased attenuation of flood waves, hence increasing flood hazard to downstream river reaches. On the other hand, a large amount of recent river restoration activities worldwide may provide examples of beneficial changes to flood risk, attained as a result of increased channel storage or reestablished floodplain water storage. Relations between geomorphic processes and floods operate in both directions, which means that changes in flood probability or the character of floods (e.g., increased wood load) may significantly modify the morphology of mountain rivers, but morphological changes of rivers can also affect hydrological properties of floods and the associated risk for societies. This paper provides a review of research in the field of floods in mountain environments and puts the papers of this special issue dedicated to the same topic into context. It also provides insight into innovative studies, methods, or emerging aspects of the relations between environmental changes, geomorphic processes, and the occurrence of floods in mountain rivers.
Wu, Jing; Gao, Wei; Liang, Yong; Fu, Jianjie; Gao, Yan; Wang, Yawei; Jiang, Guibin
2017-10-03
Pristine high-altitude mountains are ideal areas for studying the potential mechanism behind the long-range transport and environmental behavior of persistent organic pollutants in remote areas. Short chain chlorinated paraffins (SCCPs) are the most complex halogenated contaminants in the environment, and have attracted extensive worldwide interest in recent years. In this study, the spatiotemporal concentrations and distributions of SCCPs in air collected from Shergyla Mountain (located in the southeast of the Tibetan Plateau) and Lhasa were investigated during 2012-2015. Generally, the total SCCP levels at Shergyla Mountain and Lhasa were between 130 and 1300 pg/m 3 and 1100-14440 pg/m 3 , respectively. C 10 and C 11 components were the most abundant homologue groups, indicating that lighter SCCP homologue groups are capable of relatively long-range atmospheric transport. Relatively high but insignificant atmospheric SCCP concentrations at Shergyla Mountain area and Lhasa were observed from 2013 to 2015 compared with 2012. At Shergyla Mountain, SCCP concentrations on the eastern and western slopes increased with altitude, implying that "mountain cold-trapping" might occur for SCCPs. A back-trajectory model showed that SCCP sources at Shergyla Mountain and Lhasa were primarily influenced by the tropical monsoon from Southwest and South Asia.
Fire effects on the Point Reyes Mountain Beaver at Point Reyes National Seashore, California
Fellers, Gary M.; Pratt, David; Griffin, Jennifer L.
2004-01-01
In October 1995, a wildlands fire burned 5,000 ha on the Point Reyes peninsula, California, USA. In most of the nonforested areas, the fire effectively cleared the ground of litter and vegetation and revealed thousands of Point Reyes mountain beaver (Aplodontia rufa phaea) burrow openings. In the first 6 months after the fire, we surveyed burned coastal scrub and riparian habitat to (1) count the number of burrow openings that existed at the time of the fire, and (2) evaluate whether signs of post-fire mountain beaver activity were evident. We estimated that only 0.4–1.7% of mountain beavers within the burn area survived the fire and immediate post-fire period. We monitored mountain beaver activity for 5 years at 8 sites where mountain beavers survived, and found little or no recovery. We estimate that the mountain beaver population will take 15–20 years post-fire to recover.
A New Estimate of North American Mountain Snow Accumulation From Regional Climate Model Simulations
NASA Astrophysics Data System (ADS)
Wrzesien, Melissa L.; Durand, Michael T.; Pavelsky, Tamlin M.; Kapnick, Sarah B.; Zhang, Yu; Guo, Junyi; Shum, C. K.
2018-02-01
Despite the importance of mountain snowpack to understanding the water and energy cycles in North America's montane regions, no reliable mountain snow climatology exists for the entire continent. We present a new estimate of mountain snow water equivalent (SWE) for North America from regional climate model simulations. Climatological peak SWE in North America mountains is 1,006 km3, 2.94 times larger than previous estimates from reanalyses. By combining this mountain SWE value with the best available global product in nonmountain areas, we estimate peak North America SWE of 1,684 km3, 55% greater than previous estimates. In our simulations, the date of maximum SWE varies widely by mountain range, from early March to mid-April. Though mountains comprise 24% of the continent's land area, we estimate that they contain 60% of North American SWE. This new estimate is a suitable benchmark for continental- and global-scale water and energy budget studies.
Stem Cubic-Volume Tables for Tree Species in the Deep South Area
Alexander Clark; Ray A. Souter
1996-01-01
Stemwood cubic-foot volume inside bark tables are presented for 21 species and 8 species groups based on equations used to estimate timber sale volumes on national forests in the Deep South Area. Tables are based on form class measurement data for 2,390 trees sampled in the Deep South Area and taper data collected across the South. A series of tables is presented for...
Stem Cubic-Foot Volume Tables for Tree Species in the Arkansas Area
Alexander Clark; Ray A. Souter
1996-01-01
Stemwood cubic-foot volume inside bark tables are presented for 9 species and 6 species groups based on equations used to estimate timber sale volumes on national forests in the Arkansas Area. Tables are based on form class measurement data for 1,417 trees sampled in the Arkansas Area and taper data collected across the South. A series of tables is presented for each...
NASA Astrophysics Data System (ADS)
Guo, H., II
2016-12-01
Spatial distribution information of mountainous area settlement place is of great significance to the earthquake emergency work because most of the key earthquake hazardous areas of china are located in the mountainous area. Remote sensing has the advantages of large coverage and low cost, it is an important way to obtain the spatial distribution information of mountainous area settlement place. At present, fully considering the geometric information, spectral information and texture information, most studies have applied object-oriented methods to extract settlement place information, In this article, semantic constraints is to be added on the basis of object-oriented methods. The experimental data is one scene remote sensing image of domestic high resolution satellite (simply as GF-1), with a resolution of 2 meters. The main processing consists of 3 steps, the first is pretreatment, including ortho rectification and image fusion, the second is Object oriented information extraction, including Image segmentation and information extraction, the last step is removing the error elements under semantic constraints, in order to formulate these semantic constraints, the distribution characteristics of mountainous area settlement place must be analyzed and the spatial logic relation between settlement place and other objects must be considered. The extraction accuracy calculation result shows that the extraction accuracy of object oriented method is 49% and rise up to 86% after the use of semantic constraints. As can be seen from the extraction accuracy, the extract method under semantic constraints can effectively improve the accuracy of mountainous area settlement place information extraction. The result shows that it is feasible to extract mountainous area settlement place information form GF-1 image, so the article proves that it has a certain practicality to use domestic high resolution optical remote sensing image in earthquake emergency preparedness.
50 CFR Table 4 to Part 679 - Steller Sea Lion Protection Areas Pollock Fisheries Restrictions
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Steller Sea Lion Protection Areas Pollock... EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 4 Table 4 to Part 679—Steller Sea Lion Protection Areas Pollock Fisheries Restrictions Steller Sea Lion Protection Areas Pollock Fisheries Restrictions Column...
50 CFR Table 4 to Part 679 - Steller Sea Lion Protection Areas Pollock Fisheries Restrictions
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Steller Sea Lion Protection Areas Pollock... EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 4 Table 4 to Part 679—Steller Sea Lion Protection Areas Pollock Fisheries Restrictions Steller Sea Lion Protection Areas Pollock Fisheries Restrictions Column...
50 CFR Table 4 to Part 679 - Steller Sea Lion Protection Areas Pollock Fisheries Restrictions
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Steller Sea Lion Protection Areas Pollock... EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 4 Table 4 to Part 679—Steller Sea Lion Protection Areas Pollock Fisheries Restrictions Steller Sea Lion Protection Areas Pollock Fisheries Restrictions Column...
Flash Flood Type Identification within Catchments in Beijing Mountainous Area
NASA Astrophysics Data System (ADS)
Nan, W.
2017-12-01
Flash flood is a common type of disaster in mountainous area, Flash flood with the feature of large flow rate, strong flushing force, destructive power, has periodically caused loss to life and destruction to infrastructure in mountainous area. Beijing as China's political, economic and cultural center, the disaster prevention and control work in Beijing mountainous area has always been concerned widely. According to the transport mechanism, sediment concentration and density, the flash flood type identification within catchment can provide basis for making the hazards prevention and mitigation policy. Taking Beijing as the study area, this paper extracted parameters related to catchment morphological and topography features respectively. By using Bayes discriminant, Logistic regression and Random forest, the catchments in Beijing mountainous area were divided into water floods process, fluvial sediment transport process and debris flows process. The results found that Logistic regression analysis showed the highest accuracy, with the overall accuracy of 88.2%. Bayes discriminant and Random forest had poor prediction effects. This study confirmed the ability of morphological and topography features to identify flash flood process. The circularity ratio, elongation ratio and roughness index can be used to explain the flash flood types effectively, and the Melton ratio and elevation relief ratio also did a good job during the identification, whereas the drainage density seemed not to be an issue at this level of detail. Based on the analysis of spatial patterns of flash flood types, fluvial sediment transport process and debris flow process were the dominant hazards, while the pure water flood process was much less. The catchments dominated by fluvial sediment transport process were mainly distributed in the Yan Mountain region, where the fault belts were relatively dense. The debris flow process prone to occur in the Taihang Mountain region thanks to the abundant coal gangues. The pure water flood process catchments were mainly distributed in the transitional mountain front.
A history of forest entomology in the Intermountain and Rocky Mountain areas, 1901 to 1982
Malcolm M. Furniss
2007-01-01
This account spans the time from A.D. Hopkins' trip to the Black Hills, SD, in 1901 to my retirement in 1982. The focus is on personnel and the work of the Division of Forest Insect Investigations, USDA, and the Forest Service experiment stations in the Rocky Mountain and Intermountain areas. Information for the Intermountain and Northern Rocky Mountain station...
Stephen J. Solem; Burton K. Pendleton; Julie A. Woldow; Marc Coles-Ritchie; Jeri Ledbetter; Kevin S. McKelvey; Joy Berg; Amy Gilboy; Jim Menlove; Carly K. Woodlief
2012-01-01
The Spring Mountains National Recreation Area (SMNRA) includes approximately 316,000 acres of National Forest System lands managed by the Humboldt-Toiyabe National Forest in Clark and Nye Counties, Nevada (see Figure 1-1). The Spring Mountains have long been recognized as an island of endemism, harboring flora and fauna found nowhere else in the world. Conservation of...
Stephen J. Solem; Burton K. Pendleton; Marc Coles-Ritchie; Jeri Ledbetter; Kevin S. McKelvey; Joy Berg; Kellen Nelson; James Menlove
2011-01-01
The Spring Mountains National Recreation Area (SMNRA) includes approximately 316,000 acres of National Forest System lands managed by the Humboldt-Toiyabe National Forest in Clark and Nye Counties, Nevada (see Figure 1-1). The Spring Mountains have long been recognized as an island of endemism, harboring flora and fauna found nowhere else in the world. Conservation of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broxton, D.E.; Chipera, S.J.; Byers, F.M. Jr.
1993-10-01
Outcrops of nonwelded tuff at six locations in the vicinity of Yucca Mountain, Nevada, were examined to determine their suitability for hosting a surface-based test facility for the Yucca Mountain Project. Investigators will use this facility to test equipment and procedures for the Exploratory Studies Facility and to conduct site characterization field experiments. The outcrops investigated contain rocks that include or are similar to the tuffaceous beds of Calico Hills, an important geologic and hydrologic barrier between the potential repository and the water table. The tuffaceous beds of Calico Hills at the site of the potential repository consist of bothmore » vitric and zeolitic tuffs, thus three of the outcrops examined are vitric tuffs and three are zeolitic tuffs. New data were collected to determine the lithology, chemistry, mineralogy, and modal petrography of the outcrops. Some preliminary data on hydrologic properties are also presented. Evaluation of suitability of the six sites is based on a comparison of their geologic characteristics to those found in the tuffaceous beds of Calico Hills within the exploration block.« less
Scharer, Katherine M.; Fumal, Tom E.; Weldon, Ray J.; Streig, Ashley R.
2014-01-01
The Frazier Mountain paleoseismic site is located at the northwest end of the Mojave section of the San Andreas Fault, in a small, closed depression at the base of Frazier Mountain near Tejon Pass, California (lat 34.8122° N., long 118.9034° W.). The site was known to contain a good record of earthquakes due to previous excavations by Lindvall and others (2002). This report provides data resulting from four nested excavations, or cuts, along trench 1 (T1) in 2007 and 2009 at the Frazier Mountain site. The four cuts were excavated progressively deeper and wider in an orientation perpendicular to the San Andreas Fault, exposing distal fan and marsh sediments deposited since ca. A.D. 1200. The results of the trenching show that earthquakes that ruptured the site have repeatedly produced a small depression or sag on the surface, which is subsequently infilled with sand and silt deposits. This report provides high-resolution photomosaics and logs for the T1 cuts, a detailed stratigraphic column for the deposits, and a table summarizing all of the evidence for ground rupturing paleoearthquakes logged in the trenches.
Mishev, A L
2016-03-01
A numerical model for assessment of the effective dose due to secondary cosmic ray particles of galactic origin at high mountain altitude of about 3000 m above the sea level is presented. The model is based on a newly numerically computed effective dose yield function considering realistic propagation of cosmic rays in the Earth magnetosphere and atmosphere. The yield function is computed using a full Monte Carlo simulation of the atmospheric cascade induced by primary protons and α- particles and subsequent conversion of secondary particle fluence (neutrons, protons, gammas, electrons, positrons, muons and charged pions) to effective dose. A lookup table of the newly computed effective dose yield function is provided. The model is compared with several measurements. The comparison of model simulations with measured spectral energy distributions of secondary cosmic ray neutrons at high mountain altitude shows good consistency. Results from measurements of radiation environment at high mountain station--Basic Environmental Observatory Moussala (42.11 N, 23.35 E, 2925 m a.s.l.) are also shown, specifically the contribution of secondary cosmic ray neutrons. A good agreement with the model is demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lindsey, David A.; Tysdal, Russell G.; Taggart, Joseph E.
2002-01-01
The principal purpose of this report is to provide a reference archive for results of a statistical analysis of geochemical data for metasedimentary rocks of Mesoproterozoic age of the Salmon River Mountains and Lemhi Range, central Idaho. Descriptions of geochemical data sets, statistical methods, rationale for interpretations, and references to the literature are provided. Three methods of analysis are used: R-mode factor analysis of major oxide and trace element data for identifying petrochemical processes, analysis of variance for effects of rock type and stratigraphic position on chemical composition, and major-oxide ratio plots for comparison with the chemical composition of common clastic sedimentary rocks.
NREL's Sustainable Campus Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rukavina, Frank; Pless, Shanti
2015-04-06
The high-performance buildings across the Energy Department's National Renewable Energy Laboratory's (NREL) South Table Mountain campus incorporate a number of state-of-the art energy efficiency and renewable energy technologies, making them models for sustainability. Each building, designed to meet the Gold or Platinum standards of the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) program, brings NREL closer to developing the campus of the future.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-27
... consist of 336 to 373 wind turbines to be located along the ridgeline of the Wilson Creek Range approximately 20 miles northeast of the town of Pioche, Nevada. In addition to the wind turbines, other project... Table Mountain sites composing Phase I. Phase I would consist of up to 195 wind turbines, producing 500...
Dating tree mortality using log decay in the White Mountains of New Hampshire
Andrew J. Fast; Mark J. Ducey; Jeffrey H. Gove; William B. Leak
2008-01-01
Coarse woody material (CWM) is an important component of forest ecosystems. To meet specific CWM management objectives, it is important to understand rates of decay. We present results from a silvicultural trial at the Bartlett Experimental Forest, in which time of death is known for a large sample of trees. Either a simple table or regression equations that use...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stimson, J.
1985-02-01
Field surveys at Enewetak Atoll, Marshall Islands, show that coral density and diversity is much lower beneath Acropora table corals than in adjacent unshaded areas. Additionally, the understory community is predominantly composed of massive and encrusting species, while branching Acropora and Pocillopora predominate in unshaded areas. Results of experiments in which coral fragments were transferred to the shade of table Acropora and to adjacent unshaded areas show that shading slows the growth and leads to higher mortality of branching species, while massive and encrusting species are unaffected. Light measurements made beneath table Acropora show that illumination and irradiance values fallmore » to levels at which most hermatypic corals do not occur. The fast-growing but fragile table Acropora are abundant in a wide variety of atoll habitats and grow rapidly to form a canopy approx. = 50 cm above the substrate. However, table Acropora also have high mortality rates, so that there is continuous production of unshaded areas. The growth and death of tables thus create local disturbances, and the resulting patchwork of recently shaded and unshaded areas may enhance coral diversity in areas of high coral cover.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumbaugh, William D.; Cook, Kenneth L.
During the summers of 1975 and 1976, a gravity survey was conducted in the Cove Fort - Sulphurdale KGRA and north Mineral Mountains area, Millard and Beaver counties, Utah. The survey consisted of 671 gravity stations covering an area of about 1300 km{sup 2}, and included two orthogonal gravity profiles traversing the area. The gravity data are presented as a terrain-corrected Bouguer gravity anomaly map with a contour interval of 1 mgal and as an isometric three-dimensional gravity anomaly surface. Selected anomaly separation techniques were applied to the hand-digitized gravity data (at 1-km intervals on the Universal Transverse Mercator grid)more » in both the frequency and space domains, including Fourier decomposition, second vertical derivative, strike-filter, and polynomial fitting analysis, respectively. Residual gravity gradients of 0.5 to 8.0 mgal/km across north-trending gravity contours observed through the Cove Fort area, the Sulphurdale area, and the areas east of the East Mineral Mountains, along the west flanks of the Tushar Mountains, and on both the east and west flanks of the north Mineral Mountains, were attributed to north-trending Basin and Range high-angle faults. Gravity highs exist over the community of Black Rock area, the north Mineral Mountains, the Paleozoic outcrops in the east Cove Creek-Dog Valley-White Sage Flats areas, the sedimentary thrust zone of the southern Payant Range, and the East Mineral Mountains. The gravity lows over north Milford Valley, southern Black Rock Desert, Cunningham Wash, and northern Beaver Valley are separated from the above gravity highs by steep gravity gradients attributed to a combination of crustal warping and faulting. A gravity low with a closure of 2 mgal corresponds with Sulphur Cove, a circular topographic features containing sulphur deposits.« less
Frizzell, Virgil A.; Kuizon, Lucia
1984-01-01
The Miranda Pine, Horseshoe Springs, Tepusquet Peak, La Brea, Spoor Canyon, Fox Mountain and Little Pine Roadless Areas together occupy about 246 sq mi in the Los Padres National Forest, California. Mineral-resource surveys indicate demonstrated resources of barite, copper, and zinc at two localities in the La Brea Roadless Area and demonstrated resources of phosphate at a mine in the Fox Mountain Roadless Area. A building stone quarry is present on the southern border of the Horseshoe Spring Roadless Area and an area of substantiated resource potential extends into the area. The Miranda Pine, Tepusquet Peak, Spoor Canyon, and Little Pine Roadless Areas have little promise for the occurrence of mineral resources and there is little promise for the occurrence of energy resources in any of the roadless areas.
HUNTER-FRYINGPAN WILDERNESS AND PORPHYRY MOUNTAIN WILDERNESS STUDY AREA, COLORADO.
Ludington, Steve; Ellis, Clarence E.
1984-01-01
A mineral survey of the Hunter-Fryingpan Wilderness and the Porphyry Mountain Wilderness study area, Colorado was conducted. Substantiated gold and silver resource potential was identified in one area and a surrounding area is judged to have probable mineral-resource potential for gold and silver. No other mineral or energy resources were identified in the study.
ERIC Educational Resources Information Center
Wang, Jie; Xu, Fenghua
2014-01-01
Using the Wuling Mountain area as a case study, the authors discuss the significance as well as five problems of developing information technology for vocational education in contiguous destitute areas. Recommendations are provided at the end of the article. [Translated by Michelle LeSourd.
ERIC Educational Resources Information Center
Mountain-Plains Education and Economic Development Program, Inc., Glasgow AFB, MT.
The document contains a master listing of all Mountain-Plains curriculum, compiled by job title, course, unit and LAP (Learning Activity Package), and arranged in numerical order by curriculum area. Preceding each curriculum area is a page of explanatory notes describing the curriculum area and including relevant job descriptions. Where a job…
Alaska research natural areas: 3. Serpentine slide.
G.P. Juday
1992-01-01
The 1730-ha Serpentine Slide Research Natural Area (RNA) is located in central Alaska in the White Mountains National Recreation Area. It is managed by the U.S. Department of the Interior, Bureau of Land Management, Steese-White Mountains District. Serpentine Slide was selected as a Research Natural Area (RNA) because it contains an alpine exposure of serpentinite; a 9...
27 CFR 9.166 - Diamond Mountain District.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Diamond Mountain District... Diamond Mountain District. (a) Name. The name of the viticultural area described in this section is “Diamond Mountain District.” (b) Approved map. The appropriate maps for determining the boundary of the...
27 CFR 9.166 - Diamond Mountain District.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Diamond Mountain District... Diamond Mountain District. (a) Name. The name of the viticultural area described in this section is “Diamond Mountain District.” (b) Approved map. The appropriate maps for determining the boundary of the...
27 CFR 9.166 - Diamond Mountain District.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Diamond Mountain District... Diamond Mountain District. (a) Name. The name of the viticultural area described in this section is “Diamond Mountain District.” (b) Approved map. The appropriate maps for determining the boundary of the...
