Sample records for table olive fermentation

  1. Table Olive Fermentation Using Starter Cultures with Multifunctional Potential

    PubMed Central

    Bonatsou, Stamatoula; Tassou, Chrysoula C.; Panagou, Efstathios Z.; Nychas, George-John E.

    2017-01-01

    Table olives are one of the most popular plant-derived fermented products. Their enhanced nutritional value due to the presence of phenolic compounds and monounsaturated fatty acids makes olives an important food commodity of the Mediterranean diet. However, despite its economic significance, table olive fermentation is mainly craft-based and empirically driven by the autochthonous microbiota of the olives depending on various intrinsic and extrinsic factors, leading to a spontaneous process and a final product of variable quality. The use of microorganisms previously isolated from olive fermentations and studied for their probiotic potential and technological characteristics as starter cultures may contribute to the reduction of spoilage risk resulting in a controlled fermentation process. This review focuses on the importance of the development and implementation of multifunctional starter cultures related to olives with desirable probiotic and technological characteristics for possible application on table olive fermentation with the main purpose being the production of a health promoting and sensory improved functional food. PMID:28555038

  2. Table Olive Fermentation Using Starter Cultures with Multifunctional Potential.

    PubMed

    Bonatsou, Stamatoula; Tassou, Chrysoula C; Panagou, Efstathios Z; Nychas, George-John E

    2017-05-28

    Table olives are one of the most popular plant-derived fermented products. Their enhanced nutritional value due to the presence of phenolic compounds and monounsaturated fatty acids makes olives an important food commodity of the Mediterranean diet. However, despite its economic significance, table olive fermentation is mainly craft-based and empirically driven by the autochthonous microbiota of the olives depending on various intrinsic and extrinsic factors, leading to a spontaneous process and a final product of variable quality. The use of microorganisms previously isolated from olive fermentations and studied for their probiotic potential and technological characteristics as starter cultures may contribute to the reduction of spoilage risk resulting in a controlled fermentation process. This review focuses on the importance of the development and implementation of multifunctional starter cultures related to olives with desirable probiotic and technological characteristics for possible application on table olive fermentation with the main purpose being the production of a health promoting and sensory improved functional food.

  3. New process for production of fermented black table olives using selected autochthonous microbial resources

    PubMed Central

    Tufariello, Maria; Durante, Miriana; Ramires, Francesca A.; Grieco, Francesco; Tommasi, Luca; Perbellini, Ezio; Falco, Vittorio; Tasioula-Margari, Maria; Logrieco, Antonio F.; Mita, Giovanni; Bleve, Gianluca

    2015-01-01

    Table olives represent one important fermented product in Europe and, in the world, their demand is constantly increasing. At the present time, no systems are available to control black table olives spontaneous fermentation by the Greek method. During this study, a new protocol for the production of black table olives belonging to two Italian (Cellina di Nardò and Leccino) and two Greek (Kalamàta and Conservolea) cultivars has been developed: for each table olive cultivar, starter-driven fermentations were performed inoculating, firstly, one selected autochthonous yeast starter and, subsequently, one selected autochthonous LAB starter. All starters formulation were able to dominate fermentation process. The olive fermentation was monitored using specific chemical descriptors able to identify a first stage (30 days) mainly characterized by aldehydes; a second period (60 days) mainly characterized by higher alcohols, styrene and terpenes; a third fermentation stage represented by acetate esters, esters and acids. A significant decrease of fermentation time (from 8 to 12 months to a maximum of 3 months) and an significant improvement in organoleptic characteristics of the final product were obtained. This study, for the first time, describes the employment of selected autochthonous microbial resources optimized to mimic the microbial evolution already recorded during spontaneous fermentations. PMID:26441932

  4. Microbial dynamics and biodiversity in table olive fermentation: culture-dependent and -independent approaches

    PubMed Central

    Botta, Cristian; Cocolin, Luca

    2012-01-01

    The microbial ecology of the table olive fermentation process is a complex set of dynamics in which the roles of the lactic acid bacteria (LAB) and yeast populations are closely related, and this synergism is of fundamental importance to obtain high quality products. Several studies on the ecology of table olives, both in spontaneous fermentations and in inoculated ones, have focused on the identification and characterization of yeasts, as they play a key role in the definition of the final organoleptic profiles through the production of volatile compounds. Moreover, these are able to promote the growth of LAB, which is responsible for the stabilization of the final product through the acidification activity and the inhibition of the growth of pathogenic bacteria. The current empirical production process of table olives could be improved through the development of mixed starter cultures. These can only be developed after a deep study of the population dynamics of yeasts and LAB by means of molecular methods. Until now, most studies have exploited culture-dependent approaches to define the natural microbiota of brine and olives. These approaches have identified two main species of LAB, namely Lactobacillus plantarum and L. pentosus, while, as far as yeasts are concerned, the most frequently isolated genera are Candida, Pichia, and Saccharomyces. However, there are a few studies in literature in which a culture-independent approach has been employed. This review summarizes the state of the art of the microbial ecology of table olive fermentations and it focuses on the different approaches and molecular methods that have been applied. PMID:22783248

  5. Selection of Lactobacillus plantarum strains to use as starters in fermented table olives: Oleuropeinase activity and phage sensitivity.

    PubMed

    Zago, Miriam; Lanza, Barbara; Rossetti, Lia; Muzzalupo, Innocenzo; Carminati, Domenico; Giraffa, Giorgio

    2013-05-01

    Fermented table olives (Olea europaea L.) are largely diffused in the Mediterranean area. Olives are picked at different stages of maturity and after harvesting, processed to eliminate the characteristic bitterness caused by the presence of the oleuropein glucoside and to become suitable for human consumption. The spontaneous fermentation of table olives mainly depends on lactic acid bacteria (LAB), and in particular on Lactobacillus plantarum which plays an important role in the degradation of oleuropein. The hydrolysis of oleuropein is attributed to the β-glucosidase and esterase activities of the indigenous LAB microflora. This study investigated the potential of L. plantarum strains isolated from dairy products and olives to be used as starters for fermented table olives. Forty-nine strains were typed by RAPD-PCR and investigated for the presence of the β-glucosidase (bglH) gene. The full sequence of the bglH gene was carried out. All the 49 L. plantarum strains were also tested for phage resistance. A total of six strains were selected on the basis of genotypic polymorphism, bglH gene sequence analysis, and phage resistance profile. These strains were further characterized to assess the acidifying capability, the growth at different temperatures, the tolerance to different NaCl concentrations, and the oleuropeinolytic activity. Although further characterizations are required, especially concerning the influence on sensory properties, L. plantarum proved to have the potential to be used as a debittering and fermentative agent in starter culture for fermented table olives. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Diversity and enumeration of halophilic and alkaliphilic bacteria in Spanish-style green table-olive fermentations.

    PubMed

    Lucena-Padrós, Helena; Ruiz-Barba, José Luis

    2016-02-01

    The presence and enumeration of halophilic and alkaliphilic bacteria in Spanish-style table-olive fermentations was studied. Twenty 10-tonne fermenters at two large manufacturing companies in Spain, previously studied through both culture dependent and independent (PCR-DGGE) methodologies, were selected. Virtually all this microbiota was isolated during the initial fermentation stage. A total of 203 isolates were obtained and identified based on 16S rRNA gene sequences. They belonged to 13 bacterial species, included in 11 genera. It was noticeable the abundance of halophilic and alkaliphilic lactic acid bacteria (HALAB). These HALAB belonged to the three genera of this group: Alkalibacterium, Marinilactibacillus and Halolactibacillus. Ten bacterial species were isolated for the first time from table olive fermentations, including the genera Amphibacillus, Natronobacillus, Catenococcus and Streptohalobacillus. The isolates were genotyped through RAPD and clustered in a dendrogram where 65 distinct strains were identified. Biodiversity indexes found statistically significant differences between both patios regarding genotype richness, diversity and dominance. However, Jaccard similarity index suggested that the halophilic/alkaliphilic microbiota in both patios was more similar than the overall microbiota at the initial fermentation stage. Thus, up to 7 genotypes of 6 different species were shared, suggesting adaptation of some strains to this fermentation stage. Morisita-Horn similarity index indicated a high level of codominance of the same species in both patios. Halophilic and alkaliphilic bacteria, especially HALAB, appeared to be part of the characteristic microbiota at the initial stage of this table-olive fermentation, and they could contribute to the conditioning of the fermenting brines in readiness for growth of common lactic acid bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Effect of post-fermentation and packing stages on the volatile composition of Spanish-style green table olives.

    PubMed

    Sánchez, Antonio Higinio; López-López, Antonio; Cortés-Delgado, Amparo; Beato, Víctor Manuel; Medina, Eduardo; de Castro, Antonio; Montaño, Alfredo

    2018-01-15

    The volatile profile of Spanish-style green table olives after fermentation and the changes in volatile compounds that occurred as a result of the post-fermentation and subsequent packing stage were explored by solid phase micro-extraction (SPME) and gas chromatography coupled to mass spectrometry (GC-MS). Three olive cultivars (Manzanilla, Gordal, and Hojiblanca) were processed and olive samples were taken at three different times throughout the elaboration: after fermentation, after post-fermentation, and after packing. A total of 132 volatile compounds were identified, including 10 phenols, 25 alcohols, 11 acids, 39 esters, 8 hydrocarbons, 14 carbonyl compounds, 17 terpenes, and 6 other compounds. A varying number of compounds from each chemical family underwent significant changes because of the post-fermentation and packing stages. Among them, some typical reaction products of lipid oxidation (e.g. (E)-2-decenal and (E,E)-2,4-decadienal) increased with the post-fermentation in Manzanilla cultivar, and also as a result of packing in all three cultivars. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Physico-chemical characterization of natural fermentation process of Conservolea and Kalamàta table olives and developement of a protocol for the pre-selection of fermentation starters.

    PubMed

    Bleve, Gianluca; Tufariello, Maria; Durante, Miriana; Grieco, Francesco; Ramires, Francesca Anna; Mita, Giovanni; Tasioula-Margari, Maria; Logrieco, Antonio Francesco

    2015-04-01

    Table olives are one of the most important traditional fermented vegetables in Europe and their world consumption is constantly increasing. Conservolea and Kalamàta are the most important table olives Greek varieties. In the Greek system, the final product is obtained by spontaneous fermentations, without any chemical debittering treatment. This natural fermentation process is not predictable and strongly influenced by the physical-chemical conditions and by the presence of microorganisms contaminating the olives. Natural fermentations of Conservolea and Kalamàta cultivars black olives were studied in order to determine microbiological, biochemical and chemical evolution during the process. Following the process conditions generally used by producers, in both cultivars, yeasts were detected throughout the fermentation, whereas lactic acid bacteria (LAB) appeared in the last staged of the process. A new optimized specific protocol was developed to select autochthonous yeast and LAB isolates that can be good candidates as starters. These microorganisms were pre-selected for their ability to adapt to model brines, to have beta-glucosidase activity, not to produce biogenic amines. Chemical compounds deriving by microbiological activities and associated to the three different phases (30, 90 and 180 days) of the fermentation process were identified and were proposed as chemical descriptors to follow the fermentation progress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Fermented Apulian table olives: Effect of selected microbial starters on polyphenols composition, antioxidant activities and bioaccessibility.

    PubMed

    D'Antuono, Isabella; Bruno, Angelica; Linsalata, Vito; Minervini, Fiorenza; Garbetta, Antonella; Tufariello, Maria; Mita, Giovanni; Logrieco, Antonio F; Bleve, Gianluca; Cardinali, Angela

    2018-05-15

    The effects of fermentation by autochthonous microbial starters on phenolics composition of Apulian table olives, Bella di Cerignola (BDC), Termite di Bitetto (TDB) and Cellina di Nardò (CEL) were studied, highlighting also the cultivars influence. In BDC with starter, polyphenols amount doubled compared with commercial sample, while in TDB and CEL, phenolics remain almost unchanged. The main phenolics were hydroxytyrosol, tyrosol, verbascoside and luteolin, followed by hydroxytyrosol-acetate detected in BDC and cyanidine-3-glucoside and quercetin in CEL. Scavenger capacity in both DPPH and CAA assays, assessed the highest antioxidant effect for CEL with starters (21.7 mg Trolox eq/g FW; 8.5 μmol hydroxytyrosol eq/100 g FW). The polyphenols were highly in vitro bioaccessible (>60%), although modifications in their profile, probably for combined effect of environment and microorganisms, were noted. Finally, fermented table olives are excellent source of health promoting compounds, since hydroxytyrosol and tyrosol are almost 8 times more than in olive oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Technologies and Trends to Improve Table Olive Quality and Safety

    PubMed Central

    Campus, Marco; Değirmencioğlu, Nurcan; Comunian, Roberta

    2018-01-01

    Table olives are the most widely consumed fermented food in the Mediterranean countries. Peculiar processing technologies are used to process olives, which are aimed at the debittering of the fruits and improvement of their sensory characteristics, ensuring safety of consumption at the same time. Processors demand for novel techniques to improve industrial performances, while consumers' attention for natural and healthy foods has increased in recent years. From field to table, new techniques have been developed to decrease microbial load of potential spoilage microorganisms, improve fermentation kinetics and ensure safety of consumption of the packed products. This review article depicts current technologies and recent advances in the processing technology of table olives. Attention has been paid on pre processing technologies, some of which are still under-researched, expecially physical techniques, such ad ionizing radiations, ultrasounds and electrolyzed water solutions, which are interesting also to ensure pesticide decontamination. The selections and use of starter cultures have been extensively reviewed, particularly the characterization of Lactic Acid Bacteria and Yeasts to fasten and safely drive the fermentation process. The selection and use of probiotic strains to address the request for functional foods has been reported, along with salt reduction strategies to address health concerns, associated with table olives consumption. In this respect, probiotics enriched table olives and strategies to reduce sodium intake are the main topics discussed. New processing technologies and post packaging interventions to extend the shelf life are illustrated, and main findings in modified atmosphere packaging, high pressure processing and biopreservaton applied to table olive, are reported and discussed. PMID:29670593

  11. Microbiota and metabolome during controlled and spontaneous fermentation of Nocellara Etnea table olives.

    PubMed

    Randazzo, Cinzia Lucia; Todaro, Aldo; Pino, Alessandra; Pitino, Iole; Corona, Onofrio; Caggia, Cinzia

    2017-08-01

    This study is aimed to investigate bacterial community and its dynamics during the fermentation of Nocellara Etnea table olives and to study its effect on metabolome formation. Six different combination of bacterial cultures (BC1-BC6) were used as starters for table olive fermentation and one additional process, conducted without addition of any starters, was used as control (C). The processes were conducted in triplicate and, overall, 21 vessels were performed at industrial scale. The fermentation was monitored for 120 days through culture-dependent and -independent approaches. Microbial counts of the main microbial groups revealed slight differences among brine samples, with the exception of LAB counts and Enterobacteriaceae, which were higher and lower, respectively, in most of the inoculated samples than the control ones. In addition, results demonstrated that the use of bacterial cultures (except the BC1), singly or in different combinations, clearly influenced the fermentation process reducing the final pH value below 4.50. When microbiota was investigated through sequencing analysis, data revealed the presence of halophilic bacteria and, among lactobacilli, the dominance of Lactobacillus plantarum group at the initial stage of fermentation, in all brine samples, except in the BC5 in which dominated Lactobacillus casei group. At 60 and 120 days of fermentation, an overturned bacterial ecology and an increase of biodiversity was observed in all samples, with the occurrence of Lactobacillus paracollinoides, Lactobacillus acidipiscis and Pediococcus parvulus. Correlation between bacterial OTU and volatile organic compounds (VOCs) revealed that, aldehydes and alcohol compounds exhibited a positive correlation with Proteobacteria, while several esters with LAB and Hafnia. In particular, esters, associated with fruity and floral notes, were positively correlated to L. paracollinoides, L. acidipiscis, and P. parvulus species. Although the VOCs amounts were sample

  12. Nonthermal pasteurization of fermented green table olives by means of high hydrostatic pressure processing.

    PubMed

    Argyri, Anthoula A; Panagou, Efstathios Z; Nychas, George-John E; Tassou, Chrysoula C

    2014-01-01

    Green fermented olives cv. Halkidiki were subjected to different treatments of high hydrostatic pressure (HHP) processing (400, 450, and 500 MPa for 15 or 30 min). Total viable counts, lactic acid bacteria and yeasts/moulds, and the physicochemical characteristics of the product (pH, colour, and firmness) were monitored right after the treatment and after 7 days of storage at 20(°)C to allow for recovery of injured cells. The treatments at 400 MPa for 15 and 30 min, 450 MPa for 15 and 30 min, and 500 MPa for 15 min were found insufficient as a recovery of the microbiota was observed. The treatment at 500 MPa for 30 min was effective in reducing the olive microbiota below the detection limit of the enumeration method after the treatment and after 1 week of storage and was chosen as being more appropriate for storing olives for an extended time period (5 months). After 5 months of storage at 20(°)C, no microbiota was detected in treated samples, while significant changes for both HHP treated and untreated olives were observed for colour parameters only (minor degradation). In conclusion, HHP treatment may introduce a reliable nonthermal pasteurization method to extend the microbiological shelf-life of fermented table olives.

  13. Nonthermal Pasteurization of Fermented Green Table Olives by means of High Hydrostatic Pressure Processing

    PubMed Central

    Argyri, Anthoula A.; Panagou, Efstathios Z.; Nychas, George-John E.; Tassou, Chrysoula C.

    2014-01-01

    Green fermented olives cv. Halkidiki were subjected to different treatments of high hydrostatic pressure (HHP) processing (400, 450, and 500 MPa for 15 or 30 min). Total viable counts, lactic acid bacteria and yeasts/moulds, and the physicochemical characteristics of the product (pH, colour, and firmness) were monitored right after the treatment and after 7 days of storage at 20°C to allow for recovery of injured cells. The treatments at 400 MPa for 15 and 30 min, 450 MPa for 15 and 30 min, and 500 MPa for 15 min were found insufficient as a recovery of the microbiota was observed. The treatment at 500 MPa for 30 min was effective in reducing the olive microbiota below the detection limit of the enumeration method after the treatment and after 1 week of storage and was chosen as being more appropriate for storing olives for an extended time period (5 months). After 5 months of storage at 20°C, no microbiota was detected in treated samples, while significant changes for both HHP treated and untreated olives were observed for colour parameters only (minor degradation). In conclusion, HHP treatment may introduce a reliable nonthermal pasteurization method to extend the microbiological shelf-life of fermented table olives. PMID:25243146

  14. Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives.

    PubMed

    Blana, Vasiliki A; Grounta, Athena; Tassou, Chrysoula C; Nychas, George-John E; Panagou, Efstathios Z

    2014-04-01

    The performance of two strains of lactic acid bacteria (LAB), namely Lactobacillus pentosus B281 and Lactobacillus plantarum B282, previously isolated from industrially fermented table olives and screened in vitro for probiotic potential, was investigated as starter cultures in Spanish style fermentation of cv. Halkidiki green olives. Fermentation was undertaken at room temperature in two different initial salt concentrations (8% and 10%, w/v, NaCl) in the brines. The strains were inoculated as single and combined cultures and the dynamics of their population on the surface of olives was monitored for a period of 114 days. The survival of inoculated strains on olives was determined using Pulsed Field Gel Electrophoresis (PFGE). Both probiotic strains successfully colonized the olive surface at populations ranged from 6.0 to 7.0 log CFU/g throughout fermentation. PFGE analysis revealed that L. pentosus B281 presented higher colonization in both salt levels at the end of fermentation (81.2% and 93.3% in 8% and 10% NaCl brines, respectively). For L. plantarum B282 a high survival rate (83.3%) was observed in 8% NaCl brines, but in 10% NaCl the strain could not colonize the surface of olives. L. pentosus B281 also dominated over L. plantarum B282 in inoculated fermentations when the two strains were used as combined culture. The biochemical profile (pH, organic acids, volatile compounds) attained during fermentation and the sensory analysis of the final product indicated a typical lactic acid fermentation process of green olives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Yeast Identification During Fermentation of Turkish Gemlik Olives.

    PubMed

    Mujdeci, Gamze; Arévalo-Villena, María; Ozbas, Z Yesim; Briones Pérez, Ana

    2018-05-01

    Naturally fermented black table olives of the Gemlik variety are one of the most consumed fermented products in Turkey. The objective of this work was to identify yeast strains isolated during their natural fermentation by using Restriction Fragments Lengths Polymorphism-Polimerase Chain Reaction (RFLP-PCR) and DNA sequencing methods. The study also focused on determining the effect of regional differences on yeast microflora of naturally fermented Gemlik olives. A total of 47 yeast strains belonging to 12 different species which had been previously isolated from the natural brine of Akhisar and Iznik-Gemlik cv. olives were characterized by molecular methods. Forty-two of the tested strains could be identified by RFLP-PCR to species level. These yeast species were determined as Candida mycetangi, Candida hellenica, Candida membranaefaciens, Candida famata, Candida pelliculosa, Saccharomyces cerevisiae, and Zygosaccharomyces mrakii. Five strains were identified by DNA sequencing. These strains belonged to three different species: Aureobasidium pullulans, Kloeckera apiculate, and Cryptococcus saitoi. The most frequent species were C. famata and C. pelliculosa in both regions. This work studies the yeasts from Turkish table olives which could prove to be of importance to the food industry in that area. On the other hand, it compares identification by molecular and classical biochemical methods and offers an idea about the differences between the ecosystems of Gemlik olives in the Akhisar (AO) and Iznik (IO) regions. The study could be useful in characterizing a very important product and, in this way, could help to promote its marketing. © 2018 Institute of Food Technologists®.

  16. Assessing the Challenges in the Application of Potential Probiotic Lactic Acid Bacteria in the Large-Scale Fermentation of Spanish-Style Table Olives.

    PubMed

    Rodríguez-Gómez, Francisco; Romero-Gil, Verónica; Arroyo-López, Francisco N; Roldán-Reyes, Juan C; Torres-Gallardo, Rosa; Bautista-Gallego, Joaquín; García-García, Pedro; Garrido-Fernández, Antonio

    2017-01-01

    This work studies the inoculation conditions for allowing the survival/predominance of a potential probiotic strain ( Lactobacillus pentosus TOMC-LAB2) when used as a starter culture in large-scale fermentations of green Spanish-style olives. The study was performed in two successive seasons (2011/2012 and 2012/2013), using about 150 tons of olives. Inoculation immediately after brining (to prevent wild initial microbiota growth) followed by re-inoculation 24 h later (to improve competitiveness) was essential for inoculum predominance. Processing early in the season (September) showed a favorable effect on fermentation and strain predominance on olives (particularly when using acidified brines containing 25 L HCl/vessel) but caused the disappearance of the target strain from both brines and olives during the storage phase. On the contrary, processing in October slightly reduced the target strain predominance on olives (70-90%) but allowed longer survival. The type of inoculum used (laboratory vs. industry pre-adapted) never had significant effects. Thus, this investigation discloses key issues for the survival and predominance of starter cultures in large-scale industrial fermentations of green Spanish-style olives. Results can be of interest for producing probiotic table olives and open new research challenges on the causes of inoculum vanishing during the storage phase.

  17. Assessing the Challenges in the Application of Potential Probiotic Lactic Acid Bacteria in the Large-Scale Fermentation of Spanish-Style Table Olives

    PubMed Central

    Rodríguez-Gómez, Francisco; Romero-Gil, Verónica; Arroyo-López, Francisco N.; Roldán-Reyes, Juan C.; Torres-Gallardo, Rosa; Bautista-Gallego, Joaquín; García-García, Pedro; Garrido-Fernández, Antonio

    2017-01-01

    This work studies the inoculation conditions for allowing the survival/predominance of a potential probiotic strain (Lactobacillus pentosus TOMC-LAB2) when used as a starter culture in large-scale fermentations of green Spanish-style olives. The study was performed in two successive seasons (2011/2012 and 2012/2013), using about 150 tons of olives. Inoculation immediately after brining (to prevent wild initial microbiota growth) followed by re-inoculation 24 h later (to improve competitiveness) was essential for inoculum predominance. Processing early in the season (September) showed a favorable effect on fermentation and strain predominance on olives (particularly when using acidified brines containing 25 L HCl/vessel) but caused the disappearance of the target strain from both brines and olives during the storage phase. On the contrary, processing in October slightly reduced the target strain predominance on olives (70–90%) but allowed longer survival. The type of inoculum used (laboratory vs. industry pre-adapted) never had significant effects. Thus, this investigation discloses key issues for the survival and predominance of starter cultures in large-scale industrial fermentations of green Spanish-style olives. Results can be of interest for producing probiotic table olives and open new research challenges on the causes of inoculum vanishing during the storage phase. PMID:28567038

  18. Fermentation profiles of Manzanilla-Aloreña cracked green table olives in different chloride salt mixtures.

    PubMed

    Bautista-Gallego, J; Arroyo-López, F N; Durán-Quintana, M C; Garrido-Fernández, A

    2010-05-01

    NaCl plays an important role in table olive processing affecting the flavour and microbiological stability of the final product. However, consumers demand foods low in sodium, which makes necessary to decrease levels of this mineral in fruits. In this work, the effects of diverse mixtures of NaCl, CaCl(2) and KCl on the fermentation profiles of cracked directly brined Manzanilla-Aloreña olives, were studied by means of response surface methodology based in a simplex lattice mixture design with constrains. All salt combinations led to lactic acid processes. The growth of Enterobacteriaceae populations was always limited and partially inhibited by the presence of CaCl(2). Only time to reach half maximum populations and decline rates of yeasts, which were higher as concentrations of NaCl or KCl increased, were affected, and correspondingly modelled, as a function of salt mixtures. However, lactic acid bacteria growth parameters could not be related to initial environmental conditions. They had a longer lag phase, slower growth and higher population levels than yeasts. Overall, the presence of CaCl(2) led to a slower Enterobacteriaceae and lactic acid bacteria growth than the traditional NaCl brine but to higher yeast activity. The presence of CaCl(2) in the fermentation brines also led to higher water activity, lower pH and combined acidity as well as a faster acidification while NaCl and KCl had fairly similar behaviours. Apparently, NaCl may be substituted in diverse proportions with KCl or CaCl(2) without substantially disturbing water activity or the usual fermentation profiles while producing olives with lower salt content. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  19. Biogenic amines in table olives. Analysis by high-performance liquid chromatography.

    PubMed

    Hornero-Méndez, D; Garrido-Fernández, A

    1994-09-01

    Biogenic amines in fermented vegetables have scarcely been studied. Available data show that in table olives and fermented cucumbers their presence is rare and any determinations made have been restricted mainly to histamine. However, some microorganisms, especially those related to spoilage, found in the fermentation brines of such products may have amino acid decarboxylase activity and give rise to biogenic amines by unusual processes. A method for the simultaneous determination of eight biogenic amines (tryptamine, beta-phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine, and spermine) has been developed to study their occurrence in fermented vegetables in more detail. The method consists of extraction of the amines from olive paste with 5% m/v trichloracetic acid and successive transfers into water-saturated n-BuOH and 0.1 mol l-1 HCl. An aliquot of this mixture is dried and derivatized with dansyl chloride. The dansyl derivatives are then analysed by high-performance liquid chromatography. Special emphasis has been given to optimization of the n-BuOH and 0.1 mol l-1 HCl extractions and to the derivatization conditions. By applying this method to the analysis of spoilt olives, the presence of some biogenic amines has been demonstrated. Thus a new method for monitoring the presence of biogenic amines during the fermentation of olives and for detecting anomalous fermentations is envisaged.

  20. Volatile constituents of commercial imported and domestic black-ripe table olives (Olea europaea).

    PubMed

    Sansone-Land, Angelina; Takeoka, Gary R; Shoemaker, Charles F

    2014-04-15

    Volatile constituents of commercial black-ripe table olives (Olea europaea) from the United States, Spain, Egypt and Morocco were analysed by gas chromatography and gas chromatography-mass spectrometry (GC-MS). Dynamic headspace sampling was used to isolate a variety of aldehydes, alcohols, esters, ketones, phenols, terpenes, norisoprenoids, and pyridines. Odour unit values, calculated from concentration and odour threshold data, indicate that the following compounds are major contributors to black-ripe table olive aroma: β-damascenone, nonanal, (E)-dec-2-enal, 3-methylbutanal, ethyl benzoate, octanal, 2-methoxyphenol, 2-methylbutanal and 2-methoxy-4-methylphenol. Imported olives contained a variety of fermentation derived volatiles that were not detected in domestic olives. Constituents such as ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, 3-methylbutyl acetate, oct-1-en-3-one, ethyl hexanoate, (Z)-hex-3-enyl acetate, hexyl acetate, ethyl cyclohexanecarboxylate, benzyl acetate and 4-ethylphenol contributed to the odour of imported olives but were not detected in domestic olives. Published by Elsevier Ltd.

  1. Genetic diversity and dynamics of bacterial and yeast strains associated to Spanish-style green table-olive fermentations in large manufacturing companies.

    PubMed

    Lucena-Padrós, Helena; Caballero-Guerrero, Belén; Maldonado-Barragán, Antonio; Ruiz-Barba, José Luis

    2014-11-03

    We have genotyped a total of 1045 microbial isolates obtained along the fermentation time of Spanish-style green table olives from the fermentation yards (patios) of two large manufacturing companies in the Province of Sevilla, south of Spain. Genotyping was carried out using RAPD-PCR fingerprinting. In general, isolates clustered well into the relevant phylogenetic dendrograms, forming separate groups in accordance to their species adscription. We could identify which bacterial and yeast genotypes (strains) persisted throughout the fermentation at each patio. Also, which of them were more adapted to any of the three stages, i.e. initial, middle and final, described for this food fermentation. A number of genotypes were found to be shared by both patios. Fifty seven of these belonged to five different bacterial species, i.e. Lactobacillus pentosus, Lactobacillus paracollinoides/collinoides, Lactobacillus rapi, Pediococcus ethanolidurans and Staphylococcus sp., although most of them (51) belonged to L. pentosus. Four yeast genotypes were also shared, belonging to the species Candida thaimueangensis, Saccharomyces cerevisiae and Hanseniaspora sp. Two genotypes of L. pentosus were found to be grouped with those of two strains used in commercially available starter cultures, one of them bacteriocinogenic, which were used up to three years before this study in these patios, demonstrating the persistence of selected strains in this environment. Biodiversity was assessed though different indexes, including richness, diversity and dominance. A statistically significant decrease in biodiversity between the initial and final stages of the fermentation was found in both patios. However, values of biodiversity indexes in the fermenters were very similar, and no significant differences were found in the total biodiversity between both patios. This study allowed us to identify a range of well adapted strains (genotypes), especially those belonging to the lactic acid bacteria

  2. Selection of yeasts with multifunctional features for application as starters in natural black table olive processing.

    PubMed

    Bonatsou, S; Benítez, A; Rodríguez-Gómez, F; Panagou, E Z; Arroyo-López, F N

    2015-04-01

    Yeasts are unicellular eukaryotic microorganisms with a great importance in the elaboration on many foods and beverages. In the last years, researches have focused their attention to determine the favourable effects that these microorganisms could provide to table olive processing. In this context, the present study assesses, at laboratory scale, the potential technological (resistance to salt, lipase, esterase and β-glucosidase activities) and probiotic (phytase activity, survival to gastric and pancreatic digestions) features of 12 yeast strains originally isolated from Greek natural black table olive fermentations. The multivariate classification analysis carried out with all information obtained (a total of 336 quantitative input data), revealed that the most promising strains (clearly discriminated from the rest of isolates) were Pichia guilliermondii Y16 (which showed overall the highest resistance to salt and simulated digestions) and Wickerhamomyces anomalus Y18 (with the overall highest technological enzymatic activities), while the rest of strains were grouped together in two clearly differentiated clusters. Thus, this work opens the possibility for the evaluation of these two selected yeasts as multifunctional starters, alone or in combination with lactic acid bacteria, in real table olive fermentations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Fermentation in nutrient salt mixtures affects green Spanish-style Manzanilla table olive characteristics.

    PubMed

    López-López, Antonio; Bautista-Gallego, Joaquín; Moreno-Baquero, José María; Garrido-Fernández, Antonio

    2016-11-15

    This work studies the effects of the substitution of NaCl with KCl and CaCl2 on the physicochemical, mineral and sensory profile of fermented green Spanish-style Manzanilla olives, using an enlarged centroid mixture design. An increasing presence of CaCl2 in the initial brines improved the colour index, L(∗), b(∗) values, and firmness. The Na in the olives decreased (linearly) while the levels of K and Ca increased (quadratic) as a function of the KCl and CaCl2 concentrations in the initial brines. CaCl2 also improved the retention of Zn and P in the flesh. PLS showed a strong relationship between Ca and bitterness, hardness, fibrousness, crunchiness and saltiness (negative) and allowed for the prediction of sensory attributes (except acid) from the mineral contents in the flesh. Most of the treatments could lead to new green Spanish-style Manzanilla olive presentations with reduced Na and healthier characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. RT-PCR-DGGE Analysis to Elucidate the Dominant Bacterial Species of Industrial Spanish-Style Green Table Olive Fermentations.

    PubMed

    Benítez-Cabello, Antonio; Bautista-Gallego, Joaquín; Garrido-Fernández, Antonio; Rantsiou, Kalliopi; Cocolin, Luca; Jiménez-Díaz, Rufino; Arroyo-López, Francisco N

    2016-01-01

    This paper describes the dominant bacterial species metabolically active through the industrial production of Spanish-style Manzanilla and Gordal olives. For this purpose, samples (brines and fruits) obtained at 0, 15, and 90 fermentation days were analyzed by a culture-independent approach to determine viable cells by reverse transcription of RNA and further PCR-DGGE analysis, detecting at least 7 different species. Vibrio vulnificus, Lactobacillus plantarum group, and Lactobacillus parafarraginis were present in samples from both cultivars; Lactobacillus sanfranciscensis and Halolactobacillus halophilus were detected only in Gordal samples, while Staphylococcus sp. was exclusively found at the onset of Manzanilla fermentations. Physicochemical data showed a typical fermentation profile while scanning electron microscopy confirmed the in situ biofilm formation on the olive epidermis. Different Bacillus, Staphylococcus, and Enterococcus species, not detected during the fermentation process, were also found in the solid marine salt used by the industry for preparation of brines. Elucidation of these non-lactic acid bacteria species role during fermentation is then an appealingly challenge, particularly regarding safety issues.

  5. Potential benefits of the application of yeast starters in table olive processing.

    PubMed

    Arroyo-López, Francisco N; Romero-Gil, Verónica; Bautista-Gallego, Joaquín; Rodríguez-Gómez, Francisco; Jiménez-Díaz, Rufino; García-García, Pedro; Querol, Amparo; Garrido-Fernández, Antonio

    2012-01-01

    Yeasts play an important role in the food and beverage industry, especially in products such as bread, wine, and beer, among many others. However, their use as a starter in table olive processing has not yet been studied in detail. The candidate yeast strains should be able to dominate fermentation, together with lactic acid bacteria, but should also provide a number of beneficial advantages. Technologically, yeasts should resist low pH and high salt concentrations, produce desirable aromas, improve lactic acid bacteria growth, and inhibit spoilage microorganisms. Nowadays, they are being considered as probiotic agents because many species are able to resist the passage through the gastrointestinal tract and show favorable effects on the host. In this way, yeasts may improve the health of consumers by means of the degradation of non-assimilated compounds (such as phytate complexes), a decrease in cholesterol levels, the production of vitamins and antioxidants, the inhibition of pathogens, an adhesion to intestinal cell line Caco-2, and the maintenance of epithelial barrier integrity. Many yeast species, usually found in table olive processing (Wickerhamomyces anomalus, Saccharomyces cerevisiae, Pichia membranifaciens, and Kluyveromyces lactis, among others), have exhibited some of these properties. Thus, the selection of the most appropriate strains to be used as starters in this fermented vegetable, alone or in combination with lactic acid bacteria, is a promising research line to develop in the near future.

  6. Potential benefits of the application of yeast starters in table olive processing

    PubMed Central

    Arroyo-López, Francisco N.; Romero-Gil, Verónica; Bautista-Gallego, Joaquín; Rodríguez-Gómez, Francisco; Jiménez-Díaz, Rufino; García-García, Pedro; Querol, Amparo; Garrido-Fernández, Antonio

    2012-01-01

    Yeasts play an important role in the food and beverage industry, especially in products such as bread, wine, and beer, among many others. However, their use as a starter in table olive processing has not yet been studied in detail. The candidate yeast strains should be able to dominate fermentation, together with lactic acid bacteria, but should also provide a number of beneficial advantages. Technologically, yeasts should resist low pH and high salt concentrations, produce desirable aromas, improve lactic acid bacteria growth, and inhibit spoilage microorganisms. Nowadays, they are being considered as probiotic agents because many species are able to resist the passage through the gastrointestinal tract and show favorable effects on the host. In this way, yeasts may improve the health of consumers by means of the degradation of non-assimilated compounds (such as phytate complexes), a decrease in cholesterol levels, the production of vitamins and antioxidants, the inhibition of pathogens, an adhesion to intestinal cell line Caco-2, and the maintenance of epithelial barrier integrity. Many yeast species, usually found in table olive processing (Wickerhamomyces anomalus, Saccharomyces cerevisiae, Pichia membranifaciens, and Kluyveromyces lactis, among others), have exhibited some of these properties. Thus, the selection of the most appropriate strains to be used as starters in this fermented vegetable, alone or in combination with lactic acid bacteria, is a promising research line to develop in the near future.

  7. Enhancement of the Knowledge on Fungal Communities in Directly Brined Aloreña de Málaga Green Olive Fermentations by Metabarcoding Analysis

    PubMed Central

    Arroyo-López, Francisco Noé; Medina, Eduardo; Ruiz-Bellido, Miguel Ángel; Romero-Gil, Verónica; Montes-Borrego, Miguel

    2016-01-01

    Nowadays, our knowledge of the fungal biodiversity in fermented vegetables is limited although these microorganisms could have a great influence on the quality and safety of this kind of food. This work uses a metagenetic approach to obtain basic knowledge of the fungal community ecology during the course of fermentation of natural Aloreña de Málaga table olives, from reception of raw material to edible fruits. For this purpose, samples of brines and fruits were collected from two industries in Guadalhorce Valley (Málaga, Spain) at different moments of fermentation (0, 7, 30 and 120 days). The physicochemical and microbial counts performed during fermentation showed the typical evolution of this type of processes, mainly dominated by yeasts in apparent absence of Enterobacteriaceae and Lactobacillaceae. High-throughput barcoded pyrosequencing analysis of ITS1-5.8S-ITS2 region showed a low biodiversity of the fungal community, with the presence at 97% identity of 29 different fungal genera included in 105 operational taxonomic units (OTUs). The most important genera in the raw material at the moment of reception in the industry were Penicillium, Cladosporium, Malassezia, and Candida, whilst after 4 months of fermentation in brines Zygotorulaspora and Pichia were predominant, whereas in fruits were Candida, Penicillium, Debaryomyces and Saccharomyces. The fungal genera Penicillium, Pichia, and Zygotorulaspora were shared among the three types of substrates during all the course of fermentation, representing the core fungal population for this table olive specialty. A phylogenetic analysis of the ITS sequences allowed a more accurate assignment of diverse OTUs to Pichia manshurica, Candida parapsilosis/C. tropicalis, Candida diddensiae, and Citeromyces nyonensis clades. This study highlights the existence of a complex fungal consortium in olive fermentations including phytopathogenic, saprofitic, spoilage and fermentative genera. Insights into the ecology

  8. Effect of osmotic dehydration of olives as pre-fermentation treatment and partial substitution of sodium chloride by monosodium glutamate in the fermentation profile of Kalamata natural black olives.

    PubMed

    Bonatsou, Stamatoula; Iliopoulos, Vasilis; Mallouchos, Athanasios; Gogou, Eleni; Oikonomopoulou, Vasiliki; Krokida, Magdalini; Taoukis, Petros; Panagou, Efstathios Z

    2017-05-01

    This study examined the effect of osmotic dehydration of Kalamata natural black olives as pre-fermentation treatment in combination with partial substitution of NaCl by monosodium glutamate (MSG) on the fermentation profile of olives. Osmotic dehydration was undertaken by immersing the olives in 70% (w/w) glucose syrup overnight at room temperature. Further on, three different mixtures of NaCl and MSG with/without prior osmotic dehydration of olives were investigated, namely (i) 6.65% NaCl - 0.35% MSG (5% substitution), (ii) 6.30% NaCl - 0.70% MSG (10% substitution), (iii) 5.95% NaCl - 1.05% MSG (15% substitution), and (iv) 7% NaCl without osmotic dehydration (control treatment). Changes in the microbial association (lactic acid bacteria [LAB], yeasts, Enterobacteriaceae), pH, titratable acidity, organic acids, sugars, and volatile compounds in the brine were analyzed for a period of 4 months. The final product was subjected to sensory analysis and the content of MSG in olives was determined. Results demonstrated that osmotic dehydration of olives prior to brining led to vigorous lactic acid processes as indicated by the obtained values of pH (3.7-4.1) and acidity (0.7-0.8%) regardless of the amount of MSG used. However, in non-osmotically dehydrated olives, the highest substitution level of MSG resulted in a final pH (4.5) that was beyond specification for this type of olives. MSG was degraded in the brines being almost completely converted to γ-aminobutyric acid (GABA) at the end of fermentation. Finally, the sensory assessment of fermented olives with/without osmotic dehydration and at all levels of MSG did not show any deviation compared to the control treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Performance of two potential probiotic Lactobacillus strains from the olive microbiota as starters in the fermentation of heat shocked green olives.

    PubMed

    Argyri, Anthoula A; Nisiotou, Aspasia A; Mallouchos, Athanasios; Panagou, Efstathios Z; Tassou, Chrysoula C

    2014-02-03

    The performance of two potential probiotic Lactobacillus strains from olive microbiota, namely L. pentosus B281 and L. plantarum B282 was assessed as starter cultures in Spanish-style fermentation of heat shocked green olives cv. Halkidiki. Two different initial salt levels were studied, 10% (w/v) and 8% (w/v) NaCl, and the brines were inoculated with (a) L. pentosus B281, (b) L. plantarum B282, and (c) a mixture of both strains. A spontaneous fermentation was also taken into account as control treatment. Prior to brining, olives were heat shocked at 80 °C for 10 min to reduce the level of the indigenous microbiota on olive drupes and facilitate the dominance of the inoculated cultures. Microbiological, physicochemical and sensory analyses were conducted throughout fermentation. The composition of LAB population and the evolution of added inocula were assessed by Pulsed Field Gel Electrophoresis (PFGE). The final population of LAB was maintained above 6 log cycles in olive flesh. Both L. pentosus B281 and L. plantarum B282 were able to dominate over indigenous LAB, albeit strain B281 exhibited higher recovery percentages (100 or 94.7% for B281 and 58.8% or 55.0% for B282 in 10% or 8% NaCl, respectively). L. pentosus B281 also dominated over L. plantarum B282, when the two strains were co-inoculated in olive fermentations. The sensory assessment showed higher preference for inoculated fermentations of L. pentosus and L. plantarum separately in 8% NaCl, followed by the L. plantarum in 10% NaCl. The present study showed that probiotic strains L. pentosus B281 and L. plantarum B282, may offer a great potential for use as functional starter cultures in olive fermentation and deliver a promising probiotic food to the consumer. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Data on the application of Functional Data Analysis in food fermentations.

    PubMed

    Ruiz-Bellido, M A; Romero-Gil, V; García-García, P; Rodríguez-Gómez, F; Arroyo-López, F N; Garrido-Fernández, A

    2016-12-01

    This article refers to the paper "Assessment of table olive fermentation by functional data analysis" (Ruiz-Bellido et al., 2016) [1]. The dataset include pH, titratable acidity, yeast count and area values obtained during fermentation process (380 days) of Aloreña de Málaga olives subjected to five different fermentation systems: i) control of acidified cured olives, ii) highly acidified cured olives, iii) intermediate acidified cured olives, iv) control of traditional cracked olives, and v) traditional olives cracked after 72 h of exposure to air. Many of the Tables and Figures shown in this paper were deduced after application of Functional Data Analysis to raw data using a routine executed under R software for comparison among treatments by the transformation of raw data into smooth curves and the application of a new battery of statistical tools (functional pointwise estimation of the averages and standard deviations, maximum, minimum, first and second derivatives, functional regression, and functional F and t-tests).

  11. Treatment of table olive washing water using trickling filters, constructed wetlands and electrooxidation.

    PubMed

    Tatoulis, Triantafyllos; Stefanakis, Alexandros; Frontistis, Zacharias; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Mantzavinos, Dionissios; Vayenas, Dimitrios V

    2017-01-01

    The production of table olives is a significant economic activity in Mediterranean countries. Table olive processing generates large volumes of rinsing water that are characterized by high organic matter and phenol contents. Due to these characteristics, a combination of more than one technology is imperative to ensure efficient treatment with low operational cost. Previously, biological filters were combined with electrooxidation to treat table olive washing water. Although this combination was successful in reducing pollutant loads, its cost could be further reduced. Constructed wetlands could be an eligible treatment method for integrated table olive washing water treatment as they have proved tolerant to high organic matter and phenol loads. Two pilot-scale horizontal subsurface constructed wetlands, one planted and one unplanted, were combined with a biological filter and electrooxidation over a boron-doped diamond anode to treat table olive washing water. In the biological filter inlet, chemical oxygen demand (COD) concentrations ranged from 5500 to 15,000 mg/L, while mean COD influent concentration in the constructed wetlands was 2800 mg/L. The wetlands proved to be an efficient intermediate treatment stage, since COD removal levels for the planted unit reached 99 % (mean 70 %), while the unplanted unit presented removal rates of around 65 %. Moreover, the concentration of phenols in the effluent was typically below 100 mg/L. The integrated trickling filter-constructed wetland-electrooxidation treatment system examined here could mineralize and decolorize table olive washing water and fully remove its phenolic content.

  12. Availability of Essential B-Group Vitamins to Lactobacillus plantarum in Green Olive Fermentation Brines

    PubMed Central

    Ruiz-Barba, J. L.; Jimenez-Diaz, R.

    1995-01-01

    The availability throughout the traditional Spanish-style green olive fermentation of four vitamins that are essential for the growth of Lactobacillus plantarum was studied. It was found that nicotinic and pantothenic acids, biotin, and vitamin B(inf6) were available in the fermentation brines within the first few days of the process, and their levels throughout the fermentative process were well above those required by L. plantarum to grow at its maximum growth rate. In laboratory medium, various yeast strains isolated from the fermentations were found to produce these vitamins in amounts several times that required by L. plantarum. This finding suggests that some yeast species might play a role in encouraging the growth of L. plantarum in Spanish-style green olive fermentation. PMID:16534988

  13. Nutrient assessment of olive leaf residues processed by solid-state fermentation as an innovative feedstuff additive.

    PubMed

    Xie, P-J; Huang, L-X; Zhang, C-H; Zhang, Y-L

    2016-07-01

    Olive leaf residue feedstuff additives were prepared by solid-state fermentation (SSF), and its feeding effects on broiler chickens were examined. The fermentation's nutrient value, that is, protein enrichment, cellulase activity, tannic acid degradation and amino acid enhancement, was determined. The effect of different strains, including molds (Aspergillus niger, Aspergillus oryzae and Trichoderma viride) and yeasts (Candida utilis, Candida tropicalis and Geotrichum candidum), and the fermentation time on the nutrient values of the feedstuff additives was investigated. The experimental results showed that the optimal parameters for best performance were A. niger and C. utilis in a 1 : 1 ratio (v/v) in co-culture fermentation for 5 days. Under these conditions, the total content of amino acids in the fermented olive leaf residues increased by 22·0% in comparison with that in the raw leaf residues. Both Glutamic acid and Aspartic acid contents were increased by more than 25·4%. Broiler chickens fed with different amounts of feedstuff additives were assessed. The results demonstrated that the chicken weight gains increased by 120%, and normal serum biochemical parameters were improved significantly after 10% of the feedstuff additives were supplemented to the daily chicken feed for 28 days. The co-culture combination of A. niger and C. utilis with SSF for olive leaf residue had the best nutrient values. The addition of 10% fermented olive leaf residue facilitated the chicken growth and development. This study reveals that olive leaf residues fermented by SSF exhibited considerable potential as feed additives for feeding poultry. © 2016 The Society for Applied Microbiology.

  14. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: a review.

    PubMed

    Şahin, Selin; Bilgin, Mehmet

    2018-03-01

    Research into finding new uses for by-products of table olive and olive oil industry are of great value not only to the economy but also to the environment where olives are grown and to the human health. Since leaves represent around 10% of the total weight of olives arriving at the mill, it is worth obtaining high added-value compounds from those materials for the preparation of dietary supplements, nutraceuticals, functional food ingredients or cosmeceuticals. In this review article, olive tree (Olea europaea L.) leaf is reviewed as being a potential inexpensive, renewable and abundant source of biophenols. The importance of this agricultural and industrial waste is emphasised by means of describing its availability, nutritional and therapeutic effects and studies conducted on this field. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Draft Genome Sequences of Six Lactobacillus pentosus Strains Isolated from Brines of Traditionally Fermented Spanish-Style Green Table Olives.

    PubMed

    Calero-Delgado, Beatriz; Martín-Platero, Antonio M; Pérez-Pulido, Antonio J; Benítez-Cabello, Antonio; Casimiro-Soriguer, Carlos S; Martínez-Bueno, Manuel; Arroyo-López, Francisco Noé; Rodríguez-Gómez, Francisco; Bautista-Gallego, Joaquín; Garrido-Fernández, Antonio; Jiménez-Díaz, Rufino

    2018-05-03

    Here, we report the genome sequences of six Lactobacillus pentosus strains isolated from traditional noninoculated Spanish-style green table olive brines. The total genome sizes varied between 3.77 and 4.039 Mbp. These genome sequences will assist in revealing the genes responsible for both technological and probiotic properties of these strains. Copyright © 2018 Calero-Delgado et al.

  16. Production of potential probiotic Spanish-style green table olives at pilot plant scale using multifunctional starters.

    PubMed

    Rodríguez-Gómez, F; Romero-Gil, V; Bautista-Gallego, J; García-García, P; Garrido-Fernández, A; Arroyo-López, F N

    2014-12-01

    This work evaluates the use of two multifunctional starters of Lactobacillus pentosus species (TOMC LAB2 and TOMC LAB4) during elaboration of Manzanilla olive fruits processed according to the Spanish-style. Data show that the use of inocula at the onset of fermentation led to a proper acidification and sugar consumption of brines compared to the spontaneous process, obtaining in a shorter period of time the maximum population for lactic acid bacteria. Both inoculated L. pentosus strains were recovered at high frequencies at the end of fermentation on the olive surface, which was corroborated by RAPD-PCR analysis. In situ observation of olive epidermis slices by scanning electron microscopy revealed a strong aggregation and adhesion between microorganisms, which reached population levels of approximately 6 and 7 log10 cfu/cm(2) for yeasts and lactic acid bacteria, respectively. Enterobacteriaceae on the olive surface were also found at the onset of fermentation (∼9 log10 cfu/cm(2)), but they declined during the process and were below the detection limit at the end of fermentation. Results obtained in this study show the advantage of using multifunctional starters with the ability to adhere to the olive epidermis because, ultimately, the fruits are the food ingested by consumers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Bayesian and Phylogenic Approaches for Studying Relationships among Table Olive Cultivars.

    PubMed

    Ben Ayed, Rayda; Ennouri, Karim; Ben Amar, Fathi; Moreau, Fabienne; Triki, Mohamed Ali; Rebai, Ahmed

    2017-08-01

    To enhance table olive tree authentication, relationship, and productivity, we consider the analysis of 18 worldwide table olive cultivars (Olea europaea L.) based on morphological, biological, and physicochemical markers analyzed by bioinformatic and biostatistic tools. Accordingly, we assess the relationships between the studied varieties, on the one hand, and the potential productivity-quantitative parameter links on the other hand. The bioinformatic analysis based on the graphical representation of the matrix of Euclidean distances, the principal components analysis, unweighted pair group method with arithmetic mean, and principal coordinate analysis (PCoA) revealed three major clusters which were not correlated with the geographic origin. The statistical analysis based on Kendall's and Spearman correlation coefficients suggests two highly significant associations with both fruit color and pollinization and the productivity character. These results are confirmed by the multiple linear regression prediction models. In fact, based on the coefficient of determination (R 2 ) value, the best model demonstrated the power of the pollinization on the tree productivity (R 2  = 0.846). Moreover, the derived directed acyclic graph showed that only two direct influences are detected: effect of tolerance on fruit and stone symmetry on side and effect of tolerance on stone form and oil content on the other side. This work provides better understanding of the diversity available in worldwide table olive cultivars and supplies an important contribution for olive breeding and authenticity.

  18. Formation of In Vitro Mixed-Species Biofilms by Lactobacillus pentosus and Yeasts Isolated from Spanish-Style Green Table Olive Fermentations.

    PubMed

    León-Romero, Ángela; Domínguez-Manzano, Jesús; Garrido-Fernández, Antonio; Arroyo-López, Francisco Noé; Jiménez-Díaz, Rufino

    2016-01-15

    The present work details the in vitro interactions between Lactobacillus pentosus and yeast strains isolated from table olive processing to form mixed biofilms. Among the different pairs assayed, the strongest biofilms were obtained from L. pentosus and Candida boidinii strain cocultures. However, biofilm formation was inhibited in the presence of d-(+)-mannose. In addition, biofilm formation by C. boidinii monoculture was stimulated in the absence of cell-cell contact with L. pentosus. Scanning electron microscopy revealed that a sort of "sticky" material formed by the yeasts contributed to substrate adherence. Hence, the data obtained in this work suggest that yeast-lactobacilli biofilms may be favored by the presence of a specific mate of yeast and L. pentosus, and that more than one mechanism might be implicated in the biofilm formation. This knowledge will help in the design of appropriate mixed starter cultures of L. pentosus-yeast species pairs that are able to improve the quality and safety of Spanish-style green table olive processing. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Sensory classification of table olives using an electronic tongue: Analysis of aqueous pastes and brines.

    PubMed

    Marx, Ítala; Rodrigues, Nuno; Dias, Luís G; Veloso, Ana C A; Pereira, José A; Drunkler, Deisy A; Peres, António M

    2017-01-01

    Table olives are highly appreciated and consumed worldwide. Different aspects are used for trade category classification being the sensory assessment of negative defects present in the olives and brines one of the most important. The trade category quality classification must follow the International Olive Council directives, requiring the organoleptic assessment of defects by a trained sensory panel. However, the training process is a hard, complex and sometimes subjective task, being the low number of samples that can be evaluated per day a major drawback considering the real needs of the olive industry. In this context, the development of electronic tongues as taste sensors for defects' sensory evaluation is of utmost relevance. So, an electronic tongue was used for table olives classification according to the presence and intensity of negative defects. Linear discrimination models were established based on sub-sets of sensor signals selected by a simulated annealing algorithm. The predictive potential of the novel approach was first demonstrated for standard solutions of chemical compounds that mimic butyric, putrid and zapateria defects (≥93% for cross-validation procedures). Then its applicability was verified; using reference table olives/brine solutions samples identified with a single intense negative attribute, namely butyric, musty, putrid, zapateria or winey-vinegary defects (≥93% cross-validation procedures). Finally, the E-tongue coupled with the same chemometric approach was applied to classify table olive samples according to the trade commercial categories (extra, 1 st choice, 2 nd choice and unsuitable for consumption) and an additional quality category (extra free of defects), established based on sensory analysis data. Despite the heterogeneity of the samples studied and number of different sensory defects perceived, the predictive linear discriminant model established showed sensitivities greater than 86%. So, the overall performance

  20. In Lactobacillus pentosus, the olive brine adaptation genes are required for biofilm formation.

    PubMed

    Perpetuini, G; Pham-Hoang, B N; Scornec, H; Tofalo, R; Schirone, M; Suzzi, G; Cavin, J F; Waché, Y; Corsetti, A; Licandro-Seraut, H

    2016-01-04

    Lactobacillus pentosus is one of the few lactic acid bacteria (LAB) species capable of surviving in olive brine, and thus desirable during table olive fermentation. We have recently generated mutants of the efficient strain L. pentosus C11 by transposon mutagenesis and identified five mutants unable to survive and adapt to olive brine conditions. Since biofilm formation represents one of the main bacterial strategy to survive in stressful environments, in this study, the capacity of adhesion and formation of biofilm on olive skin was investigated for this strain and five derivative mutants which are interrupted in metabolic genes (enoA1 and gpi), and in genes of unknown function ("oba" genes). Confocal microscopy together with bacteria count revealed that the sessile state represented the prevailing L. pentosus C11 life-style during table olive fermentation. The characterization of cell surface properties showed that mutants present less hydrophobic and basic properties than the wild type (WT). In fact, their ability to adhere to both abiotic (polystyrene plates) and biotic (olive skin) surfaces was lower than that of the WT. Confocal microscopy revealed that mutants adhered sparsely to the olive skin instead of building a thin, multilayer biofilm. Moreover, RT-qPCR showed that the three genes enoA1, gpi and obaC were upregulated in the olive biofilm compared to the planktonic state. Thus enoA1, gpi and "oba" genes are necessary in L. pentosus to form an organized biofilm on the olive skin. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Heavy metals and mineral elements not included on the nutritional labels in table olives.

    PubMed

    López-López, Antonio; López, Rafael; Madrid, Fernando; Garrido-Fernández, Antonio

    2008-10-22

    The average contents, in mg/kg edible portion (e.p.), of elements not considered for nutritional labeling in Spanish table olives were as follows: aluminum, 71.1; boron, 4.41; barium, 2.77; cadmium, 0.04; cobalt, 0.12; chromium, 0.19; lithium, 6.56; nickel, 0.15; lead, 0.15; sulfur, 321; tin, 18.4; strontium, 9.71; and zirconium, 0.04. Sulfur was the most abundant element in table olives, followed by aluminum and tin (related to green olives). There were significant differences between elaboration styles, except for aluminum, tin, and sulfur. Ripe olives had significantly higher concentrations (mg/kg e.p.) of boron (5.32), barium (3.91), cadmium (0.065), cobalt (0.190), chromium (0.256), lithium (10.01), nickel (0.220), and strontium (10.21), but the levels of tin (25.55) and zirconium (0.039) were higher in green olives. The content of contaminants (cadmium, nickel, and tin) was always below the maximum limits legally established. The discriminant analysis led to an overall 86% correct classification of cases (80% after cross-validation).

  2. Analysis of thermal processing of table olives using computational fluid dynamics.

    PubMed

    Dimou, A; Panagou, E; Stoforos, N G; Yanniotis, S

    2013-11-01

    In the present work, the thermal processing of table olives in brine in a stationary metal can was studied through computational fluid dynamics (CFD). The flow patterns of the brine and the temperature evolution in the olives and brine during the heating and the cooling cycles of the process were calculated using the CFD code. Experimental temperature measurements at 3 points (2 inside model olive particles and 1 at a point in the brine) in a can (with dimensions of 75 mm × 105 mm) filled with 48 olives in 4% (w/v) brine, initially held at 20 °C, heated in water at 100 °C for 10 min, and thereafter cooled in water at about 20 °C for 10 min, validated model predictions. The distribution of temperature and F-values and the location of the slowest heating zone and the critical point within the product, as far as microbial destruction is concerned, were assessed for several cases. For the cases studied, the critical point was located at the interior of the olives at the 2nd, or between the 1st and the 2nd olive row from the bottom of the container, the exact location being affected by olive size, olive arrangement, and geometry of the container. © 2013 Institute of Food Technologists®

  3. Products derived from olive leaves and fruits can alter in vitro ruminal fermentation and methane production.

    PubMed

    Shakeri, Pirouz; Durmic, Zoey; Vadhanabhuti, Joy; Vercoe, Philip E

    2017-03-01

    The industrial processing of olive generates a high quantity of by-products. The objective of this study was to examine the effects of products derived from olive trees, i.e. leaves, fruits or kernels as a sole substrate (part A), and crude extract from leaves combined with a substrate (part B) on rumen microbial fermentation in an in vitro batch fermentation system. In this study, total gas production, methane production, and concentrations of volatile fatty acids (VFA) and ammonia in ruminal fluid were measured. In part A, in vitro fermentation of leaves or fruits yielded a gas and total VFA production that were comparable with control substrate, while most of them produced significantly less methane (up to 55.6%) when compared to control substrate. In part B, amongst leaf extracts, only addition of chloroform extract reduced methane production, which was also associated with a decrease (P < 0.01) in gas production. This effect was associated with a significant reduction (P < 0.01) in acetate to propionate ratio and ammonia production, but not in reduction in VFA concentrations. Olive leaf and olive leaf chloroform extract reduced ammonia production and increased the molar proportion of propionate in the rumen and can assist in developing novel feed additives for methane mitigation from the rumen. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Antioxidant capacity, fatty acids profile, and descriptive sensory analysis of table olives as affected by deficit irrigation.

    PubMed

    Cano-Lamadrid, Marina; Hernández, Francisca; Corell, Mireia; Burló, Francisco; Legua, Pilar; Moriana, Alfonso; Carbonell-Barrachina, Ángel A

    2017-01-01

    The influence of three irrigation treatments (T0, no stress; T1, soft stress; and, T2, moderate stress) on the key functional properties [fatty acids, sugar alcohols, organic acids, minerals, total polyphenols content (TPC), and antioxidant activity (AA)], sensory quality, and consumers' acceptance of table olives, cv. 'Manzanilla', was evaluated. A soft water stress, T1, led to table olives with the highest oil and dry matter contents, with the highest intensities of key sensory attributes and slightly, although not significant, higher values of consumer satisfaction degree. Besides, RDI in general (T1 and T2) slightly increased green colour, the content of linoleic acid, but decreased the content of phytic acid and some minerals. The soft RDI conditions are a good option for the cultivation of olive trees because they are environmentally friendly and simultaneously maintain or even improve the functionality, sensory quality, and consumer acceptance of table olives. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Quantification and characterization of microbial biofilm community attached on the surface of fermentation vessels used in green table olive processing.

    PubMed

    Grounta, Athena; Doulgeraki, Agapi I; Panagou, Efstathios Z

    2015-06-16

    The aim of the present study was the quantification of biofilm formed on the surface of plastic vessels used in Spanish-style green olive fermentation and the characterization of the biofilm community by means of molecular fingerprinting. Fermentation vessels previously used in green olive processing were subjected to sampling at three different locations, two on the side and one on the bottom of the vessel. Prior to sampling, two cleaning treatments were applied to the containers, including (a) washing with hot tap water (60 °C) and household detergent (treatment A) and (b) washing with hot tap water, household detergent and bleach (treatment B). Population (expressed as log CFU/cm(2)) of total viable counts (TVC), lactic acid bacteria (LAB) and yeasts were enumerated by standard plating. Bulk cells (whole colonies) from agar plates were isolated for further characterization by PCR-DGGE. Results showed that regardless of the cleaning treatment no significant differences were observed between the different sampling locations in the vessel. The initial microbial population before cleaning ranged between 3.0-4.5 log CFU/cm(2) for LAB and 4.0-4.6 log CFU/cm(2) for yeasts. Cleaning treatments exhibited the highest effect on LAB that were recovered at 1.5 log CFU/cm(2) after treatment A and 0.2 log CFU/cm(2) after treatment B, whereas yeasts were recovered at approximately 1.9 log CFU/cm(2) even after treatment B. High diversity of yeasts was observed between the different treatments and sampling spots. The most abundant species recovered belonged to Candida genus, while Wickerhamomyces anomalus, Debaryomyces hansenii and Pichia guilliermondii were frequently detected. Among LAB, Lactobacillus pentosus was the most abundant species present on the abiotic surface of the vessels. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Olive pomace valorization by Aspergillus species: lipase production using solid-state fermentation.

    PubMed

    Oliveira, Felisbela; Moreira, Cláudia; Salgado, José Manuel; Abrunhosa, Luís; Venâncio, Armando; Belo, Isabel

    2016-08-01

    Pollution by olive mill wastes is an important problem in the Mediterranean area and novel solutions for their proper management and valorization are needed. The aim of this work was to optimize a solid-state fermentation (SSF) process to produce lipase using olive pomace (OP) as the main source of nutrients by several Aspergillus spp. Optimized variables in two different designs were: ratio between olive pomace and wheat bran (OP:WB), NaNO3 , Czapek nutrients, fermentation time, moisture content (MC) and temperature. Results showed that the mixture OP:WB and MC were the most significant factors affecting lipase production for all fungi strains tested. With MC and temperature optimization, a 4.4-fold increase in A. ibericus lipase was achieved (90.5 ± 1.5 U g(-1) ), using a mixture of OP and WB at 1:1 ratio, 0.02 g NaNO3 g(-1) dry substrate, absence of Czapek nutrients, 60% of MC and incubation at 30 °C for 7 days. For A. niger and A. tubingensis, highest lipase activity obtained was 56.6 ± 5.4 and 7.6 ± 0.6 U g(-1) , respectively. Aspergillus ibericus was found to be the most promising microorganism for lipase production using mixtures of OP and WB. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  7. Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation.

    PubMed

    Leite, Paulina; Salgado, José Manuel; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2016-08-01

    Olive mills generate a large amount of waste that can be revaluated. This work aim to improve the production lignocellulolytic enzymes by solid-state fermentation using ultrasounds pretreated olive mill wastes. The composition of olive mill wastes (crude and exhausted olive pomace) was compared and several physicochemical characteristics were significantly different. The use of both wastes in SSF was evaluated and a screening of fungi for xylanase and cellulase production was carried out. After screening, the use of exhausted olive pomace and Aspergillus niger led to the highest enzyme activities, so that they were used in the study of ultrasounds pre-treatment. The results showed that the sonication led to a 3-fold increase of xylanase activity and a decrease of cellulase activity. Moreover, the liquid fraction obtained from ultrasounds treatment was used to adjust the moisture of solid and a positive effect on xylanase (3.6-fold increase) and cellulase (1.2-fold increase) production was obtained. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Selection of Yeasts as Starter Cultures for Table Olives: A Step-by-Step Procedure

    PubMed Central

    Bevilacqua, Antonio; Corbo, Maria Rosaria; Sinigaglia, Milena

    2012-01-01

    The selection of yeasts intended as starters for table olives is a complex process, including a characterization step at laboratory level and a validation at lab level and factory-scale. The characterization at lab level deals with the assessment of some technological traits (growth under different temperatures and at alkaline pHs, effect of salt, and for probiotic strains the resistance to preservatives), enzymatic activities, and some new functional properties (probiotic traits, production of vitamin B-complex, biological debittering). The paper reports on these traits, focusing both on their theoretical implications and lab protocols; moreover, there are some details on predictive microbiology for yeasts of table olives and on the use of multivariate approaches to select suitable starters. PMID:22666220

  9. Volatile constituents of commercial imported and domestic black-ripe table olives (Olea europaea)

    USDA-ARS?s Scientific Manuscript database

    Volatile constituents of commercial black-ripe table olives (Olea europaea) from the United States, Spain, Egypt and Morocco were analyzed by gas chromatography and gas chromatography-mass spectrometry (GC-MS). Dynamic headspace sampling was used to isolate a variety of aldehydes, alcohols, esters, ...

  10. Growth/no growth interfaces of table olive related yeasts for natamycin, citric acid and sodium chloride.

    PubMed

    Arroyo-López, F N; Bautista-Gallego, J; Romero-Gil, V; Rodríguez-Gómez, F; Garrido-Fernández, A

    2012-04-16

    The present work uses a logistic/probabilistic model to obtain the growth/no growth interfaces of Saccharomyces cerevisiae, Wickerhamomyces anomalus and Candida boidinii (three yeast species commonly isolated from table olives) as a function of the diverse combinations of natamycin (0-30 mg/L), citric acid (0.00-0.45%) and sodium chloride (3-6%). Mathematical models obtained individually for each yeast species showed that progressive concentrations of citric acid decreased the effect of natamycin, which was only observed below 0.15% citric acid. Sodium chloride concentrations around 5% slightly increased S. cerevisiae and C. boidinii resistance to natamycin, although concentrations above 6% of NaCl always favoured inhibition by this antimycotic. An overall growth/no growth interface, built considering data from the three yeast species, revealed that inhibition in the absence of citric acid and at 4.5% NaCl can be reached using natamycin concentrations between 12 and 30 mg/L for growth probabilities between 0.10 and 0.01, respectively. Results obtained in this survey show that is not advisable to use jointly natamycin and citric acid in table olive packaging because of the observed antagonistic effects between both preservatives, but table olives processed without citric acid could allow the application of the antifungal. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Effect of the processing steps on compositions of table olive since harvesting time to pasteurization.

    PubMed

    Nikzad, Nasim; Sahari, Mohammad A; Vanak, Zahra Piravi; Safafar, Hamed; Boland-nazar, Seyed A

    2013-08-01

    Weight, oil, fatty acids, tocopherol, polyphenol, and sterol properties of 5 olive cultivars (Zard, Fishomi, Ascolana, Amigdalolia, and Conservalia) during crude, lye treatment, washing, fermentation, and pasteurization steps were studied. Results showed: oil percent was higher and lower in Ascolana (crude step) and in Fishomi (pasteurization step), respectively; during processing steps, in all cultivars, oleic, palmitic, linoleic, and stearic acids were higher; the highest changes in saturated and unsaturated fatty acids were in fermentation step; the highest and the lowest ratios of ω3 / ω6 were in Ascolana (washing step) and in Zard (pasteurization step), respectively; the highest and the lowest tocopherol were in Amigdalolia and Fishomi, respectively, and major damage occurred in lye step; the highest and the lowest polyphenols were in Ascolana (crude step) and in Zard and Ascolana (pasteurization step), respectively; the major damage among cultivars occurred during lye step, in which the polyphenol reduced to 1/10 of first content; sterol did not undergo changes during steps. Reviewing of olive patents shows that many compositions of fruits such as oil quality, fatty acids, quantity and its fraction can be changed by alteration in cultivar and process.

  12. Effect of carrageenan level and packaging during ripening on processing and quality characteristics of low-fat fermented sausages produced with olive oil.

    PubMed

    Koutsopoulos, D A; Koutsimanis, G E; Bloukas, J G

    2008-05-01

    Eight low-fat fermented sausages were produced with partial replacement of pork backfat with olive oil. The total fat content of the sausages was 10% of which 8% was animal fat and 2% was olive oil. The sausages were produced with two types of carrageenan (ι- and κ-) in four levels (0%, 1%, 2% and 3%). ι-Carrageenan had a better effect (p<0.05) than κ-carrageenan on such characteristics as pH, weight loss and lipid oxidation of the sausages, as well as, on sensory attributes. Low-fat fermented sausages with κ-carrageenan had the same (p>0.05) firmness as high-fat commercial sausages (control). The carrageenan level of 3% negatively affected the firmness of the sausages. In a 2nd experiment, a high-fat control (30% total fat) and three low-fat fermented sausages (10% total fat) with olive oil were produced with three levels of ι-carrageenan (0%, 1% and 2%). Low-fat sausages were vacuum packed for the last two weeks of ripening. ι-Carrageenan added at levels up to 2% had a positive effect (p<0.05) on the physicochemical and microbiological characteristics of the low-fat fermented sausages. The application of vacuum packaging over last two weeks of ripening improved the physicochemical and microbiological characteristics of the sausages and resulted in sensory attributes equal to or better than the high-fat controls.

  13. Antioxidant activity of olive wine, a byproduct of olive mill wastewater.

    PubMed

    Yao, Qian; He, Gang; Guo, Xiaoqiang; Hu, Yibing; Shen, Yuanfu; Gou, Xiaojun

    2016-10-01

    Context Although olive mill wastewater (OMWW) is a good source of bioactive phenolic compounds, disposing OMWW is a serious environmental challenge. Production of wine via fermenting OMWW may be a promising alternative to deal with OMWW. However, whether or not olive wine from OMWW still reserves its original bioactivities remains unclear. Objective This study examines antioxidant activity of olive wine fermented from OMWW. Materials and methods Hydroxytyrosol in olive oil was determined by HPLC. Total flavonoid, total polyphenol and in vitro antioxidant activities were measured by spectrophotometry. Aged mice were intragastricly administered 7, 14 and 28 mL/kg olive wine consecutively for 30 d. Afterward, levels of malonaldehyde (MDA), protein carbonyl, reduced glutathione (GSH) and activity of superoxide dismutase (SOD) were assayed in mouse plasma and liver. Results Contents of hydroxytyrosol, total flavonoid and total polyphenol in olive wine were 0.14 ± 0.01, 0.29 ± 0.06 and 0.43 ± 0.03 mg/mL, respectively. The IC50 value of olive wine to scavenge DPPH and hydroxyl free radicals was 2.5% and 3.2% (v/v), respectively. Compared with the solvent control group, olive wine with a dose of 28 mL/kg remarkably lowered mouse MDA concentration in liver, and reduced protein carbonyl level in plasma (p < 0.05). Meanwhile, olive wine at doses of 7 and 28 mL/kg notably enhanced SOD activity in both mouse plasma and liver (p < 0.05). The beneficial effect on liver was superior to that of γ-tocopherol. Conclusion The study demonstrated that olive wine from OMWW has potential for treating oxidative stress-associated diseases.

  14. Modelling the effect of ascorbic acid, sodium metabisulphite and sodium chloride on the kinetic responses of lactic acid bacteria and yeasts in table olive storage using a specifically implemented Quasi-chemical primary model.

