Sample records for table mountain california

  1. Lidar measurements of stratospheric ozone at Table Mountain, California, since 1988

    NASA Technical Reports Server (NTRS)

    Mcdermid, I. Stuart; Schmoe, Martha; Walsh, T. Daniel

    1994-01-01

    Regular measurements of stratospheric ozone concentration profiles have been made at Table Mountain, California, since January 1988. During the period to December 1991, 435 independent profiles were measured by the differential absorption lidar technique. These long-term results, and an evaluation of their quality, is presented in this paper.

  2. Preliminary Results of the Ground/Orbiter Lasercomm Demonstration Experiment between Table Mountain and teh ETS-V1 Satellite

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Lesh, J. R.; Araki, K.; Arimoto, Y.

    1996-01-01

    The Ground/Orbiter Lasercomm Demonstration (GOLD) is an optical communications demonstration between the Japanese Engineering Test Satellite (ETS-V1) and an optical ground transmitting and receiving station at the Table Mountain FAcility in Wrightwood California. Laser transmissions to the satellite are performed approximately four hours every third night when the satellite is at apogee above Table Mountain.

  3. Surface and Tropospheric Ozone Profile Variability (1999-2014) at the TOLNet Site of Table Mountain, California

    NASA Astrophysics Data System (ADS)

    Granados-Muñoz, M. J.; Leblanc, T.

    2015-12-01

    Ozone in the lower troposphere acts as an air pollutant affecting human health and vegetation. Tropospheric ozone sources and variability are not yet fully identified or understood and recent studies reveal the importance of increasing the number of tropospheric ozone profiling stations and long term measurements. As part of the international monitoring network NDACC, and the U.S.-based network TOLNet, a differential absorption lidar has been performing tropospheric ozone measurements (3-20 km) at the JPL Table Mountain Facility (TMF, California) since 1999, and surface measurements have been performed since 2013 with a UV photometric analyzer. Because of the site's geolocation and high elevation, background tropospheric ozone, unaffected by the boundary layer dynamics and local anthropogenic emissions of ozone precursors, is usually expected. However, transboundary ozone contributions such as stratospheric intrusions and Asian pollution episodes are frequently detected. In this study, a statistical analysis of the 14-year lidar profiles and the 2.5-year surface data is presented. Seasonal, interannual and diurnal variability and its possible causes (e.g. El Nino/La Nina events, North American Monsoon) are investigated. Together with the high elevation surface data gathered at TMF, surface data from ARB stations nearby are analyzed to understand the lowermost tropospheric ozone variability component. The frequency of stratospheric intrusions and Asian pollution episodes reaching the Western U.S. is also examined in an attempt to understand the relative contribution of each process to the observed variability throughout the troposphere. The Table Mountain surface and lidar measurements are expected to contribute significantly to the emerging system of global air quality observations, and to the improvement of global and regional data assimilation and modeling.

  4. Patterns of Seed Productions in Table Mountain Pine

    Treesearch

    Ellen A. Gray; John C. Rennie; Thomas A. Waldrop; James L. Hanula

    2002-01-01

    The lack of regeneration in stands of Table Mountain pine (Pinus pungens Lamb.) in the Southern Appalachian Mountains is of concern, particularly to federal land managers. Efforts to regenerate Table Mountain pine (TMP) stands with prescribed burning have been less successful than expected. Several factors that may play a key role in successful...

  5. A comparison of northern and southern table mountain pine stands

    Treesearch

    Patrick H. Brose; Thomas A. Waldrop; Helen H. Mohr

    2010-01-01

    Table Mountain pine (Pinus pungens) stands occur throughout the Appalachian Mountains, but ecological research has concentrated on the southern part of this region. In 2006, research was initiated in northern Table Mountain pine stands growing in PA to compare some basic attributes of those stands with previously described ones in TN. Overall, the...

  6. Evaluation of the table Mountain Ronchi telescope for angular tracking

    NASA Technical Reports Server (NTRS)

    Lanyi, G.; Purcell, G.; Treuhaft, R.; Buffington, A.

    1992-01-01

    The performance of the University of California at San Diego (UCSD) Table Mountain telescope was evaluated to determine the potential of such an instrument for optical angular tracking. This telescope uses a Ronchi ruling to measure differential positions of stars at the meridian. The Ronchi technique is summarized and the operational features of the Table Mountain instrument are described. Results from an analytic model, simulations, and actual data are presented that characterize the telescope's current performance. For a star pair of visual magnitude 7, the differential uncertainty of a 5-min observation is about 50 nrad (10 marcsec), and tropospheric fluctuations are the dominant error source. At magnitude 11, the current differential uncertainty is approximately 800 nrad (approximately 170 marcsec). This magnitude is equivalent to that of a 2-W laser with a 0.4-m aperture transmitting to Earth from a spacecraft at Saturn. Photoelectron noise is the dominant error source for stars of visual magnitude 8.5 and fainter. If the photoelectron noise is reduced, ultimately tropospheric fluctuations will be the limiting source of error at an average level of 35 nrad (7 marcsec) for stars approximately 0.25 deg apart. Three near-term strategies are proposed for improving the performance of the telescope to the 10-nrad level: improving the efficiency of the optics, masking background starlight, and averaging tropospheric fluctuations over multiple observations.

  7. An overview of the GOLD experiment between the ETS-6 satellite and the table mountain facility

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.

    1996-01-01

    The Ground/Orbiter Lasercomm Demonstration (GOLD) is a demonstration of optical communications between the Japanese Engineering Test Satellite (ETS-VI) and an optical ground transmitting and receiving station at the Table Mountain Facility in Wrightwood, California. Laser transmissions to the satellite are performed for approximately 4 hours every third night when the satellite is at apogee above Table Mountain. The experiment requires the coordination of resources at the Communications Research Laboratory (CRL), JPL, the National Aeronautics and Space Development Agency (NASDA) Tsukuba tracking station, and NASA's Deep Space Network at Goldstone, California, to generate and transmit real-time commands and receive telemetry from the ETS-VI. Transmissions to the ETS-VI began in November 1995 and are scheduled to last into the middle of January 1996, when the satellite is expected to be eclipsed by the Earth's shadow for a major part of its orbit. The eclipse is expected to last for about 2 months, and during this period there will be limited electrical power available on board the satellite. NASDA plans to restrict experiments with the ETS-VI during this period, and no laser transmissions are planned. Posteclipse experiments are currently being negotiated. GOLD is a joint NASA-CRL experiment that is being conducted by JPL in coordination with CRL and NASDA.

  8. An Overview of the GOLD Experiment Between the ETS-6 Satellite and the Table Mountain Facility

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.

    1996-01-01

    The Ground/Orbiter Lasercomm Demonstration is a demonstration of optical communications between the Japanese Engineering Test Satellite (ETS-VI) and an optical ground transmitting and receiving station at the Table Mountain Facility in Wrightwood, California. Laser transmissions to the satellite are performed for approximately 4 hours every third night when the satellite is at apogee above Table Mountain. The experiment requires the coordination of resources at the Communications Research Laboratory (CRL), JPL, the National Aeronautics and Space Development Agency (NASDA) Tsukuba tracking station, and NASA's Deep Space Network at Goldstone, California, to generate and transmit real-time commands and receive telemetry from the ETS-VI. Transmissions to the ETS-VI began in November 1995 and are scheduled to last into the middle of January 1996, when the satellite is expected to be eclipsed by the Earth's shadow for a major part of its orbit. The eclipse is expected to last for about 2 months, and during this period there will be limited electrical power available on board the satellite. NASDA plans to restrict experiments with the ETS-VI during this period, and no laser transmissions are planned. Posteclipse experiments are currently being negotiated. GOLD is a joint NASA-CRL experiment that is being conducted by JPL in coordination with CRL and NASDA.

  9. Lichen communities on conifers in Southern California mountains: an ecological survey relative to oxidant air pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigal, L.L.; Nash, T.H. III

    1983-01-01

    In comparison with collections from the early 1900's when oxidant air pollution was essentially absent, 50% fewer lichen species were found on conifers during 3 yr (1976-1979) of collecting and sampling in the mountains of Southern California. Among the five mountain ranges studied, the San Bernardino Mountains, the region with the highest oxidant levels, had lower lichen frequency and cover values. Within the San Bernardino study sites, lichen cover was inversely related to estimated oxidant doses. Furthermore, at sites with high oxidant levels, marked morphological deterioration of the common species Hypogymnia enteromorpha was documented. Transplants of this species from themore » relatively unpolluted Cuyamaca Rancho State Park into the San Bernardino Mountains exhibited similar deterioration after a year's exposure. 4 figures, 9 tables.« less

  10. Periodic Burning In Table Mountain-Pitch Pine Stands

    Treesearch

    Russell B. Randles; David H. van Lear; Thomas A. Waldrop; Dean M. Simon

    2002-01-01

    Abstract - The effects of multiple, low intensity burns on vegetation and wildlife habitat in Table Mountain (Pinus pungens Lamb.)-pitch (Pinus rigida Mill.) pine communities were studied in the Blue Ridge Mountains of North Carolina. Treatments consisted of areas burned from one to four times at 3-4 year...

  11. Are Crown Fires Necessary For Table Mountain Pine?

    Treesearch

    Thomas A. Waldrop; Patrick H. Brose; Nicole Turrill Welch; Helen H. Mohr; Ellen A. Gray; Frank H. Tainter; Lisa E. Ellis

    2003-01-01

    Ridgetop pine communities of the southern Appalachian Mountains have historically been maintained by lightning- and human-caused fires. Because of fire supression for several decades, these stands are entering later seral stages. Such stands typically have an overstory of Table Mountain Pine (Pinus pungens) that is being replaced by shade tolerant...

  12. Using prescribed fire to regenerate Table Mountain pine in the Southern Appalachian Mountains

    Treesearch

    Patrick H. Brose; Thomas A. Waldrop

    2000-01-01

    Stand-replacing prescribed fires are recommended to regenerate stands of Table Mountain pine (Pinus pungens) in the southern Appalachian Mountains because the species has serotinous cones and its seedlings require abundant sunlight and a thin forest floor. A 350-hectare prescribed fire in northeastern Georgia provided an opportunity to observe...

  13. Habitat use by mountain quail in Northern California

    Treesearch

    Leonard A. Brennan; R. J. Gutierrez

    1987-01-01

    We studied habitat use by Mountain Quail (Oreortyx pictus) at four sites in northern California. Vegetative cover types (macrohabitats) were used in proportion to availability. Significant microhabitat variables which distinguished used from available microhabitat structure included proximity to water and tall, dense shrubs. Mountain Quail population...

  14. Downwelling Far-Infrared Emission Spectra Measured By First at Cerro Toco, Chile and Table Mountain, California

    NASA Astrophysics Data System (ADS)

    Mast, J. C.; Mlynczak, M. G.; Cageao, R.; Kratz, D. P.; Johnson, D. G.; Mlawer, E. J.; Turner, D. D.

    2014-12-01

    The Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument is a Fourier transform spectrometer developed to measure the important far-infrared spectrum between 100 and 650 cm-1. Presented here are measurements made by FIRST during two successful deployments in a ground-based configuration to measure downwelling longwave radiation at Earth's surface. The initial deployment was to Cerro Toco, Chile, where FIRST operated from August to October, 2009 as part of the Radiative Heating in Underexplored Bands Campaign (RHUBC-II) campaign. After recalibration, FIRST was deployed to the Table Mountain Facility from September through October, 2012. Spectra observed at each location are substantially different, due in large part to the order of magnitude difference in integrated precipitable water vapor (0.3 cm at Table Mountain, 0.03 cm at Cerro Toco). Dry days for both campaigns are chosen for analysis - 09/24/2009 and 10/19/2012. Also available during both deployments are coincident radiosonde temperature and water vapor vertical profiles which are used as inputs a line-by-line radiative transfer program. Comparisons between measured and modeled spectra are presented over the 200 to 800 cm-1 range. An extensive error analysis of both the measured and modeled spectra is presented. In general, the differences between the measured and modeled spectra are within their combined uncertainties.

  15. Evidence of varying magma chambers and magmatic evolutionary histories for the Table Mountain Formation in the Carson-Iceberg Wilderness region, Sonora Pass, California

    NASA Astrophysics Data System (ADS)

    Asami, R.; Putirka, K. D.; Pluhar, C. J.; Farner, M. J.; Torrez, G.; Shrum, B. L.; Jones, S.

    2012-12-01

    The Sonora Pass- Dardanelles region in the Carson- Iceberg Wilderness area is located in the central Sierra Nevada and home to the type section for latites (Slemmons, 1953), a volcanic rock that contains high potassium, clinopyroxene, and plagioclase phenocysts. Latite lavas and tuffs exposed in the Sonora Pass region originated from the sources in the eastern Sierra Nevada (Noble et al., 1974) where lavas flowed toward California's Great Valley, and were emplaced in stream valleys along the way, which are now inverted to form "table mountains", ergo the name "Table Mountain Latite" (TML) (Slemmons, 1966). Similarly high-K volcanic rocks of the same age are exposed at Grouse Meadows, which is just north of the Walker Lane Caldera east of Sonora Pass, and at the type section, between Red Peak and Bald Peak west of Sonora Pass. Latites lavas and tuffs in all three regions were analyzed for major oxides and trace elements with X-ray fluorescence spectrometry at California State University, Fresno. Analysis of three locations of (TML) at the type section show that they (Ransome, 1898), may have a different magmatic evolutionary history compared to other latites, exposed at Sonora Pass and Grouse Meadows, as the latter two show similar major oxide and trace element compositions. Most compelling is the contrast in the behavior of Al2O3 and CaO at the type section. Variation diagrams show that at the type section Al2O3 and CaO enrichment decreases with increasing amounts of MgO as fractional crystallization occurs. Conversely, at Sonora Peak and Grouse Meadows, CaO and Al2O3 concentrations mostly increase as MgO decreases with fractional crystallization. This contrasts shows that plagioclase was a major fractioning phase at the type section, but not at the other two localities. This suggests that the lava flows at the type section were erupted from a distinct set of magma chambers and vents that underwent a very distinct magmatic evolutionary history, perhaps involving

  16. Restoring table mountain pine (Pinus pungens Lamb.) communities with prescribed fire: an overview of current research

    Treesearch

    Nicole Turrill Welch; Thomas A. Waldrop

    2001-01-01

    Table mountain pine (Pinus pungens Lamb.) communities of the Southern Appalachian Mountains have been maintained historically by lightning- and human-caused fires. Characteristic stands have a table mountain pine overstory, a chestnut oak (Quercus prinus L.), scarlet oak (Q. coccinea Muenchh.), and blackgum (

  17. Mammoth Mountain, California broadband seismic experiment

    NASA Astrophysics Data System (ADS)

    Dawson, P. B.; Pitt, A. M.; Wilkinson, S. K.; Chouet, B. A.; Hill, D. P.; Mangan, M.; Prejean, S. G.; Read, C.; Shelly, D. R.

    2013-12-01

    Mammoth Mountain is a young cumulo-volcano located on the southwest rim of Long Valley caldera, California. Current volcanic processes beneath Mammoth Mountain are manifested in a wide range of seismic signals, including swarms of shallow volcano-tectonic earthquakes, upper and mid-crustal long-period earthquakes, swarms of brittle-failure earthquakes in the lower crust, and shallow (3-km depth) very-long-period earthquakes. Diffuse emissions of C02 began after a magmatic dike injection beneath the volcano in 1989, and continue to present time. These indications of volcanic unrest drive an extensive monitoring effort of the volcano by the USGS Volcano Hazards Program. As part of this effort, eleven broadband seismometers were deployed on Mammoth Mountain in November 2011. This temporary deployment is expected to run through the fall of 2013. These stations supplement the local short-period and broadband seismic stations of the Northern California Seismic Network (NCSN) and provide a combined network of eighteen broadband stations operating within 4 km of the summit of Mammoth Mountain. Data from the temporary stations are not available in real-time, requiring the merging of the data from the temporary and permanent networks, timing of phases, and relocation of seismic events to be accomplished outside of the standard NCSN processing scheme. The timing of phases is accomplished through an interactive Java-based phase-picking routine, and the relocation of seismicity is achieved using the probabilistic non-linear software package NonLinLoc, distributed under the GNU General Public License by Alomax Scientific. Several swarms of shallow volcano-tectonic earthquakes, spasmodic bursts of high-frequency earthquakes, a few long-period events located within or below the edifice of Mammoth Mountain and numerous mid-crustal long-period events have been recorded by the network. To date, about 900 of the ~2400 events occurring beneath Mammoth Mountain since November 2011 have

  18. Phylogeography of the California mountain kingsnake, Lampropeltis zonata (Colubridae).

    PubMed

    Rodríguez-Robles, J A; Denardo, D F; Staub, R E

    1999-11-01

    The phylogeography of the California mountain kingsnake, Lampropeltis zonata, was studied using mitochondrial DNA sequences from specimens belonging to the seven recognized subspecies and collected throughout the range of the species. Maximum parsimony and maximum likelihood methods identified a basal split within L. zonata that corresponds to southern and northern segments of its distribution. The southern clade is composed of populations from southern California (USA) and northern Baja California, Mexico. The northern clade is divided into two subclades, a 'coastal' subclade, consisting of populations from the central coast of California and the southern Sierra Nevada Mountains of eastern California, and a 'northeastern' subclade, mainly comprised of populations north of the San Francisco Bay and from the majority of the Sierra Nevada. We suggest that past inland seaways in southwestern California and the embayment of central California constituted barriers to gene flow that resulted in the two deepest divergences within L. zonata. Throughout its evolutionary history, the northern clade apparently has undergone instances of range contraction, isolation, differentiation, and then expansion and secondary contact. Examination of colour pattern variation in 321 living and preserved specimens indicated that the two main colour pattern characters used to define the subspecies of L. zonata are so variable that they cannot be reliably used to differentiate taxonomic units within this complex, which calls into question the recognition of seven geographical races of this snake.

  19. 76 FR 41753 - Sierra National Forest, Bass Lake Ranger District, California, Grey's Mountain Ecosystem...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ..., California, Grey's Mountain Ecosystem Restoration Project AGENCY: Forest Service, USDA. ACTION: Notice of... a series of ecological restoration treatments, north of the community of Bass Lake, California, south of Soquel Meadow, east of Nelder Grove Historical Area and west of Graham Mountain. Treatment...

  20. Optimal Seedbed Requirements For Regenerating Table Mountain Pine

    Treesearch

    Helen H. Mohr; Thomas A. Waldrop; Victor B. Shelburne

    2002-01-01

    High-intensity, stand replacement fires have been recommended to regenerate stands of Table Mountain pine (Pinus pungens Lamb.) because its seeds require mineral soil to germinate and seedlings are intolerant of shade. Recent prescribed fires have resulted in poor regeneration, even though crown fires created seedbeds with abundant insolation and...

  1. Land-Cover Trends of the Southern California Mountains Ecoregion

    USGS Publications Warehouse

    Soulard, Christopher E.; Raumann, Christian G.; Wilson, Tamara S.

    2007-01-01

    This report presents an assessment of land-use and land-cover (LU/LC) change in the Southern California Mountains ecoregion for the period 1973-2001. The Southern California Mountains is one of 84 Level-III ecoregions as defined by the U.S. Environmental Protection Agency (EPA). Ecoregions have served as a spatial framework for environmental resource management, denoting areas that contain a geographically distinct assemblage of biotic and abiotic phenomena including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The established Land Cover Trends methodology generates estimates of change for ecoregions using a probability sampling approach and change-detection analysis of thematic land-cover images derived from Landsat satellite imagery.

  2. Documentation of mountain lions in Marin County, California, 2010–2013

    USGS Publications Warehouse

    Fifield, Virginia L.; Rossi, Aviva J.; Boydston, Erin E.

    2015-01-01

    Prior to 2010, mountain lions (Puma concolor) have rarely been documented in Marin County, California. Although there are reports of sightings of mountain lions or observations of mountain lion sign, most have not been verified by photographs or physical samples. Beginning in 2010, we conducted a pilot study of mountain lions in Marin County using motion-triggered cameras. Our objectives were to obtain additional documentations, confirm the presence of mountain lions outside of Point Reyes National Seashore, and determine if mountain lions had a regular presence in the county. 

  3. Correlations and Areal Distribution of the Table Mountain Formation, Stanislaus Group; Central Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Torrez, G.; Carlson, C. W.; Putirka, K. D.; Pluhar, C. J.; Sharma, R. K.

    2011-12-01

    Late Cenozoic evolution of the western Cordillera is a matter of ongoing debate in geologic studies. Volcanic deposits within, and adjacent to the Sierra Nevada have played a significant role in many of these debates. With local faulting coincident with eruption of members of the Stanislaus Group at ca. 38°N, the composition and correlation of these volcanics can greatly aid our understanding of Sierra Nevada tectonics. At the crest of the central Sierra Nevada, 23 trachyandesite lava flows of the Table Mountain Formation, dated at ~10 Ma, cap Sonora Peak. These 23 flows compose the thickest and most complete known stratigraphic section of the Table Mountain Formation in the region. Located ~12 km east of Sonora Peak are 16 flows of trachyandesite at Grouse Meadow. We have collected a detailed set of geochemical and paleomagnetic data for flows of these two sections at Sonora Peak and Grouse Meadows in an attempt to correlate volcanic, paleomagnetic and structural events related to uplift and extension in the Sierra Nevada and the Walker Lane. Correlation of individual flows is possible based on: stratigraphic order, temporal gaps in deposition as determined by paleomagnetic remanence direction and nonconformities, and flow geochemistry. These correlations allow us to infer source localities, flow directions, and temporal changes in flow routes. The large number of flows present at Grouse Meadow provides an additional data set from which to correlate various localities in the region to those units not represented at Sonora Peak. Several flows which occur in the upper portions of the Sonora Peak and Grouse Meadow stratigraphic sections do not correlate between these localities. The causes of stratigraphic discontinuity potentially represent: tectonic isolation across the Sierran Crest, topographic isolation by the emplacement of younger flows, or the combination of the two. Additional to the correlation of individual flows at these localities, this study shows a

  4. Beaver Mediated Water Table Dynamics in Mountain Peatlands

    NASA Astrophysics Data System (ADS)

    Karran, D. J.; Westbrook, C.; Bedard-Haughn, A.

    2016-12-01

    Water table dynamics play an important role in the ecological and biogeochemical processes that regulate carbon and water storage in peatlands. Beaver are common in these habitats and the dams they build have been shown to raise water tables in other environments. However, the impact of beaver dams in peatlands, where water tables rest close to the surface, has yet to be determined. We monitored a network of 50 shallow wells in a Canadian Rocky Mountain peatland for 6 years. During this period, a beaver colony was maintaining a number of beaver ponds for four years until a flood event removed the colony from the area and breached some of the dams. Two more years of data were collected after the flood event to assess whether the dams enhanced groundwater storage. Beaver dams raised water tables just as they do in other environments. Furthermore, water tables within 100 meters of beaver dams were more stable than those further away and water table stability overall was greater before the flood event. Our results suggest the presence/absence of beaver in peatlands has implications for groundwater water storage and overall system function.

  5. 76 FR 11193 - Sequoia National Forest; California; Piute Mountains Travel Management Plan; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... National Forest; California; Piute Mountains Travel Management Plan; Correction AGENCY: Forest Service... intent to prepare an environmental impact statement for the Piute Mountains Travel Management Plan. FOR...

  6. A Comparison of Fire Intensity levels for stand replacement of table mountain pine (Pinus pungens Lamb.)

    Treesearch

    Thomas A. Waldrop; Patrick H. Brose

    1999-01-01

    Stand-replacement prescribed fire has been recommended to regenerate stands of table mountain pine (Pinus pungens Lamb.) in the Southern Appalachian Mountains because the species has serotinous cones and is shade intolerant. A 350 ha prescribed fire in northeast Georgia provided an opportunity to observe overstory mortality and regeneration of table...

  7. Invisible CO2 gas killing trees at Mammoth Mountain, California

    USGS Publications Warehouse

    Sorey, Michael L.; Farrar, Christopher D.; Evans, William C.; Hill, David P.; Bailey, Roy A.; Hendley, James W.; Stauffer, Peter H.

    1996-01-01

    Since 1980, scientists have monitored geologic unrest in Long Valley Caldera and at adjacent Mammoth Mountain, California. After a persistent swarm of earthquakes beneath Mammoth Mountain in 1989, earth scientists discovered that large volumes of carbon dioxide (CO2) gas were seeping from beneath this volcano. This gas is killing trees on the mountain and also can be a danger to people. The USGS continues to study the CO2 emissions to help protect the public from this invisible potential hazard.

  8. SANTA LUCIA WILDERNESS, AND GARCIA MOUNTAIN, BLACK MOUNTAIN, LA PANZA, MACHESNA MOUNTAIN, LOS MACHOS HILLS, BIG ROCKS, AND STANLEY MOUNTAIN ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Frizzell, Virgil A.; Kuizon, Lucia

    1984-01-01

    The Santa Lucia Wilderness Area and Garcia Mountain, Black Mountain, La Panza, Machesna Mountain, Los Machos Hills, Big Rocks, and Stanley Mountain Roadless Areas together occupy an area of about 218 sq mi in the Los Padres National Forest, California. On the basis of a mineral-resource evaluation a small area in the Black Mountain Roadless Area has a probable mineral-resource potential for uranium, and a small area in the Stanley Mountain Roadless Area has probable potential for low-grade mercury resources. Although petroleum resources occur in rocks similar to those found in the study area, no potential for petroleum resources was identified in the wilderness or any of the roadless areas. No resource potential for other mineral resources was identified in any of the areas. Detailed geologic mapping and geochemical sampling probably would increase knowledge about distribution and modes of occurrence of uranium and cinnabar in those areas, respectively.

  9. Mineral resources of the Sheepshead Mountains, Wildcat Canyon, and Table Mountain Wilderness Study Areas, Malheur and Harney counties, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherrod, D.R.; Griscom, A.; Turner, R.L.

    1988-01-01

    The Sheepshead Mountains, Wildcat Canyon, and Table Mountain Wilderness Study Areas encompass most of the Sheepshead Mountains in southeast Oregon. The mountains comprise several fault blocks of middle and late Miocene basalt, basaltic andesite, andesite, and dacite lava; pyroclastic and sedimentary rocks are minor. The three wilderness study areas have low resource potential for gold, silver, and oil and gas. A few small areas have low-to-high resource potential for diatomite, as indicated by the occurrence of low-grade diatomite. Some fault zones have a moderate potential for geothermal energy.

  10. Invisible CO2 gas killing trees at Mammoth Mountain, California

    USGS Publications Warehouse

    Sorey, Michael L.; Farrar, Christopher D.; Gerlach, Terrance M.; McGee, Kenneth A.; Evans, William C.; Colvard, Elizabeth M.; Hill, David P.; Bailey, Roy A.; Rogie, John D.; Hendley, James W.; Stauffer, Peter H.

    2000-01-01

    Since 1980, scientists have monitored geologic unrest in Long Valley Caldera and at adjacent Mammoth Mountain, California. After a persistent swarm of earthquakes beneath Mammoth Mountain in 1989, geologists discovered that large volumes of carbon dioxide (CO2 ) gas were seeping from beneath this volcano. This gas is killing trees on the mountain and also can be a danger to people. The U.S. Geological Survey (USGS) continues to study the CO2 emissions to help protect the public from this invisible potential hazard.

  11. Recreational Transit Service to the California Santa Monica Mountains

    DOT National Transportation Integrated Search

    1982-04-01

    The Southern California Association of Governments (SCAG), in conjunction with the Santa Monica Mountains Conservancy (SMMC) tested the feasibility of providing a seasonal recreation transit service from low income urban areas in and near the city of...

  12. Groundwater quality in the Klamath Mountains, California

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Klamath Mountains constitute one of the study units being evaluated.

  13. Structural evidence for northeastward movement on the Chocolate Mountains Thrust, southeasternmost California

    USGS Publications Warehouse

    Dillon, J.T.; Haxel, G.B.; Tosdal, R.M.

    1990-01-01

    The Late Cretaceous Chocolate Mountains Thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the Orocopia Schist. The Chocolate Mountains Thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal fault. An important parameter required to understand the tectonic significance of the Chocolate Mountains and related thrusts is their sense of movement. The only sense of movement consistent with collective asymmetry of the thrust zone folds is top to the northeast. Asymmetric microstructures studied at several localities also indicate top to the northeast movement. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. Movement of the upper plate of the chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. -from Authors

  14. Seedbed Requirements For Regenerating Table Mountain Pine With Prescribed Fire

    Treesearch

    Thomas A. Waldrop; Helen H. Mohr; Patrick H. Brose; Richard B. Baker

    1999-01-01

    High-intensity, stand-replacement fires have been recommnded to regenerate stands of Table Mountain pine (Pinus pungens Lamb.) because its seeds require mineral soil to germinate and seedlings are intolerant of shade. Early prescribed fire efforts resulted in poor regeneration success where crown fires created seedbeds with abundant insolation....

  15. Use of an analog site near Raymond, California, to develop equipment and methods for characterizing a potential high-level, nuclear waste repository site at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umari, A.M.J.; Geldon, A.; Patterson, G.

    1994-12-31

    Yucca Mountain, Nevada, currently is being investigated by the U.S. Geological Survey as a potential site for a high-level nuclear waste repository. Planned hydraulic-stress and tracer tests in fractured, tuffaceous rocks below the water table at Yucca Mountain will require work at depths in excess of 1,300 feet. To facilitate prototype testing of equipment and methods to be used in aquifer tests at Yucca Mountain, an analog site was selected in the foothills of the Sierra Nevada near Raymond, California. Two of nine 250- to 300-feet deep wells drilled into fractured, granitic rocks at the Raymond site have been instrumentedmore » with packers, pressure transducers, and other equipment that will be used at Yucca Mountain. Aquifer tests conducted at the Raymond site to date have demonstrated a need to modify some of the equipment and methods conceived for use at Yucca Mountain.« less

  16. Fire and the origin of Table Mountain pine - pitch pine communities in the southern Appalachian Mountains, USA

    Treesearch

    Patrick H. Brose; Thomas A. Waldrop

    2006-01-01

    The prevalence of stand-replacing fire in the formation of Table Mountain pine - pitch pine (Pinus pungens Lamb. and Pinus rigida Mill., respectively) communities was investigated with dendrochronological techniques. Nine stands in Georgia, South Carolina, and Tennessee were analyzed for age structure, species recruitment trends,...

  17. Risk factors for exposure to feline pathogens in California mountain lions (Puma concolor).

    PubMed

    Foley, Janet E; Swift, Pamela; Fleer, Katryna A; Torres, Steve; Girard, Yvette A; Johnson, Christine K

    2013-04-01

    The primary challenge to mountain lion population viability in California is habitat loss and fragmentation. These habitat impacts could enhance disease risk by increasing contact with domestic animals and by altering patterns of exposure to other wild felids. We performed a serologic survey for feline pathogens in California mountain lions (Puma concolor) using 490 samples from 45 counties collected from 1990 to 2008. Most mountain lions sampled were killed because of depredation or public safety concerns and 75% were adults. Pathogens detected by serosurvey in sampled mountain lions included feline panleukopenia virus (39.0%), feline calicivirus (33.0%), feline coronavirus (FCoV, 15.1%), feline herpesvirus (13.0%), heartworm (12.4%), feline leukemia virus (5.4%), and canine distemper virus (3%). An outbreak of heartworm exposure occurred from 1995 to 2003 and higher than expected levels of FCoV-antibody-positive mountain lions were observed from 2005 to 2008, with foci in southern Mendocino and eastern Lake counties. We show that the majority of mountain lions were exposed to feline pathogens and may be at risk of illness or fatality, particularly kittens. Combined with other stressors, such as ongoing habitat loss, infectious disease deserves recognition for potential negative impact on mountain lion health and population viability.

  18. The Imperial Valley of California is critical to wintering Mountain Plovers

    USGS Publications Warehouse

    Wunder, Michael B.; Knopf, F.L.

    2003-01-01

    We surveyed Mountain Plovers (Charadrius montanus) wintering in the Imperial Valley of California in January 2001, and also recorded the types of crop fields used by plovers in this agricultural landscape. We tallied 4037 plovers in 36 flocks ranging in size from 4 to 596 birds. Plovers were more common on alfalfa and Bermudagrass fields than other field types. Further, most birds were on alfalfa fields that were currently being (or had recently been) grazed, primarily by domestic sheep. Plovers used Bermudagrass fields only after harvest and subsequent burning. Examination of Christmas Bird Count data from 1950–2000 indicated that the Mountain Plover has abandoned its historical wintering areas on the coastal plains of California. Numbers in the Central Valley seem to have undergone recent declines also. We believe that the cultivated landscape of the Imperial Valley provides wintering habitats for about half of the global population of Mountain Plovers. We attribute the current importance of the Imperial Valley for Mountain Plovers to loss of native coastal and Central Valley habitats rather than to a behavioral switching of wintering areas through time. Future changes in specific cropping or management practices in the Imperial Valley will have a major impact on the conservation status of this species.

  19. Fire and the orgin of the Table Mountain pine - pitch pine communities in the southern Appalachian mountains, USA

    Treesearch

    Patrick H. Brose; Thomas A. Waldrop

    2006-01-01

    The prevalence of stand-replacing tire in the formation of Table Mountain pine - pitch pine (Pinus pungens Lamb. and Pinus rigida Mill., respectively) communities was investigated with dendrochronological techniques. Nine stands in Georgia, South Carolina, and Tennessee were analyzed for age structure, species recruitment trends,...

  20. Local volume tables for Pacific madrone, tanoak, and California black oak in north-central California

    Treesearch

    Philip M. McDonald

    1983-01-01

    Local volume tables for Pacific madrone (Arbutus menziesii Pursh), tanoak (Lithocarpus densifiorus [Hook. & Am.] Rehd.), and California black oak (Quercus kelloggii Newb.), developed from data recorded by an optical dendrometer, are presented by 1-inch diameter classes in the range of 3 to 30 inches. Cubic...

  1. Plasma cholinesterase levels of mountain plovers (Charadrius montanus) wintering in central California, USA

    USGS Publications Warehouse

    Iko, W.M.; Archuleta, A.S.; Knopf, F.L.

    2003-01-01

    Declines of over 60% in mountain plover (Charadrius montanus) populations over the past 30 years have made it a species of concern throughout its current range and a proposed species for listing under the U.S. Endangered Species Act. Wintering mountain plovers spend considerable time on freshly plowed agricultural fields where they may potentially be exposed to anticholinesterase pesticides. Because of the population status and wintering ecology of plovers, the objectives of our study were to use nondestructive methods to report baseline plasma cholinesterase (ChE) levels in free-ranging mountain plovers wintering in California, USA, and to assess whether sampled birds showed signs of ChE inhibition related to anticholinesterase chemical exposure. We compared plasma ChE activity for mountain plovers sampled from the Carrizo Plain (an area relatively free of anticholinesterase pesticide use) with similar measures for plovers from the Central Valley (where anticholinesterase pesticides are widely used). Analyses for ChE inhibition indicated that none of the plovers had been recently exposed to these chemicals. However, mean ChE levels of plovers from the Central Valley were significantly higher (32%) than levels reported for plovers from the Carrizo Plain. This result differs from our original assumption of higher exposure risk to mountain plovers in the Central Valley but does suggest that some effect is occurring in the ChE activity of mountain plovers wintering in California.

  2. Magmatic unrest beneath Mammoth Mountain, California

    USGS Publications Warehouse

    Hill, D.P.; Prejean, S.

    2005-01-01

    Mammoth Mountain, which stands on the southwest rim of Long Valley caldera in eastern California, last erupted ???57,000 years BP. Episodic volcanic unrest detected beneath the mountain since late 1979, however, emphasizes that the underlying volcanic system is still active and capable of producing future volcanic eruptions. The unrest symptoms include swarms of small (M ??? 3) earthquakes, spasmodic bursts (rapid-fire sequences of brittle-failure earthquakes with overlapping coda), long-period (LP) and very-long-period (VLP) volcanic earthquakes, ground deformation, diffuse emission of magmatic CO2, and fumarole gases with elevated 3He/4He ratios. Spatial-temporal relations defined by the multi-parameter monitoring data together with earthquake source mechanisms suggest that this Mammoth Mountain unrest is driven by the episodic release of a volume of CO2-rich hydrous magmatic fluid derived from the upper reaches of a plexus of basaltic dikes and sills at mid-crustal depths (10-20 km). As the mobilized fluid ascends through the brittle-plastic transition zone and into overlying brittle crust, it triggers earthquake swarm activity and, in the case of the prolonged, 11-month-long earthquake swarm of 1989, crustal deformation and the onset of diffuse CO2 emissions. Future volcanic activity from this system would most likely involve steam explosions or small-volume, basaltic, strombolian or Hawaiaan style eruptions. The impact of such an event would depend critically on vent location and season.

  3. Ecological research at the Blacks Mountain Experimental Forest in northeastern California

    Treesearch

    William W. Oliver

    2000-01-01

    At Blacks Mountain Experimental Forest in northeastern California, an interdisciplinary team of scientists developed and implemented a research project to study how forest structural complexity affects the health and vigor of interior ponderosa pine (Pinus ponderosa Dougl. ex Laws.) ecosystems, the ecosystem's resilience to natural and human-caused disturbances,...

  4. Regional bankfull geometry relationships for southern California mountain streams and hydrologic applications

    NASA Astrophysics Data System (ADS)

    Modrick, Theresa M.; Georgakakos, Konstantine P.

    2014-09-01

    This study develops and intercompares regional relationships for bankfull channel width, hydraulic depth, and cross-sectional area for southern California mountain streams based on several data sources: surveyed streams, US Geological Survey stream survey reports, and existing literature. Although considerable uncertainty exists in estimating bankfull conditions, the relationships developed from the varying data sources show significant agreement. For small watersheds with drainage area ranging from 15 to ~ 2000 km2, the estimates of bankfull top width ranged from 7.2 to 44.5 m and hydraulic depth estimates ranged from 0.35 to 1.15 m. The utility of the developed bankfull geometry regional curves is demonstrated for southern California catchments through (a) the computation of the bankfull discharge and (b) the estimation of the surface runoff response necessary to produce bankfull conditions in the streams at the outlet of these catchments. For selected locations with instantaneous flow records, the occurrence frequency of events exceeding bankfull flow was examined for the available 10-15 year span of observational records. Bankfull discharge estimates for all small watersheds in the region ranged from 1.3 to 74 m3/s, while the range at the selected gauged stream locations was from 2.6 to 16.4 m3/s. Stream locations along the Transverse Mountains of southern California showed an average occurrence frequency of less than 1 year, whereas along the Peninsular Mountains the average return period tended to be greater than 1 year. The application of the regional curves to the estimation of the surface runoff response necessary to produce bankfull conditions at the channel outlets of small catchments may be used as an index for conditions of minor flooding with saturated soils. This surface runoff response index ranges from 2.0 to 5.5 mm for a 3-hour rainfall duration for southern California watersheds greater than 15 km2 in area. Differences between the values for the

  5. Spatial Patterns of Atmospherically Deposited Organic Contaminants at High Elevation in the Southern Sierra Nevada Mountains, California

    EPA Science Inventory

    Atmospherically deposited contaminants in the Sierra Nevada mountains of California have been implicated as adversely affecting amphibians and fish, yet the distributions of contaminants within the mountains are poorly known, particularly at high elevation. We tested the hypothe...

  6. Spatial Patterns of Atmospherically Deposited Organic Contaminants at High Elevation in the Southern Sierra Nevada Mountains, California

    EPA Science Inventory

    Atmospherically deposited contaminants in the Sierra Nevada mountains of California have been implicated as a factor adversely affecting biological resources such as amphibians and fish, yet the distributions of contaminants within the mountains are poorly known, particularly at...

  7. Southern California Mountains and Foothills Assessment: Habitat and Species Conservation Issues

    Treesearch

    John R. Stephenson; Gena M. Calcarone

    1999-01-01

    The Southern California Mountains and Foothills Assessment: Habitat and Species Conservation Issues provides detailed information about current conditions and trends for ecological systems and species in the region. This information can be used by land managers to develop broad land management goals and priorities and provides the context for decisions specific to...

  8. 76 FR 70440 - Table Mountain Pumped Storage Project; Notice of Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ...) (3 units x 133 MW units) of generating capacity, with up to 100 MW of additional pumping capacity...-foot-wide right of way. Applicant Contact: Matthew Shapiro, Table Mountain Hydro, LLC., 1210 W...

  9. BLANCO MOUNTAIN AND BLACK CANYON ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Diggles, Michael F.; Rains, Richard L.

    1984-01-01

    The mineral survey of the Blanco Mountain and Black Canyon Roadless Areas, California indicated that areas of probable and substantiated mineral-resource potential exist only in the Black Canyon Roadless Area. Gold with moderate amounts of lead, silver, zinc, and tungsten, occurs in vein deposits and in tactite. The nature of the geological terrain indicates little likelihood for the occurrence of energy resources in the roadless areas. Detailed geologic mapping might better define the extent of gold mineralization. Detailed stream-sediment sampling and analysis of heavy-mineral concentrations could better define tungsten resource potential.

  10. Three dimensional perspective view of Mammoth Mountain, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a three-dimensional perspective of Mammoth Mountain, California. This image was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Shuttle Endeavour on its 67th orbit, April 13, 1994. This view was constructed by overlaying a SIR-C radar iamage on a U.S. Geological Survey digital elevation Map. Vertical exaggeration is 2X. The image is centered at 37.6 degrees north, 119.0 degrees west. In this color representation, red is C-band HV-polarization, green is C-Band VV-polarization and blue is the ratio of C-Band VV to C-Band HV. Blue areas are smooth and yellow areas are rock outcrops with varying amounts of snow and vegetation. Crowley Lake is in the foreground and Highway 395 crosses in the middle of the image. Mammoth Mountain is shown in the upper right. The Jet Propulsion Laboratory alternative photo number is P-43933.

  11. Genetic variation at allozyme and RAPD markers in Pinus longaeva (Pinaceae) of the White Mountains, California

    Treesearch

    Seok-Woo Lee; F. Thomas Ledig; David R. Johnson

    2002-01-01

    We compared genetic diversity estimated from allozymes and from random amplified polymorphic DNA (RAPDs) in a sample of 210 Great Basin bristlecone pines (Pinus longaeva Bailey) from three groves in the White Mountains, California, USA. The White Mountains are the most westerly extension of bristlecone pine and home to the oldest known living trees....

  12. [Book review] The biogeography of fire in the San Bernardino Mountains of California---A historical study, by R.A. Minnich

    USGS Publications Warehouse

    Keeley, J.E.

    1989-01-01

    Review of: The Biogeography of Fire in the San Bernardino Mountains of California--A Historical Study. By Richard A. Minnich. University of California Publications in Geography Volume 28, University of California Press, Berkeley. 120 pp. plus plates, soft cover.

  13. 40Ar/39Ar geochronology and petrogenesis of the Table Mountain Shoshonite, Golden, Colorado, U.S.A.

    USGS Publications Warehouse

    Millikin, Alexie E. G.; Morgan, Leah; Noblett, Jeffery

    2018-01-01

    The Upper Cretaceous and Lower Paleogene Table Mountain Shoshonite lava flows and their proposed source, the Ralston Buttes intrusions, provide insight into the volcanic history of the Colorado Front Range. This study affirms the long-held hypothesis linking the extrusive Table Mountain lava flows and their intrusive equivalents at Ralston Buttes through major- and trace- element geochemistry. Systematic 40Ar/39Ar geochronology from all flows and intrusive units refines the eruptive history, improves precision on previously reported ages, and provides tighter constraints on the position of the K-Pg boundary in this location. Four flows are recognized on North and South Table mountains outside of Golden, Colorado. Flow 1 (66.5 ± 0.3 Ma, all ages reported with 2σ uncertainty) is the oldest, most compositionally distinct flow and is separated from younger flows by approximately 35 m of sedimentary deposits of the Denver Formation. Stratigraphically adjacent flows 2 (65.8 ± 0.2 Ma), 3 (65.5 ± 0.3 Ma), and 4 (65.9 ± 0.3 Ma) are compositionally indistinguishable. Lavas (referred to here as unit 5) that form three cone-shaped structures (shown by this study to be volcanic vents of a new unit 5) on top of North Table Mountain are compositionally similar to other units, but yield an age almost 20 m.y. younger (46.94 ± 0.15 Ma). Geochemistry and geochronology suggest that the rim phase of the Ralston plug (65.4 ± 0.2 Ma) is a reasonable source for flows 2, 3, and 4. All units are shoshonites—potassic basalts containing plagioclase, augite, olivine, and magnetite phenocrysts—and plot in the continental-arc field in tectonic discrimination diagrams. A continental-arc setting coupled with Late Cretaceous to early Paleogene ages suggest the high-K magmatism is associated with Laramide tectonism.

  14. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California.

    PubMed

    Sobron, Pablo; Alpers, Charles N

    2013-03-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  15. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California

    USGS Publications Warehouse

    Sobron, Pablo; Alpers, Charles N.

    2013-01-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  16. Impact of climate change on projected runoff from mountain snowpack of the King’s Rivershed in California

    USDA-ARS?s Scientific Manuscript database

    The Central Valley of California, like most dryland agricultural areas in the Southwest United States, relies heavily on winter snowpack for water resources. Projections of future climate in the Sierra Mountains of California calls for a warmer climate regime that will impact the snowpack in the Sie...

  17. Tomographic image of a seismically active volcano: Mammoth Mountain, California

    USGS Publications Warehouse

    Dawson, Phillip B.; Chouet, Bernard A.; Pitt, Andrew M.

    2016-01-01

    High-resolution tomographic P wave, S wave, and VP/VS velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 109 to 5.9 × 1010m3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10−3 to 7.9 × 10−3 (crack-like pores) and mean gas volume fraction ϕ = 8.1 × 10−4 to 3.4 × 10−3. The pore density parameter κ = 3ϕ/(4πα) = na3=0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to be 4.6 × 109 to 1.9 × 1011 kg. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 500 tons day−1, the reservoir could supply the emission of CO2 for ∼25–1040 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  18. Tomographic image of a seismically active volcano: Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    Dawson, Phillip; Chouet, Bernard; Pitt, Andrew

    2016-01-01

    High-resolution tomographic P wave, S wave, and VP/VS velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 109 to 5.9 × 1010m3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ˜2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10-3 to 7.9 × 10-3 (crack-like pores) and mean gas volume fraction ϕ = 8.1 × 10-4 to 3.4 × 10-3. The pore density parameter κ = 3ϕ/(4πα) = na3=0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to be 4.6 × 109 to 1.9 × 1011 kg. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 500 tons day-1, the reservoir could supply the emission of CO2 for ˜25-1040 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  19. Fire effects on the Point Reyes Mountain Beaver at Point Reyes National Seashore, California

    USGS Publications Warehouse

    Fellers, Gary M.; Pratt, David; Griffin, Jennifer L.

    2004-01-01

    In October 1995, a wildlands fire burned 5,000 ha on the Point Reyes peninsula, California, USA. In most of the nonforested areas, the fire effectively cleared the ground of litter and vegetation and revealed thousands of Point Reyes mountain beaver (Aplodontia rufa phaea) burrow openings. In the first 6 months after the fire, we surveyed burned coastal scrub and riparian habitat to (1) count the number of burrow openings that existed at the time of the fire, and (2) evaluate whether signs of post-fire mountain beaver activity were evident. We estimated that only 0.4–1.7% of mountain beavers within the burn area survived the fire and immediate post-fire period. We monitored mountain beaver activity for 5 years at 8 sites where mountain beavers survived, and found little or no recovery. We estimate that the mountain beaver population will take 15–20 years post-fire to recover.

  20. Cost effectiveness of three different release treatments of table mountain pine in a severely overstocked and pure stand

    Treesearch

    Amy L. Morgan; Wayne K. Clatterbuck

    2013-01-01

    Table Mountain pine (Pinus pungens Lamb.) (TMP) is a threatened species, endemic to the Southern Appalachian Mountains. This study focuses on the release of TMP stems in an overstocked and pure TMP stand on the Cherokee National Forest in eastern Tennessee. The objective of the case study was to produce a cost analysis/comparison of releasing young...

  1. Paleomagnetic contributions to the Klamath Mountains terrane puzzle-a new piece from the Ironside Mountain batholith, northern California

    USGS Publications Warehouse

    Mankinen, Edward A.; Gromme, C. Sherman; Irwin, W. Porter

    2013-01-01

    We obtained paleomagnetic samples from six sites within the Middle Jurassic Ironside Mountain batholith (~170 Ma), which constitutes the structurally lowest part of the Western Hayfork terrane, in the Klamath Mountains province of northern California and southern Oregon. Structural attitudes measured in the coeval Hayfork Bally Meta-andesite were used to correct paleomagnetic data from the batholith. Comparing the corrected paleomagnetic pole with a 170-Ma reference pole for North America indicates 73.5° ± 10.6° of clockwise rotation relative to the craton. Nearly one-half of this rotation may have occurred before the terrane accreted to the composite Klamath province at ~168 Ma. No latitudinal displacement of the batholith was detected.

  2. Water Vapor Variations over Mauna Loa and Table Mountain since 2010

    NASA Astrophysics Data System (ADS)

    Nedoluha, G. E.; Gomez, R. M.; Allen, D. R.; Boone, C.; Lambert, A.; Stiller, G. P.; Hurst, D. F.

    2012-12-01

    The Vapor Millimeter-wave Spectrometer (WVMS) instrument deployed at Network for the Detection of Atmospheric Composition Change (NDACC) sites at Table Mountain, California (34.4N, 242.3E) and at Mauna Loa, Hawaii (19.5N, 204.4E) have, since 2010, been able to make measurements down to ~26km. With this extended retrieval capability these instruments can now make measurements from ~26-80km. There is an increase from 2010 to 2012 which appears to be caused primarily by dynamical variations, although an increase in water vapor entering the stratosphere probably also plays a role at the lower altitudes. Water vapor mixing ratios at both of these NDACC sites are now higher than they have been for about a decade from the lower stratosphere through the mid-mesosphere. In addition to the WVMS measurements, we will present coincident satellite measurements from the Aura Microwave Limb Sounder (MLS), the Atmospheric Chemistry Experiment (ACE), and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). We will also compare the lowest altitude WVMS measurements with frostpoint hygrometer measurements from Boulder, Colorado (40N, 255E), and Hilo, Hawaii (19.7N, 205E). In order to understand the interannual dynamically-driven changes in water vapor, we will investigate interannual variations in mixing using equivalent length and tracer equivalent latitude from 2010-2012. Since dynamical variations affect H2O in the stratosphere primarily by changing the amount of CH4 oxidation that has occurred in a particular region, we will also examine CH4 variations from the GMI model.

  3. Evidence for nitrogen saturation in the San Bernardino Mountains in southern California

    Treesearch

    Mark A. Fenn; Mark A. Poth; Dale W. Johnson

    1996-01-01

    Elevated N deposition has occurred in the Los Angeles Basin in southern California for at least the last 40 years. Elevated streamwater NO; fluxes and high nitric oxide (NO) fluxes from soil, indicators of N saturation, have recently been reported for chaparral watersheds exposed to chronic N deposition in the San Gabriel Mountains north/northeast of Los Angeles. A...

  4. Ectomycorrihizae of Table Mountain Pine and the Influence of Prescribed Burning on their Survival

    Treesearch

    Lisa E. Ellis; Thomas A. Waldrop; Frank H. Tainter

    2002-01-01

    High-intensity prescribed fires have been recommended to regenerate Table Mountain pine (Pinus pungens). However, tests of these burns produced few seedlings, possibly due to soil sterilization. This study examined abundance of mycorrhizal root tips in the field after a high-intensity fire and in the laboratory after exposing rooting media to...

  5. ANDREWS MOUNTAIN, MAZOURKA, AND PAIUTE ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    McKee, Edwin H.; Schmauch, Steven W.

    1984-01-01

    On the basis of a mineral survey, local areas near and within the Andrews Mountain, Mazourka, and Paiute Roadless Areas, California have probable and substantiated mineral-resource potential. The principal metallic mineral resources in these roadless areas are gold, copper, and silver with lead, zinc, and tungsten, as lesser resources. A zone of probable resource potential for talc, graphite, and marble is identified in the Mazourka Roadless Area. Metallic mineralization occurs mostly in vein deposits in silicic and carbonate metasedimentary rocks peripheral to Mesozoic plutons and locally in granitic rocks as well. There is little promise for the occurrence of fossil fuel resources in the roadless areas.

  6. Tomographic Image of a Seismically Active Volcano: Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    Dawson, P. B.; Chouet, B. A.; Pitt, A. M.

    2015-12-01

    High-resolution tomographic P wave, S wave, and VP /VS velocity structure models are derived for Mammoth Mountain, California using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (˜50 km3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ˜2 km below sea level. We infer that the reduction in seismic wave velocities is primarily due to the presence of CO2 distributed in oblate-spheroid pores with mean aspect ratio α ˜8 x 10-4 (crack-like pores) and gas volume fraction φ ˜4 x 10-4. The pore density parameter κ = 3φ / (4πα) = na3 = 0.12, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to range up to ˜1.6 x 1010 kg if the pores exclusively contain CO2, although he presence of an aqueous phase may lower this estimate by up to one order of magnitude. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 5 x 105 kg day-1, the reservoir could supply the emission of CO2 for ˜8 to ˜90 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  7. Photomosaics and event evidence from the Frazier Mountain paleoseismic site, trench 1, cuts 1–4, San Andreas Fault Zone, southern California (2007–2009)

    USGS Publications Warehouse

    Scharer, Katherine M.; Fumal, Tom E.; Weldon, Ray J.; Streig, Ashley R.

    2014-01-01

    The Frazier Mountain paleoseismic site is located at the northwest end of the Mojave section of the San Andreas Fault, in a small, closed depression at the base of Frazier Mountain near Tejon Pass, California (lat 34.8122° N., long 118.9034° W.). The site was known to contain a good record of earthquakes due to previous excavations by Lindvall and others (2002). This report provides data resulting from four nested excavations, or cuts, along trench 1 (T1) in 2007 and 2009 at the Frazier Mountain site. The four cuts were excavated progressively deeper and wider in an orientation perpendicular to the San Andreas Fault, exposing distal fan and marsh sediments deposited since ca. A.D. 1200. The results of the trenching show that earthquakes that ruptured the site have repeatedly produced a small depression or sag on the surface, which is subsequently infilled with sand and silt deposits. This report provides high-resolution photomosaics and logs for the T1 cuts, a detailed stratigraphic column for the deposits, and a table summarizing all of the evidence for ground rupturing paleoearthquakes logged in the trenches.

  8. 50 CFR Table 6 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Southern Oregon/Northern California...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Critical Habitat for Southern Oregon/Northern California Coasts Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the Upstream Extent of Critical Habitat 6 Table 6 to... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT Pt. 226, Table 6 Table 6 to...

  9. 50 CFR Table 6 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Southern Oregon/Northern California...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Critical Habitat for Southern Oregon/Northern California Coasts Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the Upstream Extent of Critical Habitat 6 Table 6 to... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT Pt. 226, Table 6 Table 6 to...

  10. 50 CFR Table 6 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Southern Oregon/Northern California...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Critical Habitat for Southern Oregon/Northern California Coasts Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the Upstream Extent of Critical Habitat 6 Table 6 to... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT Pt. 226, Table 6 Table 6 to...

  11. Cenozoic volcanic geology and probable age of inception of basin-range faulting in the southeasternmost Chocolate Mountains, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, B.M.

    1978-02-01

    A complex sequence of Oligocene-age volcanic and volcaniclastic rocks form a major volcanic center in the Picacho area of the southeasternmost Chocolate Mountains, Imperial County, California. Basal-volcanic rocks consist of lava flows and flow breccia of trachybasalt, pyroxene rhyodacite, and pyroxene dacite (32 My old). These volcanic rocks locally overlie fanglomerate and rest unconformably on pre-Cenozoic basement rocks. South and southeast of a prominent arcuate fault zone in the central part of the area, the rhyolite ignimbrite (26 My old) forms a major ash-flow sheet. In the southwestern part of the Picacho area the rhyolite ignimbrite interfingers with and ismore » overlain by dacite flows and laharic breccia. The rhyolite ignimbrite and the dacite of Picacho Peak are overlapped by lava flows and breccia of pyroxene andesite (25 My old) that locally rest on pre-Cenozoic basement rocks. The volcanic rocks of the Picacho area form a slightly bimodal volcanic suite consisting chiefly of silicic volcanic rocks with subordinate andesite. Late Miocene augite-olivine basalt is most similar in major-element abundances to transitional alkali-olivine basalt of the Basin and Range province. Normal separation faults in the Picacho area trend northwest and north parallel to major linear mountain ranges in the region. The areal distribution of the 26-My-old rhyolite ignimbrite and the local presence of megabreccia and fanglomerate flanking probable paleohighs suggest that the ignimbrite was erupted over irregular topography controlled by northwest- and north-trending probable basin-range faults. These relations date the inception of faulting in southeasternmost California at pre-26 and probably pre-32 My ago. A transition of basaltic volcanism in the area is dated at 13 My ago. 9 figures, 2 tables.« less

  12. Geologic quadrangle maps of the United States: geology of the Casa Diablo Mountain quadrangle, California

    USGS Publications Warehouse

    Rinehart, C. Dean; Ross, Donald Clarence

    1957-01-01

    The Casa Diablo Mountain quadrangle was mapped in the summers of 1952 and 1953 by the U.S. Geological Survey in cooperation with the California State Division of Mines as part of a study of potential tungsten-bearing areas.

  13. Lithology, Geochemistry and Paleomagnetism of the Table Mountain Formation at the Little Walker Caldera

    NASA Astrophysics Data System (ADS)

    Schubert, R.; Pluhar, C. J.; Carlson, C. W.; Jones, S. A.

    2015-12-01

    West of Bridgeport Valley near the Central Sierra Nevada crest, the Little Walker Caldera (LWC) erupted Stanislaus Group lavas and tuffs during the Late Miocene. Remnants of these rocks are now distributed from the western Sierra Nevada foothills across the range and into the Walker Lane. This wide distribution is attributed to the lavas flowing down paleochannels, which provide an excellent marker for deformation over the last 10 Ma. Priest (1978) identified a thick section of these lavas along Flatiron Ridge, the southeast margin of the LWC, which our preliminary data suggests may correlate with lavas in the Sweetwater Mountains to the northeast and at Rancheria Mtn near Hetch Hetchy to the southwest. The oldest unit in the Stanislaus group is the Table Mountain Formation, a trachyandesite. At Priest's measured section it is divided into three members. By our measurements, the Lower Member (Tmtl) is 256 meters thick, has a fine-grained groundmass with plagioclase and augite phenocrysts (<0.5 cm), and the presence of augite phenocrysts distinguishes it from the other members. Some Tmtl flows have chalcedony amigdules. Overlying this, the Large Plagioclase member (Tmtp) is 43.5 meters thick. Distinguished by (~1 cm) plagioclase and occasional small olivine phenocrysts. The Upper Member (Tmtu) is 116 meters thick, very fine-grained and often platy. Tmtl has a distinctive northwest-oriented normal polarity and geochemistry, similar to several localities at Rancheria Mtn. Tmtu has a reversed polarity similar to the polarity of Table Mountain Formation in the Sweetwater Mountains and lavas that directly underlie the ~9.5 Ma Tollhouse Flat member of the Eureka Valley Tuff at Rancheria Mtn. Thus, our preliminary data suggest that the lower member at Priest's Measured Section could correlate to the normal polarity samples at Rancheria Mtn. Also, that the upper Member reversed-polarity samples may correlate with lavas both at the Sweetwater Mountains and Rancheria Mtn

  14. Summar throughfall and winter deposition in the San Bernardino mountains in southern California

    Treesearch

    Mark E. Fenn; Andrzej Bytnerowicz

    1997-01-01

    Summer throughfall and year-round precipitation chemistry were studied for three years at Barton Flats (BF), a low to moderate pollution site in the San Bernardino Mountains (SBM) in southern California. Winter fog plus dry deposition, and bulk deposition were also measured during one season at three sites traversing an atmospheric deposition gradient in the SBM....

  15. Summer throughfall and winter deposition in the San Bernardino mountains in southern California

    Treesearch

    M. E. Fenn; A. Bytnerowicz

    1997-01-01

    Summer throughfall and year-round precipitation chemistry were studied for three years at Barton Flats (BF), a low to moderate pollution site in the San Bernardino Mountains (SBM) in southern California. Winter fog plus dry deposition, and bulk deposition were also measured during one season at three sites traversing an atmospheric deposition gradient in the SBM....

  16. Effect high intensity storms on soil slippage on mountainous watersheds in Southern California

    Treesearch

    R. M. Rice; G. T. Foggin

    1971-01-01

    The conversion of brush areas to grassland increased soil slip erosion on mountainous watersheds in southern California during the intense winter storms of 1969. The incidence of soil slippage, site factors affecting slope stability, and amount of debris generated by slippage were investigated for sample brush and grass areas in the San Dimas Experimental Forest. Soil...

  17. Space Radar Image of Mammoth Mountain, California

    NASA Image and Video Library

    1999-05-01

    This false-color composite radar image of the Mammoth Mountain area in the Sierra Nevada Mountains, California, was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 67th orbit on October 3, 1994. The image is centered at 37.6 degrees north latitude and 119.0 degrees west longitude. The area is about 39 kilometers by 51 kilometers (24 miles by 31 miles). North is toward the bottom, about 45 degrees to the right. In this image, red was created using L-band (horizontally transmitted/vertically received) polarization data; green was created using C-band (horizontally transmitted/vertically received) polarization data; and blue was created using C-band (horizontally transmitted and received) polarization data. Crawley Lake appears dark at the center left of the image, just above or south of Long Valley. The Mammoth Mountain ski area is visible at the top right of the scene. The red areas correspond to forests, the dark blue areas are bare surfaces and the green areas are short vegetation, mainly brush. The purple areas at the higher elevations in the upper part of the scene are discontinuous patches of snow cover from a September 28 storm. New, very thin snow was falling before and during the second space shuttle pass. In parallel with the operational SIR-C data processing, an experimental effort is being conducted to test SAR data processing using the Jet Propulsion Laboratory's massively parallel supercomputing facility, centered around the Cray Research T3D. These experiments will assess the abilities of large supercomputers to produce high throughput Synthetic Aperture Radar processing in preparation for upcoming data-intensive SAR missions. The image released here was produced as part of this experimental effort. http://photojournal.jpl.nasa.gov/catalog/PIA01746

  18. 78 FR 69363 - Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project AGENCY: Lake Tahoe Basin Management Unit, Forest Service, USDA...: The Epic Discovery Project is intended to enhance summer activities in response to the USDA Forest...