40 CFR 81.274 - Mountain Counties Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Mountain Counties Intrastate Air... Air Quality Control Regions § 81.274 Mountain Counties Intrastate Air Quality Control Region. The Mountain Counties Intrastate Air Quality Control Region consists of the territorial area encompassed by the...
40 CFR 81.274 - Mountain Counties Intrastate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Mountain Counties Intrastate Air... Air Quality Control Regions § 81.274 Mountain Counties Intrastate Air Quality Control Region. The Mountain Counties Intrastate Air Quality Control Region consists of the territorial area encompassed by the...
40 CFR 81.274 - Mountain Counties Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Mountain Counties Intrastate Air... Air Quality Control Regions § 81.274 Mountain Counties Intrastate Air Quality Control Region. The Mountain Counties Intrastate Air Quality Control Region consists of the territorial area encompassed by the...
Land consolidation in mountain areas. Case study from southern Poland
NASA Astrophysics Data System (ADS)
Janus, Jarosław; Łopacka, Magdalena; John, Ewa
2017-12-01
Land consolidation procedures are an attempt to comprehensively change the existing spatial structure of land in rural areas. This treatment also brings many other social and economic benefi ts, contributing to the development of consolidated areas. Land consolidation in mountain areas differs in many respects from those implemented in areas with more favorable conditions for the functioning of agriculture. The unfavorable values of land fragmentation indices, terrain conditions and lower than the average soil quality affect both the dominant forms of agricultural activity and the limited opportunities to improve the distribution of plots in space, parameters of shape, and the area as a result of land consolidation. For this reason, the effectiveness of land consolidation in mountain areas can be achieved by improving the quality of transportation network and the accessibility of the plots, arranging ownership issues and improving the quality of cadastral documentation. This article presents the evaluation of the measures of effectiveness of land consolidation realized in mountain areas on the example of Łetownia Village in the Małopolska Province, located in the southern part of Poland. Selected village is an area with unfavorable conditions for the functioning of agriculture and high values of land fragmentation indices.
Grass Mountain Research Natural Area: guidebook supplement 32.
Reid Schuller; Ronald L. Exeter
2007-01-01
This guidebook describes the Grass Mountain Research Natural Area, a 377-ha (931-ac) tract in the Oregon Coast Range. The area supports a grass bald complex surrounded by stands dominated by noble fir (Abies procera) and/or Douglas-fir (Pseudotsuga menziesii) in the overstory, and western hemlock (Tsuga heterophylla...
Weed, E.G.
1981-01-01
Cheat Mountain Further Planning Area comprises about 7,720 acres in the Monongahela National Forest in east-central West Virginia, southeast of Elkins. The study area lies on a northeast-trending linear ridge bordered on the west by the Right Fork of Tygart River and on the east by Shavers Fork. It averages about 2 mi in length and 1½ mi in width. Altitudes on Cheat Mountain range from about 2,550 to 3,900 ft.
Horton, J. Wright
2008-01-01
This geologic map of the Kings Mountain and Grover 7.5-min quadrangles, N.C.-S.C., straddles a regional geological boundary between the Inner Piedmont and Carolina terranes. The Kings Mountain sequence (informal name) on the western flank of the Carolina terrane in this area includes the Neoproterozoic Battleground and Blacksburg Formations. The Battleground Formation has a lower part consisting of metavolcanic rocks and interlayered schist and an upper part consisting of quartz-sericite phyllite and schist interlayered with quartz-pebble metaconglomerate, aluminous quartzite, micaceous quartzite, manganiferous rock, and metavolcanic rocks. The Blacks-burg Formation consists of phyllitic metasiltstone interlayered with thinner units of marble, laminated micaceous quartzite, hornblende gneiss, and amphibolite. Layered metamorphic rocks of the Inner Piedmont terrane include muscovite-biotite gneiss, muscovite schist, and amphibolite. The Kings Mountain sequence has been intruded by metatonalite and metatrondhjemite (Neoproterozoic), metagabbro and metadiorite (Paleozoic?), and the High Shoals Granite (Pennsylvanian). Layered metamorphic rocks of the Inner Piedmont in this area have been intruded by the Toluca Granite (Ordovician?), the Cherryville Granite and associated pegmatite (Mississippian), and spodumene pegmatite (Mississippian). Diabase dikes (early Jurassic) are locally present throughout the area. Ductile fault zones of regional scale include the Kings Mountain and Kings Creek shear zones. In this area, the Kings Mountain shear zone forms the boundary between the Inner Piedmont and Carolina terranes, and the Kings Creek shear zone separates the Battleground Formation from the Blacksburg Formation. Structural styles change across the Kings Mountain shear zone from steeply dipping layers, foliations, and folds on the southeast to gently and moderately dipping layers, foliations, and recumbent folds on the northwest. Mineral assemblages in the Kings Mountain sequence show a westward decrease from upper amphibolite facies (sillimanite zone) near the High Shoals Granite in the eastern side of the map area to upper greenschist (epidote-amphibolite) facies in the south-central part of the area near the Kings Mountain shear zone. Amphibolite-facies mineral assemblages in the Inner Piedmont terrane increase in grade from the kyanite zone near the Kings Mountain shear zone to the sillimanite zone in the northwestern part of the map area. Surficial deposits include alluvium in the stream valleys and colluvium along ridges and steep slopes. These quadrangles are unusual in the richness and variety of the mineral deposits that they contain, which include spodumene (lithium), cassiterite (tin), mica, feldspar, silica, clay, marble, kyanite and sillimanite, barite, manganese, sand and gravel, gold, pyrite, and iron.
Estimating natural recharge in San Gorgonio Pass watersheds, California, 1913–2012
Hevesi, Joseph A.; Christensen, Allen H.
2015-12-21
The SGPWM was used to simulate a 100-year water budget, including recharge and runoff, for water years 1913 through 2012. Results indicated that most recharge came from episodic infiltration of surface-water runoff in the larger stream channels. Results also indicated periods of great variability in recharge and runoff in response to variability in precipitation. More recharge was simulated for the area of the groundwater basin underlying the more permeable alluvial fill of the valley floor compared to recharge in the neighboring upland areas of the less permeable mountain blocks. The greater recharge was in response to the episodic streamflow that discharged from the mountain block areas and quickly infiltrated the permeable alluvial fill of the groundwater basin. Although precipitation at the higher altitudes of the mountain block was more than double precipitation at the lower altitudes of the valley floor, recharge for inter-channel areas of the mountain block was limited by the lower permeability bedrock underlying the thin soil cover, and most of the recharge in the mountain block was limited to the main stream channels underlain by alluvial fill.
JPRS Report, Soviet Union, Aviation and Cosmonautics, No. 7, July 1987.
1988-01-14
CONTENTS u JANUARY ms Improvement in Elements of Combat Potential Traced [I. Sviridov] 1 More Realistic Pilot Training Under Mountain Conditions Urged...training commenced. The arriv- ing Soviet aviators became familiar with a new flight area for them and improved their skills in mountain flights...withstand the thrust of the units of the Edelweiss Division which had been specially trained for fighting in mountain areas. But they firmly
Preliminary investigation of exceptionally strong winds in mountainous areas of New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, R.D.; Barnett, K.M.
1980-10-01
The mean wind speed in four mountainous areas in New Mexico were sampled for one year using wind data accumulators. The sites studied were: (1) San Augustin Pass, 15 miles northeast of Las Cruces; (2) Sierra Grande, an isolated peak midway between Raton and Clayton; (3) Buck Mountain, 10 miles northeast of Sierra Blanca Peak near Ruidoso, and (4) Palomas Mesa, 20 miles west-southwest of Tucumcari.
Stephen J. Solem; Burton K. Pendleton; Casey Giffen; Marc Coles-Ritchie; Jeri Ledbetter; Kevin S. McKelvey; Joy Berg; Jim Menlove; Carly K. Woodlief; Luke A. Boehnke
2013-01-01
The Spring Mountains National Recreation Area (SMNRA) includes approximately 316,000 acres of National Forest System (NFS) lands managed by the Humboldt-Toiyabe National Forest in Clark and Nye Counties, Nevada (see fig. 1-1). The Spring Mountains have long been recognized as an island of endemism, harboring flora and fauna found nowhere else in the world. Conservation...
Beaufort scale of wind force as adapted for use on forested areas of the northern Rocky Mountains
George M. Jemison
1934-01-01
The Beaufort scale of wind force, internationally employed by weather agencies, was not designed for use on mountainous and forested areas like those of the Rocky Mountains of northern Idaho and western Montana. The United States Forest Service has used it to estimate wind velocities in this region, but has found that in too many cases the resulting estimates were...
Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerson, R.P.; Drake, R.M. II
This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits ofmore » pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.« less
Hydrology of stock-water development on the public domain of western Utah
Snyder, Charles T.
1963-01-01
A geologic and hydrologic reconnaissance was made on the public domain of western Utah to appraise the water resources of the area and to provide a basis for locating and developing sources of stock water. The study area includes the Bonneville, Pahvant, and Virgin Grazing Districts, in parts of Tooele, Utah, Juab, Millard, Beaver, Iron, and Washington Counties, Utah.Western Utah is in the Great Basin section of the Basin and Range physiographic province and is typified by northward-trending parallel mountain ranges, and basins of interior drainage. Precipitation ranges from 5 to 9 inches annually in most of the valleys but in some places it is as much as 15 or 16 inches and probably is considerably greater in the mountains.The valleys of western Utah have been classified in the report according to their hydrologic and topographic characteristics. The Great Salt Lake valley and the Sevier Lake valley are closed or terminal valleys having no outlet for the discharge of water except by evaporation. Such valleys are topographically closed and hydrologically undrained. Valleys tributary to these terminal valleys are topographically open valleys from which water is discharged by gravity flow to the terminal valley. Quality of ground water in the valleys of western Utah depends upon the valley type and place where the water is sampled with respect to the body of ground water in the valley fill. Quality of the water in the drained parts of the valleys is usually good whereas water in the undrained parts of the valleys may be heavily charged with dissolved mineral contaminants. Limits of tolerance for use of salt-contaminated water are cited.The adequacy of distribution of water supplies in western Utah was determined by application of the service area concept to the existing supplies. Stock-water supplies are obtained from wells, springs, and reservoirs. Most of the wells are in the valleys where water is obtained from valley fill; the depth to water ranges from a few tens of feet to several hundred feet. Ground water generally cannot be obtained in the mountains because the rocks either lack permeability or are drained.Data collected in 13 valleys, each valley forming a ground-water unit, are listed in the tables and are used to evaluate the prospects for obtaining additional water supplies.
Surficial Geologic Map of the Death Valley Junction 30' x 60' Quadrangle, California and Nevada
Slate, Janet L.; Berry, Margaret E.; Menges, Christopher M.
2009-01-01
This surficial geologic map of the Death Valley Junction 30' x 60' quadrangle was compiled digitally at 1:100,000 scale. The map area covers the central part of Death Valley and adjacent mountain ranges - the Panamint Range on the west and the Funeral Mountains on the east - as well as areas east of Death Valley including some of the Amargosa Desert, the Spring Mountains and Pahrump Valley. Shaded relief delineates the topography and appears as gray tones in the mountain ranges where the bedrock is undifferentiated and depicted as a single unit.
Bartolino, James R.; Anderholm, Scott K.; Myers, Nathan C.
2010-01-01
The groundwater resources of about 400 square miles of the East Mountain area of Bernalillo, Sandoval, Santa Fe, and Torrance Counties in central New Mexico were evaluated by using groundwater levels and water-quality analyses, and updated geologic mapping. Substantial development in the study area (population increased by 11,000, or 50 percent, from 1990 through 2000) has raised concerns about the effects of growth on water resources. The last comprehensive examination of the water resources of the study area was done in 1980-this study examines a slightly different area and incorporates data collected in the intervening 25 years. The East Mountain area is geologically and hydrologically complex-in addition to the geologic units, such features as the Sandia Mountains, Tijeras and Gutierrez Faults, Tijeras syncline and anticline, and the Estancia Basin affect the movement, availability, and water quality of the groundwater system. The stratigraphic units were separated into eight hydrostratigraphic units, each having distinct hydraulic and chemical properties. Overall, the major hydrostratigraphic units are the Madera-Sandia and Abo-Yeso; however, other units are the primary source of supply in some areas. Despite the eight previously defined hydrostratigraphic units, water-level contours were drawn on the generalized regional potentiometric map assuming all hydrostratigraphic units are connected and function as a single aquifer system. Groundwater originates as infiltration of precipitation in upland areas (Sandia, Manzano, and Manzanita Mountains, and the Ortiz Porphyry Belt) and moves downgradient into the Tijeras Graben, Tijeras Canyon, San Pedro synclinorium, and the Hagan, Estancia, and Espanola Basins. The study area was divided into eight groundwater areas defined on the basis of geologic, hydrologic, and geochemical information-Tijeras Canyon, Cedar Crest, Tijeras Graben, Estancia Basin, San Pedro Creek, Ortiz Porphyry Belt, Hagan Basin, and Upper Sandia Mountains. View report for unabridged abstract.
Geohydrology and water utilization in the Willcox Basin, Graham and Cochise Counties, Arizona
Brown, S.G.; Schumann, Herbert H.
1969-01-01
The Willcox basin is an area of interior drainage in the northern part of Sulphur Springs Valley, Cochise and Graham Counties, Ariz. The basin comprises about 1,500 square miles, of which the valley floor occupies about 950 square miles. The basin probably formed during middle and late Tertiary time, when the area was subjected to large-scale faulting accompanied by the uplift of the mountain ranges that presently border it. During and after faulting, large quantities of alluvium were deposited in the closed basin. The rocks in the basin are divided into two broad groups--the rocks of the mountain blocks, of Precambrian through Tertiary age, and the rocks of the basin, of Tertiary and Quaternary age. The mountain blocks consist of igneous, metamorphic, and sedimentary rocks; the water-bearing characteristics of these rocks depend primarily on their degree of weathering and fracturing. Even in areas where these rocks are fractured and jointed, only small amounts of water have been developed. The rocks of the basin consist of moderately consolidated alluvium, poorly consolidated alluvium, and unconsolidated alluvium. The water-bearing characteristics of the moderately and poorly consolidated alluvium are not well known. The unconsolidated alluvium underlies most of the valley floor and consists of two facies, stream deposits and lake beds associated with the old playa. The lenticular sand and gravel layers interbedded in silt- and clay-size material of the unconsolidated alluvium constitute the principal aquifer in the basin. The other aquifers, which yield less water, consist of beds of poorly to moderately consolidated sand- and gravel-size material; these beds occur in both the poorly consolidated and moderately consolidated alluvium. In the Stewart area the median specific capacity of wells per 100 feet of saturated unconsolidated alluvium was 20 gallons per minute, and in the Kansas Settlement area the specific capacity of wells penetrating the poorly and moderately consolidated alluvium, undifferentiated, was only 7.4 gallons per minute per 100 feet of saturated material penetrated. The aquifer in the Kansas Settlement area is much less permeable but more homogeneous than the aquifer in the Stewart area. The coefficient of transmissibility of the aquifers, which was estimated from the specific-capacity data, ranged from 58,000 to 160,000 gal. tons per day per foot. Prior to extensive ground-water pumpage, the ground-water system probably was in equilibrium, with discharge equaling recharge. At that time, ground water moved toward the playa, where it was discharged by transpiration and evaporation. The estimate of the evapotranspiration in the playa area before large-scale development was about 75,000 acre-feet per year. On the basis of estimates of coefficients of transmissibility of the aquifer and on the basis of the water-table configuration, underflow toward the playa was computed to be about 54,000 acre-feet per year. By 1963, large-scale pumping had caused marked changes in the shape of the piezometric surface; large cones of depression had developed, and ground-water movement was toward the centers of pumping. The cones of depression caused by large-scale pumping have since expanded, and water-level declines have been measured in the recharge areas along the mountain fronts. Ground water has been used for irrigation since 1910. In 1928, about 4,000 acre-feet of ground water was pumped, and by 1963 180,000 acre-feet per year was being pumped. An estimated 1,860,000 acre-feet of water has been pumped for irrigation in the Willcox basin through 1963; 680,000 acre-feet from the Stewart area, 990,000 acre-feet from the Kansas Settlement area, and 190,000 acre-feet from the Pearce-Cochise area. In the Sierra Bonita Ranch area and the north playa area, ground-water withdrawal for irrigation through 1963 was small. From the spring of 1952 to the spring of 1964 water-level declines resulting from the
NASA Astrophysics Data System (ADS)
Nasanbat, Elbegjargal; Erdenebat, Erdenetogtokh; Chogsom, Bolorchuluun; Lkhamjav, Ochirkhuyag; Nanzad, Lkhagvadorj
2018-04-01
The glacier is most important the freshwater resources and indicator of the climate change. The researchers noted that during last decades the glacier is melting due to global warming. The study calculates a spatial distribution of protentional change of glacier coverage in the Ikh Turgen mountain of Western Mongolia, and it integrates long-term climate data and satellite datasets. Therefore, in this experiment has tried to estimation three-dimensional surface area of the glacier. For this purpose, Normalized difference snow index (NDSI) was applied to decision tree approach, using Landsat MSS, TM, ETM+ and LC8 imagery for 1975-2016, a surface and slope for digital elevation model, precipitation and air temperature historical data of meteorological station. The potential volume area significantly changed glacier cover of the Ikh Turgen Mountain, and the area affected by highly variable precipitation and air temperature regimes. Between 1972 and 2016, a potential area of glacier area has been decreased in Ikh Turgen mountain region.
VizieR Online Data Catalog: Soft X-ray standards (Beuermann+, 2006)
NASA Astrophysics Data System (ADS)
Beuermann, K.; Burwitz, V.; Rauch, T.
2006-08-01
Table A1 contains the area correction functions to the Chandra LETG+HRCS effective areas for the negative and positive dispersion directions, alphaneg, alphapos, and their area-weighted mean alpha as well as the corrected effective areas for a gravity of HZ43A of logg=7.90. Tables A2 and A3 are for logg=7.80 and 8.00, respectively. The corrected area A is obtained as the recommended area of the Chandra November 2004 release (http://cxc.harvard.edu/cal/Letg, LETG/HRC-S Effective Area, updated November 2004), referred to as A0 in the paper, multiplied with the correction function alpha (see Section 4.4.1 of the paper for further explanation). The variation of the correction functions alpha and the corrected areas A between the three tables indicate their systematic errors around the nominal values of Table A1 which are depicted in Fig. 5 of the paper. The columns of Tables A1 to A3 provide the wavelength Lambda ({AA}), alphaneg, alphapos, alpha, Aneg (cm2), Apos (cm2), and A (cm2). The header to each Table contains the parameters of the respective fit. Table A4 contains the best-fit incident soft X-ray spectra of HZ43A, SiriusB, and RXJ1856-37 for a gravity of HZ43A of logg=7.90 as shown in Fig. 6 of the paper (see also Table 3 of the paper). Tables A5 and A6 are for logg=7.80 and 8.00, respectively. The best-fit spectra are based on the most recent version of the Tuebingen Model Atmosphere Package TMAP (Werner et al. 2003, in: Workshop on Stellar Atmosphere Modeling, eds. I. Hubeny, D. Mihalas, K. Werner, ASP Conf. Ser. 288, 31; Rauch & Deetjen 2003, ASP Conf. Ser. 288, 103). The columns of Tables A1 to A3 provide the wavelength Lambda ({AA}) and the photon fluxes of the three stars in photons/cm2/s/{AA}. The header to each Table contains the parameters of the respective fit. (6 data files).
Multi-scale nest-site selection by black-backed woodpeckers in outbreaks of mountain pine beetles
Thomas W. Bonnot; Joshua J. Millspaugh; Mark A. Rumble
2009-01-01
Areas of mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks in the Black Hills can provide habitat for black-backed woodpeckers (Picoides arcticus), a U.S. Forest Service, Region 2 Sensitive Species. These outbreaks are managed through removal of trees infested with mountain pine beetles to control mountain pine...
76 FR 66629 - Establishment of the Pine Mountain-Cloverdale Peak Viticultural Area
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... explains. The petition states that local growers report that Pine Mountain vineyards are naturally free of.... Southern storms often stall over Pine Mountain and the Mayacmas range, dropping more rain than in other..., and very well to excessively well-drained. Also, these mountain soils include large amounts of sand...
NASA Astrophysics Data System (ADS)
Schmoeckel, J.; Kottmeier, Ch.
2003-04-01
The extraordinary strong storm 'LOTHAR' on December 26, 1999 caused large damage in the forests of France, Switzerland and Germany. In Germany, specially the Black Forest (Schwarzwald) was concerned. In this contribution an empirical analysis of storm damage in the northern Black Forest is given. The aim is to derive the orographical influence on the windfield from the damage pattern. This is recorded approx. 5 months after the desaster by an airborne survey with a digital line scanner. From these data highly resolved, georeferenced distributions of the vegetation index are calculated (2 m x 2 m pixel size). The damaged forest areas appear with a lower vegetation index than areas with intact vegetation. Demarcation between damaged forest areas and populated or differently used areas is given by a landuse model. Mapping of the storm damages and their combination with a digital elevation model and landuse data is performed in a GIS. It is shown that the damage pattern is significantly affected by orographic factors. Large damage occurred e.g. at the location of saddles between single mountains, on mountain flanks facing to the North and Northwest, and at the windward (west) flanks of extended mountain ridges. Little damage is found in areas that presumably were protected against the wind, i.e. on the leeside (eastern) mountain flanks, in dells and niches as well as in valleys perpendicular to the mean west to southwest winds. To explain the spatially complex distribution of damages more fully, an analysis is made where characteristics of the forest and of the soil are taken into account. The knowledge gained can be profitable for future afforestation in mountain areas to stabilize forests against severe storms.