    PubMed

    Echevarria, R; Bautista-Gallego, J; Arroyo-López, F N; Garrido-Fernández, A

    2010-04-15

    The goal of this work was to apply the Quasi-chemical primary model (a system of four ordinary differential equations that derives from a hypothetical four-step chemical mechanism involving an antagonistic metabolite) in the study of the evolution of yeast and lactic acid bacteria populations during the storage of Manzanilla-Aloreña table olives subjected to different mixtures of ascorbic acid, sodium metabisulphite and NaCl. Firstly, the Quasi-chemical model was applied to microbial count data to estimate the growth-decay biological parameters. The model accurately described the evolution of both populations during storage, providing detailed information on the microbial behaviour. Secondly, these parameters were used as responses and analysed according to a mixture design experiment (secondary model). The contour lines of the corresponding response surfaces clearly disclosed the relationships between growth and environmental conditions, showing the stimulating and inhibitory effect of ascorbic acid and sodium metabisulphite, respectively, on both populations of microorganisms. This work opens new possibilities for the potential use of the Quasi-chemical primary model in the study of table olive fermentations. (c) 2010 Elsevier B.V. All rights reserved.

  15. 7 CFR 944.401 - Olive Regulation 1.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... containers and heat sterilized under pressure, of the two distinct types “ripe” and “green-ripe” as defined...-style green olives. (2) Spanish-style green olives means olives packed in brine and which have been fermented and cured, otherwise known as “green olives.” (3) Variety group 1 means the following varieties...

  16. Effects of selected bacterial cultures on safety and sensory traits of Nocellara Etnea olives produced at large factory scale.

    PubMed

    Randazzo, Cinzia L; Russo, Nunziatina; Pino, Alessandra; Mazzaglia, Agata; Ferrante, Margherita; Conti, Gea Oliveri; Caggia, Cinzia

    2018-05-01

    This work investigates the effects of different combinations of selected lactic acid bacteria strains on Lactobacillus species occurrence, on safety and on sensory traits of natural green table olives, produced at large factory scale. Olives belonging to Nocellara Etnea cv were processed in a 6% NaCl brine and inoculated with six different bacterial cultures, using selected strains belonging to Lactobacillus plantarum, Lactobacillus paracasei and Lactobacillus pentosus species. The fermentation process was strongly influenced by the added starters and the identification of lactic acid bacteria isolated throughout the process confirms that L. pentosus dominated all fermentations, followed by L. plantarum, whereas L. casei was never detected. Pathogens were never found, while histamine and tyrosine were detected in control and in two experimental samples. The samples with the lowest final pH values showed a safer profile and the most appreciated sensory traits. The present study highlights that selected starters promote prevalence of L. pentosus over the autochthonous microbiota throughout the whole process of Nocellara Etnea olives. Copyright © 2018. Published by Elsevier Ltd.

  17. Evolution and perspectives of cultivar identification and traceability from tree to oil and table olives by means of DNA markers.

    PubMed

    Pasqualone, Antonella; Montemurro, Cinzia; di Rienzo, Valentina; Summo, Carmine; Paradiso, Vito Michele; Caponio, Francesco

    2016-08-01

    In recent years, an increasing number of typicality marks has been awarded to high-quality olive oils produced from local cultivars. In this case, quality control requires effective varietal checks of the starting materials. Moreover, accurate cultivar identification is essential in vegetative-propagated plants distributed by nurseries and is a pre-requisite to register new cultivars. Food genomics provides many tools for cultivar identification and traceability from tree to oil and table olives. The results of the application of different classes of DNA markers to olive with the purpose of checking cultivar identity and variability of plant material are extensively discussed in this review, with special regard to repeatability issues and polymorphism degree. The characterization of olive germplasm from all countries of the Mediterranean basin and from less studied geographical areas is described and innovative high-throughput molecular tools to manage reference collections are reviewed. Then the transferability of DNA markers to processed products - virgin olive oils and table olives - is overviewed to point out strengths and weaknesses, with special regard to (i) the influence of processing steps and storage time on the quantity and quality of residual DNA, (ii) recent advances to overcome the bottleneck of DNA extraction from processed products, (iii) factors affecting whole comparability of DNA profiles between fresh plant materials and end-products, (iv) drawbacks in the analysis of multi-cultivar versus single-cultivar end-products and (v) the potential of quantitative polymerase chain reaction (PCR)-based techniques. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. 7 CFR 932.9 - Packaged olives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... including the three distinct types, ripe, green ripe, and tree-ripened; or (b) olives, packed in brine, and which have been fermented and cured, otherwise known as green olives. ...

  19. 7 CFR 932.9 - Packaged olives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... including the three distinct types, ripe, green ripe, and tree-ripened; or (b) olives, packed in brine, and which have been fermented and cured, otherwise known as green olives. ...

  20. Candida olivae sp. nov., a novel yeast species from 'Greek-style' black olive fermentation.

    PubMed

    Nisiotou, Aspasia A; Panagou, Efstathios Z; Nychas, George-John E

    2010-05-01

    Two yeast strains (FMCC Y-1(T) and FMCC Y-2) were recovered during a survey of the yeast biota associated with fermenting black olives, collected from an olive tree (Olea europaea L. cv. 'Conservolea') orchard in Central Greece. Phylogenetic analysis based on rRNA gene sequences (18S, 26S, and 5.8S-ITS) indicated that the two strains represent a separate species within the Candida membranifaciens clade, in close relation to Candida blattariae NRRL Y-27703(T). Electrophoretic karyotyping and physiological analysis support the affiliation of the two strains to a novel species as Candida olivae sp. nov. The novel strains are conspecific with two Candida sp. strains previously isolated from the Mid-Atlantic Ridge hydrothermal fields [Gadanho & Sampaio (2005). Microb Ecol 50, 408-417], indicating that Candida olivae sp. nov. may occupy diverse ecological niches. FMCC Y-1(T) (=CBS 11171(T) =ATCC MYA-4568(T)) is the type strain.

  1. In silico genomic insights into aspects of food safety and defense mechanisms of a potentially probiotic Lactobacillus pentosus MP-10 isolated from brines of naturally fermented Aloreña green table olives.

    PubMed

    Abriouel, Hikmate; Pérez Montoro, Beatriz; Casado Muñoz, María Del Carmen; Knapp, Charles W; Gálvez, Antonio; Benomar, Nabil

    2017-01-01

    Lactobacillus pentosus MP-10, isolated from brines of naturally fermented Aloreña green table olives, exhibited high probiotic potential. The genome sequence of L. pentosus MP-10 is currently considered the largest genome among lactobacilli, highlighting the microorganism's ecological flexibility and adaptability. Here, we analyzed the complete genome sequence for the presence of acquired antibiotic resistance and virulence determinants to understand their defense mechanisms and explore its putative safety in food. The annotated genome sequence revealed evidence of diverse mobile genetic elements, such as prophages, transposases and transposons involved in their adaptation to brine-associated niches. In-silico analysis of L. pentosus MP-10 genome sequence identified a CRISPR (clustered regularly interspaced short palindromic repeats)/cas (CRISPR-associated protein genes) as an immune system against foreign genetic elements, which consisted of six arrays (4-12 repeats) and eleven predicted cas genes [CRISPR1 and CRISPR2 consisted of 3 (Type II-C) and 8 (Type I) genes] with high similarity to L. pentosus KCA1. Bioinformatic analyses revealed L. pentosus MP-10 to be absent of acquired antibiotic resistance genes, and most resistance genes were related to efflux mechanisms; no virulence determinants were found in the genome. This suggests that L. pentosus MP-10 could be considered safe and with high-adaptation potential, which could facilitate its application as a starter culture and probiotic in food preparations.

  2. Stability of color in Spanish-style green table olives pasteurized and stored in plastic containers.

    PubMed

    Sánchez, Antonio Higinio; López-López, Antonio; Beato, Víctor Manuel; de Castro, Antonio; Montaño, Alfredo

    2017-08-01

    There is an increasing interest in the use of pasteurizable plastic packaging by the olive industry. In order to investigate the change from traditional glass or varnished can containers to plastic packaging, the proper plastic material that is compatible with fermented olives while maintaining color quality during pasteurization treatment and storage must be selected. This work is focused on color stability in two distinct pasteurizable plastic containers with different oxygen permeability. In PET + MDPE/EVOH (polyethylene terephthalate + medium-density polyethylene/ethylene vinyl alcohol) pouches, pasteurization provoked severe browning which drastically decreased their color shelf life (<6 weeks). However, this browning did not occur in the unpasteurized product without preservatives owing to the presence of microorganisms. In AlOx-coated PET + MDPE (aluminum oxide coating on polyethylene terephthalate + medium-density polyethylene) pouches, color changes were small or negligible throughout storage, especially if ascorbic acid was added to the packing solution (shelf life > 6.5 months). The plastic material had a significant effect on the retention of color of the pasteurized product. The use of AlOx-coated PET + MDPE pouches could be an alternative to traditional packaging for the pasteurization and storage of Spanish-style green olives from a color quality standpoint. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618.

    PubMed

    Mateo, Soledad; Puentes, Juan G; Moya, Alberto J; Sánchez, Sebastián

    2015-08-01

    Olive tree pruning biomass has been pretreated with pressurized steam, hydrolysed with hydrochloric acid, conditioned and afterwards fermented using the non-traditional yeast Candida tropicalis NBRC 0618. The main aim of this study was to analyse the influence of acid concentration on the hydrolysis process and its effect on the subsequent fermentation to produce ethanol and xylitol. From the results, it could be deduced that both total sugars and d-glucose recovery were enhanced by increasing the acid concentration tested; almost the whole hemicellulose fraction was hydrolysed when 3.77% was used. It has been observed a sequential production first of ethanol, from d-glucose, and then xylitol from d-xylose. The overall ethanol and xylitol yields ranged from 0.27 to 0.38kgkg(-1), and 0.12 to 0.23kgkg(-1) respectively, reaching the highest values in the fermentation of the hydrolysates obtained with hydrochloric acid 2.61% and 1.11%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. In silico genomic insights into aspects of food safety and defense mechanisms of a potentially probiotic Lactobacillus pentosus MP-10 isolated from brines of naturally fermented Aloreña green table olives

    PubMed Central

    Pérez Montoro, Beatriz; Casado Muñoz, María del Carmen; Knapp, Charles W.; Gálvez, Antonio; Benomar, Nabil

    2017-01-01

    Lactobacillus pentosus MP-10, isolated from brines of naturally fermented Aloreña green table olives, exhibited high probiotic potential. The genome sequence of L. pentosus MP-10 is currently considered the largest genome among lactobacilli, highlighting the microorganism’s ecological flexibility and adaptability. Here, we analyzed the complete genome sequence for the presence of acquired antibiotic resistance and virulence determinants to understand their defense mechanisms and explore its putative safety in food. The annotated genome sequence revealed evidence of diverse mobile genetic elements, such as prophages, transposases and transposons involved in their adaptation to brine-associated niches. In-silico analysis of L. pentosus MP-10 genome sequence identified a CRISPR (clustered regularly interspaced short palindromic repeats)/cas (CRISPR-associated protein genes) as an immune system against foreign genetic elements, which consisted of six arrays (4–12 repeats) and eleven predicted cas genes [CRISPR1 and CRISPR2 consisted of 3 (Type II-C) and 8 (Type I) genes] with high similarity to L. pentosus KCA1. Bioinformatic analyses revealed L. pentosus MP-10 to be absent of acquired antibiotic resistance genes, and most resistance genes were related to efflux mechanisms; no virulence determinants were found in the genome. This suggests that L. pentosus MP-10 could be considered safe and with high-adaptation potential, which could facilitate its application as a starter culture and probiotic in food preparations. PMID:28651019

  5. NaOH-free debittering of table olives using power ultrasound.

    PubMed

    Habibi, Maryam; Golmakani, Mohammad-Taghi; Farahnaky, Asgar; Mesbahi, Gholamreza; Majzoobi, Mahsa

    2016-02-01

    A major drawback to the extension of NaOH-free olive debittering is its lengthy processing. In this research, the power ultrasound efficacy was investigated in a laboratory scale to accelerate this process. Olive fruits were sonicated in water or brine (15% NaCl). The effects of ultrasound-assisted debittering (UAD) were evaluated on olives physicochemical and textural properties in comparison with conventional debittering (CD). In UAD, however, the removal rate of phenolic compounds, which cause olives natural bitterness, increased significantly and as a result, the processing time decreased by 37.8% and 38.6% when debittering was done in water and brine, respectively. The chemical compositions, fatty acids profile, total color differences, Firmness and other textural parameters of UAD-treated samples remained unchanged and their antioxidant activity was significantly higher in comparison with CD-treated samples. Remarkably, UAD was able to speed up and promote NaOH-free olive debittering, without causing any undesirable changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Measurement of kinaesthetic properties of in-brine table olives by microstructure of fracture surface, sensory evaluation and texture profile analysis (TPA).

    PubMed

    Lanza, Barbara; Amoruso, Filomena

    2018-02-02

    A series of transformations occur in olive fruit both during ripening and processing. In particular, significant changes in the microstructural composition affect the flavour, texture, nutrients and overall quality of the end product. Texture is one of the sensory quality attributes of greatest importance to consumer acceptance. In the present work, kinaesthetic properties of in-brine table olives of three cultivars of Olea europaea L. (Bella di Cerignola, Peranzana and Taggiasca cvs) were provided by several measurements of olive tissue texture by sensory, rheological and microstructural approaches. Olives at the same stage of ripening and processed with the same technology, but belonging to different cultivars, showed significant differences at microstructural, sensorial and rheological levels. To describe the relationship between the three variables, multiple regression analysis and principal component analysis were chosen. Differences in microstructure were closely related both in terms of hardness measured by texture profile analysis and hardness measured by sensory analysis. The information provided could be an aid for screening and training of a sensory panel. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  7. The activity of healthy olive microbiota during virgin olive oil extraction influences oil chemical composition.

    PubMed

    Vichi, Stefania; Romero, Agustí; Tous, Joan; Caixach, Josep

    2011-05-11

    The activity of olive microbiota during the oil extraction process could be a critical point for virgin olive oil quality. With the aim to evaluate the role of microbiological activity during the virgin olive oil extraction process, just before oil extraction freshly collected healthy olive fruits were immersed in contaminated water from an olive mill washing tank. The oils extracted were then compared with control samples from the same batch of hand-picked olives. The presence of lactic and enteric bacteria, fungi and Pseudomonas on the surface of olives was proved to be much higher in washed than in control olives, with increments in cfu/g between 2 and 3 orders of magnitude. The biogenesis of volatile compounds and the extraction of olive polyphenols and pigments were significantly influenced by the microbiological profile of olives even without any previous storage. In most cases the effect of olive microbiota on oil characteristics was greater than the effect exerted by malaxation time and temperature. Oils from microbiologically contaminated olives showed lower amounts of C5 volatiles and higher levels of C6 volatiles from the lipoxygenase pathway and some fermentation products. On the other hand, a decrease of chlorophylls, pheophytins, xanthophylls and the ratio chlorophyll/pheophytin was observed in these oils. Likewise, the microbiological activity during oil extraction led to significantly lower amounts of polyphenols, in particular of oleuropein derivatives. These differences in olive oil chemical composition were reflected in oil sensory characteristics by the decrease of the green and bitter attributes and by the modification of the oil color chromatic ordinates.

  8. Sensory properties and consumer acceptance of imported and domestic sliced black ripe olives.

    PubMed

    Lee, Soh Min; Kitsawad, Kamolnate; Sigal, Abdulkadir; Flynn, Dan; Guinard, Jean-Xavier

    2012-12-01

    Table olives are healthy and nutritious products with high contents of monounsaturated fatty acids, phenolics, vitamins, minerals, and fiber. Understanding sensory cues affecting consumer preferences would enable the increase of olive consumption. The objectives of this study were to characterize the sensory properties of commercial sliced black ripe olives from different regions, including California, Egypt, Morocco, Portugal, and Spain, and to examine the preferences of California consumers for sliced black ripe olives. Sensory profiles and preferences for 20 sliced olive samples were determined using descriptive analysis with a trained panel and a consumer test with 104 users and likers of table olives. Aroma and flavor characteristics separated the olives according to country of origin, and were the main determinants of consumer preferences for sliced olives, even though the biggest differences among the samples were in appearance and texture. Total of 2 consumer segments were identified with 51 and 53 consumers, respectively, that both liked Californian products, but differed in the olives they disliked. Negative drivers of liking for both segments included alcohol, oak barrel, and artificial fruity/floral characteristics; however, consumers from Cluster 1 were further negatively influenced by rancid, gassy, and bitter characteristics. This study stresses the need for sound and appealing flavor quality for table olives to gain wider acceptance among U.S. consumers. © 2012 Institute of Food Technologists®

  9. The historical development and nutritional importance of olive and olive oil constituted an important part of the Mediterranean diet.

    PubMed

    Uylaşer, Vildan; Yildiz, Gökçen

    2014-01-01

    The olive tree (Olea europaea) is widely cultivated for the production of both oil and table olives and very significant because of its economic value. Olive and olive oil, a traditional food product with thousands of years of history, are the essential components of the Mediterranean diet and are largely consumed in the world. Beside of their economical contribution to national economy, these are an important food in terms of their nutritional value. Olive and olive oil may have a role in the prevention of coronary heart disease and certain cancers because of their high levels of monosaturated fatty acids and phenolic compounds. In addition, olives (Olea europaea L.) and olive oils provide a rich source of natural antioxidants. These make them both fairly stable against auto-oxidation and suitable for human health. The aim of this paper is to define the historical development and nutritional importance of olive and olive oil constituted an important part of the Mediterranean diet.

  10. In vitro selection and characterization of new probiotic candidates from table olive microbiota.

    PubMed

    Botta, Cristian; Langerholc, Tomaz; Cencič, Avrelija; Cocolin, Luca

    2014-01-01

    To date, only a few studies have investigated the complex microbiota of table olives in order to identify new probiotic microorganisms, even though this food matrix has been shown to be a suitable source of beneficial lactic acid bacteria (LAB). Two hundred and thirty eight LAB, belonging to Lactobacillus plantarum, Lactobacillus pentosus and Leuconostoc mesenteroides species, and isolated from Nocellara Etnea table olives, have been screened in this survey through an in vitro approach. A simulation of transit tolerance in the upper human gastrointestinal tract, together with autoaggregation and hydrophobicity, have been decisive in reducing the number of LAB to 17 promising probiotics. None of the selected strains showed intrinsic resistances towards a broad spectrum of antibiotics and were therefore accurately characterized on an undifferentiated and 3D functional model of the human intestinal tract made up of H4-1 epithelial cells. As far as the potential colonization of the intestinal tract is concerned, a high adhesion ratio was observed for Lb. plantarum O2T60C (over 9%) when tested in the 3D functional model, which closely mimics real intestinal conditions. The stimulation properties towards the epithelial barrier integrity and the in vitro inhibition of L. monocytogenes adhesion and invasion have also been assessed. Lb. plantarum S1T10A and S11T3E enhanced trans-epithelial electrical resistance (TEER) and therefore the integrity of the polarized epithelium in the 3D model. Moreover, S11T3E showed the ability to inhibit L. monocytogenes invasion in the undifferentiated epithelial model. The reduction in L. monocytogenes infection, together with the potential enhancement of barrier integrity and an adhesion ratio that was above the average in the 3D functional model (6.9%) would seem to suggest the Lb. plantarum S11T3E strain as the most interesting candidate for possible in vivo animal and human trials.

  11. Effects of hurdle technology on Monascus ruber growth in green table olives: a response surface methodology approach.

    PubMed

    Cappato, Leandro P; Martins, Amanda M Dias; Ferreira, Elisa H R; Rosenthal, Amauri

    An ascomycetes fungus was isolated from brine storage of green olives of the Arauco cultivar imported from Argentina and identified as Monascus ruber. The combined effects of different concentrations of sodium chloride (3.5-5.5%), sodium benzoate (0-0.1%), potassium sorbate (0-0.05%) and temperature (30-40°C) were investigated on the growth of M. ruber in the brine of stored table olives using a response surface methodology. A full 2 4 factorial design with three central points was first used in order to screen for the important factors (significant and marginally significant factors) and then a Face-Centered Central Composite Design was applied. Both preservatives prevented fungal spoilage, but potassium sorbate was the most efficient to control the fungi growth. The combined use of these preservatives did not show a synergistic effect. The results showed that the use of these salts may not be sufficient to prevent fungal spoilage and the greatest fungal growth was recorded at 30°C. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. Integrated use of residues from olive mill and winery for lipase production by solid state fermentation with Aspergillus sp.

    PubMed

    Salgado, José Manuel; Abrunhosa, Luís; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2014-02-01

    Two-phase olive mill waste (TPOMW) is presently the major waste produced by the olive mill industry. This waste has potential to be used as substrate for solid state fermentation (SSF) despite of its high concentration of phenolic compounds and low nitrogen content. In this work, it is demonstrated that mixtures of TPOMW with winery wastes support the production of lipase by Aspergillus spp. By agar plate screening, Aspergillus niger MUM 03.58, Aspergillus ibericus MUM 03.49, and Aspergillus uvarum MUM 08.01 were chosen for lipase production by SSF. Plackett-Burman experimental design was employed to evaluate the effect of substrate composition and time on lipase production. The highest amounts of lipase were produced by A. ibericus on a mixture of TPOMW, urea, and exhausted grape mark (EGM). Urea was found to be the most influent factor for the lipase production. Further optimization of lipase production by A. ibericus using a full factorial design (3(2)) conducted to optimal conditions of substrate composition (0.073 g urea/g and 25 % of EGM) achieve 18.67 U/g of lipolytic activity.

  13. Ethanol production from lignocellulosic byproducts of olive oil extraction.

    PubMed

    Ballesteros, I; Oliva, J M; Saez, F; Ballesteros, M

    2001-01-01

    The recent implementation of a new two-step centrifugation process for extracting olive oil in Spain has substantially reduced water consumption, thereby eliminating oil mill wastewater. However, a new high sugar content residue is still generated. In this work the two fractions present in the residue (olive pulp and fragmented stones) were assayed as substrate for ethanol production by the simultaneous saccharification and fermentation (SSF) process. Pretreatment of fragmented olive stones by sulfuric acid-catalyzed steam explosion was the most effective treatment for increasing enzymatic digestibility; however, a pretreatment step was not necessary to bioconvert the olive pulp into ethanol. The olive pulp and fragmented olive stones were tested by the SSF process using a fed-batch procedure. By adding the pulp three times at 24-h intervals, 76% of the theoretical SSF yield was obtained. Experiments with fed-batch pretreated olive stones provided SSF yields significantly lower than those obtained at standard SSF procedure. The preferred SSF conditions to obtain ethanol from olives stones (61% of theoretical yield) were 10% substrate and addition of cellulases at 15 filter paper units/g of substrate.

  14. Optimization of lipase production by solid-state fermentation of olive pomace: from flask to laboratory-scale packed-bed bioreactor.

    PubMed

    Oliveira, Felisbela; Salgado, José Manuel; Abrunhosa, Luís; Pérez-Rodríguez, Noelia; Domínguez, José M; Venâncio, Armando; Belo, Isabel

    2017-07-01

    Lipases are versatile catalysts with many applications and can be produced by solid-state fermentation (SSF) using agro-industrial wastes. The aim of this work was to maximize the production of Aspergillus ibericus lipase under SSF of olive pomace (OP) and wheat bran (WB), evaluating the effect on lipase production of C/N ratio, lipids, phenols, content of sugars of substrates and nitrogen source addition. Moreover, the implementation of the SSF process in a packed-bed bioreactor and the improvement of lipase extraction conditions were assessed. Low C/N ratios and high content of lipids led to maximum lipase production. Optimum SSF conditions were achieved with a C/N mass ratio of 25.2 and 10.2% (w/w) lipids in substrate, by the mixture of OP:WB (1:1) and supplemented with 1.33% (w/w) (NH 4 ) 2 SO 4 . Studies in a packed-bed bioreactor showed that the lower aeration rates tested prevented substrate dehydration, improving lipase production. In this work, the important role of Triton X-100 on lipase extraction from the fermented solid substrate has been shown. A final lipase activity of 223 ± 5 U g -1 (dry basis) was obtained after 7 days of fermentation.

  15. Production of laccase from Trametes versicolor by solid-state fermentation using olive leaves as a phenolic substrate.

    PubMed

    Aydinoğlu, Tuğba; Sargin, Sayit

    2013-02-01

    The aim of the present study was to investigate whether olive leaves were feasible as a substrate for laccase production by the white-rot fungus Trametes versicolor FPRL 28A INI under solid-state fermentation conditions. Different experiments were conducted to select the variables that allow obtaining high levels of laccase activity. In particular, the effects of the initial moisture content, substrate particle size, supplementation with inorganic and organic nitrogen sources were evaluated. Highest laccase activity (276.62 ± 25.67 U/g dry substrate) was achieved with 80 % initial moisture content and 1.4-1.6 mm particle size of the substrate supplemented with yeast extract (1 % (w/w) nitrogen). Such a high activity was obtained without any addition of inducers.

  16. The effect of ZnCl2 on green Spanish-style table olive packaging, a presentation style dependent behaviour.

    PubMed

    Bautista-Gallego, Joaquín; Arroyo-López, Francisco Noé; Romero-Gil, Verónica; Rodríguez-Gómez, Francisco; Garrido-Fernández, Antonio

    2015-06-01

    Zinc chloride has been used previously as a preservative in directly brined olives with promising results. However, this is the first time that the effects of ZnCl2 addition (0-1 g L(-1) ) on green Spanish-style table olive (cv. Manzanilla) packaging has been studied. The presence of ZnCl2 affected the physico-chemical characteristics of the products; the presence of the Zn led to lower pH values (particularly just after packaging) and titratable and combined acidity values than the control but did not produce clear trends in the colour parameters. No Enterobacteriaceae were found in any of the treatments evaluated. At the highest ZnCl2 concentrations, the lactic acid bacteria were inhibited while, unexpectedly, its presence showed a lower effect than potassium sorbate against the yeast population. Regardless of the use of potassium sorbate or ZnCl2 , the packages had a reduced microbial biodiversity because only Lactobacillus pentosus and Pichia galeiformis were found at the end of the shelf life. With respect to organoleptic characteristics, the presentations containing ZnCl2 were not differentiated from the traditional product. Zinc chloride was less efficient than potassium sorbate as a yeast inhibitor in green Spanish-style olives, showing clear presentation style dependent behaviour for this property. Its presence produced significant changes in chemical parameters but scarcely affected colour or sensory characteristics. © 2014 Society of Chemical Industry.

  17. Potential of agroindustrial waste from olive oil industry for fuel ethanol production.

    PubMed

    Georgieva, Tania I; Ahring, Birgitte K

    2007-12-01

    Olive pulp (OP) is a highly polluting semi-solid residue generated from the two-stage extraction processing of olives and is a major environmental issue in Southern Europe, where 80% of the world olive oil is produced. At present, OP is either discarded to the environment or combusted with low calorific value. In this work, utilization of OP as a potential substrate for production of bioethanol was studied. Enzymatic hydrolysis and subsequent glucose fermentation by baker's yeast were evaluated for OP from 10% to 30% dry matter (i.e., undiluted). Enzymatic hydrolysis resulted in an increase in glucose concentration by 75%, giving final glucose yields near 70%. Fermentation of undiluted OP hydrolysate (OPH) resulted in the maximum ethanol produced (11.2 g/L) with productivity of 2.1 g/L/h. Ethanol yields were similar for all tested OPH concentrations and were in the range of 0.49-0.51 g/g. Results showed that yeast could effectively ferment OPH even without nutrient addition, revealing the tolerance of yeast to OP toxicity. Because of low xylan (12.4%) and glucan (16%) content in OP, this specific type of OP is not a suitable material for producing only ethanol and thus, bioethanol production should be integrated with production of other value-added products.

  18. Control of household mycoflora in fermented sausages using phenolic fractions from olive mill wastewaters.

    PubMed

    Chaves-López, Clemencia; Serio, Annalisa; Mazzarrino, Giovanni; Martuscelli, Maria; Scarpone, Emidio; Paparella, Antonello

    2015-08-17

    Biopreservation using polyphenols represents an alternative to chemical molecules for improving food safety. In this work, we evaluated the antifungal activity of polyphenols extracted from olive mill wastewater (OMWWP) to reduce or eliminate the growth of undesired fungi on the surface of dry fermented sausages. Antagonism against Penicillium expansum DSMZ 1282, Penicillium verrucosum DSMZ 12639, Penicillium nalgiovense MS01, Aspergillus ochraceus DSMZ 63304, Cladosporium cladosporioides MS12, and Eurotium amstelodami MS10 was evident at 1.25% OMWWP in vitro, whereas in situ application of 2.5% OMWWP strongly reduced undesired household fungal species such as C. cladosporioides, Penicillium aurantiogriseum, Penicillium commune, and Eurotium amstelodami, while a moderate antagonistic activity towards P. nalgiovense and Penicillium chrysogenum was observed at the same concentration. OMWWP at the concentrations used in this study demonstrated species-dependent antifungal activity by inhibiting both fungal growth and spore germination. Therefore, OMWWP can be regarded as a potential alternative to synthetic antifungal compounds to preserve the product from both oxidation and undesired fungi, without changing the sensory characteristics. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Assessment of the antioxidant and antibacterial activities of different olive processing wastewaters

    PubMed Central

    Tan, Shiau Pin; El-Abbassi, Abdelilah; Kiai, Hajar; Hafidi, Abdellatif; O’Donovan, Orla; McLoughlin, Peter

    2017-01-01

    Olive processing wastewaters (OPW), namely olive mill wastewater (OMW) and table-olive wastewaters (TOW) were evaluated for their antibacterial activity against five Gram-positive and two Gram-negative bacteria using the standard disc diffusion and thin layer chromatography (TLC)-bioautography assays. Disc diffusion screening and bioautography of OMW were compared to the phenolic extracts of table-olive brines. Positive activity against S. aureus was demonstrated. The optimization of chromatographic separation revealed that hexane/acetone in the ratio of 4:6 was the most effective for phenolic compounds separation. A HPLC-MS analysis was performed showing that only two compounds, hydroxytyrosol and tyrosol, were the predominant phenolic compounds in all OPW. The phenolic extract of OMW generated by a semi-modern process showed the highest free radical-scavenging activity (DPPH assay) compared to the other phenolic extracts. It is apparent from the present study that OPW are a rich source of antioxidants suitable for use in food, cosmetic or pharmaceutical applications. PMID:28873097

  20. Detoxification of Olive Mill Wastewater and Bioconversion of Olive Crop Residues into High-Value-Added Biomass by the Choice Edible Mushroom Hericium erinaceus.

    PubMed

    Koutrotsios, Georgios; Larou, Evangelia; Mountzouris, Konstantinos C; Zervakis, Georgios I

    2016-09-01

    Environmentally acceptable disposal of olive cultivation residues (e.g., olive prunings; olive pruning residues (OLPR)) and olive mill wastes is of paramount importance since they are generated in huge quantities within a short time. Moreover, olive mill wastewater (OMW) or sludge-like effluents ("alperujo"; two-phase olive mill waste (TPOMW)) are highly biotoxic. Hericium erinaceus is a white-rot fungus which produces choice edible mushrooms on substrates rich in lignocellulosics, and its suitability for the treatment of olive by-products was examined for the first time. Fungal growth resulted in a notable reduction of OMW's pollution parameters (i.e., 65 % decolorization, 47 % total phenolic reduction, and 52 % phytotoxicity decrease) and correlated with laccase and manganese peroxidase activities. Solid-state fermentation of various mixtures of OLPR, TPOMW, and beech sawdust (control) by H. erinaceus qualified OLPR in subsequent cultivation experiments, where it exhibited high mushroom yields and biological efficiency (31 %). Analyses of proximate composition and bioactive compound content revealed that mushrooms deriving from OLPR substrates showed significantly higher crude fat, total glucan, β-glucan, total phenolics, and ferric-reducing antioxidant potential values than the control. H. erinaceus demonstrated the potential to detoxify OMW and bioconvert OLPR into high-quality biomass, and hence, this fungus could be successfully exploited for the treatment of such by-products.

  1. Hydrolysis of Oleuropein by Lactobacillus plantarum Strains Associated with Olive Fermentation

    PubMed Central

    Ciafardini, G.; Marsilio, V.; Lanza, B.; Pozzi, N.

    1994-01-01

    Oleuropein (Chemical Abstracts Service registry number 32619-42-4), a bitter-tasting secoiridoid glucoside commonly found in leaves of the olive tree as well as in olives (Olea europaea L.), was found to be hydrolyzed by the β-glucosidase (EC 3.2.1.2.1) produced by oleuropeinolytic Lactobacillus plantarum-type strains. Three strains, designated B17, B20, and B21, were isolated from the brine of naturally ripe olives not treated with alkali. These strains were rod-shaped forms, grown at a pH 3.5 limit, and tolerated 1% oleuropein and 8% NaCl in the growth medium. The β-glucosidase produced hydrolyzed 5-bromo-4-chloro-3-indolyl-β-d-glucopy-ranoside as well as oleuropein. The presence of 2% glucose in the medium inhibited activity by 40 to 50%, depending on the bacterial strain. Chromatographic analysis of the trimethylsilyl derivatives of the products obtained after 7 days of incubation at 30°C of strain B21 showed all the hydrolysis products of oleuropein, i.e., aglycone, iridoid monoterpen, and 3,4-dihydroxyphenylethanol (hydroxytyrosol). Oleuropein and its aglycone after 21 days of incubation decreased to trace levels with the simultaneous increase in concentration of β-3,4-dihydroxyphenylethanol. Images PMID:16349442

  2. Hydrolysis of Oleuropein by Lactobacillus plantarum Strains Associated with Olive Fermentation.

    PubMed

    Ciafardini, G; Marsilio, V; Lanza, B; Pozzi, N

    1994-11-01

    Oleuropein (Chemical Abstracts Service registry number 32619-42-4), a bitter-tasting secoiridoid glucoside commonly found in leaves of the olive tree as well as in olives (Olea europaea L.), was found to be hydrolyzed by the beta-glucosidase (EC 3.2.1.2.1) produced by oleuropeinolytic Lactobacillus plantarum-type strains. Three strains, designated B17, B20, and B21, were isolated from the brine of naturally ripe olives not treated with alkali. These strains were rod-shaped forms, grown at a pH 3.5 limit, and tolerated 1% oleuropein and 8% NaCl in the growth medium. The beta-glucosidase produced hydrolyzed 5-bromo-4-chloro-3-indolyl-beta-d-glucopy-ranoside as well as oleuropein. The presence of 2% glucose in the medium inhibited activity by 40 to 50%, depending on the bacterial strain. Chromatographic analysis of the trimethylsilyl derivatives of the products obtained after 7 days of incubation at 30 degrees C of strain B21 showed all the hydrolysis products of oleuropein, i.e., aglycone, iridoid monoterpen, and 3,4-dihydroxyphenylethanol (hydroxytyrosol). Oleuropein and its aglycone after 21 days of incubation decreased to trace levels with the simultaneous increase in concentration of beta-3,4-dihydroxyphenylethanol.

  3. 40 CFR Table 4 to Subpart Cccc of... - Continuous Compliance With Emission Limitations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Yeast Pt. 63, Subpart CCCC, Table 4 Table 4 to Subpart CCCC of Part 63—Continuous Compliance With... fermenter producing yeast in a fermentation stage (last (Trade), second-to-last (First Generation), or third... the applicable maximum concentration. 2. Each fed-batch fermenter producing yeast in a fermentation...

  4. 40 CFR Table 4 to Subpart Cccc of... - Continuous Compliance With Emission Limitations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Yeast Pt. 63, Subpart CCCC, Table 4 Table 4 to Subpart CCCC of Part 63—Continuous Compliance With... fermenter producing yeast in a fermentation stage (last (Trade), second-to-last (First Generation), or third... the applicable maximum concentration. 2. Each fed-batch fermenter producing yeast in a fermentation...

  5. 40 CFR Table 4 to Subpart Cccc of... - Continuous Compliance With Emission Limitations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Yeast Pt. 63, Subpart CCCC, Table 4 Table 4 to Subpart CCCC of Part 63—Continuous Compliance With... fermenter producing yeast in a fermentation stage (last (Trade), second-to-last (First Generation), or third... the applicable maximum concentration. 2. Each fed-batch fermenter producing yeast in a fermentation...

  6. Utilization of agroindustrial residues for lipase production by solid-state fermentation

    PubMed Central

    Damaso, Mônica Caramez Triches; Passianoto, Moisés Augusto; de Freitas, Sidinéa Cordeiro; Freire, Denise Maria Guimarães; Lago, Regina Celi Araujo; Couri, Sonia

    2008-01-01

    The aim of this work was to produce lipases by solid-state fermentation (SSF) using, as substrate, agroindustrial residue supplemented with by-products from corn oil refining process or olive oil. For a group of ten fungi strains selected in the first steps, the lipase activity obtained by SSF varied from 7.7 to 58.6 U/g of dry substrate (gds). Among the evaluated strains, the Aspergillus niger mutant 11T53A14 was selected by presenting the best enzymatic production. For the fermentation tests, two substrates were also investigated: wheat bran and corn cob, both supplemented with olive oil. The best results were obtained with wheat bran. Additionally, three industrial by-products from corn oil refining (soapstock, stearin and fatty acids) were evaluated as substitutes to the olive oil in the function of lipases production inducer. Among them, soapstock and stearin were the best inducers, whereas fatty acids presented an inhibitor effect. The highest lipase activities using soapstock, stearin and fatty acids were 62.7 U/gds, 37.7 U/gds and 4.1 U/gds, respectively. PMID:24031288

  7. GC-MS olfactometric and LC-DAD-ESI-MS/MS characterization of key odorants and phenolic compounds in black dry-salted olives.

    PubMed

    Selli, Serkan; Kelebek, Hasim; Kesen, Songul; Sonmezdag, Ahmet Salih

    2018-02-01

    Olives are processed in different ways depending on consumption habits, which vary between countries. Different de-bittering methods affect the aroma and aroma-active compounds of table olives. This study focused on analyzing the aroma and aroma-active compounds of black dry-salted olives using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) techniques. Thirty-nine volatile compounds which they have a total concentration of 29 459 µg kg -1 , were determined. Aroma extract dilution analysis (AEDA) was used to determine key aroma compounds of table olives. Based on the flavor dilution (FD) factor, the most powerful aroma-active compounds in the sample were methyl-2-methyl butyrate (tropical, sweet; FD: 512) and (Z)-3-hexenol (green, flowery; FD: 256). Phenolic compounds in table olives were also analyzed by LC-DAD-ESI-MS/MS. A total of 20 main phenolic compounds were identified and the highest content of phenolic compound was luteolin-7-glucoside (306 mg kg -1 ), followed by verbascoside (271 mg kg -1 ), oleuropein (231 mg kg -1 ), and hydroxytyrosol (3,4-DHPEA) (221 mg kg -1 ). Alcohols, carboxylic acids, and lactones were qualitatively and quantitatively the dominant volatiles in black dry-salted olives. Results indicated that esters and alcohols were the major aroma-active compounds. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  8. Genetic Relationships Among Olive (Olea europaea L.) Cultivars Native to Turkey.

    PubMed

    Sakar, Ebru; Unver, Hulya; Bakir, Melike; Ulas, Mehmet; Sakar, Zeynep Mujde

    2016-08-01

    Olive is a widely cultivated, mainly in the Mediterranean region, and economically important fruit species used as both olive oil and table olive consumption. In Turkey, more than 50 olive cultivars have been authorized for commercial plantations, representing the developmental base for the olive industry. The aim of the present study was to identify genetic relationships among the most widely grown 27 olive cultivars in Turkey, using microsatellite or simple sequence repeat markers. Nine well-known foreign olive cultivars from different countries are also included in the study to compare the Turkish cultivars. To determine genetic relationship and diversity, 10 SSR loci (DCA3, DCA9, DCA15, DCA18, UDO4, UDO9, UDO11, UDO12, UDO24, UDO28) were used. Jaccard's similarity coefficient and the UPGMA method for cluster analysis were performed using the software NTSYSpc. The results showed that the number of alleles per locus ranging from 4 (UDO4, UDO9, UDO11, UDO12, DCA15) to 12 (DCA9) presenting high polymorphism. There were no identical cultivars. High similarity was shown by cultivars Maviand Adana topağı (0.754). The most genetically divergent cultivars, Domat-Meski (0.240) and Domat-NizipYağlık (0.245), were also identified.

  9. 40 CFR Table 3 to Subpart Cccc of... - Initial Compliance With Emission Limitations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Yeast Pt. 63, Subpart CCCC, Table 3 Table 3 to Subpart CCCC of Part 63—Initial Compliance With Emission... demonstrated initial compliance if . . . 1. Each fed-batch fermenter producing yeast in a fermentation stage... yeast in a fermentation stage (last (Trade), second-to-last (First Generation), or third-to-last (Stock...

  10. 40 CFR Table 3 to Subpart Cccc of... - Initial Compliance With Emission Limitations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Yeast Pt. 63, Subpart CCCC, Table 3 Table 3 to Subpart CCCC of Part 63—Initial Compliance With Emission... demonstrated initial compliance if . . . 1. Each fed-batch fermenter producing yeast in a fermentation stage... yeast in a fermentation stage (last (Trade), second-to-last (First Generation), or third-to-last (Stock...

  11. 40 CFR Table 3 to Subpart Cccc of... - Initial Compliance With Emission Limitations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Yeast Pt. 63, Subpart CCCC, Table 3 Table 3 to Subpart CCCC of Part 63—Initial Compliance With Emission... demonstrated initial compliance if . . . 1. Each fed-batch fermenter producing yeast in a fermentation stage... yeast in a fermentation stage (last (Trade), second-to-last (First Generation), or third-to-last (Stock...

  12. Degradation kinetics of the antioxidant additive ascorbic acid in packed table olives during storage at different temperatures.

    PubMed

    Montaño, A; Casado, F J; Rejano, L; Sanchez, A H; de Castro, A

    2006-03-22

    The kinetics of ascorbic acid (AA) loss during storage of packed table olives with two different levels of added AA was investigated. Three selected storage temperatures were assayed: 10 degrees C, ambient (20-24 degrees C), and 40 degrees C. The study was carried out in both pasteurized and unpasteurized product. The effect of pasteurization treatment alone on added AA was not significant. In the pasteurized product, in general AA degraded following a first-order kinetics. The activation energy calculated by using the Arrhenius model averaged 9 kcal/mol. For each storage temperature, the increase in initial AA concentration significantly decreased the AA degradation rate. In the unpasteurized product, AA was not detected after 20 days in samples stored at room temperature and AA degradation followed zero-order kinetics at 10 degrees C, whereas at 40 degrees C a second-order reaction showed the best fit. In both pasteurized and unpasteurized product, the low level of initial dehydroascorbic acid disappeared during storage. Furfural appeared to be formed during storage, mainly at 40 degrees C, following zero-order kinetics.

  13. Acephate and buprofezin residues in olives and olive oil.

    PubMed

    Cabras, P; Angioni, A; Garau, V L; Pirisi, F M; Cabitza, F; Pala, M

    2000-10-01

    Field trials were carried out to study the persistence of acephate and buprofezin on olives. Two cultivars, pizz'e carroga and pendolino, with very large and small fruits respectively were used. After treatment, no difference was found between the two pesticide deposits on the olives. The disappearance rates, calculated as pseudo first order kinetics, were similar for both pesticides (on average 12 days). Methamidophos, the acephate metabolite, was always present on all olives, and in some pendolino samples it showed higher residues than the maximum residue limit (MRL). During washing, the first step of olive processing, the residue level of both pesticides on the olives did not decrease. After processing of the olives into oil, no residues of acephate or methamidophos were found in the olive oil, while the residues of buprofezin were on average four times higher than on olives.

  14. Infrared machine vision system for the automatic detection of olive fruit quality.

    PubMed

    Guzmán, Elena; Baeten, Vincent; Pierna, Juan Antonio Fernández; García-Mesa, José A

    2013-11-15

    External quality is an important factor in the extraction of olive oil and the marketing of olive fruits. The appearance and presence of external damage are factors that influence the quality of the oil extracted and the perception of consumers, determining the level of acceptance prior to purchase in the case of table olives. The aim of this paper is to report on artificial vision techniques developed for the online estimation of olive quality and to assess the effectiveness of these techniques in evaluating quality based on detecting external defects. This method of classifying olives according to the presence of defects is based on an infrared (IR) vision system. Images of defects were acquired using a digital monochrome camera with band-pass filters on near-infrared (NIR). The original images were processed using segmentation algorithms, edge detection and pixel value intensity to classify the whole fruit. The detection of the defect involved a pixel classification procedure based on nonparametric models of the healthy and defective areas of olives. Classification tests were performed on olives to assess the effectiveness of the proposed method. This research showed that the IR vision system is a useful technology for the automatic assessment of olives that has the potential for use in offline inspection and for online sorting for defects and the presence of surface damage, easily distinguishing those that do not meet minimum quality requirements. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  15. Genetic Biodiversity of Italian Olives (Olea europaea) Germplasm Analyzed by SSR Markers

    PubMed Central

    Vendramin, Giuseppe Giovanni; Chiappetta, Adriana

    2014-01-01

    The olive is an important fruit species cultivated for oil and table olives in Italy and the Mediterranean basin. The conservation of cultivated plants in ex situ collections is essential for the optimal management and use of their genetic resources. The largest ex situ olive germplasm collection consists of approximately 500 Italian olive varieties and corresponding to 85% of the total Italian olive germplasm is maintained at the Consiglio per la Ricerca e sperimentazione per l'Agricoltura, Centro di Ricerca per l'Olivicoltura e l'Industria Olearia (CRA-OLI), in Italy. In this work, eleven preselected nuclear microsatellite markers were used to assess genetic diversity, population structure, and gene flows with the aim of assembling a core collection. The dendrogram obtained utilizing the unweighted pair group method highlights the presence of homonymy and synonymy in olive tree datasets analyzed in this study. 439 different unique genotype profiles were obtained with this combination of 11 loci nSSR, representing 89.8% of the varieties analyzed. The remaining 10.2% comprises different variety pairs in which both accessions are genetically indistinguishable. Clustering analysis performed using BAPS software detected seven groups in Italian olive germplasm and gene flows were determined among identified clusters. We proposed an Italian core collection of 23 olive varieties capturing all detected alleles at microsatellites. The information collected in this study regarding the CRA-OLI ex situ collection can be used for breeding programs, for germplasm conservation, and for optimizing a strategy for the management of olive gene pools. PMID:24723801

  16. Valuable Nutrients and Functional Bioactives in Different Parts of Olive (Olea europaea L.)—A Review

    PubMed Central

    Ghanbari, Rahele; Anwar, Farooq; Alkharfy, Khalid M.; Gilani, Anwarul-Hassan; Saari, Nazamid

    2012-01-01

    The Olive tree (Olea europaea L.), a native of the Mediterranean basin and parts of Asia, is now widely cultivated in many other parts of the world for production of olive oil and table olives. Olive is a rich source of valuable nutrients and bioactives of medicinal and therapeutic interest. Olive fruit contains appreciable concentration, 1–3% of fresh pulp weight, of hydrophilic (phenolic acids, phenolic alchohols, flavonoids and secoiridoids) and lipophilic (cresols) phenolic compounds that are known to possess multiple biological activities such as antioxidant, anticarcinogenic, antiinflammatory, antimicrobial, antihypertensive, antidyslipidemic, cardiotonic, laxative, and antiplatelet. Other important compounds present in olive fruit are pectin, organic acids, and pigments. Virgin olive oil (VOO), extracted mechanically from the fruit, is also very popular for its nutritive and health-promoting potential, especially against cardiovascular disorders due to the presence of high levels of monounsaturates and other valuable minor components such as phenolics, phytosterols, tocopherols, carotenoids, chlorophyll and squalene. The cultivar, area of production, harvest time, and the processing techniques employed are some of the factors shown to influence the composition of olive fruit and olive oil. This review focuses comprehensively on the nutrients and high-value bioactives profile as well as medicinal and functional aspects of different parts of olives and its byproducts. Various factors affecting the composition of this food commodity of medicinal value are also discussed. PMID:22489153

  17. 7 CFR 944.350 - Safeguard procedures for avocados, grapefruit, kiwifruit, olives, oranges, prune variety plums...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... plums (fresh prunes), and table grapes for processing; (3) Olives for processing into oil; (4) Grapefruit for animal feed; or (5) Avocados for seed shall obtain an “Importer's Exempt Commodity Form” (FV-6...

  18. 7 CFR 944.350 - Safeguard procedures for avocados, grapefruit, kiwifruit, olives, oranges, prune variety plums...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... plums (fresh prunes), and table grapes for processing; (3) Olives for processing into oil; (4) Grapefruit for animal feed; or (5) Avocados for seed shall obtain an “Importer's Exempt Commodity Form” (FV-6...

  19. 7 CFR 944.350 - Safeguard procedures for avocados, grapefruit, kiwifruit, olives, oranges, prune variety plums...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... plums (fresh prunes), and table grapes for processing; (3) Olives for processing into oil; (4) Grapefruit for animal feed; or (5) Avocados for seed shall obtain an “Importer's Exempt Commodity Form” (FV-6...

  20. 7 CFR 944.350 - Safeguard procedures for avocados, grapefruit, kiwifruit, olives, oranges, prune variety plums...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... plums (fresh prunes), and table grapes for processing; (3) Olives for processing into oil; (4) Grapefruit for animal feed; or (5) Avocados for seed shall obtain an “Importer's Exempt Commodity Form” (FV-6...

  1. 7 CFR 944.350 - Safeguard procedures for avocados, grapefruit, kiwifruit, olives, oranges, prune variety plums...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... plums (fresh prunes), and table grapes for processing; (3) Olives for processing into oil; (4) Grapefruit for animal feed; or (5) Avocados for seed shall obtain an “Importer's Exempt Commodity Form” (FV-6...

  2. Application of compost of two-phase olive mill waste on olive grove: effects on soil, olive fruit and olive oil quality.

    PubMed

    Fernández-Hernández, Antonia; Roig, Asunción; Serramiá, Nuria; Civantos, Concepción García-Ortiz; Sánchez-Monedero, Miguel A

    2014-07-01

    Composting is a method for preparing organic fertilizers that represents a suitable management option for the recycling of two-phase olive mill waste (TPOMW) in agriculture. Four different composts were prepared by mixing TPOMW with different agro-industrial by-products (olive pruning, sheep manure and horse manure), which were used either as bulking agents or as N sources. The mature composts were added during six consecutive years to a typical "Picual" olive tree grove in the Jaén province (Spain). The effects of compost addition on soil characteristics, crop yield and nutritional status and also the quality of the olive oil were evaluated at the end of the experiment and compared to a control treated only with mineral fertilization. The most important effects on soil characteristics included a significant increase in the availability of N, P, K and an increase of soil organic matter content. The application of TPOMW compost produced a significant increase in olive oil content in the fruit. The compost amended plots had a 15% higher olive oil content than those treatment with inorganic fertilization. These organics amendments maintained the composition and quality of the olive oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Multiclass pesticide determination in olives and their processing factors in olive oil: comparison of different olive oil extraction systems.

    PubMed

    Amvrazi, Elpiniki G; Albanis, Triantafyllos A

    2008-07-23

    The processing factors (pesticide concentration found in olive oil/pesticide concentration found in olives) of azinphos methyl, chlorpyrifos, lambda-cyhalothrin, deltamethrin, diazinon, dimethoate, endosulfan, and fenthion were determined in olive oil production process in various laboratory-scale olive oil extractions based on three- or two-phase centrifugation systems in comparison with samples collected during olive oil extractions in conventional olive mills located at different olive oil production areas in Greece. Pesticide analyses were performed using a multiresidue method developed in our laboratory for the determination of different insecticides and herbicides in olive oil by solid-phase extraction techniques coupled to gas chromatography detection (electron capture detection and nitrogen phosphorus detection), optimized, and validated for olive fruits sample preparation. Processing factors were found to vary among the different pesticides studied. Water addition in the oil extraction procedure (as in a three-phase centrifugation system) was found to decrease the processing factors of dimethoate, alpha-endosulfan, diazinon, and chlorpyrifos, whereas those of fenthion, azinphos methyl, beta-endosulfan, lambda-cyhalothrin, and deltamethrin residues were not affected. The water content of olives processed was found to proportionally affect pesticide processing factors. Fenthion sulfoxide and endosulfan sulfate were the major metabolites of fenthion and endosulfan, respectively, that were detected in laboratory-produced olive oils, but only the concentration of fenthion sulfoxide was found to increase with the increase of water addition in the olive oil extraction process.

  4. Time course of pentacyclic triterpenoids from fruits and leaves of olive tree (Olea europaea L.) cv. Picual and cv. Cornezuelo during ripening.

    PubMed

    Peragón, Juan

    2013-07-10

    Pentacyclic triterpenoids are plant secondary metabolites of great interest for health and disease prevention. HPLC-UV/vis was used to determine the concentration of the pentacyclic triterpenoids present in fruits and leaves of Picual and Cornezuelo olive tree cultivars. Maslinic acid (MA) and oleanolic acid (OA) are the only two compounds present in fruits, MA being the more abundant. In leaves, in addition to MA and OA, uvaol (UO), and erythrodiol (EO) are found, with OA being the most abundant. In this work, the changes in the concentrations of these compounds during ripening as well as the effect of Jaén-style table-olive processing are reported. The amount of MA and OA found in Picual and Cornezuelo olives after processing was 1.26 ± 0.06, 1.30 ± 0.06, 0.31 ± 0.02, and 0.23 ± 0.01 mg per fruit, respectively. These results enable us to calculate the average intake of pentacyclic triterpenoids and reinforce the importance of table olives as a source of healthy compounds.

  5. Comparison of the effects of high energy carbon heavy ion irradiation and Eucommia ulmoides Oliv. on biosynthesis butyric acid efficiency in Clostridium tyrobutyricum.

    PubMed

    Zhou, Xiang; Wang, Shu-Yang; Lu, Xi-Hong; Liang, Jian-Ping

    2014-06-01

    Clostridium tyrobutyricum is well documented as a fermentation strain for the production of butyric acid. In this work, using high-energy carbon heavy ion irradiated C. tyrobutyricum, then butyric acid fermentation using glucose or alkali and acid pretreatments of Eucommia ulmoides Oliv. as a carbon source was carried out. Initially, the modes at pH 5.7-6.5 and 37°C were compared using a model medium containing glucose as a carbon source. When the 72gL(-1) glucose concentration was found to be the highest yield, the maximum butyric acid production from glucose increased significantly, from 24gL(-1) for the wild type strains to 37gL(-1) for the strain irradiated at 126AMeV and a dose of 35Gy and a 10(7)ions/pulse. By feeding 100gL(-1) acid pretreatments of E. ulmoides Oliv. into the fermentations, butyrate yields (5.8gL(-1)) and butyrate/acetate (B/A) ratio (4.32) were achieved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Olive

    MedlinePlus

    Olive is a tree. People use the oil from the fruit and seeds, water extracts of the fruit, and the leaves to make ... with significant side effects in clinical studies. Olive trees produce pollen that can cause seasonal respiratory allergy ...

  7. In situ evaluation of the fruit and oil characteristics of the main Lebanese olive germplasm.

    PubMed

    Chehade, Ali; Bitar, Ahmad El; Kadri, Aline; Choueiri, Elia; Nabbout, Rania; Youssef, Hiyam; Smeha, Maha; Awada, Ali; Chami, Ziad Al; Dubla, Eustachio; Trani, Antonio; Mondelli, Donato; Famiani, Franco

    2016-05-01

    Very little information is available on the characteristics of the Lebanese olive germplasm. Therefore, the aim of this work was to evaluate the fruit and oil characteristics of the main Lebanese olive varieties (Aayrouni, Abou chawkeh, Baladi, Del and Soury) from two successive crop seasons (2010-2011). All of the genotypes had medium-high oil content in the fruit, indicating their suitability for oil production; Aayrouni had particularly high values. The variety Abou chawkeh also had a high pulp/pit ratio, which is a very desirable trait in table olives. For all the varieties the values of free fatty acids, peroxide values, absorbances in ultraviolet, fatty acid composition, sterol content and composition and erythrodiol + uvaol content of the oils were within the requirements of the International Olive Council's Trade Standard for extra virgin olive oil. The only exception was for the values of Δ-7-stigmastenol in 2011 in Soury and, especially, in Baladi, which were higher than 0.5%. In some cases, stearic and arachidic acids fluctuated around the maximum values allowed. The findings of this study provide a first picture of the main characteristics of olives and oils currently produced in Lebanon. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. Ethephon induced oxidative stress in the olive leaf abscission zone enables development of a selective abscission compound.

    PubMed

    Goldental-Cohen, S; Burstein, C; Biton, I; Ben Sasson, S; Sadeh, A; Many, Y; Doron-Faigenboim, A; Zemach, H; Mugira, Y; Schneider, D; Birger, R; Meir, S; Philosoph-Hadas, S; Irihomovitch, V; Lavee, S; Avidan, B; Ben-Ari, G

    2017-05-16

    Table olives (Olea europaea L.), despite their widespread production, are still harvested manually. The low efficiency of manual harvesting and the rising costs of labor have reduced the profitability of this crop. A selective abscission treatment, inducing abscission of fruits but not leaves, is crucial for the adoption of mechanical harvesting of table olives. In the present work we studied the anatomical and molecular differences between the three abscission zones (AZs) of olive fruits and leaves. The fruit abscission zone 3 (FAZ3), located between the fruit and the pedicel, was found to be the active AZ in mature fruits and is sensitive to ethephon, whereas FAZ2, between the pedicel and the rachis, is the flower active AZ as well as functioning as the most ethephon induced fruit AZ. We found anatomical differences between the leaf AZ (LAZ) and the two FAZs. Unlike the FAZs, the LAZ is characterized by small cells with less pectin compared to neighboring cells. In an attempt to differentiate between the fruit and leaf AZs, we examined the effect of treating olive-bearing trees with ethephon, an ethylene-releasing compound, with or without antioxidants, on the detachment force (DF) of fruits and leaves 5 days after the treatment. Ethephon treatment enhanced pectinase activity and reduced DF in all the three olive AZs. A transcriptomic analysis of the three olive AZs after ethephon treatment revealed induction of several genes encoding for hormones (ethylene, auxin and ABA), as well as for several cell wall degrading enzymes. However, up-regulation of cellulase genes was found only in the LAZ. Many genes involved in oxidative stress were induced by the ethephon treatment in the LAZ alone. In addition, we found that reactive oxygen species (ROS) mediated abscission in response to ethephon only in leaves. Thus, adding antioxidants such as ascorbic acid or butyric acid to the ethephon inhibited leaf abscission but enhanced fruit abscission. Our findings suggest that

  9. Genetic Diversity Among Historical Olive (Olea europaea L.) Genotypes from Southern Anatolia Based on SSR Markers.

    PubMed

    Sakar, Ebru; Unver, Hulya; Ercisli, Sezai

    2016-12-01

    Olive (Olea europaea) is an ancient and important crop in both olive oil production and table use. It is important to identify the genetic diversity of olive genetic resources for cultivar development and evaluation of olive germplasm. In the study, 14 microsatellite markers (UDO4, UDO8, UDO9, UDO11, UDO12, UDO22, UDO24, UDO26, UDO28, DCA9, DCA11, DCA13, DCA15, and DCA18) were used to assess the genetic variation on 76 olive (Olea europaea L.) genotypes from Mardin province together with 6 well-known Turkish and 4 well-known foreign reference cultivars. All microsatellite markers showed polymorphism and the number of alleles varied between 9 and 22, with an average of 14.57. The most informative loci were DCA 11 (22 alleles) and DCA 9 (21 alleles). Dendrogram based on genetic distances was constructed for the 86 olive genotypes/cultivars, which revealed the existence of different clusters. The high genetic similarity was evident between Bakırkire2 and Zinnar5 (0.74) genotypes, while the most genetically divergent genotypes were Gürmeşe5 and Yedikardeşler2 (0.19). It was concluded that there was abundant SSR polymorphism in olive germplasm in southern Anatolia in Turkey and could be important for future breeding activities.

  10. How-to-Do-It: A Simple Demonstration of Fermentation.

    ERIC Educational Resources Information Center

    Yurkiewicz, William J.; And Others

    1989-01-01

    Described is a simple demonstration of fermentation. The materials needed, the basic experimental set-up, and various projects are outlined. Included are a diagram of an apparatus for measuring carbon dioxide production and a table showing typical results of the effect of pH on fermentation. (RT)

  11. 40 CFR Table 1 to Subpart Cccc of... - Emission Limitations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast Part 63, Subpt. CCCC, Table 1... emission limitations in the following table: For each fed-batch fermenter producing yeast in the following... limitation does not apply during the production of specialty yeast. ...

  12. 40 CFR Table 1 to Subpart Cccc of... - Emission Limitations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast Part 63, Subpt. CCCC, Table 1... emission limitations in the following table: For each fed-batch fermenter producing yeast in the following... limitation does not apply during the production of specialty yeast. ...

  13. Volatile changes in cv. Verdeal Transmontana olive oil: From the drupe to the table, including storage.

    PubMed

    Malheiro, Ricardo; Casal, Susana; Rodrigues, Nuno; Renard, Catherine M G C; Pereira, José Alberto

    2018-04-01

    This study focused on the volatile changes in cv. Verdeal Transmontana throughout the entire olive oil processing chain, from the drupe to olive oil storage up to 12 months, while correlating it with quality parameters and sensory quality. During crushing and malaxation, the volatiles formed were mainly "green-leaf volatiles" (GLVs), namely (E)-2-hexenal, hexanal, and 1-hexanol. Centrifugation and clarification steps increased the total volatile amounts to 130 mg kg -1 . However, clarification also increased nonanal and (E)-2-decenal contents, two markers of oxidation, with a noticeable loss of phenolic compounds and oxidative stability. During storage, the total volatile amounts reduced drastically (94% at 12 months after extraction), together with the positive sensory attributes fruity, green, bitter, and pungent. Despite being classified as extra-virgin after one year of storage, peroxides and conjugated dienes were significantly higher while there was a reduction in antioxidant capacity as well as in phenolic compounds (less 50%) and oxidative stability (57%). The present work allowed concluding that the extraction process modulates the volatile composition of olive oil, with a concentration of volatiles at the clarification step. During storage, volatiles are lost, mainly eight months after extraction, leading to the loss of important sensory attributes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Production and immobilization of enzymes by solid-state fermentation of agroindustrial waste.

    PubMed

    Romo Sánchez, Sheila; Gil Sánchez, Irene; Arévalo-Villena, María; Briones Pérez, Ana

    2015-03-01

    The recovery of by-products from agri-food industry is currently one of the major challenges of biotechnology. Castilla-La Mancha produces around three million tons of waste coming from olive oil and wine industries, both of which have a pivotal role in the economy of this region. For this reason, this study reports on the exploitation of grape skins and olive pomaces for the production of lignocellulosic enzymes, which are able to deconstruct the agroindustrial waste and, therefore, reuse them in future industrial processes. To this end, solid-state fermentation was carried out using two local fungal strains (Aspergillus niger-113 N and Aspergillus fumigatus-3). In some trials, a wheat supplementation with a 1:1 ratio was used to improve the growth conditions, and the particle size of the substrates was altered through milling. Separate fermentations were run and collected after 2, 4, 6, 8, 10 and 15 days to monitor enzymatic activity (xylanase, cellulase, β-glucosidase, pectinase). The highest values were recorded after 10 and 15 days of fermentation. The use of A. niger on unmilled grape skin yielded the best outcomes (47.05 U xylanase/g by-product). The multi-enzymatic extracts obtained were purified, freeze dried, and immobilized on chitosan by adsorption to assess the possible advantages provided by the different techniques.

  15. Lysine and Glutamic Acids as the End Products of Multi-response of Optimized Fermented Medium by Mucor mucedo KP736529.

    PubMed

    El-Hersh, Mohammed S; Saber, WesamEldin I A; El-Fadaly, Husain A; Mahmoud, Mohammed K

    Amino acids are important for living organisms, they acting as crucial for metabolic activities and energy generation, wherein the deficiency in these amino acids cause various physiological defects. The aim of this study is to investigate the effect of some nutritional factors on the amino acids production by Mucor mucedo KP736529 during fermentation intervals. Mucor mucedo KP736529 was selected according to proteolytic activity. Corn steep liquor and olive cake were used in the fermented medium during Placket-Burman and central composite design to maximize the production of lysine and glutamic acids. During the screening by Plackett-Burman design, olive cake and Corn Steep Liquor (CSL) had potential importance for the higher production of amino acids. The individual fractionation of total amino acids showed both lysine and glutamic as the major amino acids associated with the fermentation process. Moreover, the Central Composite Design (CCD) has been adopted to explain the interaction between olive cake and CSL on the production of lysine and glutamic acids. The model recorded significant F-value, with high values of R 2, adjusted R 2 and predicted R 2 for both lysine and glutamic, indicating the validity of the data. Solving equation for maximum production of lysine recorded theoretical levels of olive cake and CSL, being 2.58 and 1.83 g L -1, respectively, with predicting value of lysine at 1.470 μg mL -1, whereas the predicting value of glutamic acid reached 0.805 mg mL -1 at levels of 2.49 and 1.93 g L -1 from olive cake and CSL, respectively. The desirability function (D) showed the actual responses being 1.473±0.009 and 0.801±0.004 μg mL -1 for lysine and glutamic acids, respectively. The model showed adequate validity to be applied in a large-scale production of both lysine and glutamic acids.

  16. OGDD (Olive Genetic Diversity Database): a microsatellite markers' genotypes database of worldwide olive trees for cultivar identification and virgin olive oil traceability.

    PubMed

    Ben Ayed, Rayda; Ben Hassen, Hanen; Ennouri, Karim; Ben Marzoug, Riadh; Rebai, Ahmed

    2016-01-01

    Olive (Olea europaea), whose importance is mainly due to nutritional and health features, is one of the most economically significant oil-producing trees in the Mediterranean region. Unfortunately, the increasing market demand towards virgin olive oil could often result in its adulteration with less expensive oils, which is a serious problem for the public and quality control evaluators of virgin olive oil. Therefore, to avoid frauds, olive cultivar identification and virgin olive oil authentication have become a major issue for the producers and consumers of quality control in the olive chain. Presently, genetic traceability using SSR is the cost effective and powerful marker technique that can be employed to resolve such problems. However, to identify an unknown monovarietal virgin olive oil cultivar, a reference system has become necessary. Thus, an Olive Genetic Diversity Database (OGDD) (http://www.bioinfo-cbs.org/ogdd/) is presented in this work. It is a genetic, morphologic and chemical database of worldwide olive tree and oil having a double function. In fact, besides being a reference system generated for the identification of unkown olive or virgin olive oil cultivars based on their microsatellite allele size(s), it provides users additional morphological and chemical information for each identified cultivar. Currently, OGDD is designed to enable users to easily retrieve and visualize biologically important information (SSR markers, and olive tree and oil characteristics of about 200 cultivars worldwide) using a set of efficient query interfaces and analysis tools. It can be accessed through a web service from any modern programming language using a simple hypertext transfer protocol call. The web site is implemented in java, JavaScript, PHP, HTML and Apache with all major browsers supported. Database URL: http://www.bioinfo-cbs.org/ogdd/. © The Author(s) 2016. Published by Oxford University Press.

  17. OGDD (Olive Genetic Diversity Database): a microsatellite markers' genotypes database of worldwide olive trees for cultivar identification and virgin olive oil traceability

    PubMed Central

    Ben Ayed, Rayda; Ben Hassen, Hanen; Ennouri, Karim; Ben Marzoug, Riadh; Rebai, Ahmed

    2016-01-01

    Olive (Olea europaea), whose importance is mainly due to nutritional and health features, is one of the most economically significant oil-producing trees in the Mediterranean region. Unfortunately, the increasing market demand towards virgin olive oil could often result in its adulteration with less expensive oils, which is a serious problem for the public and quality control evaluators of virgin olive oil. Therefore, to avoid frauds, olive cultivar identification and virgin olive oil authentication have become a major issue for the producers and consumers of quality control in the olive chain. Presently, genetic traceability using SSR is the cost effective and powerful marker technique that can be employed to resolve such problems. However, to identify an unknown monovarietal virgin olive oil cultivar, a reference system has become necessary. Thus, an Olive Genetic Diversity Database (OGDD) (http://www.bioinfo-cbs.org/ogdd/) is presented in this work. It is a genetic, morphologic and chemical database of worldwide olive tree and oil having a double function. In fact, besides being a reference system generated for the identification of unkown olive or virgin olive oil cultivars based on their microsatellite allele size(s), it provides users additional morphological and chemical information for each identified cultivar. Currently, OGDD is designed to enable users to easily retrieve and visualize biologically important information (SSR markers, and olive tree and oil characteristics of about 200 cultivars worldwide) using a set of efficient query interfaces and analysis tools. It can be accessed through a web service from any modern programming language using a simple hypertext transfer protocol call. The web site is implemented in java, JavaScript, PHP, HTML and Apache with all major browsers supported. Database URL: http://www.bioinfo-cbs.org/ogdd/ PMID:26827236

  18. Enhancing the Bioconversion of Winery and Olive Mill Waste Mixtures into Lignocellulolytic Enzymes and Animal Feed by Aspergillus uvarum Using a Packed-Bed Bioreactor.

    PubMed

    Salgado, José Manuel; Abrunhosa, Luís; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2015-10-28

    Wineries and olive oil industries are dominant agro-industrial activities in southern European regions. Olive pomace, exhausted grape marc, and vine shoot trimmings are lignocellulosic residues generated by these industries, which could be valued biotechnologically. In the present work these residues were used as substrate to produce cellulases and xylanases through solid-state fermentation using Aspergillus uvarum MUM 08.01. For that, two factorial designs (3(2)) were first planned to optimize substrate composition, temperature, and initial moisture level. Subsequently, the kinectics of cellulolytic enzyme production, fungal growth, and fermented solid were characterized. Finally, the process was performed in a packed-bed bioreactor. The results showed that cellulase activity improved with the optimization processes, reaching 33.56 U/g, and with the packed-bed bioreactor aeration of 0.2 L/min, reaching 38.51 U/g. The composition of fermented solids indicated their potential use for animal feed because cellulose, hemicellulose, lignin, and phenolic compounds were partially degraded 28.08, 10.78, 13.3, and 28.32%, respectively, crude protein was increased from 8.47 to 17.08%, and the mineral contents meet the requirements of main livestock.

  19. Effect of olive storage conditions on Chemlali olive oil quality and the effective role of fatty acids alkyl esters in checking olive oils authenticity.

    PubMed

    Jabeur, Hazem; Zribi, Akram; Abdelhedi, Ridha; Bouaziz, Mohamed

    2015-02-15

    The present paper accounts for the study of the storage of Chemlali olive fruits at two conditions of limited aerobiosis: in closed plastic bags and in open perforated plastic boxes for different periods before oil extraction. The ultimate objective is to investigate the effect of the container type of the postharvest fruit storage on the deterioration of the olive oil quality. The results have shown that the oil quality of Chemlali olives deteriorated more rapidly during fruit storage in closed plastic bags than in perforated plastic boxes. Therefore, the use of perforated plastic boxes is recommended for keeping the olives for longer periods of storage. The repeated measures analysis of variance of all parameters analyzed indicated that the olive oil quality is mainly affected by the olives storage conditions (containers type and storage periods). Finally, blends of extra-virgin olive oil and mildly deodorized low-quality olive oils can be detected by their alkyl esters concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Treatment of table olive processing wastewaters using novel photomodified ultrafiltration membranes as first step for recovering phenolic compounds.

    PubMed

    Garcia-Ivars, Jorge; Iborra-Clar, Maria-Isabel; Alcaina-Miranda, Maria-Isabel; Mendoza-Roca, José-Antonio; Pastor-Alcañiz, Laura

    2015-06-15

    Table olive processing wastewaters (TOPW) have high salt concentration and total phenolic content (TPC) causing many environmental problems. To reduce them, ultrafiltration (UF) was applied for treating TOPW. However, NaCl, which is the main responsible of salinity in TOPW, and phenols are small molecules that cannot be separated by conventional UF membranes. They have serious problems caused by fouling, which can be overcome using membrane modification techniques. For these reasons, photomodification may be an effective technique to obtain a stream rich in TPC due to the changes in membrane surface properties. UV-modification in the presence of two hydrophilic compounds (polyethylene glycol and aluminium oxide) was performed to achieve membranes with high reductions of organic matter and to keep the TPC as high as possible. Commercial polyethersulfone (PES) membranes of 30 kDa were used. Surface modification was evaluated using FTIR-ATR spectroscopy and membrane performance was studied by calculating the rejection ratios of colour, chemical oxygen demand (COD) and TPC. Results demonstrated that UF is a useful pre-treatment to reduce organic matter from TOPW, obtaining a permeate rich in TPC. PES/Al2O3 membranes displayed superior antifouling properties and rejection values, keeping high the TPC (>95%). Therefore, UF using modified membranes is an appropriate and sustainable technique for treating TOPW. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. How 'ground-picked' olive fruits affect virgin olive oil ethanol content, ethyl esters and quality.