  19. Lichen communities on conifers in Southern California mountains: an ecological survey relative to oxidant air pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigal, L.L.; Nash T.H. III

    1983-01-01

    In comparison with collections from the early 1900's when oxidant air pollution was essentially absent, 50% fewer lichen species were found on conifers during 3 yr (1976-1979) of collecting and sampling in the mountains of Southern California. Among the five mountain ranges studied, the San Bernardino Mountains, the region with the highest oxidant levels, had lower lichen frequency and cover values. Within the San Bernardino study sites, lichen cover was inversely related to estimated oxidant doses. Furthermore, at sites with high oxidant levels, marked morphological deterioration of the common species Hypogymnia enteromorpha was documented. Transplants of this species from themore » relatively unpolluted Cuyamaca Rancho State Park in the San Bernardino Mountains exhibited similar deterioration after a year's exposure.« less

  20. Influence of the North American monsoon on Southern California tropospheric ozone levels during summer in 2013 and 2014

    NASA Astrophysics Data System (ADS)

    Granados-Muñoz, Maria Jose; Johnson, Matthew S.; Leblanc, Thierry

    2017-06-01

    The impact of the North American (NA) monsoon on tropospheric ozone variability in Southern California is investigated using lidar measurements at Jet Propulsion Laboratory-Table Mountain Facility, California, and the chemical-transport model GEOS-Chem. Routine lidar observations obtained in July-August 2013-2014 reveal a consistent ozone enhancement of 23 ppbv in the free troposphere (6-9 km), when ozone-rich air is transported along the western edge of the upper level anticyclone associated with the NA monsoon from regions where maximum lightning-induced NOx production occurs. When the high-pressure system shifts to the southeast, a zonal westerly flow of the air parcels reaching the Table Mountain Facility (TMF) occurs, prohibiting the lightning-induced ozone enhanced air to reach TMF. This modulation of tropospheric ozone by the position of the NA monsoon anticyclone could have implications on long-term ozone trends associated with our changing climate, due to the expected widening of the tropical belt affecting the strength and position of the anticyclone.

  1. Early dynamics of table mountain pine stands following stand-replacement prescribed fires of varying intensity

    Treesearch

    Thomas A. Waldrop; Helen H. Mohr; Patrick H. Brose

    2006-01-01

    Interest in using stand-replacement prescribed fires to regenerate stands of Table Mountain pine (Pinus pungens Lamb.) has increased in the past decade, but the type and intensity of fire needed to achieve success have been undefined. In an earlier paper, we concluded from first-year results that flames must reach into the crowns to kill most...

  2. Variation in reciprocal subsidies between lakes and land: perspectives from the mountains of California

    Treesearch

    Jonah Piovia-Scott; Steven Sadro; Roland A. Knapp; James Sickman; Karen L. Pope; Sudeep Chandra

    2016-01-01

    Lakes are connected to surrounding terrestrial habitats by reciprocal flows of energy and nutrients. We synthesize data from California’s mountain lake catchments to investigate how these reciprocal subsidies change along an elevational gradient and with the introduction of a top aquatic predator. At lower elevations, well-developed terrestrial vegetation provides...

  3. Mountain-Top-to-Mountain-Top Optical Link Demonstration. Part 1

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Wright, M. W.

    2002-01-01

    A mountain-top-to-mountain-top optical link was demonstrated between JPL's Table Mountain Facility (TMF), Wrightwood, California, and Strawberry Peak (SP), Lake Arrowhead, California, during the months of June, August, and September of 2000. The bidirectional laser link was nearly horizontal at an altitude of 2 km and spanned a range of 46.8 km. The 780-nm beacon laser transmitted from TMF comprised eight co-propagating mutually incoherent laser beams. The normalized variance or scintillation index (SI) of the individual beacon lasers measured by recording the signal received through 8.50-cm-diameter spotting telescopes on three different nights (June 28-30, 2000) was 1.05 +/- 0.2, 1.76 +/- 0.6, and 0.96 +/- 0.24, respectively. These measurements agreed with values predicted by a heuristic model. The SI of the signal received at SP was found to decrease progressively with an increasing number of beams, and a factor of 3 to 3.5 reduction was achieved for all eight beams. The beam divergence determined by mapping out the point spread function of a few of the individual laser footprints received at SP was 85 to 150 microrad, compared to a design goal of 120 microrad. The 852-nm communications laser beam received at TMF through a 60-cm-diameter telescope on the nights of August 4 and September 14 and 15, 2000, yielded SI values of 0.23 +/- 0.04, 0.32 +/- 0.01, and 0.49 +/- 0.18, respectively, where the reduction was attributed to aperture averaging. The probability distribution functions of the received signal at either end, mitigated by multi-beam averaging in one direction and by aperture averaging in the other direction, displayed lognormal behavior. Consequently, the measured fade statistics showed good agreement with a lognormal model.

  4. LABVIEW graphical user interface for precision multichannel alignment of Raman lidar at Jet Propulsion Laboratory, Table Mountain Facility.

    PubMed

    Aspey, R A; McDermid, I S; Leblanc, T; Howe, J W; Walsh, T D

    2008-09-01

    The Jet Propulsion Laboratory operates lidar systems at Table Mountain Facility (TMF), California (34.4 degrees N, 117.7 degrees W) and Mauna Loa Observatory, Hawaii (19.5 degrees N, 155.6 degrees W) under the framework of the Network for the Detection of Atmospheric Composition Change. To complement these systems a new Raman lidar has been developed at TMF with particular attention given to optimizing water vapor profile measurements up to the tropopause and lower stratosphere. The lidar has been designed for accuracies of 5% up to 12 km in the free troposphere and a detection capability of <5 ppmv. One important feature of the lidar is a precision alignment system using range resolved data from eight Licel transient recorders, allowing fully configurable alignment via a LABVIEW/C++ graphical user interface (GUI). This allows the lidar to be aligned on any channel while simultaneously displaying signals from other channels at configurable altitude/bin combinations. The general lidar instrumental setup and the details of the alignment control system, data acquisition, and GUI alignment software are described. Preliminary validation results using radiosonde and lidar intercomparisons are briefly presented.

  5. Dynamics of carbon dioxide emission at Mammoth Mountain, California

    USGS Publications Warehouse

    Rogie, J.D.; Kerrick, Derrill M.; Sorey, M.L.; Chiodini, G.; Galloway, D.L.

    2001-01-01

    Mammoth Mountain, a dormant volcano in the eastern Sierra Nevada, California, has been passively degassing large quantities of cold magmatic CO2 since 1990 following a 6-month-long earthquake swarm associated with a shallow magmatic intrussion in 1989. A search for any link between gas discharge and volcanic hazard at this popular recreation area led us to initiate a detailed study of the degassing process in 1997. Our continuous monitoring results elucidate some of the physical controls that influence dynamics in flank CO2 degassing at this volcano. High coherence between variations in CO2 efflux and variations in atmospheric pressure and wind speed imply that meteorological parameters account for much, if not all of the variability in CO2 efflux rates. Our results help explain differences among previously published estimates of CO2 efflux at Mammoth Mountain and indicate that the long-term (annual) CO2 degassing rate has in fact remained constant since ~ 1997. Discounting the possibility of large meteorologically driven temporal variations in gas efflux at other volcanoes may result in spurious interpretations of transients do not reflect actual geologic processes. ?? 2001 Elsevier Science B.V. All rights reserved.

  6. Preliminary geologic map of the Black Mountain area northeast of Victorville, San Bernardino County, California

    USGS Publications Warehouse

    Stone, Paul

    2006-01-01

    The Black Mountain area is in the Mojave Desert about 20 km northeast of Victorville, California. The geology of this area is of interest primarily for its excellent exposures of the early Mesozoic Fairview Valley Formation, a sequence of weakly metamorphosed sedimentary rocks including a thick, commercially important unit of limestone conglomerate that has been mined for cement at Black Mountain Quarry for several decades. Recent geochronologic work has shown that the Fairview Valley Formation is probably of Early Jurassic age. This preliminary geologic map of the Black Mountain area depicts the stratigraphic and structural relations of the Fairview Valley Formation and the associated rocks, most notably the overlying Sidewinder Volcanics of Early(?), Middle, and Late(?) Jurassic age. The map is based on new field studies by the author designed to clarify details of the stratigraphy and structure unresolved by previous investigations. The map is considered preliminary because the ages of some geologic units critical for a satisfactory understanding of the stratigraphic and structural framework remain unknown. The map area also includes a segment of the Helendale Fault, one of several faults of known or inferred late Cenozoic right-lateral displacement that make up the Eastern California Shear Zone. The fault is marked by aligned northeast-facing scarps in Pleistocene or older alluvial deposits and the underlying bedrock units. Relations in the map area suggest that right-lateral displacement on the Helendale Fault probably does not exceed 2 km, a conclusion compatible with previous estimates of displacement on this fault based on relations both within and outside the Black Mountain area.

  7. Table Mountain Shoshonite Porphyry Lava Flows and Their Vents, Golden, Colorado

    USGS Publications Warehouse

    Drewes, Harald

    2008-01-01

    During early Paleocene time shoshonite porphyry lava was extruded from several plugs about 5 km north of Golden, Colo., to form lava flows intercalated in the upper part of the Denver Formation. These flows now form the caps of North and South Table Mountains. Detailed field and petrographic studies provide insights into magma development, linkage between vents and flows, and the history of the lava flows. The magma was derived from a deep (mantle) source, was somewhat turbulent on its way up, paused on its way up in a shallow granite-hosted chamber, and near the surface followed the steep Golden fault and the thick, weak, steeply dipping Upper Cretaceous Pierre Shale. At the surface the lava flowed out of several plug and dike vents in a nonexplosive manner, four times during a span of about 1 m.y. Potassium-rich material acquired in the shallow chamber produced distinctive textures and mineral associations in the igneous rocks. Lava flows 1 (the lowest) and 2 are channel deposits derived from the southeastern group of intrusions, and flow 1 (a composite, multiple-tongued flow) lies about 50 m below the capping flows. Provisionally, the unit termed flow 1 is considered to include older, felty-textured flows that are distinguished from a blocky-textured unit, flow 1a. Flow 2, newly recognized in this study, lies immediately beneath the capping flows. Lava flows 3 and 4, more voluminous than the earlier ones, were derived from a plug vent 1?2 km farther north-northwest and flowed south-southeast across a broad alluvial plain. This plug is a composite body; the rim phase fed flow 3, and the core phase was the source of flow 4. During the time between the effusion of the four flows, the composition of the shoshonite porphyry magma changed subtly; the later flows contain more alkali, as shown by higher proportions of sanidine. On North Table Mountain, lava flows 3 and 4 form an elongate tumulus above a stream channel that carried water at the time of their eruption. On

  8. Response of southern Appalachian table mountain pine (Pinus pungens) and pitch pine (P. rigida) stands to prescribed burning

    Treesearch

    N.T. Welch; Thomas A. Waldrop; E.R. Buckner

    2000-01-01

    Southern Appalachian table mountain pine (Pinus pungens) and pitch pine (P. rigida) forests require disturbance for regeneration. Lightning-ignited fires and cultural burning practices provided the disturbance that prehistorically and historically maintained these forests. Burning essentially ceased on public lands in the early...

  9. Lithology and structure within the basement terrain adjacent to Clark Mountains, California, mapped with calibrated data from the airborne visible/infrared imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Vane, Gregg

    1989-01-01

    The Clark Mountains in eastern California form a rugged, highly dissected area nearly 5000 ft above sea level, with Clark Mountain rising to 8000 ft. The rocks of the Clark Mountains and the Mescal Range just to the south are Paleozoic carbonate and clastic rocks, and Mesozoic clastic and volcanic rocks standing in pronounced relief above the fractured Precambrian gneisses to the east. The Permian Kaibab Limestone and the Triassic Moenkopi and Chinle Formations are exposed in the Mescal Range, which is the only place in California where these rocks, which are typical of the Colorado Plateau, are found. To the west, the mountains are bordered by the broad alluvial plains of Shadow Valley. Cima Dome, which is an erosional remnant carved on a batholithic intrusion of quartz monzonite, is found at the south end of the valley. To the east of the Clark and Mescal Mountains is found the Ivanpah Valley, in the center of which is located the Ivanpah Play. Studies of the Clark Mountains with the airborne visible/infrared imaging spectrometer are briefly described.

  10. Monitoring of Volcanogenic CO(sub 2)-Induced Tree Kills with AVIRIS Image Data at Mammoth Mountain, California

    NASA Technical Reports Server (NTRS)

    Pieri, D.; Farrar, C.; Hausback, B.; Strong, M.

    1998-01-01

    Elevated cold CO2 emissions from the flank of Mammoth Mountain volcano on the southwest rim of the Long Valley Caldera, eastern California, have been the cause of over 100 acres of dead trees in that area since 1990.

  11. Canopy accession patterns of table mountain and pitch pines during the 19th and 20th centuries

    Treesearch

    Patrick H. Brose; Thomas A. Waldrop

    2012-01-01

    A dendrochronology study was conducted in three upland yellow pine stands in Georgia to determine whether the individual Table Mountain (Pinus pungens) and pitch (P. rigida) pines originated in sunny gaps or shaded understories, whether they grew uninterrupted into the canopy or were assisted by one or more releases, and whether...

  12. 75 FR 17031 - Grapes Grown in a Designated Area of Southeastern California and Imported Table Grapes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... INFORMATION CONTACT: Jerry Simmons, Marketing Specialist, or Kurt J. Kimmel, Regional Manager, California... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Parts 925 and 944 [Doc. No. AMS-FV... Table Grapes; Relaxation of Handling Requirements AGENCY: Agricultural Marketing Service, USDA. ACTION...

  13. 75 FR 34343 - Grapes Grown in a Designated Area of Southeastern California and Imported Table Grapes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    .... Simmons, Marketing Specialist, or Kurt J. Kimmel, Regional Manager, California Marketing Field Office... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Parts 925 and 944 [Doc. No. AMS-FV... Table Grapes; Relaxation of Handling Requirements AGENCY: Agricultural Marketing Service, USDA. ACTION...

  14. Geologic map of the Lead Mountain 15’ quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Howard, Keith A.; Jagiello, Keith J.; Fitzgibbon, Todd T.; John, Barbara E.

    2013-01-01

    The Lead Mountain 15’ quadrangle in the Mojave Desert contains a record of Jurassic, Cretaceous, Tertiary, and Quaternary magmatism. Small amounts of Mesoproterozoic(?) augen gneiss and Paleozoic and Mesozoic(?) metasedimentary rocks are preserved in small patches; they are intruded by voluminous Jurassic plutons of quartz diorite to granite composition and by Late Cretaceous granite of the Cadiz Valley batholith. Jurassic intrusive rocks include part of the Bullion Mountain Intrusive Suite and also younger dikes inferred to be part of the Jurassic Independence dike swarm. A contact-metamorphosed aureole 2 km wide in the Jurassic plutonic rocks fringes the Cadiz Valley batholith. Early Miocene dacitic magmatism produced a dense swarm of dikes in the eastern Bullion Mountains and the volcanic-intrusive remnant of a volcano at Lead Mountain. Tilting of the dike swarm from inferred vertical orientations may have resulted from Miocene tectonic extension. Conglomerate of Pliocene and (or) Miocene age is also tilted. Younger volcanism is recorded by Pliocene basalt of the Deadman Lake volcanic field, basalt of Lead Mountain (approximately 0.36 Ma), and the even younger basalt of Amboy. Quaternary sedimentation built alluvial fans and filled playas in the map area. Faulting in the dextral eastern California shear zone produced several northwest-striking faults in the quadrangle, some of them active into the Pleistocene and some that may have many kilometers of right-lateral offset.

  15. High-Intensity Fires May Be Unnecessary For Stand Replacement Of Table Mountain Pine: An Overview Of Current Research

    Treesearch

    Thomas A. Waldrop; Patrick H. Brose; Nicole Turrill Welch; Helen H. Mohr; Ellen A. Gray; Frank H. Tainter; Lisa E. Ellis

    2002-01-01

    Abstract - After several decades of fire suppression, ridgetop pine communities of the Southern Appalachians are entering later seral stages and beginning to disappear. They typically have an overstory of Table Mountain pine (Pinus pungens), which is being replaced by shade-tolerant chestnut oaks (Quercus prinus...

  16. Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA

    Treesearch

    Becky L. Estes; Eric E. Knapp; Carl N. Skinner; Jay D. Miller; Haiganoush K. Preisler

    2017-01-01

    Topography, weather, and fuels are known factors driving fire behavior, but the degree to which each contributes to the spatial pattern of fire severity under different conditions remains poorly understood. The variability in severity within the boundaries of the 2006 wildfires that burned in the Klamath Mountains, northern California, along with data on burn...

  17. Conservation genetics of evolutionary lineages of the endangered mountain yellow-legged frog, Rana muscosa (Amphibia: Ranidae), in southern California

    USGS Publications Warehouse

    Schoville, Sean D.; Tustall, Tate S.; Vredenburg, Vance T.; Backlin, Adam R.; Gallegos, Elizabeth; Wood, Dustin A.; Fisher, Robert N.

    2011-01-01

    Severe population declines led to the listing of southern California Rana muscosa (Ranidae) as endangered in 2002. Nine small populations inhabit watersheds in three isolated mountain ranges, the San Gabriel, San Bernardino and San Jacinto. One population from the Dark Canyon tributary in the San Jacinto Mountains has been used to establish a captive breeding population at the San Diego Zoo Institute for Conservation Research. Because these populations may still be declining, it is critical to gather information on how genetic variation is structured in these populations and what historical inter-population connectivity existed between populations. Additionally, it is not clear whether these populations are rapidly losing genetic diversity due to population bottlenecks. Using mitochondrial and microsatellite data, we examine patterns of genetic variation in southern California and one of the last remaining populations of R. muscosa in the southern Sierra Nevada. We find low levels of genetic variation within each population and evidence of genetic bottlenecks. Additionally, substantial population structure is evident, suggesting a high degree of historical isolation within and between mountain ranges. Based on estimates from a multi-population isolation with migration analysis, these populations diversified during glacial episodes of the Pleistocene, with little gene flow during population divergence. Our data demonstrate that unique evolutionary lineages of R. muscosa occupy each mountain range in southern California and should be managed separately. The captive breeding program at Dark Canyon is promising, although mitigating the loss of neutral genetic diversity relative to the natural population might require additional breeding frogs.

  18. Very-long-period volcanic earthquakes beneath Mammoth Mountain, California

    USGS Publications Warehouse

    Hill, D.P.; Dawson, P.; Johnston, M.J.S.; Pitt, A.M.; Biasi, G.; Smith, K.

    2002-01-01

    Detection of three very-long-period (VLP) volcanic earthquakes beneath Mammoth Mountain emphasizes that magmatic processes continue to be active beneath this young, eastern California volcano. These VLP earthquakes, which occured in October 1996 and July and August 2000, appear as bell-shaped pulses with durations of one to two minutes on a nearby borehole dilatometer and on the displacement seismogram from a nearby broadband seismometer. They are accompanied by rapid-fire sequences of high-frequency (HF) earthquakes and several long- period (LP) volcanic earthquakes. The limited VLP data are consistent with a CLVD source at a depth of ???3 km beneath the summit, which we interpret as resulting from a slug of fluid (CO2- saturated magmatic brine or perhaps basaltic magma) moving into a crack.

  19. Holocene forest development and maintenance on different substrates in the Klamath mountains, northern California, USA

    Treesearch

    Christy E. Briles; Cathy Whitlock; Carl N. Skinner; Jerry Mohr

    2011-01-01

    The influence of substrate on long-term vegetation dynamics has received little attention, and yet nutrient-limited ecosystems have some of the highest levels of endemism in the world. The diverse geology of the Klamath Mountains of northern California (USA) allows examination of the long-term influence of edaphic constraints in subalpine forests through a comparison...

  20. Klamath Mountains bioregion

    Treesearch

    Carl N. Skinner; Alan H. Taylor; James K. Agee

    2006-01-01

    The Klamath Mountains bioregion makes up a major portion of northwestern California continuing into southwestern Oregon to near Roseburg. In California, the bioregion lies primarily between the Northern California Coast bioregion on the west and the southern Cascade Range to the east. The southern boundary is made up of the Northern California Coast Ranges and Northern...

  1. Postharvest fumigation of California table grapes with ozone to control Western black widow spider (Araneae: Theridiidae)

    USDA-ARS?s Scientific Manuscript database

    Ozone fumigations were evaluated for postharvest control of Western black widow spider (BWS), Latrodectus hesperus (Chamberlin and Ivie), in fresh table grapes destined for export from California USA. Mature adult female black widow spiders were contained in separate gas-permeable cages within a flo...

  2. Remagnetization of the Coast Range ophiolite at Stanley Mountain, California, during accretion near 10°N paleolatitude

    NASA Astrophysics Data System (ADS)

    Hagstrum, Jonathan T.

    1992-06-01

    Paleomagnetic data are presented for a 50-m-thick sequence of Oxfordian to Tithonian sedimentary rocks conformably overlying Upper Jurassic pillow basalt within the Coast Range ophiolite at Stanley Mountain, California. These new data are similar in direction and polarity to previously published paleomagnetic data for the pillow basalt. The Jurassic sedimentary rocks were deposited during a mixed-polarity interval of the geomagnetic field, and uniformity of the remanent magnetization within the entire section of pillow basalt and sedimentary rocks indicates later remagnetization. Remagnetization of the Coast Range ophiolite is interpreted to have occurred during accretion to the continental margin, possibly by burial and low-temperature alteration related to this event. Similar paleolatitudes calculated for the ophiolite (11° ±3°) and for mid-Cretaceous sedimentary rocks of the Stanley Mountain terrane at Figueroa Mountain (6° ±5°) are consistent with remagnetization of the ophiolite at low paleo-latitudes. Uniform-polarity directions for other remnants of ophiolite in southern California and elsewhere along the Pacific coast imply that these rocks were also overprinted, and their magnetic inclinations suggest remagnetization at low paleolatitudes as well. The Coast Range ophiolite at Stanley Mountain is thus inferred to have been remagnetized along the North American margin near 10°N paleolatitude between earliest and mid-Cretaceous time and subsequently transported northward by strike-slip faulting related to relative motions between the Farallon, Kula, Pacific, and North American plates.

  3. Remagnetization of the Coast Range ophiolite at Stanley Mountain, California, during accretion near 10°N paleolatitude

    USGS Publications Warehouse

    Hagstrum, Jonathan T.

    1992-01-01

    Paleomagnetic data are presented for a 50-m-thick sequence of Oxfordian to Tithonian sedimentary rocks conformably overlying Upper Jurassic pillow basalt within the Coast Range ophiolite at Stanley Mountain, California. These new data are similar in direction and polarity to previously published paleomagnetic data for the pillow basalt. The Jurassic sedimentary rocks were deposited during a mixed-polarity interval of the geomagnetic field, and uniformity of the remanent magnetization within the entire section of pillow basalt and sedimentary rocks indicates later remagnetization. Remagnetization of the Coast Range ophiolite is interpreted to have occurred during accretion to the continental margin, possibly by burial and low-temperature alteration related to this event. Similar paleolatitudes calculated for the ophiolite (11° ±3°) and for mid-Cretaceous sedimentary rocks of the Stanley Mountain terrane at Figueroa Mountain (6° ±5°) are consistent with remagnetization of the ophiolite at low paleo-latitudes. Uniform-polarity directions for other remnants of ophiolite in southern California and elsewhere along the Pacific coast imply that these rocks were also overprinted, and their magnetic inclinations suggest remagnetization at low paleolatitudes as well. The Coast Range ophiolite at Stanley Mountain is thus inferred to have been remagnetized along the North American margin near 10°N paleolatitude between earliest and mid-Cretaceous time and subsequently transported northward by strike-slip faulting related to relative motions between the Farallon, Kula, Pacific, and North American plates.

  4. Magmatic carbon dioxide emissions at Mammoth Mountain, California

    USGS Publications Warehouse

    Farrar, Christopher D.; Neil, John M.; Howle, James F.

    1999-01-01

    Carbon dioxide (CO2) of magmatic origin is seeping out of the ground in unusual quantities at several locations around the flanks of Mammoth Mountain, a dormant volcano in Eastern California. The most recent volcanic activity on Mammoth Mountain was steam eruptions about 600 years ago, but seismic swarms and long-period earthquakes over the past decade are evidence of an active magmatic system at depth. The CO2 emission probably began in 1990 but was not recognized until 1994. Seismic swarms and minor ground deformation during 1989, believed to be results of a shallow intrusion of magma beneath Mammoth Mountain, probably triggered the release of CO2, which persists in 1998. The CO2 gas is at ambient temperatures and emanates diffusely from the soil surface rather than flowing from distinct vents. The CO2 has collected in the soil by displacing air in the pore spaces and reaches concentrations of greater than 95 percent by volume in places. The total area affected by high CO2 concentrations and high CO2 flux from the soil surface was estimated at 60 hectares in 1997. Coniferous forest covering about 40 hectares has been killed by high CO2 concentrations in the root zone. In more than 300 soil-gas samples collected from depths of 0.5 to 2 m in 1995, CO2 concentrations ranged from background levels (less than 1 percent) to greater than 95 percent by volume. At 250 locations, CO2 flux was measured using a closed chamber in 1996; values, in grams per square meter per day, ranged from background (less than 25) to more than 30,000. On the basis of these data, the total emission of magmatic CO2 in 1996 is estimated to be about 530 megagrams per day. Concentrations of CO2 exceeding Occupational Safety and Health Administration standards have been measured in pits dug in soil and snow, in poorly ventilated buildings, and in below-ground valve-boxes around Mammoth Mountain. CO2 concentrations greater than 10 percent in poorly ventilated spaces are not uncommon on some parts

  5. Guide to the Blacks Mountain Experimental Forest - A sustained yield experiment in ponderosa pine in northeastern California

    Treesearch

    E.I. Kotok

    1938-01-01

    Experimental forests, watersheds, and ranges are the field laboratories in the research structure of the Forest Service. The California Forest and Range Experiment Station maintains four experimental forests representing the more important timber types in the Pine Region.The Blacks Mountain Experimental Forest represents the ponderosa pine...

  6. Thrust-induced collapse of mountains-an example from the "Big Bend" region of the San Andreas Fault, western transverse ranges, California

    USGS Publications Warehouse

    Kellogg, Karl S.

    2005-01-01

    Mount Pinos and Frazier Mountain are two prominent mountains just south of the San Andreas fault in the western Transverse Ranges of southern California, a region that has undergone rapid Quaternary contraction and uplift. Both mountains are underlain, at least in part, by thrusts that place granitic and gneissic rocks over sedimentary rocks as young as Pliocene. Broad profiles and nearly flat summits of each mountain have previously been interpreted as relicts of a raised erosion surface. However, several features bring this interpretation into question. First, lag or stream gravels do not mantle the summit surfaces. Second, extensive landslide deposits, mostly pre?Holocene and deeply incised, mantle the flanks of both mountains. Third, a pervasive fracture and crushed?rock network pervades the crystalline rocks underlying both mountains. The orientation of the fractures, prominent in roadcuts on Mount Pinos, is essentially random. 'Hill?and?saddle' morphology characterizes ridges radiating from the summits, especially on Mount Pinos; outcrops are sparse on the hills and are nonexistent in the saddles, suggesting fractures are concentrated in the saddles. Latest movement on the thrusts underlying the two mountain massifs is probably early Quaternary, during which the mountains were uplifted to considerably higher (although unknown) elevations than at present. A model proposes that during thrusting, ground accelerations in the hanging wall, particularly near thrust tips, were high enough to pervasively fracture the hanging?wall rocks, thereby weakening them and producing essentially an assemblage of loose blocks. Movement over flexures in the fault surface accentuated fracturing. The lowered shear stresses necessary for failure, coupled with deep dissection and ongoing seismic activity, reduced gravitational potential by spreading the mountain massifs, triggering flanking landslides and producing broad, flat?topped mountains. This study developed from mapping in

  7. Groundwater controls on vegetation composition and patterning in mountain meadows

    NASA Astrophysics Data System (ADS)

    Lowry, Christopher S.; Loheide, Steven P., II; Moore, Courtney E.; Lundquist, Jessica D.

    2011-10-01

    Mountain meadows are groundwater-dependent ecosystems that are hot spots of biodiversity and productivity. In the Sierra Nevada mountains of California, these ecosystems rely on shallow groundwater to support their vegetation communities during the dry summer growing season in the region's Mediterranean montane climate. Vegetation composition in this environment is influenced by both (1) oxygen stress that occurs when portions of the root zone are saturated and anaerobic conditions limit root respiration and (2) water stress that occurs when the water table drops and the root zone becomes water limited. A spatially distributed watershed model that explicitly accounts for snowmelt processes was linked to a fine-resolution groundwater flow model of Tuolumne Meadows in Yosemite National Park, California, to simulate water table dynamics. This linked hydrologic model was calibrated to observations from a well observation network for 2006-2009. A vegetation survey was also conducted at the site in which the three dominant species were identified at more than 200 plots distributed across the meadow. Nonparametric multiplicative regression was performed to create and select the best models for predicting vegetation dominance on the basis of the simulated hydrologic regime. The hydrologic niches of three vegetation types representing wet, moist, and dry meadow vegetation communities were found to be best described using both (1) a sum exceedance value calculated as the integral of water table position above a depth threshold of oxygen stress and (2) a sum exceedance value calculated as the integral of water table position below a depth threshold of water stress. This linked hydrologic and vegetative modeling framework advances our ability to predict the propagation of human-induced climatic and land use or land cover changes through the hydrologic system to the ecosystem. The hydroecologic functioning of meadows provides an example of the extent to which cascading

  8. Regional metamorphism in the Condrey Mountain Quadrangle, north-central Klamath Mountains, California

    USGS Publications Warehouse

    Hotz, Preston Enslow

    1979-01-01

    A subcircular area of about 650 km 2 in northern California and southwestern Oregon is occupied by rocks of the greenschist metamorphic facies called the Condrey Mountain Schist. This greenschist terrane is bordered on the east and west by rocks belonging to the amphibolite metamorphic facies that structurally overlie and are thrust over the Condrey Mountain Schist. The amphibolite facies is succeeded upward by metavolcanic and metasedimentary rocks belonging to the greenschist metamorphic facies. The Condrey Mountain Schist is composed predominantly of quartz-muscovite schist and lesser amounts of actinolite-chlorite schist formed by the metamorphism of graywacke and spilitic volcanic rocks that may have belonged to the Galice Formation of Late Jurassic age. Potassium-argon age determinations of 141?4 m.y. and 155?5 m.y. obtained on these metamorphic rocks seem to be incompatible with the Late Jurassic age usually assigned the Galice. The rocks that border the amphibolite facies are part of an extensive terrane of metavolcanic and metasedimentary rocks belonging to the western Paleozoic and Triassic belt. The metavolcanic rocks include some unmetamorphosed spilite but are mostly of the greenschist metamorphic facies composed of oligoclase (An15-20) and actinolite with subordinate amounts of chlorite and clinozoisiteepidote. The interbedded sedimentary rocks are predominantly argillite and slaty argillite, less commonly siliceous argillite and chert, and a few lenticular beds of marble. On the south, high-angle faults and a tabular granitic pluton separate the greenschist metavolcanic terrane from the amphibolite facies rocks; on the east, nonfoliated amphibolite is succeeded upward, apparently conformably, by metasedimentary rocks belonging to the greenschist metavolcanic terrane. In the southern part of Condrey Mountain quadrangle, an outlier of a thrust plate composed of the Stuart Fork Formation overlies the metavolcanic and metasedimentary rocks. The Stuart

  9. Carbon and nutrient contents in soils from the Kings River Experimental Watersheds, Sierra Nevada Mountains, California

    Treesearch

    D.W. Johnson; C.T. Hunsaker; D.W. Glass; B.M. Rau; B.A. Roath

    2011-01-01

    Soil C and nutrient contents were estimated for eight watersheds in two sites (one high elevation, Bull, and one low elevation, Providence) in the Kings River Experimental Watersheds in the western Sierra Nevada Mountains of California. Eighty-seven quantitative pits were dug to measure soil bulk density and total rock content, while three replicate surface samples...

  10. Study of the atmospheric conditions affecting infrared astronomical measurements at White Mountain, California

    NASA Technical Reports Server (NTRS)

    Field, G. B.

    1974-01-01

    Measurements are described of atmospheric conditions affecting astronomical observations at White Mountain, California. Measurements were made at more than 1400 times spaced over more than 170 days at the Summit Laboratory and a small number of days at the Barcroft Laboratory. The recorded quantities were ten micron sky noise and precipitable water vapor, plus wet and dry bulb temperatures, wind speed and direction, brightness of the sky near the sun, fisheye lens photographs of the sky, description of cloud cover and other observable parameters, color photographs of air pollution astronomical seeing, and occasional determinations of the visible light brightness of the night sky. Measurements of some of these parameters have been made for over twenty years at the Barcroft and Crooked Creek Laboratories, and statistical analyses were made of them. These results and interpretations are given. The bulk of the collected data are statistically analyzed, and disposition of the detailed data is described. Most of the data are available in machine readable form. A detailed discussion of the techniques proposed for operation at White Mountain is given, showing how to cope with the mountain and climatic problems.

  11. Microstructural evidence for northeastward movement on the Chocolate Mountains fault zone, southeastern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, C.

    1990-01-10

    Microstructural analysis of rocks from the Chocolate Mountains fault zone, Gavilan Hills area, southeastern California, show unequivocal evidence for northeast directed transport of the upper plate gneisses over lower plate Orocopia schists. Samples were taken from transects through the fault zone. Prefaulting fabrics in upper plate gneisses show a strong component of northeast directed rotational deformation under lower amphibolite facies conditions. In contrast, prefaulting lower plate Orocopia schists show strongly coaxial fabrics (minimum stretch value of 2.2) formed at greenschist grade. Mylonitic fabrics associated with the Chocolate Mountains fault are predominantly northeast directed shear bands that are unidirectional (northeastward) inmore » the gneisses but bi-directional in the schists, suggesting a significant component of nonrotational deformation occurred in the Orocopia schists during and after emplacement of the upper plate. The kinematic findings are in agreement with Dillon et al. (1989), who found that the vergence of asymmetrical folds within the fault zone indicates overthrusting to the northeast, toward the craton, in this region. The available evidence favors a single protracted northeastward movement on the Chocolate Mountains fault zone with temperatures waning as deformation proceeded.« less

  12. Pesticides in mountain yellow-legged frogs (Rana muscosa) from the Sierra Nevada Mountains of California, USA

    USGS Publications Warehouse

    Fellers, G.M.; McConnell, L.L.; Pratt, D.; Datta, S.

    2004-01-01

    In 1997, pesticide concentrations were measured in mountain yellow-legged frogs (Rana muscosa) from two areas in the Sierra Nevada Mountains of California, USA. One area (Sixty Lakes Basin, Kings Canyon National Park) had large, apparently healthy populations of frogs. A second area (Tablelands, Sequoia National Park) once had large populations, but the species had been extirpated from this area by the early 1980s. The Tablelands is exposed directly to prevailing winds from agricultural regions to the west. When an experimental reintroduction of R. muscosa in 1994 to 1995 was deemed unsuccessful in 1997, the last 20 (reintroduced) frogs that could be found were collected from the Tablelands, and pesticide concentrations in both frog tissue and the water were measured at both the Tablelands and at reference sites at Sixty Lakes. In frog tissues, dichlorodiphenyldichloroethylene (DDE) concentration was one to two orders of magnitude higher than the other organochlorines (46 ?? 20 ng/g wet wt at Tablelands and 17 ?? 8 Sixty Lakes). Both ??-chlordane and trans-nonachlor were found in significantly greater concentrations in Tablelands frog tissues compared with Sixty Lakes. Organophosphate insecticides, chlorpyrifos, and diazinon were observed primarily in surface water with higher concentrations at the Tablelands sites. No contaminants were significantly higher in our Sixty Lakes samples.

  13. Impact of Climate Change on Projected Runoff from Mountain Snowpack of the King's Rivershed in California

    NASA Astrophysics Data System (ADS)

    Dialesandro, J.; Elias, E.; Rango, A.; Steele, C. M.

    2016-12-01

    The Central Valley of California, like most dryland agricultural areas in the Southwest United States, relies heavily on winter snowpack for water resources. Projections of future climate in the Sierra Mountains of California calls for a warmer climate regime that will impact the snowpack in the Sierra Mountains and thus the water supply for downstream agriculture and municipal uses within California's Central Valley. We simulate the impacts of two future time windows (2040-2069 and 2070-2099) and two future climate scenarios (RCP 4.5 and 8.5) on King's River using the Snowmelt Runoff Model. Snow depletion curves for 2010 are generated using MODIS and SRM parameters are adjusted until measured and simulated runoff reach acceptable agreement (R2 = .81). Future projections are based upon the multimodel mean of 20 CMIP5 models for seasonal future temperature and precipitation at high and low elevation points in the watershed from the multivariate adaptive constructed analogs (MACA) downscaled dataset. Changes in monthly inflow to Pineflat Reservoir, at the pour point of King's River watersheds, show a large decline in June and July inflow for all future climate simulations. Conversely, simulated spring inflow to Pineflat Reservoir is larger in the future. Impacts are most pronounced for end of the century (2070-2099), business as usual (RCP 8.5) simulation. Results are discussed with regard to implications for reservoir storage, groundwater recharge and creative solutions to cope with anticipated changes in runoff.

  14. Influences of stand structure and fuel treatments on wildfire severity at Blacks Mountain Experimental Forest, northeastern California

    Treesearch

    Julie N. Symons; Dean H. K. Fairbanks; Carl N. Skinner

    2008-01-01

    This study utilizes forest stand structures and fuel profiles to evaluate the influence of different types of silvicultural treatments on fire severity in the Blacks Mountain Experimental Forest (BMEF), located within Lassen National Forest of northeastern California. We compare the severity of fire, assessed based on tree crown and bole scorch on 100 ha experimental...

  15. Spatial Patterns of Airborne Pesticides in the Alpine Habitat of a Declining California Amphibian, The Mountain Yellow-Legged Frog

    EPA Science Inventory

    The mountain yellow-legged frog complex (Rana muscosa complex) has disappeared from most of its historic localities in the Sierra Nevada of California, and airborne pesticides from the Central Valley have been implicated as a causal agent. To determine the distributions and conce...

  16. Analysis of California Condor (Gymnogyps californianus) use of six management units using location data from global positioning system transmitters, southern California, 2004-09-Initial report

    USGS Publications Warehouse

    Johnson, Matthew; Kern, Jeffrey; Haig, Susan M.

    2010-01-01

    This report provides an analysis of California Condor (Gymnogyps californianus) space use of six management units in southern California (Hopper Mountain and Bitter Creek National Wildlife Refuges, Wildlands Conservancy-Wind Wolves Preserve, Tejon Mountain Village Specific Plan, California Condor Study Area, and the Tejon Ranch excluding Tejon Mountain Village Specific Plan and California Condor Study Area). Space use was analyzed to address urgent management needs using location data from Global Positioning System transmitters. The U.S. Fish and Wildlife Service provided the U.S. Geological Survey with location data (2004-09) for California Condors from Global Positioning System transmitters and Geographic Information System data for the six management units in southern California. We calculated relative concentration of use estimates for each management unit for each California Condor (n = 21) on an annual basis (n = 39 annual home ranges) and evaluated resource selection for the population each year using the individual as our sampling unit. The most striking result from our analysis was the recolonization of the Tejon Mountain Village Specific Plan, California Condor Study Area, and Tejon Ranch management units during 2008. During 2004-07, the home range estimate for two (25 percent) California Condors overlapped the Tejon Mountain Village Specific Plan, California Condor Study Area, and Tejon Ranch management units (n = 8), and use within the annual home range generally was bimodal and was concentrated on the Bitter Creek and Hopper Mountain National Wildlife Refuges. However, 10 (77 percent) California Condor home ranges overlapped the Tejon Mountain Village Specific Plan, California Condor Study Area, and Tejon Ranch management units during 2008 (n = 13), and by 2009, the home range of every condor carrying a Global Positioning System transmitter (n = 14) overlapped these management units. Space use was multimodal within the home range during 2008-09 and was

  17. Change in Total Water in California's Mountains and Groundwater in Central Valley During the 2011-2014 Drought From GPS, GRACE, and InSAR

    NASA Astrophysics Data System (ADS)

    Argus, D. F.; Fu, Y.; Landerer, F. W.; Farr, T.; Watkins, M. M.; Famiglietti, J. S.

    2014-12-01

    Changes in total water thickness in most of California are being estimated using GPS measurements of vertical ground displacement. The Sierra Nevada each year subsides about 12 mm in the fall and winter due to the load of rain and snow, then rises about the same amount in the spring and summer when the snow melts, water runs off, and soil moisture evaporates. Earth's elastic response to a surface load is well known (except at thick sedimentary basins). Changes in equivalent water thickness can thus be inferred [Argus Fu Landerer 2014]. The average seasonal change in total water thickness is found to be 0.5 meters in the Sierra Nevada and Klamath Mountains and 0.1 meters in the Great Basin. The average seasonal change in the Sierra Nevada Mountains estimated with GPS is 35 Gigatons. GPS vertical ground displacements are furthermore being used to estimate changes in water in consecutive years of either drought or heavy precipitation. Changes in the sum of snow and soil moisture during California's drought from June 2011 to June 2014 are estimated from GPS in this study. Changes in water in California's massive reservoirs are well known and removed, yielding an estimate of change in the thickness of snow plus soil moisture. Water loss is found to be largest near the center of the southern Sierra Nevada (0.8 m equivalent water thickness) and smaller in the northern Sierra Nevada and southern Klamath Mountains (0.3 m). The GPS estimates of changes in the sum of snow and soil moisture complement GRACE observations of water change in the Sacramento-San Joaquin River basin. Whereas GPS provides estimates of water change at high spatial resolution in California's mountains, GRACE observes changes in groundwater in the Central Valley. We will further compare and contrast the GPS and GRACE measurements, and also evaluate the finding of Amos et al. [2014] that groundwater loss in the southern Central Valley (Tulare Basin) is causing the mountains on either side to rise at 1 to

  18. Preliminary Geologic Map of the Little Piute Mountains, California; a Digital Database

    USGS Publications Warehouse

    Howard, Keith A.; Dennis, Michael L.; Karlstrom, Karl; Phelps, Geoffrey A.

    1997-01-01

    Introduction The Little Piute Mountains in the eastern Mojave Desert expose a series of folds and thrust faults involving metamorphosed Paleozoic strata (Miller and others, 1982; Stone and others, 1983). Detailed mapping of these structures was undertaken to help elucidate regional Mesozoic structural evolution. Earlier geologic maps were prepared by Cooksley (1960a,b,c,d, generalized by Bishop, 1964) and Stone and others (1983). Deformed and metamorphosed Paleozoic and Triassic rocks form a stratal succession that was originally deposited in shallow seas on the North American craton. Based on lithologic sequence the units are correlated with unmetamorphosed equivalents 200 km to the northeast in the Grand Canyon, Arizona, and 35-50 km to the west in the Marble, Ship, and Providence Mountains, California (Stone and others, 1983). The Paleozoic sequence rests nonconformably on a heterogeneous basement of polydeformed Early Proterozoic gneiss (Miller and others, 1982; Wooden and Miller, 1990). Triassic and older rocks were deformed, metamorphosed to staurolite or andalusite grade, and intruded concordantly at their base by Late Cretaceous granodiorite (Miller and others, 1982).

  19. Concordant paleolatitudes for Neoproterozoic ophiolitic rocks of the Trinity Complex, Klamath Mountains, California

    USGS Publications Warehouse

    Mankinen, E.A.; Lindsley-Griffin, N.; Griffin, J.R.

    2002-01-01

    New paleomagnetic results from the eastern Klamath Mountains of northern California show that Neoproterozoic rocks of the Trinity ophiolitic complex and overlying Middle Devonian volcanic rocks are latitudinally concordant with cratonal North America. Combining paleomagnetic data with regional geologic and faunal evidence suggests that the Trinity Complex and related terranes of the eastern Klamath plate were linked in some fashion to the North American craton throughout that time, but that distance between them may have varied considerably. A possible model that is consistent with our paleomagnetic results and the geologic evidence is that the Trinity Complex formed and migrated parallel to paleolatitude in the basin between Laurasia and Australia-East Antarctica as the Rodinian supercontinent began to break up. It then continued to move parallel to paleolatitude at least through Middle Devonian time. Although the eastern Klamath plate served as a nucleus against which more western components of the Klamath Mountains province amalgamated, the Klamath superterrane was not accreted to North America until Early Cretaceous time.

  20. An improved synthetic attractant for the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), in northeastern California

    Treesearch

    Brian Strom; Sheri Smith; D.A. Wakarchuk

    2008-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins 1902, is found in pine forests throughout the western U.S., north to northern British Columbia and Alberta, Canada and south to Mexico. It causes high levels of pine mortality throughout its range. Hosts include many species of Pinus (Pinaceae); in northern California,

  1. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed

    USGS Publications Warehouse

    Manning, Andrew H.; Verplanck, Philip L.; Caine, Jonathan S.; Todd, Andrew S.

    2013-01-01

    Recent studies suggest that climate change is causing rising solute concentrations in mountain lakes and streams. These changes may be more pronounced in mineralized watersheds due to the sensitivity of sulfide weathering to changes in subsurface oxygen transport. Specific causal mechanisms linking climate change and accelerated weathering rates have been proposed, but in general remain entirely hypothetical. For mineralized watersheds, a favored hypothesis is that falling water tables caused by declining recharge rates allow an increasing volume of sulfide-bearing rock to become exposed to air, thus oxygen. Here, we test the hypothesis that falling water tables are the primary cause of an increase in metals and SO4 (100-400%) observed since 1980 in the Upper Snake River (USR), Colorado. The USR drains an alpine watershed geologically and climatologically representative of many others in mineralized areas of the western U.S. Hydrologic and chemical data collected from 2005 to 2011 in a deep monitoring well (WP1) at the top of the USR watershed are utilized. During this period, both water table depths and groundwater SO4 concentrations have generally increased in the well. A numerical model was constructed using TOUGHREACT that simulates pyrite oxidation near WP1, including groundwater flow and oxygen transport in both saturated and unsaturated zones. The modeling suggests that a falling water table could produce an increase in metals and SO4 of a magnitude similar to that observed in the USR (up to 300%). Future water table declines may produce limited increases in sulfide weathering high in the watershed because of the water table dropping below the depth of oxygen penetration, but may continue to enhance sulfide weathering lower in the watershed where water tables are shallower. Advective air (oxygen) transport in the unsaturated zone caused by seasonally variable recharge and associated water table fluctuations was found to have little influence on pyrite

  2. Ozone injury responses of ponderosa and Jeffrey pine in the Sierra Nevada and San Bernardino Mountains in California

    Treesearch

    Paul Miller; Raleigh Guthrey; Susan Schilling; John Carroll

    1998-01-01

    Ozone injury was monitored on foliage of ponderosa (Pinus ponderosa Dougl. ex Laws.) and Jeffrey (Pinus jeffreyi Grev. & Balf.) pines at 11 locations in the Sierra Nevada and 1 site in the San Bernardino Mountains of southern California. Ozone injury on all age cohorts of needles on about 1,600 trees was surveyed annually from...

  3. 40 CFR Appendix - Tables to Subpart B of Part 88

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Tables to Subpart B of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES California Pilot Test Program State opt-in for the California Pilot Test Program. Pt. 88, Subpt. B, Tables Tables to Subpart B of Part 88 Tabl...

  4. Conserving connectivity: some lessons from mountain lions in southern California.

    PubMed

    Morrison, Scott A; Boyce, Walter M

    2009-04-01

    Habitat corridors can be essential for persistence of wildlife populations in fragmented landscapes. Although much research has focused on identifying species and places critical for conservation action, the conservation literature contains surprisingly few examples of corridors that actually have been protected and so provides little guidance for moving from planning through implementation. We examined a case study from southern California that combines monitoring of radio-collared mountain lions (Puma concolor) with an assessment of land-protection efforts to illustrate lessons learned while attempting to maintain ecological connectivity in a rapidly urbanizing landscape. As in many places, conservation scientists have provided science-based maps of where conservation efforts should focus. But implementing corridors is a business decision based not solely on ecological information but also on cost, opportunity cost, investment risk, and other feasibility considerations. Here, the type and pattern of development is such that key connections will be lost unless they are explicitly protected. Keeping pace with conversion, however, has been difficult, especially because conservation efforts have been limited to traditional parcel-by-parcel land-protection techniques. The challenges of and trade-offs in implementation make it clear that in southern California, connectivity cannot be bought one parcel at a time. Effective land-use plans and policies that incorporate conservation principles, such as California's Natural Communities Conservation Planning program, are needed to support the retention of landscape permeability. Lessons from this study have broad application, especially as a precautionary tale for places where such extensive and intensive development has not yet occurred. Given how limiting resources are for biodiversity conservation, conservationists must be disciplined about where and how they attempt corridor protection: in rapidly fragmenting landscapes

  5. Simulated effects of increased recharge on the ground-water flow system of Yucca Mountain and vicinity, Nevada-California

    USGS Publications Warehouse

    Czarnecki, J.B.

    1984-01-01

    A study was performed to assess the potential effects of changes in future climatic conditions on the groundwater system in the vicinity of Yucca Mountain, the site of a potential mined geologic repository for high-level nuclear wastes. These changes probably would result in greater rates of precipitation and, consequently, greater rates of recharge. The study was performed by simulating the groundwater system, using a two-dimensional, finite-element, groundwater flow model. The simulated position of the water table rose as much as 130 meters near the U.S. Department of Energy 's preferred repository area at Yucca Mountain for a simulation involving a 100-percent increase in precipitation compared to modern-day conditions. Despite the water table rise, no flooding of the potential repository would occur at its current proposed location. According to the simulation, springs would discharge south and west of Timber Mountain, along Fortymile Canyon, in the Amargosa Desert near Lathrop Wells and Franklin Lake playa, and near Furnace Creek Ranch in Death Valley, where they presently discharge. Simulated directions of groundwater flow paths near the potential repository area generally would be the same for the baseline (modern-day climate) and the increased-recharge simulations, but the magnitude of flow would increase by 2 to 4 times that of the baseline-simulation flow. (USGS)

  6. Preliminary Geologic Map of the the Little Piute Mountains, San Bernardino County, California

    USGS Publications Warehouse

    Howard, Keith A.; Dennis, Michael L.; Karlstrom, Karl E.; Phelps, Geoffrey A.

    1995-01-01

    Introduction The Little Piute Mountains in the eastern Mojave Desert expose a series of folds and thrust faults involving metamorphosed Paleozoic strata (Miller and others, 1982; Stone and others, 1983). Detailed mapping of these structures was undertaken to help elucidate regional Mesozoic structural evolution. Earlier geologic maps were prepared by Cooksley (1960a,b,c,d, generalized by Bishop, 1964) and Stone and others (1983). Deformed and metamorphosed Paleozoic and Triassic rocks form a stratal succession that was originally deposited in shallow seas on the North American craton. Based on lithologic sequence the units are correlated with unmetamorphosed equivalents 200 km to the northeast in the Grand Canyon, Arizona, and 35-50 km to the west in the Marble, Ship, and Providence Mountains, California (Stone and others, 1983). The Paleozoic sequence rests nonconformably on a heterogeneous basement of polydeformed Early Proterozoic gneiss (Miller and others, 1982; Wooden and Miller, 1990). Triassic and older rocks were deformed, metamorphosed to staurolite or andalusite grade, and intruded concordantly at their base by Late Cretaceous granodiorite (Miller and others, 1982).

  7. Conceptual Design of the Adaptive Optics System for the Laser Communication Relay Demonstration Ground Station at Table Mountain

    NASA Technical Reports Server (NTRS)

    Roberts, Lewis C., Jr.; Page, Norman A.; Burruss, Rick S.; Truong, Tuan N.; Dew, Sharon; Troy, Mitchell

    2013-01-01

    The Laser Communication Relay Demonstration will feature a geostationary satellite communicating via optical links to multiple ground stations. The first ground station (GS-1) is the 1m OCTL telescope at Table Mountain in California. The optical link will utilize pulse position modulation (PPM) and differential phase shift keying (DPSK) protocols. The DPSK link necessitates that adaptive optics (AO) be used to relay the incoming beam into the single mode fiber that is the input of the modem. The GS-1 AO system will have two MEMS Deformable mirrors to achieve the needed actuator density and stroke limit. The AO system will sense the aberrations with a Shack-Hartmann wavefront sensor using the light from the communication link's 1.55 microns laser to close the loop. The system will operate day and night. The system's software will be based on heritage software from the Palm 3000 AO system, reducing risk and cost. The AO system is being designed to work at r(sub 0) greater than 3.3 cm (measured at 500 nm and zenith) and at elevations greater than 20deg above the horizon. In our worst case operating conditions we expect to achieve Strehl ratios of over 70% (at 1.55 microns), which should couple 57% of the light into the single mode DPSK fiber. This paper describes the conceptual design of the AO system, predicted performance and discusses some of the trades that were conducted during the design process.

  8. TEMPORAL AND SPATIAL PATTERNS OF AIRBORNE PESTICIDES IN THE ALPINE ENVIRONMENT OF A DECLINING CALIFORNIA AMPHIBIAN, THE MOUNTAIN YELLOW-LEGGED FROG

    EPA Science Inventory

    The mountain yellow-legged frog (Rana muscosa) has disappeared from most of its historic localities in the Sierra Nevada of California, and airborne pesticides from the Central Valley have been implicated as a causal agent. To determine the distribution and temporal variation of...

  9. Geochronologic and geochemical data from Mesozoic rocks in the Black Mountain area northeast of Victorville, San Bernardino County, California

    USGS Publications Warehouse

    Stone, Paul; Barth, Andrew P.; Wooden, Joseph L.; Fohey-Breting, Nicole K.; Vazquez, Jorge A.; Priest, Susan S.

    2013-01-01

    We present geochronologic and geochemical data for Mesozoic rocks in the Black Mountain area northeast of Victorville, California, to supplement previous geologic mapping. These data, together with previously published results, limit the depositional age of the sedimentary Fairview Valley Formation to Early Jurassic, refine the ages and chemical compositions of selected units in the overlying Jurassic Sidewinder Volcanics and of related intrusive units, and limit the age of some post-Sidewinder faulting in the Black Mountain area to a brief interval in the Late Jurassic. The new information contributes to a more complete understanding of the Mesozoic magmatic and tectonic evolution of the western Mojave Desert and surrounding regions.

  10. STROZ Lidar Results at the MOHAVE III Campaign, October, 2009, Table Mountain, CA

    NASA Technical Reports Server (NTRS)

    McGee, T. J.; Twigg, L.; Sumnicht, G.; Whiteman, D.; Leblanc, T.; Voemel, H.; Gutman, S.

    2010-01-01

    During October, 2009 the GSFC STROZ Lidar participated in a campaign at the JPL Table Mountain Facility (Wrightwood, CA, 2285 m Elevation) to measure vertical profiles of water vapor from near the ground to the lower stratosphere. On eleven nights, water vapor, aerosol, temperature and ozone profiles were measured by the STROZ lidar, two other similar lidars, frost-point hygrometer sondes, and ground-based microwave instruments made measurements. Results from these measurements and an evaluation of the performance of the STROZ lidar during the campaign will be presented in this paper. The STROZ lidar was able to measure water vapor up to 13-14 km ASL during the campaign. We will present results from all the STROZ data products and comparisons with other instruments made. Implications for instrumental changes will be discussed.

  11. Spatial and seasonal patterns of particulate matter less than 2.5 microns in the Sierra Nevada Mountains, California

    Treesearch

    Ricardo Cisneros; Don Schweizer; Haiganoush Preisler; Deborah H. Bennett; Glenn Shaw; Andrzej Bytnerowicz

    2014-01-01

    This paper presents particulate matter data collected in the California southern Sierra Nevada Mountains (SNM) during 2002 to 2009 from the Central Valley (elevation 91 m) into the SNM (elevation 2,598 m). Annual average concentrations of particles smaller than 2.5 µm in diameter (PM2.5) for all sites during this study ranged from 3.1 to 22.2 µg...

  12. 40 CFR Appendix - Tables to Subpart B of Part 88

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Tables to Subpart B of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES California Pilot Test Program State opt-in for the California Pilot Test Program. Pt. 88, Subpt. B, Tables Tables to Subpart B of Part 88...

  13. 40 CFR Appendix - Tables to Subpart B of Part 88

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Tables to Subpart B of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES California Pilot Test Program State opt-in for the California Pilot Test Program. Pt. 88, Subpt. B, Tables Tables to Subpart B of Part 88...

  14. 40 CFR Appendix - Tables to Subpart B of Part 88

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Tables to Subpart B of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES California Pilot Test Program State opt-in for the California Pilot Test Program. Pt. 88, Subpart B, Tables Tables to Subpart B of Part 88...

  15. 40 CFR Appendix - Tables to Subpart B of Part 88

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Tables to Subpart B of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES California Pilot Test Program State opt-in for the California Pilot Test Program. Pt. 88, Subpart B, Tables Tables to Subpart B of Part 88...

  16. Mediterranean California, Chapter 13

    Treesearch

    M.E. Fenn; E.B. Allen; L.H. Geiser

    2011-01-01

    The Mediterranean California ecoregion (CEC 1997; Fig 2.2) encompasses the greater Central Valley, Sierra foothills, and central coast ranges of California south to Mexico and is bounded by the Pacific Ocean, Sierra Nevada Mountains and Mojave Desert.

  17. Determining the population boundaries of a narrowly endemic perennial plant, Lane Mountain milk-vetch, in San Bernardino County, California

    Treesearch

    David Charlton

    2007-01-01

    The Lane Mountain milk-vetch (Astragalus jaegerianus) is a federally endangered species. It was first discovered in 1939 by Edmund Jaeger in the central Mojave Desert of California. This plant species was not collected again until the army became interested in expanding Fort Irwin’s western boundary in the 1980’s. Following its rediscovery,...

  18. 50 CFR Table 5 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the Upstream Extent of Critical Habitat 5 Table 5 to Part 226 Wildlife and Fisheries NATIONAL MARINE FISHERIES...

  19. 50 CFR Table 5 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the Upstream Extent of Critical Habitat 5 Table 5 to Part 226 Wildlife and Fisheries NATIONAL MARINE FISHERIES...

  20. 50 CFR Table 5 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the Upstream Extent of Critical Habitat 5 Table 5 to Part 226 Wildlife and Fisheries NATIONAL MARINE FISHERIES...

  1. 50 CFR Table 5 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the Upstream Extent of Critical Habitat 5 Table 5 to Part 226 Wildlife and Fisheries NATIONAL MARINE FISHERIES...

  2. Contingency table analysis of pebble lithology and roundness: A case study of Huangshui River, China and comparison to rivers in the Rocky Mountains, USA

    USGS Publications Warehouse

    Miao, X.; Lindsey, D.A.; Lai, Z.; Liu, Xiuying

    2010-01-01

    Contingency table analysis of pebble lithology and roundness is an effective way to identify the source terrane of a drainage basin and to distinguish changes in basin size, piracy, tectonism, and other events. First, the analysis to terrace gravel deposited by the Huangshui River, northeastern Tibet Plateau, China, shows statistically contrasting pebble populations for the oldest terrace (T7, Dadongling, 1.2. Ma) and the youngest terraces (T0-T3, ?. 0.15. Ma). Two fluvial processes are considered to explain the contrast in correlation between lithology and roundness in T7 gravel versus T0-T3 gravel: 1) reworking of T7 gravel into T0-T3 gravel and 2) growth in the size of the river basin between T7 and T0-T3 times. We favor growth in basin size as the dominant process, from comparison of pebble counts and contingency tables. Second, comparison of results from Huangshui River of China to three piedmont streams of the Rocky Mountains, USA highlights major differences in source terrane and history. Like Rocky Mountain piedmont gravel from Colorado examples, the Huangshui gravels show a preference (observed versus expected frequency) for rounded granite. But unlike Rocky Mountain gravel, Huangshui gravel shows a preference for angular quartzite and for rounded sandstone. In conclusion, contrasting behavior of lithologies during transport, not always apparent in raw pebble counts, is readily analyzed using contingency tables to identify the provenance of individual lithologies, including recycled clasts. Results of the analysis may help unravel river history, including changes in basin size and lithology. ?? 2009.

  3. Three dimensional perspective view of Mammoth Mountain, California

    NASA Image and Video Library

    1994-04-17

    STS059-S-084 (17 April 1994) --- This is a three-dimensional perspective of Mammoth Mountain, California. This view was constructed by overlaying a SIR-C radar image on a U.S. Geological Survey digital elevation map. Vertical exaggeration is 2x. The image is centered at 37.6 degrees north, 119.0 degrees west. It was acquired from the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the Space Shuttle Endeavour on its 67th orbit, April 13, 1994. In this color representation, red is C-Band HV-polarization, green is C-Band VV-polarization and blue is the ratio of C-Band VV to C-Band HV. Blue areas are smooth and yellow areas are rock outcrops with varying amounts of snow and vegetation. Crowley Lake is in the foreground and Highway 395 crosses in the middle of the image. Mammoth Mountain is shown in the upper right. SIR-C/X-SAR is part of NASA's Mission to Planet Earth (MTPE). SIR-C/X-SAR radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-Band (24 cm), C-Band (6 cm), and X-Band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory (JPL). X-SAR was developed by the Dornire and Alenia Spazio Companies for the German Space Agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian Space Agency, Agenzia Spaziale Italiana (ASI). JPL Photo ID: P-43933

  4. Predicting nitrogen flux along a vertical canopy gradient in a mixed conifer forest stand of the San Bernardino Mountains in California

    Treesearch

    Michael J. Arbaugh; Andrzej Bytnerowicz; Mark E. Fenn

    1998-01-01

    A 3-year study of nitrogenous (N) air pollution deposition to ponderosa pine (Pinus ponderosa Dougl. ex. Laws.) seedlings along a mature tree vertical canopy gradient was conducted in the mixed conifer forest of the San Bernardino Mountains of southern California. Concentrations of nitric acid vapor (HNO3), particulate nitrate...