Study of hybrid power system potential to power agricultural water pump in mountain area
NASA Astrophysics Data System (ADS)
Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham
2016-03-01
As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US 14,938.
50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat Conservation...
50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat Conservation...
50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat Conservation...
50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat Conservation...
50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat Conservation...
50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat Conservation...
50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat Conservation...
50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat Conservation...
50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat Conservation...
50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat Conservation...
50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat Conservation...
50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat Conservation...
50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat Conservation...
50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat Conservation...
50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat Conservation...
50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...
50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...
50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...
50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...
50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...
Landslide Susceptibility Analysis along Li-Shing Mountain Road in Nantou County, Taiwan
NASA Astrophysics Data System (ADS)
Yeh, J. H.; Chan, H. C.; Chen, B. A.
2016-12-01
Slopeland hazards are frequently occurred during typhoon periods in the mountain areas of Taiwan. The Li-Shing Mountain Road was suffered from the landslide and erosion of road foundation due to its fragile geological structure, overuse of land, and heavy rainfall. Transportation of agricultural produce in Li-Shing areas was seriously affected while the Li-Shing Mountain Road was blocked by the landslides. To evaluate the landslide susceptibilities along the Li-Shing Mountain Road, this study collected the landslide inventories from Typhoon Mindulle in July, 2004 and Typhoon Kalmaegi in July, 2008. By combining the landslide inventories with hydrological and geological factors, such as rainfall, distance to river, geology, and land slope and aspect, the Instability Index Method was used to specify the landslide susceptibilities of the slopes along the Li-Shing Mountain Road. The accuracy of the present model was evaluated by comparison of the predicted and the typhoon triggered landslides. Finally, the high landslide potential slopes along the Li-Shing Mountain Road were identified. It is expected to provide the information for landslide warning system and engineering countermeasures planning along the Li-Shing Mountain Road. Keywords: Landslide, Instability Index Method, Li-Shing Mountain Road
Selected hydrologic data for Salt Lake Valley, Utah, October 1968 to October 1985
Seiler, R.L.
1986-01-01
This report contains hydrologic data collected in Salt Lake Valley from October 1968 to October 1985. The report area is bounded by the Wasatch Range on the east, the Oquirrh Mountains on the west, the Traverse Mountains on the south, and the boundary between Davis and Salt Lake Counties on the north. Hely and others (1971) defined two aquifers of major importance in the valley the principal aquifer and the shallow aquifer. The principal aquifer is a source of water for public supply and industry, whereas the shallow aquifer in many places contains water that is contaminated and is unsuitable for public supply (Seiler and Waddell, 1984). Most of the data in this report were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, Salt Lake County Water Conservancy District, Central Utah Water Conservancy District, Granger-Hunter Improvement District, Magna Water Co. and Improvement District, City of Midvale, Salt Lake City Department of Public Utilities, City of Sandyr City of South Salt Lake, Taylorsville Bennion Improvement District, City of West Jordan, Holladay Water Company, and White City Water Co. Some of the data were published previously by Hely, Mower, and Horr (1967, 1968, and 1969), lorns, Mower, and Horr (1966a and b), Marine and Price (1963), and Seiler and Waddell (1984).The purpose of this report is to provide hydrologic data for use by the general public and by officials who manage water resources and to supplement interpretive reports for the area. Information about wells, water levels in wells, and the chemical and physical properties of ground water is given in tables 1-4, and the well locations are shown on plate 1.
Yager, Richard M.; Maurer, Douglas K.; Mayers, C.J.
2012-01-01
Rapid growth and development within Carson Valley in Douglas County, Nevada, and Alpine County, California, has caused concern over the continued availability of groundwater, and whether the increased municipal demand could either impact the availability of water or result in decreased flow in the Carson River. Annual pumpage of groundwater has increased from less than 10,000 acre feet per year (acre-ft/yr) in the 1970s to about 31,000 acre-ft/yr in 2004, with most of the water used in agriculture. Municipal use of groundwater totaled about 10,000 acre-feet in 2000. In comparison, average streamflow entering the valley from 1940 to 2006 was 344,100 acre-ft/yr, while average flow exiting the valley was 297,400 acre-ft/yr. Carson Valley is underlain by semi-consolidated Tertiary sediments that are exposed on the eastern side and dip westward. Quaternary fluvial and alluvial deposits overlie the Tertiary sediments in the center and western side of the valley. The hydrology of Carson Valley is dominated by the Carson River, which supplies irrigation water for about 39,000 acres of farmland and maintains the water table less than 5 feet (ft) beneath much of the valley floor. Perennial and ephemeral watersheds drain the Carson Range and the Pine Nut Mountains, and mountain-front recharge to the groundwater system from these watersheds is estimated to average 36,000 acre-ft/yr. Groundwater in Carson Valley flows toward the Carson River and north toward the outlet of the Carson Valley. An upward hydraulic gradient exists over much of the valley, and artesian wells flow at land surface in some areas. Water levels declined as much as 15 ft since 1980 in some areas on the eastern side of the valley. Median estimated transmissivities of Quaternary alluvial-fan and fluvial sediments, and Tertiary sediments are 316; 3,120; and 110 feet squared per day (ft2/d), respectively, with larger transmissivity values in the central part of the valley and smaller values near the valley margins. A groundwater-flow model of Quaternary and Tertiary sediments in Carson Valley was developed using MODFLOW and calibrated to simulate historical conditions from water years 1971 through 2005. The 35-year transient simulation represented quarterly changes in precipitation, streamflow, pumping and irrigation. Inflows to the groundwater system simulated in the model include mountain-front recharge from watersheds in the Carson Range and Pine Nut Mountains, valley recharge from precipitation and land application of wastewater, agricultural recharge from irrigation, and septic-tank discharge. Outflows from the groundwater system simulated in the model include evapotranspiration from the water table and groundwater withdrawals for municipal, domestic, irrigation and other water supplies. The exchange of water between groundwater, the Carson River, and the irrigation system was represented with a version of the Streamflow Routing (SFR) package that was modified to apply diversions from the irrigation network to irrigated areas as recharge. The groundwater-flow model was calibrated through nonlinear regression with UCODE to measured water levels and streamflow to estimate values of hydraulic conductivity, recharge and streambed hydraulic-conductivity that were represented by 18 optimized parameters. The aquifer system was simulated as confined to facilitate numerical convergence, and the hydraulic conductivity of the top active model layers that intersect the water table was multiplied by a factor to account for partial saturation. Storage values representative of specific yield were specified in parts of model layers where unconfined conditions are assumed to occur. The median transmissivity (T) values (11,000 and 800 ft2/d for the fluvial and alluvial-fan sediments, respectively) are both within the third quartile of T values estimated from specific-capacity data, but T values for Tertiary sediments are larger than the third quartile estimated from specific-capacity data. The estimated vertical anisotropy for the Quaternary fluvial sediments (9,000) is comparable to the value estimated for a previous model of Carson Valley. The estimated total volume of mountain-front recharge is equivalent to a previous estimate from the Precipitation-Runoff Modeling System (PRMS) watershed models, but less recharge is estimated for the Carson Range and more recharge is estimated for the Pine Nut Mountains than the previous estimate. Simulated flow paths indicate that groundwater flows faster through the center of Carson Valley and slower through the lower hydraulic-conductivity Tertiary sediments to the east. Shallow flow in the center of the valley is towards drainage channels, but deeper flow is generally directed toward the basin outlet to the north. The aquifer system is in a dynamic equilibrium with large inflows from storage in dry years and large outflows to storage in wet years. Pumping has historically been less than 10 percent of outflows from the groundwater system, and agricultural recharge has been less than 10 percent of inflows to the groundwater system. Three principal sources of uncertainty that affect model results are: (1) the hydraulic characteristics of the Tertiary sediments on the eastern side of the basin, (2) the composition of sediments beneath the alluvial fans and (3) the extent of the confining unit represented within fluvial sediments in the center of the basin. The groundwater-flow model was used in five 55-year predictive simulations to evaluate the long-term effects of different water-use scenarios on water-budget components, groundwater levels, and streamflow in the Carson River. The predictive simulations represented water years 2006 through 2060 using quarterly stress periods with boundary conditions that varied cyclically to represent the transition from wet to dry conditions observed from water years 1995 through 2004. The five scenarios included a base scenario with 2005 pumping rates held constant throughout the simulation period and four other scenarios using: (1) pumping rates increased by 70 percent, including an additional 1,340 domestic wells, (2A) pumping rates more than doubled with municipal pumping increased by a factor of four over the base scenario, (2B) pumping rates of 2A with 2,040 fewer domestic wells, and (3) pumping rates of 2A with 3,700 acres removed from irrigation. The 55-year predictive simulations indicate that increasing groundwater withdrawals under the scenarios considered would result in as much as 40 ft and 60 ft of water-table decline on the west and east sides of Carson Valley, respectively. The water table in the central part of the valley would remain essentially unchanged, but water-level declines of as much as 30 ft are predicted for the deeper, confined aquifer. The increased withdrawals would reduce the volume of groundwater storage and decrease the mean downstream flow in the Carson River by as much as 16,500 acre-ft/yr. If, in addition, 3,700 acres were removed from irrigation, the reduction in mean downstream flow in the Carson River would be only 6,500 acre-ft/yr. The actual amount of flow reduction is uncertain because of potential changes in irrigation practices that may not be accounted for in the model. The projections of the predictive simulations are sensitive to rates of mountain-front recharge specified for the Carson Range and the Pine Nut Mountains. The model provides a tool that can be used to aid water managers and planners in making informed decisions. A prudent management approach would include continued monitoring of water levels on both the east and west sides of Carson Valley to either verify the predictions of the groundwater-flow model or to provide additional data for recalibration of the model if the predictions prove inaccurate.
75 FR 3917 - Notice of Partial Cancellation of Proposed Withdrawal; California
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-25
.... 16 E., Sec. 29, that portion lying westerly of the Old Woman Mountains Wilderness Area. Northern... southwesterly of the Old Woman Mountains Wilderness Area. Northern Expansion Area. T. 6 N., R. 7 E., Secs. 1 and... land laws generally, subject to valid existing rights, the provisions of existing withdrawals, other...
Mud Mountain Wildlife Inventory and Habitat Analysis.
1979-01-01
PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK Intern Program AREA & WORK UNIT NUMBERS Western Interstate Commission for...RIPARIAN ZONE CHARACTERISTICS .... .......... .26 5 SNAG SUCCESSION CHARACTERISTICS .. .. . .... ... 29 6 THREE SISTERS- GRASS MOUNTAIN AREA ...recommendations appropriate with regard to their wildlife potential. Throughout the report, essential habitat areas have been noted. Management guidelines
Why on the snow? Winter emergence strategies of snow-active Chironomidae (Diptera) in Poland.
Soszyńska-Maj, Agnieszka; Paasivirta, Lauri; Giłka, Wojciech
2016-10-01
A long-term study of adult non-biting midges (Chironomidae) active in winter on the snow in mountain areas and lowlands in Poland yielded 35 species. The lowland and mountain communities differed significantly in their specific composition. The mountain assemblage was found to be more diverse and abundant, with a substantial contribution from the subfamily Diamesinae, whereas Orthocladiinae predominated in the lowlands. Orthocladius wetterensis Brundin was the most characteristic and superdominant species in the winter-active chironomid communities in both areas. Only a few specimens and species of snow-active chironomids were recorded in late autumn and early winter. The abundance of chironomids peaked in late February in the mountain and lowland areas with an additional peak in the mountain areas in early April. However, this second peak of activity consisted mainly of Orthocladiinae, as Diamesinae emerged earliest in the season. Most snow-active species emerged in mid- and late winter, but their seasonal patterns differed between the 2 regions as a result of the different species composition and the duration of snow cover in these regions. Spearman's rank correlation coefficient tests yielded positive results between each season and the number of chironomid individuals recorded in the mountain area. A positive correlation between air temperature, rising to +3.5 °C, and the number of specimens recorded on the snow in the mountain community was statistically significant. The winter emergence and mate-searching strategies of chironomids are discussed in the light of global warming, and a brief compilation of most important published data on the phenomena studied is provided. © 2015 Institute of Zoology, Chinese Academy of Sciences.
Regina M. Rochefort; Laurie L. Kurth; Tara W. Carolin; Robert R. Mierendorf; Kimberly Frappier; David L. Steenson
2006-01-01
This chapter concentrates on subalpine parklands and alpine meadows of southern British Columbia, Washington, Oregon, and western Montana. These areas lie on the flanks of several mountain ranges including the Olympics, the Cascades of Oregon and Washington, and the Coast Mountains in British Columbia.
Centerline pavement markings on two-lane mountain highways.
DOT National Transportation Integrated Search
1983-01-01
The Virginia Department of Highways and Transportation uses a lane marking designated mountain pavement marking (MPM) on two-lane highways in mountainous areas. This special marking consists of a single broken yellow line supplemented with "PASS WITH...
SRTM Colored Height and Shaded Relief: Laguna Mellquina, Andes Mountains, Argentina
2001-06-14
This depiction of an area south of San Martin de Los Andes, Argentina, is the first Shuttle Radar Topography Mission SRTM view of the Andes Mountains, the tallest mountain chain in the western hemisphere.
NASA Astrophysics Data System (ADS)
Xiao, Hua-Yun; Tang, Cong-Guo; Liu, Xue-Yan; Xiao, Hong-Wei; Liu, Cong-Qiang
2008-10-01
Many mountainous regions in South China have been confronted with the consequences of acidic deposition, but studies on atmospheric S sources are still very limited. In this study, isotopic ratios in mosses were used to discriminate atmospheric S sources. A continuous increase in S isotopic ratios was observed from the south to the north in mountainous mosses and in accord with the previously reported changing trends in urban mosses, indicating a contribution of local anthropogenic S from urban cities. Based on comparisons of S isotopic ratios in mountainous mosses with those in nearby urban mosses, we found that mountainous mosses had significantly higher 34S contents than urban mosses, especially in West China, reflecting an introduction of 34S-enriched sulphur. In conjunction with cloud water data in the literature, we concluded that 34S-enriched sulphur in northerly air masses contributed much to atmospheric S in southern Chinese mountainous areas.
Volcanism on Io: Insights from Global Geologic Mapping
NASA Technical Reports Server (NTRS)
Williams, D. A.; Keszthelyi, L. P.; Crown, D. A.; Geissler, P. E.; Schenk, P. M.; Yff, Jessica; Jaeger, W. L.
2009-01-01
We are preparing a new global geo-logic map of Jupiter s volcanic moon, Io. Here we report the type of data that are now available from our global mapping efforts, and how these data can be used to investigate questions regarding the volcano-tectonic evolution of Io. We are using the new map to investigate several specific questions about the geologic evolution of Io that previously could not be well addressed, including (for example) a comparison of the areas vs. the heights of Ionian mountains to assess their stability and evolution (Fig. 1). The area-height relationships of Io s visible mountains show the low abundance and low relief of volcanic mountains (tholi) relative to tectonic mountains, consistent with formation from low-viscosity lavas less likely to build steep edifices. Mottled mountains are generally less high than lineated mountains, consistent with a degradational formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCord, John; Marutzky, Sam
2004-12-01
This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU.more » These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from the caldera as well as from more distant sources. This has resulted in a layered volcanic stratigraphy composed of thick deposits of welded and nonwelded ash-flow tuff and lava flows. These deposits are proximal to the source caldera and are interstratified with the more distal facies of fallout tephra and bedded reworked tuff from more distant sources. In each area, a similar volcanic sequence was deposited upon Paleozoic carbonate and siliciclastic rocks that are disrupted by various thrust faults, normal faults, and strike-slip faults. In both Rainier Mesa (km) to the southwest, and Tippipah Spring, 4 km to the north, and the tunnel complex is dry. Particle-tracking simulations performed during the value of information analysis (VOIA) (SNJV, 2004b) indicate that most of the regional groundwater that underlies the test locations at Rainier Mesa and Shoshone Mountain eventually follows similar and parallel paths and ultimately discharges in Death Valley and the Amargosa Desert. Particle-tracking simulations conducted for the regional groundwater flow and risk assessment indicated that contamination from Rainier Mesa and Shoshone Mountain were unlikely to leave the NTS during the 1,000-year period of interest (DOE/NV, 1997a). It is anticipated that CAU-scale modeling will modify these results somewhat, but it is not expected to radically alter the outcome of these previous particle-tracking simulations within the 1,000-year period of interest. The Rainier Mesa/Shoshone Mountain CAIP describes the corrective action investigation (CAI) to be conducted at the Rainier Mesa/Shoshone Mountain CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The CAI will be conducted by the UGTA Project, which is part of the NNSA/NSO Environmental Restoration Project (ERP). The purpose and scope of the CAI are presented in this section, followed by a summary of the entire document.« less
NASA Astrophysics Data System (ADS)
Liu, Xia; Guo, Yuedong; Hu, Haiqing; Sun, Chengkun; Zhao, Xikuan; Wei, Changlei
2015-12-01
To quantify the fluxes and examine the controls on greenhouse gas emissions from the permafrost marshes where the fate of the large quantity of soil organic carbon remains poorly understood, we measured carbon dioxide (CO2) and methane (CH4) emissions in the northern region of the Great Xing'an Mountains, northeast China, in the thawing seasons of 2011 and 2012. The mean CO2 and CH4 fluxes from the marshes were estimated at 403.47 and 0.14 mg m-2 h-1 on average during the two years. Soil temperature was determined as the primary control on the seasonal greenhouse gas emissions during the growing period. The Q10 values, calculated from the exponential regression between soil temperature and CO2 emissions, suggest that the sensitivity of CO2 flux to climate warming has a high spatially variability in the study area. Absorption of atmospheric CH4 was seasonally detected at the sites with lower water table, which confirms the potential of the natural marshes as CH4 sink when water table goes down due to climate change. When viewed from the ecosystem scale, the mean annual water table level and aboveground primary production were deemed as the dominant influencing factors for the mean annual fluxes, which suggests that there were different controls on the gas emissions at different spatial scales. Therefore, the primary controls of the CO2 and CH4 emissions at different spatial scales need to be surveyed in more detail when focusing on the future alteration of greenhouse gas emissions from permafrost marshes due to climate warming.
Taylor, Janis L.
2012-01-01
The Montana Valley and Foothill Prairies Ecoregion comprises numerous intermountain valleys and low-elevation foothill prairies spread across the western half of Montana, on both sides of the Continental Divide (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion, which covers approximately 64,658 km2 (24,965 mi2), includes the Flathead Valley and the valleys surrounding Helena, Missoula, Bozeman, Billings, Anaconda, Dillon, and Lewistown (fig. 1). These valleys are generally characterized by shortgrass prairie vegetation and are flanked by forested mountains (Woods and others, 1999); thus, the valleys’ biotas with regards to fish and insects are comparable. In many cases, the valleys are conduits for some of the largest rivers in the state, including Clark Fork and the Missouri, Jefferson, Madison, Flathead, Yellowstone, Gallatin, Smith, Big Hole, Bitterroot, and Blackfoot Rivers (fig. 2). The Montana Valley and Foothill Prairies Ecoregion also includes the “Rocky Mountain front,” an area of prairies along the eastern slope of the northern Rocky Mountains. Principal land uses within the ecoregion include farming, grazing, and mining. The valleys serve as major transportation and utility corridors and also contain the majority of Montana’s human population. The Montana Valley and Foothill Prairies Ecoregion extends into 17 mostly rural counties throughout western Montana. Only three of the counties—Carbon, Yellowstone, and Missoula—are part of a metropolitan statistical area with contiguous built-up areas tied to an employment center. Nearly two-thirds of Montana residents live in nonmetropolitan counties (Albrecht, 2008). Ten of the counties within the ecoregion had population growth rates greater than national averages (9–13 percent) between 1970 and 2000 (table 1). Ravalli and Gallatin Counties had the highest growth rates. Population growth was largely due to amenity-related inmigration and an economy dependent on tourism, health care, and services. Counties that had population declines, such as Deer Lodge, Silver Bow, and Meagher Counties, also had declines in agriculture and mining activity, and they had railroad closures as well. Climate varies from north to south and from the east side of the Continental Divide to the west side. However, all areas are semiarid with long cold winters and short growing seasons. In the western part of the ecoregion, Beaverhead, Bitterroot, Flathead, and Lolo National Forests provide the natural resources, particularly timber, that form the economic base for towns within nearby valleys. Mineral resources from mines in and around Anaconda, Deer Lodge, and Butte have long provided an economic base for these towns (fig. 3).
Haeussler, Peter J.; Best, Timothy C.; Waythomas, Christopher F.