    PubMed

    Beltran, Gabriel; Sánchez, Raquel; Sánchez-Ortiz, Araceli; Aguilera, Maria P; Bejaoui, Mohamed A; Jimenez, Antonio

    2016-08-01

    Olives dropped on the ground naturally sometimes are not separated from those fresh and healthy collected from the tree for harvest and processing. In this work we compared the quality, ethanol content and bioactive components of virgin olive oils from ground-picked olives, tree-picked fruits and their mixture. Ground-picked olives produced 'Lampante' virgin olive oils; these are of a lower quality category, because of important alterations in chemical and sensory characteristics. Ethyl esters showed the highest values, although under the regulated limit. The mixture of ground and tree-picked olives gave oils classified as 'virgin' because of sensory defects, although the quality parameters did not exceed the limits for the 'extra' category. Ethanol content showed a significant increase in the oils from ground- picked olives and their mixture with respect to those from tree-picked fruits. Furthermore, bioactive compounds showed a significant decrease as fruit quality was poorer. Ground-picked olives must be harvested and processed separately since they produce low-quality virgin olive oils with sensory defects and lower concentrations of bioactive compounds. The higher acidity and ethanol concentration observed in oils from ground-picked fruits or their mixture may help ethyl ester synthesis during storage. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Bioactive properties of the main triterpenes found in olives, virgin olive oil, and leaves of Olea europaea.

    PubMed

    Sánchez-Quesada, Cristina; López-Biedma, Alicia; Warleta, Fernando; Campos, María; Beltrán, Gabriel; Gaforio, José J

    2013-12-18

    Oleanolic acid, maslinic acid, uvaol, and erythrodiol are the main triterpenes present in olives, olive tree leaves, and virgin olive oil. Their concentration in virgin olive oil depends on the quality of the olive oil and the variety of the olive tree. These triterpenes are described to present different properties, such as antitumoral activity, cardioprotective activity, anti-inflammatory activity, and antioxidant protection. Olive oil triterpenes are a natural source of antioxidants that could be useful compounds for the prevention of multiple diseases related to cell oxidative damage. However, special attention has to be paid to the concentrations used, because higher concentration may lead to cytotoxic or biphasic effects. This work explores all of the bioactive properties so far described for the main triterpenes present in virgin olive oil.

  3. Effect of postharvest methyl jasmonate treatment on fatty acid composition and phenolic acid content in olive fruits during storage.

    PubMed

    Flores, Gema; Blanch, Gracia Patricia; Del Castillo, María Luisa Ruiz

    2017-07-01

    The nutritional effects of both table olives and olive oil are attributed not only to their fatty acids but also to antioxidant phenolics such as phenolic acids. Delays in oil processing usually result in undesirable oxidation and hydrolysis processes leading to formation of free fatty acids. These alterations create the need to process oil immediately after olive harvest. However, phenolic content decreases drastically during olive storage resulting in lower quality oil. In the present study we propose postharvest methyl jasmonate treatment as a mean to avoid changes in fatty acid composition and losses of phenolic acids during olive storage. Contents of fatty acids and phenolic acids were estimated in methyl jasmonate treated olives throughout 30-day storage, as compared with those of untreated olives. Significant decreases of saturated fatty acids were observed in treated samples whereas increases of oleic, linoleic and linolenic acids were respectively measured (i.e. from 50.8% to 64.5%, from 7.2% to 9.1% and from 1.5% to 9.3%). Also, phenolic acid contents increased significantly in treated olives. Particularly, increases of gallic acid from 1.35 to 6.29 mg kg -1 , chlorogenic acid from 9.18 to 16.21 mg kg -1 , vanillic acid from 9.61 to 16.99 mg kg -1 , caffeic acid from 5.12 to 12.55 mg kg -1 , p-coumaric acid from 0.96 to 5.31 mg kg -1 and ferulic acid from 4.05 to 10.43 mg kg -1 were obtained. Methyl jasmonate treatment is proposed as an alternative postharvest technique to traditional methods to guarantee olive oil quality when oil processing is delayed and olive fruits have to necessarily to be stored. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. An Oleuropein β-Glucosidase from Olive Fruit Is Involved in Determining the Phenolic Composition of Virgin Olive Oil

    PubMed Central

    Velázquez-Palmero, David; Romero-Segura, Carmen; García-Rodríguez, Rosa; Hernández, María L.; Vaistij, Fabián E.; Graham, Ian A.; Pérez, Ana G.; Martínez-Rivas, José M.

    2017-01-01

    Phenolic composition of virgin olive oil is determined by the enzymatic and/or chemical reactions that take place during olive fruit processing. Of these enzymes, β-glucosidase activity plays a relevant role in the transformation of the phenolic glycosides present in the olive fruit, generating different secoiridoid derivatives. The main goal of the present study was to characterize olive fruit β-glucosidase genes and enzymes responsible for the phenolic composition of virgin olive oil. To achieve that, we have isolated an olive β-glucosidase gene from cultivar Picual (OepGLU), expressed in Nicotiana benthamiana leaves and purified its corresponding recombinant enzyme. Western blot analysis showed that recombinant OepGLU protein is detected by an antibody raised against the purified native olive mesocarp β-glucosidase enzyme, and exhibits a deduced molecular mass of 65.0 kDa. The recombinant OepGLU enzyme showed activity on the major olive phenolic glycosides, with the highest levels with respect to oleuropein, followed by ligstroside and demethyloleuropein. In addition, expression analysis showed that olive GLU transcript level in olive fruit is spatially and temporally regulated in a cultivar-dependent manner. Furthermore, temperature, light and water regime regulate olive GLU gene expression in olive fruit mesocarp. All these data are consistent with the involvement of OepGLU enzyme in the formation of the major phenolic compounds present in virgin olive oil. PMID:29163620

  5. Effect of ripening stage on the development of the microbial community during spontaneous fermentation of green tomatoes.

    PubMed

    Paramithiotis, Spiros; Kouretas, Konstantinos; Drosinos, Eleftherios H

    2014-06-01

    Spontaneous fermentation of plant-derived material is mainly performed on a small scale, with the exception of fermented olives, cucumbers, sauerkraut and kimchi, which have met worldwide commercial significance. This study of spontaneous fermentation of green tomatoes at different stages of ripening revealed a significant effect on the growth kinetics of lactic acid bacteria and the final pH value. Leuconostoc mesenteroides dominated spontaneous fermentation when the initial pH value ranged from 3.8 to 4.8 whereas at higher pH values (4.9-5.4) it co-dominated with Leu. citreum and Lactobacillus casei. Application of RAPD-PCR and rep-PCR allowed differentiation at sub-species level, suggesting a microbial succession at that level accompanying the respective at species level. Ripening stage affected the development of the micro-ecosystem through the growth of lactic acid bacteria and concomitant pH value reduction; however, the outcome of the fermentation was only marginally different. © 2013 Society of Chemical Industry.

  6. Biological Control of Olive Fruit Fly

    USDA-ARS?s Scientific Manuscript database

    Domestication of olive fruit, Olea europaea L., produced a better host for olive fruit fly, Bactrocera oleae (Gmelin), than wild olives, but fruit domestication reduced natural enemy efficiency. Important factors for selection of natural enemies for control of olive fruit fly include climate matchi...

  7. [Determination of olive oil content in olive blend oil by headspace gas chromatography-mass spectrometry].

    PubMed

    Jiang, Wanfeng; Zhang, Ning; Zhang, Fengyan; Yang, Zhao

    2017-07-08

    A method for the determination of the content of olive oil in olive blend oil by headspace gas chromatography-mass spectrometry (SH-GC/MS) was established. The amount of the sample, the heating temperature, the heating time, the amount of injection, the injection mode and the chromatographic column were optimized. The characteristic compounds of olive oil were found by chemometric method. A sample of 1.0 g was placed in a 20 mL headspace flask, and heated at 180℃ for 2700 s. Then, 1.0 mL headspace gas was taken into the instrument. An HP-88 chromatographic column was used for the separation and the analysis was performed by GC/MS. The results showed that the linear range was 0-100%(olive oil content). The linear correlation coefficient ( r 2 ) was more than 0.995, and the limits of detection were 1.26%-2.13%. The deviations of olive oil contents in the olive blend oil were from -0.65% to 1.02%, with the relative deviations from -1.3% to 6.8% and the relative standard deviations from 1.18% to 4.26% ( n =6). The method is simple, rapid, environment friendly, sensitive and accurate. It is suitable for the determination of the content of olive oil in olive blend oil.

  8. Proteins in olive fruit and oil.

    PubMed

    Montealegre, Cristina; Esteve, Clara; García, Maria Concepción; García-Ruiz, Carmen; Marina, Maria Luisa

    2014-01-01

    This paper is a comprehensive review grouping the information on the extraction, characterization, and quantitation of olive and olive oil proteins and providing a practical guide about these proteins. Most characterized olive proteins are located in the fruit, mainly in the seed, where different oleosins and storage proteins have been found. Unlike the seed, the olive pulp contains a lower protein content having been described a polypeptide of 4.6 kDa and a thaumain-like protein. Other important proteins studied in olive fruits have been enzymes which could play important roles in olives characteristics. Part of these proteins is transferred from the fruit to the oil during the manufacturing process of olive oil. In fact, the same polypeptide of 4.6 kDa found in the pulp has been described in the olive oil and, additionally, the presence of other proteins and enzymes have also been described. Protein profiles have recently been proposed as an interesting strategy for the varietal classification of olive fruits and oils. Nevertheless, there is still a lot of knowledge without being explored requiring new studies focused on the determination and characterization of these proteins.

  9. Photopyroelectric Monitoring of Olive's Ripening Conditions and Olive Oil Quality Using Pulsed Wideband IR Thermal Source

    NASA Astrophysics Data System (ADS)

    Abu-Taha, M. I.; Sarahneh, Y.; Saleh, A. M.

    The present study is based on band absorption of radiation from pulsed wideband infrared (IR) thermal source (PWBS) in conjunction with polyvinylidene fluoride film (PVDF). It is the first time to be employed to monitor the ripening state of olive fruit. Olive's characteristics vary at different stages of ripening, and hence, cultivation of olives at the right time is important in ensuring the best oil quality and maximizes the harvest yield. The photopyroelectric (PPE) signal resulting from absorption of wideband infrared (IR) radiation by fresh olive juice indicates the ripening stage of olives, i.e., allows an estimate of the suitable harvest time. The technique was found to be very useful in discriminating between olive oil samples according to geographical region, shelf life, some storage conditions, and deliberate adulteration. Our results for monitoring oil accumulation in olives during the ripening season agree well with the complicated analytical studies carried out by other researchers.

  10. Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding

    NASA Astrophysics Data System (ADS)

    Pavlidi, Nena; Gioti, Anastasia; Wybouw, Nicky; Dermauw, Wannes; Ben-Yosef, Michael; Yuval, Boaz; Jurkevich, Edouard; Kampouraki, Anastasia; van Leeuwen, Thomas; Vontas, John

    2017-02-01

    The olive fruit fly, Bactrocera oleae, is the most destructive pest of olive orchards worldwide. The monophagous larva has the unique capability of feeding on olive mesocarp, coping with high levels of phenolic compounds and utilizing non-hydrolyzed proteins present, particularly in the unripe, green olives. On the molecular level, the interaction between B. oleae and olives has not been investigated as yet. Nevertheless, it has been associated with the gut obligate symbiotic bacterium Candidatus Erwinia dacicola. Here, we used a B.oleae microarray to analyze the gene expression of larvae during their development in artificial diet, unripe (green) and ripe (black) olives. The expression profiles of Ca. E. dacicola were analyzed in parallel, using the Illumina platform. Several genes were found overexpressed in the olive fly larvae when feeding in green olives. Among these, a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives. In addition, a number of biological processes seem to be activated in Ca. E. dacicola during the development of larvae in olives, with the most notable being the activation of amino-acid metabolism.

  11. Olives and Bone: A Green Osteoporosis Prevention Option

    PubMed Central

    Chin, Kok-Yong; Ima-Nirwana, Soelaiman

    2016-01-01

    Skeletal degeneration due to aging, also known as osteoporosis, is a major health problem worldwide. Certain dietary components confer protection to our skeletal system against osteoporosis. Consumption of olives, olive oil and olive polyphenols has been shown to improve bone health. This review aims to summarize the current evidence from cellular, animal and human studies on the skeletal protective effects of olives, olive oil and olive polyphenols. Animal studies showed that supplementation of olives, olive oil or olive polyphenols could improve skeletal health assessed via bone mineral density, bone biomechanical strength and bone turnover markers in ovariectomized rats, especially those with inflammation. The beneficial effects of olive oil and olive polyphenols could be attributed to their ability to reduce oxidative stress and inflammation. However, variations in the bone protective, antioxidant and anti-inflammatory effects between studies were noted. Cellular studies demonstrated that olive polyphenols enhanced proliferation of pre-osteoblasts, differentiation of osteoblasts and decreased the formation of osteoclast-like cells. However, the exact molecular pathways for its bone health promoting effects are yet to be clearly elucidated. Human studies revealed that daily consumption of olive oil could prevent the decline in bone mineral density and improve bone turnover markers. As a conclusion, olives, olive oil and its polyphenols are potential dietary interventions to prevent osteoporosis among the elderly. PMID:27472350

  12. Virgin olive oil yeasts: A review.

    PubMed

    Ciafardini, Gino; Zullo, Biagi Angelo

    2018-04-01

    This review summarizes current knowledge on virgin olive oil yeasts. Newly produced olive oil contains solid particles and micro drops of vegetation water in which yeasts reproduce to become the typical microbiota of olive oil. To date, about seventeen yeast species have been isolated from different types of olive oils and their by-products, of which six species have been identified as new species. Certain yeast species contribute greatly to improving the sensorial characteristics of the newly produced olive oil, whereas other species are considered harmful as they can damage the oil quality through the production of unpleasant flavors and triacylglycerol hydrolysis. Studies carried out in certain yeast strains have demonstrated the presence of defects in olive oil treated with Candida adriatica, Nakazawaea wickerhamii and Candida diddensiae specific strains, while other olive oil samples treated with other Candida diddensiae strains were defect-free after four months of storage and categorized as extra virgin. A new acetic acid producing yeast species, namely, Brettanomyces acidodurans sp. nov., which was recently isolated from olive oil, could be implicated in the wine-vinegary defect of the product. Other aspects related to the activity of the lipase-producing yeasts and the survival of the yeast species in the flavored olive oils are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. [The quality of fat: olive oil].

    PubMed

    Tur Marí, Josep A

    2004-06-01

    Olive oil is one of the most characteristic Mediterranean Diet foods, also being a key contributor to the healthy aspects attributed to this dietary pattern. Since 4000 BC, olive oil has been obtained in the Mediterranean area, but now it is exceeding its natural borders, and currently the use of olive oil is a worldwide synonym of health and gastronomic quality. Olive oil has important effects on the body, and has protective effects against several pathologies, i.e. cardiovascular diseases, and various cancers, as well as to diminish the age-related cognitive decline. These effects are due to the olive oil richness in monounsaturated fatty acids and antioxidant substances. Olive oil has been and is the food that define one of the most oldest methods of cooking: frying.

  14. 7 CFR 932.8 - Natural condition olives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Natural condition olives. 932.8 Section 932.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Regulating Handling Definitions § 932.8 Natural condition olives. Natural condition olives means olives in...

  15. 7 CFR 932.8 - Natural condition olives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Natural condition olives. 932.8 Section 932.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Regulating Handling Definitions § 932.8 Natural condition olives. Natural condition olives means olives in...

  16. 7 CFR 52.3753 - Styles of canned ripe olives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Halved. “Halved” olives are pitted olives in which each olive is cut lengthwise into two approximately equal parts. (d) Segmented. “Segmented” olives are pitted olives in which each olive is cut lengthwise into three or more approximately equal parts. (e) Sliced. “Sliced” olives consist of parallel slices of...

  17. 7 CFR 52.3753 - Styles of canned ripe olives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Halved. “Halved” olives are pitted olives in which each olive is cut lengthwise into two approximately equal parts. (d) Segmented. “Segmented” olives are pitted olives in which each olive is cut lengthwise into three or more approximately equal parts. (e) Sliced. “Sliced” olives consist of parallel slices of...

  18. Clay Improvement with Burned Olive Waste Ash

    PubMed Central

    Mutman, Utkan

    2013-01-01

    Olive oil is concentrated in the Mediterranean basin countries. Since the olive oil industries are incriminated for a high quantity of pollution, it has become imperative to solve this problem by developing optimized systems for the treatment of olive oil wastes. This study proposes a solution to the problem. Burned olive waste ash is evaluated for using it as clay stabilizer. In a laboratory, bentonite clay is used to improve olive waste ash. Before the laboratory, the olive waste is burned at 550°C in the high temperature oven. The burned olive waste ash was added to bentonite clay with increasing 1% by weight from 1% to 10%. The study consisted of the following tests on samples treated with burned olive waste ash: Atterberg Limits, Standard Proctor Density, and Unconfined Compressive Strength Tests. The test results show promise for this material to be used as stabilizer and to solve many of the problems associated with its accumulation. PMID:23766671

  19. Quantitative approach to track lipase producing Pseudomonas sp. S1 in nonsterilized solid state fermentation.

    PubMed

    Sahoo, R K; Subudhi, E; Kumar, M

    2014-06-01

    Proliferation of the inoculated Pseudomonas sp. S1 is quantitatively evaluated using ERIC-PCR during the production of lipase in nonsterile solid state fermentation an approach to reduce the cost of enzyme production. Under nonsterile solid state fermentation with olive oil cake, Pseudomonas sp. S1 produced 57·9 IU g(-1) of lipase. DNA fingerprints of unknown bacterial isolates obtained on Bushnell Haas agar (BHA) + tributyrin exactly matched with that of Pseudomonas sp. S1. Using PCR-based enumeration, population of Pseudomonas sp. S1 was proliferated from 7·6 × 10(4) CFU g(-1) after 24 h to 4·6 × 10(8) CFU g(-1) after 96 h, which tallied with the maximum lipase activity as compared to control. Under submerged fermentation (SmF), Pseudomonas sp. S1 produced maximum lipase (49 IU ml(-1) ) using olive oil as substrate, while lipase production was 9·754 IU ml(-1) when Pseudomonas sp. S1 was grown on tributyrin. Optimum pH and temperature of the crude lipase was 7·0 and 50°C. Crude enzyme activity was 71·2% stable at 50°C for 360 min. Pseudomonas sp. S1 lipase was also stable in methanol showing 91·6% activity in the presence of 15% methanol, whereas 75·5 and 51·1% of activity were retained in the presence of 20 and 30% methanol, respectively. Thus, lipase produced by Pseudomonas sp. S1 is suitable for the production of biodiesel as well as treatment of oily waste water. This study presents the first report on the production of thermophilic organic solvent tolerant lipase using agro-industry waste in nonsterile solid state fermentation. Positive correlation between survival of Pseudomonas sp. S1 and lipase production under nonsterile solid state fermentation was established, which may emphasize the need to combine molecular tools and solid state fermentation in future studies. Our study brings new insights into the lipase production in cost-effective manner, which is an industrially relevant approach. © 2014 The Society for Applied Microbiology.

  20. Brettanomyces acidodurans sp. nov., a new acetic acid producing yeast species from olive oil.

    PubMed

    Péter, Gábor; Dlauchy, Dénes; Tóbiás, Andrea; Fülöp, László; Podgoršek, Martina; Čadež, Neža

    2017-05-01

    Two yeast strains representing a hitherto undescribed yeast species were isolated from olive oil and spoiled olive oil originating from Spain and Israel, respectively. Both strains are strong acetic acid producers, equipped with considerable tolerance to acetic acid. The cultures are not short-lived. Cellobiose is fermented as well as several other sugars. The sequences of their large subunit (LSU) rRNA gene D1/D2 domain are very divergent from the sequences available in the GenBank. They differ from the closest hit, Brettanomyces naardenensis by about 27%, mainly substitutions. Sequence analyses of the concatenated dataset from genes of the small subunit (SSU) rRNA, LSU rRNA and translation elongation factor-1α (EF-1α) placed the two strains as an early diverging member of the Brettanomyces/Dekkera clade with high bootstrap support. Sexual reproduction was not observed. The name Brettanomyces acidodurans sp. nov. (holotype: NCAIM Y.02178 T ; isotypes: CBS 14519 T  = NRRL Y-63865 T  = ZIM 2626 T , MycoBank no.: MB 819608) is proposed for this highly divergent new yeast species.

  1. Effects of olive oil and olive oil-pomegranate juice sauces on chemical, oxidative and sensorial quality of marinated anchovy.

    PubMed

    Topuz, Osman Kadir; Yerlikaya, Pinar; Ucak, Ilknur; Gumus, Bahar; Büyükbenli, Hanife Aydan

    2014-07-01

    This study describes the potential use of olive oil and olive oil-pomegranate juice sauces as antioxidant, preservative and flavoring agent in fish marinades. The olive oil and sauces, produced from emulsifying of olive oil and pomegranate juice with gums, were blended with marinated anchovy (Engraulis encrasicholus) fillets. The aim of the present study was to produce a new polyphenol-rich marinade sauces by emulsifying pomegranate juice with olive oil in different proportions (25%, 35% and 50%v:v). In order to evaluate the effects of olive oil and olive oil-pomegranate juice sauces on quality of anchovy marinades, the chemical (TVB-N and TMA), oxidative (peroxides value, K230, thiobarbituric acid and K270) and sensory analyses were carried out during storage at 4°C. The present study showed that saucing of anchovy marinades with olive oil-pomegranate sauce can retard the undesirable quality changes, prolong the lipid oxidation and improve the sensory properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Mineral and sensory profile of seasoned cracked olives packed in diverse salt mixtures.

    PubMed

    Moreno-Baquero, J M; Bautista-Gallego, J; Garrido-Fernández, A; López-López, A

    2013-05-01

    This work studies the effect of packing cracked seasoned olives with NaCl, KCl, and CaCl(2) mixture brines on their mineral nutrients and sensory attributes, using RSM methodology. The Na, K, Ca, and residual natural Mn contents in flesh as well as saltiness, bitterness and fibrousness were significantly related to the initial concentrations of salts in the packing solution. This new process led to table olives with a significantly lower sodium content (about 31%) than the traditional product but fortified in K and Ca. High levels of Na and Ca in the flesh led to high scores of acidity and saltiness (the first descriptor) and bitterness (the second) while the K content was unrelated to any sensory descriptor. The new presentations using moderate proportions of alternative salts will therefore have improved nutritional value and healthier characteristics but only a slightly modified sensory profile. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Chemical properties and colors of fermenting materials in salmon fish sauce production.

    PubMed

    Nakano, Mitsutoshi; Sagane, Yoshimasa; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Watanabe, Toshihiro; Takano, Katsumi; Sato, Hiroaki

    2018-02-01

    This data article reports the chemical properties (moisture, pH, salinity, and soluble solid content) and colors of fermenting materials in salmon fish sauce products. The fish sauce was produced by mixing salt with differing proportions of raw salmon materials and fermenting for three months; the salmon materials comprised flesh, viscera, an inedible portion, and soft roe. Chemical properties and colors of the unrefined fish sauce ( moromi ), and the refined fish sauce, were analyzed at one, two, and three months following the start of fermentation. Data determined for all products are provided in table format.

  4. Ripening and storage conditions of Chétoui and Arbequina olives: Part I. Effect on olive oils volatiles profile.

    PubMed

    Hachicha Hbaieb, Rim; Kotti, Faten; Gargouri, Mohamed; Msallem, Monji; Vichi, Stefania

    2016-07-15

    The distinctive aroma of virgin olive oil is mainly attributed to its volatile profile including components responsible for positive attributes and others for sensory defects resulting from chemical oxidation and exogenous enzymes. For this reason, the evolution of volatile compounds from Chétoui and Arbequina virgin olive oils during olive ripening and storage (at 4 and 25 °C during 4 weeks) was investigated. The profile of volatile phenols during olive storage was also studied. Quantitative differences in the volatile compounds during olive storage at 4 and 25 °C according to olive cultivar was determined. Concerning the volatile phenols, the Arbequina olives were the most affected by high storage temperature, as the formation of these compounds, especially 4-ethyl and 4-vinyl derivatives of phenol and guaiacol were more noticeable in Arbequina oils extracted from stored fruits at 25 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Chemistry and health of olive oil phenolics.

    PubMed

    Cicerale, Sara; Conlan, Xavier A; Sinclair, Andrew J; Keast, Russell S J

    2009-03-01

    The Mediterranean diet is associated with a lower incidence of atherosclerosis, cardiovascular disease, and certain types of cancer. The apparent health benefits have been partially attributed to the dietary consumption of virgin olive oil by Mediterranean populations. Most recent interest has focused on the biologically active phenolic compounds naturally present in virgin olive oils. Studies (human, animal, in vivo and in vitro) have shown that olive oil phenolics have positive effects on certain physiological parameters, such as plasma lipoproteins, oxidative damage, inflammatory markers, platelet and cellular function, and antimicrobial activity. Presumably, regular dietary consumption of virgin olive oil containing phenolic compounds manifests in health benefits associated with a Mediterranean diet. This paper summarizes current knowledge on the physiological effects of olive oil phenolics. Moreover, a number of factors have the ability to affect phenolic concentrations in virgin olive oil, so it is of great importance to understand these factors in order to preserve the essential health promoting benefits of olive oil phenolic compounds.

  6. Characterization of Virgin Olive Oils with Two Kinds of 'Frostbitten Olives' Sensory Defect.

    PubMed

    Romero, Inmaculada; Aparicio-Ruiz, Ramón; Oliver-Pozo, Celia; Aparicio, Ramón; García-González, Diego L

    2016-07-13

    The frost of olives on the tree due to drops of temperature can produce sensory defects in virgin olive oil (VOO). Temperature changes can be abrupt with freeze-thaw cycles or gradual, and they produce sensory and chemical variations in the oil. This study has analyzed the quality parameters (free fatty acids, peroxide value, UV absorption, and fatty acid ethyl esters) and phenols of VOOs described with the 'frostbitten olives' sensory defect. The phenol profiles allowed grouping these VOOs into two types. One of them, characterized with "soapy" and "strawberry-like" aroma descriptors, had higher values of 1-acetoxypinoresinol, pinoresinol, and aldehydic form of the ligstroside aglycon. The other one, characterized with "wood" and "humidity" descriptors, had higher concentrations of luteolin and apigenin. Most VOOs (75%) from the first group, associated with abrupt drops of temperature, have concentration of phenols higher than the value established by the health claim on olive oil polyphenols approved by the European Commission.

  7. Multiple Biological Effects of Olive Oil By-products such as Leaves, Stems, Flowers, Olive Milled Waste, Fruit Pulp, and Seeds of the Olive Plant on Skin.

    PubMed

    Kishikawa, Asuka; Ashour, Ahmed; Zhu, Qinchang; Yasuda, Midori; Ishikawa, Hiroya; Shimizu, Kuniyoshi

    2015-06-01

    As olive oil production increases, so does the amount of olive oil by-products, which can cause environmental problems. Thus, new ways to utilize the by-products are needed. In the present study, five bioactive characteristics of olive oil by-products were assessed, namely their antioxidant, anti-bacterial, anti-melanogenesis, anti-allergic, and collagen-production-promoting activities. First, the extracts of leaves (May and October), stems (May and October), flowers, olive milled waste, fruit pulp and seeds were prepared using two safe solvents, ethanol and water. According to HPLC and LC/MS analysis and Folin-Ciocalteu assay, the ethanol extracts of the leaves (May and October), stems (May and October) and flowers contained oleuropein, and the ethanol extract of the stems showed the highest total phenol content. Oleuropein may contribute to the antioxidant and anti-melanogenesis activities of the leaves, stems, and flowers. However, other active compounds or synergistic effects present in the ethanol extracts are also likely to contribute to the anti-bacterial activity of the leaves and flowers, the anti-melanogenesis activity of some parts, the anti-allergic activity of olive milled waste, and the collagen-production-promoting activity of the leaves, stems, olive milled waste and fruit pulp. This study provides evidence that the by-products of olive oil have the potential to be further developed and used in the skin care industry. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Ripening and storage conditions of Chétoui and Arbequina olives: Part II. Effect on olive endogenous enzymes and virgin olive oil secoiridoid profile determined by high resolution mass spectrometry.

    PubMed

    Hachicha Hbaieb, Rim; Kotti, Faten; Cortes-Francisco, Nuria; Caixach, Josep; Gargouri, Mohamed; Vichi, Stefania

    2016-11-01

    Several factors affect virgin olive oil (VOO) phenolic profile. The aim of this study was to monitor olive hydrolytic (β-glucosidase) and oxidative (peroxydase, POX, and polyphenoloxydase, PPO) enzymes during olive ripening and storage and to determine their capacity to shape VOO phenolic profile. To this end, olives from the cultivars Chétoui and Arbequina were stored at 4°C or 25°C for 4weeks and their enzymatic activities and oil phenolic profiles were compared to those of ripening olives. We observed different trends in enzymes activities according to cultivar and storage temperature. Secoiridoid compounds, determined by high resolution mass spectrometry (HRMS), and their deacetoxylated, oxygenated, and deacetoxy-oxygenated derivatives were identified and their contents differed between the cultivars according to olive ripening degree and storage conditions. These differences could be due to β-glucosidase, POX and PPO activities changes during olive ripening and storage. Results also show that oxidised phenolic compounds could be a marker of VOO ''freshness". Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Association of SSR markers with contents of fatty acids in olive oil and genetic diversity analysis of an olive core collection.

    PubMed

    Ipek, M; Ipek, A; Seker, M; Gul, M K

    2015-03-27

    The purpose of this research was to characterize an olive core collection using some agronomic characters and simple sequence repeat (SSR) markers and to determine SSR markers associated with the content of fatty acids in olive oil. SSR marker analysis demonstrated the presence of a high amount of genetic variation between the olive cultivars analyzed. A UPGMA dendrogram demonstrated that olive cultivars did not cluster on the basis of their geographic origin. Fatty acid components of olive oil in these cultivars were determined. The results also showed that there was a great amount of variation between the olive cultivars in terms of fatty acid composition. For example, oleic acid content ranged from 57.76 to 76.9% with standard deviation of 5.10%. Significant correlations between fatty acids of olive oil were observed. For instance, a very high negative correlation (-0.812) between oleic and linoleic acids was detected. A structured association analysis between the content of fatty acids in olive oil and SSR markers was performed. STRUCTURE analysis assigned olive cultivars to two gene pools (K = 2). Assignment of olive cultivars to these gene pools was not based on geographical origin. Association between fatty acid traits and SSR markers was evaluated using the general linear model of TASSEL. Significant associations were determined between five SSR markers and stearic, oleic, linoleic, and linolenic acids of olive oil. Very high associations (P < 0.001) between ssrOeUA-DCA14 and stearic acid and between GAPU71B and oleic acid indicated that these markers could be used for marker-assisted selection in olive.

  10. Fuel ethanol from raw corn by Aspergilli hydrolysis with concurrent yeast fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weller, C.L.; Steinberg, M.P.; Rodda, E.D.

    Crude amylase preparations were produced by growing Aspergillus awamori and A. niger on raw ground whole corn. These Koji preparations were used to hydrolyze the starch of raw ground whole corn to sugars during simultaneous fermentation of the sugars to ethanol by distillers active dry yeast. Ethanol concentrations of the fermentation beers were determined with gas chromatography. These fermentations yielded an average of 89.6% theoretical ethanol compared to control, conventional, fermentations that had an average of 89.9%. Carbon dioxide evolutions were determined with use of Alwood valves. Both the Koji and conventional fermentations produced an average of 0.48 g ofmore » carbon dioxide per gram of dry substrate starch within 72 h. However, initially the conventional fermentation rate was greater. Koji dehydrated at 41/sup 0/C had no apparent detrimental effects on theoretical ethanol yield. 41 references, 1 figure, 2 tables.« less

  11. Monitoring endogenous enzymes during olive fruit ripening and storage: correlation with virgin olive oil phenolic profiles.

    PubMed

    Hachicha Hbaieb, Rim; Kotti, Faten; García-Rodríguez, Rosa; Gargouri, Mohamed; Sanz, Carlos; Pérez, Ana G

    2015-05-01

    The ability of olive endogenous enzymes β-glucosidase, polyphenol oxidase (PPO) and peroxidase (POX), to determine the phenolic profile of virgin olive oil was investigated. Olives used for oil production were stored for one month at 20 °C and 4 °C and their phenolic content and enzymatic activities were compared to those of ripening olive fruits. Phenolic and volatile profiles of the corresponding oils were also analysed. Oils obtained from fruits stored at 4 °C show similar characteristics to that of freshly harvested fruits. However, the oils obtained from fruits stored at 20 °C presented the lowest phenolic content. Concerning the enzymatic activities, results show that the β-glucosidase enzyme is the key enzyme responsible for the determination of virgin olive oil phenolic profile as the decrease in this enzyme activity after 3 weeks of storage at 20 °C was parallel to a dramatic decrease in the phenolic content of the oils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Pedologic Factors Affecting Virgin Olive Oil Quality of "Chemlali" Olive Trees (Olea europaea L.).

    PubMed

    Rached, Mouna Ben; Galaverna, Gianni; Cirlini, Martina; Boujneh, Dalenda; Zarrouk, Mokhtar; Guerfel, Mokhtar

    2017-08-01

    The aim of this study examined the characterization of extra virgin olive oil samples from the main cultivar Chemlali, grown in five olive orchards with different soil type (Sandy, Clay, Stony, Brown, Limestone and Gypsum). Volatile compounds were studied using headspace-solid phase micro-extraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) technics. Moreover, the sterol profile was established using gas chromatography-mass spectrometry. 35 different volatile compounds were identified: alcohols, esters, aldehydes, ketones and hydrocarbons. The chemical composition of the volatile fraction was characterized by the preeminence of 2-hexenal (32.75%) and 1-hexanol (31.88%). Three sterols were identified and characterized. For all olive oil samples, ß-sitosterol (302.25 mg/kg) was the most abundant sterol. Interestingly, our results showed significant qualitative and quantitative differences in the levels of the volatile compounds and sterols from oils obtained from olive trees grown in different soil type.

  13. Reduction in pesticide residue levels in olives by ozonated and tap water treatments and their transfer into olive oil.

    PubMed

    Kırış, Sevilay; Velioglu, Yakup Sedat

    2016-01-01

    The effects of different wash times (2 and 5 min) with tap and ozonated water on the removal of nine pesticides from olives and the transfer ratios of these pesticides during olive oil production were determined. The reliability of the analytical methods was also tested. The applied methods of analysis were found to be suitable based on linearity, trueness, repeatability, selectivity and limit of quantification all the pesticides tested. All tap and ozonated water wash cycles removed a significant quantity of the pesticides from the olives, with a few exceptions. Generally, extending the wash time increased the pesticide reduction with ozonated water, but did not make significant differences with tap water. During olive oil processing, depending on the processing technique and physicochemical properties of the pesticides, eight of nine pesticides were concentrated into olive oil (processing factor > 1) with almost no significant difference between treatments. Imidacloprid did not pass into olive oil. Ozonated water wash for 5 min reduced chlorpyrifos, β-cyfluthrin, α-cypermethrin and imidacloprid contents by 38%, 50%, 55% and 61% respectively in olives.

  14. Olive Cultivation in the Southern Hemisphere: Flowering, Water Requirements and Oil Quality Responses to New Crop Environments.

    PubMed

    Torres, Mariela; Pierantozzi, Pierluigi; Searles, Peter; Rousseaux, M Cecilia; García-Inza, Georgina; Miserere, Andrea; Bodoira, Romina; Contreras, Cibeles; Maestri, Damián

    2017-01-01

    Olive ( Olea europaea L.) is a crop well adapted to the environmental conditions prevailing in the Mediterranean Basin. Nevertheless, the increasing international demand for olive oil and table olives in the last two decades has led to expansion of olive cultivation in some countries of the southern hemisphere, notably in Argentina, Chile, Perú and Australia. While the percentage of world production represented by these countries is still low, many of the new production regions do not have typical Mediterranean climates, and some are located at subtropical latitudes where there is relatively little information about crop function. Thus, the primary objective of this review was to assess recently published scientific literature on olive cultivation in these new crop environments. The review focuses on three main aspects: (a) chilling requirements for flowering, (b) water requirements and irrigation management, and (c) environmental effects on fruit oil concentration and quality. In many arid and semiarid regions of South America, temperatures are high and rainfall is low in the winter and early spring months compared to conditions in much of the Mediterranean Basin. High temperatures have often been found to have detrimental effects on olive flowering in many olive cultivars that have been introduced to South America, and a better understanding of chilling requirements is needed. Lack of rainfall in the winter and spring also has resulted in an urgent need to evaluate water requirements from the flower differentiation period in the winter to early fruit bearing. Additionally, in some olive growing areas of South America and Australia, high early season temperatures affect the timing of phenological events such that the onset of oil synthesis occurs sooner than in the Mediterranean Basin with most oil accumulation taking place in the summer when temperatures are very high. Increasing mean daily temperatures have been demonstrated to decrease fruit oil concentration

  15. Olive Cultivation in the Southern Hemisphere: Flowering, Water Requirements and Oil Quality Responses to New Crop Environments

    PubMed Central

    Torres, Mariela; Pierantozzi, Pierluigi; Searles, Peter; Rousseaux, M. Cecilia; García-Inza, Georgina; Miserere, Andrea; Bodoira, Romina; Contreras, Cibeles; Maestri, Damián

    2017-01-01

    Olive (Olea europaea L.) is a crop well adapted to the environmental conditions prevailing in the Mediterranean Basin. Nevertheless, the increasing international demand for olive oil and table olives in the last two decades has led to expansion of olive cultivation in some countries of the southern hemisphere, notably in Argentina, Chile, Perú and Australia. While the percentage of world production represented by these countries is still low, many of the new production regions do not have typical Mediterranean climates, and some are located at subtropical latitudes where there is relatively little information about crop function. Thus, the primary objective of this review was to assess recently published scientific literature on olive cultivation in these new crop environments. The review focuses on three main aspects: (a) chilling requirements for flowering, (b) water requirements and irrigation management, and (c) environmental effects on fruit oil concentration and quality. In many arid and semiarid regions of South America, temperatures are high and rainfall is low in the winter and early spring months compared to conditions in much of the Mediterranean Basin. High temperatures have often been found to have detrimental effects on olive flowering in many olive cultivars that have been introduced to South America, and a better understanding of chilling requirements is needed. Lack of rainfall in the winter and spring also has resulted in an urgent need to evaluate water requirements from the flower differentiation period in the winter to early fruit bearing. Additionally, in some olive growing areas of South America and Australia, high early season temperatures affect the timing of phenological events such that the onset of oil synthesis occurs sooner than in the Mediterranean Basin with most oil accumulation taking place in the summer when temperatures are very high. Increasing mean daily temperatures have been demonstrated to decrease fruit oil concentration

  16. Influence of the dominance of must fermentation by Torulaspora delbrueckii on the malolactic fermentation and organoleptic quality of red table wine.

    PubMed

    Ramírez, Manuel; Velázquez, Rocío; Maqueda, Matilde; Zamora, Emiliano; López-Piñeiro, Antonio; Hernández, Luis M

    2016-12-05

    Torulaspora delbrueckii can improve wine aroma complexity, but its impact on wine quality is still far from being satisfactory at the winery level, mainly because it is easily replaced by S. cerevisiae yeasts during must fermentation. New T. delbrueckii killer strains were selected to overcome this problem. These strains killed S. cerevisiae yeasts and dominated fermentation better than T. delbrueckii non-killer strains when they were single-inoculated into crushed red grape must. All the T. delbrueckii wines, but none of the S. cerevisiae wines, underwent malolactic fermentation. Putative lactic acid bacteria were always found in the T. delbrueckii wines, but none or very few in the S. cerevisiae wines. Malic acid degradation was the greatest in the wines inoculated with the killer strains, and these strains reached the greatest dominance ratios and had the slowest fermentation kinetics. The T. delbrueckii wines had dried-fruit/pastry aromas, but low intensities of fresh-fruit aromas. The aroma differences between the T. delbrueckii and the S. cerevisiae wines can be explained by the differences that were found in the amounts of some fruity aroma compounds such as isoamyl acetate, ethyl hexanoate, ethyl octanoate, and some lactones. This T. delbrueckii effect significantly raised the organoleptic quality scores of full-bodied Cabernet-Sauvignon red wines inoculated with the killer strains. In particular, these wines were judged as having excellent aroma complexity, mouth-feel, and sweetness. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. 40 CFR Table 1 to Subpart Cccc of... - Emission Limitations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast Pt. 63, Subpt... comply with the emission limitations in the following table: For each fed-batch fermenter producing yeast... duration of a batch.b. The emission limitation does not apply during the production of specialty yeast. ...

  18. 40 CFR Table 1 to Subpart Cccc of... - Emission Limitations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast Pt. 63, Subpt... comply with the emission limitations in the following table: For each fed-batch fermenter producing yeast... duration of a batch.b. The emission limitation does not apply during the production of specialty yeast. ...

  19. 40 CFR Table 1 to Subpart Cccc of... - Emission Limitations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast Pt. 63, Subpt... comply with the emission limitations in the following table: For each fed-batch fermenter producing yeast... duration of a batch.b. The emission limitation does not apply during the production of specialty yeast. ...

  20. Cooling treatment of olive paste during the oil processing: Impact on the yield and extra virgin olive oil quality.

    PubMed

    Veneziani, G; Esposto, S; Taticchi, A; Urbani, S; Selvaggini, R; Di Maio, I; Sordini, B; Servili, M

    2017-04-15

    In recent years, the temperature of processed olives in many olive-growing areas was often close to 30°C, due to the global warming and an early harvesting period. Consequently, the new trends in the extraction process have to include the opportunity to cool the olives or olive paste before processing to obtain high quality EVOO. A tubular thermal exchanger was used for a rapid cooling treatment (CT) of olive paste after crushing. The results did not show a significant difference in the oil yield or any modifications in the legal parameters. The cooling process determined a significant improvement of phenolic compounds in all the three Italian cultivar EVOOs analyzed, whereas the volatile compounds showed a variability largely affected by the genetic origin of the olives with C 6 aldehydes that seem to be more stable than C 6 alcohols and esters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Antioxidants in Greek Virgin Olive Oils

    PubMed Central

    Kalogeropoulos, Nick; Tsimidou, Maria Z.

    2014-01-01

    Greece is ranked third after Spain and Italy in virgin olive oil production. The number of Greek olive cultivars—excluding clonal selections—is greater than 40; however, more than 90% of the acreage is cultivated with 20 cultivars, adapted to a wide range of environmental conditions. Greek virgin olive oils, produced mainly with traditional, non-intensive cultivation practices, are mostly of exceptional quality. The benefits of consuming virgin olive oil, originally attributed to its high oleic acid content, are now considered to be the combined result of several nutrient and non-nutrient phytochemicals. The present work summarizes available data regarding natural antioxidants in Greek virgin olive oils (VOO) namely, polar phenolic compounds, tocopherols, squalene, and triterpenic acids. The literature survey indicated gaps in information, which should be filled in the near future so that the intrinsic properties of this major agricultural product of Greece will be substantiated on a solid scientific basis. PMID:26784878

  2. Evaluation of processing factors for selected organic contaminants during virgin olive oil production: Distribution of BTEXS during olives processing.

    PubMed

    López-Blanco, Rafael; Gilbert-López, Bienvenida; Rojas-Jiménez, Rubén; Robles-Molina, José; Ramos-Martos, Natividad; García-Reyes, Juan F; Molina-Díaz, Antonio

    2016-05-15

    The presence of BTEXS (benzene, toluene, ethylbenzene, xylenes and styrene) in virgin olive oils can be attributed to environmental contamination, but also to biological processes during oil lipogenesis (styrene). In this work, the processing factor of BTEXS from olives to olive oil during its production was evaluated at lab-scale with an Abencor system. Benzene showed the lowest processing factor (15%), whereas toluene and xylenes showed an intermediate behavior (with 40-60% efficiency), and ethylbenzene and styrene were completely transferred (100%). In addition, an attempt to examine the contribution of potential sources to olives contamination with BTEXS was carried out for the first time. Two types of olives samples were classified according to their proximity to the contamination source (road). Although higher levels of BTEXS were found in samples close to roads, the concentrations were relatively low and do not constitute a major contribution to BTEXS usually detected in olive oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The Microbiology of Olive Mill Wastes

    PubMed Central

    Ntougias, Spyridon; Bourtzis, Kostas

    2013-01-01

    Olive mill wastes (OMWs) are high-strength organic effluents, which upon disposal can degrade soil and water quality, negatively affecting aquatic and terrestrial ecosystems. The main purpose of this review paper is to provide an up-to-date knowledge concerning the microbial communities identified over the past 20 years in olive mill wastes using both culture-dependent and independent approaches. A database survey of 16S rRNA gene sequences (585 records in total) obtained from olive mill waste environments revealed the dominance of members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria. Independent studies confirmed that OMW microbial communities' structure is cultivar dependant. On the other hand, the detection of fecal bacteria and other potential human pathogens in OMWs is of major concern and deserves further examination. Despite the fact that the degradation and detoxification of the olive mill wastes have been mostly investigated through the application of known bacterial and fungal species originated from other environmental sources, the biotechnological potential of indigenous microbiota should be further exploited in respect to olive mill waste bioremediation and inactivation of plant and human pathogens. The implementation of omic and metagenomic approaches will further elucidate disposal issues of olive mill wastes. PMID:24199199

  4. Centennial olive trees as a reservoir of genetic diversity

    PubMed Central

    Díez, Concepción M.; Trujillo, Isabel; Barrio, Eladio; Belaj, Angjelina; Barranco, Diego; Rallo, Luis

    2011-01-01

    Background and Aims Genetic characterization and phylogenetic analysis of the oldest trees could be a powerful tool both for germplasm collection and for understanding the earliest origins of clonally propagated fruit crops. The olive tree (Olea europaea L.) is a suitable model to study the origin of cultivars due to its long lifespan, resulting in the existence of both centennial and millennial trees across the Mediterranean Basin. Methods The genetic identity and diversity as well as the phylogenetic relationships among the oldest wild and cultivated olives of southern Spain were evaluated by analysing simple sequence repeat markers. Samples from both the canopy and the roots of each tree were analysed to distinguish which trees were self-rooted and which were grafted. The ancient olives were also put into chronological order to infer the antiquity of traditional olive cultivars. Key Results Only 9·6 % out of 104 a priori cultivated ancient genotypes matched current olive cultivars. The percentage of unidentified genotypes was higher among the oldest olives, which could be because they belong to ancient unknown cultivars or because of possible intra-cultivar variability. Comparing the observed patterns of genetic variation made it possible to distinguish which trees were grafted onto putative wild olives. Conclusions This study of ancient olives has been fruitful both for germplasm collection and for enlarging our knowledge about olive domestication. The findings suggest that grafting pre-existing wild olives with olive cultivars was linked to the beginnings of olive growing. Additionally, the low number of genotypes identified in current cultivars points out that the ancient olives from southern Spain constitute a priceless reservoir of genetic diversity. PMID:21852276

  5. Oil Characteristics of Four Palestinian Olive Varieties.

    PubMed

    Lodolini, Enrico Maria; Polverigiani, Serena; Ali, Saed; Mutawea, Mohammed; Qutub, Mayyada; Arabasi, Taysir; Pierini, Fabio; Abed, Mohammed; Neri, Davide

    2017-05-01

    Olive oil represents an important source of income for Palestinian farmers in local, national and international markets. Sometimes, olive oil produced in local climatic conditions, does not achieve the International Olive Council (IOC) trade standards so that international markets are precluded. The oil chemical composition and sensory profile of four Palestinian olive varieties (Nabali Baladi, Nabali Mohassan, Souri and K18) were characterized in 2010 throughout an in situ evaluation. Most of the physicchemical characteristics and the fatty acid composition of the varieties met the International Olive Council trade standards (IOC-TS) for extra virgin olive oils. Values of K 270 for Nabali Baladi and linolenic acid for Souri slightly exceeded the limit. Eicosanoic acid exceeded the IOC-TS limits in the oils of all considered varieties. Among the sterols, the Δ-7-stigmastenol resulted too high for Nabali Baladi and Souri. Sensory profile for the tested varieties showed a reminiscence of tomato or artichoke and light to medium bitter and pungent sensations. Results represent an important baseline reference for further studies about oil composition and quality of the main Palestinian olive germplasm and provide indication of potential critical points to be controlled in order to ensure the full achievement of IOC-TS and access international markets.

  6. Effects of olive mill wastes added to olive grove soils on erosion and soil properties

    NASA Astrophysics Data System (ADS)

    Lozano-García, Beatriz; Parras-Alcántara, Luis

    2014-05-01

    INTRODUCTION The increasing degradation of olive groves by effect of organic matter losses derived from intensive agricultural practices has promoted the use (by olive farmers) of olive mill wastes (olive leaves and alperujo) which contain large amounts of organic matter and are free of heavy metals and pathogenic microorganisms. In this work we compared the effects of these oil mill wastes on the decrease of soil erosion, also, we undertook the assessment of the organic carbon and nitrogen contents of soil, their distribution across the profile, the accumulation and Stratification ratios (SRs) of soil organic carbon (SOC) and total nitrogen (TN), and the C:N ratio, in Cambisols in Mediterranean olive groves treated with olive leaves and alperujo. MATERIALS AND METHODS The study area was a typical olive grove in southern Spain under conventional tillage (CT). Three plots were established. The first one was the control plot; the second one was treated with olive leaves (CTol) and the third one, with alperujo (CTa). 9 samples per plot were collected to examine the response of the soil 3 years after application of the wastes. Soil properties determined were: soil particle size, pH, bulk density, the available water capacity, SOC, TN and C:N ratio. SOC and N stock, expressed for a specific depth in Mg ha-1. Stratification ratios (SRs) (that can be used as an indicator of dynamic soil quality) for SOC and TN at three different depths were calculated. The erosion study was based on simulations of rain; that have been carried out in order to highlight differences in the phenomena of runoff and soil losses in the three plots considered. The effect of different treatments on soil properties was analyzed using a ANOVA, followed by an Anderson-Darling test. RESULTS Supplying the soil with the wastes significantly improved physical and chemical properties in the studied soils with respect to the control. C and N stocks increased, the SOC stock was 75.4 Mg ha-1 in CT, 91.5 Mg

  7. Selective recognition of DNA from olive leaves and olive oil by PNA and modified-PNA microarrays

    PubMed Central

    Rossi, Stefano; Calabretta, Alessandro; Tedeschi, Tullia; Sforza, Stefano; Arcioni, Sergio; Baldoni, Luciana; Corradini, Roberto; Marchelli, Rosangela

    2012-01-01

    PNA probes for the specific detection of DNA from olive oil samples by microarray technology were developed. The presence of as low as 5% refined hazelnut (Corylus avellana) oil in extra-virgin olive oil (Olea europaea L.) could be detected by using a PNA microarray. A set of two single nucleotide polymorphisms (SNPs) from the Actin gene of Olive was chosen as a model for evaluating the ability of PNA probes for discriminating olive cultivars. Both unmodified and C2-modified PNAs bearing an arginine side-chain were used, the latter showing higher sequence specificity. DNA extracted from leaves of three different cultivars (Ogliarola leccese, Canino and Frantoio) could be easily discriminated using a microarray with unmodified PNA probes, whereas discrimination of DNA from oil samples was more challenging, and could be obtained only by using chiral PNA probes. PMID:22772038

  8. Virgin Olive Oil and Hypertension.

    PubMed

    Lopez, Sergio; Bermudez, Beatriz; Montserrat-de la Paz, Sergio; Jaramillo, Sara; Abia, Rocio; Muriana, Francisco Jg

    2016-01-01

    The incidence of high blood pressure (BP) along with other cardiovascular (CV) risk factors on human health has been studied for many years. These studies have proven a link between unhealthy dietary habits and sedentary lifestyle with the onset of hypertension, which is a hallmark of CV and cerebrovascular diseases. The Mediterranean diet, declared by the UNESCO as an Intangible Cultural Heritage since 2013, is rich in vegetables, legumes, fruits and virgin olive oil. Thanks to its many beneficial effects, including those with regard to lowering BP, the Mediterranean diet may help people from modern countries to achieve a lower occurrence of CV disease. Data from human and animal studies have shown that the consumption of virgin olive oil shares most of the beneficial effects of the Mediterranean diet. Virgin olive oil is the only edible fat that can be consumed as a natural fruit product with no additives or preservatives, and contains a unique constellation of bioactive entities, namely oleic acid and minor constituents. In this review, we summarize what is known about the effects of virgin olive oil on hypertension.

  9. A novel method to quantify the adulteration of extra virgin olive oil with low-grade olive oils by UV-vis.

    PubMed

    Torrecilla, José S; Rojo, Ester; Domínguez, Juan C; Rodríguez, Francisco

    2010-02-10

    A simple and novel method to quantify adulterations of extra virgin olive oil (EVOO) with refined olive oil (ROO) and refined olive-pomace oil (ROPO) is described here. This method consists of calculating chaotic parameters (Lyapunov exponent, autocorrelation coefficients, and two fractal dimensions, CPs) from UV-vis scans of adulterated EVOO samples. These parameters have been successfully linearly correlated with the ROO or ROPO concentrations in 396 EVOO adulterated samples. By an external validation process, when the adulterating agent concentration is less than 10%, the integrated CPs/UV-vis model estimates the adulterant agent concentration with a mean correlation coefficient (estimated versus real concentration of low grade olive oil) greater than 0.97 and a mean square error of less than 1%. In light of these results, this detector is suitable not only to detect adulterations but also to measure impurities when, for instance, a higher grade olive oil is transferred to another storage tank in which lower grade olive oil was stored that had not been adequately cleaned.

  10. Obituary: John P. Oliver (1939-2011)

    NASA Astrophysics Data System (ADS)

    Cohen, Howard

    2011-12-01

    John P. Oliver, an emeritus professor of astronomy at the University of Florida in Gainesville, passed away Thursday, February 10, 2011, after a courageous and long battle with renal cancer. He left behind memories of a life and career to envy. During his forty years of service to his profession and department, this unique astronomer distinguished himself as a research scientist and instrumentalist, creative software designer, gifted teacher and speaker, a vocal advocate of public outreach, and friend to all who knew him. Oliver was born in New Rochelle, New York, during late fall 1939 on November 24. His father, James P. Oliver, was a naval officer and his mother was the former Dorothy Armstrong Cambell. Oliver's early days were spent in various cities due to his father's military life but he eventually received a high school diploma from Princess Ann High School in Virginia. Oliver subsequently graduated with a bachelor of science degree in physics in 1963 from the prestigious Rensselaer Polytechnic Institute in Troy. Lick Observatory awarded him a graduate assistantship so he moved west to California where he met and, on November 2, 1963, married Barbara Kay McKenna, who became his lifelong love and partner. In California Oliver had the good fortune to work with several eminent astronomers. This included Albert E. Whifford, director of Lick Observatory and known for his work on interstellar reddening, and Merle F. Walker, an expert in photometry, who also helped establish Pluto's rotation period. His close relation with Lawrence H. Aller, one of the 20th century's memorable astronomers, known for his ability to combine observation, theory and education, and for his care and kindness, helped bind Oliver and astronomy together for life. Oliver would also join the technical staff of the Aerospace Corporation, become an acting director of the Pine Mountain Observatory (University of Oregon), and a research assistant at the University of California in Los Angeles

  11. Influence of Picual olive ripening on virgin olive oil alteration and stability during potato frying.

    PubMed

    Olivero-David, Raul; Mena, Carmen; Pérez-Jimenez, M Angeles; Sastre, Blanca; Bastida, Sara; Márquez-Ruiz, Gloria; Sánchez-Muniz, Francisco J

    2014-12-03

    Ripening modifies oil attributes and composition. However, the influence of olive ripening on virgin olive oil (VOO) thermal oxidative stability on food-frying has not been studied yet. Oils from Picual olives of low (VOO1), medium (VOO2), and high (VOO3) ripeness were obtained, and their thermal oxidative stability during 40 potato-fryings was tested. Unused VOO1 showed higher antioxidant content and oxidative stability than VOO2 and VOO3. Polar compounds (PC), oligomers, and altered fatty acid methyl esters (polar-FAME) increased, whereas linoleic acid, polyphenols, and tocopherols decreased in the three VOOs through frying. The alteration was lower in VOO1, followed by VOO2 (0.105, 0.117, and 0.042 g/100 g oil less of PC, oligomers and polar-FAME per frying, respectively, in VOO1 than in VOO3). In conclusion, VOO obtained from low-ripeness Picual olives should be preferred when frying fresh-potatoes due to its higher thermal and oxidative stability, permitting a higher number of potato-frying uses.

  12. 40 CFR Table 2 to Subpart Cccc of... - Requirements for Performance Tests

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... As stated in § 63.2161, if you demonstrate compliance by monitoring brew ethanol, you must comply with the requirements for performance tests in the following table: [Brew Ethanol Monitoring Only] For each fed-batch fermenter for which compliance is determined by monitoring brew ethanol concentration...

  13. 40 CFR Table 2 to Subpart Cccc of... - Requirements for Performance Tests

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... As stated in § 63.2161, if you demonstrate compliance by monitoring brew ethanol, you must comply with the requirements for performance tests in the following table: [Brew Ethanol Monitoring Only] For each fed-batch fermenter for which compliance is determined by monitoring brew ethanol concentration...

  14. 40 CFR Table 2 to Subpart Cccc of... - Requirements for Performance Tests

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... As stated in § 63.2161, if you demonstrate compliance by monitoring brew ethanol, you must comply with the requirements for performance tests in the following table: [Brew Ethanol Monitoring Only] For each fed-batch fermenter for which compliance is determined by monitoring brew ethanol concentration...

  15. Use of Olive Oil Industrial By-Product for Pasta Enrichment.

    PubMed

    Padalino, Lucia; D'Antuono, Isabella; Durante, Miriana; Conte, Amalia; Cardinali, Angela; Linsalata, Vito; Mita, Giovanni; Logrieco, Antonio F; Del Nobile, Matteo Alessandro

    2018-04-16

    During recent years food industries generally produce a large volume of wastes both solid and liquid, representing a disposal and potential environmental pollution problem. The goal of the study was to optimize, from both sensory and nutritional points of view, the formulation of durum wheat spaghetti enriched with an olive oil industrial by-product, indicated as olive paste. Three consecutive steps were carried out. In the first one, the olive paste was air-dried at low temperature, milled to record olive paste flour and properly analyzed for its biochemical composition. In the second step, the olive paste flour was added to the pasta dough at 10% and 15% ( w / w ). In the last step, different concentrations of transglutaminase were added to enriched pasta (10% olive paste) to further improve the quality. Sensory properties and nutritional content of enriched and control pasta were properly measured. Spaghetti with 10% olive paste flour and 0.6% transglutaminase were considered acceptable to the sensory panel test. Nutritional analyses showed that addition of 10% olive paste flour to pasta considerably increased content of flavonoids and total polyphenols. The proper addition of olive paste flour and transglutaminase for pasta enrichment could represent a starting point to valorize olive oil industrial by-products and produce new healthy food products.

  16. The origin of aliphatic hydrocarbons in olive oil.

    PubMed

    Pineda, Manuel; Rojas, María; Gálvez-Valdivieso, Gregorio; Aguilar, Miguel

    2017-11-01

    There are many substances that can interfere with olive oil quality. Some of them are well characterized, but many others have an unknown origin. Saturated hydrocarbons make an extraordinary complex family of numerous molecules, some of them present naturally in vegetable oils. When major natural saturated hydrocarbons are analyzed by standard chromatographic methods, this complex mixture of saturated hydrocarbons appears as a hump in the chromatogram and is commonly named as unresolved complex mixture (UCM), whose origin remains unknown. In this work we studied the occurrence and the origin of aliphatic saturated hydrocarbons in olive oil. Hydrocarbons were analyzed in olive oil and along the industrial process of oil extraction. We also analyzed n-alkanes and the UCM fraction of hydrocarbons in leaf, fruit and oil from different varieties and different locations, and we also analyzed the soils at these locations. We conclude that the hydrocarbons present in olive oil do not necessarily have their origin in a contamination during olive oil elaboration; they seem to have a natural origin, as a result of olive tree metabolism and/or as the result of an intake and accumulation by the olive tree directly from the environment during its entire life cycle. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Soil Properties and Olive Cultivar Determine the Structure and Diversity of Plant-Parasitic Nematode Communities Infesting Olive Orchards Soils in Southern Spain

    PubMed Central

    Palomares-Rius, Juan E.; Castillo, Pablo; Montes-Borrego, Miguel; Navas-Cortés, Juan A.; Landa, Blanca B.

    2015-01-01

    This work has studied for the first time the structure and diversity of plant-parasitic nematodes (PPNs) infesting olive orchard soils in a wide-region in Spain that included 92 locations. It aims at determining which agronomical or environmental factors associated to the olive orchards are the main drivers of the PPNs community structure and diversity. Classical morphological and morphometric identification methods were used to determine the frequency and densities of PPNs. Thirteen families, 34 genera and 77 species of PPNs were identified. The highest diversity was found in Helicotylenchus genus, with six species previously reported in Spain and with H. oleae being a first report. Neodolichorhynchus microphasmis and Diptenchus sp., Diphtherophora sp., and Discotylenchus sp., usually considered fungal feeders, were also reported for the first time associated to olive rhizosphere. PPNs abundance ranged from 66 to 16,288 individuals/500-cm3 of soil with Helicotylenchus digonicus being the most prevalent species, followed by Filenchus sp., Merlinius brevidens and Xiphinema pachtaicum. Nematode abundance and diversity indexes were influenced by olive cultivar, and orchard and soil management practices; while olive variety and soil texture were the main factors driving PPN community composition. Soil physicochemical properties and climatic characteristics most strongly associated to the PPN community composition included pH, sand content and exchangeable K, and maximum and minimum average temperature of the sampled locations. Our data suggests that there is a high diversity of PPNs associated to olive in Southern Spain that can exert different damage to olive roots depending on the olive variety and their abundance. Further analysis to determine the resistance levels of most common olive varieties to the prevalent PPNs in Spain will help to choose the most appropriate ones for the establishment of new plantations. This choice will take into consideration the specific

  18. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review.

    PubMed

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus.

  19. Use of Olive Oil Industrial By-Product for Pasta Enrichment

    PubMed Central

    Padalino, Lucia; Durante, Miriana; Conte, Amalia; Mita, Giovanni; Logrieco, Antonio F.; Del Nobile, Matteo Alessandro

    2018-01-01

    Background: During recent years food industries generally produce a large volume of wastes both solid and liquid, representing a disposal and potential environmental pollution problem. Objective: The goal of the study was to optimize, from both sensory and nutritional points of view, the formulation of durum wheat spaghetti enriched with an olive oil industrial by-product, indicated as olive paste. Methods: Three consecutive steps were carried out. In the first one, the olive paste was air-dried at low temperature, milled to record olive paste flour and properly analyzed for its biochemical composition. In the second step, the olive paste flour was added to the pasta dough at 10% and 15% (w/w). In the last step, different concentrations of transglutaminase were added to enriched pasta (10% olive paste) to further improve the quality. Sensory properties and nutritional content of enriched and control pasta were properly measured. Results: Spaghetti with 10% olive paste flour and 0.6% transglutaminase were considered acceptable to the sensory panel test. Nutritional analyses showed that addition of 10% olive paste flour to pasta considerably increased content of flavonoids and total polyphenols. Conclusions: The proper addition of olive paste flour and transglutaminase for pasta enrichment could represent a starting point to valorize olive oil industrial by-products and produce new healthy food products. PMID:29659550

  20. 40 CFR Table 2 to Subpart Cccc of... - Requirements for Performance Tests

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stated in § 63.2161, if you demonstrate compliance by monitoring brew ethanol, you must comply with the requirements for performance tests in the following table: [Brew Ethanol Monitoring Only] For each fed-batch fermenter for which compliance is determined by monitoring brew ethanol concentration and calculating VOC...

  1. The ameliorative effects of virgin olive oil and olive leaf extract on amikacin-induced nephrotoxicity in the rat.

    PubMed

    Abdel-Gayoum, Abdelgayoum A; Al-Hassan, Abdelrahman A; Ginawi, Ibrahim A; Alshankyty, Ibraheem M

    2015-01-01

    Amikacin is an important antibiotic, and its use is limited because of the induced nephrotoxicity. Thus, search for natural and synthetic agents that can moderate amikacin toxicity never stopped. The present study aims to investigate the possible ameliorative effects of virgin olive oil and olive leaf extract against the amikacin-induced nephrotoxicity in rat. 48 rats were distributed into 6 groups: 1-Animals of control (C) group were injected intraperitoneally (ip) with saline, 2-(AK); injected ip with amikacin {300 mg/kg/day for 12days}, 3-(OO) group: given olive oil {7 ml/kg/day for 16days}, 4-(OOAK) group: given olive oil as in OO and amikacin for 12days, 5-(OL) group: given olive leaf extract {50 mg/kg/day for 16days}, 6-(OLAK) group: given leaf extract as in OL and amikacin for 12days. Animals were fasted and sacrificed. Serum was used for biochemical analysis and kidneys for histopathology. Serum urea and creatinine were significantly ( P  < 0.001) elevated in AK, and significantly dropped in the OOAK and OLAK groups. Serum uric acid was reduced in AK by 45.29%. Kidneys from AK showed necrosis, whereas, those from OOAK and OLAK showed mild histology. The serum triglyceride was decreased by 17.8% in OL, by 37.02% in OOAK and by 31.48% in OLAK. The calculated amikacin effect showed a significant positive correlation with urea ( r  = 0.521, P  = 0.0004), and a negative correlation with uric acid ( r  = ⿿ 0.58, P  < 0.0001). The study confirmed nephrotoxicity of amikacin in rat which was ameliorated by virgin olive oil and by olive leaf extract. Amikacin did not cause dyslipidemia but reduced serum uric acid.

  2. Performance of hardwoods planted with autumn olive after removing prior cover

    Treesearch

    Felix, Jr. Ponder

    1993-01-01

    White ash, white oak, and black walnut were planted with and without autumn olive on a site previously occupied by a 10-year-old stand of autumn olive. Seven years later, height, diameter, and foliar nitrogen were significantly greater in plots with autumn olive than in plots without autumn olive. White oak in plots previously occupied by autumn olive were larger in...

  3. Bioactivity of Olive Oil Phenols in Neuroprotection

    PubMed Central

    Angeloni, Cristina; Barbalace, Maria Cristina

    2017-01-01

    Neurological disorders such as stroke, Alzheimer’s and Parkinson’s diseases are associated with high morbidity and mortality, and few or no effective options are available for their treatment. These disorders share common pathological characteristics like the induction of oxidative stress, abnormal protein aggregation, perturbed Ca2+ homeostasis, excitotoxicity, inflammation and apoptosis. A large body of evidence supports the beneficial effects of the Mediterranean diet in preventing neurodegeneration. As the Mediterranean diet is characterized by a high consumption of extra-virgin olive oil it has been hypothesized that olive oil, and in particular its phenols, could be responsible for the beneficial effect of the Mediterranean diet. This review provides an updated vision of the beneficial properties of olive oil and olive oil phenols in preventing/counteracting both acute and chronic neurodegenerative diseases. PMID:29068387

  4. Problems and agricultural solutions in olive groves

    NASA Astrophysics Data System (ADS)

    Lozano-García, Beatriz; Parras-Alcántara, Luis

    2017-04-01

    The most important and extensive crops in the Mediterranean area are olive groves. Within the last 50 years, the surface occupied by olive groves has progressively increased in Spain including more complex topographies, poorer soils and worse climatic conditions. This situation has caused serious problems based on the losses of soil, nutrients and soil quality among others (Lozano-García and Parras-Alcántara, 2014). Therefore, alternative practices that avoid soil erosion and soil degradation must be considered. As a consequence, farmers together with scientist are innovating by the development of different practices in olive groves in order to avoid these problems and to improve soil conditions. There is a huge range of new practices. Some of them are: i. alternative management techniques such as organic farming, no tillage and minimum tillage. These techniques have a positive impact in soils (Parras-Alcántara and Lozano-García, 2014; Fernández-Romero et al., 2016). ii. the addition of different substances on the soil. For example, oil mill by-products that are thus potentially useful as soil amendments since they are effective sources of organic matter and nitrogen, improve soil quality and alleviate the environmental and agronomic limitations of Mediterranean agricultural soils, even those under using conventional tillage (Lozano-García et al., 2011; Lozano-García and Parras-Alcántara, 2013). iii. the use of covers as secondary crops inside the olive grove. These offer secondary benefits derived from alternative crops and soil protection due to fact that in olive groves the main problem is the high quantity of bare surface. With this contribution we want to show the current situation in olive groves and how better results could be obtained when both trustworthy information is available and farmers and scientist work together. REFERENCES Fernández-Romero, M.L., Parras-Alcántara, L., Lozano-García, B., Clark, J.M., Collins, C.D. 2016. Soil quality

  5. Mechanisms of action of phenolic compounds in olive.

    PubMed

    Rafehi, Haloom; Ververis, Katherine; Karagiannis, Tom C

    2012-06-01

    Olive oil, an oil rich in monounsaturated fatty acids (MUFCs) and minor constituents including phenolic compounds, is a major component of the Mediterranean diet. The potential health benefits of the Mediterranean diet were highlighted by the seminal Seven Countries Study, and more contemporary research has identified olive oil as a major element responsible for these effects. It is emerging that the phenolic compounds are the most likely candidates accounting for the cardioprotective and cancer preventative effects of extra virgin olive oil (EVOO). In particular, the phenolic compound, hydroxytyrosol has been identified as one of the most potent antioxidants found in olive oil. This review will briefly consider historical aspects of olive oil research and the biological properties of phenolic compounds in olive oil will be discussed. The focus of the discussion will be related to the mechanisms of action of hydroxytyrosol. Studies have demonstrated that hydroxytyrosol induces apoptosis and cell cycle arrest in cancer cells. Further, research has shown that hydroxytyrosol can prevent cardiovascular disease by reducing the expression of adhesion molecules on endothelial cells and preventing the oxidation of low-density lipoprotein (LDL). The molecular mechanisms accounting for these effects are reviewed.

  6. Saltcedar and Russian Olive Control Demonstration Act Science Assessment

    USGS Publications Warehouse

    Shafroth, Patrick B.; Brown, Curtis A.; Merritt, David M.

    2010-01-01

    The primary intent of this document is to provide the science assessment called for under The Saltcedar and Russian Olive Control Demonstration Act of 2006 (Public Law 109-320; the Act). A secondary purpose is to provide a common background for applicants for prospective demonstration projects, should funds be appropriated for this second phase of the Act. This document synthesizes the state-of-the-science on the following topics: the distribution and abundance (extent) of saltcedar (Tamarix spp.) and Russian olive (Elaeagnus angustifolia) in the Western United States, potential for water savings associated with controlling saltcedar and Russian olive and the associated restoration of occupied sites, considerations related to wildlife use of saltcedar and Russian olive habitat or restored habitats, methods to control saltcedar and Russian olive, possible utilization of dead biomass following removal of saltcedar and Russian olive, and approaches and challenges associated with revegetation or restoration following control efforts. A concluding chapter discusses possible long-term management strategies, needs for additional study, potentially useful field demonstration projects, and a planning process for on-the-ground projects involving removal of saltcedar and Russian olive.

  7. Response of Psyttalia humilis (Hymenoptera: Braconidae) to olive fruit fly (Diptera: Tephritidae) and conditions in California olive orchards

    USDA-ARS?s Scientific Manuscript database

    The larval parasitoid, Psyttalia cf. concolor (Szépligeti), reared on Mediterranean fruit fly, Ceratitis capitata (Weidemann), by the USDA-APHIS, PPQ, Guatemala City, Guatemala, was imported into California for biological control of olive fruit fly, Bactrocera oleae (Gmelin), in olives, Olea europae...

  8. Sorting Olive Batches for the Milling Process Using Image Processing

    PubMed Central

    Puerto, Daniel Aguilera; Martínez Gila, Diego Manuel; Gámez García, Javier; Gómez Ortega, Juan

    2015-01-01

    The quality of virgin olive oil obtained in the milling process is directly bound to the characteristics of the olives. Hence, the correct classification of the different incoming olive batches is crucial to reach the maximum quality of the oil. The aim of this work is to provide an automatic inspection system, based on computer vision, and to classify automatically different batches of olives entering the milling process. The classification is based on the differentiation between ground and tree olives. For this purpose, three different species have been studied (Picudo, Picual and Hojiblanco). The samples have been obtained by picking the olives directly from the tree or from the ground. The feature vector of the samples has been obtained on the basis of the olive image histograms. Moreover, different image preprocessing has been employed, and two classification techniques have been used: these are discriminant analysis and neural networks. The proposed methodology has been validated successfully, obtaining good classification results. PMID:26147729

  9. Isothermal microwave and microwave-convection drying of olive pomace

    USDA-ARS?s Scientific Manuscript database

    Olive pomace is the residue produced when olives are pressed for oil. Valuable polyphenolic compounds can be extracted from olive pomace, but this material is more than 60% water (wet basis) and thus costly to transport and process in its original, wet form. The objective of this study was thus to ...

  10. Characterization of Libyan olive, olea europaea L., cultivars using morpholigical data

    USDA-ARS?s Scientific Manuscript database

    Olive (Olea europaea L.) consumption and production are important socially and economically in Libya. Olive cultivars that are adapted to local conditions produce olives that have high quality and quantities of oil. Many of the important Libyan olive cultivars were included in this research. One goa...