  5. A modeling analysis program for the JPL table mountain Io sodium cloud

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.; Goldberg, B. A.

    1985-01-01

    Progress and achievements in the first year are discussed in three main areas: (1) review and assessment of the massive JPL Table Mountain Io sodium cloud data set, (2) formulation and execution of a plan to perform further processing of this data set, and (3) initiation of modeling activities. The complete 1976-79 and 1981 data sets are reviewed. Particular emphasis is placed on the superior 1981 Region B/C images which provide a rich base of information for studying the structure and escape of gases from Io as well as possible east-west and magnetic longitudinal asymmetries in the plasma torus. A data processing plan is developed and is undertaken by the Multimission Image Processing Laboratory of JPL for the purpose of providing a more refined and complete data set for our modeling studies in the second year. Modeling priorities are formulated and initial progress in achieving these goals is reported.

  6. A petrologic comparison of Triassic plutonism in the San Gabriel and Mule Mountains, southern California

    NASA Astrophysics Data System (ADS)

    Barth, Andrew P.; Tosdal, R. M.; Wooden, J. L.

    1990-11-01

    Triassic magmatism in the southwest U.S. Cordillera forms a semicontinuous magmatic arc extending from northwestern Nevada to southeastern California. Quartz monzodioritic and quartz monzonitic rocks and associated diorites and granites are widespread in southeastern California, and we suggest that these rocks represent exposure of a structurally deeper part of the Triassic arc, where it was emplaced into comparatively thick Proterozoic crust. Elemental and isotopic data suggest that Triassic quartz monzodiorites and quartz monzonites in the Mule and San Gabriel Mountains were derived from a relatively undepleted, nonradiogenic mafic lithospheric source, with virtually no upper crustal interaction. Very limited data for associated Triassic(?) diorites indicate a wide range in composition and a surprisingly radiogenic isotopic signature. Younger Triassic(?) granites record a strong geochemical signature of interaction with continental crust, including inherited zircon and high initial Sr ratios but comparatively less radiogenic Pb isotopic compositions. The major and trace element geochemistry of Late Triassic plutonic rocks in southeastern California is similar in many respects to alkalic components of the Triassic arc in the Mojave Desert. However, contemporaneous rocks farther north have a calc-alkalic signature, perhaps reflecting the variation in age and composition of lithosphere across which the Triassic arc was constructed.

  7. A petrologic comparison of Triassic plutonism in the San Gabriel and Mule Mountains, southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, A.P.; Tosdal, R.M.; Wooden, J.L.

    1990-11-10

    Triassic magmatism in the southwest US Cordillera forms a semicontinuous magmatic arc extending from northwestern Nevada to southeastern California. Quartz monzodioritic and quartz monzonitic rocks and associated diorites and granites are widespread in southeastern California, and the authors suggest that these rocks represent exposure of a structurally deeper part of the Triassic arc, where it was emplaced into comparatively thick Proterozoic crust. Elemental and isotopic data suggest that Triassic quartz monzodiorites and quartz monzonites in the Mule and San Gabriel Mountains were derived from a relatively undepleted, nonradiogenic mafic lithospheric source, with virtually no upper crustal interaction. Very limited datamore » for associated Triassic ( ) diorites indicate a wide range in composition and a surprisingly radiogenic isotopic signature. Younger Triassic( ) granites record a strong geochemical signature of interaction with continental crust, including inherited zircon and high initial Sr ratios but comparatively less radiogenic Pb isotopic compositions. The major and trace element geochemistry of Late Triassic plutonic rocks in southeastern California is similar in many respects to akalic components of the Triassic arc in the Mojave Desert. However, contemporaneous rocks farther north have a calc-alkalic signature, perhaps reflecting the variation in age and composition of lithosphere across which the Triassic arc was constructed.« less

  8. MIRANDA PINE, HORSESHOE SPRINGS, TEPUSQUET PEAK, LA BREA, SPOOR CANYON, FOX MOUNTAIN, AND LITTLE PINE ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Frizzell, Virgil A.; Kuizon, Lucia

    1984-01-01

    The Miranda Pine, Horseshoe Springs, Tepusquet Peak, La Brea, Spoor Canyon, Fox Mountain and Little Pine Roadless Areas together occupy about 246 sq mi in the Los Padres National Forest, California. Mineral-resource surveys indicate demonstrated resources of barite, copper, and zinc at two localities in the La Brea Roadless Area and demonstrated resources of phosphate at a mine in the Fox Mountain Roadless Area. A building stone quarry is present on the southern border of the Horseshoe Spring Roadless Area and an area of substantiated resource potential extends into the area. The Miranda Pine, Tepusquet Peak, Spoor Canyon, and Little Pine Roadless Areas have little promise for the occurrence of mineral resources and there is little promise for the occurrence of energy resources in any of the roadless areas.

  9. New permian fusulinids from conglomerate mesa, southeastern inyo Mountains, east-central california

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.

    2009-01-01

    In the Conglomerate Mesa area in the southeastern Inyo Mountains, east-central California, a series of distinctive fusulinid assemblages ranging in age from late Artinskian to Kungurian or Roadian was developed in units 7-10 of the sedimentary rocks of Santa Rosa Flat (part of the Owens Valley Group). The fauna of unit 7 shows some eastern Klamath Mountains affinity, but most of the species in unit 7 and the lower half of unit 8 are highly endemic and comprise three new genera with 12 new species, two unusual unassigned forms, and two other new species assigned to previously described genera. New taxa include: Crenulosepta new genus with five new species, C. inyoensis, C. delicata, C. fusiformis, C. rossi, and C. wahlmani; Nigribaccinus new genus with three new species, N. giganteus, N. elegans, and N. ? nestelli; and the new genus Inyoschwagerina with four new species, I. magnified, I. elayeri, I. elongata, and I.? linderae. Cuniculinella Skinner and Wilde, 1965, is represented by one new species, C. parva, and Skinnerella Coogan, 1960 by one new species, S.? mcallisteri. Faunas from the upper half of unit 8, unit 9, and unit 10 have a strong West Texas affinity. New species from these units are Skinnerella davydovi, S. hexagona, Parafusulina cerrogordoensis, P. complexa, P. halli, P. owensensis, and P. ubehebensis. Copyright ?? 2009, The Paleontological Society.

  10. CLMSZ, Garnet Mountain area, southern California: A collisionally generated contractional shear zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracchi, K.A.; Girty, G.H.; Girty, M.S.

    1993-04-01

    The Harper Creek gneiss (HCg) and Oriflamme Canyon unit (OCu) underlie the central portion of the Cuyamaca Laguna Mountains shear zone (CLMSZ) in and around Garnet Mountain, Peninsular Ranges, California, and may have been deformed during Cretaceous arc-continent collision. U-Pb zircon work and petrological and geochemical analyses suggest that in the Garnet Mountain area, the 140 Ma HCg is derived from granite and granodiorite, whereas the 122 [+-] 1 Ma OCu is a protomylonite derived from a granite. Both units appear to be per aluminous calc-alkaline magmatic arc granitoids. Mineral assemblages suggest uppermost greenschist to lower amphibolite grade conditions duringmore » deformation. In the HCg, S-1hc is a mylonitic gneissosity with a mean attitude of N11W, 60 NE. A mineral streaking lineation lies within the plane of S-1hc and has a mean attitude of 61[degree] N76E. In the OCu, S-1oc strikes about N13W and dips 52 NE and contains a mineral streaking lineation with an attitude of 49 N52E. Dextral and sinistral shear bands, S-2d and S-2s (looking NW), transect S-1hc and S-1oc. S-2d and S-2s strike subparallel to S-1. In the HCg S-2s is weakly developed and dips about 32 NE, whereas S-2d is more dominant and dips about 76 NE. On the OCu these relationships are reversed. S-2d does not cross cut S-2s: hence, the two sets of shear bands are interpreted to be conjugates reflecting NE-SW contraction and subvertical extension during collisional development of the CLMSZ.« less

  11. Preserved Filamentous Microbial Biosignatures in the Brick Flat Gossan, Iron Mountain, California.

    PubMed

    Williams, Amy J; Sumner, Dawn Y; Alpers, Charles N; Karunatillake, Suniti; Hofmann, Beda A

    2015-08-01

    A variety of actively precipitating mineral environments preserve morphological evidence of microbial biosignatures. One such environment with preserved microbial biosignatures is the oxidized portion of a massive sulfide deposit, or gossan, such as that at Iron Mountain, California. This gossan may serve as a mineralogical analogue to some ancient martian environments due to the presence of oxidized iron and sulfate species, and minerals that only form in acidic aqueous conditions, in both environments. Evaluating the potential biogenicity of cryptic textures in such martian gossans requires an understanding of how microbial textures form biosignatures on Earth. The iron-oxide-dominated composition and morphology of terrestrial, nonbranching filamentous microbial biosignatures may be distinctive of the underlying formation and preservation processes. The Iron Mountain gossan consists primarily of ferric oxide (hematite), hydrous ferric oxide (HFO, predominantly goethite), and jarosite group minerals, categorized into in situ gossan, and remobilized iron deposits. We interpret HFO filaments, found in both gossan types, as HFO-mineralized microbial filaments based in part on (1) the presence of preserved central filament lumina in smooth HFO mineral filaments that are likely molds of microbial filaments, (2) mineral filament formation in actively precipitating iron-oxide environments, (3) high degrees of mineral filament bending consistent with a flexible microbial filament template, and (4) the presence of bare microbial filaments on gossan rocks. Individual HFO filaments are below the resolution of the Mars Curiosity and Mars 2020 rover cameras, but sinuous filaments forming macroscopic matlike textures are resolvable. If present on Mars, available cameras may resolve these features identified as similar to terrestrial HFO filaments and allow subsequent evaluation for their biogenicity by synthesizing geochemical, mineralogical, and morphological analyses. Sinuous

  12. Preserved filamentous microbial biosignatures in the Brick Flat gossan, Iron Mountain, California

    USGS Publications Warehouse

    Williams, Amy J.; Sumner, Dawn Y.; Alpers, Charles N.; Karunatillake, Suniti; Hofmann, Beda A

    2015-01-01

    A variety of actively precipitating mineral environments preserve morphological evidence of microbial biosignatures. One such environment with preserved microbial biosignatures is the oxidized portion of a massive sulfide deposit, or gossan, such as that at Iron Mountain, California. This gossan may serve as a mineralogical analogue to some ancient martian environments due to the presence of oxidized iron and sulfate species, and minerals that only form in acidic aqueous conditions, in both environments. Evaluating the potential biogenicity of cryptic textures in such martian gossans requires an understanding of how microbial textures form biosignatures on Earth. The iron-oxide-dominated composition and morphology of terrestrial, nonbranching filamentous microbial biosignatures may be distinctive of the underlying formation and preservation processes. The Iron Mountain gossan consists primarily of ferric oxide (hematite), hydrous ferric oxide (HFO, predominantly goethite), and jarosite group minerals, categorized into in situ gossan, and remobilized iron deposits. We interpret HFO filaments, found in both gossan types, as HFO-mineralized microbial filaments based in part on (1) the presence of preserved central filament lumina in smooth HFO mineral filaments that are likely molds of microbial filaments, (2) mineral filament formation in actively precipitating iron-oxide environments, (3) high degrees of mineral filament bending consistent with a flexible microbial filament template, and (4) the presence of bare microbial filaments on gossan rocks. Individual HFO filaments are below the resolution of the Mars Curiosity and Mars 2020 rover cameras, but sinuous filaments forming macroscopic matlike textures are resolvable. If present on Mars, available cameras may resolve these features identified as similar to terrestrial HFO filaments and allow subsequent evaluation for their biogenicity by synthesizing geochemical, mineralogical, and morphological analyses. Sinuous

  13. Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain, California

    USGS Publications Warehouse

    Sorey, M.L.; Evans, William C.; Kennedy, B.M.; Farrar, C.D.; Hainsworth, L.J.; Hausback, B.

    1998-01-01

    Carbon dioxide and helium with isotopic compositions indicative of a magmatic source (??13C = -4.5 to -5???, 3He/4He = 4.5 to 6.7 RA) are discharging at anomalous rates from Mammoth Mountain, on the southwestern rim of the Long Valley caldera in eastern California. The gas is released mainly as diffuse emissions from normal-temperature soils, but some gas issues from steam vents or leaves the mountain dissolved in cold groundwater. The rate of gas discharge increased significantly in 1989 following a 6-month period of persistent earthquake swarms and associated strain and ground deformation that has been attributed to dike emplacement beneath the mountain. An increase in the magmatic component of helium discharging in a steam vent on the north side of Mammoth Mountain, which also began in 1989, has persisted until the present time. Anomalous CO2 discharge from soils first occurred during the winter of 1990 and was followed by observations of several areas of tree kill and/or heavier than normal needlecast the following summer. Subsequent measurements have confirmed that the tree kills are associated with CO2 concentrations of 30-90% in soil gas and gas flow rates of up to 31,000 g m-2 d-1 at the soil surface. Each of the tree-kill areas and one area of CO2 discharge above tree line occurs in close proximity to one or more normal faults, which may provide conduits for gas flow from depth. We estimate that the total diffuse CO2 flux from the mountain is approximately 520 t/d, and that 30-50 t/d of CO2 are dissolved in cold groundwater flowing off the flanks of the mountain. Isotopic and chemical analyses of soil and fumarolic gas demonstrate a remarkable homogeneity in composition, suggesting that the CO2 and associated helium and excess nitrogen may be derived from a common gas reservoir whose source is associated with some combination of magmatic degassing and thermal metamorphism of metasedimentary rocks. Furthermore, N2/Ar ratios and nitrogen isotopic values

  14. Stratigraphy and paleogeographic significance of the Pennsylvanian-Permian Bird Spring Formation in the Ship Mountains, southeastern California

    USGS Publications Warehouse

    Stone, Paul; Stevens, Calvin H.; Howard, Keith A.; Hoisch, Thomas D.

    2013-01-01

    A thick sequence of limestone, dolomite, and minor sandstone assigned to the Pennsylvanian and lower Permian Bird Spring Formation is exposed in the Ship Mountains about 85 kilometers (km) southwest of Needles, California, in the eastern Mojave Desert. These strata provide a valuable reference section of the Bird Spring Formation in a region where rocks of this age are not extensively exposed. This section, which is about 900 meters (m) thick, is divided into five informal members. Strata of the Bird Spring Formation in the Ship Mountains originated as shallow-water marine deposits on the broad, southwest-trending continental shelf of western North America. Perpendicular to the shelf, the paleogeographic position of the Ship Mountains section is intermediate between those of the thicker, less terrigenous, more seaward section of the Bird Spring Formation in the Providence Mountains, 55 km to the northwest, and the thinner, more terrigenous, more landward sections of the Supai Group near Blythe, 100 km to the southeast. Parallel to the shelf, the Ship Mountains section is comparable in lithofacies and inferred paleogeographic position to sections assigned to the Callville Limestone and overlying Pakoon Limestone in northwestern Arizona and southeastern Nevada, 250 km to the northeast. Deposition of the Bird Spring Formation followed a major rise in eustatic sea level at about the Mississippian- Pennsylvanian boundary. The subsequent depositional history was controlled by episodic changes in eustatic sea level, shelf subsidence rates, and sediment supply. Subsidence rates could have been influenced by coeval continental-margin tectonism to the northwest.

  15. Geophysical Characterization of a Rare Earth Element Enriched Carbonatite Terrane at Mountain Pass, California Eastern Mojave Desert

    NASA Astrophysics Data System (ADS)

    Denton, Kevin M.

    Mountain Pass, California, located in the eastern Mojave Desert, hosts one of the world's richest rare earth element (REE) deposits. The REE-rich rocks occur in a 2.5 km- wide, north-northwest trending zone of Mesoproterozoic (1.4-1.42 Ga) stocks and dikes, which intrude a larger Paleoproterozoic (1.7 Ga) schist-gneiss terrane that extends 10 km southward from Clark Mountain to the Mescal Range. Several REE-enriched bodies make up the Mountain Pass intrusive suite including shonkinite, syenite, and granite comprising an ultrapotassic intrusive suite and the Sulphide Queen carbonatite body. Two-dimensional modeling of gravity, magnetic, and electrical resistivity data reveals that the Mountain Pass intrusive suite is associated with a local gravity high that is superimposed on a 4-km wide gravity terrace. Rock property data indicate that the Mountain Pass intrusive suite is unusually nonmagnetic at the surface (2.0 x 10-3 SI, n = 67). However, aeromagnetic data indicate that these rocks occur along the eastern edge of a prominent north-northwest trending aeromagnetic high of unknown origin. The source of this unknown magnetic anomaly is 2-3 km below the surface and coincides with a body of rock having high electrical conductivity. Electrical resistivity models indicate that this unknown magnetic anomaly is several orders of magnitude more conductive (103 O•m) than the surrounding rock. Combined geophysical data suggest that the carbonatite and its associated ultrapotassic intrusive suite were preferentially emplaced along a northwest zone of weakness and/or a fault.

  16. Age and tectonic setting of Mesozoic metavolcanic and metasedimentary rocks, northern White Mountains, California

    NASA Astrophysics Data System (ADS)

    Hanson, R. Brooks; Saleeby, Jason B.; Fates, D. Gilbert

    1987-11-01

    Mesozoic metavolcanic and metasedimentary rocks in the northern White Mountains, eastern California and western Nevada, are separated from lower Paleozoic and Precambrian rocks by Jurassic and Cretaceous plutons. The large stratigraphic hiatus across the plutons is called the Barcroft structural break. Recent mapping and new U/Pb zircon ages of 154 +3/-1 Ma and 137 ±1 Ma. from an ash-flow tuff and a hypabyssal intrusion, respectively, indicate that part of the Mesozoic section and the Barcroft structural break are younger than the 160 165 Ma Barcroft Granodiorite, in contrast to previous interpretations. The Barcroft Granodiorite has been thrust westward over most of the Mesozoic section. It is everywhere in fault contact with overturned metasedimentary rocks on the west side of the range, rocks which were previously thought to be upright and the oldest part of the Mesozoic section. The McAfee Creek Granite, which has a 100 ±1 Ma U/Pb zircon age, postdates thrusting; therefore, the Barcroft structural break is primarily Early Cretaceous in age. *Present addresses: Hanson—Department of Mineral Sciences, Smithsonian Institution, Washington, D.C. 20560; Fates—Dames & Moore, 455 S. Figueroa Street, Suite 3504, Los Angeles, California 90074

  17. Lower tropospheric ozone and aerosol measurements at a coastal mountain site in Northern California

    NASA Astrophysics Data System (ADS)

    Post, A.; Conley, S. A.; Zhao, Y.; Cliff, S. S.; Faloona, I. C.; Wexler, A. S.; Lighthall, D.

    2012-12-01

    Increasing concern over the impacts of exogenous air pollution in California's Central Valley have prompted the establishment of a coastal, high altitude monitoring site at the Chews Ridge Observatory (1550 m) approximately 30 km east of Point Sur in Monterey County. Six months of ozone and aerosol measurements are presented in the context of long-range transport and its potential impact on surface air quality in the southern San Joaquin Valley. Moreover, approximately monthly ozone surveys are conducted by aircraft upwind, over the Pacific Ocean, and downwind, over the Central Valley, to characterize horizontal and vertical transport across the coastal mountains. The measurements exhibit no systematic diurnal variations of ozone or water vapor, an indication that the site primarily samples lower free tropospheric air which has not been significantly influenced by either local emissions or convective coupling to the surface. Aerosol size is measured with a scanning mobility particle sizer and composition is analyzed with an 8-stage rotating drum impactor whose substrates are characterized by X-ray fluorescence. Various elemental ratios and back trajectory calculations are used to infer the temporal patterns of influence that long range transport has on California air quality.

  18. Human impacts to mountain streams

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  19. Heat and Groundwater Flow in the San Gabriel Mountains, California

    NASA Astrophysics Data System (ADS)

    Newman, A. A.; Becker, M.; Laton, W. R., Jr.

    2017-12-01

    Groundwater flow paths in mountainous terrain often vary widely in both time and space. Such systems remain difficult to characterize due to fracture-dominated flow paths, high topographic relief, and sparse hydrologic data. We develop a hydrogeologic conceptual model of the Western San Gabriel Mountains in Southern California based on geophysical, thermal, and hydraulic head data. Boreholes are located along the San Gabriel Fault Zone (SGFZ) and cover a wide range of elevations to capture the heterogeneity of the hydrogeologic system. Long term (2016-2017) monitoring of temperature and hydraulic head was carried out in four shallow (300-600m depth) boreholes within the study area using fiber-optic distributed temperature sensing (DTS). Borehole temperature profiles were used to assess the regional groundwater flow system and local flows in fractures intersecting the borehole. DTS temperature profiles were compared with available borehole geophysical logs and head measurements collected with grouted vibrating wire pressure transducers (VWPT). Spatial and temporal variations in borehole temperature profiles suggest that advective heat transfer due to fluid flow affected the subsurface thermal regime. Thermal evidence of groundwater recharge and/or discharge and flow through discrete fractures was found in all four boreholes. Analysis of temporal changes to the flow system in response to seasonal and drilling-induced hydraulic forcing was useful in reducing ambiguities in noisy datasets and estimating interborehole relationships. Acoustic televiewer logs indicate fractures were primarily concentrated in densely fractured intervals, and only a minor decrease of fracture density was observed with depth. Anomalously high hydraulic gradients across the SGFZ suggest that the feature is a potential barrier to lateral flow. However, transient thermal anomalies consistent with groundwater flow within the SGFZ indicate this feature may be a potential conduit to vertical flow

  20. Complex Paleotopography and Faulting near the Elsinore Fault, Coyote Mountains, southern California

    NASA Astrophysics Data System (ADS)

    Brenneman, M. J.; Bykerk-Kauffman, A.

    2012-12-01

    The Coyote Mountains of southern California are bounded on the southwest by the Elsinore Fault, an active dextral fault within the San Andreas Fault zone. According to Axen and Fletcher (1998) and Dorsey and others (2011), rocks exposed in these mountains comprise a portion of the hanging wall of the east-vergent Salton Detachment Fault, which was active from the late Miocene-early Pliocene to Ca. 1.1-1.3 Ma. Detachment faulting was accompanied by subsidence, resulting in deposition of a thick sequence of marine and nonmarine sedimentary rocks. Regional detachment faulting and subsidence ceased with the inception of the Elsinore Fault, which has induced uplift of the Coyote Mountains. Detailed geologic mapping in the central Coyote Mountains supports the above interpretation and adds some intriguing details. New discoveries include a buttress unconformity at the base of the Miocene/Pliocene section that locally cuts across strata at an angle so high that it could be misinterpreted as a fault. We thus conclude that the syn-extension strata were deposited on a surface with very rugged topography. We also discovered that locally-derived nonmarine gravel deposits exposed near the crest of the range, previously interpreted as part of the Miocene Split Mountain Group by Winker and Kidwell (1996), unconformably overlie units of the marine Miocene/Pliocene Imperial Group and must therefore be Pliocene or younger. The presence of such young gravel deposits on the crest of the range provides evidence for its rapid uplift. Additional new discoveries flesh out details of the structural history of the range. We mapped just two normal faults, both of which were relatively minor, thus supporting Axen and Fletcher's assertion that the hanging wall block of the Salton Detachment Fault had not undergone significant internal deformation during extension. We found abundant complex synthetic and antithetic strike-slip faults throughout the area, some of which offset Quaternary alluvial

  1. Geologic map of the Providence Mountains in parts of the Fountain Peak and adjacent 7.5' quadrangles, San Bernardino County, California

    USGS Publications Warehouse

    Stone, Paul; Miller, David M.; Stevens, Calvin H.; Rosario, Jose J.; Vazquez, Jorge A.; Wan, Elmira; Priest, Susan S.; Valin, Zenon C.

    2017-03-22

    IntroductionThe Providence Mountains are in the eastern Mojave Desert about 60 km southeast of Baker, San Bernardino County, California. This range, which is noted for its prominent cliffs of Paleozoic limestone, is part of a northeast-trending belt of mountainous terrain more than 100 km long that also includes the Granite Mountains, Mid Hills, and New York Mountains. Providence Mountains State Recreation Area encompasses part of the range, the remainder of which is within Mojave National Preserve, a large parcel of land administered by the National Park Service. Access to the Providence Mountains is by secondary roads leading south and north from Interstate Highways 15 and 40, respectively, which bound the main part of Mojave National Preserve.The geologic map presented here includes most of Providence Mountains State Recreation Area and land that surrounds it on the north, west, and south. This area covers most of the Fountain Peak 7.5′ quadrangle and small adjacent parts of the Hayden quadrangle to the north, the Columbia Mountain quadrangle to the northeast, and the Colton Well quadrangle to the east. The map area includes representative outcrops of most of the major geologic elements of the Providence Mountains, including gneissic Paleoproterozoic basement rocks, a thick overlying sequence of Neoproterozoic to Triassic sedimentary rocks, Jurassic rhyolite that intrudes and overlies the sedimentary rocks, Jurassic plutons and associated dikes, Miocene volcanic rocks, and a variety of Quaternary surficial deposits derived from local bedrock units. The purpose of the project was to map the area in detail, with primary emphasis on the pre-Quaternary units, to provide an improved stratigraphic, structural, and geochronologic framework for use in land management applications and scientific research.

  2. Mammoth Mountain and its mafic periphery—A late Quaternary volcanic field in eastern California

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judith; Champion, Duane E.; Calvert, Andrew T.

    2014-01-01

    The trachydacite complex of Mammoth Mountain and an array of contemporaneous mafic volcanoes in its periphery together form a discrete late Pleistocene magmatic system that is thermally and compositionally independent of the adjacent subalkaline Long Valley system (California, USA). The Mammoth system first erupted ca. 230 ka, last erupted ca. 8 ka, and remains restless and potentially active. Magmas of the Mammoth system extruded through Mesozoic plutonic rocks of the Sierra Nevada batholith and extensive remnants of its prebatholith wall rocks. All of the many mafic and silicic vents of the Mammoth system are west or southwest of the structural boundary of Long Valley caldera; none is inboard of the caldera’s buried ring-fault zone, and only one Mammoth-related vent is within the zone. Mammoth Mountain has sometimes been called part of the Inyo volcanic chain, an ascription we regard inappropriate and misleading. The scattered vent array of the Mammoth system, 10 × 20 km wide, is unrelated to the range-front fault zone, and its broad nonlinear footprint ignores both Long Valley caldera and the younger Mono-Inyo range-front vent alignment. Moreover, the Mammoth Mountain dome complex (63%–71% SiO2; 8.0%–10.5% alkalies) ended its period of eruptive activity (100–50 ka) long before Holocene inception of Inyo volcanism. Here we describe 25 silicic eruptive units that built Mammoth Mountain and 37 peripheral units, which include 13 basalts, 15 mafic andesites, 6 andesites, and 3 dacites. Chemical data are appended for nearly 900 samples, as are paleomagnetic data for ∼150 sites drilled. The 40Ar/39Ar dates (230–16 ka) are given for most units, and all exposed units are younger than ca. 190 ka. Nearly all are mildly alkaline, in contrast to the voluminous subalkaline rhyolites of the contiguous long-lived Long Valley magma system. Glaciated remnants of Neogene mafic and trachydacitic lavas (9.1–2.6 Ma) are scattered near Mammoth Mountain, but Quaternary

  3. Valley aggradation in the San Gabriel Mountains, California: climate change versus catastrophic landslide

    NASA Astrophysics Data System (ADS)

    Scherler, D.; Lamb, M. P.; Rhodes, E. J.; Avouac, J. P.

    2014-12-01

    The San Gabriel Mountains (SGM) in Southern California, rate amongst the most rapidly uplifting and eroding mountains in the United States. Their steep slopes and sensitivity to wildfires, flash floods, landslides, and debris flows account for imminent hazards to nearby urban areas that might be accentuated by climatic and other environmental changes. Previous studies suggested that river terraces along the North Fork of the San Gabriel River, record temporal variations in sediment supply and river transport capacity that are representative for the SGM and related to climatic changes during the Quaternary. Based on field observations, digital topographic analysis, and dating of Quaternary deposits, we suggest that valley aggradation in the North Fork San Gabriel Canyon was spatially confined and a consequence of the sudden supply of unconsolidated material to upstream reaches by one of the largest known landslides in the SGM. New 10Be-derived surface exposure ages from the landslide deposits, previously assumed to be early to middle Pleistocene in age, indicate at least three Holocene events at ~8-9 ka, ~4-5 ka, and ~0.5-1 ka. The oldest landslide predates the valley aggradation period, which is constrained by existing 14C ages and new luminescence ages to ~7-8 ka. The spatial distribution, morphology, and sedimentology of the river terraces are consistent with deposition from far-travelling debris flows that originated within the landslide deposits. Valley aggradation in the North Fork San Gabriel Canyon therefore resulted from locally enhanced sediment supply that temporarily overwhelmed river capacity but the lack of similar deposits in other parts of the SGM argues against a regional climatic signal. So far, there exists no evidence that in the San Gabriel Mountains, climatic changes can cause sustained increases in hillslope sediment supply that lead to river aggradation and terrace formation.

  4. Mountain Weather and Climate, Third Edition

    NASA Astrophysics Data System (ADS)

    Hastenrath, Stefan

    2009-05-01

    For colleagues with diverse interests in the atmosphere, glaciers, radiation, landforms, water resources, vegetation, human implications, and more, Mountain Weather and Climate can be a valuable source of guidance and literature references. The book is organized into seven chapters: 1, Mountains and their climatological study; 2,Geographical controls of mountain meteorological elements; 3, Circulation systems related to orography; 4, Climatic characteristics of mountains; 5, Regional case studies; 6, Mountain bioclimatology; and 7, Changes in mountain climates. These chapters are supported by l78 diagrams and photographs, 47 tables, and some 2000 literature references. The volume has an appendix of units and energy conversion factors and a subject index, but it lacks an author index.

  5. Preserved Filamentous Microbial Biosignatures in the Brick Flat Gossan, Iron Mountain, California

    PubMed Central

    Sumner, Dawn Y.; Alpers, Charles N.; Karunatillake, Suniti; Hofmann, Beda A.

    2015-01-01

    Abstract A variety of actively precipitating mineral environments preserve morphological evidence of microbial biosignatures. One such environment with preserved microbial biosignatures is the oxidized portion of a massive sulfide deposit, or gossan, such as that at Iron Mountain, California. This gossan may serve as a mineralogical analogue to some ancient martian environments due to the presence of oxidized iron and sulfate species, and minerals that only form in acidic aqueous conditions, in both environments. Evaluating the potential biogenicity of cryptic textures in such martian gossans requires an understanding of how microbial textures form biosignatures on Earth. The iron-oxide-dominated composition and morphology of terrestrial, nonbranching filamentous microbial biosignatures may be distinctive of the underlying formation and preservation processes. The Iron Mountain gossan consists primarily of ferric oxide (hematite), hydrous ferric oxide (HFO, predominantly goethite), and jarosite group minerals, categorized into in situ gossan, and remobilized iron deposits. We interpret HFO filaments, found in both gossan types, as HFO-mineralized microbial filaments based in part on (1) the presence of preserved central filament lumina in smooth HFO mineral filaments that are likely molds of microbial filaments, (2) mineral filament formation in actively precipitating iron-oxide environments, (3) high degrees of mineral filament bending consistent with a flexible microbial filament template, and (4) the presence of bare microbial filaments on gossan rocks. Individual HFO filaments are below the resolution of the Mars Curiosity and Mars 2020 rover cameras, but sinuous filaments forming macroscopic matlike textures are resolvable. If present on Mars, available cameras may resolve these features identified as similar to terrestrial HFO filaments and allow subsequent evaluation for their biogenicity by synthesizing geochemical, mineralogical, and morphological analyses

  6. California County Data Book, 1994.

    ERIC Educational Resources Information Center

    Children Now, Oakland, CA.

    This data book examines statewide trends in the well-being of California's children. California is the only state where the majority of the children (56%) come from African-American, Latino, Asian, and Native American families. The report begins with summary tables of general state facts, including: (1) California's children under 18; (2)…

  7. Microsurgical scalp reconstruction after a mountain lion attack.

    PubMed

    Hazani, Ron; Buntic, Rudolf F; Brooks, Darrell

    2008-09-01

    Mountain lion attacks on humans are rare and potentially fatal. Although few victims experience minor injuries, permanent disfigurement and disability is common among survivors of these assaults. Since 1986, a steady number of mountain lion attacks have been noted in California. We report a recent attack of a cougar on a couple hiking in California's Prairie Creek Redwoods State Park. The victim sustained a significant scalp injury that led to a life-threatening soft-tissue infection. We present an analysis of the injury pattern as it relates to the bite marks, the resulting degloving injury, and the surgical reconstruction. We also offer a current survey of the pathogens often found in cats' and mountain lions' bite wounds and the appropriate antibiotic treatment. Given the infrequency at which clinicians encounter mountain lion injuries, we recommend that after initial management and exclusion of life threatening injuries patients be transferred to a tertiary care facility capable of managing the various reconstructive challenges such as the one presented in this case.

  8. Topographic Controls on Hillslope-Riparian Water Table Continuity in a set of Nested Catchments, Northern Rocky Mountains, Montana

    NASA Astrophysics Data System (ADS)

    Jencso, K. G.; McGlynn, B. L.; Gooseff, M. N.; Wondzell, S. M.; Bencala, K. E.; Payn, R. A.

    2007-12-01

    Understanding how hillslope and riparian water table dynamics influence catchment scale hydrologic response remains a challenge. In steep headwater catchments with shallow soils, topographic convergence and divergence (upslope accumulated area-UAA) is a hypothesized first-order control on the distribution of soil water and groundwater. To test the relationship between UAA and the longevity of hillslope-riparian-stream shallow groundwater connectivity, we quantified water table continuity based on 80+ recording wells distributed across 24 hillslope-riparian-stream cross-sections. Cross-section upstream catchment areas ranged in size from 0.41 to 17.2 km2, within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana, USA. We quantified toe-slope UAA and the topographic index (TI = ln a/tanβ) with a Multiple-D- Infinity (area routing in multiple infinite downslope directions) flow accumulation algorithm analysis of 1, 3, 10, and 30m ALSM derived DEMs. Indices derived from the 10m DEM best characterized subsurface flow accumulation, highlighting the balance between the process of interest, topographic complexity, and optimal grid scale representation. Across the 24 transects, toe-slope UAA ranged from 600-40,000 m2, the TI ranged from 5-16, and riparian widths were between 0-60m. Patterns in shallow groundwater table fluctuations suggest hydrologic dynamics reflective of hillslope-riparian landscape setting. Specifically, correlations were observed between longevity of hillslope-riparian water table continuity and the size of the UAA (r2=0.84) and its topographic index (r2=.86). These observations highlight the temporal component of topographic-hydrologic relationships important for understanding threshold mediated hydrologic variables. We are working to quantify the characteristics and spatial distribution of hillslope-riparian sequences and their water table dynamics to temporally link runoff source areas to whole

  9. Preliminary Results, Analysis and Overview of Part -1 of the GOLD Experiment

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Jeganathan, M.

    1996-01-01

    The Ground/Orbiter Lasercomm Demonstration (GOLD) is an optical communications demonstration between Japanese Engineering Test Satellite (ETS-V1) and an optical ground transmitting and receiving station at the Table Mountain Facility in Wrightwood California. Laser transmissions to the satellite were performed approximately four hours every third night when the satellite was at above Table Mountain.

  10. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January-December 2005

    USGS Publications Warehouse

    Locke, Glenn L.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, Office of Civilian Radioactive Waste Management, collected, compiled, and summarized hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data were collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data collected from January through December 2005 are provided for ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert. Ground-water level, discharge, and withdrawal data collected by other agencies, or as part of other programs, are provided. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for 1992-2005 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements; maximum, minimum, and median water-level altitudes; and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At seven boreholes in Jackass Flats, median water levels for 2005 were slightly higher (0.4-2.7 feet) than the median water levels for 1992-93.

  11. Assessing the spatial variability of mountain precipitation in California's Sierra Nevada using the Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Deems, J. S.; Painter, T. H.; Dozier, J.

    2016-12-01

    In California's Sierra Nevada, 10 or fewer winter storms are responsible for most of the annual precipitation, which falls mostly as snow. Presently, surface stations are used to measure the dynamics of mountain precipitation. However, even in places like the Sierra Nevada—one of the most gauged regions in the world—the paucity of surface stations can lead to large errors in precipitation thereby biasing both total water year and short-term streamflow forecasts. Remotely sensed snow depth and water equivalent, at a time scale that resolves storms, might provide a novel solution to the problems of: (1) quantifying the spatial variability of mountain precipitation; and (2) assessing gridded precipitation products that are mostly based on surface station interpolation. NASA's Airborne Snow Observatory (ASO), an imaging spectrometer and LiDAR system, has measured snow in the Tuolumne River Basin in California's Sierra Nevada for the past four years, 2013-2016; and, measurements will continue. Principally, ASO monitors the progression of melt for water supply forecasting, nonetheless, a number of flights bracketed storms allowing for estimates of snow accumulation. In this study we examine a few of the ASO recorded storms to determine both the basin and subbasin orographic effect as well as the spatial patterns in total precipitation. We then compare these results to a number of gridded climate products and weather models including: Daymet, the Parameter-elevation Regressions on Independent Slopes Model (PRISM), the North American Land Data Assimilation System (NLDAS-2), and the Weather Research and Forecasting (WRF) model. Finally, to put each ASO recorded storm into context, we use a climatology produced from snow pillows and the North American Regional Reanalysis (NARR) for 2014-2016 to examine key accumulation events, and classify storms based on their integrated water vapor flux.

  12. A comparison of empirical and modeled nitrogen critical loads for Mediterranean forests and shrublands in California

    Treesearch

    M.E. Fenn; H.-D. Nagel; I. Koseva; J. Aherne; S.E. Jovan; L.H. Geiser; A. Schlutow; T. Scheuschner; A. Bytnerowicz; B.S. Gimeno; F. Yuan; S.A. Watmough; E.B. Allen; R.F. Johnson; T. Meixner

    2014-01-01

    Nitrogen (N) deposition is impacting a number of ecosystem types in California. Critical loads (CLs) for N deposition determined for mixed conifer forests and chaparral/oak woodlands in the Sierra Nevada Mountains of California and the San Bernardino Mountains in southern California using empirical and various modelling approaches were compared. Models used included...

  13. California's New School Funding Flexibility. Technical Appendices

    ERIC Educational Resources Information Center

    Weston, Margaret

    2011-01-01

    The three appendices herein accompany the main report, "California's New School Funding Flexibility." Included are: (1) California's Previous Flexibility Policies; (2) Data and Methods; and (3) Categorical Funding and Student Disadvantage. (Contains 3 tables and 12 footnotes.) [For "California's New School Funding Flexibility,"…

  14. Population distribution and trends of California spotted owls

    Treesearch

    Douglas J. Tempel; R.J. Gutiérrez; M. Zachariah Peery

    2017-01-01

    Following Verner et al.’s (1992) technical assessment of the California spotted owl (CASPO), we divided the range of the California spotted owl (Strix occidentalis occidentalis) into two major physiographic provinces: the Sierra Nevada and the mountains of southern California (Tehachapi Pass was the demarcation between the regions). Verner et al. (...

  15. Chronology of Miocene-Pliocene deposits at Split Mountain Gorge, Southern California: A record of regional tectonics and Colorado River evolution

    USGS Publications Warehouse

    Dorsey, R.J.; Fluette, A.; McDougall, K.; Housen, B.A.; Janecke, S.U.; Axen, G.J.; Shirvell, C.R.

    2007-01-01

    Late Miocene to early Pliocene deposit at Split Mountain Gorge, California, preserve a record of basinal response to changes in regional tectonics, paleogeography, and evolution of the Colorado River. The base of the Elephant Trees Formation, magnetostratigraphically dated as 8.1 ?? 0.4 Ma, provides the earliest well-dated record of extension in the southwestern Salton Trough. The oldest marine sediments are ca. 6.3 Ma. The nearly synchronous timing of marine incursion in the Salton Trough and northern Gulf of California region supports a model for localization of Pacific-North America plate motion in the Gulf ca. 6 Ma. The first appearance of Colorado River sand at the Miocene-Pliocene boundary (5.33 Ma) suggests rapid propagation of the river to the Salton Trough, and supports a lake-spillover hypothesis for initiation of the lower Colorado River. ?? 2007 Geological Society of America.

  16. Extensional reactivation of the Chocolate Mountains subduction thrust in the Gavilan Hills of southeastern California

    USGS Publications Warehouse

    Oyarzabal, F.R.; Jacobson, C.E.; Haxel, G.B.

    1997-01-01

    The NE vergent Chocolate Mountains fault of south-eastern California has been interpreted as either a subduction thrust responsible for burial and prograde metamorphism of the ensimatic Orocopia Schist or as a normal fault involved in the exhumation of the schist. Our detailed structural analysis in the Gavilan Hills area provides new evidence to confirm the latter view. A zone of deformation is present at the top of the Orocopia Schist in which lineations are parallel to those in the upper plate of the Chocolate Mountains fault but oblique to ones at relatively deep levels in the schist. Both the Orocopia Schist and upper plate contain several generations of shear zones that show a transition from crystalloblastic through mylonitic to cataclastic textures. These structures formed during retrograde metamorphism and are considered to record the exhumation of the Orocopia Schist during early Tertiary time as a result of subduction return flow. The Gatuna fault, which places low-grade, supracrustal metasediments of the Winterhaven Formation above the gneisses of the upper plate, also seems to have been active at this time. Final unroofing of the Orocopia Schist occurred during early to middle Miocene regional extension and may have involved a second phase of movement on the Gatuna fault. Formation of the Chocolate Mountains fault during exhumation indicates that its top-to-the-NE sense of movement provides no constraint on the polarity of the Orocopia Schist subduction zone. This weakens the case for a previous model involving SW dipping subduction, while providing support for the view that the Orocopia Schist is a correlative of the Franciscan Complex.

  17. Mountain Meadows and their contribution to Sierra Nevada Water Resources

    NASA Astrophysics Data System (ADS)

    Cornwell, K.; Brown, K.; Monohan, C.

    2007-12-01

    Human alterations of California's waterscape have exploited rivers, wetlands and meadows of the Sierra Nevada. A century of intensive logging, mining, railroad building, development, fire suppression, and grazing by sheep and cattle has left only 25 percent "intact" natural habitat in the Sierra Nevada (SNEP 1995). Much of this intact habitat occurs at higher elevations, often in non-forested alpine or in less productive forests and woodlands where mountain meadows exist. Mountain meadows serve many ecological functions including habitat for threatened and endangered terrestrial and aquatic species, and are considered to be essential physical components to watershed function and hydrology with significant water storage, filtration and flood attenuation properties. This study evaluates the physical characteristics and hydrologic function of Clarks Meadow located in northern Sierra Nevada, Plumas County, California. In 2001, Clarks Meadow received significant restoration work in the upstream half of the meadow which diverted the stream from an incised channel to a shallow remnant channel, creating a stable channel and reconnecting the groundwater table to the stream. No restoration work was done in the lower half of Clarks Meadow where the stream still flows through an incised channel. Clarks Meadow offers a unique opportunity to study both a restored, hydrologically functional meadow and an incised, hydrologically disconnected stretch of the same stream and meadow. The physical characteristics of Clarks Meadows that were measured include surface area, subsurface thickness, porosity and permeability of subsurface materials, potential water storage volume, and surface infiltration rates. The goal of this study is to refine hydrologic characterization methods, quantify water storage potential of a healthy, non-incised meadow and assess its role in attenuating flood flows during high discharge times. Initial results suggest that significant subsurface storage volume is

  18. Mountain-Top-to-Mountain-Top Optical Link Demonstration. Part 2

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Wright, M. W.

    2002-01-01

    A mountain-top-to-mountain-top optical communications demonstration was conducted between the JPL Table Mountain Facility (TMF), Wrightwood, California, and Strawberry Peak (SP), Lake Arrowhead, California, during the months of August and September of 2000. The link was nearly horizontal at an altitude of 2 km and spanned a range of 46.8 km. A 780-nm multibeam beacon broadcast from TMF was received by the JPL Optical Communications Demonstrator (OCD) located at SP. The received beacon was utilized as a pointing reference to retransmit an 852-nm communications laser beam, modulated at 400 Mb/s by a PN7 pseudo-random bit stream (PRBS) sequence. The long atmospheric path resulted in atmospheric-turbulence-induced angle-of-arrival fluctuations of the beacon at the OCD aperture. A .ne-steering control loop was used to track the resulting beacon centroid motion and update the pointing of the communications laser beam transmitted from SP to TMF. Fried parameters, or r0, inferred from focal spot sizes received at SP were 4 to 5 cm whereas, using the spot sizes received at TMF, they were 2 to 3 cm. In both cases, theory predicts larger r0 values. The predicted angle-of-arrival fluctuations compare well with measured rms displacements exhibited by the focal spots at either end of the link. An uncompensated error of 1.1 rad in the x-axis and 2 rad in the y-axis was obtained using centroid data logged by the OCD. Average bit-error rates of 10-5 were recorded for extended periods of time. An atmospheric coherence length r0 of 3 to 5 cm was inferred using the focal-plane spot size measured on the CCD tracking sensor and compared to a predicted value of 5 to 7 cm using reasonable atmospheric models. The irradiance bounds required for the CCD tracking sensor to perform centroiding was found to range from 2000 to 3000 integrated pixel counts, although a more reliable range was 600 to 3000, indicating a dynamic range of 6 to 11 dB. The motion of the spot on the focal plane was also

  19. Some economic tables for airships

    NASA Technical Reports Server (NTRS)

    Neumann, R. D.

    1975-01-01

    During the course of the Southern California Aviation Council study on lighter than air it was determined that some form of economic base must be developed for estimation of costs of the airship. The tables are presented.

  20. Geochemical evidence for a magmatic CO2 degassing event at Mammoth Mountain, California, September-December 1997

    USGS Publications Warehouse

    McGee, K.A.; Gerlach, T.M.; Kessler, R.; Doukas, M.P.

    2000-01-01

    Recent time series soil CO2 concentration data from monitoring stations in the vicinity of Mammoth Mountain, California, reveal strong evidence for a magmatic degassing event during the fall of 1997 lasting more than 2 months. Two sensors at Horseshoe Lake first recorded the episode on September 23, 1997, followed 10 days later by a sensor on the north flank of Mammoth Mountain. Direct degassing from shallow intruding magma seems an implausible cause of the degassing event, since the gas released at Horseshoe Lake continued to be cold and barren of other magmatic gases, except for He. We suggest that an increase in compressional strain on the area south of Mammoth Mountain driven by movement of major fault blocks in Long Valley caldera may have triggered an episode of increased degassing by squeezing additional accumulated CO2 from a shallow gas reservoir to the surface along faults and other structures where it could be detected by the CO2 monitoring network. Recharge of the gas reservoir by CO2 emanating from the deep intrusions that probably triggered deep long-period earthquakes may also have contributed to the degassing event. The nature of CO2 discharge at the soil-air interface is influenced by the porous character of High Sierra soils and by meteorological processes. Solar insolation is the primary source of energy for the Earth atmosphere and plays a significant role in most diurnal processes at the Earth surface. Data from this study suggest that external forcing due largely to local orographic winds influences the fine structure of the recorded CO2 signals.

  1. Exhumation of the Black Mountains in Death Valley, California, with new thermochronometric data from the Badwater Turtleback

    NASA Astrophysics Data System (ADS)

    Sizemore, T. M.; Cemen, I.; Wielicki, M. M.; Stockli, D. F.; Heizler, M. T.; Lutz, B. M.

    2017-12-01

    The Black Mountains, in Death Valley, California, are one of the key areas to better understand Basin and Range extension because they contain Cenozoic igneous and sedimentary rocks overlying mid- to deep-crustal, 1.74 Ga basement gneiss with abundant fault striations, large-scale extensional folds, and tectonite fabrics containing top-to-the-northwest shear-sense indicators. These rocks make up the footwall of three prominent, high-relief "turtleback" fault surfaces in the western flank of the Black Mountains, which are thought to have accommodated a significant amount of strain in the Death Valley area. It is unknown whether the missing Paleozoic and Mesozoic strata in the Black Mountains were removed in association with high-angle faulting, or along a continuous detachment surface with a rolling-hinge style of faulting as the hanging wall moved to the west, now forming the Panamint Range. The turtlebacks play an important role in resolving this question because they are commonly cited as containing conflicting evidence of both hypotheses. To provide insight into this problem, we are building an exhumation model across the Black Mountains using previously published thermochronometric data as well as new transect-based (U-Th)/He and Ar-Ar thermochronology and U-Pb geochronology for the Badwater turtleback. The model will provide a four-dimensional view of the exhumation history of the Black Mountains, to serve as evidence for either of the two previously mentioned hypotheses, or possibly some other style of exhumation. Additionally, we will compare the exhumation history of the Black Mountains to that of the Panamint Range using previously published data and interpretations. Our preliminary zircon U-Pb data suggest a crystallization age for the gneissic rocks on the Badwater turtleback of 1.74 Ga (207Pb/206Pb, 2σ error=31.8 Ma, n=6) with two younger populations at 1.46 Ga (207Pb/206Pb, 2σ error=51.8 Ma, n=3) and 79.6 Ma (206Pb/238U, 2σ error=10.0 Ma, n=2

  2. The Biggest Tuya or Table Mountain in the North Atlantic?

    NASA Astrophysics Data System (ADS)

    Helgadottir, G.; Reynisson, P.

    2012-12-01

    Multibeam mapping in cruise A201206 of the Marine Research Institute in June 2012 revealed a huge submarine mountain with a striking look of a tuya. Tuya is by defenition a subrectangular or circular, constructional, flat-topped mountain, made up of hyaloclastites and/or pillow lava, usually with cap lava (Mathews 1947). The mountain lies at 950-1.400 waterdepth some 120 nautical miles west of the Snaefellsnes peninsula and the mapped part of it is around 300 km2. For comparison, the largest tuya in Iceland is Eiriksjokull with a basal area of 77 km2 (Jakobsson and Gudmundsson 2008). Above the mountains edge at 1.100 m waterdepth the hight increases gradually towards the top of the mountain were some craters are exposed. The mountain has a a youthful apperance. Analysing of rock samples are needed to find out if that is the case or if it is connected with an old rifting zone. The goal of the survey was to map fishing areas (f. ex. of the Greenland halibut); to explore the environment of the strong ocean currents coming from north through the Greenland Strait (also called Denmark Strait) but also to gain additional bathymetrical data in the vicinity of what we believe are mud volcanoes, discovered in a fairly recent MRI's mapping cruise. Now, like erlier on, several mud volcanoes appeared, some of them up to 350 m high. If this proves to be right, this is the first finding of these features in Icelandic waters. The research area coincides largely with sediments of the Snorri drift. Seismic lines through this sediment show possible diapir formation (Egloff and Johnson 1978) which strengthens the idea of those features beeing mud volcanoes. The current 9.000 km2 mapping with EM 300 has added significantly to our knowledge of the morphology of the seafloor around Iceland. References: Mathews, W. H. 1947: "Tuyas": Flat-topped volcanoes in northern Brithish Columbia. Amer. J. Sci. 245, 560-570. Jakobsson, S. P. and Gudmundsson, M. T. 2008: Subglacial and intraglacial

  3. Climate contributes to zonal forest mortality in Southern California's San Jacinto Mountains

    NASA Astrophysics Data System (ADS)

    Fellows, A.; Goulden, M.

    2010-12-01

    An estimated 4.6 million trees died over ~375,000 acres of Southern California forest in 2002-2004. This mortality punctuated a decline in forest health that has been attributed to air pollution, stem densification, or drought. Bark beetles were the proximate cause of most tree death but the underlying cause of this extensive mortality is arguably poor forest health. We investigated the contributions that climate, particularly drought, played in tree mortality and how physiological drought stress may have structured the observed patterns of mortality. Field surveys showed that conifer mortality was zonal in the San Jacinto Mountains of Southern California. The proportion of conifer mortality increased with decreasing elevation (p=0.01). Mid-elevation conifers (White Fir, Incense Cedar, Coulter Pine, Sugar Pine, Ponderosa and Jeffrey Pine) died in the lower portions of their respective ranges, which resulted in an upslope lean in species’ distribution and an upslope shift in species’ mean elevation. Long-term precipitation (P) is consistent with elevation over the conifer elevation range (p=0.43). Potential evapotranspiration (ET) estimated by Penman Monteith declines with elevation by nearly half over the same range. These trends suggest that ET, more than P, is critical in structuring the elevational trend in drought stress and may have contributed to the patterns of mortality that occurred in 2002-04. Physiological measurements in a mild drought year (2009) showed late summer declines in plant water availability with decreasing elevation (p < 0.01) and concomitant reductions in carbon assimilation and stomatal conductance with decreasing elevation. We tie these observations together with a simple water balance model.

  4. Potential climatic refugia in semi-arid, temperate mountains: plant and arthropod assemblages associated with rock glaciers, talus slopes, and their forefield wetlands, Sierra Nevada, California, USA

    Treesearch

    Constance I. Millar; Robert D. Westfall; Angela Evenden; Jeffrey G. Holmquist; Jutta Schmidt-Gengenbach; Rebecca S. Franklin; Jan Nachlinger; Diane L. Delany

    2015-01-01

    Unique thermal and hydrologic regimes of rock-glacier and periglacial talus environments support little-studied mountain ecosystems. We report the first studies of vascular plant and arthropod diversity for these habitats in the central Sierra Nevada, California, USA. Surfaces of active rock glaciers develop scattered islands of soil that provide habitat for vegetation...

  5. Home range characteristics of fishers in California

    Treesearch

    W. J. Zielinski; R. L. Truex; G. A. Schmidt; F. V. Schlexer; K. N. Schmidt; R. H. Barrett

    2004-01-01

    The fisher (Martes pennanti) is a forest mustelid that historically occurred in California from the mixed conifer forests of the north coast, east to the southern Cascades, and south throughout the Sierra Nevada. Today fishers in California occur only in 2 disjunct populations in the northwestern mountains and the...

  6. Equatorial origin for Lower Jurassic radiolarian chert in the Franciscan Complex, San Rafael Mountains, southern California

    USGS Publications Warehouse

    Hagstrum, J.T.; Murchey, B.L.; Bogar, R.S.

    1996-01-01

    Lower Jurassic radiolarian chert sampled at two localities in the San Rafael Mountains of southern California (???20 km north of Santa Barbara) contains four components of remanent magnetization. Components A, B???, and B are inferred to represent uplift, Miocene volcanism, and subduction/accretion overprint magnetizations, respectively. The fourth component (C), isolated between 580?? and 680??C, shows a magnetic polarity stratigraphy and is interpreted as a primary magnetization acquired by the chert during, or soon after, deposition. Both sequences are late Pliensbachian to middle Toarcian in age, and an average paleolatitude calculated from all tilt-corrected C components is 1?? ?? 3?? north or south. This result is consistent with deposition of the cherts beneath the equatorial zone of high biologic productivity and is similar to initial paleolatitudes determined for chert blocks in northern California and Mexico. This result supports our model in which deep-water Franciscan-type cherts were deposited on the Farallon plate as it moved eastward beneath the equatorial productivity high, were accreted to the continental margin at low paleolatitudes, and were subsequently distributed northward by strike-slip faulting associated with movements of the Kula, Farallon, and Pacific plates. Upper Cretaceous turbidites of the Cachuma Formation were sampled at Agua Caliente Canyon to determine a constraining paleolatitude for accretion of the Jurassic chert sequences. These apparently unaltered rocks, however, were found to be completely overprinted by the A component of magnetization. Similar in situ directions and demagnetization behaviors observed in samples of other Upper Cretaceous turbidite sequences in southern and Baja California imply that these rocks might also give unreliable results.

  7. Stream capture to form Red Pass, northern Soda Mountains, California

    USGS Publications Warehouse

    Miller, David; Mahan, Shannon

    2014-01-01

    Red Pass, a narrow cut through the Soda Mountains important for prehistoric and early historic travelers, is quite young geologically. Its history of downcutting to capture streams west of the Soda Mountains, thereby draining much of eastern Fort Irwin, is told by the contrast in alluvial fan sediments on either side of the pass. Old alluvial fan deposits (>500 ka) were shed westward off an intact ridge of the Soda Mountains but by middle Pleistocene time, intermediate-age alluvial fan deposits (~100 ka) were laid down by streams flowing east through the pass into Silurian Valley. The pass was probably formed by stream capture driven by high levels of groundwater on the west side. This is evidenced by widespread wetland deposits west of the Soda Mountains. Sapping and spring discharge into Silurian Valley over millennia formed a low divide in the mountains that eventually was overtopped and incised by a stream. Lessons include the importance of groundwater levels for stream capture and the relatively youthful appearance of this ~100-200 ka feature in the slowly changing Mojave Desert landscape.

  8. Possible reactivation of the Vincent-Chocolate Mountains thrust in the Gavilan Hills area, southeasternmost California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyarzabal, F.R.; Jacobson, C.E.; Haxel, G.B.

    The Late Cretaceous-early Tertiary Orocopia Schist (OS) of southeasternmost California consists of metamorphosed continental margin sedimentary and basaltic rocks, overlain by an upper plate of continental crust along the Vincent-Chocolate Mountains fault (VCMF). Previous analysis of late folds and shear band in OS and upper plate in the Gavilan Hills and adjacent ares indicated that the direction of transport of the upper plate was northeastward. This has been considered evidence of a SW dipping subduction zone, along which an outboard continental fragment was sutured to North America. Another view is that the VCMF was formed by underplating of the OSmore » in an Andean continental margin, and that the NE-vergent late structures formed during uplift of the OS. The authors' continuing work in the Gavilan Hills confirm the NE sense of vergence but suggests a more complex structural history. The schist is characterized by refolded folds, shear bands, and two penetrative lineations. An older lineation that ranges from N10[degree]E to N30[degree]E is widespread in the area, but is more evident at low structural levels. A second lineation ranges from N40[degree]E to N70[degree]E and is strongly developed in rocks near the VCMF. The complex folding pattern, presence of mylonitic schist, relative thinness of upper-plate mylonite, and possible retrogressive character of the shear bands suggest that the VCMF in the Gavilan Hills area may have been reactivated after original thrusting. The VCMF in the Gavilan Hills is intermediate in character between the probable subduction thrust in the San Gabriel Mountains and the reactivated faults in the Orocopia Mountains and areas surrounding the Gavilan Hills.« less

  9. Brief Communication: Synoptic-scale differences between Sundowner and Santa Ana wind regimes in the Santa Ynez Mountains, California

    NASA Astrophysics Data System (ADS)

    Hatchett, Benjamin J.; Smith, Craig M.; Nauslar, Nicholas J.; Kaplan, Michael L.

    2018-02-01

    Downslope Sundowner winds in southern California's Santa Ynez Mountains favor wildfire growth. To explore differences between Sundowners and Santa Ana winds (SAWs), we use surface observations from 1979 to 2014 to develop a climatology of extreme Sundowner days. The climatology was compared to an existing SAW index from 1979 to 2012. Sundowner (SAW) occurrence peaks in late spring (winter). SAWs demonstrate amplified 500 hPa geopotential heights over western North America and anomalous positive inland mean sea-level pressures. Sundowner-only conditions display zonal 500 hPa flow and negative inland sea-level pressure anomalies. A low-level northerly coastal jet is present during Sundowners but not SAWs.

  10. Shrinking windows of opportunity for oak seedling establishment in southern California mountains

    USGS Publications Warehouse

    Davis, Frank W.; Sweet, Lynn C.; Serra-Diaz, Josep M.; Franklin, Janet; McCullough, Ian M.; Flint, Alan L.; Flint, Lorraine E.; Dingman, John; Regan, Helen M.; Syphard, Alexandra D.; Hannah, Lee; Redmond, Kelly; Moritz, Max A.

    2016-01-01

    Seedling establishment is a critical step that may ultimately govern tree species’ distribution shifts under environmental change. Annual variation in the location of seed rain and microclimates results in transient “windows of opportunity” for tree seedling establishment across the landscape. These establishment windows vary at fine spatiotemporal scales that are not considered in most assessments of climate change impacts on tree species range dynamics and habitat displacement. We integrate field seedling establishment trials conducted in the southern Sierra Nevada and western Tehachapi Mountains of southern California with spatially downscaled grids of modeled water-year climatic water deficit (CWDwy) and mean August maximum daily temperature (Tmax) to map historical and projected future microclimates suitable for establishment windows of opportunity for Quercus douglasii, a dominant tree species of warm, dry foothill woodlands, and Q. kelloggii, a dominant of cooler, more mesic montane woodlands and forests. Based on quasi-binomial regression models, Q. douglasii seedling establishment is significantly associated with modeled CWDwy and to a lesser degree with modeled Tmax. Q. kelloggii seedling establishment is most strongly associated with Tmax and best predicted by a two-factor model including CWDwy and Tmax. Establishment niche models are applied to explore recruitment window dynamics in the western Tehachapi Mountains, where these species are currently widespread canopy dominants. Establishment windows are projected to decrease by 50–95%, shrinking locally to higher elevations and north-facing slopes by the end of this century depending on the species and climate scenario. These decreases in establishment windows suggest the potential for longer-term regional population declines of the species. While many additional processes regulate seedling establishment and growth, this study highlights the need to account for topoclimatic controls and

  11. Stereo Pair, Pasadena, California

    NASA Image and Video Library

    2000-03-10

    This stereoscopic image pair is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Portions of the cities of Altadena and La Canada Flintridge are also shown.