2002-01-01
Most paleoseismic studies are at low to moderate latitudes. Here we present results from a high-latitude (61°30′ N) trenching study of the Castle Mountain fault in south-central Alaska. This fault is the only one known in the greater Anchorage, Alaska, area with historical seismicity and a Holocene fault scarp. It strikes east-northeast and cuts glacial and postglacial sediments in an area of boreal spruce-birch forest, shrub tundra, and sphagnum bog. The fault has a prominent vegetation lineament on the upthrown, north side of the fault. Nine trenches were logged across the fault in glacial and postglacial deposits, seven along the main trace, and two along a splay. In addition to thrust and strike-slip faulting, important controls on observed relationships in the trenches are the season in which faulting occurred, the physical properties of the sediments, liquefaction, a shallow water table, soil-forming processes, the strength of the modern root mat, and freeze-thaw processes. Some of these processes and physical properties are unique to northern-latitude areas and result in seismic disturbance effects not observed at lower latitudes.The two trenches across the Castle Mountain fault splay exposed a thrust fault and few liquefaction features. Radiocarbon ages of soil organic matter and charcoal within and overlying the fault indicate movement on the fault at ca. 2735 cal. (calendar) yr B.P. and no subsequent movement. In the remaining seven trenches, surface faulting was accompanied by extensive liquefaction and a zone of disruption 3 m or more wide. The presence of numerous liquefaction features at depths of <0.5–1.0 m indicates faulting when the ground was not frozen—i.e., from about April to October. Sandy-matrix till, sand, silt, gravel, and pebbly peat were injected up to the base of the modern soil, but did not penetrate the interlocking spruce-birch root mat. The strength of the root mat prohibited development of a nonvegetated scarp face and colluvial wedge. In only one trench did we observe a discrete fault plane with measurable offset. It lay beneath a 2-m-thick carapace of liquefied sand and silt and displayed a total of 0.9–1.85 m of thrust motion since deposition of the oldest deposits in the trenches at ca. 13,500 yr B.P. We found liquefaction ejecta on paleosols at only one other trench, where there were bluejoint (Calamagrostis canadensis) tussocks that lacked an extensive root mat. From crosscutting relationships, we interpret three paleoliquefaction events on the main trace of the Castle Mountain fault: 2145–1870, 1375–1070, and 730–610 cal. yr B.P. These four earthquakes on the Castle Mountain fault in the past ∼2700 yr indicate an average recurrence interval of ∼700 yr. As it has been 600–700 yr since the last significant earthquake, a significant (magnitude 6–7) earthquake in the near future may be likely. Paleoseismic data indicate that the timing and recurrence interval of megathrust earthquakes is similar to the timing and recurrence interval of Castle Mountain fault earthquakes, suggesting a possible link between faulting on the megathrust and on “crustal” structures.
Deformation of the Roberts Mountains Allochthon in north-central Nevada
Evans, James George; Theodore, Ted G.
1978-01-01
During the Antler orogeny in Late Devonian and Early Mississippian time, early and middle Paleozoic siliceous rocks, largely chert and sha1e, were thrust eastward for 90 to 160 km over coexisting carbonate rocks. Minor and major structures of two small areas of the allochthon at Battle Mountain and in the southern Tuscarora Mountains were studied in order to characterize the deformation and test the consistency of the movement plan with respect to the large eastward displacement. In the Battle Mountain area, the lower Paleozoic Scott Canyon and Valmy Formations were deformed in the Antler orogeny but were unaffected by later tectonism during late Paleozoic or early Mesozoic. In the southern Tuscarora Mountains area, the Ordovician and Silurian siliceous rocks deformed in the Antler Orogeny were deformed by later, possibly Mesozoic, folding and thrusting. Most of the minor folding visible in the allochthon is in the cheret, but proportionally more of the strain was taken up in the shale and argillite, both poorly exposed but predominant rock types. Most minor folds, concentric in form, plunge at small angles to the north-northeast and south-southwest with steeply dipping or vertical axial planes. The b-fabric axis, parallel to these folds, is identical apparently to the B-kinematic axis. The horizontal component of tectonic shortening of the allochthon, N. 70?-75? W. both in the Battle Mountain area and in the southern Tuscarora Mountains area, is therefore consistent with an eastward direction of movement of the allochthon. Folds with west- northwest trends locally present in the allochthon, may have formed in the direction of tectonic transport. In the southern Tuscarora Mountains, local strain in and below the allochthon was different from the prevailing strain in the allochthon, and tectonic shortening was locally at large angles to the accepted direction of movement of the allochthon.
NASA Astrophysics Data System (ADS)
Guan, Qingyu; Yang, Liqin; Guan, Wenqian; Wang, Feifei; Liu, Zeyu; Xu, Chuanqi
2018-03-01
Vegetation cover is a commonly used indicator for evaluating terrestrial environmental conditions, and for revealing environmental evolution and transitions. Spatiotemporal variations in the vegetation cover of the Hexi Corridor and surrounding areas from 2000 to 2010 were investigated using MODIS NDVI data, and the causes of vegetation cover changes were analyzed, considering both climatic variability and human activities. The vegetation cover of the study area increased during 2000-2010. The greenness of the vegetation showed a significant increase from the northwest to the southeast, which was similar to the spatial distribution of the annual precipitation. Variations in vegetation have a close relationship with those in precipitation within the Qilian Mountains region, but the NDVI is negatively correlated with precipitation in oasis areas. Increasing temperatures led to drought, inhibiting vegetation growth in summer; however, increasing temperatures may have also advanced and prolonged the growing periods in spring and autumn. The NDVI showed a slight degradation in March and July, primarily in the Qilian Mountains, and especially the Wushao Mountains. In March, due to low temperatures, the metabolism rate of vegetation was too slow to enable strong plant growth in high elevations of the Qilian Mountains. In July, increasing temperatures enhanced the intensity of transpiration and decreasing precipitation reduced the moisture available to plants, producing a slight degradation of vegetation in the Qilian Mountains. In May and August, the NDVI showed a significant improvement, primarily in the artificial oases and the Qilian Mountains. Abundant precipitation provided the necessary water for plant growth, and suitable temperatures increased the efficiency of photosynthesis, resulting in a significant improvement of vegetation in the Qilian Mountains. The improvement of production technologies, especially in irrigation, has been beneficial to the growth of vegetation in oasis areas. The implementation of large-scale vegetation management has led to several beneficial effects in the artificial oases and grasslands of the Qilian Mountains. [Figure not available: see fulltext.
Mountain-front recharge along the eastern side of the Middle Rio Grande Basin, central New Mexico
Anderholm, Scott K.
2000-01-01
Mountain-front recharge, which generally occurs along the margins of alluvial basins, can be a large part of total recharge to the aquifer system in such basins. Mountain-front recharge occurs as the result of infiltration of flow from streams that have headwaters in the mountainous areas adjacent to alluvial basins and ground- water flow from the aquifers in the mountainous areas to the aquifer in the alluvial basin. This report presents estimates of mountain-front recharge to the basin-fill aquifer along the eastern side of the Middle Rio Grande Basin in central New Mexico. The basin is a structural feature that contains a large thickness of basin-fill deposits, which compose the main aquifer in the basin. The basin is bounded along the eastern side by mountains composed of crystalline rocks of Precambrian age and sedimentary rocks of Paleozoic age. Precipitation is much larger in the mountains than in the basin; many stream channels debouch from the mountainous area to the basin. Chloride-balance and water-yield regression methods were used to estimate mountain-front recharge. The chloride-balance method was used to calculate a chloride balance in watersheds in the mountainous areas along the eastern side of the basin (subareas). The source of chloride to these watersheds is bulk precipitation (wet and dry deposition). Chloride leaves these watersheds as mountain-front recharge. The water-yield regression method was used to determine the streamflow from the mountainous watersheds at the mountain front. This streamflow was assumed to be equal to mountain-front recharge because most of this streamflow infiltrates and recharges the basin-fill aquifer. Total mountain-front recharge along the eastern side of the Middle Rio Grande Basin was estimated to be about 11,000 acre- feet per year using the chloride-balance method and about 36,000 and 38,000 acre-feet per year using two water-yield regression equations. There was a large range in the recharge estimates in a particular subarea using the different methods. Mountain-front recharge ranged from 0.7 to 15 percent of total annual precipitation in the subareas (percent recharge). Some of the smallest values of percent recharge were in the subareas in the southern part of the basin, which generally have low altitudes. The larger percent-recharge values were from subareas with higher altitudes. With existing information, determining which of the mountain- front recharge estimates is most accurate and the reasons for discrepancies among the different estimates is not possible. The chloride-balance method underestimates recharge if the chloride concentration used in the calculations for precipitation is too small or the chloride concentration in recharge is too large. Water-yield regression methods overestimate recharge if the amount of evapotranspiration of water that infiltrates into the channel bed of arroyos during runoff from summer thunderstorms is large.
Code of Federal Regulations, 2011 CFR
2011-07-01
... RICE Located at Area Sources of HAP Emissions 2d Table 2d to Subpart ZZZZ of Part 63 Protection of... 2d Table 2d to Subpart ZZZZ of Part 63—Requirements for Existing Stationary RICE Located at Area... requirements for existing stationary RICE located at area sources of HAP emissions: For each . . . You must...
29 CFR 1910.106 - Flammable and combustible liquids.
Code of Federal Regulations, 2010 CFR
2010-07-01
... venting devices shall be not less than that derived from Table H-10 except as provided in subdivision (e... 30 feet above grade of the exposed shell area of a vertical tank. Table H-10—Wetted Area Versus Cubic... determined in accordance with Table H-10, except that when the exposed wetted area of the surface is greater...
NREL's Sustainable Campus Overview
Rukavina, Frank; Pless, Shanti
2018-05-11
The high-performance buildings across the Energy Department's National Renewable Energy Laboratory's (NREL) South Table Mountain campus incorporate a number of state-of-the art energy efficiency and renewable energy technologies, making them models for sustainability. Each building, designed to meet the Gold or Platinum standards of the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) program, brings NREL closer to developing the campus of the future.
Site comparison for optical visibility statistics in southern California
NASA Technical Reports Server (NTRS)
Cowles, K.
1991-01-01
Negotiations are under way to locate an atmospheric visibility monitoring (AVM) observatory at Mount Lemmon, just north of Tucson, Arizona. Two more observatories will be located in the southwestern U.S. The observatories are being employed to improve a weather model for deep-space-to-ground optical communications. This article explains the factors considered in choosing a location and recommends Table Mountain Observatory as the location for another AVM facility.
Micrometeorological Observations in a Sierra Nevada Meadow
NASA Astrophysics Data System (ADS)
Blackburn, D. A.; Oliphant, A. J.
2016-12-01
Mountain meadows play important roles on watershed and ecosystem services, including improving water quality, moderating runoff and providing biodiversity hotspots. In the Sierra Nevada, mountain meadows are an integral part of the mountain ecosystem and watersheds that impact more than 20 million people. Grazing, logging and other forms of anthropogenic land use in the Sierra Nevada have degraded the functioning of meadows, by altering the morphology, hydrology and vegetation. Existing meandering stream networks become incised and straightened by increased runoff, which effectively lowers the water table and completely alters the ecosystem from moist meadow sedges, grasses, and herbs to dryland grass and shrubs. Given the large growth cycle in healthy meadows, it is also expected that they sequester a significant amount of carbon and enhance atmospheric humidity through evapotranspiration, but relatively little work has been done on the bio-micrometeorology of meadows. The purpose of this study is to assess the growing season carbon, water and energy budgets of a partly degraded meadow in the northern Sierra Nevada. Loney Meadow, located at nearly 2,000 m in the Tahoe National Forest, has been identified as a degraded meadow and is scheduled to undergo restoration work to raise the water table in 2017. A micrometeorological tower with eddy covariance instruments was deployed at the site for most of the snow-free period from May to October 2016. The measurements include: fluxes of CO2, water vapor, surface radiation and energy budget components; ancillary meteorological and soil data; and an automated camera capturing daily images of the meadow surface. The poster will present diurnal and seasonal CO2 on a daily basis with a very rapid increase at the onset of the growing season.
Fridrich, Christopher J.; Shroba, Ralph R.; Pillmore, Charles L.; Hudson, Adam M.
2009-01-01
This geologic map covers four 7.5-minute quadrangles-The Wall, NM-CO (New Mexico-Colorado), Vermejo Park, NM-CO, Ash Mountain, NM, and Van Bremmer Park, NM. The study area straddles the boundary between the eastern flank of the Sangre de Cristo Mountains and the western margin of the Raton Basin, with about two-thirds of the map area in the basin. The Raton Basin is a foreland basin that formed immediately eastward of the Sangre de Cristo Mountains during their initial uplift, in the Late Cretaceous through early Eocene Laramide orogeny. Subsequently, these mountains have been extensively modified during formation of the Rio Grande rift, from late Oligocene to present. The map area is within that part of the Sangre de Cristo Mountains that is called the Culebra Range. Additionally, the map covers small parts of the Devil's Park graben and the Valle Vidal half-graben, in the northwestern and southwestern parts of the map area, respectively. These two grabens are small intermontaine basins, that are satellitic to the main local basin of the Rio Grande rift, the San Luis Basin, that are an outlying, early- formed part of the rift, and that separate the Culebra Range from the Taos Range, to the southwest.
50 CFR Table 6 to Part 679 - Steller Sea Lion Protection Areas Atka Mackerel Fisheries Restrictions
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Steller Sea Lion Protection Areas Atka Mackerel Fisheries Restrictions 6 Table 6 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 6 Table 6 to Part 679—Steller Sea Lion...
50 CFR Table 6 to Part 679 - Steller Sea Lion Protection Areas Atka Mackerel Fisheries Restrictions
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Steller Sea Lion Protection Areas Atka Mackerel Fisheries Restrictions 6 Table 6 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 6 Table 6 to Part 679—Steller Sea Lion...
50 CFR Table 6 to Part 679 - Steller Sea Lion Protection Areas Atka Mackerel Fisheries Restrictions
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Steller Sea Lion Protection Areas Atka Mackerel Fisheries Restrictions 6 Table 6 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 6 Table 6 to Part 679—Steller Sea Lion...
50 CFR Table 6 to Part 679 - Steller Sea Lion Protection Areas Atka Mackerel Fisheries Restrictions
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Steller Sea Lion Protection Areas Atka Mackerel Fisheries Restrictions 6 Table 6 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 6 Table 6 to Part 679—Steller Sea Lion...
50 CFR Table 6 to Part 679 - Steller Sea Lion Protection Areas Atka Mackerel Fisheries Restrictions
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Steller Sea Lion Protection Areas Atka Mackerel Fisheries Restrictions 6 Table 6 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 6 Table 6 to Part 679—Steller Sea Lion...
75 FR 6025 - Environmental Impact Statements and Regulations; Availability of EPA Comments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-05
..., Vail Ski Area's 2007 Improvement Project, Proposed On-Mountain Restaurant from the top of Vail Mountain... Restaurant from the top of Vail Mountain to Mid Vail, Special-Use-Permit, Eagle/Holy Cross Ranger District...
SRTM Perspective of Colored Height and Shaded Relief Laguna Mellquina, Andes Mountains, Argentina
2001-06-22
This depiction of an area south of San Martin de Los Andes, Argentina, is the first Shuttle Radar Topography Mission SRTMview of the Andes Mountains, the tallest mountain chain in the western hemisphere.
NASA Astrophysics Data System (ADS)
Minh, Nghia Pham; Zou, Bin; Cai, Hongjun; Wang, Chengyi
2014-01-01
The estimation of forest parameters over mountain forest areas using polarimetric interferometric synthetic aperture radar (PolInSAR) images is one of the greatest interests in remote sensing applications. For mountain forest areas, scattering mechanisms are strongly affected by the ground topography variations. Most of the previous studies in modeling microwave backscattering signatures of forest area have been carried out over relatively flat areas. Therefore, a new algorithm for the forest height estimation from mountain forest areas using the general model-based decomposition (GMBD) for PolInSAR image is proposed. This algorithm enables the retrieval of not only the forest parameters, but also the magnitude associated with each mechanism. In addition, general double- and single-bounce scattering models are proposed to fit for the cross-polarization and off-diagonal term by separating their independent orientation angle, which remains unachieved in the previous model-based decompositions. The efficiency of the proposed approach is demonstrated with simulated data from PolSARProSim software and ALOS-PALSAR spaceborne PolInSAR datasets over the Kalimantan areas, Indonesia. Experimental results indicate that forest height could be effectively estimated by GMBD.
NASA Astrophysics Data System (ADS)
Mosquera, Pablo V.; Hampel, Henrietta; Vázquez, Raúl F.; Alonso, Miguel; Catalan, Jordi
2017-08-01
The number, size, and shape of lakes are key determinants of the ecological functionality of a lake district. The lake area scaling relationships with lake number and volume enable upscaling biogeochemical processes and spatially considering organisms' metapopulation dynamics. These relationships vary regionally depending on the geomorphological context, particularly in the range of lake area <1 km2 and mountainous regions. The Cajas Massif (Southern Ecuador) holds a tropical mountain lake district with 5955 water bodies. The number of lakes deviates from a power law relationship with the lake area at both ends of the size range; similarly to the distributions found in temperate mountain ranges. The deviation of each distribution tail does not respond to the same cause. The marked relief limits the size of the largest lakes at high altitudes, whereas ponds are prompt to a complete infilling. A bathymetry survey of 202 lakes, selected across the full-size range, revealed a volume-area scaling coefficient larger than those found for other lake areas of glacial origin but softer relief. Water renewal time is not consistently proportional to the lake area due to the volume-area variation in midsize lakes. The 85% of the water surface is in lakes >104 m2 and 50% of the water resources are held in a few ones (˜10) deeper than 18 m. Therefore, midlakes and large lakes are by far more biogeochemically relevant than ponds and shallow lakes in this tropical mountain lake district.
Earth Observations taken by the Expedition 18 Crew
2008-10-24
ISS018-E-005353 (24 Oct. 2008) --- Breckenridge and Copper Mountain ski slopes, Colorado are featured in this image photographed by an Expedition 18 crewmember on the International Space Station. Located in a section of the Rocky Mountains which extend through central Colorado, Tenmile Range and Copper Mountain provide the ideal location and landscape for popular winter sports. In this view, the Breckenridge and Copper Mountain ski areas are clearly visible as the snow covered ski runs stand out among the surrounding darker forest. Tenmile Range has mountain peaks that are named Peaks 1 through Peaks 10. The Breckenridge ski area use Peaks 7 through Peaks 10 which range from 12,631 feet (3,850 meters) to 13,615 feet (4,150 meters) high. Tenmile Canyon is a north northeast-trending fault-controlled valley running nearly 3,000 feet (914.4 meters) deep that serves as the boundaries for Tenmile Creek running through the center of the photo. The snow-covered peaks clearly delineate the tree line at an elevation of around 11,000 feet (3,350 meters). In the winter, this area's annual average snowfall ranges between 284 inches (7.21 meters) at Copper Mountain to 300 inches (7.62 meters) a year at Breckenridge. Before recreation became the main industry, miners were attracted to the area in the mid-1800's following discoveries of gold, silver, lead, and zinc. The towns of Breckenridge and Wheeler Junction (at the base of Copper Mountain ski area) were born out of the surge to settle the West during the Pike's Peak Gold Rush. While this image records snow on the peaks of Tenmile Range, the months of October and November 2008 saw little accumulation of snow pack in the area of Breckenridge. The situation changed in early December 2008 however, when more snow fell in eight days than in the preceding two months. The late, but significant, snowfall boosted the snow pack back to expected levels for this time of year.
Timber Mountain Precipitation Monitoring Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyles, Brad; McCurdy, Greg; Chapman, Jenny
2012-01-01
A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Milemore » Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.« less
Earthshots: Satellite images of environmental change – Elburz Mountains, Iran
,
2013-01-01
The Elburz Mountains run parallel to the southern coast of the Caspian Sea, and these mountains act as a barrier to rain clouds moving southward; as the clouds rise in altitude to cross the mountains they drop their moisture. This abundant rainfall supports a heavy rainforest (the bright red area) on the northern slopes. The valley to the south receives little precipitation because of this rain-shadow effect of the mountains.
Sedimentological constraints on the initial uplift of the West Bogda Mountains in Mid-Permian.
Wang, Jian; Cao, Ying-Chang; Wang, Xin-Tong; Liu, Ke-Yu; Wang, Zhu-Kun; Xu, Qi-Song
2018-01-23
The Late Paleozoic is considered to be an important stage in the evolution of the Central Asian Orogenic Belt (CAOB). The Bogda Mountains, a northeastern branch of the Tianshan Mountains, record the complete Paleozoic history of the Tianshan orogenic belt. The tectonic and sedimentary evolution of the west Bogda area and the timing of initial uplift of the West Bogda Mountains were investigated based on detailed sedimentological study of outcrops, including lithology, sedimentary structures, rock and isotopic compositions and paleocurrent directions. At the end of the Early Permian, the West Bogda Trough was closed and an island arc was formed. The sedimentary and subsidence center of the Middle Permian inherited that of the Early Permian. The west Bogda area became an inherited catchment area, and developed a widespread shallow, deep and then shallow lacustrine succession during the Mid-Permian. At the end of the Mid-Permian, strong intracontinental collision caused the initial uplift of the West Bogda Mountains. Sedimentological evidence further confirmed that the West Bogda Mountains was a rift basin in the Carboniferous-Early Permian, and subsequently entered the Late Paleozoic large-scale intracontinental orogeny in the region.
Page, Norman J; Talkington, Raymond W.