  11. Pectinase production by Aspergillus giganteus in solid-state fermentation: optimization, scale-up, biochemical characterization and its application in olive-oil extraction.

    PubMed

    Ortiz, Gastón E; Ponce-Mora, María C; Noseda, Diego G; Cazabat, Gabriela; Saravalli, Celina; López, María C; Gil, Guillermo P; Blasco, Martín; Albertó, Edgardo O

    2017-02-01

    The application of pectinases in industrial olive-oil processes is restricted by its production cost. Consequently, new fungal strains able to produce higher pectinase titers are required. The aim of this work was to study the capability of Aspergillus giganteus NRRL10 to produce pectinolytic enzymes by SSF and evaluate the application of these in olive-oil extraction. A. giganteus was selected among 12 strains on the basis of high pectinolytic activity and stability. A mixture composed by wheat bran, orange, and lemon peels was selected as the best substrate for enzyme production. Statistical analyses of the experimental design indicated that pH, temperature, and CaCl 2 are the main factors that affect the production. Subsequently, different aeration flows were tested in a tray reactor; the highest activity was achieved at 20 L min -1 per kilogram of dry substrate (kgds). Finally, the pectinolytic enzymes from A. giganteus improved the oil yield and rheological characteristics without affecting oil chemical properties.

  12. LC/DAD/ESI/MS method for the determination of imidacloprid, thiacloprid, and spinosad in olives and olive oil after field treatment.

    PubMed

    Angioni, Alberto; Porcu, Luciano; Pirisi, Filippo

    2011-10-26

    The behavior in the field and the transfer from olives to olive oil during the technological process of imidacloprid, thiacloprid, and spinosad were studied. The extraction method used was effective in extracting the analytes of interest, and no interfering peaks were detected in the chromatogram. The residue levels found in olives after treatment were 0.14, 0.04, and 0.30 mg/kg for imidacloprid, thiacloprid, and spinosad, respectively, far below the maximum residue levels (MRLs) set for these insecticides in EU. At the preharvest interval (PHI), no residue was detected for imidacloprid and thiacloprid, while spinosad showed a residue level of 0.04 mg/kg. The study of the effect of the technological process on pesticide transfer in olive oil showed that these insecticides tend to remain in the olive cake. The LC/DAD/ESI/MS method showed good performance with adequate recoveries ranging from 80 to 119% and good method limits of quantitation (LOQs) and of determination (LODs). No matrix effect was detected.

  13. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in processing...

  14. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in processing...

  15. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in processing...

  16. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in processing...

  17. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in processing...

  18. Nutrigenomics of extra-virgin olive oil: A review.

    PubMed

    Piroddi, Marta; Albini, Adriana; Fabiani, Roberto; Giovannelli, Lisa; Luceri, Cristina; Natella, Fausta; Rosignoli, Patrizia; Rossi, Teresa; Taticchi, Agnese; Servili, Maurizio; Galli, Francesco

    2017-01-02

    Nutrigenomics data on the functional components of olive oil are still sparse, but rapidly increasing. Olive oil is the main source of fat and health-promoting component of the Mediterranean diet. Positive effects have been observed on genes involved in the pathobiology of most prevalent age- and lifestyle-related human conditions, such as cancer, cardiovascular disease and neurodegeneration. Other effects on health-promoting genes have been identified for bioactive components of olives and olive leafs. Omics technologies are offering unique opportunities to identify nutritional and health biomarkers associated with these gene responses, the use of which in personalized and even predictive protocols of investigation, is a main breakthrough in modern medicine and nutrition. Gene regulation properties of the functional components of olive oil, such as oleic acid, biophenols and vitamin E, point to a role for these molecules as natural homeostatic and even hormetic factors with applications as prevention agents in conditions of premature and pathologic aging. Therapeutic applications can be foreseen in conditions of chronic inflammation, and particularly in cancer, which will be discussed in detail in this review paper as major clinical target of nutritional interventions with olive oil and its functional components. © 2016 BioFactors, 43(1):17-41, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  19. Cardioprotective and neuroprotective roles of oleuropein in olive

    PubMed Central

    Omar, Syed Haris

    2010-01-01

    Traditional diets of people living in the Mediterranean basin are, among other components, very rich in extra-virgin olive oil, the most typical source of visible fat. Olive is a priceless source of monounsaturated and di-unsaturated fatty acids, polyphenolic antioxidants and vitamins. Oleuropein is the main glycoside in olives and is responsible for the bitter taste of immature and unprocessed olives. Chemically, oleuropein is the ester of elenolic acid and 3,4-dihydroxyphenyl ethanol, which possesses beneficial effects on human health, such as antioxidant, antiatherogenic, anti-cancer, anti-inflammatory and antimicrobial properties. The phenolic fraction extracted from the leaves of the olive tree, which contains significant amounts of oleuropein, prevents lipoprotein oxidation. In addition, oleuropein has shown cardioprotective effect against acute adriamycin cardiotoxicity and an anti-ischemic and hypolipidemic activities. Recently, oleuropein has shown neuroprotection by forming a non-covalent complex with the Aβ peptide, which is a key hallmark of several degenerative diseases like Alzheimer and Parkinson. Thus, a large mass of research has been accumulating in the area of olive oil, in the attempt to provide evidence for the health benefits of olive oil consumption and to scientifically support the widespread adoption of traditional Mediterranean diet as a model of healthy eating. These results provide a molecular basis for some of the benefits potentially coming from oleuropein consumption and pave the way to further studies on the possible pharmacological use of oleuropein to prevent or to slow down the cardiovascular and neurodegenerative diseases. PMID:23964170

  20. Identification of leaf volatiles from olive (Olea europaea) and their possible role in the ovipositional preferences of olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae).

    PubMed

    Malheiro, Ricardo; Casal, Susana; Cunha, Sara C; Baptista, Paula; Pereira, José Alberto

    2016-01-01

    The olive fly, Bactrocera oleae (Rossi), is a monophagous pest that displays an oviposition preference among cultivars of olive (Olea europaea L.). To clarify the oviposition preference, the olive leaf volatiles of three olive cultivars (Cobrançosa, Madural and Verdeal Transmontana) were assessed by headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) at six different periods of olive fruit maturation and degrees of infestation. A total of 39 volatiles were identified, mainly esters and alcohols, with a minor percentage of aldehydes, ketones and terpenic compounds, including sesquiterpenes. At sampling dates with higher degrees of infestation, cv. Cobrançosa had, simultaneously, significantly lower infestation degrees and higher volatile amounts than the other two cultivars, with a probable deterrent effect for oviposition. The green leaf volatiles (GLVs) (Z)-3-hexen-1-ol and (Z)-3-hexen-1-ol acetate) were the main compounds identified in all cultivars, together with toluene. The abundance of GLVs decreased significantly throughout maturation, without significant differences among cultivars, while toluene showed a general increase and positive correlation with olive fly infestation levels. The results obtained could broaden our understanding of the roles of various types and amounts of olive volatiles in the environment, especially in olive fly host selection and cultivar preference. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Oleuropein in Olive and its Pharmacological Effects

    PubMed Central

    Omar, Syed Haris

    2010-01-01

    Olive from Olea europaea is native to the Mediterranean region and, both the oil and the fruit are some of the main components of the Mediterranean diet. The main active constituents of olive oil include oleic acid, phenolic constituents, and squalene. The main phenolic compounds, hydroxytyrosol and oleuropein, give extra-virgin olive oil its bitter, pungent taste. The present review focuses on recent works that have analyzed the relationship between the major phenolic compound oleuropein and its pharmacological activities including antioxidant, anti-inflammatory, anti-atherogenic, anti-cancer activities, antimicrobial activity, antiviral activity, hypolipidemic and hypoglycemic effect. PMID:21179340

  2. Fruit quality and olive leaf and stone addition affect Picual virgin olive oil triterpenic content.

    PubMed

    Allouche, Yosra; Uceda, Marino; Jiménez, Antonio; Aguilera, M Paz; Gaforio, José Juan; Beltrán, Gabriel

    2009-10-14

    The present research aimed to evaluate whether Picual virgin olive oil triterpenic compounds are affected by the addition of variable quantities of stones and leaves before processing or by fruit resting on the ground during 3 months. Results showed that stone addition did not influence triterpenic dialcohol content (uvaol and erythrodiol), whereas triterpenic acids (oleanolic and maslinic) increased significantly when 20 and 30% stones were added. Leaves added at 2% increased significantly oleanolic acid, maslinic acid, and erythrodiol content by 83, 41, and 36%, respectively. During fruit resting on the ground, olive oils showed no differences in uvaol content, a slight increase in erythrodiol, and a gradual increase in both oleanolic and maslinic acids, obtaining at the end of the experiment contents nearly 10- and 3-fold higher than control oils. These results confirm that olive oil triterpenic composition is modified by the factors analyzed.

  3. Cardioprotective Effects of the Polyphenol Hydroxytyrosol from Olive Oil.

    PubMed

    Tejada, Silvia; Pinya, Samuel; Del Mar Bibiloni, Maria; Tur, Josep A; Pons, Antoni; Sureda, Antoni

    2017-01-01

    The Mediterranean diet includes olive oil as its primary source of fat. This diet is frequently associated to longevity and a lower incidence of chronic diseases due to its biological activities and health effects. Apart from oleic acid, olive oil contains many bioactive components including polyphenols that have been reported to exert antioxidant and anti-inflammatory activities. Polyphenols may almost in part be responsible for the protective effects against cardiovascular diseases associated with olive oil. To review and discuss the available literature on hydroxytyrosol effects as a cardioprotective agent. Moreover, we also discuss the chemistry, nutritional aspects and bioavailability of hydroxytyrosol. Hydroxytyrosol is one of the major phenolic compounds in olive oil and has demonstrated strong radical-scavenging properties. Several studies have been performed in order to look further into the effects of the polyphenol hydroxytyrosol in relation to cardiovascular events and illnesses in animal trials and in vitro. However, no clinical trials have focused on the specific action of hydroxytyrosol and cardiovascular diseases, although some are being undertaken to look at olive oil or olive leaf extract properties. Hydroxytyrosol from olive oil exerts antioxidant, anti-inflammatory, anti-platelet aggregation and ati-atherogenic activities in in vitro and animal models. However, its possible therapeutic use in humans requires additional clinical trials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. The transcriptional response to the olive fruit fly (Bactrocera oleae) reveals extended differences between tolerant and susceptible olive (Olea europaea L.) varieties

    PubMed Central

    Grasso, Filomena; Coppola, Mariangela; Carbone, Fabrizio; Baldoni, Luciana; Alagna, Fiammetta; Perrotta, Gaetano; Pérez-Pulido, Antonio J.; Garonna, Antonio; Facella, Paolo; Daddiego, Loretta; Lopez, Loredana; Vitiello, Alessia; Rao, Rosa

    2017-01-01

    The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the most devastating pest of cultivated olive (Olea europaea L.). Intraspecific variation in plant resistance to B. oleae has been described only at phenotypic level. In this work, we used a transcriptomic approach to study the molecular response to the olive fruit fly in two olive cultivars with contrasting level of susceptibility. Using next-generation pyrosequencing, we first generated a catalogue of more than 80,000 sequences expressed in drupes from approximately 700k reads. The assembled sequences were used to develop a microarray layout with over 60,000 olive-specific probes. The differential gene expression analysis between infested (i.e. with II or III instar larvae) and control drupes indicated a significant intraspecific variation between the more tolerant and susceptible cultivar. Around 2500 genes were differentially regulated in infested drupes of the tolerant variety. The GO annotation of the differentially expressed genes implies that the inducible resistance to the olive fruit fly involves a number of biological functions, cellular processes and metabolic pathways, including those with a known role in defence, oxidative stress responses, cellular structure, hormone signalling, and primary and secondary metabolism. The difference in the induced transcriptional changes between the cultivars suggests a strong genetic role in the olive inducible defence, which can ultimately lead to the discovery of factors associated with a higher level of tolerance to B. oleae. PMID:28797083

  5. The transcriptional response to the olive fruit fly (Bactrocera oleae) reveals extended differences between tolerant and susceptible olive (Olea europaea L.) varieties.

    PubMed

    Grasso, Filomena; Coppola, Mariangela; Carbone, Fabrizio; Baldoni, Luciana; Alagna, Fiammetta; Perrotta, Gaetano; Pérez-Pulido, Antonio J; Garonna, Antonio; Facella, Paolo; Daddiego, Loretta; Lopez, Loredana; Vitiello, Alessia; Rao, Rosa; Corrado, Giandomenico

    2017-01-01

    The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the most devastating pest of cultivated olive (Olea europaea L.). Intraspecific variation in plant resistance to B. oleae has been described only at phenotypic level. In this work, we used a transcriptomic approach to study the molecular response to the olive fruit fly in two olive cultivars with contrasting level of susceptibility. Using next-generation pyrosequencing, we first generated a catalogue of more than 80,000 sequences expressed in drupes from approximately 700k reads. The assembled sequences were used to develop a microarray layout with over 60,000 olive-specific probes. The differential gene expression analysis between infested (i.e. with II or III instar larvae) and control drupes indicated a significant intraspecific variation between the more tolerant and susceptible cultivar. Around 2500 genes were differentially regulated in infested drupes of the tolerant variety. The GO annotation of the differentially expressed genes implies that the inducible resistance to the olive fruit fly involves a number of biological functions, cellular processes and metabolic pathways, including those with a known role in defence, oxidative stress responses, cellular structure, hormone signalling, and primary and secondary metabolism. The difference in the induced transcriptional changes between the cultivars suggests a strong genetic role in the olive inducible defence, which can ultimately lead to the discovery of factors associated with a higher level of tolerance to B. oleae.

  6. SNP Discovery by Illumina-Based Transcriptome Sequencing of the Olive and the Genetic Characterization of Turkish Olive Genotypes Revealed by AFLP, SSR and SNP Markers

    PubMed Central

    Kaya, Hilal Betul; Cetin, Oznur; Kaya, Hulya; Sahin, Mustafa; Sefer, Filiz; Kahraman, Abdullah; Tanyolac, Bahattin

    2013-01-01

    Background The olive tree (Olea europaea L.) is a diploid (2n = 2x = 46) outcrossing species mainly grown in the Mediterranean area, where it is the most important oil-producing crop. Because of its economic, cultural and ecological importance, various DNA markers have been used in the olive to characterize and elucidate homonyms, synonyms and unknown accessions. However, a comprehensive characterization and a full sequence of its transcriptome are unavailable, leading to the importance of an efficient large-scale single nucleotide polymorphism (SNP) discovery in olive. The objectives of this study were (1) to discover olive SNPs using next-generation sequencing and to identify SNP primers for cultivar identification and (2) to characterize 96 olive genotypes originating from different regions of Turkey. Methodology/Principal Findings Next-generation sequencing technology was used with five distinct olive genotypes and generated cDNA, producing 126,542,413 reads using an Illumina Genome Analyzer IIx. Following quality and size trimming, the high-quality reads were assembled into 22,052 contigs with an average length of 1,321 bases and 45 singletons. The SNPs were filtered and 2,987 high-quality putative SNP primers were identified. The assembled sequences and singletons were subjected to BLAST similarity searches and annotated with a Gene Ontology identifier. To identify the 96 olive genotypes, these SNP primers were applied to the genotypes in combination with amplified fragment length polymorphism (AFLP) and simple sequence repeats (SSR) markers. Conclusions/Significance This study marks the highest number of SNP markers discovered to date from olive genotypes using transcriptome sequencing. The developed SNP markers will provide a useful source for molecular genetic studies, such as genetic diversity and characterization, high density quantitative trait locus (QTL) analysis, association mapping and map-based gene cloning in the olive. High levels of

  7. Strategies for dephenolization of raw olive mill wastewater by means of Pleurotus ostreatus.

    PubMed

    Olivieri, Giuseppe; Russo, Maria Elena; Giardina, Paola; Marzocchella, Antonio; Sannia, Giovanni; Salatino, Piero

    2012-05-01

    The reduction of polyphenols content in olive mill wastewater (OMW) is a major issue in olive oil manufacturing. Although researchers have pointed out the potential of white-rot fungus in dephenolizing OMW, the results available in the literature mainly concern pretreated (sterilized) OMW. This paper deals with the reduction of polyphenols content in untreated OMW by means of a white-rot fungus, Pleurotus ostreatus. Dephenolization was performed both in an airlift bioreactor and in aerated flasks. The process was carried out under controlled non-sterile conditions, with different operating configurations (batch, continuous, biomass recycling) representative of potential industrial operations. Total organic carbon, polyphenols concentration, phenol oxidase activity, dissolved oxygen concentration, oxygen consumption rate, and pH were measured during every run. Tests were carried out with or without added nutrients (potato starch and potato dextrose) and laccases inducers (i.e., CuSO₄). OMW endogenous microorganisms were competing with P. ostreatus for oxygen during simultaneous fermentation. Dephenolization of raw OMW by P. ostreatus under single batch was as large as 70%. Dephenolization was still extensive even when biomass was recycled up to six times. OMW pre-aeration had to be provided under continuous operation to avoid oxygen consumption by endogenous microorganisms that might spoil the process. The role of laccases in the dephenolization process has been discussed. Dephenolization under batch conditions with biomass recycling and added nutrients proved to be the most effective configuration for OMW polyphenols reduction in industrial plants (42-68% for five cycles).

  8. Specification of a new de-stoner machine: evaluation of machining effects on olive paste's rheology and olive oil yield and quality.

    PubMed

    Romaniello, Roberto; Leone, Alessandro; Tamborrino, Antonia

    2017-01-01

    An industrial prototype of a partial de-stoner machine was specified, built and implemented in an industrial olive oil extraction plant. The partial de-stoner machine was compared to the traditional mechanical crusher to assess its quantitative and qualitative performance. The extraction efficiency of the olive oil extraction plant, olive oil quality, sensory evaluation and rheological aspects were investigated. The results indicate that by using the partial de-stoner machine the extraction plant did not show statistical differences with respect to the traditional mechanical crushing. Moreover, the partial de-stoner machine allowed recovery of 60% of olive pits and the oils obtained were characterised by more marked green fruitiness, flavour and aroma than the oils produced using the traditional processing systems. The partial de-stoner machine removes the limitations of the traditional total de-stoner machine, opening new frontiers for the recovery of pits to be used as biomass. Moreover, the partial de-stoner machine permitted a significant reduction in the viscosity of the olive paste. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Modeling olive-crop forecasting in Tunisia

    NASA Astrophysics Data System (ADS)

    Ben Dhiab, Ali; Ben Mimoun, Mehdi; Oteros, Jose; Garcia-Mozo, Herminia; Domínguez-Vilches, Eugenio; Galán, Carmen; Abichou, Mounir; Msallem, Monji

    2017-05-01

    Tunisia is the world's second largest olive oil-producing region after the European Union. This paper reports on the use of models to forecast local olive crops, using data for Tunisia's five main olive-producing areas: Mornag, Jemmel, Menzel Mhiri, Chaal, and Zarzis. Airborne pollen counts were monitored over the period 1993-2011 using a Cour trap. Forecasting models were constructed using agricultural data (harvest size in tonnes of fruit/year) and data for several weather-related and phenoclimatic variables (rainfall, humidity, temperature, Growing Degree Days, and Chilling). Analysis of these data revealed that the amount of airborne pollen emitted over the pollen season as a whole (i.e., the Pollen Index) was the variable most influencing harvest size. Findings for all local models also indicated that the amount, timing, and distribution of rainfall (except during blooming) had a positive impact on final olive harvests. Air temperature also influenced final crop yield in three study provinces (Menzel Mhiri, Chaal, and Zarzis), but with varying consequences: in the model constructed for Chaal, cumulative maximum temperature from budbreak to start of flowering contributed positively to yield; in the Menzel Mhiri model, cumulative average temperatures during fruit development had a positive impact on output; in Zarzis, by contrast, cumulative maximum temperature during the period prior to flowering negatively influenced final crop yield. Data for agricultural and phenoclimatic variables can be used to construct valid models to predict annual variability in local olive-crop yields; here, models displayed an accuracy of 98, 93, 92, 91, and 88 % for Zarzis, Mornag, Jemmel, Chaal, and Menzel Mhiri, respectively.

  10. Polyphenols benefits of olive leaf (Olea europaea L) to human health.

    PubMed

    Vogel, Patrícia; Kasper Machado, Isabel; Garavaglia, Juliano; Zani, Valdeni Terezinha; de Souza, Daiana; Morelo Dal Bosco, Simone

    2014-12-17

    The phenolic compounds present in olive leaves (Olea europaea L.) confer benefits to the human health. To review the scientific literature about the benefits of the polyphenols of olive leaves to human health. Literature review in the LILACS-BIREME, SciELO and MEDLINE databases for publications in English, Portuguese and Spanish with the descriptors "Olea europaea", "olive leaves", "olive leaf", "olive leaves extracts", "olive leaf extracts", "phenolic compounds", "polyphenols", "oleuropein", "chemical composition", and "health". There were identified 92 articles, but only 38 related to the objectives of the study and 9 articles cited in the works were included due to their relevance. The phenolic compounds present in olive leaves, especially the oleuropein, are associated to antioxidant, antihypertensive, hypoglycemic, hypocholesterolemic and cardioprotective activity. Furthermore, studies associate the oleuropein to an anti-inflammatory effect in trauma of the bone marrow and as a support in the treatment of obesity. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  11. Determination of changes in the concentration and distribution of elements within olive drupes (cv. Leccino) from Se biofortified plants, using laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    D'Amato, Roberto; Petrelli, Maurizio; Proietti, Primo; Onofri, Andrea; Regni, Luca; Perugini, Diego; Businelli, Daniela

    2018-03-25

    Biofortification of food crops has been used to increase the intake of Se in the human diet, even though this may change the concentration of other elements and modify the nutritional properties of the enriched food. Selenium biofortification programs should include routine assessment of the overall mineral composition of enriched plants. Laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) was used for the assessment of mineral composition of table olives. Olive trees were fertilized with sodium selenate before flowering. At harvest, the edible parts of drupes proved to be significantly enriched in Se, delivering 6.1 μg g -1 (39% of the RDA for five olives). Such enrichment was followed by significant changes in the concentrations of B, Mg, K, Cr, Mn, Fe and Cu in edible parts, which are discussed for their impact on food quality. The biofortification of olive plants has allowed the enrichment of fruits with selenium. Enrichment with selenium has caused an increase in the concentration of other elements, which can change the nutritional quality of the drupes. The analytical technique used well as a valuable tool for routinely determining the chemical composition of all fruit parts. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  12. Identification of molecular markers associated with fruit traits in olive and assessment of olive core collection with AFLP markers and fruit traits.

    PubMed

    Ipek, M; Seker, M; Ipek, A; Gul, M K

    2015-03-31

    The purpose of this study was to characterize olive core collection with amplified fragment length polymorphism (AFLP) markers and fruit traits and to determine AFLP markers significantly associated with these fruit characters in olive. A total of 168 polymorphic AFLP markers generated by five primer combinations and nine fruit traits were used to characterize relationships between 18 olive cultivars. Although all olive cultivars were discriminated from each other by either AFLP markers (<0.75 similarity level) or fruit traits, clustering based on the AFLP markers and fruit traits was not significantly correlated (r = 0.13). Partial clustering of olive cultivars by AFLP markers according to their geographical origin was observed. Associations of AFLP markers with fruits were determined using a multiple-regression analysis with stepwise addition of AFLP markers. Significant associations between eight AFLP markers and fruit traits were identified. While five AFLP markers demonstrated significant negative correlation with fruit and stone weight, width and length and total polyphenols (P < 0.05), three AFLP markers displayed significant positive correlation with α-tocopherol and γ-tocopherol (P < 0.01). This is the first report on the association of molecular markers with fruit traits in olive. Molecular markers associated with morphological and agronomic traits could be utilized for the breeding of olive cultivars. However, the association power of these markers needs to be confirmed in larger populations, and highly correlated markers should then be converted to PCR-based DNA markers such as sequence-characterized amplified region markers for better utilization.

  13. Chemical and Biological Investigation of Olive Mill Waste Water - OMWW Secoiridoid Lactones.

    PubMed

    Vougogiannopoulou, Konstantina; Angelopoulou, Maria T; Pratsinis, Harris; Grougnet, Raphaël; Halabalaki, Maria; Kletsas, Dimitris; Deguin, Brigitte; Skaltsounis, Leandros A

    2015-08-01

    Olive mill waste water is the major byproduct of the olive oil industry containing a range of compounds related to Olea europaea and olive oil constituents. Olive mill waste water comprises an important environmental problem in olive oil producing countries, but it is also a valuable material for the isolation of high added value compounds. In this study, an attempt to investigate the secoiridoid content of olive mill waste water is described with the aid of ultrahigh-performance liquid chromatography-electrospray ionization (±)-high-resolution mass spectrometry and centrifugal partition chromatography methods. In total, seven secoiridoid lactones were isolated, four of which are new natural products. This is the first time that a conjugate of hydroxytyrosol and a secoiridoid lactone has been isolated from olive mill waste water and structurally characterized. Furthermore, the range of isolated compounds allowed for the proposal of a hypothesis for the biotransformation of olive secoiridoids during the production of olive mill waste water. Finally, the ability of the representative compounds to reduce the intracellular reactive oxygen species was assessed with the dichlorofluorescein assay in conjunction with the known antioxidant agent hydroxytyrosol. Georg Thieme Verlag KG Stuttgart · New York.

  14. Current knowledge and attitudes: Russian olive biology, ecology and management

    Treesearch

    Sharlene E. Sing; Kevin J. Delaney

    2016-01-01

    The primary goals of a two-day Russian olive symposium held in February 2014 were to disseminate current knowledge and identify data gaps regarding Russian olive biology and ecology, distributions, integrated management, and to ascertain the feasibility and acceptance of a proposed program for classical biological control of Russian olive. The symposium was...

  15. Characteristics and biodegradability of olive mill wastewaters.

    PubMed

    Karahan Özgün, Özlem; Pala Özkök, İlke; Kutay, Can; Orhon, Derin

    2016-01-01

    Olive mill wastewaters (OMWs) are mostly characterized by their high-organic content and complex organic compounds in addition to the phenolic compounds. European olive oil manufacturers have to cope up with the same wastewater treatment problem and the applied conventional treatment technologies for OMW were not proved to be very successful in each case. Olive mills are mostly small and medium-sized installations and OMW is generated during the three-four-month-long manufacturing season. The problem is not only the complex wastewater to be treated but also the scattered positioning of the olive mills, the seasonal wastewater generation and the size of the manufacturing facilities. The aim of the study is to identify the organic content of OMW and to assess the biological and chemical treatability of OMWs, in order to assist the development of integrated chemical-biological treatment schemes for best appropriate techniques implementation. The experimental studies show that separation of the particulate fraction improved the biodegradability or reduced the refractory and inhibitory effects of particulate organics.

  16. Effect of zinc formulations, sodium chloride, and hydroxytyrosol on the growth/no-growth boundaries of table olive related yeasts.

    PubMed

    Romero-Gil, V; Rejano-Zapata, L; Garrido-Fernández, A; Arroyo-López, F N

    2016-08-01

    This study uses a mathematical approach to assessing the inhibitory effect of Zn(2)(+)(0-10 mM, obtained from ZnCl2 and ZnSO4) in presence of NaCl (0-8%) and hydroxytyrosol (0-2588 mg/L), on a yeast cocktail formed by species Pichia galeiformis, Pichia kudriavzevii, Pichia manshurica and Candida thaimueangensis obtained from spoilt green olive packages. The logistic/probabilistic models were built in laboratory medium using a total of 1980 responses (1188 for NaCl and 792 for hydroxytyrosol). ZnCl2 showed significantly higher inhibitory effect than ZnSO4 in the presence of both NaCl (p < 0.033) and hydroxytyrosol (p < 0.009). NaCl did not interfere the effect of Zn(2)(+)while hydroxytyrosol, at high levels, had a slight antagonistic effect. According to models, Zn(2)(+)inhibits (p = 0.01) the yeast cocktail in the range 4.5-5.0 mM for ZnCl2, or 8.5-9.5 mM for ZnSO4. Therefore, this work confirms the fungicidal activity of zinc compounds (mainly ZnCl2) in synthetic medium, and also shows that the loss of zinc effectiveness in real green Spanish-style olive packaging is not due to the presence of NaCl or hydroxytyrosol, two of the most abundant chemical compounds in the product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Quality of extra virgin olive oils produced in an emerging olive growing area in north-western Spain.

    PubMed

    Reboredo-Rodríguez, P; González-Barreiro, C; Cancho-Grande, B; Simal-Gándara, J

    2014-12-01

    Systematic studies of physico-chemical and stability-related properties, and chemical composition, of extra virgin olive oils (EVOOs) obtained from drupes cropped in specific regions are of special agricultural interest. This is particularly so with new production areas, where careful selection of the most suitable olive varieties for EVOO production is required. This paper reports the first comprehensive chemical characterisation of EVOOs obtained from three different olive varieties (viz., Picual, Morisca and Manzanilla de Sevilla) grown in a new cultivation area in Galicia (NW Spain). The Morisca variety was that providing the highest industrial oil yield (21%). However, the three types of EVOO exhibited no statistically significant differences in standard quality-related indices other than acidity. Morisca EVOO was that with the lowest content in oleic acid (mean=68%) and highest content in linoleic acid (mean=13%). Also, Morisca EVOO exhibited the highest sterol levels (mean=1,616 mg/kg) and Picual EVOO the lowest (mean=1,160 mg/kg). Picual EVOO contained greater amounts of the phenolic compounds luteolin and pinoresinol than both Morisca and Manzanilla de Sevilla EVOOs. Finally, Manzanilla de Sevilla EVOO exhibited differential attributes, with banana and olive fruit aromatic series prevailing predominantly over bitter-like, pungent-like and leaf series. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Perception of olive oils sensory defects using a potentiometric taste device.

    PubMed

    Veloso, Ana C A; Silva, Lucas M; Rodrigues, Nuno; Rebello, Ligia P G; Dias, Luís G; Pereira, José A; Peres, António M

    2018-01-01

    The capability of perceiving olive oils sensory defects and intensities plays a key role on olive oils quality grade classification since olive oils can only be classified as extra-virgin if no defect can be perceived by a human trained sensory panel. Otherwise, olive oils may be classified as virgin or lampante depending on the median intensity of the defect predominantly perceived and on the physicochemical levels. However, sensory analysis is time-consuming and requires an official sensory panel, which can only evaluate a low number of samples per day. In this work, the potential use of an electronic tongue as a taste sensor device to identify the defect predominantly perceived in olive oils was evaluated. The potentiometric profiles recorded showed that intra- and inter-day signal drifts could be neglected (i.e., relative standard deviations lower than 25%), being not statistically significant the effect of the analysis day on the overall recorded E-tongue sensor fingerprints (P-value = 0.5715, for multivariate analysis of variance using Pillai's trace test), which significantly differ according to the olive oils' sensory defect (P-value = 0.0084, for multivariate analysis of variance using Pillai's trace test). Thus, a linear discriminant model based on 19 potentiometric signal sensors, selected by the simulated annealing algorithm, could be established to correctly predict the olive oil main sensory defect (fusty, rancid, wet-wood or winey-vinegary) with average sensitivity of 75 ± 3% and specificity of 73 ± 4% (repeated K-fold cross-validation variant: 4 folds×10 repeats). Similarly, a linear discriminant model, based on 24 selected sensors, correctly classified 92 ± 3% of the olive oils as virgin or lampante, being an average specificity of 93 ± 3% achieved. The overall satisfactory predictive performances strengthen the feasibility of the developed taste sensor device as a complementary methodology for olive oils' defects analysis and subsequent

  19. Co-processing of olive bagasse with crude rapeseed oil via pyrolysis.

    PubMed

    Uçar, Suat; Karagöz, Selhan

    2017-05-01

    The co-pyrolysis of olive bagasse with crude rapeseed oil at different blend ratios was investigated at 500ºC in a fixed bed reactor. The effect of olive bagasse to crude rapeseed oil ratio on the product distributions and properties of the pyrolysis products were comparatively investigated. The addition of crude rapeseed oil into olive bagasse in the co-pyrolysis led to formation of upgraded biofuels in terms of liquid yields and properties. While the pyrolysis of olive bagasse produced a liquid yield of 52.5 wt %, the highest liquid yield of 73.5 wt % was obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil at a blend ratio of 1:4. The bio-oil derived from olive bagasse contained 5% naphtha, 10% heavy naphtha, 30% gas oil, and 55% heavy gas oil. In the case of bio-oil obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil at a blend ratio of 1:4, the light naphtha, heavy naphtha, and light gas oil content increased. This is an indication of the improved characteristics of the bio-oil obtained from the co-processing. The heating value of bio-oil from the pyrolysis of olive bagasse alone was 34.6 MJ kg -1 and the heating values of bio-oils obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil ranged from 37.6 to 41.6 MJ kg -1 . It was demonstrated that the co-processing of waste biomass with crude plant oil is a good alternative to improve bio-oil yields and properties.

  20. Optimization of Ripe Olive Processing with a Single Lye Treatment.

    PubMed

    Brenes, Manuel; Romero, Concepción; García-García, Pedro

    2017-09-01

    The development of a method for darkening black ripe olives during the washing step with a single NaOH treatment and preservation liquid was studied. Olives of the Hojiblanca cultivar were darkened at pilot plant scale, packed, sterilized, and analyzed after 2 mo of storage at ambient temperature. It was found that the use of a mixture of preservation liquid:water at a ratio of 1:1 during the first washing gave rise to darker olives with slightly better firmness and no effect on sensory quality. However, care must be taken with the concentration of acetic acid in the preservation solution, as a content of this organic acid higher than 25 g/L can cause adverse effects on olive color due to the low pH that can be reached in the flesh of the fruit. Additionally, the re-use of the preservation solution in the first washing resulted in enrichment in antioxidant compounds of the packed product. Black ripe olives processed with preservation liquid had a total phenolic content of 629 mg/kg, whereas those with only tap water had 376 mg/kg, in particular hydroxytyrosol and hydroxytyrosol-4-glucoside. These findings mean that it is possible to get darker olives with higher contents in bioactive substances by reusing the preservation liquid during the darkening step of black ripe olives. © 2017 Institute of Food Technologists®.

  1. Bactericidal activity of glutaraldehyde-like compounds from olive products.

    PubMed

    Medina, Eduardo; Brenes, Manuel; García, Aranzazu; Romero, Concepción; de Castro, Antonio

    2009-12-01

    The bactericidal effects of several olive compounds (nonenal, oleuropein, tyrosol, the dialdehydic form of decarboxymethyl elenolic acid either free [EDA] or linked to tyrosol [TyEDA] or to hydroxytyrosol [HyEDA]), other food phenolic compounds (catechin, epicatechin, eugenol, thymol, carvacrol, and carnosic acid), and commercial disinfectants (glutaraldehyde [GTA] and ortho-phthalaldehyde [OPA]), were tested against strains of Pseudomonas fluorescens, Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli. It was found that the bactericidal activities of olive GTA-like compounds (EDA, HyEDA, and TyEDA) were greater than those exerted by several food phenolic substances. Surprisingly, these olive antimicrobials were as active as the synthetic biocides GTA and OPA against the four bacteria studied. Thus, it has been proposed that the bactericidal activity of the main olive antimicrobials is primarily due to their dialdehydic structure, which is similar to that of the commercial biocides GTA and OPA. Our results clearly reveal that olive GTA-like compounds possess a strong bactericidal activity even greater than that of other food phenolic compounds or synthetic biocides.

  2. A lycopene-enriched virgin olive oil enhances antioxidant status in humans.

    PubMed

    Garrido, María; González-Flores, David; Marchena, Ana M; Prior, Estrella; García-Parra, Jesús; Barriga, Carmen; Rodríguez Moratinos, Ana B

    2013-06-01

    Lycopene, a bioactive red pigment, represents the most potent in vitro antioxidant among carotenoids. Virgin olive oil contains trace amounts of a wide variety of phytochemicals, which have proven to exert beneficial effects on oxidative stress. Since the ingestion of lycopene together with oil reportedly increases its bioavailability, we evaluated urinary antioxidant capacity after the consumption of a lycopene-enriched virgin olive oil (7 mg lycopene day(-1)) compared with the antioxidant effect produced after the ingestion of a virgin olive oil and a sunflower oil during 5 days, in young (25-30 years of age), middle-aged (35-55 years of age) and elderly (65-85 years of age) subjects. The results showed that the consumption of virgin olive oil increased urinary antioxidant capacity in middle-aged and elderly volunteers, whereas the administration of a lycopene-enriched virgin olive oil produced higher antioxidant effects in all of the three age groups assayed. The incorporation of the lycopene-enriched virgin olive oil into the diet may enhance the health-promoting effects of the virgin olive oil, contributing as a functional tool against several disorders where oxidative stress plays an important role. © 2012 Society of Chemical Industry.

  3. Biochemical characterization of a lipase from olive fruit (Olea europaea L.).

    PubMed

    Panzanaro, S; Nutricati, E; Miceli, A; De Bellis, L

    2010-09-01

    Lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) is the first enzyme of the degradation path of stored triacylglycerols (TAGs). In olive fruits, lipase may determine the increase of free fatty acids (FFAs) which level is an important index of virgin olive oil quality. However, despite the importance of virgin olive oil for nutrition and human health, few studies have been realized on lipase activity in Olea europaea fruits. In order to characterize olive lipase, fruits of the cv. Ogliarola, widely diffused in Salento area (Puglia, Italy), were harvested at four stages of ripening according to their skin colour (green, spotted I, spotted II, purple). Lipase activity was detected in the fatty layer obtained after centrifugation of the olive mesocarp homogenate. The enzyme exhibited a maximum activity at pH 5.0. The addition of calcium in the lipase assay medium leads to an increment of activity, whereas in the presence of copper the activity was reduced by 75%. Furthermore, mesocarp lipase activity increases during olive development but declined at maturity (purple stage). The data represent the first contribution to the biochemical characterization of an olive fruit lipase associated to oil bodies. 2010 Elsevier Masson SAS. All rights reserved.

  4. Antimicrobial activity of olive oil, vinegar, and various beverages against foodborne pathogens.

    PubMed

    Medina, Eduardo; Romero, Concepción; Brenes, Manuel; De Castro, Antonio

    2007-05-01

    The survival of foodborne pathogens in aqueous extracts of olive oil, virgin olive oil, vinegar, and several beverages was evaluated. Vinegar and aqueous extracts of virgin olive oil showed the strongest bactericidal activity against all strains tested. Red and white wines also killed most strains after 5 min of contact, black and green tea extracts showed weak antimicrobial activity under these conditions, and no effect was observed for the remaining beverages (fruit juices, Coca-Cola, dairy products, coffee, and beer). The phenolic compound content of the aqueous olive oil and virgin olive oil extracts could explain their antibacterial activity, which was also confirmed in mayonnaises and salads used as food models. Virgin olive oil in mayonnaises and salads reduced the counts of inoculated Salmonella Enteritidis and Listeria monocytogenes by approximately 3 log CFU/g. Therefore, olive oil could be a hurdle component in certain processed foods and exert a protective effect against foodborne pathogens when contaminated foods are ingested.

  5. Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue.

    PubMed

    Dias, Luís G; Fernandes, Andreia; Veloso, Ana C A; Machado, Adélio A S C; Pereira, José A; Peres, António M

    2014-10-01

    Label authentication of monovarietal extra virgin olive oils is of great importance. A novel approach based on a potentiometric electronic tongue is proposed to classify oils obtained from single olive cultivars (Portuguese cvs. Cobrançosa, Madural, Verdeal Transmontana; Spanish cvs. Arbequina, Hojiblanca, Picual). A meta-heuristic simulated annealing algorithm was applied to select the most informative sets of sensors to establish predictive linear discriminant models. Olive oils were correctly classified according to olive cultivar (sensitivities greater than 97%) and each Spanish olive oil was satisfactorily discriminated from the Portuguese ones with the exception of cv. Arbequina (sensitivities from 61% to 98%). Also, the discriminant ability was related to the polar compounds contents of olive oils and so, indirectly, with organoleptic properties like bitterness, astringency or pungency. Therefore the proposed E-tongue can be foreseen as a useful auxiliary tool for trained sensory panels for the classification of monovarietal extra virgin olive oils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Oleuropein hydrolysis in natural green olives: Importance of the endogenous enzymes.

    PubMed

    Ramírez, Eva; Brenes, Manuel; García, Pedro; Medina, Eduardo; Romero, Concepción

    2016-09-01

    The bitter taste of olives is mainly caused by the phenolic compound named oleuropein and the mechanism of its hydrolysis during the processing of natural green olives was studied. First, a rapid chemical hydrolysis of oleuropein takes place at a high temperature of 40°C and at a low pH value of 2.8, but the chemical hydrolysis of the bitter compound is slow at the common range of pH for these olives (3.8-4.2). However, decarboxymethyl elenolic acid linked to hydroxytyrosol and hydroxytyrosol have been found in a high concentration during the elaboration of natural green olives. When olives were heated at 90°C for 10min before brining, these compounds are not formed. Hence, the debittering process in natural green olives is due to the activity of β-glucosidase and esterase during the first months of storage and then a slow chemical hydrolysis of oleuropein happens throughout storage time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Sustainable technologies for olive mill wastewater management (abstract)

    USDA-ARS?s Scientific Manuscript database

    The California olive oil industry produces more than 600 million gallons of wastewater each year. Olive mill wastewater (OMWW) is considered a highly polluting effluent due to its high organic load and resistance to biological degradation. A current trend in OMWW management is to not only decrease e...

  8. Effect of addition of olive leaves before fruits extraction process to some monovarietal Tunisian extra-virgin olive oils using chemometric analysis.

    PubMed

    Sonda, Ammar; Akram, Zribi; Boutheina, Gargouri; Guido, Flamini; Mohamed, Bouaziz

    2014-01-08

    The analysis of the effect of cultivar and olive leaves addition before the extraction on the different analytical values revealed significant differences (p < 0.05) in some parameters, mainly in peroxide value, phenols and tocopherol contents, and oxidative stability. Aroma profiles were also influenced by the different varieties and the addition of different amounts (0% and 3%) of olive leaves. Twenty-three compounds were characterized, representing 86.1-99.2% of the total volatiles. Chétoui cultivar has the highest amount of (E)-2-hexenal, followed by Chemlali cultivar, whereas (E)-2-hexen-1-ol was the major constituent of Zalmati and crossbreeding Chemlali by Zalmati cultivars. Sensory analysis showed that Chemlali and Chétoui Zarzis possessed a high fruity, bitter, and pungent taste, whereas the Zalmati and crossbreeding Chemlali by Zalmati had a 'green' taste among its attributes. Indeed, the taste panel found an improvement of the oil quality when an amount of olive leaves (3%) added to the olives fruits.

  9. Bisphenol A exposure assessment from olive oil consumption.

    PubMed

    Abou Omar, Tarek F; Sukhn, Carol; Fares, Souha A; Abiad, Mohamad G; Habib, Rima R; Dhaini, Hassan R

    2017-07-01

    The use of bisphenol A (BPA) in packaging has grown over the past 50 years despite concerns of its migration into packaged food and beverages, resulting in human exposure. Many studies have reported tumorigenic effects and endocrine alterations associated with BPA in animal models. This study aims at assessing human exposure to BPA from olive oil. A total of 27 olive oil samples were collected from mills and local villagers in the Hasbaya District, a major olive oil harvesting region in Lebanon. Information on storage conditions was also collected. BPA was extracted and quantified by HPLC. Results showed significantly higher BPA levels in olive oil samples stored in plastic vs. non-plastic packaging (mean = 333 vs. 150 μg/kg, p value = 0.006), samples with a plastic storage duration of >1 year compared to those with a storage duration of <1 year (mean = 452 vs. 288 μg/kg, p value = 0.008), and oil samples sourced from locals compared to oil mills (mean = 376 vs. 228 μg/kg, p value = 0.022). Statistically significant higher BPA levels remained for samples stored in plastic vs. non-plastic packaging in the bootstrap multivariable linear regression (B = 121.56, 95% CI 53.44-194.39, p value = 0.009). This is the first report on BPA levels in Mediterranean olive oil. The estimated exposure was 1.38% of the EFSA tolerable daily intake, hence there are no concerns about potential health risks from olive oil consumption.

  10. Influence of olive ripening degree and crusher typology on chemical and sensory characteristics of Correggiolo virgin olive oil.

    PubMed

    Morrone, Lucia; Pupillo, Sabrina; Neri, Luisa; Bertazza, Giampaolo; Magli, Massimiliano; Rotondi, Annalisa

    2017-03-01

    In this study, two types of crusher, hammer and blade, were used to produce olive oils from cv. Correggiolo olives at four stages of ripeness, to analyse the effect of these two factors on oil quality indices (free acidity, peroxide value, UV absorption), on phenolic compounds content and sensory profiles. Differences in chemical and sensory data were analysed by two-way ANOVA. Ripeness exerted a stronger influence than the crushing equipment on quality indices, phenolic content and sensory evaluation; moreover the statistical significance of interaction between the factors considered suggests that they are intertwined. Differences in the texture of olive pastes obtained by squashing and crushing were clearly evident at the first stage of ripeness via observation with a scanning electron microscope. The stronger mechanical action of the hammer crusher also produced smaller pit fragments compared to the blade crusher, as shown by particle size analysis of the kernels fragments. Knowledge about the interaction between ripening and crushing will allow olive oil producers to pursue a product of the quality most suitable for a particular type of consumer. For example, bitterness and pungency, characters recently connected with health effects because sensory markers of extra virgin olive oil (EVOO) polyphenols, do not have a great sensory appeal for most consumers; however, there is a niche of gourmet estimators interested in these peculiar flavours and ready to pay a premium price for them. The producer will be able to customise the EVOO by modulating its chemical and sensory characteristics, especially the phenolic fraction, thus addressing the needs of consumers with different tastes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Environmental impacts in the life cycle of olive oil: a literature review.

    PubMed

    Banias, Georgios; Achillas, Charisios; Vlachokostas, Christos; Moussiopoulos, Nicolas; Stefanou, Maria

    2017-04-01

    The production of olive oil is considered to be one of the largest agricultural business sectors in the Mediterranean area. Apart from its significant impact on the economies of countries in Southern Europe, Northern Africa and Middle East, olive oil production also involves considerable social and environmental considerations. However, despite such importance, the environmental effects of olive oil production have not been studied as much other agricultural productions and farming systems, which are more characteristic of central and northern Europe. We present a thorough and systematic literature review of scientific publications with respect to the use of environmental tools in the life cycle of olive oil. The analysis takes into consideration the farming of olive trees, the manufacture of olive oil, packaging, transportation and reverse logistics. To that end, journal publications up to 2015 in this specific field are recorded and, at the same time, the most important environmental impacts are revealed and a gap analysis is carried out. The analysis conducted reveals that farming of olive trees (with pesticide use and waste/by-product production being the 'hottest' topics) and the manufacturing of olive oil (concentrating mostly on waste/by-product production and management) are the phases with the highest environmental focus from the scientific community. Moreover, gaps in the literature are detected mostly with respect to fuel consumption and the use and promotion of renewable energy sources in olive oil production. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. OliveNet™: a comprehensive library of compounds from Olea europaea

    PubMed Central

    Bonvino, Natalie P; Liang, Julia; McCord, Elizabeth D; Zafiris, Elena; Benetti, Natalia; Ray, Nancy B; Hung, Andrew; Boskou, Dimitrios

    2018-01-01

    Abstract Accumulated epidemiological, clinical and experimental evidence has indicated the beneficial health effects of the Mediterranean diet, which is typified by the consumption of virgin olive oil (VOO) as a main source of dietary fat. At the cellular level, compounds derived from various olive (Olea europaea), matrices, have demonstrated potent antioxidant and anti-inflammatory effects, which are thought to account, at least in part, for their biological effects. Research efforts are expanding into the characterization of compounds derived from Olea europaea, however, the considerable diversity and complexity of the vast array of chemical compounds have made their precise identification and quantification challenging. As such, only a relatively small subset of olive-derived compounds has been explored for their biological activity and potential health effects to date. Although there is adequate information describing the identification or isolation of olive-derived compounds, these are not easily searchable, especially when attempting to acquire chemical or biological properties. Therefore, we have created the OliveNet™ database containing a comprehensive catalogue of compounds identified from matrices of the olive, including the fruit, leaf and VOO, as well as in the wastewater and pomace accrued during oil production. From a total of 752 compounds, chemical analysis was sufficient for 676 individual compounds, which have been included in the database. The database is curated and comprehensively referenced containing information for the 676 compounds, which are divided into 13 main classes and 47 subclasses. Importantly, with respect to current research trends, the database includes 222 olive phenolics, which are divided into 13 subclasses. To our knowledge, OliveNet™ is currently the only curated open access database with a comprehensive collection of compounds associated with Olea europaea. Database URL: https://www.mccordresearch.com.au PMID:29688352

  13. Global volatile profile of virgin olive oils flavoured by aromatic/medicinal plants.

    PubMed

    Perestrelo, R; Silva, C; Silva, P; Câmara, J S

    2017-07-15

    The global volatile profile of commercial virgin olive oils and flavoured olive oils with aromatic/medicinal plants, was established using liquid-liquid microextraction (LLME) and headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-quadrupole mass spectrometry (GC-qMS). More than 60 volatile organic compounds (VOCs belonging to different groups were identified using both methods. Olive oils volatile profile was slightly influenced by maceration process, which occurred at room temperature (20±2°C) for 15days. The predominant differences were observed in terpenoids group, since some of them were only identified in the flavoured olive oils, while others showed an increase with the maceration process. VOCs mass transfer from plants to olive oils could explain the observed results. Principal components analysis (PCA) applied to LLME/GC-qMS data allowed to distinguish the olive oils. The flavoured oils would increase the use of olive oil among consumers as consequence of the improvement of its aromatic profile and healthy properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. On the origin of benzene, toluene, ethylbenzene and xylene in extra virgin olive oil.

    PubMed

    Biedermann, M; Grob, K; Morchio, G

    1995-04-01

    Concentrations of benzene, toluene, C2-benzenes and styrene were determined in olives and the oils produced thereof, as well as at various intermediate steps during production. Concentrations were compared to those found in samples of air taken from the olive grove and the olive mills. In an exposition experiment in the laboratory, olives absorbed aromatic compounds, approaching saturation corresponding to the partition coefficient between air and oil. However, concentrations in olives delivered to the mills were 4-10 times higher than expected from the analysis of the air in the olive grove. In the olive mills, concentrations were increased further by a factor of up to 2 because of uptake from air which contained high concentrations of aromatics. Styrene concentrations strongly increased during storage of crushed olives at ambient temperature, which confirms the hypothesis that styrene is a product of metabolism.

  15. Quantitative assessment of different phenolic compounds in Texas olive oils versus foreign oils

    USDA-ARS?s Scientific Manuscript database

    Texas Olive Ranch is the first one to produce olive oil and has the sole product in the Texas market place; several growers are now starting to cultivate olive at various sites in Texas. The quality of olive oil produced and pressed in Texas has never been explored. This study was conducted to inv...

  16. Chemometric analysis for discrimination of extra virgin olive oils from whole and stoned olive pastes.

    PubMed

    De Luca, Michele; Restuccia, Donatella; Clodoveo, Maria Lisa; Puoci, Francesco; Ragno, Gaetano

    2016-07-01

    Chemometric discrimination of extra virgin olive oils (EVOO) from whole and stoned olive pastes was carried out by using Fourier transform infrared (FTIR) data and partial least squares-discriminant analysis (PLS1-DA) approach. Four Italian commercial EVOO brands, all in both whole and stoned version, were considered in this study. The adopted chemometric methodologies were able to describe the different chemical features in phenolic and volatile compounds contained in the two types of oil by using unspecific IR spectral information. Principal component analysis (PCA) was employed in cluster analysis to capture data patterns and to highlight differences between technological processes and EVOO brands. The PLS1-DA algorithm was used as supervised discriminant analysis to identify the different oil extraction procedures. Discriminant analysis was extended to the evaluation of possible adulteration by addition of aliquots of oil from whole paste to the most valuable oil from stoned olives. The statistical parameters from external validation of all the PLS models were very satisfactory, with low root mean square error of prediction (RMSEP) and relative error (RE%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Detection of fruit-fly infestation in olives using X-ray imaging: Algorithm development and prospects

    USDA-ARS?s Scientific Manuscript database

    An algorithm using a Bayesian classifier was developed to automatically detect olive fruit fly infestations in x-ray images of olives. The data set consisted of 249 olives with various degrees of infestation and 161 non-infested olives. Each olive was x-rayed on film and digital images were acquired...

  18. Taggiasca extra virgin olive oil colonization by yeasts during the extraction process.

    PubMed

    Ciafardini, G; Cioccia, G; Zullo, B A

    2017-04-01

    The opalescent appearance of the newly produced olive oil is due to the presence of solid particles and microdrops of vegetation water in which the microorganisms from the olives' carposphere are trapped. Present research has demonstrated that the microbiota of the fresh extracted olive oil, produced in the mills, is mainly composed of yeasts and to a lesser extent of molds. The close link between the composition of the microbiota of the olives' carposphere undergoing to processing, and that of the microbiota of the newly produced olive oil, concerns only the yeasts and molds, given that the bacterial component is by and large destroyed mainly in the kneaded paste during the malaxation process. Six physiologically homogenous yeast groups were highlighted in the wash water, kneaded paste and newly produced olive oil from the Taggiasca variety which had been collected in mills located in the Liguria region. The more predominant yeasts of each group belonged to a single species called respectively: Kluyveromyces marxianus, Candida oleophila, Candida diddensiae, Candida norvegica, Wickerhamomyces anomalus and Debaryomyces hansenii. Apart from K. marxianus, which was found only in the wash water, all the other species were found in the wash water and in the kneaded paste as well as in the newly produced olive oil, while in the six-month stored olive oil, was found only one physiologically homogeneous group of yeast represented by the W. anomalus specie. These findings in according to our previous studies carried out on other types of mono varietal olive oils, confirms that the habitat of the Taggiascas' extra virgin olive oil, had a strong selective pressure on the yeast biota, allowing only to a few member of yeast species, contaminating the fresh product, to survive and reproduce in it during storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Volatile Compound Profiling by HS-SPME/GC-MS-FID of a Core Olive Cultivar Collection as a Tool for Aroma Improvement of Virgin Olive Oil.

    PubMed

    García-Vico, Lourdes; Belaj, Angjelina; Sánchez-Ortiz, Araceli; Martínez-Rivas, José M; Pérez, Ana G; Sanz, Carlos

    2017-01-14

    Virgin olive oil (VOO) is the only food product requiring official sensory analysis to be classified in commercial categories, in which the evaluation of the aroma plays a very important role. The selection of parents, with the aim of obtaining new cultivars with improved oil aroma, is of paramount importance in olive breeding programs. We have assessed the volatile fraction by headspace-solid-phase microextraction/gas chromatography-mass spectrometry-flame ionization detection (HS-SPME/GC-MS-FID) and the deduced aroma properties of VOO from a core set of olive cultivars (Core-36) which possesses most of the genetic diversity found in the World Olive Germplasm Collection (IFAPA Alameda del Obispo) located in Cordoba, Spain. The VOO volatile fractions of Core-36 cultivars display a high level of variability. It is mostly made of compounds produced from polyunsaturated fatty acids through the lipoxygenase pathway, which confirms to be a general characteristic of the olive species ( Olea europaea L.). The main group of volatile compounds in the oils was six straight-chain carbon compounds derived from linolenic acid, some of them being the main contributors to the aroma of the olive oils according to their odor activity values (OAV). The high level of variability found for the volatile fraction of the oils from Core-36 and, therefore, for the aroma odor notes, suggest that this core set may be a very useful tool for the choice of optimal parents in olive breeding programs in order to raise new cultivars with improved VOO aroma.

  20. New by-products rich in bioactive substances from the olive oil mill processing.

    PubMed

    Romero, Concepción; Medina, Eduardo; Mateo, Maria Antonia; Brenes, Manuel

    2018-01-01

    Olive oil extraction generates a large amount of residue consisting mainly of the pomace and leaves when using a two-phase centrifugation system. The aim of this study was to assess the content of phenolic and triterpene compounds in the by-products produced in Spanish olive oil mills. Olive pomace had concentrations of phenolic and triterpene substances lower than 2 and 3 g kg -1 , respectively. The leaves contained a high concentration of these substances, although those collected from ground-picked olives had lost most of their phenolic compounds. Moreover, the sediment from the bottom of the olive oil storage tanks did not have a significant amount of these substances. By contrast, a new by-product called olive pomace skin has been revealed as a very rich source of triterpenic acids, the content of which can reach up to 120 g kg -1 in this waste product, maslinic acid comprising around 70% of total triterpenics. Among the by-products generated during extraction of olive oil, olive pomace skin has been discovered to be a very rich source of triterpenic acids, which can reach up to 120 g kg -1 of the waste. These results will contribute to the valorization of olive oil by-products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Genome sequence of the olive tree, Olea europaea.

    PubMed

    Cruz, Fernando; Julca, Irene; Gómez-Garrido, Jèssica; Loska, Damian; Marcet-Houben, Marina; Cano, Emilio; Galán, Beatriz; Frias, Leonor; Ribeca, Paolo; Derdak, Sophia; Gut, Marta; Sánchez-Fernández, Manuel; García, Jose Luis; Gut, Ivo G; Vargas, Pablo; Alioto, Tyler S; Gabaldón, Toni

    2016-06-27

    The Mediterranean olive tree (Olea europaea subsp. europaea) was one of the first trees to be domesticated and is currently of major agricultural importance in the Mediterranean region as the source of olive oil. The molecular bases underlying the phenotypic differences among domesticated cultivars, or between domesticated olive trees and their wild relatives, remain poorly understood. Both wild and cultivated olive trees have 46 chromosomes (2n). A total of 543 Gb of raw DNA sequence from whole genome shotgun sequencing, and a fosmid library containing 155,000 clones from a 1,000+ year-old olive tree (cv. Farga) were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 443 kb, and a total length of 1.31 Gb, which represents 95 % of the estimated genome length (1.38 Gb). In addition, the associated fungus Aureobasidium pullulans was partially sequenced. Genome annotation, assisted by RNA sequencing from leaf, root, and fruit tissues at various stages, resulted in 56,349 unique protein coding genes, suggesting recent genomic expansion. Genome completeness, as estimated using the CEGMA pipeline, reached 98.79 %. The assembled draft genome of O. europaea will provide a valuable resource for the study of the evolution and domestication processes of this important tree, and allow determination of the genetic bases of key phenotypic traits. Moreover, it will enhance breeding programs and the formation of new varieties.

  2. Effect of Extraction Conditions on the Antioxidant Activity of Olive Wood Extracts

    PubMed Central

    Pérez-Bonilla, Mercedes; Salido, Sofía; Sánchez, Adolfo; van Beek, Teris A.; Altarejos, Joaquín

    2013-01-01

    An investigation to optimize the extraction yield and the radical scavenging activity from the agricultural by-product olive tree wood (Olea europaea L., cultivar Picual) using six different extraction protocols was carried out. Four olive wood samples from different geographical origin, and harvesting time have been used for comparison purposes. Among the fifty olive wood extracts obtained in this study, the most active ones were those prepared with ethyl acetate, either through direct extraction or by successive liquid-liquid partitioning procedures, the main components being the secoiridoids oleuropein and ligustroside. An acid hydrolysis pretreatment of olive wood samples before extractions did not improve the results. In the course of this study, two compounds were isolated from the ethanolic extracts of olive wood collected during the olives' harvesting season and identified as (7′′R)-7′′-ethoxyoleuropein (1) and (7′′S)-7′′-ethoxyoleuropein (2). PMID:26904608

  3. Innovative method for recovery and valorization of hydroxytyrosol from olive mill wastewaters.

    PubMed

    Bonetti, A; Venturini, S; Ena, A; Faraloni, C

    2016-01-01

    The nutritional properties of olive oil can be attributed to its oleic acid and phenolic compounds content, acting as natural oxidants to prevent human diseases. In particular, hydroxytyrosol has an anti-inflammatory action similar to omega 3 fatty acids from fish oil. The olive oil production was conducted by two extraction procedures: first, a two-phase extraction giving extra-virgin olive oil and humid pomace, second, a three-phase working process of humid pomace, obtaining another minimum quantity of extra-virgin olive oil, 'dry' pomace devoid of polyphenols, and mill wastewaters rich in anti-oxidant compounds. The aim of this processing was to employ water to extract the highest concentration of polyphenols from humid pomace and convey them in oil mill wastewaters for extraction. Processed olives were 37,200 kg, pomace deprived of polyphenols was equal to 20,400 kg and processing was performed with 500 kg of olives per hour. This method offers advantages of using cheap equipment and technical simplicity.

  4. Straight on view of northeast side of Olive Switching Station ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Straight on view of northeast side of Olive Switching Station from north side of San Fernando Road facing southwest - Olive Switching Station, 13355 San Fernando Road, Los Angeles, Los Angeles County, CA

  5. Olive tree-ring problematic dating: a comparative analysis on Santorini (Greece).

    PubMed

    Cherubini, Paolo; Humbel, Turi; Beeckman, Hans; Gärtner, Holger; Mannes, David; Pearson, Charlotte; Schoch, Werner; Tognetti, Roberto; Lev-Yadun, Simcha

    2013-01-01

    Olive trees are a classic component of Mediterranean environments and some of them are known historically to be very old. In order to evaluate the possibility to use olive tree-rings for dendrochronology, we examined by various methods the reliability of olive tree-rings identification. Dendrochronological analyses of olive trees growing on the Aegean island Santorini (Greece) show that the determination of the number of tree-rings is impossible because of intra-annual wood density fluctuations, variability in tree-ring boundary structure, and restriction of its cambial activity to shifting sectors of the circumference, causing the tree-ring sequences along radii of the same cross section to differ.

  6. Olive Tree-Ring Problematic Dating: A Comparative Analysis on Santorini (Greece)

    PubMed Central

    Cherubini, Paolo; Humbel, Turi; Beeckman, Hans; Gärtner, Holger; Mannes, David; Pearson, Charlotte; Schoch, Werner; Tognetti, Roberto; Lev-Yadun, Simcha

    2013-01-01

    Olive trees are a classic component of Mediterranean environments and some of them are known historically to be very old. In order to evaluate the possibility to use olive tree-rings for dendrochronology, we examined by various methods the reliability of olive tree-rings identification. Dendrochronological analyses of olive trees growing on the Aegean island Santorini (Greece) show that the determination of the number of tree-rings is impossible because of intra-annual wood density fluctuations, variability in tree-ring boundary structure, and restriction of its cambial activity to shifting sectors of the circumference, causing the tree-ring sequences along radii of the same cross section to differ. PMID:23382949

  7. Impact of Raw and Bioaugmented Olive-Mill Wastewater and Olive-Mill Solid Waste on the Content of Photosynthetic Molecules in Tobacco Plants.

    PubMed

    Parrotta, Luigi; Campani, Tommaso; Casini, Silvia; Romi, Marco; Cai, Giampiero

    2016-08-03

    Disposal and reuse of olive-mill wastes are both an economic and environmental problem, especially in countries where the cultivation of olive trees is extensive. Microorganism-based bioaugmentation can be used to reduce the pollutant capacity of wastes. In this work, bioaugmentation was used to reduce the polyphenolic content of both liquid and solid wastes. After processing, bioaugmented wastes were tested on the root development of maize seeds and on photosynthesis-related molecules of tobacco plants. In maize, we found that bioaugmentation made olive-mill wastes harmless for seed germination. In tobacco, we analyzed the content of RuBisCO (ribulose-1,5-bisphosphate carboxylase oxygenase) and of the photosynthetic pigments lutein, chlorophylls, and β-carotene. Levels of RuBisCO were negatively affected by untreated wastewater but increased if plants were treated with bioaugmented wastewater. On the contrary, levels of RuBisCO increased in the case of plants treated with raw olive-mill solid waste. Pigment levels showed dissimilar behavior because their concentration increased if plants were irrigated with raw wastewater or treated with raw olive-mill solid waste. Treatment with bioaugmented wastes restored pigment content. Findings show that untreated wastes are potentially toxic at the commencement of treatment, but plants can eventually adapt after an initial stress period. Bioaugmented wastes do not induce immediate damages, and plants rapidly recover optimal levels of photosynthetic molecules.

  8. Has the use of talc an effect on yield and extra virgin olive oil quality?

    PubMed

    Caponio, Francesco; Squeo, Giacomo; Difonzo, Graziana; Pasqualone, Antonella; Summo, Carmine; Paradiso, Vito Michele

    2016-08-01

    The maximization of both extraction yield and extra virgin olive oil quality during olive processing are the main objectives of the olive oil industry. As regards extraction yield, it can be improved by both acting on time/temperature of malaxation and using physical coadjuvants. It is well known that, generally, increasing temperature of malaxation gives an increase in oil extraction yield due to a reduction in oily phase viscosity; however, high malaxation temperature can compromise the nutritional and health values of extra virgin olive oil, leading to undesirable effects such as accelerated oxidative process and loss of volatile compounds responsible for oil flavor and fragrance. The addition of physical coadjuvants in olive oil processing during the malaxation phase, not excluded by EC regulations owing to its exclusively physical action, is well known to promote the breakdown of oil/water emulsions and consequently make oil extraction easier, thus increasing the yield. Among physical coadjuvants, micronized natural talc is used for olive oil processing above all for Spanish and Italian olive cultivars. The quality of extra virgin olive oil depends on numerous variables such as olive cultivar, ripeness degree and quality, machines utilized for processing, oil storage conditions, etc. However, the coadjuvants utilized in olive processing can also influence virgin olive oil characteristics. The literature highlights an increase in oil yield by micronized natural talc addition during olive processing, whereas no clear trend was observed as regards the chemical, nutritional and sensory characteristics of extra virgin olive oil. Although an increase in oil stability was reported, no effect of talc was found on the evolution of virgin olive oil quality indices during storage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Antimicrobial activity of commercial Olea europaea (olive) leaf extract.

    PubMed

    Sudjana, Aurelia N; D'Orazio, Carla; Ryan, Vanessa; Rasool, Nooshin; Ng, Justin; Islam, Nabilah; Riley, Thomas V; Hammer, Katherine A

    2009-05-01

    The aim of this research was to investigate the activity of a commercial extract derived from the leaves of Olea europaea (olive) against a wide range of microorganisms (n=122). Using agar dilution and broth microdilution techniques, olive leaf extract was found to be most active against Campylobacter jejuni, Helicobacter pylori and Staphylococcus aureus [including meticillin-resistant S. aureus (MRSA)], with minimum inhibitory concentrations (MICs) as low as 0.31-0.78% (v/v). In contrast, the extract showed little activity against all other test organisms (n=79), with MICs for most ranging from 6.25% to 50% (v/v). In conclusion, olive leaf extract was not broad-spectrum in action, showing appreciable activity only against H. pylori, C. jejuni, S. aureus and MRSA. Given this specific activity, olive leaf extract may have a role in regulating the composition of the gastric flora by selectively reducing levels of H. pylori and C. jejuni.

  10. Evidence of oleuropein degradation by olive leaf protein extract.

    PubMed

    De Leonardis, Antonella; Macciola, Vincenzo; Cuomo, Francesca; Lopez, Francesco

    2015-05-15

    The enzymatic activity of raw protein olive leaf extract has been investigated in vivo, on olive leaf homogenate and, in vitro with pure oleuropein and other phenolic substrates. At least two types of enzymes were found to be involved in the degradation of endogenous oleuropein in olive leaves. As for the in vitro experiments, the presence of active polyphenoloxidase and β-glucosidase was determined by HPLC and UV-Visible spectroscopy. Interestingly, both the enzymatic activities were found to change during the storage of olive leaves. Specifically, the protein extracts obtained from fresh leaves showed the presence of both the enzymatic activities, because oleuropein depletion occurred simultaneously with the formation of the oleuropein aglycon, 3,4-DHPEA-EA. In comparison leaves subjected to the drying process showed a polyphenoloxidase activity leading exclusively to the formation of oxidation products responsible for the typical brown coloration of the reaction solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Olive cultivar and maturation process on the oviposition preference of Bactrocera oleae (Rossi) (Diptera: Tephritidae).

    PubMed

    Malheiro, R; Casal, S; Pinheiro, L; Baptista, P; Pereira, J A

    2018-02-21

    The olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), is a key-pest in the main olives producing areas worldwide, and displays distinct preference to different olive cultivars. The present work intended to study oviposition preference towards three Portuguese cultivars (Cobrançosa, Madural, and Verdeal Transmontana) at different maturation indexes. Multiple oviposition bioassays (multiple-choice and no-choice) were conducted to assess cultivar preference. No-choice bioassays were conducted to assess the influence of different maturation indexes (MI 2; MI 3, and MI 4) in single cultivars. The longevity of olive fly adults according to the cultivar in which its larvae developed was also evaluated through survival assays. Cultivar and maturation are crucial aspects in olive fly preference. Field and laboratory assays revealed a preference towards cv. Verdeal Transmontana olives and a lower susceptibility to cv. Cobrançosa olives. A higher preference was observed for olives at MI 2 and MI 3. The slower maturation process in cv. Verdeal Transmontana (still green while the other cultivars are reddish or at black stage) seems to have an attractive effect on olive fly females, thus increasing its infestation levels. Olive fly adults from both sexes live longer if emerged from pupae developed from cv. Verdeal Transmontana fruits and live less if emerged from cv. Cobrançosa. Therefore, olive cultivar and maturation process are crucial aspects in olive fly preference, also influencing the longevity of adults.

  12. Antihypertensive Effects of Roselle-Olive Combination in L-NAME-Induced Hypertensive Rats

    PubMed Central

    Hessin, Alyaa F.; Abdelbaset, Marwan; Ogaly, Hanan A.; Abd-Elsalam, Reham M.; Hassan, Salah M.

    2017-01-01

    This study aimed to evaluate the antihypertensive efficacy of a new combination therapy of Hibiscus sabdariffa and Olea europaea extracts (2 : 1; Roselle-Olive), using N(G)-nitro-L-arginine-methyl ester- (L-NAME-) induced hypertensive model. Rats received L-NAME (50 mg/kg/day, orally) for 4 weeks. Concurrent treatment with Roselle-Olive (500, 250, and 125 mg/kg/day for 4 weeks) resulted in a dose-dependent decrease in both systolic and diastolic blood pressure, reversed the L-NAME-induced suppression in serum nitric oxide (NO), and improved liver and kidney markers, lipid profile, and oxidative status. Furthermore, Roselle-Olive significantly lowered the elevated angiotensin-converting enzyme activity (ACE) and showed a marked genoprotective effect against oxidative DNA damage in hypertensive rats. Roselle-Olive ameliorated kidney and heart lesions and reduced aortic media thickness. Real-time PCR and immunohistochemistry showed an enhanced endothelial nitric oxide synthase (eNOS) gene and protein expression in both heart and kidney of Roselle-Olive-treated rats. To conclude, our data revealed that Roselle-Olive is an effective combination in which H. sabdariffa and O. europaea synergistically act to control hypertension. These effects are likely to be mediated by antioxidant and genoprotective actions, ACE inhibition, and eNOS upregulation by Roselle-Olive constituents. These findings provide evidences that Roselle-Olive combination affords efficient antihypertensive effect with a broad end-organ protective influence. PMID:29201276

  13. Antihypertensive Effects of Roselle-Olive Combination in L-NAME-Induced Hypertensive Rats.

    PubMed

    Abdel-Rahman, Rehab F; Hessin, Alyaa F; Abdelbaset, Marwan; Ogaly, Hanan A; Abd-Elsalam, Reham M; Hassan, Salah M

    2017-01-01

    This study aimed to evaluate the antihypertensive efficacy of a new combination therapy of Hibiscus sabdariffa and Olea europaea extracts (2 : 1; Roselle-Olive), using N(G)-nitro-L-arginine-methyl ester- (L-NAME-) induced hypertensive model. Rats received L-NAME (50 mg/kg/day, orally) for 4 weeks. Concurrent treatment with Roselle-Olive (500, 250, and 125 mg/kg/day for 4 weeks) resulted in a dose-dependent decrease in both systolic and diastolic blood pressure, reversed the L-NAME-induced suppression in serum nitric oxide (NO), and improved liver and kidney markers, lipid profile, and oxidative status. Furthermore, Roselle-Olive significantly lowered the elevated angiotensin-converting enzyme activity (ACE) and showed a marked genoprotective effect against oxidative DNA damage in hypertensive rats. Roselle-Olive ameliorated kidney and heart lesions and reduced aortic media thickness. Real-time PCR and immunohistochemistry showed an enhanced endothelial nitric oxide synthase (eNOS) gene and protein expression in both heart and kidney of Roselle-Olive-treated rats. To conclude, our data revealed that Roselle-Olive is an effective combination in which H. sabdariffa and O. europaea synergistically act to control hypertension. These effects are likely to be mediated by antioxidant and genoprotective actions, ACE inhibition, and eNOS upregulation by Roselle-Olive constituents. These findings provide evidences that Roselle-Olive combination affords efficient antihypertensive effect with a broad end-organ protective influence.