  12. Triggered seismicity and deformation between the Landers, California, and Little Skull Mountain, Nevada, earthquakes

    USGS Publications Warehouse

    Bodin, Paul; Gomberg, Joan

    1994-01-01

    This article presents evidence for the channeling of strain energy released by the Ms = 7.4 Landers, California, earthquake within the eastern California shear zone (ECSZ). We document an increase in seismicity levels during the 22-hr period starting with the Landers earthquake and culminating 22 hr later with the Ms = 5.4 Little Skull Mountain (LSM), Nevada, earthquake. We evaluate the completeness of regional seismicity catalogs during this period and find that the continuity of post-Landers strain release within the ECSZ is even more pronounced than is evident from the catalog data. We hypothesize that regional-scale connectivity of faults within the ECSZ and LSM region is a critical ingredient in the unprecedented scale and distribution of remotely triggered earthquakes and geodetically manifest strain changes that followed the Landers earthquake. The viability of static strain changes as triggering agents is tested using numerical models. Modeling results illustrate that regional-scale fault connectivity can increase the static strain changes by approximately an order of magnitude at distances of at least 280 km, the distance between the Landers and LSM epicenters. This is possible for models that include both a network of connected faults that slip “sympathetically” and realistic levels of tectonic prestrain. Alternatively, if dynamic strains are a more significant triggering agent than static strains, ECSZ structure may still be important in determining the distribution of triggered seismic and aseismic deformation.

  13. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January-December 2004

    USGS Publications Warehouse

    La Camera, Richard J.; Locke, Glenn L.; Habte, Aron M.; Darnell, Jon G.

    2006-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Office of Repository Development, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, both ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January through December 2004. Also tabulated are ground-water levels, discharges, and withdrawals collected by other agencies (or collected as part of other programs) and data revised from those previously published at monitoring sites. Historical data on water levels, discharges, and withdrawals are presented graphically to indicate variations through time. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for the period 1992-2004 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At six boreholes in Jackass Flats, median water levels for 2004 were slightly higher (0.3-2.7 feet) than their median water levels for 1992-93. At one borehole in Jackass Flats, median water level for 2004 equaled the median water level for 1992-93.

  14. Yearly report, Yucca Mountain project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brune, J.N.

    1992-09-30

    We proposed to (1) Develop our data logging and analysis equipment and techniques for analyzing seismic data from the Southern Great Basin Seismic Network (SGBSN), (2) Investigate the SGBSN data for evidence of seismicity patterns, depth distribution patterns, and correlations with geologic features (3) Repair and maintain our three broad band downhole digital seismograph stations at Nelson, nevada, Troy Canyon, Nevada, and Deep Springs, California (4) Install, operate, and log data from a super sensitive microearthquake array at Yucca Mountain (5) Analyze data from micro-earthquakes relative to seismic hazard at Yucca Mountain.

  15. Forest expansion and climate change in the Mountain Hemlock (Tsuga mertensiana) zone, Lassen Volcanic National Park, California, U.S.A.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, A.H.

    1995-08-01

    The relationship between climate change and the dynamics of ecotonal populations of mountain hemlock (Tsuga mertensiana [Bong.] Carr.) was determined by comparing climate and the age structure of trees from 24 plots and seedlings from 13 plots in the subalpine zone of Lassen Volcanic National Park, California. Tree establishment was greatest during periods with above normal annual and summer temperatures, and normal or above normal precipitation. Seedling establishment was positively correlated with above normal annual and summer temperatures and negatively correlated with April snowpack depth. The different responses of trees and seedlings to precipitation variation is probably related to sitemore » soil moisture conditions. Mountain hemlock populations began to expand in 1842 and establishment increased dramatically after 1880 and peaked during a warm mesic period between 1895 and 1910. The onset of forest expansion coincides with warming that began at the end of the Little Ice Age (1850-1880). These data indicate that stability of the mountain hemlock ecotone is strongly influenced by climate. If warming induced by greenhouse gases does occur as climate models predict, then the structure and dynamics of near timberline forests in the Pacific Northwest will change. 52 refs., 8 figs., 3 tabs.« less

  16. Mono Lake, California

    NASA Image and Video Library

    1994-10-01

    STS068-150-020 (30 September-11 October 1994) --- An exceptionally clear, high-contrast view of the desert basins east and south of Mono Lake, California. Light clouds dot the mountain ranges; the clouds were transparent to radar beams from the Space Radar Laboratory 2 (SRL-2) payload.

  17. Management of Giant Sequoia on Mountain Home Demonstration State Forest

    Treesearch

    Norman J. Benson

    1986-01-01

    Established in 1946, the Mountain Home Demonstration State Forest, Tulare County, California, is managed by the California Department of Forestry. It is a multiple-use forest with recreation as its primary focus, although timber management has always played an important role. Giant sequoia (Sequoiadendron giganteum [Lindl. ] Buchholz) occurs in...

  18. Digital Bedrock Compilation: A Geodatabase Covering Forest Service Lands in California

    NASA Astrophysics Data System (ADS)

    Elder, D.; de La Fuente, J. A.; Reichert, M.

    2010-12-01

    This digital database contains bedrock geologic mapping for Forest Service lands within California. This compilation began in 2004 and the first version was completed in 2005. Second publication of this geodatabase was completed in 2010 and filled major gaps in the southern Sierra Nevada and Modoc/Medicine Lake/Warner Mountains areas. This digital map database was compiled from previously published and unpublished geologic mapping, with source mapping and review from California Geological Survey, the U.S. Geological Survey and others. Much of the source data was itself compilation mapping. This geodatabase is huge, containing ~107,000 polygons and ~ 280,000 arcs. Mapping was compiled from more than one thousand individual sources and covers over 41,000,000 acres (~166,000 km2). It was compiled from source maps at various scales - from ~ 1:4,000 to 1:250,000 and represents the best available geologic mapping at largest scale possible. An estimated 70-80% of the source information was digitized from geologic mapping at 1:62,500 scale or better. Forest Service ACT2 Enterprise Team compiled the bedrock mapping and developed a geodatabase to store this information. This geodatabase supports feature classes for polygons (e.g, map units), lines (e.g., contacts, boundaries, faults and structural lines) and points (e.g., orientation data, structural symbology). Lookup tables provide detailed information for feature class items. Lookup/type tables contain legal values and hierarchical groupings for geologic ages and lithologies. Type tables link coded values with descriptions for line and point attributes, such as line type, line location and point type. This digital mapping is at the core of many quantitative analyses and derivative map products. Queries of the database are used to produce maps and to quantify rock types of interest. These include the following: (1) ultramafic rocks - where hazards from naturally occurring asbestos are high, (2) granitic rocks - increased

  19. DC-8 Airborne Laboratory in flight over Mint Canyon near the San Gabriel Mountains

    NASA Image and Video Library

    1998-02-20

    NASA DC-8 airborne laboratory flying over Mint Canyon near the snow-covered San Gabriel Mountains of California. The mostly white aircraft is silhouetted against the darker mountains in the background.

  20. Altered precipitation patterns with a shift from snow to rain in the Sierra Nevada Mountains of California

    NASA Astrophysics Data System (ADS)

    Pavelsky, T. M.; Sobolowski, S.; Kapnick, S. B.; Barnes, J. B.

    2011-12-01

    Precipitation patterns in mountain environments affect global water resources and major hazards such as floods and landslides. In mid-latitude mountain ranges such as the Sierra Nevada Mountains of California, much of the precipitation falls as snow, which accumulates and acts as a natural reservoir. As in many snowfall-dependent regions, California water infrastructure has been designed to capture warm season snowmelt runoff and transport it to otherwise dry areas where it is needed. Recent studies suggest that anthropogenic climate change is likely to result in a substantial shift from snow to rain in the Sierra Nevada during the 21st century. One mechanism for changing spatial patterns in precipitation that has not received substantial attention arises directly from a phase change associated with winter temperatures rising above freezing with greater frequency. Because the fall speed of rain is greater than snow, it is not advected as far as snow by the prevailing winds. We hypothesize that an extreme change from snow to rain will result in a substantial westward shift in annual precipitation under a warming climate. To test this hypothesis, we conducted two climate simulations over the central Sierra Nevada using the WRF regional climate model version 3.1.1 for the period October 2001 to September 2002. Both simulations used nested domains with grid spacings of 27 km, 9 km, and 3 km. The first simulation is a control run, while the second run is an idealized simulation in which fall speeds for snow and graupel are set to be identical to those of raindrops. Comparison of the two runs suggests that a change from snow to rain would yield substantial changes in the spatial patterns of precipitation. However, these patterns are fully realized only in the 3 km domain. In the 9 km and especially the 27 km domain these patterns are substantially attenuated, likely due to less detailed orographic forcing. In the 3 km domain, precipitation increases substantially on

  1. Groundwater Controls on Vegetation Composition and Patterning in Mountain Meadows

    NASA Astrophysics Data System (ADS)

    Loheide, S. P.; Lowry, C.; Moore, C. E.; Lundquist, J. D.

    2010-12-01

    Mountain meadows are groundwater dependent ecosystems that are hotspots of biodiversity and productivity in the Sierra Nevada of California. Meadow vegetation relies on shallow groundwater during the region’s dry summer growing season. Vegetation composition in this environment is influenced both by 1) oxygen stress that occurs when portions of the root zone are saturated and anaerobic conditions are created that limit root respiration and 2) water stress that occurs when the water table drops and water-limited conditions are created in the root zone. A watershed model that explicitly accounts for snowmelt processes was linked to a fine resolution groundwater flow model of Tuolumne Meadows in Yosemite National Park, CA to simulated spatially distributed water table dynamics. This linked hydrologic model was calibrated to observations from a well observation network for 2006-2008, and validated using data from 2009. A vegetation survey was also conducted at the site in which the three dominant species were identified at more than 200 plots distributed across the meadow. Nonparametric multiplicative regression was performed to create and select the best models for predicting vegetation dominance based on simulated hydrologic regime. The hydrologic niche of three vegetation types representing wet, moist, and dry meadow vegetation communities was best described using both 1) a sum exceedance value calculated as the integral of water table position above a threshold of oxygen stress and 2) a sum deceedance value calculated as the integral of water table position below a threshold of water stress. This linked hydrologic and vegetative modeling framework advances our ability to predict the propagation of human-induced climatic and land-use/-cover changes through the hydrologic system to the ecosystem.

  2. Early Jurassic hydrothermal vent community from the Franciscan Complex, San Rafael Mountains, California

    NASA Astrophysics Data System (ADS)

    Little, Crispin T. S.; Herrington, Richard J.; Haymon, Rachel M.; Danelian, Taniel

    1999-02-01

    The Figueroa massive sulfide deposit, located in Franciscan Complex rocks in the San Rafael Mountains of California, preserves the only known Jurassic hydrothermal vent fossils. The Figueroa fossil assemblage is specimen rich but of low diversity and comprises, in order of decreasing abundance, vestimentiferan worm tubes, the rhynchonellid brachiopod Anarhynchia cf. gabbi and a species of ?nododelphinulid gastropod. The Figueroa fossil organisms lived at a deep-water, high-temperature vent site located on a mid-ocean ridge or seamount at an equatorial latitude. The fossil vent site was then translated northwestward by the motion of the Farallon plate and was subsequently accreted to its present location. An iron-silica exhalite bed, the probable lateral equivalent of the Figueroa deposit, contains abundant filamentous microfossils with two distinct morphologies and probably represents a lower-temperature, diffuse-flow environment. The Figueroa fossil community was subject to the same environmental conditions as modern vent communities, but it is unique among modern and other fossil vent communities in having rhynchonellid brachiopods.

  3. Mineral resources of the Whipple Mountains and Whipple Mountains Addition Wilderness Study Areas, San Bernardino County, California

    USGS Publications Warehouse

    Marsh, Sherman P.; Raines, Gary L.; Diggles, Michael F.; Howard, Keith A.; Simpson, Robert W.; Hoover, Donald B.; Ridenour, James; Moyle, Phillip R.; Willett, Spencee L.

    1988-01-01

    At the request of the U.S. Bureau of Land Management, approximately 85,100 acres of the Whipple Mountains Wilderness Study Area (CDCA-312) and 1,380 acres of the Whipple Mountains Addition Wilderness Study Area (AZ-050-010) were evaluated for identified mineral resources (known) and mineral resource potential (undiscovered). In this report, the Whipple Mountains and Whipple Mountains Addition Wilderness Study Areas are referred to as simply "the study area." Most of the mines and prospects with identified resources in the Whipple Mountains Wilderness Study Area are within areas designated as having mineral resource potential. The area in and around the Turk Silver mine and the Lucky Green group and the area near the northwest boundary of the study area have high mineral resource potential for copper, lead, zinc, gold, and silver. An area along the west boundary of the study area has moderate resource potential for copper lead, zinc, gold, and silver. An area in the east adjacent to the Whipple Mountains Addition Wilderness Study Area has moderate resource potential for copper, gold, and silver resources. One area on the north boundary and one on the southeast boundary of the study area have low mineral resource potential for copper, lead, zinc, gold, and silver. Two areas, one on the north boundary and one inside the east boundary of the study area, have moderate resource potential for manganese. A small area inside the south boundary of the study area has high resource potential for decorative building stone, and the entire study area has low resource potential for sand and gravel and other rock products suitable for construction. Two areas in the eastern part of the study area have low resource potential for uranium. There is no resource potential for oil and gas or geothermal resources in the Whipple Mountains Wilderness Study Area. Sites within the Whipple Mountains Wilderness Study Area with identified resources of copper, gold, silver, manganese and (or

  4. Alluvial Scrub Vegetation in Coastal Southern California

    Treesearch

    Ted L. Hanes; Richard D. Friesen; Kathy Keane

    1989-01-01

    Certain floodplain systems in southern California sustain a unique scrub vegetation rather than riparian woodlands due to a lack of perennial water. Alluvial scrub occurs on outwash fans and riverine deposits along the coastal side of major mountains of southern California. This vegetation type is adapted to severe floods and erosion, nutrient-poor substrates, and the...

  5. Gross volume tables for redwood trees in and near the Redwood National Park

    Treesearch

    Philip G. Langley; Terrell D. Smith; Ralph C. Hall

    1971-01-01

    To aid in appraising timber on lands acquired for the Redwood National Park, in northern California, local gross volume tables were developed for Spaulding and Humboldt log rules. This note includes the Spaulding table. The Humboldt tables is 70 percent of the Spaulding table for each category listed. Readers are cautioned that they tables produced in this study do not...

  6. Fractured Genetic Connectivity Threatens a Southern California Puma (Puma concolor) Population

    PubMed Central

    Ernest, Holly B.; Vickers, T. Winston; Morrison, Scott A.; Buchalski, Michael R.; Boyce, Walter M.

    2014-01-01

    Pumas (Puma concolor; also known as mountain lions and cougars) in southern California live among a burgeoning human population of roughly 20 million people. Yet little is known of the consequences of attendant habitat loss and fragmentation, and human-caused puma mortality to puma population viability and genetic diversity. We examined genetic status of pumas in coastal mountains within the Peninsular Ranges south of Los Angeles, in San Diego, Riverside, and Orange counties. The Santa Ana Mountains are bounded by urbanization to the west, north, and east, and are separated from the eastern Peninsular Ranges to the southeast by a ten lane interstate highway (I-15). We analyzed DNA samples from 97 pumas sampled between 2001 and 2012. Genotypic data for forty-six microsatellite loci revealed that pumas sampled in the Santa Ana Mountains (n = 42) displayed lower genetic diversity than pumas from nearly every other region in California tested (n = 257), including those living in the Peninsular Ranges immediately to the east across I-15 (n = 55). Santa Ana Mountains pumas had high average pairwise relatedness, high individual internal relatedness, a low estimated effective population size, and strong evidence of a bottleneck and isolation from other populations in California. These and ecological findings provide clear evidence that Santa Ana Mountains pumas have been experiencing genetic impacts related to barriers to gene flow, and are a warning signal to wildlife managers and land use planners that mitigation efforts will be needed to stem further genetic and demographic decay in the Santa Ana Mountains puma population. PMID:25295530

  7. Diameter class volume tables for California old-growth timber

    Treesearch

    Duncan Dunning

    1945-01-01

    Tables giving average tree volumes by breast-height diameter classes frequently may be used in timber cruising to save money, time, and men. Such tables may be appropriate in cruises of large areas having many trees in low-intensity cruises warranting the sacrifice in accuracy that results from omission of individual tree height measurements, during wartime when men...

  8. An Analysis of Far-Infrared Radiances Obtained By the First Instrument at Table Mountain through the Use of Radiative Transfer Calculations

    NASA Astrophysics Data System (ADS)

    Kratz, D. P.; Mlynczak, M. G.; Cageao, R.; Johnson, D. G.; Mast, J. C.

    2014-12-01

    The Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument is a Fourier Transform Spectrometer with a moderately high spectral resolution (0.643 cm-1 unapodized). Designed to measure the most energetically important range (100 to 2000 cm-1) of Earth's emitted infrared spectrum, the FIRST instrument was specifically engineered to include the often overlooked far-infrared (100 to 650 cm-1). To date, the FIRST instrument has been deployed on several field missions, both balloon-borne and ground-based, with the most recent deployment occurring at NASA's Jet Propulsion Laboratory Table Mountain Facility in California during the months of September and October 2012. This deployment, located 2,285 meters above the Mojave Desert, provided an opportunity to observe down-welling radiances under low water vapor conditions, with some cases having total column water vapor amounts of approximately 2 to 3 millimeters. Such low water vapor conditions allow for stringent testing of both the FIRST instrument and the radiative transfer methods used to analyze these measurements. This study is focused on the analysis of the FIRST measurements in the far-infrared obtained during clear-sky conditions, and requires an accounting of the uncertainties in both the measured and calculated radiances. The former involves the manner in which calibration and full-sky conditions affect the radiances measured by the FIRST instrument. The latter involves not only differences in the model formulations and the uncertainties in the water vapor and temperature data provided by the radio-sonde measurements, but also the critical differences and uncertainties contained within the input line parameter databases. This study specifically explores the significant differences that can arise in the calculated radiances that are associated with the choice of a line parameter database, and how this choice affects the analysis of the FIRST measurements.

  9. Monitoring of Volcanogenic CO2-Induced Tree Kills with AVIRIS Image Data at Mammoth Mountain, California

    NASA Technical Reports Server (NTRS)

    Hausback, Brian P.; Strong, Mel; Farrar, Chris; Pieri, David

    1998-01-01

    Elevated cold CO2 emissions from the flank of Mammoth Mountain volcano on the southwest rim of the Long Valley Caldera, eastern California, have been the cause of over 100 acres of dead trees in that area since 1990. The source of the CO2 gas is thought to be from one or more magmatic intrusion(s) beneath Mammoth Mountain and is probably related to a period of seismic unrest that began in 1989. The gas rises to the surface probably from depths of a few kilometers, along faults and fracture zones. The gas is at ambient temperature and diffuses from the soil rather than discharging from distinct vents. Typically, soil gas concentrations in tree-kill areas range from 10% to over 90% CO2 by volume, as compared to normal background of < 1% in healthy forest. The gas composition is predominantly CO2 mixed with air (sulfur gases are not elevated), and C and He isotopic ratios are consistent with a magmatic origin for the gas. The total CO2 emission has been estimated at 1200 tons/day, comparable to the emissions at Kilauea. Some of the dead trees are as old as 250 years, suggesting that similar anomalous gas discharge has not occurred over the previous few hundred years. The delta C-13/12 ratio in the Mammoth Mountain CO2 emission averages about -4.5 (PDB standard). This is consistent with a mantle source for the carbon. However, the large volume of the emission suggests that not all of the CO2 is necessarily being generated from the 1989 intrusion. The voluminous gas could be leaking from a vapor-rich zone, capped by an impermeable layer, that was supplied CO2 from degassing of many small magma bodies that intruded beneath the mountain over a period of decades or centuries. Earthquakes in 1989 could have fractured the capping layer and provided pathways for the escape Of CO2 to the surface. Alternatively, some of the CO2 could be derived from contact metamorphism of carbonate rocks intruded by magma. Carbonate-bearing Paleozoic roof pendents crop out in close proximity

  10. Mineral resources of the Sheep Mountain Wilderness study area and the Cucamonga Wilderness and additions, Los Angeles and San Bernardino counties, California

    USGS Publications Warehouse

    Evans, James G.; Pankraatz, Leroy; Ridenour, James; Schmauch, Steven W.; Zilka, Nicholas T.

    1977-01-01

    A mineral survey of the Sheep Mountain Wilderness study area and Cucamonga Wilderness area and additions by the U.S. Geological Survey and Bureau of Mines in 1975 covered about 66,500 acres (26,500 ha) of the San Bernardino and Angeles National Forests in southern California. The two study areas are separated by San Antonio Canyon. The mineral resource potential was evaluated through geological, geochemical, and geophysical studies by the Geological Survey and through evaluation of mines and prospects by the Bureau of Mines.

  11. An example of nighttime drying in the Santa Ana mountains

    Treesearch

    Michael A. Fosberg; Mark J. Schroeder

    1965-01-01

    Humidity patterns near the 500- to 1,000-meter level on California's coastal mountains often show an anomolous decrease in the moisture content at night and early morning. A study in the Santa Ana mountains suggests that nighttime downslope winds provide the most satisfactory explanation for the decrease in moisture because of their effect on the marine layer....

  12. Application of ERTS-1 imagery and underflight photography in the detection and monitoring of forest insect infections in the Sierra Nevada Mountains of California

    NASA Technical Reports Server (NTRS)

    Hall, R. C. (Principal Investigator); Wert, S. L.; Koerber, T. W.

    1974-01-01

    The author has identified the following significant results. Analysis of ERTS-1 imagery with underflight aerial photo support including U-2, in the Sierra Nevada Mountains of California, indicates promising possibilities of detecting and monitoring forest insect outbreaks visually with some mechanical support utilizing the VP-8 image analyzer. Visually, it is possible at a scale of 1:1,000,000 to discriminate between large areas of damaged and undamaged forests; timbered and non-timbered areas; pasture land and cultivated fields; desert and riparian vegetation. At a scale of 1:80,000 it is possible to distinguish among three classes of tree mortality; defoliated and undefoliated areas; non-host mixed conifers; and mountain meadows, rock domes, lakes and glaciers. Machine tests showed significant differences in image densities among various bands and mortality areas.

  13. Infrared Cloud Imager Development for Atmospheric Optical Communication Characterization, and Measurements at the JPL Table Mountain Facility

    NASA Astrophysics Data System (ADS)

    Nugent, P. W.; Shaw, J. A.; Piazzolla, S.

    2013-02-01

    The continuous demand for high data return in deep space and near-Earth satellite missions has led NASA and international institutions to consider alternative technologies for high-data-rate communications. One solution is the establishment of wide-bandwidth Earth-space optical communication links, which require (among other things) a nearly obstruction-free atmospheric path. Considering the atmospheric channel, the most common and most apparent impairments on Earth-space optical communication paths arise from clouds. Therefore, the characterization of the statistical behavior of cloud coverage for optical communication ground station candidate sites is of vital importance. In this article, we describe the development and deployment of a ground-based, long-wavelength infrared cloud imaging system able to monitor and characterize the cloud coverage. This system is based on a commercially available camera with a 62-deg diagonal field of view. A novel internal-shutter-based calibration technique allows radiometric calibration of the camera, which operates without a thermoelectric cooler. This cloud imaging system provides continuous day-night cloud detection with constant sensitivity. The cloud imaging system also includes data-processing algorithms that calculate and remove atmospheric emission to isolate cloud signatures, and enable classification of clouds according to their optical attenuation. Measurements of long-wavelength infrared cloud radiance are used to retrieve the optical attenuation (cloud optical depth due to absorption and scattering) in the wavelength range of interest from visible to near-infrared, where the cloud attenuation is quite constant. This article addresses the specifics of the operation, calibration, and data processing of the imaging system that was deployed at the NASA/JPL Table Mountain Facility (TMF) in California. Data are reported from July 2008 to July 2010. These data describe seasonal variability in cloud cover at the TMF site

  14. Curiosity on Tilt Table with Mast Up

    NASA Image and Video Library

    2011-03-25

    The Mast Camera Mastcam on NASA Mars rover Curiosity has two rectangular eyes near the top of the rover remote sensing mast. This image shows Curiosity on a tilt table NASA Jet Propulsion Laboratory, Pasadena, California.

  15. The California stream quality assessment

    USGS Publications Warehouse

    Van Metre, Peter C.; Egler, Amanda L.; May, Jason T.

    2017-03-06

    In 2017, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project is assessing stream quality in coastal California, United States. The USGS California Stream Quality Assessment (CSQA) will sample streams over most of the Central California Foothills and Coastal Mountains ecoregion (modified from Griffith and others, 2016), where rapid urban growth and intensive agriculture in the larger river valleys are raising concerns that stream health is being degraded. Findings will provide the public and policy-makers with information regarding which human and natural factors are the most critical in affecting stream quality and, thus, provide insights about possible approaches to protect the health of streams in the region.

  16. Geophysical Framework of a Rare Earth Element Enriched Terrane, Mountain Pass, California

    NASA Astrophysics Data System (ADS)

    Denton, K. M.; Ponce, D. A.; Peacock, J.; Miller, D. M.; Miller, J. S.

    2016-12-01

    Carbonatite ore deposits continue to be the primary source for rare earth elements (REEs), however large viable REE ore deposits are uncommon. The Mountain Pass carbonatite deposit, located in the eastern Mojave Desert of California, is the largest economic deposit of light REEs in North America. A 1.417 Ga ultrapotassic suite (shonkinite, syenite, and granite) and a 1.375 Ga barite-bastnasite-rich carbonatite (sovite) ore deposit comprise the enclave of REE-enriched outcrops and dikes that occupy a narrow ( 3 km) zone of 1.7 Ga gneiss extending at least 10-km to the southeast from southern Clark Mountain. Modeling of gravity, magnetic, and magnetotelluric (MT) data reveals subsurface features that form the structural framework of the REE terrane. The carbonatite and ultrapotassic mafic suite is associated with a local gravity high that is superimposed on a 4 km-wide gravity terrace, likely related to less dense granitic gneiss basement. Although physical property data indicate that the intrusive suite and carbonatite are essentially and nonmagnetic, aeromagnetic data indicate that these rocks occur along the eastern edge of a prominent north-northwest trending aeromagnetic high. This relationship suggests that they may have been preferentially emplaced along a zone of weakness or fault. The source of the magnetic high is 2-3 km below the surface and coincides with a relatively electrically conductive (3 orders of magnitude higher than surrounding rock) feature. MT data indicate that the western edge of the magnetic feature could be connected to a deeper ( 8 km) conductive feature related to possible intrusions and/or hydrothermal systems. The lack of a magnetic signature of the REE terrane can be explained by alteration of magnetite, given that the terrane lies within a broader alteration zone and observed magnetic low. If so, such an alteration event, capable of remobilizing rare earth elements, likely occurred during or after emplacement of the intrusive suite

  17. Preliminary geologic map of the Oat Mountain 7.5' quadrangle, Southern California: a digital database

    USGS Publications Warehouse

    Yerkes, R.F.; Campbell, Russell H.

    1995-01-01

    This database, identified as "Preliminary Geologic Map of the Oat Mountain 7.5' Quadrangle, southern California: A Digital Database," has been approved for release and publication by the Director of the USGS. Although this database has been reviewed and is substantially complete, the USGS reserves the right to revise the data pursuant to further analysis and review. This database is released on condition that neither the USGS nor the U. S. Government may be held liable for any damages resulting from its use. This digital map database is compiled from previously published sources combined with some new mapping and modifications in nomenclature. The geologic map database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U. S. Geological Survey. For detailed descriptions of the units, their stratigraphic relations and sources of geologic mapping consult Yerkes and Campbell (1993). More specific information about the units may be available in the original sources.

  18. GIS tool for California state legislature electoral history

    NASA Astrophysics Data System (ADS)

    Artham, Swathi

    The California State Legislature contains two bodies consisting of the lower house, the California State Assembly, with eighty members, and the upper house, the California State Senate, with forty members. Elections are held for every two years for both Senate and Assembly. The terms of the Senators are staggered so that half the membership is elected every two years, whereas all the Assembly members are elected every two years. The electoral district boundaries vary after every 10-year census. My main objective is to provide a summary of both California State Senate and California State Assembly election results in a single GIS tool, from the years 1970 to 2012. This tool provides information about different trends in the California State Senate and State Assembly elections along the years. This tool was designed to help students, and teachers to interactively learn about the California State Legislature elections. Users can view the election results by selecting a particular year for Senate or Assembly, which results in adding a new layer on the map with a coloring scheme for better understanding of change of parties; red for Republicans, blue for Democrats and green for Independents. Users can click on any district shown on the map using a hotlink tool to see the electoral trends for the districts for the past years. This application provides a powerful Stored Query Language (SQL) query option to enter queries and get election results in the form of tables with various fields. This data can be further used to aid other analysis as per user requirements. This tool also provides various visual statistics using graphs and tables for voter turnout, number of candidates won by each party, number of seats changed from one party to another. It also features a color matrix table that helps users to see trends in California State Senate and Assembly. Every two-year election results are shown in the form of graphs and tables for better understanding by the user. The tool

  19. Unraveling the dynamics of magmatic CO2 degassing at Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    Peiffer, Loïc; Wanner, Christoph; Lewicki, Jennifer L.

    2018-02-01

    The accumulation of magmatic CO2 beneath low-permeability barriers may lead to the formation of CO2-rich gas reservoirs within volcanic systems. Such accumulation is often evidenced by high surface CO2 emissions that fluctuate over time. The temporal variability in surface degassing is believed in part to reflect a complex interplay between deep magmatic degassing and the permeability of degassing pathways. A better understanding of the dynamics of CO2 degassing is required to improve monitoring and hazards mitigation in these systems. Owing to the availability of long-term records of CO2 emissions rates and seismicity, Mammoth Mountain in California constitutes an ideal site towards such predictive understanding. Mammoth Mountain is characterized by intense soil CO2 degassing (up to ∼1000 t d-1) and tree kill areas that resulted from leakage of CO2 from a CO2-rich gas reservoir located in the upper ∼4 km. The release of CO2-rich fluids from deeper basaltic intrusions towards the reservoir induces seismicity and potentially reactivates faults connecting the reservoir to the surface. While this conceptual model is well-accepted, there is still a debate whether temporally variable surface CO2 fluxes directly reflect degassing of intrusions or variations in fault permeability. Here, we report the first large-scale numerical model of fluid and heat transport for Mammoth Mountain. We discuss processes (i) leading to the initial formation of the CO2-rich gas reservoir prior to the occurrence of high surface CO2 degassing rates and (ii) controlling current CO2 degassing at the surface. Although the modeling settings are site-specific, the key mechanisms discussed in this study are likely at play at other volcanic systems hosting CO2-rich gas reservoirs. In particular, our model results illustrate the role of convection in stripping a CO2-rich gas phase from a rising hydrothermal fluid and leading to an accumulation of a large mass of CO2 (∼107-108 t) in a shallow

  20. Unraveling the dynamics of magmatic CO2 degassing at Mammoth Mountain, California

    USGS Publications Warehouse

    Pfeiffer, Loic; Wanner, Christoph; Lewicki, Jennifer L.

    2018-01-01

    The accumulation of magmatic CO2 beneath low-permeability barriers may lead to the formation of CO2-rich gas reservoirs within volcanic systems. Such accumulation is often evidenced by high surface CO2 emissions that fluctuate over time. The temporal variability in surface degassing is believed in part to reflect a complex interplay between deep magmatic degassing and the permeability of degassing pathways. A better understanding of the dynamics of CO2 degassing is required to improve monitoring and hazards mitigation in these systems. Owing to the availability of long-term records of CO2 emissions rates and seismicity, Mammoth Mountain in California constitutes an ideal site towards such predictive understanding. Mammoth Mountain is characterized by intense soil CO2 degassing (up to ∼1000 t d−1) and tree kill areas that resulted from leakage of CO2 from a CO2-rich gas reservoir located in the upper ∼4 km. The release of CO2-rich fluids from deeper basaltic intrusions towards the reservoir induces seismicity and potentially reactivates faults connecting the reservoir to the surface. While this conceptual model is well-accepted, there is still a debate whether temporally variable surface CO2 fluxes directly reflect degassing of intrusions or variations in fault permeability. Here, we report the first large-scale numerical model of fluid and heat transport for Mammoth Mountain. We discuss processes (i) leading to the initial formation of the CO2-rich gas reservoir prior to the occurrence of high surface CO2 degassing rates and (ii) controlling current CO2 degassing at the surface. Although the modeling settings are site-specific, the key mechanisms discussed in this study are likely at play at other volcanic systems hosting CO2-rich gas reservoirs. In particular, our model results illustrate the role of convection in stripping a CO2-rich gas phase from a rising hydrothermal fluid and leading to an accumulation of a large mass of CO2 (∼107–108

  1. Genesis of recent silicic magmatism in the Medicine Lake Highland, California - Evidence from cognate inclusions found at Little Glass Mountain

    NASA Technical Reports Server (NTRS)

    Mertzman, S. A.; Williams, R. J.

    1981-01-01

    Sparse, granular inclusions of early-formed minerals found within the Little Glass Mountain rhyolite flows in northern California are shown to provide a means of characterizing the physical conditions, at depth, beneath the Medicine Lake Highland during the latest phase of volcanic activity. Mineral compositions, in combination with thermodynamic calculations and experiments, suggest crystalization at a pressure of 5,200 bars within a 966-836 C temperature range; implying that mineral segregation and equilibration occurred at a depth of 15-18 km beneath the surface. In addition, mass balance calculations indicate that the Medicine Lake flow is a close approximation to the parental magma for the latest silicic lavas.

  2. Smog Nitrogen and the Rapid Acidification of Forest Soil, San Bernardino Mountains, Southern California

    PubMed Central

    Wood, Yvonne A.; Fenn, Mark; Meixner, Thomas; Shouse, Peter J.; Breiner, Joan; Allen, Edith; Wu, Laosheng

    2007-01-01

    We report the rapid acidification of forest soils in the San Bernardino Mountains of southern California. After 30 years, soil to a depth of 25 cm has decreased from a pH (measured in 0.01 M CaCl2) of 4.8 to 3.1. At the 50-cm depth, it has changed from a pH of 4.8 to 4.2. We attribute this rapid change in soil reactivity to very high rates of anthropogenic atmospheric nitrogen (N) added to the soil surface (72 kg ha–1 year–1) from wet, dry, and fog deposition under a Mediterranean climate. Our research suggests that a soil textural discontinuity, related to a buried ancient landsurface, contributes to this rapid acidification by controlling the spatial and temporal movement of precipitation into the landsurface. As a result, the depth to which dissolved anthropogenic N as nitrate (NO3) is leached early in the winter wet season is limited to within the top ~130 cm of soil where it accumulates and increases soil acidity. PMID:17450295

  3. Use of digital Munsell color space to assist interretation of imaging spectrometer data: Geologic examples from the northern Grapevine Mountains, California and Nevada

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Knepper, D. H., Jr.; Clark, R. N.

    1986-01-01

    Techniques using Munsell color transformations were developed for reducing 128 channels (or less) of Airborne Imaging Spectrometer (AIS) data to a single color-composite-image suitable for both visual interpretation and digital analysis. Using AIS data acquired in 1984 and 1985, limestone and dolomite roof pendants and sericite-illite and other clay minerals related to alteration were mapped in a quartz monzonite stock in the northern Grapevine Mountains of California and Nevada. Field studies and laboratory spectral measurements verify the mineralogical distributions mapped from the AIS data.

  4. Conifer Growth Response to Snowpack across an Elevation Gradient in Northern Sierra Nevada Mountains, California

    NASA Astrophysics Data System (ADS)

    Lepley, K. S.; Touchan, R.; Meko, D. M.; Graham, R.; Shamir, E.

    2016-12-01

    The United States depends heavily on the agricultural resources of the state of California, and water is the key factor in sustaining these resources. Around a third of the state's water supply originates from snow in the Sierra Nevada Mountains. Managing this resource demands understanding of climatic variability on time-scales of decades to centuries to plan for drought conditions in the region. Tree-ring growth spanning several centuries can serve as proxy records and provide the knowledge upon which to base sound decisions for water-resource management. Here we will discuss the growth-response of six tree species to April 1st snow-water equivalent (SWE) across an elevation gradient of 1500 m to 2525 m. Higher elevation (ca. 1890 m to 2525 m) tree-ring chronologies exhibit significant correlation (r = 0.45 to r = 0.57, p < 0.01) with April 1st SWE during the 20th century. Abies magnifica (ABMA), Tsuga mertensiana, and Calocedrus decurrens exhibit a positive response to prior-year snowpack, while Abies concolor responds positively to same-year snowpack. Lower elevation Pinus ponderosa (PIPO) and Juniperus occidentalis chronologies show no significant correlation with SWE, however PIPO responds positively at a site 500 m higher in elevation. In contrast, ABMA chronologies from two sites with a 500 m elevation difference exhibit the same response to snowpack. The strong relationship between annual tree-ring growth and April 1st SWE in these tree species opens possibilities of exploring historic snowpack patterns and elucidating dendroclimatic relationships in the mountainous west.

  5. Long Period Earthquakes Beneath California's Young and Restless Volcanoes

    NASA Astrophysics Data System (ADS)

    Pitt, A. M.; Dawson, P. B.; Shelly, D. R.; Hill, D. P.; Mangan, M.

    2013-12-01

    The newly established USGS California Volcano Observatory has the broad responsibility of monitoring and assessing hazards at California's potentially threatening volcanoes, most notably Mount Shasta, Medicine Lake, Clear Lake Volcanic Field, and Lassen Volcanic Center in northern California; and Long Valley Caldera, Mammoth Mountain, and Mono-Inyo Craters in east-central California. Volcanic eruptions occur in California about as frequently as the largest San Andreas Fault Zone earthquakes-more than ten eruptions have occurred in the last 1,000 years, most recently at Lassen Peak (1666 C.E. and 1914-1917 C.E.) and Mono-Inyo Craters (c. 1700 C.E.). The Long Valley region (Long Valley caldera and Mammoth Mountain) underwent several episodes of heightened unrest over the last three decades, including intense swarms of volcano-tectonic (VT) earthquakes, rapid caldera uplift, and hazardous CO2 emissions. Both Medicine Lake and Lassen are subsiding at appreciable rates, and along with Clear Lake, Long Valley Caldera, and Mammoth Mountain, sporadically experience long period (LP) earthquakes related to migration of magmatic or hydrothermal fluids. Worldwide, the last two decades have shown the importance of tracking LP earthquakes beneath young volcanic systems, as they often provide indication of impending unrest or eruption. Herein we document the occurrence of LP earthquakes at several of California's young volcanoes, updating a previous study published in Pitt et al., 2002, SRL. All events were detected and located using data from stations within the Northern California Seismic Network (NCSN). Event detection was spatially and temporally uneven across the NCSN in the 1980s and 1990s, but additional stations, adoption of the Earthworm processing system, and heightened vigilance by seismologists have improved the catalog over the last decade. LP earthquakes are now relatively well-recorded under Lassen (~150 events since 2000), Clear Lake (~60 events), Mammoth Mountain

  6. A telemetric study of the movement patterns and habitat use of Rana muscosa, the mountain yellow-legged frog, in a high-elevation basin in Kings Canyon National Park, California

    Treesearch

    K.R. Matthews; K.L. Pope

    1999-01-01

    ABSTRACTS.–In a high-elevation (3470 m) lake basin (upper Dusy Basin) in Kings Canyon National Park, California, we used radio transmitters on 24 mountain yellow-legged frogs (Rana muscosa) to gather basic information on their movement patterns. Rana muscosa have declined throughout their range in the Sierra Nevada and restoration plans require information on their...

  7. Middle Miocene Displacement Along the Rand Detachment Fault, Rand Mountains

    NASA Astrophysics Data System (ADS)

    Shulaker, D. Z.; Grove, M. J.

    2015-12-01

    Laramide flat-slab subduction extinguished Sierra Nevada pluton emplacement in southern California by ca. 85 Ma as trench-derived sediments were underthrust and accreted beneath arc basement. These relationships are well illustrated in the Rand Mountains, situated just south of the Garlock fault in the northwestern Mojave Desert. Here, accreted rocks within the Rand Mountains are referred to as Rand Schist. The Rand Detachment fault juxtaposes Rand Schist beneath 87 Ma Sierran granitoids. New zircon (U-Th)/He age results from schist and basement juxtaposed across the Rand Detachment fault are 15 ± 3 Ma and 30 ± 5 Ma, respectively. When considered within the context of previously reported thermochronology from the Rand Mountains, our data shows that the Rand Detachment fault in the Rand Mountains is a middle Miocene fault that facilitated extension of the northwest Mojave Desert. This timing is in temporal and spatial agreement with regional extension throughout the Mojave triggered by northern migration of the slab window after collision of the Mendocino Triple Junction with the southern California margin. Further evidence of slab-window-related magmatism in the easternmost Rand Mountains is provided by the 19 Ma Yellow Aster pluton and 19 Ma rhyolite porphyry. It is possible that Miocene extension re-activated an older structure within the Rand Mountains. For example, a similar low-angle fault juxtaposing schist and basement present in the San Emigdio Mountains is believed to have accommodated large scale Late Cretaceous displacement, exhuming Rand Schist and overlying deepest Sierran basement to shallow crustal levels by 77 Ma [1]. However, 68-72 Ma phengite cooling ages and other thermochronology from the Rand Mountains indicates that any pre-Miocene extension in this area must postdate that in the San Emigdio Mountains. [1] Chapman et al., 2012. Geosphere, 8, 314-341.

  8. Geologic Map of the Sheep Hole Mountains 30' x 60' Quadrangle, San Bernardino and Riverside Counties, California

    USGS Publications Warehouse

    Howard, Keith A.

    2002-01-01

    This data set describes and maps the geology of the Sheep Hole Mountains 30' x 60' quadrangle in southern California. The quadrangle covers an area of the Mojave Desert characterized by desert ranges separated by broad basins. Ranges include parts of the Old Woman, Ship, Iron, Coxcomb, Pinto, Bullion, and Calumet mountains as well as Lead Mountain and the Kilbeck Hills. Basins include part of Ward Valley, part of Cadiz Valley including Cadiz Lake playa, and broad valleys occupied by the Bristol Lake and Dale Lake playas. Bedrock geologic units in the ranges range in age from Proterozoic to Quaternary. The valleys expose Neogene and Quaternary deposits. Proterozoic granitoids in the quadrangle include the Early Proterozoic Fenner Gneiss, Kilbeck Gneiss, Dog Wash Gneiss, granite of Joshua Tree, the (highly peraluminous granite) gneiss of Dry Lakes valley, and a Middle Proterozoic granite. Proterozoic supracrustal rocks include the Pinto Gneiss of Miller (1938) and the quartzite of Pinto Mountain. Early Proterozoic orogeny left an imprint of metamorphic mineral assemblages and fabrics in the older rocks. A Cambrian to Triassic sequence deposited on the continental shelf lies above a profound nonconformity developed on the Proterozoic rocks. Small metamorphosed remnants of this sequence in the quadrangle include rocks correlated to the Tapeats, Bright Angel, Bonanza King, Redwall, Bird Spring, Hermit, Coconino, Kaibab, and Moenkopi formations. The Dale Lake Volcanics (Jurassic), and the McCoy Mountains Formation of Miller (1944)(Cretaceous and Jurassic?) are younger Mesozoic synorogenic supracrustal rocks in the quadrangle. Mesozoic intrusions form much of the bedrock in the quadrangle, and represent a succession of magmatic arcs. The oldest rock is the Early Triassic quartz monzonite of Twentynine Palms. Extensive Jurassic magmatism is represented by large expanses of granitoids that range in composition from gabbro to syenogranite. They include the Virginia May

  9. Holocene and latest Pleistocene oblique dextral faulting on the southern Inyo Mountains fault, Owens Lake basin, California

    USGS Publications Warehouse

    Bacon, S.N.; Jayko, A.S.; McGeehin, J.P.

    2005-01-01

    The Inyo Mountains fault (IMF) is a more or less continuous range-front fault system, with discontinuous late Quaternary activity, at the western base of the Inyo Mountains in Owens Valley, California. The southern section of the IMF trends ???N20??-40?? W for at least 12 km at the base of and within the range front near Keeler in Owens Lake basin. The southern IMF cuts across a relict early Pliocene alluvial fan complex, which has formed shutter ridges and northeast-facing scarps, and which has dextrally offset, well-developed drainages indicating long-term activity. Numerous fault scarps along the mapped trace are northeast-facing, mountain-side down, and developed in both bedrock and younger alluvium, indicating latest Quaternary activity. Latest Quaternary multiple- and single-event scarps that cut alluvium range in height from 0.5 to 3.0 m. The penultimate event on the southern IMF is bracketed between 13,310 and 10,590 cal years B.P., based on radiocarbon dates from faulted alluvium and fissure-fill stratigraphy exposed in a natural wash cut. Evidence of the most recent event is found at many sites along the mapped fault, and, in particular, is seen in an ???0.5-m northeast-facing scarp and several right-stepping en echelon ???0.5-m-deep depressions that pond fine sediment on a younger than 13,310 cal years B.P. alluvial fan. A channel that crosses transverse to this scarp is dextrally offset 2.3 ?? 0.8 m, providing a poorly constrained oblique slip rate of 0.1-0. 3 m/ k.y. The identified tectonic geomorphology and sense of displacement demonstrate that the southern IMF accommodates predominately dextral slip and should be integrated into kinematic fault models of strain distribution in Owens Valley.

  10. The San Gabriel mountains bright reflective zone: Possible evidence of young mid-crustal thrust faulting in southern California

    USGS Publications Warehouse

    Ryberg, T.; Fuis, G.S.

    1998-01-01

    During the Los Angeles Region Seismic Experiment (LARSE), a reflection/retraction survey was conducted along a line extending northeastward from Seal Beach, California, to the Mojave Desert, crossing the Los Angeles basin and San Gabriel Mountains. Shots and receivers were spaced most densely through the San Gabriel Mountains for the purpose of obtaining a combined reflection and refraction image of the crust in that area. A stack of common-midpoint (CMP) data reveals a bright reflective zone, 1-s thick, that dominates the stack and extends throughout most of the mid-crust of the San Gabriel Mountains. The top of this zone ranges in depth from 6 s (???18-km depth) in the southern San Gabriel Mountains to 7.5 s (???23-km depth) in the northern San Gabriel Mountains. The zone bends downward beneath the surface traces of the San Gabriel and San Andreas faults. It is brightest between these two faults, where it is given the name San Gabriel Mountains 'bright spot' (SGMBS). and becomes more poorly defined south of the San Gabriel fault and north of the San Andreas fault. The polarity of the seismic signal at the top of this zone is clearly negative, and our analysis suggests it represents a negative velocity step. The magnitude of the velocity step is approximately 1.7 km/s. In at least one location, an event with positive polarity can be observed 0.2 s beneath the top of this zone, indicating a thickness of the order of 500 m for the low-velocity zone at this location. Several factors combine to make the preferred interpretation of this bright reflective zone a young fault zone, possibly a 'master' decollement. (1) It represents a significant velocity reduction. If the rocks in this zone contain fluids, such a reduction could be caused by a differential change in fluid pressure between the caprock and the rocks in the SGMBS; near-lithostatic fluid pressure is required in the SGMBS. Such differential changes are believed to occur in the neighborhood of active fault

  11. Structure and Velocities of the Northeastern Santa Cruz Mountains and the Western Santa Clara Valley, California, from the SCSI-LR Seismic Survey

    USGS Publications Warehouse

    Catchings, R.D.; Goldman, M.R.; Gandhok, G.

    2006-01-01

    Introduction: The Santa Clara Valley is located in the southern San Francisco Bay area of California and generally includes the area south of the San Francisco Bay between the Santa Cruz Mountains on the southwest and the Diablo Ranges on the northeast. The area has a population of approximately 1.7 million including the city of San Jose, numerous smaller cities, and much of the high-technology manufacturing and research area commonly referred to as the Silicon Valley. Major active strands of the San Andreas Fault system bound the Santa Clara Valley, including the San Andreas fault to the southwest and the Hayward and Calaveras faults to the northeast; related faults likely underlie the alluvium of the valley. This report focuses on subsurface structures of the western Santa Clara Valley and the northeastern Santa Cruz Mountains and their potential effects on earthquake hazards and ground-water resource management in the area. Earthquake hazards and ground-water resources in the Santa Clara Valley are important considerations to California and the Nation because of the valley's preeminence as a major technical and industrial center, proximity to major earthquakes faults, and large population. To assess the earthquake hazards of the Santa Clara Valley better, the U.S. Geological Survey (USGS) has undertaken a program to evaluate potential earthquake sources and potential effects of strong ground shaking within the valley. As part of that program, and to better assess water resources of the valley, the USGS and the Santa Clara Valley Water District (SCVWD) began conducting collaborative studies to characterize the faults, stratigraphy, and structures beneath the alluvial cover of the Santa Clara Valley in the year 2000. Such geologic features are important to both agencies because they directly influence the availability and management of groundwater resources in the valley, and they affect the severity and distribution of strong shaking from local or regional

  12. Space Radar Image of Mammoth Mountain, California

    NASA Image and Video Library

    1999-05-01

    These two false-color composite images of the Mammoth Mountain area in the Sierra Nevada Mountains, Calif., show significant seasonal changes in snow cover. The image at left was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 67th orbit on April 13, 1994. The image is centered at 37.6 degrees north latitude and 119 degrees west longitude. The area is about 36 kilometers by 48 kilometers (22 miles by 29 miles). In this image, red is L-band (horizontally transmitted and vertically received) polarization data; green is C-band (horizontally transmitted and vertically received) polarization data; and blue is C-band (horizontally transmitted and received) polarization data. The image at right was acquired on October 3, 1994, on the space shuttle Endeavour's 67th orbit of the second radar mission. Crowley Lake appears dark at the center left of the image, just above or south of Long Valley. The Mammoth Mountain ski area is visible at the top right of the scene. The red areas correspond to forests, the dark blue areas are bare surfaces and the green areas are short vegetation, mainly brush. The changes in color tone at the higher elevations (e.g. the Mammoth Mountain ski area) from green-blue in April to purple in September reflect changes in snow cover between the two missions. The April mission occurred immediately following a moderate snow storm. During the mission the snow evolved from a dry, fine-grained snowpack with few distinct layers to a wet, coarse-grained pack with multiple ice inclusions. Since that mission, all snow in the area has melted except for small glaciers and permanent snowfields on the Silver Divide and near the headwaters of Rock Creek. On October 3, 1994, only discontinuous patches of snow cover were present at very high elevations following the first snow storm of the season on September 28, 1994. For investigations in hydrology and land-surface climatology, seasonal snow

  13. Paleomagnetism of Jurassic radiolarian chert above the Coast Range ophiolite at Stanley Mountain, California, and implications for its paleogeographic origins

    USGS Publications Warehouse

    Hagstrum, J.T.; Murchey, B.L.

    1996-01-01

    Upper Jurassic red tuffaceous chert above the Coast Range ophiolite at Stanley Mountain, California (lat 35??N, long 240??E), contains three components of remanent magnetization. The first component (A; removed by ???100-???200 ??C) has a direction near the present-day field for southern California and is probably a recently acquired thermoviscous magnetization. A second component (B; removed between ???100 and ???600 ??C) is identical to that observed by previous workers in samples of underlying pillow basalt and overlying terrigenous sedimentary rocks. This component has constant normal polarity and direction throughout the entire section, although these rocks were deposited during a mixed polarity interval of the geomagnetic field. The B magnetization, therefore, is inferred to be a secondary magnetization acquired during accretion, uplift, or Miocene volcanism prior to regional clockwise rotation. The highest temperature component (C; removed between ???480 and 680 ??C) is of dual polarity and is tentatively interpreted as a primary magnetization, although it fails a reversal test possibly due to contamination by B. Separation of the B and C components is best shown by samples with negative-inclination C directions, and a corrected mean direction using only these samples indicates an initial paleolatitude of 32??N ?? 8??. Paleobiogeographic models relating radiolarian faunal distribution patterns to paleolatitude have apparently been incorrectly calibrated using the overprint B component. Few other paleomagnetic data have been incorporated in these models, and faunal distribution patterns are poorly known and mostly unqualified. The available data, therefore, do not support formation of the Coast Range ophiolite at Stanley Mountain near the paleoequator or accretion at ???10??N paleolatitude, as has been previously suggested based on paleomagnetic data, but indicate deposition near expected paleolatitudes for North America (35??N ?? 4??) during Late Jurassic

  14. Atmospheric transport of organophosphate pesticides from California's Central Valley to the Sierra Nevada Mountains

    USGS Publications Warehouse

    Zabik, John M.; Seiber, James N.

    1993-01-01

    Atmospheric transport of organophosphate pesticides from California's Central Valley to the Sierra Nevada mountains was assessed by collecting air- and wet-deposition samples during December, January, February, and March, 1990 to 1991. Large-scale spraying of these pesticides occurs during December and January to control insect infestations in valley orchards. Sampling sites were placed at 114- (base of the foothills), 533-, and 1920-m elevations. Samples acquired at these sites contained chlorpyrifos [phosphorothioic acid; 0,0-diethyl 0-(3,5,6-trichloro-2-pyridinyl) ester], parathion [phosphorothioic acid, 0-0-diethylo-(4-nitrophenyl) ester], diazinon {phosphorothioic acid, 0,0-diethyl 0-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl] ester} diazinonoxon {phosphoric acid, 0,0-diethyl 0-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl] ester}, and paraoxon [phosphoric acid, 0,0-diethyl 0-(4-nitrophenyl) ester] in both air and wet deposition samples. Air concentrations of chloropyrifos, diazinon and parathion ranged from 13 to 13 000 pg/m3 at the base of the foothills. At 533-m air concentrations were below the limit of quantification (1.4 pg/m3) to 83 pg/m3 and at 1920 m concentrations were below the limit of quantification. Concentrations in wet deposition varied with distance and elevation from the Central Valley. Rainwater concentrations at the base of the foot hills ranged from 16 to 7600 pg/mL. At 533-m rain and snow water concentrations ranged from below the limit of quantification (1.3 pg/mL) to 140 pg/mL and at 1920 m concentrations ranged from below the limit of quantification to 48 pg/mL. These findings indicate that atmospheric transport of pesticides applied in the valley to the Sierra Nevada mountains is occurring, but the levels decrease as distance and elevation increase from the valley floor.

  15. Use of curlleaf mountain-mahogany by mule deer on a transition range.

    Treesearch

    J. Edward Dealy; Paul J. Edgerton; Wayne G. Williams

    1986-01-01

    Using the pellet-group sampling method, we concluded that migrating mule deer showed no preference in use between two ratios of curlleaf mountain-mahogany cover and openings on a northern California transition range. Where there is a need to develop forage openings in transition habitats dominated by dense thickets of curlleaf mountain-mahogany, manipulation of cover...

  16. STS-28 Columbia, OV-102, landing at Edwards Air Force Base (EAFB) California

    NASA Image and Video Library

    1989-08-13

    STS-28 Columbia, Orbiter Vehicle (OV) 102, approaches Runway 17 dry lake bed at Edwards Air Force Base (EAFB) California and is photographed just moments before main landing gear (MLG) touchdown. In the distance, are peaks of Southern California mountain range.

  17. Predicting landslides related to clearcut logging, northwestern California, U.S.A.

    Treesearch

    David J. Furbish; Raymond M. Rice

    1983-01-01

    Abstract - Landslides related to clearcut logging are a significant source of erosion in the mountains of northwestern California. Forest managers, therefore, frequently must include assessments of landslide risk in their land-use plans. A quantitative method is needed to predict such risk over large areas of rugged mountainous terrain. From air photographs, data...

  18. The diagnostic plot analysis of artesian aquifers with case studies in Table Mountain Group of South Africa

    NASA Astrophysics Data System (ADS)

    Sun, Xiaobin; Xu, Yongxin; Lin, Lixiang

    2015-05-01

    Parameter estimates of artesian aquifers where piezometric head is above ground level are largely made through free-flowing and recovery tests. The straight-line method proposed by Jacob-Lohman is often used for interpretation of flow rate measured at flowing artesian boreholes. However, the approach fails to interpret the free-flowing test data from two artesian boreholes in the fractured-rock aquifer in Table Mountain Group (TMG) of South Africa. The diagnostic plot method using the reciprocal rate derivative is adapted to evaluate the artesian aquifer properties. The variation of the derivative helps not only identify flow regimes and discern the boundary conditions, but also facilitates conceptualization of the aquifer system and selection of an appropriate model for data interpretation later on. Test data from two free-flowing tests conducted in different sites in TMG are analysed using the diagnostic plot method. Based on the results, conceptual models and appropriate approaches are developed to evaluate the aquifer properties. The advantages and limitations of using the diagnostic plot method on free-flowing test data are discussed.

  19. A ranking system for prescribed burn prioritization in Table Mountain National Park, South Africa.

    PubMed

    Cowell, Carly Ruth; Cheney, Chad

    2017-04-01

    To aid prescribed burn decision making in Table Mountain National Park, in South Africa a priority ranking system was tested. Historically a wildfire suppression strategy was adopted due to wildfires threatening urban areas close to the park, with few prescribed burns conducted. A large percentage of vegetation across the park exceeded the ecological threshold of 15 years. We held a multidisciplinary workshop, to prioritize areas for prescribed burning. Fire Management Blocks were mapped and assessed using the following seven categories: (1) ecological, (2) management, (3) tourism, (4) infrastructure, (5) invasive alien vegetation, (6) wildland-urban interface and (7) heritage. A priority ranking system was used to score each block. The oldest or most threatened vegetation types were not necessarily the top priority blocks. Selected blocks were burnt and burning fewer large blocks proved more effective economically, ecologically and practically due to the limited burning days permitted. The prioritization process was efficient as it could be updated annually following prescribed burns and wildfire incidents. Integration of prescribed burn planning and wildfire suppression strategies resulted in a reduction in operational costs. We recommend protected areas make use of a priority ranking system developed with expert knowledge and stakeholder engagement to determine objective prescribed burn plans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Conodont and Radiolarian Data from the De Long Mountains Quadrangle and Adjacent Areas, Northern Alaska

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Anita G.; Blome, Charles D.; Young, Lorne E.

    2006-01-01

    INTRODUCTION This report presents biostratigraphic data from 289 collections at 189 localities in the De Long Mountains, Misheguk Mountain, and Noatak quadrangles (fig. 1); most of these data have never been previously published. The collections were made during studies of the Red Dog massive sulfide deposit in 1998?2004 and in support of regional mapping projects in 1979, 1981, 1983, and 1997?98. The collections?mostly conodonts and some radiolarians?tightly constrain the age of many stratigraphic units of Devonian through Triassic age exposed within the study area, and provide additional data on the depositional environments and thermal history of these rocks. The data are presented in a series of tables, organized by fossil type, stratigraphic unit, and location. Tables 1?12 contain conodont data, mostly from the De Long Mountains quadrangle. All of these collections were initially examined, or were reevaluated, from 1997 through 2004, and complete faunal lists are given for all samples. Table 13 lists ages and conodont color alteration indices (CAIs) of 27 collections from 24 localities in the Noatak quadrangle; updated faunal lists were not prepared for these samples. Radiolarian data?all from the De Long Mountains quadrangle?are given in table 14; these collections were analyzed between 1998 and 2003. Collection localities are shown in four maps (sheets 1, 2). Map 1 (sheet 1) shows all outcrop samples from the De Long Mountains and western Misheguk Mountain quadrangle (locs. 1-121). Maps 2?4 (sheets 1, 2) show all drill hole sample localities; samples come from the Su-Lik deposit and in and around the Anarraaq deposit (map 2, locs. 122?135), in and adjacent to the Red Dog deposits (Paalaaq, Aqqaluk, Main, and Qanaiyaq) (map 3, locs. 136?158), and from drill holes along the Port Road in the Noatak quadrangle (map 4, locs. 159?160). Map 4 (sheet 2) also shows all outcrop samples from the Noatak quadrangle (locs. 161?189). The text summarizes the lithofacies

  1. 76 FR 53695 - Notice of Public Meeting, Santa Rosa and San Jacinto Mountains National Monument Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-29

    ... Mountains National Monument Advisory Committee (MAC) will meet as indicated below. DATES: September 19, 2011... Room, 38686 El Cerrito Road, Palm Desert, California. FOR FURTHER INFORMATION CONTACT: Jim Foote, Monument Manager, Santa Rosa and San Jacinto Mountains National Monument, 1201 Bird Center Drive, Palm...

  2. California's forest industry, 1976.

    Treesearch

    Bruce A. Hiserote; James O. Howard

    1978-01-01

    This report presents the findings of a 100-percent canvas of the primary forest products industry in California for 1976. Tabular presentation includes characteristics of the industry log consumption and disposition of mill residues. Accompanying the tables is a descriptive analysis of conditions and trends in the industry.

  3. Identification and interpretation of tectonic features from Skylab imagery. [California to Arizona

    NASA Technical Reports Server (NTRS)

    Abdel-Gawad, M. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. S190-B imagery confirmed previous conclusions from S190-A that the Garlock fault does not extend eastward beyond its known termination near the southern end of Death Valley. In the Avawatz Mountains, California, two faults related to the Garlock fault zone (Mule Spring fault and Leach Spring fault) show evidence of recent activity. There is evidence that faulting related to Death Valley fault zone extends southeastward across the Old Dad Mountains. There, the Old Dad fault shows evidence of recent activity. A significant fault lineament has been identified from McCullough Range, California southeastward to Eagle Tail Mountains in southwestern Arizona. The lineament appears to control tertiary and possible cretaceous intrusives. Considerable right lateral shear is suspected to have taken place along parts of this lineament.

  4. Thin-skinned tectonics of the Upper Ojai Valley and Sulphur Mountain area, Ventura basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huftile, G.J.