1984-01-01
Samples of spinel lherzolite, harzburgite, dunite, and chromitite from the Bay of Islands, Lewis Hills, Table Mountain, Advocate, North Arm Mountain, White Hills Periodite Point Rousse, Great Bend and Betts Cove ophiolite complexes in Newfoundland were analyzed for the platinum-group elements (PGE) Pd, Pt, Rh, Ru and Ir. The ranges of concentration (in ppb) observed for all rocks are: less than 0. 5 to 77 (Pd), less than 1 to 120 (Pt), less than 0. 5 to 20 (Rh), less than 100 to 250 (Ru) and less than 20 to 83 (Ir). Chondrite-normalized PGE ratios suggest differences between rock types and between complexes. Samples of chromitite and dunite show relative enrichment in Ru and Ir and relative depletion in Pt and Pd.
Botanical reconnaissance of Nancy Brook Research Natural Area
Joshua L. Royte; Daniel D. Sperduto; John P. Lortie
1996-01-01
A survey of the flora and natural communities of Nancy Brook Research Natural Area, Crawford Notch, White Mountain National Forest, New Hampshire, was conducted during the summer and fall of 1992. Nancy Brook Research Natural Area is noted for being the largest virgin mountain spruce forest in New Hampshire, and one of the few remaining large examples in the...
ERIC Educational Resources Information Center
Huang, Hsiao-Ling; Hsu, Chih-Cheng; Peng, Wu-Der; Yen, Yea-Yin; Chen, Ted; Hu, Chih-Yang; Shi, Hon-Yi; Lee, Chien-Hung; Chen, Fu-Li; Lin, Pi-Li
2012-01-01
Background: A disparity in smoking behavior exists between the general and minority populations residing in Taiwan's mountainous areas. This study analyzed individual and environmental factors associated with children's smoking behavior in these areas of Taiwan. Methods: In this school-based study, data on smoking behavior and related factors for…
Relation between mountain goats and their habitat in southeastern Alaska.
J.L. Fox; C.A. Smith; J.W. Schoen
1989-01-01
Mountain goats in southeastern Alaska occupy habitats providing abundant areas of highquality forage during summer but only limited feeding areas during winter because of deep snow. Winter is a period of severe utritional deprivation, and goats converge into areas with available forage, often within old-growth forest where relatively low snow depths and litterfall...
Map showing seismicity and sandblows in the vicinity of New Madrid, Missouri
Rhea, B. Susan; Tarr, Arthur C.; Wheeler, Russell L.
1994-01-01
This is one of a series of five seismotectic maps of the seismically active New Madrid, Missouri, area (table 1; Wheeler and others, 1992). The map area centers near the sites of three great earthquakes that struck during the winter of 1811-12 (Fuller, 1912; Nuttli, 1973). These earthquakes and continuing subsequent seismicity rank the New Madrid area with Cherlevoix, Quebec, as the two most seismically active areas in North America east of the Rocky Mountains. The threat posed by New Madrid seismicity to the central United States makes the area the focus of many investigations (for examples, Heyl and McKeown, 1978; McKeown and Pakiser, 1982; Algemissen and Hopper, 1984; Hamilton and Johnston, 1990; Applied Technology Council, 1991; Johnston and others, 1992). The map area includes the most intense seismic activity in the New Madrid region. A seismotectic map shows some of the geologic and geophysical information needed to assess seismic hazard (Hadley and Devine, 1974; Pavoni, 1985). A previous seismotectonic map of the central Mississippi River valley (Heyl and McKeown, 1978) has had wide use for planning field surveys, as a base map for plotting data collected during single investigations, and for compiling a range of information. Since 1978 numcrous researchers have greatly advanced our knowledge of the geology and geophysics of the central Mississippi Valley. The New Madrid seismotectonic map folio updates approximately the south-central sixth of the central Mississippi Valley seismotectonic map of Heyl and McKeown (1978).
King, Harley D.; Chaffee, Maurice A.
2000-01-01
INTRODUCTION In 1996-1998 the U.S. Geological Survey (USGS) conducted a geochemical study of the Bureau of Land Management's (BLM) 5.5 million-acre Northern and Eastern Colorado Desert Resource Area (usually referred to as the NECD in this report), Imperial, Riverside, and San Bernardino Counties, southeastern California (figure 1). This study was done in support of the BLM's Coordinated Management Plan for the area. This report presents analytical data from this study. To provide comprehensive coverage of the NECD, we compiled and examined all available geochemical data, in digital form, from previous studies in the area, and made sample-site plots to aid in determining where sample-site coverage and analyses were sufficient, which samples should be re-analyzed, and where additional sampling was needed. Previous investigations conducted in parts of the current study area included the National Uranium Resource Evaluation (NURE) program studies of the Needles and Salton Sea 1? x 2? quadrangles; USGS studies of 12 BLM Wilderness Study Areas (WSAs) (Big Maria Mountains, Chemehuevi Mountains, Chuckwalla Mountains, Coxcomb Mountains, Mecca Hills, Orocopia Mountains, Palen-McCoy, Picacho Peak, Riverside Mountains, Sheephole Valley (also known as Sheep Hole/Cadiz), Turtle Mountains, and Whipple Mountains); and USGS studies in the Needles and El Centro 1? x 2? quadrangles done during the early 1990s as part of a project to identify the regional geochemistry of southern California. Areas where we did new sampling of rocks and stream sediments are mainly in the Chocolate Mountain Aerial Gunnery Range and in Joshua Tree National Park, which extends into the west-central part of the NECD, as shown in figure 1 and figure 2. This report contains analytical data for 132 rock samples and 1,245 stream-sediment samples collected by the USGS, and 362 stream-sediment samples and 189 soil samples collected during the NURE program. All samples are from the Northern and Eastern Colorado Desert BLM Resource Area and vicinity. Included in the 1,245 stream-sediment samples collected by the USGS are 284 samples collected as part of the current study, 817 samples collected as part of investigations of the12 BLM WSAs and re-analyzed for the present study, 45 samples from the Needles 1? X 2? quadrangle, and 99 samples from the El Centro 1? X 2? quadrangle. The NURE stream-sediment and soil samples were re-analyzed as part of the USGS study in the Needles quadrangle. Analytical data for samples from the Chocolate Mountain Aerial Gunnery Range, which is located within the area of the NECD, were previously reported (King and Chaffee, 1999a). For completeness, these results are also included in this report. Analytical data for samples from the area of Joshua Tree National Park that is within the NECD have also been reported (King and Chaffee, 1999b). These results are not included in this report. The analytical data presented here can be used for baseline geochemical, mineral resource, and environmental geochemical studies.
2. View of chapel with the recreation supply building on ...
2. View of chapel with the recreation supply building on the left and air refueling hangar in right central area of photograph, facing southwest - Mountain Home Air Force Base, Base Chapel, 350 Willow Street, Cantonment Area, Mountain Home, Elmore County, ID
Kansas Students Enjoy Summertime "Mountain Ventures"
ERIC Educational Resources Information Center
Highfill, Kenneth M.
1974-01-01
Describes an elective biology program offered at Lawrence High School (Kansas) that emphasizes basic field biology, ecology, conservation, camping, first aid, mountaineering, and map reading. Groups of students spend two weeks in the Rocky Mountains developing knowledge and skills in these areas. (JR)
Rettman, Paul
1981-01-01
The delineation of the water table in the alluvium of the Colorado River is fairly well defined, and 10-feet contour intervals may be interpreted with confidence in the area called ' potential lignite-mining area. ' The water table in the bedrock aquifers is more difficult to delineate with the available data; therefore, the contours are only estimates of the position of the water table in the hilly bedrock area adjacent to the Colorado River alluvium.
NASA Astrophysics Data System (ADS)
Wang, Li; Liu, Mao; Meng, Bo
2013-02-01
In China, both the mountainous areas and the number of people who live in mountain areas occupy a significant proportion. When production accidents or natural disasters happen, the residents in mountain areas should be evacuated and the evacuation is of obvious importance to public safety. But it is a pity that there are few studies on safety evacuation in rough terrain. The particularity of the complex terrain in mountain areas, however, makes it difficult to study pedestrian evacuation. In this paper, a three-dimensional surface cellular automata model is proposed to numerically simulate the real time dynamic evacuation of residents. The model takes into account topographic characteristics (the slope gradient) of the environment and the biomechanics characteristics (weight and leg extensor power) of the residents to calculate the walking speed. This paper only focuses on the influence of topography and the physiological parameters are defined as constants according to a statistical report. Velocity varies with the topography. In order to simulate the behavior of a crowd with varying movement velocities, and a numerical algorithm is used to determine the time step of iteration. By doing so, a numerical simulation can be conducted in a 3D surface CA model. Moreover, considering residents evacuation around a gas well in a mountain area as a case, a visualization system for a three-dimensional simulation of pedestrian evacuation is developed. In the simulation process, population behaviors of congestion, queuing and collision avoidance can be observed. The simulation results are explained reasonably. Therefore, the model presented in this paper can realize a 3D dynamic simulation of pedestrian evacuation vividly in complex terrain and predict the evacuation procedure and evacuation time required, which can supply some valuable information for emergency management.
Relationship between the parent material and the soil, in plain and mountainous areas
NASA Astrophysics Data System (ADS)
Kerek, Barbara; Kuti, Laszlo; Dobos, Timea; Vatai, Jozsef; Szentpetery, Ildiko
2013-04-01
One of the most important tasks of the soil is the nutrition of plants. This function is determinated by those parts of the geological media on what is the soil situated and from what the soil was formed (those two can be different). Soil can be formed definitely just from sediment, so it is more proper to speak about parent material than parent rock. Soil forming sediment is defined as the loose sediment on the surface, which is the upper layer of near-surface rocks in flat and hilly regions, and it is the upper layer of the sediment-ensemble situated on the undisturbed bedrock in mountainous areas. Considering its origin, these sediments could be autochthon or allochton. Soil forming is determinated, besides other factors (climate, elevation, vegetation, etc.), by the parent material, which has a crucial influence on the type, quality and fertility of soils through its mineral composition, physical and chemical characteristics. Agrogeological processes happen in the superficial loose sediments in mountainous areas, but the underlying solid rock (where on the surface or close to it, there is solid rock), has an effect on them. The plain and hilly regions covered by thick loose sediment and the areas build up by solid rock and covered with thinner loose sediment in mountainous areas should be searched separately. In plain areas the near-surface formations have to be studied as a whole down to the saturated zone, but at least to 10 m. In regions of mountain and mountain fronts, the thickness, the composition and genetics of the young unconsolidated sediments situated above the older solid rocks have a vital importance, and also the relations among the soils, soil forming sediments and the base rocks have to be understood.
TRAY MOUNTAIN ROADLESS AREA, GEORGIA.
Nelson, Arthur E.; Chatman, Mark L.
1984-01-01
A mineral survey indicates that the Tray Mountain Roadless Area, Georgia has little promise for the occurrence of metallic mineral resources. Rocks underlying the Tray Mountain Roadless Area are suitable for crushed rock or aggregate; however, other sources for these materials are available closer to present markets. There is a possibility for the occurrence of hydrocarbon resources underlying the area at great depth, but no hydrocarbon potential was identified. Detailed studies are needed to establish the presence or absence and mineral-resource potential of olivine, nickel, cobalt, and chrome in the two mafic-ultramafic bodies in the Hayesville thrust sheet. The cause of the lead anomaly in pan concentrate samples taken from the southwest part of the roadless area has not been established; the mineral residence and source of the anomaly remain to be determined.
Extreme ground motions and Yucca Mountain
Hanks, Thomas C.; Abrahamson, Norman A.; Baker, Jack W.; Boore, David M.; Board, Mark; Brune, James N.; Cornell, C. Allin; Whitney, John W.
2013-01-01
Yucca Mountain is the designated site of the underground repository for the United States' high-level radioactive waste (HLW), consisting of commercial and military spent nuclear fuel, HLW derived from reprocessing of uranium and plutonium, surplus plutonium, and other nuclear-weapons materials. Yucca Mountain straddles the western boundary of the Nevada Test Site, where the United States has tested nuclear devices since the 1950s, and is situated in an arid, remote, and thinly populated region of Nevada, ~100 miles northwest of Las Vegas. Yucca Mountain was originally considered as a potential underground repository of HLW because of its thick units of unsaturated rocks, with the repository horizon being not only ~300 m above the water table but also ~300 m below the Yucca Mountain crest. The fundamental rationale for a geologic (underground) repository for HLW is to securely isolate these materials from the environment and its inhabitants to the greatest extent possible and for very long periods of time. Given the present climate conditions and what is known about the current hydrologic system and conditions around and in the mountain itself, one would anticipate that the rates of infiltration, corrosion, and transport would be very low—except for the possibility that repository integrity might be compromised by low-probability disruptive events, which include earthquakes, strong ground motion, and (or) a repository-piercing volcanic intrusion/eruption. Extreme ground motions (ExGM), as we use the phrase in this report, refer to the extremely large amplitudes of earthquake ground motion that arise at extremely low probabilities of exceedance (hazard). They first came to our attention when the 1998 probabilistic seismic hazard analysis for Yucca Mountain was extended to a hazard level of 10-8/yr (a 10-4/yr probability for a 104-year repository “lifetime”). The primary purpose of this report is to summarize the principal results of the ExGM research program as they have developed over the past 5 years; what follows will be focused on Yucca Mountain, but not restricted to it.
36 CFR 294.29 - List of designated Idaho Roadless Areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Perce Rapid River 922 X X Nez Perce Salmon Face 855 X Nez Perce Selway Bitterroot X Nez Perce Silver... Payette Snowbank 924 X Payette Sugar Mountain 014 X Salmon Agency Creek 512 X X Salmon Allan Mountain 946 X X Salmon Anderson Mountain 942 X Salmon Blue Joint Mountain 941 X Salmon Camas Creek 901 X Salmon...
Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data.
Strohm, S; Tyson, R C; Powell, J A
2013-10-01
Pattern formation occurs in a wide range of biological systems. This pattern formation can occur in mathematical models because of diffusion-driven instability or due to the interaction between reaction, diffusion, and chemotaxis. In this paper, we investigate the spatial pattern formation of attack clusters in a system for Mountain Pine Beetle. The pattern formation (aggregation) of the Mountain Pine Beetle in order to attack susceptible trees is crucial for their survival and reproduction. We use a reaction-diffusion equation with chemotaxis to model the interaction between Mountain Pine Beetle, Mountain Pine Beetle pheromones, and susceptible trees. Mathematical analysis is utilized to discover the spacing in-between beetle attacks on the susceptible landscape. The model predictions are verified by analysing aerial detection survey data of Mountain Pine Beetle Attack from the Sawtooth National Recreation Area. We find that the distance between Mountain Pine Beetle attack clusters predicted by our model closely corresponds to the observed attack data in the Sawtooth National Recreation Area. These results clarify the spatial mechanisms controlling the transition from incipient to epidemic populations and may lead to control measures which protect forests from Mountain Pine Beetle outbreak.
Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada
Day, Warren C.; Dickerson, Robert P.; Potter, Christopher J.; Sweetkind, Donald S.; San Juan, Carma A.; Drake, Ronald M.; Fridrich, Christopher J.
1998-01-01
Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections of the southwestern Great Basin.Excluding Quaternary surficial deposits, the map area is underlain by Miocene volcanic rocks, principally ash-flow tuffs with lesser amounts of lava flows. These volcanic units include the Crater Flat Group, the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group, as well as minor basaltic dikes. The tuffs and lava flows are predominantly rhyolite with lesser amounts of latite and range in age from 13.4 to 11.6 Ma. The 10-Ma basaltic dikes intruded along a few fault traces in the north-central part of the study area. Fault types in the area can be classified as block bounding, relay structures, strike slip, and intrablock. The block-bounding faults separate the 1- to 4-km-wide, east-dipping structural blocks and exhibit hundreds of meters of displacement. The relay structures are northwest-striking normal fault zones that kinematically link the block-bounding faults. The strike-slip faults are steep, northwest-striking dextral faults located in the northern part of Yucca Mountain. The intrablock faults are modest faults of limited offset (tens of meters) and trace length (less than 7 km) that accommodated intrablock deformation.The concept of structural domains provides a useful tool in delineating and describing variations in structural style. Domains are defined across the study area on the basis of the relative amount of internal faulting, style of deformation, and stratal dips. In general, there is a systematic north to south increase in extensional deformation as recorded in the amount of offset along the block-bounding faults as well as an increase in the intrablock faulting.The rocks in the map area had a protracted history of Tertiary extension. Rocks of the Paintbrush Group cover much of the area and obscure evidence for older tectonism. An earlier history of Tertiary extension can be inferred, however, because the Timber Mountain-Oasis Valley caldera complex lies within and cuts an older north-trending rift (the Kawich-Greenwater rift}. Evidence for deformation during eruption of the Paintbrush Group is locally present as growth structures. Post-Paintbrush Group, pre-Timber Mountain Group extension occurred along the block-bounding faults. The basal contact of the 11.6-Ma Rainier Mesa Tuff of the Timber Mountain Group provides a key time horizon throughout the area. Other workers have shown that west of the study area in northern Crater Flat the basal angular unconformity is as much as 20° between the Rainier Mesa and underlying Paintbrush Group rocks. In the westernmost part of the study area the unconformity is smaller (less than 10°), whereas in the central and eastern parts of the map area the contact is essentially conformable. In the central part of the map the Rainier Mesa Tuff laps over fault splays within the Solitario Canyon fault zone. However, displacement did occur on the block-bounding faults after deposition of the Rainier Mesa Tuff inasmuch as it is locally caught up in the hanging-wall deformation of the block-bounding faults. Therefore, the regional Tertiary to Recent extension was protracted, occurring prior to and after the eruption of the tuffs exposed at Yucca Mountain.
Digital Bedrock Compilation: A Geodatabase Covering Forest Service Lands in California
NASA Astrophysics Data System (ADS)
Elder, D.; de La Fuente, J. A.; Reichert, M.
2010-12-01
This digital database contains bedrock geologic mapping for Forest Service lands within California. This compilation began in 2004 and the first version was completed in 2005. Second publication of this geodatabase was completed in 2010 and filled major gaps in the southern Sierra Nevada and Modoc/Medicine Lake/Warner Mountains areas. This digital map database was compiled from previously published and unpublished geologic mapping, with source mapping and review from California Geological Survey, the U.S. Geological Survey and others. Much of the source data was itself compilation mapping. This geodatabase is huge, containing ~107,000 polygons and ~ 280,000 arcs. Mapping was compiled from more than one thousand individual sources and covers over 41,000,000 acres (~166,000 km2). It was compiled from source maps at various scales - from ~ 1:4,000 to 1:250,000 and represents the best available geologic mapping at largest scale possible. An estimated 70-80% of the source information was digitized from geologic mapping at 1:62,500 scale or better. Forest Service ACT2 Enterprise Team compiled the bedrock mapping and developed a geodatabase to store this information. This geodatabase supports feature classes for polygons (e.g, map units), lines (e.g., contacts, boundaries, faults and structural lines) and points (e.g., orientation data, structural symbology). Lookup tables provide detailed information for feature class items. Lookup/type tables contain legal values and hierarchical groupings for geologic ages and lithologies. Type tables link coded values with descriptions for line and point attributes, such as line type, line location and point type. This digital mapping is at the core of many quantitative analyses and derivative map products. Queries of the database are used to produce maps and to quantify rock types of interest. These include the following: (1) ultramafic rocks - where hazards from naturally occurring asbestos are high, (2) granitic rocks - increased erosion hazards, (3) limestone, chert, sedimentary rocks - paleontological resources (Potential Fossil Yield Classification maps), (4) calcareous rocks (cave resources, water chemistry), and (5) lava flows - lava tubes (more caves). Map unit groupings (e.g., belts, terranes, tectonic & geomorphic provinces) can also be derived from the geodatabase. Digital geologic mapping was used in ground water modeling to predict effects of tunneling through the San Bernardino Mountains. Bedrock mapping is used in models that characterize watershed sediment regimes and quantify anthropogenic influences. When combined with digital geomorphology mapping, this geodatabase helps to assess landslide hazards.
Stubelj Ars, Mojca; Bohanec, Marko
2010-12-01
This paper studies mountain hut infrastructure in the Alps as an important element of ecotourism in the Alpine region. To improve the decision-making process regarding the implementation of future infrastructure and improvement of existing infrastructure in the vulnerable natural environment of mountain ecosystems, a new decision support model has been developed. The methodology is based on qualitative multi-attribute modelling supported by the DEXi software. The integrated rule-based model is hierarchical and consists of two submodels that cover the infrastructure of the mountain huts and that of the huts' surroundings. The final goal for the designed tool is to help minimize the ecological footprint of tourists in environmentally sensitive and undeveloped mountain areas and contribute to mountain ecotourism. The model has been tested in the case study of four mountain huts in Triglav National Park in Slovenia. Study findings provide a new empirical approach to evaluating existing mountain infrastructure and predicting improvements for the future. The assessment results are of particular interest for decision makers in protected areas, such as Alpine national parks managers and administrators. In a way, this model proposes an approach to the management assessment of mountain huts with the main aim of increasing the quality of life of mountain environment visitors as well as the satisfaction of tourists who may eventually become ecotourists. Copyright © 2010 Elsevier Ltd. All rights reserved.