  14. Quantification of bioactive compounds in Picual and Arbequina olive leaves and fruit.

    PubMed

    Romero, Concepción; Medina, Eduardo; Mateo, Mª Antonia; Brenes, Manuel

    2017-04-01

    Olive leaves and fruit possess bioactive substances such as phenolic compounds and triterpenic acids that can be obtained from olive by-products generated during olive oil extraction. The aim of the present study was the characterization and quantification of these compounds in Picual and Arbequina cultivars from different locations and throughout two seasons in both olive leaves and fruit. The major phenolic compound identified in the leaves was oleuropein, and the total content of phenolic compounds in this material reached 70 g kg -1 fresh weight. The leaves were also rich in triterpenic acids (20 g kg -1 fresh weight), with oleanolic acid being the most concentrated among them. With regard to olives, oleuropein and demethyloleuropein were the main phenolic compounds in the pulp of Picual and Arbequina cultivars, and the total concentration of these phenolic compounds reached 3.5% fresh weight. Olives can also be an important source of triterpenic acids, although this is mainly the skin part, where the maslinic and oleanolic acids are concentrated. Olive leaves can contain up to 70 g kg -1 phenolic compounds and 20 g kg -1 triterpenic acids, and olive fruit can contain up to 35 g kg -1 of the former and 3 g kg -1 of the latter. It must also be noted that this level was constant both between seasons and orchard locations. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Assessment of Helicobacter pylori eradication by virgin olive oil.

    PubMed

    Castro, Manuel; Romero, Concepción; de Castro, Antonio; Vargas, Julio; Medina, Eduardo; Millán, Raquel; Brenes, Manuel

    2012-08-01

     A recent study conducted by Medina et al. disclosed that virgin olive oil has a bactericidal effect in vitro against Helicobacter pylori because of its contents of certain phenolic compounds with dialdehydic structures. We carried out two clinical trials to evaluate the effect of virgin olive oil on H. pylori-infected individuals.  Two different pilot studies were performed with 60 H. pylori-infected adults. In the first study, thirty subjects who tested positive for H. pylori received 30 g of washed virgin olive oil for 14 days, and after 1 month, the patients took 30 g of unwashed virgin olive oil for another 14 days. In a second study, a group of 30 subjects received 30 g of a different virgin olive oil for 14 days. Helicobacter pylori-infection status was checked by the urea breath test.  Helicobacter pylori was eradicated in 8 of 30 individuals when microorganism status was checked after 4-6 weeks from the first clinical intervention although 12 of 30 individuals did not show H. pylori infection at 24-72 hour of the last oil dose. Eradication rates were 27 and 40% by intention to treat and per protocol, respectively. Moreover, only 3 of 30 individuals were H. pylori negative after 4-6 weeks from the second clinical intervention but 5 of 30 were negative at 24-72 hour of the last oil dose. Eradication rates were 10 and 11% by intention to treat and per protocol, respectively. It must also be noted that 13 subjects withdrew from the studies because of taste and nausea drawbacks.  The administration of virgin olive oil showed moderate effectiveness in eradicating H. pylori. Further studies are needed to confirm these findings, especially with longer periods, different administration conditions, and several types of olive oils. © 2012 Blackwell Publishing Ltd.

  16. Influence of California-style black ripe olive processing on the formation of acrylamide.

    PubMed

    Charoenprasert, Suthawan; Mitchell, Alyson

    2014-08-27

    Methods used in processing California-style black ripe olives generate acrylamide. California-style black ripe olives contain higher levels of acrylamide (409.67 ± 42.60-511.91 ± 34.08 μg kg(-1)) as compared to California-style green ripe olives (44.02 ± 3.55-105.79 ± 22.01 μg kg(-1)), Greek olives (<1.42 μg kg(-1)), and Spanish olives (not detected), indicating that the higher temperatures used to sterilize the California-style green ripe and black ripe olives are required for acrylamide formation. Preprocessing brine storage influenced the formation of acrylamide in a time-dependent manner. Acrylamide increased during the first 30 days of storage. Longer brine storage times (>30 days) result in lower acrylamide levels in the finished product. The presence of calcium ions in the preprocessing brining solution results in higher levels of acrylamide in finished products. Air oxidation during lye processing and the neutralization of olives prior to sterilization significantly increase the formation of acrylamide in the finished products. Conversely, lye-processing decreases the levels of acrylamide in the final product. These results indicate that specific steps in the California-style black ripe olive processing may be manipulated to mitigate the formation of acrylamide in finished products.

  17. Olive oil consumption and risk of type 2 diabetes in US women.

    PubMed

    Guasch-Ferré, Marta; Hruby, Adela; Salas-Salvadó, Jordi; Martínez-González, Miguel A; Sun, Qi; Willett, Walter C; Hu, Frank B

    2015-08-01

    Olive oil has been shown to improve various cardiometabolic risk factors. However, to our knowledge, the association between olive oil intake and type 2 diabetes (T2D) has never been evaluated in the US population. We aimed to examine the association between olive oil intake and incident T2D. We followed 59,930 women aged 37-65 y from the Nurses' Health Study (NHS) and 85,157 women aged 26-45 y from the NHS II who were free of diabetes, cardiovascular disease, and cancer at baseline. Diet was assessed by validated food-frequency questionnaires, and data were updated every 4 y. Incident cases of T2D were identified through self-report and confirmed by supplementary questionnaires. After 22 y of follow-up, we documented 5738 and 3914 incident cases of T2D in the NHS and NHS II, respectively. With the use of Cox regression models with repeated measurements of diet and multivariate adjustment for major lifestyle and dietary factors, the pooled HR (95% CI) of T2D in those who consumed >1 tablespoon (>8 g) of total olive oil per day compared with those who never consumed olive oil was 0.90 (0.82, 0.99). The corresponding HRs (95% CIs) were 0.95 (0.87, 1.04) for salad dressing olive oil and 0.85 (0.74, 0.98) for olive oil added to food or bread. We estimated that substituting olive oil (8 g/d) for stick margarine, butter, or mayonnaise was associated with 5%, 8%, and 15% lower risk of T2D, respectively, in the pooled analysis of both cohorts. Our results suggest that higher olive oil intake is associated with modestly lower risk of T2D in women and that hypothetically substituting other types of fats and salad dressings (stick margarine, butter, and mayonnaise) with olive oil is inversely associated with T2D. © 2015 American Society for Nutrition.

  18. Influence of olive leaf processing on the bioaccessibility of bioactive polyphenols.

    PubMed

    Ahmad-Qasem, Margarita H; Cánovas, Jaime; Barrajón-Catalán, Enrique; Carreres, José E; Micol, Vicente; García-Pérez, José V

    2014-07-02

    Olive leaves are rich in bioactive compounds, which are beneficial for humans. The objective of this work was to assess the influence of processing conditions (drying and extraction) of olive leaves on the extract's bioaccessibility. Thus, extracts obtained from dried olive leaves (hot air drying at 70 and 120 °C or freeze-drying) by means of conventional or ultrasound-assisted extraction were subjected to in vitro digestion. Antioxidant capacity, total phenolic content, and HPLC-DAD/MS/MS analysis were carried out during digestion. The dehydration treatment used for the olive leaves did not have a meaningful influence on bioaccessibility. The digestion process significantly (p<0.05) affected the composition of the extracts. Oleuropein and verbascoside were quite resistant to gastric digestion but were largely degraded in the intestinal phase. Nevertheless, luteolin-7-O-glucoside was the most stable polyphenol during the in vitro simulation (43% bioaccessibility). Therefore, this compound may be taken into consideration in further studies that focus on the bioactivity of olive leaf extracts.

  19. Temperature Effects on Olive Fruit Fly Infestation in the FlySim Cellular Automata Model

    NASA Astrophysics Data System (ADS)

    Bruno, Vincenzo; Baldacchini, Valerio; di Gregorio, Salvatore

    FlySim is a Cellular Automata model developed for simulating infestation of olive fruit flies (Bactrocera Oleae) on olive (Olea europaea) groves. The flies move into the groves looking for mature olives where eggs are spawn. This serious agricultural problem is mainly tackled by using chemical agents at the first signs of the infestation, but organic productions with no or few chemicals are strongly requested by the market. Oil made with infested olives is poor in quality, nor olives are suitable for selling in stores. The FlySim model simulates the diffusion of flies looking for mature olives and the growing of flies due to atmospheric conditions. Foreseeing an infestation is the best way to prevent it and to reduce the need of chemicals in agriculture. In this work we investigated the effects of temperature on olive fruit flies and resulting infestation during late spring and summer.

  20. From Olive Fruits to Olive Oil: Phenolic Compound Transfer in Six Different Olive Cultivars Grown under the Same Agronomical Conditions.

    PubMed

    Talhaoui, Nassima; Gómez-Caravaca, Ana María; León, Lorenzo; De la Rosa, Raúl; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-03-04

    Phenolic compounds are responsible of the nutritional and sensory quality of extra-virgin olive oil (EVOO). The composition of phenolic compounds in EVOO is related to the initial content of phenolic compounds in the olive-fruit tissues and the activity of enzymes acting on these compounds during the industrial process to produce the oil. In this work, the phenolic composition was studied in six major cultivars grown in the same orchard under the same agronomical and environmental conditions in an effort to test the effects of cultivars on phenolic composition in fruits and oils as well as on transfer between matrices. The phenolic fractions were identified and quantified using high-performance liquid chromatography-diode array detector-time-of-flight-mass spectrometry. A total of 33 phenolic compounds were determined in the fruit samples and a total of 20 compounds in their corresponding oils. Qualitative and quantitative differences in phenolic composition were found among cultivars in both matrices, as well as regarding the transfer rate of phenolic compounds from fruits to oil. The results also varied according to the different phenolic groups evaluated, with secoiridoids registering the highest transfer rates from fruits to oils. Moreover, wide-ranging differences have been noticed between cultivars for the transfer rates of secoiridoids (4.36%-65.63% of total transfer rate) and for flavonoids (0.18%-0.67% of total transfer rate). 'Picual' was the cultivar that transferred secoiridoids to oil at the highest rate, whereas 'Changlot Real' was the cultivar that transferred flavonoids at the highest rates instead. Principal-component analysis confirmed a strong genetic effect on the basis of the phenolic profile both in the olive fruits and in the oils.

  1. An analysis of photovoltaic irrigation system for olive orchards in Greece

    NASA Astrophysics Data System (ADS)

    Taousanidis, N.; Gavros, K.

    2016-11-01

    Olive tree cultivation is of major importance in Greece. It has been proved that irrigation of olive orchards increases their production. The classic method followed is diesel pump irrigation. Since Greece favours high insolation the alternative of photovoltaic pumping is proposed. A case study for an olive orchard in Crete is studied with the two alternatives. The photovoltaic pumping system is a direct pumping system as olive trees tolerate even deficit irrigation and storage tank increases the cost. A comparison using the Life Cycle Costing method is proposed. Considerations about climate and economic conditions are taken into account and the study concludes with the profound advantage of the renewable system over the conventional one in strict economic terms.

  2. Characterization of antioxidant enzymes and peroxisomes of olive (Olea europaea L.) fruits.

    PubMed

    Lopez-Huertas, Eduardo; del Río, Luis A

    2014-10-15

    The presence of peroxisomes in olive (Olea europaea L.) fruits and different antioxidant enzymes occurring in this plant tissue is reported for the first time. Ultrastructural analysis showed that olive cells were characterized by the presence of large vacuoles and lipid drops. Plastids, mitochondria and peroxisomes were placed near the cell wall, showing some type of association with it. Olive fruit peroxisomes were purified by sucrose density-gradient centrifugation, and catalase, glutathione reductase and ascorbate peroxidase were found in peroxisomes. In olive fruit tissue the presence of a battery of antioxidant enzymes was demonstrated, including catalase, four superoxide dismutase isozymes (mainly an Fe-SOD plus 2 Cu,Zn-SOD and a Mn-SOD), all the enzymes of the ascorbate-glutathione cycle, reduced and oxidized glutathione, ascorbate, and four NADPH-recycling dehydrogenases. The knowledge of the full composition of antioxidants (enzymatic and non-enzymatic) in olive fruits is crucial to be able to understand the processes regulating the antioxidant composition of olive oil. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Olive phenolic compounds: metabolic and transcriptional profiling during fruit development

    PubMed Central

    2012-01-01

    Background Olive (Olea europaea L.) fruits contain numerous secondary metabolites, primarily phenolics, terpenes and sterols, some of which are particularly interesting for their nutraceutical properties. This study will attempt to provide further insight into the profile of olive phenolic compounds during fruit development and to identify the major genetic determinants of phenolic metabolism. Results The concentration of the major phenolic compounds, such as oleuropein, demethyloleuropein, 3–4 DHPEA-EDA, ligstroside, tyrosol, hydroxytyrosol, verbascoside and lignans, were measured in the developing fruits of 12 olive cultivars. The content of these compounds varied significantly among the cultivars and decreased during fruit development and maturation, with some compounds showing specificity for certain cultivars. Thirty-five olive transcripts homologous to genes involved in the pathways of the main secondary metabolites were identified from the massive sequencing data of the olive fruit transcriptome or from cDNA-AFLP analysis. Their mRNA levels were determined using RT-qPCR analysis on fruits of high- and low-phenolic varieties (Coratina and Dolce d’Andria, respectively) during three different fruit developmental stages. A strong correlation was observed between phenolic compound concentrations and transcripts putatively involved in their biosynthesis, suggesting a transcriptional regulation of the corresponding pathways. OeDXS, OeGES, OeGE10H and OeADH, encoding putative 1-deoxy-D-xylulose-5-P synthase, geraniol synthase, geraniol 10-hydroxylase and arogenate dehydrogenase, respectively, were almost exclusively present at 45 days after flowering (DAF), suggesting that these compounds might play a key role in regulating secoiridoid accumulation during fruit development. Conclusions Metabolic and transcriptional profiling led to the identification of some major players putatively involved in biosynthesis of secondary compounds in the olive tree. Our data

  4. NACE-ESI-TOF MS to reveal phenolic compounds from olive oil: introducing enriched olive oil directly inside capillary.

    PubMed

    Gómez-Caravaca, Ana María; Carrasco-Pancorbo, Alegría; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2009-09-01

    Most CE methods for the analysis of phenols from olive oil use an aqueous electrolyte separation medium, although the importance of NACE is obvious, as this kind of CE seems to be more compatible with the hydrophobic olive oil matrix and could facilitate its direct injection. In the current work we develop a method involving SPE and NACE coupled to ESI-TOF MS. All the CE and ESI-TOF MS parameters were optimized in order to maximize the number of phenolic compounds detected and the sensitivity in their determination. Electrophoretic separation was carried out using a CE buffer system consisting of 25 mM NH(4)OAc/AcH in methanol/ACN (1/1 v/v) at an apparent pH value of 5.0. We studied in depth the effect of the nature and concentration of different electrolytes dissolved in different organic solvents and other experimental and instrumental CE variables. The results were compared with those obtained by CZE (with aqueous buffers) coupled to ESI-TOF MS; both methods offered to the analyst the chance to study phenolic compounds of different families (such as phenolic alcohols, lignans, complex phenols, flavonoids, etc.) from virgin olive oil by injecting methanolic extracts with efficient and fast CE separations. In the case of NACE method, we also studied the direct injection of the investigated matrix introducing a plug of olive oil directly into the capillary.

  5. 7 CFR 52.3752 - Types of canned ripe olives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MARKETING ACT OF 1946 PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 United States Standards for Grades of Canned Ripe Olives 1 Product Description... either “ripe-type” or “green-ripe type.” (a) Ripe type. “Ripe type” olives are those which have been...

  6. Evaluation of the effectiveness of olive cake residue as an expansive soil stabilizer

    NASA Astrophysics Data System (ADS)

    Nalbantoglu, Zalihe; Tawfiq, Salma

    2006-08-01

    The quantity of the by-product olive cake residue generated in most parts of the Mediterranean countries continues to increase and expected to double in amount within 10 15 years. This increase intensifies the problems associated with the disposal of this by-product. Olive cake residue has a potential for use as a soil stabilizer and large volumes can be beneficially used. This study is directed toward determining if olive cake residue can be utilized to increase the strength and stability of expansive soils which constitute a costly natural hazard to lightweight structures on shallow foundations. A series of laboratory tests using engineering properties, such as Atterberg limits, moisture-density relationship (compaction), swell, unconfined compressive strength were undertaken to evaluate the effectiveness and performance of the olive cake residue as a soil stabilizer. Test results indicate that an addition of only 3% burned olive waste into the soil causes a reduction in plasticity, volume change and an increase in the unconfined compressive strength. However, it was observed that the presence of burned olive waste in the soil greater than 3% caused an increase in the compressibility and a decrease in the unconfined compressive strength. Test results indicate that the use of olive waste in soil stabilization gives greater benefits to the environment than simply disposing of the by-product, olive cake residue.

  7. Varietal Tracing of Virgin Olive Oils Based on Plastid DNA Variation Profiling

    PubMed Central

    Pérez-Jiménez, Marga; Besnard, Guillaume; Dorado, Gabriel; Hernandez, Pilar

    2013-01-01

    Olive oil traceability remains a challenge nowadays. DNA analysis is the preferred approach to an effective varietal identification, without any environmental influence. Specifically, olive organelle genomics is the most promising approach for setting up a suitable set of markers as they would not interfere with the pollinator variety DNA traces. Unfortunately, plastid DNA (cpDNA) variation of the cultivated olive has been reported to be low. This feature could be a limitation for the use of cpDNA polymorphisms in forensic analyses or oil traceability, but rare cpDNA haplotypes may be useful as they can help to efficiently discriminate some varieties. Recently, the sequencing of olive plastid genomes has allowed the generation of novel markers. In this study, the performance of cpDNA markers on olive oil matrices, and their applicability on commercial Protected Designation of Origin (PDO) oils were assessed. By using a combination of nine plastid loci (including multi-state microsatellites and short indels), it is possible to fingerprint six haplotypes (in 17 Spanish olive varieties), which can discriminate high-value commercialized cultivars with PDO. In particular, a rare haplotype was detected in genotypes used to produce a regional high-value commercial oil. We conclude that plastid haplotypes can help oil traceability in commercial PDO oils and set up an experimental methodology suitable for organelle polymorphism detection in the complex olive oil matrices. PMID:23950947

  8. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions.

    PubMed

    Boss, Anna; Bishop, Karen S; Marlow, Gareth; Barnett, Matthew P G; Ferguson, Lynnette R

    2016-08-19

    The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols.

  9. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions

    PubMed Central

    Boss, Anna; Bishop, Karen S.; Marlow, Gareth; Barnett, Matthew P. G.; Ferguson, Lynnette R.

    2016-01-01

    The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols. PMID:27548217

  10. Therapeutic Effects of Olive and Its Derivatives on Osteoarthritis: From Bench to Bedside.

    PubMed

    Chin, Kok-Yong; Pang, Kok-Lun

    2017-09-26

    Osteoarthritis is a major cause of morbidity among the elderly worldwide. It is a disease characterized by localized inflammation of the joint and destruction of cartilage, leading to loss of function. Impaired chondrocyte repair mechanisms, due to inflammation, oxidative stress and autophagy, play important roles in the pathogenesis of osteoarthritis. Olive and its derivatives, which possess anti-inflammatory, antioxidant and autophagy-enhancing activities, are suitable candidates for therapeutic interventions for osteoarthritis. This review aimed to summarize the current evidence on the effects of olive and its derivatives, on osteoarthritis and chondrocytes. The literature on animal and human studies has demonstrated a beneficial effect of olive and its derivatives on the progression of osteoarthritis. In vitro studies have suggested that the augmentation of autophagy (though sirtuin-1) and suppression of inflammation by olive polyphenols could contribute to the chondroprotective effects of olive polyphenols. More research and well-planned clinical trials are required to justify the use of olive-based treatment in osteoarthritis.

  11. Healthy virgin olive oil: a matter of bitterness.

    PubMed

    Vitaglione, Paola; Savarese, Maria; Paduano, Antonello; Scalfi, Luca; Fogliano, Vincenzo; Sacchi, Raffaele

    2015-01-01

    Virgin olive oil (VOO) is the pillar fat of Mediterranean diet. It is made from olive fruits and obtained by squeezing olives without any solvent extraction. Respect to the seed oils, an unique polar polyphenol-rich fraction gives VOO a bitter and pungent taste. The recent substantiation by European Food Safety Authority (EFSA) of a health claim for VOO polyphenols may represent an efficient stimulus to get the maximum health benefit from one of the most valuable traditional product of Mediterranean countries educating consumers to the relationship between the VOO bitterness and its health effect. Agronomical practices and new processing technology to avoid phenolic oxidation and hydrolysis and to enhance the aromatic components of the VOO have been developed and they can be used to modulate taste and flavor to diversify the products on the market. VOOs having high concentration of phenol compounds are bitter and pungent therefore many people do not consume them, thus loosing the health benefits related to their intake. In this paper, the chemist's and nutritionist's point of view has been considered to address possible strategies to overcome the existing gap between the quality perceived by consumer and that established by expert tasters. Educational campaigns emphasizing the bitter-health link for olive oils should be developed.

  12. Modeling Free Energies of Solvation in Olive Oil

    PubMed Central

    Chamberlin, Adam C.; Levitt, David G.; Cramer, Christopher J.; Truhlar, Donald G.

    2009-01-01

    Olive oil partition coefficients are useful for modeling the bioavailability of drug-like compounds. We have recently developed an accurate solvation model called SM8 for aqueous and organic solvents (Marenich, A. V.; Olson, R. M.; Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 2011) and a temperature-dependent solvation model called SM8T for aqueous solution (Chamberlin, A. C.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2008, 112, 3024). Here we describe an extension of SM8T to predict air–olive oil and water–olive oil partitioning for drug-like solutes as functions of temperature. We also describe the database of experimental partition coefficients used to parameterize the model; this database includes 371 entries for 304 compounds spanning the 291–310 K temperature range. PMID:19434923

  13. Disposal of olive mill wastewater with DC arc plasma method.

    PubMed

    Ibrahimoglu, Beycan; Yilmazoglu, M Zeki

    2018-07-01

    Olive mill wastewater is an industrial waste, generated as a byproduct of olive oil production process and generally contains components such as organic matter, suspended solids, oil, and grease. Although various methods have been developed to achieve the disposal of this industrial wastewater, due to the low cost, the most common disposal application is the passive storage in the lagoons. The main objective of this study is to reduce pollution parameters in olive mill wastewater and draw water to discharge limits by using plasma technology. Plasma-assisted disposal of olive mill wastewater method could be an alternative disposal technique when considering potential utilization of treated water in agricultural areas and economic value of flammable plasma gas which is the byproduct of disposal process. According to the experimental results, the rates of COD (chemical oxygen demand) and BOD (biological oxygen demand) of olive mill wastewater are decreased by 94.42% and 95.37%, respectively. The dissolved oxygen amount is increased from 0.36 to 6.97 mg/l. In addition, plasma gas with high H 2 content and treated water that can be used in agricultural areas for irrigation are obtained from non-dischargeable wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Symbiotic bacteria enable olive fly larvae to overcome host defences

    PubMed Central

    Ben-Yosef, Michael; Pasternak, Zohar; Jurkevitch, Edouard; Yuval, Boaz

    2015-01-01

    Ripe fruit offer readily available nutrients for many animals, including fruit fly larvae (Diptera: Tephritidae) and their associated rot-inducing bacteria. Yet, during most of their ontogeny, fruit remain chemically defended and effectively suppress herbivores and pathogens by high levels of secondary metabolites. Olive flies (Bactrocera oleae) are uniquely able to develop in unripe olives. Unlike other frugivorous tephritids, the larvae maintain bacteria confined within their midgut caeca. We examined the interaction between larvae, their associated bacteria, and fruit chemical defence, hypothesizing that bacterial contribution to larval development is contingent on the phenology of fruit defensive chemistry. We demonstrate that larvae require their natural complement of bacteria (Candidatus Erwinia dacicola: Enterobacteriaceae) in order to develop in unripe olives. Conversely, when feeding on ripe fruit, larval development proceeds independently of these bacteria. Our experiments suggest that bacteria counteract the inhibitory effect of oleuropein—the principal phenolic glycoside in unripe olives. In light of these results, we suggest that the unique symbiosis in olive flies, compared with other frugivorous tephritids, is understood by considering the relationship between the fly, bacteria and fruit chemistry. When applied in an evolutionary context, this approach may also point out the forces which shaped symbioses across the Tephritidae. PMID:26587275

  15. The effects of inferior olive lesion on strychnine seizure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, M.C.; Chung, E.Y.; Van Woert, M.H.

    1990-10-01

    Bilateral inferior olive lesions, produced by systemic administration of the neurotoxin 3-acetylpyridine (3AP) produce a proconvulsant state specific for strychnine-induced seizures and myoclonus. We have proposed that these phenomena are mediated through increased excitation of cerebellar Purkinje cells, through activation of glutamate receptors, in response to climbing fiber deafferentation. An increase in quisqualic acid (QA)-displaceable ({sup 3}H)AMPA ((RS)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid) binding in cerebella from inferior olive-lesioned rats was observed, but no difference in ({sup 3}H)AMPA binding displaced by glutamate, kainic acid (KA) or glutamate diethylester (GDEE) was seen. The excitatory amino acid antagonists GDEE and MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclo-hepten-5,10 imine) were tested asmore » anticonvulsants for strychnine-induced seizures in 3AP inferior olive-lesioned and control rats. Neither drug effected seizures in control rats, however, both GDEE and MK-801 produced a leftward shift in the strychnine-seizure dose-response curve in 3AP inferior olive-lesioned rats. GDEE also inhibited strychnine-induced myoclonus in the lesioned group, while MK-801 had no effect on myoclonus. The decreased threshold for strychnine-induced seizures and myoclonus in the 3AP-inferior olive-lesioned rats may be due to an increase in glutamate receptors as suggested by the ({sup 3}H)AMPA binding data.« less

  16. Local environmental context conditions the impact of Russian olive in a heterogeneous riparian ecosystem

    USGS Publications Warehouse

    Tuttle, Graham M.; Katz, Gabrielle L.; Friedman, Jonathan M.; Norton, Andrew P.

    2016-01-01

    Local abiotic and biotic conditions can alter the strength of exotic species impacts. To better understand the effects of exotic species on invaded ecosystems and to prioritize management efforts, it is important that exotic species impacts are put in local environmental context. We studied how differences in plant community composition, photosynthetically active radiation (PAR), and available soil N associated with Russian olive presence are conditioned by local environmental variation within a western U.S. riparian ecosystem. In four sites along the South Fork of the Republican River in Colorado, we established 200 pairs of plots (underneath and apart from Russian olive) to measure the effects of invasion across the ecosystem. We used a series of a priori mixed models to identify environmental variables that altered the effects of Russian olive. For all response variables, models that included the interaction of environmental characteristics, such as presence/absence of an existing cottonwood canopy, with the presence/absence of Russian olive canopy were stronger candidate models than those that just included Russian olive canopy presence as a factor. Compared with reference plots outside of Russian olive canopy, plots underneath Russian olive had higher relative exotic cover (exotic/total cover), lower perennial C4 grass cover, and higher perennial forb cover. These effects were reduced, however, in the presence of a cottonwood canopy. As expected, Russian olive was associated with reduced PAR and increased N, but these effects were reduced under cottonwood canopy. Our results demonstrate that local abiotic and biotic environmental factors condition the effects of Russian olive within a heterogeneous riparian ecosystem and suggest that management efforts should be focused in open areas where Russian olive impacts are strongest.

  17. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamy, Sylvie, E-mail: lamy.sylvie@uqam.ca; Ouanouki, Amira; Béliveau, Richard

    Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential ofmore » these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention. - Highlights: • We investigated five compounds contained in extra virgin olive oil on angiogenesis. • Hydroxytyrosol, taxifolin and oleic acid are the best angiogenesis inhibitors. • Olive oil compounds affect endothelial cell functions essential for

  18. Development and stability evaluation of olive oil nanoemulsion using sucrose monoester laurate

    NASA Astrophysics Data System (ADS)

    Eid, Ahmad M. M.; Baie, Saringat Haji; Arafat, Osama

    2012-11-01

    Nanoemulsion is a type of emulsion that consists of fine oil-in-water dispersions, with the droplets covering the size range of 20-200 nm. It can be achieved through emulsification process. One of the processes is through low energy emulsification method. Olive oil was chosen in this study due to its efficiency in treating skin problem. Olive oil nanophase gel (NPG) formulations were performed through various ratios of olive oil, sucrose laurate and glycerin. The particle sizes and stability of the prepared olive oil nanophase gel were evaluated and the optimal formulation was then selected for the development of olive oil nanoemulsion. This study proved that the composition of oil and surfactant play an important roles in influencing the nanophase gel droplet size. Nanophase gels containing olive oil in the concentration of 50 and 60 % show good stability at 4 °C and room temperature while it was less stable at 40 °C. Olive oil nanophase gels in the concentration of 50 % and 60 % with sucrose laurate 25 % in each formulation were good candidates to prepare nanoemulsion because they have the suitable droplets size and Polydispersing Index (PDI) when compared to other formulations. A mixture of NPG 50 % and water in the ratio of 40:60 and NPG 60 % and water in the ratio of 33.3:66.7 were used to produce nanoemulsions containing 20 % of oil with negative values of zeta potential (>60) which indicate the good stability of the nanoemulsions.

  19. Efficacy of bioactive compounds from extra virgin olive oil to modulate atherosclerosis development.

    PubMed

    Lou-Bonafonte, José M; Arnal, Carmen; Navarro, María A; Osada, Jesús

    2012-07-01

    As olive oil is the main source of calories in the Mediterranean diet, a great deal of research has been devoted to characterizing its role in atherosclerosis. Virgin olive oil is an oily matrix that contains hydrocarbons, mainly squalene; triterpenes such as uvaol, erythrodiol, oleanolic, and maslinic acid; phytosterols; and a wide range of phenolic compounds comprising simple phenols, flavonoids, secoiridoids, and lignans. In this review, we analyze the studies dealing with atherosclerosis and olive oil in several species. A protective role of virgin olive oil against atherosclerosis has been shown in ApoE-deficient mice and hamsters. In the former animal, sex, dose, and dietary cholesterol are modulators of the outcome. Contradictory findings have been reported for rabbits, a circumstance that could be due to the profusion of experimental designs, differing in terms of doses and animal strains, as well as sources of olive oils. This role has yet to be fully validated in humans. Minor components of olive oil have been shown to be involved in atherosclerosis protection. Nevertheless, evidence of the potential of isolated compounds or the right combination of them to achieve the antiatherosclerotic effect of virgin olive oil is inconclusive and will undoubtedly require further experimental support. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Pigments in Extra-Virgin Olive Oils Produced in Tuscany (Italy) in Different Years

    PubMed Central

    Lazzerini, Cristina; Domenici, Valentina

    2017-01-01

    Pigments are responsible for the color of olive oils, and are an important ingredient that is directly related to the quality of this food. However, the concentration of pigments can vary significantly depending on the climate conditions, harvesting time, and olive cultivars. In this work, we quantified the main pigments in several extra-virgin olive oils produced from a blend of three cultivars (Moraiolo, Frantoio, and Leccino) typical of Tuscany (Italy) harvested in three different years: 2012, 2013, and 2014. Pigments—namely, β-carotene, lutein, pheophytin A, and pheophytin B—were quantified by a method based on the mathematical analysis of the near ultraviolet-visible absorption spectra of the oils. Data were analyzed by a multivariate statistical approach. The results show that the pigments’ content of extra-virgin olive oils produced in 2014 can be well distinguished with respect to previous years. This can be explained by the anomalous climate conditions, which strongly affected Italy and, in particular, Tuscany, where the olives were harvested. This study represents an interesting example of how pigment content can be significant in characterizing olive oils. Moreover, this is the first report of pigment quantification in extra-virgin olive oils produced in Tuscany. PMID:28353651

  1. Evaluation of imported parasitoid fitness for biocontrol of olive fruit fly in California olives

    USDA-ARS?s Scientific Manuscript database

    A parasitoid, Psyttalia humilis (Silvestri), was reared on irradiated Mediterranean fruit fly (Medfly), Ceratitis capitata (Weidemann), at the USDA, APHIS, PPQ, Moscamed biological control laboratory in San Miguel Petapa, Guatemala, and imported into California for biological control of olive fruit ...

  2. Olive oil consumption and risk of type 2 diabetes in US women123

    PubMed Central

    Guasch-Ferré, Marta; Hruby, Adela; Salas-Salvadó, Jordi; Martínez-González, Miguel A; Sun, Qi; Willett, Walter C; Hu, Frank B

    2015-01-01

    Background: Olive oil has been shown to improve various cardiometabolic risk factors. However, to our knowledge, the association between olive oil intake and type 2 diabetes (T2D) has never been evaluated in the US population. Objective: We aimed to examine the association between olive oil intake and incident T2D. Design: We followed 59,930 women aged 37–65 y from the Nurses’ Health Study (NHS) and 85,157 women aged 26–45 y from the NHS II who were free of diabetes, cardiovascular disease, and cancer at baseline. Diet was assessed by validated food-frequency questionnaires, and data were updated every 4 y. Incident cases of T2D were identified through self-report and confirmed by supplementary questionnaires. Results: After 22 y of follow-up, we documented 5738 and 3914 incident cases of T2D in the NHS and NHS II, respectively. With the use of Cox regression models with repeated measurements of diet and multivariate adjustment for major lifestyle and dietary factors, the pooled HR (95% CI) of T2D in those who consumed >1 tablespoon (>8 g) of total olive oil per day compared with those who never consumed olive oil was 0.90 (0.82, 0.99). The corresponding HRs (95% CIs) were 0.95 (0.87, 1.04) for salad dressing olive oil and 0.85 (0.74, 0.98) for olive oil added to food or bread. We estimated that substituting olive oil (8 g/d) for stick margarine, butter, or mayonnaise was associated with 5%, 8%, and 15% lower risk of T2D, respectively, in the pooled analysis of both cohorts. Conclusions: Our results suggest that higher olive oil intake is associated with modestly lower risk of T2D in women and that hypothetically substituting other types of fats and salad dressings (stick margarine, butter, and mayonnaise) with olive oil is inversely associated with T2D. PMID:26156740

  3. 77 FR 55468 - Oliver Hydro LLC; Notice Soliciting Scoping Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13005-003] Oliver Hydro LLC; Notice Soliciting Scoping Comments Take notice that the following hydroelectric application has been... License. b. Project No.: P-13005-003. c. Date filed: December 14, 2011. d. Applicant: Oliver Hydro LLC. e...

  4. 75 FR 22211 - Olives Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... Executive Order 12988, Civil Justice Reform. Under the marketing order now in effect, California olive... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 932 [Doc. No. AMS-FV-09-0089; FV10-932-1 FR] Olives Grown in California; Increased Assessment Rate AGENCY: Agricultural Marketing...

  5. 77 FR 51684 - Olives Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 932 [Doc. No. AMS-FV-11-0093; FV12-932-1 FR] Olives Grown in California; Increased Assessment Rate AGENCY: Agricultural Marketing... assessable ton of olives handled. The Committee locally administers the marketing order which regulates the...

  6. Healing effect of sea buckthorn, olive oil, and their mixture on full-thickness burn wounds.

    PubMed

    Edraki, Mitra; Akbarzadeh, Armin; Hosseinzadeh, Massood; Tanideh, Nader; Salehi, Alireza; Koohi-Hosseinabadi, Omid

    2014-07-01

    The purpose of this study is to evaluate the healing effect of silver sulfadiazine (SSD), sea buckthorn, olive oil, and 5% sea buckthorn and olive oil mixture on full-thickness burn wounds with respect to both gross and histopathologic features. Full-thickness burns were induced on 60 rats; the rats were then were divided into 5 groups and treated with sea buckthorn, olive oil, a 5% sea buckthorn/olive oil mixture, SSD, and normal saline (control). They were observed for 28 days, and the wounds' healing process was evaluated. Wound contraction occurred faster in sea buckthorn, olive oil, and the sea buckthorn/olive oil mixture groups compared with the SSD and control groups. The volume of the exudates was controlled more effectively in wounds treated with the sea buckthorn/olive oil mixture. Purulent exudates were observed in the control group, but the others did not show infection. The group treated with sea buckthorn/olive oil mixture revealed more developed re-epithelialization with continuous basement membrane with a mature granulation tissue, whereas the SSD-treated group showed ulceration, necrosis, and immature granulation. The results show that sea buckthorn and olive oil individually are proper dressing for burn wounds and that they also show a synergetic effect when they are used together. A sea buckthorn and olive oil mixture could be considered as an alternative dressing for full-thickness burns because of improved wound healing characteristics and antibacterial property.

  7. Electro-Fermentation - Merging Electrochemistry with Fermentation in Industrial Applications.

    PubMed

    Schievano, Andrea; Pepé Sciarria, Tommy; Vanbroekhoven, Karolien; De Wever, Heleen; Puig, Sebastià; Andersen, Stephen J; Rabaey, Korneel; Pant, Deepak

    2016-11-01

    Electro-fermentation (EF) merges traditional industrial fermentation with electrochemistry. An imposed electrical field influences the fermentation environment and microbial metabolism in either a reductive or oxidative manner. The benefit of this approach is to produce target biochemicals with improved selectivity, increase carbon efficiency, limit the use of additives for redox balance or pH control, enhance microbial growth, or in some cases enhance product recovery. We discuss the principles of electrically driven fermentations and how EF can be used to steer both pure culture and microbiota-based fermentations. An overview is given on which advantages EF may bring to both existing and innovative industrial fermentation processes, and which doors might be opened in waste biomass utilization towards added-value biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate.

    PubMed

    Ghimire, Anish; Frunzo, Luigi; Pontoni, Ludovico; d'Antonio, Giuseppe; Lens, Piet N L; Esposito, Giovanni; Pirozzi, Francesco

    2015-04-01

    The Biohydrogen Potential (BHP) of six different types of waste biomass typical for the Campania Region (Italy) was investigated. Anaerobic sludge pre-treated with the specific methanogenic inhibitor sodium 2-bromoethanesulfonic acid (BESA) was used as seed inoculum. The BESA pre-treatment yielded the highest BHP in BHP tests carried out with pre-treated anaerobic sludge using potato and pumpkin waste as the substrates, in comparison with aeration or heat shock pre-treatment. The BHP tests carried out with different complex waste biomass showed average BHP values in a decreasing order from potato and pumpkin wastes (171.1 ± 7.3 ml H2/g VS) to buffalo manure (135.6 ± 4.1 ml H2/g VS), dried blood (slaughter house waste, 87.6 ± 4.1 ml H2/g VS), fennel waste (58.1 ± 29.8 ml H2/g VS), olive pomace (54.9 ± 5.4 ml H2/g VS) and olive mill wastewater (46.0 ± 15.6 ml H2/g VS). The digestate was analyzed for major soluble metabolites to elucidate the different biochemical pathways in the BHP tests. These showed the H2 was produced via mixed type fermentation pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Topical Olive Leaf Extract Improves Healing of Oral Mucositis in Golden Hamsters.

    PubMed

    Showraki, Najmeh; Mardani, Maryam; Emamghoreishi, Masoumeh; Andishe-Tadbir, Azadeh; Aram, Alireza; Mehriar, Peiman; Omidi, Mahmoud; Sepehrimanesh, Masood; Koohi-Hosseinabadi, Omid; Tanideh, Nader

    2016-12-01

    Oral mucositis (OM) is a common side effect of anti-cancer drugs and needs significant attention for its prevention. This study aimed to evaluate the healing effects of olive leaf extract on 5-fluorouracil-induced OM in golden hamster. OM was induced in 63 male golden hamsters by the combination of 5-fluorouracil injections (days 0, 5 and 10) and the abrasion of the cheek pouch (days 3 and 4). On day 12, hamsters were received topical olive leaf extract ointment, base of ointment, or no treatment (control) for 5 days. Histopathology evaluations, blood examinations, and tissue malondialdehyde level measurement were performed 1, 3 and 5 days after treatments. Histopathology score and tissue malondialdehyde level were significantly lower in olive leaf extract treated group in comparison with control and base groups ( p = 0.000). Significant decreases in white blood cell, hemoglobin, hematocrit , and mean corpuscular volume and an increase in mean corpuscular hemoglobin concentration were observed in olive leaf extract treated group in comparison with control and base groups ( p < 0.05). Our findings demonstrated that daily application of olive leaf extract ointment had healing effect on 5-fluorouracil induced OM in hamsters. Moreover, the beneficial effect of olive leaf extract on OM might be due to its antioxidant and anti-inflammatory properties.

  10. Genomic profiling of plastid DNA variation in the Mediterranean olive tree

    PubMed Central

    2011-01-01

    Background Characterisation of plastid genome (or cpDNA) polymorphisms is commonly used for phylogeographic, population genetic and forensic analyses in plants, but detecting cpDNA variation is sometimes challenging, limiting the applications of such an approach. In the present study, we screened cpDNA polymorphism in the olive tree (Olea europaea L.) by sequencing the complete plastid genome of trees with a distinct cpDNA lineage. Our objective was to develop new markers for a rapid genomic profiling (by Multiplex PCRs) of cpDNA haplotypes in the Mediterranean olive tree. Results Eight complete cpDNA genomes of Olea were sequenced de novo. The nucleotide divergence between olive cpDNA lineages was low and not exceeding 0.07%. Based on these sequences, markers were developed for studying two single nucleotide substitutions and length polymorphism of 62 regions (with variable microsatellite motifs or other indels). They were then used to genotype the cpDNA variation in cultivated and wild Mediterranean olive trees (315 individuals). Forty polymorphic loci were detected on this sample, allowing the distinction of 22 haplotypes belonging to the three Mediterranean cpDNA lineages known as E1, E2 and E3. The discriminating power of cpDNA variation was particularly low for the cultivated olive tree with one predominating haplotype, but more diversity was detected in wild populations. Conclusions We propose a method for a rapid characterisation of the Mediterranean olive germplasm. The low variation in the cultivated olive tree indicated that the utility of cpDNA variation for forensic analyses is limited to rare haplotypes. In contrast, the high cpDNA variation in wild populations demonstrated that our markers may be useful for phylogeographic and populations genetic studies in O. europaea. PMID:21569271

  11. Recent progress in a classical biological control program for olive fruit fly in California

    USDA-ARS?s Scientific Manuscript database

    The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), causes severe damage to olive production worldwide. Control of olive fruit fly typically relies on pesticides, and under such conditions the impact of natural enemies is relatively low. About 15 years ago, the USDA-ARS European Biologic...

  12. Multi-capillary column-ion mobility spectrometry: a potential screening system to differentiate virgin olive oils.

    PubMed

    Garrido-Delgado, Rocío; Arce, Lourdes; Valcárcel, Miguel

    2012-01-01

    The potential of a headspace device coupled to multi-capillary column-ion mobility spectrometry has been studied as a screening system to differentiate virgin olive oils ("lampante," "virgin," and "extra virgin" olive oil). The last two types are virgin olive oil samples of very similar characteristics, which were very difficult to distinguish with the existing analytical method. The procedure involves the direct introduction of the virgin olive oil sample into a vial, headspace generation, and automatic injection of the volatiles into a gas chromatograph-ion mobility spectrometer. The data obtained after the analysis by duplicate of 98 samples of three different categories of virgin olive oils, were preprocessed and submitted to a detailed chemometric treatment to classify the virgin olive oil samples according to their sensory quality. The same virgin olive oil samples were also analyzed by an expert's panel to establish their category and use these data as reference values to check the potential of this new screening system. This comparison confirms the potential of the results presented here. The model was able to classify 97% of virgin olive oil samples in their corresponding group. Finally, the chemometric method was validated obtaining a percentage of prediction of 87%. These results provide promising perspectives for the use of ion mobility spectrometry to differentiate virgin olive oil samples according to their quality instead of using the classical analytical procedure.

  13. Olive Oil and Vitamin D Synergistically Prevent Bone Loss in Mice

    PubMed Central

    Tagliaferri, Camille; Davicco, Marie-Jeanne; Lebecque, Patrice; Georgé, Stéphane; Amiot, Marie-Jo; Mercier, Sylvie; Dhaussy, Amélie; Huertas, Alain; Walrand, Stéphane; Wittrant, Yohann; Coxam, Véronique

    2014-01-01

    As the Mediterranean diet (and particularly olive oil) has been associated with bone health, we investigated the impact of extra virgin oil as a source of polyphenols on bone metabolism. In that purpose sham-operated (SH) or ovariectomized (OVX) mice were subjected to refined or virgin olive oil. Two supplementary OVX groups were given either refined or virgin olive oil fortified with vitamin D3, to assess the possible synergistic effects with another liposoluble nutrient. After 30 days of exposure, bone mineral density and gene expression were evaluated. Consistent with previous data, ovariectomy was associated with increased bone turnover and led to impaired bone mass and micro-architecture. The expression of oxidative stress markers were enhanced as well. Virgin olive oil fortified with vitamin D3 prevented such changes in terms of both bone remodeling and bone mineral density. The expression of inflammation and oxidative stress mRNA was also lower in this group. Overall, our data suggest a protective impact of virgin olive oil as a source of polyphenols in addition to vitamin D3 on bone metabolism through improvement of oxidative stress and inflammation. PMID:25551374

  14. Inactivation of Kudoa septempunctata in olive flounder meat by liquid freezing.

    PubMed

    Ohnishi, Takahiro; Akuzawa, Sayuri; Furusawa, Hiroko; Yoshinari, Tomoya; Kamata, Yoichi; Sugita-Konishi, Yoshiko

    2014-01-01

    Kudoa septempunctata in olive flounder meat was inactivated using 3 distinct freezing methods:liquid freezing for 5 min, air blast freezing at -30℃ for 5 h, and -80℃ for 1 h. The fracture curve of olive flounder meat subjected to liquid freezing resembled that of meat stored at 4℃, indicating that the structure of olive flounder muscle was well preserved. In contrast, air blast freezing induced the disappearance of the fracture point in the fracture curve, indicating that there was deterioration in the meat quality. Liquid freezing preserved the transparency of olive flounder meat to the same degree as that of meat stored at 4°C. However, air blast freezing induced meat cloudiness. These results indicate that liquid freezing can be used for K. septempunctata inactivation without affecting the meat quality.

  15. Cytotoxic and antibacterial activity of the mixture of olive oil and lime cream in vitro conditions.

    PubMed

    Sumer, Zeynep; Yildirim, Gulay; Sumer, Haldun; Yildirim, Sahin

    2013-01-01

    The mixture of olive oil and lime cream has been traditionally used to treat external burns in the region of Hatay/Antakya and middle Anatolia. Olive oil and lime cream have been employed by many physicians to treat many ailments in the past. A limited number of studies have shown the antibacterial effect of olive oil and that it does not have any toxic effect on the skin. But we did not find any reported studies on the mixture of olive oil and lime cream. The aim of this paper is to investigate the cytotoxic and antibacterial activity of olive oil and lime cream individually or/and in combination in vitro conditions, by using disk-diffusion method and in cell culture. The main purpose in using this mixture is usually to clear burns without a trace. Agar overlay, MTT (Cytotoxicity assay) and antibacterial susceptibility tests were used to investigate the cytotoxic and antibacterial activity of olive oil and lime cream. We found that lime cream has an antibacterial activity but also cytotoxic on the fibroblasts. On the other hand olive oil has limited or no antibacterial effect and it has little or no cytotoxic on the fibroblasts. When we combined lime cream and olive oil, olive oil reduced its cytotoxic impact. These results suggest that mixture of olive oil and lime cream is not cytotoxic and has antimicrobial activity.

  16. Identification of 3-MCPD esters to verify the adulteration of extra virgin olive oil.

    PubMed

    Hung, Wei-Ching; Peng, Guan-Jhih; Tsai, Wen-Ju; Chang, Mei-Hua; Liao, Chia-Ding; Tseng, Su-Hsiang; Kao, Ya-Min; Wang, Der-Yuan; Cheng, Hwei-Fang

    2017-09-01

    The adulteration of olive oil is an important issue around the world. This paper reports an indirect method by which to identify 3-monochloropropane-1,2-diol (3-MCPD) esters in olive oils. Following sample preparation, the samples were spiked with 1,2-bis-palmitoyl-3-chloropropanediol standard for analysis using gas chromatograph-tandem mass spectrometry. The total recovery ranged from 102.8% to 105.5%, the coefficient of variation ranged from 1.1% to 10.1%, and the limit of quantification was 0.125 mg/kg. The content of 3-MCPD esters in samples of refined olive oil (0.97-20.53 mg/kg) exceeded those of extra virgin olive oil (non-detected to 0.24 mg/kg). These results indicate that the oil refining process increased the content of 3-MCPD esters, which means that they could be used as a target compound for the differentiation of extra virgin olive oil from refined olive oil in order to prevent adulteration.

  17. 21 CFR 102.37 - Mixtures of edible fat or oil and olive oil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Mixtures of edible fat or oil and olive oil. 102... for Specific Nonstandardized Foods § 102.37 Mixtures of edible fat or oil and olive oil. The common or... olive oil shall be as follows: (a) A descriptive name for the product meeting the requirements of § 102...

  18. 21 CFR 102.37 - Mixtures of edible fat or oil and olive oil.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Mixtures of edible fat or oil and olive oil. 102... for Specific Nonstandardized Foods § 102.37 Mixtures of edible fat or oil and olive oil. The common or... olive oil shall be as follows: (a) A descriptive name for the product meeting the requirements of § 102...

  19. Selection of olive varieties for tolerance to iron chlorosis.

    PubMed

    Alcántara, Esteban; Cordeiro, Antonio Manuel; Barranco, Diego

    2003-12-01

    Under certain conditions, olive trees grown on calcareous soils suffer from iron chlorosis. In the present study several olive varieties and scion-rootstock combinations were evaluated for their tolerance to iron chlorosis. Plants were grown over several months in pots with a calcareous soil, under two fertilization treatments. These consisted of periodic applications of nutrient solutions containing either, 30 micromol/L FeEDDHA or not Fe. Tolerance was assessed by the chlorosis and growth parameters of plants grown without Fe, compared to those plants grown with Fe. Results show that there are differences in tolerance among olive varieties and that tolerance is mainly determined by the genotype of the rootstock. These results open the way to use tolerant varieties for those conditions where iron chlorosis could become a problem.

  20. Voltammetric fingerprinting of oils and its combination with chemometrics for the detection of extra virgin olive oil adulteration.

    PubMed

    Tsopelas, Fotios; Konstantopoulos, Dimitris; Kakoulidou, Anna Tsantili

    2018-07-26

    In the present work, two approaches for the voltammetric fingerprinting of oils and their combination with chemometrics were investigated in order to detect the adulteration of extra virgin olive oil with olive pomace oil as well as the most common seed oils, namely sunflower, soybean and corn oil. In particular, cyclic voltammograms of diluted extra virgin olive oils, regular (pure) olive oils (blends of refined olive oils with virgin olive oils), olive pomace oils and seed oils in presence of dichloromethane and 0.1 M of LiClO 4 in EtOH as electrolyte were recorded at a glassy carbon working electrode. Cyclic voltammetry was also employed in methanolic extracts of olive and seed oils. Datapoints of cyclic voltammograms were exported and submitted to Principal Component Analysis (PCA), Partial Least Square- Discriminant Analysis (PLS-DA) and soft independent modeling of class analogy (SIMCA). In diluted oils, PLS-DA provided a clear discrimination between olive oils (extra virgin and regular) and olive pomace/seed oils, while SIMCA showed a clear discrimination of extra virgin olive oil in regard to all other samples. Using methanolic extracts and considering datapoints recorded between 0.6 and 1.3 V, PLS-DA provided more information, resulting in three clusters-extra virgin olive oils, regular olive oils and seed/olive pomace oils-while SIMCA showed inferior performance. For the quantification of extra virgin olive oil adulteration with olive pomace oil or seed oils, a model based on Partial Least Square (PLS) analysis was developed. Detection limit of adulteration in olive oil was found to be 2% (v/v) and the linearity range up to 33% (v/v). Validation and applicability of all models was proved using a suitable test set. In the case of PLS, synthetic oil mixtures with 4 known adulteration levels in the range of 4-26% were also employed as a blind test set. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Mediterranean savanna system: understanding and modeling of olive orchard.

    NASA Astrophysics Data System (ADS)

    Brilli, Lorenzo; Moriondo, Marco; Bindi, Marco

    2013-04-01

    Nowadays most of the studies on C and N exchange were focused on forest ecosystems and crop systems, while only few studies have been focused on so called "savanna systems". They are long-term agro-ecosystems (fruit trees, grapevines and olive trees, etc.) usually characterized by two different layers (ground vegetation and trees). Generally, there is a lack of knowledge about these systems due to their intrinsic structural complexity (different eco-physiological characteristics so as agricultural practices). However, given their long-term carbon storage capacity, these systems can play a fundamental role in terms of global C cycle. Among all of them, the role that olive trees can play in C sequestration should not be neglected, especially in Mediterranean areas where they typify the rural landscape and are widely cultivated (Loumou and Giourga, 2003). It is therefore fundamental modelling the C-fluxes exchanges coming from these systems through a tool able to well reproduce these dynamics in one of the most exposed areas to the risk of climate change (IPCC, 2007). In this work, 2 years of Net CO2 Ecosystem Exchange (NEE) measures from eddy covariance were used to test the biogeochemistry model DayCent. The study was conducted in a rain-fed olive orchard situated in Follonica, South Tuscany, Italy (42 ° 55'N, 10 ° 45'E), in an agricultural area near the coast. The instrumentation for flux measurement was placed 1.9 m above the canopy top (6.5 m from the ground) so that the footprint area, expressed as the area containing 90% of the observed flux, was almost entirely contained within the olive orchard limits (Brilli et al., in press). Ancillary slow sensors have included soil temperature profiles, global radiation, air temperature and humidity, rain gauge. Fluxes of sensible heat, latent heat, momentum and CO2 as well as ancillary data were derived at half-hourly time resolution. Specific soil (texture, current and historical land use and vegetation cover) and

  2. Active integration of glutamatergic input to the inferior olive generates bidirectional postsynaptic potentials

    PubMed Central

    Garden, Derek L. F.; Rinaldi, Arianna

    2016-01-01

    Key points We establish experimental preparations for optogenetic investigation of glutamatergic input to the inferior olive.Neurones in the principal olivary nucleus receive monosynaptic extra‐somatic glutamatergic input from the neocortex.Glutamatergic inputs to neurones in the inferior olive generate bidirectional postsynaptic potentials (PSPs), with a fast excitatory component followed by a slower inhibitory component.Small conductance calcium‐activated potassium (SK) channels are required for the slow inhibitory component of glutamatergic PSPs and oppose temporal summation of inputs at intervals ≤ 20 ms.Active integration of synaptic input within the inferior olive may play a central role in control of olivo‐cerebellar climbing fibre signals. Abstract The inferior olive plays a critical role in motor coordination and learning by integrating diverse afferent signals to generate climbing fibre inputs to the cerebellar cortex. While it is well established that climbing fibre signals are important for motor coordination, the mechanisms by which neurones in the inferior olive integrate synaptic inputs and the roles of particular ion channels are unclear. Here, we test the hypothesis that neurones in the inferior olive actively integrate glutamatergic synaptic inputs. We demonstrate that optogenetically activated long‐range synaptic inputs to the inferior olive, including projections from the motor cortex, generate rapid excitatory potentials followed by slower inhibitory potentials. Synaptic projections from the motor cortex preferentially target the principal olivary nucleus. We show that inhibitory and excitatory components of the bidirectional synaptic potentials are dependent upon AMPA (GluA) receptors, are GABAA independent, and originate from the same presynaptic axons. Consistent with models that predict active integration of synaptic inputs by inferior olive neurones, we find that the inhibitory component is reduced by blocking large conductance

  3. Biological and Clinical Aspects of an Olive Oil-Based Lipid Emulsion-A Review.

    PubMed

    Cai, Wei; Calder, Phillip C; Cury-Boaventura, Maria F; De Waele, Elisabeth; Jakubowski, Julie; Zaloga, Gary

    2018-06-15

    Intravenous lipid emulsions (ILEs) have been an integral component of parenteral nutrition for more than 50 years. Numerous formulations are available and are based on vegetable (soybean, olive, coconut) and animal (fish) oils. Therefore, each of these formulations has a unique fatty acid composition that offers both benefits and limitations. As clinical experience and our understanding of the effects of fatty acids on various physiological processes has grown, there is evidence to suggest that some ILEs may have benefits compared with others. Current evidence suggests that olive oil-based ILE may preserve immune, hepatobiliary, and endothelial cell function, and may reduce lipid peroxidation and plasma lipid levels. There is good evidence from a large randomized controlled study to support a benefit of olive oil-based ILE over soybean oil-based ILE on reducing infections in critically ill patients. At present there is limited evidence to demonstrate a benefit of olive oil-based ILE over other ILEs on glucose metabolism, and few data exist to demonstrate a benefit on clinical outcomes such as hospital or intensive care unit stay, duration of mechanical ventilation, or mortality. We review the current research and clinical evidence supporting the potential positive biological and clinical aspects of olive oil-based ILE and conclude that olive oil-based ILE is well tolerated and provides effective nutritional support to various PN-requiring patient populations. Olive oil-based ILE appears to support the innate immune system, is associated with fewer infections, induces less lipid peroxidation, and is not associated with increased hepatobiliary or lipid disturbances. These data would suggest that olive oil-based ILE is a valuable option in various PN-requiring patient populations.

  4. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts.

    PubMed

    Estruch, Ramón; Ros, Emilio; Salas-Salvadó, Jordi; Covas, Maria-Isabel; Corella, Dolores; Arós, Fernando; Gómez-Gracia, Enrique; Ruiz-Gutiérrez, Valentina; Fiol, Miquel; Lapetra, José; Lamuela-Raventos, Rosa M; Serra-Majem, Lluís; Pintó, Xavier; Basora, Josep; Muñoz, Miguel A; Sorlí, José V; Martínez, J Alfredo; Fitó, Montserrat; Gea, Alfredo; Hernán, Miguel A; Martínez-González, Miguel A

    2018-06-21

    Observational cohort studies and a secondary prevention trial have shown inverse associations between adherence to the Mediterranean diet and cardiovascular risk. In a multicenter trial in Spain, we assigned 7447 participants (55 to 80 years of age, 57% women) who were at high cardiovascular risk, but with no cardiovascular disease at enrollment, to one of three diets: a Mediterranean diet supplemented with extra-virgin olive oil, a Mediterranean diet supplemented with mixed nuts, or a control diet (advice to reduce dietary fat). Participants received quarterly educational sessions and, depending on group assignment, free provision of extra-virgin olive oil, mixed nuts, or small nonfood gifts. The primary end point was a major cardiovascular event (myocardial infarction, stroke, or death from cardiovascular causes). After a median follow-up of 4.8 years, the trial was stopped on the basis of a prespecified interim analysis. In 2013, we reported the results for the primary end point in the Journal. We subsequently identified protocol deviations, including enrollment of household members without randomization, assignment to a study group without randomization of some participants at 1 of 11 study sites, and apparent inconsistent use of randomization tables at another site. We have withdrawn our previously published report and now report revised effect estimates based on analyses that do not rely exclusively on the assumption that all the participants were randomly assigned. A primary end-point event occurred in 288 participants; there were 96 events in the group assigned to a Mediterranean diet with extra-virgin olive oil (3.8%), 83 in the group assigned to a Mediterranean diet with nuts (3.4%), and 109 in the control group (4.4%). In the intention-to-treat analysis including all the participants and adjusting for baseline characteristics and propensity scores, the hazard ratio was 0.69 (95% confidence interval [CI], 0.53 to 0.91) for a Mediterranean diet with extra

  5. Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED Study

    PubMed Central

    2014-01-01

    Background It is unknown whether individuals at high cardiovascular risk sustain a benefit in cardiovascular disease from increased olive oil consumption. The aim was to assess the association between total olive oil intake, its varieties (extra virgin and common olive oil) and the risk of cardiovascular disease and mortality in a Mediterranean population at high cardiovascular risk. Methods We included 7,216 men and women at high cardiovascular risk, aged 55 to 80 years, from the PREvención con DIeta MEDiterránea (PREDIMED) study, a multicenter, randomized, controlled, clinical trial. Participants were randomized to one of three interventions: Mediterranean Diets supplemented with nuts or extra-virgin olive oil, or a control low-fat diet. The present analysis was conducted as an observational prospective cohort study. The median follow-up was 4.8 years. Cardiovascular disease (stroke, myocardial infarction and cardiovascular death) and mortality were ascertained by medical records and National Death Index. Olive oil consumption was evaluated with validated food frequency questionnaires. Multivariate Cox proportional hazards and generalized estimating equations were used to assess the association between baseline and yearly repeated measurements of olive oil intake, cardiovascular disease and mortality. Results During follow-up, 277 cardiovascular events and 323 deaths occurred. Participants in the highest energy-adjusted tertile of baseline total olive oil and extra-virgin olive oil consumption had 35% (HR: 0.65; 95% CI: 0.47 to 0.89) and 39% (HR: 0.61; 95% CI: 0.44 to 0.85) cardiovascular disease risk reduction, respectively, compared to the reference. Higher baseline total olive oil consumption was associated with 48% (HR: 0.52; 95% CI: 0.29 to 0.93) reduced risk of cardiovascular mortality. For each 10 g/d increase in extra-virgin olive oil consumption, cardiovascular disease and mortality risk decreased by 10% and 7%, respectively. No significant

  6. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control--a review.

    PubMed

    Bhatnagar, Amit; Kaczala, Fabio; Hogland, William; Marques, Marcia; Paraskeva, Christakis A; Papadakis, Vagelis G; Sillanpää, Mika

    2014-01-01

    The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5% of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78% between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  7. Cross-cultural perception of six commercial olive oils: A study with Spanish and US consumers.

    PubMed

    Vázquez-Araújo, L; Adhikari, K; Chambers, E; Chambers, D H; Carbonell-Barrachina, A A

    2015-09-01

    A cross-cultural study was conducted with Spanish and US consumers to gain an insight into the preferred characteristics of olive oils in both countries. Six commercial olive oils (four samples from Spain and two samples from the US) were analyzed by a highly trained panel (descriptive analysis) and also by two consumers' groups (100 consumers from Spain and 100 from the US). Demographic, acceptability, and Just-About-Right data were collected to study the preferences of both groups, and the relationships with descriptive data were explored to determine the drivers of like/dislike. The Spanish extra virgin olive oils and the imported US extra virgin olive oil were characterized by having bitter, pungent, and more green notes, and were preferred by the Spanish consumers. The US consumers liked the bland Spanish refined olive oil, and the Californian olive oil that was characterized by fruity, floral, and sweet notes. The results showed that the Spanish consumers were more aware about olive oil quality in general than their US counterparts, maybe because of a higher usage of the product in Spain. The present study provides essential data which might help producers in designing and promoting olive oils matching US consumers' requirements, an emerging market for this Mediterranean product. © The Author(s) 2014.

  8. Introducing cultivated trees into the wild: Wood pigeons as dispersers of domestic olive seeds

    NASA Astrophysics Data System (ADS)

    Perea, Ramón; Gutiérrez-Galán, Alejandro

    2016-02-01

    Animals may disperse cultivated trees outside the agricultural land, favoring the naturalization or, even, the invasiveness of domestic plants. However, the ecological and conservation implications of new or unexplored mutualisms between cultivated trees and wild animals are still far from clear. Here, we examine the possible role of an expanding and, locally, overabundant pigeon species (Columba palumbus) as an effective disperser of domestic olive trees (Olea europaea), a widespread cultivated tree, considered a naturalized and invasive species in many areas of the world. By analyzing crop and gizzard content we found that olive fruits were an important food item for pigeons in late winter and spring. A proportion of 40.3% pigeons consumed olive seeds, with an average consumption of 7.8 seeds per pigeon and day. Additionally, most seed sizes (up to 0.7 g) passed undamaged through the gut and were dispersed from cultivated olive orchards to areas covered by protected Mediterranean vegetation, recording minimal dispersal distances of 1.8-7.4 km. Greenhouse experiments showed that seeds dispersed by pigeons significantly favored the germination and establishment in comparison to non-ingested seeds. The ability of pigeons to effectively disperse domestic olive seeds may facilitate the introduction of cultivated olive trees into natural systems, including highly-protected wild olive woodlands. We recommend harvesting ornamental olive trees to reduce both pigeon overpopulation and the spread of artificially selected trees into the natural environment.

  9. Development of new composite biosorbents from olive pomace wastes

    NASA Astrophysics Data System (ADS)

    Pagnanelli, Francesca; Viggi, Carolina Cruz; Toro, Luigi

    2010-06-01

    In this study olive pomace was used as a source of binding substances for the development of composite biosorbents to be used in heavy metal removal from aqueous solutions. The aim was to obtain biosorbent material with an increased concentration of binding sites. The effects of two different extraction procedures (one using only methanol and the other one hexane followed by methanol) on the binding properties of olive pomace were tested by potentiometric titrations and batch biosorption tests for copper and cadmium removal. Titration modelling evidenced that both kinds of extractions generated a solid with a reduced amount of protonatable sites. Biosorption tests were organized according to full factorial designs. Analysis of variance denoted that both kinds of extractions determined a statistically significant negative effect on metal biosorption. In the case of cadmium extractions also determined a significant decrease of selectivity with respect to olive pomace. When the acid-base and binding properties of the substances extracted were determined, they were adsorbed onto a synthetic resin (octadecylsilane) and calcium alginate beads. In this way two kinds of composite biosorbents have been obtained both having an increased concentration of binding substances with respect to native olive pomace, also working more efficiently in metal removal.

  10. Olive Oil and its Potential Effects on Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Antony, Shan; Zhang, G. P.

    Alzheimer's disease is a neuro-degenerative brain disease that is responsible for affecting the lives of hundreds of thousands of people every year. There has been no evidence to suggest a cure for the disease and the only existing treatments have very low rates of success in trial patients. This is largely due to the fact that the brain is one of the most undiscovered parts of the human body. Brain chemistry is highly complex and responds to its environment in random and radical ways. My research includes testing the reactionary outcomes of combining compounds of olive oil with the 20 basic amino acids. Regions around the world with olive oil based diets show a direct correlation to lower rates of Alzheimer's. Testing few compounds of olive oil with chemicals already found in the brain may yield to a better understanding as to why that is. I took the compounds tyrosol, hydroxytyrosol, and oleocanthal, and combined them with the 20 basic amino acids and calculated the total energy of the new molecule. The molecules produced with acceptably low energy values will be the center of further research. These molecules could lead to truly understanding olive oil's effect on the brain, and ultimately, the cure or prevention of Alzheimer's disease.

  11. Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation.

    PubMed

    Hu, Yongjin; Ge, Changrong; Yuan, Wei; Zhu, Renjun; Zhang, Wujiu; Du, Lijuan; Xue, Jie

    2010-05-01

    To make nutrients more accessible and further increase biological activity, cooked black soybeans were inoculated with Bacillus natto and fermented at 37 degrees C for 48 h. The changes in physiochemical properties of fermented black soybean natto were investigated. The inoculation procedure significantly increased moisture, viscosity, color, polyphenol compounds and anthocyanin, and significantly decreased hardness after 48 h fermentation. Fibrinolytic and caseinolytic protease, beta-glucosidase activities, TCA-soluble nitrogen, and ammonia nitrogen contents in the inoculated samples significantly increased as fermentation time increased. Genistin and daidzin concentrations gradually decreased with increased fermentation time. However, genistein and daidzein increased with fermentation time, which reached 316.8 and 305.2 microg g(-1) during 48 h fermentation, respectively. DPPH radical scavenging activities of the fermented black soybeans increased linearly with fermentation time and concentration. Compared with the soaked black soybeans and cooked black soybeans, the fermented black soybeans with B. natto resulted in higher scavenging activity towards DPPH radicals, which correlated well with the content of total phenols (r = 0.9254, P < 0.05) and aglycone isoflavone (r = 0.9861, P < 0.05). Black soybean natto fermented by B. natto has the potential to become a functional food because of its high antioxidant activity.

  12. Centrifugation as a pre-treatment in olive mill wastewater processing (abstract)

    USDA-ARS?s Scientific Manuscript database

    Olive mill wastewater (OMWW), generated during production of olive oil, is an untapped source of nutritious compounds. Thus, processors want to separate OMWW into a high-value, concentrated product stream and near-pure water. However, the amount and characteristics of the produced OMWW depend on t...

  13. Near-infrared spectroscopy for detection of hailstorm damage on olive fruit

    USDA-ARS?s Scientific Manuscript database

    A rapid, robust, unbiased and inexpensive discriminant method capable of classifying olive fruit (Olea europaea L.) on the basis of the presence of hailstorm damage is economically important to the olive oil milling industry. Thus, in the present study, the feasibility of Near-Infrared (NIR) spectro...

  14. State of the Art on Functional Virgin Olive Oils Enriched with Bioactive Compounds and Their Properties.

    PubMed

    Reboredo-Rodríguez, Patricia; Figueiredo-González, María; González-Barreiro, Carmen; Simal-Gándara, Jesús; Salvador, María Desamparados; Cancho-Grande, Beatriz; Fregapane, Giuseppe

    2017-03-20

    Virgin olive oil, the main fat of the Mediterranean diet, is per se considered as a functional food-as stated by the European Food Safety Authority (EFSA)-due to its content in healthy compounds. The daily intake of endogenous bioactive phenolics from virgin olive oil is variable due to the influence of multiple agronomic and technological factors. Thus, a good strategy to ensure an optimal intake of polyphenols through habitual diet would be to produce enriched virgin olive oil with well-known bioactive polyphenols. Different sources of natural biological active substances can be potentially used to enrich virgin olive oil (e.g., raw materials derived from the same olive tree, mainly olive leaves and pomaces, and/or other compounds from plants and vegetables, mainly herbs and spices). The development of these functional olive oils may help in prevention of chronic diseases (such as cardiovascular diseases, immune frailty, ageing disorders and degenerative diseases) and improving the quality of life for many consumers reducing health care costs. In the present review, the most relevant scientific information related to the development of enriched virgin olive oil and their positive human health effects has been collected and discussed.

  15. State of the Art on Functional Virgin Olive Oils Enriched with Bioactive Compounds and Their Properties

    PubMed Central

    Reboredo-Rodríguez, Patricia; Figueiredo-González, María; González-Barreiro, Carmen; Simal-Gándara, Jesús; Salvador, María Desamparados; Cancho-Grande, Beatriz; Fregapane, Giuseppe

    2017-01-01

    Virgin olive oil, the main fat of the Mediterranean diet, is per se considered as a functional food—as stated by the European Food Safety Authority (EFSA)—due to its content in healthy compounds. The daily intake of endogenous bioactive phenolics from virgin olive oil is variable due to the influence of multiple agronomic and technological factors. Thus, a good strategy to ensure an optimal intake of polyphenols through habitual diet would be to produce enriched virgin olive oil with well-known bioactive polyphenols. Different sources of natural biological active substances can be potentially used to enrich virgin olive oil (e.g., raw materials derived from the same olive tree, mainly olive leaves and pomaces, and/or other compounds from plants and vegetables, mainly herbs and spices). The development of these functional olive oils may help in prevention of chronic diseases (such as cardiovascular diseases, immune frailty, ageing disorders and degenerative diseases) and improving the quality of life for many consumers reducing health care costs. In the present review, the most relevant scientific information related to the development of enriched virgin olive oil and their positive human health effects has been collected and discussed. PMID:28335517

  16. Chlorophyll catabolism in olive fruits (var. Arbequina and Hojiblanca) during maturation.

    PubMed

    Vergara-Domínguez, Honorio; Ríos, José Julían; Gandul-Rojas, Beatriz; Roca, María

    2016-12-01

    The central reaction of chlorophyll (chl) breakdown pathway occurring during olive fruits maturation is the cleavage of the macrocycle pheophorbide a to a primary fluorescent chl catabolite (pFCC) and it is catalyzed by two enzymes: pheophorbide a oxygenase (PaO) and red chl catabolite reductase (RCCR). In subsequent steps, pFCC is converted to different fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs). This work demonstrated that RCCR activity of olive fruits is type II. During the study of evolution of PaO and RCCR activities through the olive fruits maturation in two varieties: Hojiblanca and Arbequina, a significant increase in PaO and RCCR activity was found in ripening stage. In addition, the profile and structure of NCCs present in epicarp of this fruit was studied using HPLC/ESI-TOF-MS. Five different NCCs were defined and for the first time the enzymatic reactions implied in chlorophyll degradations in olive fruits elucidated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Potential Environmental Effects of Aircraft Emissions.