    1991-08-01

    By integrating surface mapping with subsurface well data and drawing cross sections and subsurface maps, the geometry of shallow structures and their geologic history of the Upper Ojai Valley of California can be reconstructed. The geometry of shallow structures, the geologic history, and the location of earthquake foci then offer constraints on the deep structure of this complex area. The Upper Ojai Valley is a tectonic depression between opposing reverse faults. Its northern border is formed by the active, north-dipping San Cayetano fault, which has 6.0 km of stratigraphic separation in the Silverthread area of the Ojai oil field andmore » 2.6 km of stratigraphic separation west of Sisar Creek. The fault dies out farther west in Ojai Valley, where the south-vergent shortening is transferred to a blind thrust. The southern border of the Upper Ojai Valley is formed by the Quaternary Lion fault set, which dips south and merges into the Sisar decollement within the south-dipping, ductile, lower Miocene Rincon formation. By the middle Pleistocene, the Sulphur Mountain anticlinorium and the Big Canyon syncline began forming as a fault-propagation fold; the fault-propagation fold is rooted in the Sisar decollement, a passive backthrust rising from a blind thrust at depth. The formation of the Sulphur Mountain anticlinorium was followed closely by the ramping of the south-dipping Lion fault set to the surface over the nonmarine upper Pleistocene Saugus Formation. To the east, the San Cayetano fault overrides and folds the Lion Fault set near the surface. Area-balancing of the deformation shows shortening of 15.5 km, and suggests a 17 km depth to the brittle-ductile transition.« less

  5. The paleohydrology of unsaturated and saturated zones at Yucca Mountain, Nevada, and vicinity

    USGS Publications Warehouse

    Paces, James B.; Whelan, Joseph F.; Stuckless, John S.

    2012-01-01

    caused by climate shifts between the Miocene and Pleistocene and between Pleistocene glacial-interglacial cycles. Secondary mineral distribution and δ18O profiles indicate that evaporation in the shallower welded tuffs reduces infiltration fluxes. Several near-surface and subsurface processes likely are responsible for diverting or dampening infiltration and percolation, resulting in buffering of percolation fluxes to the deeper unsaturated zone. Cooler and wetter Pleistocene climates resulted in increased recharge in upland areas and higher water tables at Yucca Mountain and throughout the region. Discharge deposits in the Amargosa Desert were active during glacial periods, but only in areas where the modern water table is within 7–30 m of the surface. Published groundwater models simulate water-table rises beneath Yucca Mountain of as much as 150 m during glacial climates. However, most evidence from Fortymile Canyon up gradient from Yucca Mountain limits water-table rises to 30 m or less, which is consistent with evidence from discharge sites in the Amargosa Desert. The isotopic compositions of uranium in tuffs spanning the water table in two Yucca Mountain boreholes indicate that Pleistocene water-table rises likely were restricted to 25–50 m above modern positions and are in approximate agreement with water-table rises estimated from zeolitic-to-vitric transitions in the Yucca Mountain tuffs (less than 60 m in the last 11.6 m.y.).

  6. Monitoring and research on the Bi-State Distinct Population Segment of greater sage-grouse (Centrocercus urophasianus) in the Pine Nut Mountains, California and Nevada—Study progress report, 2011–15

    USGS Publications Warehouse

    Coates, Peter S.; Andrle, Katie M.; Ziegler, Pilar T.; Casazza, Michael L.

    2016-09-29

    The Bi-State distinct population segment (DPS) of greater sage-grouse (Centrocercus urophasianus) that occurs along the Nevada–California border was proposed for listing as threatened under the Endangered Species Act (ESA) by the U.S. Fish and Wildlife Service (FWS) in October 2013. However, in April 2015, the FWS determined that the Bi-State DPS no longer required protection under the ESA and withdrew the proposed rule to list the Bi-State DPS (U.S. Fish and Wildlife Service, 2015). The Bi-State DPS occupies portions of Alpine, Mono, and Inyo Counties in California, and Douglas, Esmeralda, Lyon, Carson City, and Mineral Counties in Nevada. Unique threats facing this population include geographic isolation, expansion of single-leaf pinyon (Pinus monophylla) and Utah juniper (Juniperus osteosperma), anthropogenic activities, and recent changes in predator communities. Estimating population vital rates, identifying seasonal habitat, quantifying threats, and identifying movement patterns are important first steps in developing effective sage-grouse management and conservation plans. During 2011–15, we radio- and Global Positioning System (GPS)-marked (2012–14 only) 44, 47, 17, 9, and 3 sage-grouse, respectively, for a total of 120, in the Pine Nut Mountains Population Management Unit (PMU). No change in lek attendance was detected at Mill Canyon (maximum=18 males) between 2011 and 2012; however, 1 male was observed in 2014 and no males were observed in 2013 and 2015. Males were observed near Bald Mountain in 2013, making it the first year this lek was observed to be active during the study period. Males were observed at a new site in the Buckskin Range in 2014 during trapping efforts and again observed during surveys in 2015. Findings indicate that pinyon-juniper is avoided by sage-grouse during every life stage. Nesting females selected increased sagebrush cover, sagebrush height, and understory horizontal cover, and brood-rearing females selected similar areas

  7. Structural evidence for northeastward movement on the Chocolate Mountains thrust, southeasternmost Calfornia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, J.T.; Haxel, G.B.; Tosdal, R.M.

    1990-11-10

    The Late Cretaceous Chocolate Mountains thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the regionally distinctive Orocopia Schist. The Chocolate Mountains thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal (exhumation, unroofing, uplift) fault. The Chocolate Mountains thrust zone contains sparse to locally abundant mesoscopic asymmetric folds. Fabric relations indicate that these folds are an integral part of and coeval with the thrust zone. On a lower hemisphere equal-area plot representing the orientation and sensemore » of asymmetry of 80 thrust zone folds from 36 localities, spread over an area 60 by 10 km, Z folds plot northwest of and S folds plot southeast of a northeast-southwest striking vertical plane of overall monoclinic symmetry. The only sense of movement consistent with the collective asymmetry of the thrust zone folds is top to the northeast. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. The essential point is that movement of the upper plate of the Chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. Alternative tectonic models involving subduction of the Orocopia Schist eastward beneath continental southern California circumvent the suture problem but are presently not supported by any direct structural evidence.« less

  8. Mapping variations in weight percent silica measured from multispectral thermal infrared imagery - Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico

    USGS Publications Warehouse

    Hook, S.J.; Dmochowski, J.E.; Howard, K.A.; Rowan, L.C.; Karlstrom, K.E.; Stock, J.M.

    2005-01-01

    Remotely sensed multispectral thermal infrared (8-13 ??m) images are increasingly being used to map variations in surface silicate mineralogy. These studies utilize the shift to longer wavelengths in the main spectral feature in minerals in this wavelength region (reststrahlen band) as the mineralogy changes from felsic to mafic. An approach is described for determining the amount of this shift and then using the shift with a reference curve, derived from laboratory data, to remotely determine the weight percent SiO2 of the surface. The approach has broad applicability to many study areas and can also be fine-tuned to give greater accuracy in a particular study area if field samples are available. The approach was assessed using airborne multispectral thermal infrared images from the Hiller Mountains, Nevada, USA and the Tres Virgenes-La Reforma, Baja California Sur, Mexico. Results indicate the general approach slightly overestimates the weight percent SiO2 of low silica rocks (e.g. basalt) and underestimates the weight percent SiO2 of high silica rocks (e.g. granite). Fine tuning the general approach with measurements from field samples provided good results for both areas with errors in the recovered weight percent SiO2 of a few percent. The map units identified by these techniques and traditional mapping at the Hiller Mountains demonstrate the continuity of the crystalline rocks from the Hiller Mountains southward to the White Hills supporting the idea that these ranges represent an essentially continuous footwall block below a regional detachment. Results from the Baja California data verify the most recent volcanism to be basaltic-andesite. ?? 2005 Elsevier Inc. All rights reserved.

  9. Deposition patterns and transport mechanisms for the endocrine disruptor 4-nonylphenol across the Sierra Nevada Mountains, California.

    PubMed

    Lyons, Rebecca; Van de Bittner, Kyle; Morgan-Jones, Sean

    2014-12-01

    Dust and particulate distribution patterns are shifting as global climate change brings about longer drought periods. Particulates act as vehicles for long range transport of organic pollutants, depositing at locations far from their source. Nonylphenol, a biodegradation product of nonylphenol polyethoxylate, is a known endocrine disruptor. Nonylphenol polyethoxylate enters the environment as an inert ingredient in pesticide sprays, potentially traveling great distances from its application site. This is of concern when a highly agricultural region, California's Central Valley, lies adjacent to sensitive areas like the Eastern Sierra Nevada Mountains. The distribution and transport mechanisms for 4-nonylphenol were investigated in Eastern Sierra Nevada canyons. Regions close to canyon headwalls showed trace amounts of 4-nonylphenol in surface water, snow, and atmospheric deposition. Exposed areas had yearly average concentrations as high as 9 μg/L. Distribution patterns are consistent with particulate-bound transport. This suggests with increasing drought periods, higher levels of persistent organic pollutants are likely. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The Distribution and Status of Bats at Fort Irwin National Training Center

    DTIC Science & Technology

    2012-12-01

    the Avawatz Mountains (Table 9) in the vicinity of Goat Mountain are more human accessible due to their close proximity to roads. Troops are currently...altitudinally, (Grinnell 1918, Krutzsch 1948, Cryan 2003) and are often the species most frequently killed at wind farms . For southern California...As noted in the results section, the current level of bat use was similar at the Desert King Mine and the Avawatz mines near Goat Mountain as was

  11. Paleozoic and Lower Mesozoic magmas from the eastern Klamath Mountains (North California) and the geodynamic evolution of northwestern America

    NASA Astrophysics Data System (ADS)

    Lapierre, H.; Brouxel, M.; Albarede, F.; Coulin, C.; Lecuyer, C.; Martin, P.; Mascle, G.; Rouer, O.

    1987-09-01

    The Paleozoic to Early Mesozoic geology of the eastern Klamath Mountains (N California) is characterized by three major magmatic events of Ordovician, Late Ordovician to Early Devonian, and Permo-Triassic ages. The Ordovician event is represented by a calc-alkalic island-arc sequence (Lovers Leap Butte sequence) developed in the vicinity of a continental margin. The Late Ordovician to Early Devonian event consists of the 430-480 Ma old Trinity ophiolite formed during the early development of a marginal basin, and a series of low-K tholeiitic volcanic suites (Lovers Leap Basalt—Keratophyre unit, Copley and Balaklala Formations) belonging to intraoceanic island-arcs. Finally, the Permo-Triassic event gave rise to three successives phases of volcanic activity (Nosoni, Dekkas and Bully Hill) represented by the highly differentiated basalt-to-rhyolite low-K tholeiitic series of mature island-arcs. The Permo-Triassic sediments are indicative of shallow to moderate depth in an open, warm sea. The geodynamic evolution of the eastern Klamath Mountains during Paleozoic to Early Mesozoic times is therefore constrained by the geological, petrological and geochemical features of its island-arcs and related marginal basin. A consistent plate-tectonic model is proposed for the area, consisting of six main stages: (1) development during Ordovician times of a calc-alkalic island-arc in the vicinity of a continental margin; (2) extrusion during Late Ordovician to Silurian times of a primitive basalt-andesite intraoceanic island-arc suite, which terminated with boninites, the latter suggest rifting in the fore-arc, followed by the breakup of the arc; (3) opening and development of the Trinity back-arc basin around 430-480 Ma ago; (4) eruption of the Balaklala Rhyolite either in the arc or in the fore-arc, ending in Early Devonian time with intrusion of the 400 Ma Mule Mountain stock; (5) break in volcanic activity from the Early Devonian to the Early Permian; and (6) development of

  12. Geologic map of the Hart Peak Quadrangle, California and Nevada: a digital database

    USGS Publications Warehouse

    Nielson, Jane E.; Turner, Ryan D.; Bedford, David R.

    1999-01-01

    The Hart Peak 1:24,000-scale quadrangle is located about 12 km southwest of Searchlight, Nevada, comprehending the eastern part of the Castle Peaks, California, and most of the Castle Mountains and the northwestern part of the Piute Range, in California and Nevada. The Castle Peaks area constitutes the northeasternmost part of the northeast-trending New York Mountains. The Castle Mountains straddle the California-Nevada State line between the Castle Peaks and north-trending Piute Range. The southern part of the Piute Range, near Civil War-era Fort Piute, adjoins Homer Mountain mapped by Spencer and Turner (1985). Adjacent and nearby 1:24,000-scale quadrangles include Castle Peaks, East of Grotto Hills, Homer Mountain, and Signal Hill, Calif.; also Tenmile Well and West of Juniper Mine, Calif. and Nev. The oldest rocks in the Hart Peak quadrangle are Early Proterozoic gneiss and foliated granite that crop out in the northern part of the quadrangle on the eastern flank of the Castle Peaks and in the central Castle Mountains (Wooden and Miller, 1990). Paleozoic rocks are uncommon and Mesozoic granitic rocks are not found in the map area. The older rocks are overlain nonconformably by several km of Miocene volcanic deposits, which accumulated in local basins. Local dikes and domes are sources of most Miocene eruptive units; younger Miocene intrusions cut all the older rocks. Upper Miocene to Quaternary gravel deposits interfinger with the uppermost volcanic flows; the contact between volcanic rocks and the gravel deposits is unconformable locally. Canyons and intermontane valleys contain dissected Quaternary alluvialfan deposits that are mantled by active drainage and alluvial fan detritus.

  13. Surface ozone in the White Mountains of California

    Treesearch

    Joel Burley; Andrzej Bytnerowicz

    2011-01-01

    Surface ozone concentrations are presented for four high-elevation sites along a northesouth transect along the spine of the White Mountains and a fifth site located at lower elevation approximately 15 km to the west on the floor of the Owens Valley. The ozone data, which were collected from mid-June through mid-October of 2009, include results from two sites, White...

  14. Transtensional deformation and structural control of contiguous but independent magmatic systems: Mono-Inyo Craters, Mammoth Mountain, and Long Valley Caldera, California

    USGS Publications Warehouse

    Riley, P.; Tikoff, B.; Hildreth, Wes

    2012-01-01

    The Long Valley region of eastern California (United States) is the site of abundant late Tertiary–present magmatism, including three geochemically distinct stages of magmatism since ca. 3 Ma: Mammoth Mountain, the Mono-Inyo volcanic chain, and Long Valley Caldera. We propose two tectonic models, one explaining the Mammoth Mountain–Mono-Inyo magmatism and the other explaining the presence of Long Valley Caldera. First, the ongoing Mammoth Mountain–Mono-Inyo volcanic chain magmatism is explained by a ridge-transform-ridge system, with the Mono-Inyo volcanic chain acting as one ridge segment and the South Moat fault acting as a transform fault. Implicit in this first model is that this region of eastern California is beginning to act as an incipient plate boundary. Second, the older Long Valley Caldera system is hypothesized to occur in a region of enhanced extension resulting from regional fault block rotation, specifically involving activation of the sinistral faults of the Mina deflection. The tectonic models are consistent with observed spatial and temporal differences in the geochemistry of the regional magmas, and the westward progression of magmatism since ca. 12 Ma.

  15. Seismology program; California Division of Mines and Geology

    USGS Publications Warehouse

    Sherburne, R. W.

    1981-01-01

    The year 1980 marked the centennial of the California Division of Mines and Geology (CDMG) and a decade of the Division's involvement in seismology. Factors which contributed to the formation of a Seismology Group within CDMG included increased concerns for environmental and earthquake safety, interest in earthquake prediction, the 1971 San Fernando earthquake and the 1973 publication by CDMG of an urban geology master plan for California. Reasons to be concerned about California's earthquake problem are demonstrated by the accompanying table and the figures. Recent seismicity in California, the Southern California uplift reflecting changes in crustal strain, and other possible earthquake precursors have heightened concern among scientific and governmental groups about the possible occurrence of a major damaging earthquake )M>7) in California

  16. An extirpated lineage of a threatened frog species resurfaces in southern California

    USGS Publications Warehouse

    Backlin, Adam R.; Richmond, Jonathan Q.; Gallegos, Elizabeth; Christensen, Clinton K.; Fisher, Robert N.

    2017-01-01

    Southern California has experienced widespread amphibian declines since the 1960s. One species, the Vulnerable California red-legged frog Rana draytonii, is now considered to be extirpated from most of southern California. In February 2017 a population of R. draytonii was discovered in the southern foothills of the San Bernardino Mountains of Riverside County, California, near the edge of the species’ historical distribution. This population belongs to an mtDNA lineage that was presumed to be extirpated within the USA but is still extant in Baja California, Mexico. This discovery increases the potential for future, evolutionarily informed translocations within the southern portion of this species’ range in California.

  17. The spotted owl in southern California: ecology and special concerns for maintaining a forest-dwelling species in a human-dominated desert landscape

    Treesearch

    William S. LaHayne; R. J. Gutiérrez

    2005-01-01

    The California spotted owl is an uncommon forest-dwelling resident of southern California, found in most of the major mountain ranges in the region. We studied this species from 1987 to 1998 in the San Bernardino Mountains and collected empirical and demographic evidence that the population declined during this period. Numerous factors may affect the long-term...

  18. Eolian deposits in the Neoproterozoic Big Bear Group, San Bernardino Mountains, California, USA

    NASA Astrophysics Data System (ADS)

    Stewart, John H.

    2005-12-01

    Strata interpreted to be eolian are recognized in the Neoproterozoic Big Bear Group in the San Bernardino Mountains of southern California, USA. The strata consist of medium- to large-scale (30 cm to > 6 m) cross-stratified quartzite considered to be eolian dune deposits and interstratified thinly laminated quartzite that are problematically interpreted as either eolian translatent climbing ripple laminae, or as tidal-flat deposits. High index ripples and adhesion structures considered to be eolian are associated with the thinly laminated and cross-stratified strata. The eolian strata are in a succession that is characterized by flaser bedding, aqueous ripple marks, mudcracks, and interstratified small-scale cross-strata that are suggestive of a tidal environment containing local fluvial deposits. The eolian strata may have formed in a near-shore environment inland of a tidal flat. The Neoproterozoic Big Bear Group is unusual in the western United States and may represent a remnant of strata that were originally more widespread and part of the hypothetical Neoproterozoic supercontinent of Rodinia. The Big Bear Group perhaps is preserved only in blocks that were downdropped along Neoproterozoic extensional faults. The eolian deposits of the Big Bear Group may have been deposited during arid conditions that preceded worldwide glacial events in the late Neoproterozoic. Possibly similar pre-glacial arid events are recognized in northern Mexico, northeast Washington, Australia, and northwest Canada.

  19. Eolian deposits in the Neoproterozoic Big Bear Group, San Bernardino Mountains, California, USA

    USGS Publications Warehouse

    Stewart, John H.

    2005-01-01

    Strata interpreted to be eolian are recognized in the Neoproterozoic Big Bear Group in the San Bernardino Mountains of southern California, USA. The strata consist of medium- to large-scale (30 cm to > 6 m) cross-stratified quartzite considered to be eolian dune deposits and interstratified thinly laminated quartzite that are problematically interpreted as either eolian translatent climbing ripple laminae, or as tidal-flat deposits. High index ripples and adhesion structures considered to be eolian are associated with the thinly laminated and cross-stratified strata. The eolian strata are in a succession that is characterized by flaser bedding, aqueous ripple marks, mudcracks, and interstratified small-scale cross-strata that are suggestive of a tidal environment containing local fluvial deposits. The eolian strata may have formed in a near-shore environment inland of a tidal flat. The Neoproterozoic Big Bear Group is unusual in the western United States and may represent a remnant of strata that were originally more widespread and part of the hypothetical Neoproterozoic supercontinent of Rodinia. The Big Bear Group perhaps is preserved only in blocks that were downdropped along Neoproterozoic extensional faults. The eolian deposits of the Big Bear Group may have been deposited during arid conditions that preceded worldwide glacial events in the late Neoproterozoic. Possibly similar pre-glacial arid events are recognized in northern Mexico, northeast Washington, Australia, and northwest Canada.

  20. Space Radar Image of Mammoth, California in 3-D

    NASA Image and Video Library

    1999-01-27

    This is a three-dimensional perspective of Mammoth Mountain, California. This view was constructed by overlaying a NASA Spaceborne Imaging Radar-C SIR-C radar image on a U.S. Geological Survey digital elevation map.

  1. Temporal variations in extension rate on the Lone Mountain fault and strain distribution in the eastern California shear zone-Walker Lane

    NASA Astrophysics Data System (ADS)

    Hoeft, J. S.; Frankel, K. L.

    2010-12-01

    The eastern California shear zone (ECSZ) and Walker Lane represent an evolving segment of the Pacific-North America plate boundary. Understanding temporal variations in strain accumulation and release along plate boundary structures is critical to assessing how deformation is accommodated throughout the lithosphere. Late Pleistocene displacement along the Lone Mountain fault suggests the Silver Peak-Lone Mountain (SPLM) extensional complex is an important structure in accommodating and transferring strain within the ECSZ and Walker Lane. Using geologic and geomorphic mapping, differential global positioning system surveys, and terrestrial cosmogenic nuclide (TCN) geochronology, we determined rates of extension across the Lone Mountain fault in western Nevada. The Lone Mountain fault displaces the northwestern Lone Mountain and Weepah Hills piedmonts and is the northeastern component of the SPLM extensional complex, a series of down-to-the-northwest normal faults. We mapped seven distinct alluvial fan deposits and dated three of the surfaces using 10Be TCN geochronology, yielding ages of 16.5 ± 1.2 ka, 92 ± 9 ka, and 137 ± 25 ka for the Q3b, Q2c, and Q2b deposits, respectively. The ages were combined with scarp profile measurements across the displaced fans to obtain minimum rates of extension; the Q2b and Q2c surfaces yield an extension rate between 0.1 ± 0.1 and 0.2 ± 01 mm/yr and the Q3b surface yields a rate of 0.2 ± 0.1 to 0.4 ± 0.1 mm/yr, depending on the dip of the fault. Active extension on the Lone Mountain fault suggests that it helps partition strain off of the major strike-slip faults in the northern ECSZ and transfers deformation to the east around the Mina Deflection and northward into the Walker Lane. Combining our results with estimates from other faults accommodating dextral shear in the northern ECSZ reveals an apparent discrepancy between short- and long-term rates of strain accumulation and release. If strain rates have remained constant

  2. Pasadena, California Perspective View with Aerial Photo and Landsat Overlay

    NASA Image and Video Library

    2000-02-18

    This perspective view, acquired by NASA Shuttle Radar Topography Mission SRTM in Feb. 2000, shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains.

  3. Emergency assessment of post-fire debris-flow hazards for the 2013 Mountain fire, southern California

    USGS Publications Warehouse

    Staley, Dennis M.; Gartner, Joseph E.; Smoczyk, Greg M.; Reeves, Ryan R.

    2013-01-01

    Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce dangerous flash floods and debris flows. We use empirical models to predict the probability and magnitude of debris flow occurrence in response to a 10-year rainstorm for the 2013 Mountain fire near Palm Springs, California. Overall, the models predict a relatively high probability (60–100 percent) of debris flow for six of the drainage basins in the burn area in response to a 10-year recurrence interval design storm. Volumetric predictions suggest that debris flows that occur may entrain a significant volume of material, with 8 of the 14 basins identified as having potential debris-flow volumes greater than 100,000 cubic meters. These results suggest there is a high likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, and wildlife and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National Weather Service–issued Debris Flow and Flash Flood Outlooks, Watches and Warnings and that residents adhere to any evacuation orders.

  4. Stable isotope evidence for hydrologic conditions during regional metamorphism in the Panamint Mountains, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergfeld, D.; Nabelek, P.I.; Labotka, T.C.

    1992-01-01

    The Kingston Peak Formation forms part of the Panamint Mountains, California, metamorphic core-complex. Peak tremolite-grade metamorphism as exhibited in Wildrose Canyon occurred in the Jurassic; a retrograde thermal event may have occurred in the Cretaceous. The formation consists dominantly of interbedded siliceous limestones and graphitic calcareous schists. Stable isotopic analysis shows two distinct groups of data. delta O-18 values of calcite from the limestones range between 15.3 and 17.3[per thousand], probably reflecting their original Proterozoic depositional values. Likewise the delta C-13 values are also unshifted, ranging from +1% to +3.8%o. In contrast, delta O-18 values of calcite from the schistsmore » are for the most part > 20[per thousand]. These high values could reflect the original depostional conditions; however, they may be due to equilibration with silicate minerals which range from 14.9 to 17.9[per thousand]. Overall, the combined oxygen and carbon isotopic data indicate that most isotopic changes can be explained by closed-system equilibration. Only a limited amount of interaction with externally-derived fluids during metamorphism is evident in the isotopic data. The interaction may have been confined to vicinities of faults and fractures which are common in Wildrose Canyon.« less

  5. Resting habitat selection by fishers in California

    Treesearch

    William J. Zielinski; Richard L. Truex; Gregory A. Schmidt; Fredrick V. Schlexer; Kristin N. Schmidt; Reginald H. Barrett

    2004-01-01

    We studied the resting habitat ecology of fishers (Martes pennanti) in 2 disjunct populations in California, USA: the northwestern coastal mountains (hereafter, Coastal) and the southern Sierra Nevada (hereafter, Sierra). We described resting structures and compared features surrounding resting structures (the resting site) with those at randomly...

  6. Mountain lions: preliminary findings on home-range use and density, central Sierra Nevada

    Treesearch

    Donald L. Neal; George N. Steger; Ronald C. Bertram

    1987-01-01

    Between August 1983 and December 1985, 19 mountain lions were captured, radio equipped, and monitored daily within a portion of the North Kings deer herd range on the west slope of the central Sierra Nevada in California. The density of adult mountain lions was estimated to be one per 33.3 km²; that of adults and kittens together was estimated to be one per 20...

  7. Use of Landsat Thematic Mapper images in regional correlation of syntectonic strata, Colorado river extensional corridor, California and Arizona

    NASA Technical Reports Server (NTRS)

    Beratan, K. K.; Blom, R. G.; Crippen, R. E.; Nielson, J. E.

    1990-01-01

    Enhanced Landsat TM images were used in conjunction with field work to investigate the regional correlation of Miocene rocks in the Colorado River extensional corridor of California and Arizona. Based on field investigations, four sequences of sedimentary and volcanic strata could be recognized in the Mohave Mountains (Arizona) and the eastern Whipple Mountains (California), which display significantly different relative volumes and organization of lithologies. The four sequences were also found to have distinctive appearances on the TM image. The recognition criteria derived from field mapping and image interpretation in the Mohave Mountains and Whipple Mountains were applied to an adjacent area in which stratigraphic affinities were less well known. The results of subsequent field work confirmed the stratigraphic and structural relations suggested by the Tm image analysis.

  8. Seismic Investigation of Magmatic Unrest Beneath Mammoth Mountain, California Using Waveform Cross-Correlation

    NASA Astrophysics Data System (ADS)

    Lin, G.

    2012-12-01

    We investigate the seismic and magmatic activity during an 11-month-long seismic swarm between 1989 and 1990 beneath Mammoth Mountain (MM) at the southwest rim of Long Valley caldera in eastern California. This swarm is believed to be results of a shallow intrusion of magma beneath MM. It was followed by the emissions of carbon dioxide (CO2) gas, which caused tree-killings in 1990 and posed a significant human health risk around MM. In this study, we develop a new three-dimensional (3-D) P-wave velocity model using first-arrival picks by applying the simul2000 tomographic algorithm. The resulting 3-D model is correlated with the surface geological features at shallow depths and is used to constrain absolute earthquake locations for all local events in our study. We compute both P- and S-wave differential times using a time-domain waveform cross-correlation method. We then apply similar event cluster analysis and differential time location approach to further improve relative event location accuracy. A dramatic sharpening of seismicity pattern is obtained after these processes. The estimated uncertainties are a few meters in relative location and ~100 meters in absolute location. We also apply a high-resolution approach to estimate in situ near-source Vp/Vs ratios using differential times from waveform cross-correlation. This method provides highly precise results because cross-correlation can measure differential times to within a few milliseconds and can achieve a precision of 0.001 in estimated Vp/Vs ratio. Our results show a circular ring-like seismicity pattern with a diameter of 2 km between 3 and 8 km depth. These events are distributed in an anomalous body with low Vp and high Vp/Vs, which may be caused by over-pressured magmatically derived fluids. At shallower depths, we observe very low Vp/Vs anomalies beneath MM from the surface to 1 km below sea level whose locations agree with the proposed CO2 reservoir in previous studies. The systematic spatial and

  9. Pesticides and Population Declines of California Alpine Frogs

    EPA Science Inventory

    Airborne pesticides from the Central Valley of California have been implicated as a cause for population declines of several amphibian species, with the strongest evidence for the mountain yellow-legged frog complex (Rana muscosa and R. sierrae) in the Sierra Nevada. We measured ...

  10. Lower tropospheric ozone and aerosol measurements at a coastal mountain site in Central California

    NASA Astrophysics Data System (ADS)

    Post, A.; Faloona, I. C.; Lighthall, D.; Wexler, A. S.; Cliff, S. S.; Conley, S. A.; Zhao, Y.

    2013-12-01

    Increasing concern over the impacts of exogenous air pollution in California's Central Valley has prompted the establishment of a coastal, high altitude monitoring site at the Chews Ridge Observatory (1550 m) approximately 30 km east of Point Sur in Monterey County, operated by the Monterey Institute for Research in Astronomy. Eighteen months of ozone and aerosol measurements are presented in the context of long-range transport and its potential impact on surface air quality in the southern San Joaquin Valley. Moreover, several ozone surveys have been conducted by aircraft upwind, over the Pacific Ocean, and downwind, over the Central Valley, to characterize horizontal and vertical transport across the coastal mountains. Diurnal variations present at Chews Ridge indicate the formation of a convective boundary layer on the ridge during the daytime leading to a 6-8 ppb decrease in ozone accompanied by a rise in specific humidity of 2-3 g/kg due to coupling with the forest. During the nighttime, the sampled air masses are representative of free tropospheric conditions which have not been significantly influenced by either local emissions nor convective coupling to the surface. The maximum daily 8-hour average ozone concentration at Chews Ridge is used in lagged correlation analysis with two sites in the San Joaquin Valley, Fresno and Arvin, to de-emphasize the influence of locally produced, diurnally cycled ozone. The correlation coefficients (~0.60) peak between 9-21 hour lag and tend to decorrelate completely within 4-5 days. These and other analyses along with data provided by the aircraft sampling are used to provide a deeper understanding of ozone transport into the San Joaquin Valley. Aerosol size is measured with a scanning mobility particle sizer and composition is analyzed with an 8-stage rotating drum impactor whose substrates are characterized by X-ray fluorescence. Various elemental ratios and back trajectory calculations are used to infer the temporal

  11. Aerial photo of San Bernadina and San Gabriel mountains

    NASA Image and Video Library

    2000-02-04

    JSC2000E01553 (January 2000) --- This USGS elevation model showing increasing elevation as increasing brightness is included here for comparison purposes with the high-resolution topographic elevation map image in E01554. Both images depict the San Bernadino and San Gabriel Mountains in California, north of Los Angeles.

  12. Verbenone flakes may help slow mountain pine beetle's spread

    Treesearch

    Nancy (featured scientist) Gillette

    2009-01-01

    According to "Aerially Applied Verbenone-Releasing Laminated Flakes Protect Pinus contorta Stands from Attack by Dendroctonus ponderosae (mountain pine beetle) in California and Idaho," a US Forest Service–funded study appearing in the February issue of Forest Ecology and Management, not only has the "current...

  13. WRF simulation over complex terrain during a southern California wildfire event

    NASA Astrophysics Data System (ADS)

    Lu, W.; Zhong, S.; Charney, J. J.; Bian, X.; Liu, S.

    2012-03-01

    In October 2007, the largest wildfire-related evacuation in California's history occurred as severe wildfires broke out across southern California. Smoke from these wildfires contributed to elevated pollutant concentrations in the atmosphere, affecting air quality in a vast region of the western United States. High-resolution numerical simulations were performed using the Weather Research and Forecast (WRF) model to understand the atmospheric conditions during the wildfire episode and how the complex circulation patterns might affect smoke transport and dispersion. The simulated meteorological fields were validated using surface and upper air observations in California and Nevada. To distinguish the performance of the WRF in different geographic regions, the surface stations were grouped into coastal sites, valley and basin sites, and mountain sites, and the results for the three categories were analyzed and intercompared. For temperature and moisture, the mountain category has the best agreement with the observations, while the coastal category was the worst. For wind, the model performance for the three categories was very similar. The flow patterns over complex terrain were also analyzed under different synoptic conditions and the possible impact of the terrain on smoke and pollutant pathways is analyzed by employing a Lagrangian Particle Dispersion Model. When high mountains prevent the smoke from moving inland, the mountain passes act as active pathways for smoke transport; meanwhile, chimney effect helps inject the pollutants to higher levels, where they are transported regionally. The results highlight the role of complex topography in the assessment of the possible smoke transport patterns in the region.

  14. Preliminary geologic map of the San Guillermo Mountain Quadrangle, Ventura County, California

    USGS Publications Warehouse

    Minor, S.A.

    1999-01-01

    New 1:24,000-scale geologic mapping in the Cuyama 30' x 60' quadrangle, in support of the USGS Southern California Areal Mapping Project (SCAMP), is contributing to a more complete understanding of the stratigraphy, structure, and tectonic evolution of the complex junction area between the NW-striking Coast Ranges and EW-striking western Transverse Ranges. The 1:24,000-scale geologic map of the San Guillermo Mountain quadrangle is one of six contiguous 7 1/2' quadrangle geologic maps in the eastern part of the Cuyama map area being compiled for a more detailed portrayal and reevaluation of geologic structures and rock units shown on previous geologic maps of the area (e.g., Dibblee, 1979). The following observations and interpretations are based on the new San Guillermo Mountain geologic compilation: (1) The new geologic mapping in the northern part of the San Guillermo Mountain quadrangle allows for reinterpretation of fault architecture that bears on potential seismic hazards of the region. Previous mapping had depicted the eastern Big Pine fault (BPF) as a northeast-striking, sinistral strike-slip fault that extends for 30 km northeast of the Cuyama River to its intersection with the San Andreas fault (SAF). In contrast the new mapping indicates that the eastern BPF is a thrust fault that curves from a northeast strike to an east strike, where it is continuous with the San Guillermo thrust fault, and dies out further east about 15 km south of the SAF. This redefined segment of the BPF is a south-dipping, north-directed thrust, with dominantly dip slip components (rakes > 60 deg.), that places Middle Eocene marine rocks (Juncal and Matilija Formations) over Miocene through Pliocene(?) nonmarine rocks (Caliente, Quatal, and Morales Formations). Although a broad northeast-striking fault zone, exhibiting predominantly sinistral components of slip (rakes < 45 deg.), extends to the SAF as previously mapped, the fault zone does not connect to the southwest with the BPF

  15. Magnetostratigraphy of displaced Upper Cretaceous strata in southern California

    NASA Astrophysics Data System (ADS)

    Fry, J. Gilbert; Bottjer, David J.; Lund, Steve P.

    1985-09-01

    A magnetostratigraphic study of Upper Cretaceous marine strata from the Santa Ana Mountains in southern California has identified a Campanian reversed magnetozone. This reversed interval, corresponding to marine magnetic anomaly 33 34 (Chron 33r) of Campanian age, can be correlated with a Campanian reversed magnetozone that has been reported from strata of the Great Valley Sequence in central California. The Late Cretaceous paleolatitude of the Santa Ana Mountains is estimated from this study to be 26.6°N. This is significantly different from the region's expected Cretaceous paleolatitude of 43.8°N as part of the North American stable craton, and indicates that this region (part of the Peninsular Ranges terrane) was 1900 km farther south in Cretaceous time relative to the stable craton. *Present address: Mobil Oil Corp., P.O. Box 900, Dallas, Texas 75221

  16. Fluid-faulting interactions: Fracture-mesh and fault-valve behavior in the February 2014 Mammoth Mountain, California, earthquake swarm

    USGS Publications Warehouse

    Shelly, David R.; Taira, Taka’aki; Prejean, Stephanie; Hill, David P.; Dreger, Douglas S.

    2015-01-01

    Faulting and fluid transport in the subsurface are highly coupled processes, which may manifest seismically as earthquake swarms. A swarm in February 2014 beneath densely monitored Mammoth Mountain, California, provides an opportunity to witness these interactions in high resolution. Toward this goal, we employ massive waveform-correlation-based event detection and relative relocation, which quadruples the swarm catalog to more than 6000 earthquakes and produces high-precision locations even for very small events. The swarm's main seismic zone forms a distributed fracture mesh, with individual faults activated in short earthquake bursts. The largest event of the sequence, M 3.1, apparently acted as a fault valve and was followed by a distinct wave of earthquakes propagating ~1 km westward from the updip edge of rupture, 1–2 h later. Late in the swarm, multiple small, shallower subsidiary faults activated with pronounced hypocenter migration, suggesting that a broader fluid pressure pulse propagated through the subsurface.

  17. San Gabriel Mountains, California, Shaded relief, Color as Height

    NASA Image and Video Library

    2000-02-17

    This topographic acquired by NASA Shuttle Radar Topography Mission SRTM from data collected on February 16, 2000 shows the relationship of the urban area of Pasadena, California to the natural contours of the land.

  18. Geologic map and digital database of the Porcupine Wash 7.5 minute Quadrangle, Riverside County, southern California

    USGS Publications Warehouse

    Powell, Robert E.

    2001-01-01

    This data set maps and describes the geology of the Porcupine Wash 7.5 minute quadrangle, Riverside County, southern California. The quadrangle, situated in Joshua Tree National Park in the eastern Transverse Ranges physiographic and structural province, encompasses parts of the Hexie Mountains, Cottonwood Mountains, northern Eagle Mountains, and south flank of Pinto Basin. It is underlain by a basement terrane comprising Proterozoic metamorphic rocks, Mesozoic plutonic rocks, and Mesozoic and Mesozoic or Cenozoic hypabyssal dikes. The basement terrane is capped by a widespread Tertiary erosion surface preserved in remnants in the Eagle and Cottonwood Mountains and buried beneath Cenozoic deposits in Pinto Basin. Locally, Miocene basalt overlies the erosion surface. A sequence of at least three Quaternary pediments is planed into the north piedmont of the Eagle and Hexie Mountains, each in turn overlain by successively younger residual and alluvial deposits. The Tertiary erosion surface is deformed and broken by north-northwest-trending, high-angle, dip-slip faults and an east-west trending system of high-angle dip- and left-slip faults. East-west trending faults are younger than and perhaps in part coeval with faults of the northwest-trending set. The Porcupine Wash database was created using ARCVIEW and ARC/INFO, which are geographical information system (GIS) software products of Envronmental Systems Research Institute (ESRI). The database consists of the following items: (1) a map coverage showing faults and geologic contacts and units, (2) a separate coverage showing dikes, (3) a coverage showing structural data, (4) a scanned topographic base at a scale of 1:24,000, and (5) attribute tables for geologic units (polygons and regions), contacts (arcs), and site-specific data (points). The database, accompanied by a pamphlet file and this metadata file, also includes the following graphic and text products: (1) A portable document file (.pdf) containing a

  19. 75 FR 17430 - Hopper Mountain, Bitter Creek, and Blue Ridge National Wildlife Refuges, Kern, San Luis Obispo...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ...] Hopper Mountain, Bitter Creek, and Blue Ridge National Wildlife Refuges, Kern, San Luis Obispo, Tulare... Wildlife Refuges (NWRs) located in Kern, San Luis Obispo, Tulare, and Ventura counties of California. We... developing a CCP for Hopper Mountain, Bitter Creek, and Blue Ridge NWRs in Kern, San Luis Obispo, Tulare, and...

  20. Hydrology of Yucca Mountain and vicinity, Nevada-California : investigative results through mid-1983

    USGS Publications Warehouse

    Waddell, R.K.; Robison, J.H.; Blankennagel, R.K.

    1984-01-01

    Yucca Mountain, Nevada, is one of several sites under consideration for construction of the first repository for high-level nuclear waste. The climate is arid; few perennial streams are present in the region. Flash floods occasionally occur. The site is underlain by at least 1,800 meters of volcanic tuffs of Tertiary age; limestones and dolomites of Paleozoic age underlie much of the surrounding region, and, together with alluvial deposits, comprise the major aquifers. Yucca Mountain is in the Alkali Flat-Furnace Creek Ranch ground-water subbasin, which is part of the Death Valley ground-water basin. Discharge occurs at Alkali Flat almost entirely by evapotranspiration, and at Furnace Creek Ranch from small springs and seeps. Beneath Yucca Mountain, depth to water ranges from about 460 to 700 meters; the rock under consideration for construction of the repository is in the unsaturated zone. Rate of recharge at Yucca Mountain is small, perhaps much less than 5 millimeters per year. Within the saturated zone, water movement is principally along fractures. The hydraulic gradient is small east (downgradient) of Yucca Mountain, and increases to the north and west. Lack of effective-porosity data presently precludes accurate calculation of flow velocity and travel times. (USGS)

  1. A spatially distributed energy balance snowmelt model for application in mountain basins

    USGS Publications Warehouse

    Marks, D.; Domingo, J.; Susong, D.; Link, T.; Garen, D.

    1999-01-01

    Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with simulation periods varying from a few days for the smallest basin, Emerald Lake watershed in California, to multiple snow seasons for the Park City area in Utah. The model is driven by topographically corrected estimates of radiation, temperature, humidity, wind, and precipitation. Simulation results in all basins closely match independently measured snow water equivalent, snow depth, or runoff during both the development and depletion of the snowcover. Spatially distributed estimates of snow deposition and melt allow us to better understand the interaction between topographic structure, climate, and moisture availability in mountain basins of the western US. Application of topographically distributed models such as this will lead to improved water resource and watershed management.Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with

  2. Emergency Assessment of Postfire Debris-Flow Hazards for the 2009 Station Fire, San Gabriel Mountains, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.; Staley, Dennis M.; Worstell, Bruce B.

    2009-01-01

    This report presents an emergency assessment of potential debris-flow hazards from basins burned by the 2009 Station fire in Los Angeles County, southern California. Statistical-empirical models developed for postfire debris flows are used to estimate the probability and volume of debris-flow production from 678 drainage basins within the burned area and to generate maps of areas that may be inundated along the San Gabriel mountain front by the estimated volume of material. Debris-flow probabilities and volumes are estimated as combined functions of different measures of basin burned extent, gradient, and material properties in response to both a 3-hour-duration, 1-year-recurrence thunderstorm and to a 12-hour-duration, 2-year recurrence storm. Debris-flow inundation areas are mapped for scenarios where all sediment-retention basins are empty and where the basins are all completely full. This assessment provides critical information for issuing warnings, locating and designing mitigation measures, and planning evacuation timing and routes within the first two winters following the fire. Tributary basins that drain into Pacoima Canyon, Big Tujunga Canyon, Arroyo Seco, West Fork of the San Gabriel River, and Devils Canyon were identified as having probabilities of debris-flow occurrence greater than 80 percent, the potential to produce debris flows with volumes greater than 100,000 m3, and the highest Combined Relative Debris-Flow Hazard Ranking in response to both storms. The predicted high probability and large magnitude of the response to such short-recurrence storms indicates the potential for significant debris-flow impacts to any buildings, roads, bridges, culverts, and reservoirs located both within these drainages and downstream from the burned area. These areas will require appropriate debris-flow mitigation and warning efforts. Probabilities of debris-flow occurrence greater than 80 percent, debris-flow volumes between 10,000 and 100,000 m3, and high

  3. San Gabriel Mountains, California, Radar Image, Color as Height

    NASA Image and Video Library

    2000-02-17

    This topographic radar image acquired by NASA Shuttle Radar Topography Mission SRTM from data collected on February 16, 2000 shows the relationship of the urban area of Pasadena, California to the natural contours of the land.

  4. The geohydrologic setting of Yucca Mountain, Nevada

    USGS Publications Warehouse

    Stuckless, J.S.; Dudley, W.W.

    2002-01-01

    This paper provides a geologic and hydrologic framework of the Yucca Mountain region for the geochemical papers in this volume. The regional geologic units, which range in age from late Precambrian through Holocene, are briefly described. Yucca Mountain is composed of dominantly pyroclastic units that range in age from 11.4 to 15.2 Ma. The principal focus of study has been on the Paintbrush Group, which includes two major zoned and welded ash-flow tuffs separated by an important hydrogeologic unit referred to as the Paintbrush non-welded (PTn). The regional structural setting is currently one of extension, and the major local tectonic domains are presented together with a tectonic model that is consistent with the known structures at Yucca Mountain. Streamflow in this arid to semi-arid region occurs principally in intermittent or ephemeral channels. Near Yucca Mountain, the channels of Fortymile Wash and Amargosa River collect infrequent runoff from tributary basins, ultimately draining to Death Valley. Beneath the surface, large-scale interbasin flow of groundwater from one valley to another occurs commonly in the region. Regional groundwater flow beneath Yucca Mountain originates in the high mesas to the north and returns to the surface either in southern Amargosa Desert or in Death Valley, where it is consumed by evapotranspiration. The water table is very deep beneath the upland areas such as Yucca Mountain, where it is 500-750 m below the land surface, providing a large thickness of unsaturated rocks that are potentially suitable to host a nuclear-waste repository. The nature of unsaturated flow processes, which are important for assessing radionuclide migration, are inferred mainly from hydrochemical or isotopic evidence, from pneumatic tests of the fracture systems, and from the results of in situ experiments. Water seeping down through the unsaturated zone flows rapidly through fractures and more slowly through the pores of the rock matrix. Although

  5. A field guide to insects and diseases of California oaks

    Treesearch

    Tedmund J. Swiecki; Elizabeth A. Bernhardt

    2006-01-01

    California has more than twenty-five native species, natural hybrids, and varieties of oaks (Quercus species). The form of these oaks ranges from large trees, up to about 25 m tall, to shrubs no taller than about 1.5 m. California's native oaks include representatives of three oak subgroups or subgenera (Table 1). Hybridization only occurs...

  6. Los Angeles-Long Beach area of Southern California as seen from Apollo 9

    NASA Image and Video Library

    1969-03-09

    AS09-22-3436 (March 1969) --- Los Angeles-Long Beach area of southern California, as photographed from the Apollo 9 spacecraft during its 92nd revolution of Earth. Santa Catalina Island is located off the coast. The California coastline is visible from San Clemente northward to Point Dume. Clouds cover most of the San Gabriel Mountains around Los Angeles.

  7. Criminal Justice Profile--Statewide, 1984. Supplement to "Crime and Delinquency in California."

    ERIC Educational Resources Information Center

    California State Dept. of Justice, Sacramento. Bureau of Criminal Statistics and Special Services.

    This California annual Criminal Justice Statewide Profile presents data which supplements the Bureau of Criminal Statistics' (BCS) annual Crime and Delinquency publication. This monograph summarizes and combines data pertaining to California's justice system. The profile consists of two sections. The first section consists of 12 tables displaying…

  8. Temporal and Spatial Variation of Atmospherically Deposited Organic Contaminants at High Elevation in Yosemite National Park, California, USA

    EPA Science Inventory

    Atmospherically deposited organic contaminants in the Sierra Nevada mountains of California, USA, have exceeded some thresholds of concern, but the spatial and temporal distributions of contaminants in the mountains are not well known. The present study evaluated (1) whether the...

  9. Geologic map of the Valley Mountain 15’ quadrangle, San Bernardino and Riverside Counties, California

    USGS Publications Warehouse

    Howard, Keith A.; Bacheller, John; Fitzgibbon, Todd T.; Powell, Robert E.; Allen, Charlotte M.

    2013-01-01

    The Valley Mountain 15’ quadrangle straddles the Pinto Mountain Fault, which bounds the eastern Transverse Ranges in the south against the Mojave Desert province in the north. The Pinto Mountains, part of the eastern Transverse Ranges in the south part of the quadrangle expose a series of Paleoproterozoic gneisses and granite and the Proterozoic quartzite of Pinto Mountain. Early Triassic quartz monzonite intruded the gneisses and was ductiley deformed prior to voluminous Jurassic intrusion of diorite, granodiorite, quartz monzonite, and granite plutons. The Jurassic rocks include part of the Bullion Mountains Intrusive Suite, which crops out prominently at Valley Mountain and in the Bullion Mountains, as well as in the Pinto Mountains. Jurassic plutons in the southwest part of the quadrangle are deeply denuded from midcrustal emplacement levels in contrast to supracrustal Jurassic limestone and volcanic rocks exposed in the northeast. Dikes inferred to be part of the Jurassic Independence Dike Swarm intrude the Jurassic plutons and Proterozoic rocks. Late Cretaceous intrusion of the Cadiz Valley Batholith in the northeast caused contact metamorphism of adjacent Jurassic plutonic rocks. The Tertiary period saw emplacement of basanitoid basalt at about 23 Ma and deposition of Miocene and (or) Pliocene ridge-capping gravels. An undated east-dipping low-angle normal fault zone in the Pinto Mountains drops hanging-wall rocks eastward and may account for part of the contrast in uplift history across the quadrangle. The eastern Transverse Ranges are commonly interpreted as severely rotated clockwise tectonically in the Neogene relative to the Mojave Desert, but similar orientations of Jurassic dike swarms suggest that any differential rotation between the two provinces is small in this quadrangle. The late Cenozoic Pinto Mountain Fault and other strike-slip faults cut Quaternary deposits in the quadrangle, with two northwest-striking faults cutting Holocene deposits

  10. Timber resources of northern interior California, 1970.

    Treesearch

    Charles L. Bolsinger

    1976-01-01

    This report summarizes a timber resource inventory in Lassen, Modoc, Siskiyou, Shasta, and Trinity Counties, California. Included are detailed tables of forest area, timber volume, growth, mortality, and removals and a discussion of the current timber resource and timber industry situation.

  11. Evaluation of Airborne Visible/Infrared Imaging Spectrometer Data of the Mountain Pass, California carbonatite complex

    NASA Technical Reports Server (NTRS)

    Crowley, James; Rowan, Lawrence; Podwysocki, Melvin; Meyer, David

    1988-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of the Mountain Pass, California carbonatite complex were examined to evaluate the AVIRIS instrument performance and to explore alternative methods of data calibration. Although signal-to-noise estimates derived from the data indicated that the A, B, and C spectrometers generally met the original instrument design objectives, the S/N performance of the D spectrometer was below expectations. Signal-to-noise values of 20 to 1 or lower were typical of the D spectrometer and several detectors in the D spectrometer array were shown to have poor electronic stability. The AVIRIS data also exhibited periodic noise, and were occasionally subject to abrupt dark current offsets. Despite these limitations, a number of mineral absorption bands, including CO3, Al-OH, and unusual rare earth element bands, were observed for mine areas near the main carbonatite body. To discern these bands, two different calibration procedures were applied to remove atmospheric and solar components from the remote sensing data. The two procedures, referred to as the single spectrum and the flat field calibration methods gave distinctly different results. In principle, the single spectrum method should be more accurate; however, additional fieldwork is needed to rigorously determine the degree of calibration success.

  12. Increase in atmospheric CHF2Cl (HCFC-22) over southern California from 1985 to 1990

    NASA Technical Reports Server (NTRS)

    Irion, Fredrick W.; Brown, Margaret; Toon, Geoffrey C.; Gunson, Michael R.

    1994-01-01

    Column densities of CHF2Cl (HCFC-22) have been measured over Table Mountain Facility (TMF), Wrightwood, California (34.4 deg N) using the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier-transform infrared (FTIR) spectrometer. Between October 1985 and July 1990, the exponential column increase rate was (6.7 +/- 0.5)%/yr. Additionally, column measurements of CHF2Cl over McMurdo Sound, Antarctica (78 deg S) in September and October 1986 by the MarkIV FTIR spectrometer were used to derive a south-north interhemispheric ratio of (0.86 +/- 0.08). Model calculations investigated the feasibility of using CHF2Cl column measurements with a predicted global OH field to determine a globally averaged chemical lifetime for CHF2Cl, or equivalently, an estimate of the OH field using a predicted lifetime. The current uncertainty in historical CHF2Cl emissions is too large for CHF2Cl to be used to infer adequately either the lifetime or the OH field.

  13. Relational Database for the Geology of the Northern Rocky Mountains - Idaho, Montana, and Washington

    USGS Publications Warehouse

    Causey, J. Douglas; Zientek, Michael L.; Bookstrom, Arthur A.; Frost, Thomas P.; Evans, Karl V.; Wilson, Anna B.; Van Gosen, Bradley S.; Boleneus, David E.; Pitts, Rebecca A.

    2008-01-01

    A relational database was created to prepare and organize geologic map-unit and lithologic descriptions for input into a spatial database for the geology of the northern Rocky Mountains, a compilation of forty-three geologic maps for parts of Idaho, Montana, and Washington in U.S. Geological Survey Open File Report 2005-1235. Not all of the information was transferred to and incorporated in the spatial database due to physical file limitations. This report releases that part of the relational database that was completed for that earlier product. In addition to descriptive geologic information for the northern Rocky Mountains region, the relational database contains a substantial bibliography of geologic literature for the area. The relational database nrgeo.mdb (linked below) is available in Microsoft Access version 2000, a proprietary database program. The relational database contains data tables and other tables used to define terms, relationships between the data tables, and hierarchical relationships in the data; forms used to enter data; and queries used to extract data.

  14. Airborne detection of diffuse carbon dioxide emissions at Mammoth Mountain, California

    USGS Publications Warehouse

    Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.

    1999-01-01

    We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at ~2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at ~3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels ~1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of ~250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at approximately 2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at approximately 3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels approximately 1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of approximately 250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.

  15. 50 CFR Table 14b to Part 679 - Port of Landing Codes: Non-Alaska

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Port of Landing Codes: Non-Alaska 14b... ALASKA Pt. 679, Table 14b Table 14b to Part 679—Port of Landing Codes: Non-Alaska (California, Canada... report a landing at a location not currently assigned a location code number, use the code for “Other...

  16. 50 CFR Table 14b to Part 679 - Port of Landing Codes: Non-Alaska

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Port of Landing Codes: Non-Alaska 14b... ALASKA Pt. 679, Table 14b Table 14b to Part 679—Port of Landing Codes: Non-Alaska (California, Canada... report a landing at a location not currently assigned a location code number, use the code for “Other...

  17. Groundwater-quality data in the Klamath Mountains study unit, 2010: results from the California GAMA Program

    USGS Publications Warehouse

    Mathany, Timothy M.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the 8,806-square-mile Klamath Mountains (KLAM) study unit was investigated by the U.S. Geological Survey (USGS) from October to December 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The KLAM study unit was the thirty-third study unit to be sampled as part of the GAMA-PBP. The GAMA Klamath Mountains study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer system and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer system is defined by the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the KLAM study unit. Groundwater quality in the primary aquifer system may differ from the quality in the shallower or deeper water-bearing zones; shallower groundwater may be more vulnerable to surficial contamination. In the KLAM study unit, groundwater samples were collected from sites in Del Norte, Siskiyou, Humboldt, Trinity, Tehama, and Shasta Counties, California. Of the 39 sites sampled, 38 were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the primary aquifer system in the study unit (grid sites), and the remaining site was non-randomized (understanding site). The groundwater samples were analyzed for basic field parameters, organic constituents (volatile organic compounds [VOCs] and pesticides and pesticide degradates), inorganic constituents (trace elements, nutrients, major and minor ions, total dissolved solids [TDS]), radon-222, gross alpha and gross beta

  18. A bibliography of Klamath Mountains geology, California and Oregon, listing authors from Aalto to Zucca for the years 1849 to Mid-2003

    USGS Publications Warehouse

    Irwin, William P.

    2003-01-01

    This bibliography of Klamath Mountains geology was begun, although not in a systematic or comprehensive way, when, in 1953, I was assigned the task of preparing a report on the geology and mineral resources of the drainage basins of the Trinity, Klamath, and Eel Rivers in northwestern California. During the following 40 or more years, I maintained an active interest in the Klamath Mountains region and continued to collect bibliographic references to the various reports and maps of Klamath geology that came to my attention. When I retired in 1989 and became a Geologist Emeritus with the Geological Survey, I had a large amount of bibliographic material in my files. Believing that a comprehensive bibliography of a region is a valuable research tool, I have expended substantial effort to make this bibliography of the Klamath Mountains as complete as is reasonably feasible. My aim was to include all published reports and maps that pertain primarily to the Klamath Mountains, as well as all pertinent doctoral and master's theses. In addition, I included reports in which the Klamath Mountains are of significance but not the primary focus; these latter kinds are mostly reports that correlate the Klamath terranes with those of other provinces, that compare the genesis of Klamath rocks with those elsewhere, or that include the Klamath Mountains in a continental framework. Reports describing the geology of the overlap sequences such as the Great Valley sequence, Hornbrook Formation, and Tertiary sediments and volcanics are included where those rocks lie within the limits of the Klamath Mountains province, but are only selectively included where the overlap sequences are mainly peripheral to the province. The alphabetical part of the bibliography consists of approximately 1700 entries. The list of primary references probably is virtually complete through 1994 and includes some 1995 references. The earliest reference is to James Dwight Dana in 1849. In order to restrict the size

  19. Mechanisms controlling the impact of multi-year drought on mountain hydrology

    Treesearch

    Roger C. Bales; Michael L. Goulden; Carolyn T. Hunsaker; Martha H. Conklin; Peter C. Hartsough; Anthony T. O’Geen; Jan W. Hopmans; Mohammad Safeeq

    2018-01-01

    Mountain runoff ultimately reflects the difference between precipitation (P) and evapotranspiration (ET), as modulated by biogeophysical mechanisms that intensify or alleviate drought impacts. These modulating mechanisms are seldom measured and not fully understood. The impact of the warm 2012–15 California drought on the...

  20. Southern California climate, hydrology and vegetation over the past ~96 ka from Baldwin Lake, San Bernardino Mountains, California

    NASA Astrophysics Data System (ADS)

    Glover, K. C.; Kirby, M. E.; Rhodes, E. J.; Silveira, E.; Stevens, L. R.; Lydon, S. E.; Whitaker, A.; MacDonald, G. M.

    2015-12-01

    Continuous paleoclimate records are scarce from terrestrial sites in Southern California beyond the Last Glacial Period (i.e. Marine Isotope Stage 2, MIS 2). Baldwin Lake in the Big Bear Valley, San Bernardino Mountains (SBM), is a playa lake in the ecotone between desert and Mediterranean climate and vegetation. We recovered a 27 m core from the site in 2012, which spans ~96 - 10 ka, based upon radiocarbon dating, infrared stimulated luminescence dating, and orbital tuning. Total organic content, total carbonate content, density, magnetic susceptibility, x-ray fluorescence, and grain size data show a lake system that responded in tandem with Marine Isotope State transitions. After the basin closed during MIS 5b, Baldwin Lake was productive for MIS 5a, then cycled through an inorganic phase to a highly organic lowstand by the end of MIS 4. A stratified lake of rapidly-deposited organic silt prevailed throughout MIS 3, then shifted to an inorganic, slow sedimentation regime during MIS 2. Paleoecological data (charcoal and fossil pollen) suggest that the Valley was most prone to wildfire during climate transitions (e.g. the end of the Last Glacial Maximum, ~21 ka). Forest cover was dominated by pine for much of the basin's history, save for the dry period at the onset of MIS 2, and a greater presence of oak woodland at the beginning of MIS 3. The reduced pine cover and increased sagebrush steppe in early MIS 2 suggests a more arid landscape of sagebrush steppe c. 29 - 25 ka, before reverting to wet conditions by the LGM. Throughout MIS 5a - 2, lake organic content fluctuates in tandem with solar radiation values; a possible link between lake productivity and insolation is currently being explored with biogenic silica (BiSi) analysis. The lake was desiccated by ~10 ka, perhaps driven by increasing insolation rates at the onset of MIS 1.

  1. University of California Should Keep Requiring SAT Subject Tests of Applicants

    ERIC Educational Resources Information Center

    Mattimore, Patrick

    2008-01-01

    Last week the Board of Regents of the University of California tabled a faculty proposal to broaden the pool of applicants eligible for admission to the 10 campuses in the University of California system. The regents took the action to allow the university's new president, Mark G. Yudof, as well as regents who were uncertain about the proposal,…

  2. California's forest products industry: 1985.

    Treesearch

    James O. Howard; Franklin R. Ward

    1988-01-01

    This report presents the findings of a 100-percent survey of the primary forest products industry in California for 1985. The survey included the following sectors: lumber; veneer and plywood; pulp and board; shake and shingle; export; and post, pole, and piling. Tables, presented by sector and for the industry as a whole, include characteristics of the industry,...

  3. California's forest products industry: 1988.

    Treesearch

    James O. Howard; Franklln R. Ward

    1991-01-01

    This report presents the findings of a survey of all primary forest products industries in California for 1988. The survey included the following sectors: lumber; veneer and plywood; pulp and board; shake and shingle; export; and post, pole, and piling. Tables, presented by sector and for the industry as a whole, include characteristics of the industry, nature and flow...

  4. California's forest products industry: 1992.

    Treesearch

    Franklin R. Ward

    1995-01-01

    This report presents the findings of a survey of primary forest products industries in California for 1992. The survey included the following sectors: lumber; pulp and board; shake and shingle; export; and post, pole, and piling. Veneer and plywood mills are not included because they could not be presented without disclosing critical details. Tables, presented by...

  5. California's forest products industry: 1994.

    Treesearch

    Franklin R. Ward

    1997-01-01

    This report presents the findings of a survey of primary forest products industries in California for 1994. The survey included the following sectors: lumber; veneer; pulp and board; shake and shingle; export; and post, pole, and piling. Tables, presented by sector and for the industry as a whole, include characteristics of the industry, nature and flow of logs...

  6. Impacts of Aerosols on Seasonal Precipitation and Snowpack in California Based on Convection-Permitting WRF-Chem Simulations

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Wu, L.; Jiang, J. H.; Su, H.; Yu, N.; Zhao, C.; Qian, Y.; Zhao, B.; Liou, K. N.; Choi, Y. S.