Earth Observations taken by Expedition 32 crewmember
2012-09-03
ISS032-E-024687 (3 Sept. 2012) --- Idaho fires are featured in this image photographed by an Expedition 32 crew member on the International Space Station. Taken with a short lens (45 mm), this west-looking photograph has a field of view covering much of the forested region of central Idaho. The dark areas are all wooded mountains—the Salmon River Mountains (left), Bitterroot Mountains (lower right) and Clearwater Mountains (right). All three areas experienced wildfires in September 2012—this image illustrates the situation early in the month. Smaller fire ‘complexes” appear as tendrils of smoke near the sources (e.g. Halstead complex at left), and as major white smoke plumes from the Mustang fire complex in the densest forests (darkest green, center) of the Clearwater Mountains. This was the largest plume noted in the region with thick smoke blowing eastward over the Beaverhead Mountains at bottom. The linear shape of the smoke plumes gives a sense of the generally eastward smoke transport on this day in early September. The smoke distribution shows another kind of transport: at night, when winds are weak, cooling of the atmosphere near the ground causes drainage of cooled (denser) air down into the major valleys. Here the smoke can be seen flowing west down into the narrow Salmon and Lochsa River valleys (at a local time of 12:18:50 p.m.) – in the opposite direction to the higher winds and the thick smoke masses. The bright yellow-tan areas at top left and top right contrasting with the mountains are grasslands of the Snake River in southern Idaho around Boise, and the Palouse region in western Idaho–SE Washington state. This latter area is known to ecologists as the Palouse Grasslands Ecoregion. Light green areas visible in the center of many of the valleys are agricultural crops including barley, alfalfa, and wheat. The image also shows several firsts of which Idaho can boast. The Snake River between Boise and the Palouse region has cut Hells Canyon (top), the deepest gorge in the U.S. at almost 2,436 meters (8,000 feet). The largest single wilderness area in the contiguous U.S., the Frank Church-River of No Return Wilderness occupies the wooded zones of the Salmon River Mountains and the Clearwater Mountains, i.e. most of the area shown in the middle of the image. Idaho’s highest peak is Borah Peak (lower left) at 3,860 meters above sea level (12,662 feet ASL). The Continental Divide cuts through the bottom of the image—rivers on the eastern slopes of the Beaverhead Mountains drain to the Atlantic Ocean, whereas rivers in the rest of the area drain to the Pacific Ocean.
2012-08-01
concentrated in four geographic areas (Coolgardie Mesa, Paradise Valley, Brinkman Wash-Montana Mine , and the Gemini Conservation Area; Fig. 1) that total...data for 2003, and from 2007 through 2009 were generated by the remote automated weather station (RAWS) at Opal Mountain CA (35°09´N; 117°10´W; 980...m.). This weather station is approximately 30 km SW of UCLA’s milkvetch study sites. Opal Mountain and Goldstone monthly precipitation from 1992
Discrimination Using the Geonics EM63 in a Cued Interrogation Mode at Fort McClellan, AL
2009-03-01
along with occasional structures, many of which are no longer used. Ft. McClellan is situated near the southern terminus of the Appalachian Mountain ...acres in the City of Anniston, in Calhoun County, Alabama. To the west of Ft. McClellan are the areas known as Weaver and Blue Mountain , and to the...training area since 1912, when the Alabama National Guard used it for artillery training. However, the Choccolocco Mountains may have been used for
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679... Table 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open...
Wildfire rehabilitation success with and without chaining on the Henry Mountains, Utah
Cristina Juran; Bruce A. Roundy; James N. Davis
2008-01-01
We sampled unchained and chained areas in 2004 and 2005 on the Henry Mountains that had been aerially seeded after the Bulldog Fire of 2003. Establishment of seeded grasses was high on unchained and chained areas although chaining increased seeded grass establishment on some sites. Western yarrow established well on unchained areas. Initially, high seedling emergence...
The timber resources of the Blue Mountain area, Oregon.
Charles L. Bolsinger; John M. Berger
1975-01-01
The latest inventory of the timber resources of the Blue Mountain Area of Oregon indicates that there are about 47 billion board feet of sawtimber on 4.6 million acres of commercial forest land. Public agencies administer about 76 percent of the area and hold 89 percent of the sawtimber volume; farmer and miscellaneous private ownerships account for 16 percent of the...
Geologic Map of the Sulphur Mountain Quadrangle, Park County, Colorado
Bohannon, Robert G.; Ruleman, Chester A.
2009-01-01
The main structural element in the Sulphur Mountain quadrangle is the Elkhorn thrust. This northwest-trending fault is the southernmost structure that bounds the west side of the Late Cretaceous and early Tertiary Front Range basement-rock uplift. The Elkhorn thrust and the Williams Range thrust that occurs in the Dillon area north of the quadrangle bound the west flank of the Williams Range and the Front Range uplift in the South Park area. Kellogg (2004) described widespread, intense fracturing, landsliding, and deep-rooted scarps in the crystalline rocks that comprise the upper plate of the Williams Range thrust. The latter thrust is also demonstrably a low-angle structure upon which the fractured bedrock of the upper plate was translated west above Cretaceous shales. Westward thrusting along the border of the Front Range uplift is probably best developed in that area. By contrast, the Elkhorn in the Sulphur Mountain quadrangle is poorly exposed and occurs in an area of relatively low relief. The thrust also apparently ends in the central part of the quadrangle, dying out into a broad area of open, upright folds with northwest axes in the Sulphur Mountain area.
Whitney, J.W.; Keefer, W.R.
2000-01-01
In recognition of a critical national need for permanent radioactive-waste storage, Yucca Mountain in southwestern Nevada has been investigated by Federal agencies since the 1970's, as a potential geologic disposal site. In 1987, Congress selected Yucca Mountain for an expanded and more detailed site characterization effort. As an integral part of this program, the U.S. Geological Survey began a series of detailed geologic, geophysical, and related investigations designed to characterize the tectonic setting, fault behavior, and seismicity of the Yucca Mountain area. This document presents the results of 13 studies of the tectonic environment of Yucca Mountain, in support of a broad goal to assess the effects of future seismic and fault activity in the area on design, long-term performance, and safe operation of the potential surface and subsurface repository facilities.
Environmental Planning Technical Report. Biological Resources
1984-01-01
8217 v rini ana va r. Chokecherry melanoca rpa Shrubs Artemisia cana Silver sagebrush Ceratoides l-anata Wi nterf at Cerocarpus mortanus Mountain nahogany...nocarpa Chokecherry ialTix Spp. Wifllo 2-10 Table 2.6.1-i Continued, page 5 of 6 DOMINANT AND CHARACTERISTIC PLANT SPECIES Shrubs Salix spp. Willow...population on the Goshen Hole Rim near Flight S. Some of the more mesic draws support golden currant (Ribes aureum) and chokecherry (Prunus
1987-04-01
ISODRIN, DIELDRIN, DIISOPROPYLMETHYL- PHOSPHONATE, 1,2-DIBROMO-3- CHLOROPROPANE , AND p-CHLORO- PHENYLMETHYLSULFOXIDE i April 1987 Pet r J. M-&rks...Chester, Pennsylvania 19380 Work Order No. 2281-04-11 1053B TABLE OF CONTENTS 3 Page Paragraph i INTRODUCTION ........................ 1 1.1 Purpose... 1 2 LITERATURE SUMMARY .................... 2 2.1 General ............................. 2 2.2 DBCP
NASA Astrophysics Data System (ADS)
Rudiarto, I.; Handayani, W.; Wijaya, H. B.; Insani, T. D.
2018-02-01
The intention of this paper is to combine the socio economic development into spatial aspect with the fact that the divided sub study areas are differed in its socio-economic characteristic. The research was conducted in three different rural areas, i.e.; coastal area in Sayung sub district - Demak Regency, plain area in Delanggu sub district - Klaten Regency, and mountain area in Kledung sub district - Temanggung regency. Spatial interpolation technique has been applied in order to identify the spatial distribution of socioeconomic data. The results show that socioeconomic characteristic in plain area and coastal area is more varied and regularly distributed as compared to the mountain area. Educated people are less found in the plain area while in coastal and mountain area the condition is better. Coastal area is identified as the prone area to the disaster issues and therefore socioeconomically vulnerable. The result of this research is very important to the development policies that need to undertake regarding to socioeconomic development in each associated location.
SKY LAKES ROADLESS AREA AND MOUNTAIN LAKES WILDERNESS, OREGON.
Smith, James G.; Benham, John R.
1984-01-01
Based on a mineral survey of the Sky Lakes Roadless Area and the Mountain Lakes Wilderness, Oregon, the areas have little or no promise for the occurrence of metallic-mineral resources or geothermal energy resources. Nonmetallic resources exist in the areas, but other areas outside the roadless area and wilderness also contain resources of volcanic cinders, scoria, ash, breccia, and sand and gravel which are easier to obtain and closer to markets. The roadless area and wilderness are not geologically favorable for metallic deposits, or for coal, oil, or gas resources.
Preliminary report on engineering geology of thirteen tunnel sites, Nevada Test Site
Wilmarth, Verl Richard; McKeown, Francis Alexander; Dobrovolny, Ernest
1958-01-01
Reconnaissance of 13 areas in and adjacent to Nevada Test Site was completed. Of the 13 areas, Forty Mile Canyon, South-central Shoshone Mountain, and Southeast Shoshone Mountain named in order of preference, offer many advantages for carrying on future underground nuclear explosions.
A database of georeferenced nutrient chemistry data for mountain lakes of the Western United States
Williams, Jason; Labou, Stephanie G.
2017-01-01
Human activities have increased atmospheric nitrogen and phosphorus deposition rates relative to pre-industrial background. In the Western U.S., anthropogenic nutrient deposition has increased nutrient concentrations and stimulated algal growth in at least some remote mountain lakes. The Georeferenced Lake Nutrient Chemistry (GLNC) Database was constructed to create a spatially-extensive lake chemistry database needed to assess atmospheric nutrient deposition effects on Western U.S. mountain lakes. The database includes nitrogen and phosphorus water chemistry data spanning 1964–2015, with 148,336 chemistry results from 51,048 samples collected across 3,602 lakes in the Western U.S. Data were obtained from public databases, government agencies, scientific literature, and researchers, and were formatted into a consistent table structure. All data are georeferenced to a modified version of the National Hydrography Dataset Plus version 2. The database is transparent and reproducible; R code and input files used to format data are provided in an appendix. The database will likely be useful to those assessing spatial patterns of lake nutrient chemistry associated with atmospheric deposition or other environmental stressors. PMID:28509907
Stone, Paul
2006-01-01
The Black Mountain area is in the Mojave Desert about 20 km northeast of Victorville, California. The geology of this area is of interest primarily for its excellent exposures of the early Mesozoic Fairview Valley Formation, a sequence of weakly metamorphosed sedimentary rocks including a thick, commercially important unit of limestone conglomerate that has been mined for cement at Black Mountain Quarry for several decades. Recent geochronologic work has shown that the Fairview Valley Formation is probably of Early Jurassic age. This preliminary geologic map of the Black Mountain area depicts the stratigraphic and structural relations of the Fairview Valley Formation and the associated rocks, most notably the overlying Sidewinder Volcanics of Early(?), Middle, and Late(?) Jurassic age. The map is based on new field studies by the author designed to clarify details of the stratigraphy and structure unresolved by previous investigations. The map is considered preliminary because the ages of some geologic units critical for a satisfactory understanding of the stratigraphic and structural framework remain unknown. The map area also includes a segment of the Helendale Fault, one of several faults of known or inferred late Cenozoic right-lateral displacement that make up the Eastern California Shear Zone. The fault is marked by aligned northeast-facing scarps in Pleistocene or older alluvial deposits and the underlying bedrock units. Relations in the map area suggest that right-lateral displacement on the Helendale Fault probably does not exceed 2 km, a conclusion compatible with previous estimates of displacement on this fault based on relations both within and outside the Black Mountain area.
Ritchie, Scott A; Williams, Craig R; Montgomery, Brian L
2006-03-01
The mosquito repellent efficacy of New Mountain Sandalwood Mosquito Sticks (containing 0.5% w/w essential oils) and New Mountain Sandalwood Botanical Repellent (containing soybean and geranium oils) was assessed. Tests were conducted in the field with 4 volunteers in a wooded area near Cairns, North Queensland, Australia. Predominant biting species were Verrallina funerea and Ve. lineata. A pair of burning Mosquito Sticks immediately upwind of the subject (acting as an area repellent) provided a 73.1% mean reduction in mosquito landing and probing over the 3-h test period. The Botanical Repellent and a DEET-based control were both 100% effective in preventing mosquito probing for 3 h. These data are consistent with other studies of area repellents in that such products provide significant protection from mosquito bites, albeit inferior to the protection provided by topically applied repellents.
NASA Technical Reports Server (NTRS)
Taranik, J. V.; Noble, D. C.; Hsu, L. C.; Hutsinpiller, A.; Spatz, D.
1986-01-01
Surface coatings on volcanic rock assemblages that occur at select tertiary volcanic centers in southern Nevada were investigated using LANDSAT 5 Thematic Mapper imagery. Three project sites comprise the subject of this study: the Kane Springs Wash, Black Mountain, and Stonewall Mountain volcanic centers. LANDSAT 5 TM work scenes selected for each area are outlined along with local area geology. The nature and composition of surface coatings on the rock types within the subproject areas are determined, along with the origin of the coatings and their genetic link to host rocks, geologic interpretations are related to remote sensing units discriminated on TM imagery. Image processing was done using an ESL VAX/IDIMS image processing system, field sampling, and observation. Aerial photographs were acquired to facilitate location on the ground and to aid stratigraphic differentiation.
Yucca Mountain Biological Resources Monitoring Program; Annual report, FY91
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-01-01
The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmentalmore » regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.« less
Liu, Y; Zhou, Y-B; Li, R-Z; Wan, J-J; Yang, Y; Qiu, D-C; Zhong, B
2016-01-01
Schistosomiasis is a parasitic disease that affects over 200million people worldwide in at least 76 countries, ranking second only after malaria in terms of its socio-economic and public health importance in tropical and subtropical areas of the world. Chinese surveillance data since the mid-1950s have shown that endemic areas are divided into three types based on geographical, ecological and epidemiological factors, such as marshland and lake region, plain region with waterway networks and hilly and mountainous region. As confirmed by numerous epidemiological investigations, schistosomiasis endemic areas of the mountainous type are distributed in 178 counties in 11 provinces of The People's Republic of China. Over the past several decades great success in transmission control has been achieved by implementation of control strategies that were suitable for the mountainous and hilly endemic region. Copyright © 2016 Elsevier Ltd. All rights reserved.
A modeling analysis program for the JPL table mountain Io sodium cloud data
NASA Technical Reports Server (NTRS)
Smyth, William H.; Goldberg, Bruce A.
1988-01-01
Research in the third and final year of this project is divided into three main areas: (1) completion of data processing and calibration for 34 of the 1981 Region B/C images, selected from the massive JPL sodium cloud data set; (2) identification and examination of the basic features and observed changes in the morphological characteristics of the sodium cloud images; and (3) successful physical interpretation of these basic features and observed changes using the highly developed numerical sodium cloud model at AER. The modeling analysis has led to a number of definite conclusions regarding the local structure of Io's atmosphere, the gas escape mechanism at Io, and the presence of an east-west electric field and a System III longitudinal asymmetry in the plasma torus. Large scale stability, as well as some smaller scale time variability for both the sodium cloud and the structure of the plasma torus over a several year time period are also discussed.
The assessment of EUMETSAT HSAF Snow Products for mountainuos areas in the eastern part of Turkey
NASA Astrophysics Data System (ADS)
Akyurek, Z.; Surer, S.; Beser, O.; Bolat, K.; Erturk, A. G.
2012-04-01
Monitoring the snow parameters (e.g. snow cover area, snow water equivalent) is a challenging work. Because of its natural physical properties, snow highly affects the evolution of weather from daily basis to climate on a longer time scale. The derivation of snow products over mountainous regions has been considered very challenging. This can be done by periodic and precise mapping of the snow cover. However inaccessibility and scarcity of the ground observations limit the snow cover mapping in the mountainous areas. Today, it is carried out operationally by means of optical satellite imagery and microwave radiometry. In retrieving the snow cover area from satellite images bring the problem of topographical variations within the footprint of satellite sensors and spatial and temporal variation of snow characteristics in the mountainous areas. Most of the global and regional operational snow products use generic algorithms for flat and mountainous areas. However the non-uniformity of the snow characteristics can only be modeled with different algorithms for mountain and flat areas. In this study the early findings of Satellite Application Facilities on Hydrology (H-SAF) project, which is financially supported by EUMETSAT, will be presented. Turkey is a part of the H-SAF project, both in product generation (eg. snow recognition, fractional snow cover and snow water equivalent) for mountainous regions for whole Europe, cal/val of satellite-derived snow products with ground observations and cal/val studies with hydrological modeling in the mountainous terrain of Europe. All the snow products are operational on a daily basis. For the snow recognition product (H10) for mountainous areas, spectral thresholding methods were applied on sub pixel scale of MSG-SEVIRI images. The different spectral characteristics of cloud, snow and land determined the structure of the algorithm and these characteristics were obtained from subjective classification of known snow cover features in the MSG/SEVIRI images. The fractional snow cover area (H12) algorithm is based on a sub-pixel reflectance model applied on METOP-AVHRR data. Knowing the effects of topography on satellite-measured radiances for rough terrain, the sun zenith and azimuth angles, as well as direction of observation relative to these are taken into account in estimating the target reflectances from the satellite images. The values of SWE products (H13) were obtained using an assimilation process based on the Helsinki University of Technology model using Advanced Microwave Scanning Radiometer for EOS (AMSR-E) daily brightness-temperature values. The validation studies for three products have been performed for the water years 2010 and 2011. Average values of 70% of probability of detection for snow recognition product, 60% of overall accuracy for the fractional snow cover product and 45 mm RMSE for the snow water equivalent product have been obtained from the validation studies. Final versions of these three products will be presented and discussed. Key words: snow, satellite images, mountain, HSAF, snow cover, snow water equivalent
Code of Federal Regulations, 2013 CFR
2013-10-01
... Regulatory Area Location, Community Governing Body That Recommends the CQE, and the Fishing Programs and... ALASKA Pt. 679, Table 21 Table 21 to Part 679—Eligible Communities, Halibut IFQ Regulatory Area Location... Village of Tyonek X X X 7 2 Whale Pass 2C Whale Pass Community Association X X X 4 Yakutat 3A City of...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Regulatory Area Location, Community Governing Body That Recommends the CQE, and the Fishing Programs and... ALASKA Pt. 679, Table 21 Table 21 to Part 679—Eligible Communities, Halibut IFQ Regulatory Area Location... 2C City of Thorne Bay X X X 4 Tyonek 3A Native Village of Tyonek X X X 7 2 Whale Pass 2C Whale Pass...
Stem Cubic-Foot Volume Tabies for Tree Species in the Delta Area
Alexander Clark; Ray A. Souter
1996-01-01
Stemwood cubic-foot volume inside bark tables are presented for 13 species and 8 species groups based on equations used to estimate timber sale volumes on national forests in the Delta Area. Tables are based on form class measurement data for 990 trees sampled in the Delta Area and taper data collected across the South. A series of tables is presented for each species...
Regional hydrology of the Blanding-Durango area, southern Paradox Basin, Utah and Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, M.S. Jr.; Thordarson, W.; Oatfield, W.J.
1983-01-01
Principal findings of this study that are pertinent to an assessment of suitability of the hydrogeologic systems to store and contain radioactive waste in salt anticlines of adjacent areas are: water in the upper ground-water flow system discharges to the San Juan River - a major tributary of the Colorado River. Discharge of water from the upper aquifer system to streambed channels of the San Juan River and its tributaries during low-flow periods primarily is through evapotranspiration from areas on flood plains and maintenance of streamflow; the lower ground-water system does not have known recharge or discharge areas within themore » study area; subsurface inflow to this system comes from recharge areas located north and northeast of the study area; the upper and lower ground-water systems are separated regionally by thick salt deposits in the Blanding-Durango study area of the Paradox basin; potential exists in mountainous areas for downward leakage between the upper and lower ground-water systems, where salt deposits are thin, absent, or faulted; no brines were found in this study area with outflow to the biosphere; water in the upper ground-water system generally is fresh. Water in the lower ground-water system generally is brackish or saline; and ground-water flow disruptions by contiguous faults probably are common in the upper ground-water system. These disruptions of flow are not apparent in the lower ground-water system, perhaps because available hydrologic data for the lower ground-water system are scarce. The above major findings do not preclude the potential for waste storage in salt; however, they do not allow the prediction of detailed ground-water flow rates and directions through this area. 55 references, 13 figures, 15 tables.« less
Langer, William H.; Van Gosen, Bradley S.; Meeker, Gregory P.; Adams, David T.; Hoefen, Todd M.
2011-01-01
Mining operations began at a world-class vermiculite deposit at Vermiculite Mountain near Libby, Montana, circa 1920 and ended in 1990. Fibrous and asbestiform amphiboles intergrown with vermiculite ore are suspected to be a causative factor in an abnormally high number of cases of respiratory diseases in former mine and mill workers, and in residents of Libby. The question addressed in this report is whether some of the amphibole from Vermiculite Mountain could have been dispersed by Pleistocene glacial processes rather than by human activity after vermiculite mining began. The history of Pinedale glaciation in the Libby area provides a framework for estimating the presence and distribution of asbestiform amphiboles derived from Vermiculite Mountain and found in naturally occurring sediments of Glacial Lake Kootenai that underlie the Libby Valley area. There were two situations where sediments derived from Vermiculite Mountain were deposited into Glacial Lake Kootenai: (1) as lake-bottom sediments derived from meltwater flowing down Rainy Creek when the valley south of Vermiculite Mountain was free of ice but active ice still covered Vermiculite Mountain; and (2) as lake-bottom sediments eroded from the Rainy Creek outwash and re-deposited during a re-advance of the Purcell Trench Glacier lobe near Moyie Springs, Idaho.