    DTIC Science & Technology

    1979-10-15

    and fleet projections used by Oliver et al. (1977) in their Table 2-33. The projection used by Oliver et al. (1977) was based on A. D. Little, Inc...than used by A. D. Little, Inc. (1976) for CF6 engines (which Oliver et al., 1977, treated as having the same emissions indexes as JT9D engines). The NO...x emission index for SSrs was assumed to be 20 g NO 2 /kg fuel. In converting the projected emissions in Table 2.33 of Oliver et al. (1977) to a

  18. Using Wild Olives in Breeding Programs: Implications on Oil Quality Composition.

    PubMed

    León, Lorenzo; de la Rosa, Raúl; Velasco, Leonardo; Belaj, Angjelina

    2018-01-01

    A wide genetic diversity has been reported for wild olives, which could be particularly interesting for the introgression of some agronomic traits and resistance to biotic and abiotic stresses in breeding programs. However, the introgression of some beneficial wild traits may be paralleled by negative effects on some other important agronomic and quality traits. From the quality point of view, virgin olive oil (VOO) from olive cultivars is highly appreciated for its fatty acid composition (high monounsaturated oleic acid content) and the presence of several minor components. However, the composition of VOO from wild origin and its comparison with VOO from olive cultivars has been scarcely studied. In this work, the variability for fruit characters (fruit weight and oil content, OC), fatty acid composition, and minor quality components (squalene, sterols and tocopherols content and composition) was studied in a set of plant materials involving three different origins: wild genotypes ( n = 32), cultivars ( n = 62) and genotypes belonging to cultivar × wild progenies ( n = 62). As expected, values for fruit size and OC in wild olives were lower than those obtained in cultivated materials, with intermediate values for cultivar × wild progenies. Wild olives showed a remarkably higher C16:0 percentage and tocopherol content in comparison to the cultivars. Contrarily, lower C18:1 percentage, squalene and sterol content were found in the wild genotypes, while no clear differences were found among the different plant materials regarding composition of the tocopherol and phytosterol fractions. Some common highly significant correlations among components of the same chemical family were found in all groups of plant materials. However, some other correlations were specific for one of the groups. The results of the study suggested that the use of wild germplasm in olive breeding programs will not have a negative impact on fatty acid composition, tocopherol content, and

  19. Recent advances to improve fermentative butanol production: genetic engineering and fermentation technology.

    PubMed

    Zheng, Jin; Tashiro, Yukihiro; Wang, Qunhui; Sonomoto, Kenji

    2015-01-01

    Butanol has recently attracted attention as an alternative biofuel because of its various advantages over other biofuels. Many researchers have focused on butanol fermentation with renewable and sustainable resources, especially lignocellulosic materials, which has provided significant progress in butanol fermentation. However, there are still some drawbacks in butanol fermentation in terms of low butanol concentration and productivity, high cost of feedstock and product inhibition, which makes butanol fermentation less competitive than the production of other biofuels. These hurdles are being resolved in several ways. Genetic engineering is now available for improving butanol yield and butanol ratio through overexpression, knock out/down, and insertion of genes encoding key enzymes in the metabolic pathway of butanol fermentation. In addition, there are also many strategies to improve fermentation technology, such as multi-stage continuous fermentation, continuous fermentation integrated with immobilization and cell recycling, and the inclusion of additional organic acids or electron carriers to change metabolic flux. This review focuses on the most recent advances in butanol fermentation especially from the perspectives of genetic engineering and fermentation technology. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Endophytic colonization of olive roots by the biocontrol strain Pseudomonas fluorescens PICF7.

    PubMed

    Prieto, Pilar; Mercado-Blanco, Jesús

    2008-05-01

    Confocal microscopy combined with three-dimensional olive root tissue sectioning was used to provide evidence of the endophytic behaviour of Pseudomonas fluorescens PICF7, an effective biocontrol strain against Verticillium wilt of olive. Two derivatives of the green fluorescent protein (GFP), the enhanced green and the red fluorescent proteins, have been used to visualize simultaneously two differently fluorescently tagged populations of P. fluorescens PICF7 within olive root tissues at the single cell level. The time-course of colonization events of olive roots cv. Arbequina by strain PICF7 and the localization of tagged bacteria within olive root tissues are described. First, bacteria rapidly colonized root surfaces and were predominantly found in the differentiation zone. Thereafter, microscopy observations showed that PICF7-tagged populations eventually disappeared from the root surface, and increasingly colonized inner root tissues. Localized and limited endophytic colonization by the introduced bacteria was observed over time. Fluorescent-tagged bacteria were always visualized in the intercellular spaces of the cortex region, and no colonization of the root xylem vessels was detected at any time. To the best of our knowledge, this is the first time this approach has been used to demonstrate endophytism of a biocontrol Pseudomonas spp. strain in a woody host such as olive using a nongnotobiotic system.

  1. Secondary invasion and re-invasion after Russian-olive removal and revegetation

    USDA-ARS?s Scientific Manuscript database

    Russian olive is a nitrogen-fixing tree invading riparian corridors in the Northern Great Plains. Native species establishment can be hampered by invasive plant soil legacies that may be particularly likely in the case of Russian olive, and understory species that survive the invasion may be only a ...

  2. Olive fruits and vacuum impregnation, an interesting combination for dietetic iron enrichment.

    PubMed

    Zunin, Paola; Turrini, Federica; Leardi, Riccardo; Boggia, Raffaella

    2017-02-01

    In this study vacuum impregnation (VI) was employed for the iron enrichment of olive fruits, which are very interesting as food vehicle for VI mineral supplementation for the porosity of their pulp. NaFeEDTA was chosen for olives fortification since it prevents iron from binding with compounds that could hinder it from being efficiently absorbed and since it causes few organoleptic problems. In order to improve the efficiency of the VI process, several parameters of the whole process were studied by design of experiment techniques. First of all D-optimal design was employed for a preliminary screening of the most significant process variables and showed that the concentration of VI solution was by far the most significant process variable, though its time in contact with olives was also significant. A factorial design was then applied to the remaining variables and it showed that the speed of the addition of VI solution was also significant. Finally, the application of a face centered composite design to the three selected variables allowed to detect processing conditions leading to final iron contents of 1.5-3 mg/g, corresponding to an introduction of 10-15 mg Fe with four or five fortified olive fruits. No effect on olive taste was observed at these concentrations. The results showed that olive fruits were the most interesting vehicles for the supplementation of both iron and other minerals.

  3. Development and optimization of an efficient qPCR system for olive authentication in edible oils.

    PubMed

    Alonso-Rebollo, Alba; Ramos-Gómez, Sonia; Busto, María D; Ortega, Natividad

    2017-10-01

    The applicability of qPCR in olive-oil authentication depends on the DNA obtained from the oils and the amplification primers. Therefore, four olive-specific amplification systems based on the trnL gene were designed (A-, B-, C- and D-trnL systems). The qPCR conditions, primer concentration and annealing temperature, were optimized. The systems were tested for efficiency and sensitivity to select the most suitable for olive oil authentication. The selected system (D-trnL) demonstrated specificity toward olive in contrast to other oleaginous species (canola, soybean, sunflower, maize, peanut and coconut) and showed high sensitivity in a broad linear dynamic range (LOD and LOQ: 500ng - 0.0625pg). This qPCR system enabled detection, with high sensitivity and specificity, of olive DNA isolated from oils processed in different ways, establishing it as an efficient method for the authentication of olive oil regardless of its category. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Observation of eight ancient olive trees (Olea europaea L.) growing in the Garden of Gethsemane.

    PubMed

    Petruccelli, Raffaella; Giordano, Cristiana; Salvatici, Maria Cristina; Capozzoli, Laura; Ciaccheri, Leonardo; Pazzini, Massimo; Lain, Orietta; Testolin, Raffaele; Cimato, Antonio

    2014-05-01

    For thousands of years, olive trees (Olea europaea L.) have been a significant presence and a symbol in the Garden of Gethsemane, a place located at the foot of the Mount of Olives, Jerusalem, remembered for the agony of Jesus Christ before his arrest. This investigation comprises the first morphological and genetic characterization of eight olive trees in the Garden of Gethsemane. Pomological traits, morphometric, and ultrastructural observations as well as SSR (Simple Sequence Repeat) analysis were performed to identify the olive trees. Statistical analyses were conducted to evaluate their morphological variability. The study revealed a low morphological variability and minimal dissimilarity among the olive trees. According to molecular analysis, these trees showed the same allelic profile at all microsatellite loci analyzed. Combining the results of the different analyses carried out in the frame of the present work, we could conclude that the eight olive trees of the Gethsemane Garden have been propagated from a single genotype. Copyright © 2014. Published by Elsevier SAS.

  5. The eastern part of the Fertile Crescent concealed an unexpected route of olive (Olea europaea L.) differentiation.

    PubMed

    Mousavi, Soraya; Mariotti, Roberto; Bagnoli, Francesca; Costantini, Lorenzo; Cultrera, Nicolò G M; Arzani, Kazem; Pandolfi, Saverio; Vendramin, Giovanni Giuseppe; Torkzaban, Bahareh; Hosseini-Mazinani, Mehdi; Baldoni, Luciana

    2017-06-01

    Olive is considered a native plant of the eastern side of the Mediterranean basin, from where it should have spread westward along the Mediterranean shores, while little is known about its diffusion in the eastern direction. Genetic diversity levels and population genetic structure of a wide set of olive ecotypes and varieties collected from several provinces of Iran, representing a high percentage of the entire olive resources present in the area, was screened with 49 chloroplast and ten nuclear simple sequence repeat markers, and coupled with archaeo-botanical and historical data on Mediterranean olive varieties. Approximate Bayesian Computation was applied to define the demographic history of olives including Iranian germplasm, and species distribution modelling was performed to understand the impact of the Late Quaternary on olive distribution. The results of the present study demonstrated that: (1) the climatic conditions of the last glacial maximum had an important role on the actual olive distribution, (2) all Iranian olive samples had the same maternal inheritance as Mediterranean cultivars, and (3) the nuclear gene flow from the Mediterranean basin to the Iranian plateau was almost absent, as well as the contribution of subspecies cuspidata to the diversity of Iranian olives. Based on this evidence, a new scenario for the origin and distribution of this important fruit crop has been traced. The evaluation of olive trees growing in the eastern part of the Levant highlighted a new perspective on the spread and distribution of olive, suggesting two routes of olive differentiation, one westward, spreading along the Mediterranean basin, and another moving towards the east and reaching the Iranian plateau before its domestication. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Effects of Olive Metabolites on DNA Cleavage Mediated by Human Type II Topoisomerases

    PubMed Central

    2016-01-01

    Several naturally occurring dietary polyphenols with chemopreventive or anticancer properties are topoisomerase II poisons. To identify additional phytochemicals that enhance topoisomerase II-mediated DNA cleavage, a library of 341 Mediterranean plant extracts was screened for activity against human topoisomerase IIα. An extract from Phillyrea latifolia L., a member of the olive tree family, displayed high activity against the human enzyme. On the basis of previous metabolomics studies, we identified several polyphenols (hydroxytyrosol, oleuropein, verbascoside, tyrosol, and caffeic acid) as potential candidates for topoisomerase II poisons. Of these, hydroxytyrosol, oleuropein, and verbascoside enhanced topoisomerase II-mediated DNA cleavage. The potency of these olive metabolites increased 10–100-fold in the presence of an oxidant. Hydroxytyrosol, oleuropein, and verbascoside displayed hallmark characteristics of covalent topoisomerase II poisons. (1) The activity of the metabolites was abrogated by a reducing agent. (2) Compounds inhibited topoisomerase II activity when they were incubated with the enzyme prior to the addition of DNA. (3) Compounds were unable to poison a topoisomerase IIα construct that lacked the N-terminal domain. Because hydroxytyrosol, oleuropein, and verbascoside are broadly distributed across the olive family, extracts from the leaves, bark, and fruit of 11 olive tree species were tested for activity against human topoisomerase IIα. Several of the extracts enhanced enzyme-mediated DNA cleavage. Finally, a commercial olive leaf supplement and extra virgin olive oils pressed from a variety of Olea europea subspecies enhanced DNA cleavage mediated by topoisomerase IIα. Thus, olive metabolites appear to act as topoisomerase II poisons in complex formulations intended for human dietary consumption. PMID:26132160

  7. Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine

    PubMed Central

    Velázquez, Rocío; Zamora, Emiliano; Álvarez, María L.; Hernández, Luis M.; Ramírez, Manuel

    2015-01-01

    Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by Saccharomyces cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and selected for winemaking. They killed S. cerevisiae yeasts and were able to dominate and complete the fermentation of sterile grape must. Sequential yeast inoculation of non-sterile white must with T. delbrueckii followed by S. cerevisiae did not ensure T. delbrueckii dominance or wine quality improvement. Only a single initial must inoculation at high cell concentrations allowed the T. delbrueckii killer strains to dominate and complete the must fermentation to reach above 11% ethanol, but not the non-killer strains. None of the wines underwent malolactic fermentation as long as the must had low turbidity and pH. Although no statistically significant differences were found in the wine quality score, the S. cerevisiae-dominated wines were preferred over the T. delbrueckii-dominated ones because the former had high-intensity fresh fruit aromas while the latter had lower intensity, but nevertheless nice and unusual dried fruit/pastry aromas. Except for ethyl propanoate and 3-ethoxy-1-propanol, which were more abundant in the T. delbrueckii–dominated wines, most of the compounds with fresh fruit odor descriptors, including those with the greatest odor activity values (isoamyl acetate, ethyl hexanoate, and ethyl octanoate), were more abundant in the S. cerevisiae–dominated wines. The low relative concentrations of these fruity compounds made it possible to detect in the T. delbrueckii–dominated wines the low-relative-concentration compounds with dried fruit and pastry odors. An example was γ-ethoxy-butyrolactone which was significantly more abundant in these wines than in those dominated by S. cerevisiae. PMID

  8. Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine.

    PubMed

    Velázquez, Rocío; Zamora, Emiliano; Álvarez, María L; Hernández, Luis M; Ramírez, Manuel

    2015-01-01

    Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by Saccharomyces cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and selected for winemaking. They killed S. cerevisiae yeasts and were able to dominate and complete the fermentation of sterile grape must. Sequential yeast inoculation of non-sterile white must with T. delbrueckii followed by S. cerevisiae did not ensure T. delbrueckii dominance or wine quality improvement. Only a single initial must inoculation at high cell concentrations allowed the T. delbrueckii killer strains to dominate and complete the must fermentation to reach above 11% ethanol, but not the non-killer strains. None of the wines underwent malolactic fermentation as long as the must had low turbidity and pH. Although no statistically significant differences were found in the wine quality score, the S. cerevisiae-dominated wines were preferred over the T. delbrueckii-dominated ones because the former had high-intensity fresh fruit aromas while the latter had lower intensity, but nevertheless nice and unusual dried fruit/pastry aromas. Except for ethyl propanoate and 3-ethoxy-1-propanol, which were more abundant in the T. delbrueckii-dominated wines, most of the compounds with fresh fruit odor descriptors, including those with the greatest odor activity values (isoamyl acetate, ethyl hexanoate, and ethyl octanoate), were more abundant in the S. cerevisiae-dominated wines. The low relative concentrations of these fruity compounds made it possible to detect in the T. delbrueckii-dominated wines the low-relative-concentration compounds with dried fruit and pastry odors. An example was γ-ethoxy-butyrolactone which was significantly more abundant in these wines than in those dominated by S. cerevisiae.

  9. Antioxidant effect of olive leaf powder on fresh Atlantic horse mackerel (Trachurus trachurus) minced muscle

    USDA-ARS?s Scientific Manuscript database

    There is a growing interest in the replacement of synthetic food antioxidants by natural extracts. Olive leaf is an abundant by-product of the olive oil industry. The aim of this study was to investigate the antioxidant capacity of olive leaf powder (OLP) in chilled minced muscle. Concentrations of ...

  10. Applicability of SCAR markers to food genomics: olive oil traceability.

    PubMed

    Pafundo, Simona; Agrimonti, Caterina; Maestri, Elena; Marmiroli, Nelson

    2007-07-25

    DNA analysis with molecular markers has opened a shortcut toward a genomic comprehension of complex organisms. The availability of micro-DNA extraction methods, coupled with selective amplification of the smallest extracted fragments with molecular markers, could equally bring a breakthrough in food genomics: the identification of original components in food. Amplified fragment length polymorphisms (AFLPs) have been instrumental in plant genomics because they may allow rapid and reliable analysis of multiple and potentially polymorphic sites. Nevertheless, their direct application to the analysis of DNA extracted from food matrixes is complicated by the low quality of DNA extracted: its high degradation and the presence of inhibitors of enzymatic reactions. The conversion of an AFLP fragment to a robust and specific single-locus PCR-based marker, therefore, could extend the use of molecular markers to large-scale analysis of complex agro-food matrixes. In the present study is reported the development of sequence characterized amplified regions (SCARs) starting from AFLP profiles of monovarietal olive oils analyzed on agarose gel; one of these was used to identify differences among 56 olive cultivars. All the developed markers were purposefully amplified in olive oils to apply them to olive oil traceability.

  11. An in vitro evaluation of some unconventional ruminant feeds in terms of the organic matter digestibility, energy and microbial biomass.

    PubMed

    Al-Masri, M R

    2003-04-01

    In vitro organic matter apparent digestibility (IVOMAD), true digestibility (IVOMTD), metabolizable energy (ME), net energy lactation (NEL), microbial nitrogen (MN) and synthesis of microbial biomass (MBM) were estimated to predict the nutritive values of some agricultural by-products, drought-tolerant range plants and browses. The relationships between in vitro gas production (GP), and true or apparent digestibility. MN and MBM were studied utilizing an in vitro incubation technique. The values of IVOMAD, IVOMTD, ME, NEL, GP, MBM and MN varied with the studied experimental materials. The true fermentation of the outside part of Atriplex leucoclada produced a higher volume of gas than the middle or the inside parts, and this was associated with an increase in the values of IVOMAD, IVOMTD, ME and NEL. However, screening off the wood from olive cake to obtain olive cake pulp increased the IVOMAD, IVOMTD, ME, NEL and the volume of gas production from the true fermented material. One ml of gas was generated from the true degradation of 5 mg of wheat straw, Moringa oleifera, Alhagi camelorum, Eucaliptus camaldulensis and A. leucoclada, from 11 mg of Prosopsis stephaniana and olive cake pulp, and from 20 mg of olive cake or olive cake wood. The amount of MN or MBM produced from 100 mg of truly fermented organic matter depended on the kind of the fermented material and amounted to 0.7-2.9 mg or 8-34 mg, respectively. Crude fibre was negatively correlated to IVOMAD, IVOMTD, ME and NEL. Gas production was positively correlated to IVOMAD and IVOMTD but negatively correlated to MBM and MN.

  12. An In Vitro Evaluation of Ozonized Organic Extra-Virgin Olive Oil on Giardia Lamblia Cysts.

    PubMed

    Boland-Nazar, Najmeh Sadat; Eslamirad, Zahra; Sarmadian, Hossein; Ghasemikhah, Reza

    2016-11-01

    Giardia lamblia is a common intestinal parasite that has been reported all over the world. This study was conducted to evaluate the effect of ozonized organic extra-virgin olive oil on the cyst of G. lamblia . The olive oil was ozonized based on international standards and confirmed by the world health organization (WHO) at various times in a generator. The ozone concentration of olive oil was adjusted at 32, 64, 96, 128, 160 mg/g based on ozone absorption. Giardia lamblia cysts were isolated from heavily infected stool samples and the sucrose gradient flotation technique. Five groups of triple tubes containing Giardia cysts were exposed to olive oil with 32, 64, 96, 128, 160 ozone concentrations, and the sixth and seventh groups were exposed to non-ozonized olive oil and normal saline, respectively. The tubes were placed at room temperature, and every four hours, the mortality of the Giardia cysts was assessed. The results showed that the first five groups' mortality rate of Giardia cysts reached 100% in 100 hours. An increasing concentration of ozone in olive oil leads to an increase in the mortality rate of Giardia cysts. The results showed a significant difference in the mean time of the mortality in all the groups (P ≤ 0.05). Furthermore, the higher fatality effect of ozonized organic extra-virgin olive oil (Ozonized Olive Oil = OZO) was proved in comparison with metronidazole in vitro. We concluded that ozonized organic extra-virgin olive oil was a growth inhibitor of Giardia cysts, and concerning its compatibility with a biological system, it is recommended for further clinical trials.

  13. Thin Layer Drying Kinetics of By-Products from Olive Oil Processing

    PubMed Central

    Montero, Irene; Miranda, Teresa; Arranz, Jose Ignacio; Rojas, Carmen Victoria

    2011-01-01

    The thin-layer behavior of by-products from olive oil production was determined in a solar dryer in passive and active operation modes for a temperature range of 20–50 °C. The increase in the air temperature reduced the drying time of olive pomace, sludge and olive mill wastewater. Moisture ratio was analyzed to obtain effective diffusivity values, varying in the oil mill by-products from 9.136 × 10−11 to 1.406 × 10−9 m2/s in forced convection (ma = 0.22 kg/s), and from 9.296 × 10−11 to 6.277 × 10−10 m2/s in natural convection (ma = 0.042 kg/s). Diffusivity values at each temperature were obtained using the Fick’s diffusion model and, regardless of the convection, they increased with the air temperature. The temperature dependence on the effective diffusivity was determined by an Arrhenius type relationship. The activation energies were found to be 38.64 kJ/mol, 30.44 kJ/mol and 47.64 kJ/mol for the olive pomace, the sludge and the olive mill wastewater in active mode, respectively, and 91.35 kJ/mol, 14.04 kJ/mol and 77.15 kJ/mol in natural mode, in that order. PMID:22174639

  14. Novel technologies for monitoring the in-line quality of virgin olive oil during manufacturing and storage.

    PubMed

    Beltrán Ortega, Julio; Martínez Gila, Diego M; Aguilera Puerto, Daniel; Gámez García, Javier; Gómez Ortega, Juan

    2016-11-01

    The quality of virgin olive oil is related to the agronomic conditions of the olive fruits and the process variables of the production process. Nowadays, food markets demand better products in terms of safety, health and organoleptic properties with competitive prices. Innovative techniques for process control, inspection and classification have been developed in order to to achieve these requirements. This paper presents a review of the most significant sensing technologies which are increasingly used in the olive oil industry to supervise and control the virgin olive oil production process. Throughout the present work, the main research studies in the literature that employ non-invasive technologies such as infrared spectroscopy, computer vision, machine olfaction technology, electronic tongues and dielectric spectroscopy are analysed and their main results and conclusions are presented. These technologies are used on olive fruit, olive slurry and olive oil to determine parameters such as acidity, peroxide indexes, ripening indexes, organoleptic properties and minor components, among others. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Effect of Opuntia ficus-indica flowers maceration on quality and on heat stability of olive oil.

    PubMed

    Ammar, Imène; BenAmira, Amal; Khemakem, Ibtihel; Attia, Hamadi; Ennouri, Monia

    2017-05-01

    This study was focused on the evaluation of the quality and the oxidative stability of olive oil added with Opuntia ficus - indica flowers. Two different amounts of O. ficus - indica flowers were considered 5 and 15% (w/w). The olive oils were evaluated towards their quality, fatty acids profile, total phenol contents and thermal properties by differential scanning calorimetry. The oxidative stability was also monitored by employing the Rancimat and the oven test based on accelerating the oxidation process during storage. The addition of O. ficus - indica flowers induced an increase in free acidity values and a variation in fatty acids profile of olive oils but values remained under the limits required for an extra-virgin olive oil. The obtained olive oils were nutritionally enriched due to the increase in their phenols content. The oxidative stability was generally improved, mainly in olive oil enriched with 5% Opuntia ficus - indica flowers. These findings proved that this enriched olive oil could be considered as a product with a greater added value.

  16. 75 FR 22363 - United States Standards for Grades of Olive Oil and Olive-Pomace Oil

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... requirements. The quality tests include organoleptic characteristics such as flavor, odor, color, free fatty... free fatty acid content, peroxide value, organoleptic criteria, absorbency in ultraviolet, fatty acid... 52.1534. Olive oils are not graded solely on the basis of flavor and odor and free fatty acid content...

  17. Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries: a neglected food group.

    PubMed

    Baschali, Aristea; Tsakalidou, Effie; Kyriacou, Adamantini; Karavasiloglou, Nena; Matalas, Antonia-Leda

    2017-06-01

    Fermented beverages hold a long tradition and contribution to the nutrition of many societies and cultures worldwide. Traditional fermentation has been empirically developed in ancient times as a process of raw food preservation and at the same time production of new foods with different sensorial characteristics, such as texture, flavour and aroma, as well as nutritional value. Low-alcoholic fermented beverages (LAFB) and non-alcoholic fermented beverages (NAFB) represent a subgroup of fermented beverages that have received rather little attention by consumers and scientists alike, especially with regard to their types and traditional uses in European societies. A literature review was undertaken and research articles, review papers and textbooks were searched in order to retrieve data regarding the dietary role, nutrient composition, health benefits and other relevant aspects of diverse ethnic LAFB and NAFB consumed by European populations. A variety of traditional LAFB and NAFB consumed in European regions, such as kefir, kvass, kombucha and hardaliye, are presented. Milk-based LAFB and NAFB are also available on the market, often characterised as 'functional' foods on the basis of their probiotic culture content. Future research should focus on elucidating the dietary role and nutritional value of traditional and 'functional' LAFB and NAFB, their potential health benefits and consumption trends in European countries. Such data will allow for LAFB and NAFB to be included in national food composition tables.

  18. Fast determination of virgin olive oil phenolic metabolites in human high-density lipoproteins.

    PubMed

    Fernández-Ávila, C; Montes, R; Castellote, A I; Chisaguano, A M; Fitó, M; Covas, M I; Muñoz-Aguallo, D; Nyyssönen, K; Zunft, H J; López-Sabater, M C

    2015-07-01

    In recent years it has been confirmed that the consumption of olive oil prevents the oxidation of biomolecules owing to its monounsaturated fatty acids (MUFA) and phenolic content. The main objective of the study was to develop an ultra-high-performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS) method for the determination of phenolic compounds in human high-density lipoprotein (HDL) samples. At the same time, the influence of olive oil consumption on the phenolic metabolite levels was evaluated in a European population. The participants were 51 healthy men, aged 20-60. They were randomized to two consecutive intervention periods with the administration of raw olive oil with low and high polyphenolic content. The UHPLC-MS/MS analytical method has been validated for hydroxytyrosol and homovanillic acid in terms of linearity (r(2)  = 0.99 and 1.00), repeatability (5.7 and 6.5%) reproducibility (6.2 and 7%), recovery (98 to 97%), limits of detection (1.7 to 1.8 ppb) and quantification (5.8 and 6.3 ppb).The levels of the studied metabolites increased significantly after high polyphenolic content virgin olive oil ingestion (p <0.05) compared with lowpolyphenolic content olive oil. Virgin olive oil consumption increases the levels of phenolic metabolites in HDL and thus provides human HDL with more efficient antioxidant protection. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Molecular interactions between the olive and the fruit fly Bactrocera oleae

    PubMed Central

    2012-01-01

    Background The fruit fly Bactrocera oleae is the primary biotic stressor of cultivated olives, causing direct and indirect damages that significantly reduce both the yield and the quality of olive oil. To study the olive-B. oleae interaction, we conducted transcriptomic and proteomic investigations of the molecular response of the drupe. The identifications of genes and proteins involved in the fruit response were performed using a Suppression Subtractive Hybridisation technique and a combined bi-dimensional electrophoresis/nanoLC-ESI-LIT-MS/MS approach, respectively. Results We identified 196 ESTs and 26 protein spots as differentially expressed in olives with larval feeding tunnels. A bioinformatic analysis of the identified non-redundant EST and protein collection indicated that different molecular processes were affected, such as stress response, phytohormone signalling, transcriptional control and primary metabolism, and that a considerable proportion of the ESTs could not be classified. The altered expression of 20 transcripts was also analysed by real-time PCR, and the most striking differences were further confirmed in the fruit of a different olive variety. We also cloned the full-length coding sequences of two genes, Oe-chitinase I and Oe-PR27, and showed that these are wound-inducible genes and activated by B. oleae punctures. Conclusions This study represents the first report that reveals the molecular players and signalling pathways involved in the interaction between the olive fruit and its most damaging biotic stressor. Drupe response is complex, involving genes and proteins involved in photosynthesis as well as in the production of ROS, the activation of different stress response pathways and the production of compounds involved in direct defence against phytophagous larvae. Among the latter, trypsin inhibitors should play a major role in drupe resistance reaction. PMID:22694925

  20. Development of a telemetry and yield-mapping system of olive harvester.

    PubMed

    Castillo-Ruiz, Francisco J; Pérez-Ruiz, Manuel; Blanco-Roldán, Gregorio L; Gil-Ribes, Jesús A; Agüera, Juan

    2015-02-10

    Sensors, communication systems and geo-reference units are required to achieve an optimized management of agricultural inputs with respect to the economic and environmental aspects of olive groves. In this study, three commercial olive harvesters were tracked during two harvesting seasons in Spain and Chile using remote and autonomous equipment that was developed to determine their time efficiency and effective based on canopy shaking for fruit detachment. These harvesters work in intensive/high-density (HD) and super-high-density (SHD) olive orchards. A GNSS (Global Navigation Satellite System) and GSM (Global System for Mobile Communications) device was installed to track these harvesters. The GNSS receiver did not affect the driver's work schedule. Time elements methodology was adapted to the remote data acquisition system. The effective field capacity and field efficiency were investigated. In addition, the field shape, row length, angle between headland alley and row, and row alley width were measured to determinate the optimum orchard design parameters value. The SHD olive harvester showed significant lower effective field capacity values when alley width was less than 4 m. In addition, a yield monitor was developed and installed on a traditional olive harvester to obtain a yield map from the harvested area. The hedge straddle harvester stood out for its highly effective field capacity; nevertheless, a higher field efficiency was provided by a non-integral lateral canopy shaker. All of the measured orchard parameters have influenced machinery yields, whether effective field capacity or field efficiency. A saving of 40% in effective field capacity was achieved with a reduction from 4 m or higher to 3.5 m in alley width for SHD olive harvester. A yield map was plotted using data that were acquired by a yield monitor, reflecting the yield gradient in spite of the larger differences between tree yields.

  1. Development of a Telemetry and Yield-Mapping System of Olive Harvester

    PubMed Central

    Castillo-Ruiz, Francisco J.; Pérez-Ruiz, Manuel; Blanco-Roldán, Gregorio L.; Gil-Ribes, Jesús A.; Agüera, Juan

    2015-01-01

    Sensors, communication systems and geo-reference units are required to achieve an optimized management of agricultural inputs with respect to the economic and environmental aspects of olive groves. In this study, three commercial olive harvesters were tracked during two harvesting seasons in Spain and Chile using remote and autonomous equipment that was developed to determine their time efficiency and effective based on canopy shaking for fruit detachment. These harvesters work in intensive/high-density (HD) and super-high-density (SHD) olive orchards. A GNSS (Global Navigation Satellite System) and GSM (Global System for Mobile Communications) device was installed to track these harvesters. The GNSS receiver did not affect the driver’s work schedule. Time elements methodology was adapted to the remote data acquisition system. The effective field capacity and field efficiency were investigated. In addition, the field shape, row length, angle between headland alley and row, and row alley width were measured to determinate the optimum orchard design parameters value. The SHD olive harvester showed significant lower effective field capacity values when alley width was less than 4 m. In addition, a yield monitor was developed and installed on a traditional olive harvester to obtain a yield map from the harvested area. The hedge straddle harvester stood out for its highly effective field capacity; nevertheless, a higher field efficiency was provided by a non-integral lateral canopy shaker. All of the measured orchard parameters have influenced machinery yields, whether effective field capacity or field efficiency. A saving of 40% in effective field capacity was achieved with a reduction from 4 m or higher to 3.5 m in alley width for SHD olive harvester. A yield map was plotted using data that were acquired by a yield monitor, reflecting the yield gradient in spite of the larger differences between tree yields. PMID:25675283

  2. Effect of virgin olive oil versus piroxicam phonophoresis on exercise-induced anterior knee pain.

    PubMed

    Nakhostin-Roohi, Babak; Khoshkhahesh, Faegheh; Bohlooli, Shahab

    2016-01-01

    The main purpose of this study was to evaluate the effects of virgin olive oil phonophoresis on female athletes' anterior knee pain (AKP). A double blinded randomized clinical trial was conducted. Ninety-three female athletes suffering from AKP voluntarily participated in this study. Patients were randomly assigned into olive oil (n=31), piroxicam (n=31) or base gel phonophoresis (n=31) groups. At the baseline visit, the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaire was filled by subjects who were then treated with olive oil, piroxicam or pure phonophoresis for 12 sessions. After 6 and 12 sessions of physiotherapy, subjects filled the questionnaire again. Main outcomes were significant improvement in pain, stiffness, physical function, and total WOMAC scores. Although, there was a significant reduction in symptoms of AKP at the end of the therapy in all groups (p<0.05), but in olive oil group, this improvement was seen after 6 sessions of treatment (p<0.001). A significant difference between olive oil group and piroxicam and/or phonophoresis group was observed after 6 sessions of therapy (p<0.05). It could be proposed that phonophoresis with virgin olive oil is as effective as piroxicam gel on lowering WOMAC scores of AKP in female athletes and also has several beneficial properties including faster effect and shorter duration of therapy. The exact mechanism of beneficial action of virgin olive oil on AKP is not clear and requires further studies.

  3. 77 FR 61026 - Olive Oil: Conditions of Competition Between U.S. and Major Foreign Supplier Industries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 332-537] Olive Oil: Conditions of Competition... Commission (Commission) instituted investigation No. 332-537, Olive Oil: Conditions of Competition between U..., the report will include the following-- 1. An overview of the commercial olive oil industry in the...

  4. Effects of olive tree branches burning emissions on PM2.5 concentrations

    NASA Astrophysics Data System (ADS)

    Papadakis, G. Z.; Megaritis, A. G.; Pandis, S. N.

    2015-07-01

    An olive tree branches burning emission inventory for Greece is developed based on recently measured emission factors and the spatial distribution of olive trees. A three-dimensional chemical transport model (CTM), PMCAMx, is used to estimate the corresponding impact on PM2.5 concentrations during a typical winter period. Assuming that burning of olive tree branches takes place only during days with low wind speed and without precipitation, the contribution of olive tree branches burning emissions on PM2.5 levels is more significant during the most polluted days. Increases of hourly PM2.5 exceeding 50% and locally reaching up to 150% in Crete are predicted during the most polluted periods. On a monthly-average basis, the corresponding emissions are predicted to increase PM2.5 levels up to 1.5 μg m-3 (20%) in Crete and Peloponnese, where the largest fraction of olive trees is located, and by 0.4 μg m-3 (5%) on average over Greece. OA and EC levels increase by 20% and 13% respectively on average over Greece, and up to 70% in Crete. The magnitude of the effect is quite sensitive to burning practices. Assuming that burning of olive tree branches takes place during all days results in a smaller effect of burning on PM2.5 levels (9% increase instead of 20%). These results suggest that this type of agricultural waste burning is a major source of particulate pollution in the Mediterranean countries where this practice is prevalent during winter.

  5. Olive oil quality and ripening in super-high-density Arbequina orchard.

    PubMed

    Benito, Marta; Lasa, José Manuel; Gracia, Pilar; Oria, Rosa; Abenoza, María; Varona, Luis; Sánchez-Gimeno, Ana Cristina

    2013-07-01

    The aim of this work was to evaluate the evolution of the quality of extra virgin olive oil obtained from a super-high-density Arbequina orchard, under a drip irrigation system, throughout the ripening process. For this objective, physicochemical, nutritional and sensory parameters were studied. In addition, the oxidative stability, pigment content and colour evolution of olive oil were analysed during the ripening process. Free acidity increased slightly throughout the ripening process, while peroxide value and extinction coefficient decreased. Total phenol content and oxidative stability showed a similar trend, increasing at the beginning of ripening up to a maximum and thereafter decreasing. α-Tocopherol and pigment contents decreased with ripening, leading to changes in colour coordinates. Sensory parameters were correlated with total phenol content, following a similar trend throughout the maturation process. By sampling and monitoring the ripeness index weekly, it would be possible to determine an optimal harvesting time for olives according to the industrial yield and the physicochemical, nutritional and sensory properties of the olive oil. © 2012 Society of Chemical Industry.

  6. Detection and quantification of extra virgin olive oil adulteration by means of autofluorescence excitation-emission profiles combined with multi-way classification.

    PubMed

    Durán Merás, Isabel; Domínguez Manzano, Jaime; Airado Rodríguez, Diego; Muñoz de la Peña, Arsenio

    2018-02-01

    Within olive oils, extra virgin olive oil is the highest quality and, in consequence, the most expensive one. Because of that, it is common that some merchants attempt to take economic advantage by mixing it up with other less expensive oils, like olive oil or olive pomace oil. In consequence, the characterization and authentication of extra virgin olive oils is a subject of great interest, both for industry and consumers. This paper reports the potential of front-face total fluorescence spectroscopy combined with second-order chemometric methods for the detection of extra virgin olive oils adulteration with other olive oils. Excitation-emission matrices (EEMs) of extra virgin olive oils and extra virgin olive oils adulterated with olive oils or with olive pomace oils were recorded using front-face fluorescence spectroscopy. The full information content in these fluorescence images was analyzed with the aid of unsupervised parallel factor analysis (PARAFAC), PARAFAC supervised by linear discriminant analysis (LDA-PARAFAC), and discriminant unfolded partial least-squares (DA-UPLS). The discriminant ability of LDA-PARAFAC was studied through the tridimensional plots of the canonical vectors, defining a surface separating the established categories. For DA-UPLS, the discriminant ability was established through the bidimensional plots of predicted values of calibration and validation samples, in order to assign each sample to a given class. The models demonstrated the possibility of detecting adulterations of extra virgin olive oils with percentages of around 15% and 3% of olive and olive pomace oils, respectively. Also, UPLS regression was used to quantify the adulteration level of extra virgin olive oils with olive oils or with olive pomace oils. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats.

    PubMed

    Wainstein, Julio; Ganz, Tali; Boaz, Mona; Bar Dayan, Yosefa; Dolev, Eran; Kerem, Zohar; Madar, Zecharia

    2012-07-01

    Olive tree (Olea europaea L.) leaves have been widely used in traditional remedies in European and Mediterranean countries as extracts, herbal teas, and powder. They contain several potentially bioactive compounds that may have hypoglycemic properties. To examine the efficacy of 500 mg oral olive leaf extract taken once daily in tablet form versus matching placebo in improving glucose homeostasis in adults with type 2 diabetes (T2DM). In this controlled clinical trial, 79 adults with T2DM were randomized to treatment with 500 mg olive leaf extract tablet taken orally once daily or matching placebo. The study duration was 14 weeks. Measures of glucose homeostasis including Hba1c and plasma insulin were measured and compared by treatment assignment. In a series of animal models, normal, streptozotocin (STZ) diabetic, and sand rats were used in the inverted sac model to determine the mechanism through which olive leaf extract affected starch digestion and absorption. In the randomized clinical trial, the subjects treated with olive leaf extract exhibited significantly lower HbA1c and fasting plasma insulin levels; however, postprandial plasma insulin levels did not differ significantly by treatment group. In the animal models, normal and STZ diabetic rats exhibited significantly reduced starch digestion and absorption after treatment with olive leaf extract compared with intestine without olive leaf treatment. Reduced digestion and absorption was observed in both the mucosal and serosal sides of the intestine. Though reduced, the decline in starch digestion and absorption did not reach statistical significance in the sand rats. Olive leaf extract is associated with improved glucose homeostasis in humans. Animal models indicate that this may be facilitated through the reduction of starch digestion and absorption. Olive leaf extract may represent an effective adjunct therapy that normalizes glucose homeostasis in individuals with diabetes.

  8. Effect of non-crop vegetation types on conservation biological control of pests in olive groves

    PubMed Central

    Cayuela, Luis; Gurr, Geoff M.; Campos, Mercedes

    2013-01-01

    Conservation biological control (CBC) is an environmentally sound potential alternative to the use of chemical insecticides. It involves modifications of the environment to promote natural enemy activity on pests. Despite many CBC studies increasing abundance of natural enemies, there are far fewer demonstrations of reduced pest density and very little work has been conducted in olive crops. In this study we investigated the effects of four forms of non-crop vegetation on the abundance of two important pests: the olive psyllid (Euphyllura olivina) and the olive moth (Prays oleae). Areas of herbaceous vegetation and areas of woody vegetation near olive crops, and smaller patches of woody vegetation within olive groves, decreased pest abundance in the crop. Inter-row ground covers that are known to increase the abundance of some predators and parasitoids had no effect on the pests, possibly as a result of lack of synchrony between pests and natural enemies, lack of specificity or intra-guild predation. This study identifies examples of the right types of diversity for use in conservation biological control in olive production systems. PMID:23904994

  9. Production of a metal-binding exopolysaccharide by Paenibacillus jamilae using two-phase olive-mill waste as fermentation substrate.

    PubMed

    Morillo, Jose Antonio; Aguilera, Margarita; Ramos-Cormenzana, Alberto; Monteoliva-Sánchez, Mercedes

    2006-09-01

    The present study investigated the use of two-phase olive mill waste (TPOMW) as substrate for the production of exopolysaccharide (EPS) by the endospore-forming bacilli Paenibacillus jamilae. This microorganism was able to grow and produce EPS in aqueous extracts of TPOMW as a unique source of carbon. The effects of substrate concentration and the addition of inorganic nutrients were investigated. Maximal polymer yield in 100-ml batch-culture experiments (2 g l(-1)) was obtained in cultures prepared with an aqueous extract of 20% TPOMW (w/v). An inhibitory effect was observed on growth and EPS production when TPOMW concentration was increased. Nutrient supplementation (nitrate, phosphate, and other inorganic nutrients) did not increase yield. Finally, an adsorption experiment of Pb (II), Cd (II), Cu (II), Zn (II), Co (II), and Ni (II) by EPS is reported. Lead was preferentially complexed by the polymer, with a maximal uptake of 230 mg/g EPS.

  10. Design and evaluation of novel topical formulation with olive oil as natural functional active.

    PubMed

    Mota, Ana Henriques; Silva, Catarina Oliveira; Nicolai, Marisa; Baby, André; Palma, Lídia; Rijo, Patrícia; Ascensão, Lia; Reis, Catarina Pinto

    2017-07-03

    Currently, the innovative skin research is focused on the development of novel topical formulations loaded with natural functional actives. The health benefits of olive oil are unsurpassed and many others are revealed as research studies allow the understanding of its unlimited properties. Olive oil has a protective toning effect on skin, but it is not transported effectively into its layers. Aiming the development of a cosmetic formulation for skin photoprotection and hydration, we have prepared and characterized macro-sized particles, made of a hydrogel polymer, loaded with olive oil. Alginate beads were uniform in shape, with minimal oil leakage, offering interesting prospects for encapsulation of lipophilic and poorly stable molecules, like olive oil. In vitro photoprotection and in vivo tolerance tests were in favor of this application. Thus, this study suggests that the incorporation of the olive oil-loaded particles into a cream formulation provides strong moisturizing properties and a photoprotective potential, when applied to healthy subjects.

  11. Olive oil enriched in lycopene from tomato by-product through a co-milling process.

    PubMed

    Bendini, Alessandra; Di Lecce, Giuseppe; Valli, Enrico; Barbieri, Sara; Tesini, Federica; Toschi, Tullia Gallina

    2015-01-01

    The aim of this investigation was to produce an olive oil (OO) naturally enriched with antioxidants, recovering carotenoids, in particular lycopene, using an industrial by-product of tomato seeds and skin. For this purpose, a technological process in a low-scale industrial plant to co-mill olives and tomato by-product in de-frosted or freeze-dried forms was applied and studied with respect to control samples. Preliminary results obtained from two different experiments were carried out by 40 kg of cultivar Correggiolo olives and 60 kg of olive blends from different cultivars. In both the experiments, the co-milling showed significant enrichment in carotenoids, especially in lycopene (mean values of 5.4 and 7.2 mg/kg oil from defrosted and freeze-dried by-products, respectively). The experimental results demonstrated the possibility to obtain a new functional food naturally enriched in antioxidant compounds, which might be marketed as "OO dressing enriched in lycopene" or "condiment produced using olives and tomato by-product".

  12. 454 Pyrosequencing of Olive (Olea europaea L.) Transcriptome in Response to Salinity

    PubMed Central

    Bazakos, Christos; Manioudaki, Maria E.; Sarropoulou, Elena; Spano, Thodhoraq; Kalaitzis, Panagiotis

    2015-01-01

    Olive (Olea europaea L.) is one of the most important crops in the Mediterranean region. The expansion of cultivation in areas irrigated with low quality and saline water has negative effects on growth and productivity however the investigation of the molecular basis of salt tolerance in olive trees has been only recently initiated. To this end, we investigated the molecular response of cultivar Kalamon to salinity stress using next-generation sequencing technology to explore the transcriptome profile of olive leaves and roots and identify differentially expressed genes that are related to salt tolerance response. Out of 291,958 obtained trimmed reads, 28,270 unique transcripts were identified of which 35% are annotated, a percentage that is comparable to similar reports on non-model plants. Among the 1,624 clusters in roots that comprise more than one read, 24 were differentially expressed comprising 9 down- and 15 up-regulated genes. Respectively, inleaves, among the 2,642 clusters, 70 were identified as differentially expressed, with 14 down- and 56 up-regulated genes. Using next-generation sequencing technology we were able to identify salt-response-related transcripts. Furthermore we provide an annotated transcriptome of olive as well as expression data, which are both significant tools for further molecular studies in olive. PMID:26576008

  13. 454 Pyrosequencing of Olive (Olea europaea L.) Transcriptome in Response to Salinity.

    PubMed

    Bazakos, Christos; Manioudaki, Maria E; Sarropoulou, Elena; Spano, Thodhoraq; Kalaitzis, Panagiotis

    2015-01-01

    Olive (Olea europaea L.) is one of the most important crops in the Mediterranean region. The expansion of cultivation in areas irrigated with low quality and saline water has negative effects on growth and productivity however the investigation of the molecular basis of salt tolerance in olive trees has been only recently initiated. To this end, we investigated the molecular response of cultivar Kalamon to salinity stress using next-generation sequencing technology to explore the transcriptome profile of olive leaves and roots and identify differentially expressed genes that are related to salt tolerance response. Out of 291,958 obtained trimmed reads, 28,270 unique transcripts were identified of which 35% are annotated, a percentage that is comparable to similar reports on non-model plants. Among the 1,624 clusters in roots that comprise more than one read, 24 were differentially expressed comprising 9 down- and 15 up-regulated genes. Respectively, inleaves, among the 2,642 clusters, 70 were identified as differentially expressed, with 14 down- and 56 up-regulated genes. Using next-generation sequencing technology we were able to identify salt-response-related transcripts. Furthermore we provide an annotated transcriptome of olive as well as expression data, which are both significant tools for further molecular studies in olive.

  14. Applying high-resolution melting (HRM) technology to olive oil and wine authenticity.

    PubMed

    Pereira, Leonor; Gomes, Sónia; Barrias, Sara; Fernandes, José Ramiro; Martins-Lopes, Paula

    2018-01-01

    Olive oil and wine production have a worldwide economic impact. Their market reliability is under great concern because of the increasing number of fraud and adulteration attempts. The need for a traceability system in all its extension is crucial particularly for the cases of olive oils and wines with certified labels, in which only a limited number of olives and grapevine varieties, respectively, are allowed in a restricted well-defined geographical area. Molecular markers have been vastly applied to the food sector, and in particular High-Resolution DNA Melting technology has been successfully applied for olive oil and wine authentication, as part of the traceability system. In this review, the applications of HRM and their usefulness for this sector considering, Safety, Security and Authenticity will be reviewed. A broad overview of the HRM technique will be presented, focusing on the aspects that are crucial for its success, in particular the new generation of fluorescent dsDNA dyes used for amplicon detection and quantification, and the data analysis. A brief outlook on the olive oil and wine authenticity procedures, based on new DNA technology advances, and in which way this may influence the future establishment of a traceability system will be discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Automatic detection and agronomic characterization of olive groves using high-resolution imagery and LIDAR data

    NASA Astrophysics Data System (ADS)

    Caruso, T.; Rühl, J.; Sciortino, R.; Marra, F. P.; La Scalia, G.

    2014-10-01

    The Common Agricultural Policy of the European Union grants subsidies for olive production. Areas of intensified olive farming will be of major importance for the increasing demand for oil production of the next decades, and countries with a high ratio of intensively and super-intensively managed olive groves will be more competitive than others, since they are able to reduce production costs. It can be estimated that about 25-40% of the Sicilian oliviculture must be defined as "marginal". Modern olive cultivation systems, which permit the mechanization of pruning and harvest operations, are limited. Agronomists, landscape planners, policy decision-makers and other professionals have a growing need for accurate and cost-effective information on land use in general and agronomic parameters in the particular. The availability of high spatial resolution imagery has enabled researchers to propose analysis tools on agricultural parcel and tree level. In our study, we test the performance of WorldView-2 imagery relative to the detection of olive groves and the delineation of olive tree crowns, using an object-oriented approach of image classification in combined use with LIDAR data. We selected two sites, which differ in their environmental conditions and in their agronomic parameters of olive grove cultivation. The main advantage of the proposed methodology is the low necessary quantity of data input and its automatibility. However, it should be applied in other study areas to test if the good results of accuracy assessment can be confirmed. Data extracted by the proposed methodology can be used as input data for decision-making support systems for olive grove management.

  16. The NUTRAOLEOUM Study, a randomized controlled trial, for achieving nutritional added value for olive oils.

    PubMed

    Biel, Sara; Mesa, Maria-Dolores; de la Torre, Rafael; Espejo, Juan-Antonio; Fernández-Navarro, Jose-Ramón; Fitó, Montserrat; Sánchez-Rodriguez, Estefanía; Rosa, Carmen; Marchal, Rosa; Alche, Juan de Dios; Expósito, Manuela; Brenes, Manuel; Gandul, Beatriz; Calleja, Miguel Angel; Covas, María-Isabel

    2016-10-22

    Virgin olive oil, a recognized healthy food, cannot be consumed in great quantities. We aim to assess in humans whether an optimized virgin olive oil with high phenolic content (OVOO, 429 mg/Kg) and a functional one (FOO), both rich in phenolic compounds (429 mg/Kg) and triterpenic acids (389 mg/kg), could provide health benefits additional to those supplied a by a standard virgin olive oil (VOO). A randomized, double-blind, crossover, controlled study will be conducted. Healthy volunteers (aged 20 to 50) will be randomized into one of three groups of daily raw olive oil consumption: VOO, OVOO, and FOO (30 mL/d). Olive oils will be administered over 3-week periods preceded by 2-week washout ones. The main outcomes will be markers of lipid and DNA oxidation, inflammation, and vascular damage. A bioavailability and dose-response study will be nested within this sustained- consumption one. It will be made up of 18 volunteers and be performed at two stages after a single dose of each olive oil. Endothelial function and nitric oxide will be assessed at baseline and at 4 h and 6 h after olive oil single dose ingestion. For the first time the NUTRAOLEUM Study will provide first level evidence on the health benefits in vivo in humans of olive oil triterpenes (oleanolic and maslinic acid) in addition to their bioavailability and disposition. The Trial has been registered in ClinicalTrials.gov ID: NCT02520739 .

  17. The paradoxical effect of extra-virgin olive oil on oxidative phenomena during in vitro co-digestion with meat.

    PubMed

    Martini, Serena; Cavalchi, Martina; Conte, Angela; Tagliazucchi, Davide

    2018-07-01

    Extra-virgin olive oil is an integral part of the Mediterranean diet and its consumption has been associated with a reduction risk of chronic diseases. Here we tested the potential of extra-virgin olive oil to limit the oxidative phenomena during in vitro gastro-intestinal co-digestion with turkey breast meat. The extra-virgin olive oil was particularly rich in oleuropein aglycone isomers, which represented the 66.8% of total phenolic determined with MS/MS experiments. Meals supplemented with extra-virgin olive oil equivocally affected lipid peroxidation. At low concentration (2.5% respect to meat), a significant inhibition of lipid oxidation was observed, whereas lipid peroxidation was greatly enhanced when the amount of extra-virgin olive oil was increased in the gastro-intestinal system. The inhibitory effect observed at 2.5% extra-virgin olive oil was due to the antioxidant properties of extra-virgin olive oil phenolic compounds. At high concentration, extra-virgin olive oil phenolic compounds (especially hydroxytyrosol-derivative) behaved as pro-oxidants increasing the generation of lipid hydroperoxides from meat. At the same time, the presence in the digestive system of catalysers from meat induced the peroxidation of extra-virgin olive oil fatty acids, which was further intensified by the pro-oxidant activity of extra-virgin olive oil phenolic compounds. Our study underlined the importance of the timing and amount of consumption of extra-virgin olive oil as well as its phenolic composition in limiting the peroxidative phenomena on meat lipids during digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Olive fruit fly (Diptera: Tephritidae) in California: longevity, oviposition, and development in canning olives in the laboratory and greenhouse.

    PubMed

    Yokoyama, Victoria Y

    2012-02-01

    The biology of olive fruit fly, Bactrocera oleae (Rossi), was studied in the laboratory, greenhouse, and in canning olives, Olea europaea L., in relation to California regional climates. Adults survived in laboratory tests at constant temperatures and relative humidities of 5 degrees C and 83%; 15 degrees C and 59%; 25 degrees C and 30%; and 35 degrees C and 29% for 15, 6, 3, and 2 d without provisions of food and water and for 37, 63, 25, and 4 d with provisions, respectively. In a divided greenhouse, adults survived for 8-11 d in the warm side (36 degrees C and 31% RH daytime); and in the cool side (26 degrees C and 63% RH daytime) 10 d without provisions and 203 d with provisions. A significantly greater number of adults survived in the cool side than the warm side, and with provisions than without. First and last eggs were oviposited in olive fruit when females were 6 and 90 d old, respectively. The highest number of eggs was 55 per day in 10 olive fruit oviposited by 10 28 d-old females, with maximum egg production by 13-37 d-old females. A significantly greater number of ovipositional sites occurred in all sizes of immature green fruit when exposed to adults in cages for 5 d than 2 d. Adults emerged from fruit with a height of > or = 1.0 cm or a volume of > or = 0.2 cm3. More than seven adults per 15 fruit emerged from field infested fruit with a height of 1.1 cm and volume of 0.1 cm3. Larval length was significantly different among the first, second, and third instars and ranged from 0.7 to 1.6, 2.4-4.3, and 4.8-5.6 mm at 14 degrees C; 0.8-1.1, 1.9-2.9, and 3.9-4.4 mm at 21 degrees C, and 0.7-1.3, 2.4-2.9, and 4.4-4.8 mm at 26 degrees C, respectively. Survival of pupae to the adult stage was significantly lower at 26 degrees C than 14 degrees C or 21 degrees C. The period of adult emergence began at 38, 14, and 11 d over a period of 8, 5, and 1 d at 14, 21, and 26 degrees C, respectively. Findings were related to the occurrence and control of California

  19. Robustness of NMR-based metabolomics to generate comparable data sets for olive oil cultivar classification. An inter-laboratory study on Apulian olive oils.

    PubMed

    Piccinonna, Sara; Ragone, Rosa; Stocchero, Matteo; Del Coco, Laura; De Pascali, Sandra Angelica; Schena, Francesco Paolo; Fanizzi, Francesco Paolo

    2016-05-15

    Nuclear Magnetic Resonance (NMR) spectroscopy is emerging as a powerful technique in olive oil fingerprinting, but its analytical robustness has to be proved. Here, we report a comparative study between two laboratories on olive oil (1)H NMR fingerprinting, aiming to demonstrate the robustness of NMR-based metabolomics in generating comparable data sets for cultivar classification. Sample preparation and data acquisition were performed independently in two laboratories, equipped with different resolution spectrometers (400 and 500 MHz), using two identical sets of mono-varietal olive oils. Partial Least Squares (PLS)-based techniques were applied to compare the data sets produced by the two laboratories. Despite differences in spectrum baseline, and in intensity and shape of peaks, the amount of shared information was significant (almost 70%) and related to cultivar (same metabolites discriminated between cultivars). In conclusion, regardless of the variability due to operator and machine, the data sets from the two participating units were comparable for the purpose of classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Olive oil phenolics are dose-dependently absorbed in humans.

    PubMed

    Visioli, F; Galli, C; Bornet, F; Mattei, A; Patelli, R; Galli, G; Caruso, D

    2000-02-25

    Olive oil phenolic constituents have been shown, in vitro, to be endowed with potent biological activities including, but not limited to, an antioxidant action. To date, there is no information on the absorption and disposition of such compounds in humans. We report that olive oil phenolics, namely tyrosol and hydroxytyrosol, are dose-dependently absorbed in humans after ingestion and that they are excreted in the urine as glucuronide conjugates. Furthermore, an increase in the dose of phenolics administered increased the proportion of conjugation with glucuronide.

  1. Olive Oil Headspace Characterization by a Gas Sensor Array

    NASA Astrophysics Data System (ADS)

    Santonico, Marco; Gianni, Giacomo; Capuano, Rosamaria; Migliorini, Marzia; Catini, Alexandro; Dini, Francesca; Martinelli, Eugenio; Paolesse, Roberto; D'Amico, Arnaldo; Di Natale, Corrado

    2011-09-01

    Olive oil quality is strictly correlated to the volatile compounds profile. Both quality and defects can be connected to the presence of specific volatile compounds in the oil headspace. In this paper, olive oil samples have been artificially modified by adding a number of compounds known to be typical of the more frequent defects: fusty, musty, muddy and rancid. Results demonstrate the sensitivity of the electronic nose to the compounds characterizing the defects and then the capability of the instrument to identify the defects in real samples.

  2. Olive mill wastewater membrane filtration fraction: Drying techniques and quality assessment of the dried product (abstract)

    USDA-ARS?s Scientific Manuscript database

    A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also utilize valuable co-products. Recovery of phenolics from OMWW could help olive oil processors add value to their co-product, increasing the sustainability of olive oil production. The ...

  3. Genetics Home Reference: Adams-Oliver syndrome

    MedlinePlus

    ... Baveja R, Silva ES, Dixon J, Leon EL, Solomon BD, Glusman G, Niederhuber JE, Roach JC, Patel MS. Mutations in NOTCH1 cause Adams-Oliver syndrome. Am J Hum Genet. 2014 Sep 4;95(3):275-84. doi: 10.1016/j. ...

  4. Characterization of virgin olive oils produced with autochthonous Galician varieties.

    PubMed

    Reboredo-Rodríguez, Patricia; González-Barreiro, Carmen; Cancho-Grande, Beatriz; Valli, Enrico; Bendini, Alessandra; Gallina Toschi, Tullia; Simal-Gandara, Jesus

    2016-12-01

    The interest of Galician oil producers (NW Spain) in recovering the ancient autochthonous olive varieties Brava and Mansa has increased substantially in recent years. Virgin olive oils produced by co-crushing both varieties in two different proportions, reflecting the usual and most common practice adopted in this region, have gradually emerged for the production of virgin olive oils. Herein, the sensory and chemical characteristics of such oils were characterized by quality and genuineness-related parameters. The results of chemical analysis are discussed in terms of their effective contribution to the sensory profile, which suggests useful recommendations for olive oil producers to improve the quality of oils. Antioxidant compounds, together with aromas and coloured pigments were determined, and their contribution in determining the functional value and the sensory properties of oils was investigated. In general, given the high levels of phenolic compounds (ranging between 254 and 375mg/kg oil), tocopherols (about 165mg/kg oil) and carotenoids (10-12mg/kg oil); these are oils with long stability, especially under dark storage conditions, because stability is reinforced with the contribution of chlorophylls (15-22mg/kg oil). A major content of phenolic compounds, as well as a predominance of trans-2-hexen-1-al within odor-active compounds (from 897 to 1645μg/kg oil), responsible for bitter sensory notes. This characterization allows to developing new antioxidant-rich and flavour-rich VOOs, when co-crushing with a higher proportion of Brava olives, satisfying the consumers' demand in having access to more healthy dishes and peculiar sensory attributes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Relationship between olive flowering and latitude in two Mediterranean countries (Italy and Tunisia)

    NASA Astrophysics Data System (ADS)

    Orlandi, F.; Msallem, M.; Bonofiglio, T.; Ben Dhiab, A.; Sgromo, C.; Romano, B.; Fornaciari, M.

    2010-11-01

    In phenological studies, the plant developments are analysed considering their relationships with seasonal meteorological conditions; moreover, the influences of geographical features on biological responses have to be also considered. Different studies analysed the influence of latitude on phenological phases to investigate the possible different magnitude of biological response. In our experience, this type of geographic evaluation was conducted considering one of the more important plant species of Mediterranean shrub, the olive ( Olea europaea L.) in fifteen olive monitoring stations, four located in Tunisia and eleven in Italy, from the southern Zarzis area at 33° to the northern Perugia area at 43° of latitude. The olive flowering phenomenon was studied, utilising an aerobiological monitoring method through appropriate pollen traps located inside olive groves from 1999 to 2008. The olive monitored pollen grains were recognised and evaluated to obtain daily pollen concentrations to define the flowering dates in the different study areas. The biometeorological statistical analysis showed the 7°C threshold temperature and the single triangle method for growing degree days (GDD) yearly computing as the better ones in comparison to others. Moreover, the regression analysis between the dates of full flowering and the GDD amounts at the different monitoring latitudes permitted us to evidence the biological response of olive species in geographic regions with different climate patterns. The specific biological response at different latitude was investigated, the slope results, as flowering days per heat amounts, evidenced that olive species behaviours are very constant in consequence to similar meteorological conditions independently to latitude variations. Averagely, the relationships between plant’s phenology, temperature trends and geographical features are very close, even if the yearly mesoscale meteorological variations force to consider, year by year

  6. Nutrition metabolism plays an important role in the alternate bearing of the olive tree (Olea europaea L.).

    PubMed

    Turktas, Mine; Inal, Behcet; Okay, Sezer; Erkilic, Emine Gulden; Dundar, Ekrem; Hernandez, Pilar; Dorado, Gabriel; Unver, Turgay

    2013-01-01

    The olive tree (Olea europaea L.) is widely known for its strong tendency for alternate bearing, which severely affects the fruit yield from year to year. Microarray based gene expression analysis using RNA from olive samples (on-off years leaves and ripe-unripe fruits) are particularly useful to understand the molecular mechanisms influencing the periodicity in the olive tree. Thus, we carried out genome wide transcriptome analyses involving different organs and temporal stages of the olive tree using the NimbleGen Array containing 136,628 oligonucleotide probe sets. Cluster analyses of the genes showed that cDNAs originated from different organs could be sorted into separate groups. The nutritional control had a particularly remarkable impact on the alternate bearing of olive, as shown by the differential expression of transcripts under different temporal phases and organs. Additionally, hormonal control and flowering processes also played important roles in this phenomenon. Our analyses provide further insights into the transcript changes between "on year" and "off year" leaves along with the changes from unrpipe to ripe fruits, which shed light on the molecular mechanisms underlying the olive tree alternate bearing. These findings have important implications for the breeding and agriculture of the olive tree and other crops showing periodicity. To our knowledge, this is the first study reporting the development and use of an olive array to document the gene expression profiling associated with the alternate bearing in olive tree.

  7. Nutrition Metabolism Plays an Important Role in the Alternate Bearing of the Olive Tree (Olea europaea L.)

    PubMed Central

    Turktas, Mine; Inal, Behcet; Okay, Sezer; Erkilic, Emine Gulden; Dundar, Ekrem; Hernandez, Pilar; Dorado, Gabriel; Unver, Turgay

    2013-01-01

    The olive tree (Olea europaea L.) is widely known for its strong tendency for alternate bearing, which severely affects the fruit yield from year to year. Microarray based gene expression analysis using RNA from olive samples (on-off years leaves and ripe-unripe fruits) are particularly useful to understand the molecular mechanisms influencing the periodicity in the olive tree. Thus, we carried out genome wide transcriptome analyses involving different organs and temporal stages of the olive tree using the NimbleGen Array containing 136,628 oligonucleotide probe sets. Cluster analyses of the genes showed that cDNAs originated from different organs could be sorted into separate groups. The nutritional control had a particularly remarkable impact on the alternate bearing of olive, as shown by the differential expression of transcripts under different temporal phases and organs. Additionally, hormonal control and flowering processes also played important roles in this phenomenon. Our analyses provide further insights into the transcript changes between ”on year” and “off year” leaves along with the changes from unrpipe to ripe fruits, which shed light on the molecular mechanisms underlying the olive tree alternate bearing. These findings have important implications for the breeding and agriculture of the olive tree and other crops showing periodicity. To our knowledge, this is the first study reporting the development and use of an olive array to document the gene expression profiling associated with the alternate bearing in olive tree. PMID:23555820

  8. Transcriptional profiling unravels potential metabolic activities of the olive leaf non-glandular trichome

    PubMed Central

    Koudounas, Konstantinos; Manioudaki, Maria E.; Kourti, Anna; Banilas, Georgios; Hatzopoulos, Polydefkis

    2015-01-01

    The olive leaf trichomes are multicellular peltate hairs densely distributed mainly at the lower leaf epidermis. Although, non-glandular, they have gained much attention since they significantly contribute to abiotic and biotic stress tolerance of olive leaves. The exact mechanisms by which olive trichomes achieve these goals are not fully understood. They could act as mechanical barrier but they also accumulate high amounts of flavonoids among other secondary metabolites. However, little is currently known about the exact compounds they produce and the respective metabolic pathways. Here we present the first EST analysis from olive leaf trichomes by using 454-pyrosequencing. A total of 5368 unigenes were identified out of 7258 high quality reads with an average length of 262 bp. Blast search revealed that 27.5% of them had high homologies to known proteins. By using Blast2GO, 1079 unigenes (20.1%) were assigned at least one Gene Ontology (GO) term. Most of the genes were involved in cellular and metabolic processes and in binding functions followed by catalytic activity. A total of 521 transcripts were mapped to 67 KEGG pathways. Olive trichomes represent a tissue of highly unique transcriptome as per the genes involved in developmental processes and the secondary metabolism. The results indicate that mature olive trichomes are trancriptionally active, mainly through the potential production of enzymes that contribute to phenolic compounds with important roles in biotic and abiotic stress responses. PMID:26322070

  9. Selection and evaluation of micro-organisms for biocontrol of Verticillium dahliae in olive.

    PubMed

    Varo, A; Raya-Ortega, M C; Trapero, A

    2016-09-01

    To identify potential biological control agents against Verticillium wilt in olive through a mass screening approach. A total of 47 strains and nine mixtures of micro-organisms were evaluated against Verticillium dahliae in a three stage screening: (i) in vitro, by the effect on the mycelial growth and spore germination of the pathogen; (ii) in natural infested soil, by the effect on the reduction of microsclerotia of the pathogen; (iii) in planta, by the effect on the infection of olive plants under controlled conditions. Various fungal and bacterial strains and mixtures inhibited the pathogen and showed consistent biocontrol activity against Verticillium wilt of olive. The screening has resulted in promising fungi and bacteria strains with antagonistic activity against Verticillium, such as two non-pathogenic Fusarium oxysporum, one Phoma sp., one Pseudomonas fluorescens and two mixtures of micro-organisms that may possess multiple modes of action. This study provides a practical basis for the potential use of selected strains as biocontrol agents for the protection of olive plants against V. dahliae infection. In addition, our study presented an effective method to evaluate antagonistic micro-organisms of V. dahliae in olive. © 2016 The Society for Applied Microbiology.

  10. Does wastewater from olive mills induce toxicity and water repellency in soil?

    NASA Astrophysics Data System (ADS)

    Peikert, B.; Bandow, N.; Schaumann, G. E.

    2012-04-01

    Olive oil mill wastewater is the effluent generated by the olive oil extraction process. It is the main waste product of this industry mainly being produced in the Mediterranean Basin. Because proper treatment options are rare it is often disposed into the environment, e.g. fields or wadies. Due to its high concentration of fatty acids and phytotoxic phenolic compounds and its high chemical and biological oxygen demand, olive oil mill wastewater becomes a serious environmental problem. In this screening study we investigated long-term effects of olive oil mill wastewater application on soil properties in several locations in the West Bank and Israel. We determined wettability via water drop penetration time and the contact angle as well as general soil properties including pH, EC, carbon content, and we conducted thermogravimetrical analyses in order to characterize the impact of the waste water on the quality of soil organic matter. Our results show that application of olive oil mill wastewater has various effects. We determined contact angles between 110 and 120° and water drop penetration times up to 1367 s indicating significant reduction in wettability. Furthermore, soil carbon and nitrogen content and water extractable organic matter increased as well as electric conductivity, which could be pointed out as a fertilizing effect. In contrast soil pH was significantly reduced. Conducting thermal analyses we observed an increase in the labile and refractory carbon fraction. Probably first one is responsible for induced water repellency. As a consequence the reduced wettability negatively affects soil quality. It would therefore be promising to minimize the hydrophobizing impacts without losing fertilizing effects of the olive oil mill wastewater.

  11. Effects of inert dust on olive (Olea europaea L.) leaf physiological para.

    PubMed

    Nanos, George D; Ilias, Ilias F

    2007-05-01

    Cement factories are major pollutants for the surrounding areas. Inert dust deposition has been found to affect photosynthesis, stomatal functioning and productivity. Very few studies have been conducted on the effects of cement kiln dust on the physiology of perennial fruit crops. Our goal was to study some cement dust effects on olive leaf physiology.effects on olive leaf physiology. On Cement kiln dust has been applied periodically since April 2003 onto olive leaves. Cement dust accumulation and various leaf physiological parameters were evaluated early in July 2003. Measurements were also taken on olive trees close to the cement factory. Leaf dry matter content and specific leaf weight increased with leaf age and dust content. Cement dust decreased leaf total chlorophyll content and chlorophyll a/chlorophyll b ratio. As a result, photosynthetic rate and quantum yield decreased. In addition, transpiration rate slightly decreased, stomatal conductance to H2O and CO2 movement decreased, internal CO2 concentration remained constant and leaf temperature increased. The changes in chlorophyll are possibly due to shading and/or photosystem damage. The changes in stomatal functioning were possibly due to dust accumulation between the peltates or othe effects on stomata. Dust (in this case from a cement kiln) seems to cause substantial changes to leaf physiology, possibly leading to reduced olive productivity. Avoidance of air contamination from cement factories by using available technology should be examined together with any possible methodologies to reduce plant tissue contamination from cement dust. Longterm effects of dust (from cement kiln or other sources) on olive leaf, plant productivity and nutritional quality of edible parts could be studied for conclusive results on dust contamination effects to perennial crops.

  12. Russian Olive Biology, Invasion, and Ecological Impacts in Western North America

    DTIC Science & Technology

    2016-07-01

    habitat for bird species , but is not functionally equivalent to native vegetation. Leatherman (2011) lists a variety of birds that consume fruits, sap...abundance, but intermediate avian species richness and diversity, in Russian olive stands. Russian olive bird communities were somewhat similar to...provided distinctive habitat for some bird species (e.g., least flycatchers [Empidonax minimus], red-eyed vireos [Vireo olivaceous]), while providing

  13. Biological control of olive fruit fly in California – release, establishment and impact of Psyttalia lounsburyi and Psyttalia humilis

    USDA-ARS?s Scientific Manuscript database

    The invasive olive fruit fly Bactrocera oleae (Rossi) (Diptera: Tephritidae) likely originated in sub-Saharan Africa, where the wild olive Olea europaea cuspidata L. (Wall. ex G. Don) is found and from which the domesticated olive O. europaea europaea L. was derived. Following the path of olive cult...

  14. Geographical traceability of virgin olive oils from south-western Spain by their multi-elemental composition.

    PubMed

    Beltrán, María; Sánchez-Astudillo, María; Aparicio, Ramón; García-González, Diego L

    2015-02-15

    The geographical traceability of virgin olive oil can be controlled by chemical species that are linked to the production area. Trace elements are among these species. The hypothesis is that the transfer of elements from the soil to the oil is subjected to minor variations and therefore this chemical information can be used for geographical traceability. In order to confirm this hypothesis, the trace elements of virgin olive oils from south-western Spain were analysed, and the same elements were determined in the corresponding olive-pomaces and soils. The differences in the concentration were studied according to cultivars and locations. Results show some coincidences in the selection of elements in soils (W, Fe, Na), olive-pomace (W, Fe, Na, Mg, Mn, Ca, Ba, Li) and olive oils (W, Fe, Mg, Mn, Ca, Ba, Li, Bi), which supports their utility in traceability. In the case of olive oils, 93% of the samples were correctly classified in their geographical origins (96% for Beas, 77% for Gibraleón, 91% for Niebla, and 100% for Sanlúcar de Guadiana). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Computational annotation of genes differentially expressed along olive fruit development

    PubMed Central

    Galla, Giulio; Barcaccia, Gianni; Ramina, Angelo; Collani, Silvio; Alagna, Fiammetta; Baldoni, Luciana; Cultrera, Nicolò GM; Martinelli, Federico; Sebastiani, Luca; Tonutti, Pietro

    2009-01-01

    Background Olea europaea L. is a traditional tree crop of the Mediterranean basin with a worldwide economical high impact. Differently from other fruit tree species, little is known about the physiological and molecular basis of the olive fruit development and a few sequences of genes and gene products are available for olive in public databases. This study deals with the identification of large sets of differentially expressed genes in developing olive fruits and the subsequent computational annotation by means of different software. Results mRNA from fruits of the cv. Leccino sampled at three different stages [i.e., initial fruit set (stage 1), completed pit hardening (stage 2) and veraison (stage 3)] was used for the identification of differentially expressed genes putatively involved in main processes along fruit development. Four subtractive hybridization libraries were constructed: forward and reverse between stage 1 and 2 (libraries A and B), and 2 and 3 (libraries C and D). All sequenced clones (1,132 in total) were analyzed through BlastX against non-redundant NCBI databases and about 60% of them showed similarity to known proteins. A total of 89 out of 642 differentially expressed unique sequences was further investigated by Real-Time PCR, showing a validation of the SSH results as high as 69%. Library-specific cDNA repertories were annotated according to the three main vocabularies of the gene ontology (GO): cellular component, biological process and molecular function. BlastX analysis, GO terms mapping and annotation analysis were performed using the Blast2GO software, a research tool designed with the main purpose of enabling GO based data mining on sequence sets for which no GO annotation is yet available. Bioinformatic analysis pointed out a significantly different distribution of the annotated sequences for each GO category, when comparing the three fruit developmental stages. The olive fruit-specific transcriptome dataset was used to query all

  16. Bioavailability of Bioactive Molecules from Olive Leaf Extracts and its Functional Value.

    PubMed

    Martín-Vertedor, Daniel; Garrido, María; Pariente, José Antonio; Espino, Javier; Delgado-Adámez, Jonathan

    2016-07-01

    Olive leaves are an important low-cost source of bioactive compounds. The present study aimed to examine the effect of in vitro digestibility of an olive leaf aqueous extract so as to prove the availability of its phenolic compounds as well as its antioxidant, antimicrobial, and anticancer activity after a simulated digestion process. The total phenolic content was significantly higher in the pure lyophilized extract. Phenolic compounds, however, decreased by 60% and 90% in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF), respectively. Regarding antioxidant activity, it was reduced by 10% and 50% after gastric and intestinal digestion, respectively; despite this fact, high antioxidant capacity was found in both SGF and SIF. Moreover, the olive leaf extract showed an unusual combined antimicrobial action at low concentration, which suggested their great potential as nutraceuticals, particularly as a source of phenolic compounds. Finally, olive leaf extracts produced a general dose-dependent cytotoxic effect against U937 cells. To sum up, these findings suggest that the olive leaf aqueous extract maintains its beneficial properties after a simulated digestion process, and therefore its regular consumption could be helpful in the management and the prevention of oxidative stress-related chronic disease, bacterial infection, or even cancer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Arbuscular Mycorhizal Fungi Associated with the Olive Crop across the Andalusian Landscape: Factors Driving Community Differentiation

    PubMed Central

    Montes-Borrego, Miguel; Metsis, Madis; Landa, Blanca B.