    2017-12-01

    A version of the WRF-Chem model with fully coupled aerosol-meteorology-snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside of California are studied. We differentiate three pathways of aerosol effects including aerosol-radiation interaction (ARI), aerosol-snow interaction (ASI), and aerosol-cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34-42°N, 117-124°W, not including ocean points) are reduced when aerosols are included, therefore reducing the high model biases of these variables when aerosol effects are not considered. Aerosols affect California water resources through the warming of mountain tops and anomalously low precipitation, however, different aerosol sources play different roles in changing surface temperature, precipitation and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountain tops through ASI, in which the reduced snow albedo associated with dirty snow leads to more surface absorption of solar radiation and reduced SWE. Transported and local anthropogenic aerosols play a dominant role in increasing cloud water amount but reducing precipitation through ACI, leading to reduced SWE and runoff over the Sierra Nevada, as well as the warming of mountain tops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October to June are about -0.19 K and 0.22 K for the whole domain and over mountain tops, respectively. Overall, the averaged reduction during October to June is about 7% for precipitation, 3% for

  7. Evidence for two surface ruptures in the past 500 years on the San Andreas fault at Frazier Mountain, California

    USGS Publications Warehouse

    Lindvall, S.C.; Rockwell, T.K.; Dawson, T.E.; Helms, J.G.; Bowman, K.W.

    2002-01-01

    We conducted paleoseismic studies in a closed depression along the San Andreas fault on the north flank of Frazier Mountain near Frazier Park, California. We recognized two earthquake ruptures in our trench exposure and interpreted the most recent rupture, event 1, to represent the historical 1857 earthquake. We also exposed evidence of an earlier surface rupture, event 2, along an older group of faults that did not rerupture during event 1. Radiocarbon dating of the stratigraphy above and below the earlier event constrains its probable age to between A.D. 1460 and 1600. Because we documented continuous, unfaulted stratigraphy between the earlier event horizon and the youngest event horizon in the portion of the fault zone exposed, we infer event 2 to be the penultimate event. We observed no direct evidence of an 1812 earthquake in our exposures. However, we cannot preclude the presence of this event at our site due to limited age control in the upper part of the section and the possibility of other fault strands beyond the limits of our exposures. Based on overlapping age ranges, event 2 at Frazier Mountain may correlate with event B at the Bidart fan site in the Carrizo Plain to the northwest and events V and W4 at Pallett Creek and Wrightwood, respectively, to the southeast. If the events recognized at these multiple sites resulted from the same surface rupture, then it appears that the San Andreas fault has repeatedly failed in large ruptures similar in extent to 1857.

  8. AIRBORNE PESTICIDES AND POPULATION DECLINES OF A CALIFORNIA ALPINE FROG

    EPA Science Inventory

    The mountain yellow-legged frog (Rana muscosa) has disappeared from most of its historic localities in the Sierra Nevada of California, and airborne pesticides from the Central Valley have been implicated as a causal agent. To determine the distribution and temporal variation of ...

  9. Groundwater quality in Coachella Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  10. Timber resources of the Sacramento area, California, 1972.

    Treesearch

    Brian R. Wall

    1978-01-01

    This report summarizes the 1972 timber resource inventory of the Sacramento area, California. Included are detailed tables of forest area, timber volume, growth, mortality, and timber cut and a discussion of the current timber resource and timber industry situation.

  11. Isotopes and ages in the northern Peninsular Ranges batholith, southern California

    USGS Publications Warehouse

    Kistler, Ronald W.; Wooden, Joseph L.; Morton, Douglas M.

    2003-01-01

    Strontium, oxygen and lead isotopic and rubidium-strontium geochronologic studies have been completed on Cretaceous and Jurassic (?) granitic rock samples from the northern Peninsular Ranges batholith in southern California. Many of these samples were collected systematically and studied chemically by A. K. Baird and colleagues (Baird and others, 1979). The distribution of these granitic rocks is shown in the Santa Ana, Perris, and San Jacinto Blocks, bounded by the Malibu Coast-Cucamonga, Banning, and San Andreas fault zones, and the Pacific Ocean on the map of the Peninsular Ranges batholith and surrounding area, southern California. The granitic rock names are by Baird and Miesch (1984) who used a modal mineral classification that Bateman and others (1963) used for granitic rocks in the Sierra Nevada batholith. In this classification, granitic rocks have at least 10% quartz. Boundaries between rock types are in terms of the ratio of alkali-feldspar to total feldspar: quartz diorite, 0-10%; granodiorite, 10-35%; quartz monzonite 35-65%; granite >65%. Gabbros have 0-10% quartz. Data for samples investigated are giv in three tables: samples, longitude, latitude, specific gravity and rock type (Table 1); rubidium and strontium data for granitic rocks of the northern Peninsular Ranges batholith, southern California (Table 2); U, Th, Pb concentrations, Pb and Sr initial isotopic compositions, and δ18O permil values for granitic rocks of the northern Peninsular Ranges batholith (table 3).

  12. Monitoring the Snowpack in Remote, Ungauged Mountains

    NASA Astrophysics Data System (ADS)

    Dozier, J.; Davis, R. E.; Bair, N.; Rittger, K. E.

    2013-12-01

    Our objective is to estimate seasonal snow volumes, relative to historical trends and extremes, in snow-dominated mountains that have austere infrastructure, sparse gauging, challenges of accessibility, and emerging or enduring insecurity related to water resources. The world's mountains accumulate substantial snow and, in some areas, produce the bulk of the runoff. In ranges like Afghanistan's Hindu Kush, availability of water resources affects US policy, military and humanitarian operations, and national security. The rugged terrain makes surface measurements difficult and also affects the analysis of remotely sensed data. To judge feasibility, we consider two regions, a validation case and a case representing inaccessible mountains. For the validation case, we use the Sierra Nevada of California, a mountain range of extensive historical study, emerging scientific innovation, and conflicting priorities in managing water for agriculture, urban areas, hydropower, recreation, habitat, and flood control. For the austere regional focus, we use the Hindu Kush, where some of the most persistent drought in the world causes food insecurity and combines with political instability, and occasional flooding. Our approach uses a mix of satellite data and spare modeling to present information essential for planning and decision making, ranging from optimization of proposed infrastructure projects to assessment of water resources stored as snow for seasonal forecasts. We combine optical imagery (MODIS on Terra/Aqua), passive microwave data (SSM/I and AMSR-E), retrospective reconstruction with energy balance calculations, and a snowmelt model to establish the retrospective context. With the passive microwave data we bracket the historical range in snow cover volume. The rank orders of total retrieved volume correlates with reconstructions. From a library of historical reconstruction, we find similar cases that provide insights about snow cover distribution at a finer scale than

  13. Patterns and dynamics of vegetation recovery following grazing cessation in the California golden trout habitat

    Treesearch

    Sébastien Nusslé; Kathleen R. Matthews; Stephanie M. Carlson

    2017-01-01

    In 1978, the Golden Trout Wilderness area was established to protect the California golden trout (Oncorhynchus mykiss aguabonita)—a vulnerable subspecies of the rainbow trout that is endemic to California—and its habitat, which is currently restricted to a few streams within high-elevation meadows in the Sierra Nevada Mountain Range....

  14. Ecological context for the North Pacific Landscape Conservation Cooperative

    USGS Publications Warehouse

    Woodward, Andrea; Taylor, Audrey; Weekes, Anne

    2012-01-01

    The North Pacific Landscape Conservation Cooperative (NPLCC) encompasses the temperate coastal rainforest and extends from the coastal mountains to the near-shore from the Kenai Peninsula, Alaska to Bodega Bay, California. The area spans multiple agency, state, and international boundaries over more than 22 degrees of latitude, including a wide range of type and intensity of human land-use activities. Development of NPLCC goals and administrative structures will be facilitated by a shared ecological context for discussing this expansive, diverse, and complex landscape. In support of activities to organize the NPLCC, we provided conceptual models to describe the ecological structure of the NPLCC. Recognizing that the boundaries of LCCs were primarily based on Level 2 of the hierarchical ecoregional classification of Omernik (Comission for Environmental Cooperation 1997), we used nested Level 3 ecoregions to define subregions within the NPLCC. Rather than develop conceptual models for all nine constituent subregions, we opted to consider five groups: Puget-Georgia Basin Lowland and Willamette Valley, Alaska-British Columbia Coast, Alaska-British Columbia Mountains, Klamath-Olympic-Cascade Mountains, and Washington-Oregon-Northern California Coast. At the conclusion of the project, we felt that the close relationship between mountain and coastal areas support combining them to create three major subregions: Alaska-British Columbia coast and mountains, Washington-Oregon-Northern California coast and mountains, and the lowlands of the Georgia Basin and Willamette Valley. The following figures present the Omernik Level 3 ecoregions comprising the NPLCC; how the ecoregions were grouped to create conceptual models; and conceptual models for each group. The five models each consist of a table listing resources, stressors, potential climate change impacts; a landcover map; and a cartoon to summarize the table and evoke the landscape. A final figure summarizes resources

  15. Mapping montane vegetation in Southern California from color infrared imagery

    NASA Technical Reports Server (NTRS)

    Minnich, R. A.; Bowden, L. W.; Pease, R. W.

    1969-01-01

    Mapping a large area in California like the San Bernardino Mountains, demonstrated that color infrared photography is suitable for detailed mapping and offers potential for quantitative mapping. The level of information presented is comparable or superior to the most detailed mapping by ground survey.

  16. Indicators of nitrogen status in California forests

    Treesearch

    Mark E. Fenn; Mark A. Poth

    1998-01-01

    Indicators of ecosystem nitrogen (N) status are needed for monitoring and for identifying ecosystems that are at risk of becoming N saturated. The N chemistry of a number of plant, soil and hydrologic components were analyzed to assess the N status of mixed conifer forests across an N deposition gradient in the San Bernardino Mountains east of Los Angeles, California....

  17. Geologic map of the East of Grotto Hills Quadrangle, California: a digital database

    USGS Publications Warehouse

    Nielson, Jane E.; Bedford, David R.

    1999-01-01

    The East of Grotto Hills 1:24,000-scale quadrangle of California lies west of the Colorado River about 30 km southwest of Searchlight, Nevada, near the boundary between the northern and southern parts of the Basin and Range Province. The quadrangle includes the eastern margin of Lanfair Valley, the southernmost part of the Castle Mountains, and part of the northwest Piute Range. The generally north-trending Piute Range aligns with the Piute and Dead Mountains of California and the Newberry and Eldorado Mountains and McCullough Range of Nevada. The southern part of the Piute Range adjoins Homer Mountain (Spencer and Turner, 1985) near Civil War-era Fort Piute. Adjacent 1:24,000-scale quadrangles include Castle Peaks, Homer Mountain, and Signal Hill, Calif.; also Hart Peak, Tenmile Well, and West of Juniper Mine, Calif. and Nev. The mapped area contains Tertiary (Miocene) volcanic and sedimentary rocks, interbedded with and overlain by Tertiary and Quaternary surficial deposits. Miocene intrusions mark conduits that served as feeders for the Miocene volcanic rocks, which also contain late magma pulses that cut the volcanic section. Upper Miocene conglomerate deposits interfinger with the uppermost volcanic flows. Canyons and intermontane valleys contain dissected Quaternary alluvial-fan deposits, mantled by active alluvial-fan deposits and detritus of active drainages. The alluvial materials were derived largely from Early Proterozoic granite and gneiss complexes, intruded by Mesozoic granite, dominate the heads of Lanfair Valley drainages in the New York Mountains and Mid Hills (fig. 1; Jennings, 1961). Similar rocks also underlie Tertiary deposits in the Castle Peaks, Castle Mountains, and eastern Piute Range.

  18. The composition of coexisting jarosite-group minerals and water from the Richmond mine, Iron Mountain, California

    USGS Publications Warehouse

    Jamieson, Heather E.; Robinson, Clare; Alpers, Charles N.; Nordstrom, D. Kirk; Poustovetov, Alexei; Lowers, Heather A.

    2005-01-01

    Jarosite-group minerals accumulate in the form of stalactites and fine-grained mud on massive pyrite in the D drift of the Richmond mine, Iron Mountain, California. Water samples were collected by placing beakers under the dripping stalactites and by extracting pore water from the mud using a centrifuge. The water is rich in Fe3+ and SO4 2−, with a pH of approximately 2.1, which is significantly higher than the extremely acidic waters found elsewhere in the mine. Electron-microprobe analysis and X-ray mapping indicate that the small crystals (<10 μm in diameter) are compositionally zoned with respect to Na and K, and include hydronium jarosite corresponding to the formula (H3O)0.6K0.3Na0.1Fe3 3+(SO4)2(OH)6. The proton-microprobe analyses indicate that the jarosite-group minerals contain significant amounts of As, Pb and Zn, and minor levels of Bi, Rb, Sb, Se, Sn and Sr. Speciation modeling indicates that the drip waters are supersaturated with respect to jarosite-group minerals. The expected range in composition of jarosite-group solid-solution in equilibrium with the pore water extracted from the mud was found to be consistent with the observed range in composition.

  19. California forests: trends, problems, and opportunities.

    Treesearch

    Charles L. Bolsinger

    1980-01-01

    The most recent information on forest area in California, volume of timber, ownership of forest resources, and rate of use and replenishment is summarized. An analysis of physical opportunities to increase timber production is presented, along with a discussion of problems relating to timber production. Also included are detailed statistical tables; a brief historical...

  20. Tropospheric Ozone Source Attribution in Southern California during Summer 2014 Based on Lidar Measurements and Model Simulations

    NASA Technical Reports Server (NTRS)

    Granados Munoz, Maria Jose; Johnson, Matthew S.; Leblanc, Thierry

    2016-01-01

    In the past decades, significant efforts have been made to increase tropospheric ozone long-term monitoring. A large number of ground-based, airborne and space-borne instruments are currently providing valuable data to contribute to better understand tropospheric ozone budget and variability. Nonetheless, most of these instruments provide in-situ surface and column-integrated data, whereas vertically resolved measurements are still scarce. Besides ozonesondes and aircraft, lidar measurements have proven to be valuable tropospheric ozone profilers. Using the measurements from the tropospheric ozone differential absorption lidar (DIAL) located at the JPL Table Mountain Facility, California, and the GEOS-Chem and GEOS-5 model outputs, the impact of the North American monsoon on tropospheric ozone during summer 2014 is investigated. The influence of the Monsoon lightning-induced NOx will be evaluated against other sources (e.g. local anthropogenic emissions and the stratosphere) using also complementary data such as backward-trajectories analysis, coincident water vapor lidar measurements, and surface ozone in-situ measurements.

  1. Eruptive history of Mammoth Mountain and its mafic periphery, California

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy

    2016-07-13

    Many geographic names that appear in this report are informal despite having been in local use for decades. Most appear on maps distributed by the Town of Mammoth Lakes or the Mammoth Mountain Ski Area and can be found here on map figures 2–5, on several photo figures, and on the geologic map.

  2. California State Waters Map Series: offshore of San Gregorio, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Watt, Janet T.; Golden, Nadine E.; Endris, Charles A.; Phillips, Eleyne L.; Hartwell, Stephen R.; Johnson, Samuel Y.; Kvitek, Rikk G.; Erdey, Mercedes D.; Bretz, Carrie K.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Dieter, Bryan E.; Chin, John L.; Cochran, Susan A.; Cochrane, Guy R.; Cochran, Susan A.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of San Gregorio map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 50 kilometers south of the Golden Gate. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The nearest significant onshore cultural centers in the map area are San Gregorio and Pescadero, both unincorporated communities with populations well under 1,000. Both communities are situated inland of state beaches that share their names. No harbor facilities are within the Offshore of San Gregorio map area. The hilly coastal area is virtually undeveloped grazing land for sheep and cattle. The coastal geomorphology is controlled by late Pleistocene and Holocene slip in the San Gregorio Fault system. A westward bend in the San Andreas Fault Zone, southeast of the map area, coupled with right-lateral movement along the San Gregorio Fault system have caused regional folding and uplift. The coastal area consists of high coastal bluffs and vertical sea cliffs. Coastal promontories in

  3. Visualize Your Data with Google Fusion Tables

    NASA Astrophysics Data System (ADS)

    Brisbin, K. E.

    2011-12-01

    Google Fusion Tables is a modern data management platform that makes it easy to host, manage, collaborate on, visualize, and publish tabular data online. Fusion Tables allows users to upload their own data to the Google cloud, which they can then use to create compelling and interactive visualizations with the data. Users can view data on a Google Map, plot data in a line chart, or display data along a timeline. Users can share these visualizations with others to explore and discover interesting trends about various types of data, including scientific data such as invasive species or global trends in disease. Fusion Tables has been used by many organizations to visualize a variety of scientific data. One example is the California Redistricting Map created by the LA Times: http://goo.gl/gwZt5 The Pacific Institute and Circle of Blue have used Fusion Tables to map the quality of water around the world: http://goo.gl/T4SX8 The World Resources Institute mapped the threat level of coral reefs using Fusion Tables: http://goo.gl/cdqe8 What attendees will learn in this session: This session will cover all the steps necessary to use Fusion Tables to create a variety of interactive visualizations. Attendees will begin by learning about the various options for uploading data into Fusion Tables, including Shapefile, KML file, and CSV file import. Attendees will then learn how to use Fusion Tables to manage their data by merging it with other data and controlling the permissions of the data. Finally, the session will cover how to create a customized visualization from the data, and share that visualization with others using both Fusion Tables and the Google Maps API.

  4. Analyzing the occurrence of debris flows and floods in a small watershed two years after a wildfire, San Gabriel Mountains, California

    NASA Astrophysics Data System (ADS)

    Leeper, R. J.; Barth, N. C.; Gray, A. B.

    2016-12-01

    The frontal range of the San Gabriel Mountains immediately abuts the Los Angeles basin for approximately 110 km. Along this wildland-urban interface and throughout the mountain range multiple overlapping natural hazards can occur, the most frequent of which are postfire debris flows and floods triggered by intense rainfall events. Recent studies in southern California of burned basins with steep slopes show that the timing of postfire debris flows and floods during the first winter following a wildfire is closely tied to high-intensity rainfall events. Here, we explore short-term (seasonal/annual) controls on sediment production and flux after the 2014 Colby Fire, which burned 8 km2 of the southern San Gabriel front directly above the city of Glendora, CA. To understand how sediment flux changes as a basin recovers following a wildfire, we installed and monitored a dense network of rain gages and pressure transducers within the Englewild watershed ( 1 km2) during the second winter following the Colby Fire. Site visits were made following each rainstorm to download pressure transducer and rainfall data and analyze the geomorphic response within the channel network. Preliminary results indicate that rainfall intensity-duration thresholds (5-min) previously identified as postfire debris flow triggers were exceeded multiple times throughout the winter. However, we only one documented one debris flow. Understanding changes in the rainfall intensity thresholds relative to debris flow timing and occurrence with system rebound after wildfire is important to help reduce risk and increase hazard resilience.

  5. Sierra Nevada, California as seen from STS-59

    NASA Image and Video Library

    1994-04-14

    STS059-L09-162 (9-20 April 1994) --- Orient with the snow-covered mountains (Sierra Nevada of California) in the upper right corner. Then Owens Valley runs along the top of the photograph to Owens Lake playa at top center. The upper end of Death Valley extends from right to left in the foreground, with the drainage running down to a playa at Stovepipe Wells in the left foreground. Geologists are studying microwave signatures of the different playa surfaces, and the coatings on alluvial fans that extend from mountain masses, to try to sort out the history of different climates in this formerly wet but now hyperarid region.

  6. Spatial Patterns of Atmospherically Deposited Organic Contaminants at High-Elevation in the Southern Sierra Nevada Mountains, California, USA

    PubMed Central

    Bradford, David F.; Stanley, Kerri; McConnell, Laura L.; Tallent-Halsell, Nita G.; Nash, Maliha S.; Simonich, Staci M.

    2011-01-01

    Atmospherically deposited contaminants in the Sierra Nevada mountains of California, USA have been implicated as adversely affecting amphibians and fish, yet little is known about the distributions of contaminants within the mountains, particularly at high elevation. We tested the hypothesis that contaminant concentrations in a high-elevation portion of the Sierra Nevada decrease with distance from the adjacent San Joaquin Valley. We sampled air, sediment, and tadpoles twice at 28 water bodies in 14 dispersed areas in Sequoia and Kings Canyon National Parks (2785 – 3375 m elevation; 43 – 82 km from Valley edge). We detected up to 15 chemicals frequently in sediment and tadpoles, including current- and historic-use pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. Only β-endosulfan was found frequently in air. Concentrations of all chemicals detected were very low, averaging in the parts-per-billion range or less in sediment and tadpoles, and on the order of 10 pg/m3 for β-endosulfan in air. Principal components analysis indicated that chemical compositions were generally similar among sites, suggesting that chemical transport patterns were likewise similar among sites. In contrast, transport processes did not appear to strongly influence concentration differences among sites because variation in concentrations among nearby sites was high relative to sites far from each other. Moreover, a general relationship for concentrations as a function of distance from the valley was not evident across chemical, medium, and time. Nevertheless, concentrations for some chemical/medium/time combinations showed significant negative relationships with metrics for distance from the Valley. However, the magnitude of these distance effects among high-elevation sites was small relative to differences found in other studies between the valley edge and the nearest high-elevation sites. PMID:20821540

  7. The mountain pine beetle and whitebark pine waltz: Has the music changed?

    Treesearch

    Barbara J. Bentz; Greta Schen-Langenheim

    2007-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) (MPB), is a bark beetle native to western North American forests, spanning wide latitudinal and elevational gradients. MPB infest and reproduce within the phloem of most Pinus species from northern Baja California in Mexico to central British Columbia in...

  8. Monitoring Phytophthora ramorum distribution in streams within California watersheds

    Treesearch

    S.K. Murphy; C. Lee; Y. Valachovic; J. Bienapfl; W. Mark; A. Jirka; D.R. Owen; T.F. Smith; D.M. Rizzo

    2008-01-01

    One hundred-thirteen sites were established in perennial watercourses and sampled for 1 to 3 years between 2004 and 2006 to monitor for presence of Phytophthora ramorum throughout coastal central and northern California watersheds as well as portions of the Sierra Nevada mountain range (Murphy and others 2006). The majority of the monitored...

  9. Whole stand volume tables for quaking aspen in the Rocky Mountains

    Treesearch

    Wayne D. Shepperd; H. Todd Mowrer

    1984-01-01

    Linear regression equations were developed to predict stand volumes for aspen given average stand basal area and average stand height. Tables constructed from these equations allow easy field estimation of gross merchantable cubic and board foot Scribner Rules per acre, and cubic meters per hectare using simple prism cruise data.

  10. Annual cycle of magmatic CO2 in a tree-kill soil at Mammoth Mountain, California: implications for soil acidification

    USGS Publications Warehouse

    McGee, K.A.; Gerlach, T.M.

    1998-01-01

    Time-series sensor data reveal significant short-term and seasonal variations of magmatic CO2 in soil over a 12 month period in 1995-1996 at the largest tree-kill site on Mammoth Mountain, central-eastern California. Short-term variations leading to ground-level soil CO2 concentrations hazardous and lethal to humans were triggered by shallow faulting in the absence of increased seismicity or intrusion, consistent with tapping a reservoir of accumulated CO2, rather than direct magma degassing. Hydrologic processes closely modulated seasonal variations in CO2 concentrations, which rose to 65%-100% in soil gas under winter snowpack and plunged more than 25% in just days as the CO2 dissolved in spring snowmelt. The high efflux of CO2 through the tree-kill soils acts as an open-system CO2 buffer causing infiltration of waters with pH values commonly of < 4.2, acid loading of up to 7 keqH+.ha-1.yr-1, mobilization of toxic Al3+, and long-term decline of soil fertility.

  11. Groundwater quality in the Antelope Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  12. Incipient Evolution of the Eastern California Shear Zone through a Transpressional Zone along the San Andreas Fault in the San Bernardino Mountains, California

    NASA Astrophysics Data System (ADS)

    Cochran, W. J.; Spotila, J. A.

    2017-12-01

    Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire

  13. Development of a reliable method for determining sex for a primitive rodent, the Point Arena mountain beaver (Aplodontia rufa nigra)

    Treesearch

    Kristine L. Pilgrim; William J. Zielinski; Fredrick V. Schlexer; Michael K. Schwartz

    2012-01-01

    The mountain beaver (Aplodontia rufa) is a primitive species of rodent, often considered a living fossil. The Point Arena mountain beaver (Aplodontia rufa nigra) is an endangered subspecies that occurs in a very restricted range in northern California. Efforts to recover this taxon have been limited by the lack of knowledge on their demography, particularly sex and age...

  14. Decadal-scale variability of diffuse CO2 emissions and seismicity revealed from long-term monitoring (1995–2013) at Mammoth Mountain, California, USA

    USGS Publications Warehouse

    Werner, Cynthia A.; Bergfeld, Deborah; Farrar, Chris; Doukas, Michael P.; Kelly, Peter; Kern, Christoph

    2014-01-01

    Mammoth Mountain, California, is a dacitic volcano that has experienced several periods of unrest since 1989. The onset of diffuse soil CO2 emissions at numerous locations on the flanks of the volcano began in 1989–1990 following an 11-month period of heightened seismicity. CO2 emission rates were measured yearly from 1995 to 2013 at Horseshoe Lake (HSL), the largest tree kill area on Mammoth Mountain, and measured intermittently at four smaller degassing areas around Mammoth from 2006 to 2013. The long-term record at HSL shows decadal-scale variations in CO2 emissions with two peaks in 2000–2001 and 2011–2012, both of which follow peaks in seismicity by 2–3 years. Between 2000 and 2004 emissions gradually declined during a seismically quiet period, and from 2004 to 2009 were steady at ~ 100 metric tonnes per day (t d− 1). CO2emissions at the four smaller tree-kill areas also increased by factors of 2–3 between 2006 and 2011–2012, demonstrating a mountain-wide increase in degassing. Delays between the peaks in seismicity and degassing have been observed at other volcanic and hydrothermal areas worldwide, and are thought to result from an injection of deep CO2-rich fluid into shallow subsurface reservoirs causing a pressurization event with a delayed transport to the surface. Such processes are consistent with previous studies at Mammoth, and here we highlight (1) the mountain-wide response, (2) the characteristic delay of 2–3 years, and (3) the roughly decadal reoccurrence interval for such behavior. Our best estimate of total CO2 degassing from Mammoth Mountain was 416 t d− 1 in 2011 during the peak of emissions, over half of which was emitted from HSL. The cumulative release of CO2 between 1995 and 2013 from diffuse emissions is estimated to be ~ 2–3 Mt, and extrapolation back to 1989 gives ~ 4.8 Mt. This amount of CO2 release is similar to that produced by the mid-sized (VEI 3) 2009 eruption of Redoubt Volcano in Alaska (~ 2.3

  15. Turbulence and Mountain Wave Conditions Observed with an Airborne 2-Micron Lidar

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Ehernberger, Jack; Bogue, Rodney; Ashburn, Chris

    2007-01-01

    Joint efforts by the National Aeronautics and Space Administration (NASA), the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This paper describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges in southern California by lidar onboard the NASA Airborne Science DC-8 airplane. The examples in this paper compare lidar-predicted mountain waves and wave-induced turbulence to subsequent aircraft-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 m/s at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 s in moderate turbulence.

  16. Turbulence and mountain wave conditions observed with an airborne 2-micron lidar

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Ashburn, Chris; Ehernberger, Jack; Bogue, Rodney

    2006-01-01

    Joint efforts by the National Aeronautics and Space Administration (NASA), the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This paper describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges (California, USA) by lidar onboard the NASA Airborne Science DC-8 airplane. The examples in this paper compare lidar-predicted mountain waves and wave-induced turbulence to subsequent aircraft-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 meters per second (m/s) at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 seconds in moderate turbulence.

  17. Southern California landslides-an overview

    USGS Publications Warehouse

    ,

    2005-01-01

    Southern California lies astride a major tectonic plate boundary defined by the San Andreas Fault and numerous related faults that are spread across a broad region. This dynamic tectonic environment has created a spectacular landscape of rugged mountains and steep-walled valleys that compose much of the region’s scenic beauty. Unfortunately, this extraordinary landscape also presents serious geologic hazards. Just as tectonic forces are steadily pushing the landscape upward, gravity is relentlessly tugging it downward. When gravity prevails, landslides can occur.

  18. California spotted owl habitat characteristics and use

    Treesearch

    Susan L. Roberts

    2017-01-01

    California spotted owls (Strix occidentalis occidentalis) establish large home ranges averaging about 1279 ha (3,160 ac) (table 3-1), and within these home ranges individual owls select habitat at different scales, depending on their activity. At the smallest spatial scale, the nest tree, it appears there is very limited flexibility in the...

  19. Novel approaches to SOD management in California wildlands: a case study of "eradication" and collaboration in Redwood Valley

    Treesearch

    Y. Valachovic; L. Quinn-Davidson; E. Goldsworthy; P. Cannon

    2013-01-01

    In California, sudden oak death (SOD) treatment efforts have been localized, often targeting specific trees or properties. The widespread nature of SOD establishment and spread in coastal mountains of California has mostly precluded use of broader eradication strategies, which are more applicable in isolated infestations like those in Oregon. However, the 2010...

  20. Ozone formation along the California-Mexican border region during Cal-Mex 2010 field campaign

    NASA Astrophysics Data System (ADS)

    Li, Guohui; Bei, Naifang; Zavala, Miguel; Molina, Luisa T.

    2014-05-01

    The purpose of this study is to evaluate the ozone (O3) formation along the California-Mexico border region using the WRF-CHEM model in association with the Cal-Mex 2010 field campaign. Four two-day episodes in 2010 are chosen based on plume transport patterns: 1) May 15-16 (plume north), 2) May 29-30 (plume southwest), 3) June 4-5 (plume east), and 4) June 13-14 (plume southeast). Generally, the predicted O3 spatial patterns and temporal variations agree well with the observations at the ambient monitoring sites in the San Diego-Tijuana region, but in the Calexico-Mexicali region, the model frequently underestimates the observation. In the San Diego-Tijuana region, the morning anthropogenic precursor emissions in the urbanized coastal plain are carried inland and mixed with the local biogenic emissions during transport, causing the high O3 level over the mountain region. Biogenic emissions enhance the O3 concentrations by up to 40 ppb over the mountain region in the afternoon. The factor separation approach is used to evaluate the contributions of trans-boundary transport of emissions from California and Baja California to the O3 level in the California-Mexico border region. The Baja California emissions play a minor role in the O3 formation in the San Diego region and do not seem to contribute to the O3 exceedances in the region, but have large potential to cause O3 exceedances in the Calexico region. The California emissions can considerably enhance the O3 level in the Tijuana region. Generally, the California emissions play a more important role than the Baja California emissions on O3 formation in the border region (within 40 km to the California-Mexico border). On average, the O3 concentrations in the border region are decreased by 2-4 ppb in the afternoon due to the interactions of emissions from California and Baja California. Further studies need to be conducted to improve the sea breeze simulations in the border region for evaluating O3 formation.

  1. The precarious persistence of the endangered Sierra Madre yellow-legged frog Rana muscosa in southern California, USA

    USGS Publications Warehouse

    Backlin, Adam R.; Hitchcock, Cynthia J.; Gallegos, Elizabeth A.; Yee, Julie L.; Fisher, Robert N.

    2015-01-01

    We conducted surveys for the Endangered Sierra Madre yellow-legged frog Rana muscosa throughout southern California to evaluate the current distribution and status of the species. Surveys were conducted during 2000–2009 at 150 unique streams and lakes within the San Gabriel, San Bernardino, San Jacinto, and Palomar mountains of southern California. Only nine small, geographically isolated populations were detected across the four mountain ranges, and all tested positive for the amphibian chytrid fungus Batrachochytrium dendrobatidis. Our data show that when R. muscosa is known to be present it is easily detectable (89%) in a single visit during the frog's active season. We estimate that only 166 adult frogs remained in the wild in 2009. Our research indicates that R. muscosa populations in southern California are threatened by natural and stochastic events and may become extirpated in the near future unless there is some intervention to save them.

  2. Generalized water-table and water-level data at the US Air Force plant 42 and vicinity, Palmdale, California, March-April, 1997

    USGS Publications Warehouse

    Christensen, Allen H.

    1999-01-01

    The U.S. Air Force Plant 42 (Plant 42) which is in the Antelope Valley about 1.5 miles northeast of Palmdale and 3 miles southeast of Lancaster in Los Angeles County. Historically, ground water has been the primary source of water owing, in large part, to the scarcity of surface water in the region. Since 1972, supplemental surface water has been imported from the California Water Project to help meet the demand for water. Despite the importation of surface water, ground-water withdrawal for both municipal and agricultural uses is affecting ground-water levels in the vicinity of Plant 42. To better understand the effects of ground-water withdrawal on ground-water levels and movement in the area, the U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force, constructed a generalized water-table-contour map of the aquifer system underlying Plant 42 and the surrounding area.

  3. Landscape-level connectivity in coastal southern California, USA, as assessed through carnivore habitat suitability

    USGS Publications Warehouse

    Hunter, Richard D.; Fisher, Robert N.; Crooks, Kevin R.

    2003-01-01

    Although the fragmentation of the natural landscape of coastal southern California, USA, is accelerating, large-scale assessments of regional connectivity are lacking. Because of their large area requirements and long dispersal movements, mammalian carnivores can be effective focal species to use when evaluating landscape-level connectivity. Our goal was to make an initial assessment of the extent of landscape-level connectivity in coastal southern California using mountain lions (Felis concolor [Linnaeus]) and bobcats (Felis rufus [Shreber]) as focal species. We first characterized habitat preferences for mountain lions and bobcats from previously derived habitat relationship models for these species; the resulting maps provided a coarse view of habitat preferences for use at regional scales. We then constructed GIS models to evaluate the disturbance impact of roadways and development, major determinants of carnivore distribution and abundance in the south coast region. Finally, we combined the habitat relationship models with the disturbance impact models to characterize habitat connectivity for mountain lions and bobcats in the ecoregion. Habitat connectivity in the ecoregion appeared higher for bobcats than for mountain lions due in part to higher habitat suitability for bobcats in coastal lowland areas. Our models suggest that much of the key carnivore habitat in the coastal southern California is at risk; over 80% of high suitability habitat and over 90% of medium suitability habitat for carnivores is found in the least protected land management classes. Overall, these models allow for (1) identification of core habitat blocks for carnivores and key landscape connections between core areas, (2) evaluation of the level of protection of these areas, and (3) a regional framework within which to develop and coordinate local management and conservation plans.

  4. Monitoring Phytophthora ramorum distribution in streams within coastal California watersheds

    Treesearch

    S. Murphy; C. Lee; Y. Valachovic; A. Jirka; D.R. Owen; D. Rizzo; W. Mark

    2009-01-01

    One hundred eighty-seven sites were established in perennial watercourses and sampled for one to four years between 2004 and 2007 to monitor for the presence of Phytophthora ramorum throughout coastal central and northern California watersheds as well as portions of the Sierra Nevada mountain range. In 2007, 132 sites...

  5. Air pollution impacts in the mixed conifer forests of southern California

    Treesearch

    Patrick J. Temple; Andrzej Bytnerowicz; Mark E. Fenn; Mark A. Poth

    2005-01-01

    Air pollution, principally in the form of photochemical ozone and deposition of nitrogen compounds, has significantly affected mixed conifer forests in the mountains of southern California. Foliar injury, premature needle abscission, crown thinning, and reduced growth and vigor have been well documented, particularly for ponderosa (Pinus ponderosa...

  6. Klamath Mountains Ecoregion: Chapter 13 in Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Calzia, James P.

    2012-01-01

    The Klamath Mountains Ecoregion covers approximately 47,791 km2 (18,452 mi2) of the Klamath and Siskiyou Mountains of northern California and southern Oregon (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion is flanked by the Coast Range Ecoregion to the west, the Southern and Central California Chaparral and Oak Woodlands Ecoregion to the south, the Cascades and the Eastern Cascades Slopes and Foothills Ecoregions to the east, and the Willamette Valley Ecoregion to the north. The mild Mediterranean climate of the ecoregion is characterized by hot, dry summers and wet winters; the amount of winter moisture varies within the ecoregion, decreasing from west to east. The Klamath–Siskiyou Mountains region is widely recognized as an important biodiversity hotspot (Whittaker, 1960; Kruckeberg, 1984; Wagner, 1997; DellaSala and others, 1999), containing more than 3,500 plant species, more than 200 of which are endemic (Sawyer, 2007). A biological assessment by DellaSala and others (1999) ranked the Klamath–Siskiyou Mountains region as the fifth richest coniferous forest in terms of species diversity. In addition, the International Union for the Conservation of Nature considers the region an area of notable botanical importance (Wagner, 1997). Twenty-nine different species of conifers can be found in the Klamath Mountains Ecoregion (Sawyer, 1996).

  7. Inevitable end-of-21st-century trends toward earlier surface runoff timing in California's Sierra Nevada Mountains

    NASA Astrophysics Data System (ADS)

    Schwartz, M. A.; Hall, A. D.; Sun, F.; Walton, D.; Berg, N.

    2015-12-01

    Hybrid dynamical-statistical downscaling is used to produce surface runoff timing projections for California's Sierra Nevada, a high-elevation mountain range with significant seasonal snow cover. First, future climate change projections (RCP8.5 forcing scenario, 2081-2100 period) from five CMIP5 global climate models (GCMs) are dynamically downscaled. These projections reveal that future warming leads to a shift toward earlier snowmelt and surface runoff timing throughout the Sierra Nevada region. Relationships between warming and surface runoff timing from the dynamical simulations are used to build a simple statistical model that mimics the dynamical model's projected surface runoff timing changes given GCM input or other statistically-downscaled input. This statistical model can be used to produce surface runoff timing projections for other GCMs, periods, and forcing scenarios to quantify ensemble-mean changes, uncertainty due to intermodel variability and consequences stemming from choice of forcing scenario. For all CMIP5 GCMs and forcing scenarios, significant trends toward earlier surface runoff timing occur at elevations below 2500m. Thus, we conclude that trends toward earlier surface runoff timing by the end-of-the-21st century are inevitable. The changes to surface runoff timing diagnosed in this study have implications for many dimensions of climate change, including impacts on surface hydrology, water resources, and ecosystems.

  8. Relations Between Rainfall and Postfire Debris-Flow and Flood Magnitudes for Emergency-Response Planning, San Gabriel Mountains, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Boldt, Eric M.; Kean, Jason W.; Laber, Jayme; Staley, Dennis M.

    2010-01-01

    Following wildfires, emergency-response and public-safety agencies are faced often with making evacuation decisions and deploying resources both well in advance of each coming winter storm and during storms themselves. Information critical to this process is provided for recently burned areas in the San Gabriel Mountains of southern California. The National Weather Service (NWS) issues Quantitative Precipitation Forecasts (QPFs) for the San Gabriel Mountains twice a day, at approximately 4 a.m. and 4 p.m., along with unscheduled updates when conditions change. QPFs provide estimates of rainfall totals in 3-hour increments for the first 12-hour period and in 6-hour increments for the second 12-hour period. Estimates of one-hour rainfall intensities can be provided in the forecast narrative, along with probable peak intensities and timing, although with less confidence than rainfall totals. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands was used to develop a system for classifying the magnitude of the postfire hydrologic response. The four-class system is based on a combination of the reported volume of individual debris flows, the consequences of these events in an urban setting, and the spatial extent of the response to the triggering storm. Threshold rainfall conditions associated with debris flow and floods of different magnitude classes are defined by integrating local rainfall data with debris-flow and flood magnitude information. The within-storm rainfall accumulations (A) and durations (D) above which magnitude I events are expected are defined by A=0.3D0.6. The function A=0.5D0.6 defines the within-storm rainfall accumulations and durations above which a magnitude III event will occur in response to a regional-scale storm, and a magnitude II event will occur if the storm affects only a few drainage basins. The function A=1.0D0.5defines the rainfall conditions above which

  9. Reconnaissance geologic map of the Dubakella Mountain 15 quadrangle, Trinity, Shasta, and Tehama Counties, California

    USGS Publications Warehouse

    Irwin, William P.; Yule, J. Douglas; Court, Bradford L.; Snoke, Arthur W.; Stern, Laura A.; Copeland, William B.

    2011-01-01

    The Dubakella Mountain 15' quadrangle is located just south of the Hayfork quadrangle and just east of the Pickett Peak quadrangle. It spans a sequence of four northwest-trending tectonostratigraphic terranes of the Klamath Mountains geologic province that includes, from east to west, the Eastern Hayfork, Western Hayfork, Rattlesnake Creek, and Western Jurassic terranes, as well as, in the southwest corner of the quadrangle, part of a fifth terrane, the Pickett Peak terrane of the Coast Ranges geologic province. The Eastern Hayfork terrane is a broken formation and melange of volcanic and sedimentary rocks that include blocks of limestone and chert. The limestone contains late Permian microfossils of Tethyan faunal affinity. The chert contains radiolarians of Mesozoic age, mostly Triassic, but none clearly Jurassic. The Western Hayfork terrane is an andesitic volcanic arc that consists mainly of agglomerate, tuff, argillite, and chert, and includes the Wildwood pluton. That pluton is related to the Middle Jurassic (about 170 Ma) Ironside Mountain batholith that is widely exposed farther north beyond the Dubakella Mountain quadrangle. The Rattlesnake Creek terrane is a highly disrupted ophiolitic melange of probable Late Triassic or Early Jurassic age. Although mainly ophiolitic, the melange includes blocks of plutonic rocks (about 200 Ma) of uncertain genetic relation. Some scattered areas of well-bedded mildly slaty detrital rocks of the melange appear similar to Galice Formation (unit Jg) and may be inliers of the nearby Western Jurassic terrane. The Western Jurassic terrane consists mainly of slaty to phyllitic argillite, graywacke, and stretched-pebble conglomerate and is correlative with the Late Jurassic Galice Formation of southwestern Oregon. The Pickett Peak terrane, the most westerly of the succession of terranes of the Dubakella Mountain quadrangle, is mostly fine-grained schist that includes the blueschist facies mineral lawsonite and is of Early

  10. Temporal and spatial trends in streamwater nitrate concentrations in the San Bernardino mountains, southern California

    Treesearch

    Mark E. Fenn; Mark A. Poth

    1999-01-01

    We report streamwater nitrate (NO,) concentrations for December 1995 to September 1998 from 19 sampling sites across a N deposition gradient in the San Bernardino Mountains. Streamwater NO3- concentrations in Devil Canyon (DC), a high-pollution area, and in previously reported data from the San Gabriel Mountains 40 km...

  11. Extreme ground motions and Yucca Mountain

    USGS Publications Warehouse

    Hanks, Thomas C.; Abrahamson, Norman A.; Baker, Jack W.; Boore, David M.; Board, Mark; Brune, James N.; Cornell, C. Allin; Whitney, John W.

    2013-01-01

    Yucca Mountain is the designated site of the underground repository for the United States' high-level radioactive waste (HLW), consisting of commercial and military spent nuclear fuel, HLW derived from reprocessing of uranium and plutonium, surplus plutonium, and other nuclear-weapons materials. Yucca Mountain straddles the western boundary of the Nevada Test Site, where the United States has tested nuclear devices since the 1950s, and is situated in an arid, remote, and thinly populated region of Nevada, ~100 miles northwest of Las Vegas. Yucca Mountain was originally considered as a potential underground repository of HLW because of its thick units of unsaturated rocks, with the repository horizon being not only ~300 m above the water table but also ~300 m below the Yucca Mountain crest. The fundamental rationale for a geologic (underground) repository for HLW is to securely isolate these materials from the environment and its inhabitants to the greatest extent possible and for very long periods of time. Given the present climate conditions and what is known about the current hydrologic system and conditions around and in the mountain itself, one would anticipate that the rates of infiltration, corrosion, and transport would be very low—except for the possibility that repository integrity might be compromised by low-probability disruptive events, which include earthquakes, strong ground motion, and (or) a repository-piercing volcanic intrusion/eruption. Extreme ground motions (ExGM), as we use the phrase in this report, refer to the extremely large amplitudes of earthquake ground motion that arise at extremely low probabilities of exceedance (hazard). They first came to our attention when the 1998 probabilistic seismic hazard analysis for Yucca Mountain was extended to a hazard level of 10-8/yr (a 10-4/yr probability for a 104-year repository “lifetime”). The primary purpose of this report is to summarize the principal results of the ExGM research program

  12. Determination of in-flight AVIRIS spectral, radiometric, spatial and signal-to-noise characteristics using atmospheric and surface measurements from the vicinity of the rare-earth-bearing carbonatite at Mountain Pass, California

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Vane, Gregg; Conel, James E.

    1988-01-01

    An assessment of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) performance was made for a flight over Mountain Pass, California, July 30, 1987. The flight data were reduced to reflectance using an empirical algorithm which compensates for solar, atmospheric and instrument factors. AVIRIS data in conjunction with surface and atmospheric measurements acquired concurrently were used to develop an improved spectral calibration. An accurate in-flight radiometric calibration was also performed using the LOWTRAN 7 radiative transfer code together with measured surface reflectance and atmospheric optical depths. A direct comparison with coincident Thematic Mapper imagery of Mountain Pass was used to demonstrate the high spatial resolution and good geometric performance of AVIRIS. The in-flight instrument noise was independently determined with two methods which showed good agreement. A signal-to-noise ratio was calculated using data from a uniform playa. This ratio was scaled to the AVIRIS reference radiance model, which provided a basis for comparison with laboratory and other in-flight signal-to-noise determinations.

  13. HISTORY OF TROPOSPHERIC OZONE FOR THE SAN BERNARDINO MOUNTAINS OF SOUTHERN CALIFORNIA, 1963-1999

    EPA Science Inventory

    A historical database of hourly O3 concentrations for Crestline, California in 1963-1999 has been developed based on all available representative oxidant/ozone monitoring data taken since 1963. All data were obtained from the California Air Resources Board and the U.S. Departmen...

  14. Highly differentiated subalkaline rhyolite from Glass Mountain, Mono County, California.

    NASA Technical Reports Server (NTRS)

    Noble, D. C.; Korringa, M. K.; Hedge, C. E.; Riddle, G. O.

    1972-01-01

    Available data on the partition of Sr between coexisting feldspar and melt phases re interpreted as an indication that a rhyolite from Glass Mountain represents about 25% of a hypothetical 'parent' magma of silicic composition having a norm ntent of 150 ppm. Available Sr and Pb isotope data on nearby Pleistocene rhyolite lavas suggest that the 'parent' magmas of volcanic rocks of the area came from mafic or ultramafic source marl.

  15. Rheological Properties and Heterogeneities Along the Down-Dip Extent of a Subduction Megathrust: Insights from the Condrey Mountain Schist, Northern California

    NASA Astrophysics Data System (ADS)

    Tewksbury-Christle, C. M.; Behr, W. M.; Helper, M. A.

    2017-12-01

    Episodic tremor and slow slip (ETS) is commonly observed in warm subduction zones down-dip of a locked megathrust. Proposed mechanisms for ETS involve some form of rheological heterogeneity along the subduction interface. Observations from exhumed subduction-related rocks allow us to investigate the constitutive laws that govern the interface, as well as the types and distributions of rheological heterogeneities that develop and/or persist in the tremor source region. The Late Jurassic to Early Cretaceous Condrey Mountain Schist (CMS), Klamath Mountains, northern California, provides insight into interface rheology along the down-dip extent (350-450°C, 5-8 kbar) of a subduction megathrust. The CMS consists of greenschist and blueschist facies metasediments (including graphitic mica schists), metabasalts, and metaserpentinites, all pervasively deformed under prograde metamorphic conditions with minimal retrogressive overprint. A transect of peak metamorphic temperatures determined using graphite crystallinity shows a constant, but small, inverted thermal gradient with increasing structural depth, suggesting equilibration of temperature discontinuities during underplating. Despite the lack of thermal contrasts, rheological heterogeneities are preserved in the form of km-scale cryptic thrusts that separate lithological packages deforming by different mechanisms. Graphitic mica schists exhibit pervasive cleavage-microlithon fabrics indicative of deformation by quartz dissolution-precipitation creep. Blueschist-facies oceanic crustal sequences juxtaposed against the graphitic mica schists show coeval deformation, but are deformed primarily by dislocation creep in amphibole. These observations suggest that the subduction megathrust likely transitions down-dip into a viscous (rather than frictional) interface shear zone, but that original lithological heterogeneities persist in the form of non-Newtonian vs. Newtonian viscous patches.

  16. Faculty Salaries in the California Community Colleges: 1982-83 Academic Year. Commission Report 83-27.

    ERIC Educational Resources Information Center

    California State Postsecondary Education Commission, Sacramento.

    In response to a legislative directive, this report provides salary information on part- and full-time faculty in California's community colleges. Introductory material reviews the history and preparation of the salary report. Part 1 deals with full-time faculty, including tables showing: (1) salary schedules for the University of California (UC),…

  17. Postglacial vegetation and fire history, eastern Klamath Mountains, California, USA

    Treesearch

    Jerry A. Mohr; Cathy Whitlock; Carl N. Skinner

    2000-01-01

    Pollen and high-resolution charcoal data from Bluff Lake and Crater Lake, California, indicate simi lar changes in climate, vegetation and fire history during the last 15 500 years. Pollen data at Bluff Lake suggest that the vegetation betweenc. 15 500 and 13 100 cal. BP consisted of subalpine parkland with scattered Pinus...

  18. Production of deerbrush and mountain whitethorn related to shrub volume and overstory crown closure

    Treesearch

    John G. Kie

    1985-01-01

    Annual production by deerbrush (Ceanothus integerrimus) and mountain whitethorn shrubs (C. cordulatus) in the south-central Sierra Nevada of California was related to shrub volume, volume squared, and overstory crown closure by regression models. production increased as shrub volume and volume squared increased, and decreased as...

  19. Numerical modeling of perched water under Yucca Mountain, Nevada

    USGS Publications Warehouse

    Hinds, J.J.; Ge, S.; Fridrich, C.J.

    1999-01-01

    The presence of perched water near the potential high-level nuclear waste repository area at Yucca Mountain, Nevada, has important implications for waste isolation. Perched water occurs because of sharp contrasts in rock properties, in particular between the strongly fractured repository host rock (the Topopah Spring welded tuff) and the immediately underlying vitrophyric (glassy) subunit, in which fractures are sealed by clays that were formed by alteration of the volcanic glass. The vitrophyre acts as a vertical barrier to unsaturated flow throughout much of the potential repository area. Geochemical analyses (Yang et al. 1996) indicate that perched water is relatively young, perhaps younger than 10,000 years. Given the low permeability of the rock matrix, fractures and perhaps fault zones must play a crucial role in unsaturated flow. The geologic setting of the major perched water bodies under Yucca Mountain suggests that faults commonly form barriers to lateral flow at the level of the repository horizon, but may also form important pathways for vertical infiltration from the repository horizon down to the water table. Using the numerical code UNSAT2, two factors believed to influence the perched water system at Yucca Mountain, climate and fault-zone permeability, are explored. The two-dimensional model predicts that the volume of water held within the perched water system may greatly increase under wetter climatic conditions, and that perched water bodies may drain to the water table along fault zones. Modeling results also show fault flow to be significantly attenuated in the Paintbrush Tuff non-welded hydrogeologic unit.

  20. Rocky Mountain spotted fever in Mexico: past, present, and future.

    PubMed

    Álvarez-Hernández, Gerardo; Roldán, Jesús Felipe González; Milan, Néstor Saúl Hernández; Lash, R Ryan; Behravesh, Casey Barton; Paddock, Christopher D

    2017-06-01

    Rocky Mountain spotted fever, a tick-borne zoonosis caused by Rickettsia rickettsii, is among the most lethal of all infectious diseases in the Americas. In Mexico, the disease was first described during the early 1940s by scientists who carefully documented specific environmental determinants responsible for devastating outbreaks in several communities in the states of Sinaloa, Sonora, Durango, and Coahuila. These investigators also described the pivotal roles of domesticated dogs and Rhipicephalus sanguineus sensu lato (brown dog ticks) as drivers of epidemic levels of Rocky Mountain spotted fever. After several decades of quiescence, the disease re-emerged in Sonora and Baja California during the early 21st century, driven by the same environmental circumstances that perpetuated outbreaks in Mexico during the 1940s. This Review explores the history of Rocky Mountain spotted fever in Mexico, current epidemiology, and the multiple clinical, economic, and social challenges that must be considered in the control and prevention of this life-threatening illness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Late Neogene deformation of the Chocolate Mountains Anticlinorium: Implications for deposition of the Bouse Formation and early evolution of the Lower Colorado River

    USGS Publications Warehouse

    Beard, Sue; Haxel, Gordon B.; Dorsey, Rebecca J.; McDougall, Kristin A.; Jacobsen, Carl E.

    2016-01-01

    Deformation related to late Neogene dextral shear can explain a shift from an estuarine to lacustrine depositional environment in the southern Bouse Formation north of Yuma, Arizona. We infer that late Neogene deformation in the Chocolate Mountain Anticlinorium (CMA) created a barrier that blocked an estuary inlet, and that pre-existing and possibly active structures subsequently controlled the local course of the lower Colorado River. Structural patterns summarized below suggest that the CMA absorbed transpressional strain caused by left-stepping segments of dextral faults of the San Andreas fault system and/or the eastern California shear zone and Gulf of California shear zone. For this hypothesis to be correct, about 200-250 m of post-6 Ma, pre- ~5.3 Ma uplift along the CMA crest would be required to cut off a marine inlet. The 220-km-long CMA, cored by the early Paleogene Orocopia Schist subduction complex, extends from the Orocopia Mountains (Calif.) southeastward through the Chocolate Mountains (parallel to the southern San Andreas fault). Where Highway 78 crosses the Chocolate Mountains (Fig. 1), the CMA turns eastward through the Black Mountain-Picacho area (Calif.) and Trigo Mountains (Ariz.) into southwest Arizona. It separates southernmost Bouse Formation outcrops of the Blythe basin from subsurface Bouse outcrops to the south in the Yuma area. South of Blythe basin the CMA is transected by the lower Colorado River along a circuitous path. Here we focus on the geology of an area between the central Chocolate Mountains and the Yuma Proving Grounds in Arizona. Specific landmarks include the southeast Chocolate Mountains, Midway Mountains, Peter Kane Mountain, Black Mountain, Picacho Peak, and Gavilan Hills. For simplicity, we refer to this as the eastern Chocolate Mountains.

  2. Geologic map of the southern Funeral Mountains including nearby groundwater discharge sites in Death Valley National Park, California and Nevada

    USGS Publications Warehouse

    Fridrich, C.J.; Thompson, R.A.; Slate, J.L.; Berry, M.E.; Machette, M.N.

    2012-01-01

    This 1:50,000-scale geologic map covers the southern part of the Funeral Mountains, and adjoining parts of four structural basins—Furnace Creek, Amargosa Valley, Opera House, and central Death Valley—in California and Nevada. It extends over three full 7.5-minute quadrangles, and parts of eleven others—an area of about 1,000 square kilometers (km2). The boundaries of this map were drawn to include all of the known proximal hydrogeologic features that may affect the flow of groundwater that discharges from springs of the Furnace Creek basin, in the west-central part of the map. These springs provide the main potable water supply for Death Valley National Park. Major hydrogeologic features shown on this map include: (1) springs of the Furnace Creek basin, (2) a large Pleistocene groundwater discharge mound in the northeastern part of the map, (3) the exposed extent of limestones and dolomites that constitute the Paleozoic carbonate aquifer, and (4) the exposed extent of the alluvial conglomerates that constitute the Funeral Formation aquifer.

  3. Exploring the Local Landscape. Grade 3 Model Lesson for Unit 1, Standard 1. California History-Social Science Course Models.

    ERIC Educational Resources Information Center

    Delameter, Cynthia

    The physical geography of the Los Angeles, California, area is composed of six natural regions: mountains, valleys, bays, rivers, a basin, and a peninsula. When the Spanish first explored the region they saw a fairly level plain, extending some miles back from the seacoast, with high mountains in the background. Most of the land near the ocean was…

  4. Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N. California

    USGS Publications Warehouse

    Grove, T.L.; Donnelly-Nolan, J. M.; Housh, T.

    1997-01-01

    Glass Mountain consists of a 1 km3, compositionally zoned rhyolite to dacite glass flow containing magmatic inclusions and xenoliths of underlying shallow crust. Mixing of magmas produced by fractional crystallization of andesite and crustal melting generated the rhyolite of Glass Mountain. Melting experiments were carried out on basaltic andesite and andesite magmatic inclusions at 100, 150 and 200 MPa, H2O-saturated with oxygen fugacity controlled at the nickel-nickel oxide buffer to provide evidence of the role of fractional crystallization in the origin of the rhyolite of Glass Mountain. Isotopic evidence indicates that the crustal component assimilated at Glass Mountain constitutes at least 55 to 60% of the mass of erupted rhyolite. A large volume of mafic andesite (2 to 2.5 km3) periodically replenished the magma reservoir(s) beneath Glass Mountain, underwent extensive fractional crystallization and provided the heat necessary to melt the crust. The crystalline residues of fractionation as well as residual liquids expelled from the cumulate residues are preserved as magmatic inclusions and indicate that this fractionation process occurred at two distinct depths. The presence and composition of amphibole in magmatic inclusions preserve evidence for crystallization of the andesite at pressures of at least 200 MPa (6 km depth) under near H2O-saturated conditions. Mineralogical evidence preserved in olivine-plagioclase and olivine-plagioclase-high-Ca clinopyroxene-bearing magmatic inclusions indicates that crystallization under near H2O-saturated conditions also occurred at pressures of 100 MPa (3 km depth) or less. Petrologic, isotopic and geochemical evidence indicate that the andesite underwent fractional crystallization to form the differentiated melts but had no chemical interaction with the melted crustal component. Heat released by the fractionation process was responsible for heating and melting the crust.

  5. Southern California as seen from the Apollo 7 spacecraft

    NASA Technical Reports Server (NTRS)

    1968-01-01

    This view of southern California as seen from the Apollo 7 spacecraft during its 18th revolution of the earth. Photographed from an altitude of 124 nautical miles. The coast of California can be seen from Point Mugu southward to Oceanside. Santa Catalina can be seen below the off shore clouds. Details of the Los Angeles area are obscured by pollution which extends from Banning westard for 100 miles to beyond Malibu. In the upper portion of the photograph can be seen (left to right) the San Joaquin Valley beyond Bakersfield, the Techachapi Mountains, the Sierra Nevada, Owens Valley, Death Valley and the Mojave Desert.

  6. Southern California as seen from the Apollo 7 spacecraft

    NASA Image and Video Library

    1968-10-12

    This view of southern California as seen from the Apollo 7 spacecraft during its 18th revolution of the earth. Photographed from an altitude of 124 nautical miles. The coast of California can be seen from Point Mugu southward to Oceanside. Santa Catalina can be seen below the off shore clouds. Details of the Los Angeles area are obscured by pollution which extends from Banning westard for 100 miles to beyond Malibu. In the upper portion of the photograph can be seen (left to right) the San Joaquin Valley beyond Bakersfield, the Techachapi Mountains, the Sierra Nevada, Owens Valley, Death Valley and the Mojave Desert.

  7. Southern California Earthquake Center Geologic Vertical Motion Database

    NASA Astrophysics Data System (ADS)

    Niemi, Nathan A.; Oskin, Michael; Rockwell, Thomas K.

    2008-07-01

    The Southern California Earthquake Center Geologic Vertical Motion Database (VMDB) integrates disparate sources of geologic uplift and subsidence data at 104- to 106-year time scales into a single resource for investigations of crustal deformation in southern California. Over 1800 vertical deformation rate data points in southern California and northern Baja California populate the database. Four mature data sets are now represented: marine terraces, incised river terraces, thermochronologic ages, and stratigraphic surfaces. An innovative architecture and interface of the VMDB exposes distinct data sets and reference frames, permitting user exploration of this complex data set and allowing user control over the assumptions applied to convert geologic and geochronologic information into absolute uplift rates. Online exploration and download tools are available through all common web browsers, allowing the distribution of vertical motion results as HTML tables, tab-delimited GIS-compatible text files, or via a map interface through the Google Maps™ web service. The VMDB represents a mature product for research of fault activity and elastic deformation of southern California.

  8. Wildfires Rage in Southern California

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Large plumes of smoke rising from devastating wildfires burning near Los Angeles and San Diego on Sunday, October 26, 2003, are highlighted in this set of images from the Multi-angle Imaging SpectroRadiometer (MISR). These images include a natural color view from MISR's nadir camera (left) and an automated stereo height retrieval (right). The tops of the smoke plumes range in altitude from 500 - 3000 meters, and the stereo retrieval clearly differentiates the smoke from patches of high-altitude cirrus. Plumes are apparent from fires burning near the California-Mexico border, San Diego, Camp Pendleton, the foothills of the San Bernardino Mountains, and in and around Simi Valley. The majority of the smoke is coming from the fires near San Diego and the San Bernardino Mountains.

    The Multiangle Imaging Spectro Radiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 20510. The panels cover an area of 329 kilometers x 543 kilometers, and utilize data from blocks 62 to 66 within World Reference System-2 path 40.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  9. Funding California Schools: The Revenue Limit System. Technical Appendices

    ERIC Educational Resources Information Center

    Weston, Margaret

    2010-01-01

    This document presents the technical appendices accompanying the report, "Funding California Schools: The Revenue Limit System." Included are: (1) Revenue Limit Calculation and Decomposition; (2) Data and Methods; and (3) Base Funding Alternative Simulation Results. (Contains 5 tables and 26 footnotes.) [For the main report,…

  10. The Geologic Story of the Uinta Mountains

    USGS Publications Warehouse

    Hansen, Wallace R.