Saddle Bag Mountain Research Natural Area: guidebook supplement 34.
Reid Schuller; Ronald L. Exeter
2007-01-01
This guidebook describes the Saddle Bag Mountain Research Natural Area, a 121-ha (300-ac) tract established to represent an old-growth remnant of Pacific silver fir (Abies amabilis) and western hemlock (Tsuga heterophylla) forest in the Oregon Coast Range. Pacific silver fir and noble fir (Abies procera)...
78 FR 5834 - Call for Nominations for the Steens Mountain Advisory Council, OR
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... Mountain Cooperative Management and Protection Area. The BLM will accept public nominations for 30 days... the Federal Information Relay Service (FIRS) at 1-800-877-8339 to contact the above individual during... and Protection Area (CMPA), a recreation permit holder or representative of a commercial recreation...
DOT National Transportation Integrated Search
2002-11-01
The Great Smoky Mountains National Park, located along the border between North Carolina and Tennessee, is the most visited national park in the United States. This rugged, mountainous area presents many transportation challenges. The immense popular...
Hydrologic processes governing near surface saturation of alpine wetlands in the Canadian Rockies
NASA Astrophysics Data System (ADS)
Westbrook, C.; Mercer, J.
2016-12-01
Alpine wetlands are vital for habitat, biodiversity, carbon cycling and water storage, but little is known about their hydrologic condition. Climate trends toward smaller mountain snowpacks that melt earlier are thought to pose a threat to the continued provision of alpine wetland ecological functions, and their existence, as it is believed they derive their water mainly from snowmelt. Our objective was to determine the hydrologic processes governing near surface saturation in alpine wetlands. We monitored the water table dynamics of three alpine wetlands in contrasting hydrogeomorphic landscape positions for two summers in Banff National Park, Canada. We concurrently monitored water balance components, and analyzed soil properties and source water geochemistry. Despite very different snow conditions between the two study years, water tables remained near the surface and relatively stable in both years, indicating wetlands are more hydrologically buffered from snowpack variations than expected. We did not find convincing evidence of hydrogeomorphic position influencing wetland water table dynamics. Instead, peat thickness seemed to be critical in regulating water table as the wetland with the thickest peat soil (>1 m) maintained water tables closest to the ground surface for the longest period of time. Thicker peat deposits may develop under convergent hydrologic flow path conditions. Our results indicate that alpine wetlands are more resilient to shifting environmental conditions than previously reported.
Benson, John F; Sikich, Jeff A; Riley, Seth P D
2016-01-01
Understanding population and individual-level behavioral responses of large carnivores to human disturbance is important for conserving top predators in fragmented landscapes. However, previous research has not investigated resource selection at predation sites of mountain lions in highly urbanized areas. We quantified selection of natural and anthropogenic landscape features by mountain lions at sites where they consumed their primary prey, mule deer (Odocoileus hemionus), in and adjacent to urban, suburban, and rural areas in greater Los Angeles. We documented intersexual and individual-level variation in the environmental conditions present at mule deer feeding sites relative to their availability across home ranges. Males selected riparian woodlands and areas closer to water more than females, whereas females selected developed areas marginally more than males. Females fed on mule deer closer to developed areas and farther from riparian woodlands than expected based on the availability of these features across their home ranges. We suggest that mortality risk for females and their offspring associated with encounters with males may have influenced the different resource selection patterns between sexes. Males appeared to select mule deer feeding sites mainly in response to natural landscape features, while females may have made kills closer to developed areas in part because these are alternative sites where deer are abundant. Individual mountain lions of both sexes selected developed areas more strongly within home ranges where development occurred less frequently. Thus, areas near development may represent a trade-off for mountain lions such that they may benefit from foraging near development because of abundant prey, but as the landscape becomes highly urbanized these benefits may be outweighed by human disturbance.
Benson, John F.; Sikich, Jeff A.; Riley, Seth P. D.
2016-01-01
Understanding population and individual-level behavioral responses of large carnivores to human disturbance is important for conserving top predators in fragmented landscapes. However, previous research has not investigated resource selection at predation sites of mountain lions in highly urbanized areas. We quantified selection of natural and anthropogenic landscape features by mountain lions at sites where they consumed their primary prey, mule deer (Odocoileus hemionus), in and adjacent to urban, suburban, and rural areas in greater Los Angeles. We documented intersexual and individual-level variation in the environmental conditions present at mule deer feeding sites relative to their availability across home ranges. Males selected riparian woodlands and areas closer to water more than females, whereas females selected developed areas marginally more than males. Females fed on mule deer closer to developed areas and farther from riparian woodlands than expected based on the availability of these features across their home ranges. We suggest that mortality risk for females and their offspring associated with encounters with males may have influenced the different resource selection patterns between sexes. Males appeared to select mule deer feeding sites mainly in response to natural landscape features, while females may have made kills closer to developed areas in part because these are alternative sites where deer are abundant. Individual mountain lions of both sexes selected developed areas more strongly within home ranges where development occurred less frequently. Thus, areas near development may represent a trade-off for mountain lions such that they may benefit from foraging near development because of abundant prey, but as the landscape becomes highly urbanized these benefits may be outweighed by human disturbance. PMID:27411098
He, Chang-hua; Hu, Xi-min; Wang, Guang-ze; Zhao, Wei; Sun, Ding-wei; Li, Yu-chun; Chen, Chun-xiang; Du, Jian-wei; Wang, Shan-qing
2014-07-13
In the island of Hainan, the great majority of malaria cases occur in mountain worker populations. Using the behavioral change communication (BCC) strategy, an interventional study was conducted to promote mountain worker malaria prevention at a test site. This study found the methods and measures that are suitable for malaria prevention among mountain worker populations. During the Plasmodium falciparum elimination stage in Hainan, a representative sampling method was used to establish testing and control sites in areas of Hainan that were both affected by malaria and had a relatively high density of mountain workers. Two different methods were used: a BCC strategy and a conventional strategy as a control. Before and after the intervention, house visits, core group discussions, and structural surveys were utilized to collect qualitative and quantitative data regarding mountain worker populations (including knowledge, attitudes, and practices [KAPs]; infection status; and serological data), and these data from the testing and control areas were compared to evaluate the effectiveness of BCC strategies in the prevention of malaria. In the BCC malaria prevention strategy testing areas, the accuracy rates of malaria-related KAP were significantly improved among mountain worker populations. The accuracy rates in the 3 aspects of malaria-related KAP increased from 37.73%, 37.00%, and 43.04% to 89.01%, 91.53%, and 92.25%, respectively. The changes in all 3 aspects of KAP were statistically significant (p < 0.01). In the control sites, the changes in the indices were not as marked as in the testing areas, and the change was not statistically significant (p > 0.05). Furthermore, in the testing areas, both the percentage testing positive in the serum malaria indirect fluorescent antibody test (IFAT) and the number of people inflicted decreased more significantly than in the control sites (p < 0.01). The use of the BCC strategy significantly improved the ability of mountain workers in Hainan to avoid malarial infection. Educational and promotional materials and measures were developed and selected in the process, and hands-on experience was gained that will help achieve the goal of total malaria elimination in Hainan.
Viscoelastic Properties of Advanced Polymer Composites for Ballistic Protective Applications
1994-09-01
ofthe Damaged Sample 78 Figure 69: Fracture Surface of Damage Area Near the Point of Penetration 79 Figure 70. Closer View ofthe Damaged Area...LIST OF TABLES Table 1. Basic Mechanical Properties of the Materials 6 Table 2. Initial DMA Test Results 23 Table 3. Flexural Three Point Bend... point bend testing was conducted using an Instron 1127 Universal Tester to verify the DMA test method and specimen clamping configuration. Interfacial
Bexfield, Laura M.; Anderholm, Scott K.
2002-01-01
Water-quality data for 93 City of Albuquerque drinking-water supply wells, 7 deep piezometer nests, and selected additional wells were examined to improve understanding of the regional ground-water system and its response to pumpage. Plots of median values of several major parameters showed discernible water-quality differences both areally and with depth in the aquifer. Areal differences were sufficiently large to enable delineation of five regions of generally distinct water quality, which are consistent with areas of separate recharge defined by previous investigators. Data for deep piezometer nests indicate that water quality generally degrades somewhat with depth, except in areas where local recharge influenced by evapotranspiration or contamination could be affecting shallow water. The orientations of the five water-quality regions indicate that the direction of ground-water flow has historically been primarily north to south. This is generally consistent with maps of predevelopment hydraulic heads, although some areas lack consistency, possibly because of differences in time scales or depths represented by water quality as opposed to hydraulic head. The primary sources of recharge to ground water in the study area appear to be mountain-front recharge along the Sandia Mountains to the east and the Jemez Mountains to the north, seepage from the Rio Grande, and infiltration through Tijeras Arroyo. Elevated concentrations of many chemical constituents in part of the study area appear to be associated with a source of water having large dissolved solids, possibly moving upward from depth. Hydraulic-head data for deep piezometer nests indicate that vertical head gradients differ in direction and magnitude across the study area. Hydraulic-head gradients are downward in the central and western parts of the study area and upward across much of the eastern part, except at the mountain front. Water-quality data for the piezometers indicate that the ground water is not well mixed, even in areas of large vertical gradients. Water levels in most piezometers respond to short-term variations in ground-water withdrawals and to the cumulative effect of long-term withdrawals throughout the area. In most piezometers screened below the water table, water levels respond clearly to seasonal variations in ground-water withdrawals. Water levels decline from about April through July and rise from about September through January. Water levels seem to be declining in most piezometers at a rate less than 1 foot per year. Water-quality data for unfiltered samples collected over a 10-year period from 93 City of Albuquerque drinking-water supply wells were examined for variability and temporal trends in 10 selected parameters. Variability generally was found to be greatest in the Western and Northeast water-quality regions of the study area. For the 10 parameters investigated, temporal trends were found in 5 to 57 wells. Dissolved-solids, sodium, sulfate, chloride, and silica concentrations showed more increasing than decreasing trends; calcium, bicarbonate, and arsenic concentrations, field pH, and water temperature showed more decreasing than increasing trends. The median magnitudes of most of these trends over a 1-year period were not particularly large (generally less than 1.0 milligram per liter), although the magnitudes for a few individual wells were significant. For the 10 parameters investigated, correlations with monthly pumpage volumes were found in 10 to 32 wells. Calcium and sulfate concentrations, field pH, and water temperature showed more positive than negative correlations with monthly pumpage; dissolved-solids, sodium, bicarbonate, chloride, silica, and arsenic concentrations showed more negative than positive correlations. An increase in pumpage in an individual well appears to increase the contribution
Assessing the Response of Alaska's Glaciers to Post-Little Ice Age Climate Change
NASA Astrophysics Data System (ADS)
Molnia, B. F.
2001-12-01
A comprehensive survey of the eleven mountain ranges and three island areas in Alaska that presently support glaciers was conducted to determine how glaciers in each area have responded to post-Little Ice Age (LIA) climate change. Today, glaciers cover 5 percent of Alaska, about 75,000 sq. km., range in elevation from 6,000 m to below sea level, and span latitudes from south of 55 degrees N to north of 69 degrees N. During the LIA, Alaskan glaciers expanded significantly, covering 10 percent more area than today. Many different types of data were used to construct baselines and determine glacier change. These include: published descriptions of glaciers (1794 - 2000), historic and modern maps (1794 - 2000), aerial photography (1926 - 2001), ground photography (1884 - 2001), airborne radar (1981 - 1991), satellite radar (1978 - 1998), space photography (1984 - 1994), multi-spectral satellite imagery (1972 - 2001), aerial reconnaissance and field observations by the author (1968 - 2001), and various types of proxy data. Data available varied for each region and glacier. Every mountain range and island group investigated is characterized by significant glacier retreat, thinning, and/or stagnation, especially at lower elevations. At some locations, glaciers have completely disappeared during the twentieth century. In other areas, retreat that started as early as the early eighteenth century, has continued into the twenty-first century. Ironically, in several areas, retreat is resulting in the number of glaciers is actually increasing, but the volume and area of ice is decreasing. The key survey findings are: ALEXANDER ARCHIPELAGO, KODIAK ISLAND, ALEUTIAN ISLANDS: every glacier examined showed evidence of thinning and retreat. Some have disappeared since last being mapped in the mid-twentieth century; COAST MOUNTAINS, ST. ELIAS MOUNTAINS, CHUGACH MOUNTAINS, KENAI MOUNTAINS, WRANGELL MOUNTAINS, ALASKA RANGE, AND THE ALEUTIAN RANGE: more than 95 percent of glaciers ending below an elevation of 1,500 m are retreating, thinning, and/or stagnating. Some advancing glaciers have tidewater termini. The two largest glaciers, Bering and Malaspina Glaciers, are thinning and retreating, losing several cubic kilometers of ice each year to melting and calving; TALKEETNA MOUNTAINS, AHKLUN-WOOD RIVER MOUNTAINS, KIGLUAIK MOUNTAINS, AND THE BROOKS RANGE: every glacier examined is retreating. Some disappeared during the twentieth century. Glaciers at higher elevations show little or no change. Perhaps, at these locations, regional climate change has not resulted in temperatures being elevated to a level where they impact existing glacier ice. Increases in precipitation may also be compensating for increases in melting. Throughout Alaska, in response to post-Little Ice Age climate change, all but a few glaciers that descent below an elevation of 1,500 m have thinned, stagnated, and/or retreated. Of the nearly 700 named Alaskan glaciers, less than a dozen are currently advancing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-06-16
The 7-acre Mountain Home Air Force Base (AFB) site was a fire department training area located in Mountain Home, Elmore County, Idaho. From 1962 to 1975, the Mountain Home Air Force Base used the site for fire department training exercises. Each exercise began by saturating the bermed training area with water, followed directly by applying 250 to 500 gallons of fuel. The flames were extinguished with Aqueous Film Forming Foam (AFFF), or prior to 1972, with a water-based protein foam. The training session was completed with a post-exercise ignition of the residual fuel in a bermed area. The USAF investigationsmore » identified solvents and petroleum, oil, lubricant (POL) wastes in the soil. Under the Installation Restoration Program (IRP), the USAF conducted a record search, drilling, and sampling of soil borings to bedrock, the installation of monitoring wells, and hand auger samples. The ROD provided a final remedy for onsite soil as OU4. Because contaminants were found at such low concentrations, the soil was covered by crushed asphalt and has little potential to impact ecological receptors. The soil posed low risks for humans at the site and no remediation was necessary.« less
NASA Astrophysics Data System (ADS)
Noerwasito, Vincentius Totok; Nasution, Tanti Satriana Rosary
2017-11-01
Utilization of local building materials in a residential location in mountainous area is very important, considering local material as a low-energy building material because of low transport energy. The local building materials used in this study are walls made from soil blocks. The material was made by the surrounding community from compacted soil without burning process. To maximize the potential of soil block to the outdoor temperature in the mountains, it is necessary to add non-local building materials as an insulator from the influence of the outside air. The insulator was calcium silicate panel. The location of the research is Trawas sub-district, Mojokerto regency, which is a mountainous area. The research problem is on applying the composition of local materials and calcium silicate panels that it will be able to meet the requirements as a wall building material and finding to what extent the impact of the wall against indoor temperature. The result from this research was the application of soil block walls insulated by calcium silicate panels in a building model. Besides, because of the utilization of those materials, the building has a specific difference between indoor and outdoor temperature. Thus, this model can be applied in mountainous areas in Indonesia.
NASA Astrophysics Data System (ADS)
Kaufmann, Georg; Romanov, Douchko
2017-12-01
Gypsum and anhydrite are soluble rocks, where fissures and bedding partings can be enlarged with time by the dissolution of the mineral species through water. The selective enlargement results in sub-surface voids acting as preferential flow path for the drainage of the rock. With time, larger cavities develop, and a network of cave passages can evolve. If the enlarged cave voids are not too deep under the surface, geophysical measurements can be used to detect, identify and trace these structures. We have used gravity measurements (GRAV), electrical resistivity imaging (ERI), self-potential measurements (SP), electrical conductivity measurements (EC), and ground-penetrating radar (GPR) above the cave Jettenhöhle, a cave located in the southern Harz Mountains in Germany. The Jettencave is developed in the Hauptanhydrit formation of the Permian Zechstein sequence, characterised by large breakdown rooms and an exposed water table. The overburden of the cave is only around 10-15 m, and dolomitic rocks are located in close vicinity. We present results from our geophysical surveys in vicinity of the cave. We are able to identify the cave geometry from GRAV, ERI, and GPR measurements, which distinguish the local lithology of the Permian Zechstein rocks in the area. From the ERI and EC measurements, we derive information on the void volume in the soluble rocks. We finally present a three-dimensional structural model of the Jettencave and its surroundings, based on our geophysical results and the hydrological interpretation.
Virtanen, Risto; Oksanen, Lauri; Oksanen, Tarja; Cohen, Juval; Forbes, Bruce C; Johansen, Bernt; Käyhkö, Jukka; Olofsson, Johan; Pulliainen, Jouni; Tømmervik, Hans
2016-01-01
According to some treatises, arctic and alpine sub-biomes are ecologically similar, whereas others find them highly dissimilar. Most peculiarly, large areas of northern tundra highlands fall outside of the two recent subdivisions of the tundra biome. We seek an ecologically natural resolution to this long-standing and far-reaching problem. We studied broad-scale patterns in climate and vegetation along the gradient from Siberian tundra via northernmost Fennoscandia to the alpine habitats of European middle-latitude mountains, as well as explored those patterns within Fennoscandian tundra based on climate-vegetation patterns obtained from a fine-scale vegetation map. Our analyses reveal that ecologically meaningful January-February snow and thermal conditions differ between different types of tundra. High precipitation and mild winter temperatures prevail on middle-latitude mountains, low precipitation and usually cold winters prevail on high-latitude tundra, and Scandinavian mountains show intermediate conditions. Similarly, heath-like plant communities differ clearly between middle latitude mountains (alpine) and high-latitude tundra vegetation, including its altitudinal extension on Scandinavian mountains. Conversely, high abundance of snowbeds and large differences in the composition of dwarf shrub heaths distinguish the Scandinavian mountain tundra from its counterparts in Russia and the north Fennoscandian inland. The European tundra areas fall into three ecologically rather homogeneous categories: the arctic tundra, the oroarctic tundra of northern heights and mountains, and the genuinely alpine tundra of middle-latitude mountains. Attempts to divide the tundra into two sub-biomes have resulted in major discrepancies and confusions, as the oroarctic areas are included in the arctic tundra in some biogeographic maps and in the alpine tundra in others. Our analyses based on climate and vegetation criteria thus seem to resolve the long-standing biome delimitation problem, help in consistent characterization of research sites, and create a basis for further biogeographic and ecological research in global tundra environments.
Water resources of Carbon County, Wyoming
Bartos, Timothy T.; Hallberg, Laura L.; Mason, Jon P.; Norris, Jodi R.; Miller, Kirk A.
2006-01-01
Carbon County is located in the south-central part of Wyoming and is the third largest county in the State. A study to describe the physical and chemical characteristics of surface-water and ground-water resources in Carbon County was conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer's Office. Evaluations of streamflow and stream-water quality were limited to analyses of historical data and descriptions of previous investigations. Surface-water data were not collected as part of the study. Forty-five ground-water-quality samples were collected as part of the study and the results from an additional 618 historical ground-water-quality samples were reviewed. Available hydrogeologic characteristics for various aquifers in hydrogeologic units throughout the county also are described. Flow characteristics of streams in Carbon County vary substantially depending on regional and local basin char-acteristics and anthropogenic factors. Precipitation in the county is variable with high mountainous areas receiving several times the annual precipitation of basin lowland areas. For this reason, streams with headwaters in mountainous areas generally are perennial, whereas most streams in the county with headwaters in basin lowland areas are ephemeral, flowing only as a result of regional or local rainfall or snowmelt runoff. Flow characteristics of most perennial streams are altered substantially by diversions and regulation. Water-quality characteristics of selected streams in and near Carbon County during water years 1966 through 1986 varied. Concentrations of dissolved constituents and suspended sediment were smallest at sites on streams with headwaters in mountainous areas because of resistant geologic units, large diluting streamflows, and increased vegetative cover compared to sites on streams with headwaters in basin lowlands. Both water-table and artesian conditions occur in aquifers within the county. Shallow ground water is available throughout the county, although much of it is only marginally suitable or is unsuitable for domestic and irrigation uses mainly because of high total dissolved solids (TDS) concentrations. Suitable ground water for livestock use is available in most areas of the county. Ground-water quality tends to deteriorate with increasing distance from recharge areas and with increasing depth below land surface. Ground water from depths greater than a few thousand feet tends to have TDS concentrations that make it moderately saline to briny. In some areas, even shallow ground water is moderately saline. Specific constituents in parts of some aquifers in the county occur in relatively high concentrations when compared to U.S. Environmental Protection Agency drinking-water standards; for example, relatively high concentrations of sulfate, chloride, fluoride, boron, iron, manganese, and radon were found in several aquifers. The estimated mean daily water use in Carbon County in 2000 was about 320 million gallons per day. Water used for irrigation accounted for about 98 percent of this total. About 98 percent of the total water used was supplied by surface water and about 2 percent by ground water. Excluding irrigation, ground water comprised about 78 percent of total water use in Carbon County. Although ground water is used to a much lesser extent than surface water, in many areas of the county it is the only available water source.