    2014-01-01

    Background In the last years, many olive plantations in southern Spain have been mediated by the use of self-rooted planting stocks, which have incorporated commercial AMF during the nursery period to facilitate their establishment. However, this was practised without enough knowledge on the effect of cropping practices and environment on the biodiversity of AMF in olive orchards in Spain. Methodology/Principal Findings Two culture-independent molecular methods were used to study the AMF communities associated with olive in a wide-region analysis in southern Spain including 96 olive locations. The use of T-RFLP and pyrosequencing analysis of rDNA sequences provided the first evidence of an effect of agronomic and climatic characteristics, and soil physicochemical properties on AMF community composition associated with olive. Thus, the factors most strongly associated to AMF distribution varied according to the technique but included among the studied agronomic characteristics the cultivar genotype and age of plantation and the irrigation regimen but not the orchard management system or presence of a cover crop to prevent soil erosion. Soil physicochemical properties and climatic characteristics most strongly associated to the AMF community composition included pH, textural components and nutrient contents of soil, and average evapotranspiration, rainfall and minimum temperature of the sampled locations. Pyrosequencing analysis revealed 33 AMF OTUs belonging to five families, with Archaeospora spp., Diversispora spp. and Paraglomus spp., being first records in olive. Interestingly, two of the most frequent OTUs included a diverse group of Claroideoglomeraceae and Glomeraceae sequences, not assigned to any known AMF species commonly used as inoculants in olive during nursery propagation. Conclusions/Significance Our data suggests that AMF can exert higher host specificity in olive than previously thought, which may have important implications for redirecting the

  18. Evidence of postprandial absorption of olive oil phenols in humans.

    PubMed

    Bonanome, A; Pagnan, A; Caruso, D; Toia, A; Xamin, A; Fedeli, E; Berra, B; Zamburlini, A; Ursini, F; Galli, G

    2000-06-01

    Olive oil phenols are potent antioxidants in vitro. If this were to be also demonstrated in vivo, it would help to explain the beneficial effects of this typical ingredient of the Mediterranean diet. This study was designed to determine the presence in lipoprotein fractions of two phenolic compounds peculiar to extra virgin olive oil, namely tyrosol and OH-tyrosol, and whether their absorption induces an antioxidant effect in vivo. Two trials were performed. In the first (Long-term), 14 healthy volunteers followed two diets, each for one month. The only difference between the diets was that the first supplied 50 g of extra virgin olive oil per day, where-as the second one supplied 50 g of refined olive oil with no simple phenols, as demonstrated by GC-MS analysis. There were no changes in LDL oxidizability and tyrosol and OH-tyrosol were not recovered in lipoproteins and plasma from fasting samples drawn at the end of each diet period. In the second study (Postprandial), eight healthy volunteers received an oral fat load consisting of 100 g of extra virgin olive oil. Blood was drawn at times 0', 30', 60', 120', 240', 360', and major plasma lipoprotein classes were separated. The concentration of tyrosol, OH-tyrosol and vitamin E was determined in lipoprotein fractions. Plasma antioxidant capacity was measured by a crocin-bleaching test and expressed as mM Trolox C equivalents. Tyrosol and OH-tyrosol were recovered in all lipoprotein fractions, except VLDL, with concentrations peaking between 60' and 120'. However, a very high variability in tyrosol and OH-tyrosol absorption was observed among subjects. Vitamin E content of LDL and HDL did not vary significantly throughout the study. Plasma antioxidant capacity increased significantly at time 120' (baseline 0.96 mM Trolox; 120' 1.19 mM Trolox; p = 0.02), and then returned almost to baseline values after 360' (1.1 mM Trolox). These findings suggest that phenolic compounds in olive oil are absorbed from the intestine

  19. In vitro utilization of lime treated olive cake as a component of complete feed for small ruminants.

    PubMed

    Ishfaq, A; Sharma, R K; Rastogi, A; Malla, B A; Farooq, J

    2015-01-01

    The current in vitro study was carried out to determine the chemical composition and inclusion level of lime treated olive cake on acid detergent fiber (ADF) replacement basis in adult male goats. Crude olive cake was collected and evaluated for proximate composition and protein fractionation. It was treated with 6% lime and incubated for 1 week under room temperature in 2 kg sealed polythene bags and was evaluated for proximate composition after incubation. Different isonitrogenous complete diets containing 0-50% of lime treated olive cake on ADF replacement basis were formulated as per the requirement of adult male goats. In ADF replacement, fiber and concentrate sources were replaced by lime treated olive cake by replacing the 0-50% ADF percentage of the total 40% ADF value of complete feed. The formulated complete diets were tested for in vitro degradation parameters. Treatment of olive cake with 6% slaked lime increased availability of cellulose and alleviated digestibility depression caused by high ether extract percentage. Organic matter, nitrogen free extract, ADF and neutral detergent fiber were significantly lowered by lime treatment of olive cake. The cornell net carbohydrate and protein system analysis showed that non-degradable protein represented by acid detergent insoluble nitrogen (ADIN) was 21.71% whereas the non-available protein represented by neutral detergent insoluble nitrogen (NDIN) was 38.86% in crude olive cake. The in vitro dry matter degradation (IVDMD) values were comparable at all replacement levels. However, a point of inflection was observed at 40% ADF replacement level, which was supported by truly degradable organic matter (TDOM), microbial biomass production (MBP), efficiency of MBP and partitioning factor values (PF). In our study, we concluded that there is comparable difference in composition of Indian olive cake when compared with European olive cake. The most important finding was that about 78% of nitrogen present in Indian

  20. Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil.

    PubMed

    Uncu, Ali Tevfik; Uncu, Ayse Ozgur; Frary, Anne; Doganlar, Sami

    2017-04-15

    The aim of this study was to compare the performance of a DNA-barcode assay with fatty acid profile analysis to authenticate the botanical origin of olive oil. To achieve this aim, we performed a PCR-capillary electrophoresis (PCR-CE) approach on olive oil: seed oil blends using the plastid trnL (UAA) intron barcode. In parallel to genomic analysis, we subjected the samples to gas chromatography analysis of fatty acid composition. While the PCR-CE assay proved equally efficient as gas chromatography analysis in detecting adulteration with soybean, palm, rapeseed, sunflower, sesame, cottonseed and peanut oils, it was superior to the widely utilized analytical chemistry approach in revealing the adulterant species and detecting small quantities of corn and safflower oils in olive oil. Moreover, the DNA-based test correctly identified all tested olive oil: hazelnut oil blends whereas it was not feasible to detect hazelnut oil adulteration through fatty acid profile analysis. Thus, the present research has shown the feasibility of a PCR-CE barcode assay to detect adulteration in olive oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Identification of new polymorphic regions and differentiation of cultivated olives (Olea europaea L.) through plastome sequence comparison

    PubMed Central

    2010-01-01

    Background The cultivated olive (Olea europaea L.) is the most agriculturally important species of the Oleaceae family. Although many studies have been performed on plastid polymorphisms to evaluate taxonomy, phylogeny and phylogeography of Olea subspecies, only few polymorphic regions discriminating among the agronomically and economically important olive cultivars have been identified. The objective of this study was to sequence the entire plastome of olive and analyze many potential polymorphic regions to develop new inter-cultivar genetic markers. Results The complete plastid genome of the olive cultivar Frantoio was determined by direct sequence analysis using universal and novel PCR primers designed to amplify all overlapping regions. The chloroplast genome of the olive has an organisation and gene order that is conserved among numerous Angiosperm species and do not contain any of the inversions, gene duplications, insertions, inverted repeat expansions and gene/intron losses that have been found in the chloroplast genomes of the genera Jasminum and Menodora, from the same family as Olea. The annotated sequence was used to evaluate the content of coding genes, the extent, and distribution of repeated and long dispersed sequences and the nucleotide composition pattern. These analyses provided essential information for structural, functional and comparative genomic studies in olive plastids. Furthermore, the alignment of the olive plastome sequence to those of other varieties and species identified 30 new organellar polymorphisms within the cultivated olive. Conclusions In addition to identifying mutations that may play a functional role in modifying the metabolism and adaptation of olive cultivars, the new chloroplast markers represent a valuable tool to assess the level of olive intercultivar plastome variation for use in population genetic analysis, phylogenesis, cultivar characterisation and DNA food tracking. PMID:20868482

  2. ReprOlive: a database with linked data for the olive tree (Olea europaea L.) reproductive transcriptome

    PubMed Central

    Carmona, Rosario; Zafra, Adoración; Seoane, Pedro; Castro, Antonio J.; Guerrero-Fernández, Darío; Castillo-Castillo, Trinidad; Medina-García, Ana; Cánovas, Francisco M.; Aldana-Montes, José F.; Navas-Delgado, Ismael; Alché, Juan de Dios; Claros, M. Gonzalo

    2015-01-01

    Plant reproductive transcriptomes have been analyzed in different species due to the agronomical and biotechnological importance of plant reproduction. Here we presented an olive tree reproductive transcriptome database with samples from pollen and pistil at different developmental stages, and leaf and root as control vegetative tissues http://reprolive.eez.csic.es). It was developed from 2,077,309 raw reads to 1,549 Sanger sequences. Using a pre-defined workflow based on open-source tools, sequences were pre-processed, assembled, mapped, and annotated with expression data, descriptions, GO terms, InterPro signatures, EC numbers, KEGG pathways, ORFs, and SSRs. Tentative transcripts (TTs) were also annotated with the corresponding orthologs in Arabidopsis thaliana from TAIR and RefSeq databases to enable Linked Data integration. It results in a reproductive transcriptome comprising 72,846 contigs with average length of 686 bp, of which 63,965 (87.8%) included at least one functional annotation, and 55,356 (75.9%) had an ortholog. A minimum of 23,568 different TTs was identified and 5,835 of them contain a complete ORF. The representative reproductive transcriptome can be reduced to 28,972 TTs for further gene expression studies. Partial transcriptomes from pollen, pistil, and vegetative tissues as control were also constructed. ReprOlive provides free access and download capability to these results. Retrieval mechanisms for sequences and transcript annotations are provided. Graphical localization of annotated enzymes into KEGG pathways is also possible. Finally, ReprOlive has included a semantic conceptualisation by means of a Resource Description Framework (RDF) allowing a Linked Data search for extracting the most updated information related to enzymes, interactions, allergens, structures, and reactive oxygen species. PMID:26322066

  3. Microbial community dynamics during fermentation of doenjang-meju, traditional Korean fermented soybean.

    PubMed

    Jung, Ji Young; Lee, Se Hee; Jeon, Che Ok

    2014-08-18

    Bacterial and fungal community dynamics, along with viable plate counts and water content, were investigated in the exterior and interior regions of doenjang-meju, traditional Korean fermented soybean, during its fermentation process. Measurement of viable cells showed that the meju molding equipment might be an important source of bacterial cells (mostly Bacillus) during doenjang-meju fermentation, whereas fungi might be mostly derived from the fermentation environment including incubation shelves, air, and rice straws. Community analysis using rRNA-targeted pyrosequencing revealed that Bacillus among bacteria and Mucor among fungi were predominant in both the exterior and interior regions of doenjang-meju during the early fermentation period. Bacteria such as Ignatzschineria, Myroides, Enterococcus, Corynebacterium, and Clostridium and fungi such as Geotrichum, Scopulariopsis, Monascus, Fusarium, and eventually Aspergillus were mainly detected as the fermentation progressed. Bacillus, an aerobic bacterial group, was predominant in the exterior regions during the entire fermentation period, while anaerobic, facultative anaerobic, and microaerobic bacteria including Enterococcus, Lactobacillus, Clostridium, Myroides, and Ignatzschineria were much more abundant in the interior regions. Principal component analysis (PCA) also indicated that the bacterial communities in the exterior and interior regions were clearly differentiated, suggesting that aeration might be an important factor in determining the bacterial communities during doenjang-meju fermentation. However, PCA showed that fungal communities were not separated in the exterior and interior regions and Pearson's correlation coefficients showed that the major fungal taxa had significantly positive (Mucor and Geotrichum) or negative (Aspergillus) correlations with the water content during doenjang-meju fermentation, indicating that water content might be a significant factor in determining the fungal

  4. Defective quiescence entry promotes the fermentation performance of bottom-fermenting brewer's yeast.

    PubMed

    Oomuro, Mayu; Kato, Taku; Zhou, Yan; Watanabe, Daisuke; Motoyama, Yasuo; Yamagishi, Hiromi; Akao, Takeshi; Aizawa, Masayuki

    2016-11-01

    One of the key processes in making beer is fermentation. In the fermentation process, brewer's yeast plays an essential role in both the production of ethanol and the flavor profile of beer. Therefore, the mechanism of ethanol fermentation by of brewer's yeast is attracting much attention. The high ethanol productivity of sake yeast has provided a good basis from which to investigate the factors that regulate the fermentation rates of brewer's yeast. Recent studies found that the elevated fermentation rate of sake Saccharomyces cerevisiae species is closely related to a defective transition from vegetative growth to the quiescent (G 0 ) state. In the present study, to clarify the relationship between the fermentation rate of brewer's yeast and entry into G 0 , we constructed two types of mutant of the bottom-fermenting brewer's yeast Saccharomyces pastorianus Weihenstephan 34/70: a RIM15 gene disruptant that was defective in entry into G 0 ; and a CLN3ΔPEST mutant, in which the G 1 cyclin Cln3p accumulated at high levels. Both strains exhibited higher fermentation rates under high-maltose medium or high-gravity wort conditions (20° Plato) as compared with the wild-type strain. Furthermore, G 1 arrest and/or G 0 entry were defective in both the RIM15 disruptant and the CLN3ΔPEST mutant as compared with the wild-type strain. Taken together, these results indicate that regulation of the G 0 /G 1 transition might govern the fermentation rate of bottom-fermenting brewer's yeast in high-gravity wort. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Nutraceutical Properties of Olive Oil Polyphenols. An Itinerary from Cultured Cells through Animal Models to Humans

    PubMed Central

    Rigacci, Stefania; Stefani, Massimo

    2016-01-01

    The increasing interest in the Mediterranean diet hinges on its healthy and anti-ageing properties. The composition of fatty acids, vitamins and polyphenols in olive oil, a key component of this diet, is considered a key feature of its healthy properties. Therefore, it is of significance that the Rod of Asclepius lying on a world map surrounded by olive tree branches has been chosen by the World Health Organization as a symbol of both peace and well-being. This review travels through most of the current and past research, recapitulating the biochemical and physiological correlations of the beneficial properties of olive tree (Olea europaea) polyphenols and their derivatives found in olive oil. The factors influencing the content and beneficial properties of olive oil polyphenols will also be taken into account together with their bioavailability. Finally, the data on the clinical and epidemiological relevance of olive oil and its polyphenols for longevity and against age- and lifestyle-associated pathologies such as cancer, cardiovascular, metabolic and neurodegenerative diseases are reviewed. PMID:27258251

  6. Vermicomposting of a lignocellulosic waste from olive oil industry: a pilot scale study.

    PubMed

    Benítez, E; Sainz, H; Melgar, R; Nogales, R

    2002-04-01

    The vermicomposting with Eisenia andrei of dry olive cake, a lignocellulosic waste produced during the extraction of olive oil, either alone or mixed with municipal biosolids, was studied in a nine-month pilot scale experiment. Number and biomass of earthworms and enzyme activities were periodically monitored and relevant properties of the final products were determined. In the assayed substrates, the total biomass of earthworms increased at the end of the experimental period between 9 and 12-fold respectively in comparison with the earthworm biomass initially inoculated. The increase in hydrolytic enzymes and overall microbial activity during the vermicomposting process indicated the biodegradation of the olive cake and resulted in the disappearance of the initial phytotoxicity of the substrate. However, the recalcitrant lignocellulosic nature of the dry olive cake prevented suitable humification during the vermicomposting process. For this reason, in addition to organic amendments, other management procedures should be considered.

  7. Impact of climate change on olive crop flowering at southern Spain

    NASA Astrophysics Data System (ADS)

    Gabaldón-Leal, Clara; Ruiz-Ramos, Margarita; de la Rosa, Raúl; León, Lorenzo; Rodríguez, Alfredo; Belaj, Angjelina; Lorite, Ignacio

    2016-04-01

    Andalusia region (Southern Spain) is the largest olive oil producer in the world with 40% of the total production (1.1millions tons; FAOSTAT, 2013). Predicting flowering dates of olive under future climate conditions has a critical importance as flowering is a critical stage for olive as heat and water stresses during this period have a significant impact on final olive oil yield. The aim of this study was to evaluate the olive flowering dates under future climate conditions. Climate data for the future period was obtained from the ENSEMBLES European Project (http://www.ensembles-eu.org/) with a bias correction in temperature and precipitation with regard with the SPAIN02 dataset (Herrera et al., 2012) (ENS-SP). Flowering of ten different olive cultivars were evaluated under current and forced (greenhouse) climate conditions, applying the bias in temperatures comparing the current period (1981-2010) with the future period (2071-2100) to the current conditions in Cordoba (Andalusia, Spain). These observations allowed obtaining a flowering approach which was applied to the whole Andalusia region. The results showed an average advance in flowering dates about 16 days at the end of the 21st century. With these results different areas within Andalusia region were classified based on the vulnerability caused by the lack of chilling hours accumulation (coastal areas) or by high temperatures during flowering (north and northeast regions). This study has been supported by the project RTA2014-00030-00-00 funded by INIA and FEDER 2014-2020 "Programa Operativo de Crecimiento Inteligente" and IFAPA project AGR6126 from Junta de Andalucía, Spain. FAOSTAT (2013) Food And Agriculture Organization Of The United Nations. Available at http://faostat3.fao.org/browse/Q/QD/E. Accessed 07 January 2016 Herrera S, Gutiérrez JM, Ancell R, Pons MR, Frías MD, Fernández J. 2012. Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02

  8. Fruit Phenolic Profiling: A New Selection Criterion in Olive Breeding Programs

    PubMed Central

    Pérez, Ana G.; León, Lorenzo; Sanz, Carlos; de la Rosa, Raúl

    2018-01-01

    Olive growing is mainly based on traditional varieties selected by the growers across the centuries. The few attempts so far reported to obtain new varieties by systematic breeding have been mainly focused on improving the olive adaptation to different growing systems, the productivity and the oil content. However, the improvement of oil quality has rarely been considered as selection criterion and only in the latter stages of the breeding programs. Due to their health promoting and organoleptic properties, phenolic compounds are one of the most important quality markers for Virgin olive oil (VOO) although they are not commonly used as quality traits in olive breeding programs. This is mainly due to the difficulties for evaluating oil phenolic composition in large number of samples and the limited knowledge on the genetic and environmental factors that may influence phenolic composition. In the present work, we propose a high throughput methodology to include the phenolic composition as a selection criterion in olive breeding programs. For that purpose, the phenolic profile has been determined in fruits and oils of several breeding selections and two varieties (“Picual” and “Arbequina”) used as control. The effect of three different environments, typical for olive growing in Andalusia, Southern Spain, was also evaluated. A high genetic effect was observed on both fruit and oil phenolic profile. In particular, the breeding selection UCI2-68 showed an optimum phenolic profile, which sums up to a good agronomic performance previously reported. A high correlation was found between fruit and oil total phenolic content as well as some individual phenols from the two different matrices. The environmental effect on phenolic compounds was also significant in both fruit and oil, although the low genotype × environment interaction allowed similar ranking of genotypes on the different environments. In summary, the high genotypic variance and the simplified procedure

  9. Fruit Phenolic Profiling: A New Selection Criterion in Olive Breeding Programs.

    PubMed

    Pérez, Ana G; León, Lorenzo; Sanz, Carlos; de la Rosa, Raúl

    2018-01-01

    Olive growing is mainly based on traditional varieties selected by the growers across the centuries. The few attempts so far reported to obtain new varieties by systematic breeding have been mainly focused on improving the olive adaptation to different growing systems, the productivity and the oil content. However, the improvement of oil quality has rarely been considered as selection criterion and only in the latter stages of the breeding programs. Due to their health promoting and organoleptic properties, phenolic compounds are one of the most important quality markers for Virgin olive oil (VOO) although they are not commonly used as quality traits in olive breeding programs. This is mainly due to the difficulties for evaluating oil phenolic composition in large number of samples and the limited knowledge on the genetic and environmental factors that may influence phenolic composition. In the present work, we propose a high throughput methodology to include the phenolic composition as a selection criterion in olive breeding programs. For that purpose, the phenolic profile has been determined in fruits and oils of several breeding selections and two varieties ("Picual" and "Arbequina") used as control. The effect of three different environments, typical for olive growing in Andalusia, Southern Spain, was also evaluated. A high genetic effect was observed on both fruit and oil phenolic profile. In particular, the breeding selection UCI2-68 showed an optimum phenolic profile, which sums up to a good agronomic performance previously reported. A high correlation was found between fruit and oil total phenolic content as well as some individual phenols from the two different matrices. The environmental effect on phenolic compounds was also significant in both fruit and oil, although the low genotype × environment interaction allowed similar ranking of genotypes on the different environments. In summary, the high genotypic variance and the simplified procedure of the

  10. Vibration and impulsivity analysis of hand held olive beaters.

    PubMed

    Deboli, Roberto; Calvo, Angela; Preti, Christian

    2016-07-01

    To provide more effective evaluations of hand arm vibration syndromes caused by hand held olive beaters, this study focused on two aspects: the acceleration measured at the tool pole and the analysis of the impulsivity, using the crest factor. The signals were frequency weighted using the weighting curve Wh as described in the ISO 5349-1 standard. The same source signals were also filtered by the Wh-bl filter (ISO/TS 15694), because the weighting filter Wh (unlike the Wh-bl filter) could underestimate the effect of high frequency vibration on vibration-induced finger disorders. Ten (experienced) male operators used three beater models (battery powered) in the real olive harvesting condition. High vibration total values were obtained with values never lower than 20 m(-2). Concerning the crest factor, the values ranged from 5 to more than 22. This work demonstrated that the hand held olive beaters produced high impulsive loads comparable to the industry hand held tools. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. First Report of the Spiral Nematode Rotylenchus incultus (Nematoda: Hoplolaimidae) from Cultivated Olive in Tunisia, with Additional Molecular Data on Rotylenchus eximius.

    PubMed

    Guesmi-Mzoughi, Ilhem; Archidona-Yuste, Antonio; Cantalapiedra-Navarrete, Carolina; Regaieg, Hajer; Horrigue-Raouani, Najet; Palomares-Rius, Juan E; Castillo, Pablo

    2016-09-01

    Spiral nematode species of the genus Rotylenchus have been reported on olive ( Olea europaea L.) in several Mediterranean countries (Castillo et al., 2010; Ali et al., 2014). Nematological surveys for plant-parasitic nematodes on olive trees were carried out in Tunisia between 2013 and 2014, and two nematode species of Rotylenchus were collected from the rhizosphere of olive cv. Chemlali in several localities of Tunisia (Tables 1,2 [Table: see text] [Table: see text] ). Twenty-two soil samples of 3 to 4 kg were collected with a shovel from the upper 50 cm of soil from arbitrarily chosen olive trees. Nematodes were extracted from 500 cm 3 of soil by centrifugal flotation method (Coolen, 1979). Specimens were heat killed by adding hot 4% formaldehyde solution and processed to pure glycerin using the De Grisse's (1969) method. Measurements were done using a drawing tube attached to a Zeiss III compound microscope. Nematode DNA was extracted from single individuals and PCR assays were conducted as described by Castillo et al. (2003). Moderate-to-low soil populations of these spiral nematodes were detected (5.5-11.5, 1.5-5.0 individuals/500 cm 3 of soil, respectively). This prompted us to undertake a detailed morphological and molecular comparative study with previous reported data. Morphological and molecular analyses of females identified these species as Rotylenchus eximius Siddiqi, 1964, and Rotylenchus incultus Sher, 1965. The morphology of R. eximius females (five specimens studied) was characterized by having a hemispherical lip region clearly off set, with four to five annuli, body without longitudinal striations, lateral fields areolated in the pharyngeal region only, stylet 32 to 36 μm long, and broadly rounded tail. The morphology of R. incultus females (51 females and 16 males; Table 2) was characterized by a hemispherical lip region with the basal annulus subdivided by irregular longitudinal striations, with three, rarely four annuli; stylet 21.5 to 27.5

  12. Photo- and thermal degradation of olive oil measured using an optical fibre smartphone spectrofluorimeter

    NASA Astrophysics Data System (ADS)

    Hossain, Md Arafat; Canning, John; Cook, Kevin; Ast, Sandra; Jamalipour, Abbas

    2017-04-01

    Degradation of olive oil under light and heat are analysed using an optical fibre based low-cost portable smartphone spectrofluorimeter. Visible fluorescence bands associated with phenolic acids, vitamins and chlorophyll centred at λ 452, 525 and 670 nm respectively are generated using near-UV excitation (LED λex 370 nm), of extra virgin olive oil are degraded more likely than refined olive oil under light and heat exposure. Packaging is shown to be critical when assessing the origin of degradation.

  13. Antioxidant Activity and Quality Characteristics of Yogurt Added Green Olive Powder during Storage.

    PubMed

    Cho, Won-Young; Yeon, Su-Jung; Hong, Go-Eun; Kim, Ji-Han; Tsend-Ayush, Chuluunbat; Lee, Chi-Ho

    2017-01-01

    The objective of this study was to determine the antioxidant and quality characteristics of yogurt added green olive powder stored at 4°С for 15 d. The following four groups were used in this study: Control group (GY0), Yogurt added with 1% green olive (GY1), with 3% green olive (GY3), and with 5% green olive (GY5). The more time of titratable acidity went by, the more it increased. Except GY0, viscosity tended to decrease in other groups ( p >0.05), and the more time of syneresis went by, the more it increased, but GY3 of them showed the lowest syneresis. Lactic acid bacteria showed no significant with GY0 until 5 d, but after that, GY1, GY3 and GY5 showed lower than GY0. Yogurt added green olive showed darker color than GY0 (low L* and high a*). The antioxidant activity of GY5 was found to be the highest among the four groups at day 1 of storage. Total phenolic content, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and reducing power of GY5 was found to be the highest among the four groups at day 1 of storage which were 6.96 mg GAE/kg, 47.53%, and 0.57, respectively. In the sensory evaluation sweet and overall of GY3 indicated the highest score among the four groups. Results of this study demonstrated that green olive powder might be used to improve the antioxidant capacity and sensory characteristics of yogurt.

  14. Antioxidant Activity and Quality Characteristics of Yogurt Added Green Olive Powder during Storage

    PubMed Central

    Tsend-Ayush, Chuluunbat

    2017-01-01

    The objective of this study was to determine the antioxidant and quality characteristics of yogurt added green olive powder stored at 4°С for 15 d. The following four groups were used in this study: Control group (GY0), Yogurt added with 1% green olive (GY1), with 3% green olive (GY3), and with 5% green olive (GY5). The more time of titratable acidity went by, the more it increased. Except GY0, viscosity tended to decrease in other groups (p>0.05), and the more time of syneresis went by, the more it increased, but GY3 of them showed the lowest syneresis. Lactic acid bacteria showed no significant with GY0 until 5 d, but after that, GY1, GY3 and GY5 showed lower than GY0. Yogurt added green olive showed darker color than GY0 (low L* and high a*). The antioxidant activity of GY5 was found to be the highest among the four groups at day 1 of storage. Total phenolic content, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and reducing power of GY5 was found to be the highest among the four groups at day 1 of storage which were 6.96 mg GAE/kg, 47.53%, and 0.57, respectively. In the sensory evaluation sweet and overall of GY3 indicated the highest score among the four groups. Results of this study demonstrated that green olive powder might be used to improve the antioxidant capacity and sensory characteristics of yogurt. PMID:29725208

  15. Olive plants (Olea europaea L.) as a bioindicator for pollution.

    PubMed

    Eliwa, Amal Mohamed; Kamel, Ehab Abdel-Razik

    2013-06-15

    In the present work, olive plant (Olea europaea L.) was used as a biological indicator for pollution in which, molecular and physiological parameters were studied. Olive plants were collected from polluted and non-polluted areas in Jeddah - Saudi Arabia, traffic area as an air polluted area, sewage treatment station as water polluted area, industrial area as solid waste polluted, costal area as marine polluted area and an area without a direct source of pollution far away from the city center, which was used as control. These changes conducted with nucleic acid content, minerals content, pigments and some growth parameters. Results showed significant reductions in DNA and RNA contents under all polluted sites. Mineral contents were varied widely depending on the different pollutants and locations of olive plant. Generally, micro-elements varied (increase/decrease) significantly within collected samples and the source of pollution. All growth parameters were decreased significantly within the studied samples of all pollutant areas except the relative water content was increased. The content of chlorophyll a has decreased highly significantly in all polluted leaves. While the content of chlorophyll b has increased significantly in all polluted leaves especially in air polluted leaves. The total content of carotenoid pigments has decreased highly significantly in all polluted leaves. It was concluded that olive plant can be used as a biological indicator to the environmental pollutants.

  16. Olive oil and leaf extract prevent fluoxetine-induced hepatotoxicity by attenuating oxidative stress, inflammation and apoptosis.

    PubMed

    Elgebaly, Hassan A; Mosa, Nermeen M; Allach, Mariam; El-Massry, Khaled F; El-Ghorab, Ahmed H; Al Hroob, Amir M; Mahmoud, Ayman M

    2018-02-01

    Olive oil and leaf extract have several health benefits; however, their beneficial effect against fluoxetine-induced liver injury has not been investigated. The present study aimed to scrutinize the impact of fluoxetine on the liver of rats and to evaluate the protective effects of olive oil and leaf extract. Rats received fluoxetine orally at dose of 10 mg/kg body weight for 7 consecutive days. The fluoxetine-induced rats were concurrently treated with olive oil or leaf extract. At the end of the experiment, blood and liver samples were collected for analysis. Fluoxetine administration significantly increased circulating ALT, AST, ALP and the pro-inflammatory cytokines TNF-α and IL-1β levels in rats. Histological analysis showed several alterations, such as inflammatory cells infiltration, hepatocyte vacuolation and dilated sinusoids in the liver of fluoxetine-induced rats. Concurrent supplementation of olive oil and olive leaf extract significantly reduced circulating liver function marker enzymes and pro-inflammatory cytokines, and prevented fluoxetine-induced histological alterations. Both olive oil and leaf extract significantly decreased liver lipid peroxidation and nitric oxide, and ameliorated liver glutathione, superoxide dismutase, catalase and glutathione peroxidase. In addition, olive oil and leaf extract prevented fluoxetine-induced apoptosis in the liver of rats as evidenced by decreased expression of Bax and caspase-3, and up-regulated expression of Bcl-2. In conclusion, olive oil and leaf extract protect against fluoxetine-induced liver injury in rats through attenuation of oxidative stress, inflammation and apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Olive Tree Branches Burning: A major pollution source in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Kostenidou, Evangelia; Kaltsonoudis, Christos; Tsiflikiotou, Maria; Louvaris, Evangelos; Russell, Lynn; Pandis, Spyros

    2013-04-01

    Olive tree branches burning is a common agricultural waste management practice after the annual pruning of olive trees from November to February. Almost 1 billion (90%) of the olive trees in our planet are located around the Mediterranean, so the corresponding emissions of olive tree branches burning can be a significant source of fine aerosols during the cold months. Organic aerosol produced during the burning of olive tree branches (otBB-OA) was characterized with both direct source-sampling (using a mobile smog chamber) and ambient measurements during the burning season in the area of Patras, Greece. The aerosol emitted consists of organics, black carbon (BC), potassium, chloride, nitrate and sulfate. In addition to NOx, O3, CO and CO2, Volatile Organic Compounds (VOCs) such as methanol, acetonitrile, benzene and toluene were also produced. The Aerosol Mass Spectrometry (AMS) mass spectrum of otBB-OA is characterized by the m-z's27, 29, 39, 41, 43, 44, 55, 57, 67, 69 and 91 and changes as the emissions react with OH and O3. Fourier Transform Infrared Spectroscopy (FTIR) analysis showed that otBB-OA was composed of 48% alkane groups, 27% organic hydroxyl groups, 11% carboxylic acid groups, 11% primary amine groups and 4% carbonyl groups. The oxygen to carbon (O:C) ratio is 0.29±0.04. The otBB-OA AMS mass spectrum differs from the other published biomass burning spectra. The m-z60, used as levoglucosan tracer, is lower than in most biomass burning sources. This is confirmed by Gas Chromatography Mass Spectroscopy (GC-MS) analysis on filters where the levoglucosan to OC mass ratio was between 0.034 and 0.043, close to the lower limit of the reported values for most fuel types. This may lead to an underestimation of the otBB-OA contribution in Southern Europe if levoglucosan is being used as a wood burning tracer. During the olive tree branches burning season, 20 days of ambient measurements were performed. Applying positive matrix factorization (PMF) to the

  18. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains.

    PubMed

    Papanikolaou, S; Dimou, A; Fakas, S; Diamantopoulou, P; Philippoussis, A; Galiotou-Panayotou, M; Aggelis, G

    2011-05-01

    In this study, we have investigated the biochemical behaviour of Aspergillus sp. (five strains) and Penicillium expansum (one strain) fungi cultivated on waste cooking olive oil. The production of lipid-rich biomass was the main target of the work. In parallel, the biosynthesis of other extracellular metabolites (organic acids) and enzyme (lipase) and the substrate fatty acid specificity of the strains were studied. Carbon-limited cultures were performed on waste oil, added in the growth medium at 15g l(-1) , and high biomass quantities were produced (up to c.18g l(-1) , conversion yield of c. 1·0 g of dry biomass formed per g of fat consumed or higher). Cellular lipids were accumulated in notable quantities in almost all cultures. Aspergillus sp. ATHUM 3482 accumulated lipid up to 64·0% (w/w) in dry fungal mass. In parallel, extracellular lipase activity was quantified, and it was revealed to be strain and fermentation time dependent, with a maximum quantity of 645 U ml(-1) being obtained by Aspergillus niger NRRL 363. Storage lipid content significantly decreased at the stationary growth phase. Some differences in the fatty acid composition of both cellular and residual lipids when compared with the initial substrate fat used were observed; in various cases, cellular lipids more saturated and enriched with arachidic acid were produced. Aspergillus strains produced oxalic acid up to 5·0 g l(-1) . Aspergillus and Penicillium strains are able to convert waste cooking olive oil into high-added-value products.   Increasing fatty wastes amounts are annually produced. The current study provided an alternative way of biovalourization of these materials, by using them as substrates, to produce added-value compounds. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  19. Antimicrobial olive leaf gelatin films for enhancing the quality of cold smoked salmon

    USDA-ARS?s Scientific Manuscript database

    Olive leaf products were evaluated as antimicrobial/antioxidant ingredients in edible films for smoked fish preservation. Olive leaf powder (OLP) and its water/ethanol extract (OLE) were tested against Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica using agar diffusion test...

  20. 77 FR 55202 - Oliver Hydro LLC; Notice of Application Accepted for Filing and Soliciting Motions To Intervene...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13005-003] Oliver Hydro LLC... filed: December 14, 2011. d. Applicant: Oliver Hydro LLC. e. Name of Project: William Bacon Oliver Lock... according to the following Hydro Licensing Schedule. Revisions to the schedule will be made as appropriate...

  1. Enzymes in Fermented Fish.

    PubMed

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  2. Improvement of stability and carotenoids fraction of virgin olive oils by addition of microalgae Scenedesmus almeriensis extracts.

    PubMed

    Limón, Piedad; Malheiro, Ricardo; Casal, Susana; Acién-Fernández, F Gabriel; Fernández-Sevilla, José M; Rodrigues, Nuno; Cruz, Rebeca; Bermejo, Ruperto; Pereira, José Alberto

    2015-05-15

    Humans are not capable of synthesizing carotenoids de novo and thus, their presence in human tissues is entirely of dietary origin. Consumption of essential carotenoids is reduced due to the lower intake of fruits and vegetables. Microalgae are a good source of carotenoids that can be exploited. In the present work, carotenoids rich extracts from Scenedesmus almeriensis were added to extra-virgin olive oils at different concentrations (0.1 and 0.21 mg/mL) in order to enhance the consumption of these bioactives. Extracts brought changes in olive oils color, turning them orange-reddish. Quality of olive oils was improved, since peroxidation was inhibited. Olive oils fatty acids and tocopherols were not affected. β-carotene and lutein contents increase considerably, as well as oxidative stability, improving olive oils shelf-life and nutritional value. Inclusion of S. almeriensis extracts is a good strategy to improve and enhance the consumption of carotenoids, since olive oil consumption is increasing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Sensory analysis and consumer acceptance of 140 high-quality extra virgin olive oils.

    PubMed

    Valli, Enrico; Bendini, Alessandra; Popp, Martin; Bongartz, Annette

    2014-08-01

    Sensory analysis is a crucial tool for evaluating the quality of extra virgin olive oils. One aim of such an investigation is to verify if the sensory attributes themselves - which are strictly related to volatile and phenolic compounds - may permit the discrimination of high-quality products obtained by olives of different cultivars and/or grown in various regions. Moreover, a crucial topic is to investigate the interdependency between relevant parameters determining consumer acceptance and objective sensory characteristics evaluated by the panel test. By statistically analysing the sensory results, a grouping - but not discriminatory - effect was shown for some cultivars and some producing areas. The preference map shows that the most appreciated samples by consumers were situated in the direction of the 'ripe fruity' and 'sweet' axis and opposite to the 'bitter' and 'other attributes' (pungent, green fruity, freshly cut grass, green tomato, harmony, persistency) axis. Extra virgin olive oils produced from olives of the same cultivars and grown in the same areas shared similar sensorial attributes. Some differences in terms of expectation and interpretation of sensory characteristics of extra virgin olive oils might be present for consumers and panellists: most of the consumers appear unfamiliar with positive sensorial attributes, such as bitterness and pungency. © 2013 Society of Chemical Industry.

  4. Comparative fermentation behaviour and chemical characteristics of Saccharomyces and Zymomonas fermented culled apple juice.

    PubMed

    Sandhu, D K; Joshi, V K

    1994-12-01

    Ethanol production from culled apple juice showed that fermentability of the juice could be enhanced by addition of DAHP or ammonium sulphate in Saccharomyces and DAHP in Zymomonas fermentation. Addition of trace elements inhibited both the fermentations and ethanol, consequently. With respect to by-products of fermentation, no clear advantage of Zymomnas fermentation of culled apple juice could be observed. Differences in physico-chemical characteristics of the fermented apple juice were also noted. Saccharomyces cerevisiae proved to be better than Zymomonas in most of the parameters and is preferrable from handling and spoilage point of view.

  5. Fractions of calcium in the plant-soil system affected by the application of olive oil wastewater.

    PubMed

    Gallardo-Lara, F; Azcón, M; Quesada, J L; Polo, A

    1998-09-01

    A pot experiment using calcareous soil was conducted in a growth chamber to examine the effects of olive oil wastewater applications on Ca fractions in the plant and on exchangeable Ca in soil after plant growth. The experimental treatments consisted of two rates of olive oil wastewater, two mineral fertilizer treatments including K, which supplied K in amounts equivalent to the K supplied by the olive oil wastewater treatments, a mineral fertilizer without K treatment (F), and a control. The pots were sown with ryegrass which was harvested 3 times at monthly intervals. The high rate of olive oil wastewater resulted in a prolonged increases in dry matter production. It also resulted in a reduction in the concentrations of soluble Ca, bound Ca, inorganic insoluble Ca and organic insoluble Ca in the plant shoots relative to the control and the F treatment. The low rate of olive oil wastewater produced similar but less marked effects, with decreases being observed in the soluble Ca and bound Ca fractions. After 3 months of plant growth, soil exchangeable Ca was higher in the control and F treatment soils than in the soils receiving olive oil wastewater or K fertilizer. At this time, there were no significant differences in exchangeable Ca between the soils receiving olive oil wastewater and those treated with K fertilizer.

  6. Pharma-Nutritional Properties of Olive Oil Phenols. Transfer of New Findings to Human Nutrition.

    PubMed

    Crespo, M Carmen; Tomé-Carneiro, Joao; Dávalos, Alberto; Visioli, Francesco

    2018-06-11

    The Mediterranean diet has been long associated with improved cardiovascular prognosis, chemoprevention, and lower incidence of neurodegeneration. Of the multiple components of this diet, olive oil stands out because its use has historically been limited to the Mediterranean basin. The health benefits of olive oil and some of its components are being rapidly decoded. In this paper we review the most recent pharma-nutritional investigations on olive oil biophenols and their health effects, chiefly focusing on recent findings that elucidate their molecular mechanisms of action.

  7. Visible and near-infrared spectral signatures for adulteration assessment of extra virgin olive oil

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Ottevaere, H.; Thienpont, H.; Conte, L.; Marega, M.; Cichelli, A.; Attilio, C.; Cimato, A.

    2010-04-01

    Because of its high price, the extra virgin olive oil is frequently target for adulteration with lower quality oils. This paper presents an innovative optical technique capable of quantifying the adulteration of extra virgin olive oil caused by lowergrade olive oils. It relies on spectral fingerprinting the test liquid by means of diffuse-light absorption spectroscopy carried out by optical fiber technology in the wide 400-1700 nm spectral range. Then, a smart multivariate processing of spectroscopic data is applied for immediate prediction of adulterant concentration.

  8. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    PubMed

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M; Verstrepen, Kevin J

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  9. Award for Distinguished Scientific Early Career Contributions to Psychology: Christian N. L. Olivers

    ERIC Educational Resources Information Center

    American Psychologist, 2009

    2009-01-01

    Christian N. L. Olivers, winner of the Award for Distinguished Scientific Early Career Contributions to Psychology, is cited for outstanding research on visual attention and working memory. Olivers uses classic experimental designs in an innovative and sophisticated way to determine underlying mechanisms. He has formulated important theoretical…

  10. Radiocarbon Dating of an Olive Tree Cross-Section: New Insights on Growth Patterns and Implications for Age Estimation of Olive Trees.

    PubMed

    Ehrlich, Yael; Regev, Lior; Kerem, Zohar; Boaretto, Elisabetta

    2017-01-01

    The age of living massive olive trees is often assumed to be between hundreds and even thousands of years. These estimations are usually based on the girth of the trunk and an extrapolation based on a theoretical annual growth rate. It is difficult to objectively verify these claims, as a monumental tree may not be cut down for analysis of its cross-section. In addition, the inner and oldest part of the trunk in olive trees usually rots, precluding the possibility of carting out radiocarbon analysis of material from the first years of life of the tree. In this work we present a cross-section of an olive tree, previously estimated to be hundreds of years old, which was cut down post-mortem in 2013. The cross-section was radiocarbon dated at numerous points following the natural growth pattern, which was made possible to observe by viewing the entire cross-section. Annual growth rate values were calculated and compared between different radii. The cross-section also revealed a nearly independent segment of growth, which would clearly offset any estimations based solely on girth calculations. Multiple piths were identified, indicating the beginning of branching within the trunk. Different radii were found to have comparable growth rates, resulting in similar estimates dating the piths to the 19th century. The estimated age of the piths represent a terminus ante quem for the age of the tree, as these are piths of separate branches. However, the tree is likely not many years older than the dated piths, and certainly not centuries older. The oldest radiocarbon-datable material in this cross-section was less than 200 years old, which is in agreement with most other radiocarbon dates of internal wood from living olive trees, rarely older than 300 years.

  11. Olive oil-induced reduction of oxidative damage and inflammation promotes wound healing of pressure ulcers in mice.

    PubMed

    Donato-Trancoso, Aline; Monte-Alto-Costa, Andréa; Romana-Souza, Bruna

    2016-07-01

    The overproduction of reactive oxygen species (ROS) and exacerbated inflammatory response are the main events that impair healing of pressure ulcers. Therefore, olive oil may be a good alternative to improve the healing of these chronic lesions due to its anti-inflammatory and antioxidant properties. This study investigated the effect of olive oil administration on wound healing of pressure ulcers in mice. Male Swiss mice were daily treated with olive oil or water until euthanasia. One day after the beginning of treatment, two cycles of ischemia-reperfusion by external application of two magnetic plates were performed in skin to induced pressure ulcer formation. The olive oil administration accelerated ROS and nitric oxide (NO) synthesis and reduced oxidative damage in proteins and lipids when compared to water group. The inflammatory cell infiltration, gene tumor necrosis factor-α (TNF-α) expression and protein neutrophil elastase expression were reduced by olive oil administration when compared to water group. The re-epithelialization and blood vessel number were higher in the olive oil group than in the water group. The olive oil administration accelerated protein expression of TNF-α, active transforming growth factor-β1 and vascular endothelial growth factor-A when compared to water group. The collagen deposition, myofibroblastic differentiation and wound contraction were accelerated by olive oil administration when compared to water group. Olive oil administration improves cutaneous wound healing of pressure ulcers in mice through the acceleration of the ROS and NO synthesis, which reduces oxidative damage and inflammation and promotes dermal reconstruction and wound closure. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Characterization of Olive Oil by Ultrasonic and Physico-chemical Methods

    NASA Astrophysics Data System (ADS)

    Alouache, B.; Khechena, F. K.; Lecheb, F.; Boutkedjirt, T.

    Olive oil excels by its nutritional and medicinal benefits. It can be consumed without any treatment. However, its quality can be altered by inadequate storage conditions or if it is mixed with other kinds of oils. The objective of this work is to demonstrate the ability of ultrasonic methods to characterize and control olive oil quality. By using of a transducer of 2.25 MHz nominal frequency, in pulse echo mode, ultrasonic parameters, such as propagation velocity and attenuation,have been measured for pure olive oil and for its mixtures with sunflower oil at different proportions. Mechanical properties, such as density and viscosity, have also been determined. The results of ultrasonic measurements are consistent with those obtained by physico-chemical methods, such as rancidity degree, acid index, UV specific extinction coefficient and viscosity. They show that the ultrasonic method allows to distinguish between mixtures at different proportions. The study allows concluding that ultrasound techniques can be considered as a useful complement to existing physico-chemical analysis techniques.

  13. Enlargement of cultivated olive fruit reduces the efficiency of the larval olive fruit fly parasitoid Psyttalia concolor

    USDA-ARS?s Scientific Manuscript database

    Cultivated olive fruit are greatly enlarged as a result of domestication. In this study, we examined the effects of fruit size within a cultivar (Sevillano) and across four different-sized cultivars (in order of decreasing size: Sevillano, Ascolano, Manzanillo, and Mission) grown in California on th...

  14. The Major Qualitative Characteristics of Olive (Olea europaea L.) Cultivated in Southwest China.

    PubMed

    Cheng, Zizhang; Zhan, Mingming; Yang, Zeshen; Zumstein, Kristina; Chen, Huaping; Huang, Qianming

    2017-01-01

    Olive trees, originated from Mediterranean, have been cultivated in China for decades and show great adaption to local environment. However, research on this topic is limited. In this study, the major qualitative characteristics and changes of olive grown in southwest China were investigated. The results showed that oil accumulated during fruit development and reached its maximum value when fruit had fully ripened. Phenolic and flavonoid contents increase rapidly in the early growth stage (0-90 DAFB) and then begin to decrease as fruit ripens. Compared with olive from the Mediterranean, olive from China has special characteristics: higher moisture content in the fruit combined with lower percentages of unsaturated fatty acids and oil content. This is due to southwest China's climate which is wetter and cooler compared to the Mediterranean. Our study suggests that southwest China's higher annual rainfall might contribute to higher fruit moisture content while its low temperatures would be conducive to higher unsaturated fatty acid levels in the fruit.

  15. Effect of Temperature on Ultrasonic Signal Propagation for Extra Virgin Olive Oil Adulteration

    NASA Astrophysics Data System (ADS)

    Alias, N. A.; Hamid, S. B. Abdul; Sophian, A.

    2017-11-01

    Fraud cases involving adulteration of extra virgin olive oil has become significant nowadays due to increasing in cost of supply and highlight given the benefit of extra virgin olive oil for human consumption. This paper presents the effects of temperature variation on spectral formed utilising pulse-echo technique of ultrasound signal. Several methods had been introduced to characterize the adulteration of extra virgin olive oil with other fluid sample such as mass chromatography, standard method by ASTM (density test, distillation test and evaporation test) and mass spectrometer. Pulse-echo method of ultrasound being a non-destructive method to be used to analyse the sound wave signal captured by oscilloscope. In this paper, a non-destructive technique utilizing ultrasound to characterize extra virgin olive oil adulteration level will be presented. It can be observed that frequency spectrum of sample with different ratio and variation temperature shows significant percentages different from 30% up to 70% according to temperature variation thus possible to be used for sample characterization.

  16. The Major Qualitative Characteristics of Olive (Olea europaea L.) Cultivated in Southwest China

    PubMed Central

    Cheng, Zizhang; Zhan, Mingming; Yang, Zeshen; Zumstein, Kristina; Chen, Huaping; Huang, Qianming

    2017-01-01

    Olive trees, originated from Mediterranean, have been cultivated in China for decades and show great adaption to local environment. However, research on this topic is limited. In this study, the major qualitative characteristics and changes of olive grown in southwest China were investigated. The results showed that oil accumulated during fruit development and reached its maximum value when fruit had fully ripened. Phenolic and flavonoid contents increase rapidly in the early growth stage (0–90 DAFB) and then begin to decrease as fruit ripens. Compared with olive from the Mediterranean, olive from China has special characteristics: higher moisture content in the fruit combined with lower percentages of unsaturated fatty acids and oil content. This is due to southwest China's climate which is wetter and cooler compared to the Mediterranean. Our study suggests that southwest China's higher annual rainfall might contribute to higher fruit moisture content while its low temperatures would be conducive to higher unsaturated fatty acid levels in the fruit. PMID:28579990

  17. Hydroxytyrosol extracts, olive oil and walnuts as functional components in chicken sausages.

    PubMed

    Nieto, Gema; Martínez, Lorena; Castillo, Julian; Ros, Gaspar

    2017-08-01

    Olive oil, hydroxytyrosol and walnut can be considered ideal Mediterranean ingredients for their high polyphenolic content and healthy properties. Three extracts of hydroxytyrosol obtained using different extraction processes (HXT 1, 2, 3) (50 ppm) were evaluated for use as antioxidants in eight different chicken sausage formulas enriched in polyunsaturated fatty acids (2.5 g 100 g -1 walnut) or using extra virgin olive oil (20 g 100 g -1 ) as fat replacer. Lipid and protein oxidation, colour, emulsion stability, and the microstructure of the resulting chicken sausages were investigated and a sensory analysis was carried out. The sausages with HXT extracts were found to decrease lipid oxidation and to lead to the loss of thiol groups compared with control sausages. Emulsion stability (capacity to hold water and fat) was greater in the sausages containing olive oil and walnut than in control sausages. In contrast, the HXT extracts produced high emulsion instability (increasing cooking losses). Sensory analysis suggested that two of the HXT extracts studied (HXT 2 and HXT 3 ) were unacceptable, while the acceptability of the other was similar to that of the control products. Sausages incorporating HXT showed different structures than control samples or sausages with olive oil, related to the composition of the emulsion. These results suggest the possibility of replacing animal fat by olive oil and walnut in order to produce healthy meat products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Sensory attribute preservation in extra virgin olive oil with addition of oregano essential oil as natural antioxidant.

    PubMed

    Asensio, Claudia M; Nepote, Valeria; Grosso, Nelson R

    2012-09-01

    Four commercial varieties of oregano are farmed in Argentina: "Compacto,"Cordobes,"Criollo," y "Mendocino." Oregano essential oil is known for antioxidant properties. The objective of this study was to evaluate changes in the intensities of positive and negative attributes in extra virgin olive oil with addition of essential oil obtained from the 4 Argentinean oregano types. Oregano essential oil was added into olive oil at 0.05% w/w. The samples were stored in darkness and light exposure during 126 d at room temperature. The intensity ratings of fruity, pungency, bitterness, oregano flavor, and rancid flavor were evaluated every 21 d by a trained sensory panel. In general, samples with addition of oregano essential oil in olive oil exhibited higher and lower intensity ratings of positive and negative attributes, respectively, during storage compared with the control samples. The first 2 principal components explained 72.3% of the variability in the olive oil samples. In general, positive attributes of olive oil were highly associated with the addition of oregano essential oil in darkness, whereas rancid flavor was negatively associated with them. Olive oil with oregano "Cordobes" essential oil was oppositely associated with light exposure treatments and negative attribute (rancid flavor) suggesting better performance as natural antioxidant of this essential oil in olive oil. The result of this study showed that the presence of oregano essential oil, specially "Cordobes" type, preserve sensory quality of extra virgin olive oil prolonging the shelf life of this product. Extra virgin olive oil is highly appreciated for its health benefits, taste, and aroma. These properties are an important aspect in this product quality and need to be preserved. The addition of natural additives instead of synthetic ones covers the present trend in food technology. This research showed that the addition of oregano essential oil preserved the intensity ratings of positive attributes

  19. Evaluation of a Pomegranate Peel Extract as an Alternative Means to Control Olive Anthracnose.

    PubMed

    Pangallo, Sonia; Nicosia, Maria G Li Destri; Agosteo, Giovanni E; Abdelfattah, Ahmed; Romeo, Flora V; Cacciola, Santa O; Rapisarda, Paolo; Schena, Leonardo

    2017-12-01

    Olive anthracnose is caused by different species of Colletotrichum spp. and may be regarded as the most damaging disease of olive fruit worldwide, greatly affecting quality and quantity of the productions. A pomegranate peel extract (PGE) proved very effective in controlling the disease. The extract had a strong in vitro fungicidal activity against Colletotrichum acutatum sensu stricto, was very effective in both preventive and curative trials with artificially inoculated fruit, and induced resistance in treated olive tissues. In field trials, PGE was significantly more effective than copper, which is traditionally used to control the disease. The highest level of protection was achieved by applying the extract in the early ascending phase of the disease outbreaks because natural rots were completely inhibited with PGE at 12 g/liter and were reduced by 98.6 and by 93.0% on plants treated with PGE at 6 and 3 g/liter, respectively. Two treatments carried out 30 and 15 days before the expected epidemic outbreak reduced the incidence of the disease by 77.6, 57.0, and 51.8%, depending on the PGE concentration. The analysis of epiphytic populations showed a strong antimicrobial activity of PGE, which sharply reduced both fungal and bacterial populations. Because PGE was obtained from a natural matrix using safe chemicals and did not have any apparent phytotoxic effect on treated olive fruit, it may be regarded as a safe and effective natural antifungal preparation to control olive anthracnose and improve olive productions.

  20. Cucumber fermentation

    USDA-ARS?s Scientific Manuscript database

    Humans have consumed fermented cucumber products since before the dawn of civilization. Although cucumber fermentation remains largely a traditional process, it has proven to be a consistently safe process by which raw cucumbers are transformed into high quality pickles that have a long shelf-life ...

  1. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized withmore » ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and

  2. Manduca rustica (Lepidoptera: Sphingidae) damage on olive (Olea europaea;Lamiales:Oleaceae)trees in Florida

    USDA-ARS?s Scientific Manuscript database

    The rustic sphinx, Manduca rustica has been identified as an occasional pest for olive, Olea europaea, in Florida. This pest’s distribution spans Florida’s olive growing region from the northern panhandle as far south as Polk County....

  3. Evaluation of pathogenicity and insect transmission of Xylella fastidiosa strains to olive plants

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa (Xf) is a xylem-limited bacterium that causes disease in a number of economically important crops in California and worldwide. Newly observed scorching symptoms in olive trees may be due to Xf infection. If true, “olive leaf scorch disease” (OLSD) would represent a new threat to...

  4. Leaf biochemical responses and fruit oil quality parameters in olive plants subjected to airborne metal pollution.

    PubMed

    Fourati, Radhia; Scopa, Antonio; Ben Ahmed, Chedlia; Ben Abdallah, Ferjani; Terzano, Roberto; Gattullo, Concetta Eliana; Allegretta, Ignazio; Galgano, Fernanda; Caruso, Marisa Carmela; Sofo, Adriano

    2017-02-01

    This study was carried out in two olive orchards (Olea europaea L., cv. Chemlali) located in a polluted area near a fertilizers factory and in a control unpolluted site, managed with similar cultivation techniques. The aim was to investigate the physiological and biochemical responses of polluted plants (PP), exposed to atmospheric metal contamination (Cd, Cu, Fe, Mn, Ni and Pb) as compared to control plants (CP). Leaves, roots and fruits of PP showed a depression of their non-enzymatic and enzymatic antioxidant defences and a disruption of their hormonal homeostasis. The anomalous physiological status of PP was also demonstrated by the lower values of pigments in leaves and fruits, as compared to CP. Atmospheric metals negatively affected olive oil chemical and sensory quality. However, despite metal deposition on fruit surfaces, the accumulation of potentially toxic metals in olive oil was negligible. Considering that olive oil is an important food product worldwide and that many productive olive orchards are exposed to several sources of pollution, this work could contribute to clarify the effects of atmospheric metal pollution on olive oil quality and its potential toxicity for humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Development and Validation of a Mathematical Model for Olive Oil Oxidation

    NASA Astrophysics Data System (ADS)

    Rahmouni, K.; Bouhafa, H.; Hamdi, S.

    2009-03-01

    A mathematical model describing the stability or the susceptibility to oxidation of extra virgin olive oil has been developed. The model has been resolved by an iterative method using differential finite method. It was validated by experimental data of extra virgin olive oil (EVOO) oxidation. EVOO stability was tested by using a Rancimat at four different temperatures 60, 70, 80 and 90° C until peroxide accumulation reached 20 [meq/kg]. Peroxide formation is speed relatively slow; fits zero order reaction with linear regression coefficients varying from 0, 98 to 0, 99. The mathematical model was used to predict the shelf life of bulk conditioned olive oil. This model described peroxide accumulation inside a container in excess of oxygen as a function of time at various positions from the interface air/oil. Good correlations were obtained between theoretical and experimental values.

  6. Fermentation performance optimization in an ectopic fermentation system.

    PubMed

    Yang, Xiaotong; Geng, Bing; Zhu, Changxiong; Li, Hongna; He, Buwei; Guo, Hui

    2018-07-01

    Ectopic fermentation systems (EFSs) were developed for wastewater treatment. Previous studies have investigated the ability of thermophilic bacteria to improve fermentation performance in EFS. Continuing this research, we evaluated EFS performance using principle component analysis and investigated the addition of different proportions of cow dung. Viable bacteria communities were clustered and identified using BOX-AIR-based repetitive extragenic palindromic-PCR and 16S rDNA analysis. The results revealed optimal conditions for the padding were maize straw inoculated with thermophilic bacteria. Adding 20% cow dung yielded the best pH values (6.94-8.56), higher temperatures, increased wastewater absorption, improved litter quality, and greater microbial quantities. The viable bacteria groups were enriched by the addition of thermophilic consortium, and exogenous strains G21, G14, G4-1, and CR-15 were detected in fermentation process. The proportion of Bacillus species in treatment groups reached 70.37% after fermentation, demonstrating that thermophilic bacteria, especially Bacillus, have an important role in EFS, supporting previous predictions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. High Cell Density Process for Constitutive Production of a Recombinant Phytase in Thermotolerant Methylotrophic Yeast Ogataea thermomethanolica Using Table Sugar as Carbon Source.

    PubMed

    Charoenrat, Theppanya; Antimanon, Sompot; Kocharin, Kanokarn; Tanapongpipat, Sutipa; Roongsawang, Niran

    2016-12-01

    The yeast Ogataea thermomethanolica has recently emerged as a potential host for heterologous protein expression at elevated temperature. To evaluate the feasibility of O. thermomethanolica as heterologous host in large-scale fermentation, constitutive production of fungal phytase was investigated in fed-batch fermentation. The effect of different temperatures, substrate feeding strategies, and carbon sources on phytase production was investigated. It was found that O. thermomethanolica can grow in the temperature up to 40 °C and optimal at 34 °C. However, the maximum phytase production was observed at 30 °C and slightly decreased at 34 °C. The DOT stat control was the most efficient feeding strategy to obtain high cell density and avoid by-product formation. The table sugar can be used as an alternative substrate for phytase production in O. thermomethanolica. The highest phytase activity (134 U/mL) was obtained from table sugar at 34 °C which was 20-fold higher than batch culture (5.7 U/mL). At a higher cultivation temperature of 38 °C, table sugar can be used as a low-cost substrate for the production of phytase which was expressed with an acceptable yield (85 U/mL). Lastly, the results from this study reveal the industrial favorable benefits of employing O. thermomethanolica as a host for heterologous protein production.

  8. What Fermenter?

    ERIC Educational Resources Information Center

    Terry, John

    1987-01-01

    Discusses the feasibility of using fermenters in secondary school laboratories. Includes discussions of equipment, safety, and computer interfacing. Describes how a simple fermenter could be used to simulate large-scale processes. Concludes that, although teachers and technicians will require additional training, the prospects for biotechnology in…

  9. Indaziflam adsorption in soils amended with olive cake and olive cake biochar: Effect of dose and temperature

    USDA-ARS?s Scientific Manuscript database

    Indaziflam has been approved by the USEPA for weed control in residential and commercial areas, golf courses, and nurseries. Recently, the use has been expanded to citrus, walnuts and olives, among other crops. According to the USEPA, indaziflam is a herbicide that can be mobile in soils, leaching ...

  10. Fermentation performance of lager yeast in high gravity beer fermentations with different sugar supplementations.

    PubMed

    Lei, Hongjie; Xu, Huaide; Feng, Li; Yu, Zhimin; Zhao, Haifeng; Zhao, Mouming

    2016-11-01

    The effects of glucose, sucrose and maltose supplementations on the fermentation performance and stress tolerance of lager yeast (Saccharomyces pastorianus) during high gravity (18°P) and very high gravity (24°P) fermentations were studied. Results showed that throughout 18°P wort fermentation, fermentation performance of lager yeast was significantly improved by glucose or sucrose supplementation, compared with maltose supplementation, especially for sucrose supplementation increasing wort fermentability and ethanol production by 6% and 8%, respectively. However, in the later stage of 24°P wort fermentation, fermentation performance of lager yeast was dramatically improved by maltose supplementation, which increased wort fermentability and ethanol production by 14% and 10%, respectively, compared with sucrose supplementation. Furthermore, higher HSP12 expression level and more intracellular trehalose accumulation in yeast cells were observed by maltose supplementation with increase of the wort gravity from 18°P to 24°P, indicating higher stress response of yeast cells. The excretion of Gly and Ala, and the absorption of Pro in the later stage of fermentation were promoted by maltose supplementation. In addition, with increase of the wort gravity from 18°P to 24°P, higher alcohols level was decreased with maltose supplementation, while esters formation was increased significantly with glucose supplementation. This study suggested that the choice of optimal fermentable sugars maintaining better fermentation performance of lager yeast should be based on not only strain specificity, but also wort gravity. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Effects of olive oil wastes on river basins and an oligotrophic coastal marine ecosystem: a case study in Greece.

    PubMed

    Pavlidou, A; Anastasopoulou, E; Dassenakis, Μ; Hatzianestis, I; Paraskevopoulou, V; Simboura, N; Rousselaki, E; Drakopoulou, P

    2014-11-01

    This work aims to contribute to the knowledge of the impacts of olive oil waste discharge to freshwater and oligotrophic marine environments, since the ecological impact of olive oil wastes in riverine and coastal marine ecosystems, which are the final repositories of the pollutants, is a great environmental problem on a global scale, mostly concerning all the Mediterranean countries with olive oil production. Messinia, in southwestern Greece, is one of the greatest olive oil production areas in Europe. During the last decade around 1.4×10(6)tons of olive oil mill wastewater has been disposed in the rivers of Messinia and finally entered the marine ecosystem of Messiniakos gulf. The pollution from olive oil mill wastewater in the main rivers of Messinia and the oligotrophic coastal zone of Messiniakos gulf and its effects on marine organisms were evaluated, before, during and after the olive oil production period. Elevated amounts of phenols (36.2-178 mg L(-1)) and high concentrations of ammonium (7.29-18.9 mmol L(-1)) and inorganic phosphorus (0.5-7.48 mmol L(-1)) were measured in small streams where the liquid disposals from several olive oil industries were gathered before their discharge in the major rivers of Messinia. The large number of olive oil units has downgraded the riverine and marine ecosystems during the productive period and a period more than five months is needed for the recovery of the ecosystem. Statistical analysis showed that the enrichment of freshwater and the coastal zone of Messiniakos gulf in ammonia, nitrite, phenols, total organic carbon, copper, manganese and nickel was directly correlated with the wastes from olive oil. Toxicity tests using 24h LC50 Palaemonidae shrimp confirm that olive mill wastewater possesses very high toxicity in the aquatic environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Phenolic content and antioxidant activity of olive by-products and antioxidant film containing olive leaf extract.

    PubMed

    Moudache, M; Colon, M; Nerín, C; Zaidi, F

    2016-12-01

    The antioxidant activity of olive leaf (OL) and cake (OC) extracts with different solvents was evaluated. 70% of aqueous ethanol extract of OL was chosen as the most antioxidant extract based on antiradical activity (DPPH) (95.4±0.3%) and oxygen radical absorbance capacity (ORAC) (0.82±0.07g equivalent Trolox per g of solution) assays. This OL extract was incorporated in two multilayer materials consisting of (i) polyethylene/polyethylene (PE/PE) film and (ii) polyethylene/paper (PE/P). These multilayers were exposed to a gas stream enriched in free radicals to evaluate the scavenging capacity of both materials. PE/PE film exhibited the highest scavenging activity of free radicals (78.8%). Migration of the phenolic compounds from olive by-products into two simulants was performed and demonstrated a non-migrating behavior. The limits of detection and quantification for oleuropein were 0.5μgkg(-1) and 1.7μgkg(-1) and for Luteolin-7-O-glucoside 1.3μgkg(-1) and 4.3μg kg(-1) respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Olive oil intake and CHD in the European Prospective Investigation into Cancer and Nutrition Spanish cohort.

    PubMed

    Buckland, Genevieve; Travier, Noemie; Barricarte, Aurelio; Ardanaz, Eva; Moreno-Iribas, Conchi; Sánchez, María-José; Molina-Montes, Esther; Chirlaque, María Dolores; Huerta, José María; Navarro, Carmen; Redondo, Maria Luisa; Amiano, Pilar; Dorronsoro, Miren; Larrañaga, Nerea; Gonzalez, Carlos A

    2012-12-14

    Olive oil is well known for its cardioprotective properties; however, epidemiological data showing that olive oil consumption reduces incident CHD events are still limited. Therefore, we studied the association between olive oil and CHD in the European Prospective Investigation into Cancer and Nutrition (EPIC) Spanish cohort study. The analysis included 40 142 participants (38 % male), free of CHD events at baseline, recruited from five EPIC-Spain centres from 1992 to 1996 and followed up until 2004. Baseline dietary and lifestyle information was collected using interview-administered questionnaires. Cox proportional regression models were used to assess the relationship between validated incident CHD events and olive oil intake (energy-adjusted quartiles and each 10 g/d per 8368 kJ (2000 kcal) increment), while adjusting for potential confounders. During a 10·4-year follow-up, 587 (79 % male) CHD events were recorded. Olive oil intake was negatively associated with CHD risk after excluding dietary mis-reporters (hazard ratio (HR) 0·93; 95 % CI 0·87, 1·00 for each 10 g/d per 8368 kJ (2000 kcal) and HR 0·78; 95 % CI 0·59, 1·03 for upper v. lower quartile). The inverse association between olive oil intake (per 10 g/d per 8368 kJ (2000 kcal)) and CHD was more pronounced in never smokers (11 % reduced CHD risk (P = 0·048)), in never/low alcohol drinkers (25 % reduced CHD risk (P < 0·001)) and in virgin olive oil consumers (14 % reduced CHD risk (P = 0·072)). In conclusion, olive oil consumption was related to a reduced risk of incident CHD events. This emphasises the need to conserve the traditional culinary use of olive oil within the Mediterranean diet to reduce the CHD burden.

  14. Health benefits of fermented foods.

    PubMed

    Şanlier, Nevin; Gökcen, Büşra Başar; Sezgin, Aybüke Ceyhun

    2017-09-25

    In the past, the beneficial effects of fermented foods on health were unknown, and so people primarily used fermentation to preserve foods, enhance shelf life, and improve flavour. Fermented foods became an important part of the diet in many cultures, and over time fermentation has been associated with many health benefits. Because of this, the fermentation process and the resulting fermented products have recently attracted scientific interest. In addition, microorganisms contributing to the fermentation process have recently been associated with many health benefits, and so these microorganisms have become another focus of attention. Lactic acid bacteria (LAB) have been some of the most studied microorganisms. During fermentation, these bacteria synthesize vitamins and minerals, produce biologically active peptides with enzymes such as proteinase and peptidase, and remove some non-nutrients. Compounds known as biologically active peptides, which are produced by the bacteria responsible for fermentation, are also well known for their health benefits. Among these peptides, conjugated linoleic acids (CLA) have a blood pressure lowering effect, exopolysaccharides exhibit prebiotic properties, bacteriocins show anti-microbial effects, sphingolipids have anti-carcinogenic and anti-microbial properties, and bioactive peptides exhibit anti-oxidant, anti-microbial, opioid antagonist, anti-allergenic, and blood pressure lowering effects. As a result, fermented foods provide many health benefits such as anti-oxidant, anti-microbial, anti-fungal, anti-inflammatory, anti-diabetic and anti-atherosclerotic activity. However, some studies have shown no relationship between fermented foods and health benefits. Therefore, this paper aims to investigate the health effects of fermented foods.

  15. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil.

    PubMed

    Terés, S; Barceló-Coblijn, G; Benet, M; Alvarez, R; Bressani, R; Halver, J E; Escribá, P V

    2008-09-16

    Numerous studies have shown that high olive oil intake reduces blood pressure (BP). These positive effects of olive oil have frequently been ascribed to its minor components, such as alpha-tocopherol, polyphenols, and other phenolic compounds that are not present in other oils. However, in this study we demonstrate that the hypotensive effect of olive oil is caused by its high oleic acid (OA) content (approximately 70-80%). We propose that olive oil intake increases OA levels in membranes, which regulates membrane lipid structure (H(II) phase propensity) in such a way as to control G protein-mediated signaling, causing a reduction in BP. This effect is in part caused by its regulatory action on G protein-associated cascades that regulate adenylyl cyclase and phospholipase C. In turn, the OA analogues, elaidic and stearic acids, had no hypotensive activity, indicating that the molecular mechanisms that link membrane lipid structure and BP regulation are very specific. Similarly, soybean oil (with low OA content) did not reduce BP. This study demonstrates that olive oil induces its hypotensive effects through the action of OA.

  16. Role of fermented beverages in the maintenance of weight loss

    PubMed

    Monereo Megías, Susana; Arnoriaga Rodríguez, María; Olmedilla Ishishi, Yoko Lucía; Martínez de Icaya, Purificación

    2016-07-12

    Obesity is a very prevalent disease with multiple chronic complications that decrease or disappear after a small (5-10%) but maintained weight loss. Nevertheless, maintaining weight loss after the treatment is very difficult and it involves one of the biggest challenges to control this epidemic. Although the reasons that contribute to regain the lost weight are diverse and related to the biological response to caloric restriction and the lack of adherence to treatment, up to 20% of the patients are able to keep it off. The keys to success, involve the maintenance of healthy habits, exercise and a reasonable daily calorie intake to allow a normal way of life, without sacrificing the social life. At this point, learning to distinguish food and drink options in a society where social life often revolves around the table is very important. We review the keys to keep the weight off after a diet as well as the role of fermented beverages such as beer, in this process. In conclusion, maintenance the weight loss is harder than losing it. The mild-to-moderate consumption of fermented beverages such as beer is not associated with weight increase.