    1969-01-01

    The opening of the West after the Civil War greatly stimulated early geologic exploration west of the 100th Meridian. One of the areas first studied, the Uinta Mountains region, gained wide attention as a result of the explorations of three Territorial Surveys, one headed by John Wesley Powell, one by Clarence King, and one by Ferdinand V. Hayden. Completion of the Union Pacific Railroad across southern Wyoming 100 years ago, in 1869, materially assisted geologic exploration, and the railheads at Green River and Rock Springs greatly simplified the outfitting of expeditions into the mountains. The overlap of the Powell, King, and Hayden surveys in the Uinta Mountains led to efforts that were less concerted than competitive and not without acrimony. Many parts of the area were seen by all three parties at almost the same time. Duplication was inevitable, of course, but all three surveys contributed vast quantities of new knowledge to the storehouse of geology, and many now-basic concepts arose from their observations. Powell's area of interest extended mainly southward from the Uinta Mountains to the Grand Canyon, including the boundless plateaus and canyons of southern Utah and northern Arizona. King's survey extended eastward from the High Sierra in California to Cheyenne, Wyoming, and encompassed a swath of country more than 100 miles wide. Hayden's explorations covered an immense region of mountains and basins from Yellowstone Park in Wyoming southeast throughout most of Colorado. Powell first entered the Uinta Mountains in the fall of 1868, having traveled north around the east end of the range from the White River country to Green River, Wyoming, then south over a circuitous route to Flaming Gorge and Browns Park, and finally back to the White River, where he spent the winter. In 1869, after reexamining much of the area visited the previous season, Powell embarked on his famous 'first boat trip' down the Green and Colorado Rivers. This trip was more exploratory

  11. Deterioration of fire-killed timber in southern Oregon and northern California.

    Treesearch

    Eini C. Lowell; James M. Cahill

    1996-01-01

    Deterioration of fire-killed timber in the coastal mountains of southern Oregon and northern California was monitored over a 3 yr period (1988-1990). Defect was identified and measured on felled and bucked sample trees by using Scribner and cubic scaling rules. Douglas-fir (Pseudotsuga menziesii), grand fir (Abies grandis),...

  12. Ecological research at the Goosenest Adaptive Management Area in northeastern California

    Treesearch

    Martin W. Ritchie

    2005-01-01

    This paper describes the establishment of an interdisciplinary, large-scale ecological research project on the Goosenest Adaptive Management Area of the Klamath National Forest in northeastern California. This project is a companion to the Blacks Mountain Ecological Research Project described by Oliver (2000). The genesis for this project was the Northwest...

  13. Forest thinning and subsequent bark beetle-caused mortality in Northeastern California

    Treesearch

    Joel M. Egan; William R. Jacobi; Jose F. Negron; Sheri L. Smith; Daniel R. Cluck

    2010-01-01

    The Warner Mountains of northeastern California on the Modoc National Forest experienced a high incidence of tree mortality (2001-2007) that was associated with drought and bark beetle (Coleoptera: Curculionidae, Scolytinae) attack. Various silvicultural thinning treatments were implemented prior to this period of tree mortality to reduce stand density and increase...

  14. Community Brokerage of Transportation Services for the Elderly in Mountain View, California

    DOT National Transportation Integrated Search

    1978-02-01

    This document reports on a unique way of providing transportation and transportation-related services (e.g., information and scheduling) to elderly and handicapped individuals in a small geographic area. In the Mountain View Community Broker project,...

  15. Water budgets for major streams in the Central Valley, California, 1961-77

    USGS Publications Warehouse

    Mullen, J.R.; Nady, Paul

    1985-01-01

    A compilation of annual streamflow data for 20 major stream systems in the central Valley of California, for water years 1961-77, is presented. The water-budget tables list gaged and ungaged inflow from tributaries and canals, diversions, and gaged outflow. Theoretical outflow and gain or loss in a reach are computed. A schematic diagram and explanation of the data are provided for each water-budget table. (USGS)

  16. Oil and gas resources of the Cheat Mountain Further Planning Area (Rare II), Randolph County, West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weed, E.G.A.

    1981-01-01

    This map presents an analysis of the oil and gas resources of the Cheat Mountain Further Planning Area in the Monomgahela National Forest, Randolph County, West Virgina. 28 references, 4 figures, 1 table.

  17. Turbulence and Mountain Wave Conditions Observed with an Airborne 2-Micron Lidar

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Ashburn, Chris; Ehernberger, L. J.; Bogue, Rodney K.

    2006-01-01

    Joint efforts by the National Aeronautics and Space Administration, the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar (light detection and ranging) for Advanced In-Flight Measurements was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This report describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges by lidar on board the NASA Airborne Science DC-8 (McDonnell Douglas Corporation, Long Beach, California) airplane during two flights. The examples in this report compare lidar-predicted mountain waves and wave-induced turbulence to subsequent airplane-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 m/s at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 s in moderate turbulence.

  18. How to sow mustard in burned watersheds of southern California

    Treesearch

    Clark H. Gleason

    1944-01-01

    After the chaparral cover of the mountain watersheds in southern California is burned, damage is usually done during winter storms by increased runoff and erosion debris from the denuded area. The damage is done not only to the works of man, but to the watershed itself. Improvements that most often suffer tangible damage include water storage and diversion structures;...

  19. Development of Competency Based Credential Programs in Southern California's High Desert Region.

    ERIC Educational Resources Information Center

    Burton, Louise F.; And Others

    In the northern high desert region of San Bernardino County (California), about half of special education teachers do not hold special education credentials. In September 1988, the Desert-Mountain Rural Training Program began to provide appropriate training to uncredentialed special education teachers in this sparsely populated area. The program…

  20. Characterization of Northern California petroleum by stable carbon isotopes

    USGS Publications Warehouse

    Lillis, Paul G.; Magoon, Leslie B.; Stanley, Richard G.; McLaughlin, Robert J.; Warden, Augusta

    2001-01-01

    The purpose of this study is to characterize natural occurrences of petroleum at the surface and in the subsurface within northern California in order to define and map petroleum systems for U.S. Geological Survey energy resource assessments. Furthermore, the chemical characterization and mapping of natural petroleum occurrences could also be used to discriminate natural occurrences from accidental oil spills during the activities of extraction or transportation of petroleum. Samples include petroleum from exploratory well tests, producing fields, natural seeps, and oil-stained rocks, and condensates from gas wells. Most of the sample localities are in northern California but a few samples from central and southern California are included for comparison (table 1). Even though other analyses were performed, only stable carbon isotope (δ13C) data are presented here for brevity and because δ13C values are one of the most discriminating characteristics of California petroleum.

  1. Radioactive deposits in California

    USGS Publications Warehouse

    Walker, George W.; Lovering, Tom G.

    1954-01-01

    Reconnaissance examination by Government geologists of many areas, mine properties, and prospects in California during the period between 1948 and 1953 has confirmed the presence of radioactive materials in place at more than 40 localities. Abnormal radioactivity at these localities is due to concentrations of primary and secondary uranium minerals, to radon gas, radium (?), and to thorium minerals. Of the known occurrences only three were thought to contain uranium oxide (uranitite or pitchblende), 4 contained uranium-bearing columbate, tantalate, or titanate minerals, 12 contained secondary uranium minerals, such as autunite, carnotite, and torbernite, one contained radon gas, 7 contained thorium minerals, and, at the remaining 16 localities, the source of the anomalous radiation was not positively determined. The occurrences in which uranium oxide has been tentatively identified include the Rathgeb mine (Calaveras County), the Yerih group of claims (San Bernardino County), and the Rainbow claim (Madera County). Occurrences of secondary uranium minerals are largely confined to the arid desert regions of south-eastern California including deposits in San Bernardino, Kern, Inyo, and Imperial Counties. Uranium-bearing columbate, tantalate, or titanate minerals have been reported from pegmatite and granitic rock in southeastern and eastern California. Thorium minerals have been found in vein deposits in eastern San Bernardino County and from pegmatites and granitic rocks in various parts of southeastern California; placer concentrations of thorium minerals are known from nearly all areas in the State that are underlain, in part, by plutonic crystalline rocks. The primary uranium minerals occur principally as minute accessory crystals in pegmatite or granitic rock, or with base-metal sulfide minerals in veins. Thorium minerals also occur as accessory crystals in pegmatite or granitic rock, in placer deposits derived from such rock, and, at Mountain Pass, in veins

  2. Preliminary surficial geologic map of a Calico Mountains piedmont and part of Coyote Lake, Mojave desert, San Bernardino County, California

    USGS Publications Warehouse

    Dudash, Stephanie L.

    2006-01-01

    This 1:24,000 scale detailed surficial geologic map and digital database of a Calico Mountains piedmont and part of Coyote Lake in south-central California depicts surficial deposits and generalized bedrock units. The mapping is part of a USGS project to investigate the spatial distribution of deposits linked to changes in climate, to provide framework geology for land use management (http://deserts.wr.usgs.gov), to understand the Quaternary tectonic history of the Mojave Desert, and to provide additional information on the history of Lake Manix, of which Coyote Lake is a sub-basin. Mapping is displayed on parts of four USGS 7.5 minute series topographic maps. The map area lies in the central Mojave Desert of California, northeast of Barstow, Calif. and south of Fort Irwin, Calif. and covers 258 sq.km. (99.5 sq.mi.). Geologic deposits in the area consist of Paleozoic metamorphic rocks, Mesozoic plutonic rocks, Miocene volcanic rocks, Pliocene-Pleistocene basin fill, and Quaternary surficial deposits. McCulloh (1960, 1965) conducted bedrock mapping and a generalized version of his maps are compiled into this map. McCulloh's maps contain many bedrock structures within the Calico Mountains that are not shown on the present map. This study resulted in several new findings, including the discovery of previously unrecognized faults, one of which is the Tin Can Alley fault. The north-striking Tin Can Alley fault is part of the Paradise fault zone (Miller and others, 2005), a potentially important feature for studying neo-tectonic strain in the Mojave Desert. Additionally, many Anodonta shells were collected in Coyote Lake lacustrine sediments for radiocarbon dating. Preliminary results support some of Meek's (1999) conclusions on the timing of Mojave River inflow into the Coyote Basin. The database includes information on geologic deposits, samples, and geochronology. The database is distributed in three parts: spatial map-based data, documentation, and printable map

  3. Constraints on the tectonics of the Mule Mountains Thrust System, southeast California and southwest Arizona

    NASA Astrophysics Data System (ADS)

    Tosdal, Richard M.

    1990-11-01

    The Mule Mountains thrust system crops out discontinuously over a 100-km-strike length in the Blythe-Quartzsite region of southeast California and southwest Arizona. Along the thrust system, middle and upper crustal metamorphic and plutonic rocks of Proterozoic and Mesozoic age are thrust north-northeastward (015° to 035°) over a lower plate metamorphic terrane that formed part of the Proterozoic North American craton, its Paleozoic sedimentary rock cover, overlying Mesozoic volcanic and sedimentary rocks, and the intruding Jurassic and Cretaceous granitic rocks. Stratigraphic, petrologic, and Pb isotopic ties for Jurassic granitoids and for Jurassic(?) and Cretaceous sedimentary rocks across the various parts of the thrust system indicate that related crustal blocks are superposed and preclude it from having large displacements. The thick-skinned thrust system is structurally symmetrical along its length with a central domain of synmetamorphic thrust faults that are flanked by western and eastern domains where lower plate synclines underlie the thrusts. Deformation occurred under low greenschist facies metamorphic conditions in the upper crust. Movement along the thrust system was probably limited to no more than a few tens of kilometers and occurred between 79±2 Ma and 70±4 Ma. The superposition of related rocks and the geometry of the thrust system preclude it from being a major tectonic boundary of post-Middle Jurassic age, as has been previously proposed. Rather, the thrust system forms the southern boundary of the narrow zone of Cretaceous intracratonic deformation, and it is one of the last tectonic events in the zone prior to regional cooling.

  4. Principal facts for gravity profiles collected near the Osgood Mountains and the Slumbering Hills, north-central Nevada

    USGS Publications Warehouse

    Grauch, V.J.; Kucks, Robert P.

    1997-01-01

    This report presents principal facts for gravity stations collected along profiles near the Osgood Mountains and Slumbering Hills, north- central Nevada. These include (1) data collected near the Osgood Mountains by U. S. Geological Survey (USGS) personnel in the years 1989, 1990, and 1993; and (2) data released to the USGS by Battle Mountain Gold (now Battle Mountain Exploration) that were collected in 1989 near the Osgood Mountains and the Slumbering Hills. The digital data, text of this report (figures in separate files) can be downloaded via 'anonymous ftp' from a USGS system named greenwood.cr.usgs.gov (136.177.21.122). The files are located in a directory named /pub/open-file-reports/ofr-97-0085 and are described in an ASCII file named readme.txt. This information is also contained below in Table 1.

  5. Topographical map of San Bernadina and San Gabriel mountains

    NASA Image and Video Library

    2000-02-04

    JSC2000E01554 (January 2000) --- This is a shaded relief depiction of the same data set found in JSC2000-E-01553. Radar imagery, such as that to be provided by SRTM, is instrumental in creating these types of topographic models. Both images depict the San Bernadino and San Gabriel Mountains in California, north of Los Angeles. Cajon Junction and Cajon Pass, as well as part of the San Andreas fault line, are clearly seen.

  6. Coordinated California Corrections: Institutions. Correctional System Study. Final Report.

    ERIC Educational Resources Information Center

    California State Human Relations Agency, Sacramento. Board of Corrections.

    This series of comprehensive task force reports on jails, prisons, and juvenile institutions presents overviews of corrective institutions in California, models, survey findings about the current systems, and a wide range of general and specific recommendations. Various tables and charts illustrate the data, which were collected by a review of the…

  7. Bacteria and Turbidity Survey for Blue Mountain Lake, Arkansas, Spring and Summer, 1994

    USGS Publications Warehouse

    Lasker, A. Dwight

    1995-01-01

    Introduction Blue Mountain Lake darn is located at river mile 74.4 on the Petit Jean River in Logan and Yell Counties in west-central Arkansas (fig. 1). Drainage area above the darn is 488 square miles. Blue Mountain Lake is located between two national forests-the Ozark National Forest and the Ouachita National Forest. The primary purpose for Blue Mountain Lake is flood control, but the lake is used for a variety of recreational purposes. The U.S. Geological Survey (USGS) in cooperation with the U.s. Army Corps of Engineers, Little Rock District, conducted a bacterial and turbidity study of the Blue Mountain Lake Basin during the spring and suri1mer 1994. Samples were collected weekly at 11 locations within the lake basin from May through September 1994. Eight sampling sites were located on tributaries to the lake and three sampling sites were located on the lake with one of the sites located at a swim beach (fig. 2; table 1).

  8. Decline in American marten occupancy rates at Sagehen Experimental Forest, California

    Treesearch

    Katie M. Moriarty; William J. Zielinski; Eric D. Forsman

    2011-01-01

    We compared the distribution and frequency of American marten (Martes americana) detections during historic surveys and a recent survey on the Sagehen Experimental Forest (SEF) in the Sierra Nevada Mountains, California. This area has been the location of 9 previous marten surveys during 1980–1993, each involving a systematic detection/non-...

  9. Water-Quality Data for Selected Stream Sites in Bridgeport Valley, Mono County, California, April 2000 to June 2003

    USGS Publications Warehouse

    Rockwell, Gerald L.; Honeywell, Paul D.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the California Regional Water Quality Control Board, Lahonton Region, carried out a water-quality data collection program of selected streams in and near Bridgeport Valley, California, during April 2000 to June 2003. These data were collected to provide information used by the California Regional Water Quality Control Board to develop total maximum daily load standards. Field measurements of streamflow, barometric pressure, dissolved oxygen, pH, specific conductance, and water temperature were made at 15 sites located on 6 streams. Water samples were analyzed for nutrients, major ions, turbidity, fecal coliform, fecal streptococci, and suspended sediment. Field data, turbidity, nutrient, major ion, and sediment concentrations and fecal coliform and fecal streptococci densities are given in tables for each site. Field blank data are also presented in a table.

  10. Western dwarf mistletoe infects understory Jeffrey pine seedlings on Cleveland National Forest, California

    Treesearch

    Robert F. Scharpf; Detlev Vogler

    1986-01-01

    Many young, understory Jeffrey pines (Pinus jeffreyi Grev. & Balf.) were found to be infected by western dwarf mistletoe (Arceuthobium campylopodum Engelm.) on Laguna Mountain, Cleveland National Forest, in southern California. Under heavily infected overstory, about three-fourths of the young pines (about 15 years old on the...

  11. STS-33 Discovery, OV-103, approaches concrete runway 04 at EAFB, California

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-33 Discovery, Orbiter Vehicle (OV) 103, approaches runway 04 at Edwards Air Force Base (EAFB), California. OV-103 with landing gear deployed is silhouetted against the orange sky of a sunset as it glides over the mountains. The landing occurred at 16:31:02 pm Pacific Standard Time (PST).

  12. California State Waters Map Series—Offshore of Santa Cruz, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Erdey, Mercedes D.; Golden, Nadine E.; Greene, H. Gary; Dieter, Bryan E.; Hartwell, Stephen R.; Ritchie, Andrew C.; Finlayson, David P.; Endris, Charles A.; Watt, Janet T.; Davenport, Clifton W.; Sliter, Ray W.; Maier, Katherine L.; Krigsman, Lisa M.; Cochrane, Guy R.; Cochran, Susan A.

    2016-03-24

    IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Offshore of Santa Cruz map area is located in central California, on the Pacific Coast about 98 km south of San Francisco. The city of Santa Cruz (population, about 63,000), the largest incorporated city in the map area and the county seat of Santa Cruz County, lies on uplifted marine terraces between the shoreline and the northwest-trending Santa Cruz Mountains, part of California’s Coast Ranges. All of California’s State Waters in the map area is part of the Monterey Bay National Marine Sanctuary.The map area is cut by an offshore section of the San Gregorio Fault Zone, and it lies about 20 kilometers southwest of the San Andreas Fault Zone. Regional folding and uplift along the coast has been attributed to a westward bend in the San Andreas Fault Zone and to right-lateral movement along the San Gregorio Fault Zone. Most of the coastal zone is characterized by low, rocky cliffs and sparse, small pocket beaches backed by low, terraced hills. Point Santa Cruz, which forms the north edge of Monterey Bay, provides protection for the beaches in the easternmost part of the map area by sheltering them from the predominantly northwesterly waves.The shelf in the map area is underlain by variable amounts (0 to 25 m) of

  13. Extensional faulting in the southern Klamath Mountains, California

    USGS Publications Warehouse

    Schweickert, R.A.; Irwin, W.P.

    1989-01-01

    Large northeast striking normal faults in the southern Klamath Mountains may indicate that substantial crustal extension occurred during Tertiary time. Some of these faults form grabens in the Jurassic and older bedrock of the province. The grabens contain continental Oligocene or Miocene deposits (Weaverville Formation), and in two of them the Oligocene or Miocene is underlain by Lower Cretaceous marine formations (Great Valley sequence). At the La Grange gold placer mine the Oligocene or Miocene strata dip northwest into the gently southeast dipping mylonitic footwall surface of the La Grange fault. The large normal displacement required by the relations at the La Grange mine is also suggested by omission of several kilometers of structural thickness of bedrock units across the northeast continuation of the La Grange fault, as well as by significant changes in bedrock across some northeast striking faults elsewhere in the Central Metamorphic and Eastern Klamath belts. The Trinity ultramafic sheet crops out in the Eastern Klamath terrane as part of a broad northeast trending arch that may be structurally analogous to the domed lower plate of metamorphic core complexes found in eastern parts of the Cordillera. The northeast continuation of the La Grange fault bounds the southeastern side of the Trinity arch in the Eastern Klamath terrane and locally cuts out substantial lower parts of adjacent Paleozoic strata of the Redding section. Faults bounding the northwestem side of the Trinity arch generally trend northeast and juxtapose stacked thrust sheets of lower Paleozoic strata of the Yreka terrane against the Trinity ultramafic sheet. Geometric relations suggest that the Tertiary extension of the southern Klamath Mountains was in NW-SE directions and that the Redding section and the southern part of the Central Metamorphic terrane may be a large Tertiary allochthon detached from the Trinity ultramafic sheet. Paleomagnetic data indicate a lack of rotation about a

  14. Fluid geochemistry of Yucca Mountain and vicinity

    USGS Publications Warehouse

    Marshall, Brian D.; Moscati, Richard J.; Patterson, Gary L.; Stuckless, John S.

    2012-01-01

    Yucca Mountain, a site in southwest Nevada, has been proposed for a deep underground radioactive waste repository. An extensive database of geochemical and isotopic characteristics has been established for pore waters and gases from the unsaturated zone, perched water, and saturated zone waters in the Yucca Mountain area. The development of this database has been driven by diverse needs of the Yucca Mountain Project, especially those aspects of the project involving process modeling and performance assessment. Water and gas chemistries influence the sorption behavior of radionuclides and the solubility of the radionuclide compounds that form. The chemistry of waters that may infiltrate the proposed repository will be determined in part by that of water present in the unsaturated zone above the proposed repository horizon, whereas pore-water compositions beneath the repository horizon will influence the sorption behavior of the radionuclides transported toward the water table. However, more relevant to the discussion in this chapter, development and testing of conceptual flow and transport models for the Yucca Mountain hydrologic system are strengthened through the incorporation of natural environmental tracer data into the process. Chemical and isotopic data are used to establish bounds on key hydrologic parameters and to provide corroborative evidence for model assumptions and predictions. Examples of specific issues addressed by these data include spatial and temporal variability in net fluxes, the role of faults in controlling flow paths, fracture-matrix interactions, the age and origin of perched water, and the distribution of water traveltimes.

  15. Mapping Chaparral in the Santa Monica Mountains Using Multiple Spectral Mixture Models

    NASA Technical Reports Server (NTRS)

    Green Robert O.; Roberts, D. A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.

    1996-01-01

    California chaparral is one of the most important natural vegetation communities in Southern California, representing a significant source of species diversity and, through a high susceptibility to fire, playing a major role in ecosystem dynamics. Due to steep topographic gradients, harsh edaphic conditions and variable fire histories, chaparral typically forms a complex mosaic of different species dominants and age classes, each with unique successional responses to fire and canopy characteristics (e.g. moisture content, biomass, fuel load) that modify fire susceptibility. The high human cost of fire and intimate mixing along the urban interface combine to modify the natural fire regime as well as provide additional impetus for a better understanding of how to predict fire and its management. Management problems have been further magnified by nearly seventy years of fire suppression and drought related die-back over the last few years resulting in a large accumulation of highly combustible fuels. Chaparral communities in the Santa Monica Mountains exemplify many of the management challenges associated with fire and biodiversity. A study was initiated in the Santa Monica Mountains to investigate the use of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for providing improved maps of chaparral coupled with direct estimates of canopy attributes (e.g. biomass, leaf area, fuel load). The Santa Monica Mountains are an east-west trending range located approximately 75 kilometers north of Los Angeles extending westward into Ventura County. Within the Santa Monica Mountains a diverse number of ecosystems are located, including four distinct types of chaparral, wetlands, riparian habitats, woodlands, and coastal sage scrub. In this study we focus on mapping three types of chaparral, oak woodlands and grasslands. Chaparral mapped included coastal sage scrub, chamise chaparral and mixed chaparral that consisted predominantly of two species of Ceanothus.

  16. Effects of 1997 debris floods in two Klamath Mountain streams: A large woody debris mass-balance approach

    Treesearch

    Zackary J. Mondry; Susan J. Hilton

    2000-01-01

    Large landslides and debris flows in January 1997 produced contrasting downstream debris flood effects in two adjacent Northern California Klamath Mountain streams. Valley morphology and riparian forests were examined on post-flood 1:3000 air photos along two approximately 8 km survey reaches.

  17. Hydro-economic analysis of groundwater pumping for irrigated agriculture in California's Central Valley, USA

    NASA Astrophysics Data System (ADS)

    Medellín-Azuara, Josué; MacEwan, Duncan; Howitt, Richard E.; Koruakos, George; Dogrul, Emin C.; Brush, Charles F.; Kadir, Tariq N.; Harter, Thomas; Melton, Forrest; Lund, Jay R.

    2015-09-01

    As in many places, groundwater in California (USA) is the major alternative water source for agriculture during drought, so groundwater's availability will drive some inevitable changes in the state's water management. Currently, agricultural, environmental, and urban uses compete for groundwater, resulting in substantial overdraft in dry years with lowering of water tables, which in turn increases pumping costs and reduces groundwater pumping capacity. In this study, SWAP (an economic model of agricultural production and water use in California) and C2VISim (the California Department of Water Resources groundwater model for California's Central Valley) are connected. This paper examines the economic costs of pumping replacement groundwater during drought and the potential loss of pumping capacity as groundwater levels drop. A scenario of three additional drought years continuing from 2014 show lower water tables in California's Central Valley and loss of pumping capacity. Places without access to groundwater and with uncertain surface-water deliveries during drought are the most economically vulnerable in terms of crop revenues, employment and household income. This is particularly true for Tulare Lake Basin, which relies heavily on water imported from the Sacramento-San Joaquin Delta. Remote-sensing estimates of idle agricultural land between 2012 and 2014 confirm this finding. Results also point to the potential of a portfolio approach for agriculture, in which crop mixing and conservation practices have substantial roles.

  18. Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czarnecki, J.B.

    1997-12-31

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the U.S. Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspirationmore » at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition.« less

  19. Avifauna in southern California chaparral: seasonal distribution, habitat association, reproductive phenology

    Treesearch

    William O. Wirtz

    1991-01-01

    Dates were obtained between February 1969 and October 1979 on the seasonal occurrence, habitat association, reproductive phenology, and relative abundance of avifauna at two study sites in the chaparral community of the San Gabriel Mountains of southern California. The purpose of the study was to collect information on bird species use of this habitat and to document...

  20. Fires in Southern California

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In what seemed like the blink of an eye, wildfires ignited in the paper-dry, drought-stricken vegetation of Southern California over the weekend of October 20, 2007, and exploded into massive infernos that forced hundreds of thousands of people to evacuate their communities. Driven by Santa Ana winds, fires grew thousands of acres in just one to two days. The fires sped down from the mountains into the outskirts of coastal cities, including San Diego. Dozens of homes have burned to the ground, and at least one person has died, according to local news reports. Several of the fires were burning completely out of control as of October 22. This image of the fires in California was captured at 1:55 p.m. U.S. Pacific Daylight Time on October 22, 2007. Places where MODIS detected actively burning fires are outlined in red. Thick streamers of smoke unfurl over the Pacific Ocean. The brownish plumes are clouds of dust. Fires northwest of Los Angeles seemed calmer at the time of this image than they were the previous day.

  1. Rotational and accretionary evolution of the Klamath Mountains, California and Oregon, from Devonian to present time

    USGS Publications Warehouse

    Irwin, William P.; Mankinen, Edward A.

    1998-01-01

    The purpose of this report is to show graphically how the Klamath Mountains grew from a relatively small nucleus in Early Devonian time to its present size while rotating clockwise approximately 110°. This growth occurred by the addition of large tectonic slices of oceanic lithosphere, volcanic arcs, and melange during a sequence of accretionary episodes. The Klamath Mountains province consists of eight lithotectonoic units called terranes, some of which are divided into subterranes. The Eastern Klamath terrane, which was the early Paleozoic nucleus of the province, is divided into the Yreka, Trinity, and Redding subterranes. Through tectonic plate motion, usually involving subduction, the other terranes joined the early Paleozoic nucleus during seven accretionary episodes ranging in age from Early Devonian to Late Jurassic. The active terrane suture is shown for each episode by a bold black line. Much of the western boundary of the Klamath Mountains is marked by the South Fork and correlative faults along which the Klamath terranes overrode the Coast Range rocks during an eighth accretionary episode, forming the South Fork Mountain Schist in Early Cretaceous time.

  2. Increased site fertility and litter decomposition rate in high-pollution sites in the San Bernardino Mountains

    Treesearch

    Mark E. Fenn

    1991-01-01

    Some possible factors causing enhanced litter decomposition in high-pollution sites in the San Bernardino Mountains of southern California were investigated. Nitrogen concentration of soil, as well as foliage and litter of ponderosa pine (Pinus ponderosa Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) were greater in...

  3. Hydrology of Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Bodvarsson, G.S.; Fabryka-Martin, J. M.

    2001-01-01

    Yucca Mountain, located in southern Nevada in the Mojave Desert, is being considered as a geologic repository for high-level radioactive waste. Although the site is arid, previous studies indicate net infiltration rates of 5-10 mm yr-1 under current climate conditions. Unsaturated flow of water through the mountain generally is vertical and rapid through the fractures of the welded tuffs and slow through the matrix of the nonwelded tuffs. The vitric-zeolitic boundary of the nonwelded tuffs below the potential repository, where it exists, causes perching and substantial lateral flow that eventually flows through faults near the eastern edge of the potential repository and recharges the underlying groundwater system. Fast pathways are located where water flows relatively quickly through the unsaturated zone to the water table. For the bulk of the water a large part of the travel time from land surface to the potential repository horizon (~300 m below land surface) is through the interlayered, low fracture density, nonwelded tuff where flow is predominately through the matrix. The unsaturated zone at Yucca Mountain is being modeled using a three-dimensional, dual-continuum numerical model to predict the results of measurements and observations in new boreholes and excavations. The interaction between experimentalists and modelers is providing confidence in the conceptual model and the numerical model and is providing researchers with the ability to plan further testing and to evaluate the usefulness or necessity of further data collection.

  4. Flying helicopters over mountains at night...guidance systems tested in 1965 phase of study

    Treesearch

    Ralph G. Johnston; Cal Ferris; James B. Davis

    1966-01-01

    Under conditions simulating fireline operations, 117 helicopter flights were made at night over mountain areas in southern California. The trials indicated that such flights, carrying passengers and cargo, can be made safely if (a) the night operation is well planned, (b) the helicopter is in excellent condition, (c) adequate lighting and guidance equipment are...

  5. Restoring eastside ponderosa pine ecosystems at the Blacks Mountain Experimental Forest: a case study

    Treesearch

    Jianwei Zhang; Martin W. Ritchie

    2008-01-01

    The ecological research project of interior ponderosa pine forests at the Blacks Mountain Experimental Forest in northeastern California was initiated by an interdisciplinary team of scientists in the early 1990s. The objectives of this study were to determine the effect of stand structure, and prescribed fire on vegetation growth, resilience, and sustainability of...

  6. 40Ar/39Ar laser fusion and K-Ar ages from Lathrop Wells, Nevada, and Cima, California. The age of the latest volcanic activity in the Yucca Mountain area

    USGS Publications Warehouse

    Turrin, Brent D.; Champion, Duane E.; ,

    1991-01-01

    K-Ar and 40Ar/39Ar ages from the Lathrop Wells volcanic center, Nevada, and from the Cima volcanic field, California, indicate that the recently reported 20-ka age estimate for the Lathrop Wells volcanic center is incorrect. Instead an age of 119??11 to 141??10 ka is indicated for the Lathrop Wells volcanic center. This age corrected is concordant with the ages determined by two independent isotopic geochronometric techniques and with the stratigraphy of surficial deposits in the Yucca Mountain region. In addition, paleomagnetic data and radiometric age data indicate only two volcanic events at the Lathrop Wells volcanic center that are probably closely linked in time, not as many as five as recently reported.

  7. Multidisciplinary hydrologic investigations at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Dudley, William W.

    1990-01-01

    Future climatic conditions and tectonic processes have the potential to cause significant changes of the hydrologic system in the southern Great Basin, where a nuclear-waste repository is proposed for construction above the water table at Yucca Mountain, Nevada. Geothermal anomalies in the vicinity of Yucca Mountain probably result from the local and regional transport of heat by ground-water flow. Regionally and locally irregular patterns of hydraulic potential, local marsh and pond deposits, and calcite veins in faults and fractures probably are related principally to climatically imposed hydrologic conditions within the geologic and topographic framework. However, tectonic effects on the hydrologic system have also been proposed as the causes of these features, and existing data limitations preclude a full evaluation of these competing hypotheses. A broad program that integrates many disciplines of earth science is required in order to understand the relation of hydrology to past, present and future climates and tectonism.

  8. The 2007 southern California wildfires: Lessons in complexity

    USGS Publications Warehouse

    Keeley, J.E.; Safford, H.; Fotheringham, C.J.; Franklin, J.; Moritz, M.

    2009-01-01

    The 2007 wildfire season in southern California burned over 1,000,000 ac (400,000 ha) and included several megafires. We use the 2007 fires as a case study to draw three major lessons about wildfires and wildfire complexity in southern California. First, the great majority of large fires in southern California occur in the autumn under the influence of Santa Ana windstorms. These fires also cost the most to contain and cause the most damage to life and property, and the October 2007 fires were no exception because thousands of homes were lost and seven people were killed. Being pushed by wind gusts over 100 kph, young fuels presented little barrier to their spread as the 2007 fires reburned considerable portions of the area burned in the historic 2003 fire season. Adding to the size of these fires was the historic 2006-2007 drought that contributed to high dead fuel loads and long distance spotting. As in 2003, young chaparral stands and fuel treatments were not reliable barriers to fire in October 2007. Second, the Zaca Fire in July and August 2007 showed that other factors besides high winds can sometimes combine to create conditions for large fires in southern California. Spring and summer fires in southern California chaparral are usually easily contained because of higher fuel moisture and the general lack of high winds. However, the Zaca Fire burned in a remote wilderness area of rugged terrain that made access difficult. In addition, because of its remoteness, anthropogenic ignitions have been low and stand age and fuel loads were high. Coupled with this was severe drought that year that generated fuel moisture levels considerably below normal for early summer. A third lesson comes from 2007 conifer forest fires in the southern California mountains. In contrast to lower elevation chaparral, fire suppression has led to major increases in conifer forest fuels that can lead to unnaturally severe fires when ignitions escape control. The Slide and Grass Valley

  9. Stratigraphic relations and U-Pb geochronology of the Upper Cretaceous upper McCoy Mountains Formation, southwestern Arizona

    USGS Publications Warehouse

    Tosdal, R.M.; Stone, P.

    1994-01-01

    A previously unrecognized angular unconformity divides the Jurassic and Cretaceous McCoy Mountains Formation into a lower and an upper unit in the Dome Rock Mountains and Livingston Hills of western Arizona. The intraformation unconformity in the McCoy Mountains Formation developed where rocks of the lower unit were deformed adjacent to the southern margin of the Maria fold and thrust belt. The upper unit of the formation is interpreted as a foreland-basin deposit that was shed southward from the actively rising and deforming fold and thrust belt. The apparent absence of an equivalent unconformity in the McCoy Mountains Formation in adjacent California is presumably a consequence of the observed westward divergence of the outcrop belt from the fold and thrust belt. Tectonic burial beneath the north-vergent Mule Mountains thrust system in the latest Late Cretaceous (~70 Ma) marked the end of Mesozoic contractile deformation in the area. -from Authors

  10. California crude-pipeline plans detailed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronco, M.J.

    1986-06-09

    California and the U.S. West have recently become a center for crude-oil pipeline activity. That activity includes existing and proposed lines, offshore and onshore terminals, and some unusual permitting and construction requirements. Operation of existing pipelines is influenced by the varying gravities of crudes in the area. California has three distinct producing areas from which pipelines deliver crude to refineries or marines terminals: 1. The inland Los Angeles basin and coast from Orange County to Ventura County. 2. The San Joaquin Valley in central California which is between the coastal mountains and the Sierras. 3. That portion of the Outermore » Continental Shelf (OCS) located primarily in federal waters off Santa Barbara and San Luis Obispo counties on the central coast. The Los Angeles coastal and inland basin crude-oil pipeline system consists of gathering lines to move crude from the many wells throughout Ventura, Orange, and Los Angeles counties to operating refineries in the greater Los Angeles area. Major refineries include ARCO at Carson, Chevron at El Segundo, Mobil at Torrance, and Shell, Texaco, and Unical at Wilmington. The many different crude-oil pipelines serving these refineries from Ventura County and Orange County and from the many sites around Los Angeles County are too numerous to list.« less

  11. AGUA TIBIA PRIMITIVE AREA, CALIFORNIA.

    USGS Publications Warehouse

    Irwin, William P.; Thurber, Horace K.

    1984-01-01

    The Agua Tibia Primitive Area in southwestern California is underlain by igneous and metamorphic rocks that are siilar to those widely exposed throughout much of the Peninsular Ranges. To detect the presence of any concealed mineral deposits, samples of stream sediments were collected along the various creeks that head in the mountain. As an additional aid in evaluating the mineral potential, an aeromagnetic survey was made and interpreted. A search for records of past or existing mining claims within the primitive area was made but none was found. Evidence of deposits of metallic or nonmetallic minerals was not seen during the study.

  12. GRANITE PEAK ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Huber, Donald F.; Thurber, Horace K.

    1984-01-01

    The Granite Peak Roadless Area occupies an area of about 5 sq mi in the southern part of the Trinity Alps of the Klamath Mountains, about 12 mi north-northeast of Weaverville, California. Rock and stream-sediment samples were analyzed. All streams draining the roadless area were sampled and representative samples of the rock types in the area were collected. Background values were established for each element and anomalous values were examined within their geologic settings and evaluated for their significance. On the basis of mineral surveys there seems little likelihood for the occurrence of mineral or energy resources.

  13. Estimators and characteristics of logging residue in California.

    Treesearch

    James O. Howard; Julianne K. Bulgrin

    1986-01-01

    Ratios are presented for estimating volume and characteristics of logging residue in California. The ratios relate cubic-foot volume of residue to thousand board feet of timber harvested and to acres harvested. Tables show gross and net volume of residue, with and without bark, by diameter and length classes, by number of pieces per acre, by softwoods and hardwoods, by...

  14. Effects of Debris Flows on Stream Ecosystems of the Klamath Mountains, Northern California

    NASA Astrophysics Data System (ADS)

    Cover, M. R.; Delafuente, J. A.; Resh, V. H.

    2006-12-01

    We examined the long-term effects of debris flows on channel characteristics and aquatic food webs in steep (0.04-0.06 slope), small (4-6 m wide) streams. A large rain-on-snow storm event in January 1997 resulted in numerous landslides and debris flows throughout many basins in the Klamath Mountains of northern California. Debris floods resulted in extensive impacts throughout entire drainage networks, including mobilization of valley floor deposits and removal of vegetation. Comparing 5 streams scoured by debris flows in 1997 and 5 streams that had not been scoured as recently, we determined that debris-flows decreased channel complexity by reducing alluvial step frequency and large woody debris volumes. Unscoured streams had more diverse riparian vegetation, whereas scoured streams were dominated by dense, even-aged stands of white alder (Alnus rhombiflia). Benthic invertebrate shredders, especially nemourid and peltoperlid stoneflies, were more abundant and diverse in unscoured streams, reflecting the more diverse allochthonous resources. Debris flows resulted in increased variability in canopy cover, depending on degree of alder recolonization. Periphyton biomass was higher in unscoured streams, but primary production was greater in the recently scoured streams, suggesting that invertebrate grazers kept algal assemblages in an early successional state. Glossosomatid caddisflies were predominant scrapers in scoured streams; heptageniid mayflies were abundant in unscoured streams. Rainbow trout (Oncorhynchus mykiss) were of similar abundance in scoured and unscoured streams, but scoured streams were dominated by young-of-the-year fish while older juveniles were more abundant in unscoured streams. Differences in the presence of cold-water (Doroneuria) versus warm-water (Calineuria) perlid stoneflies suggest that debris flows have altered stream temperatures. Debris flows have long-lasting impacts on stream communities, primarily through the cascading effects of

  15. Control of brush regrowth with herbicides on pine plantations in northern California

    Treesearch

    Jay R. Bentley; Kenneth M. Estes

    1978-01-01

    On large plots cleared in 1961 at three California mountain locations, different herbicide treatments were applied once, twice, or three times in consecutive years, beginning in 1962. Results were evaluated in 1965. A single spray was unsatisfactory; only the initial seedlings and weaker sprouting plants were killed, and many new seedlings became established in 1963...

  16. Constraints on the tectonics of the Mule Mountains thrust system, southeast California and southwest Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tosdal, R.M.

    1990-11-10

    The Mule Mountains thrust system crops out discontinuously over a 100-km-strike length in the Blythe-Quartzsite region of southeast California and southwest Arizona. Along the thrust system, middle and upper crustal metamorphic and plutonic rocks of Proterozoic and Mesozoic age are thrust north-northeastward (015{degree} to 035{degree}) over a lower plate metamorphic terrane that formed part of the Proterozoic North American craton, its Paleozoic sedimentary rock cover, overlying Mesozoic volcanic and sedimentary rocks, and the intruding Jurassic and Cretaceous granitic rocks. Stratigraphic, petrologic, and Pb isotopic ties for Jurassic granitoids and for Jurassic( ) and Cretaceous sedimentary rocks across the various partsmore » of the thrust system indicate that related crustal blocks are superposed and preclude it from having large displacements. The thick-skinned thrust system is structurally symmetrical along its length with a central domain of synmetamorphic thrust faults that are flanked by western and eastern domains where lower plate domains where lower plate synclines underlie the thrusts. Deformation occurred under low greenschist facies metamorphic conditions in the upper crust. Movement along the thrust system was probably limited to no more than a few tens of kilometers and occurred between 79{plus minus}2 Ma and 70{plus minus}4 Ma. The superposition of related rocks and the geometry of the thrust system preclude it from being a major tectonic boundary of post-Middle Jurassic age, as has been previously proposed. Rather, the thrust system forms the southern boundary of the narrow zone of Cretaceous intracratonic deformation, and it is one of the last tectonic events in the zone prior to regional cooling.« less

  17. Geologic map database of the El Mirage Lake area, San Bernardino and Los Angeles Counties, California

    USGS Publications Warehouse

    Miller, David M.; Bedford, David R.

    2000-01-01

    This geologic map database for the El Mirage Lake area describes geologic materials for the dry lake, parts of the adjacent Shadow Mountains and Adobe Mountain, and much of the piedmont extending south from the lake upward toward the San Gabriel Mountains. This area lies within the western Mojave Desert of San Bernardino and Los Angeles Counties, southeastern California. The area is traversed by a few paved highways that service the community of El Mirage, and by numerous dirt roads that lead to outlying properties. An off-highway vehicle area established by the Bureau of Land Management encompasses the dry lake and much of the land north and east of the lake. The physiography of the area consists of the dry lake, flanking mud and sand flats and alluvial piedmonts, and a few sharp craggy mountains. This digital geologic map database, intended for use at 1:24,000-scale, describes and portrays the rock units and surficial deposits of the El Mirage Lake area. The map database was prepared to aid in a water-resource assessment of the area by providing surface geologic information with which deepergroundwater-bearing units may be understood. The area mapped covers the Shadow Mountains SE and parts of the Shadow Mountains, Adobe Mountain, and El Mirage 7.5-minute quadrangles. The map includes detailed geology of surface and bedrock deposits, which represent a significant update from previous bedrock geologic maps by Dibblee (1960) and Troxel and Gunderson (1970), and the surficial geologic map of Ponti and Burke (1980); it incorporates a fringe of the detailed bedrock mapping in the Shadow Mountains by Martin (1992). The map data were assembled as a digital database using ARC/INFO to enable wider applications than traditional paper-product geologic maps and to provide for efficient meshing with other digital data bases prepared by the U.S. Geological Survey's Southern California Areal Mapping Project.

  18. Status of the Marbled Murrelet in the inner north coast ranges of California

    Treesearch

    John E. Hunter; Kristin N. Schmidt; Howard B. Stauffer; Sherri L. Miller; C. John Ralph; Lynn Roberts

    1998-01-01

    We sought to determine the presence or absence of marbled murrelets (Brachyramphus marmoratus) within the northern Inner North Coast Ranges of northwestern California. We conducted murrelet surveys and collected environmental data during 1995 and 1996 on national forest lands that were south of the Klamath Mountains Section and within B....

  19. Groundwater quality in the Indian Wells Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  20. Western US Tropospheric Ozone: An Assessment of Vertical and Seasonal Variations over California and Nevada

    NASA Technical Reports Server (NTRS)

    Yates, E.; Iraci, Laura T.; Johnson, Matthew; Ryoo, Ju-Mee; Pierce, Bradley R.; Cullis, Patrick; Gore, Warren J. Y.; Ives, Michael; Johnson, Bryan; LeBlanc, Thierry; hide

    2016-01-01

    In the rural western US free-tropospheric O3 has risen in recent years as a result of rising Asian emissions, deep stratospheric intrusions and more frequent wildfires. This increasing O3 trend combined with the high surface elevation of much of the western US, which aids mixing between boundary layer and free-troposphere, pose challenges in attaining the more stringent O3 National Ambient Air Quality Standard (NAAQS) at many western US rural surface sites. As such, the ability to identify various sources and transport mechanisms that contribute towards surface O3 is increasingly important. This paper analyzes vertical profiles of O3 from the Alpha Jet Atmospheric eXperiment (AJAX) over California and Nevada, ozonesondes from Trinidad Head, CA and tropospheric ozone profiles from the differential absorption lidar (DIAL) at the JPL Table Mountain Facility, CA. Surface O3 from the US EPA Clean air Status and Trends Network (CASNET) are used to discuss surface trends. GEOS-Chem determines the trends in regional O3 and assess the contributions of various sources on surface O3. And Realtime Air Quality Modeling System (RAQMS) is used to forecast and interpret free-tropospheric observations. Specifically we will address the following questions: What are the effects of the lowered NAAQS? Do we observe elevated O3 during 2012 at surface sites reported in previous studies? And if so, what are the causes? How variable is free-tropospheric O3 over California and Nevada? How frequently do we observe high O3 lamina in the free troposphere and what are the surface impacts?

  1. Computation of times of sunrise, sunset, and twilight in or near mountainous terrain

    Treesearch

    Bill C. Ryan

    1977-01-01

    An electronic calculator with trigonometric functions can be used to compute times of sunrise, sunset, or twilight, or time of desired illumination at any location in mountainous terrain. The method is more convenient and versatile, and less cumbersome than using tables. Latitude, longitude, elevation, day of the year (1 to 366), and slope to the horizon at the...

  2. Mono Lake, California

    NASA Image and Video Library

    2017-03-24

    In eastern California, along the western edge of the Great Basin, sits Mono Lake. This is a salty remnant of a wetter era. Estimates are that the lake existed for at least 760,000 years. Now surrounded by mountain ranges, however, Mono Lake has no outlet; water entering the lake can only evaporate away, so Mono Lake is saltier than the ocean. South of the lake appear some of the geologic features known as Mono Craters. Geologists estimate that the Mono Craters last erupted about 650 years ago. The image was acquired July 7, 2016, covers an area of 22.6 by 34 km, and is located at 37.9 degrees north, 119 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA21518

  3. Sierra Nevada, California

    NASA Image and Video Library

    1994-09-30

    STS068-267-097 (30 September-11 October 1994) --- An extensive view eastward from the irrigated San Joaquin Valley in the foreground, across the Sierra Nevada (living up to its name in early October), into the desert of eastern California and Nevada (which has no snow, despite the name). Mono Lake is just visible at the left edge of the frame; Owens Valley extends southward to Owens Lake, the next valley is Panamint Valley, and then Death Valley. Las Vegas and Lake Mead are visible at the upper right of the frame. The Space Radar Laboratory 2 (SRL-2) obtained extensive, multiple-pass data from many test sites within the region displayed, including Mammoth Mountain ski area south of Mono Lake, and in Death Valley.

  4. 78 FR 54676 - Notice of Availability of the Record of Decision for the West Chocolate Mountains Renewable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... mineral estate for geothermal energy testing and development near Niland, California. The Final EIS also... identify areas in the REEA as suitable for geothermal leasing and development and solar energy development... Availability of the Record of Decision for the West Chocolate Mountains Renewable Energy Evaluation Area and...

  5. TEMPORAL PATTERNS OF AIRBORNE PESTICIDES IN THE HABITATE OF THE MOUNTAIN YELLOW-LEGGED FROG IN THE SOUTHERN SIERRA NEVADA

    EPA Science Inventory

    Airborne agricultural pesticides from the Central Valley of California have been implicated as a possible cause for recent, dramatic population declines of several amphibian species in remote mountain locations. To determine the temporal variation of pesticide levels in the habit...

  6. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data

    USGS Publications Warehouse

    Rowan, L.C.; Mars, J.C.

    2003-01-01

    Evaluation of an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of the Mountain Pass, California area indicates that several important lithologic groups can be mapped in areas with good exposure by using spectral-matching techniques. The three visible and six near-infrared bands, which have 15-m and 30-m resolution, respectively, were calibrated by using in situ measurements of spectral reflectance. Calcitic rocks were distinguished from dolomitic rocks by using matched-filter processing in which image spectra were used as references for selected spectral categories. Skarn deposits and associated bright coarse marble were mapped in contact metamorphic zones related to intrusion of Mesozoic and Tertiary granodioritic rocks. Fe-muscovite, which is common in these intrusive rocks, was distinguished from Al-muscovite present in granitic gneisses and Mesozoic granite. Quartzose rocks were readily discriminated, and carbonate rocks were mapped as a single broad unit through analysis of the 90-m resolution, five-band surface emissivity data, which is produced as a standard product at the EROS Data Center. Three additional classes resulting from spectral-angle mapper processing ranged from (1) a broad granitic rock class (2) to predominately granodioritic rocks and (3) a more mafic class consisting mainly of mafic gneiss, amphibolite and variable mixtures of carbonate rocks and silicate rocks. ?? 2002 Elsevier Science Inc. All rights reserved.

  7. Canine Distemper in an isolated population of fishers (Martes pennanti) from California

    Treesearch

    Stefan m. Keller; Mourad Gabriel; Karen A. Terio; Edward J. Dubovi; Elizabeth Van Wormer; Rick Sweitzer; Reginald Barret; Craig Thompson; Kathryn Purcell; Linda Munson

    2012-01-01

    Four fishers (Martes pennanti) from an insular population in the southern Sierra Nevada Mountains, California, USA died as a consequence of an infection with canine distemper virus (CDV) in 2009. Three fishers were found in close temporal and spatial relationship; the fourth fisher died 4 mo later at a 70 km distance from the initial group. Gross...

  8. Estimating abundance and survival in the endangered Point Arena Mountain beaver using noninvasive genetic methods

    Treesearch

    William J. Zielinski; Fredrick V. Schlexer; T. Luke George; Kristine L. Pilgrim; Michael K. Schwartz

    2013-01-01

    The Point Arena mountain beaver (Aplodontia rufa nigra) is federally listed as an endangered subspecies that is restricted to a small geographic range in coastal Mendocino County, California. Management of this imperiled taxon requires accurate information on its demography and vital rates. We developed noninvasive survey methods, using hair snares to sample DNA and to...

  9. Plutons and accretionary episodes of the Klamath Mountains, California and Oregon

    USGS Publications Warehouse

    Irwin, William P.; Wooden, Joseph L.

    1999-01-01

    The Klamath Mountains consist of various accreted terranes and include many plutons that range in composition from gabbro to granodiorite. Some of the plutons (preaccretionary plutons) were parts of terranes before the terranes accreted; others (accretionary plutons) intruded during or after the accretion of their host terrane(s). This report attempts to (1) graphically illustrate how the Klamath Mountains grew by the accretion of allochthonous oceanic terranes during early Paleozoic to Cretaceous times, (2) identify the plutons as either preaccretionary or accretionary, and (3) genetically relate the plutonic intrusions to specific accretionary episodes. The eight accretionary episodes portrayed in this report are similar to those shown by Irwin and Mankinen (1998) who briefly described the basis for the timing of the episodes and who illustrated the ~110 degrees of clockwise rotation of the Klamath Mountains since Early Devonian time. Each episode is named for the accreting terrane. In all episodes (Figs. 1-8), the heavy black line represents a fault that separates the accreting oceanic rocks on the left from earlier accreted terranes on the right. The preaccretionary plutons are shown within the accreting oceanic crustal rocks to the left of the heavy black line, and the accretionary plutons in most instances are shown intruding previously accreted terranes to the right. Episodes earlier than the Central Metamorphic episode (Fig. 1), and that may have been important in the formation of the early Paleozoic nucleous of the province (the Eastern Klamath terrane), are not known. The 'Present Time' distribution of the accreted terranes and plutons is shown at a large scale in Figure 9. The schematic vertical section (Fig. 10) depicts the terranes as a stack of horizontal slabs that include or are intruded by vertical plutons. Note that at their base the ~170 Ma preaccretionary plutons of the Western Hayfork subterrane are truncated by the ~164 Ma Salt Creek

  10. Geologic map and digital database of the Conejo Well 7.5 minute quadrangle, Riverside County, Southern California

    USGS Publications Warehouse

    Powell, Robert E.

    2001-01-01

    This data set maps and describes the geology of the Conejo Well 7.5 minute quadrangle, Riverside County, southern California. The quadrangle, situated in Joshua Tree National Park in the eastern Transverse Ranges physiographic and structural province, encompasses part of the northern Eagle Mountains and part of the south flank of Pinto Basin. It is underlain by a basement terrane comprising Proterozoic metamorphic rocks, Mesozoic plutonic rocks, and Mesozoic and Mesozoic or Cenozoic hypabyssal dikes. The basement terrane is capped by a widespread Tertiary erosion surface preserved in remnants in the Eagle Mountains and buried beneath Cenozoic deposits in Pinto Basin. Locally, Miocene basalt overlies the erosion surface. A sequence of at least three Quaternary pediments is planed into the north piedmont of the Eagle Mountains, each in turn overlain by successively younger residual and alluvial deposits. The Tertiary erosion surface is deformed and broken by north-northwest-trending, high-angle, dip-slip faults in the Eagle Mountains and an east-west trending system of high-angle dip- and left-slip faults. In and adjacent to the Conejo Well quadrangle, faults of the northwest-trending set displace Miocene sedimentary rocks and basalt deposited on the Tertiary erosion surface and Pliocene and (or) Pleistocene deposits that accumulated on the oldest pediment. Faults of this system appear to be overlain by Pleistocene deposits that accumulated on younger pediments. East-west trending faults are younger than and perhaps in part coeval with faults of the northwest-trending set. The Conejo Well database was created using ARCVIEW and ARC/INFO, which are geographical information system (GIS) software products of Envronmental Systems Research Institute (ESRI). The database consists of the following items: (1) a map coverage showing faults and geologic contacts and units, (2) a separate coverage showing dikes, (3) a coverage showing structural data, (4) a point coverage

  11. Aeromagnetic measurements in the Cascade Range and Modoc Plateau of northern California; report on work done from December 1, 1980, to May 31, 1981

    USGS Publications Warehouse

    Couch, Richard W.; Gemperle, Michael

    1982-01-01

    Spectral analysis of aeromagnetic data collected over 6orth-central California during the summer of 1980 aided in determining magnetic-source bottom depths beneath the survey area. Five regions of shallow magnetic source bottom depths were detected: 1) Secret Spring Mountain and National Lava Beds Monument area, 2) the Mount Shasta area, 3) the Eddys Mountain area, 4) the Big Valley Mountains area, and 5) an area northeast of Lassen Peak. Except for the Eddys Mountain area, all regions exhibiting shallow depths are suggested to be due to elevated Curie-point isotherms. The elevated Curie-point depth beneath Secret Spring Mountain and the National Lava Beds Monument area was found to be 4-7 km BSL (Below Sea Level) and is an extension of a zone mapped beneath an area immediately to the north in Oregon. A similar depth was detected for the Mount Shasta area and the area northeast of Lassen Peak. A depth of 4-6 km BSL was detected beneath the Big Valley Mountains area. The shallow Curie-point depths beneath Secret Spring Mountain, Mount Shasta, Big Valley Mountains, and the area northeast of Lassen Peak appear to form a segmented Zone of elevated Curie-point isotherm depths which underlies the High Cascade Mountains and Modoc Plateau in north-central California. A small area of shallow depths to magnetic-source bottoms, 4-5 km BSL, beneath the Eddys Mountain area is attributed to a lithologic boundary rather than an elevated Curie-point isotherm. Deeper magnetic source bottom depths were mapped throughout the remainder of the study area, with depths greater than 9 km BSL indicated beneath Lassen Peak and greater than ii km BSL indicated beneath the Western Cascades, Eastern Klamath Mountains, and Great Valley.

  12. REGIONAL ANALYSIS OF INORGANIC NITROGEN YIELD AND RETENTION IN HIGH-ELEVATION ECOSYSTEMS OF THE SIERRA NEVADA AND ROCKY MOUNTAINS

    EPA Science Inventory

    Yields and retention of inorganic nitrogen (DIN) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada, California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from...

  13. Spatial Patterns of Airborne Pesticides in the Alpine Habitat of a Declining Calfornia Amphibian, The Mountain Yellow-Legged Frog

    EPA Science Inventory

    The mountain yellow-legged frog complex (Rana muscosa complex) has disappeared from most of its historic localities in the Sierra Nevada of California, and airborne pesticides from the Central Valley have been implicated as a causal agent. To determine the distributions and conce...

  14. Maps and interpretation of geochemical anomalies, Chuckwalla Mountains Wilderness Study Area, Riverside County, California

    USGS Publications Warehouse

    Watts, K.C.

    1986-01-01

    This report discusses and interprets geochemical results as they are seen at the reconnaissance stage. Analytical results for all samples collected are released in a U.S. Geological Survey Open-File Report (Adrian and others, 1985). A statistical summary of the data from heavy-mineral concentrates and sieved stream sediments is shown in table 1. The analytical results for selected elements in rock samples are shown in table 2.

  15. Site comparison for optical visibility statistics in southern California

    NASA Technical Reports Server (NTRS)

    Cowles, K.

    1991-01-01

    Negotiations are under way to locate an atmospheric visibility monitoring (AVM) observatory at Mount Lemmon, just north of Tucson, Arizona. Two more observatories will be located in the southwestern U.S. The observatories are being employed to improve a weather model for deep-space-to-ground optical communications. This article explains the factors considered in choosing a location and recommends Table Mountain Observatory as the location for another AVM facility.

  16. Contribution of hydraulically lifted deep moisture to the water budget in a Southern California mixed forest

    NASA Astrophysics Data System (ADS)

    Kitajima, Kuni; Allen, Michael F.; Goulden, Michael L.

    2013-12-01

    and shrubs growing in California's mountains rely on deep roots to survive the hot and dry Mediterranean climate summer. The shallow montane soil cannot hold enough water to support summer transpiration, and plants must access deeper moisture from the weathered bedrock. We used the HYDRUS-1D model to simulate the moisture flux through the soil-plant continuum in Southern California's San Jacinto Mountains. The mechanisms facilitating deep water access are poorly understood, and it is possible that either or both hydraulic lift and capillary rise contribute to the survival and activity of trees and soil microorganisms. We modified HYDRUS to incorporate hydraulic lift and drove it with meteorological and physiological data. The modeled quantity of water lifted hydraulically ranged from near zero during the wet months to ~28 mm month-1 in midsummer. Likewise, modeled capillary rise was negligible during the winter and averaged ~15 mm month-1 during June through November. Both mechanisms provided water to support evapotranspiration during the dry months. Isotopic measurements of xylem water for eight shrub and tree species confirmed the importance of a deep source of water. Conventional and automated minirhizotron observations showed that fine-root and rhizomorph biomass remained relatively constant year-round, while mycorrhizal hyphae biomass varied markedly, peaking in the wet season and declining by ~70% in the dry season. Model results predict that hydraulic lift and capillary rise play key roles in Southern California's mountains: they support evapotranspiration and photosynthesis during the summer drought; they contribute to the year-round survival of fine roots and soil microorganisms.

  17. Geological literature on the San Joaquin Valley of California

    USGS Publications Warehouse

    Maher, J.C.; Trollman, W.M.; Denman, J.M.

    1973-01-01

    The following list of references includes most of the geological literature on the San Joaquin Valley and vicinity in central California (see figure 1) published prior to January 1, 1973. The San Joaquin Valley comprises all or parts of 11 counties -- Alameda, Calaveras, Contra Costa, Fresno, Kern, Kings, Madera, Merced, San Joaquin, Stanislaus, and Tulare (figure 2). As a matter of convenient geographical classification the boundaries of the report area have been drawn along county lines, and to include San Benito and Santa Clara Counties on the west and Mariposa and Tuolumne Counties on the east. Therefore, this list of geological literature includes some publications on the Diablo and Temblor Ranges on the west, the Tehachapi Mountains and Mojave Desert on the south, and the Sierra Nevada Foothills and Mountains on the east.

  18. Mono Lake, California as seen from STS-59

    NASA Image and Video Library

    1994-04-14

    STS059-154-160 (9-20 April 1994) --- Orient with Mono Lake, California at the lower right; then the view is westward across the Sierra Nevada into the San Joaquin River drainage. A tiny network of ski trails can be seen on the Mono Lake side of the Sierras, on a line between Mono Lake and the snow-free San Joaquin headwaters. The ski trails mark Mammoth Mountain, where SRL investigators are studying microwave measurements of the water content of snowpacks. Linhof camera.

  19. Flood Frequenices and Bridge and Culvert Sizes for Forested Mountains of North Carolina

    Treesearch

    James E. Douglass

    1974-01-01

    A method is presented for predicting flood discharge from the forested Blue Ridge Mountains of North Carolina for storms at recurrence intervals of 2.33, 5, 10, 20, 30, 40, and 50 years. These predictions are based on area and maximum elevation of the drainage. Once storm discharge has been estimated, the proper size of culvert can be determined from tables which list...

  20. Low-Income Students and School Meal Programs in California. Technical Appendices

    ERIC Educational Resources Information Center

    Danielson, Caroline

    2015-01-01

    These technical appendices are intended to accompany the study, "Low-Income Students and School Meal Programs in California." Two appendices are included. Appendix A provides tables detailing: (1) the variables included in the main models and the datasets(s) used to construct each; (2) observations in each dataset and categorizes them…

  1. Aeromagnetic map and interpretation of geophysical data from the Condrey Mountain Roadless Area, Siskiyou County, California

    USGS Publications Warehouse

    Jachens, R.C.; Elder, W.P.

    1983-01-01

    The western Paleozoic and Triassic belt that nearly surrounds the Condrey Mountain Schist is a melange of sedimentary, volcanic, and ultramafic rocks metamorphosed to amphibolite facies (Coleman and others, 1983). Only two samples of the metamorphic melange were collected near the Condrcy Mountain Road less Area, but extensive sampling of this unit southwest of the roadless area yielded an average sample density of 2.86±0.15 g/cm3 (112 samples) (Jachens and others, 1983).

  2. Comprehensive Family-Centered Training Programs: Five Comparative Case Studies. Evaluation of the Mountain-Plains Education & Economic Development Program, Inc.