NASA Astrophysics Data System (ADS)
Lemos, A. L.; Von Ness, K.; Loisel, J.; Karran, D. J.
2017-12-01
Minerotrophic peatlands are widespread ecosystems that could be used more often as paleoecological and paleoclimatic archives. However, they have received much less attention than ombrotrophic peat bogs, resulting in very limited information pertaining to their microbial communities. In spite of this, a few studies from Europe have suggested that testate amoebae assemblages from fens could be used as proxies for soil moisture. Here we contribute to this effort by providing a new study from a mountain fen (beaver meadow) located in the Sibbald Research Wetlands in the Rocky Mountains of Kananaskis Provincial Park, Alberta, Canada. Our goals are to (1) quantify the relationships between testate amoebae communities, environmental parameters (pH, water table depth, soil moisture, conductivity, trace elements), and vegetation, (2) identify the key controls on testate amoebae distribution, and (3) develop a transfer function to be used in mountain fens of the region and potentially beyond, given the cosmopolitan nature of testate amoebae taxa. Fifty surface samples were extracted along a wide hydrological gradient in the beaver meadow during Summer 2017, including a current beaver meadow, an abandoned beaver meadow, and a site without apparent beaver activity. These sites were chosen with the hypothesis that distinct testate assemblages might colonize these different types of sites, which would be useful to reconstruct beaver activity downcore. The surface samples from these sites will be the main focus for the new transfer function and provide additional information about climate reconstruction from minerotrophic peatlands such as the mountain fen being studied here. Overall, the building of a testate amoebae-based transfer function in mountain fens is needed in order to expand and improve the use of paleohydrological reconstruction in locations of higher latitude, which are still sparse.
NASA Astrophysics Data System (ADS)
Ji, Hongjie; Tao, Huifei; Wang, Qi; Qiu, Zhen; Ma, Dongxu; Qiu, Junli; Liao, Peng
2018-03-01
The Bogda Mountains, as an important intracontinental orogenic belt, are situated in the southern part of the Central Asian Orogenic Belt (CAOB), and are a key area for understanding the Mesozoic evolution of the CAOB. However, the tectonic evolution of the Bogda Mountains remains controversial during the Mesozoic Era, especially the Early to Middle Jurassic Periods. The successive Lower to Middle Jurassic strata are well preserved and exposed along the northern flank of the Western Bogda Mountains and record the uplift processes of the Bogda Mountains. In this study, we analysed sedimentary facies combined with detrital zircon U-Pb geochronology at five sections of Lower to Middle Jurassic strata to detect the tectonic evolution and changes of provenance in the Bogda area. During Early to Middle Jurassic times, the fluvial, deltaic and lacustrine environments dominated in the western section of the Bogda area. The existence of Early Triassic peak age indicates that the Bogda Mountains did not experience uplift during the period of early Badaowan Formation deposition. The Early Triassic to Late Permian granitoid plutons and Carboniferous volcanic rocks from the Barkol and Santanghu areas were the main provenances. The significant change in the U-Pb age spectrum implies that the Eastern Bogda Mountains initiated uplift in the period of late Badaowan Formation deposition, and the Eastern Junggar Basin and the Turpan-Hami Basin were partially partitioned. The Eastern Bogda Mountains gradually became the major provenance. From the period of early Sangonghe to early Toutunhe Formations deposition, the provenance of the sediments and basin-range frame were similar to that of late Badaowan. However, the Eastern Bogda Mountains suffered intermittent uplift three times, and successive denudation. The uplifts respectively happened in early Sangonghe, late Sangonghe to early Xishanyao, and late Xishanyao to early Toutunhe. During the deposition stage of Toutunhe Formation, a relatively strong tectonic reactivation took place along the Late Palaeozoic Bogda rift belt accompanied by relatively large-scale magmatism. The distinct basement structure between the eastern and western Bogda rift could be the structure basis of difference uplift in the Bogda area during the Mesozoic Era. The Early to Middle Jurassic episodic uplift of Eastern Bogda Mountains perhaps was related to the post-collisional convergence of the Qiangtang Block from late Badaowan to early Sangonghe, the closure of the western Mongol-Okhotsk Ocean at the Early-Middle Jurassic boundary and the tectonic accretion at the south Asian margin of Pamir Block during late Middle Jurassic times.
Horton, J. Wright
2006-01-01
This geologic map of the Kings Mountain and Grover 7.5-minute quadrangles, N.C.-S.C., straddles a regional geological boundary between the Inner Piedmont and Carolina terranes. The Kings Mountain sequence (informal name) on the western flank of the Carolina terrane in this area includes the Neoproterozoic Battleground and Blacksburg Formations. The Battleground Formation has a lower part consisting of metavolcanic rocks and interlayered schist, and an upper part consisting of quartz-sericite phyllite and schist interlayered with quartz-pebble metaconglomerate, aluminous quartzite, micaceous quartzite, manganiferous rock, and metavolcanic rocks. The Blacksburg Formation consists of phyllitic metasiltstone interlayered with thinner units of marble, laminated micaceous quartzite, hornblende gneiss, and amphibolite. Layered metamorphic rocks of the Inner Piedmont terrane include muscovite-biotite gneiss, muscovite schist, and amphibolite. The Kings Mountain sequence has been intruded by metatonalite and metatrondhjemite (Neoproterozoic), metadiorite and metagabbro (Paleozoic), and High Shoals Granite (Pennsylvanian). Layered metamorphic rocks of the Inner Piedmont in this area have been intruded by Toluca Granite (Ordovician?), Cherryville Granite and associated pegmatite (Mississippian), and spodumene pegmatite (Mississippian). Diabase dikes (early Jurassic) are locally present throughout the area. Ductile fault zones of regional scale include the Kings Mountain and Kings Creek shear zones. In this area, the Kings Mountain shear zone forms the boundary between the Inner Piedmont and Carolina terranes, and the Kings Creek shear zone separates the Battleground Formation from the Blacksburg Formation. Structural styles change across the Kings Mountain shear zone from steeply-dipping layers, foliations, and folds on the southeast to gently- and moderately-dipping layers, foliations, and recumbent folds on the northwest. Mineral assemblages in the Kings Mountain sequence show a westward decrease from upper amphibolite facies (sillimanite zone) near the High Shoals Granite on the east side of the map to greenschist (epidote-amphibolite) facies in the south-central part of the area near the Kings Mountain shear zone. Amphibolite-facies mineral assemblages in the Inner Piedmont terrane increase in grade from the kyanite zone near the Kings Mountain shear zone to the sillimanite zone in the northwest part of the map. Surficial deposits include alluvium in the stream valleys and colluvium along ridges and steep slopes. These quadrangles are unusual in their richness and variety of mineral deposits, which include spodumene (lithium), cassiterite (tin), mica, feldspar, silica, clay, marble, kyanite and sillimanite, barite, manganese, sand and gravel, gold, pyrite, and iron. (Abstract from pamphlet.)
RT-173: Helix, 2017 Helix Technical Report
2018-01-16
proficiency areas, each of which contains several related groups of skills, or categories, as described below: 1. Math /Science/General Engineering...at the time of the assessment. The six different areas are defined in Table 2. Table 2: Atlas Proficiency Area Definitions Area Definition Math
Lu, Chao; Qi, Wei; Li, Le; Sun, Yao; Qin, Tian-Tian; Wang, Na-Na
2012-05-01
Landscape pattern indices are the commonly used tools for the quantitative analysis of landscape pattern. However, the traditional 2D landscape pattern indices neglect the effects of terrain on landscape, existing definite limitations in quantitatively describing the landscape patterns in mountains areas. Taking the Qixia City, a typical mountainous and hilly region in Shandong Province of East China, as a case, this paper compared the differences between 2D and 3D landscape pattern indices in quantitatively describing the landscape patterns and their dynamic changes in mountainous areas. On the basis of terrain structure analysis, a set of landscape pattern indices were selected, including area and density (class area and mean patch size), edge and shape (edge density, landscape shape index, and fractal dimension of mean patch), diversity (Shannon's diversity index and evenness index) , and gathering and spread (contagion index). There existed obvious differences between the 3D class area, mean patch area, and edge density and the corresponding 2D indices, but no significant differences between the 3D landscape shape index, fractal dimension of mean patch, and Shannon' s diversity index and evenness index and the corresponding 2D indices. The 3D contagion index and 2D contagion index had no difference. Because the 3D landscape pattern indices were calculated by using patch surface area and surface perimeter whereas the 2D landscape pattern indices were calculated by adopting patch projective area and projective perimeter, the 3D landscape pattern indices could be relative accurate and efficient in describing the landscape area, density and borderline, in mountainous areas. However, there were no distinct differences in describing landscape shape, diversity, and gathering and spread between the 3D and 2D landscape pattern indices. Generally, by introducing 3D landscape pattern indices to topographic pattern, the description of landscape pattern and its dynamic change would be relatively accurate.
The recent glacier changes in Mongolian Altai Mountains
NASA Astrophysics Data System (ADS)
Yabuki, H.; Ohata, T.
2009-12-01
In the 4th IPCC report (AR-4) is reported that global warming in recent years is a clear thing. Shrinkage of the mountain glacier and two poles is reporting as an observation fact as the actual condition of the cryosphere by warming. There are mass balance reports of the glacier of 80 of world by WGMS (World Glacier Monitoring Service) as a report of the actual condition of glacier mass balance change, and the actual condition of the glacier mass change in world is clarified. In the report of WGMS, after 1980’s the glacier mass balance, in the Europe Alps and the Alaska region are decreases, and in Scandinavia region are increases. On the other hand, the glacier mass balance in the Russia Altai Mountains located in Central Asia has the little change after 1980’s. These are research using the long-term observational data of Russian region of western part of Altai Mountains. The Altai Mountains including Russia, China, and Mongolia Kazakhstan, and there are description to a World Glacier Inventory (WGI) about the glaciers of Russia, China and Kazakhstan area, but the glaciers of a Mongolian area, there are no description to the WGI. There is almost no information on the glacier of a Mongolian Altai region, and there are many unknown points about glacier change of the whole Altai Mountain region. In this research, while research clarified the present condition of glacier distribution of the Mongolia Altai region, the actual condition of a glacier change in recent years was clarified by comparison with the past topographical map. In this research, the glacier area was distinguished based on the satellite image of the Mongolian glacier regions. The used satellite image were 17 Landsat 7 ETM+ in 1999 to 2002. The glacier distinguishes using NDSI (Normalized Difference Snow Index) indexusing Band5 and Band2. The topographical map of the Mongolian area was got based on the distribution information on this satellite glacier area. The topographical map is 1/100,000 which used the aerial photograph of the 1945-47. The altitude information on creation of a glacier inventory using SRTM3(Shuttle Radar Topography Mission) which special resolution was 90m and ASTER GDEM (Global Digital Elevation Model ) which special resolution was 30m. The glacier inventory indicated the Glacier ID, maximum and the minimum altitude, glacial aspect. We obtain in Mongolian regions, the glacier distributed 16 area, total glacier number 578 and total area 423 square km. The glacier area of the whole Altai Mountains which included this research Mongolian glacier area to the WGI was set to 1730 square km, and the rate of occupying to the Altai Mountains of a Mongolian glacier becomes 24%.
Geologic reconnaissance of the Hot Springs Mountains, Churchill County, Nevada
Voegtly, Nickolas E.
1981-01-01
A geologic reconnaissance of the Hot Springs Mountains and adjacent areas, which include parts of the Brady-Hazen and the Stillwater-Soda Lake Known Geothermal Resource Areas, during June-December 1975, resulted in a reinterpretation of the nature and location of some Basin and Range faults. In addition, the late Cenozoic stratigraphy has been modified, chiefly on the basis of radiometric dates of volcanic rocks by U.S. Geological Survey personnel and others. The Hot Springs Mountains are in the western part of the Basin and Range province, which is characterized by east-west crustal extension and associated normal faulting. In the surrounding Trinity, West Humboldt, Stillwater, and Desert Mountains, Cenozoic rocks overlie ' basement ' rocks of the Paleozoic and Mesozoic age. A similar relation is inferred in the Hot Springs Mountains. Folding and faulting have taken place from the late Tertiary to the present. (USGS)
Noble, J.E.; Bush, P.W.; Kasmarek, M.C.; Barbie, D.L.
1996-01-01
In 1989, the U.S. Geological Survey, in cooperation with the Harris-Galveston Coastal Subsidence District, began a field study to determine the depth to the water table and to estimate the rate of recharge in outcrops of the Chicot and Evangeline aquifers near Houston, Texas. The study area comprises about 2,000 square miles of outcrops of the Chicot and Evangeline aquifers in northwest Harris County, Montgomery County, and southern Walker County. Because of the scarcity of measurable water-table wells, depth to the water table below land surface was estimated using a surface geophysical technique, seismic refraction. The water table in the study area generally ranges from about 10 to 30 foot below land surface and typically is deeper in areas of relatively high land-surface altitude than in areas of relatively low land- surface altitude. The water table has demonstrated no long-term trends since ground-water development began, with the probable exception of the water table in the Katy area: There the water table is more than 75 feet deep, probably due to ground-water pumpage from deeper zones. An estimated rate of recharge in the aquifer outcrops was computed using the interface method in which environmental tritium is a ground-water tracer. The estimated average total recharge rate in the study area is 6 inches per year. This rate is an upper bound on the average recharge rate during the 37 years 1953-90 because it is based on the deepest penetration (about 80 feet) of postnuclear-testing tritium concentrations. The rate, which represents one of several components of a complex regional hydrologic budget, is considered reasonable but is not definitive because of uncertainty regarding the assumptions and parameters used in its computation.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
..., California, Grey's Mountain Ecosystem Restoration Project AGENCY: Forest Service, USDA. ACTION: Notice of... a series of ecological restoration treatments, north of the community of Bass Lake, California, south of Soquel Meadow, east of Nelder Grove Historical Area and west of Graham Mountain. Treatment...
27 CFR 9.217 - Happy Canyon of Santa Barbara.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Barbara viticultural area are titled: (1) Los Olivos, CA, 1995; (2) Figueroa Mountain, CA, 1995; (3) Lake... intersection of the Santa Lucia Ranger District diagonal line and Figueroa Mountain Road, a light-duty road... diagonal line, crossing onto the Figueroa Mountain map, and continuing east to its intersection with the...
27 CFR 9.217 - Happy Canyon of Santa Barbara.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Barbara viticultural area are titled: (1) Los Olivos, CA, 1995; (2) Figueroa Mountain, CA, 1995; (3) Lake... intersection of the Santa Lucia Ranger District diagonal line and Figueroa Mountain Road, a light-duty road... diagonal line, crossing onto the Figueroa Mountain map, and continuing east to its intersection with the...
27 CFR 9.217 - Happy Canyon of Santa Barbara.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Barbara viticultural area are titled: (1) Los Olivos, CA, 1995; (2) Figueroa Mountain, CA, 1995; (3) Lake... intersection of the Santa Lucia Ranger District diagonal line and Figueroa Mountain Road, a light-duty road... diagonal line, crossing onto the Figueroa Mountain map, and continuing east to its intersection with the...
27 CFR 9.217 - Happy Canyon of Santa Barbara.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Barbara viticultural area are titled: (1) Los Olivos, CA, 1995; (2) Figueroa Mountain, CA, 1995; (3) Lake... intersection of the Santa Lucia Ranger District diagonal line and Figueroa Mountain Road, a light-duty road... diagonal line, crossing onto the Figueroa Mountain map, and continuing east to its intersection with the...
27 CFR 9.217 - Happy Canyon of Santa Barbara.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Barbara viticultural area are titled: (1) Los Olivos, CA, 1995; (2) Figueroa Mountain, CA, 1995; (3) Lake... intersection of the Santa Lucia Ranger District diagonal line and Figueroa Mountain Road, a light-duty road... diagonal line, crossing onto the Figueroa Mountain map, and continuing east to its intersection with the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Wasatch Mountain Range (and this includes the Cities of Provo and Orem) with an eastern boundary for Utah.../Attainment Nonattainment. The area of Weber County that lies west of the Wasatch Mountain Range with an... of the Wasatch Mountain Range (and this includes the Cities of Provo and Orem) with an eastern...
14. Photocopy of engineering drawing (original drawing, #MH 10460086, dated ...
14. Photocopy of engineering drawing (original drawing, #MH 104-600-86, dated October 31, 1995, and drawn by W. Robinson, is located in the Mountain Home Air Force Base Civil Engineering archives). - Mountain Home Air Force Base, Base Chapel, 350 Willow Street, Cantonment Area, Mountain Home, Elmore County, ID
36 CFR 7.93 - Guadalupe Mountains National Park.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Guadalupe Mountains National Park. 7.93 Section 7.93 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.93 Guadalupe Mountains National Park...
36 CFR 7.93 - Guadalupe Mountains National Park.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Guadalupe Mountains National Park. 7.93 Section 7.93 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.93 Guadalupe Mountains National Park...
36 CFR 7.93 - Guadalupe Mountains National Park.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Guadalupe Mountains National Park. 7.93 Section 7.93 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.93 Guadalupe Mountains National Park...
36 CFR 7.93 - Guadalupe Mountains National Park.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Guadalupe Mountains National Park. 7.93 Section 7.93 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.93 Guadalupe Mountains National Park...
36 CFR 7.93 - Guadalupe Mountains National Park.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Guadalupe Mountains National Park. 7.93 Section 7.93 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.93 Guadalupe Mountains National Park...
Seif Madoffe; James Mwang' ombe; Barbara O' Connell; Paul Rogers; Gerard Hertel; Joe Mwangi
2005-01-01
This status report presents the results of 43 permanent forest health study plots (3871 trees, saplings, and seedlings) established in 2000 and 2001 in parts of three areas of the Eastern Arc Mountains - the Taita Hills in Kenya (Ngangao and Chawia), the East Usambara Mountains (Amani Nature Reserve) and the Uluguru Mountains (Morogoro Teachers College and Kimboza) in...
Changes in Central Asia’s Water Tower: Past, Present and Future
Chen, Yaning; Li, Weihong; Deng, Haijun; Fang, Gonghuan; Li, Zhi
2016-01-01
The Tienshan Mountains, with its status as “water tower”, is the main water source and ecological barrier in Central Asia. The rapid warming affected precipitation amounts and fraction as well as the original glacier/snowmelt water processes, thereby affecting the runoff and water storage. The ratio of snowfall to precipitation (S/P) experienced a downward trend, along with a shift from snow to rain. Spatially, the snow cover area in Middle Tienshan Mountains decreased significantly, while that in West Tienshan Mountains increased slightly. Approximately 97.52% of glaciers in the Tienshan Mountains showed a retreating trend, which was especially obvious in the North and East Tienshan Mountains. River runoff responds in a complex way to changes in climate and cryosphere. It appears that catchments with a higher fraction of glacierized area showed mainly increasing runoff trends, while river basins with less or no glacierization exhibited large variations in the observed runoff changes. The total water storage in the Tienshan Mountains also experienced a significant decreasing trend in Middle and East Tienshan Mountains, but a slight decreasing trend in West Tienshan Mountains, totally at an average rate of −3.72 mm/a. In future, water storage levels are expected to show deficits for the next half-century. PMID:27762285
NASA Astrophysics Data System (ADS)
Hauzenberger, B.; Fickert, T.
2009-04-01
The Central European Uplands are located northeast of the Alps along the western edge of the Czech border. A horseshoe shaped range of low mountains contains the Bavarian Forest Mountains, the Fichtel Mountains, the Erz Mountains and the Giant Mountains, with highest summit altitudes ranging from 1051 m a.s.l. (Fichtel Mountains) to 1603 m a.s.l. (Giant Mountains). The location north of the Alps makes these mountains highly interesting as a possible link between the Scandinavian ice sheet and the Alps. Although the glacial traces of the Central European Uplands have been investigated for more than 100 years, the glacial history is still elusive. While the highest mountains (the Bavarian Forest and the Giant Mountains) hold evidence of valley glaciers, the lower mountains (the Fichtel and the Erz Mountains) lack unambiguous glacial traces. As a first step towards a palaeoglaciological reconstruction for the Central European Uplands, we present a digital map of glacier termini with elevation data from the SRTM elevation model, compiled from previous investigations of the area. The glacial map of the Central European Uplands presents the pattern of glacial traces over an extensive area in central Europe and forms the basis for reconstructing the extent of former glaciers. We compare the glacial evidence with modern day climate data (from the high resolution WorldClim database), from which we can estimate the climate change needed to produce Central European Upland glaciers. The glacial traces of the Central European Uplands hold information on past climate of the region and this may be a key to link the glacial record of the Alps with the Scandinavian ice sheet.
1979-06-01
floodwaters. About 600 feet downstream of the dam, West Mountain Road would be overtopped; 600 feet further downstream Reservoir Road would be overtopped for...removed and the surface coated to protect the pipes. . d. Reservoir Area- Notch Reservoir, as the name implies, is in a mountain notch. The area is...Brook which connects Notch Reservoir to the Hoosic River in the City of North Adams, Massachusetts, flows on a steep gradient down a mountain notch