  17. Fate and Prediction of Phenolic Secoiridoid Compounds throughout the Different Stages of the Virgin Olive Oil Making Process

    PubMed Central

    2017-01-01

    The evolution of the main phenolic secoiridoid compounds throughout the different stages of the virgin olive oil making process—crushing, malaxation and liquid-solid separation—is studied here, with the goal of making possible the prediction of the partition and transformation that take place in the different steps of the process. The concentration of hydroxytyrosol secoiridoids produced under the different crushing conditions studied are reasonably proportional to the intensity of the milling stage, and strongly depend on the olive variety processed. During malaxation, the content of the main phenolic secoiridoids is reduced, especially in the case of the hydroxytyrosol derivatives, in which a variety-dependent behaviour is observed. The prediction of the concentration of phenolic secoiridoids finally transferred from the kneaded paste to the virgin olive oil is also feasible, and depends on the phenolic content and amount of water in the olive paste. The determination of the phenolic compounds in the olive fruit, olive paste and olive oil has been carried out by LC-MS (Liquid-Chromatography Mass-Spectrometry). This improved knowledge could help in the use of more adequate processing conditions for the production of virgin olive oil with desired properties; for example, higher or lower phenolic content, as the amount of these minor components is directly related to its sensory, antioxidant and healthy properties. PMID:28771173

  18. Fate and Prediction of Phenolic Secoiridoid Compounds throughout the Different Stages of the Virgin Olive Oil Making Process.

    PubMed

    Fregapane, Giuseppe; Salvador, M Desamparados

    2017-08-03

    The evolution of the main phenolic secoiridoid compounds throughout the different stages of the virgin olive oil making process-crushing, malaxation and liquid-solid separation-is studied here, with the goal of making possible the prediction of the partition and transformation that take place in the different steps of the process. The concentration of hydroxytyrosol secoiridoids produced under the different crushing conditions studied are reasonably proportional to the intensity of the milling stage, and strongly depend on the olive variety processed. During malaxation, the content of the main phenolic secoiridoids is reduced, especially in the case of the hydroxytyrosol derivatives, in which a variety-dependent behaviour is observed. The prediction of the concentration of phenolic secoiridoids finally transferred from the kneaded paste to the virgin olive oil is also feasible, and depends on the phenolic content and amount of water in the olive paste. The determination of the phenolic compounds in the olive fruit, olive paste and olive oil has been carried out by LC-MS (Liquid-Chromatography Mass-Spectrometry). This improved knowledge could help in the use of more adequate processing conditions for the production of virgin olive oil with desired properties; for example, higher or lower phenolic content, as the amount of these minor components is directly related to its sensory, antioxidant and healthy properties.

  19. Glycerol Production by Fermenting Yeast Cells Is Essential for Optimal Bread Dough Fermentation

    PubMed Central

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M.; Verstrepen, Kevin J.

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts. PMID:25764309

  20. Genome of wild olive and the evolution of oil biosynthesis.

    PubMed

    Unver, Turgay; Wu, Zhangyan; Sterck, Lieven; Turktas, Mine; Lohaus, Rolf; Li, Zhen; Yang, Ming; He, Lijuan; Deng, Tianquan; Escalante, Francisco Javier; Llorens, Carlos; Roig, Francisco J; Parmaksiz, Iskender; Dundar, Ekrem; Xie, Fuliang; Zhang, Baohong; Ipek, Arif; Uranbey, Serkan; Erayman, Mustafa; Ilhan, Emre; Badad, Oussama; Ghazal, Hassan; Lightfoot, David A; Kasarla, Pavan; Colantonio, Vincent; Tombuloglu, Huseyin; Hernandez, Pilar; Mete, Nurengin; Cetin, Oznur; Van Montagu, Marc; Yang, Huanming; Gao, Qiang; Dorado, Gabriel; Van de Peer, Yves

    2017-10-31

    Here we present the genome sequence and annotation of the wild olive tree ( Olea europaea var. sylvestris ), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2 , SACPD, EAR , and ACPTE , following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2 , 3 , 5 , and 7 , consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.

  1. Genome of wild olive and the evolution of oil biosynthesis

    PubMed Central

    Unver, Turgay; Wu, Zhangyan; Sterck, Lieven; Turktas, Mine; Lohaus, Rolf; Li, Zhen; Yang, Ming; He, Lijuan; Deng, Tianquan; Escalante, Francisco Javier; Llorens, Carlos; Roig, Francisco J.; Parmaksiz, Iskender; Dundar, Ekrem; Xie, Fuliang; Zhang, Baohong; Ipek, Arif; Uranbey, Serkan; Erayman, Mustafa; Ilhan, Emre; Badad, Oussama; Ghazal, Hassan; Lightfoot, David A.; Kasarla, Pavan; Colantonio, Vincent; Tombuloglu, Huseyin; Hernandez, Pilar; Mete, Nurengin; Cetin, Oznur; Van Montagu, Marc; Yang, Huanming; Gao, Qiang; Dorado, Gabriel; Van de Peer, Yves

    2017-01-01

    Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics. PMID:29078332

  2. Levels of bioactive lipids in cooking oils: olive oil is the richest source of oleoyl serine.

    PubMed

    Bradshaw, Heather B; Leishman, Emma

    2016-05-01

    Rates of osteoporosis are significantly lower in regions of the world where olive oil consumption is a dietary cornerstone. Olive oil may represent a source of oleoyl serine (OS), which showed efficacy in animal models of osteoporosis. Here, we tested the hypothesis that OS as well as structurally analogous N-acyl amide and 2-acyl glycerol lipids are present in the following cooking oils: olive, walnut, canola, high heat canola, peanut, safflower, sesame, toasted sesame, grape seed, and smart balance omega. Methanolic lipid extracts from each of the cooking oils were partially purified on C-18 solid-phase extraction columns. Extracts were analyzed with high-performance liquid chromatography-tandem mass spectrometry, and 33 lipids were measured in each sample, including OS and bioactive analogs. Of the oils screened here, walnut oil had the highest number of lipids detected (22/33). Olive oil had the second highest number of lipids detected (20/33), whereas grape-seed and high-heat canola oil were tied for lowest number of detected lipids (6/33). OS was detected in 8 of the 10 oils tested and the levels were highest in olive oil, suggesting that there is something about the olive plant that enriches this lipid. Cooking oils contain varying levels of bioactive lipids from the N-acyl amide and 2-acyl glycerol families. Olive oil is a dietary source of OS, which may contribute to lowered prevalence of osteoporosis in countries with high consumption of this oil.

  3. Characterization of a Colletotrichum population causing anthracnose disease on Olive in northern Tunisia.

    PubMed

    Chattaoui, M; Raya, M C; Bouri, M; Moral, J; Perez-Rodriguez, M; Trapero, A; Msallem, M; Rhouma, A

    2016-05-01

    To phenotypically, physiologically and molecularly characterize the causal agent of olive anthracnose in the northern Tunisia and to study its genetic variability and pathogenicity. A total of 43 isolates were obtained from symptomatic olives collected from four regions in northern Tunisia. A range of morphological and physiological characteristics was recorded; and a phylogenetic study, based on the sequence analysis of both internal transcribed spacers and TUB2 gene regions, was performed. Of the 43 isolates, 41 were identified as Colletotrichum acutatum s.s, and only two were affiliated to Colletotrichum gloeosporioides s.s. Two more representative Spanish isolates, included for comparison, were identified as Colletotrichum godetiae. Using six inter-simple-sequence-repeat markers, homogeneity between isolates from different locations and within the same species was recorded. In pathogenicity and virulence studies, C. gloeosporioides s.s was found to be less virulent, while the Spanish C. godetiae isolate was significantly more virulent than the Tunisian C. acutatum s.s. Olive anthracnose in the North of Tunisia is mainly caused by C. acutatum s.s species. This is the first study of olive anthracnose in Tunisia, which combines both phenotypic and molecular approaches. Colletotrichum acutatum s.s group was recorded for the first time in the country as the causal agent of olive anthracnose. © 2016 The Society for Applied Microbiology.

  4. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater

    PubMed Central

    Elkacmi, Reda; Kamil, Noureddine; Bennajah, Mounir; Kitane, Said

    2016-01-01

    The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country's climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification. PMID:26933663

  5. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater.

    PubMed

    Elkacmi, Reda; Kamil, Noureddine; Bennajah, Mounir; Kitane, Said

    2016-01-01

    The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country's climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification.

  6. Autumn olive (Elaeagnus umbellata) presence and proliferation on former surface coal mines in Eastern USA

    USGS Publications Warehouse

    Oliphant, Adam J.; Wynne, R.H.; Zipper, Carl E.; Ford, W. Mark; Donovan, P. F.; Li, Jing

    2017-01-01

    Invasive plants threaten native plant communities. Surface coal mines in the Appalachian Mountains are among the most disturbed landscapes in North America, but information about land cover characteristics of Appalachian mined lands is lacking. The invasive shrub autumn olive (Elaeagnus umbellata) occurs on these sites and interferes with ecosystem recovery by outcompeting native trees, thus inhibiting re-establishment of the native woody-plant community. We analyzed Landsat 8 satellite imagery to describe autumn olive’s distribution on post-mined lands in southwestern Virginia within the Appalachian coalfield. Eight images from April 2013 through January 2015 served as input data. Calibration and validation data obtained from high-resolution aerial imagery were used to develop a land cover classification model that identified areas where autumn olive was a primary component of land cover. Results indicate that autumn olive cover was sufficiently dense to enable detection on approximately 12.6 % of post-mined lands within the study area. The classified map had user’s and producer’s accuracies of 85.3 and 78.6 %, respectively, for the autumn olive coverage class. Overall accuracy was assessed in reference to an independent validation dataset at 96.8 %. Autumn olive was detected more frequently on mines disturbed prior to 2003, the last year of known plantings, than on lands disturbed by more recent mining. These results indicate that autumn olive growing on reclaimed coal mines in Virginia and elsewhere in eastern USA can be mapped using Landsat 8 Operational Land Imager imagery; and that autumn olive occurrence is a significant landscape vegetation feature on former surface coal mines in the southwestern Virginia segment of the Appalachian coalfield.

  7. Biological effects of the olive polyphenol, hydroxytyrosol: An extra view from genome-wide transcriptome analysis.

    PubMed

    Nan, Jia Nancy; Ververis, Katherine; Bollu, Sameera; Rodd, Annabelle L; Swarup, Oshi; Karagiannis, Tom C

    2014-01-01

    Epidemiological and clinical studies have established the health benefits of the Mediterranean diet, an important component of which are olives and olive oil derived from the olive tree (Olea Europea). It is now well-established that not only the major fatty acid constituents, but also the minor phenolic components, in olives and olive oil have important health benefits. Emerging research over the past decade has highlighted the beneficial effects of a range of phenolic compounds from olives and olive oil, particularly for cardiovascular diseases, metabolic syndrome and inflammatory conditions. Mechanisms of action include potent antioxidant and anti-inflammatory effects. Further, accumulating evidence indicates the potential of the polyphenols and potent antioxidants, hydroxytyrosol and oleuropein in oncology. Numerous studies, both in vitro and in vivo, have demonstrated the anticancer effects of hydroxytyrosol which include chemopreventive and cell-specific cytotoxic and apoptotic effects. Indeed, the precise molecular mechanisms accounting for the antioxidant, anti-inflammatory and anticancer properties are now becoming clear and this is, at least in part, due to high through-put gene transcription profiling. Initially, we constructed phylogenetic trees to visualize the evolutionary relationship of members of the Oleaceae family and secondly, between plants producing hydroxytyrosol to make inferences of potential similarities or differences in their medicinal properties and to identify novel plant candidates for the treatment and prevention of disease. Furthermore, given the recent interest in hydroxytyrosol as a potential anticancer agent and chemopreventative we utilized transcriptome analysis in the erythroleukemic cell line K562, to investigate the effects of hydroxytyrosol on three gene pathways: the complement system, The Warburg effect and chromatin remodeling to ascertain relevant gene candidates in the prevention of cancer.

  8. Prediction of olive quality using FT-NIR spectroscopy in reflectance and transmittance modes

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to use FT-NIR spectroscopy to predict the firmness, oil content and color of two olive (Olea europaea L) varieties (‘Ayvalik’ and ‘Gemlik’). Spectral measurements were performed on the intact olives for the wavelengths of 780-2500 nm in reflectance and for 800-1725...

  9. Olive oil increases the magnitude of postprandial chylomicron remnants compared to milk fat and safflower oil.

    PubMed

    Higashi, K; Ishikawa, T; Shige, H; Tomiyasu, K; Yoshida, H; Ito, T; Nakajima, K; Yonemura, A; Sawada, S; Nakamura, H

    1997-10-01

    The acute effects of olive oil, milk fat and safflower oil on postprandial lipemia and remnant lipoprotein metabolism were investigated. Eight Healthy male volunteers randomly underwent three types of oral fat-vitamin A loading tests. The test drink was a mixture of retinyl palmitate (RP)(50,000 IU of aqueous vitamin A/m2 body surface area) and one of the three types of oils (40 g of fat/m2 body surface area): olive oil (70.7% oleic acid of total fatty acids); milk fat (69.3% saturated fatty acid); safflower oil (74.2% linoleic acid). Olive oil significantly increased plasma triacylglycerol and RP concentrations 4 hours after fat loading, as compared to other fats. Increases of remnant like particle concentrations were higher after olive oil than after the other two fats. These results show that olive oil increases the magnitude of postprandial chylomicrons and chylomicron remnants compared to milk fat and safflower oil.

  10. Identification and Characterization of the Iridoid Synthase Involved in Oleuropein Biosynthesis in Olive (Olea europaea) Fruits*

    PubMed Central

    Kries, Hajo; Panara, Francesco; Baldoni, Luciana; O'Connor, Sarah E.; Osbourn, Anne

    2016-01-01

    The secoiridoids are the main class of specialized metabolites present in olive (Olea europaea L.) fruit. In particular, the secoiridoid oleuropein strongly influences olive oil quality because of its bitterness, which is a desirable trait. In addition, oleuropein possesses a wide range of pharmacological properties, including antioxidant, anti-inflammatory, and anti-cancer activities. In accordance, obtaining high oleuropein varieties is a main goal of molecular breeding programs. Here we use a transcriptomic approach to identify candidate genes belonging to the secoiridoid pathway in olive. From these candidates, we have functionally characterized the olive homologue of iridoid synthase (OeISY), an unusual terpene cyclase that couples an NAD (P)H-dependent 1,4-reduction step with a subsequent cyclization, and we provide evidence that OeISY likely generates the monoterpene scaffold of oleuropein in olive fruits. OeISY, the first pathway gene characterized for this type of secoiridoid, is a potential target for breeding programs in a high value secoiridoid-accumulating species. PMID:26709230

  11. Olive oil pilot-production assisted by pulsed electric field: impact on extraction yield, chemical parameters and sensory properties.

    PubMed

    Puértolas, Eduardo; Martínez de Marañón, Iñigo

    2015-01-15

    The impact of the use of pulsed electric field (PEF) technology on Arroniz olive oil production in terms of extraction yield and chemical and sensory quality has been studied at pilot scale in an industrial oil mill. The application of a PEF treatment (2 kV/cm; 11.25 kJ/kg) to the olive paste significantly increased the extraction yield by 13.3%, with respect to a control. Furthermore, olive oil obtained by PEF showed total phenolic content, total phytosterols and total tocopherols significantly higher than control (11.5%, 9.9% and 15.0%, respectively). The use of PEF had no negative effects on general chemical and sensory characteristics of the olive oil, maintaining the highest quality according to EU legal standards (EVOO; extra virgin olive oil). Therefore, PEF could be an appropriate technology to improve olive oil yield and produce EVOO enriched in human-health-related compounds, such as polyphenols, phytosterols and tocopherols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Extra virgin olive oil consumption reduces the risk of osteoporotic fractures in the PREDIMED trial.

    PubMed

    García-Gavilán, J F; Bulló, M; Canudas, S; Martínez-González, M A; Estruch, R; Giardina, S; Fitó, M; Corella, D; Ros, E; Salas-Salvadó, J

    2018-02-01

    The incidence of osteoporotic fractures is lower in countries in the Mediterranean basin. Virgin olive oil, a key component of the Mediterranean Diet (MDiet), with recognised beneficial effects on metabolism and cardiovascular health, may decrease the risk of osteoporotic fractures. The aim to this study was to explore the effect of chronic consumption of total olive oil and its varieties on the risk of osteoporosis-related fractures in a middle-aged and elderly Mediterranean population. We included all participants (n = 870) recruited in the Reus (Spain) centre of the PREvención con DIeta MEDiterránea (PREDIMED) trial. Individuals, aged 55-80 years at high cardiovascular risk, were randomized to a MedDiet supplemented with extra-virgin olive oil, a MedDiet supplemented with nuts, or a low-fat diet. The present analysis was an observational cohort study nested in the trial. A validated food frequency questionnaire was used to assess dietary habits and olive oil consumption. Information on total osteoporotic fractures was obtained from a systematic review of medical records. The association between yearly repeated measurements of olive oil consumption and fracture risk was assessed by multivariate Cox proportional hazards. We documented 114 incident cases of osteoporosis-related fractures during a median follow-up of 8.9 years. Treatment allocation had no effect on fracture risk. Participants in the highest tertile of extra-virgin olive oil consumption had a 51% lower risk of fractures (HR:0.49; 95% CI:0.29-0.81. P for trend = 0.004) compared to those in the lowest tertile after adjusting for potential confounders. Total and common olive oil consumption was not associated with fracture risk. Higher consumption of extra-virgin olive oil is associated with a lower risk of osteoporosis-related fractures in middle-aged and elderly Mediterranean population at high cardiovascular risk. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and

  13. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers

    PubMed Central

    Ponti, Luigi; Gutierrez, Andrew Paul; Ruti, Paolo Michele; Dell’Aquila, Alessandro

    2014-01-01

    The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests. PMID:24706833

  14. Plant-parasitic nematodes associated with olive tree (Olea europaea L.) with a focus on the Mediterranean Basin: a review.

    PubMed

    Ali, Nadine; Chapuis, Elodie; Tavoillot, Johannes; Mateille, Thierry

    2014-01-01

    The olive tree (Olea europaea ssp. europaea.) is one of the most ancient cultivated trees. It is an emblematic species owing to its ecological, economic and cultural importance, especially in the Mediterranean Basin. Plant-parasitic nematodes are major damaging pests on olive trees, mainly in nurseries. They significantly contribute to economic losses in the top-ten olive-producing countries in the world. However, the damages they induce in orchards and nurseries are specifically documented only in a few countries. This review aims to update knowledge about the olive-nematode pathosystem by: (1) updating the list of plant-parasitic nematodes associated with olive trees; (2) analysing their diversity (taxonomic level, trophic groups, dominance of taxa), which allowed us (i) to assess the richness observed in each country, and (ii) to exhibit and describe the most important taxa able to induce damages on olive trees such as: Meloidogyne, Pratylenchus, Helicotylenchus, Xiphinema, Tylenchulus, Rotylenchulus, Heterodera (distribution especially in the Mediterranean Basin, pathogenicity and reactions of olive trees); (3) describing some management strategies focusing on alternative control methods; (4) suggesting new approaches for controlling plant-parasitic nematodes based on the management of the diversity of their communities, which are structured by several environmental factors such as olive diversity (due to domestication of wild olive in the past, and to breeding now), cropping systems (from traditional to high-density orchards), irrigation, and terroirs. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  15. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers.

    PubMed

    Ponti, Luigi; Gutierrez, Andrew Paul; Ruti, Paolo Michele; Dell'Aquila, Alessandro

    2014-04-15

    The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests.

  16. Oil composition and genetic biodiversity of ancient and new olive (Olea europea L.) varieties and accessions of southern Italy.

    PubMed

    Cicatelli, Angela; Fortunati, Tancredi; De Feis, Italia; Castiglione, Stefano

    2013-09-01

    The present study is focused on determining the olive oil fatty acid composition of ancient and recent varieties of the Campania region (Italy), but also on molecularly characterizing the most common cultivated varieties in the same region, together with olive trees of the garden of the University Campus of Salerno and of three olive groves of south Italy. Fatty acid methyl esters in the extra virgin oil derived olive fruits were determined, during three consecutive harvests, by gas chromatography. The statistical analysis on fatty acid composition was performed with the ffmanova package. The genetic biodiversity of the olive collection was estimated by using eight highly polymorphic microsatellite loci and calculating the most commonly used indexes. "Dice index" was employed to estimate the similarity level of the analysed olive samples, while the Structure software to infer their genetic structure. The fatty acid content of extra virgin olive oils, produced from the two olive groves in Campania, suggests that the composition is mainly determined by genotype and not by cultural practices or climatic conditions. Furthermore, the analysis conducted on the molecular data revealed the presence of 100 distinct genotypes and seven homonymies out of the 136 analysed trees. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. The occurrence and bioactivity of polyphenols in Tunisian olive products and by-products: a review.

    PubMed

    Taamalli, Amani; Arráez-Román, David; Zarrouk, Mokhtar; Valverde, Javier; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2012-04-01

    Polyphenols have become a subject of intense research because of their perceived beneficial effects on health due to their anticarcinogenic, antiatherogenic, anti-inflammatory, and antimicrobial activities. It is well known that olives and their derivatives are rich in phenolic substances with pharmaceutical properties, some of which exert important antioxidant effects. The characterization and quantification of their polyphenol composition is one of the first steps to be taken in any evaluation of the putative contribution of the olive to human health. This review is concerned with polyphenols in Tunisian olive (Olea europaea L.) products (fruit and oil) and some by-products (leaves and olive-mill wastewater) with an emphasis on the analytical methods used, as well as the biological activities described in recent years. © 2012 Institute of Food Technologists®

  18. VOCs-Mediated Location of Olive Fly Larvae by the Braconid Parasitoid Psyttalia concolor: A Multivariate Comparison among VOC Bouquets from Three Olive Cultivars

    PubMed Central

    Giunti, Giulia; Benelli, Giovanni; Conte, Giuseppe; Mele, Marcello; Caruso, Giovanni; Gucci, Riccardo; Flamini, Guido; Canale, Angelo

    2016-01-01

    Herbivorous activity induces plant indirect defenses, as the emission of herbivorous-induced plant volatiles (HIPVs), which could be used by parasitoids for host location. Psyttalia concolor is a larval pupal endoparasitoid, attacking a number of tephritid flies including B. oleae. In this research, we investigated the olfactory cues routing host location behavior of P. concolor towards B. oleae larvae infesting three different olive cultivars. VOCs from infested and healthy fruits were identified using GC-MS analyses. In two-choice behavioral assays, P. concolor females preferred infested olive cues, which also evoked ovipositional probing by female wasps. GC-MS analysis showed qualitative and quantitative differences among volatiles emitted by infested and healthy olives. Volatile emissions were peculiar for each cultivar analyzed. Two putative HIPVs were detected in infested fruits, regardless of the cultivar, the monoterpene (E)-β-ocimene, and the sesquiterpene (E-E)-α-farnesene. Our study adds basic knowledge to the behavioral ecology of P. concolor. From an applied point of view, the field application of the above-mentioned VOCs may help to enhance effectiveness of biological control programs and parasitoid mass-rearing techniques. PMID:26989691

  19. Improving the geotechnical properties of expansive soils by mixture with olive mill wastewater

    NASA Astrophysics Data System (ADS)

    Ureña, C.; Azañón, J. M.; Corpas, F.; Nieto, F.; León-Buendía, C.

    2012-04-01

    In Southern Spain, Olive grove is an artificial forest which has a surface of 18.000 km2, representing more than 25% of olive oil world production. During the manufacturing process of this oil, different types of residues are generated. The most important is a biomass called olive mill wastewater. It is a dark colored liquid which can not be directly poured onto natural watercourses. On the one hand, part of this biomass is burnt to produce electrical energy or treated to make a bio-diesel. On the other hand, we propose the use of olive mill wastewater as a stabilization agent for expansive clayey soils. Using raw biomass as a stabilization agent two objectives are achieved: adding value to biomass and reducing the problems of expansive soils. Moreover, an important reduction of economic costs can take place. A pure bentonite clay was chosen as a sample of original expansive soil. It is abundant in Southern Spain and its main component is Na-Montmorillonite. Bentonite is very susceptible to changes in the environmental available moisture and very unsuitable for its use in civil engineering due to its low bearing capacity, high plasticity and volume changes. Several dosages (5%, 10%, 15%) of olive mill wastewater were added to the original sample of bentonite. To study eventual improvements in the mechanical properties of soil, Proctor, Atterberg Limits, California Bearing Ratio, Swelling Pressure and X-Ray Diffraction tests were carried out, following Spanish standards UNE by AENOR. Both geotechnical and mineralogical characterizations were developed at two different curing times: 15 and 30 days. The Plasticity Index (PI) of the original bentonite soil was 251 (High Plasticity). The addition of 15% of olive mill wastewater yielded reductions of PI similar to those produced by the addition of 5% of Portland cement. The California Bearing Ratio (CBR) values increased slightly after the treatment with biomass leading to very similar values to those obtained after the

  20. The Research of the Effect of the Olive Juice on Anxiety and Depression Behavior.

    PubMed

    Zhang, Jiguo

    2015-01-01

    In order to evaluate the effect of olive juice on the anxiety and depression behavior, the paper uses olive juice concentrate as experimental material, and uses mice as experimental subjects. Mice are randomly divided into negative, positive, high, medium and low-dose group, administered orally for 7 days. And observe the impact on the mice elevated plus maze test, the opening acts test and forced swim test. The experimental results show that under conditions of the sub-acute administration, olive juice can induce anti-anxiety behavior of mice, but also has the potential to improve depression of mice.

  1. Development of Phenol-Enriched Olive Oil with Phenolic Compounds Extracted from Wastewater Produced by Physical Refining.

    PubMed

    Venturi, Francesca; Sanmartin, Chiara; Taglieri, Isabella; Nari, Anita; Andrich, Gianpaolo; Terzuoli, Erika; Donnini, Sandra; Nicolella, Cristiano; Zinnai, Angela

    2017-08-22

    While in the last few years the use of olive cake and mill wastewater as natural sources of phenolic compounds has been widely considered and several studies have focused on the development of new extraction methods and on the production of functional foods enriched with natural antioxidants, no data has been available on the production of a phenol-enriched refined olive oil with its own phenolic compounds extracted from wastewater produced during physical refining. In this study; we aimed to: (i) verify the effectiveness of a multi-step extraction process to recover the high-added-value phenolic compounds contained in wastewater derived from the preliminary washing degumming step of the physical refining of vegetal oils; (ii) evaluate their potential application for the stabilization of olive oil obtained with refined olive oils; and (iii) evaluate their antioxidant activity in an in vitro model of endothelial cells. The results obtained demonstrate the potential of using the refining wastewater as a source of bioactive compounds to improve the nutraceutical value as well as the antioxidant capacity of commercial olive oils. In the conditions adopted, the phenolic content significantly increased in the prototypes of phenol-enriched olive oils when compared with the control oil.

  2. Development of Phenol-Enriched Olive Oil with Phenolic Compounds Extracted from Wastewater Produced by Physical Refining

    PubMed Central

    Taglieri, Isabella; Nari, Anita; Andrich, Gianpaolo; Terzuoli, Erika; Donnini, Sandra; Nicolella, Cristiano; Zinnai, Angela

    2017-01-01

    While in the last few years the use of olive cake and mill wastewater as natural sources of phenolic compounds has been widely considered and several studies have focused on the development of new extraction methods and on the production of functional foods enriched with natural antioxidants, no data has been available on the production of a phenol-enriched refined olive oil with its own phenolic compounds extracted from wastewater produced during physical refining. In this study; we aimed to: (i) verify the effectiveness of a multi-step extraction process to recover the high-added-value phenolic compounds contained in wastewater derived from the preliminary washing degumming step of the physical refining of vegetal oils; (ii) evaluate their potential application for the stabilization of olive oil obtained with refined olive oils; and (iii) evaluate their antioxidant activity in an in vitro model of endothelial cells. The results obtained demonstrate the potential of using the refining wastewater as a source of bioactive compounds to improve the nutraceutical value as well as the antioxidant capacity of commercial olive oils. In the conditions adopted, the phenolic content significantly increased in the prototypes of phenol-enriched olive oils when compared with the control oil. PMID:28829365

  3. Enumeration and rapid identification of yeasts during extraction processes of extra virgin olive oil in Tuscany.

    PubMed

    Mari, Eleonora; Guerrini, Simona; Granchi, Lisa; Vincenzini, Massimo

    2016-06-01

    The aim of this study was to evaluate the occurrence of yeast populations during different olive oil extraction processes, carried out in three consecutive years in Tuscany (Italy), by analysing crushed pastes, kneaded pastes, oil from decanter and pomaces. The results showed yeast concentrations ranging between 10(3) and 10(5) CFU/g or per mL. Seventeen dominant yeast species were identified by random amplified polymorphic DNA with primer M13 and their identification was confirmed by restriction fragments length polymorphism of ribosomal internal transcribed spacer and sequencing rRNA genes. The isolation frequencies of each species in the collected samples pointed out that the occurrence of the various yeast species in olive oil extraction process was dependent not only on the yeasts contaminating the olives but also on the yeasts colonizing the plant for oil extraction. In fact, eleven dominant yeast species were detected from the washed olives, but only three of them were also found in oil samples at significant isolation frequency. On the contrary, the most abundant species in oil samples, Yamadazyma terventina, did not occur in washed olive samples. These findings suggest a phenomenon of contamination of the plant for oil extraction that selects some yeast species that could affect the quality of olive oil.

  4. Traceability of plant contribution in olive oil by amplified fragment length polymorphisms.

    PubMed

    Pafundo, Simona; Agrimonti, Caterina; Marmiroli, Nelson

    2005-09-07

    Application of DNA molecular markers to traceability of foods is thought to bring new benefit to consumer's protection. Even in a complex matrix such as olive oil, DNA could be traced with PCR markers such as the amplified fragment length polymorphisms (AFLPs). In this work, fluorescent AFLPs were optimized for the characterization of olive oil DNA, to obtain highly reproducible, high-quality fingerprints, testing different parameters: the concentrations of dNTPs and labeled primer, the kind of Taq DNA polymerase and thermal cycler, and the quantity of DNA employed. It was found that correspondence of fingerprinting by comparing results in oils and in plants was close to 70% and that the DNA extraction from olive oil was the limiting step for the reliability of AFLP profiles, due to the complex matrix analyzed.

  5. Olive Leaf Extract Elevates Hepatic PPAR α mRNA Expression and Improves Serum Lipid Profiles in Ovariectomized Rats.

    PubMed

    Yoon, Leena; Liu, Ya-Nan; Park, Hyunjin; Kim, Hyun-Sook

    2015-07-01

    We hypothesized that olive leaf extract might alleviate dyslipidemia resulting from estrogen deficiency. Serum lipid profile and mRNA expression of the related genes in the liver and adipose tissue were analyzed after providing olive leaf extract (200 or 400 mg/kg body weight; n=7 for each group) to ovariectomized rats for 10 weeks. After 10 weeks' administration, the rats in the olive leaf extract-administered groups showed significantly lower levels of serum triglyceride and very-low-density lipoprotein (VLDL)-cholesterol compared with the rats in the control group, whereas the administration of olive leaf extract did not significantly change the elevated low-density lipoprotein cholesterol levels. In addition, administration of high dose of olive leaf extract significantly decreased the liver triglyceride and increased serum estradiol levels. mRNA expressions of peroxisome proliferator-activated receptor alpha (PPAR α) and acyl-CoA oxidase (ACO) were not affected by ovariectomy, however, administration of olive leaf extract significantly increased both PPAR α and ACO mRNA expression. Expression of adiponectin mRNA in adipose tissue was significantly decreased in the ovariectomized control group. Rats administered low-dose olive leaf extract showed significantly elevated adiponectin mRNA expression compared with rats in the ovariectomized control group. Even though dose-dependent effects were not observed in most of the measurements, these results suggest that genes involved in lipid metabolism may be regulated by olive leaf extract administration in ovariectomized rats.

  6. OLIVER: an online library of images for veterinary education and research.

    PubMed

    McGreevy, Paul; Shaw, Tim; Burn, Daniel; Miller, Nick

    2007-01-01

    As part of a strategic move by the University of Sydney toward increased flexibility in learning, the Faculty of Veterinary Science undertook a number of developments involving Web-based teaching and assessment. OLIVER underpins them by providing a rich, durable repository for learning objects. To integrate Web-based learning, case studies, and didactic presentations for veterinary and animal science students, we established an online library of images and other learning objects for use by academics in the Faculties of Veterinary Science and Agriculture. The objectives of OLIVER were to maximize the use of the faculty's teaching resources by providing a stable archiving facility for graphic images and other multimedia learning objects that allows flexible and precise searching, integrating indexing standards, thesauri, pull-down lists of preferred terms, and linking of objects within cases. OLIVER offers a portable and expandable Web-based shell that facilitates ongoing storage of learning objects in a range of media. Learning objects can be downloaded in common, standardized formats so that they can be easily imported for use in a range of applications, including Microsoft PowerPoint, WebCT, and Microsoft Word. OLIVER now contains more than 9,000 images relating to many facets of veterinary science; these are annotated and supported by search engines that allow rapid access to both images and relevant information. The Web site is easily updated and adapted as required.

  7. Olive-oil consumption and health: the possible role of antioxidants.

    PubMed

    Owen, R W; Giacosa, A; Hull, W E; Haubner, R; Würtele, G; Spiegelhalder, B; Bartsch, H

    2000-10-01

    In the Mediterranean basin, olive oil, along with fruits, vegetables, and fish, is an important constituent of the diet, and is considered a major factor in preserving a healthy and relatively disease-free population. Epidemiological data show that the Mediterranean diet has significant protective effects against cancer and coronary heart disease. We present evidence that it is the unique profile of the phenolic fraction, along with high intakes of squalene and the monounsaturated fatty acid, oleic acid, which confer its health-promoting properties. The major phenolic compounds identified and quantified in olive oil belong to three different classes: simple phenols (hydroxytyrosol, tyrosol); secoiridoids (oleuropein, the aglycone of ligstroside, and their respective decarboxylated dialdehyde derivatives); and the lignans [(+)-1-acetoxypinoresinol and pinoresinol]. All three classes have potent antioxidant properties. High consumption of extra-virgin olive oils, which are particularly rich in these phenolic antioxidants (as well as squalene and oleic acid), should afford considerable protection against cancer (colon, breast, skin), coronary heart disease, and ageing by inhibiting oxidative stress.

  8. Plant-parasitic nematodes associated with olive trees in Al-Jouf region, north Saudi Arabia

    USDA-ARS?s Scientific Manuscript database

    A preliminary survey of plant-parasitic nematodes associated with olive was performed in Al-Jouf region, north Saudi Arabia. Olive is a newly introduced crop in this region, and is cultivated in the agricultural enterprises of some of the biggest Saudi agricultural companies. Seedlings are mostly im...

  9. Biological Control of Olive Fruit Fly in California with a Parasitoid Imported from Guatemala

    USDA-ARS?s Scientific Manuscript database

    The parasitoid, Psyttalia cf. concolor (Szépligeti), was imported into California from the USDA-APHIS-PPQ, Moscamed, San Miguel Petapa, Guatemala for biological control of olive fruit fly, Bactrocera oleae (Gmelin), in olives, Olea europaea L. The parasitoid did not develop in the seedhead fly, Cha...

  10. A novel reliable method of DNA extraction from olive oil suitable for molecular traceability.

    PubMed

    Raieta, Katia; Muccillo, Livio; Colantuoni, Vittorio

    2015-04-01

    Extra virgin olive oil production has a worldwide economic impact. The use of this brand, however, is of great concern to Institutions and private industries because of the increasing number of fraud and adulteration attempts to the market products. Here, we present a novel, reliable and not expensive method for extracting the DNA from commercial virgin and extra virgin olive oils. The DNA is stable overtime and amenable for molecular analyses; in fact, by carrying out simple sequence repeats (SSRs) markers analysis, we characterise the genetic profile of monovarietal olive oils. By comparing the oil-derived pattern with that of the corresponding tree, we can unambiguously identify four cultivars from Samnium, a region of Southern Italy, and distinguish them from reference and more widely used varieties. Through a parentage statistical analysis, we also identify the putative pollinators, establishing an unprecedented and powerful tool for olive oil traceability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. How the Addition of Spices and Herbs to Virgin Olive Oil to Produce Flavored Oils Affects Consumer Acceptance.

    PubMed

    Issaoui, Manel; Flamini, Guido; Souid, Sondess; Bendini, Alessandra; Barbieri, Sara; Gharbi, Ines; Toschi, Tullia Gallina; Cioni, Pier Luigi; Hammami, Mohamed

    2016-06-01

    With the aim to expand the olive oil market to a larger number of consumers who are not familiar with the sensory characteristics of virgin olive oil, the use of novel products known as "flavored olive oils", obtained by adding different kind of spices and aromatic herbs, is spreading in many countries. In order to test consumer acceptability of this type of product, in a country (Tunisia) in which virgin olive oil is regularly consumed, flavored olive oils were prepared by adding aromatic extracts of thyme, oregano, a mix of herbs (used as pizza seasoning), rosemary, and basil to a monovarietal Chemlali virgin olive oil and a consumer test on 206 subjects was performed. Selected quality parameters (free acidity, peroxide number, oxidative stability, specific absorption at K232 nm and K270 nm) were also measured and no significant variations were detected. Slight differences were found concerning the content of minor compounds (chlorophylls, carotenoids and total phenols). On the other hand, notable differences were seen in the profiles of volatile compounds, which appeared to be responsible for the observed variability in consumer acceptance. Although the unflavored oil was more appreciated than the flavored ones, among the latter, thyme flavored olive oil was the most appreciated.

  12. Quality monitoring of extra-virgin olive oil using an optical sensor

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Paolesse, R.; Di Natale, C.; Del Nobile, A.; Benedetto, A.; Mentana, A.

    2006-04-01

    An optical sensor for the detection of olive oil aroma is presented. It is capable of distinguishing different ageing levels of extra-virgin olive oils, and shows effective potential for achieving a non destructive olfactory perception of oil ageing. The sensor is an optical scanner, fitted with an array of metalloporphyrin-based sensors. The scanner provides exposure of the sensors to the flow of the oil vapor being tested, and their sequential spectral interrogation. Spectral data are then processed using chemometric methodologies.

  13. Quality, stability and radical scavenging activity of olive oils after Chétoui olives (Olea europaea L.) storage under modified atmospheres.

    PubMed

    Ben Yahia, L; Baccouri, B; Ouni, Y; Hamdi, S

    2012-08-01

    At the industrial scale, the major source of olive oil deterioration is the poor handling of the raw material during the time separating harvesting from processing. The objective of this work was to verify the effect of modified atmospheres and cold storage in relation to quality parameters of the extracted oils. Olives (cv Chétoui) intended for oil extraction, were stored for 21 days at two different temperatures (ambient temperature 14 ± 2 °C and 5 °C) and under two different modified atmospheres 21% O₂ - 0% CO₂ and 2% O₂ - 5% CO₂. Oils quality was ascertained with analytical parameters: free fatty acids, peroxide value, K₂₃₂, K₂₇₀ as suggested by European regulation. Oxidative stability, total phenols content, radical scavenging activity and fatty acids composition were carried out in order to measure the hydrolytic and oxidative degradation of oils. Olive oils quality parameters were significantly affected by treatments with especially a beneficial effect on primary oxidation indicators and free acidity. Most efficient treatments, with regard to oils phenolic content and involved parameters, were 21% O₂ - 0% CO₂ at ambient temperature (636.25 mg ca/kg) and 2% O₂ - 5% CO₂ under 5 °C (637.50 mg ca/kg). Those two treatments improved individually oil samples phenolic content of 25% but not at the same storage period.

  14. Antioxidative response of olive to air emissions from tire burning under various zinc nutritional treatments.

    PubMed

    Hatami, Ashkan; Khoshgoftarmanesh, Amir Hossein

    2016-12-01

    Uniform 2-year old seedlings of a commercial olive cultivar (Olea europaea L., cv. Mahzam) were exposed or unexposed to the air pollution from the controlled burning of waste tires. The plants were supplied with zinc sulfate (ZnSO 4 ) or synthesized Zn(Glycine) 2 (Zn-Gly) or unsupplied with Zn. Exposure to air pollution resulted in oxidative damage to the olive, as indicated by the higher production of malondialdehyde (MDA). Supplement with Zn partly alleviated oxidative damage induced by the air emissions on the olive. Leaf concentration of MDA was higher at the active period of tire burning than that of the inactive one. Exposure to the emissions from tire burning significantly increased leaf ascorbate peroxidase (APX) activity. Supplement with Zn increased APX activity in plants exposed to the air pollution. According to the results, Zn nutrition was effective in alleviating oxidative stress induced by air pollution on the olive. APX seemed to play a significant role in alleviating oxidative damages induced by air emissions from tire burning on the olive; however, the role of other antioxidant enzymes should be addressed in future studies.

  15. The Peculiar Landscape of Repetitive Sequences in the Olive (Olea europaea L.) Genome

    PubMed Central

    Barghini, Elena; Natali, Lucia; Cossu, Rosa Maria; Giordani, Tommaso; Pindo, Massimo; Cattonaro, Federica; Scalabrin, Simone; Velasco, Riccardo; Morgante, Michele; Cavallini, Andrea

    2014-01-01

    Analyzing genome structure in different species allows to gain an insight into the evolution of plant genome size. Olive (Olea europaea L.) has a medium-sized haploid genome of 1.4 Gb, whose structure is largely uncharacterized, despite the growing importance of this tree as oil crop. Next-generation sequencing technologies and different computational procedures have been used to study the composition of the olive genome and its repetitive fraction. A total of 2.03 and 2.3 genome equivalents of Illumina and 454 reads from genomic DNA, respectively, were assembled following different procedures, which produced more than 200,000 differently redundant contigs, with mean length higher than 1,000 nt. Mapping Illumina reads onto the assembled sequences was used to estimate their redundancy. The genome data set was subdivided into highly and medium redundant and nonredundant contigs. By combining identification and mapping of repeated sequences, it was established that tandem repeats represent a very large portion of the olive genome (∼31% of the whole genome), consisting of six main families of different length, two of which were first discovered in these experiments. The other large redundant class in the olive genome is represented by transposable elements (especially long terminal repeat-retrotransposons). On the whole, the results of our analyses show the peculiar landscape of the olive genome, related to the massive amplification of tandem repeats, more than that reported for any other sequenced plant genome. PMID:24671744

  16. The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome.

    PubMed

    Barghini, Elena; Natali, Lucia; Cossu, Rosa Maria; Giordani, Tommaso; Pindo, Massimo; Cattonaro, Federica; Scalabrin, Simone; Velasco, Riccardo; Morgante, Michele; Cavallini, Andrea

    2014-04-01

    Analyzing genome structure in different species allows to gain an insight into the evolution of plant genome size. Olive (Olea europaea L.) has a medium-sized haploid genome of 1.4 Gb, whose structure is largely uncharacterized, despite the growing importance of this tree as oil crop. Next-generation sequencing technologies and different computational procedures have been used to study the composition of the olive genome and its repetitive fraction. A total of 2.03 and 2.3 genome equivalents of Illumina and 454 reads from genomic DNA, respectively, were assembled following different procedures, which produced more than 200,000 differently redundant contigs, with mean length higher than 1,000 nt. Mapping Illumina reads onto the assembled sequences was used to estimate their redundancy. The genome data set was subdivided into highly and medium redundant and nonredundant contigs. By combining identification and mapping of repeated sequences, it was established that tandem repeats represent a very large portion of the olive genome (∼31% of the whole genome), consisting of six main families of different length, two of which were first discovered in these experiments. The other large redundant class in the olive genome is represented by transposable elements (especially long terminal repeat-retrotransposons). On the whole, the results of our analyses show the peculiar landscape of the olive genome, related to the massive amplification of tandem repeats, more than that reported for any other sequenced plant genome.

  17. A Table! (At the Table).

    ERIC Educational Resources Information Center

    Terry, Robert M.

    A review of French dining habits and table manners outlines: elements of the place setting, courtesies used at the table, serving conventions, restaurant tipping, the size and content of the different meals of the day, subtle differences in common foods, restaurant types, menu types, general wine and cheese choices, waiter-client communication,…

  18. Restoration and revegetation associated with control of saltcedar and Russian olive: Chapter 7

    USGS Publications Warehouse

    Shafroth, Patrick B.; Merritt, David M.; Beauchamp, Vanessa B.; Lair, Kenneth D.

    2010-01-01

    Rationales for controlling or eliminating saltcedar and Russian olive from sites, river reaches, or entire streams include implicit or explicit assumptions that natural recovery or applied restoration of native plant communities will follow exotic plant removal (McDaniel and Taylor, 2003; Quimby and others, 2003). The vegetation that replaces saltcedar and Russian olive after treatment (“replacement vegetation”), with or without restoration actions, strongly influences the extent to which project objectives are successfully met. It is often assumed or implied that saltcedar and Russian olive removal alone is “restoration,” and many reports equate restoration success with areal extent of nonnative plants treated (for example, Duncan and others, 1993). However, removal of nonnative species alone does not generally constitute restoration. In this chapter, the term “restoration” refers to conversion of saltcedar- and Russian olive-dominated sites to a replacement vegetation type that achieves specific management goals and helps return parts of the system to a desired state. The degree to which a site is “restored” following removal of saltcedar or Russian olive typically depends upon a range of factors, such as (1) the site’s potential for restoration (such as extant soil conditions, site hydrology), (2) the direct and indirect effects of removal (for example, mechanical impacts to the site, effects of herbicides on nontarget vegetation), (3) the efficacy of restoration activities (for example, grading, reseeding, pole planting), and (4) the maintenance of processes that support native vegetation and prevent re-colonization by nonnative communities over the long term.This chapter summarizes and synthesizes the published literature on the topic of restoring native riparian vegetation following saltcedar and Russian olive control or removal. Most of the studies reviewed here are from saltcedar removal, revegetation, and river restoration projects in

  19. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers.

    PubMed

    Kaur, Amandeep; Rose, Devin J; Rumpagaporn, Pinthip; Patterson, John A; Hamaker, Bruce R

    2011-01-01

    Sustained colonic fermentation supplies beneficial fermentative by-products to the distal colon, which is particularly prone to intestinal ailments. Blunted/delayed initial fermentation may also lead to less bloating. Previously, we reported that starch-entrapped alginate-based microspheres act as a slowly fermenting dietary fiber. This material was used in the present study to provide a benchmark to compare to other "slowly fermentable" fibers. Dietary fibers with previous reports of slow fermentation, namely, long-chain inulin, psyllium, alkali-soluble corn bran arabinoxylan, and long-chain β-glucan, as well as starch-entrapped microspheres were subjected to in vitro upper gastrointestinal digestion and human fecal fermentation and measured over 48 h for pH, gas, and short-chain fatty acids (SCFA). The resistant fraction of cooked and cooled potato starch was used as another form of fermentable starch and fructooligosaccharides (FOS) served as a fast fermenting control. Corn bran arabinoxylan and long-chain β-glucan initially appeared slower fermenting with comparatively low gas and SCFA production, but later fermented rapidly with little remaining in the final half of the fermentation period. Long-chain inulin and psyllium had slow and moderate, but incomplete, fermentation. The resistant fraction of cooked and cooled potato starch fermented rapidly and appeared similar to FOS. In conclusion, compared to the benchmark slowly fermentable starch-entrapped microspheres, a number of the purported slowly fermentable fibers fermented fairly rapidly overall and, of this group, only the starch-entrapped microspheres appreciably fermented in the second half of the fermentation period. Consumption of dietary fibers, particularly commercial prebiotics, leads to uncomfortable feelings of bloating and flatulence due to their rapid degradation in our large intestine. This article employs claimed potential slowly fermenting fibers and compares their fermentation rates

  20. Phytoavailability and extractability of potassium, magnesium and manganese in calcareous soil amended with olive oil wastewater.

    PubMed

    Gallardo-Lara, F; Azcón, M; Polo, A

    2000-09-01

    Land disposal of olive oil wastewater using it as a soil amendment requires a knowledge of the effects that its application may produce on the status of the mineral nutrients in the plant-soil system. A pot experiment using calcareous soil was performed in a growth chamber to examine the effects of olive oil wastewater on the availability and postharvest soil extractability of K, Mg and Mn. The experiment included 6 treatments: two rates of olive oil wastewater, two mineral fertilizer treatments containing K (which supplied K in amounts equivalent to the K supplied by the olive oil wastewater treatments), a K-free mineral fertilizer treatment, and a control. The pots were sown with ryegrass as the test plant, harvesting 3 times at intervals of one month. Olive oil wastewater has demonstrated a considerable capacity for supplying K that can be assimilated by the plant, tending in fact to surpass the mineral potassium fertilizer tested. The application of olive oil wastewater tends to reduce the concentration of Mg in the plant, similarly to the effect of adding mineral potassium fertilizer. An enhancement of Mn availability takes place in the soil amended with olive oil wastewater, which on occasion has produced Mn concentrations in plant that could be considered phytotoxic or at least excessive. After harvesting, we observed an increase in the amount of exchangeable K in soil with added industrial wastewater. However, these increases are lower than those in soil treated with mineral potassium fertilizer. The levels of exchangeable, carbonate-bound, organic-bound and residual Mg in soil were higher in treatments incorporating olive oil wastewater than in those with added mineral K, with the opposite tendency occurring in the amount of Fe-Mn oxides-bound Mg in soil. Treatments based on olive oil wastewater, especially in high doses, increased the amount of exchangeable and carbonate-bound Mn in soil, in comparison with treatments adding mineral fertilizers with or

  1. Olive production systems on sloping land: prospects and scenarios.

    PubMed

    de Graaff, Jan; Duran Zuazo, Victor-Hugo; Jones, Nádia; Fleskens, Luuk

    2008-11-01

    The ultimate objective of the EU Olivero project was to improve the quality of life of the rural population and to assure the sustainable use of the natural resources of land and water in the sloping and mountainous olive production systems (SMOPS) areas in Southern Europe. One specific objective was to develop, with end-users, alternative future scenarios for olive orchards in the five Olivero target areas. This paper discusses the development of these scenarios, and their socio-economic and environmental effects. After presenting the different production systems (SMOPS) and their strengths, weaknesses, opportunities and threats, a general overview is given of the medium- and long-term prospects. These have been validated by experts from the olive sector and foresee changes towards abandonment, intensification and organic production. On balance, the changes could lead to lower production of some target areas in future. An analysis of major external factors affecting the future development of SMOPS indicates there will be labour shortages and increased wage rates, reduced subsidies and constant or rising olive oil prices. On the basis of these assumptions, four future scenarios are developed for the five target areas, with the help of a Linear Programming simulation model. The results are presented for two target areas. For the Trás-os-Montes target area in Portugal, three of the four tested scenarios point to a high level of abandonment, while in the most positive scenario the areas under semi-intensive low input and organic SMOPS increase. In the Granada and Jaen target area in Spain, all scenarios hint at intensification, and only the orchards on the steepest slopes are likely to be abandoned. The direction and extent of environmental effects (erosion, fire risk, pollution, water use and biodiversity) differ per scenario, as do the extent of cross-compliance and agri-environmental measures.

  2. Relationship between fermentation index and other biochemical changes evaluated during the fermentation of Mexican cocoa (Theobroma cacao) beans.

    PubMed

    Romero-Cortes, Teresa; Salgado-Cervantes, Marco Antonio; García-Alamilla, Pedro; García-Alvarado, Miguel Angel; Rodríguez-Jimenes, Guadalupe del C; Hidalgo-Morales, Madeleine; Robles-Olvera, Víctor

    2013-08-15

    During traditional cocoa processing, the end of fermentation is empirically determined by the workers; consequently, a high variability on the quality of fermented cocoa beans is observed. Some physicochemical properties (such as fermentation index) have been used to measure the degree of fermentation and changes in quality, but only after the fermentation process has concluded, using dried cocoa beans. This would suggest that it is necessary to establish a relationship between the chemical changes inside the cocoa bean and the fermentation conditions during the fermentation in order to standardize the process. Cocoa beans were traditionally fermented inside wooden boxes, sampled every 24 h and analyzed to evaluate fermentation changes in complete bean, cotyledon and dried beans. The value of the fermentation index suggested as the minimal adequate (≥1) was observed at 72 h in all bean parts analyzed. At this time, values of pH, spectral absorption, total protein hydrolysis and vicilin-class globulins of fermented beans suggested that they were well fermented. Since no difference was found between the types of samples, the pH value could be used as a first indicator of the end of the fermentation and confirmed by evaluation of the fermentation index using undried samples, during the process. © 2013 Society of Chemical Industry.

  3. Obtaining sugars and natural antioxidants from olive leaves by steam-explosion.

    PubMed

    Romero-García, Juan Miguel; Lama-Muñoz, Antonio; Rodríguez-Gutiérrez, Guillermo; Moya, Manuel; Ruiz, Encarnación; Fernández-Bolaños, Juan; Castro, Eulogio

    2016-11-01

    In this work, steam-explosion treatment was evaluated as a procedure to recover sugars and natural antioxidants from olive tree leaves. The treatment was carried out following a Box-Behnken experimental design, with three factors, temperature (180-220°C), process time (2-10min) and milling time (0-15s). Response surface methodology showed that temperature was the most influential factor, followed by process time, while the best results were achieved with whole leaves. The operational conditions for simultaneously maximizing the sugars and natural antioxidants recoveries resulted to be 180°C, 8.3min and whole leaf; under these conditions 18.39g and 1950mg were obtained from 100g dry olive leaves, respectively. This is equivalent to 70% recovery of the initial sugars present in olive leaves, with a very low formation of inhibitory compounds and an important amount of natural products with antioxidant capacity such as oleuropein, hydroxytyrosol and flavonoids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Extra virgin olive oil phenols and markers of oxidation in Greek smokers: a randomized cross-over study.

    PubMed

    Moschandreas, J; Vissers, M N; Wiseman, S; van Putte, K P; Kafatos, A

    2002-10-01

    To examine the effect of a low phenol olive oil and high phenol olive oil on markers of oxidation and plasma susceptibility to oxidation in normolipaemic smokers. Randomized single-blind cross-over trial with two intervention periods. The Medical School and University Hospital of the University of Crete, Heraklion, Crete, Greece. Twenty-five healthy males and females completed the study. Each intervention was of three weeks duration and intervention periods were separated by a two week washout. Seventy grams of extra virgin olive oil was supplied to each subject per day in the intervention periods. The olive oils supplied differed in their phenol content by 18.6 mg/day. Two fasting venous blood samples were taken at the end of each intervention period. The markers of antioxidant capacity measured in fasting plasma samples (total plasma resistance to oxidation, concentrations of protein carbonyl as a marker of protein oxidation, malondialdehyde and lipid hydroperoxides as markers of lipid oxidation and the ferric reducing ability of plasma) did not differ significantly between the low and high phenol olive oil diets. No effect of olive oil phenols on markers of oxidation in smokers was detected. It may be that the natural concentrations of phenols in olive oil are too low to produce an effect in the post-absorptive phase. Possible reasons for period effects and interactions between diet and administration period need attention to aid further cross-over trials of this kind. Unilever Research Vlaardingen, The Netherlands.

  5. Virulence of selected entomopathogenic fungi against the olive fruit fly and their potential for biocontrol

    USDA-ARS?s Scientific Manuscript database

    The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), is the most serious pest of cultivated olives worldwide. Its recent invasion into North America, specifically California, has initiated renewed interest in management strategies for this pest. Research into classical biological control ha...

  6. Determination of Volatiles by Odor Activity Value and Phenolics of cv. Ayvalik Early-Harvest Olive Oil

    PubMed Central

    Guclu, Gamze; Sevindik, Onur; Kelebek, Hasim; Selli, Serkan

    2016-01-01

    Ayvalik is an important olive cultivar producing high quality oils in Turkey. In the present study, volatile and phenolic compositions of early-harvest extra virgin olive oil (cv. Ayvalik) were determined. The solvent-assisted flavor evaporation (SAFE) technique was used for the extraction of volatile components. The aromatic extract obtained by SAFE was representative of the olive oil odor. A total of 32 aroma compounds, including alcohols, aldehydes, terpenes, esters, and an acid, were identified in the olive oil. Aldehydes and alcohols were qualitatively and quantitatively the most dominant volatiles in the oil sample. Of these, six volatile components presented odor activity values (OAVs) greater than one, with (Z)-3-hexenal (green), hexanal (green-sweet) and nonanal (fatty-pungent) being those with the highest OAVs in olive oil. A total of 14 phenolic compounds were identified and quantified by liquid chromatography combined with a diode array detector and ion spray mass spectrometry. The major phenolic compounds were found as 3,4-DHPEA-EDA, 3,4-DHPEA-EA and p-HPEA-EDA. PMID:28231141

  7. Identification and Characterization of the Iridoid Synthase Involved in Oleuropein Biosynthesis in Olive (Olea europaea) Fruits.

    PubMed

    Alagna, Fiammetta; Geu-Flores, Fernando; Kries, Hajo; Panara, Francesco; Baldoni, Luciana; O'Connor, Sarah E; Osbourn, Anne

    2016-03-11

    The secoiridoids are the main class of specialized metabolites present in olive (Olea europaea L.) fruit. In particular, the secoiridoid oleuropein strongly influences olive oil quality because of its bitterness, which is a desirable trait. In addition, oleuropein possesses a wide range of pharmacological properties, including antioxidant, anti-inflammatory, and anti-cancer activities. In accordance, obtaining high oleuropein varieties is a main goal of molecular breeding programs. Here we use a transcriptomic approach to identify candidate genes belonging to the secoiridoid pathway in olive. From these candidates, we have functionally characterized the olive homologue of iridoid synthase (OeISY), an unusual terpene cyclase that couples an NAD (P)H-dependent 1,4-reduction step with a subsequent cyclization, and we provide evidence that OeISY likely generates the monoterpene scaffold of oleuropein in olive fruits. OeISY, the first pathway gene characterized for this type of secoiridoid, is a potential target for breeding programs in a high value secoiridoid-accumulating species. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Membrane composition and dynamics: a target of bioactive virgin olive oil constituents.

    PubMed

    Lopez, Sergio; Bermudez, Beatriz; Montserrat-de la Paz, Sergio; Jaramillo, Sara; Varela, Lourdes M; Ortega-Gomez, Almudena; Abia, Rocio; Muriana, Francisco J G

    2014-06-01

    The endogenous synthesis of lipids, which requires suitable dietary raw materials, is critical for the formation of membrane bilayers. In eukaryotic cells, phospholipids are the predominant membrane lipids and consist of hydrophobic acyl chains attached to a hydrophilic head group. The relative balance between saturated, monounsaturated, and polyunsaturated acyl chains is required for the organization and normal function of membranes. Virgin olive oil is the richest natural dietary source of the monounsaturated lipid oleic acid and is one of the key components of the healthy Mediterranean diet. Virgin olive oil also contains a unique constellation of many other lipophilic and amphipathic constituents whose health benefits are still being discovered. The focus of this review is the latest evidence regarding the impact of oleic acid and the minor constituents of virgin olive oil on the arrangement and behavior of lipid bilayers. We highlight the relevance of these interactions to the potential use of virgin olive oil in preserving the functional properties of membranes to maintain health and in modulating membrane functions that can be altered in several pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of infusion of spices into the oil vs. combined malaxation of olive paste and spices on quality of naturally flavoured virgin olive oils.

    PubMed

    Caponio, Francesco; Durante, Viviana; Varva, Gabriella; Silletti, Roccangelo; Previtali, Maria Assunta; Viggiani, Ilaria; Squeo, Giacomo; Summo, Carmine; Pasqualone, Antonella; Gomes, Tommaso; Baiano, Antonietta

    2016-07-01

    Olive oil flavouring with aromatic plants and spices is a traditional practice in Mediterranean gastronomy. The aim of this work was to compare the influence of two different flavouring techniques (infusion of spices into the oil vs. combined malaxation of olives paste and spices) on chemical and sensory quality of flavoured olive oil. In particular, oxidative and hydrolytic degradation (by routine and non-conventional analyses), phenolic profiles (by HPLC), volatile compounds (by SPME-GC/MS), antioxidant activity, and sensory properties (by a trained panel and by consumers) of the oils were evaluated. The obtained results evidenced that the malaxation method was more effective in extracting the phenolic compounds, with a significantly lower level of hydrolysis of secoiridoids. As a consequence, antioxidant activity was significantly lower in the oils obtained by infusion, which were characterized by a higher extent of the oxidative degradation. The volatile compounds were not significantly influenced by changing the flavouring method, apart for sulfur compounds that were more abundant in the oils obtained by the combined malaxation method. From a sensory point of view, more intense bitter and pungent tastes were perceived when the infusion method was adopted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. 21 CFR 102.37 - Mixtures of edible fat or oil and olive oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Mixtures of edible fat or oil and olive oil. 102... for Specific Nonstandardized Foods § 102.37 Mixtures of edible fat or oil and olive oil. The common or usual name of a mixture of edible fats and oils containing less than 100 percent and more than 0 percent...

  11. 21 CFR 102.37 - Mixtures of edible fat or oil and olive oil.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Mixtures of edible fat or oil and olive oil. 102... for Specific Nonstandardized Foods § 102.37 Mixtures of edible fat or oil and olive oil. The common or usual name of a mixture of edible fats and oils containing less than 100 percent and more than 0 percent...

  12. 21 CFR 102.37 - Mixtures of edible fat or oil and olive oil.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Mixtures of edible fat or oil and olive oil. 102... for Specific Nonstandardized Foods § 102.37 Mixtures of edible fat or oil and olive oil. The common or usual name of a mixture of edible fats and oils containing less than 100 percent and more than 0 percent...

  13. Fish burger enriched by olive oil industrial by-product.

    PubMed

    Cedola, Annamaria; Cardinali, Angela; Del Nobile, Matteo Alessandro; Conte, Amalia

    2017-07-01

    Oil industry produces large volume of waste, which represents a disposal and a potential environmental pollution problem. Nevertheless, they are also promising sources of compounds that can be recovered and used as valuable substances. The aim of this work is to exploit solid olive by-products, in particular dry olive paste flour (DOPF) coming from Coratina cultivar, to enrich fish burger and enhance the quality characteristics. In particular, the addition of olive by-products leads to an increase of the phenolic content and the antioxidant activity; however, it also provokes a deterioration of sensory quality. Therefore, to balance quality and sensory characteristics of fish burgers, three subsequent phases have been carried out: first, the quality of DOPF in terms of phenolic compounds content and antioxidant activity has been assessed; afterward, DOPF has been properly added to fish burgers and, finally, the formulation of the enriched fish burgers has been optimized in order to improve the sensory quality. Results suggested that the enriched burgers with 10% DOPF showed considerable amounts of polyphenols and antioxidant activity, even though they are not very acceptable from the sensory point of view. Pre-treating DOPF by hydration/extraction with milk, significantly improved the burger sensory quality by reducing the concentration of bitter components.

  14. Stomatal oscillations in olive trees: analysis and methodological implications.

    PubMed

    López-Bernal, Alvaro; García-Tejera, Omar; Testi, Luca; Orgaz, Francisco; Villalobos, Francisco J

    2018-04-01

    Stomatal oscillations have long been disregarded in the literature despite the fact that the phenomenon has been described for a variety of plant species. This study aims to characterize the occurrence of oscillations in olive trees (Olea europaea L.) under different growing conditions and its methodological implications. Three experiments with young potted olives and one with large field-grown trees were performed. Sap flow measurements were always used to monitor the occurrence of oscillations, with additional determinations of trunk diameter variations and leaf-level stomatal conductance, photosynthesis and water potential also conducted in some cases. Strong oscillations with periods of 30-60 min were generally observed for young trees, while large field trees rarely showed significant oscillations. Severe water stress led to the disappearance of oscillations, but moderate water deficits occasionally promoted them. Simultaneous oscillations were also found for leaf stomatal conductance, leaf photosynthesis and trunk diameter, with the former presenting the highest amplitudes. The strong oscillations found in young potted olive trees preclude the use of infrequent measurements of stomatal conductance and related variables to characterize differences between trees of different cultivars or subjected to different experimental treatments. Under these circumstances, our results suggest that reliable estimates could be obtained using measurement intervals below 15 min.

  15. Non-Invasive Methodology to Estimate Polyphenol Content in Extra Virgin Olive Oil Based on Stepwise Multilinear Regression.

    PubMed

    Martínez Gila, Diego Manuel; Cano Marchal, Pablo; Gómez Ortega, Juan; Gámez García, Javier

    2018-03-25

    Normally the olive oil quality is assessed by chemical analysis according to international standards. These norms define chemical and organoleptic markers, and depending on the markers, the olive oil can be labelled as lampante, virgin, or extra virgin olive oil (EVOO), the last being an indicator of top quality. The polyphenol content is related to EVOO organoleptic features, and different scientific works have studied the positive influence that these compounds have on human health. The works carried out in this paper are focused on studying relations between the polyphenol content in olive oil samples and its spectral response in the near infrared spectra. In this context, several acquisition parameters have been assessed to optimize the measurement process within the virgin olive oil production process. The best regression model reached a mean error value of 156.14 mg/kg in leave one out cross validation, and the higher regression coefficient was 0.81 through holdout validation.

  16. Whole Lyophilized Olives as Sources of Unexpectedly High Amounts of Secoiridoids: The Case of Three Tuscan Cultivars.

    PubMed

    Cecchi, Lorenzo; Migliorini, Marzia; Cherubini, Chiara; Innocenti, Marzia; Mulinacci, Nadia

    2015-02-04

    The phenolic profiles of three typical Tuscan olive cultivars, Frantoio, Moraiolo, and Leccino, stored in different conditions (fresh, frozen, and whole lyophilized fruits), have been compared during the ripening period. Our main goals were to evaluate the phenolic content of whole freeze-dried fruits and to test the stability of the corresponding cake in oxidative-stress conditions. The comparison of fresh and whole freeze-dried fruits from the 2012 season gave unexpected results; e.g., oleuropein in lyophilized fruits was up to 20 times higher than in fresh olives with values up to 80.3 g/kg. Over time we noted that the olive pastes obtained from lyophilized olives contained highly stable phenolic compounds, even under strong oxidative stress conditions. Finally, it was also observed that the cake/powder obtained from unripe freeze-dried olives was very poor in oil content and therefore quite suitable for use in nutritional supplements rich in phenolic compounds, such as secoiridoids, which are not widely present in the human diet.

  17. Non-Invasive Methodology to Estimate Polyphenol Content in Extra Virgin Olive Oil Based on Stepwise Multilinear Regression

    PubMed Central

    Cano Marchal, Pablo; Gómez Ortega, Juan; Gámez García, Javier

    2018-01-01

    Normally the olive oil quality is assessed by chemical analysis according to international standards. These norms define chemical and organoleptic markers, and depending on the markers, the olive oil can be labelled as lampante, virgin, or extra virgin olive oil (EVOO), the last being an indicator of top quality. The polyphenol content is related to EVOO organoleptic features, and different scientific works have studied the positive influence that these compounds have on human health. The works carried out in this paper are focused on studying relations between the polyphenol content in olive oil samples and its spectral response in the near infrared spectra. In this context, several acquisition parameters have been assessed to optimize the measurement process within the virgin olive oil production process. The best regression model reached a mean error value of 156.14 mg/kg in leave one out cross validation, and the higher regression coefficient was 0.81 through holdout validation. PMID:29587403

  18. Metarhizium brunneum (Ascomycota; Hypocreales) Treatments Targeting Olive Fly in the Soil for Sustainable Crop Production

    PubMed Central

    Yousef, Meelad; Alba-Ramírez, Carmen; Garrido Jurado, Inmaculada; Mateu, Jordi; Raya Díaz, Silvia; Valverde-García, Pablo; Quesada-Moraga, Enrique

    2018-01-01

    Soil treatments with Metarhizium brunneum EAMa 01/58-Su strain conducted in both Northern and Southern Spain reduced the olive fly (Bactrocera oleae) population density emerging from the soil during spring up to 70% in treated plots compared with controls. A model to determine the influence of rainfall on the conidial wash into different soil types was developed, with most of the conidia retained at the first 5 cm, regardless of soil type, with relative percentages of conidia recovered ranging between 56 and 95%. Furthermore, the possible effect of UV-B exposure time on the pathogenicity of this strain against B. oleae adults coming from surviving preimaginals and carrying conidia from the soil at adult emergence was also evaluated. The UV-B irradiance has no significant effect on M. brunneum EAMa 01/58-Su pathogenicity with B. oleae adult mortalities of 93, 90, 79, and 77% after 0, 2, 4, and 6 of UV-B irradiance exposure, respectively. In a next step for the use of these M. brunneum EAMa 01/58-Sun soil treatments within a B. oleae IPM strategy, its possible effect of on the B. oleae cosmopolitan parasitoid Psyttalia concolor, its compatibility with the herbicide oxyfluorfen 24% commonly used in olive orchards and the possible presence of the fungus in the olive oil resulting from olives previously placed in contact with the fungus were investigated. Only the highest conidial concentration (1 × 108 conidia ml−) caused significant P. concolor adult mortality (22%) with enduing mycosis in 13% of the cadavers. There were no fungal propagules in olive oil samples resulting from olives previously contaminated by EAMa 01/58-Su conidia. Finally, the strain was demonstrated to be compatible with herbicide since the soil application of the fungus reduced the B. oleae population density up to 50% even when it was mixed with the herbicide in the same tank. The fungal inoculum reached basal levels 4 months after treatments (1.6 × 103 conidia g soil−1). These results

  19. Metarhizium brunneum (Ascomycota; Hypocreales) Treatments Targeting Olive Fly in the Soil for Sustainable Crop Production.

    PubMed

    Yousef, Meelad; Alba-Ramírez, Carmen; Garrido Jurado, Inmaculada; Mateu, Jordi; Raya Díaz, Silvia; Valverde-García, Pablo; Quesada-Moraga, Enrique

    2018-01-01

    Soil treatments with Metarhizium brunneum EAMa 01/58-Su strain conducted in both Northern and Southern Spain reduced the olive fly ( Bactrocera oleae ) population density emerging from the soil during spring up to 70% in treated plots compared with controls. A model to determine the influence of rainfall on the conidial wash into different soil types was developed, with most of the conidia retained at the first 5 cm, regardless of soil type, with relative percentages of conidia recovered ranging between 56 and 95%. Furthermore, the possible effect of UV-B exposure time on the pathogenicity of this strain against B. oleae adults coming from surviving preimaginals and carrying conidia from the soil at adult emergence was also evaluated. The UV-B irradiance has no significant effect on M. brunneum EAMa 01/58-Su pathogenicity with B. oleae adult mortalities of 93, 90, 79, and 77% after 0, 2, 4, and 6 of UV-B irradiance exposure, respectively. In a next step for the use of these M. brunneum EAMa 01/58-Sun soil treatments within a B. oleae IPM strategy, its possible effect of on the B. oleae cosmopolitan parasitoid Psyttalia concolor , its compatibility with the herbicide oxyfluorfen 24% commonly used in olive orchards and the possible presence of the fungus in the olive oil resulting from olives previously placed in contact with the fungus were investigated. Only the highest conidial concentration (1 × 10 8 conidia ml - ) caused significant P. concolor adult mortality (22%) with enduing mycosis in 13% of the cadavers. There were no fungal propagules in olive oil samples resulting from olives previously contaminated by EAMa 01/58-Su conidia. Finally, the strain was demonstrated to be compatible with herbicide since the soil application of the fungus reduced the B. oleae population density up to 50% even when it was mixed with the herbicide in the same tank. The fungal inoculum reached basal levels 4 months after treatments (1.6 × 10 3 conidia g soil -1 ). These results

  20. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. I. Digestibility, fermentation parameters, and microbial growth.

    PubMed

    Martínez, M E; Ranilla, M J; Tejido, M L; Ramos, S; Carro, M D

    2010-08-01

    Four ruminally and duodenally cannulated sheep and 8 Rusitec fermenters were used to determine the effects of forage to concentrate (F:C) ratio and type of forage in the diet on ruminal fermentation and microbial protein synthesis. The purpose of the study was to assess how closely fermenters can mimic the dietary differences found in vivo. The 4 experimental diets contained F:C ratios of 70:30 or 30:70 with either alfalfa hay or grass hay as the forage. Microbial growth was determined in both systems using (15)N as a microbial marker. Rusitec fermenters detected differences between diets similar to those observed in sheep by changing F:C ratio on pH; neutral detergent fiber digestibility; total volatile fatty acid concentrations; molar proportions of acetate, propionate, butyrate, isovalerate, and caproate; and amylase activity. In contrast, Rusitec fermenters did not reproduce the dietary differences found in sheep for NH(3)-N and lactate concentrations, dry matter (DM) digestibility, proportions of isobutyrate and valerate, carboxymethylcellulase and xylanase activities, and microbial growth and its efficiency. Regarding the effect of the type of forage in the diet, Rusitec fermenters detected differences between diets similar to those found in sheep for most determined parameters, with the exception of pH, DM digestibility, butyrate proportion, and carboxymethylcellulase activity. Minimum pH and maximal volatile fatty acid concentrations were reached at 2h and at 6 to 8h postfeeding in sheep and fermenters, respectively, indicating that feed fermentation was slower in fermenters compared with that in sheep. There were differences between systems in the magnitude of most determined parameters. In general, fermenters showed lower lactate concentrations, neutral detergent fiber digestibility, acetate:propionate ratios, and enzymatic activities. On the contrary, fermenters showed greater NH(3)-N concentrations, DM digestibility, and proportions of propionate