    ERIC Educational Resources Information Center

    Bale, Richard L.; Sprague, C. Fremont

    The Mountain-Plains Education & Economic Development Program, which exemplifies the comprehensive, residential family-centered approach to serving the economically disadvantaged, was compared to four similar programs in the United States: Arizona Job Colleges (AJC) in Arizona; Madera Employment Training Center (METC) in California; Manpower,…

  3. Thinning decreases mortality and increases growth of Ponderosa pine in northeastern California

    Treesearch

    Gary O. Fiddler; Troy A. Fiddler; Dennis R. Hart; Philip M. McDonald

    1989-01-01

    Overstocked 70- to 90-year-old stands of ponderosa pine on medium- to low-quality sites were thinned in 1980 to 40, 55, and 70 percent of normal basal area and compared to an unthinned control. Mortality, diameter, and height in these northern California stands were measured annually from 1980 to 1987. After 8 years, mortality, primarily from mountain pine beetle (

  4. Airborne Pesticides as an Unlikely Cause for Population Declines of Alpine Frogs in the Sierra Nevada, California

    EPA Science Inventory

    Airborne pesticides from the Central Valley of California have been implicated as a cause for population declines of several amphibian species, with the strongest evidence for the mountain yellow-legged frog complex (Rana muscosa and R. sierrae) in the Sierra Nevada. We measured...

  5. Timber resource statistics of the Sacramento resource area of California.

    Treesearch

    J.D. Lloyd; Joel Moen; Charles L. Bolsinger

    1986-01-01

    This report is one of five that provide timber resource statistics for 57 of the 58 counties in California (San Francisco is excluded). This report presents statistics from a 1981-84 inventory of the timber resources of Butte, Colusa, El Dorado, Glenn, Lake, Napa, Nevada, Placer, Plumas, Sacramento, Sierra, Sutter, Tehama, Yolo, and Yuba Counties. Tables presented are...

  6. Boulder Clusters as Flow Refugia for Juvenile Salmonids and Aquatic Invertebrates in Steep Mountain Streams, Klamath Mountains, Northern California

    NASA Astrophysics Data System (ADS)

    Cover, M. R.; May, C. L.; Dietrich, W. E.; Resh, V. H.

    2005-12-01

    The availability of flow refugia and cover is an important factor affecting habitat suitability for fish and invertebrates, especially in steep, turbulent streams. In some channels, crevices beneath and between large rocks may be the only available flow refugia that allow rainbow trout (Oncorhynchus mykiss) to conserve energy and escape from high velocity flow during large storm events. Many aquatic invertebrates, especially large or crawling taxa, require cover that is provided by unembedded crevice space underneath large stones. To investigate the influence of channel type on habitat availability, we performed intensive surveys of crevice habitat for salmonids and benthic invertebrates in 12 reaches in Walker Creek, a 25 square km basin in the Klamath Mountains of Northern California. We identified four reaches in each of three channel types: plane bed (3.1% - 3.7% slope), step-pool (5.4% - 6.5% slope), and cascade (6.3% - 8.5% slope). We used 4 realistic fish models (5, 10, 15, and 20 cm length) to assess the size of crevices and presence of flow refugia associated with all cobble (64 - 256 mm) and boulder (> 256 mm) grains within five 0.5 m-wide diagonal transects. The total abundance of crevices was similar among plane bed (6.3 +/- 1.1 m-2) (Mean +/- SD), step-pool (6.2 +/- 0.25 m-2), and cascade (6.7 +/- 1.2 m-2) reaches. Small (5 cm) crevices made up the majority of crevices in all three reach types. While the presence of 5 cm and 10 cm crevices was not significantly different between the three channel types, there were significantly more large (20 cm) crevices in cascade (0.73 +/- 0.33 m-2) and step-pool (0.68 +/- 0.1 m-2) reaches than in plane bed (0.26 +/- 0.14 m-2) reaches (AVOVA, p < 0.05). Moderately sized (15 cm) crevices were more common in step-pool reaches (0.91 +/- 0.13 m-2) than either cascade (0.54 +/- 0.15 m-2) or plane bed (0.42 +/- 0.13 m-2) reaches. Based on these results we conclude that step-pool reaches provide the most favorable habitat

  7. A reevaluation of the age of the Vincent-Chocolate Mountains thrust system, southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, C.E.; Barth, A.P.

    1993-04-01

    The Vincent-Chocolate Mountains (VCM) thrust superposes Mesozoic arc plutons and associated Precambrian country rock above subduction-related Pelona-Orocopia schist. The thrust is disrupted in many areas by postmetamorphic deformation, but appears to be intact in the San Gabriel Mountains. Two Rb-Sr mineral-isochron ages from Pelona Schist and mylonite in the San Gabriel Mountains led Ehlig (1981) to conclude that the original thrusting event occurred at c. 60 Ma. However, biotite K-Ar ages determined by Miller and Morton (1980) for upper plate in the same area caused Dillon (1986) to reach a different conclusion. The biotite ages range mainly from 74--60 Mamore » and increase structurally upward from the VCM thrust. Dillon (1986) inferred that the age gradient was due to uplift and cooling of the upper plate during underthrusting of Pelona Schist. This would indicate that the VCM thrust was at least 74 Ma in age. An alternative to the interpretation of Dillon (1986) is that the biotite age gradient largely predates the VCM thrust. Upward heat flow, leading to older ages at higher structural levels, could have resulted from either static cooling of Cretaceous plutons or uplift and erosion induced by crustal thickening during possible west-directed intra-arc thrusting at c. 88--78 Ma (May and Walker, 1989). Subsequent underthrusting of Pelona Schist would establish a cold lower boundary to the crust and cause the closure of isotopic systems in the base of the upper plate. A 60 Ma time of thrusting is also suggested by two amphibole [sup 40]Ar/[sup 39]Ar ages from the Pelona Schist of the San Gabriel Mountains. Peak metamorphic temperature in this area was below 480 C and amphibole ages should thus indicate time of crystallization rather than subsequent cooling. Four phengite [sup 40]Ar/[sup 39]Ar ages of 55--61 Ma from Pelona Schist and mylonite indicate rapid cooling from peak metamorphic temperatures, consistent with subduction refrigeration.« less

  8. Status of the peregrine falcon in the Rocky Mountains and the southwestern United States, Baja California, and Mexico (south of Texas)

    USGS Publications Warehouse

    Porter, Ron; Craig, G.R.; Ellis, D.H.; Enderson, J.H.; Hunt, W.G.; Schaeffer, Philip P.; Ehlers, Sharyn M.

    1978-01-01

    About 31 pairs of peregrines still nest north of Mexico, from Idaho and Montana south through West Texas, New Mexico and Arizona. At least thirty-six additional pairs nest in Mexico. Although the nesting sites are occupied, the tissues of the peregrine?s prey species still contain high concentrations of pesticides. The eggs in some Rocky Mountain eyries have shells which are precariously thin and have high residue levels of DDE in their contents. Increasing economic development is encroaching on the peregrine habitat throughout its range in western North America. In Baja California. and Mexico south of Texas this involves increased agricultural activity including use of organochlorine pesticides, increased tourism and increased use of the Gulf of California both for commercial and sport fishing, with their potential disturbance of eyrie sites and reduction of the peregrine?s aquatic feeding prey base. As the fish in the Gulf decrease in number, some of the avian species on which peregrines prey will likewise decrease. This ultimately may effect the peregrine. These factors may have been involved in the demise of the peregrine on Baja California?s Pacific coast. Furthermore, throughout its range, residential, industrial, mining, geothermal, recreational and other types of development and land use practices sometimes destroy habitat essential to the survival of the peregrine. A recent request for the protection of an historical site in California as Critical Habitat under Section 7 of the Endangered Species Act was rejected because peregrines, although observed there, were not known to have produced eggs or young at the site for several decades. With inadequate protection of abandoned, but still suitable, historical eyrie sites, the peregrine may have an insufficient number of eyries to reoccupy in recovery attempts. The lack of present occupancy of a site, without biological evidence that the site is no longer suitable for reoccupancy, is insufficient cause to give

  9. Fracture and matrix hydrologic characteristics of tuffaceous materials from Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, R.R.; Klavetter, E.A.; Hall, I.J.

    1984-12-01

    The geological formations in the unsaturated zone at Yucca Mountain, on and adjacent to the Nevada Test Site (NTS), are currently being studied for consideration as the host for a radioactive-waste repository; the US Department of Energy is carrying out these studies through the Nevada Nuclear Waste Storage Investigations project. The formations are composed of tuffaceous (tuff) materials that must be evaluated to estimate the rate at which radionuclides would migrate to the accessible environment. According to the available evidence, the flux of water in the unsaturated zone beneath the Yucca Mountain site is low; quantifying such low flow ratesmore » through direct measurements is difficult. To help provide data that can be used to assess unsaturated flow, Pacific Northwest Laboratory (PNL), under contract to Sandia National Laboratories (SNL), performed hydrologic tests on tuffaceous samples from 48 different locations in Yucca Mountain. This report contains the entire set of psychrometer measurements of desaturation curves for tuffs from Yucca Mountain as well as a substantial number of saturated conductivity measurements. 19 references, 132 figures, 23 tables.« less

  10. Preliminary Surficial Geologic Map of the Mesquite Lake 30' X 60' Quadrangle, California and Nevada

    USGS Publications Warehouse

    Schmidt, Kevin M.; McMackin, Matthew

    2006-01-01

    The Quaternary surficial geologic map of the Mesquite Lake, California-Nevada 30'X60' quadrangle depicts deposit age and geomorphic processes of erosion and deposition, as identified by a composite of remote sensing investigations, laboratory analyses, and field work, in the arid to semi-arid Mojave Desert area, straddling the California-Nevada border. Mapping was motivated by the need to address pressing scientific and social issues such as understanding and predicting the effects of climate and associated hydrologic changes, human impacts on landscapes, ecosystem function, and natural hazards at a regional scale. As the map area lies just to the south of Las Vegas, Nevada, a rapidly expanding urban center, land use pressures and the need for additional construction materials are forecasted for the region. The map contains information on the temporal and spatial patterns of surface processes and hazards that can be used to model specific landscape applications. Key features of the geologic map include: (1) spatially extensive Holocene alluvial deposits that compose the bulk of Quaternary units (~25%), (2) remote sensing and field studies that identified fault scarps or queried faults in the Kingston Wash area, Shadow Mountains, southern Pahrump Valley, Bird Spring Range, Lucy Gray Mountains and Piute Valley, (3) a lineament indicative of potential fault offset is located in Mesquite Valley, (4) active eolian dunes and sand ramps located on the east side of Mesquite, Ivanpah, and Hidden Valleys adjacent to playas, (4) groundwater discharge deposits in southern Pahrump Valley, Spring Mountains, and Lucy Gray Mountains and (5) debris-flow deposits spanning almost the entire Quaternary period in age.

  11. California State Waters Map Series: offshore of Half Moon Bay, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Johnson, Samuel Y.; Golden, Nadine E.; Hartwell, Stephen R.; Dieter, Bryan E.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Watt, Janet T.; Endris, Charles A.; Kvitek, Rikk G.; Phillips, Eleyne L.; Erdey, Mercedes D.; Chin, John L.; Bretz, Carrie K.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Half Moon Bay map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 40 kilometers south of the Golden Gate. The city of Half Moon Bay, which is situated on the east side of the Half Moon Bay embayment, is the nearest significant onshore cultural center in the map area, with a population of about 11,000. The Pillar Point Harbor at the north edge of Half Moon Bay offers a protected landing for boats and provides other marine infrastructure. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The flat coastal area, which is the most recent of numerous marine terraces, was formed by wave erosion about 105 thousand years ago. The higher elevation of this same terrace west of the Half Moon Bay Airport is caused by uplift on the Seal Cove Fault, a splay of the San Gregorio Fault Zone. Although originally incised into the rising terrain horizontally, the ancient terrace surface has been gently folded into a northwest-plunging syncline by

  12. Slope Stability Analysis of Mountain Pine Beetle Impacted Areas

    NASA Astrophysics Data System (ADS)

    Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.

    2015-12-01

    The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.

  13. Interstratified arkosic and volcanic rocks of the Miocene Spanish Canyon Formation, Alvord Mountain area, California: descriptions and interpretations

    USGS Publications Warehouse

    Buesch, David C.

    2014-01-01

    The Spanish Canyon Foundation in the Alvord Mountain area, California, varies from about 50 to 120 m thick and records the interstratification of arkosic sandstone and conglomerate with tuffaceous deposits and lava flows. In the lower third of the formation, arkosic sandstone and conglomerate are interstratified with tuffaceous deposits. Some tuffs might have been deposited as primary, nonwelded to partially welded ignimbrites or fallout tephra. Many of the tuffaceous deposits represent redeposited material that formed tuffaceous sandstone, and many of these deposits contain arkosic grains that represent mixing of different source matieral. Arkosic sandstone, and especially conglomerate (some with maximum clast lengths up to 1 m), represent intermittent incursions of coarser plutoniclastic fan deposits into other finer grained and mostly volcaniclastic basin deposits. After deposition of the 18.78 Ma Peach Spring Tuff, the amount of tuffaceous material decreased. The upper two-thirds of the formation has arkosic sandstone and conglomerate interstratified with two olivine basalt lave flows. locally, conglomerate clasts in this part of the section have maximum lengths up to 1 m. Many tuffaceous and arkosic sandstone beds of the Spanish Canyon Formation have tabular to broad (low-relief) lenticular geometry, and locally, some arkosic conglomerate fills channels as much as 1.5 m deep. These bedforms are consistent with deposition in medial to distal alluvial-fan or fluvial environments; some finer-grained deposits might have formed in lacustrine environments.

  14. Southern and Central California Chaparral and Oak Woodlands Ecoregion: Chapter 19 in Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Napton, Darrell E.

    2012-01-01

    The Southern and Central California Chaparral and Oak Woodlands Ecoregion, which covers approximately 102,110 km2 (39,425 mi2), is characterized by a Mediterranean climate with cool, moist winters and hot, dry summers (Omernik, 1987; U.S. Environmental Protection Agency, 1997). Natural vegetation includes chaparral (for example, manzanita, Arctostaphylos spp.) and oak (Quercus spp.) woodlands with extensive grassland and shrubland cover. The low mountains and foothills of the ecoregion border or parallel the Pacific Ocean from Mexico to Point Reyes, California, and continue inland surrounding the Central California Valley Ecoregion (fig. 1). These mountains and hills are interrupted by limited areas of flat land generally used for development or agriculture. The largest developed area in the ecoregion is the Los Angeles Basin, followed by the San Francisco Bay area and the San Diego metropolitan area (fig. 1). The largest agricultural area is the Salinas River valley south of Monterey, California. Most of the ecoregion consists of rangelands classified as grassland/ shrubland and forest land covers (figs. 1,2).

  15. Mountain Meadows Dacite: Oligocene intrusive complex that welds together the Los Angeles Basin, northwestern Peninsular Ranges, and central Transverse Ranges, California

    USGS Publications Warehouse

    McCulloh, Thane H.; Beyer, Larry A.; Morin, Ronald W.

    2001-01-01

    Dikes and irregular intrusive bodies of distinctive Oligocene biotite dacite and serially related hornblende latite and felsite occur widely in the central and eastern San Gabriel Mountains, southern California, and are related to the Telegraph Peak granodiorite pluton. Identical dacite is locally present beneath Middle Miocene Topanga Group Glendora Volcanics at the northeastern edge of the Los Angeles Basin, where it is termed Mountain Meadows Dacite. This study mapped the western and southwestern limits of the dacite distribution to understand the provenance of derived redeposited clasts, to perceive Neogene offsets on several large strike-slip faults, to test published palinspastic reconstructions, and to better understand the tectonic boundaries that separate contrasting pre-Tertiary rock terranes where the Peninsular Ranges meet the central and western Transverse Ranges and the Los Angeles Basin. Transported and redeposited clasts of dacite-latite occur in deformed lower Miocene and lower middle Miocene sandy conglomerates (nonmarine, nearshore, and infrequent upper bathyal) close to the northern and northeastern margins of the Los Angeles Basin for a distance of nearly 60 km. Tie-lines between distinctive source suites and clast occurrences indicate that large tracts of the ancestral San Gabriel Mountains were elevated along range-bounding faults as early as 16–15 Ma. The tie-lines prohibit very large strike-slip offsets on those faults. Transport of eroded dacite began south of the range as early as 18 Ma. Published and unpublished data about rocks adjacent to the active Santa Monica-Hollywood-Raymond oblique reverse left-lateral fault indicate that cumulative left slip totals 13–14 km and total offset postdates 7 Ma. This cumulative slip, with assembly of stratigraphic and paleogeographic data, invalidates prior estimates of 60 to 90 km of left slip on these faults beginning about 17–16 Ma. A new and different palinspastic reconstruction of a region

  16. A Geologic and Geomorphic Mapping Approach to Understanding the Kinematic Role of Faulting in the Little San Bernardino Mountains in the Evolution of the San Andreas Fault System in Southern California

    NASA Astrophysics Data System (ADS)

    Powell, R. E.; Matti, J. C.

    2006-12-01

    The Little San Bernardino Mountains (LSBM) constitute a pivotal yet poorly understood structural domain along the right-lateral San Andreas Fault (SAF) in southern California. The LSBM, forming a dramatic escarpment between the eastern Transverse Ranges (ETR) and the Salton Trough, contain an array of N- to NW-trending faults that occupy the zone of intersections between the SAF and the coevolving E-trending left-slip faults of the ETR. One of the N-trending faults within the LSBM domain, the West Deception Canyon Fault, previously has been identified as the locus of the Joshua Tree earthquake (Mw 6.1) of 23 April 1992. That earthquake was the initial shock in the ensuing Landers earthquake sequence. During the evolution of the plate-margin shearing associated with the opening of the Gulf of California since about 5 Ma, the left-lateral faults of the ETR have provided the kinematic transition between the S end of the broad Eastern California Shear Zone (ECSZ) which extends northward through the Mojave Desert and along Walker Lane and the SAF proper in southern California. The long-term geologic record of cumulative displacement on the sinistral ETR faults and the dextral SAF and Mojave Desert faults indicates that these conjugate fault sets have mutually accommodated one another rather than exhibit cross-cutting relations. In contrast, the linear array of earthquakes that make up the dextral 1992 Landers sequence extends across the sinistral Pinto Mountain Fault and has been cited by some as evidence that ECSZ is coalescing southward along the N-trending dextral faults of the northern LSBM to join the ECSZ directly to southern SAF. To gain a better understanding of the array of faults in the LSBM, we are combining mapping within the crystalline basement terrane of the LSBM with mapping both of uplifted remnants of erosional surfaces developed on basement rocks and of volcanic and sedimentary rocks deposited on those surfaces. Our preliminary findings indicate the

  17. Population genetics and biological control of goldspotted oak borer, an invasive pest of California oaks

    Treesearch

    Vanessa Lopez; Paul F. Rugman-Jones; Tom W. Coleman; Richard Stouthamer; Mark Hoddle

    2015-01-01

    California’s oak woodlands are threatened by the recent introduction of goldspotted oak borer (Agrilus auroguttatus). This invasive wood-borer is indigenous to mountain ranges in southern Arizona where its low population densities may be due to the presence of co-evolved, host-specific natural enemies. Reuniting A. auroguttatus...

  18. Trend analysis of ground-water levels and spring discharge in the Yucca Mountain Region, Nevada and California, 1960-2000

    USGS Publications Warehouse

    Fenelon, Joseph M.; Moreo, Michael T.

    2002-01-01

    Ground-water level and discharge data from 1960 to 2000 were analyzed for the Yucca Mountain region of southern Nevada and eastern California. Included were water-level data from 37 wells and a fissure (Devils Hole) and discharge data from five springs and from a flowing well. Data were evaluated for variability and for upward, downward, or cyclic trends with an emphasis on the period 1992-2000. Potential factors causing trends in water levels and discharge include ground-water withdrawal, infiltration of precipitation, earthquakes, evapotranspiration, barometric pressure, and earth tides. Statistically significant trends in ground-water levels or spring discharge from 1992 to 2000 were upward at 12 water-level sites and downward at 14 water-level sites and 1 spring-discharge site. In general, the magnitude of the change in water level from 1992 to 2000 was small (less than 2 feet), except where influenced by pumping or local effects such as possible equilibration from well construction or diversion of nearby surface water. Seasonal trends are superimposed on some of the long-term (1992-2000) trends in water levels and discharge. Factors causing seasonal trends include barometric pressure, evapotranspiration, and pumping. The magnitude of seasonal change in water level can vary from as little as 0.05 foot in regional aquifers to greater than 5 feet in monitoring wells near large supply wells in the Amargosa Farms area. Three major episodes of earthquake activity affected water levels in wells in the Yucca Mountain region between 1992 and 2000: the Landers/Little Skull Mountain, Northridge, and Hector Mine earthquakes. The Landers/Little Skull Mountain earthquakes, in June 1992, had the largest observed effect on water levels and on discharge during the study period. Monthly measurements of wells in the study network show that earthquakes affected water levels from a few tenths of a foot to 3.5 feet. In the Ash Meadows area, water levels remained relatively stable

  19. Groundwater quality in the Mojave area, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Mojave River make up one of the study areas being evaluated. The Mojave study area is approximately 1,500 square miles (3,885 square kilometers) and includes four contiguous groundwater basins: Upper, Middle, and Lower Mojave River Groundwater Basins, and the El Mirage Valley (California Department of Water Resources, 2003). The Mojave study area has an arid climate, and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). Land use in the study area is approximately 82 percent (%) natural (mostly shrubland), 4% agricultural, and 14% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Victorville, Hesperia, and Apple Valley (2010 populations of 116,000, 90,000 and 69,000, respectively). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in the Mojave study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Mojave study area are completed to depths between 200 and 600 feet (18 to 61 meters), consist of solid casing from the land surface to a depth of 130 to 420 feet (40 to 128 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the mountains to the south, mostly through the Mojave River channel. The primary sources

  20. Probable peak discharges and erosion rates from southern California watersheds as influenced by fire

    Treesearch

    P.B. Rowe; C.M. Countryman; H.C. Storey

    1949-01-01

    Damages from floods and erosion have been a serious problem in southern California since early pioneer days. The problem is becoming even more serious as the rapidly increasing population and expanding industrial and agricultural development encroach upon the flood plains and extend up the steep slopes and into canyons of the nearby mountains. Protection of forest...

  1. Movements and habitat use of Yosemite toads (Anaxyrus (formerly Bufo) canorus) in the Sierra National Forest, California

    Treesearch

    Christina T. Liang

    2013-01-01

    The Yosemite Toad (Anaxyrus (Bufo) canorus) is a high-elevation species endemic to the central Sierra Nevada mountain range in California whose populations are in decline. There is limited information on their terrestrial movement and habitat use, which impairs our understanding of the ecology and habitat...

  2. Data on snow chemistry of the Cascade-Sierra Nevada Mountains

    USGS Publications Warehouse

    Laird, L.B.; Taylor, Howard E.; Lombard, R.E.

    1986-01-01

    Snow chemistry data were measured for solutes found in snow core samples collected from the Cascade-Sierra Nevada Mountains from late February to mid-March 1983. The data are part of a study to assess geographic variations in atmospheric deposition in Washington, Oregon, and California. The constituents and properties include pH and concentrations of hydrogen ion, calcium, magnesium, sodium, potassium, chloride, sulfate, nitrate, fluoride, phosphate, ammonium, iron, aluminum, manganese, copper, cadmium, lead, and dissolved organic carbon. Concentrations of arsenic and bromide were below the detection limit. (USGS)

  3. SALMON-TRINITY ALPS WILDERNESS, CALIFORNIA.

    USGS Publications Warehouse

    Hotz, Preston E.; Thurber, Horace K.

    1984-01-01

    The Salmon-Trinity Alps Wilderness in the Klamath Mountains province occupies an area of about 648 sq mi in parts of Trinity, Siskiyou, and Humboldt Counties, northwestern California. As a result of field studies it was determined that the Salmon-Trinity Alps Wilderness has an area with substantiated potential for gold resources in known lode deposits. Small amounts of quicksilver have been produced from one mine but there is little promise for the discovery of additional mercury resources. Geochemical sampling showed that anomalously high amounts of several other metals occur in a few places, but there is little promise for the discovery of energy or mineral resources other than mercury and gold.

  4. Timber resource statistics of the northern interior resource area of California.

    Treesearch

    Perry Colclasure; Joel Moen; Charles L. Bolsinger

    1986-01-01

    This report is one of five that provide timber resource statistics for 57 of the 58 counties in California (San Francisco is excluded). This report presents statistics from a 1981-84 inventory of the timber resources of Lassen, Modoc, Shasta, Siskiyou, and Trinity Counties. Tables presented are of forest area and of timber volume, growth, and mortality. Timberland area...

  5. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1994

    USGS Publications Warehouse

    Westenburg, C.L.; La Camera, R. J.

    1996-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1994. Data collected prior to 1994 are graphically presented and data collected by other agencies (or as part of other programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-94.

  6. Habitat modeling and movements of the Yosemite toad (Anaxyrus (=Bufo) canorus) in the Sierra Nevada, California

    Treesearch

    C.T. Liang

    2010-01-01

    The Yosemite toad (Anaxyrus (=Bufo) canorus) is a high-elevation species endemic to the Sierra Nevada mountain range in California and is part of the world-wide amphibian declines phenomenon. The toad is thought to have disappeared from over 50% of its historic range even in seemingly undisturbed areas, and...

  7. Survival of mountain quail translocated from two distinct source populations

    USGS Publications Warehouse

    Troy, Ronald J.; Coates, Peter S.; Connelly, John W.; Gillette, Gifford; Delehanty, David J.

    2013-01-01

    Translocation of mountain quail (Oreortyx pictus) to restore viable populations to their former range has become a common practice. Because differences in post-release vital rates between animals from multiple source populations has not been well studied, wildlife and land managers may arbitrarily choose the source population or base the source population on immediate availability when planning translocation projects. Similarly, an understanding of the optimal proportion of individuals from different age and sex classes for translocation would benefit translocation planning. During 2006 and 2007, we captured and translocated 125 mountain quail from 2 ecologically distinct areas: 38 from southern California and 87 from southwestern Oregon. We released mountain quail in the Bennett Hills of south-central Idaho. We radio-marked and monitored a subsample of 58 quail and used them for a 2-part survival analysis. Cumulative survival probability was 0.23 ± 0.05 (SE) at 150 days post-release. We first examined an a priori hypothesis (model) that survival varied between the 2 distinct source populations. We found that source population did not explain variation in survival. This result suggests that wildlife managers have flexibility in selecting source populations for mountain quail translocation efforts. In a post hoc examination, we pooled the quail across source populations and evaluated differences in survival probabilities between sex and age classes. The most parsimonious model indicated that adult male survival was substantially less than survival rates of other mountain quail age and sex classes (i.e., interaction between sex and age). This result suggests that translocation success could benefit by translocating yearling males rather than adult males, perhaps because adult male breeding behavior results in vulnerability to predators

  8. Vegetation mapping and stress detection in the Santa Monica Mountains, California

    NASA Technical Reports Server (NTRS)

    Price, Curtis V.; Westman, Walter E.

    1987-01-01

    Thematic Mapper (TM) simulator data have been used to map coastal sage scrub in the mountains near Los Angeles by means of supervised classification. Changes in TM band radiances and band ratios are examined along an east-west gradient in ozone pollution loads. While the changes noted are interpretable in terms of ozone- and temperature-induced premature leaf drop, and consequent exposure of a dry, grassy understory, TM band and band ratio reflectances are influenced by a variety of independent factors which require that pollution stress interpretations be conducted in the context of the greatest possible ecological system comprehension.

  9. The White Mountain Polarimeter: A telescope to measure polarization of the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Levy, Alan Robert

    2006-07-01

    The past two decades have been an exciting time in the field of cosmology and, in particular, studies of the Cosmic Microwave Background (CMB). One of the hot topics in cosmology research today is measuring and mapping CMB polarization. The White Mountain Polarimeter (WMPol) is a dedicated, ground-based microwave telescope and receiver system to measure CMB polarization which was installed in the Barcroft Observatory of the University of California White Mountain Research Station in September 2003. Presented here is a brief review of our current understanding of big bang cosmology and a description of the WMPol instrument, the observing conditions at the 3880-meter altitude Barcroft site, the data acquired during the 2004 observing campaign, and the data analysis.

  10. Potential biomass and logs from fire-hazard-reduction treatments in Southwest Oregon and Northern California

    Treesearch

    R. James Barbour; Jeremy Fried; Peter J. Daugherty; Glenn Christensen; Roger. Fight

    2008-01-01

    The FIA BioSum model was used to simulate three fire-hazard-reduction policies in an area comprising northern California, southwestern Oregon, and the east slopes of the Cascade Mountains in Oregon. The policy scenarios, all subject to a stand-scale fire-hazard-reduction effectiveness constraint, included maximize torching index improvement (Max TI), maximize net...

  11. Interbasin flow in the Great Basin with special reference to the southern Funeral Mountains and the source of Furnace Creek springs, Death Valley, California, U.S.

    USGS Publications Warehouse

    Belcher, W.R.; Bedinger, M.S.; Back, J.T.; Sweetkind, D.S.

    2009-01-01

    Interbasin flow in the Great Basin has been established by scientific studies during the past century. While not occurring uniformly between all basins, its occurrence is common and is a function of the hydraulic gradient between basins and hydraulic conductivity of the intervening rocks. The Furnace Creek springs in Death Valley, California are an example of large volume springs that are widely accepted as being the discharge points of regional interbasin flow. The flow path has been interpreted historically to be through consolidated Paleozoic carbonate rocks in the southern Funeral Mountains. This work reviews the preponderance of evidence supporting the concept of interbasin flow in the Death Valley region and the Great Basin and addresses the conceptual model of pluvial and recent recharge [Nelson, S.T., Anderson, K., Mayo, A.L., 2004. Testing the interbasin flow hypothesis at Death Valley, California. EOS 85, 349; Anderson, K., Nelson, S., Mayo, A., Tingey, D., 2006. Interbasin flow revisited: the contribution of local recharge to high-discharge springs, Death Valley, California. Journal of Hydrology 323, 276-302] as the source of the Furnace Creek springs. We find that there is insufficient modern recharge and insufficient storage potential and permeability within the basin-fill units in the Furnace Creek basin for these to serve as a local aquifer. Further, the lack of high sulfate content in the spring waters argues against significant flow through basin-fill sediments and instead suggests flow through underlying consolidated carbonate rocks. The maximum temperature of the spring discharge appears to require deep circulation through consolidated rocks; the Tertiary basin fill is of insufficient thickness to generate such temperatures as a result of local fluid circulation. Finally, the stable isotope data and chemical mass balance modeling actually support the interbasin flow conceptual model rather than the alternative presented in Nelson et al. [Nelson

  12. Progress in Design and Construction of the Optical Communications Laser Laboratory

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Britcliffe, M.; Golshan, N.

    1999-01-01

    The deployment of advanced hyperspectral imaging and other Earth sensing instruments on board Earth observing satellites is driving the demand for high-data-rate communications. Optical communications meet the required data rates with small, low mass, and low-power communications packages. JPL, as NASA's lead center in optical communications, plans to construct a 1-m Optical Communications Telescope Laboratory (OCTL) at its Table Mountain Facility (TMF) complex in the San Gabriel Mountains of Southern California. The design of the building has been completed, and the construction contractor has been selected. Ground breaking is expected to start at the beginning of the 1999 TMF construction season. A request for proposal (RFP) has been issued for the procurement of the telescope system. Prior to letting the RFP we conducted a request for information with industry for the telescope system. Several vendors responded favorably and provided information on key elements of the proposed design. These inputs were considered in developing the final requirements in the RFP. Keywords: Free space optical communications, lasercom, telescopes, ground stations, adaptive optics, astrometry, Table Mountain Facility

  13. Historical and contemporary DNA indicate fisher decline and isolation occurred prior to the European settlement of California

    Treesearch

    Jody M. Tucker; Michael K. Schwartz; Richard L. Truex; Kristine L. Pilgrim; Fred W. Allendorf

    2012-01-01

    Establishing if species contractions were the result of natural phenomena or human induced landscape changes is essential for managing natural populations. Fishers (Martes pennanti) in California occur in two geographically and genetically isolated populations in the northwestern mountains and southern Sierra Nevada. Their isolation is hypothesized to have resulted...

  14. Botrytis californica, a new cryptic species in the B. cinerea species complex causing gray mold in blueberries and table grapes.

    PubMed

    Saito, S; Margosan, D; Michailides, T J; Xiao, C L

    2016-01-01

    The Botrytis cinerea species complex comprises two cryptic species, originally referred to Group I and Group II based on Bc-hch gene RFLP haplotyping. Group I was described as a new cryptic species B. pseudocinerea During a survey of Botrytis spp. causing gray mold in blueberries and table grapes in the Central Valley of California, six isolates, three from blueberries and three from table grapes, were placed in Group I but had a distinct morphological character with conidiophores significantly longer than those of B. cinerea and B. pseudocinerea We compared these with B. cinerea and B. pseudocinerea by examining morphological and physiological characters, sensitivity to fenhexamid and phylogenetic analysis inferred from sequences of three nuclear genes. Phylogenetic analysis with the three partial gene sequences encoding glyceraldehyde-3-phosate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60) and DNA-dependent RNA polymerase subunit II (RPB2) supported the proposal of a new Botrytis species, B. californica, which is closely related genetically to B. cinerea, B. pseudocinerea and B. sinoviticola, all known as causal agents of gray mold of grapes. Botrytis californica caused decay on blueberry and table grape fruit inoculated with the fungus. This study suggests that B. californica is a cryptic species sympatric with B. cinerea on blueberries and table grapes in California. © 2016 by The Mycological Society of America.

  15. Effects of High Carbon Dioxide Soil-Gas Concentrations and Emission Rates From Mammoth Mountain, California, USA

    NASA Astrophysics Data System (ADS)

    Farrar, C. D.; Evans, W. C.

    2006-12-01

    High concentrations (90 vol %) of carbon dioxide (CO2) are present in shallow soils, and CO2 is emitted to the atmosphere at high rates (1,000 g/d/m2), in several locations around Mammoth Mountain. The CO2 emissions have been diffuse and at ambient temperature. CO2 in the soil has killed most of the coniferous forest in five areas totaling 35 ha around the north, west, and south sides of the mountain at altitudes between 2,600 and 3,000 m. Part of the CO2 has dissolved in ground water, causing acidic conditions and severely corroding steel casings in several wells. The high CO2 emission rates are implicated in the deaths of four people in the past eight years. During winter, a large quantity of CO2 is sequestered in the snow pack on parts of the mountain, posing potential dangers for winter recreation. One U.S. Forest Service campground has been closed and safety plans have been implemented by the local ski resort. Mammoth Mountain is a dormant Quaternary volcanic center, but overlies an area that has been affected by periods of magmatic unrest during the past two decades. Hypocenters of long-period earthquakes indicate that basaltic intrusions reach depths as shallow as 20 to 15 km, from which CO2 has exsolved during decompression and (or) crystallization of these intrusions. CO2 moves to the land surface along fracture zones associated with faults and possibly geologic contacts. The magmatic source of CO2 is confirmed by ¦Ä13C = -3 to -5 PDB, a lack of 14C, and 3He/4He = 4 to 5 R/RA. The present-day high CO2 soil-gas concentrations and emission rates were first documented in 1994; however, anecdotal information and low 14C in post-1989 tree rings suggest that an abrupt increase in both concentrations and emission rates probably began in 1990, following a 6-month period of seismic swarm activity beneath the mountain. Emissions in an area on the south flank of the mountain have been the focus of CO2 monitoring and have shown no indications of abatement between

  16. Los Angeles, California as seen from STS-59

    NASA Image and Video Library

    1994-04-14

    STS059-227-050 (9-20 April 1994) --- A low altitude, and unusually clear air, provided perhaps the most detailed view of Los Angeles, California ever obtained during a shuttle flight. Orient with the bulk of the ocean to the lower left. Then Long Beach is in the lower right, just east of the Palos Verdes Hills that extend into the Pacific Ocean. Marina del Rey is cut into the straight segment of beach, with Los Angeles International Airport (LAX) clearly visible to the southeast. Downtown Los Angeles is the light-toned sprawl in the upper right, with the rectangular grid pattern of Pasadena extending out of the picture. The Santa Monica Mountains to the upper left extend east-west, separating the San Fernando Valley (epicenter of the 1993 earthquake) from the Los Angeles Basin proper. It is impossible to determine by photo interpretation whether or not the de-vegetated scars along the southern edge of the mountains represent man-made features (real-estate development) or wildfires.

  17. Habitat conditions of montane meadows associated with restored and unrestored stream channels of California

    Treesearch

    K. L. Pope; D. S. Montoya; J. N. Brownlee; J. Dierks; T. E. Lisle

    2015-01-01

    Mountain meadow habitats are valued for their ecological importance. They attenuate floods, improve water quality, and support high biodiversity. Many meadow habitats in the western US are degraded, and efforts are increasing to restore these montane meadow ecosystems. Rewatering projects such as pond-and-plug quickly raise the water table by blocking the existing...

  18. Tracking the source of mercury in coastal populations of California Cougars (puma concolor)

    NASA Astrophysics Data System (ADS)

    Weiss-Penzias, P. S.; Wilmers, C.; Yovovich, V.; Houghtaling, P.; Torregrosa, A.

    2015-12-01

    As part of a project on the cycling of mercury (Hg) from the ocean to fog and deposition to land in coastal California, the whiskers of pumas from coastal and inland populations in California were analyzed for total Hg (HgT). Previous studies have shown that fog water in coastal California contains enhanced concentrations of monomethyl Hg (MMHg) compared to rain water. The likely source of fog MMHg is from evasion and demethylation of dimethyl Hg (DMHg) from coastal ocean upwelling. The California coast receives seasonal inputs of fog drip, and we hypothesized that if fog water deposition of MMHg was making an impact, the observable effects might be seen in high trophic level predators of the terrestrial ecosystem. Puma whiskers from 88 individuals from the Santa Cruz Mountains, a sub-range of the California Coast Range, were obtained and compared with puma whiskers from 12 individuals from the foothills of the Sierra Nevada Mountains. Mean total Hg in puma whiskers from the coastal population is 1.0 ± 1.5 ug Hg / g whisker (ppm), whereas mean HgT from the inland puma population is 0.13 ± 0.09 ppm. The difference between these means is significant to the 95% confidence level. For the coastal puma population, the whiskers from 10 individuals had HgT concentrations > 2.0 ppm and 3 individuals had HgT > 4 ppm, which exceeds the U.S. EPA reference dose for humans (1 ppm) approaches a level of concern found for other large mammals such as polar bears (5 ppm). The study is ongoing and HgT concentrations will be determined in the fur and flesh of deer from the same locations as the puma whiskers, since deer comprise ~95% of the puma diet. Samples of plants that are likely fed upon by deer that span the coastal-inland transect will also be analyzed for HgT. Estimates of fog frequency spatial patterns, derived from weather satellite observations and topographic modeling, will be compared with the HgT content of plant and animal tissue in coastal California to quantify

  19. Introducing Teachers to Geospatial Technology While Helping Them to Discover Vegetation Patterns in Owens Valley, California

    ERIC Educational Resources Information Center

    Sherman-Morris, Kathleen; Morris, John; Thompson, Keith

    2009-01-01

    A field course attended by science teachers in California's Owens Valley incorporated geospatial technology to reinforce the relationship between elevation, aspect, or the direction a mountain slope faces, and vegetation. Teachers were provided GPS units to record locations and plant communities throughout the 9-day field course. At the end of the…

  20. Ozone, nitric acid, and ammonia air pollution is unhealthy for people and ecosystems in southern Sierra Nevada, California

    Treesearch

    R. Cisneros; A. Bytnerowicz; D. Schweizer; S. Zhong; S. Traina; D.H. Bennett

    2010-01-01

    Two-week average concentrations of ozone (O3), nitric acid vapor (HNO3) and ammonia (NH3) were measured with passive samplers during the 2002 summer season across the central Sierra Nevada Mountains, California, along the San Joaquin River drainage. Elevated concentrations of the pollutants were...

  1. Applying remote sensing measurements of phenology to southern California vegetation

    NASA Astrophysics Data System (ADS)

    Willis, K. S.; Gillespie, T. W.

    2012-12-01

    Monitoring vegetation phenology can be used to assess the impacts of climate change on a localized region. This study aims to determine the most applicable remote sensing method for monitoring phenological changes in the largest urban National Park in the US: the Santa Monica Mountains of southern California. This is achieved by comparing the Normalized Difference Vegetation Index (NDVI), considered applicable to Mediterranean-type ecosystems due to the low amount of greenness present in the vegetation, with relative spectral mixture analysis (RMSA). RMSA is a technique developed to measure temporal changes in green vegetation (GV), nonphotosynthetic vegetation plus litter (NPV), and snow cover designed for the south-central US. This study analyzes areas of natural vegetation in the Santa Monica Mountains using MODIS imagery by comparing GV and NPV indices derived from RMSA with the classic NDVI. The phenological transition dates of focus here include: (1) greenup, the date of onset of photosynthetic activity; (2) maturity, the date at which plant green leaf area is maximum; (3) senescence, the date at which photosynthetic activity and green leaf area begin to rapidly decrease; (4) dormancy, the date at which physiological activity becomes near zero. Overall, this study tests the application of RMSA to a new environment, compares these results to those derived from NDVI, and provides insight regarding the impacts of climate change on southern California phenological cycles.

  2. Dispersal forcing of a southern California river plumes, based on field and remote sensing observations

    USGS Publications Warehouse

    Warrick, Jonathan A.; Mertes, Leal A.K.; Washburn, Libe; Siegel, David A.

    2004-01-01

    River plumes are important pathways of terrestrial materials entering the sea. In southern California, rivers are known to be the dominant source of littoral, shelf and basin sediment and coastal pollution, although a basic understanding of the dynamics of these river inputs does not exist. Here we evaluate forcing parameters of a southern California river plume using ship-based hydrographic surveys and satellite remote sensing measurements to provide the first insights of river dispersal dynamics in southern California. Our results suggest that plumes of the Santa Clara River are strongly influenced by river inertia, producing jet-like structures ~10 km offshore during annual recurrence (~two-year) flood events and ~30 km during exceptional (~10-year recurrence) floods. Upwelling-favorable winds may be strong following stormwater events and can alter dispersal pathways of thse plumes. Due to similar runoff relationships and other reported satellite observations, we hypothesize that interia-dominated dispersal may be an important characteristic of the small, mountainous rivers throughout southern California.

  3. Current Seismicity in the Vicinity of Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Smith, K.; von Seggern, D.; dePolo, D.

    2001-12-01

    structure. This apparently is an indication that at least some of the seismicity near Yucca Mountain is driven by density contrasts in the lower crust or upper mantle as well as by low regional tectonic strain rates. Overall, the seismicity near Yucca Mountain is low compared to other areas of the southern Great Basin and to the west in the Eastern California Shear Zone. We have calculated the Coulomb stress changes on Yucca Mountain area faults due to large (M > 7) faulting events on the Furnace Creek Fault Zone and interpreted this result in terms of the implications for understanding the distribution of the current seismicity. Because of the significant difference in the Quaternary geologic slip rates between the Furnace Creek and Yucca Mountain area faults (a factor of 250-500) and the stress modeling results, we investigate the hypothesis that the Furnace Creek and Death Valley faults act to decrease the long-term recurrence rate for normal faulting events in the Yucca Mountain block.

  4. The Effectiveness of Aerial Hydromulch as a Post-Fire Erosion Control Treatment in Southern California

    Treesearch

    P.M. Wohlgemuth; J.L. Beyers; P.R. Robichaud

    2010-01-01

    Following a wildfire in the Santa Ana Mountains of northeast Orange County, California, a monitoring project was established to test whether aerial hydromulch reduced post-fire hillslope and small watershed erosion, and to document its impact on re-growing vegetation. The study site received below normal rainfall both the first and second winters after the fire. A high...

  5. Stable isotope and noble gas constraints on the source and residence time of spring water from the Table Mountain Group Aquifer, Paarl, South Africa and implications for large scale abstraction

    NASA Astrophysics Data System (ADS)

    Miller, J. A.; Dunford, A. J.; Swana, K. A.; Palcsu, L.; Butler, M.; Clarke, C. E.

    2017-08-01

    Large scale groundwater abstraction is increasingly being used to support large urban centres especially in areas of low rainfall but presents particular challenges in the management and sustainability of the groundwater system. The Table Mountain Group (TMG) Aquifer is one of the largest and most important aquifer systems in South Africa and is currently being considered as an alternative source of potable water for the City of Cape Town, a metropolis of over four million people. The TMG aquifer is a fractured rock aquifer hosted primarily in super mature sandstones, quartzites and quartz arenites. The groundwater naturally emanates from numerous springs throughout the cape region. One set of springs were examined to assess the source and residence time of the spring water. Oxygen and hydrogen isotopes indicate that the spring water has not been subject to evaporation and in combination with Na/Cl ratios implies that recharge to the spring systems is via coastal precipitation. Although rainfall in the Cape is usually modelled on orographic rainfall, δ18O and δ2H values of some rainfall samples are strongly positive indicating a stratiform component as well. Comparing the spring water δ18O and δ2H values with that of local rainfall, indicates that the springs are likely derived from continuous bulk recharge over the immediate hinterland to the springs and not through large and/or heavy downpours. Noble gas concentrations, combined with tritium and radiocarbon activities indicate that the residence time of the TMG groundwater in this area is decadal in age with a probable maximum upper limit of ∼40 years. This residence time is probably a reflection of the slow flow rate through the fractured rock aquifer and hence indicates that the interconnectedness of the fractures is the most important factor controlling groundwater flow. The short residence time of the groundwater suggest that recharge to the springs and the Table Mountain Group Aquifer as a whole is

  6. Movement ecology and seasonal distribution of mountain yellow-legged frogs, Rana muscosa, in a high-elevation Sierra Nevada basin.

    Treesearch

    K.L. Pope; K.R. Matthews

    2001-01-01

    Movement ecology and seasonal distribution of mountain yellow-legged frogs (Rana muscosa) in Dusy Basin (3470 m), Kings Canyon National Park, California, were characterized using passive integrated transponder (PIT) surveys and visual encounter surveys. We individually PIT-tagged 500 frogs during the summers of 1997 and 1998 and monitored these individuals during seven...

  7. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1998

    USGS Publications Warehouse

    Locke, Glenn L.

    2001-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 34 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1998. Data collected prior to 1998 are graphically presented and data collected by other agencies (or as part of other Geolgical Survey programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-98. At two water-supply wells and a nearby observation well, median water levels for calendar year 1998 were slightly lower (0.2 to 0.3 foot) than for their respective baseline periods. At the remaining four wells in Jackass Flats, median water levels for 1998 were unchanged at two wells and slightly higher (0.4 and 1.4 foot) at two wells than those for their respective baseline periods.

  8. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1999

    USGS Publications Warehouse

    Locke, G.L.

    2001-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 34 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1999. Data collected prior to 1999 are graphically presented and data collected by other agencies (or as part of other Geological Survey programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-99. At two water-supply wells median water levels for calendar year 1999 were unchanged from their respective baseline periods. At a nearby observation well, the 1999 median water level was slightly lower (0.1 foot) than its baseline period. At the remaining four wells in Jackass Flats, median water levels for 1999 were slightly higher (0.2 foot to 1.6 feet) than for their respective baseline periods.

  9. Timber resource statistics of the north coast resource area of California.

    Treesearch

    J.D. Lloyd; Joel Moen; Charles L. Bolsinger

    1986-01-01

    This report is one of five that provide timber resource statistics for 57 of the 58 counties in California (San Francisco is excluded). This report presents statistics from a 1981-84 inventory of the timber resources of Del Norte, Humboldt, Mendocino, and Sonoma Counties. Tables presented are of forest area and of timber volume, growth, and mortality. The north coast...

  10. Geophysical Studies in the Vicinity of the Warner Mountains and Surprise Valley, Northeast California, Northwest Nevada, and Southern Oregon

    USGS Publications Warehouse

    Ponce, David A.; Glen, Jonathan M.G.; Egger, Anne E.; Bouligand, Claire; Watt, Janet T.; Morin, Robert L.

    2009-01-01

    From May 2006 to August 2007, the U.S. Geological Survey (USGS) collected 793 gravity stations, about 102 line-kilometers of truck-towed and ground magnetometer data, and about 325 physical-property measurements in northeastern California, northwestern Nevada, and southern Oregon. Gravity, magnetic, and physical-property data were collected to study regional crustal structures and geology as an aid to understanding the geologic framework of the Surprise Valley geothermal area and, in general, geothermal systems throughout the Great Basin. The Warner Mountains and Surprise Valley mark the transition from the extended Basin and Range province to the unextended Modoc Plateau. This transition zone, in the northwestern corner of the Basin and Range, is relatively diffuse compared to other, more distinct boundaries, such as the Wasatch front in Utah and the eastern Sierran range front. In addition, this transition zone is the site of a geothermal system with potential for development, and previous studies have revealed a complex structural setting consisting of several obliquely oriented fault sets. As a result, this region has been the subject of several recent geological and geophysical investigations. The gravity and magnetic data presented here support and supplement those studies, and although the study area is composed predominantly of Tertiary volcanic rocks of the Modoc Plateau rocks, the physical properties of these and others rocks create a distinguishable pattern of gravity and magnetic anomalies that can be used to infer subsurface geologic structure.

  11. Ecogeochemistry of the subsurface food web at pH 0-2.5 in Iron Mountain, California, U.S.A.

    USGS Publications Warehouse

    Robbins, E.I.; Rodgers, T.M.; Alpers, Charles N.; Nordstrom, D. Kirk

    2000-01-01

    Pyrite oxidation in the underground mining environment of Iron Mountain, California, has created the most acidic pH values ever reported in aquatic systems. Sulfate values as high as 120 000 mg l-1 and iron as high as 27 600 mg l-1 have been measured in the mine water, which also carries abundant other dissolved metals including Al, Zn, Cu, Cd, Mn, Sb and Pb. Extreme acidity and high metal concentrations apparently do not preclude the presence of an underground acidophilic food web, which has developed with bacterial biomass at the base and heliozoans as top predators. Slimes, oil-like films, flexible and inflexible stalactites, sediments, water and precipitates were found to have distinctive communities. A variety of filamentous and non-filamentous bacteria grew in slimes in water having pH values < 1.0. Fungal hyphae colonize stalactites dripping pH 1.0 water; they may help to form these drip structures. Motile hypotrichous ciliates and bdelloid rotifers are particularly abundant in slimes having a pH of 1.5. Holdfasts of the iron bacterium Leptothrix discophora attach to biofilms covering pools of standing water having a pH of 2.5 in the mine. The mine is not a closed environment - people, forced air flow and massive flushing during high intensity rainfall provide intermittent contact between the surface and underground habitats, so the mine ecosystem probably is not a restricted one.

  12. Stand- and landscape-scale selection of large trees by fishers in the Rocky Mountains of Montana and Idaho

    Treesearch

    Michael K. Schwartz; Nicholas J. DeCesare; Benjamin S. Jimenez; Jeffrey P. Copeland; Wayne E. Melquist

    2013-01-01

    The fisher (Pekania pennanti; formerly known as Martes pennanti) is a North American endemic mustelid with a geographic distribution that spans much of the boreal forests of North America. In the Northern Rocky Mountain (NRM) fishers have been the focus of Endangered Species Act (ESA) listing decisions. Habitat studies of West Coast fishers in California have...

  13. Geophysical techniques for reconnaissance investigations of soils and surficial deposits in mountainous terrain

    USGS Publications Warehouse

    Olson, C.G.; Doolittle, J.A.

    1985-01-01

    Two techniques were assessed for their capabilities in reconnaissance studies of soil characteristics: depth to the water table and depth to bedrock beneath surficial deposits in mountainous terrain. Ground-penetrating radar had the best near-surface resolution in the upper 2 m of the profile and provided continuous interpretable imagery of soil profiles and bedrock surfaces. Where thick colluvium blankets side slopes, the GPR could not consistently define the bedrock interface. In areas with clayey or shaley sediments, the GPR is also more limited in defining depth and is less reliable. Seismic refraction proved useful in determining the elevation of the water table and depth to bedrock, regardless of thickness of overlying material, but could not distinguish soil-profile characteristics.-from Authors

  14. Digital mountains: toward development and environment protection in mountain regions

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaobo

    2007-06-01

    Former studies on mountain system are focused on the department or subject characters, i.e. different department and branches of learning carry out researches only for their individual purposes and with individual characters of the subject of interests. As a whole, their investigation is lacking of comprehensive study in combination with global environment. Ecological environment in mountain regions is vulnerable to the disturbance of human activities. Therefore, it is a key issue to coordinate economic development and environment protection in mountain regions. On the other hand, a lot of work is ongoing on mountain sciences, especially depending on the application of RS and GIS. Moreover, the development of the Digital Earth (DE) provides a clue to re-understand mountains. These are the background of the emergence of the Digital Mountains (DM). One of the purposes of the DM is integrating spatial related data and information about mountains. Moreover, the DM is a viewpoint and methodology of understanding and quantifying mountains holistically. The concept of the DM is that, the spatial and temporal data related to mountain regions are stored and managed in computers; moreover, manipulating, analyzing, modeling, simulating and sharing of the mountain information are implemented by utilizing technologies of RS, GIS, GPS, Geo-informatic Tupu, computer, virtual reality (VR), 3D simulation, massive storage, mutual operation and network communication. The DM aims at advancing mountain sciences and sustainable mountain development. The DM is used to providing information and method for coordinating the mountain regions development and environment protection. The fundamental work of the DM is the design of the scientific architecture. Furthermore, construct and develop massive databases of mountains are the important steps these days.

  15. Wind energy development in California, USA

    USGS Publications Warehouse

    Wilshire, H.; Prose, D.

    1987-01-01

    Windfarms have been developed rapidly in California in the last few years. The impetus has been a legislated goal to generate 10% of California's electricity by windpower by the year 2000, and generous state and federal tax incentives. Windpower is promoted as environmentally benign, which it is in traditional uses. The California program, however, is not traditional: it calls for centralized development of a magnitude sufficient to offset significant amounts of fossil fuels now used to generate electricity. Centralized windfarm development, as exemplified by the Altamont Pass, Tehachapi Mountains, and San Gorgonio Pass developments, involves major road building projects in erosion-sensitive terrain, effective closure of public lands, and other detrimental effects. A windfarm consisting of 200 turbines with 17-m rotors located in steep terrain 16 km from an existing corridor might occupy 235 ha and physically disturb 86 ha. With average annual wind speeds of 22.5 km/h, the farm would generate about 10??106 kWh/year at present levels of capacity. This annual production would offset 1% of one day's consumption of oil in California. To supply 10% of the state's electricity (at 1984 production rates) would require about 600,000 turbines of the type in common use today and would occupy more than 685,000 ha. It is likely that indirect effects would be felt in much larger areas and would include increased air and water pollution resulting from accelerated erosion, degradation of habitat of domestic and wild animals, damage to archaeological sites, and reduction of scenic quality of now-remote areas of the state. ?? 1987 Springer-Verlag New York Inc.

  16. Mexico, Arizona, Gulf of California as seen from Apollo 6 unmanned spacecraft

    NASA Image and Video Library

    1968-04-04

    AS06-02-1436 (4 April 1968) --- View of the mouth of the Colorado River and the Gulf of California in northwestern Mexico as photographed from the unmanned Apollo 6 (Spacecraft 020/Saturn 502) space mission. Altitude of the spacecraft at the time picture was taken was 120 nautical miles. NORTH IS TOWARD LEFT SIDE OF PICTURE. At bottom edge of photograph is Baja California. In the upper left corner is the Mexican state of Sonora showing the Sonoran Desert and the Pinacate Mountains. This photograph was made three hours and seven minutes after liftoff using Eastman Kodak SO-121 high resolution aerial Ektachrome film (exposure setting was f/5.6 at 1/500 second) in a J.A. Maurer model 2200 camera.

  17. Simulation of Orographically-Driven Precipitation in Southern California

    NASA Astrophysics Data System (ADS)

    Carpenter, T. M.; Georgakakos, K. P.

    2008-12-01

    The proximity of the Pacific Ocean to the Transverse and Peninsular Mountain Ranges of coastal Southern California may lead to significant, orographically-enhanced precipitation in the region. With abundant moisture, such as evidenced in Pineapple Express events or atmospheric rivers, this precipitation may lead to other hydrologic hazards as flash flooding, landslides or debris flows. Available precipitation observation networks are relatively sparse in the mountainous regions and often do not capture the spatial variation of these events with high resolution. This study aims to simulate the topographically-driven precipitation over Southern California with high spatial resolution using a simplified orographic precipitation model. The model employs potential theory flow to estimate steady state three-dimensional wind fields for given free stream velocity forcing winds, atmospheric moisture advection, and cloud and precipitation microphysics proposed by Kessler (1969). The advantage of this modeling set-up is the computational efficiency as compared to regional mesoscale models such as the MM5. For this application, the Southern California region, comprised of the counties of Santa Barbara, Ventura, Los Angeles, Orange, and San Diego, and portions of San Bernardino and Riverside counties, are modeled at a 3-km resolution. The orographic precipitation model is forced by free stream wind velocities given by the 700mb winds from the NCEP Reanalysis I dataset. Atmospheric moisture initial conditions are defined also by the NCEP Reanalysis I dataset, and updated 4x- daily with the available 6-hourly NCEP Reanalysis forcing. This paper presents a comparison of the simulated precipitation to observations for over a variety of spatial scales and over the historical wet season periods from October 2000 to April 2005. The comparison is made over several performance measurements including (a) the occurrence/non-occurrence of precipitation, (b) overall bias and correlation, (c

  18. Osmotic potential and projected drought tolerance of four phreatophytic shrub species in Owens Valley, California

    USGS Publications Warehouse

    Dileanis, Peter D.; Groeneveld, David P.

    1989-01-01

    A substantial quantity of the water used by plant communities growing on the floor of Owens Valley, California, is derived from a shallow unconfined aquifer. Fluctuations in the water table caused by ground-water withdrawal may result in periods when this water supply is not accessible to plants. The capacity of the plants to adapt to these periods of water loss depends on the availability of water stored in the soil and on physiological characteristics related to the ability of the plants to resist dehydration and wilting. Osmotic adjustment occurred in four phreatophytic shrub species at sites near Bishop, California, where the water table had been lowered by a system of pump-equipped wells installed in the vicinity of vegetation transects. The pressure-volume technique was used to determine osmotic potential and cell-wall elasticity between March 1985 and September 1986 for Atriplex torreyi, Chrysothamnus nauseosus , Sarcobatus verm iculatus , and Artemisia tridentata. Although not usually classified as a phreatophyte, Artemisia tridentata, where it grows on the valley floor, is apparently dependent on the depth to the water table. During late summer, osmotic potentials were 0.37 to 0.41 MPa (megapascal) lower in plants growing on the site where the water table had been lowered compared to an adjacent site where the water table remained at its natural levels. Measurements of soil matric potential at the two sites indicated that osmotic adjustment occurred in response to stress caused by lowering the water table. A theoretical lower limit of osmotic adjustment was determined by comparing initial cell osmotic potentials with initial xylem water potentials. These experimentally derived limits indicated that Atriplex torreyi and S. vermiculatus may maintain leaf cell turgor at significantly lower cell water potentials (about -4.5 MPa) than C. nauseosus or Artemisia tridentata (about -2.5 MPa), which allows them to function in drier soil environments.

  19. Osmotic potential and projected drought tolerance of four phreatophytic shrub species in Owens Valley, California

    USGS Publications Warehouse

    Dileanis, Peter D.; Groeneveld, D.P.

    1988-01-01

    A large part of the water used by plant communities growing on the floor of Owens Valley, California, is derived from a shallow unconfined aquifer. Fluctuations in the water table caused by groundwater withdrawal may result in periods when this water supply is not accessible to plants. The capacity of the plants to adapt to these periods of water loss depend on the availability of water stored in the soil and on physiological characteristics related to the ability of the plants to resist dehydration and wilting. Osmotic adjustment occurred in four phreatophytic shrub species at sites near bishop, California, where the water table had been lowered by a system of pump-equipped wells installed in the vicinity of vegetation transects. The pressure-volume techniques was used to determine osmotic potential and cell-wall elasticity between March 1985 and September 1986 for Atriplex torreyi, Chrysothamnus nauseosus , Sarcobatus vermiculatus, and Artemisia tridentata. Although not usually classified as a phreatophyte, Artemisia tridentata, where it grows on the valley floor, is apparently dependent on the depth to the water table. During late summer, osmotic potentials were 0.37 to 0.41 megapascal lower in plants growing on the site where the water table had been lowered compared to an adjacent site where the water table remained at its natural levels. Measurements of soil matric potential at the two sites indicated that osmotic adjustment occurred in response to stress caused by lowering the water table. A theoretical lower limit of osmotic adjustment was determined by comparing initial cell osmotic potentials with initial xylem water potentials. These experimentally derived limits indicated that A. torreyi and S. vermiculatus may maintain leaf cell turgor at significantly lower cell water potentials (about -4.5 megapascals) than C. nauseosus or A. tridentata (about -2.5 megapascals) and allows them to function in dryer soil environments. (Author 's abstract)

  20. ARROYO SECO ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Powell, Robert E.; Gabby, Peter N.

    1984-01-01

    Situated in the southwestern San Gabriel Mountains in Los Angeles County, California, the Arroyo Seco Roadless Area encompasses about 8 sq mi within the Angeles National Forest. On the basis of geologic mapping, a geochemical stream-sediment survey, and a survey of mines, quarries, and prospects, the area has a probable resource potential for small gold occurrences in the southern part of the area. Sand, gravel, and stone suitable for construction materials are found in the roadless area. Because of their regional association with gold mineralization, the thin and poorly exposed mafic dikes in the Echo Granite, the Mount Lowe Granodiorite, and the Precambrian gneiss in and around the roadless area offer the most promising avenue for additional study of the resource potential of the area.